


Lecture Notes in Computer Science 4275
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Robert Meersman Zahir Tari et al. (Eds.)

On the Move to Meaningful
Internet Systems 2006:
CoopIS, DOA, GADA, and
ODBASE

OTM Confederated International Conferences
CoopIS, DOA, GADA, and ODBASE 2006
Montpellier, France, October 29 – November 3, 2006
Proceedings, Part I

13



Volume Editors

Robert Meersman
Vrije Universiteit Brussel (VUB), STARLab
Bldg G/10, Pleinlaan 2, 1050 Brussels, Belgium
E-mail: meersman@vub.ac.be

Zahir Tari
RMIT University, School of Computer Science and Information Technology
Bld 10.10, 376-392 Swanston Street, VIC 3001, Melbourne, Australia
E-mail: zahirt@cs.rmit.edu.au

Library of Congress Control Number: 2006934986

CR Subject Classification (1998): H.2, H.3, H.4, C.2, H.5, I.2, D.2.12, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-48287-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48287-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11914853 06/3142 5 4 3 2 1 0



Volume Editors 

Robert Meersman 
Zahir Tari 

 
 

CoopIS 
Mike Papazoglou 
Louiqa Raschid 

Rainer Ruggaber 
 
 

DOA 
Judith Bishop 

Kurt Geihs 
 
 

GADA 
Pilar Herrero 

María S. Pérez 
Domenico Talia 
Albert Zomaya 

 
 

ODBASE 
Maurizio Lenzerini 

Erich Neuhold 
V.S. Subrahmanian 



OTM 2006 General Co-chairs’ Message

Dear OnTheMove Participant or Reader of these Proceedings,

The General Chairs of OnTheMove 2006, Montpellier, France, are happy to ob-
serve that the conference series that was started in Irvine, California in 2002
and subsequently held in Catania, Sicily in 2003 and in Cyprus in 2004 and 2005
clearly continues to attract a growing representative selection of today’s world-
wide research on the scientific concepts underlying distributed, heterogeneous
and autonomous yet meaningfully collaborative computing, with the Internet
and the WWW as its prime epitomes.

Indeed, as such large, complex and networked intelligent information sys-
tems become the focus and norm for computing, it is clear that there is an acute
and increasing need to address and discuss in an integrated forum the implied
software and system issues as well as methodological, theoretical and applica-
tion issues. As we all know, e-mail, the Internet, and even video conferences
are not sufficient for effective and efficient scientific exchange. This is why the
OnTheMove (OTM) Federated Conferences series has been created to cover the
increasingly wide yet closely connected range of fundamental technologies such
as data and Web semantics, distributed objects, Web services, databases, infor-
mation systems, workflow, cooperation, ubiquity, interoperability, mobility, grid
and high-performance. OnTheMove aspires to be a primary scientific meeting
place where all aspects of the development of Internet- and Intranet-based sys-
tems in organizations and for e-business are discussed in a scientifically motivated
way. This fifth 2006 edition of the OTM Federated Conferences event therefore
again provided an opportunity for researchers and practitioners to understand
and publish these developments within their individual as well as within their
broader contexts.

The backbone ofOTM was originally formed by the co-locationof three related,
complementary and successful main conference series: DOA (Distributed Objects
and Applications, since 1999), covering the relevant infrastructure-enabling tech-
nologies, ODBASE (Ontologies, DataBases and Applications of SEmantics, since
2002) covering Web semantics, XML databases and ontologies, CoopIS (Coopera-
tive InformationSystems, since 1993) covering the applicationof these technologies
in an enterprise context through, for example, workflow systems and knowledge
management. For the 2006 edition, these were strengthened by a fourth confer-
ence, GADA (Grid computing, high-performAnce and Distributed Applications,
a successful workshop at OTM since 2004), covering the large-scale integration of
heterogeneous computing systems and data resources with the aim of providing a
global computing space. Each of these four conferences encourages researchers to
treat their respective topics within a framework that incorporates jointly (a) the-
ory , (b) conceptual design and development, and (c) applications, in particular
case studies and industrial solutions.



VIII Preface

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant garde” areas related to the general topic of distributed computing. For
instance, the so-called Semantic Web has given rise to several novel research
areas combining linguistics, information systems technology, and artificial intel-
ligence, such as the modeling of (legal) regulatory systems and the ubiquitous
nature of their usage. We were glad to see that several earlier successful work-
shops (notably WOSE, MIOS-INTEROP, AweSOMe, CAMS, SWWS, SeBGIS,
ORM) re-appeared in 2006 with a second, third or sometimes fourth edition,
and that not less than seven new workshops could be hosted and successfully
organized by their respective proposers: IS (International Workshop on Informa-
tion Security), COMINF (International Workshop on Community Informatics),
KSinBIT (International Workshop on Knowledge Systems in Bioinformatics),
MONET (International Workshop on MObile and NEtworking Technologies for
social applications), OnToContent (Ontology content and evaluation in Enter-
prise), PerSys (International Workshop on Pervasive Systems), and RDDS (In-
ternational Workshop on Reliability in Decentralized Distributed Systems). We
know that as before, their audiences will mutually productively mingle with
those of the main conferences, as is already visible from the overlap in authors!
The OTM organizers are especially grateful for the leadership and competence
of Pilar Herrero in managing this complex process into a success for the second
year in a row.

A special mention for 2006 is again due for the third and enlarged edition of
the highly attractive OnTheMove Academy (formerly called Doctoral Consor-
tium Workshop). Its 2006 Chairs, Antonia Albani, Gábor Nagypál and Johannes
Maria Zaha, three young and active researchers, further refined the original
set-up and interactive formula to bring PhD students together: they call them
to submit their research proposals for selection; the resulting submissions and
their approaches are presented by the students in front of a wider audience at
the conference, where they are then independently and extensively analyzed and
discussed in public by a panel of senior professors. This year these were Johann
Eder, Maria Orlowska, and of course Jan Dietz, the Dean of the OnTheMove
Academy, who provided guidance, support and help for the team. The successful
students are also awarded free access to all other parts of the OTM program,
and only pay a minimal fee for the Doctoral Symposium itself (in fact their at-
tendance is largely sponsored by the other participants!). The OTM organizers
expect to further expand the OnTheMove Academy in future editions of the
conferences and so draw an audience of young researchers into the OTM forum.

All four main conferences and the associated workshops share the distrib-
uted aspects of modern computing systems, and the resulting application-pull
created by the Internet and the so-called Semantic Web. For DOA 2006, the
primary emphasis was on the distributed object infrastructure; for ODBASE
2006, it became the knowledge bases and methods required for enabling the
use of formal semantics; for CoopIS 2006, the topic was the interaction of such



Preface IX

technologies and methods with management issues, such as occur in networked
organizations, and for GADA 2006, the topic was the scalable integration of
heterogeneous computing systems and data resources with the aim of provid-
ing a global computing space. These subject areas naturally overlap and many
submissions in fact also treat an envisaged mutual impact among them. As for
the earlier editions, the organizers wanted to stimulate this cross-pollination
by a shared program of famous keynote speakers: this year we were proud to
announce Roberto Cencioni (European Commission), Alois Ferscha (Johannes
Kepler Universität), Daniel S. Katz (Louisiana State University and Jet Propul-
sion Laboratory), Frank Leymann (University of Stuttgart), and Marie-Christine
Rousset (University of Grenoble)! We also encouraged multiple event attendance
by providing all authors, also those of workshop papers, with free access or dis-
counts to one other conference or workshop of their choice.

We received a total of 361 submissions for the four main conferences and
an impressive 493 (compared to the 268 in 2005 and 170 in 2004!) submis-
sions for the workshops. Not only may we indeed again claim success in at-
tracting an increasingly representative volume of scientific papers, but such a
harvest of course allows the Program Committees to compose a higher quality
cross-section of current research in the areas covered by OTM. In fact, in spite
of the larger number of submissions, the Program Chairs of each of the three
main conferences decided to accept only approximately the same number of pa-
pers for presentation and publication as in 2003, 2004 and 2005 (i.e., average
one paper out of four submitted, not counting posters). For the workshops, the
acceptance rate varies but was much stricter than before, about one in two to
three, to less than one quarter for the IS (Information Security) international
workshop. Also for this reason, we separated the proceedings into two books with
their own titles, with the main proceedings in two volumes, and we are grate-
ful to Springer for their suggestions and collaboration in producing these books
and CDROMs. The reviewing process by the respective Program Committees as
usual was performed very professionally and each paper in the main conferences
was reviewed by at least three referees, with arbitrated e-mail discussions in the
case of strongly diverging evaluations. It may be worthwhile to emphasize that
it is an explicit OnTheMove policy that all conference Program Committees and
Chairs make their selections completely autonomously from the OTM organi-
zation itself. Continuing a costly but nice tradition, the OnTheMove Federated
Event organizers decided again to make all proceedings available to all partic-
ipants of conferences and workshops, independently of one’s registration to a
specific conference or workshop. Each participant also received a CDROM with
the full combined proceedings (conferences + workshops).

The General Chairs are once more especially grateful to all the many people
directly or indirectly involved in the setup of these federated conferences who
contributed to making it a success. Few people realize what a large number of
people have to be involved, and what a huge amount of work, and sometimes risk,
the organization of an event like OTM entails. Apart from the persons in the roles
mentioned above, we therefore in particular wish to thank our 12 main conference



X Preface

PC Co-chairs (GADA 2006: Pilar Herrero, Maŕıa S. Pérez, Domenico Talia, Al-
bert Zomaya; DOA 2006: Judith Bishop, Kurt Geihs; ODBASE 2006: Maurizio
Lenzerini, Erich Neuhold, V.S. Subrahmanian; CoopIS 2006: Mike Papazoglou,
Louiqa Raschid, Rainer Ruggaber) and our 36 workshop PC Co-chairs (Antonia
Albani, George Buchanan, Roy Campbell, Werner Ceusters, Elizabeth Chang,
Ernesto Damiani, Jan L.G. Dietz, Pascal Felber, Fernando Ferri, Mario Freire,
Daniel Grosu, Michael Gurstein, Maja Hadzic, Pilar Herrero, Terry Halpin, An-
nika Hinze, Skevos Evripidou, Mustafa Jarrar, Arek Kasprzyk, Gonzalo Méndez,
Aldo de Moor, Bart De Moor, Yves Moreau, Claude Ostyn, Andreas Persidis,
Maurizio Rafanelli, Marta Sabou, Vitor Santos, Simao Melo de Sousa, Katia
Sycara, Arianna D’Ulizia, Eiko Yoneki, Esteban Zimányi).

All, together with their many PC members, did a superb and professional
job in selecting the best papers from the large harvest of submissions.

We also heartily thank Zohra Bellahsene of LIRMM in Montpellier for the
considerable efforts in arranging the venue at their campus and coordinating
the substantial and varied local facilities needed for a multi-conference event
such as ours. And we must all also be grateful to Mohand-Said Hacid of the
University of Lyon for researching and securing the sponsoring arrangements, to
Gonzalo Méndez, our excellent Publicity Chair, to our extremely competent and
experienced Conference Secretariat and technical support staff Daniel Meers-
man, Ana-Cecilia Martinez Barbosa, and Jan Demey, and last but not least to
our hyperactive Publications Chair and loyal collaborator of many years, Kwong
Yuen Lai, this year bravely assisted by Peter Dimopoulos.

The General Chairs gratefully acknowledge the academic freedom, logistic
support and facilities they enjoy from their respective institutions, Vrije Univer-
siteit Brussel (VUB) and RMIT University, Melbourne, without which such an
enterprise would not be feasible.

We do hope that the results of this federated scientific enterprise contribute
to your research and your place in the scientific network... We look forward to
seeing you again at next year’s edition!

August 2006 Robert Meersman, Vrije Universiteit Brussel, Belgium
Zahir Tari, RMIT University, Australia
(General Co-chairs, OnTheMove 2006)



Organization Committee

The OTM (On The Move) 2006 Federated Conferences, which involve CoopIS
(Cooperative Information Systems), DOA (distributed Objects and Applica-
tions), GADA (Grid computing, high-performAnce and Distributed Applica-
tions), and ODBASE (Ontologies, Databases and Applications of Semantics),
are proudly supported by CNRS (Centre National de la Researche Scientifique,
France), the City of Montpellier (France), Ecole Polytechnique Universitaire de
Montepellier, Université de Montpellier II (UM2), Laboratoire d’Informatique
de Robotique et de Microélectronique de Montpellier (LIRMM), RMIT Uni-
versity (School of Computer Science and Information Technology), and Vrije
Universiteit Brussel (Department of Computer Science).

Executive Committee

OTM 2006 General Co-chairs: Robert Meersman (Vrije Universiteit Brussel,
Belgium) and Zahir Tari (RMIT University,
Australia).

GADA 2006 PC Co-chairs: Pilar Herrero (Universidad Politécnica de
Madrid, Spain), Maŕıa S. Pérez (Universidad
Politécnica de Madrid, Spain), Domenico Talia
(Universitá della Calabria, Italy), and Albert
Zomaya (The University of Sydney, Australia).

CoopIS 2006 PC Co-chairs: Mike Papazoglou (Tilburg University, Nether-
lands), Louiqa Raschid (University of Mary-
land, USA), and Rainer Ruggaber (SAP Re-
search Center, Germany).

DOA 2006 PC Co-chairs: Judith Bishop (University of Pretoria, South
Africa) and Kurt Geihs (University of Kassel,
Germany).

ODBASE 2006 PC Co-chairs: Maurizio Lenzerini (Universitá di Roma “La
Sapienza,” Italy), Erich Neuhold (Darmstadt
University of Technology, Germany), and V.S.
Subrahmanian (University of Maryland College
Park, USA).

Publication Co-chairs: Kwong Yuen Lai (RMIT University, Australia)
and Peter Dimopoulos (RMIT University, Aus-
tralia).

Organizing Chair: Zohra Bellahsene (LIRMM CNRS/University
of Montpellier II, France).

Publicity Chair: Mohand-Said Hacid (Université Claude
Bernard Lyon I, France).



XII Organization

Secretariat: Ana-Cecilia Martinez Barbosa, Jan Demey, and
Daniel Meersman.

CoopIS 2006 Program Committee

Marco Aiello
Alistair Barros
Boualem Benatallah
Salima Benbernou
Arne Berre
Elisa Bertino
Klemens Böhm
Alex Borgida
Luc Bouganim
Stephane Bressan
Laura Bright
Fabio Casati
Mariano Cilia
Vincenzo D’Andrea
Umesh Dayal
Alex Delis
Marlon Dumas
Schahram Dustdar
Johann Eder
Klaus Fischer
Avigdor Gal
Fausto Giunchiglia
Paul Grefen
Mohand-Said Hacid
Manfred Hauswirth
Willem-Jan van den Heuvel
Martin Hepp
Carsten Holtmann
Nenad Ivezic
Paul Johannesson

Manolis Koubarakis
Bernd Krämer
Winfried Lamersdorf
Steven Laufmann
Qing Li
Tiziana Margaria
Marta Mattoso
Massimo Mecella
Nikolay Mehandjiev
Brahim Medjahed
Michele Missikoff
Michael zur Muehlen
Jörg Müller
David Munro
Wolfgang Nejdl
Cesare Pautasso
Mourad Ouzzani
Manfred Reichert
Stefanie Rinderle
Uwe Riss
Timos Sellis
Anthony Tomasic
Farouk Toumani
Patrick Valduriez
Wil van der Aalst
Maria Esther Vidal
Mathias Weske
Jian Yang
Vladimir Zadorozhny

GADA 2006 Program Committee

Akshai Aggarwal
Alan Sussman
Alastair Hampshire
Alberto Sanchez
Alvaro A.A. Fernandes
Angelos Bilas

Antonio Garcia Dopico
Artur Andrzejak
Azzedine Boukerche
Beniamino Di Martino
Bhanu Prasad
Bing Bing Zhou



Organization XIII

Carmela Comito
Carole Goble
Costin Badica
Dana Petcu
Daniel S. Katz
David Walker
Domenico Laforenza
Eduardo Huedo
Elghazali Talbi
Enrique Soler
Fatos Xhafa
Felix Garcia
Francisco Luna
Franciszek Seredynski
Gregorio Martinez
Hamid Sarbazi-Azad
Heinz Stockinger
Ignacio M. Llorente
Jack Dongarra
Jan Humble
Jemal Abawajy
Jesús Carretero
Jinjun Chen
Jon Maclaren
Jose L. Bosque
Jose M. Peña
Juan A. Botá Blaya
Kostas Karasavvas
Kurt Stockinger
Laurence T. Yang

Manish Parashar
Manuel Salvadores
Marcin Paprzycki
Máıa Eugenia de Pool
Maria Ganzha
Mario Cannataro
Marios Dikaiakos
Mark Baker
Mirela Notare
Mohamed Ould-Khaoua
Neil P. Chue Hong
Omer F. Rana
Panayiotis Periorellis
Pascal Bouvry
Rainer Unland
Rajkumar Buyya
Reagan Moore
Rizos Sakellariou
Rosa M. Badia
Ruben S. Montero
Santi Caballé Llobet
Sattar B. Sadkhan Almaliky
Savitri Bevinakoppa
Stefan Egglestone
Thierry Priol
Toni Cortes
Valdimir Getov
Vı́ctor Robles

ODBASE 2006 Program Committee

Sibel Adali
Maristella Agosti
Bill Andersen
Juergen Angele
Franz Baader
Sonia Bergamaschi
Alex Borgida
Christoph Bussler
Marco Antonio Casanova
Silvana Castano
Tiziana Catarci
Giuseppe De Giacomo

Stefan Decker
Rainer Eckstein
Johann Eder
Mohand Said Hacid
Jeff Heflin
Jim Hendler
Edward Hung
Arantza Illarramendi
Vipul Kashyap
Larry Kerschberg
Ross King
Roger



XIV Organization

Harumi Kuno
Georg Lausen
Michele Missikoff
John Mylopoulos
Wolfgang Nejdl
Christine Parent
Thomas Risse
Heiko Schuldt

Peter Schwarz
Peter Spyns
York Sure
Sergio Tessaris
David Toman
Guido Vetere
Chris Welty

DOA 2006 Program Committee

Cristiana Amza
Matthias Anlauff
Mark Baker
Guruduth Banavar
Gordon Blair
Harold Carr
Geoff Coulson
Francisco “Paco” Curbera
Frank Eliassen
Tomoya Enokido
Patrick Eugster
Pascal Felber
Jeff Gray
Stefan Gruner
Mohand-Said Hacid
Franz Hauck
Naohiro Hayashibara
Hui-Huang Hsu
Mehdi Jazayeri
Eric Jul
Bettina Kemme
Fabio Kon
Joe Loyall
Peter Loehr
Frank Manola

Keith Moore
Francois Pacull
Simon Patarin
Peter Pietzuch
Joao Pereira
Arno Puder
Rajendra Raj
Andry Rakotonirainy
Luis Rodrigues
Isabelle Rouvellou
Rick Schantz
Heinz-W. Schmidt
Douglas Schmidt
Richard Soley
Michael Stal
Jean-Bernard Stefani
Stefan Tai
Hong Va Leong
Steve Vinoski
Norbert Voelker
Andrew Watson
Torben Weis
Doug Wells
Michael Zapf

OTM Conferences 2006 Additional Reviewers

Carola Aiello
Reza Akbarinia
Nicolas Anciaux
Samuil Angelov
Fulvio D’Antonio

Philipp Baer
Gabriele Barchiesi
Carlo Bellettini
Domenico Beneventano
Jesus Bermudez



Organization XV

Devis Bianchini
Steffen Bleul
Ralph Bobrik
Silvia Bonomi
Abdelhamid Bouchachia
Jose de Ribamar Braga
Vanessa Braganholo
Lars Braubach
Gert Brettlecker
Andrea Cali
Ken Cavanaugh
Emmanuel Coquery
Felix J. Garcia Clemente
Fabio Coutinho
Georges DaCosta
Antonio De Nicola
Fabien Demarchi
Henry Detmold
Christoph Dorn
Viktor S. Wold Eide
Hazem Elmeleegy
Mohamed Y. ElTabakh
Michael Erdmann
Rik Eshuis
Katrina Falkner
Alfio Ferrara
Ilya Figotin
Anna Formica
Nadine Froehlich
Jochen Fromm
Mati Golani
Gangadharan Gr
Tim Grant
Francesco Guerra
Pablo Guerrero
Yuanbo Guo
Peter Haase
Hakim Hacid
Christian Hahn
Bjorn-Oliver Hartmann
Martin Henkel
Eelco Herder
Edward Ho
Thomas Hornung
Sergio Ilarri

Markus Kalb
Marijke Keet
Kyong Hoon Kim
Mirko Knoll
Natallia Kokash
Iryna Kozlova
Christian Kunze
Steffen Lamparter
Christoph Langguth
Marek Lehmann
Domenico Lembo
Elvis Leung
Mario Lezoche
Baoping Lin
An Liu
Hai Liu
Andrei Lopatenko
Carsten Lutz
Linh Thao Ly
Jurgen Mangler
Vidal Martins
Pietro Mazzoleni
Massimo Mecella
Michele Melchiori
Eduardo Mena
Marco Mesiti
Tommie Meyer
Hugo Miranda
Jose Mocito
Thorsten Moeller
Stefano Montanelli
Cristian Madrigal Mora
Francesco Moscato
Anan Mrey
Dominic Müller
Sharath Babu Musunoori
Meenakshi Nagarajan
Dirk Neumann
Johann Oberleitner
Nunzia Osimi
Zhengxiang Pan
Paolo Perlasca
Illia Petrov
Horst Pichler
Christian Platzer



XVI Organization

Antonella Poggi
Alexander Pokahr
Konstantin Pussep
Abir Qasem
Michael von Riegen
Francisco Reverbel
Haggai Roitman
Kurt Rohloff
Dumitru Roman
Florian Rosenberg
Nicolaas Ruberg
Kai Sachs
Martin Saternus
Monica Scannapieco
Daniel Schall
Sergio Serra
Kai Simon
Esteban Lean Soto
Stefano Spaccapietra
Michael Springmann
Iain Stalker
Nenad Stojanovic
Umberto Straccia
Gerd Stumme

Francesco Taglino
Robert Tairas
Wesley Terpstra
Eran Toch
Anni-Yasmin Turhan
Martin Vasko
Salvatore Venticinque
Maurizio Vincini
Johanna Voelker
Jochem Vonk
Denny Vrandecic
Andrzej Walczak
Ting Wang
Thomas Weise
Thomas Weishupl
Christian von der Weth
Karl Wiggisser
Hui Wu
Jianming Ye
Sonja Zaplata
Weiliang Zhao
Uwe Zdun
Ingo Zinnikus



Table of Contents – Part I

Cooperative Information Systems (CoopIS)
2006 International Conference

CoopIS 2006 International Conference (International Conference on
Cooperative Information Systems) PC Co-chairs’ Message . . . . . . . . . . . . 1

Keynote

Workflow-Based Coordination and Cooperation in a Service
World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Frank Leymann

Distributed Information Systems I

Distributed Triggers for Peer Data Management . . . . . . . . . . . . . . . . . . . . . 17
Verena Kantere, Iluju Kiringa, Qingqing Zhou, John Mylopoulos,
Greg McArthur

Satisfaction-Based Query Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, Patrick Valduriez

Efficient Dynamic Operator Placement in a Locally Distributed
Continuous Query System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, Ji Wu

Distributed Information Systems II

Views for Simplifying Access to Heterogeneous XML Data . . . . . . . . . . . . 72
Dan Vodislav, Sophie Cluet, Grégory Corona, Imen Sebei

SASMINT System for Database Interoperability in Collaborative
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Ozgul Unal, Hamideh Afsarmanesh

Querying E-Catalogs Using Content Summaries . . . . . . . . . . . . . . . . . . . . . . 109
Aixin Sun, Boualem Benatallah, Mohand-Säıd Hacid,
Mahbub Hassan



XVIII Table of Contents – Part I

Workflow Modelling

WorkflowNet2BPEL4WS: A Tool for Translating Unstructured
Workflow Processes to Readable BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Kristian Bisgaard Lassen, Wil M.P. van der Aalst

Let’s Dance: A Language for Service Behavior Modeling . . . . . . . . . . . . . . 145
Johannes Maria Zaha, Alistair Barros, Marlon Dumas,
Arthur ter Hofstede

Dependability and Flexibility Centered Approach for Composite Web
Services Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Neila Ben Lakhal, Takashi Kobayashi, Haruo Yokota

Aspect-Oriented Workflow Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Anis Charfi, Mira Mezini

Workflow Management and Discovery

A Portable Approach to Exception Handling in Workflow Management
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Carlo Combi, Florian Daniel, Giuseppe Pozzi

Methods for Enabling Recovery Actions in Ws-BPEL . . . . . . . . . . . . . . . . . 219
Stefano Modafferi, Eugenio Conforti

BPEL Processes Matchmaking for Service Discovery . . . . . . . . . . . . . . . . . . 237
Juan Carlos Corrales, Daniela Grigori,
Mokrane Bouzeghoub

Evaluation of Technical Measures for Workflow Similarity Based
on a Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Andreas Wombacher

Dynamic and Adaptable Workflows

Evolution of Process Choreographies in DYCHOR . . . . . . . . . . . . . . . . . . . 273
Stefanie Rinderle, Andreas Wombacher, Manfred Reichert

Worklets: A Service-Oriented Implementation of Dynamic Flexibility
in Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Michael Adams, Arthur H.M. ter Hofstede, David Edmond,
Wil M.P. van der Aalst



Table of Contents – Part I XIX

Change Mining in Adaptive Process Management Systems . . . . . . . . . . . . 309
Christian W. Günther, Stefanie Rinderle, Manfred Reichert,
Wil van der Aalst

Services Metrics and Pricing

A Link-Based Ranking Model for Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Camelia Constantin, Bernd Amann, David Gross-Amblard

Quality Makes the Information Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
B. van Gils, H.A. (Erik) Proper, P. van Bommel,
Th. P. van der Weide

Bid-Based Approach for Pricing Web Service . . . . . . . . . . . . . . . . . . . . . . . . 360
Inbal Yahav, Avigdor Gal, Nathan Larson

Formal Approaches to Services

Customizable-Resources Description, Selection, and Composition:
A Feature Logic Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Yacine Sam, François-Marie Colonna, Omar Boucelma

Defining and Modelling Service-Based Coordinated Systems . . . . . . . . . . . 391
Thi-Huong-Giang Vu, Christine Collet, Genoveva Vargas-Solar

Web Service Mining and Verification of Properties: An Approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Mohsen Rouached, Walid Gaaloul, Wil M.P. van der Aalst,
Sami Bhiri, Claude Godart

Trust and Security in Cooperative IS

Establishing a Trust Relationship in Cooperative Information
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Julian Jang, Surya Nepal, John Zic

A Unifying Framework for Behavior-Based Trust Models . . . . . . . . . . . . . . 444
Christian von der Weth, Klemens Böhm

A WS-Based Infrastructure for Integrating Intrusion Detection Systems
in Large-Scale Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

José Eduardo M.S. Brandão, Joni da Silva Fraga,
Paulo Manoel Mafra, Rafael R. Obelheiro

Based on Event Calculus
Retracted: 



XX Table of Contents – Part I

P2P Systems

An Adaptive Probabilistic Replication Method for Unstructured P2P
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Dimitrios Tsoumakos, Nick Roussopoulos

Towards Truthful Feedback in P2P Data Structures . . . . . . . . . . . . . . . . . . 498
Erik Buchmann, Klemens Böhm, Christian von der Weth

Efficient Peer-to-Peer Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Roman Schmidt, Karl Aberer

Collaborative Systems Design and Development

Designing Cooperative IS: Exploring and Evaluating Alternatives . . . . . . 533
Volha Bryl, Paolo Giorgini, John Mylopoulos

Natural MDA: Controlled Natural Language for Action Specifications
on Model Driven Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Luciana N. Leal, Paulo F. Pires, Maria Luiza M. Campos,
Flávia C. Delicato

Managing Distributed Collaboration in a Peer-to-Peer Network . . . . . . . . 569
Michael Higgins, Stuart Roth, Jeff Senn, Peter Lucas,
Dominic Widdows

Collaborative Systems Development

Developing Collaborative Applications Using Sliverware . . . . . . . . . . . . . . . 587
Seth Holloway, Christine Julien

A Framework for Building Collaboration Tools by Leveraging Industrial
Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Du Li, Yi Yang, James Creel, Blake Dworaczyk

Evaluation of a Conceptual Model-Based Method for Discovery
of Dependency Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Darijus Strasunskas, Sari Hakkarainen

Cooperative IS Applications

Advanced Recommendation Models for Mobile Tourist Information . . . . . 643
Annika Hinze, Saijai Junmanee



Table of Contents – Part I XXI

Keeping Track of the Semantic Web: Personalized Event Notification . . . 661
Annika Hinze, Reuben Evans

A Gestures and Freehand Writing Interaction Based Electronic Meeting
Support System with Handhelds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

Gustavo Zurita, Nelson Baloian, Felipe Baytelman, Mario Morales

Ontologies, Databases and Applications of
Semantics (ODBASE) 2006 International
Conference

ODBASE 2006 International Conference (Ontologies, DataBases, and
Applications of Semantics) PC Co-chairs’ Message . . . . . . . . . . . . . . . . . . . 697

Keynote

SomeWhere: A Scalable Peer-to-Peer Infrastructure for Querying
Distributed Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

M.-C. Rousset, P. Adjiman, P. Chatalic, F. Goasdoué, L. Simon

Foundations

Querying Ontology Based Database Using OntoQL (An Ontology
Query Language) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

Stéphane Jean, Yamine Aı̈t-Ameur, Guy Pierra

Description Logic Reasoning with Syntactic Updates . . . . . . . . . . . . . . . . . 722
Christian Halashek-Wiener, Bijan Parsia, Evren Sirin

From Folksologies to Ontologies: How the Twain Meet . . . . . . . . . . . . . . . . 738
Peter Spyns, Aldo de Moor, Jan Vandenbussche, Robert Meersman

Transactional Behavior of a Workflow Instance . . . . . . . . . . . . . . . . . . . . . . 756
Tatiana A.S.C. Vieira, Marco A. Casanova

Metadata

An Open Architecture for Ontology-Enabled Content Management
Systems: A Case Study in Managing Learning Objects . . . . . . . . . . . . . . . . 772

Duc Minh Le, Lydia Lau

Ontology Supported Automatic Generation of High-Quality Semantic
Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Ümit Yoldas, Gábor Nagypál



XXII Table of Contents – Part I

Brokering Multisource Data with Quality Constraints . . . . . . . . . . . . . . . . 807
Danilo Ardagna, Cinzia Cappiello, Chiara Francalanci,
Annalisa Groppi

Design

Enhancing the Business Analysis Function with Semantics . . . . . . . . . . . . 818
Sean O’Riain, Peter Spyns

Ontology Engineering: A Reality Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836
Elena Paslaru Bontas Simperl, Christoph Tempich

Conceptual Design for Domain and Task Specific Ontology-Based
Linguistic Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Antonio Vaquero, Fernando Sáenz, Francisco Alvarez,
Manuel de Buenaga

Ontology Mappings

Model-Driven Tool Interoperability: An Application in Bug Tracking . . . 863
Marcos Didonet Del Fabro, Jean Bézivin, Patrick Valduriez

Reducing the Cost of Validating Mapping Compositions by Exploiting
Semantic Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Eduard Dragut, Ramon Lawrence

Using Fuzzy Conceptual Graphs to Map Ontologies . . . . . . . . . . . . . . . . . . 891
David Doussot, Patrice Buche, Juliette Dibie-Barthélemy,
Ollivier Haemmerlé

Formalism-Independent Specification of Ontology Mappings –
A Metamodeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

Saartje Brockmans, Peter Haase, Heiner Stuckenschmidt

Information Integration

Virtual Integration of Existing Web Databases for the Genotypic
Selection of Cereal Cultivars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909

Sonia Bergamaschi, Antonio Sala

SMOP: A Semantic Web and Service Driven Information Gathering
Environment for Mobile Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927

Özgür Gümüs, Geylani Kardas, Oguz Dikenelli, Riza Cenk Erdur,
Ata Önal



Table of Contents – Part I XXIII

Integrating Data from the Web by Machine-Learning Tree-Pattern
Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941

Benjamin Habegger, Denis Debarbieux

Agents

HISENE2: A Reputation-Based Protocol for Supporting Semantic
Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949

Salvatore Garruzzo, Domenico Rosaci

An HL7-Aware Multi-agent System for Efficiently Handling Query
Answering in an e-Health Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967

Pasquale De Meo, Gabriele Di Quarto, Giovanni Quattrone,
Domenico Ursino

PersoNews: A Personalized News Reader Enhanced by Machine
Learning and Semantic Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

Evangelos Banos, Ioannis Katakis, Nick Bassiliades,
Grigorios Tsoumakas, Ioannis Vlahavas

Contexts

An Ontology-Based Approach for Managing and Maintaining Privacy
in Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

Dhiah el Diehn I. Abou-Tair, Stefan Berlik

Ontology-Based User Context Management: The Challenges
of Imperfection and Time-Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995

Andreas Schmidt

Moving Towards Automatic Generation of Information Demand
Contexts: An Approach Based on Enterprise Models and Ontology
Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

Tatiana Levashova, Magnus Lundqvist, Michael Pashkin

Similarity and Matching

Semantic Similarity of Ontology Instances Tailored on the Application
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020

Riccardo Albertoni, Monica De Martino

Finding Similar Objects Using a Taxonomy: A Pragmatic Approach . . . . 1039
Peter Schwarz, Yu Deng, Julia E. Rice



XXIV Table of Contents – Part I

Towards an Inductive Methodology for Ontology Alignment Through
Instance Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058

Ignazio Palmisano, Luigi Iannone, Domenico Redavid,
Giovanni Semeraro

Combining Web-Based Searching with Latent Semantic Analysis to
Discover Similarity Between Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075

Sean M. Falconer, Dmitri Maslov, Margaret-Anne Storey

A Web-Based Novel Term Similarity Framework for Ontology
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092

Seokkyung Chung, Jongeun Jun, Dennis McLeod

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

on of Properties: An Approach
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mohsen Rouached, Walid Gaaloul, Wil M.P. van der Aalst,
Sami Bhiri, Claude Godart

Based on Event Calculus
Web Service Mining and Verificati

Errata

E2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1Erratum



Table of Contents – Part II

Grid Computing, High Performance and
Distributed Applications (GADA) 2006
International Conference

GADA 2006 International Conference (Grid Computing,
High-Performance and Distributed Applications) PC Co-chairs’
Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117

Keynote

Data-Oriented Distributed Computing for Science: Reality
and Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119

Daniel S. Katz, Joseph C. Jacob, Peggy P. Li, Yi Chao,
Gabrielle Allen

From Intelligent Content to Actionable Knowledge: Research Directions
and Opportunities Under the EU’s Framework Programme 7,
2007-2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

Stefano Bertolo

Resource Selection and Management

Resource Selection and Application Execution in a Grid: A Migration
Experience from GT2 to GT4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132

A. Clematis, A. Corana, D. D’Agostino, V. Gianuzzi, A. Merlo

A Comparative Analysis Between EGEE and GridW ay Workload
Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

J.L. Vázquez-Poletti, E. Huedo, R.S. Montero, I.M. Llorente

Grid and HPC Dynamic Load Balancing with Lattice Boltzmann
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152

Fabio Farina, Gianpiero Cattaneo, Alberto Dennunzio

P2P-Based Systems

Trust Enforcement in Peer-to-Peer Massive Multi-player Online
Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163

Adam Wierzbicki



XXVI Table of Contents – Part II

A P2P-Based System to Perform Coordinated Inspections in Nuclear
Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

C. Alcaide, M. Dı́az, L. Llopis, A. Márquez, E. Soler

Grid File Transfer

Grid File Transfer During Deployment, Execution, and Retrieval . . . . . . . 1191
Françoise Baude, Denis Caromel, Mario Leyton, Romain Quilici

A Parallel Data Storage Interface to GridFTP . . . . . . . . . . . . . . . . . . . . . . . 1203
Alberto Sánchez, Maŕıa S. Pérez, Pierre Gueant, Jesús Montes,
Pilar Herrero

Parallel Applications

Parallelization of a Discrete Radiosity Method Using Scene Division . . . . 1213
Rita Zrour, Fabien Feschet, Rémy Malgouyres

A Mixed MPI-Thread Approach for Parallel Page Ranking
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223

Bundit Manaskasemsak, Putchong Uthayopas, Arnon Rungsawang

Scheduling in Grid Environments

A Decentralized Strategy for Genetic Scheduling in Heterogeneous
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234

George V. Iordache, Marcela S. Boboila, Florin Pop,
Corina Stratan, Valentin Cristea

Solving Scheduling Problems in Grid Resource Management Using
an Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252

Karl-Uwe Stucky, Wilfried Jakob, Alexander Quinte,
Wolfgang Süß

Integrating Trust into Grid Economic Model Scheduling Algorithm . . . . . 1263
Chunling Zhu, Xiaoyong Tang, Kenli Li, Xiao Han, Xilu Zhu,
Xuesheng Qi

Autonomous and Autonomic Computing

QoS-Driven Web Services Selection in Autonomic Grid Environments . . . 1273
Danilo Ardagna, Gabriele Giunta, Nunzio Ingraffia,
Raffaela Mirandola, Barbara Pernici



Table of Contents – Part II XXVII

Autonomous Layer for Data Integration in a Virtual Repository . . . . . . . 1290
Kamil Kuliberda, Radoslaw Adamus, Jacek Wislicki,
Krzysztof Kaczmarski, Tomasz Kowalski, Kazimierz Subieta

Grid Infrastructures for Data Analysis

An Instrumentation Infrastructure for Grid Workflow Applications . . . . . 1305
Bartosz Balis, Hong-Linh Truong, Marian Bubak,
Thomas Fahringer, Krzysztof Guzy, Kuba Rozkwitalski

A Dynamic Communication Contention Awareness List Scheduling
Algorithm for Arbitrary Heterogeneous System . . . . . . . . . . . . . . . . . . . . . . 1315

Xiaoyong Tang, Kenli Li, Degui Xiao, Jing Yang, Min Liu,
Yunchuan Qin

Access Control and Security

Distributed Provision and Management of Security Services in Globus
Toolkit 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325

Félix J. Garćıa Clemente, Gregorio Mart́ınez Pérez,
Andrés Muñoz Ortega, Juan A. Bot́ıa Blaya,
Antonio F. Gómez Skarmeta

A Fine-Grained and X.509-Based Access Control System for Globus . . . . 1336
Hristo Koshutanski, Fabio Martinelli, Paolo Mori, Luca Borz,
Anna Vaccarelli

Programming Aspects for Developing Scientific Grid
Components

Dynamic Reconfiguration of Scientific Components Using Aspect
Oriented Programming: A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1351

Manuel Dı́az, Sergio Romero, Bartolomé Rubio, Enrique Soler,
José M. Troya

MGS: An API for Developing Mobile Grid Services . . . . . . . . . . . . . . . . . . . 1361
Sze-Wing Wong, Kam-Wing Ng

Databases and Data Grids

Using Classification Techniques to Improve Replica Selection in Data
Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376

Hai Jin, Jin Huang, Xia Xie, Qin Zhang



XXVIII Table of Contents – Part II

Searching Moving Objects in a Spatio-temporal Distributed Database
Servers System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1388

Mauricio Maŕın, Andrea Rodŕıguez, Tonio Fincke, Carlos Román

Distributed Applications

A Generic Deployment Framework for Grid Computing and Distributed
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1402

Areski Flissi, Philippe Merle

CBIR on Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412
Oscar D. Robles, José Luis Bosque, Luis Pastor, Ángel Rodŕıguez

Evaluation

Performance Evaluation of Group Communication Architectures
in Large Scale Systems Using MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422

Kayhan Erciyes, Orhan Dagdeviren, Reşat Ümit Payli

Distributed Objects and Applications
(DOA) 2006 International Conference

DOA 2006 International Conference (Distributed Objects
and Applications) PC Co-chairs’ Message . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433

Keynote

Everyobjects in the Pervasive Computing Landscape . . . . . . . . . . . . . . . . . 1434
Alois Ferscha

Services

Using Selective Acknowledgements to Reduce the Memory Footprint
of Replicated Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435

Roy Friedman, Erez Hadad

Modularization of Distributed Web Services Using Aspects
with Explicit Distribution (AWED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1449

Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren,
Bart Verheecke

ANIS: A Negotiated Integration of Services in Distributed
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467

Noha Ibrahim, Frédéric Le Mouël



Table of Contents – Part II XXIX

Communications

Towards a Generic Group Communication Service . . . . . . . . . . . . . . . . . . . . 1485
Nuno Carvalho, José Pereira, Lúıs Rodrigues

Optimizing Pub/Sub Systems by Advertisement Pruning . . . . . . . . . . . . . . 1503
Sven Bittner, Annika Hinze

A Specification-to-Deployment Architecture for Overlay Networks . . . . . . 1522
Stefan Behnel, Alejandro Buchmann, Paul Grace, Barry Porter,
Geoff Coulson

Searching Techniques

Distributed Lookup in Structured Peer-to-Peer Ad-Hoc Networks . . . . . . 1541
Raphaël Kummer, Peter Kropf, Pascal Felber

A Document-Centric Component Framework for Document
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555

Ichiro Satoh

Shepherdable Indexes and Persistent Search Services for Mobile
Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1576

Michael Higgins, Dominic Widdows, Magesh Balasubramanya,
Peter Lucas, David Holstius

Types and Notations

Distributed Abstract Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1594
Gian Pietro Picco, Matteo Migliavacca, Amy L. Murphy,
Gruia-Catalin Roman

Aligning UML 2.0 State Machines and Temporal Logic for the Efficient
Execution of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1613

Frank Alexander Kraemer, Peter Herrmann, Rolv Bræk

Developing Mobile Ambients Using an Aspect-Oriented Software
Architectural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1633

Nour Ali, Carlos Millán, Isidro Ramos

Adaptivity

Component QoS Contract Negotiation in Multiple Containers . . . . . . . . . 1650
Mesfin Mulugeta, Alexander Schill



XXX Table of Contents – Part II

RIMoCoW, a Reconciliation Infrastructure for CORBA
Component-Based Applications in Mobile Environments . . . . . . . . . . . . . . 1668

Lydialle Chateigner, Sophie Chabridon, Guy Bernard

A Component-Based Planning Framework for Adaptive Systems . . . . . . . 1686
Mourad Alia, Geir Horn, Frank Eliassen, Mohammad Ullah Khan,
Rolf Fricke, Roland Reichle

Middleware

A Case for Event-Driven Distributed Objects . . . . . . . . . . . . . . . . . . . . . . . . 1705
Aliandro Lima, Walfredo Cirne, Francisco Brasileiro,
Daniel Fireman

MoCoA: Customisable Middleware for Context-Aware Mobile
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1722

Aline Senart, Raymond Cunningham, Mélanie Bouroche,
Neil O’Connor, Vinny Reynolds, Vinny Cahill

A Framework for Adaptive Mobile Objects in Heterogeneous
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1739

Rüdiger Kapitza, Holger Schmidt, Guido Söldner,
Franz J. Hauck

Distribution Support

A Novel Object Pool Service for Distributed Systems . . . . . . . . . . . . . . . . . 1757
Samira Sadaoui, Nima Sharifimehr

A Java Framework for Building and Integrating Runtime Module
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1772

Olivier Gruber, Richard S. Hall

Transparent and Dynamic Code Offloading for Java Applications . . . . . . 1790
Nicolas Geoffray, Gaël Thomas, Bertil Folliot

Self-organisation

Self-organizing and Self-stabilizing Role Assignment in Sensor/Actuator
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1807

Torben Weis, Helge Parzyjegla, Michael A. Jaeger,
Gero Mühl



Table of Contents – Part II XXXI

Towards Self-organizing Distribution Structures for Streaming
Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825

Hans Ole Rafaelsen, Frank Eliassen, Sharath Babu Musunoori

Bulls-Eye – A Resource Provisioning Service for Enterprise Distributed
Real-Time and Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1843

Nilabja Roy, Nishanth Shankaran, Douglas C. Schmidt

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1863



CoopIS 2006 International Conference
(International Conference on Cooperative

Information Systems) PC Co-chairs’ Message

Welcome to the Proceedings of the 14th International Conference on Cooperative
Information Systems (CoopIS 2006), which was held in Montpellier, France, from
October 29 to November 3, 2006.

The CoopIS conferences provide a forum for exchanging ideas and results on
scientific research from a variety of areas, such as CSCW, Internet data manage-
ment, electronic commerce, human-computer interaction, workflow management,
agent technologies, P2P systems, and software architectures, to name but a few.
We encourage the participation of both researchers and practitioners in order
to facilitate exchange and cross-fertilization of ideas and to support the transfer
of knowledge to research projects and products. Towards this goal, we accepted
both research and experience papers.

This year’s conference included sessions that cover the following topics: dis-
tributed information systems; workflow modelling, management and discovery;
dynamic and adaptable workflows; formal approaches to services and service
metrics and pricing; trust and security in cooperative IS; P2P systems; collabo-
rative systems design and development and cooperative IS applications.

This high-quality program would not have been possible without the authors
who chose CoopIS as a venue to submit their publications. Out of 131 submitted
papers, we selected 38 full papers and 7 short papers / posters. To round up this
excellent program, Frank Leymann from the University of Stuttgart agreed to
be our keynote speaker.

We are grateful for the dedicated work of the 59 experts in the field (including
their co-reviewers) who served on the Program Committee.

Finally, we are deeply indebted to Kwong Yuen Lai for his hard work, en-
thusiasm and almost round-the-clock availability. He was key to facilitating the
paper management process and making sure that the review process stayed on
schedule. We would also like to thank Robert Meersman and Zahir Tari for their
support and response to our questions.

We hope that you enjoy this year’s selection of contributions for CoopIS and
we look forward to meeting you in future conferences.

August 2006 Mike Papazoglou, Tilburg University, Netherlands
Louiqa Raschid, University of Maryland, USA

Rainer Ruggaber, SAP Research Center, Germany

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 2 – 16, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Workflow-Based 
Coordination and Cooperation 

in a Service World 

Frank Leymann 

Institute of Architecture of Application Systems 
University of Stuttgart 

Universitätsstr. 38 
70569 Stuttgart 

Germany 
Leymann@iaas.uni-stuttgart.de 

Abstract. One of the most important roles of workflow technology in a service 
oriented environment is that of providing an easy to use technology for service 
composition (so-called “orchestration”). Another important composition model 
in this domain is based on the technology of “coordination protocols”. We 
sketch the relation between orchestration and coordination protocols by 
describing two application areas of both technologies: the introduction of 
subprocesses to the service oriented world, and facilitating outsourcing by 
making splitting processes much easier. Cooperation aspects of workflow 
technology are emphasized by sketching the inclusion of human tasks in 
orchestrations. Finally, the benefit of combining semantic technologies with 
orchestrations is outlined (“semantic processes”) which aims in simplifying the 
creation of orchestrations.  

1   Introduction 

Service oriented computing (SOC) is a major step forward in mastering heterogeneity 
of IT artifacts (e.g. [1], [10]). The corresponding architectural style (SOA, i.e. Service 
Oriented Architecture) is widely adopted in both, industry and academia. Various 
standards (WS*, i.e. Web Service Standards) have been proposed to support service 
orientation in an interoperable manner [16]. 

Workflow technology has been established as a key contributor to the success of 
the service environment: via BPEL workflow technology allows to easily compose 
new services out of existing services (“orchestration” – cf. section 3). This enables 
new business models for software and enables non-IT professionals to create services.  

To make service composition (cf. section 2) even more easier and more productive 
extensions of BPEL are needed to support subprocesses (cf. section 5) and to 
semantically discover services to be composed in business terms (cf. section 8). Also 
outsourcing of process fragments via simple splits must be made much simpler (cf. 
section 6). Finally business processes often require human interactions (cf. section 7). 



 Workflow-Based Coordination and Cooperation in a Service World 3 

Most of these advanced features of orchestration require another service 
composition model as their underpinning: coordination (cf. section 4). We discuss 
orchestration and coordination as well as their relation w.r.t. the advanced features in 
this paper. 

2   Service Composition Models 

In this section, we briefly sketch various approaches of how services can be 
composed.  

2.1   The Notion of Services and Composition 

A service is a function that is made available at a network endpoint via certain 
transports and serialization formats. Furthermore, a service supports or requires 
certain non-functional characteristic like message-level security, transactional context, 
privacy, etc. Finally, a service is made available to a specific requestor under certain 
terms and conditions like price and payment method, or more sophisticated service 
level agreements (SLAs). 

An important aspect of a service is its “always on” semantics: in contrast to the 
object paradigm a user of a service has no need to create a service or to destroy a 
service after its use. Thus, a service is “just there” whenever needed similar to gas, 
water, power etc. In this sense, services show a lot of characteristics of traditional 
utilities and enable a new business model called “Software as a Service” (SaaS). 

Often, a service may not solve a complete business problem. This is an aspect the 
service paradigm has in common with the component paradigm. I.e. in order to solve 
a real-world business problem the functionality provided by a certain service typically 
has to be extended by functionality provided by additional services. Thus, services 
often have to be composed to solve complete business problems. Composition 
provides a means to specify how the corresponding services have to interact in order 
to solve a complete business problem. The result of a composition may again be a 
service, which in turn may be composed with yet other services.  

2.2   Composition Taxonomy 

Figure 1 is a modified version of the taxonomy of service aggregations introduced in 
[6]: services may be composed in a typed manner or in an untyped manner. Typed 
composition already defines the types of services to be composed, i.e. their port types. 
Untyped composition does not make any assumption about the type of services that 
interact to solve a business problem.  

Both kinds of composition have constrained and unconstrained variants. A cons -
trained composition model specifies the rules of the interaction between the aggre- 
gated services, while an unconstrained composition model leaves the details of the 
interaction open. Examples of typed constrained composition models are 
“orchestration” (cf. section 3.1) and “choreography” (cf. section 3.3) which both 
restrict the ordering of application messages exchanged between the composed 



4 F. Leymann 

services. An example of an untyped constrained composition model is a “coordination 
type” (cf. section 4.1) which does not make any assumption about the application 
level messages exchanged but does specify how agreement about the success of the 
interaction between the composed services is reached out-of-band. 

Com posit ion

Typed Untyped

Const rained Unconst rained Const rained Unconst rained

Orchest rat ion

Choreography

Inheritance Coordinat ion ...

......

...

 

Fig. 1. Taxonomy of Service Composition Models 

3   Orchestration 

Since the late 80ies workflow technology (i.e. workflow modeling and workflow 
execution [3], [14]) has been used to compose higher-level business functionality out 
of individual (composed or non-composed) functions. Business processes are 
represented as such workflows. Thus, it is not surprisingly that this technology 
became the most widespread means of composition on the service world.  

3.1   Workflow-Based Composition 

A workflow defines the potential flow of control and data amongst a set of activities. 
An activity is an individual step to be performed to contribute to the overall goal of 
the workflow. The control flow specifies a partial order on the set of activities 
corresponding to a graph structure with the activities as the nodes of the graph. 
Business rules are used to evaluate which path in the graph is to be followed in the 
actual context of a workflow. The actual context is defined as the data used as input 
for the activities and rules, and the data produced as output by the activities; 
especially, the context includes the messages exchanged between the workflow and 
the outside world.  The way how input data is assembled from the context and output 
data is disassembled into the context is a matter of the data flow specification of a 
workflow. Messages that are consumed by a workflow and that may result in a 
response message are the basis for defining individual operations and, thus, rendering 
a workflow as a set of services provided by the workflow to the outside world.  

An activity specifies especially which kind of function is needed to perform the 
individual step the activity represents. In a service world, an activity refers to a 



 Workflow-Based Coordination and Cooperation in a Service World 5 

service providing the corresponding individual function. Typically, an activity does 
not point directly to a certain endpoint implementing the service but to the type of 
service needed (i.e. an operation of a port type). When the model of a workflow is 
deployed additional information is provided that allows to discover a concrete 
endpoint during runtime. This way, a workflow model becomes adaptable to the 
specific situations of particular users of a workflow model.  

Modeling a workflow (i.e. a business process) is often done by experts from the 
corresponding business domain. Modeling business processes does not require 
detailed information technology skills as needed for creating programs in a 
programming language. Creating programs based on a programming language is 
referred to as programming in the small. In contrast to this, modeling a business 
process is often called programming in the large. Thus, business domain experts do 
programming in the large by using workflow technology to compose new services out 
of existing services. In a service world, workflow-based composition of services from 
services is referred to as orchestration.  

3.2   BPEL and Its Extensibility 

Business Process Execution Language (BPEL – [17], [18] and [15] for an overview) 
is the established standard for specifying orchestrations. The corresponding 
specification defines an XML-based language to define an orchestration and an 
associated operational semantics to define how to perform an orchestration. Thus, 
effectively, BPEL specifies a metamodel for orchestration. Modeling tools support 
BPEL directly or allow to export workflow models in the BPEL XML format. 
Workflow systems support importing BPEL XML format and execute it.  

BPEL Core

Executable
BPEL

...

BPELJ BPEL4People BPEL-SPE

Abst ract
BPEL

 
Fig. 2. Language Structure of BPEL Supporting Extensibility 

Workflow technology has many different facets. These many facets can only be 
standardized over time. Because of this, BPEL itself is extensible by defining a core 
which is built to support different aspects of workflow technology on top of it (cf. 
Figure 2). The core part defines the language and metamodel elements of 
orchestrations (note: the current draft of BPEL 2.0 does not longer talk explicitly of a 



6 F. Leymann 

core part although the extensibility mechanism is still the same). On top of the core 
additional language elements are defined that are required to specify executable 
process models. Another extension of the core supports specifying abstract processes: 
an abstract process is not necessarily executable but describes externally observable 
behavior of an executable process, for example. The kind of relation (indicated by 
“R” in Figure 3 between the executable process E1 and associated abstract process A1) 
between an abstract process and an executable process is part of the definition of the 
kind of abstract process: an abstract process may define views on executable 
processes, or an abstract process may define ordering constraints on the use of port 
type operations etc [8].  

 

Fig. 3. Choreography, Orchestration, and Abstract/Executable Processes 

Other extensions are proposed as separate specifications. For example, activities 
that are performed by people are envisioned by BPEL4 People; more details will be 
discussed in section 7. Activities that are implemented by another process (a.k.a. 
subprocess) are sketched by BPEL Subprocess Extension (BPEL-SPE); more details 
will be discussed in section 5. 

3.3   Orchestration vs. Choreography 

Both, abstract processes as well as executable processes are referred to as 
orchestrations. An important aspect of the definition of an orchestration is that it 
describes what happens at a single partner side. I.e. an orchestration defines the 
workflow at a single partner as well as the service types expected from its partners 
(so-called “partner links” in BPEL). But an orchestration does not care whether the 
partner services are implemented by orchestrations or by other means; i.e. the partner 
ends are opaque for an orchestration.  

An orchestration sends messages to or expects messages from its partners in the 
order defined by the corresponding workflow. From an orchestration point of view the 
partners are expected to behave accordingly. But defining the workflows at the 
 



 Workflow-Based Coordination and Cooperation in a Service World 7 

partner ends such that they fit together is highly non-trivial. To enable proper 
definitions all partner ends of an interaction between multiple partners should be 
transparent. Then, the various activities of the partner workflows can be “wired” such 
that it is defined which activity at which partner sends or receives messages in which 
order from which partner (cf. Figure 3). Such a definition is referred to as 
choreography. A choreography defines the message exchange between multiple 
partners by specifying (1) for each partner one or more orchestrations defining the 
ordering behavior of the particular partner, and (2) the wiring between the activities of 
the orchestrations of the partners. The latter is sometimes referred to as the global 
model of interaction between partners [23].  

There is a proposal by W3C for a choreography standard called WS-CDL [21]. 
This proposal does not only define a wiring mechanism between orchestrations but it 
also defines orchestration features in parallel to BPEL. But this violates the principles 
of modularization and composability that Web service standards typically follow [16]. 
Separate wiring mechanisms that fit together with BPEL would comply with these 
principles and, thus, would better fit into the overall WS* stack of standards. 
Research is going on to investigate such separate and composable wiring.  

4   Coordination 

The concept of coordination is used in distributed transaction processing since the 
early 70ies. In the service world the applicability of coordination technology is 
extended to reach agreement in any kind of distributed computations.  

4.1   Abstract Coordination Model 

In abstracting the use of coordination from transaction processing, the following 
model of coordination results (cf. Figure 4): A distributed computation is performed 
by a set of participants each of which executes certain application specific services 
(indicated by “application ports ap” in the figure) on behalf of the computation. All 
participants contribute to the overall success of the distributed computation, thus, they 
have to jointly agree on its outcome. For the purpose of outcome agreement each 
participant provides additional ports (called “protocol ports pp” in the figure) which 
are used to communicate messages of the supported agreement protocol. Since 
different participants may play different roles in the outcome agreement they may 
support different agreement protocols, i.e. different types of protocol ports. The 
collection of agreement protocols needed for successfully agreeing on the outcome of 
a distributed computation is referred to as coordination type. 

Typically, the participants contributing to a distributed computation don’t know 
each other – this is the result of the loose-coupling aspect of SOC. In order to run an 
agreement protocol between initially unknown participants the role of a coordinator is 
introduced. On request of one of the participants (typically the first participant 
initiating a new computation) the coordinator creates a new coordination context. 
This context includes a unique identifier (indicated by the ID field in the figure) for 
the new distributed computation. Each computation is associated with a coordination 
type used to reach agreement on the outcome between the participants; the name of 



8 F. Leymann 

the coordination type is part of the coordination context too. Each participant of the 
computation has to register with the coordinator (the address of which is also part of 
the coordination context) for one of the agreement protocols specified by the 
coordination type of the computation. A participant is implicitly requested to join a 
computation and register with the coordinator as soon as the participant receives a 
new coordination context either with a request message or out-of-band (so-called 
infection). When the computation ends the coordinator runs the participant specific 
agreement protocol with each of the participants to finally determine the overall 
outcome of the computation.  

For example, in Figure 4 the computation amongst participants P1, P2, and P3 is 
identified by identifier ID=42. Participants P1 and P2 use agreement protocol RY to 
communicate with the coordinator about the outcome of the computation. Participant 
P3 use agreement protocol RX for that purpose. The coordination type of the 
computation is {RX, RY}.  

Coordinator

ID=42

ID=42

Participant P3

ID=42

Participant P1

Participant P2

Protocol
RY

RY

RX

pp

pp

pp

ap

ap

ap

 

Fig. 4. Coordination Protocols and Roles 

4.2   Use of Coordination 

In the service world coordination is used to run distributed transactions between 
services in heterogeneous environments ([19], [20]). Several coordination types have 
be proposed spanning a spectrum from variants of the classical two-phase-commit 
protocol to long running transactions based on compensation based recovery. For 
example, the long running transaction model encompassed in BPEL has been 
specified as a separate coordination type.  

But the abstract coordination model can be used in very different scenarios. For 
example, coordination types can be defined that support various kinds of auctions 



 Workflow-Based Coordination and Cooperation in a Service World 9 

(e.g. [13]). Also, the lifecycle of subprocesses can be coupled to the lifecycle of 
corresponding parent processes by means of coordination types: this is discussed next.  

5   Subprocesses 

An activity of a process can be implemented by another process. When a process is 
used to provide the service to be performed by an activity within another process the 
former process is referred to as subprocess. Subprocesses are an important 
mechanism for reuse in workflow technology: new process models may make use of 
already existing process models reducing the burden of modelling new processes and 
improving their quality.   

5.1   Process Lifecycle as Coordination Type 

A process model can be instantiated both, as a standalone process or as a subprocess. A 
process instantiating another process as one of its subprocesses is referred to as a 
parent process. A process instantiated as subprocess must give up some of its 
autonomy because conceptually a subprocess is part of its parent process. This implies, 
that a subprocess must terminate when its parent process terminates, or that a 
subprocess must be compensated when the activity it implements is compensated, for 
example.  

The request to give up its lifecycle autonomy is implicitly passed to the subprocess 
when it is instantiated by the parent process: a coordination context corresponding to 
the agreement protocol for lifecycle outcome is created by the parent process and 
passed to the subprocess (cf. Figure 5). Thus, the subprocess is infected by the 
coordination context and registers as participant: from now on, the lifecycle of the 
subprocess is subordinated to the lifecycle of the parent process.  

context

Coordinator

Parent Process
Subprocess

<call>
S

compensate
terminate

...

 

Fig. 5. Coordination Protocol between Parent Process and Subprocess 



10 F. Leymann 

5.2   Calling a Subprocess 

An envisioned extension of BPEL proposes such a coordination type (cf. Figure 5) 
[28]. Also, a new <call> activity is introduced to be used within a process to 
instantiate a subprocess. When encountering a <call> activity the encompassing 
process understands that it is about to become a parent process: It will create a 
corresponding coordination context and pass it to the new subprocess to instantiate it.  

The subprocess gets infected and registers as participant. When the subprocess 
reaches its end it returns a response message to the parent process. Usually, a process 
is completed when it reaches its end and, thus, it can be garbage collected. But a 
subprocess must hold all of its relevant data because it may happen that the parent 
process decides to compensate the subprocess, for example. On reception of the 
response message the <call> activity within the parent process completes and 
navigation continues.  

When the parent process decides to compensate the <call> activity a corresponding 
compensate protocol message is sent to the subprocess. On receiving this message 
compensation of the whole subprocess is performed. When this finishes the <call> 
activity is considered to have compensated in the parent process and navigation 
continues. Effectively, a <call> activity is compensated in a “deep” manner [14] by the 
default compensation mechanism specified in BPEL. 

It should be obvious now that calling a subprocess is different from “just” invoking 
a service that is implemented by another process: the fact whether an invoked service 
is realized by another process or not is opaque to the invoking process, the invoked 
process does not give up its autonomy, and no agreement protocol is run between the 
invoking process and the invoked service.  

6   Splitting Processes 

One scenario for using a subprocess from another process is outsourcing the 
functionality corresponding to the subprocess to an external partner. When the 
outsourcing needs are known at the time the parent process is modelled subprocesses 
provide an excellent technology for that purpose. But often, outsourcing requirements 
are determined long time after a process is used in production.  

 

Fig. 6. Outsourcing a Fragment of a Process 



 Workflow-Based Coordination and Cooperation in a Service World 11 

6.1   Outsourcing Process Fragments  

Monitoring or analysis techniques are used to determine potentials to improve 
processes of an enterprise. This may result in identifying fragments of a process that 
should be outsourced: the fragments have to be turned into subprocesses run by 
external partners, and the original process must be changed to call these subprocesses. 

Figure 6 gives an example: process P contains a fragment (marked area) that is not 
competitive w.r.t. various metrics. This fragment is turned into a subprocess P2. The 
original process P is modified by extracting the fragment and substituting it by a 
<call> activity resulting in process P1. [7] describes how the corresponding 
rewriting of the process models and fragments can be done automatically.  

6.2   Resulting Coordination Needs 

Fragments to be outsourced may contain activities that are included in structured 
activities like scopes or while loops. In this case splitting the process apart introduces 
coordination needs. The following example illustrates this: 

In Figure 7 activities C, D, and E are identified to be outsourced. Activities B and 
C are contained in scope S, i.e. S is split into scopes S1 and S2 contained in two 
different process models run at different partners N1 and N2. The semantics of scope S 
in the left side of the figure mandates that as long as activities B and C are not 
completed, the link from S to D must not be followed. Since splitting a process has to 
maintain the semantics of the original process model the semantics of scope S must be 
reflected by the two scopes S1 and S2 collectively. Consequently, when C completes 
at partner N2 following the link from S2 to D requires that B at partner N1 already 
completed. Thus, S1 and S2 are dependent on each other, they must agree on their own 
completion (and faulting, compensation etc – which is not covered here). The 
corresponding agreement protocol is run by a coordinator.  

A

B C

D E

S

N1

N2 A

B

S1

N1

C

D E

S2

N2

sp
lit

Coordinator

 

Fig. 7. Splitting Structured Activities and Resulting Coordination Needs 
 



12 F. Leymann 

7   Human Tasks in Orchestrations 

Activities that are performed by human beings are an integral aspect of workflow 
technology since its inception. BPEL itself does not include such activities because of 
its initial focus on composition of automatic activities. [27] describes how people 
interactions can be defined for BPEL using BPEL’s extensibility.  

7.1   People Links 

Traditionally, people capable or required to perform a certain activity of a workflow 
are derived by a so-called “staff query” associated with the subject activity [14]. Such 
a staff query is evaluated on an organizational database of the enterprise performing 
the workflow. 

Since BPEL process models are intended to be portable across different enterprises 
no assumption can be made on such a common organizational database. Because of 
this, BPEL4People [27] does not foresee to attach a staff query directly to a people 
facing activity but it introduces a level of indirection. This indirection is called a 
people link (see Figure 8). 

A

Process
Model

☺

Abst ract  Org Model

☺ { ☺}

{ ☺}☺ ……

Formulated in

Manager

Person

Employee Customer

Account
Manager

Project
Manager

Sales
Manager

Clerk

Seller

Secretary

Concrete Org Model

Deployed as

Staff Query
ρ(p1,…,pn)

People
Link

Operates on

V

Uses

Roles Units

 

Fig. 8. Main Artifacts of the BPEL Extension for Activities Supporting People 

A people link abstractly describes the kind of people that should be made aware 
that a certain task is awaiting their action. This description is given in an informal 
manner by just using text documenting this people. The text reflects an abstract 
organizational model corresponding to the business domain the business process 



 Workflow-Based Coordination and Cooperation in a Service World 13 

stems from. A people link may also refer to the process context to support more 
sophisticated people assignments: for example, a people link may refer to a variable 
to specify assignments like “sales person in region reg_var” where reg_var is a 
process variable.  

During deployment a people link must be mapped to a query on an organizational 
database of the deploying enterprise: the element of the abstract organizational model 
is transformed into a corresponding filter expression, and parameters can be used by 
exploiting the elements of the process context passed through the people link. That 
way, a staff query is created and associated with a people facing activity.  

7.2   Tasks 

A task is the type of a piece of work to be performed by a human being. It refers to 
the information supporting the corresponding person in performing the proper work. 
Furthermore, a task defines data to be used for displaying the work request on a task 
list (a.k.a. worklist [14]).  

Tasks can be instantiated. Basically, a task instance corresponds to what is 
traditionally called a workitem [14]. In BPEL4People tasks are reusable artifacts that 
are used to define people facing activities. When the workflow engine reaches such an 
activity it evaluates the staff query associated during deployment with its people link 
and distributes the work request to the resulting people. Hereby, the display 
information of the task is used. 

The work requests are then rendered on corresponding task lists. People look for 
work they have to perform on task lists associated with them. A person can assume 
responsibility (“check out”) for a piece of work. When the work is done this is 
explicitly signaled to the workflow engine (“check in”) and result data produced by 
the task is passed back. The workflow engine then continues navigation.  

8   Semantic Processes 

Binding a service to a requestor is typically based on type information ([9], [22]). 
More sophisticated scenarios use descriptions of non-functional properties required 
from the services for discovery or may even establish service level agreements 
between the requestor an the service ([10], [11], [12]). However, the meaning of the 
functionality offered by the service must be known in advance.  

8.1   Semantic Web Services 

The concept of semantic Web services tries to overcome this ([2], [24]): a semantic 
Web service uses semantic Web technologies to describe the meaning of the functions 
provided, e.g. by annotating operations accordingly. A requestor, too, describes the 
functionality needed semantically, and this semantic description of the request is used 
for discovery of a matching semantic Web service. Based on such semantic 
descriptions request may even be mediated, e.g. be deriving appropriate message 
transformations. Corresponding infrastructures are subject of current research projects 
(e.g. [25]).   



14 F. Leymann 

8.2   Semantics in Orchestrations 

Workflow environments can benefit from semantics too [4]. 
First, when modeling business processes the semantics of the function performed 

by an activity may be specified instead of specifying the signature of that function. 
This allows business users or domain experts to define more aspects of a business 
process than before. The semantics specified by a business user may be used during 
modeling time to discover and propose appropriate service types. Going further, the 
semantics of a collection of activities may even be used to discover and propose a 
fragment of a process model realizing the specified business need (“auto-
completion”). 

Second, the semantics specified by the domain experts may be used during runtime 
to discover and bind appropriate services: the workflow engine interacts with a 
service bus by passing the semantic description in and getting the response back [5].  

An encompassing infrastructure covering both, modeling aspects as well as 
runtime aspects is currently under development [26]. A proposal of extending BPEL 
to support semantics is on its way too.  

9   Conclusion 

9.1   Summary 

In this paper we described some aspects of service composition, coordination and 
cooperation of workflow technology in a service world.  

We sketched a taxonomy for service composition models and positioned 
orchestration within that taxonomy. After reminding the basic ingredients of a 
workflow language we discussed the extensibility architecture of BPEL, i.e. the 
workflow language established in the service world. The notion of choreography has 
been contrasted with orchestration.  

Coordination has been described as another composition model supporting 
outcome agreement in collections of dynamically assembled services. The role of 
coordination for realizing subprocesses and outsourcing arbitrary process fragments 
has been discussed.  

Cooperation between human beings based on workflow technology in a service 
world has been outlined: the main idea is to abstract concrete staff assignments and 
defer binding to an enterprise organizational database until deployment time. That 
way, the guiding principle of portability is maintained by the corresponding BPEL 
extension.  

Finally, semantic Web services and semantic business process have been sketched. 
These technologies are expected to significantly ease composition of services. 

9.2   Future Work  

We are currently working on algorithms to detect situations described in section 6.2 
automatically and to rewrite the affected process models accordingly. Furthermore, a 
prototype is being built in which a BPEL engine interacts with a coordinator to 
maintain the semantics of split structured activities.  



 Workflow-Based Coordination and Cooperation in a Service World 15 

An extension of BPEL is in progress to combine semantic Web service technology 
and orchestration. We also investigate language elements needed on top of BPEL to 
support choreography in a modular and composable manner; a corresponding tool is 
under development.  

References 

1. G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services, Springer 2004. 
2. J. Cardoso, A. Sheth (ed.). Semantic Web Services, Processes and Applications, Kluwer 

2006.  
3. M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede. Process-Aware Information 

Systems, John Wiley & Sons, Inc., 2005.  
4. M. Hepp, F. Leymann, J. Domingue, A. Wahler, D. Fensel. Semantic Business Process 

Management: Using Semantic Web Services for Business Process Management, Proc. 
IEEE ICEBE 2005 (Beijing, China, October 18-20, 2005). 

5. D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein, D. Wutke. Parameterized 
BPEL Processes: Concepts and Implementation, Proc. BPM’2006 (Vienna, Austria, 
September 5 – 7, 2006). 

6. R. Khalaf, F. Leymann. On Web Services Aggregation, Proc. VLDB-TeS’03 (Berlin, 
Germany, September 2003).  

7. R. Khalaf, F. Leymann. Role-Based Decomposition of Business Processes using BPEL, 
Proc. ICWS’2006 (Chicago, IL, USA, September 18 – 22, 2006). 

8. R. Khalaf, A. Keller, F. Leymann. Web Services Business Processes: Architecture and 
Applications, IBM Systems Journal 45(2) (2006). 

9. D. König, M. Kloppmann, F. Leymann, G. Pfau, D. Roller. Web Services Invocation 
Framework: A Step towards Virtualization Components, Proc. XMIDX 2003 (Berlin, 
Germany, February 16 -17, 2003), Lecture Notes in Informatics Volume P-24, GGI 2003. 

10. F. Leymann. Web Services: Distributed applications without limits, Proc. BTW'03 
(Leipzig, Germany, February 2003), Lecture Notes in Informatics Volume P-26, GI 2003.  

11. F. Leymann. The Influence of Web Services on Software: Potentials and Tasks, Proc. 34th 
Annual Meeting of the German Computer Society (Ulm, Germany, September 20 – 24, 
2004), Lecture Notes in Informatics Volume P-50, GI 2004. 

12. F. Leymann. The (Service) Bus: Services Penetrate Everyday Life, Proc. 3rd Intl. Conf. on 
Service Oriented Computing ICSOC’2005, (Amsterdam, The Netherlands, December 13 – 
16, 2005), LNCS 3826 Springer 2005. 

13. F. Leymann, S. Pottinger. Rethinking the Coordination Models of WS-Coordination and 
WS-CF, Proc. IEEE ECOWS 2005 (Växjö, Sweden, November 14-16, 2005). 

14. F. Leymann, D. Roller. Production Workflow: Concepts and Techniques, Prentice Hall 2000.  
15. F. Leymann, D. Roller. Modeling Business Processes with BPEL4WS, Information 

Systems and e-Business Management (ISeB), Springer 2005. 
16. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web Services 

Platform Architecture, Prentice Hall 2005. 
 
Links: (followed August 23, 2006) 
 
17. BPEL - Business Process Execution Language For Web Services V1.1, BEA, IBM, 

Microsoft, SAP & Siebel, 2003, 
http://www-106.ibm.com/developerworks/library/ws-bpel/ 



16 F. Leymann 

18. OASIS BPEL Technical Committee,  
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel 

19. WS-C – Web Services Coordination V1.0 
ftp://www6.software.ibm.com/ software/developer/library/WS-Coordination.pdf 

20. OASIS WS-C Technical Committee 
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx 

21. WS-CDL - Web Services Choreography Description Language V1.0 
http://www.w3.org/TR/ws-cdl-10/ 

22. WSIF - Web Service Invocation Framework, http://ws.apache.org/wsif/ 
23. WSFL – Web Service Flow Language 

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf 
24. SAWSDL – Semantic Annotations for WSDL 

http://www.w3.org/2002/ws/sawsdl/spec/SAWSDL.html 
25. DIP Integrated Project, http://dip.semanticweb.org/ 
26. SUPER Integrated Project, http://www.ip-super.org/ 
27. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P. 

Schmidt, I. Trickovic. WS-BPEL Extension for People (BPEL4People), IBM, SAP 2005 
http://www-128.ibm.com/developerworks/library/specification/ws-bpel4people/ 

28. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen, P. 
Schmidt, I. Trickovic. WS-BPEL Extension for Subprocesses (BPEL-SPE), IBM, SAP 
2005  

  http://www-128.ibm.com/developerworks/library/specification/ws-bpelsubproc/ 



Distributed Triggers for Peer Data Management

Verena Kantere1, Iluju Kiringa2, Qingqing Zhou3, John Mylopoulos3,
and Greg McArthur3

1 National Technical University of Athens
vkante@dbnet.ece.ntua.gr

2 University of Ottawa
iluju@site.uottawa.ca

3 University of Toronto
{jm, qqzhou, greg}@cs.toronto.edu

Abstract. A network of peer database management systems differs from con-
ventional multidatabase systems by assuming absence of any central control, no
global schema, transient connection of participating peer DBMSs, and evolving
coordination among databases. We describe distributed triggers to support data
coordination in this setting. The execution of our triggers requires coordination
among the involved peer databases. We present an SQL3 compatible trigger lan-
guage for the P2P setting. We also extend the SQL3 processing mechanism to this
setting. Our trigger processing mechanism consists of an execution semantics, a
set of termination protocols to deal with peer transiency, and a set of protocols
for managing peer acquaintances in presence of distributed triggers. We show
preliminary experimental results about our mechanism.

1 Introduction

A P2P architecture is a node-to-node mode of communication over the Internet. Most
of existing P2P applications, with some exceptions like [13, 17], do not deal with data
management issues.

However, many application domains need the kind of advanced data management
that would be offered by a P2P system to efficiently manage data residing in peer
databases. One such domain is health care [8], where hospitals databases, indepen-
dent doctors, pharmacists and pharmaceutical companies would like to participate in
a P2P system in order to exchange information about medical histories of patients,
medicines, symptoms of diseases, treatment methods etc. Another example is offered
by genome databases. Many such databases are available today [11]. Sharing such data
and exploiting information from these different databases would be useful for scientists
by enhancing their capacity of acquiring new knowledge through coordination of the
involved databases.

The anticipated wealth of applications mentioned above has prompted research in
data management systems that can get together to build a network of peers that coordi-
nate at run time the tasks of sharing and querying (mostly relational) data [11,2,17,13].
Such a network is very similar to a conventional multidatabase. The latter relies on key
concepts such as a global schema, central data management control, data integration,
global access to multiple databases, and static setup of the network of participating

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 17–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



18 V. Kantere et al.

databases. Instead, in [2], an architecture for a network of peer DBMSs called Hype-
rion is proposed by assuming absence of any global schema, absence of any central
control, evolving coordination rules among databases, and dynamic participation of
peer databases. One of the major goals of the Hyperion project [2] is to augment a con-
ventional (relational) DBMS with a P2P layer that enables the interoperability of het-
erogeneous peer databases. We call the DBMSs augmented with such a P2P layer peer
DBMSs. Using their P2P layers, peer DBMSs may establish or abolish acquaintances
among themselves. Two peers that have an acquaintance between them are ’acquainted’
and are called ’acquaintees’. Once an acquaintance is established, peer DBMSs may co-
ordinate and share their respective data. A peer DBMS manages both local data and the
correspondences/mappings over its acquaintances. Using the latter, answering queries
locally posed to a PDBMS, updating local data, and processing transactions are all done
by taking both local data and the data in acquainted peers into account. Furthermore,
coordination rules that are integrated into the the PDBMSs can enhance the interoper-
ability of peer databases, by adding active functionality on local and remote data.

On a more practical side, a few companies such as iSpheres (www.ispheres.com),
KnowNow (www.knownow.com), and IBM have recognized the importance of event-
driven applications for today’s increasingly complex execution of corporate business
processes. These companies are developing languages for event-based computing to
cope with the huge size of today’s dynamic corporate information. Our research is pur-
suing a similar avenue by taking into account the semantical differences that almost
always exist in practice between information sources that trigger reactive actions.

The contributions of this work are the following:

– We present an approach for using distributed triggers to enable and coordinate data
exchange between peer databases by propagating appropriate updates to acquainted
peer DBMSs. To do so, we extend the syntax of SQL3 to provide a rule language
for the definition of Event-Condition-Action (ECA) rules in a peer database en-
vironment. We delineate a distributed trigger language with simple events, con-
ditions destined to one single peer database, and actions destined to various peer
databases. Though simple, this language nevertheless allows realistic coordination
of peer data.

– We consider the processing of the distributed triggers in the absence of constraints.
Our execution semantics extends the standard semantics of centralized SQL3 trig-
gers by dealing with the heterogeneous and autonomous nature of peer databases.

– We propose a way of translating updates destined to remote peers using mapping
tables and we describe appropriate acquaintance protocols to deal with the transient
character of peer databases during the execution of distributed triggers.

– We have conducted experiments whose preliminary results show the viability of
this solution for managing updates in peer DBMSs.

The next section gives a motivating example from the domain of health care. Sec-
tion 3 introduces the main models used in the paper. Section 4 presents the syntax of the
distributed triggers. Sections 5–6 describe the execution semantics and the various algo-
rithms and protocols related to it. Section 7 presents preliminary experimental results.
Related work is discussed in Section 8. Finally, we draw the conclusions in Section 9.



Distributed Triggers for Peer Data Management 19

P2P Layer

Dr_F_DB

P2P Layer

Dr_S_DB

P2P Layer

P_DB

DR_F_Patients(ohip#, name, phone#, primarydr)

DR_F_Tests(tid, type, class, test, result, ohip#)

Prescription(ohip#,drug_name, date, dose, qty)

Schema of Dr_F_DB Schema of Dr_S_DB

DR_S_Patients(ohip#, name, phone#, primarydr)

DR_S_Tests(tid, type, class, test, result, ohip#)

Schema of P_DB

Prescription(ohip#,drug_name, date, dose, qty)

Fig. 1. A network of peer databases

2 Motivating Example

Consider the situation in which a family doctor, Dr. Smith, sees one of his regular
patients, Ms. Watson, who is presenting with abdominal pains. Assume that Ms. Watson
has had these pains for some time and that she has had some investigations done for this
problem, but she is not sure which investigations. Moreover, she remembers to have
been prescribed some medications, but does no longer know from which pharmacist.

A number of questions and issues may arise with respect to the patient’s medical
history such as: (1) Has the patient had a complete blood count? If so, when was that
and what was the white blood cell count? (2) What medications was or is the patient
taking? (3) Since Ms. Watson is one of Dr. Smith’s regular patients and the latter keeps
as complete a medical history as possible in his own database, Dr. Smith’s data needs to
be coordinated as it is updated. (4) Dr. Smith may want to have the information from any
medication prescribed to Ms. Watson by pharmacists that he is aware of. (5) Dr. Smith
may want to have any diagnosis from examinations done on Ms. Watson by hospitals
that he is aware of.

In this situation, we assume a network of peer databases that belong to physicians,
hospitals, medical laboratories, and pharmacies. Associated physicians establish ac-
quaintances among themselves. Further acquaintances are established between physi-
cians and associated laboratories, between the former and hospitals, between associated
hospitals, and so on.

As an example consider a network of peer databases that comprises the following
databases (Figure 1): a database Dr F DB that belongs to a family physician, Dr. F; a
database Dr S DB that belongs to a specialist, Dr. S, associated with Dr F; a database
P DB that belongs to a pharmacist, P, associated with Dr F.

We use mapping tables [11] as a way of constraining data exchange between het-
erogeneous peer databases. Figure 2 shows two mapping tables for our domain. Intu-
itively, mapping tables are binary tables that provide a correspondence between data
values of acquainted peer databases. At a certain extent, they also provide a simple
schema-level correspondence. For example,the first mapping table of Figure 2 maps



20 V. Kantere et al.

FTest_2_STest

Dr_F_Test.test Dr_S_Test.test

hemoglobin C0518015
C0427512whitebloodcount

X X

ohip_2_ohip

Dr_F_Patients.ohip# Dr_s_Patients.ohip#

Fig. 2. Examples of mapping tables

Dr F’s tests to Lab L’s tests. Moreover, the second table of the same figure represents
the identity function which maps each ohip 1 value of Dr F’s database to itself in Dr S’s
database.

2.1 Distributed Triggers

The querying mechanism through which a pDBMS is able to gather data from the P2P
network may not be sufficient. For example,if Dr F works in a walk-in clinic, he typ-
ically may not wish to keep complete records on his irregular patients, in which case
this query and update time data coordination is enough for his instant need informa-
tion. Yet, for his regular patients, Dr F may want to keep as complete a medical history
as possible in Dr F DB. In this case, data updates must be complemented by a more
general coordination mechanism.

Trigger 1. If Dr F wants to be informed about any lab test performed on any of his
patients by the associated Dr S, insertions alone would not be enough to express this:
Dr F would like his database to be updated automatically when such new information
occurs. This can be expressed with the following trigger, written in a rule language that
extends SQL3 triggers:

CREATE TRIGGER testInsertion
AFTER INSERT ON Dr S Tests

REFERENCING NEW AS NewTest IN Dr S DB
FOR EACH ROW
WHEN EXISTS SELECT P. ohip#

FROM Dr F Patients P
WHERE P.ohip# = NewTest.ohip# AND P.primarydr =’F’

BEGIN INSERT INTO Dr F Tests VALUES NewTest IN Dr F DB END

To express Trigger 1, we use a language that extends SQL3 triggers [12, 4]. An
SQL3 trigger is a form of ECA rule with an explicit name. At definition time, each
trigger is associated with a specific table. Only insertions, deletions, and updates on
the associated table can activate the trigger. Let t be a SQL3 trigger; t is said to be
triggered if a database operation on the associated table matches the event part of t.
Moreover, t is said to be activated if it is triggered and its condition part evaluates to
true.From now on, we use the verbs trigger and activate interchangeably. Events in
SQL3 are kept simple, meaning that only single database operations are of interest.
Conditions are SQL queries, and actions are SQL statements that are intended to be
executed on the database instance. Triggers that are activated before their triggering
(or else activating) event occurs are called BEFORE triggers; those that are activated

1 Ontario Health Insurance Plan.



Distributed Triggers for Peer Data Management 21

after their activating event has occurred are called AFTER triggers. SQL3 specifies
an activation granularity, which is an indication of how many times the action part of
an activated trigger may be executed. Two activation granularities are distinguished in
SQL3: row-level, and statement-level activation. The former (expressed by FOR EACH
ROW) means that the trigger action is executed for each of the rows that are affected by
the database operation that activated the trigger. The latter (expressed by FOR EACH
STATEMENT) means that the trigger action is executed for each statement that contains
the database operation that activated the trigger, i.e. only once. Finally, SQL3 allows one
to access both the current and the old state of the database (called transition tables)
using keywords NEW TABLE and OLD TABLE, respectively. One may also access
both the new and old values of tuples (called transition values) that are affected by
triggering database operations using keywords NEW and OLD, respectively.

Trigger 1 is typically distributed, in the sense that its event is monitored in the
database Dr S DB, and the action that it causes is executed in a different database,
namely Dr F DB. The condition part of this rule is a simple select-join-project (SJP)
query that will be evaluated by default (i.e. if not defined else-wise) in the database of
the peer in which the trigger is created. Our distributed triggers extend typical central-
ized SQL3 triggers by explicitly mentioning the database in which the trigger event,
condition, and actions occur.

3 Models

For our distributed triggers and their execution, we assume the relational data model [5].
In the following we use notations and concepts from [1], [19], [12].

Definition 1 (Peer to Peer Network ). A peer to peer network is a pair (N ,M ), Here,
N = (P ,L) is an undirected graph, where P = {P1, · · · ,Pn} is a set of peers, L =
{(Pi,Pj)|Pi,Pj ∈ P} is a set of acquaintances; each acquaintance (Pi,Pj) is associated
with a set Mi j ∈ M of mapping tables.

To motivate our paper, we formulate our triggers by assuming that, though the peer
schemas are heterogeneous, each peer makes all its schema visible to its acquaintees.
However, this assumption is not realistic and we relax it in this section. We now assume
that peers make only a subset of its schema visible to its peers.

Using notations from [16], we assume that each peer Pi maintains a set LSi of at-
tributes called local schema. We also assume that peer Pi exports a subset ESi ⊆ LSi of
attributes called export schema of Pi.

3.1 Local Update Model

Though a formal study of updates is beyond the scope of this paper, we formally intro-
duce a few useful definitions and a formal model of updates for our P2P setting. For
each peer Pi, we distinguish three sorts of updates: a local update is executed only on
LSi; a remote update is executed only on the ES j of an immediate acquainted peer Pj;
and a global update is executed both on LSi and on the ES j’s of some or all of the im-
mediate acquainted peers. A global update is therefore a family including a local update



22 V. Kantere et al.

and a set of remote updates. Below, we give the semantics of a local update. Section 3.2
will give the semantics of a remote update. Global updates are beyond the scope of this
paper.

Consider a database update model in which users submit sequences of SQL database
operations insert, delete, and update with their usual syntax, which we do not present
due to lack of space. Each one of these operations is called an SQL statement. We
consider the execution of SQL statements to be atomic.

Let S be an SQL statement. The set of affected rows (SAR) of S, denoted A(S), is
the set of tuples changed by S. Formally, A(S) is defined as follows:

A(insert) = {〈v1, · · · ,vn〉} (basic insertion)
A(insert) = {t ∈ R1 �� R2 �� · · · �� Rm |

t is an answer to the embedded SPJ query}
A(delete) = {t ∈ R | t satisfies condition}
A(update) = {〈t,C,v〉 | t ∈ R, C ∈ att(R), and v ∈ dom(C)}

Intuitively, 〈t,C,v〉 means that v is the new value of the attribute C in the tuple t. We
will denote the SAR of a statement S on a specific database instance r by A(S,r).

The effect of a statement S, denoted E(S), is a tuple (I,D,U), where I, D, and
U are sets of inserted, deleted, and updated tuples, respectively. Formally, we have:
E(insert)=(A(insert), /0, /0); E(delete)=( /0,A(delete), /0); E(update)=
( /0, /0,A(update)).

Each execution of a statement S corresponds to a set T of transitions T1, · · · ,Tn,
where n = |A(S)|. We say that S causes the transitions in T . Formally, a transition is a
pair (old tuple value,new tuple value) which is inductively defined as follows:

If S is an insert, then T = ( /0,n), n ∈ A(insert).
If S is a delete, then T = (o, /0), o ∈ A(delete).
If S is an update, then T = (o,n), where there is a tuple (t,C,v) ∈ A(update),

o = t, and n is the tuple t such that t[C] = v.

Definition 2 (Database State Change [12]). A database state change is a triple (R,
E,T ), where R is a relation, E ∈ {insert, delete, update}, and T is a set of transitions.

3.2 Remote Update Model

Consider again a database update model with sequences of SQL operations insert,
delete, and update with their usual syntax. For given acquainted peers Pi and Pj, we
want to give a semantics for a remote update Ui over LSi using mapping tables that are
in place between Pi and Pj. That is, we want to translate the remote update Ui to an
update Uj using the mapping tables. The intuition is to translate the remote update Ui

such that the set of of affected rows of Uj only concerns tuples that are related to the set
of affected rows of Ui through the mapping tables.

4 Distributed Trigger Language

A distributed SQL3 trigger is a syntactical straightforward extension of SQL3 triggers
which mentions the databases in which event occurrence, condition evaluation, and



Distributed Triggers for Peer Data Management 23

<trigger definition> ::= CREATE TRIGGER <trigger name>
<trigger action time>
<simple event> IN <db name>

[REFERENCING <old/new values alias list>]
[FOR EACH {ROW | STATEMENT}]
[WHEN <trigger condition>]
<trigger action>

<trigger action time> ::= BEFORE | [DETACHED] AFTER
<simple event> ::= INSERT | DELETE | UPDATE [OF <column name list>]
<trigger condition> ::= [NOT] <SQL query> IN <db name>
<trigger action> ::= {BEGIN ATOMIC {<SQL procedure stmt>;}+

IN <db name> END}+
<old/new values alias list> ::=
OLD <table name> [AS] <identifier>
| NEW <table name> [AS] <identifier>
| OLD_TABLE <table name> [AS] <identifier>
| NEW_TABLE <table name> [AS] <identifier>

Fig. 3. Syntax of Distributed Triggers

action execution take place. However, the parts of the distributed triggers may be as-
sociated with peer databases other than the one in which the trigger is defined and
therefore associated with. Like in the traditional SQL3 triggers, conditions are SQL
queries, and actions are SQL statements to be executed on database instances. Finally,
BEFORE triggers and AFTER triggers are defined as in the traditional SQL3 standard.
Figure 3 presents the syntax used to define our distributed triggers (See [12] for details
on the SQL3 subset of this EBNF).

We extend the SQL3 requirement that the trigger names be unique in a given database
schema to a uniqueness requirement in all peer databases. The event, condition and
actions are defined on given peer databases. The triggering event remains simple. The
trigger action time, i.e. the time when the event is signaled, is BEFORE or AFTER the
actual occurrence of the respective SQL statement. The optional DETACHED keyword
is added for specialization of the execution semantics of the AFTER triggers and will be
discussed in section 5.2. Like the standard SQL3, the extended SQL3 allows the access
of both the current and the old state of the database, as well as both the new and old
values of tuples that are affected by triggering operation.

Also, the condition remains simple, and, thus, it is to be evaluated in a single
database. However, the action is a set of separate sets of transactions; each one of these
sets is executed atomically in one database. Note that SQL3 denotes that the action for
BEFORE triggers cannot change the state of the database instance. In this paper we
do not deal with distributed transactions - we leave this as future work. Nevertheless,
requiring the set of transactions in one database to be executed atomically is consis-
tent with the centralized SQL3 definition which requires the action to be executed in
the same transaction with the triggering event. It is obvious that in case all parts and
subparts of the trigger are declared to be executed in a single database, our extended
semantics are reduced to the centralized SQL3 semantics.

As we shall see in the following, even though the extension of the SQL3 trigger
syntax is straightforward, the extension of its execution semantics for the distributed
and dynamic peer database setting is intriguing.



24 V. Kantere et al.

5 Processing Distributed Triggers

We consider the execution semantics of distributed triggers in the absence of con-
straints. We consider the case of distributed triggers with simple events and conditions
to be executed in a single (possibly remote) peer database. The trigger action part, how-
ever, can be a sequence of database actions to be executed on possibly remote peers.

We extend the execution semantics of the centralized SQL3 triggers (without consid-
ering constraints) in a way appropriate to deal with the heterogeneous and autonomous
nature of peer databases. We deal with heterogeneity by using mapping tables to trans-
late updates destined to remote peers, and we deal with autonomy by considering the
transient character of peer databases.

The trigger processing mechanism consists of an execution semantics, a set of termi-
nation protocols, and a set of protocols for each one of the following tasks: establishing
and abolishing acquaintances, connecting to and disconnecting from a P2P network,
and joining and leaving a P2P network. For simplicity, we call the third component ac-
quaintance protocols. The execution semantics specifies how the distributed triggers are
executed. Termination protocols are similar to those used for commitment in distributed
DBMSs [14]: Whenever a peer involved in the processing of a trigger disconnects, all
the other involved peers should be able to gracefully terminate trigger processing. Fi-
nally, acquaintance protocols address how the trigger execution process at the discon-
nected peer recovers when the peer reconnects.

We do not require the existence of distributed transactions involving several peers.
Instead, we assume that database operations in separate peers are separate
transactions.

5.1 Execution Semantics

Recall that SQL3 has immediate condition and action coupling modes, meaning that
condition evaluation immediately follows event occurrence, and action execution im-
mediately follows the condition. The following procedure summarizes the SQL3 exe-
cution semantics for a statement S in the absence of constraints [4, 12]:

EXECUTE STATEMENT(S)
1. Save current state change (if any) on a stack.
2. Determine A(S).
3. Create a state change C with C = (R,E,T ), where R is the table mentioned in S, E

is the update operation mentioned in S, and T is gained from A(S) as explained in
Section 3.1.

4. PROCESS BEFORE TRIGGERS(C ).
5. Apply E(S) to the database.
6. PROCESS AFTER TRIGGERS(C ).
7. PROCESS DETACHED AFTER TRIGGERS(C ).
8. Restore the state change saved in Step 1 (if any).

To process our distributed triggers, we use the same procedure above. However, the
procedures called to process the BEFORE and AFTER triggers must accommodate
distributed triggers by being able to evaluate conditions and perform database updates



Distributed Triggers for Peer Data Management 25

on remote peers. The procedures PROCESS BEFORE TRIGGERS(C ) and PROCESS
AFTER TRIGGERS(C ) given in Figures 4 and 5, where C is a state change, give the
execution semantics for the distributed BEFORE and AFTER SQL3 triggers, respec-
tively. The semantics involves one coordinating peer (the coordinator), which controls
the outcome of the trigger processing task, and a set of participating peers (the par-
ticipants), which evaluate conditions and execute trigger actions. Figures 4 and 5 as-
sume that the coordinator is peer Pi. For simplicity, we assume the existence of one sin-
gle participant for condition evaluation. The procedure EXECUTE STATEMENT(S),
PROCESS BEFORE TRIGGERS(C ), and PROCESS AFTER TRIGGERS(C ) are ex-
ecuted by the coordinator. We use the following notations: τ[E], τ[C], and τ[A] for the
event, condition, and action parts of trigger τ, respectively; R , RB, and RA for the sets
of triggers, BEFORE triggers, and AFTER triggers, respectively; BTs, and ATs for sets
of activated BEFORE and AFTER triggers, respectively. The action part τ[A] is a se-
quence τ[A1], · · · ,τ[Am] of updates to be executed on peer databases; We use the function
select − activated − triggers(R ) that takes the set R and returns a set comprising all
enabled triggers whose events occur in the current state change.

Note that the coordinator of the trigger is always the database on which the event
occurs. It is obvious that the coordinator can be different from the creator of the trigger,
since peers can define triggers with a remote event part. The actions of the trigger are
treated as sets of actions to be executed in different peers. The set of local actions is
always executed prior to the execution of the remote actions. This guarantees that in
case of a trigger rollback no actions of this trigger instance will have been executed
on remote peers. Also, this order of action execution allows the coordinator to finish
the trigger execution and proceed with other tasks without any delay added from peer
communication. Of course, there can be the case that the local actions of a trigger in-
stance have been executed and some of the remote ones have failed. However, this is
acceptable, since we assume that actions on peers take place in separate transactions.

Also, note that, in case of BEFORE row-level triggers with a remote condition, the
condition instances of all the rows are precomputed on the remote peer and send back
to the coordinator as a set. In this way we avoid the multiple messages with condition
instances and reduce the communication load. Moreover, this is compliant with the cen-
tralized SQL3 semantics, because the actions of BEFORE triggers are not allowed to
change the database. Thus, the precomputed condition instances would be the same as
if they would be computed in the correct order with the execution of the respective ac-
tion instances. However, this does not hold for AFTER triggers: there can be cases were
the action changes a table on which the condition is evaluated. Thus, the execution of
AFTER row-level triggers should follow the correct order of condition evaluation and
action execution. Figure 5 presents this naive execution semantics. Certainly, there are
optimizations for the reduction of the number of inter-peer messages in this case. The
same set-oriented execution of the condition and action as in Figure 4 can be followed
in case that no action influences the tables on which the condition is evaluated. In case
that there is action influence on condition evaluation, but locally, i.e. in the coordina-
tor’s database, then again we can follow the naive execution of Figure 5. However, in
case of a remote condition and action that execute on the same tables the implemen-
tation of the distributed trigger execution should decide about the best solution for the



26 V. Kantere et al.

PROCESS BEFORE TRIGGERS(C )

1. BTs ← select −activated − triggers(RB).
2. If T = /0,remove all row-level triggers from BTs.
3. Compute transition tables OLD TABLE and NEW TABLE from T .
4. For each τ ∈ BTs in order of trigger creation, do:

(a) If τ is a statement-level trigger, then
if τ[C] is local, then do:

– send it to the local evaluator
– WAIT(Message)

if τ[C] is remote (in peer Pj) then do:
– Translate the instance of τ[C] to an instance τ′[C] of Pj using the set Mi, j of mapping tables
– Send τ′[C] to Pj for evaluation
– WAIT(Message)

if Message = true, then first execute the local τ[Ai]′s, and for each τ[Ak] in remote peer Pk , translate it to τ′[Ak]
using the mapping tables Mi,k, and execute τ′[Ak].

(b) If τ is a row-level trigger, then:
if τ[C] is local, for each tr ∈ T , do:

i. Set values for OLD and NEW from tr.
ii. If τ[C] evaluates to true, execute τ[A].

if τ[C] is remote (in peer Pj), then do:
i. OLD VAL = {}; NEW VAL = {}; COND INST = {}

ii. for each trk ∈ T , do:
– Set values for OLDk and NEWk variables from trk .
– Translate the instance of τ[C] to an instance τ[Ck] of Pj using the set Mi, j of mapping tables
– OLD VAL=OLD VAL ∪{OLDk}; NEW VAL=NEW VAL ∪{NEWk};

COND INST=COND INST ∪ {τ[Ck]}
iii. Send OLD VAL, NEW VAL, and COND INST to Pj

iv. WAIT (〈msg1, · · · ,msg|T |〉)
for each msgi do:
if msgi = true, execute the local τ[Ai]′s, for each remote peer Pk involved in τ[A] do:

for each msgi do:
if msgi = true, then for each τ[Ak] translate it into τ′[Ak] using the mapping tables Mi,k, and execute τ′[Ak]

Fig. 4. Execution of BEFORE Triggers

minimization of inter-peer messages. Due to lack of space, we will not go into imple-
mentation optimizations.

5.2 Detached AFTER Triggers

The execution semantics described till this point are valid in cases that all peer involved
in a trigger are concurrently online. But what happens if one of them is offline when
a trigger has to be executed? In order to be compatible with the immediate coupling
modes of the centralized execution semantics of SQL3 triggers, we have to restrict the
execution of distributed triggers only in periods where all involved peers are online.
However, such a tactic would be totally inefficient and contradictory to the spirit of a
P2P environment, where the offline state of peers is considered normal and expected.
Lets consider again Trigger 1: we would like Dr F’s database to be updated with all the
tests of his patients performed by Dr S, even though some of these tests may take place
when the Dr F DB is offline. Reasonably, we expect that when Dr F DB comes online
and connects to Dr S DB the former is updated with tests that were inserted in the lat-
ter during the offline period. In order to support such data management appropriate to
the P2P database setting, we introduce a variation of AFTER triggers, characterized as
DETACHED AFTER triggers. These ones are the triggers that should be considered
for execution both when peers are on- and off-line. These triggers are treated as AF-
TER ones when all involved peers are available. However, as soon as an involved peer



Distributed Triggers for Peer Data Management 27

PROCESS AFTER TRIGGERS(C )

1–3. Proceed in a way similar to Steps 1–3 of the semantics of BEFORE triggers, with sets ATs and RA instead of BTs and
RB .

4. For each τ ∈ ATs in order of trigger creation, do:
(a) If τ is a statement-level trigger, then

if τ[C] is local, then do:
– send it to the local evaluator
– WAIT(Message)

if τ[C] is remote (in peer Pj) then do:
– Translate the instance of τ[C] to an instance τ′[C] of Pj using the set Mi, j of mapping tables
– Send τ′[C] to Pj for evaluation
– WAIT(Message)

if Message = true, then first call EXECUTE STATEMENT(τ[Ai]′s), and for each τ[Ak] in remote peer Pk, trans-
late it to τ′[Ak] using the mapping tables Mi,k, and call EXECUTE STATEMENT(τ′[Ak])

(b) If τ is a row-level trigger, then:
if τ[C] is local, for each tr ∈ T , do:

i. Set values for OLD and NEW from tr
ii. If τ[C] evaluates to true, first call EXECUTE STATEMENT(τ[Ai]), then call EXE-

CUTE STATEMENT(τ[Al]), for all l such that l 	= i
if τ[C] is remote (in peer Pj), then, for each tr ∈ T , do:

i. Set values for OLD and NEW from tr
ii. Translate the instance of τ[C] to an instance τ′[C] of Pj using the set Mi, j of mapping tables

iii. Send OLD, NEW, and τ′[C] to Pj

iv. WAIT (Message)
v. If Message = true, then do:

– Translate τ[Ai] into τ′[Ai] using the mapping tables Mi, j, and call EXECUTE STATEMENT(τ[Ai])
– for each remote τ[Ak] in τ[A], translate it into τ′[Ak] using the mapping tables Mi,k , and call EXE-

CUTE STATEMENT(τ′[Ak])

Fig. 5. Execution of AFTER Triggers

goes offline the coordinator assigns to them different execution semantics, in order for
them to continue to perform data coordination. The DETACHED keyword is optional,
because not all AFTER triggers should be executed while peers are disconnected.

Rationally, Trigger 2 should be executed in an immediate mode: Dr F would not like
his prescription to be ’hanging’ if P DB is not online when the trigger is fired. Moreover,
in this case, if the trigger was executed in an asynchronous mode while peers are offline
and come online again, it is most possible that the patient would receive the prescribed
medicine with a long delay. In the case that P DB is not available, Dr F would probably
prefer to contact another pharmacist for the prescription or give the prescription to the
patient. It is obvious that there are cases of AFTER triggers for which the user would
like to have control of the outcome of the trigger execution. Thus, the DETACHED
execution mode is optional and user-decidable.

Note that we propose this option only for AFTER triggers and not for BEFORE
ones. The reason is that, semantically, BEFORE triggers are used by SQL3 in order to
implement security and constraint violation control over the database. Thus, offering the
option of detached execution of parts of the BEFORE trigger, would not serve this goal.
Figure 6 shows the execution semantics of DETACHED AFTER triggers in case that at
least one involved peer is offline and later on comes online again. We introduce the set
of DETACHED AFTER triggers RDA ⊆ RA and we consider DAT to be the activated
enabled subset of them.

Trigger 2. Suppose that when Dr F is prescribing a medicine to one of his patients, he
wants this prescription to be inserted both in his own database and in the database of



28 V. Kantere et al.

PROCESS DETACHED AFTER TRIGGERS(C )

1–3. Similar to Steps 1–3 in AFTER triggers
4. For each τ ∈DATs in order of trigger creation, do:

(a) If τ is a statement-level trigger, then
if τ[C] is local, then do:

– send it to the local evaluator
– WAIT(Message)
– if Message = true, execute local τ[Ai]′s and for each τ[Ak] in remote peer Pk , translate it into τ′[Ak] using

Mi,k, and put τ′[Ak] in the marker MPi (Pk). Send the markers when peers are online.
if τ[C] is in remote peer Pj , translate the instance of τ[C] to an instance τ′[C] of Pj using the set Mi, j of mapping
tables and:

– if Pj is online:
• Send τ′[C] to Pj for evaluation
• WAIT(Message)
• if Message = true, execute local τ[Ai]′s, and for each τ[Ak] in Pk , translate it into τ′[Ak] using Mi,k,

and put τ′[Ak] in the marker MPi (Pk). Send the marker when Pj is online
– else (Pj is offline)

• put τ′[C] in MPi (Pj)
• WAIT(Message)
• if Message = true, execute local τ[Ai]′s and for each τ[Ak] in Pk , translate it into τ′[Ak] using Mi,k,

and put τ′[Ak] in MPi (Pk). Send the markers when peers are online
(b) If τ is a row-level trigger, then proceed in an analogous way as for statement-level triggers

Fig. 6. DETACHED AFTER execution

the pharmacist, P DB, so that the latter can sent the medicine to the patients residence.
The following trigger declares this task:

CREATE TRIGGER prescriptionInsertion
AFTER INSERT ON Dr F Prescription

REFERENCING NEW AS NewPresc IN Dr F DB
FOR EACH ROW
BEGIN INSERT INTO Dr P Prescription VALUES NewPresc IN Dr F DB END

Because of lack of space Figure 6 describes the offline processing of statement-level
DETACHED AFTER triggers. Row-level are processed in an analogous way, perform-
ing the appropriate processing of NEW and OLD variables and condition instances, in
a similar way with Figure 5. As we can see, the coordinator of a DETACHED AFTER
trigger executes all the local parts of the latter and saves to the appropriate markers
remote condition and action instances. The marker is a data structure used to collect
processed data from distributed triggers that are evaluated while peers are offline; the
formal definition is in Section 6. In case that the condition is local, the trigger instance
is executed (up to the execution of local actions) and is removed from the trigger pro-
cessor.If the condition is local, then the local actions can and should be executed right
away. In this manner the execution semantics of the distributed trigger are reduced to
the centralized SQL3 execution semantics for the local part of the trigger - which is
actually the part that can be executed while the peer is offline. The remote actions are
stored in the appropriate markers which are sent to the respective peers when possible.
If the condition is on a remote peer and there is no current connection between the latter
and the coordinator, then the condition instance is logged in the appropriate marker and
is sent to the remote peer when possible.

The main difference between the online and the offline state of a peer is that the map-
ping tables and the coordination triggers are enabled and disabled, respectively. While
the mapping tables are enabled, the peer uses them in order to translate queries and



Distributed Triggers for Peer Data Management 29

triggers to the exported schema of its acquaintees. Accordingly, while triggers are en-
abled, the peer considers them eligible for firing when local events occur. The DE-
TACHED AFTER triggers are a special case which, while they are disabled, are con-
sider by the peer for ’local’ firing. More specifically, the peer considers for firing the
local part of a disabled DETACHED AFTER trigger and logs processed data (i.e. re-
mote condition and remote action instances) to send out to the involved acquaintees
when both those involved acquaintees and the peer are online again.

Moreover, note that, for each DETACHED AFTER trigger instance, the marker logs
the instances of the event, and, if the condition is local, it also logs the condition in-
stance and instances of the remote actions to be executed later. The reason is that if
the condition is local, then the local actions can and should be executed right away. In
such way the distributed execution semantics of the distributed trigger are reduced to
the centralized SQL3 execution semantics for the local part of the trigger - which is
actually the part that can be executed while the peer is offline.

5.3 Termination Protocol

This section considers a protocol for terminating an executing a trigger when it is not
possible to finish the execution of the trigger according to the semantics presented in
section 5.1. We consider timeouts and disconnections during trigger execution by using
finite state machines that represent the coordinator and the participants. Figure 7 depicts
the finite state machine used for the coordinator and participants in the presentation of
our termination protocols. The horizontal bars labeling the transitions have the input
message at the top and the output message at the bottom.

For simplicity, assume a trigger with a condition destined to one single remote peer
and several actions, some of which are destined to remote peers. The execution of the
trigger starts in the EVENT state. When an event is signaled, trigger execution enters the
COND state after sending the conditions to the condition evaluator. If the coordinator
receives a “false” message from the evaluator, trigger execution aborts; otherwise, the
execution enters the LOCAL state after sending the local actions to the local action
executor. When the trigger execution receives an acknowledgement message from the
local action executor, it then enters the REMOTE state, after sending the remote actions
to the appropriate remote peers. After all the acknowledgements have comed back to
the execution module, the latter can finally stop.

Finite state machines for participants are very simple: They all have a START state
and an END state. A condition evaluator moves from the START state to the END state
after receiving and evaluating the condition, and sending the evaluation result back to
the trigger execution module. Similarly, the action executor moves from the START
state to the END state after receiving and executing the action and sending an acknowl-
edgement message back to the trigger execution module.

Coordinator Termination. If the coordinator is in EVENT state and either the WAIT
command timeouts or it receives a disconnection message from a participant which
is supposed to evaluate the condition, then it drops the executing trigger instance. If
the latter is a DETACHED AFTER trigger, it re-initiates the execution of the same
(dropped) trigger instance with DETACHED execution semantics. If the coordinator is



30 V. Kantere et al.

EVENT COND LOCAL REMOTE STOP

signal event
 [C]

Msg = true

Msg = false

Ack
 [ t]  [  ]

 [C]  [ ]

Ack

Ack

Stop Exec

ABORTAbort Exec

START END START END

Msg

FSM for the coordinator

FSM for the condition evaluator FSM for the action executor

Fig. 7. FSMs for Trigger execution

in CONDITION state, it continues the execution of the current trigger instance, and, in
the case of a DETACHED trigger, it saves the actions to be executed in the disconnected
participant in the respective marker. Overall, in case of disconnection of any participant,
the coordinator switches the execution semantics of AFTER triggers to the DETACHED
mode and discards BEFORE or plain AFTER trigger instances.

Participant Termination. Notice that the participants are of two kinds, namely condi-
tion evaluators and action executors.

Evaluator. The condition evaluators can timeout in the START state. In this state,
the participant expects the condition from the coordinator. Should there be a timeout,
this means that the coordinator must have failed in the EVENT state. The participant
can stop at this state and exit. Any condition message arriving latter can be ignored, in
which case the coordinator would timeout in the state COND. This means that, in case
of a timeout, the participant just discards the condition instance and does nothing else,
since the coordinator will take care of the termination of the executing trigger instance.

Action Executor. The action executor also can timeout in the START state. Similarly,
the participant expects a message containing the action from the coordinator. If there
is a timeout, this means that the coordinator must have failed in the LOCAL state in
case it is the local action executor; or the coordinator must have failed in the REMOTE
state in case the executor is remote. The action executor can stop at this state and exit.
Any action message arriving latter can be ignored. In this case, the coordinator would
timeout either in the LOCAL state or in the REMOTE state.

6 Acquaintance Protocols

To join a network, a peer Pi must explicitly establish an acquaintance with a known peer,
say Pj, that already belongs to the network. At the time it is established, an acquaintance
is associated with a set of mapping tables which constrain the exchange of data between
peers, and a set of coordination rules (written in triggers language described in this
paper) which guide such an exchange.

To leave a network, a peer Pi must drop its set of acquaintances with known peers,
say Pj1 , · · · ,Pjl . The various constraints attached to the acquaintance are abolished when



Distributed Triggers for Peer Data Management 31

the latter is dropped. Establishing and abolishing acquaintances have to do with the cre-
ation and the drop, respectively, of coordination rules and constraints for data exchange.
These procedures have to be performed such that we can guarantee that no local parts of
coordination tasks are ’hanging’ or delayed because of peer communication problems.

In the following we present acquaintance protocols that are independent, i.e. peers
restore their state in the P2P system without the need of consulting other peers.

6.1 Acquaintance Tracking and Peer Markers

To deal with the transient character of peers, we introduce the idea of acquaintance
tracking, which is similar to the idea of “dependency tracking” mentioned in [19] to
single out triggers that mention tables that meanwhile have been dropped. Acquaintance
tracking is meant to single out triggers that mention acquainted peers that have left or
disconnected from the network.

Definition 3 (Acquaintance Tracking). Suppose that there is a peer Pi ∈ P . Let Pi ⊆ P
be the set such that for all peers Pj ∈ Pi, (Pi,Pj) ∈ L and Pi has at least one trigger
that mentions tables of ES j. Then finding such a set Pi ⊆ P , the tracked set, is called
acquaintance tracking of peer Pi with respect to its triggers.

Intuitively, Definition 3 means to find all the acquaintees of Pi for which Pi has triggers
mentioning tables of them. In addition to the tracking acquaintances, our protocols use
an extension of the idea of peer marker mentioned in [9].

Definition 4 (Marker). Suppose that the acquaintance tracked set of peer Pi is Pi. For
each peer Pj ∈ Pi, Pi may define a marker MPi(Pj). Suppose that τ(Pj) ∈ Pi are the
triggers τ defined in Pi that mention tables in ES j. Let τ′(Pj) ⊆ τ(Pj) be the subset of
triggers defined in Pi that mention tables from ES j in the event part. For each τ′

m ∈ τ′(Pj)
we define an empty set Iτ′

m
= {}. Then MPi(Pj) = {Iτ′

m
|τ′

m ∈ τ′(Pj)}.

A peer can perform the following actions that concern its status in the P2P network:

Establishing Acquaintances. Assume that a peer Pi wants to establish an acquain-
tance with peer Pj. Pi uses the following algorithm.

1. Pi generates and populates mapping tables Mi, j.
2. Pi sends copies of instances of Mi, j to Pj.
3. Both Pi and Pj enable the Mi, j .
4. Both Pi and Pj generate a set of initial distributed triggers to coordinate their ex-

change of data. For each newly defined trigger τ ∈ P, (P ∈ {Pi,Pj}):
(a) Track acquaintances of P with respect to trigger τ ∈ P. Let PP be the tracked

set for P.
(b) Enable τ if all peers in PP are online, and disable τ if at least one peer in PP is

not online.
(c) Send τ to the peer that is mentioned in the event if this is not the local database.

5. Pj is added to the list of Pi’s acquaintees APi , and vice-versa.

Abolishing Acquaintances. To abolish an acquaintance with Pj, Pi executes the fol-
lowing algorithm.



32 V. Kantere et al.

1. Send a message to Pj to delete any mapping tables and coordination triggers over
the acquaintance (Pi,Pj) and wait for acknowledgment.

2. Upon receiving the acknowledgment from Pj, delete mapping tables and coordina-
tion triggers over the acquaintance (Pi,Pj).

3. Pj is removed from the list of Pi’s acquaintees APi , and vice-versa.

Connecting to the P2P System. Pi that connects to the P2P system (or, in other
words, comes online) executes:

1. Enables all its existing acquaintances, i.e. for each peer Pj ∈ APi , Pi enables the
existing respective mapping tables and coordination triggers.

2. For each marker MPi(Pj), if Pj is connected, Pi sends the marker to the latter.

Disconnecting from the P2P System. A peer Pi that disconnects from the P2P sys-
tem (or in other words goes offline) disables all its existing acquaintances, i.e. for each
peer Pj ∈ APi :

1. Pi and Pj disable the existing respective mapping tables over their acquaintance.
2. if Pi is in the middle of the execution of a trigger τ then terminate it as follows:

-if Pi is in state EVENT then:
if the condition is local, continue the execution else:
(a) for a BEFORE/AFTER trigger discard the instance
(b) for a DETACHED AFTER trigger log the instance in the respective marker
-if Pi is in state CONDITION then:
continue the execution

3. Pi and Pj disable all BEFORE triggers defined in either of them and involve tables
in ESi or ES j.

4. Pi and Pj disable all AFTER triggers defined in either of them, involve tables in ESi

or ES j and are not characterized as DETACHED.
5. Pi and Pj exchange markers for DETACHED AFTER triggers defined in either of

them and involve tables in ESi or ES j.

7 Preliminary Implementation Results

We are implementing a trigger mechanism for the P2P layer of the Hyperion architec-
ture described in Section 1 using the syntax of distributed triggers and the execution
semantics described in this work. The mechanism is being implemented using Sun Mi-
crosystem’s P2P platform JXTA [7] and PostgreSQL DBMS. Yet, in order to test the
overall behaviour of the system we implemented a simulation and performed the fol-
lowing experiments.

The experimental setup emulates a master peer that coordinates the execution of
distributed triggers among a set of peers. In each test round, the master peer queues
triggers to a random number of peers and the peers will execute them. If any of them
fail, the master rolls back the transaction. We measure the time by taking the following
factors into account: (1) number of peers in the overlay; (2) number of transactions; (3)
transmission cost of a message (a.k.a, network cost); (4) percentage of triggered peers
for each transaction; (5) cost of processing a trigger; (6) possibility of rolling back a
transaction; (7) and the cost of rolling back a trigger execution.



Distributed Triggers for Peer Data Management 33

(a) (b) (c)

0 20 40 60 80 100
0

2

4

6

8

10

12

number of triggers

tim
e(

se
c)

0 20 40 60 80 100
0

2

4

6

8

10

12

network delay(msec)

tim
e(

se
c)

0 20 40 60 80 100
0

2

4

6

8

10

12

trigger ratio(%)

tim
e(

se
c)

Number of Triggers vs. Time Network Delay vs. Time Trigger Ratio % vs. Time
(d) (e) (f)

0 20 40 60 80 100
1

1.5

2

2.5

3

trigger cost(msec)

tim
e(

se
c)

0 10 20 30 40 50
1

1.5

2

2.5

3

rollback ratio(%)

tim
e(

se
c)

0 20 40 60 80 100
1

1.5

2

2.5

3

rollback cost(msec)

tim
e(

se
c)

Trigger cost vs. Time Roll Back Ratio % vs. Time Roll Back Cost vs. Time

Fig. 8. Experiments on the Execution of Distributed Triggers

In Figure 8 we present some of the major graphs. Figures 8(a), (b) show the amount
of time needed for the execution of triggers depending on the total number of signaled
triggers and the network delay, respectively. As expected, the amount of time is pro-
portional to these metrics. Figure 8(c) shows that the time is proportional to the trigger
ratio executing in each peer separately (i.e. the ratio of local triggers that are signaled).

Furthermore, Figure 8(d) shows the amount of trigger execution time depending on
the processing cost of the triggers, i.e. the complexity of the triggers and how costly it
is to evaluate them. For low trigger costs the execution time increases with a low rate.
This is because trigger evaluation is distributed so their execution cost is distributed
too, and, thus, does not influence the total execution time significantly. However, for
high trigger cost values, the total amount of execution time increases more; the reason
is that for complex triggers, the master peer has to do a lot of processing that cannot
be distributed. Figure 8(e) tests how rolling back triggers influences the execution time.
Obviously, execution time increases with the increment of the percentage of triggers
rolled back. Yet, the increase in time is low, since rolling back triggers is a distributed
procedure. Finally, Figure 8(f) shows how the cost of rolling back triggers influences
execution time. The results prove that execution time is not really influenced. The reason
is that the cost of rolling back one trigger does not hold back significantly the overall
execution of triggers, since it concerns very few peers.

8 Related Work

In [18], a component-based architecture for an active mechanism is described for fed-
erated database systems. The ECA rules executed by the system are global to all the



34 V. Kantere et al.

databases involved in the federation, and their conditions and actions may involve sub-
parts destined to different databases. Oppositely, the globality of our triggers is limited
to acquainted peers. We do not permit a peer to define triggers that involve further peers
that are not acquainted wit the former. Unlike [18], we rather assume that peers have
autonomous schemas and instances than a common universe of discourse.

In [15], an approach for managing consistency of interdependent data in a multi-
database environment is presented. Among others, the approach proposes a mechanism
for maintaining mutual consistency of these data. User specified requirements allow
consistency to be violated up to a specified level. Whenever it reaches the limits, trans-
actions are executed at the target data to restore an acceptable degree of consistency.

The work in [3] gives a method for specifying inter-database dependencies in a fed-
erated database system and an execution model. The authors mix the execution quasi-
transaction model [6], during which events are generated, with the execution of ECA
rules. Unlike in [3],we do not assume (for now) an advanced transaction model that
spans the peer databases involved in a P2P network. We rather assume that each peer
executes its updates as a separate transaction. The only coordination we enforce among
the peers is to first execute updates destined to the local peer in order to avoid sending
remote updates when the local transaction aborts.

Our triggers are a first step toward an SQL3-based extension of a rule language for
multidatabase coordination presented in [10]. Unlike the work in [10], however, the
work reported in this paper deals with the transient character of peers, and extends the
standard execution semantics of SQL3.

9 Conclusions

We have proposed an SQL3-based language for distributed triggers to be used for co-
ordinating data exchange among peer databases. We provided a processing mechanism
for these triggers by extending the standard execution semantics of SQL3 in two ways.
We first presented distributed procedures for processing the different classes of triggers
identified for the P2P setting by taking into account the heterogeneity of peers. Then
we described protocols for managing the acquaintances of peers to accommodate peer
transiency during rule processing. Also, we are implementing the proposed trigger lan-
guage for the P2P layer of the Hyperion architecture, and we showed some preliminary
simulation results.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, Readind,
MA, 1995.

[2] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa, Rene J.
Miller, and John Mylopoulos. The hyperion project: from data integration to data coor-
dination. SIGMOD Record, 32(3):53–58, 2003.

[3] R. Arizio, B. Bomitali, M.L. Demarie, A. Limongiello, and Mussa. P.L. Managing inter-
database dependencies with rules + quasi-transactions. In Third International Workshop
on Research Issues in Data Engineering: Interoperability in Multidatabase Systems, pages
34–41, Vienna, April 1993.



Distributed Triggers for Peer Data Management 35

[4] R. Cochrane, H. Pirahesh, and N. Mattos. Integrating triggers and declarative constraints
in sql database systems. In VLDB, pages 567–578, 1996.

[5] E.F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970.

[6] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of Heterogeneous and Au-
tonomous Database Systems. Morgan Kaufmann Publishers, 1999.

[7] J. Gradecki and J. Gradecki. Mastering JXTA: Building Java Peer-to-Peer Applications.
Wiley, 2002.

[8] V. Kantere. A rule mechanism for p2p data management. Technical report, University of
Toronto, 2003. CSRG-469.

[9] Vasiliki Kantere, Iluju Kiringa, John Mylopoulos, Anastasios Kementsietsidis, and Marcelo
Arenas. coordinating peer databases using ECA rules. In DBISP2P, 2003.

[10] Vasiliki Kantere, John Mylopoulos, and Iluju Kiringa. A Distributed Rule Mechanism for
Multidatabase Systems. In Proceedings of COOPIS, 2003.

[11] Anastasios Kementsietsidis, Marcelo Arenas, and Renée. J. Miller. Data mapping in peer-
to-peer systems: Semantics and algorithmic issues. In sigmod, 2003.

[12] K. Kulkarni, N. Mattos, and R. Cochrane. Active database features in sql-3. In N. Paton,
editor, Active Rules in Database Systems, pages 197–219. Springer Verlag, 1999.

[13] Beng Chin Ooi, Yanfeng Shu, and Kian-Lee Tan. Relational data sharing in peer-based
data management systems. SIGMOD Record, 32(3):59–64, 2003.

[14] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,
Upper Saddle River, 2 edition, 1999.

[15] A. Sheth and M. Rusinkiewicz. Management of Interdependent Data: Specifying Depen-
dency and Consistency Requirements. In Proc. of the Workshop on the Management of
Replicated Data, Houston, TX, November 1990.

[16] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183–236,
1990.

[17] Igor Tatarinov, Zachary G. Ives, Jayant Madhavan, Alon Y. Halevy, Dan Suciu, Nilesh N.
Dalvi, Xin Dong, Yana Kadiyska, Gerome Miklau, and Peter Mork. The Piazza peer data
management project. SIGMOD Record, 32(3):47–52, 2003.

[18] G. Vargas-Solar, C. Collet, and H.G. Ribeiro. Active Services for Federated Databases. In
ACM Symposium on Applied computing, pages 356–360, Como, Italy, 2000.

[19] J. Widom and F. Finkelstein. Set-oriented production rules in relational database systems.
In H. Garcia-Molina and H.V. Jagadish, editors, Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, pages 259–270, 1990.



Satisfaction-Based Query Load Balancing�

Jorge-Arnulfo Quiané-Ruiz��, Philippe Lamarre, and Patrick Valduriez

INRIA and LINA
Université de Nantes

2 rue de la houssinière, 44322 Nantes Cedex 3, France
{Jorge.Quiane, Philippe.Lamarre}@univ-nantes.fr,

Patrick.Valduriez@inria.fr

Abstract. We consider the query allocation problem in open and large
distributed information systems. Provider sources are heterogeneous, au-
tonomous, and have finite capacity to perform queries. A main objective
in query allocation is to obtain good response time. Most of the work to-
wards this objective has dealt with finding the most efficient providers.
But little attention has been paid to satisfy the providers interest in
performing certain queries. In this paper, we address both sides of the
problem. We propose a query allocation approach which allows providers
to express their intention to perform queries based on their preference
and satisfaction. We compare our approach to both query load balancing
and economic approaches. The experimentation results show that our ap-
proach yields high efficiency while supporting the providers’ preferences
in adequacy with the query load. Also, we show that our approach guar-
antees interesting queries to providers even under low arrival query rates.
In the context of open distributed systems, our approach outperforms
traditional query load balancing approaches as it encourages providers
to stay in the system, thus preserving the full system capacity.

1 Introduction

We consider dynamic distributed systems, providing access to large number of
heterogeneous and autonomous information sources. We assume that information
sources play basically two roles: consumers that generate requests (we will indif-
ferently use the terms request and query throughout this paper) and providers
which perform requests and generate informational answers.

Providers can be heterogeneous in terms of capacity, competence and data.
Heterogeneous capacity means that some providers are more powerful than oth-
ers and can treat more requests per unit time. Heterogeneous competence means
that some providers may treat some query types that others cannot, and vice
versa. Data heterogeneity means that requests are performed differently by dif-
ferent providers, i.e. the same request performed by different providers may
� Work partially funded by ARA ”Massive Data” of the French ministry of research

(projects MDP2P and Respire) and the European Strep Grid4All project.
�� This author is supported by the Mexican National Council for Science and Tech-

nology (CONACyT).

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 36–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Satisfaction-Based Query Load Balancing 37

return different results. We also consider that requests are heterogeneous, i.e.,
some requests consume more providers’ resources than others.

Providers, on the other hand, are autonomous over their resources and data
management. Thus, they can express their preferences to perform queries through
an intention value. Such preferences may represent, for example, their strategies,
their topics of interest, or the combination of both of them. The providers’ in-
tentions might be the result of merging the preferences with others factors, such
as the query load or reputation/quality of the consumers. Providers’ preferences
are rather static (i.e. long-term) and do not change much while their intentions
are more dynamic (i.e. short-term).

One of the problems that has been thoroughly investigated in the area of
query allocation is query load balancing (QLB). The main objective of QLB is
to maximize overall system performance (throughput and response times) by
balancing the query load among providers. However, even if performance is very
good, providers may be not satisfied with the system and may leave it. Thus,
the system should fulfill providers’ expectations in order to preserve full system
capacity.

This problem is quite important in dynamic information systems where provi-
ders can leave the system at will. When a provider is no longer satisfied with the
system, the only way to express unsatisfaction it is to leave. In order to achieve
stability, our goal is to maximize performance while ensuring over time that
providers are satisfied enough to stay in the system. Taking into account load
balancing, providers’ preferences and providers’ satisfaction in the allocation of
requests in distributed systems composed of autonomous component systems
is a very important idea. It is particularly timely with the potential profusion
of software based on web services in particular and on a services oriented to
architecture in general.

In this paper, in order to address this problem, we propose a QLB approach
which allows providers to express their intention and take care of their satis-
faction. We also develop a model that allows providers to know whether the
system is fulfilling their expectations. We provide an experimental validation
which compares our approach with both query load balancing and economical
approaches. The experimental results show that our approach yields high effi-
ciency while supporting the providers’ preferences in adequacy with the query
load.

The rest of the paper is organized as follows. Section 2 gives a motivating sce-
nario. Section 3 defines precisely the problem we address. Section 4 presents our
QLB approach. Section 5 defines the metrics used for validating our approach.
Section 6 presents our experimental validation. Section 7 discusses related work.
Finally, Section 8 concludes.

2 Motivating Scenario

We, here, illustrate the problem that we consider in this paper by means of a
healthcare application example. Consider a large distributed information system



38 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

Table 1. Providers set that are able to deal with the request

Providers Utilization Preference

p1 0.15 No
p2 0.43 No
p3 0.78 Yes
p4 0.85 No
p5 1.1 Yes

gathering thousands of medical doctors with the goal of sharing their patients
information. By hospital policies or simply information privacy, providers (i.e.
the medical doctors) have preferences to share information. Thus, each provider
locally stores its preferences and may change them at any time. In fact, any
system with competitive companies meets this schema.

Now, consider a simple scenario where a medical doctor (the consumer), who
has received a patient with a new skin disease, requests the system for similar
symptoms of the illness. Clearly, she specifies some specific parameters, such as
the hospital where she works and the illness symptoms. Suppose that in order to
better understand the skin disease she asks for two results. That is, the system
have to allocate the request to two different providers.

As first job, the system needs to identify the providers that are capable to deal
with the request. This can be done using a matchmaking technique (for example
[17]). As second job, the system must obtain their availability and preference for
dealing with such a request. This can be done following the architecture in [8]
for example.

Assume, then, that the resulting list contains 5 providers with their utiliza-
tion and preferences (see Table 1). Assume that the respective medical doctors
(column 1) of this list in ascending utilization order (column 2) are: p1, p2, p3,
p4, and p5. Assume that p1, p2, and p4 are not interested on serving the request
(column 3) for their own reasons.

As final job, the system needs to allocate the request to the two most ca-
pable providers, such that the providers’ preference is respected. Current QLB
approaches1 would fail in such a scenario since neither p1 nor p2 want to deal
with the request. The only two options that satisfy the providers’ preference are
p3 and p5, but allocating the query to them may hurt response time.

This example illustrates the conflict between providers’ preference and uti-
lization in query allocation. However, considering allocation alone is not very
meaningful. What is more important is that providers be globally satisfied with
the allocation process, even though they are sometimes overloaded or do not get
queries they want. This can be checked by making regular assessment over some
k last queries.

The entire treatment of this scenario encompasses different aspects. First,
query planning processes may be required. This problem is addressed in differ-
ent ways in the literature [19]. We do not consider it in this paper, and we can

1 Whose aim is to allocate queries to the less utilized providers.



Satisfaction-Based Query Load Balancing 39

indifferently assume that it is done by the consumer or any other site. Second,
the system must support matchmaking techniques in order to find the relevant
providers for performing requests. Such matchmaking techniques have been pro-
posed by several groups [9, 12, 17]. So, we simply assume there exists one in our
system. In addition, we do not consider either the way in which providers obtain
their preferences values since it is out of the scope of this paper and orthogonal
to the query allocation problem.

3 Satisfactory Query Load Balancing Problem

In this section, we make precise the problem we consider. The system consists
of a set of consumers C and of a set of providers P which can join and leave
the system at will. It is possible to have C ∩ P �=Ø. Consumers issue queries
in a tuple format q = < c, t, d, n > such that, q.c ∈ C is the identifier of the
consumer that has issued the query, q.t ∈ T is the query type and T the set of
query types that the system can support, q.d is the description of the task to be
realized, and q.n ∈ N

∗ is the number of providers to which the consumer wishes
to allocate its query.

Definition 1. Feasible Query
Let Tp ⊆ T be the query types that the provider p ∈ P can treat. Given a query q
with q.t ∈ T , issued by the consumer q.c ∈ C, let Pq denote the set of providers
which can deal with q, where Pq = {p : (p ∈ P \{q.c}) ∧ (q.t ∈ Tp)}. Then, a
query q is said to be feasible if and only if Pq �=Ø.

We only consider feasible queries which are defined in Definition 1 and assume
that providers do not request the system for information that they have2. Each
feasible query q has a cost , costp(q) > 0, that represents the treatment units that
q consumes at p. Query allocation of some feasible query q among the providers
which are able to deal with q is defined as a vector (see Definition 2).

Definition 2. Query Allocation
Allocation of query q amongst the providers in Pq is a vector3 All−→oc of length
||Pq|| such that: ∀p ∈ Pq,

All−→oc [p]= 1 if provider p gets the query
0 otherwise

with
∑

p∈Pq
All−→oc [p] ≤ q.n

In the following, the set of provider such that All−→oc [p] = 1 will also be noted P̂q.
Each provider p ∈ P has a finite capacity4, capp > 0, for performing feasible
queries. We then define the provider’s utilization as in Definition 3.

2 Notice that without lost of generality one cannot assume this.
3 All−→ocq when there is an ambiguity on q.
4 Capacity means the number of treatment units that a provider can have per time

unit.



40 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

Definition 3. Provider Utilization
Ut(p) denotes the utilization of a given provider p ∈ P at time t, which is the
capacity portion utilized by the queries that p is treating

Ut(p) =

∑

q∈Qp

costp(q)

capp

where Qp denotes the set of queries that have been allocated to p but have not
already been treated at time t (i.e. the pending queries).

Providers are free to express their preferences5 for performing each arrival feasi-
ble query q. However, since such providers’ preferences are considered as private
information, providers hide their preferences by means of an intention value de-
noted by Ip(q) ∈]−∞, 1]. Expressing intention may be the result of merging, for
example, their preferences, utilization, and satisfaction. We formalize this notion
in Section 4.2. If the intention value is positive, the greater it is, the greater the
desire for performing queries. If the intention value is negative, the smaller it is,
the greater the refusal for performing queries. Providers’ refusal can go down to
−∞ because their utilization can grow up, theoretically, to +∞.

Given this, the overall aim of the system is to allocate each feasible query q
of a set of incoming feasible queries Q to providers in Pq by taking into account
the providers’ utilization and preferences in a equitable way for providers and
the system in general.

4 Satisfaction-Based Query Allocation

In this section, we present our query allocation approach based on satisfaction,
called Satisfaction-based Query Load Balancing SbQLB. We first present the
providers characteristics on which SbQLB is based and then present the SbQLB
approach.

4.1 Providers Characterization

We present, in this section, what the providers can perceive from the system. We
focus on three principal characteristics: the satisfaction with the system (Sat-
isfaction), their adequation to the system (Adequation), and their satisfaction
with the query allocation method (Allocation Satisfaction).

Let us first introduce some notations to describe how a provider can perceive
the system. We assume that each provider maintains a vector

−−→
PP k

p of its k
last preferences for performing the queries that have been proposed to it by
the system6. This set of proposed queries is noted PQk

p. By convention, ∀q ∈
5 Whose values are between −1 and 1, where 1 means the greatest interest and −1

the greatest refusal.
6 Note that k may be different for each provider depending on it’s storage capacity,

or strategy. For the sake of simplicity, we have assumed here that they all use the
same k.



Satisfaction-Based Query Load Balancing 41

PQk
p,
−−→
PP k

p[q] ∈ [−1..1]. Finally, SQk
p denotes the set of queries that have been

served by p among PQk
p (SQk

p ⊆ PQk
p).

Satisfaction. The satisfaction. of providers denotes the satisfaction degree that
the providers have from their obtained queries. That is, if they serve queries that
they want in general. This notion allows providers to know if they are accom-
plishing their objectives in the system. We define the provider’s satisfaction as
the average of the preferences that a provider p ∈ P had to their received queries
among the k last incoming feasible queries. In other words,

δs(p) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

( 1
2||SQk

p ||
∑

q∈SQk
p

−→
PP k

p[q]
)

+
1
2

if ||SQk
p|| > 0

0 otherwise

(1)

Notice that for a better representation of the satisfaction notion we translate
the satisfaction function’s values to [0..1]. This is why ||SQk

p|| is multiplied by 2
and 1/2 is added to the average result.

Adequation. The Adequation characteristic denotes the adequation degree of
a provider to the system. It is based on the preferences that the provider had to-
wards all the feasible queries proposed by the system. In other words, a provider
is adequate to the system whether it receives interesting queries from the system.
This notion can only be used by providers in those information systems where
they can see feasible queries to pass even if they do not finally serve them. This
is the case of our utilized system architecture [8]. We define the adequation of a
given provider p as the average of its k last preferences for performing queries,

δa(p) =
( 1

2k

∑

q∈PQk
p

−→
PP k

p[q]
)

+
1
2

(2)

Similar to the satisfaction function, we translate the adequation function’s values
to [0..1] for a better representation of this notion.

Allocation Satisfaction. The allocation satisfaction denotes the satisfaction
degree that a provider has from the query allocation method. It allows a provider
to know if the allocation method is doing a good job for it. That is, if the
system tries to give them, in average, interesting feasible queries. We, thus,
define the allocation satisfaction of a given provider p, δas(p), as the quotient of
its satisfaction divided by its adequation,

δas(p) =
δs(p)
δa(p)

(3)

Thus, the greater the provider satisfaction value with respect to the provider
adequation value is, the more satisfied the provider is from the mediation
process.



42 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

Algorithm 1. providersSelection(q, k, Pq)
1: begin
2: foreach p in Pq do
3: ask for the provider’s intention Ip(q)
4: put the Ip(q) value into

−→
I q

5: done

6: compute the providers’ intention vector ranking
−→
R q

7: providersSelection ← −→
I q [

−→
R q[1..min(n, ||Pq ||)]]

8: end

4.2 Satisfaction-Based Query Load Balancing

This section details the SbQLB approach itself for allocating a query q to the
q.n providers based on the providers’ satisfaction. We focus on the case where
requests can be viewed as single units of work called tasks. Requests arrive to the
system to be allocated to n providers. We assume that a previous matchmaking
step has found the set of providers Pq to deal with an incoming query.

Algorithm 1 shows the main steps of the SbQLB approach for selecting the
providers that will treat the queries. These steps are detailed below.

Given an incoming feasible query q and the providers’ set Pq, as first step, the
SbQLB asks to each p ∈ Pq for its intention7 to deal with q and build a vector−→
I q containing such intentions values. Providers obtain their intentions as in
Definition 4 where, as said so far, such details are considered private information.

Definition 4. Providers’ Intention
Given a query q the intention of a provider p ∈ Pq to deal with it is defined as
follows,

Ip(q) =
∣
∣
∣
∣
(pref1−δs(p))(1 − Ut(p))δs(p) if(pref >= 0) ∧ (Ut(p) <= 1)
−(((1 − pref) + ε)1−δs(p)(Ut(p) + ε)δs(p)) otherwise

with q.t ∈ Tp, ε = 0.1 and pref denotes the p’s preference for dealing with q.

The way in which providers work out their intentions allows providers to base
their intentions principally on their preferences when are not satisfied and on
their utilization conversely. For example, assume a simply scenario where two
providers p1 and p2 have the same preference 0.1 to perform a request q1 and
the same utilization 0.2. Consider that p1 and p2 have a satisfaction of 0.8 and
0.5 respectively. Thus, in such an example scenario, it is p1 which receive q1
since its intention is principally based on its utilization while the p2’s intention
is equally based on its preference and utilization and its preference towards q1
is low.

Figures 1 illustrate the behaviour of the Ip(q) function when providers are
satisfied of 0.5 and 0. We can observe that providers show positive intention for

7 Notice that, considering our system architecture, this operation is realized in local
which considerably reduce the network traffic



Satisfaction-Based Query Load Balancing 43

(a) for a provider’s satisfaction of 0.5 (b) for a provider’s satisfaction of 0

Fig. 1. Tradeoff between preference and utilization for getting intention

dealing with queries only when their preferences and utilization are between 0
and 1. This means, that SbQLB strives to allocate queries to those providers
that desire to perform them and that are not overutilized. Note that this allows
providers to preserve their preferences while good response times are also ensured
to consumers.

On the one hand, we observe that when providers are satisfied of 0.5 (see Fig-
ure 1(a)) the providers’ preferences and utilization have the same importance in
the way that the providers’ intentions are obtained. On the other hand, when
providers are not satisfied at all (see Figure 1(b)) the providers’ utilization has
not importance for providers and are their preferences that define their inten-
tions. Conversely, when providers are completely satisfied the utilization defines
their intentions.

Going back to the SbQLB steps, as second step, the SbQLB approach com-
putes the providers’ ranking

−→
R q based on their shown intentions. Such a ranking

is introduced for an easiest use of the
−→
I q vector and to enable the selection of

the q.n providers to deal with q. Intuitively,
−→
R q[1] is the most interested provider

to deal with q,
−→
R q[2] the second, and so on up to

−→
R q[||Pq||] which is the least.

As a result, the SbQLB returns the q.n best ranked providers in the
−→
I q vector

if q.n <= ||Pq||, else it returns the ||Pq|| providers. Note that the providers’
intention is the criterion by which SbQLB chooses the providers.

5 Metrics

We now propose a solution to analyze the QLB approaches against the Satisfac-
tory QLB problem. To do so, we use two metrics, one for evaluating the ensured
satisfaction-balance in the system and the other one for evaluating the ensured
query-balance.



44 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

5.1 Satisfaction Balance Metrics

We define the dissatisfaction ratio as the ratio between the most and the least
satisfied providers in the system. Since we look for providers’ satisfaction, we
will use the satisfaction term instead the dissatisfaction one. Obviously, the
satisfaction ratio is defined as the dissatisfaction ratio’s inverse.

Before going further, let us say that we have had to define how providers
are satisfied by the system, δs(p) (see Equation 1). The following can also be
developed for the adequation and allocation satisfaction functions (Equations 2
and 3), but for space reasons we just develop it for the satisfaction function.

A distributed information system ensures a provider satisfaction-balance ratio,
α, if after each query allocation,

min
p∈P

(
δs(p)

)
+ cs ≥ α

(
max
p∈P

(
δs(p)

)
+ cs

)

for some fixed constant8 cs and where α denotes the desired satisfaction-balance
ratio in the system. Having said this, we measure the satisfaction-balance at a
given time t as follows,

γ =
min
p∈Px

(
δs(p)

)
+ cs

max
p∈Px

(
δs(p)

)
+ cs

γ denotes the factor under which the system is said to be satisfaction-balanced
at a given time t.

5.2 Query Balance Metrics

As is conventional, we define the imbalance ratio at a given time t as the ratio
between the most and the least utilized provider in the system at that time. For
better representation and explanation of this property, we use the term balance
instead of imbalance, which is defined as the imbalance ratio’s inverse,

min
p∈P

(
Ut(p)

)
+ cu ≥ σ

(
max
p∈P

(
Ut(p)

)
+ cu

)

for some fixed constant9 cu and where σ denotes the desired query-balance ratio
in the system. In order to measure the query-balance λ in the system, we first
must measure the providers’ utilization in the system, as in Definition 3, and
then, we proceed to measure λ as follows,

λ =
min
p∈Px

(
Ut(p)

)
+ cu

max
p∈Px

(
Ut(p)

)
+ cu

8 Which is set to the minimal satisfaction value that a provider could have with a
query, 0.001 for example.

9 Which is set to the minimal utilization value that a provider may have with a query,
0.001 for example.



Satisfaction-Based Query Load Balancing 45

We believe that it is quite important that the system also be able to balance
all the incoming feasible queries among the relevant providers in average. That
is, it must strive to give queries to all the providers in the system if possible,
in order to avoid having providers leave the system because of starvation and
unsatisfaction. This is why we introduce the average query-balance, λ′, metric.
We do not need to define this metric since it is symmetrical to the query-balance
metric. We only define what an average provider utilization means in a discrete
time interval.

Definition 5. Provider Average Utilization
U[t1, t2](p) is defined to be the average of the p’s utilization (with p ∈ P ) at the
time interval [t1, t2],

U[t1, t2](p) =

∑

ti∈[t1..t2]

Uti(p)

(t2 − t1) + 1

6 Experimental Validation

In this section, we present our experimental evaluation and discuss the results.
We have simulated a mono-mediator distributed information system with het-
erogeneous and autonomous provider sources and carried out a series of tests
with the objective of assessing how well the SbQLB approach operates in au-
tonomous environments. We first describe the Capacity Based and Economic
approaches against which we compare the SbQLB algorithm. Next, we describe
the simulation setup.

We have conducted three types of evaluations. In the first series of evalu-
ations, we analyze and compare the performance of SbQLB against Capacity
Based and Economic approaches in considering the unsatisfaction departures of
providers. The second series focuses on providers’ utilization. More precisely, we
measure the QLB achieved by current QLB approaches. We also study, in these
experiments, if such approaches really strive to give requests to all providers in
the system, i.e. we measure how well they realize the QLB in average. Finally,
the third series of tests focuses on the providers’ satisfactions. We study, here,
how well SbQLB and current QLB approaches satisfy the providers, and how
well they do it with different query rates.

6.1 Baseline QLB Approaches

Capacity Based. In distributed information systems, the capacity based [11,15,
18] approach is a well known approach for balancing requests across providers. In
such an approach, one common way to allocate queries is choosing the providers
that have more available capacities amongst the providers’ set that can deal with
them. In other words, it sends queries to those relevant providers that are the
less utilized. This criterion is defined below.

criterion : 1/(1 + Ut(p))



46 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

Another way is to discard those providers that fail a small constant utiliza-
tion threshold, and then, randomly select the n demanded providers among the
remaining ones. However, in practice is not easy to set the utilization thresh-
old. By this fact, we analyze in our experiments the first way for allocating
queries.

Economic. Economical models have been introduced in distributed systems
with the goal of decreasing the data management complexity by decentralizing
the resources’ access and the allocation mechanisms [4,5,2,16]. We implemented
an not pure economical10 QLB approach based on the Sealed Bid Auction, where
providers pay for acquiring requests. The criterion to select providers is in con-
sidering the providers’ available capacity and the providers’ bid. That is, the
highest below criterion for a provider is given access to the request.

criterion : bid× (1/(1 + Ut(p)))

In the economical approaches presented in [5,16], the bid is set using a bulletin
board containing the preference for bidding which, conversely to our providers’
preferences notion (see Section 4.1), inherently limits the provider’s preferences
to the queries’ type.

Moreover, let us say that for our experiment simulations, we use virtual money
(jetons) which is just seen as a means of regulation. In the course of the time the
jetons are spent by providers in order to acquire requests. The process itself does
not provide them anyway to earn money. Nevertheless, a source of financing is
necessary to them, because otherwise, after some time, providers would not have
more jetons to bid positively. Different solutions are possible. We have chosen to
associate a bank with the mediator (if there were several mediators, there would
be as many banks as mediators). The mediator’s bank gives an specific amount
of jetons to providers at the registration step and in the course of the time it
equally redistributes the jetons which it gained to the providers after some given
time.

6.2 Setup

In all experiments, the number of consumers and providers is 200 and 400 re-
spectively, with only one mediator allocating all the incoming feasible queries11.
Feasible queries arrive to the system in a Poisson distribution, which has been
found in dynamic autonomous environments [10]. Consumers always ask for 1
provider to solve their requests (i.e. q.n = 1). Providers are initialized with a
satisfaction value of 0, and a satisfaction size12 of 500. Since our principal focus
in this paper is to study the way in which requests are allocated in the system,
we do not take into account the bandwidth problem and consider it as a future
work.
10 Since not only the bids are considered to select providers.
11 We assigned sufficient resources to the mediator so that it does not cause bottlenecks

in the system.
12 Which denotes the k last arrival feasible queries.



Satisfaction-Based Query Load Balancing 47

Table 2. Simulation parameters

Parameter Definition Value

nbConsumers Number of consumers 200
nbProviders Number of providers 400
nbMediators Number of mediators 1
qDistribution Query arrival distribution Poisson
iniSatisfaction Initial providers’ satisfaction 0
qTypes Supported query types 10
nbSimulations Number of realized simulations for each experience test 10

We set the providers’ capacity heterogeneity, in our experiments, in accor-
dance to the results in [14]. This work measures the nodes capacities in the
Napster and Gnutella systems which are a clear example of large distributed
systems. Based on these results, we generate around 10% of low-capable, 60% of
medium-capable, and 30% of high-capable providers. The high-capable providers
are 3 times more capable than medium-capable providers and still 7 times more
capable than low-capable ones. We generate 10 types of requests which can be
of two classes that consume, respectively, 130 and 150 treatment units at the
high-capable providers13.

In order to simulate high autonomy in our experiments, providers’ preferences
are randomly obtained between. More sophisticated mechanisms for obtaining
such preferences can be applied ( [13] for example).

6.3 Performance Results

We now investigate the impact on performance of the Capacity Based, Economic,
and SbQLB approaches against the providers’ departures by unsatisfaction.

To this end, we have to set the unsatisfaction threshold in which providers
decide to leave the system whether they fail it. In our experiments, providers
decide to leave the system if they receive more than the 50% of uninteresting
queries. We evaluate response times14 with different request arrival rates in order
to study the possible impact that the unsatisfaction departures could have. Also,
we measured the number of uninteresting queries allocated by all these three
approaches. Results are shown in Figure 2. We observe that SbQLB and the
Economic approaches allocate only interesting queries to providers, while the
Capacity Based approach allocates in average a 50% of uninteresting queries!

Now, in order to see the impact of provider departures, we show in Figure 3(a)
the ensured response times when providers are not allowed to leave the system
by unsatisfaction (i.e. with the full system capacity). In Figure 3(b) the same
parameters are drawn when providers are authorized to quite the system by
unsatisfaction. As expected, the Capacity Based approach suffers significantly
from unsatisfaction departures. We can observe that, in such a case, the Capacity
13 Such a treatment takes almost 1.3 and 1.5 seconds, respectively.
14 As is conventional, the response time is defined as the elapsed time from the time

that a query q is issued to the time that q.c receives the response.



48 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70  80  90  100

%
 o

f u
ni

nt
er

es
tin

g 
qu

er
ie

s

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

Fig. 2. Uninteresting received queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100

T
im

e 
(s

ec
on

ds
)

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  20  40  60  80  100

T
im

e 
(s

ec
on

ds
)

Load (% of the system capacity)

Capacity Based
Economic

Satisfaction Based

Fig. 3. Response times

Based degrades in average the response times by a factor of 4.5! This is because
even if it gives requests to all providers, it usually gives them uninteresting
ones. On the other hand, since the SbQLB and Economic approaches strive to
give interesting requests to providers, they deals better with this problem in
preserving their full system capacity.

The choice of an unsatisfaction threshold under which the providers would
leave the system is very subjective and may depend on several external factors.
As shown previously, it has a deep impact on response time, but also on adequa-
tion and satisfaction of remaining providers. By this fact, to avoid any suspicion
on the choice of the unsatisfaction threshold, in the following experiments, we
have preferred to consider captive providers: they are not allowed to leave the
system whatever their degree of dissatisfaction is.

6.4 Providers’ Utilization Results

We measure the query-balance factor (λ-QLB t) for different Poisson arrival
rates15. λ-QLB t (Y-axis) at different times (X-axis) of the experiment.
15 For example, given our simulation setup, the 40% and 80% of the total system

capacity correspond respectively to 84 and 164 requests per second.



Satisfaction-Based Query Load Balancing 49

Contrary to the expected, the results show that the Economic approach has
serious problems to ensure good λ-QLB t in the system, because for providers,
preference is more important than utilization in order to express their intentions.

The results show that the Capacity Based and SbQLB approaches have serious
problems to ensure good λ-QLB t with request arrival rates under 40% of the
total system capacity. In contrast, when the query arrival rate increases, both
approaches improve the λ-QLB t in the system. This is due to the fact that when
most providers have no queries (i.e. have all their capacity available), queries
may be allocated to those providers that spend more treatment units to perform
them. Hence, each time a query is allocated to the less capable providers, the
distance between the more and less utilized providers increases significantly.

To prove this intuition, we studied the ensured λ-QLB t by varying the query
arrival rate from 30 (at the beginning of the simulation) to 120% (at the end
of the simulation) of the total system capacity. The result is shown in Figure
4(a). We observe that both Capacity Based and SbQLB approaches improve the
λ-QLB t as the query arrival rate increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

Q
ue

ry
 lo

ad
-b

al
an

ce
, λ

-Q
L

B
t

Time (seconds)

Capacity Based
Economic

Satisfaction Based

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100A
ve

ra
ge

 q
ue

ry
 lo

ad
-b

al
an

ce
, λ

’-
Q

L
B

t

Load (% of the total system capacity)

Capacity Based
Economic

Satisfaction Based

Fig. 4. Query-balance

In all cases, the Capacity Based is better than SbQLB. This is because it
takes into account providers’ intentions. However, Capacity Based suffers from
greater variations which means that, at times, some providers are much more
utilized than others (when all of them have the same chances to get queries).
SbQLB better deals with such variations by considering providers’ satisfaction.
Furthermore, SbQLB is much better than the Economic approach.

We also measured the average query-balance factor (λ-QLB [t1, t2]) ensured by
these approaches. That is, we analyzed how well these approaches avoid the
starvation problems. To this end, we ran several tests with different request
arrival rates and measure the λ-QLB [t1, t2] in such a time interval (from the
beginning to the end of the simulations). The results of such experiments are
shown by Figure 4(b).

Unlike the λ-QLB t experiments, we observe that for request arrival rates un-
der 40% of the total system capacity the SbQLB guarantees a better



50 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

λ’-QLB [t1, t2] than the Capacity Based and Economic approaches. This means
that SbQLB strives to give queries, in the course of the time, to all the providers
in the system even if the arrival query rate is not sufficient to do it. In contrast,
when the query arrival rate is greater than the 40% of the total system capacity,
Capacity Based does it better. This is because the arrival query rate is sufficient
for giving queries to all providers in the system. But, we observe that SbQLB is
still better than the Economic approach in which providers significantly suffers
from starvation problems.

6.5 Providers’ Satisfaction Results

As expected, the adequation of providers depends only on query arrival and
their preferences for performing queries. Adequation is completely independent
of the query arrival rates. In our experiments, the providers’ adequation is 0.5 in
average for all the query arrival rates. So, graphics are not presented here since
they do not say anything else.

In our experiments the allocation satisfaction and satisfaction of providers
are very similar but at different scale. This is because the results that providers
get, depend roughly on the query allocation process. Then, because of space, we
just present the providers’ satisfaction results for an arrival query rate of 80%
of the total system capacity (see Figure 5(a)).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000  2200  2400  2600  2800  3000

Sa
tis

fa
ct

io
n 

de
gr

ee
, δ

s

Time (seconds)

Capacity Based
Economic

Satisfaction Based

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Sa
tis

fa
ct

io
n 

ba
la

nc
e,

 γ-
PS

B
-t

Load (% of the total system capacity)

Capacity Based
Economic

Satisfaction Based

Fig. 5. Provider satisfactions

The results show that conversely to the QLB aspect (Section 6.4) the Eco-
nomic approach better satisfies the providers than the SbQLB and Capacity
Based approaches. This is because, the providers’ intentions in the Economic
approach are principally based on the providers’ preferences while SbQLB takes
equally into account the providers’ utilization as shown in Section 4.2. We can
also observe, in our experiments, that the satisfaction of providers with SbQLB
are almost all the time over the providers’ adequation (i.e. over 0.5). In contrast,
the satisfaction of providers with Capacity Based are almost all the time under
the providers’ adequation.



Satisfaction-Based Query Load Balancing 51

Furthermore, we observe that while the less satisfied provider with the
Economic and SbQLB approaches has, respectively, a satisfaction of 0.69 and
0.61 with an arrival query rate of 80% the total system capacity, the more
satisfied provider with Capacity Based has a satisfaction of 0.61! This confirms
that Capacity Based significantly hurts the providers’ preferences for performing
queries. The impact of this phenomenon was shown in Section 6.3.

Finally, the experiments show that the Economic and SbQLB guarantee bet-
ter γ-PSBt factors than the Capacity Based (see Figure Figure 5(b)). In other
words, both Economic and SbQLB strive to satisfy equally all the providers
while Capacity Based does not.

7 Related Work

The problem of balancing queries while respecting the providers’ autonomy for
performing queries has not received much attention and is still an open problem.

Much work on query load balancing has been done in distributed systems
[1, 6, 11, 15, 18]. We can classify load balancing algorithms into two approaches:
load based and capacity based. Load based approach decide to allocate requests
to those providers with the highest inverse probability of their reported load.
Generally, load is defined as the number of request that the providers has in its
arrival queries’ queue. Thus, they inherently assume that providers and requests
are homogeneous. Capacity based approach already take into account such het-
erogeneity by allocating requests to those providers with the greatest available
capacity. The provider’s capacity is defined as the maximum query rate that the
provider can treat. All these works mainly model and address the problem of
minimizing the providers’ load or utilization for ensuring good response times
in the system. However, unlike the SbQLB approach, they do not consider the
providers’ preferences for performing requests.

Many solutions [2, 5, 16] strive to deal with providers’ autonomy by means
of economical models. Providers denote their preferences for performing queries
via a bidding mechanism. A survey of economic models for various aspects of
distributed system is presented in [4]. The motivation of economical models is
to decentralize the access to the system’s resources. Nevertheless, such mod-
els need robust market mechanisms for avoiding a degradation of the system’s
performance, and rationalized pricing schemes for giving price guarantees to
consumers (see [4]).

Mariposa [16] is one of the first systems which deals with the query process-
ing and data migration problem, in distributed information systems, based on
a bidding process. In this approach, providers bid to acquire parts of a query
and consumers pay for their queries’ execution. In order to ensure a crude form
of query load balancing, the providers’ bid is multiplied by their load. Then,
the mediator broker selects a set of bids that corresponds to a set of relevant
queries and has an aggregate price and delay under a bid curve provided by
the consumer. But, it is unclear how this approach really ensures the QLB in



52 J.-A. Quiané-Ruiz, P. Lamarre, and P. Valduriez

the system. Furthermore, some queries may not get processed although relevant
providers exist, just because they do not intend to treat them.

In addition, our approach also differs from the above works since it also strives
to balance queries in the course of the time reducing, by consequent, the request
starvation in the system. In contrast, we assume that providers say the truth
about their utilization and satisfaction, but also, Capacity Based and Economic
approaches do (for the providers’ utilization and credit balance respectively). If
this is not the case, works about providers’ reputation can be applied to tackle
this issue, for instance [3, 7].

8 Conclusion

In this paper, we addressed the problem of balancing queries in dynamic and dis-
tributed systems with autonomous providers. We considered not only providers’
utilization but also providers’ preferences and satisfaction. This paper has sev-
eral contributions.

First, we defined a model that enables providers to evaluate if they are meeting
their objectives. The model relies on three definitions: satisfaction which defines
what providers are really getting from the system; adequation which defines how
much interesting are the proposed queries; and allocation satisfaction which
allows providers to know whether the query allocation process is doing a good
job for them.

Second, we proposed a QLB approach which takes care of the providers’
satisfaction, called Satisfaction-based QLB (SbQLB). SbQLB allows providers to
express their intention to perform queries by taking into account their preferences
and utilization in accordance to their satisfaction.

Third, we evaluated and compared the SbQLB approach against the Ca-
pacity Based and Economic approaches. The experimental results show that, in
such dynamic and autonomous environments, the SbQLB approach outperforms
the Capacity Based and Economic approaches. We could observe that Capacity
Based drastically hurts providers’ autonomy in allocating them, in average, 50%
of uninteresting queries. By consequent, the system’s response time is degraded
by a factor of 4.5! We also observed that, conversely to the expected, the Eco-
nomic approach does not perform well the QLB task since it roughly depends
on the providers’ preferences for performing requests.

Finally, while SbQLB does not rely on special mechanisms, Economic ap-
proach does [5,4]. This makes the SbQLB approach more suitable for open and
very large distributed systems, such as peer-to-peer systems.

As future work, we plan to design a SbQLB approach that also takes into
account the consumers’ preferences for allocating requests. In order to guarantee
equity at all levels, we must be able to decide which is the most important
criterion, among consumers’ satisfaction, providers’ satisfaction or providers’
utilization, at a given time in the system.



Satisfaction-Based Query Load Balancing 53

References

1. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal: Balanced Allocations. In SIAM
Journal on Computing. 1999.

2. R. Buyya, H. Stockinger, J. Giddy, and D. Abramson: Economic Models for Man-
agement of Resources in Grid Computing. In CoRR Journal. 2001.

3. M. Feldman, K. Lai, I. Stoica, and J. Chuang: Robust Incentive Techniques for
Peer-to-Peer Networks. In Procs. of the EC ACM Conference. 2004.

4. D. Ferguson and C. Nikolaou and J. Sairamesh and Y. Yemini: Economic Models
for Allocating Resources in Computer Systems. Market-based control: a paradigm
for distributed resource allocation. World Scientific Publishing Co., Inc. 1996.

5. D. Ferguson, Y. Yemini, and C. Nikolaou: Microeconomic Algorithms for Load
Balancing in Distributed Computer Systems. In Procs. of the ICDCS Conference.
1988.

6. Z. Genova and K. Christensen: Challenges in URL Switching for Implementing
Globally Distributed Web Sites. In Procs. of the ICPP Workshops. 2000.

7. S. Kamvar, M. Schlosser, and H. Garcia-Molina: The Eigentrust Algorithm for
Reputation Management in P2P Networks. In Procs. of the WWW Conference.
2003.

8. P. Lamarre, S. Cazalens, S. Lemp, and P. Valduriez: A Flexible Mediation Process
for Large Distributed Information Systems. In Procs. of the CoopIS Conference.
2004.

9. L. Li and I. Horrocks: A Software Framework for Matchmaking Based on Semantic
Web Technology. In Procs. of the WWW Conference. 2003.

10. E. P. Markatos: Tracing a Large-Scale Peer to Peer System: An Hour in the Life
of Gnutella. In CCGRID Symposium. 2002.

11. R. Mirchandaney, D. Towsley, and J. Stankovic: Adaptive Load Sharing in Het-
erogeneous Distributed Systems. In Parallel and Distributed Computing Journal.
1990

12. M. Nodine, W. Bohrer, and A. Ngu: Semantic Brokering over Dynamic Heteroge-
neous Data Sources in InfoSleuth. In Procs. of the ICDE Conference. 1999.

13. A. Sah, J. Blow, and B. Dennis: An introduction to the Rush language. In Procs.
of the TCL Workshop. 1994.

14. S. Saroiu, P. Krishna Gummadi, and S. Gribble: A Measurement Study of Peer-
to-Peer File Sharing Systems. In Procs. of the MCN Conference. 2002.

15. N. Shivaratri, P. Krueger, and M. Singhal: Load Distributing for Locally Dis-
tributed Systems. In Computer IEEE Journal. 1992

16. M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu: Mariposa: A Wide-Area Distributed Database System. In VLDB Journal.
1996.

17. K. Sycara, M. Klusch, S. Widoff, and J. Lu: Dynamic Service Matchmaking Among
Agents in Open Information Environments. In SIGMOD Record. 1999.

18. H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Ibarra, and T. Smith: Adaptive Load
Sharing for Clustered Digital Library Servers. In HPDC Symposium. 1998.

19. T. Özsu and P. Valduriez: Principles of Distributed Database Systems (2nd ed.).
Prentice-Hall, Inc. 1999.



Efficient Dynamic Operator Placement in a
Locally Distributed Continuous Query System

Yongluan Zhou, Beng Chin Ooi, Kian-Lee Tan, and Ji Wu

National University of Singapore

Abstract. In a distributed processing environment, the static place-
ment of query operators may result in unsatisfactory system performance
due to unpredictable factors such as changes of servers’ load, data ar-
rival rates, etc. The problem is exacerbated for continuous (and long
running) monitoring queries over data streams as any suboptimal place-
ment will affect the system for a very long time. In this paper, we for-
malize and analyze the operator placement problem in the context of a
locally distributed continuous query system. We also propose a solution,
that is asynchronous and local, to dynamically manage the load across
the system nodes. Essentially, during runtime, we migrate query opera-
tors/fragments from overloaded nodes to lightly loaded ones to achieve
better performance. Heuristics are also proposed to maintain good data
flow locality. Results of a performance study shows the effectiveness of
our technique.

1 Introduction

In many emerging monitoring applications (e.g. network management, sensor
networks, financial monitoring etc.), data occurs naturally in the form of active
continuous data streams. These applications typically require the processing of
large volumes of data in a responsive manner. In order to scale up the volumes
of streams and queries that can be processed, a distributed stream processing
system is inevitable. However, as the properties of data streams (e.g., arrival
rates) and the processing servers’ load are hard to predict, the initial place-
ment of query operators may result in unsatisfactory system performance. The
problem is exacerbated by multiple continuous queries that run long enough to
experience the changes in the environment parameters. As such, any suboptimal
performance will persist for a long time.

Clearly, a distributed stream processing system must adapt to changes in en-
vironment parameters and servers’ load. We believe a dynamic load management
scheme is indispensable for the system to be scalable. In particular, we expect ag-
gressive methods such as query operator migration during runtime to bring long
term benefit (especially for long running continuous queries) even though they
may incur some short term overhead. The necessity of dynamic load manage-
ment for a scalable distributed stream processing system has also been identified
in previous work [7, 11]. However, to date few complete and practical solutions
have been proposed for this problem. In this paper, we offer our solution to the
problem. More specifically we make the following contributions:

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 54–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Dynamic Operator Placement 55

– We formally define the metric Performance Ratio (PR) to measure the
relative performance of each query and the objective for the whole system (in-
formally, we want to minimize the worst relative performance among all queries).

– By building a new cost model, we identify the heuristics that can be used
to approach the objective. More specifically, the heuristics (1) balance the load
among all the processing nodes; (2) restrict the number of nodes that the opera-
tors of a query can be distributed to; (3) and minimize the total communication
cost under conditions (1) and (2).

– The design objective of a platform independent (independent on the un-
derlying stream processing engines) and non-intrusive load management scheme
distinguishes our approach from existing ones ( e.g. [14]). The proposed tech-
niques are meant to allow the leveraging of existing well developed single-site
stream processing engines without much modifications. This is reflected through-
out the design of the whole system, especially the load selection strategy.

– To support heuristic (1), we focus on new architectural design that allows
us to tap on existing well studied load balancing algorithms instead of proposing
new ones. The architectural design includes constructing the load migration unit,
load management partner selection, online collection of load statistics, selection
of operators to be migrated, operator migration mechanisms.

– To reduce the overhead of employing heuristic (2), unlike existing propos-
als [7, 11, 14] where load (re)distribution is done at the operator level, we adopt
the notion of query fragments (a subset of operators) as the finest migration
unit. It also helps reduce the overhead of making load balancing decisions.

– To employ heuristic (3), we propose the data flow aware load selection
strategy to select the query fragments to be migrated. It effectively maintains
data flow locality so that the communication cost is minimized.

– We conducted an extensive simulation study to evaluate the proposed strat-
egy. Results show that the proposed strategy can effectively adapt to the runtime
changes of the system to approach our objective.

The rest of this paper is organized as follows. Section 2 formulates the problem
and presents our analysis. We present the details of our system design in Sec-
tion 3. Experiment results are presented in Section 4. Finally Section 5 concludes
the paper.

2 Problem Formulation and Analysis

In this section, we present the system model and define the metric to measure the
system performance, followed by a formal presentation of the problem statement.
Finally, we analyze the problem by building a new cost model and present the
proposed heuristics.

2.1 Problem Formulation

Our system consists of a set of geographically distributed data stream sources
S = {s1, s2, · · · , s|S|} and a set of distributed processing nodes N = {n1, n2,
· · · , n|N |} interconnected by a local network. As transfer cost from the sources



56 Y. Zhou et al.

to the processing nodes is much higher than the one among the processing
nodes, each source stream is routed to multiple processing nodes through a
delegation node. We denote the delegation scheme as Ω. Users impose a set
of continuous queries Q = {q1, q2, · · · , q|Q|} over the system. The set of opera-
tions Ok = {o1, o2, · · · , o|Ok|} of query qk might be distributed to a set of nodes
Nk ⊆ N for processing. The operators we consider include filters, window joins
and window aggregations. In addition, we denote the set of streams that a query
qk operates on as Sk.

Like previous work on continuous processing of streams [5, 11], we are con-
cerned about the delay of resulting data items, which is also one of the main
concerns of end users in terms of system performance. More formally, if the eval-
uation of query qk on a source tuple tuplel from stream sl generates one or more
result tuples, then the delay of tuplel for qk is defined as dl

k = tout − tin, where
tin is the time that tuplel arrived at the system and tout is the time that the
result tuple is generated. If there are more than one result tuples, then tout is
the time that the last one is generated. A similar metric was used in [11]. We
focus on this metric because users in a continuous query system typically make
decisions based on the results arrived so far. Shorter delay of result tuples would
enable a user to make more timely decisions.

At a closer look, dl
k includes the time used in evaluating the query (denoted as

pl
k), the time waiting for processing as well as the time it is transferred over the

network connections. For a specific processing model and a particular query qk,
we regard the evaluation time pl

k as the inherent complexity of qk. Since different
queries may have different inherent complexities, the value of dl

k cannot reflect
correctly the relative performance of different queries. For example, a query may
experience a long delay because its evaluation time is long. We cannot conclude
that the relative performance of this query is worse than another one which has a
shorter evaluation time. However, in a multi-query and multi-user environment,
we wish to tell the relative performance of different queries. Hence we propose
a new metric Performance Ratio (PR) to incorporate the inherent complexity
of a query. Formally, the PRl

k of the processing of tuplel for qk is defined as

PRl
k = dl

k

pl
k

. And the performance ratio of qk is defined as PRk = maxsl∈Sk
PRl

k.

PRk reflects the relative performance of qk. Our objective is to minimize the
worst relative performance among all the queries.

The formal problem statement is as follows: Given a set of queries Q, a set of
processing nodes N , a set of data stream sources S and a delegation scheme Ω,
according to the change of system state, dynamically distribute the operators of
each query to the |N | processing nodes so that the maximum performance ratio
PRmax = max1≤k≤|Q| PRk is minimized.

2.2 Problem Analysis

In this section we develop a cost model to estimate the values of dl
k and pl

k.
Note that our cost model is meant to be simple for us to figure out the main



Efficient Dynamic Operator Placement 57

1 o2n1

n2

o3 o4 o5

s1

s2

o

Fig. 1. An example query plan

factors that affect these values and to allow us to analyze the problem complexity.
Finding that the problem is NP-hard, we design some heuristics to help solve
the problem.

Cost Model. In our cost model we adopt the following simplifications and
assumptions:

1. Operators of each query compose a separate processing tree. They are
grouped into query fragments and distributed to the processing nodes. Figure 1
shows an example processing tree for a query whose operators are grouped into
two query fragments and distributed to two nodes: n1 and n2. Tuples arrived at
each node are processed in a FIFO manner. Only when an input tuple1 is fully
processed would a new input tuple be processed. The cost of delivering the final
results to the users is not considered.

2. For an operator oj , we assume its per-tuple evaluation time t′j is indepen-
dent of its location. And we define its average per-tuple selectivity selj as the
average number of tuples that would be generated for a given input tuple.

3. Workload ρi of a node ni is defined as the fraction of time that the node
is busy.

Given these assumptions, we now look at how to estimate pl
k and dl

k. In a partic-
ular execution plan of a query, for source tuples from each querying source, there
is a path composed by some operators and possibly some network connections.
For example, in Figure 1, the path for source tuples from s1 consists of o1, o2,
o5 and the connection between n1 and n2, while the path for those from s2 com-
prises o3, o4 and o5. Hence, roughly speaking, the pl

k and dl
k of a source tuple

are respectively equal to the total processing time of the operators in its path
and the total time that the tuple stays in its path. In the following paragraphs
we will compute them one by one.

For query qk, assume the path for source tuples from sl comprises a set Ol
k of

operators and some network connections. Furthermore, let Ol
k be distributed to

a set N l
k of nodes and Ol

k,i ⊆ Ol
k be the subset of operators of Ol

k assigned to
node ni (where ni ∈ N l

k). Let the average per-tuple evaluation time of operator
olj ∈ Ol

k be t′j and its average per-tuple selectivity be selj. Without loss of
generality, assume olj is processed before olj+1 . Note that only those source
tuples that would be output as result tuple(s) are counted in our metric (hence,
each operator’s selectivity on these particular tuples is at least 1). Assume tuplel

1 A tuple here could be a batch of individual tuples in a batch processing mode.



58 Y. Zhou et al.

from sl is such a tuple, then the average processing time of olj incurred by tuplel

is tj = t′j
∏j−1

h=1 max(selh, 1). Hence we have

pl
k =

∑

olj
∈Ol

k

tj . (1)

In our model every processing node is a queueing system. From queueing
theories, in all solvable single task queueing systems, the time that a data item
spends in a system can be calculated as t = g(ρ) ∗ ts, where ts is the processing
time of a data item and g(ρ) ≥ 1 is a monotonically increasing concave function
of the system’s workload ρ. The exact form of g(ρ) depends on the type of
system, e.g. g(ρ) = 1

1−ρ in an M/M/1 system.
This inspires us to model the delay of tuplel as

dl
k = (

∑

ni∈N l
k

(f(ρi) ×
∑

olj
∈Ol

k,i

tj)) + tc ×m, (2)

where tc is the communication delay of a tuple and m is the number of times
that a tuple is transferred over the network. f(ρi) is a monotonically increasing
concave function. Note that f(ρi) is different from g(ρ) mentioned above and
may have a much higher value than g(ρ). That is because there are multiple
tasks running on each node. We assume f(ρi) is identical for all nodes. Hence
the first term of the right-hand side of Equation (2) summarizes the delay in
the processing nodes while the second term summarizes the delay caused by the
communications.

Based on Equations (2.1), (1) and (2), we have

PRl
k = PPRl

k + CPRl
k, (3)

where

PPRl
k =

∑

ni∈N l
k

(f(ρi) ×
∑

olj
∈Ol

k,i

tj)

∑

olj
∈Ol

k

tj
, (4)

and
CPRl

k =
tc ×m
∑

olj
∈Ol

k

tj
. (5)

We call PPRl
k the processing performance ratio (PPR) and CPRl

k the commu-
nication performance ratio (CPR). Analogously, PPRk = maxsl∈Sk

PPRl
k and

CPRk = maxsl∈Sk
CPRl

k.

Problem Complexity. Given the cost model, let us examine the complexity
of the problem. We can observe that the total number of possible allocation
schemes is |N ||O| where O =

⋃
1≤k≤|Q| Ok. Even worse, we can derive that the

problem is actually NP-hard. To see this let us first ignore the communication



Efficient Dynamic Operator Placement 59

cost and only consider minimizing PPRmax = max1≤k≤|Q| PPRk. It is easy to
see from Equation (4) that PPRl

k is a weighted sum of the f(ρi) values, where
the weight for f(ρi) is the fraction of evaluation time pl

k allocated to node ni.
Assume we can migrate the load between nodes in the finest granularity. Then
we have the following observation.

Observation 1. To minimize PPRmax, PPRk is equal for all queries and ρi

is equal for all nodes. �

The intuition behind it is when PPRk of a query qk is higher than the others,
we can always allocate more resources to qk (i.e. reducing the workload of some
of the processing nodes for qk by load migration to the other nodes) so that
PPRk is still the largest but is reduced. When the load is balanced then PPRk

equal to f(ρ) for all queries, where ρ is the uniform workload of all nodes.
However, we cannot migrate the load in the finest granularity in practice and
hence the best plan is to minimize the difference of loads among all the nodes.
By restricting our problem to ignore the communication cost, it is equivalent to
a MULTIPROCESSOR SCHEDULING problem which is NP-hard. Hence our
problem is NP-hard.

Heuristics. In view of the complexity of the problem, we opt to designing
heuristics instead of finding an optimal algorithm. From the estimation equation
dl

k, we know that the extra delay is caused by the communication and the work-
load of the system. Hence, we adopt the following heuristics. (1) Dynamically
balance the workload of the processing nodes. This heuristic is inspired by Ob-
servation 1. (2) Distribute operators of a query to a restricted number of nodes
so that communication overhead of a query is limited. We call the maximum of
this number as the distribution limit of that query. Note that always distributing
all the operators of every query to a single node is impractical, because it would
incur excessive data flow over the network.(3) Minimize the communication cost
under conditions (1) and (2). In short, we have to design a dynamic load bal-
ancing scheme where the operations of each query should not be distributed to
too many nodes and the total communication traffic is minimized.

Besides employing the heuristics stated above, the scheme should also satisfy
the following objectives in the perspective of system design:

1. It is fast and scalable. Because dynamic re-balancing could happen fre-
quently at runtime, the overhead of making re-balancing decisions should be
kept low. Furthermore, a distributed scheme is preferred to enhance scalability
and avoid bottleneck.

2. It does not rely on any specific processing model. There are different single-
node processing models that are currently under development such as Tele-
graphCQ [6], Aurora [4] and STREAM [1]. Our system is not restricted to any
processing model because it separates the stream processing engine in each node
from the distributed processing details. Queries are compiled into logical query
plans which consist of logical operators. The logical operators are distributed
to the processing nodes by our placement scheme. Then the logical operators



60 Y. Zhou et al.

would be mapped into physical operators by the stream processing engine for
processing. Different engines under different processing models could map a log-
ical operator into a different physical operator.

2.3 Related Work

Distributed continuous query systems attracted much research attention in the
recent years. The necessity of dynamic load management in distributed stream
processing has been identified in several published references e.g. [7,11]. However,
the authors did not propose any complete and practical strategies. In Flux [9],
a dynamic load balancing strategy for the horizontal (or intra-operator) par-
allelism was employed. While the mechanism was developed in the context of
continuous queries, a centralized synchronous controller is used to collect work-
load information and to make load balancing decisions. Our work, on the other
hand, takes a complimentary approach by focusing on allocation of operators in
the context of vertical (or pipelined) parallelism. Furthermore, our approach is
decentralized and asynchronous. More recently, Borealis system [14] also adopted
a centralized load distribution technique in the context of vertical parallel pro-
cessing. An innovative load balancing approach is presented which considers the
time correlations between the operators. On the contrary, our work does not
focus on proposing new load balancing algorithms.

Furthermore, the problems of the above two pieces of work bear a few im-
portant differences from ours. First, in their approach, stream delegation is not
employed. Hence it is possible that some sources have to communicate with
multiple processing nodes or some processing nodes may have to collect streams
from a lot of sources. Second, the network resources are assumed to be abun-
dant and hence communication cost is ignored in their techniques. How to take
the communication cost in account is still unclear. Third, without considering
the delegation scheme and the communication cost, the problem is only a par-
titioning problem which partitions the operators into balanced partitions. The
processing nodes are identical in terms of partition allocation. However, our
problem is essentially an assignment problem as assigning query operators to
different nodes would have different communication cost for a given delegation
scheme.

On the other hand, [3, 8] focused on minimizing communication cost but ig-
nores load balancing. [10] studied the static operator placement in a hierarchical
stream acquisition architecture, which is much different from our system archi-
tecture. Load balancing is also ignored in this piece of work. [15] proposed an
adaptive scheme disseminate stream data to the distributed stream processors
without considering operator placement.

3 System Design

In our dynamic operator placement scheme, we adopt a local load balancing
strategy. Each node would select its load management partners and dynamically



Efficient Dynamic Operator Placement 61

balances the load between its partners. To implement this, there are several
issues to be addressed: (1) initial placement of operators; (2) load management
partner selection; (3) workload information collection; (4) load balance decision-
making; (5) selection of operators for migration. We address these issues in the
following subsections.

3.1 Initial Placement of Operators

In our initial placement scheme, we only consider minimizing the communication
cost and leave the load balancing task to our dynamic scheme. The scheme
generates one query fragment for each participating stream and then distributes
the query fragments to the delegation nodes of their corresponding streams.
More specifically, the scheme comprises the following steps:

1. When a query is submitted to the system, it is compiled and optimized into
a logical query plan without considering the distribution of the data streams.
The logical query plan, which is represented as a traditional query plan tree,
determines the required logical operators such as filters, joins, aggregation op-
erators and their processing orders. Existing optimization techniques [12, 2] can
be applied at this step. Figure 2(a) is an example of the resulting query tree of
this step.

2. For each stream involved in the query, generate one query fragment which
is initially set to empty. Add each leaf node (i.e. the stream access operators) to
its corresponding query fragment QFi and then replace it with QFi.

3. For each query fragment, if the parent operator is a unary operator, the
operator would be added to the query fragment and removed from the query tree.
The step is repeated until all the operators are removed or the parent operator
for every query fragment is a binary operator. Figure 2(b) is an example of the
resulting query tree of this step. The intuition is to place each stream’s filters at
its delegation node to reduce the amount of data to be transferred.

4. Now we have a query tree in which all the next-to-leaf nodes are binary
operators. Add each next-to-leaf binary operator to one of its two child query
fragments, say QFi, whose estimated resulting stream rate is higher than the
other one. Then remove the other query fragment from the tree and push QFi

up a level to replace that binary operator. A binary operator is added to the
query fragment of higher (estimated) resulting stream rate to reduce the volume
of data that needs to be transmitted through the network if the two fragments
of the two involved streams are to be evaluated at two different nodes. This
process continues until all operators are removed or the parents of one or more
of the remaining query fragments are unary operators. For the latter case, the
algorithm goes back to step (3). Figures 2(c) and (d) illustrate the procedure of
this step.

5. Distribute the query fragments to the delegation nodes of their correspond-
ing streams.

Based on the operator ordering, there is a downstream and upstream rela-
tionship between some of the query fragments. For example, in Figure 2, results



62 Y. Zhou et al.

2 R3 R4

R1

σ σ

σ

σ σ

γ

R

(a) Phase 1

γ

QF2 QF3 QF4QF1

(b) Phase 2
3

QF
2

QF

4
QF

1
QF

γ

(c) Phase 3

1QF

3QF2QF

4QF

γ

(d) Phase 4

Fig. 2. Query Fragments Generation

Algorithm 1. PartnerSelect

sort neighbors in descending order of neighboring factor;
for (i ← 0; |g1| < max1 AND i <|neighbors|+ MaximumTry; i++) do

if i < |neighbors| then n ← neighbors[i];
else n ← a random node /∈ neighbors ∪ g1;
if n ∈ g2 then

move it from g2 to g1;
else if n /∈ g1 then

send a request to n;
if the request is accepted then

add n to g1;
endif

endif

endfor

of QF2 should be further processed by the binary operator of QF1 and hence we
call QF2 the upstream query fragment of QF1. Similarly, QF1 is the upstream
query fragment of QF4. Symmetrically, we call QF1 (or QF4) the downstream
query fragment of QF2 (or QF1). We call a query fragment’s downstream or up-
stream query fragments its neighbors. For instance, QF2 and QF4 are neighbors
of QF1. Furthermore, if a query fragment QFi’s corresponding data stream is
delegated to a node nj then QFi is called a native query fragment of nj and nj

is a native node of QFi. Otherwise, QFi is called a foreign query fragment of nj

and nj is a foreign node of QFi.
Furthermore, the native nodes of two neighboring query fragments are called

neighbors to each other. And the number of neighboring query fragments between
two nodes is called the neighboring factor.

3.2 Partner Selection Strategy

As stated above, our dynamic load balancing scheme is a local strategy. Each
node ni has a number of load management partners (abbreviated as partners).
The partner relationship is symmetric, i.e. if ni is a partner of nj, then nj is
also a partner of ni. In this section, we discuss the partner selection strategy for
each node.



Efficient Dynamic Operator Placement 63

In our scheme, each node sends out requests to some other nodes to initiate
the partner relationships and receives such requests from its peers. We separate
the partners of each node into two groups : (1) g1, the relationship is created by
the (explicit) request of this node; (2) g2, the rest. There is a maximum bound for
each group of partners denoted asmax1 andmax2 respectively. Each node would
use Algorithm 1 to send out requests. Neighbors with higher neighboring factors
with the current node have higher priority to be selected. That is to enhance the
opportunity of reducing communication cost during load redistribution, which
is can easily be seen in Section 3.5. Algorithm 1 is implemented in asynchronous
mode in our system. It does not wait for a remote response but instead returns
once all requests have been sent out. After a node receives a response message,
the algorithm is called to resume the processing. Furthermore, a node ni which
receives a request will check whether the sender nj is also being requested by ni

or is already in g1. If so, ni accepts the request and adds nj into g1 if necessary.
Otherwise it adds nj into g2 if |g2| < max2 or sends back a reject message
otherwise. A node will update its partners periodically.

3.3 Information Collection Strategy

The information collection strategy determines when and how workload infor-
mation of nodes in the system is collected and also what information is to be
collected.

We adopt a window based and asynchronous workload collection approach.
Time is divided into windows which have static lengths τ . Each node accumulates
the total processing time t of all its physical operators within each window and
the workload with respect to a window is computed by dividing t by τ . Each
node asynchronously collects its workload within each window and updates its
workload once the current time window elapsed. It broadcasts the workload
information to all its partners if its workload increases to κ or decreases to 1/κ
times of the last broadcast value.

The above strategy performs well only if the input rate and the processing
time are constants. But in practice they are random variables. The resulting
workload may fluctuate over time, which renders the system unstable. As stated
before, we only focus on adaptation to long term system changes which would
bring long term benefits and alleviate the short term adaptation overhead. To
prevent the system from reacting to short term fluctuations, we use a low pass
filter to remove the high frequency noises (caused by the short term changes of
stream rates, tuple processing time, etc.) in workload collection. In particular,
workload is computed as ρi+1 = α× ρi +(1 −α) × ρc, where ρi+1 and ρi are the
workload information used for load balancing after i+1 and i time windows, and
ρc is the collected workload within the (i+ 1)th time window. α is a parameter
to determine the responsiveness of the estimated value to the workload changes.
The purpose of using this formula in previous work is to give more weight to
recent collected statistics. Here we analytically show that it can also smooth out
short term fluctuations. A validation experiment can be found in [16].



64 Y. Zhou et al.

We now consider how α would be set in a system. Without loss of generality,
we assume the workload is increasing. Given the initial workload ρ0 and that we
want to filter out transient workload fluctuation where the workload is changed
to lρ0 (l > 1) within m1τ time and last for m2τ time, we should choose α
such that the estimated workload after (m1 +m2)τ time ρm1+m2 should satisfy
ρm1+m2 ≤ κρ0. In practice, the values of m1, m2 and l reflect the typical range
and time span of short term fluctuations. They can be adaptively tuned by
collecting the characteristics of the system. In our calculation, we assume the
workload increases (l−1)ρ0/m1 within each τ time during the m1τ period. After
(m1 +m2)τ time, the estimated workload ρm1+m2 can be calculated as [16]:

αm2ρ0 +
αm2(l − 1)ρ0

m1
(m1 + 1 +

αm1+1 − 1
1 − α

) + (1 − αm2)lρ0.

Substitute the above equation into the inequality ρm1+m2 ≤ κρ0, we have

αm2 +
αm2(l − 1)

m1
(m1 + 1 +

αm1+1 − 1
1 − α

) + (1 − αm2)l ≤ κ.

Hence we can calculate the lower bound of α by solving the above inequation
given the values of m1, m2 and l. For example, given m1 = m2 = 1, l = 2 and
κ = 1.2, we can get α ≥ 0.9. The case for short term workload decrease can be
analyzed similarly. On the other hand, α also cannot be too close to 1, otherwise
the current workload will not be reflected. A similar upper bound analysis can
be performed [16].

3.4 Load Balance Decision Strategy

The load balance decision strategy determines whether it is beneficial to initiate
a load balance attempt and how much workload should be transmitted between
the nodes. Our strategy is adapted from the local diffusive load balancing strat-
egy introduced in [13]. It is a receiver-initiated strategy, which is found to be
more efficient in [13]. It works in rounds. The length of each round is denoted as
Δ. Each node maintains its own value of Δ. At the start of each round, Algo-
rithm 2 is run to generate one workload request if necessary. In this algorithm,
the load request is generated by the potential load receiver (i.e., the node with
smaller load initiates load balancing). Since we focus on continuous queries, load
migration can bring long term benefits. As such our decision strategy does not
consider the short term migration overhead. Once a node receives a workload
request, it satisfies the request as much as possible, provided the workload to
send out within each Δ time window is no more than half of its total workload
at the beginning of the current window.

It is possible that the nodes in the system are separated into several non-
overlapping groups and the workloads are not balanced between groups. Hence
once a node in our system detects that itself and all of its partners are overloaded,
it will randomly probe the other nodes until it finds an underloaded node to add
it as a partner or the probe limit is reached.



Efficient Dynamic Operator Placement 65

Algorithm 2. GenerateRequest

compute the average workload ρ within itself and its partners;
if the local workload κρl < ρ then

find the partner ni whose workload ρi is the largest;
compute the load request ρr = (ρi − ρl)/2;
request ρr amount of workload from ni;

endif

3.5 Load Selection Strategy

As stated above, once a potential load sender receives a load request, it will select
the victim query operators to satisfy the request as far as possible. When multiple
such requests are received, the sender processes them in descending order of the
workload amount requested. The sender will estimate its resulting workload after
each migration, and if it detects that half of the workload has been exported within
the current Δ interval, it will stop processing any request until the start of the
next round. In this subsection, we explore how to select the victim operators for
migration and discuss how to migrate them in the next subsection.

Migration Unit. The first question to be answered is what is the smallest task
unit used for load migration. We consider the following choices:

1. Using the whole query as the migration unit is easy to implement. However,
a good evaluation plan often distributes the operations across multiple nodes in
order to minimize the communication overheads. So migrating in the unit of
query is inappropriate.

2. Operator as another candidate is a fine-grained unit. Migrating at this
level may result in better balance state. However, it is hard to implement our
second heuristic which imposes a distribution limit on the query operators (see
Section 2.2). When we are trying to move an operator, we have to know the
location of the other operators belonging to the same query. Otherwise, we do
not know if the distribution limit is violated. This results in high update overhead
and is not compatible to our local strategy as a node cannot make decisions based
on local information.

3. Query fragments. Based on the above analysis, a good candidate for mi-
gration unit should render the maintenance of good query plans easy and allow
the separation of load balancing strategy from the underlying stream processing
engine and hence introduce less complexity to the existing processing techniques.
Furthermore, this unit should not be too coarse to restrict the adaptive ability
of the load management module. For the above purposes, we would like to find
a subset of operators that is of appropriate size and would be processed in the
same site in most cases for a good query plan. Furthermore, we consider only
candidates in the logical level. We adopt the notion of query fragment - a sub-
set of logical operators of a query. We set the number of query fragments of a
query as its distribution limit. This exempts the task of keeping track of the
distribution of all the operators of a query while we are implementing heuristic



66 Y. Zhou et al.

(2). The distribution limit would always be met no matter where we allocate the
query fragments.

While a query can be fragmented in a lot of ways, we simply use the query
fragments generated in our initial placement scheme as the migration units. Op-
erators in each of such query fragments would be allocated to the same processing
node in a good query plan generated by applying traditional optimization heuris-
tics. Furthermore, by doing so, the distribution limit of a query is set to the num-
ber of streams involved by the query. Here, we assume that queries involving more
streams are more complicated and hence can afford a higher distribution limit.

Data Flow Aware Load Selection. The choice of query fragments to be
migrated is critical in maintaining data flow locality. A poor choice may cause
streams to be scattered across too many nodes and result in network congestion.
In this subsection, we propose a lightweight query fragment selection strategy
which makes decisions only based on local information.

In our strategy, for each request, the sender chooses the query fragments in
the following order until the request is satisfied or half of the workload of this
node has been exported within the current Δ interval.

1. Query fragments that are foreign to the sender but native to the receiver.
This kind of query fragments is considered to be of highest priority to migrate
because migrating them has the potential to reduce the data flow.

2. Other query fragments that are foreign to the sender.
3. Query fragments that are native to the sender. This kind of query fragments

is considered of lowest priority for migration because migrating them tends to
scatter the streams delegated to this node.

The above heuristics are reasonable in maintaining data flow locality. However,
its categorization is too coarse. The migrations of the query fragments within
each category may still have different effects on the data flow locality and the
delay of the queries. For example, migrating a query fragment QFi to a node
that is evaluating a neighbor of QFi may bring less increase of data flow than
migrating it to other nodes. This is because it avoids the transfer of the data
flow between QFi and its neighbor. Hence, within each of the above categories,
we further classify the query fragments into one of the following categories and
we list them in the order of descending migration priorities.

1. Query fragments that have neighbors being evaluated at the receiver but
none at the sender. The migration of this class of query fragments eliminates
the transmission of the data flow between the sender and the receiver caused by
the migrated query fragment. Figure 3(a) shows a possible situation in this case.
The situations before and after migration are plotted on the left and the right
respectively. Solid arrows in the figure indicate the data flows between the query
fragments. For brevity, the other query fragments being evaluated in the two
nodes are not shown. In this example QF1 is a neighbor of QF2. ni is the sender
while nj is the receiver. After migration, the data flow introduced by QF1 and
QF2 between ni and nj is eliminated.



Efficient Dynamic Operator Placement 67

1 QF2 QF1 QF2

ni nj nj

QF

(a) Case 1

1 QF2 QF3

ni

QF2 QF3QF1

ninj nj

QF

(b) Case 2

1 QF1

ni nj
njni

QF

(c) Case 3

1 QF2

ni

QF1
QF2

nj ni nj

QF

(d) Case 4

Fig. 3. Query fragments migration cases

2. Query fragments that have neighbors at both nodes. This class of query
fragments has lower migration priority than the above-mentioned one because
the migration eliminates one data flow but also creates another one between the
sender and the receiver. For example, in Figure 3(b), the transmission of the
data flow introduced by QF2 and QF3 is eliminated while the one incurred by
QF1 and QF2 is created by the migration.

3. Query fragments have neighbors at neither node. Figure 3(c) is an example
situation.

4. Query fragments that have neighbors at the sender but none at the receiver.
This class has lower priority than the third one because the migration may
introduce extra data flow between the sender and the receiver. An example of
this case can be found in Figure 3(d). The migration in this example creates the
data flow between ni and nj caused by QF1 and QF2.

If there is more than one query fragment in the above subcategories, we will
compute the migration priority for each of them and will migrate those with
higher priorities first. The migration priority of a query fragment is computed
as ρ

max(size,1) , where ρ is the workload it incurs, and size is its state size in
bytes. We call this value the load density of the query fragment as it means
the amount of workload will be migrated for each byte of state transmission.
Furthermore, ρ is estimated by summing up the estimated workload incurred by
each of its logical operator, which is estimated as 1/n of the workload caused by
its corresponding physical operator. n is the number of logical operators sharing
that physical operator.

4 A Performance Study

In our experiments, the stream processing engine in each node is an emulation
of the TelegraphCQ system. We use a simulator to simulate the communica-
tion among the processing nodes. The simulator is implemented in JAVA us-
ing the JavaSim discrete event simulation package. We use 32 simulation nodes
and an additional sink node as our basic configuration. Each processing node is



68 Y. Zhou et al.

delegated 3 streams. Tuples from every stream are of 100 bytes and consist of
10 attributes. The bandwidth of the network connecting the nodes is modeled
as 100Mbps.

We use 500 randomly generated queries and a total of 5750 logical operators,
to measure our system performance. The sliding window size for window joins
is randomly selected from 5000 to 20000. The selectivities of the operators are
from 0.5 to 0.8. We set the average data inter-arrival time to be 4ms and the
mean processing time for each filter and join operation to be 20μs and 80μs
respectively. Besides, we use the following algorithm parameters: the workload
collection window τ = 100ms, the length of load management round Δ = 1s,
and the threshold to broadcast workload κ = 1.2. The real values of pl

k and dl
k

were collected online and the PRk values were computed by the sink node when
it received a result tuple.

4.1 Partner Selections

We have two parameters for our partner selection strategy: max1 and max2. In
this experiment, we set max2 = � 1

2max1� and vary the value of max1. To gen-
erate an imbalanced workload, the streams that a query operates on are chosen
according to a Zipfian distribution (θ = 0.95). We use the standard deviation
(STDEV) of the ρi for all processing nodes to measure the load imbalance, i.e.√∑

i(ρi−ρ)2

|N |−1 . Figure 4(a) shows the final load distribution for different values of
max1. max1 = 0 means that dynamic load balancing is disabled. We can see
when max1 >= 4 the load is well balanced. No significant improvement can
be made by using a larger max1 value. Figure 4(b) illustrates the PRmax af-
ter the system is stable. It is computed by averaging on the values within 10
seconds. It is clear that the PRmax values are also similar when max1 >= 4.
Figure 4(c) shows the time it takes to converge to the final load distribution.
There is not much difference between small and large number of partners. The
above comparisons show that our system works well with a small max1 value.
As a larger number of partners would increase the runtime cost (such as trans-
ferring workload update messages, making load balancing decisions), we could
keep the number to a small value and hence keep the cost low. In the subsequent
experiments, we set max1 = 5 and max2 = � 1

2max1�.

(a) Load imbalance (b) PRmax (c) Time to Converge

Fig. 4. Effect of various partner selection parameter



Efficient Dynamic Operator Placement 69

(a) PRmax (b) Transfer cost

Fig. 5. QF-based vs. OP-based

4.2 Load Selection Heuristics

The first experiment examines the necessity of imposing a distribution limit.
This is done by comparing the QF-based (query fragment based) load balancing
strategy with the OP-based (operator based) strategy proposed by reference [14].
The latter approach does not impose any distribution limit. We varied the num-
ber of operators per query fragment in our experiment. We ran the experiment
under each case for 60 seconds simulation time and report the average values.
We can see from Figure 5 that with more number of query operators, the PRmax

value of the QF-based approach performs much better. Figure 5(b) may explain
this phenomenon. The data transfer volume of the OP-based scheme increases
quickly with more operators, because operators of a single query are migrated
to too many site. Therefore the data streams are scattered over the network
and leads to network congestion. On the other hand, the QF-based strategy still
maintains small transfer overhead and hence it still performs well in data delay.
Note that, by employing a distribution limit, an OP-based strategy can achieve
better performance. However, as analyzed before, the cost to maintain such a
limit would be higher than a QF strategy and such a scheme does not fit into a
local load management strategy.

The second experiment examines the effectiveness of our flow-aware load se-
lection strategy in maintaining good data flow locality. We impose an initially
balanced load distribution over the processing nodes and use a uniform distribu-
tion to choose the querying streams Sk for every query qk. At time t = 20s we
randomly select 4 nodes and then increase the input rates of the streams dele-
gated to those nodes by 3 times. At t = 50s, the increased input rates drop back
to their initial values. To show the effect of load selection strategy, we design
another two approaches for comparison: (1) Elementary: the query fragments
are selected in descending order of their load density. (2) Intermediate: the same
as Elementary except foreign query fragments are given higher migration priori-
ties than the native query fragments. In previous work, such as [9,14], data flow
relationship is not considered. Hence their effects on the communication cost
can be well represented by the Elementary algorithm. We compare the transfer
overhead introduced by the three strategies against the static query fragment



70 Y. Zhou et al.

(a) Transfer Overhead (b) PRmax

Fig. 6. On load selection strategies

allocation strategy, i.e. the initial placement scheme. The static strategy allo-
cates the query fragments to their native nodes, hence its data flow transfer cost
is minimum though it may incur very high data delay due to the unbalanced
load allocation. We subtract the amount of transfer cost of the static strategy
from those of the other three and then compare the extra transfer overheads of
the three dynamic strategies over the static one.

From figure 6(a), we can see that the data flow aware strategy outperforms
the other two at all stages of the experiment. Both Intermediate and Elementary,
unlike the data flow aware strategy, fail to identify the neighborhood relationship
of the query fragments. Intermediate is better than Elementary because it can
differentiate between foreign query fragments and native query fragments and to
some degree can help maintain data flow locality. At t = 50s when the perturbed
stream rates dropped back to the original value, all three strategies’ transfer over-
heads are reduced. However, both Intermediate and Elementary cannot restore
back to the state prior to the change. This is because both strategies are unable
to identify their native nodes when migrating foreign query fragments. That
means they would become worse and worse with the evolution of the system
state while the data flow aware strategy is able to maintain a more stable state
over time. Figure 6(b) shows the PRmax for all the four strategies. The values
are calculated by averaging over the whole simulation time. The static strategy
performed the worst simply because of the absence of load balancing strategy.
Furthermore, the three dynamic strategies performed similarly. This is attributed
to our heuristic to maintain a distribution limit for every query. Since process-
ing load are similar for the three dynamic strategies due to the balanced load
distribution, PRmax was similar for the three strategies. However, in the case
when network traffic is so high that it approaches the bandwidth limit, the data
flow aware strategy will do much better to avoid network congestion situation.

5 Conclusion

Distributed processing of continuous queries over data streams suffers from run
time changes of system resource availability and data characteristics. Dynamic
operator placement techniques are indispensable for a distributed stream pro-
cessing system. In this paper, we formalized the problem and analyzed it by



Efficient Dynamic Operator Placement 71

building a cost model. As shown in our experiments, load imbalance can cause
severe performance degradation and our proposed techniques can alleviate such
degradation by dynamic load balancing. Our data flow aware load selection strat-
egy can help restrict the scattering of data flows and lead to lower communication
cost.

References

1. A. Arasu, et al. Stream: The stanford stream data manager. IEEE Data Eng. Bull,
26(1):19–26, 2003.

2. A. Ayad and J. F. Naughton. Static optimization of conjunctive queries with sliding
windows over infinite streams. In SIGMOD, pages 419–430, 2004.

3. Y. Ahmad and U. Çetintemel. Networked query processing for distributed stream-
based applications. In VLDB, pages 456–467, 2004.

4. D. Carney, et al. Monitoring streams - a new class of data management applica-
tions. In VLDB, pages 215–226, 2002.

5. D. Carney, et al. Operator scheduling in a data stream manager. In VLDB, pages
838–849, 2003.

6. S. Chandrasekaran, et al. Telegraphcq: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

7. M. Cherniack, et al. Scalable distributed stream processing. In CIDR, 2003.
8. P. Pietzuch et al. Network-aware operator placement for stream-processing sys-

tems. In ICDE, pages 49, 2006.
9. M. A. Shah, et al. Flux: An adaptive partitioning operator for continuous query

systems. In ICDE, pages 25–36, 2003.
10. U. Srivastava, et al. Operator Placement for In-Network Stream Query Processing

In PODS, pages 250–258, 2005.
11. F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In

VLDB, pages 333–344, 2003.
12. S. Viglas and J. F. Naughton. Rate-based query optimization for streaming infor-

mation sources. In SIGMOD, pages 37–48, 2002.
13. M. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on

highly parallel computers. IEEE Trans. Parallel Distrib. Syst, 4(9):979–993, 1993.
14. Y. Xing, et al. Dynamic load distribution in the Borealis stream processor. In

ICDE, pages 791-802, 2005.
15. Y. Zhou, et al. Adaptive reorganization of coherency-preserving dissemination tree

for streaming data. In ICDE, pages 55, 2006.
16. Y. Zhou, et al. Dynamic load management for distributed continuous query sys-

tems. Unpublished manuscript, 2005. http://www.comp.nus.edu.sg/~zhouyong/

papers/op.html.

http://www.comp.nus.edu.sg/~zhouyong/papers/op.html
http://www.comp.nus.edu.sg/~zhouyong/papers/op.html


Views for Simplifying Access
to Heterogeneous XML Data

Dan Vodislav1, Sophie Cluet2, Grégory Corona3, and Imen Sebei1

1 CNAM/CEDRIC, Paris, France
2 INRIA, Rocquencourt, France

3 Xyleme, Paris, France

Abstract. We present XyView, a practical solution for fast development
of user- (web forms) and machine-oriented applications (web services)
over a repository of heterogeneous schema-free XML documents. XyView
provides the means to view such a repository as an array, queried using a
QBE-like interface or through simple selection/projection queries. Close
to the concept of universal relation, it extends it in mainly two ways:
(i) the input is not a relational schema but a potentially large set of
XML data guides; (ii) the view is not defined explicitly by a query but
implicitly by various mappings so as to avoid data loss and duplicates
generated by joins. Developed on top of the Xyleme content management
system, XyView can easily be adapted to any system supporting XQuery.

1 Introduction

For decades, companies have produced digital data such as notes, contracts,
emails, progress reports, minutes, etc. This data constitute a mine of useful
information that is largely unexploited. The advent of XML provides the oppor-
tunity to change that. Many enterprises are now considering storing their home
data in XML repositories so as to be able to query them in a significant way,
i.e., with tools more sophisticated than full text search engines. In this paper, we
are addressing the problem of querying such repositories. More precisely, we are
interested in developing, easily and quickly, a simple query API (web services)
or user interfaces (web forms) over these repositories.

An important characteristic of the applications we are considering is that
they deal with legacy data that have been mostly produced by human beings
using standard text editors. As a result, the data is (i) poorly typed (well formed
rather than valid XML) and (ii) highly heterogeneous (although documents have
strong semantic connections). These features are particularly challenging since
they call for sophisticated tools to ease the application programmer task while
at the same time disabling most existing approaches.

The solution we propose borrows from the universal relation paradigm of the
seventies [18]: XyView provides the means to easily view a set of heterogeneous
XML documents as a single array that can be queried through simple selec-
tions and projections. Obviously, the context being XML, the array contains
XML subtrees and is built using XQuery. But the fundamental differences with
classical universal relations are the following:

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 72–90, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Views for Simplifying Access to Heterogeneous XML Data 73

– The array is not defined by one query but by a specification of how a simple
selection-projection user query is to be translated into an XQuery.

This difference is important. The problem with universal relations is that,
unless the database schema has particularly nice properties which is rarely
the case, projection operations generate many duplicates that are not always
easy to remove. This is due to the join operations entering the definition of
the universal relation. Alternatively, the join operations can also be the cause
of missing information. This is usually solved by introducing outer-joins but
at the cost of having to deal with null values.

Note that these problems of data loss and duplicates may occur any time
a view is defined as a structured query (SQL or XQuery).

Our approach is not to define the view as a query but rather as a virtual set
of queries that are generated on the fly to fit the user current requirements.
In this way, we avoid incomplete or verbose answers.

– To deal with the complexity of the input data, we define views in two steps.
The first deals with data heterogeneity and maps heterogeneous, but seman-
tically connected documents into a target structure. At run time, this step
generates unions. The second step corresponds to a standard view definition
where data is aggregated. At run time, this leads to joins.

Borrowing from a general wrapper-mediator architecture, our view model
adds an intermediary level that (i) strongly structures the view by separat-
ing unions from joins, and (ii) provides homogeneous XML typing for the
universal relation elements.

We implemented XyView as a set of tools on top of the Xyleme [19] XML
repository, but it can easily be adapted to any system supporting XQuery. The
XyView tools cover the view definition process but also automatic generation
of web form applications and web services. Although its expressive power is
limited as will be explained in this paper, XyView has proved its worth with
several industrial applications.

The rest of the paper is organized as follows. The next section presents an
example application scenario that illustrates the problem we are addressing.
Section 3 describes the XyView model. Section 4 explores the expressiveness and
some more subtle features of the model, then Section 5 describes the XyView
system that is built on top of an XML repository. The final sections present
related work and explore some future improvements.

2 Example Application Scenario and Motivation

The example that we present here is a drastic simplification of a real life applica-
tion. A sports news company handles several types of news wires. The wires are
well formed XML documents, with no global schema, that have been extracted
from text files. These files have been edited by various local correspondents over
the years, according to the company (mostly verbal) editing recommendations.
The wires have different structures, depending on the sport and the kind of
information they contain.



74 D. Vodislav et al.

<!-- Document 1: National league result -->
<GameResult>

<WireHeading> ... </WireHeading>
<Description> Real Madrid 1 - Valencia 0
</Description>
<Date> 2004-05-22 </Date>
<Team>

<Name> Real Madrid </Name>
<Scored> 1 </Scored>
<Scorer><PlayerName> Zidane

</PlayerName>
<Count> 1 </Count>

</Scorer>
</Team>
<Team>

<Name> Valencia </Name>
<Scored> 0 </Scored>

</Team>
</GameResult>

<!-- Document 2: Inter-countries game -->
<Result Date="2004-03-15">

<Summary> France 1 - Spain 1 </Summary>
<Scorers>

<Player Goals="1">
<Name> Zidane </Name>
<Country> France </Country>

</Player>
<Player Goals="1">

<Name> Raul </Name>
<Country> Spain </Country>

</Player>
</Scorers>

</Result>

<!-- Document 3: Sports encyclopedia -->
<Encyclopedia>

<Football>
<Player><Name> Zidane </Name>

<Biography>...</Biography>
</Player>
...

</Football>
...

</Encyclopedia>

Sample queries on football documents

Q1: “Games in which Zidane scored
more than once”

Q2: “The biography of Zidane”

Q3: “Biographies of scorers
from games on 2004-09-08”

Fig. 1. Examples of documents and queries

For ease of understanding, we show in Figure 1 only two such wires about foot-
ball (soccer) in a simplified form. The first considers results from national leagues
(e.g., Document 1), and the second results from international games (e.g., Docu-
ment 2). The news company wants to build an application that queries through
simple web forms the various football results wires and a sports encyclopedia
with detailed information about football players (Document 3).

The application manipulates documents whose structures are similar, but not
necessarily identical, to Documents 1, 2 and 3. Notably, other documents may
have more or less information. These three kinds of documents are stored in a
single XML content management system in collections whose respective identi-
fiers are NationalURI, InternationalURI and EncyclopediaURI.

The application queries, as those in Figure 1, may concern football results
(Q1), player biographies (Q2), or both (Q3).

These apparently simple queries are in fact rather hard to program in XQuery
as illustrated by Figure 2 for Query Q3 (issues regarding the typing of results
are discussed in Section 4, we assume here that queries return simple strings).

Our objective with XyView is to optimize the productivity of graphical user
interface programmers, who are not database experts, by allowing them to view
the database as something as simple as a query form consisting of fields that can
be used to filter or extract data. In the meantime, we want to simplify as much
as possible the task of creating and maintaining such views.

The main contributions of this paper are the following:



Views for Simplifying Access to Heterogeneous XML Data 75

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/Date = xs:date(’2004-09-08’) and
$var1/Team/Scorer/PlayerName = $var2/Name

Return string($var3),
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result,
$doc2 in collection(EncyclopediaURI),
$var2 in $doc2/Encyclopedia/Football/Player,
$var3 in $var2/Biography

Where $var1/@Date = xs:date(’2004-09-08’) and
$var1//Player/Name = $var2/Name

Return string($var3) )

Fig. 2. Query Q3 expressed in XQuery

– A view model (XyView) that provides a universal relation-like access to
heterogeneous, schema-free XML data, freeing the user from manipulating
complex schemas and query languages.

– A method for avoiding the drawbacks of query-based views: joins in the view
definition produce duplicates or data loss; expressing the view query for het-
erogeneous data is difficult; queries on the view produce nested queries, that
are harder to optimize. Instead, views are defined by simple mappings and
join conditions, easy to create and to maintain with graphical tools. A sim-
ple, effective and scalable query translation algorithm produces equivalent
XQuery, with no useless duplicates, no data loss and no nesting.

– A view structure model, organized on several levels, adapted to heteroge-
neous, schema-free XML data.

– A set of tools for creating views, for rapid development and for automatic
generation of web forms and web services.

3 The XyView Model

In XyView, views are defined by a set of mappings and join conditions that spec-
ify how a simple selection-projection user query is translated into an XQuery.
This approach overcomes the problems of query-based views, as explained later.
The view definition is equivalent to a virtual set of flat and easily optimizable
queries that are generated on the fly to fit the user current requirements. No-
tably, given the appropriate view specification, the query of Figure 2 would be
generated at run time by XyView to answer Query Q3.

This results in a simpler definition and maintenance of views, using intuitive
graphical editors. Given the complexity of view queries caused by data hetero-
geneity, this is a crucial advantage for the view designer.

Also, in order to cope with heterogeneous data, XyView adds an intermediary
level in the view definition process. To the physical and view schemas, we add



76 D. Vodislav et al.

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography

Encyclopedia

Football

Player

Name Biography

Description Date Team

Name Scored

GameResult

Scorer

CountPlayerName

Result

Date(@) Player

//

Country

Summary

Goals(@) Name

GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

Encyclopedia

International

Physical Data Views

National

Encyclopedia

Game

User Data ViewLogical Data Views

Fig. 3. From Trees to Table

logical schemas whose purpose is to provide homogeneity to semantically related
data. More precisely:

1. The first level deals with schema-free data, by defining physical data views
that summarize XML access paths to useful information in documents.

2. The second level deals with heterogeneity, by defining integrated logical data
views over unions of physical data views with similar contents.

3. The third level defines the user data view as joins between logical data views.
Figure 3 illustrates this three level definition. It is built using the sample data

introduced in Section 2. On the right handside is the user data view. It consists
of a set of “concepts” that the user wants to query. Concepts are typed by the
view designer. For instance PlayerGoals and TeamGoals are integers, GameDate
is of type date, the other concepts are considered as XML strings (or elements,
as will be explained in the next section).

As is the case with universal relations, the query language supported at this
level consists of selections and projections. For instance, Query Q3, that returns
biographies of scorers from games on 2004-09-08 consists of a selection on Game-
Date = 2004-09-08 and a projection on Biography.

On the left handside of the figure, are the physical data views (PDV).
They represent the data as it is stored in the repository. In the example, there are
three physical data views (National, International and Encyclopedia), the first
two representing respectively local and international soccer games results, the
other a sport encyclopedia. The trees are data summaries, i.e. trees gathering
useful access paths to data elements in the XML documents. Similar to Lore
data guides [8], they are generated by the system to cope with the fact that
many documents are simply well-formed and do not come with a schema.



Views for Simplifying Access to Heterogeneous XML Data 77

In Xyleme, these summaries are generated at loading time, there is one sum-
mary per distinct root element. XyView also provides a tool to extract these
summaries from a set of documents. In both cases, we use an incremental al-
gorithm that takes all the XML paths in documents and extends the existing
data summary paths with new subpaths. Note that the algorithm does not care
about data types. It is the view designer who associates types to view concepts.
More will be said on this topic in the sequel.

When designing the view, one can edit data summaries to remove branches
that are useless for the application or to create shortcuts in long branches by
using a descendant (//) connection between two nodes. E.g., the subtree Wire-
Heading has been removed from the structure of Document 1, while the structure
of Document 3 only features the Football element, other sports having been dis-
carded. Also, the Biography element is not detailed in the PDV, because its
internal structure is not useful for the application. PDV International contains
an example of shortcut: element Scorers has been discarded from the path to
Player, because it is useless and removing it introduces no ambiguity; the edge
leading to Player is marked with //. This simplification eases the view design
process, by keeping only useful access paths from possibly cumbersome docu-
ment structures. Also, // shortcuts significantly improve query processing of the
final XQuery, by reducing the number of structural conditions to check.

In the center of the figure, we have gotten rid of the soccer games results
heterogeneity by introducing so-called logical data views (LDV). Logical data
view Game unifies in a single structure game results from documents described
by PDVs National and International. Note that the second LDV (Encyclopedia)
is a duplication of the corresponding PDV. In real life, we do not duplicate data
views, we did it here for the sake of clarity.

We now illustrate how one goes first from physical to logical then to user data
views and the queries that are associated to each level. Next, we further detail
how user queries are translated into queries against the repository.

3.1 From Physical to Logical Data Views

A physical data view consists of a data summary tree and a set of so-
called clusters in which we find documents conforming to the summary (there
may be documents conforming to other summaries as well). A cluster is the unit
in which we store documents and provides an entry point in the repository. It
is queried in XQuery as a collection of documents, by using the fn:collection
function on the cluster URI. For the sake of clarity, in the following examples
we consider a single cluster for each PDV.

Semantics: a PDV P is a view over a collection of documents Coll(P ) (the
cluster), whose schema is a data summary tree Tree(P ). For each p node of
Tree(P ), let path(p) be the path from the root of Tree(p) to p. The interpretation
of p is the set of XML elements that match path(p) in some document of Coll(P ),
i.e. the result of the XQuery expression Coll(P )/path(p).

Eval(p) = XQuery(Coll(P )/path(p))



78 D. Vodislav et al.

Notations: for x and y nodes in the same tree, LCA(x, y) denotes their
lowest common ancestor and ancestor(x, y) is true if x is ancestor of y.

The interpretation of a tuple (p1, ..., pk), pi ∈ Tree(P ) is:
Eval(p1, ..., pk) = {(e1, ..., ek) | ∃doc ∈ Coll(P ), ∀i ∈ {1, ..., k},

ei ∈ Eval(pi)
⋂

Elem(doc), ∀j, l ∈ {1, ..., k},
∃ejl ∈ Eval(LCA(pj , pl)), ancestor(ejl, LCA(ej , el))

⋂
Elem(doc)},

where Elem(doc) is the set of XML elements of document doc.
The meaning is that a tuple’s elements must belong to the same document

and must be the “closest” possible. Closeness is expressed wrt the PDV schema:
any two tuple elements ej , el must be at least as close as the corresponding PDV
nodes in the schema pj , pl, i.e. ej and el must have a common ancestor at the
level of LCA(pj , pl).

We will show in Section 3.3 how the query translation algorithm guarantees
closeness by introducing XQuery variables for the LCA nodes.

A logical data view is an annotated data summary. The annota-
tions represent the correspondence (mappings) between physical and logical
data views. This is illustrated on the left side of Figure 4 for LDV Game and
PDVs National and International. Note that to each node in the LDV data sum-
mary is associated the set of corresponding nodes in the physical data views.
To keep the figure readable, only mappings for LDV nodes Game and Date are
illustrated.

Mappings between LDVs and PDVs are based on correspondences between
LDV and PDV tree nodes. By identifying a node in a tree with its path from the
root, one can note that this approach to representing correspondence between
trees is close to the path-to-path mappings used in [4]. The restriction we add -
an LDV node can be mapped to at most one node in the same PDV - makes
sure that translation from LDV to PDV in query processing is unique. A PDV
not respecting the restriction can always be split into several “correct” PDVs.

Compared to classical query-based methods to define correspondences be-
tween schemas, the simplicity of our node-to-node mappings approach provides
several advantages.
– In many cases, mappings can be semi-automatically generated by relying on

the semantics carried by a sequence of tags (see [15, 17]).
– The process of creating these mappings can easily be supported by a graph-

ical interface and they are easier to maintain than query-based mappings.
– Such node-to-node mappings are easy to reverse, therefore the view model

can be seen both as global-as-view (providing easy query translation) and
local-as-view (providing easy update).

– In Section 4, we will see that such mappings can easily be extended in order
to support a richer semantics.

Semantics: a LDV L is a view over a set of PDVs PDV (L), whose schema
is a tree Tree(L). The interpretation of a tuple (l1, ..., lk), li ∈ Tree(L) is:

Eval(l1, ..., lk) =
⋃

P∈PDV (L) Eval(p1, ..., pk), pi ∈ P is mapped to li
This union semantics is defined in two variants: strict matching, where only

PDVs containing mappings to all the li are considered, and relaxed matching,



Views for Simplifying Access to Heterogeneous XML Data 79

GameResult

Description Date Team

Name Scored Scorer

CountPlayerName

Result
//

Date(@) Summary Player

Goals(@) Name Country

Date Description

Game

Team

Name NbOfGoals Scorer

NbOfGoalsName

Encyclopedia

Football

Player

Name Biography GameDescription

GameDate

Game

TeamGoals

Team

Biography

Scorer

PlayerGoals

PlayerName

(Game:Game/Team/Scorer/Name,
Encyclopedia:Encyclopedia/Football/Player/Name, "=")

Mappings

Joins

Encyclopedia:Encyclopedia/Football/Player/Name
Player −−> Game:Game/Team/Scorer/Name

PlayerGoals −−> Game:Game/Team/Scorer/NbOfGoals

.................
Biography −−> Encyclopedia:Encyclopedia/Football/Player/Biography

Date Description Team

Game

NbOfGoals ScorerName

Name NbOfGoals

Physical Data Views Logical DataViews

Game

International

National

Logical Data Views User Data View

Game

Encyclopedia

Mappings

............

Game:Game −−> National:GameResult, International:Result
Game:Game/Date −−> National:GameResult/Date, International:Result/Date

Fig. 4. From physical to logical data view, from logical to user data view

where all the PDVs are considered, but only incomplete tuples, based on existing
mappings, are built in each PDV.

The algorithm in Section 3.3 translates straightforwardly a query against a
LDV into a union of queries against its corresponding PDVs by transforming
paths from the LDV query into the corresponding paths in each PDV.

3.2 From Logical to User Data Views

A user data view consists of a set of typed concepts, their correspon-
dence with nodes in the logical data views and a set of predicates
that are used to join the logical data views (in the example, a single join
predicate is defined). This case is illustrated on the right side of Figure 4. Each
concept has at least a mapping to some LDV node, concept Player being the
only one mapped to both LDVs. The join predicate specifies the joined LDV
nodes and the join operator (’=’ in our example). If several join predicates con-
nect two LDVs, the global join condition is the conjunction of the individual
predicates.

The semantics of a user data view is described by the query translation al-
gorithm below. Roughly speaking, the interpretation of a tuple of concepts is a
n-ary join of partial tuples of LDV nodes, found in LDVs through mappings.

We now explain in details the translation algorithm from user queries to phys-
ical queries, via logical queries.

3.3 Translating User Queries

Let us now consider Query Q3 as an example to illustrate the translation algo-
rithms. It involves a join between the two LDVs in order to return the biographies
of scorers from games played on 2004-09-08.



80 D. Vodislav et al.

Concepts
Biography
GameDate

LDVs
Game
Encyclopedia

TeamDate

Game

{= 2004−09−08}
Scorer

. . .

. . .

Name

Encyclopedia

Football

Player

BiographyName

1

2

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Encyclopedia

Football

Player

BiographyName

Encyclopedia

Joins
Game/Team/Scorer/Name =

LDV

Join (=)

LDV

Game

Encyclopedia

Step 1
identify LDVs and joins in query

Encyclopedia/Football/Player/Name

add query annotations to LDVs

Step 2
find PDVs matching the query

PDVs for LDV

PDVs for LDV Game

Encyclopedia

National
International

both have mappings for
the marked nodes
Date and Name

Encyclopedia

has mappings for
the marked nodes
Name and Biography

Step 3 Step 4
generate and annotate combinations of PDV joins

  (=)

Team

Scorer. . .
{= 2004−09−08}

Date

GameResult

. . .

National

PlayerName

  (=)

Player
{= 2004−09−08}

Name

. . .

. . .

Result
//

International

Date(@)

Fig. 5. First steps for translating Query Q3: Select Biography Where GameDate=2004-09-08

Definition 1. A user query in XyView has the form
Q: Select c1, ..., cn

Where cond1(c’1) and ... and condm(c’m)
where ci and c’j, i = 1, ..., n, j = 1, ..., m, are user view concepts and condj

are predicates over a single concept.

Figure 5 illustrates the translation of Query Q3 into XQuery. The translation
algorithm for a user query Q consists of five steps:

1. Identify LDVs and joins involved in user query Q;
2. Produce a tree representation of Q based on the LDV trees;
3. For each LDV annotated tree, find the subset of PDV trees that match Q;
4. Generate all combinations of joins between PDVs;
5. Generate the final XQuery by unioning the combinations of step 4.

Step 1. One identifies the sets of concepts (CQ), LDVs (LQ) and joins (JQ)
involved in Q. They are the following:

CQ = {c1, ..., cn}
⋃

{c’1, ..., c’m}
LQ basically contains only LDVs involved in the query, i.e. having nodes mapped

to some concept in CQ, in order to discard useless joins. Several seman-
tics are implemented in XyView for LQ. One possibility is to remove redun-
dant LDVs from LQ, i.e. those contributing with data already provided by
other LDVs. Another possibility is to add LDVs that appear along some join
path between LDVs in the initial LQ.

JQ = {j=((l1, path1), (l2, path2), op) | j is a join, li ∈ LQ, pathi is a path in
li, i=1,2, op is the join predicate}, joins between members of LQ.

In the example (Figure 5, Step 1),
CQ3={Biography, GameDate}
LQ3={Game, Encyclopedia}, because Game has a node mapped to concept



Views for Simplifying Access to Heterogeneous XML Data 81

GameDate and Encyclopedia has a node mapped to concept Biography
JQ3={((Game, Game/Team/Scorer/Name), (Encyclopedia, Encyclopedia/Football/Player/

Name), ’=’)} includes the only existing join, because LQ3 contains both joined
LDVs.

Step 2. One adds query annotations to nodes of LDV trees from LQ.

Definition 2. The following query node annotations are defined for LDV nodes:
– isProjected, a boolean, true iff the node is mapped to a projected concept;
– condSet, a set of condition predicates composed of predicates condj of Q over

a concept mapped to the node;
– isJoined, a boolean, true iff the node occurs in JQ.

Definition 3. A LDV tree node is called a marked node if isProjected = true
or condSet�= ∅ or isJoined = true.

Figure 5, Step 2 shows query annotations added to LDV trees for Q3. The pro-
jected node, Biography (isProjected=true), is in bold font; join nodes (isJoined
=true) are connected through a dashed line; and the selection node (condSet
�= ∅) is annotated with the set of condition predicates. We removed nodes that
are not involved in the query.

Step 3. For each l ∈ LQ, the set of PDVs matching Q is

PQ,l = {p | p is a PDV, ∀ n marked node of l ⇒ ∃ n′ of p mapped to n}
This corresponds to the strict matching semantics presented in Section 3.1.

In the example, we obtain PQ3,Game={National, International} and
PQ3,Encyclopedia={Encyclopedia}, because all the marked nodes in Step 2 are
mapped into all the corresponding PDVs. This is not always the case; suppose
that game dates are lacking from PDV National, in that case National must be
removed from PQ3,Game, because Date is a marked node in LDV Game.

Step 4. One computes all the combinations CombQ of joins between PDVs
found at Step 3. Note that joins may be n-ary (in opposition to binary), this
may occur when the schema has more than two LDVs.

For each comb ∈ CombQ, the PDV nodes get the same query annotation as
the LDV nodes to which they are mapped. A PDV node mapped to no LDV
node gets isProjected=false, condSet=∅ and isJoined=false.

Also, for each comb ∈ CombQ, the set Jcomb of join conditions is obtained
from JQ by replacing the LDV nodes by the corresponding PDV nodes.

In our example, there are two such combinations, shown in Figure 5, Step 4.

Step 5. For each comb ∈ CombQ, representing a join between PDVs, a For-
Where-Return query is generated. The final XQuery is obtained by unioning all
these join queries. For our example, the final result is presented in Figure 2.

The algorithm for generating a For-Where-Return query creates For/Where/
Return clauses as concatenations of the clauses generated for each individual
PDV. To the Where clause, one must also concatenate the join conditions from
Jcomb.



82 D. Vodislav et al.

ForClause(pdv) → String
pdv.variable = GenerateVar()
pdv.varNodeList =

VariableGen(pdv.root)
forClause = concat(pdv.variable,

’ in collection(’,
pdv.collectionURI, ’)’ )

for each ni ∈ pdv.varNodeList repeat
forClause = concat(forClause,

’,’, ni.variable, ’ in ’,
AncestorVarAndPath(ni, pdv))

end for
return forClause

end ForClause

VariableGen(n) → NodeList
for each ni ∈ n.children repeat

varNodeListi = VariableGen(ni)
end for
childrenVarNodeList = concat(varNodeList1, ...)
if n.isProjected then

n.variable = GenerateVar()
n.markedAncestor = true

else maChildren = NbMarkedAncestor(n.children)
n.markedAncestor = n.condSet �= ∅ or

n.isJoined or maChildren > 0
if maChildren > 1 then

n.variable = GenerateVar()
else n.variable = null
end if

end if
if n.variable �= null then

return concatList([n], childrenVarNodeList)
else return childrenVarNodeList
end if

end VariableGen

Fig. 6. “For” clause generation for a PDV

Let us describe now the algorithms For, Where and Return that generate
the corresponding clauses for a single annotated PDV.

The For clause defines variables and access paths to queried data in the PDV.
Variable generation respects the following rules:

Rule 1. A variable is defined for each projected node in the PDV.
Rule 2. For any two marked nodes of a PDV, there is a variable definition for
their lowest common ancestor in the PDV tree.

Rule 2 ensures the closeness semantics for the XML elements addressed by
the query, i.e. those corresponding to marked nodes. For instance, it ensures that
in query Q3 the date and the scorer name belong to the same game.

Considering the annotated PDV National in the first combination in Figure 5,
Step 4, there are only two marked nodes Date and Name, none of them projected.
Then, the only variable element defined on national games is that of GameResult,
their lowest common ancestor.

The algorithm for generating the For clause for a single PDV is presented in
Figure 6. It adds some new query annotations to tree nodes:
– variable, the name of the variable generated for the node, if any;
– markedAncestor, a boolean, true iff the node’s subtree contains at least a

marked node.

It also adds the following annotation for each PDV:

– variable, the variable name for documents that match the PDV;
– varNodeList, the list of variable nodes in the PDV, following the order of

variables in the For clause.

The ForClause function uses the VariableGen function to obtain the ordered
list of variable nodes in the PDV. The For clause starts by defining the document
variable iterating in the collection associated to the PDV. All variable names
are generated by calls to function GenerateVar, that returns unique variable



Views for Simplifying Access to Heterogeneous XML Data 83

names. The rest of the For clause defines variables for each variable node. The
AncestorVarAndPath function searches for the first variable ancestor of the node,
then returns this variable concatenated with the path from this ancestor to the
node. If no variable ancestor exists, one uses the PDV variable and the path
from the root to the node.

The VariableGen function builds the list of variable nodes in the subtree of the
parameter node n, but also annotates with variable and markedAncestor each
node in the subtree. First, it recursively builds the variable node lists for each
child of n, then concatenates these lists. Then, it must decide if n is a variable
node or not; if not, the result is the concatenated list from children, else n is
added in front of this list. This step produces a consistent order for the For
clause, because a node is always placed before its descendants.

Rules 1 and 2 are used to decide if n is a variable node. This is true either if n is
projected, or if it has at least 2 children being markedAncestor. In the latter case,
it is easy to demonstrate that n is the LCA of marked nodes from the subtrees of
these children. Function NbMarkedAncestor returns the number of nodes being
markedAncestor in the parameter list. Also, n is itself markedAncestor if it is
projected or if it has at least one child being markedAncestor.

Note that the algorithm does not generate useless variables, only
marked nodes (i.e. needed in the user query) are connected through variables on
the LCA.

The algorithm for the Where clause produces a conjunctive condition. For
each PDV node with condSet �= ∅, it generates a condition predicate for each
element of condSet. The node is identified by the path from its first variable
ancestor. Note that well-typed constants are generated, by using the types of
the view concepts. A similar algorithm is used to generate join conditions.

The Return clause describes the query result, using the variables of projected
PDV nodes. Several choices for the XML type of the result are possible in
XyView; they are discussed in the next section.

4 Deeper Inside XyView

4.1 Duplicates and Data Loss

So far, we have presented views as providing a flat, relational-like, representation
of arbitrary XML trees. The flattening is performed by accessing nodes through
path expressions (preserving closeness through variables on the lowest common
ancestor) and applying the XQuery string() operation on the projected nodes.
The transformation from logical to user data views then corresponds to a sim-
ple sequence of join operations between results of path expressions followed by
projection/map operations. In the transformation from physical to logical data
views, joins are replaced by unions. The main difference with a standard view
mechanism is that the view query is not defined a priori but rather in an op-
portunistic way, depending on the user query, so as to avoid duplicates and
information loss that would be generated by unnecessary joins and variables.



84 D. Vodislav et al.

Therefore, XyView differs from any standard view mechanism relying on query
composition: a XyView view is not defined by a query and is not equiv-
alent to a query. To see why query-based views may be problematic, let us
have a closer look to this possibility.

If we consider that a XyView view is defined by a query, this query has
to provide a full view over the various documents structures for all the view
concepts. Thus, it would naturally feature (i) all the possible join and union
operations in the view, as well as (ii) variables for internal nodes so as to preserve
closeness of all concept elements belonging to the same subtree. A good candidate
for the view query is the user query that projects all the view concepts, i.e. its
translation through the previous algorithm.

A query on this view will face the following problems:
– Data loss: the join operations would make it impossible to return e.g., the

biography of players who are not part of some games. The problem is that
the join with LDV Game, that is part of the view query definition, is useless
when querying player biographies. Data loss can be solved by introducing
outer-joins, but they generate null values and the need to deal with them.
In a similar way, but with no apparent reasonable XQuery solution, useless
variables may be responsible for data loss. E.g., the view query contains
a variable on the internal node representing scorers (required to connect
scorer name and goals). If it cannot be instantiated, the corresponding parent
element would be discarded, i.e. games with no scorer would be discarded
from all results.

– Duplicates: useless joins would also lead to unnecessary duplicates, e.g. by
returning several biography occurrences for most players (one for each occur-
rence as a scorer). The same is true for useless variables, coming from view
concepts not addressed in the query. A result being produced for each new
binding to the tuple of all the variables, useless variables produce duplicates
for the useful variables in the result.

Duplicates can be eliminated through distinct operations, but (i) it is
sometimes very difficult to distinguish between good (existing in data) and
bad duplicates, and (ii) distinct operations have a cost (notably when the
desired order is not that required by the distinct operation).

4.2 View Customization

More expressive power is added to XyView through LDV node annotations,
which allow customizing query translation, notably by (i) typing results using
tree structures and transformation functions rather than returning flat results
and (ii) adding selections to the view.

Tree results can be obtained in XyView in several ways. The simplest one
consists in typing results according to the PDVs, i.e., returning trees as they are
stored in the repository. Note that this solution leads to heterogeneous results.

For instance, consider a new query, close to Query Q3, modified to ask scorers
(name and number of goals) from games on 2004-09-08.

Q3’: “Scorers from games on 2004-09-08”



Views for Simplifying Access to Heterogeneous XML Data 85

This query would be translated as follows:

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult, $var2 in $var1/Team/Scorer
Where $var1/Date = xs:date(’2004-09-08’)
Return $var2,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result, $var2 in $var1//Player
Where $var1/@Date = xs:date(’2004-09-08’)
Return $var2)

Note that, in that case, the result of the query is heterogeneous, featuring
scorers as they are stored in National and International PDVs. This solution is
well adapted for ad hoc queries expressed by users who want to see the data as
it has been produced. Also, it is an interesting semantics for the view designer
who, in the preliminary phase, wants to get some information about data types.
However, if the results are to be fed to an application or if the end users are not
aware of the data as it is stored, we need to provide an alternative.

The second solution provides the means to type results according to the LDVs.
This can be performed in a simple way by associating to each leaf node the full
text (or typed atomic value) corresponding to the physical nodes to which they
are mapped. It is then simple to re-construct the elements as they are defined
in the logical data view. Query Q3’ becomes:

union(
For $doc1 in collection(NationalURI),

$var1 in $doc1/GameResult, $var2 in $var1/Team/Scorer,
$var3 in $var2/PlayerName, $var4 in $var2/Count

Where $var1/Date = xs:date(’2004-09-08’)
Return <Scorer>

<Name>string($var3)</Name>
<NbOfGoals>xs:integer(string($var4))</NbOfGoals>

</Scorer>,
For $doc1 in collection(InternationalURI),

$var1 in $doc1/Result, $var2 in $var1//Player,
$var3 in $var2/Name

Where $var1/@Date = xs:date(’2004-09-08’)
Return <Scorer>

<Name>string($var3)</Name>
<NbOfGoals>xs:integer(string($var2/@Goals))</NbOfGoals>

</Scorer>)

Note that new variable definitions are generated in the For clause, in order to
access PDV nodes necessary to build the LDV subtree for the scorer. Results of
both unioned queries have the same type, given by the LDV. Note also that the
LDV subtree may not have all the subelements if some of them are not mapped
into the PDV.

Both typing solutions above can be performed automatically by activating
the appropriate translation option. Still, there are some cases where we want
to achieve more sophisticated typing. For instance, we may want to add some
PCDATA or attributes to the internal nodes. To do this, the view designer further
annotates the nodes of the data summaries with transformation functions.

Consider for instance the previous example, but in which we want to add an
attribute called source that gives the URI of the source document. Suppose that



86 D. Vodislav et al.

the document URI can be obtained by applying the element2URI(element)
function to some element of that document. Node Scorer in the LDV must be
annotated as follows:

Return: <Scorer source=element2URI($$)> $1 $2 </Scorer>

As in Yacc, we use $$ to signify the current node (Scorer), $1 and $2 to
represent its first (Name) and second (NbOfGoals) children. Typing of children
$1 and $2 is recursively done following the same method. For instance, this
solution allows selecting in the result only part of the node’s subelements. Also,
we use # to represent user input, i.e. the list of constant values in the user query
coming from conditions on the current node, and may be used as an argument
in transformation functions.

Note that producing flat string results, or PDV subtrees, or LDV subtrees is
equivalent, respectively, to the following annotations for the Scorer LDV node:

Return: string($$) //flat
Return: $$ //PDV subtree
Return: <Scorer> $1 $2 </Scorer> //LDV subtree

Selections to the view may also be specified through annotations. Suppose
that we want to discard from our view all the games before 2000. This can be
simply done through a new type of node annotation: selection predicates. In the
example, the following annotation must be added to the Date node in the LDV:

Where: $$ >= xs:date(’2000-01-01’)

If the user query concerns some LDV, all the selection predicates of that LDV
are added to the conjunctive Where clause of the generated XQuery.

These modifications are easily added to the algorithm detailed in the previous
section. However, note that, even with these additions, the view mechanism is far
from supporting all the features of XQuery. Notably, XyView does not provide
grouping/nesting, sorting or disjunctive join predicates. Some of the missing
features can be supported by the client program, using e.g., stylesheets. In any
case, there is a necessary tradeoff between ease of use and expressive power. So
far, the tool has proven useful for most applications.

5 The XyView System

XyView has been implemented as a set of tools for rapid development of web
applications over the Xyleme XML repository. Yet, XyView is not dependent
on Xyleme and can be easily adapted to any content management system that
supports XQuery. The XyView system is composed of the following modules:

– A view editor that enables visual creation and modification of XyView views.
– A run-time environment that provides a simple API for using XyView views

in user- (web forms) or machine-oriented (web services) web application.
– A web-form application generator that provides a graphical environment for

creating simple web-form applications over the Xyleme repository.



Views for Simplifying Access to Heterogeneous XML Data 87

Fig. 7. XyView editor and web-form generator

The view editor (upper-left window in Figure 7) is a graphical tool enabling
simple and intuitive creation of each view component: PDVs (using data sum-
mary extractors), LDVs, concepts, mappings, joins, etc. Views are saved in a
persistent form, as a set of XML files.

The run-time environment provides a simple Java API for using XyView views
in programs. The main functionalities provided by the XyView API are: (i)
creating/modifying a view, (ii) loading/saving a view from/in its persistent form,
(iii) building user queries against the view, (iv) translating a user query into an
equivalent XQuery.

Note that XyView simply translates the user query into XQuery and does not
interfere afterwards in the communication between the application and the XML
repository. This architecture has the advantage of minimizing the dependency
between XyView and the underlying XML content management system, allowing
easy adaptation of XyView to any system supporting XQuery.

The web-form application generator (upper-right window in Figure 7) enables
complete development of simple applications for end-users that query the Xyleme
repository through a web-form interface. It provides a graphical interface that
helps the application programmer to choose a XyView view, then to formulate
queries on the view concepts. The web-form built in Figure 7 is based on the
Football example view; it asks user input for conditions on concepts PlayerName
and PlayerGoals and displays concept GameDescription. The system automati-
cally generates the HTML query form (bottom-left window) and the application
servlets producing the query report (bottom-right window).



88 D. Vodislav et al.

Several applications were developed with XyView on top of Xyleme, to inte-
grate more or less heterogeneous, semi-structured data sources, covering domains
such as news publishing, financial reports, press archives, etc. Examples used in
this paper are summaries of one such application involving about 50 PDVs and
11 LDVs (an encyclopedia, 10 different sports and an average of 5 kinds of wires
for each). The original documents were well annotated ASCII files transformed
into XML documents using a dedicated tool.

6 Related Work and Conclusion

Various approaches for simplifying query formulation over XML data were pro-
posed. Systems like XQBE [1] and Xing [6] use visual specification of XML
queries based on tree patterns. But even if it is simpler to express queries graph-
ically than in XQuery, the user must handle XML structures, express joins, etc.
Other systems allow writing queries with minimal knowledge about the struc-
ture of documents: keyword search in XML data [5, 12, 9] or tag and keyword
search [14]. Such systems are not adapted for application development over het-
erogeneous XML documents, because of their limited expressive power (e.g. no
joins) and lack of precision and/or meaningfulness.

XyView’s approach of adapting the universal relation paradigm [18] to sim-
plify query formulation fits well the needs of both end user and application
development. Querying XyView views is very simple, it guarantees precision,
meaningfulness of results and minor processing overhead. The price to pay is
the view designer’s effort to create and maintain the view. But the XyView
model is not query-based and rather borrows from mediator-like [2, 13, 4, 7] or
P2P [10] XML data integration systems, to define views through basic one-to-
one mappings, like those used in [4, 7]. This allows the use of graphical tools,
which greatly simplifies the view designer’s task.

An alternative approach is to shred XML in relations, physically (like many
RDBMS today) or virtually ([11]), then to create a relational view on top. This
solution may work efficiently for homogeneous XML documents, with no struc-
tural variation and when XML is really stored in tables. Our application context
is more general; we build views over heterogeneous and schema-free XML, stored
in any system supporting XQuery.

Among the tools for rapid development of web applications over XML data,
Qursed [16] is close to our application development context. Qursed enables rapid
development of user-oriented applications over XML data, based on web query
forms and reports. Its main module is a visual editor, which roughly takes an
HTML query form (input for the user), a report template (output for the user)
and an XML Schema describing the data. The programmer defines mappings
between input query fields and XML data, then between XML data and report
output. Qursed is similar to our XyGen web-form application generator, but
can produce more sophisticated output reports. Yet, Qursed is not appropriate
for heterogeneous, schema-free XML data. It needs XML Schema for data and



Views for Simplifying Access to Heterogeneous XML Data 89

can handle a single document schema in the same application. Also, Qursed is
designed for user-oriented applications, but not to program web services.

In the same category of tools, BEA Liquid Data [3] provides an advanced en-
vironment for data integration and web application development. It overcomes
the limitations of Qursed by defining data views over several schemas connected
through joins. Unions are also possible, but the method to define them is un-
natural, based on a cloning of data view elements. Beyond the fact that this
complex tool focuses on specialized programmers, its support for heterogeneous
schema-free XML documents has several limitations: (i) data sources must pro-
vide a schema, (ii) views are defined by queries, with all the problems of useless
joins and variables, (iii) one cannot reasonably mix in the same data view several
joins and unions, etc. Even if the latter problem can be bypassed by chaining
several data views, this results in bad query processing performance.

Through its simple programming interface that removes the need to work with
XQuery and XML schemas, XyView increases the productivity of programmers
who implement query interfaces on top of a heterogeneous, schema-free XML
repository. The view designer’s task is highly simplified by the intuitive rep-
resentation of views (set of mappings), manipulated through graphical editors.
The query translation algorithm is simple, effective and scalable, it avoids use-
less duplicates, data loss and unnecessary nesting. Tools for Java programming
and for automatic generation of web-form applications complete the XyView
environment.

Although the tool does not provide the full expressive power of XQuery, it has
proven sufficient for many industrial applications. Furthermore, the possibility
to customize the query generation algorithm by adding functions to the view
specification opens interesting perspectives in terms of expressive power. We
illustrated this by considering typing and selections, we plan to further explore
this mechanism to add some needed functionalities such as aggregation.

References

1. E. Augurusa, D. Braga, A. Campi, and S. Ceri. Design and Implementation of a
Graphical Interface to XQuery. Proceedings ACM Symposium on Applied Comput-
ing, pages 1163 – 1167, 2003.

2. C. K. Baru, A. Gupta, B. Ludäscher, R. Marciano, Y. Papakonstantinou, P. Ve-
likhov, and V. Chu. XML-Based Information Mediation with MIX. Proceedings
SIGMOD, 1999.

3. BEA Liquid Data. http://www.bea.com.
4. S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. Pro-

ceedings of the 27th VLDB Conference, pages 271–280, 2001.
5. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine

for XML. Proceedings VLDB, 2003.
6. M. Erwig. Xing: A Visual XML Query Language. Journal of Visual Languages

and Computing, pages 5–45, Februray 2003.
7. I. Fundulaki, B. Amann, C. Beeri, M. Scholl, and A.-M. Vercoustre. STYX: Con-

necting the XML Web to the World of Semantics. Proceedings EDBT, pages
759–761, 2002.



90 D. Vodislav et al.

8. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. Proceedings of the 23rd VLDB Conference,
pages 436–445, 1997.

9. L. Guo, F. Shao, J. Shanmugasundaram, and C. Botev. XRANK : Ranked keyword
search over XML documents. Proceedings SIGMOD, 2003.

10. A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data management infras-
tructure for semantic web applications. Proceedings WWW, 2003.

11. A. Halverson, V. Josifovski, G. Lohman, H. Pirahesh, and M. Mörschel. ROX:
Relational over XML. Proceedings VLDB, 2004.

12. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. Proceedings ICDE, 2003.

13. Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML query engine for network-bound
data. The VLDB Journal, 2:380–402, December 2002.

14. Y. Li, C. Yu, and H. Jagadish. Schema-Free XQuery. Proceedings VLDB, 2004.
15. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with

Cupid. Proceedings VLDB, pages 49–58, 2001.
16. Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED: Querying and

Reporting Semistructured Data. Proc. SIGMOD, 2002.
17. C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic Integration of XML Heteroge-

neous Data Sources. Proceedings IDEAS, pages 199–208, 2001.
18. J. D. Ullman. Universal Relation Interfaces for Database Systems. Proceedings

IFIP, 1983.
19. Xyleme. http://www.xyleme.com.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 91 – 108, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SASMINT System for Database Interoperability in 
Collaborative Networks 

Ozgul Unal and Hamideh Afsarmanesh 

Informatics Institute, University of Amsterdam 
{ozgul, hamideh}@science.uva.nl 

Abstract. In most suggested systems aiming to enable interoperability and col-
laboration among heterogeneous databases, schema matching and integration is 
performed manually. The SASMINT system introduced in this paper proposes a 
(semi-) automated approach to tackle the following: 1) identification of the syn-
tactic/semantic/structural similarities between the donor and recipient schemas 
to resolve their heterogeneities, 2) suggestion of corresponding mappings 
among the pairs of matched components, 3) facilitation of user-interaction with 
the system, necessary for validation/enhancement of results, and 4) generation 
of a proposed integrated schema, and a set of derivation rules for each of its 
components to support query processing against integrated sources. Unlike 
other systems that typically apply one specific algorithm, SASMINT applies a 
hybrid approach for schema matching that combines a selection of algorithms 
from NLP and graph theory. Furthermore, SASMINT exploits the user-
validated schema matching results in its semi-automatic generation of the inte-
grated schema and its necessary derivations. 

1   Introduction 

In order to remain competitive in a highly aggressive global market, organizations 
need to achieve their goals better and faster. At this point, the need for collaboration 
has become apparent, resulting in a rise in the number of collaborating organizations. 
A collaborative network (CN) is formed by variety of autonomous, geographically 
distributed, and heterogeneous organizations that collaborate to better achieve com-
mon or compatible goals [1]. There are a number of benefits of CNs, including in-
creased access to market opportunities, sharing risks, reducing costs, achieving busi-
ness goals not achievable by a single organization, etc. 

In order to support rapid formation of collaborative networks, it is required to have 
a common interoperable infrastructure, operating rules, agreements, etc. [2]. Due to 
the lack of common standards, each organization uses its own format in database 
schema definitions, which makes the interoperation among nodes very difficult. Espe-
cially if the number of organizations in a CN is large, an important challenge is how 
to share data represented by heterogeneous schemas. Automatic resolution of schema 
heterogeneity still remains a main bottleneck for provision of integrated data ac-
cess/sharing among autonomous, distributed databases. 

Integrating data from a given set of databases requires making choices about the 
structure as well as the semantics of elements in the database schemas. A variety of 



92 O. Unal and H. Afsarmanesh 

approaches to interoperability have been proposed, aiming at different levels of inte-
gration [3]. For example, multidatabases and federated databases [3] have introduced 
approaches to deal with collaboration among autonomous and heterogeneous data-
bases. With the exception of the approach in pure Federated Databases – where every 
database node creates its own individual integrated schema (by inter-linking its local 
schema to the schema imported from others [4]) – all other suggested approaches 
deem to create one common integrated schema to be shared by all nodes within a col-
laboration. Therefore, the interoperability infrastructure supporting collaborations, re-
quires effective mechanisms not only to integrate/inter-link database schemas, but 
also to provide homogeneous access and integrated interface to the heterogeneous and 
distributed databases. Whenever a new organization joins, its schema (donor) needs to 
be matched and integrated into the common integrated schema (recipient) of the net-
work, which results in the new extended common integrated schema. 

Schema matching and integration is challenging for many reasons. Most impor-
tantly, even schemas for identical concepts may have structural and naming differ-
ences. They may use similar words to have different meanings. In most previous ap-
proaches reported in research literature, there is a great amount of manual work 
involved in schema matching and integration. Although there is some research fo-
cused on schema matching (as later addressed in the related research section), they do 
not interlink it with the automation of schema integration. Furthermore, schema 
matching approaches often need manual tuning, such as setting thresholds, providing 
a thesaurus, etc. There is still a need for a clever and flexible user interface to display 
match results. Another limitation of the previous approaches is that they typically do 
not combine different match algorithms in a flexible way. Taking these limitations 
into account, we propose the SASMINT (Semi-Automatic Schema Matching and IN-
Tegration) system and approach [5] introduced in this paper. SASMINT (semi-) 
automatically matches the schemas and then after user validation/enhancement of 
matching results, it produces a new extended integrated schema. It combines a variety 
of linguistic and structural similarity algorithms from Natural Language Processing 
and Graph Theory research areas, producing more accurate results for schema  
matching.  

The rest of this paper is organized as follows: Section 2 provides an overview of 
related work. Section 3 motivates the research through several example cases of struc-
tural and linguistic (syntactic and semantic) conflicts that need to be considered by the 
schema matching approach. Section 4 describes the approach of SASMINT, addresses 
its steps, and introduces the derivation language used for defining the integrated 
schemas. Finally, Section 5 summarizes the main conclusions of the paper. 

2   Related Work 

In this section, the main research works related to SASMINT are addressed. First, a 
number of database interoperability efforts are briefly cited. Then, the main ap-
proaches to schema matching, corresponding to the first step of SASMINT, are ad-
dressed in more detail, focusing on their limitations compared to SASMINT. 



 SASMINT System for Database Interoperability in Collaborative Networks 93 

In the literature, there is a great deal of work addressing the challenge of database 
interoperability. However, these efforts involve a large amount of manual work at  
different stages of interoperability. For example, in [6] and [7] it is required that 
schemas are represented in terms of common data model, by the domain expert. Simi-
larly, in several other projects, such as [8-10], local schemas need to be either defined 
using the terms from a common ontology / schema or mapped to this common ontol-
ogy manually. These approaches to database interoperability typically ignore the step 
of schema matching, which could be automated to a great extend.  

On the other hand, the schema matching has been usually considered as a separate 
problem and the related challenges have been addressed by a number of research and 
development projects. However, these projects still require substantial amounts of 
manual work and are limited in the solutions that they provide. Furthermore, they 
mostly do not use linguistic techniques, which are needed in order to increase the 
overall accuracy of the schema matching system. Another limitation of these projects 
is that semi-automatic schema matching is not combined with other parts of interop-
erability, such as schema integration. The main schema matching approaches ad-
dressed below. 

Cupid [11] involves a normalization process, but it is not as comprehensive as the 
pre-processing step in SASMINT. Moreover, the name matching in Cupid involves a 
syntactic matching, which employs only one string similarity metric. Although the 
COMA system [12] provides a library of matchers that utilize element and structural 
properties of schemas, it does not support the pre-processing of elements’ names. 
Similarity Flooding [13] identifies the initial maps between the elements of two 
schemas using only a simple string matcher. These initial maps are then used by a 
structure matcher. However, Similarity Flooding has no knowledge of edge and node 
semantics. The ONION [14] system identifies the likely matches between concepts of 
two ontologies using the linguistic, structure, and inference-based matching. How-
ever, it does not employ any combination of string similarity metrics. Furthermore, it 
is assumed that the relationships among concepts are defined using a set of relation-
ships with pre-defined semantics. GLUE [15] provides a name matcher and several 
instance-level matchers based on machine- learning techniques. However, ontologies 
need to be first mapped manually in order to train the learners and a set of domain 
synonyms and constraints need to be defined before any matching occurs. Hence, a 
large amount of manual effort is required. Clio [16] generates alternative mappings as 
SQL view definitions based on the value correspondences defined by the user and 
thus, no linguistic matching techniques are used as well as much manual work is re-
quired.  

The results of several other schema matching efforts have been published in [17-
19]. The focus of these efforts is on matching large schemas or extensibility of the 
developed system. However, they share similar problems with the previous efforts 
mentioned above. They either require much manual work, or if they use linguistic 
techniques, it is typically a limited usage. 

It is clear from the references above that schema matching has been the subject of 
many efforts. However, none of these efforts considers how to use the result of 
schema matching for semi-automatic schema integration. 



94 O. Unal and H. Afsarmanesh 

3   Examples of Structural and Linguistic Conflicts 

Autonomous organizations define their schemas differently. These different defini-
tions are frequently conflicting and thus their matching and integration is challenging 
as exemplified below. Different types of conflicts exist among the representation of 
the same concept in different databases. Since the focus of this paper is only on the 
structural and linguistic (semantic and syntactic) schema conflicts, the examples that 
are given in this section belong to this category and are considered as important ob-
stacles to the interoperability among database schemas. 

Each of the following examples represents a different kind of schema conflict that 
belongs to one of three categories: structural, linguistic, and a combination of the two. 
Structural conflicts are more difficult to resolve than linguistic conflicts. 

Clearly, the varieties of types of conflicts that exist among databases are not lim-
ited to the ones given here. Furthermore, these examples are from relational data-
bases, but they can be easily extended to the ones from other types. Note that, due to 
space constraints, we show only partial schemas in a simple format. If relevant to the 
example, some primary and foreign keys are also shown. 
1) Examples of Structural Conflicts: Structural conflicts exist due to the fact that differ-
ent organizations use different constructs and integrity constraints to represent concepts.  

• Atribute-Entity Conflict: This conflict arises when a concept is represented as 
an attribute in one schema and as a separate entity in the second schema. For ex-
ample, the “section” information is represented by the column ‘section’ in the 
schema S1, while the schema S2 represents it as a separate table “Section”. 

S1 S2

Section
sectionNum
day
instructor
courseID (FK)

Course

title
section
instructor

courseID (PK)

day

Course

title
courseID(PK)

 

Fig. 1. Attribute-Entity conflict 

Another example for Attribute-Entity conflict is shown in Figure 2. In this exam-
ple, “address” data is spread over three columns in S1, whereas in S2, it is stored in a 
separate table. 

S1 S2

Person

name
ID (PK)

Person

street
name

zipcode
city

Address

zipcode
street

city
ID (FK)  

Fig. 2. Attribute-Entity conflict 



 SASMINT System for Database Interoperability in Collaborative Networks 95 

• Key Conflict: This conflict arises when different keys are assigned for the same 
entity in different schemas. In the example shown in Figure 3, similar to the first 
case, there is a separate table in S2 for “section” information. Furthermore, al-
though in S1 the “Time” table has a foreign key to the table “Course”, in S2 this 
relationship is through the “Section” table. 

S1 S2

Course

title
courseID(PK)

Time
start
end
courseID (FK)

Time
start
end
sectionID (FK)

Course

section
instructor

title
courseID (PK)

day Section

sectionNum
day
instructor
courseID (FK)

sectionID (PK)

 

Fig. 3. Key conflict 

• Relationship Conflict: This conflict is related to the case, in which relationships 
between entities in different schemas are defined differently, as exemplified in 
Figure 4: In S1, there is a one-to-many relationship between the “Student” and 
“Campus”, while in S2, the relationship is many-to-many, thus introducing a 
third table “Apply”, to represent this relationship.  

S1 S2

Student

name
ID (PK)

Campus
location
enrollment
ID (FK)

Apply

ID (FK)
location(FK)

Campus
location (PK)
enrollment

Student

name
ID (PK)

 

Fig. 4. Relationship conflict 

• Attribute-Attribute Conflict: This conflict arises when the same concept is rep-
resented by using different number of attributes in different schemas. For the ex-
ample shown in Figure 5, “address” data is stored in one column of the “Person” 
table in S1, while in S2, it is spread over three columns. 

S1 S2

Person

address
name

Person

street
name

zipcode
city  

Fig. 5. Attribute-Attribute conflict 



96 O. Unal and H. Afsarmanesh 

2) Examples of Linguistic Conflicts: Linguistic conflicts arise because of different 
terminology and names that different organizations use to refer to the same data. Lin-
guistic conflicts can be of two types: syntactic and semantic. Below are the examples 
for syntactic and semantic conflicts. Since this type of schema conflict is related to the 
differences in representation of “names” of columns or tables, we have not provided 
example schemas but only some related but different names in the following  
examples.  

• Syntactic Conflicts 
o Names with more than 1 token (word) with different order of tokens, 

e.g. year_of_birth vs. birth_year. 
o Abbreviated vs. Extended Names, e.g. GPA vs. GradePointAverage. 
o Existence of Stop Words, e.g. departmentName vs. 

name_of_department. 
o Different forms of a string (plural, singular, etc.), e.g. shelves vs. shelf. 
o Use of short forms of strings, e.g. crdts vs. credits. 

• Semantic Conflicts 
o Use of synonyms, e.g. gender vs. sex. 
o Applying some linguistic semantics (like IS-A hierarchy), e.g. person 

vs. facultyMember. 
 
3) Example of combined Structural and Linguistic Conflicts: The two types of con-
flicts addressed above may occur in a combined form in some parts of the schema. 
Following is an example for this case, where “contact” information in S2 can be 
matched with the concatenation of “firstName, lastName” in S1, if we apply both the 
linguistic “IS-A hierarchy” and the structural “one attribute in the first schema match-
ing two attributes in the second” (attribute-attribute conflict).  

S1 S2

Customer

lastName
company

firstName

Customer

contact
company

 

Fig. 6. Combined Structural and Linguistic conflicts case 

4   The Proposed Approach of SASMINT  

In this section, the approach of the SASMINT system for semi-automatic schema 
matching and integration is described. As shown in Figure 7, the SASMINT has two 
main steps: Schema Matching and Schema Integration. Section 4.1 focuses on the 
sub-steps comprising schema matching, with detailed explanations about the Com-
parison sub-step. How to use the results of schema matching to generate the inte-
grated schema as well as the derivation language used for defining this schema are the 
subjects of Section 4.2. As addressed earlier, unlike other approaches, the main con-
tribution of SASMINT is to perform schema matching, as well as schema integration 



 SASMINT System for Database Interoperability in Collaborative Networks 97 

automatically, to the extent possible, which is achieved by means of the steps ex-
plained below. 

4.1   Schema Matching 

The Schema Matching consists of three main steps, as explained below: 1) Prepara-
tion, for bringing schemas into a common representation, 2) Comparison, for identify-
ing the likely matches between elements of two schemas, 3) Result Generation and 
Validation, for obtaining the user approval /modification/ rejection.  

1) Preparation 
Since SASMINT aims at supporting schemas represented in different schema lan-
guages, such as relational and object-oriented, they need to be brought into a common 
format before being compared. The Directed Acyclic Graph (DAG) with labeled 
edges has been chosen for this purpose, considering that it provides a balanced format 
among other alternatives supporting the representation of a relational schema, an ob-
ject-oriented schema, etc. as a graph. Furthermore, existing graph theory concepts and 
algorithms can help compare two graphs. In summary, preparation step deals with 
transforming database schema information into DAG format using publicly available 
graph libraries.  

Schema
Matching

Preparation
Comparison

Result Generation
and Validation

Linguistic Matching

Structure Matching

Pre-Processing

Syntactic

Semantic

(combination of string similarity metrics)

(combination of Path-based & Gloss-based
semantic similarity metrics )

Schema
Integration

SASMINT

(tokenization&Word Separation, Elimination of
Stop Words&Special Characters, Abbreviation
expansion, Lemmatization)

 

Fig. 7. Processing Steps of SASMINT 

2) Comparison 
The second step of SASMINT, Comparison, is responsible for automatically identify-
ing the likely matches between two schemas, by using a number of algorithms from 
Natural Language Processing (NLP) and Graph Theory to resolve the syntactic and 



98 O. Unal and H. Afsarmanesh 

semantic as well as structural heterogeneities. The Comparison involves two kinds of 
matching: Linguistic and Structure, as addressed below. Linguistic matching consid-
ers only the names of schema elements. On the other hand, structure matching takes 
into account the structural aspects of schemas. Results from linguistic and structure 
matching are combined by weighted summation to determine the similarity of schema 
elements being compared.  

A- Linguistic Matching 
This step consists of Syntactical Matching and Semantic Matching, details of which 
are provided below. The result of the Linguistic Matching is a value between [0..1], 
for pairs of element names from the two schemas. Before any matching occurs, ele-
ment names (strings) from the two schemas must be pre-processed to bring them into 
a common representation, which is called as pre-processing and involves the follow-
ing operations: 

1. Tokenization and Word Separation: Strings containing multiple words are split 
into lists of words or tokens.  

2. Elimination of stop words: Stop words are common words such as prepositions, 
adjectives, and adverbs, e.g. ‘of’, ‘the’, etc., that occur frequently but do not have 
much effect on the meaning of strings. Hence, they are removed from the names. 

3. Elimination of special characters and De-hyphenation: The characters such as 
‘/’, ‘-‘, etc., are considered as useless and removed from the names.  

4. Abbreviation expansion: Since abbreviations are used in names extensively, they 
need to be identified and expanded. For this purpose, a dictionary of well-known 
abbreviations as well as the ones specific to a domain can be used.  

5. Normalizing terms to a standard form using Lemmatization: Multiple forms of 
the same word need to be brought into a common base form. By means of lemma-
tization, verb forms are reduced to the infinitive and plural nouns are converted to 
their singular forms.  
After element names are brought into a common representation, a variety of algo-

rithms or metrics from the NLP research field are applied to identify the syntactic and 
semantic similarities, as addressed below.  
 

I. Syntactic Similarity 
Syntactic Similarity uses the algorithms (metrics) from the NLP research field, for 
comparing two character strings syntactically. As addressed in the Related Work sec-
tion, previous schema matching approaches typically depend on only one metric. 
However, each of these metrics is best suited for a different type of strings, meaning 
that for some types of element names, syntactic similarity in these approaches per-
forms badly. Considering the limitations of utilizing only one metric, SASMINT uses 
a combination of several main syntactic similarity metrics, making it a more generic 
tool. These metrics are briefly explained below: 

1. Levenshtein Distance (Edit Distance): Levenshtein Distance[20], also known as 
Edit Distance, is based on the idea of minimum number of modifications, in the 
type of changing, deleting, or inserting a character, required to change a string into 
another. The costs of modifications are defined as 1 for each operation.  



 SASMINT System for Database Interoperability in Collaborative Networks 99 

Levenshtein distance is a string-based distance metric, meaning that it does not 
consider the multi-word string as a combination of tokens but rather as a single 
string. 

2. Monge-Elkan Distance: Monge and Elkan [21] proposed another string-based dis-
tance function using an affine gap model. Monge-Elkan Distance allows for gaps 
of unmatched characters. Affine gap costs are specified in two ways: one with a 
cost for starting a gap and a second for the cost of continuation of the gap. 

3. Jaro: Jaro [22], a string-based metric well known in the record linkage community, 
is intended for short strings and considers insertions, deletions, and transpositions. 
It also takes into account typical spelling deviations.  

4. TF*IDF (Term Frequency*Inverse Document Frequency): TF*IDF [23] is a vec-
tor-based approach from the information retrieval literature that assigns weights to 
terms. For each of the documents to be compared, first a weighted term vector is 
composed. Then, the similarity between the documents is computed as the cosine 
between their weighted term vectors. 

5. Jaccard Similarity: Jaccard Similarity [24] is a token-based similarity measure, de-
fined for two strings A and B, consisting of one or more words, as the ratio of the 
number of shared words of A and B to the number owned by A or B. 

6. Longest Common Substring (LCS): The longest common substring of A and B is 
the longest run of characters that appear in order inside both A and B.  

Syntactic Similarity Metrics Used in SASMINT 

The SASMINT system uses all six metrics described above to automatically identify 
syntactic similarity between element names. Considering that each metric is suitable 
for a different type of strings and schemas usually consist of mixed sets of element 
names (strings), SASMINT uses a combination of these metrics to obtain more accu-
rate results. Metrics are combined by means of a weighted summation using the fol-
lowing formula:  

simW (a,b)=wlv *smlv(a,b)+wme*smme(a,b) +wjr *smjr(a,b) +wjc *smjc(a,b) +

wtf *smtf (a,b) +wlc *smlc(a,b)
 

(1) 

where ‘lv’ stands for Levenstein, ‘me’ for Monge-Elkan, ‘jr’ for Jaro, ‘jc’ for Jaccard, 
‘tf’ for TF-IDF, and ‘lc’ for Longest Common Substring. 

In addition to being suitable for different types of strings, as another contribution, 
SASMINT proposes a new recursive weighted metric to better support the matching 
of element names containing more than one token. Depending on whether the names 
contain one or more tokens, the user can choose between the weighted and recursive 
weighted metric. This new metric is a modified version of Monge-Elkan's recursive 
metric [21]. Although both are tokenized, our recursive weighted metric is different 
from Monge-Elkan's metric on one hand that it applies more than one similarity met-
ric to the string pairs, and on the other hand unlike Monge-Elkan’s metric, our metric 
is symmetric, generating the same result for sim(a,b) and sim(b,a), and thus making 
our pair matching associative. Given two strings a and b that are tokenized into 
a = s1,s2,..sl  and b = t1, t2,...tm , the recursive weighted metric is as follows:  



100 O. Unal and H. Afsarmanesh 

sim(a,b) = 1

2l
max
j = 1

m
sim

W
(a

i
,b

j
)

i = 1

l
∑ + 1

2m
max
i = 1

l
sim

W
(a

i
,b

j
)

j = 1

m
∑  (2) 

Tests for Determining the Accuracy of Weighted Metrics 

We carried out a number of tests to validate the accuracy of our syntactic similarity 
approach by using the test data of Similarity Flooding [13] and Clio [16], which are 
from different domains of finance, library, university, etc. Due to space constraints, 
we show only two of our test results in Figures 8 and 9. Syntactic similarity between 
each possible combination of element name pairs from two schemas were calculated 
in three different ways: 1) Using the six metrics individually, 2) using the 
SASMINT’s weighted sum of the individual metrics, and 3) using the SASMINT’s 
modified recursive weighted metric. If the similarity is above the threshold then this 
match is accepted. In case of more than one match for the same element, the higher 
valued one is selected.  Figures 8 and 9 show the evaluation results where six leftmost 
sets of 3 columns represent the results for individual metrics, while the remaining two 
sets are weighted and recursive weighted metrics respectively.  

In the evaluation process, we used the concepts of precision and recall from the in-
formation retrieval field [25]. Precision (P) and Recall (R) are computed as follows: 

P = x

x + z
   R = x

x + y
 (3) 

where x is the number of correctly identified similar strings, z is the number of strings 
found as similar, which are actually not similar (called as false positives), and y is the 
number of similar strings, which could not be identified by the system (called as false 
negatives). 

Since neither of precision and recall measures can accurately assess the match 
quality alone, another measure, called as F-measure, is proposed in the literature [26], 
combining recall and precision as follows: 

F = 2
1

P
+ 1

R

 (4) 

Although in Figures 8 and 9 the values of precision and recall are also shown, for 
the purpose of the assessment of the similarity metrics, values of F-measure are con-
sidered. Based on the results of tests, it is important to note that in general while one 
metric among the six may perform well on one data set, it may not on another. This is 
due to the fact that different test sets, from different domains, contain elements with 
different characteristics, while at the same time each of the six metrics is usually suit-
able for specific type(s) of strings. However, SASMINT’s approach is more generic 
and in all our similarity evaluation tests we observed that the weighted sum of metrics 
consistently performed almost as good as the best metric among the six. Thus, we 
concluded that using our weighted metric generally generates better results on ad-hoc 
schemas. 



 SASMINT System for Database Interoperability in Collaborative Networks 101 

0.00

0.20

0.40

0.60

0.80

1.00

Le
ve

ns
te
in
 

Mon
ge

-E
lk
an

Ja
ro

Ja
cc

ar
d

TF
ID

F
LC

S

W
ei
gh

te
d

Re
cu

rs
iv
e

P R F  

Fig. 8. Test Result 1 

0.00

0.20

0.40

0.60

0.80

1.00

Le
ve

ns
te
in
 

M
on

ge
-E

lk
an

Ja
ro

Ja
cc

ar
d

TF
ID

F
LC

S

W
ei
gh

te
d

Re
cu

rs
iv
e

P R F  

Fig. 9. Test Result 2 

II. Semantic Similarity 
SASMINT uses two semantic similarity algorithms from the NLP domain: 1) path 
based measures and 2) gloss-based measures, as briefly explained below. 

1. Path-based Measures: SASMINT uses the measure of Wu and Palmer [27]. It is 
based on the idea of calculating the shortest path between the concepts in the IS-A 
hierarchy of WordNet, a lexical dictionary [28]. Wu and Palmer calculates the se-
mantic similarity of two concepts using the following formula:  

simwp (c1,c2 ) =
2* depth(lcs(c1,c2 ))

depth(c1 )+ depth(c2 )
 

(5) 

where depth is the distance from the root node and lcs(c1,c2 ) is the maximally spe-
cific superclass of c1  and c2 , which is also known as the lowest common sub-
sumer. 

2. Gloss-based Measures: Another type of measure used in SASMINT to determine 
semantic similarity is based on gloss overlaps. Gloss refers to a brief description of 
a word. The measure of Lesk [29], which forms the base for the gloss-based meas-
ure used in SASMINT, counts the number of common words between each sense 
of the target word and the sense of other words in a sentence. A word can have dif-
ferent senses, depending on the context. We convert the algorithm of Lesk to com-
pute the semantic similarity of two concepts c1and c2  as follows: for each of the 
senses of c1 , we compute the number of common words between its glosses and the 
glosses of each of the senses of c2 . 

Semantic Similarity Metrics Used in SASMINT 

Similar to the case in the syntactic similarity component of the system, semantic simi-
larity also calculates the weighted sum of the two semantic similarity measures ad-
dressed above. The default value of the weights is 0.5. Alternatively, users can run the 
sampler functionality of the system, introduced below, to determine the weights. 
SASMINT uses WordNet to identify the path between the concepts being compared. 
Similarly, it benefits from the gloss information provided in WordNet for calculating 
the Gloss-based similarity. 



102 O. Unal and H. Afsarmanesh 

Sampler Component for Identifying the Weights Automatically 

Another key innovation of SASMINT is its Sampler Component for automatically 
identifying the weights of metrics used in the syntactic and semantic similarity steps. 
Since it may not be easy for the user to identify the weights for each of the metrics 
used, the sampler component helps the user with this task. The sampler component 
works with up to ten known sample pairs, that are syntactically or semantically simi-
lar, depending on for which type of metrics the user wants to run the Sampler. These 
pairs are provided by the user from his schema domain, for example, "student_name" 
and "name_of_student" for a syntactically similar pair and “employee” and “worker” 
for a semantically similar pair. Then, the sampler runs the metrics for syntactic or se-
mantic similarity individually over these pairs, and determines their calculated simi-
larities (between 0 and 1) for each pair. After that, it measures the accuracy level of 
each metric in terms of F-measure. Using the following formula, the Sampler calcu-
lates the weight for each metric; where F∑  represents the sum of F-measure values 
resulted for all metrics used, and Fm  represents the F-measure value calculated for 
metric ‘m’.  

wm = 1

F∑
* Fm

 (6) 

Finally, after all “weights” for metrics are determined by the sampler component, 
they are presented to the user, who can accept or modify them. If the user does not run 
the sampler, then he/she either will define them, or averaging the metrics (equal 
weights for all) is the only mechanism that SASMINT can use, although it may not 
produce desirable results.  

B- Structure Matching 
The second step of schema matching in SASMINT is structure matching, which uses 
the result of linguistic matching to identify the structural similarity of two schemas 
represented as graphs. It is based on the idea that if two elements have been found to 
be similar, their adjacent elements (parent and children nodes) may also match. 
Moreover, the similarity of two nodes is affected by the number and quality of the 
similarity of their children.  

For the purpose of structure matching, a variety of graph similarity and matching 
algorithms from Graph Theory and other areas like Web searching and schema 
matching were considered. Among different alternatives, three of the approaches were 
found to be most relevant including: graph similarity algorithm proposed in [30], 
structure matching of Similarity Flooding [13], and that of Cupid [11].  

The authors of [30] compute the similarity of two graphs GA  and GB  with the ver-
tices nA  and nB  and edges EA  and EB . For i = 1,..,nB  and j = 1,..,nA  the scores are up-
dated iteratively using the following equation:  

Xk+1 = BXk AT + BT Xk A  (7) 

where Xk  is the nB  x nA  matrix of entries xij  at iteration k, A and B are the adja-

cency matrices of GA  and GB , and AT and BT are the transpose of A and B. 



 SASMINT System for Database Interoperability in Collaborative Networks 103 

Then, based on this equation, the authors define the following: 

Z k+1 =
BZ kAT + BT Z kA

BZ kAT + BT Z kA
F

  k=0,1,…. (8) 

The matrix norm .
F
 used here is known as the Euclidean or Frobenius norm and 

equals to the square root of the sum of all squared entries. The matrix subsequences 
Z 2k  and Z 2k+1  converge to Z even  and Z odd .  

Structure matching of Similarity Flooding [13] is based on a fix point computation. 
It is based on the assumption that whenever any two elements are found to be similar, 
similarity of their adjacent elements increases. Over a number of iterations, the initial 
similarity of any two nodes propagates through the graphs. The algorithm terminates 
after the similarities of all model elements stabilize. 

Structure matching in Cupid on the other hand, exploits a tree match algorithm 
which is based on the following perceptions [11]: Atomic elements in the two trees 
are similar if they are individually similar and if their ancestors and siblings are simi-
lar. Two non-leaf elements are similar if they are linguistically similar and the sub-
trees rooted at the two elements are similar. Two non-leaf schema elements are struc-
turally similar if their leaf sets are highly similar, even if their immediate children are 
not. 

Structure Similarity Algorithms used in SASMINT 

All the above algorithms form the base for the structure matching component of 
SASMINT. Similar to the method followed in linguistic matching, structure matching 
uses the weighted sum of the three structural similarity algorithms introduced above.  

Result of Comparison Step 
The final similarity of two schema elements being compared is the weighted summa-
tion of their linguistic and structure similarity values. In other words, similarity for a 
pair of schema elements (ni ,n j )  is calculated as follows: 

Si,j = lsi ,j * wls + ssi,j * wss  (9) 

where lsi , j  and ssi ,j  represent the similarity of ni  and n j  in [0..1], identified at the 

linguistic and structure matching steps respectively, and wls  is the weight of the lin-
guistic matching, and wss  is the weight of the structure matching.  

3) Final Result Generation and Validation 
After the Comparison step identifies the correspondences between schema elements, 
the resulting matches need to be displayed to the user by means of a friendly GUI. 
This step of schema matching has not gained sufficient interest in other approaches to 
schema matching. However, a clever and flexible GUI is an indispensable part of a 
matching system, because it is not possible to determine all possible matches auto-
matically and not all the identified matches may be correct, especially considering the 
existence of large amount of semantics involved in schema descriptions.  



104 O. Unal and H. Afsarmanesh 

4.2   Schema Integration 

For every two schemas, after saving the results of their validated schema matching, 
the user has the option to generate an integrated schema. Schema integration is a dif-
ficult process because of the structural and linguistic conflicts among schemas, for 
which a number of examples are given in Section 3. SASMINT aims to facilitate this 
task by exploiting the validated results of semi-automatic schema matching that 
minimizes the required user input.  

Considering different conflicts to be resolved, currently, a number of rules for inte-
grating relational schemas have been defined for SASMINT, which can also be ap-
plied to object-oriented databases. Since these rules are still under development, they 
are not explained in this paper, but will be addressed in future publications. It is im-
portant to note that they are meant for integrating the schemas automatically. Never-
theless, there are some cases, like 1-to-n match (one column in the first schema 
matches n columns in the second schema), for which an automatic integration is not 
possible. For these cases, the user needs to specify the special mapping at the Final 
Result Generation and Validation Step. For example, suppose that Schema Matching 
has found a match between “address” in one schema and “addr” and “dress” in the 
second schema. In this case, user deletes the match between “address” and “dress” as 
it is meaningless. However, if there is a match between “address” in one schema and 
“street”, “zip”, and “city” in the second schema, the user specifies that address is the 
concatenation of “street”, “zip”, and “city”.  

Using the integration rules and user validated mappings, Schema Integration com-
ponent of SASMINT proposes an integrated schema. After the user checks, modifies, 
and requests to save the integrated schema, the resulting schema is stored using a 
derivation language [31]. There are two types of derivation for relational schemas: 
Table and Column Derivation, as explained below. 

1) Table Derivation: A Derived Table is defined by the following expression:  
derived –table-definition :=derived-table-name = <T-expr> 
T-list:= <T-expr> | <T-expr> , <T-list> 
T-expr:= table-name@schema-name | union (<T-expr> , <T-list>) |  

subtract (<T-expr> , <T-expr> ) | restrict (<T-expr> , <restriction>) 
Table derivation primates, used in the expression above are defined below, where 

every Ti  stands for table-name@schema-name and T represents derived table: 
1. Table Rename 

T = T1  
Example: Section = Sect@S1 

2. Table Union 
T = union(T1,..,Tn )  
Example: Course = union(Course@S1,Course@S2) 

3. Table Subtract 
T = subtract(T1,T2)  
Example: MathStudents = subtract(Students@S1, PhysicsStudents@S1) 
 



 SASMINT System for Database Interoperability in Collaborative Networks 105 

4. Table Restrict 
T = restrict (T1,restriction)  
Example: StudentsPassed = restrict(Students@S1,[grade > 60]) 

2) Column Derivation: A Derived Column is defined by the following expression: 
derived–column-definition :=derived-column-name = <c-expr> 
c-list:= <c-expr> | <c-expr> , <c-list> 
c-expr:= column-name@table-name@schema-name | {<c-list>} |  

<c-expr> OPR <c-expr> 
 
Following is the list of derivation primitives for column integration, where every 

ci stands for column-name@table-name@schema-name and c stands for derived col-
umn@table-name, union primitive is represented by “{,}”, and extraction primitive is 
represented by “OPR”: 

1. Column Rename 
c = c1  
Example: grade@Student = GPA@Student@S1 

2. Column Union 
c = {c1 ,..,cn } 
Example: day@Section = {day@Course@S1,day@Section@S1} 

3. Column Extraction 
c = c1OPRc2OPR,..cm  where OPR can be any type of arithmetic operation  
if ci ’s are of type numeric and string operation if they are of type string. 
Right and left hand side of the operation must be the same type. 
Example: address@Student = street@Student@S1 + zip@Student@S1 +  

city@Student@S1  
Here “+” represents string concatenation.  

 
Among the derivation primitives defined above, only table rename & union and 

column rename & union can be automatically determined by the SASMINT system. 
For the remaining, user input is required at the end of schema matching, as they are 
related to semantics of tables and columns as well as data instances. 

The schema integration component enables iterative development of a common in-
tegrated schema for collaborative network of nodes, two schemas at a time, as fol-
lows: First, schemas S1  and S2  of two nodes are selected by the user. After schema 
matching and necessary user modifications and validation, they are integrated into 
S int1  and the result is saved. Then, the user selects S int1  and the schema of another 
node S3  integrating them into Sint 2 . This process continues until the schemas of all 
nodes are integrated, resulting in a final integrated schema Sint . In Figures 10 and 11 a 
simple example for schema integration is shown, where first the matching results are 
presented by the system (in Figure 10), and then, after user validation, this result is 
used to produce a proposed integrated schema and its definition in derivation lan-
guage (in Figure 11).  

 



106 O. Unal and H. Afsarmanesh 

S1

courseID
(PK)

Course

title sect instrctr

S2

courseID
(PK)

Course

titleday courseID
(FK)

Section

sectionNum instructor day

 

Fig. 10. Result of Schema Matching 

 Sint

courseID (PK) 

Course 

title courseID (FK)

Section

sectionNum instructor day

Course = union(Course@S1, Course@S2)
courseID (PK)@Course = {courseID(PK)@Course@S1,courseID(PK)@Course@S2}
title@Course = {title@@Course@S1,title@Course@S2}
Section =   Section@S2
sectionNum@Section = {sect@Course@S1,sectionNum@Section@S2}
instructor@Section = {instrctr@Course@S1,instructor@Section@S2}
day@Section = {day@Course@S1,day@Section@S2}
courseID (FK)@Section = courseID (FK)@Section@S2  

Fig. 11. Proposed Integrated Schema 

5   Conclusion 

This paper introduces the SASMINT system for resolution of syntactic, semantic, and 
structural heterogeneity among database schemas in Collaborative Networks. 
SASMINT first enables semi-automatic schema matching by identifying and resolv-
ing schema heterogeneity, and after users’ validation of its matching results, generates 
a new extended integrated schema. The approach introduced and exploited in this sys-
tem is generic in that it aims to identify the correspondences between different sche-
mas, as automatically as possible. Since SASMINT uses a combination of several 
schema matching techniques and a sampler tool for users to influence the weights for 
applying these techniques, it is better equipped with handling the variety of types of 
ad-hoc strings in different schemas. It simultaneously uses a number of NLP algo-
rithms that together with the structure matching enables achievement of a more ge-
neric schema matching. Furthermore, SASMINT requires minimum user involvement 
for generation of the integrated schema. The automatic use of the results produced by 
schema matching for generation of a new extended integrated schema as well as a 
derivation language for defining this schema are parts of the contribution of 
SASMINT presented in this paper. 



 SASMINT System for Database Interoperability in Collaborative Networks 107 

References 

1. Camarinha-Matos, L.M., H. Afsarmanesh, and M. Ollus. ECOLEAD: A Holistic Ap-
proach to Creation and Management of Dynamic Virtual Organizations. In Proc. of PRO-
VE’05, p. 3-16, 2005.  

2. Afsarmanesh, H. and L.M. Camarinha-Matos. A Framework for Management of Virtual 
Organizations Breeding Environments. In Proc. of PRO-VE’05, p. 35-48, 2005. 

3. Sheth, A. and J. Larson, Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. ACM Computing Surveys, 22(3): p. 183-236, 1990. 

4. Tuijnman, F. and H. Afsarmanesh, Management of Shared Data in Federated Cooperative 
PEER Environment. International Journal of Intelligent & Cooperative Information Sys-
tems, 2(4): p. 451-473, 1993. 

5. Unal, O. and H. Afsarmanesh. Interoperability in Collaborative Network of Biodiversity 
Organizations. In Proc. of PRO-VE'06, Accepted for Publication, 2006. 

6. Hammer, J. and D. McLeod, An Approach to Resolving Semantic Heterogeneity in a Fed-
eration of Autonomous, Heterogeneous Database Systems. International Journal of Intel-
ligent & Cooperative Information Systems, World Scientific, 2(1): p. 51-83, 1993. 

7. Bergamaschi, S., et al. A Semantic Approach to Information Integration: the MOMIS pro-
ject. In Proc. of Sesto Convegno della Associazione Italiana per l'Intelligenza Artificiale, 
AI*IA 98, 1998. 

8. Bayardo, R.J., et al. InfoSleuth: Agent-Based Semantic Integration of Information in Open 
and Dynamic Environments. In Proc. of ACM SIGMOD International Conference on 
Management of Data, 1997. 

9. Arens, Y., C.A. Knoblock, and W.-M. Shen, Query Reformulation for Dynamic Informa-
tion Integration. Journal of Intelligent Information Systems: p. 99-130, 1996. 

10. Mena, E., et al., OBSERVER: An Approach for Query Processing in Global Information 
Systems based on Interoperation across Pre-existing Ontologies. Distributed and Parallel 
Databases Journal, 8(2): p. 223-271, 2000. 

11. Madhavan, J., P.A. Bernstein, and E. Rahm. Generic Schema Matching with Cupid. In 
Proc. of VLDB, p. 49-58, 2001. 

12. Do, H.H. and E. Rahm. COMA - A System for Flexible Combination of Schema Matching 
Approaches. In Proc. of VLDB, p. 610-621, 2002. 

13. Melnik, S., H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph 
Matching Algorithm and its Application to Schema Matching. In Proc. of ICDE, 2002. 

14. Mitra, P., G. Wiederhold, and S. Decker. A scalable framework for the interoperation of 
information sources. In Proc. of. International Semantic Web Working Symposium, 2001. 

15. Doan, A., et al. Learning to Map between Ontologies on the Semantic Web. In Proc. of 
World-Wide Web Conf. (WWW-2002), 2002. 

16. Miller, R.J., L.M. Haas, and M.A. Hernandez. Schema Mapping as Query Discovery. In 
Proc. of VLDB, p. 77-88, 2000. 

17. Embley, D.W., L. Xu, and Y. Ding, Automatic direct and indirect schema mapping: Ex-
periences and lessons learned. ACM SIGMOD Record, 33(4): p. 14-19, December 2004. 

18. Bernstein, P.A., et al., Industrial-Strength Schema Matching. ACM SIGMOD Record, 
33(4): p. 38-43, December 2004. 

19. Rahm, E., H.-H. Do, and S. Maßmann, Matching Large XML Schemas. ACM SIGMOD 
Record, 33(4): p. 26-31, December 2004. 

20. Levenshtein, V.I., Binary codes capable of correcting deletions, insertions, and reversals. 
Cybernetics and Control Theory, 10(8): p. 707-710, 1966. 



108 O. Unal and H. Afsarmanesh 

21. Monge, A.E. and C. Elkan. The Field Matching Problem: Algorithms and Applications. In 
Second International Conference on Knowledge Discovery and Data Mining, 267-270. 
1996. 

22. Jaro, M.A., Probabilistic linkage of large public health. Statistics in Medicine: p. 14:491-
498, 1995. 

23. Salton, G. and C.S. Yang, On the specification of term values in automatic indexing. Jour-
nal of Documentation, (29): p. 351-372, 1973. 

24. Jaccard, P., The distribution of flora in the alpine zone. The New Phytologist, 11(2): p. 37-
50, 1912. 

25. Cleverdon, C.W. and E.M. Keen, Factors determining the performance of indexing sys-
tems, volume 2: test results, Aslib Cranfield Research Project. Cranfield Institute of Tech-
nology, 1966. 

26. Rijsbergen, C.J.v., Information Retrieval: Butterworths, London, 1979. 
27. Wu, Z. and M. Palmer. Verb Semantics and Lexical Selection. In 32nd Annual Meeting of 

the Association for Computational Linguistics, 1994. 
28. Fellbaum, C., An Electronic Lexical Database.: Cambridge: MIT press, 1998. 
29. Lesk, M. Automatic Sense Disambiguation Using Machine Readable Dictionaries: How to 

Tell a Pine Code from an Ice Cream Cone. In Proc. of 5th International Conference on 
Systems Documentation, 24-26. 1986. 

30. Blondel, V., et al., A Measure of Similarity between Graph Vertices: Applications to 
Synonym Extraction and Web Searching. Journal of SIAM Review, 46(4): p. 647-666, 
2004. 

31. Afsarmanesh, H., et al., The PEER Information Management Language User Manual. 
Technical Report CS-94-14, Department of Computer Systems, University of Amsterdam, 
1994. 



Querying E-Catalogs Using Content Summaries

Aixin Sun1,�, Boualem Benatallah1, Mohand-Säıd Hacid2,
and Mahbub Hassan1

1 School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia

{boualem, mahbub}@cse.unsw.edu.au
2 LIRIS - UFR d’Informatique, Universite Claude Bernard Lyon 1, 69622

Villeurbanne cedex, France
mshacid@bat710.univ-lyon1.fr

Abstract. With the rapid development of e-services on the Web, in-
creasing number of e-catalogs are becoming accessible to users. A large
number of e-catalogs provide information about similar type of prod-
ucts/services. To simplify users information searching effort, data inte-
gration systems have being developed to integrate e-catalogs providing
similar type of information such that users can query those e-catalogs
with a mediator through an uniform query interface. The conventional
approach to answer a query received by a mediator is to select e-catalogs
purely based on their query capabilities, i.e., query interface specifica-
tions. However, an e-catalog having the capability to answer a query does
not mean it has relevant answers to the query. To remedy the wasted
resources of querying catalogs that do not generate an answer, in this
paper, we propose to use catalog content summary as a filter and select
the relevant e-catalogs to answer a given query based not only on their
query capabilities but also on their content relevance to the query. A
multi-attribute content (MAC) summary is proposed to describe an e-
catalog with respect to its content. With MAC summary, an e-catalog is
selected to answer a query only if the e-catalog is likely having answers
to the query. MAC summary can be constructed and updated using an-
swers returned from e-catalogs and therefore the e-catalogs need not be
cooperative. We evaluated MAC summary on 50 e-catalogs, and the ex-
perimental results were promising.

1 Introduction

Nowadays, a large number of suppliers are offering access to their products or
information portals (also known as e-catalogs) using structured query interfaces
(e.g., via Web forms and Web Services). According to a recent survey on Web
Services [9], 45% of the public Web Services are wrappers of data sources. For
instance, Amazon.com is offering a Web Service that provides operations to ac-
cess detailed product information. The two important features of the Amazon
� Aixin Sun is currently with the School of Computer Engineering, Nanyang Techno-

logical University, Singapore. Email: axsun@ntu.edu.sg

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 109–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



110 A. Sun et al.

E-Commerce Service1 are “detailed product information access” and “extended
search”. The former allows access to detailed product attribute descriptions (e.g.,
color, luster, size, and clarity of a pearl in Amazon.com’s Jewerly store). The
latter allows attribute-based product search. For instance, books in Amazon.com
can be searched by any combination of attributes including author, title, subject,
publisher, and ISBN. Attribute-based product search is clearly much more power-
ful for users to locate products than commonly used keyword-based search [1,4].

While structured data access makes it much easier to express more pre-
cise queries and increases the effectiveness of querying Web accessible data
sources, the large number of e-catalogs specialized in various domains (e.g.,
online-shopping, travel portals), makes information access a time-consuming
and complex process for end-users. To save users time and effort, data integra-
tion systems are being developed to integrate e-catalogs providing similar type
of products/services together to form e-catalog communities [2,3,14,15]. An e-
catalog community (or catalog community for short) is a mediator of multiple
e-catalogs where all those e-catalogs can be queried over the community schema.

To query e-catalogs in a catalog community, users formulate queries over com-
munity schema and submit them to the catalog community. Given a query, the
catalog community selects the set of e-catalogs having the query capability (QC)
to answer the query. Query capability of an e-catalog refers to its query interface
specifications, e.g., input/output parameters and constraints on those parame-
ters. Figure 1(a) shows a catalog community example integrating four e-catalogs
selling laptops. The e-catalog selection process in catalog community is illus-
trated as a process of a query passing through QC filter of each e-catalog2,
where the QC filter contains the query capability of the e-catalog. Intuitively,
if an e-catalog has the query capability to answer a query, the query is able to
pass through its QC filter; hence the e-catalog is selected to answer the query.
If an e-catalog is selected, the query is first translated according to the semantic
mapping [16] between the community schema and the e-catalog’s local schema
and then forwarded to the e-catalog for execution. Answers received from the
selected e-catalogs are presented to the user after post-processing3.

Having query capability to answer a query does not mean an e-catalog has
answers to the query. If an e-catalog is selected to answer queries not relevant
to its content, its workload is unnecessarily increased; moreover, the effort of
translating queries from global schema to its local schema contributes to higher
query processing cost inside a catalog community. This calls for an approach that
could effectively identify the e-catalogs that are most likely to return answers to
a query. The idea is to select e-catalogs not only based on their query capabil-
ities but also based on how likely their contents are relevant to answer a given
query. In this paper, we address the problem of selecting e-catalogs by resorting

1 URL: http://www.amazon.com/gp/aws/landing.html.
2 Here, for easy illustration purpose, only selection query is considered without join

operations.
3 Example post-processing operations include duplicates removal, ranking of results

and so on. Detailed description of post-processing is outside the scope of this paper.

http://www.amazon.com/gp/aws/landing.html


Querying E-Catalogs Using Content Summaries 111

(a) Query capability (b) Query capability and content
summary

Fig. 1. E-catalog selection in catalog community

to content filter(s) as shown in Figure 1(b). Each content filter contains a con-
tent summary of an e-catalog that can be used to predict whether the e-catalog
has answers to a given query. In other words, by accommodating content filter,
an e-catalog is selected to answer a query if the query can pass through both
its QC filter and content filter. For instance, the query Q: find laptops with
brand=‘Acer’ and weight<1.0kg may not pass through the content filter of
“Hardware.com” as it has no laptops less than 1.0kg; hence “Hardware.com”
is not selected to answer Q. Clearly, by using content filter, the number of e-
catalogs selected to answer a query is reduced. By doing so, first, workload of
individual e-catalogs is reduced as e-catalogs need not process queries irrele-
vant to them; second, the cost of query processing inside a catalog community
is reduced as less number of e-catalogs are selected to answer queries; third,
network communication cost is reduced. Network communication cost refers to
the cost of setting up connections between the mediator and e-catalogs, and
the cost of transferring data between them. Reducing network communication
cost is crucial for applications where the bandwidth is limited such as on-board
communication [19].

Building e-catalog content summary is challenging due to the following rea-
sons:

– E-catalogs are autonomous. Not all e-catalogs would be cooperative to export
catalog content summaries required by the catalog community. It is also very
unlikely that catalog community can directly access an e-catalog’s database.
Hence, building catalog summaries should rely on as less support as possible
from e-catalogs.

– E-catalogs are dynamic. Number of e-catalogs in a catalog community may
change from time to time. Content summary of a newly joined member
needs to be built without affecting other summaries; similarly, once a mem-
ber leaves a community, deletion of its summary should not affect other



112 A. Sun et al.

summaries. Moreover, it is also challenging to keep content summaries accu-
rate as members update their own content from time to time.

– False positive and false negative selections lead to uneven cost for end users.
If an e-catalog is false positively selected to answer a query, the e-catalog
returns no answer to the query and a user is on no risk to lose any answer
to the query. However, a user may unnecessarily pay more for a product if
the e-catalog offering the best price is false negatively selected. Minimizing
false negative selection rate is therefore one of the challenges in designing
and using content summaries.

In our earlier work, we have proposed an infrastructure for integrating and
querying e-catalogs, known as E-CatalogNet [2,3]. In E-CatalogNet, e-catalogs
offering similar types of products/services are integrated to form catalog com-
munities. In each catalog community, schemas of e-catalogs are mapped to
the community schema following a LAV (Local As View) approach [11,22]. A
query rewriting algorithm has also been proposed in E-CatalogNet to select e-
catalogs and generate query plans based on their query capabilities to answer
user queries [3]. In this paper, we further extend the E-CatalogNet to build
and use content summaries in e-catalog selection. This work makes two major
contributions:

1. We introduce a Multi-Attribute Content (MAC) summary structure. A MAC
summary of an e-catalog is a set of conjunctive conditions. A boolean value
is associated with each conjunctive condition which indicates whether the
e-catalog has answers to queries satisfying the condition.

2. We provide techniques to build MAC summary, to use MAC summary to
select e-catalog for a given query, and to update MAC summary. MAC sum-
mary can be built and updated by catalog community using query answers
returned from e-catalogs, hence both the building and update processes do
not rely on cooperation from e-catalogs.

We present our experiments with 50 e-catalogs simulated using 45,221 tu-
ples in one catalog community. The accuracies of e-catalog selection using MAC
summary were evaluated using 5000 randomly generated queries. With MAC
summary, on average, less than 70% of e-catalogs were selected to answer a
query. The effectiveness of summary update was also experimented with simu-
lated content updates in e-catalogs. The results confirmed that MAC summary
was resilient to change and could be updated effectively to reflect content changes
inside e-catalogs. Experimental results also showed that MAC summary was able
to achieve low false negative selection rate.

The rest of the paper is organized as follows. In Section 2, we discuss the dif-
ferent approaches in building and using content summaries. The proposed MAC
summary structure is presented in Section 3, followed by selecting e-catalogs
using MAC summaries in Section 4. How to build and update MAC summary is
addressed in Section 5. Our experiments and results are presented in Section 6
and then we conclude in Section 7.



Querying E-Catalogs Using Content Summaries 113

2 Related Work

The idea of using content summary for data source selection has been mainly
studied in distributed information retrieval where the data sources are collections
of text documents [5,8,20]. A content summary of a textual data source is a set
of words each associated with a weight derived from a set of sample documents
retrieved from the data source. In data integration, there are less studies on
using content summaries for data source selection.

Content summary of an e-catalog can be either built by the e-catalog itself or
built by catalog community. If all e-catalogs are cooperative, each e-catalog can
build its own summary using techniques such as database generalization [13,21].
The locally built summaries can then be uploaded to catalog community for
catalog selection. However, e-catalogs are owned by different providers and it is
unlikely that all e-catalogs would be cooperative. We therefore focus mainly on
those approaches that build summaries at catalog community without e-catalog’s
cooperation. Roughly speaking, the existing approaches can be divided into three
categories.

Constraint-based summary
In Information Manifold [14], a content summary of a data source is one or more
conjunctive conditions that all tuples in the data source must satisfy. For in-
stance, all laptops in e-catalog “Dell.com” satisfy brand=‘Dell’ and weight>=
1.0kg. A similar approach is also used in a query routing system presented in [15]
and constraint-based data sources integration [7]. As the constraints need to be
satisfied by all tuples in an e-catalog throughout their life span regardless of data
trend, the approach is not aimed at capturing data distribution inside e-catalog.
This approach therefore often leads to high false positive selection rate. The
summary, however, is resilient to change as it is less affected by content update
inside an e-catalog.
Sample-based summary
Yu et. al. [23] proposed the FQ (Frequent Queries) method to address the prob-
lem of distributed top-N query processing by caching frequent queries and their
answers from a number of data sources sharing the same global schema. The
frequent queries are maintained by the mediator. The content summary of a
data source is the collection of top ranked answers from the source, one for each
frequent query. As the best matching answer for each frequent query from each
source needs to be stored, the summary could be relatively large in size and
leads to high computational and storage cost. The summary, however, can be
updated when processing user queries by replacing the old cached answers with
updated answers.
Rule-based global summary
In StatMiner [18], data sources are selected based on coverage and overlap statis-
tics learned from the answers of a set of sample queries where all data sources share
the same global schema. Coverage of a source with respect to a query is the prob-
ability that a random answer tuple belongs to it. Overlap among a set of sources
with respect to a query is the probability that a random answer tuple for the query



114 A. Sun et al.

is presented in each source of the set. There is no individual content summary for
each data source; rather a global summary is used for all the sources. The global
summary is a set of association rules and each rule contains a query class defini-
tion and a set of sources. A query class is defined as a conjunctive condition on
one or more attributes from global schema. The set of sources associated with a
query class are the subset of sources covering all distinct answers for any query
belonging to the query class. As global summary could capture the overlapping
information among sources, the list of sources selected for a given query could be
the smallest subset of sources that return all distinct answers to the query (not
necessarily all the relevant sources). On the other hand, any change of the num-
ber of integrated sources or the content change inside one or more data sources
could make the summary invalid. The entire summary may therefore need to be
rebuilt to reflect the changes. If the changes are frequent, the maintenance cost of
global summary could be very high.

The three approaches discussed above can be grouped under two general cate-
gories, namely, local summarization and global summarization. With the former,
an individual content summary is built for each data source. The summaries
are therefore more resilient to changes as summaries for newly joined (or left)
e-catalog can be built (or deleted) without affecting the others. A summary can
also be updated to reflect its corresponding e-catalog’s content change. Never-
theless, given a query, each summary needs to be tested against the query to find
out whether the data source has answers to the query. All the relevant sources
must be queried and the duplicate answers are then removed in post-processing.
With global summarization, a global summary is built for all data sources and
any given query is tested against the only summary to get the list of relevant
sources covering all distinct answers to the query. However, any change, either
in terms of the number of e-catalogs in the community or in terms of content of
any particular e-catalog, could make the summary invalid. In a nutshell, global
summarization is more suitable for problems where duplicates commonly exist
in member e-catalogs and e-catalogs update their contents less frequently. Local
summarization, on the other hand, is more resilient to changes and suitable for
problems where e-catalogs update their contents more frequently. In this paper,
we chose to use local summarization approach and build a summary for each
e-catalog as e-catalogs are dynamic.

3 Multi-Attribute Content Summary

Given a catalog community C, let Rc(A1, A2, . . . , An) be the community relation
defined by the community administrator, where Ai (1 ≤ i ≤ n) is an attribute.
Rc(A1, A2, . . . , An) can be seen as the global schema. Each e-catalog offers a
view over Rc with one or more attributes from A1, A2, . . . , An. In this paper,
we use an example community relation laptop(m, b, w, p, r) to illustrate our ap-
proach where m, b, w, p and r stand for model number, brand, weight, price, and
review respectively. We also use three e-catalogs with different query capabilities
over Rc (see Table 1) as examples to illustrate the construction and usage of



Querying E-Catalogs Using Content Summaries 115

Table 1. Example e-catalogs and their query capabilities

E-catalog Attributes supported
Hardware.com(cH ) m, b, w, p
Dell.com(cD) m, w, p
Review.com(cR) m, b, r

ID Query bucket for cH m(Bk, cH)
BH1 b=‘Acer’ ∧ 0 ≤ w < 1.5 0
BH2 b=‘Dell’ ∧ 0 ≤ w < 1.5 0
BH3 b=‘Sony’ ∧ 0 ≤ w < 1.5 1
BH4 b=‘Acer’ ∧ 1.5 ≤ w < 3 1
BH5 b=‘Dell’ ∧ 1.5 ≤ w < 3 0
BH6 b=‘Sony’ ∧ 1.5 ≤ w < 3 1
BH7 b=‘Acer’ ∧ 3 ≤ w < 5 0
BH8 b=‘Dell’ ∧ 3 ≤ w < 5 0
BH9 b=‘Sony’ ∧ 3 ≤ w < 5 0

(a) Summary of Hardware.com (cH)

ID Query bucket for cR m(Bk, cR)
BR1 b=‘Acer’ ∧ r=‘A’ 1
BR2 b=‘Dell’ ∧ r=‘A’ 0
BR3 b=‘Sony’ ∧ r=‘A’ 1
BR4 b=‘Acer’ ∧ r=‘B’ 1
BR5 b=‘Dell’ ∧ r=‘B’ 0
BR6 b=‘Sony’ ∧ r=‘B’ 1
BR7 b=‘Acer’ ∧ r=‘C’ 0
BR8 b=‘Dell’ ∧ r=‘C’ 1
BR9 b=‘Sony’ ∧ r=‘C’ 0

(b) Summary of Review.com (cR)

ID Query bucket for cD m(Bk, cD)
BD1 0 ≤ w < 1.5 1
BD2 1.5 ≤ w < 3 1
BD3 3 ≤ w < 5 1

(c) Summary of Dell.com (cD)

Fig. 2. Example summaries of “Hardware.com”, “Dell.com”, and “Review.com”

content summaries. Query capability of an e-catalog refers to its query interface
specification. It defines the set of attributes where input parameters can be
bound with (e.g., attributes listed in a Web form when accessing an e-catalog),
and the set of attributes that describe answers returned by the e-catalog (see [14]
for more details). In our example, an e-catalog can be queried on the same set
of attributes as the ones describing answers returned from it. As shown in Ta-
ble 1, “Hardware.com” and “Dell.com” are laptop sellers and can be queried
with attributes over Rc except r (by default, brand is ‘Dell’ for “Dell.com”).
“Review.com” can be queried over model number, brand and review.

A Multi-Attribute Content (MAC) summary of an e-catalog c consists of a
list of query buckets and each query bucket is associated with a boolean value.
A query bucket is a conjunctive formula consisting of equality and order com-
parisons among pre-defined constants and/or attribute values over selected at-
tributes from community relation. An example query bucket defined over the
laptop community relation is Bk:b=‘Acer’ ∧0 ≤ w < 1.5. The boolean value
associated with Bk, denoted by m(Bk, c), indicates whether c has answers to
Bk. In other words, let Bk(c) be the set of answers to Bk from c. If Bk(c) �= ∅,



116 A. Sun et al.

Table 2. Example AVGs of summary attributes

Attribute AVGs
brand ‘Acer’, ‘Dell’, and ‘Sony’

weight 0 < w ≤ 1.5, 1.5 < w ≤ 3, and 3 < w ≤ 5
review ‘A’, ‘B’, and ‘C’

m(Bk, c) = 1, and m(Bk, c) = 0 otherwise. MAC summaries of the three example
e-catalogs are given in Figure 2.

To construct MAC summaries for e-catalogs, community administrator needs
to select summary attributes on which the conjunctive range conditions are to be
specified. Note that, not all attributes in community relation Rc are necessary
to be included in catalog summaries. Let Ai be a summary attribute selected
by the community administrator and let Di be the domain of Ai. To define
range conditions, Di is divided into a set of non-overlapping ranges known as
Attribute Value Groups (AVGs). For nominal attributes, an AVG contains one
or more distinct nominal values; for continuous attributes, an AVG specifies a
value range. Note that, union of AVGs of Ai is equivalent to Di. Table 2 lists
examples of AVGs used in this paper, assuming brand, weight and review are
selected as summary attributes. The AVGs of attributes can be either manually
defined by community administrator or mined from query logs using techniques
such as the one presented in [6].

Once AVGs are defined, query buckets can be automatically generated on the
basis of the cartesian products of AVGs of the summary attributes supported by an
e-catalog. For example, “Hardware.com” supports b and w (among the three sum-
mary attributes), 9 query buckets are generated as shown in Figure 2(a) since b and
w each has 3 AVGs (see Table 2). With query buckets generated, the task of build-
ing MAC summary is to associate each query bucket with a boolean value, where 1
means that the e-catalog has products matching the query bucket and 0 otherwise
(see Section 5). For instance, summaries in Figure 2 show that “Hardware.com”
has laptops branded ‘Acer’ with weight between 1.5 and 3kg and ‘Sony’ with
weight less than 3kg, while “Dell.com” has laptops in all weight ranges.

4 Catalog Selection Using MAC Summary

Catalog selection operation aims at selecting relevant e-catalogs to answer a query.
Given a user query, a query rewriting algorithm in e-catalog community first iden-
tifies the set of e-catalogs, when put together, can answer the query [3]. Based on
e-catalog’s query capability, the query rewriting algorithm is also responsible for
generating one or more query plans in the form of Q = Q1 ∧ Q2 ∧ . . . ∧ Qq where
Qp (1 ≤ p ≤ q) is a sub-query to be answered by exactly one e-catalog. With local
summaries, given a sub-query and a MAC summary, catalog selection operation
returns a boolean decision whether the e-catalog has answers to the sub-query or
not. A query plan needs to be executed only if all e-catalogs involved in the query
plan have answers to their corresponding sub-queries.



Querying E-Catalogs Using Content Summaries 117

Let A1, A2, . . . , Am be summary attributes and Am+1, . . . , An (n > m) be
non-summary attributes on Rc. A sub-query Qp may specify conditions on sum-
mary attributes only, non-summary attributes only, or both summary and non-
summary attributes. Let Qs

p be the part of Qp specifying conditions on summary
attributes and Qns

p be the part of Qp specifying conditions on non-summary at-
tributes. With content summary, it is possible to predict whether an e-catalog
c is likely to have answers to Qs

p only. Therefore, c is said to have no answer to
Qp if either of the two conditions are satisfied: (i) Qs

p(c) = ∅ and Qp = Qs
p ∧Qns

p

and (ii) Qs
p(c) = ∅ and Qp = Qs

p. The key task here is to determine whether c
has answers to Qs

p. To simplify our discussion, in the following, query Q refers
to Qs

p to be answered by one e-catalog only unless otherwise specified.

4.1 Query Relationships

Given an e-catalog c and a query Q, let Q(c) be the set of answers to Q from
c. Given any two queries Q1 and Q2, we consider two relationships between
them, namely, containment and overlapping. Query containment is a fundamen-
tal concept in database systems and has been used in data integration systems
and query optimization [17,24]. Both containment and overlapping4 relationships
are decidable given e-catalogs’ query specification [10,12].

– Containment
Q1 is contained in Q2, written Q1 � Q2, if Q1(c) is a subset of Q2(c) for any
e-catalog c defined over the community relation Rc(A1, A2, . . . , An).

– Overlapping
Q1 and Q2 are overlapping if there exist at least one e-catalog c, such that
Q1(c) ∩ Q2(c) �= ∅. In this paper, we say Q1 and Q2 are overlapping only if
neither one is contained in another.

We use two query examples on the community relation laptop to illustrate re-
lationships between a query and query buckets5: Q1: w ≥ 2.5 and Q2: b =‘Acer’
∧w ≤ 1. Given the 9 query buckets defined for “Hardware.com”, Q1 contains
BH7, BH8, and BH9 and overlaps with BH4, BH5, and BH6; Q2 is contained in
BH1 (assuming that w is always ≥ 0).

4.2 E-Catalog Selection

By construction of MAC summary, given a query Q, if Q(c) �= ∅, there is a finite
union of query buckets, denoted by BQ, such that Q(c) ⊆ BQ(c), i.e., Q � BQ.
The relationship between any bucket Bk ∈ BQ and Q can be: (i) Bk overlaps
with Q, (ii) Bk � Q, or (iii) Q � Bk. For instance, given Q: 1 < w < 2 and the
MAC summary for “Dell.com” (see Figure 2(c)), BQ = {BD1, BD2}. Whether c
has answers to Q can therefore be predicted based on whether c has answers to

4 Which can be reduced to satisfiability.
5 Note that a query bucket can be treated as a conjunctive query by its definition.



118 A. Sun et al.

any Bk ∈ BQ. That is, if c has no answer to any Bk ∈ BQ, it is clear that c has
no answer to Q because Q(c) ⊆ BQ(c). However, if c has answers for at least one
Bk ∈ BQ, c may have answers to Q and hence c should be selected to answer Q
to avoid false negative selection. In short, c is selected to answer a query Q iff
Q � BQ and ∃Bk ∈ BQ s.t. m(Bk, c) = 1.

Given a query Q, the problem of selection of e-catalogs reduces to the problem
of finding BQ containing Q. The cost of finding BQ is O(n) where n is the number
of query buckets in the MAC summary in the worst case (if query buckets are
not indexed). In the following, we use two example queries to illustrate how the
summary can be used in e-catalog selection.

– Q1 : find laptops with weight greater than 3kg
Based on query capability, both “Hardware.com” (cH) and “Dell.com” (cD)
can answer the query. The two query plans are Q1(cH) and Q1(cD) respec-
tively. Given the summary of cH shown in Figure 2, Q1 is contained in
BQ = {BH7, BH8, BH9}, and none of them is associated with 1. Q1(cH)
therefore leads to no answer and is not necessary to be executed. For cD, Q1

is contained in BD3 and m(BD3 , cD) = 1. Hence Q1(cD) is the only query
plan that may lead to answers.

– Q2 : find laptops with weight less than 1kg and review is ‘A’
As review can only be found in “Review.com” (cR) and weight can be found
in cH or cD, the two query plans are: (i) Q21(cH)∧Q22(cR) and (ii) Q21(cD)∧
Q22(cR), where Q21 : w < 1 and Q22 : r =‘A’. Based on the summaries,
Q21(cH),Q21(cD), and Q22(cR) all have answers. Both the two query plans
may lead to answers.

5 Building and Updating MAC Summary

Before we describe how to build MAC summary, we first discuss how an existing
MAC summary can be updated.

E-catalogs are dynamic and their contents are updated by their providers from
time to time. To keep the content summaries up to date, the summaries have to
be updated accordingly. In this section, we first discuss the type of changes and
their effects on MAC summaries. We then discuss how MAC summary can be
updated with query answers from e-catalogs.

5.1 MAC Summary Update

Content updates6 to e-catalog contents can be classified into four categories. For
each category, we discuss how the MAC summary can be affected.

– E-catalog changes tuple values of non-summary attributes. The summary is
not affected as the non-summary attributes are not involved in the summary.

6 Note that, our discussion limits to content updates only and not schema updates. If
an e-catalog updates its schema (e.g., add or remove supported summary attributes),
the query buckets may have to be regenerated and the summary is then rebuilt.



Querying E-Catalogs Using Content Summaries 119

– E-catalog deletes tuples. Let t be a deleted tuple and t ∈ Bk(c). After dele-
tion, if there is at least one tuple t′ in c such that t′ ∈ Bk(c), the summary
is not affected as m(Bk, c) = 1. However, if there is no such a tuple t′ in c,
the e-catalog c may be false positively selected to answer queries contained
in (or overlapping with) Bk as m(Bk, c) = 1 in the summary has not been
updated with m(Bk, c) = 0.

– E-catalog adds new tuples. Let t be the newly added tuple and t ∈ Bk(c).
If m(Bk, c) = 1 in the summary, the summary is not affected. However, if
m(Bk, c) = 0, catalog c will be false negatively selected to answer queries
contained in (or overlapping with) Bk and user may miss the newly added
tuple before m(Bk, c) is updated to 1.

– E-catalog changes summary attribute values of tuples. This is equivalent to
delete old tuples (with old attribute values) and add new tuples with updated
attribute values.

From the above discussion, it is clear that not every tuple insertion/deletion
results in invalidation of the summary, thus MAC summary is relatively resilient
to changes. Nevertheless, user may miss the newly inserted tuples without sum-
mary updating. Deleting tuples from e-catalogs, on the other hand, only in-
creases the chance of an e-catalog being false positively selected and will not
lead to missing answers for users.

A straightforward approach to update a catalog summary is to periodically re-
build it. However, it is always hard to define the update frequency. In this paper,
we propose to update MAC summary using the answers returned from e-catalogs.

A catalog summary should be updated by changing m(Bk, c) from 0 to 1 if
there is at least one tuple t which is inserted in c and t ∈ Bk(c) or changing
m(Bk, c) from 1 to 0, if there is no t such that t ∈ Bk(c) after tuple deletion.
As Bk(c) can be derived or partially derived from Q(c) if Bk is contained in
(or overlaps with) Q, m(Bk, c) can be effectively updated based on Q(c). More
specifically, given a query Q, summary of e-catalog c can be updated by using
Q(c) with two rules:

– A query bucket Bk is contained in Q: if there exist at least one tuple t ∈ Q(c),
and t ∈ Bk(c), then set m(Bk, c) to 1; and if there is no such a tuple in Q(c),
set m(Bk, c) to 0.

– A query bucket Bk overlaps with Q: if there exist at least one tuple t ∈ Q(c)
and t ∈ Bk(c), then set m(Bk, c) to 1; if there is no such a tuple in Q(c),
m(Bk, c) remains unchanged.

With the above rules, query buckets contained in (or overlapping with) frequently
asked queries are updated more frequently. The cost of the updating is O(mn)
where m is the number of query buckets in BQ where Q � BQ and n is the
number of answers to Q.

Consider the query Q1: w ≥ 2.5 and the catalog summary of “Hardware.com”
in Figure 2. Let us say there are 10 tuples returned from “Hardware.com” for Q1,
and one of them is t1: b=‘Acer’ ∧ w=4.2. t1 ∈ BH7 where BH7: b=‘Acer’ ∧3 <
w ≤ 5. However, 0 was associated with BH7 in the summary of “Hardware.com”.



120 A. Sun et al.

This means at least one tuple (e.g., t1) has been inserted into “Hardware.com”
and the summary needs to be updated by changing the boolean value associated
with BH7 to 1. Similarly, if the answers to Q1 returned from “Dell.com” do not
contain any tuple covered by BD3: 3 < w ≤ 5, the boolean value needs to be
changed to 0 in the summary of “Dell.com”.

The above update operations can be further extended to update AVGs of
summary attributes and query bucket definitions (and hence making the MAC
summary relatively adaptive). For instance, in answering the query Q1: w ≥ 2.5,
“Hardware.com” returns a tuple tf with b=‘Fujitsu’ ∧w = 3.3. As “Fujitsu”
is not covered in the defined domain of brand, a new AVG is formed with value
“Fujitsu” to extend the domain of brand. With this newly formed AVG, a new
set of query buckets are defined with combinations of AVGs of other summary
attributes. The boolean values associated with these newly added query buckets
are set to 1 to avoid false negative selection. Nevertheless, these values can be
updated during query processing.

5.2 Building Catalog Summary

In MAC summary, query buckets are defined once summary attributes are se-
lected and their AVGs are defined. Given an e-catalog, the task of building its
summary is to associate a boolean value with each query bucket in the summary.
In our framework, there are two approaches to build a catalog summary. A lazy
approach is to utilize the update operation and build catalog summaries during
the query answering process. The other is the eager approach to build summaries
with sample range queries.

The lazy approach of building a catalog summary starts with the assumption
that an e-catalog has answers to all query buckets. That is, associates each query
bucket with a boolean value of 1. The summary is updated during the query-
answering process as discussed in Section 5.1. With this approach, the building of
catalog summary leads to no additional cost (e.g., answering sample queries) to
an e-catalog. Nevertheless, an e-catalog may often be false positively selected to
answer queries that are not relevant to it during the summary building process.

The eager approach is to send each query bucket (a range query) directly to an
e-catalog and find out whether the e-catalog has answers or not. If the e-catalog
replies with “zero match found”, a 0 is associated with the query bucket; oth-
erwise 1 is associated with the query bucket. Note that, no actual answer needs
to be retrieved from e-catalogs for each query bucket as MAC summary of an e-
catalog is a list of boolean values. The only assumption here is that an e-catalog
is able to indicate whether or not it has products matching the range query.

6 Experiments

We implemented MAC summary structure in Java and simulated e-catalogs with
MS Access databases using adult dataset from UCI Repository7. After cleaning,

7 http://www.ics.uci.edu/∼mlearn/MLSummary.html

http://www.ics.uci.edu/~mlearn/MLSummary.html


Querying E-Catalogs Using Content Summaries 121

Table 3. Summary attributes

Name Type # AVGs
age continuous 6
education nominal 16
hour per week continuous 7
marital status nominal 7

45,221 tuples were randomly divided into 50 e-catalogs with about 904 tuples
in each e-catalog. Two continuous and two nominal attributes were selected
as summary attributes; the AVGs of the 4 summary attributes were arbitrarily
created and the number of AVGs for each summary attribute is given in Table 3.
All simulated e-catalogs support these 4 summary attributes. With the defined
AVGs, the number of query buckets in MAC summary is 4704. To evaluate
the MAC summaries of the 50 e-catalogs, we randomly generated 5000 user
queries. Each query may specify condition on any one summary attribute, or
any combination of two, three or four summary attributes. The numbers of
queries with conditions on one, two, three or four attributes are the same.

We adopted measures from Information Retrieval including precision and re-
call to evaluate e-catalog selection. Precision is the proportion of selected e-
catalogs having answers to a given query; 100% precision means that all the
selected e-catalogs have answers to the query. Recall is the proportion of the se-
lected e-catalogs among all the e-catalogs having answers to a given query; 100%
recall means all e-catalogs having answers are selected to answer the query. We
also report selection rate referring to the percentage of e-catalogs selected to
answer a given query among all available e-catalogs; 100% selection rate means
all e-catalogs are selected to answer a query.

6.1 Building of MAC Summary

As eager approach is straightforward, we only experimented lazy approach in
building MAC summary, with an assumption that there were no content up-
dates in e-catalogs. Starting with a blank summary where each query bucket
was associated with a boolean value 1, MAC summary was built with update
operations when processing user queries. After answering a user query, some
query buckets were updated: the summary was about 90% matching the final
state after answering 100 user queries and was fully built after answering 387
user queries. The number of queries used in building the summaries was much
less than the number of query buckets. We call the summary built using lazy
approach lazy summary.

6.2 Evaluation of E-Catalog Selection

We conducted two sets of experiments to evaluate the accuracy of e-catalog se-
lection using MAC summaries. In the first set of experiments, e-catalogs did



122 A. Sun et al.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

P
re

ci
si

on

Number of Queries

EagerSummary
LazySummary

Baseline

(a) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
ec

al
l

Number of Queries

EagerSummary
LazySummary

Baseline

(b) Recall

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

S
el

ec
tio

n 
R

at
e

Number of Queries

EagerSummary
LazySummary

Baseline

(c) Selection Rate

Fig. 3. Precision, Recall, and Selection Rate with no content updates in e-catalogs

not update their contents. In the second set of experiments, we simulated con-
tent updates in e-catalogs. For each set of experiments, both eager and lazy
approaches were experimented. With eager approach, the MAC summary was
pre-built before evaluation using the 5000 user queries and the summary was not
updated regardless whether there was content updates in the e-catalogs. With
lazy approach, the summary was built and updated during query processing.
Note that the same 5000 user queries were used in all experiments. Both the
eager and lazy approaches were also compared with baseline approach where a
query is simply forwarded to all e-catalogs.

The precision, recall and selection rate using eager summary, lazy summary
and baseline approaches when there was no content update in e-catalogs are
shown in Figure 3. The values reported are the average of every 250 queries.
As shown in Figure 3(a), baseline approach clearly delivered lowest precision
by selecting all e-catalogs to answer a query. This experimental results also
demonstrated that not all e-catalogs would have answers to a given query. Lazy
summary delivered slight lower precision for the first 500 user queries and the



Querying E-Catalogs Using Content Summaries 123

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

P
re

ci
si

on

Number of Queries

EagerSummary
LazySummary

Baseline

(a) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

R
ec

al
l

Number of Queries

EagerSummary
LazySummary

Baseline

(b) Recall

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500  1000  1500  2000  2500  3000  3500  4000  4500  5000

S
el

ec
tio

n 
R

at
e

Number of Queries

EagerSummary
LazySummary

Baseline

(c) Selection Rate

Fig. 4. Precision, Recall, and Selection Rate with content updates in e-catalogs

same precision for the rest of user queries. The reason is that before the lazy
summary was fully built, some query buckets were incorrectly associated with
1 and therefore e-catalogs were false positively selected to answer queries. After
fully built, lazy summary and eager summary became identical and yielded the
same precision. The overall precision was about 80% which was fairly high. As
shown in Figure 3(b), both eager and lazy summaries gave 100% recall which
means that all the e-catalogs having answers for any user query were selected.
These results confirmed our discussion in Section 5.1 and false negative selection
only occurs when e-catalogs add new tuples to their content. The selection rate
for both eager and lazy summaries were on average below 70%, and 100% for
baseline approach as shown in Figure 3(c).

We simulated content updates in e-catalogs by swapping tuples among neigh-
boring e-catalogs. After evaluation of every 50 user queries, 5 tuples were deleted
from cj and inserted to cj+1. After processing the 5000 evaluation queries, in
total 500 tuples (i.e., 55% of the 904 tuples in each catalog) were swapped
among neighboring e-catalogs. With eager approach, the summary was pre-built



124 A. Sun et al.

before evaluating the user queries, and once built, the summary was not updated.
With lazy approach, the summary was built and updated during the process of
answering 5000 user queries.

The precision, recall and selection rate with content updates in e-catalogs are
shown in Figure 4. For the first 250 queries, eager summary yielded much bet-
ter precision than lazy summary as shown in Figure 4(a) since lazy summary
was not fully built. Comparable precisions were observed after processing 500
queries. When more queries processed (and more content updates in e-catalogs
performed), precision of lazy summary became better than that of eager sum-
mary as lazy summary was updated during the query processing. The difference
between the two precisions became wider with more content updates occurred in
e-catalogs. After processing the 5000 queries, lazy summary (with updates) was
able to maintain its precision at around 80% while precision of eager summary
(without updates) dropped to around 70%. The precision of baseline approach
was again the lowest. For recall measure, as shown in Figure 4(b), lazy summary
with updates achieved 99.96% which was nearly 100%. Such an experimental
result gives strong evidence on the effectiveness of MAC summary update op-
eration. Without summary updates, recall of eager summary kept on dropping
when e-catalog updated their contents. After processing all queries, the recall
dropped below 90%8. The recall of baseline approach was 100% as all e-catalogs
were selected to answer queries. On the selection rate, as shown in Figure 4(c),
there were no much difference between eager and lazy approaches as e-catalog
updates were simulated by swapping tuples among neighbors and the number of
e-catalogs having answers to a query did not change much.

Three observations can be made from these experiments: (1) summary update
was crucial in maintaining summaries accuracy, (ii) MAC summary was resilient
to changes, and (iii) recall in e-catalog selection was fairly high meaning that
user is on low risk to miss answers from e-catalogs. Note that, as the e-catalogs
were simulated using local databases in our experiments, the effectiveness of
communication cost reduction using MAC summary was not studied.

7 Conclusion and Future Work

We studied the problem of e-catalogs selection by considering both their query
capability and content. For each e-catalog, a catalog summary is built to reflect
its data distribution and the catalog community selects only the relevant e-
catalogs to answer user queries. We proposed a multi-attribute catalog summary
structure, and discussed how to build/update MAC summary for an e-catalog
and use MAC summary in e-catalog selection. Our experiments demonstrated
that MAC summaries could be effectively used in e-catalog selection with fairly
high precision and nearly 100% recall.

8 Note that eager summary might deliver comparable or better selection accuracy if
periodical updates were performed. However, choosing the optimal update frequency
is not trivial as the update frequencies of the member catalogs have to be derived.



Querying E-Catalogs Using Content Summaries 125

A limitation of the proposed MAC summary is that it is not adaptive. In
other words, once summary attributes are selected and AVGs are defined, the
query buckets are fixed. In our future research, we plan to investigate adaptive
MAC summary such that the MAC summaries can be dynamically adjusted with
respect to both e-catalog data distribution and user query distribution.

Acknowledgement

The work is partially funded by Australian Research Council Discovery Grant
DP0452942. In addition, the authors would like to thank Quang-Khai Pham for
his suggestions and effort in conducting experiments.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1st edition, May, 1999.

2. K. Baina, B. Benatallah, H.-Y. Paik, F. Toumani, C. Rey, A. Rutkowska, and
H. Susanto. WS-CatalogNet: An infrastructure for creating, peering, and querying
e-catalog communities. In Proc. of VLDB’04, pages 1325–1328, Toronto, Canada,
August 2004.

3. B. Benatallah, M.-S. Hacid, H.-Y. Paik, C. Rey, and F. Toumani. Towards
semantic-driven, flexible and scalable framework for peering and quering e-catalog
communities. Information Systems, 31(4):266 – 294, 2006.

4. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1-7):107–117, 1998.

5. J. Caverlee, L. Liu, and D. Rocco. Discovering and ranking web services with basil:
a personalized approach with biased focus. In Proc. of ICSOC’04, pages 153–162,
New York, NY, 2004. ACM Press.

6. K. Chakrabarti, S. Chaudhuri, and S. won Hwang. Automatic categorization of
query results. In Proc. of ACM SIGMOD’04, pages 755–766, Paris, France, June
2004. ACM Press.

7. X. Cheng, G. Dong, T. Lau, and J. Su. Data integration by describing sources
with constraint databases. In Proc. of ICDE’99, Sydney, Australia, 1999. IEEE
Computer Society.

8. J. G. Conrad and J. R. S. Claussen. Early user—system interaction for database
selection in massive domain-specific online environments. ACM Trans. Inf. Syst.,
21(1):94–131, 2003.

9. J. Fan and S. Kambhampati. A snapshot of public web services. SIGMOD Record,
34(1):24–32, 2005.

10. E. Gelle and B. Faltings. Solving mixed and conditional constraint satisfaction
problems. Constraints, 8(2):107–141, 2003.

11. A. Y. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

12. O. H. Ibarra and J. Su. On the containment and equivalence of database queries
with linear constraints (extended abstract). In Proc. of PODS’97, pages 32–43,
Tucson, Arizona, 1997. ACM Press.

13. D. H. Lee and M. H. Kim. Database summarization using fuzzy isa hierarchies.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27(1):68–78, 1997.



126 A. Sun et al.

14. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proc. of VLDB’96, pages 251–262, Bombay,
India, 1996. Morgan Kaufmann.

15. L. Liu. Query routing in large-scale digital library systems. In Proc. of ICDE’99,
pages 154–163, Washington DC, 1999. IEEE Computer Society.

16. R. McCann, B. K. AlShebli, Q. Le, H. Nguyen, L. Vu, and A. Doan. Mapping main-
tenance for data integration systems. In Proc. of VLDB’05, Trondheim, Norway,
2005.

17. T. Millstein, A. Levy, and M. Friedman. Query containment for data integration
systems. In Proc. of PODS’00, pages 67–75, Dallas, Texas, 2000. ACM Press.

18. Z. Nie, S. Kambhampati, and U. Nambiar. Effectively mining and using coverage
and overlap statistics for data integration. IEEE Trans. on Knowledge and Data
Eng., 17(5):638–651, May 2005.

19. OCEAN. On-board Communication, Entertainment, And iNformation. Available
at http://www.ocean.cse.unsw.edu.au .

20. A. L. Powell and J. C. French. Comparing the performance of collection selection
algorithms. ACM Trans. Inf. Syst., 21(4):412–456, 2003.

21. R. Saint-Paul, G. Raschia, and N. Mouaddib. General purpose dataset summa-
rization. In Proc. of VLDB’05, Trondheim, Norway, 2005.

22. J. D. Ullman. Information integration using logical views. In Proc. of ICDT’97,
pages 19–40, Delphi, Greece, January 1997.

23. C. T. Yu, G. Philip, and W. Meng. Distributed top-n query processing with pos-
sibly uncooperative local systems. In Proc. of VLDB’03, pages 117–128, Berlin,
Germany, September 2003. Morgan Kaufmann.

24. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting
containment queries in relational database management systems. SIGMOD Rec.,
30(2):425–436, 2001.

 http://www.ocean.cse.unsw.edu.au


WorkflowNet2BPEL4WS: A Tool for Translating
Unstructured Workflow Processes to Readable BPEL

Kristian Bisgaard Lassen1 and Wil M.P. van der Aalst1,2

1 Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200
Aarhus N, Denmark

k.b.lassen@daimi.au.dk
2 Department of Information Systems, Eindhoven University of Technology, P.O. Box 513,

NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents WorkflowNet2BPEL4WS a tool to automatically
map a graphical workflow model expressed in terms of Workflow Nets (WF-nets)
onto BPEL. The Business Process Execution Language for Web Services (BPEL)
has emerged as the de-facto standard for implementing processes and is supported
by an increasing number of systems (cf. the IBM WebSphere Choreographer and
the Oracle BPEL Process Manager). While being a powerful language, BPEL is
difficult to use. Its XML representation is very verbose and only readable for the
trained eye. It offers many constructs and typically things can be implemented
in many ways, e.g., using links and the flow construct or using sequences and
switches. As a result only experienced users are able to select the right construct.
Some vendors offer a graphical interface that generates BPEL code. However, the
graphical representations are a direct reflection of the BPEL code and not easy
to use by end-users. Therefore, we provide a mapping from WF-nets to BPEL.
This mapping builds on the rich theory of Petri nets and can also be used to map
other languages (e.g., UML, EPC, BPMN, etc.) onto BPEL. To evaluate Work-
flowNet2BPEL4WS we used more than 100 processes modeled using Protos (the
most widely used business process modeling tool in the Netherlands), automat-
ically converted these into CPN Tools, and applied our mapping. The results of
these evaluation are very encouraging and show the applicability of our approach.

Keywords: BPEL4WS, Petri nets, workflow management, business process man-
agement.

1 Introduction

The primary goal of this paper is to present WorkflowNet2BPEL4WS, a tool to automat-
ically map Workflow nets (WF-nets) [1,2,3] onto Business Process Execution Language
for Web Services (BPEL) [10]. The tool uses the approach described in [9] and assumes
a WF-net modeled using CPN Tools [11,27] and the resulting BPEL code can be used
in systems such as the IBM WebSphere Choreographer [22] and the Oracle BPEL Pro-
cess Manager [32]. Note that the approach is also applicable to other Petri-net-based
tools (e.g., systems such as ProM [12], Yasper, WoPeD, and Protos [36] that are able to
export Petri Net Markup Language (PNML)). Moreover, the ideas are also applicable

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 127–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



128 K.B. Lassen and W.M.P. van der Aalst

to other graph-based languages such as Business Process Modeling Notation (BPMN)
[44], UML activity diagrams [21], Event-driven Process Chains (EPCs) [24,37], etc.

This introduction motivates the need for a tool like WorkflowNet2BPEL4WS. To do
this we start by introducing BPEL followed by a brief discussion of WF-nets, an intro-
duction to the tool, and some information about the evaluation using 100 Protos models.

1.1 BPEL

After more than a decade of attempts to standardize workflow languages (cf. [5,31]), it
seems that the Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) [10] is emerging as the de-facto standard for executable process speci-
fication. Systems such as Oracle BPEL Process Manager, IBM WebSphere Application
Server Enterprise, IBM WebSphere Studio Application Developer Integration Edition,
and Microsoft BizTalk Server 2004 support BPEL, thus illustrating the practical rele-
vance of this language.

Interestingly, BPEL was intended initially for cross-organizational processes in a
web services context: “BPEL4WS provides a language for the formal specification of
business processes and business interaction protocols. By doing so, it extends the Web
Services interaction model and enables it to support business transactions.” (see page
1 in [10]). However, it can also be used to support intra-organizational processes. The
authors of BPEL [10] envision two possible uses of the language: “Business processes
can be described in two ways. Executable business processes model actual behavior
of a participant in a business interaction. Business protocols, in contrast, use process
descriptions that specify the mutually visible message exchange behavior of each of the
parties involved in the protocol, without revealing their internal behavior. The process
descriptions for business protocols are called abstract processes. BPEL4WS is meant to
be used to model the behavior of both executable and abstract processes.” In this paper
we only consider the use of BPEL as an execution language.

BPEL is an expressive language [45] (i.e., it can specify highly complex processes)
and is supported by many systems. Unfortunately, BPEL is not a very intuitive lan-
guage. Its XML representation is very verbose and there are many, rather advanced,
constructs. Clearly, it is at another level than the graphical languages used by the tradi-
tional workflow management systems (e.g., Staffware, FileNet, COSA, Lotus Domino
Workflow, SAP Workflow, etc.). This is the primary motivation of this for developing
WorkflowNet2BPEL4WS, i.e., a tool to generate BPEL code from a graphical workflow
language.

The modeling languages of traditional workflow management systems are executable
but at the same time they appeal to managers and business analysts. Clearly, managers
and business analysts will have problems understanding BPEL code. As a Turing com-
plete1 language BPEL can do, well, anything, but to do this it uses two styles of model-
ing: graph-based and structured. This can be explained by looking at its history: BPEL
builds on IBM’s WSFL (Web Services Flow Language) [28] and Microsoft’s XLANG
(Web Services for Business Process Design) [39] and combines accordingly the features

1 Since BPEL offers typical constructs of programming languages, e.g., loops and if-the-else
constructs, and XML data types it is easy to show that BPEL is Turing complete.



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 129

of a block structured language inherited from XLANG with those for directed graphs
originating from WSFL. As a result simple things can be implemented in two ways. For
example a sequence can be realized using the sequence or flow elements, a choice
based on certain data values can be realized using the switch or flow elements, etc.
However, for certain constructs one is forced to use the block structured part of the
language, e.g., a deferred choice [7] can only be modeled using the pick construct.
For other constructs one is forced to use the links, i.e., the more graph-based oriented
part of the language, e.g., two parallel processes with a one-way synchronization re-
quire a link inside a flow. In addition, there are very subtle restrictions on the use of
links: “A link MUST NOT cross the boundary of a while activity, a serializable scope,
an event handler or a compensation handler... In addition, a link that crosses a fault-
handler boundary MUST be outbound, that is, it MUST have its source activity within
the fault handler and its target activity within a scope that encloses the scope associated
with the fault handler. Finally, a link MUST NOT create a control cycle, that is, the
source activity must not have the target activity as a logically preceding activity, where
an activity A logically precedes an activity B if the initiation of B semantically requires
the completion of A. Therefore, directed graphs created by links are always acyclic.”
(see page 64 in [10]). All of this makes the language complex for end-users. Therefore,
there is a need for a “higher level” language for which one can generate intuitive and
maintainable BPEL code.

Such a “higher level” language will not describe certain implementation details, e.g.,
particularities of a given legacy application. This needs to be added to the generated
BPEL code. Therefore, it is important that the generated BPEL code is intuitive and
maintainable. If the generated BPEL code is unnecessary complex or counter-intuitive,
it cannot be extended or customized.

Note that tools such as Oracle BPEL Process Manager and IBM WebSphere Studio
offer graphical modeling tools. However, these tools reflect directly the BPEL code, i.e.,
the designer needs to be aware of structure of the XML document and required BPEL
constructs. For example, to model a deferred choice in the context of a parallel process
[7] the user needs to add a level to the hierarchy (i.e., a pick defined at a lower level
than the flow). Moreover, subtle requirements such as links not creating a cycle still
need to be respected in the graphical representation. Therefore, it is interesting to look
at a truly graph-based language with no technological-oriented syntactical restrictions
and see whether it is possible to generate BPEL code.

1.2 WF-Nets

In this paper we use a specific class of Petri nets, named WorkFlow nets (WF-nets)
[1,2,3], as a source language to be mapped onto the target language BPEL. There are
several reasons for selecting Petri nets as a source language. It is a simple graphical
language with a strong theoretical foundation. Petri nets can express all the routing con-
structs present in existing workflow languages [4,17,42] and enforce no technological-
oriented syntactical restrictions (e.g., no loops). Note that WF-nets are classical Petri
nets without data, hierarchy, time and other extensions. Therefore, their applicability
is limited. However, we do not propose WF-nets as the language to be used by end-
users; we merely use it as the theoretical foundation. It can capture the control-flow



130 K.B. Lassen and W.M.P. van der Aalst

structures present in other graphical languages, but it abstracts from other aspects such
as data flow, work distribution, etc. Note that there are many Petri-net based model-
ing tools, e.g., general tools such as ExSpect, CPN Tools, etc. and more dedicated
Petri-net-based workflow modeling and analysis tools such COSA, Protos, WoPeD,
Yasper, and Protos. Clearly, these tools can be used to model WF-nets (possibly ex-
tended with time, data, hierarchy, etc.). Moreover, as demonstrated in the context of
tools such as ProM [12] and Woflan [41], it is possible to map (abstractions of) lan-
guages like Staffware, MQSeries Workflow, EPCs, YAWL, etc. onto WF-nets. Hence,
the mapping presented in this paper can be used as a basis for translations from other
source languages such as UML activity diagrams [21], Event-driven Process Chains
(EPCs) [24,37], and the Business Process Modeling Notation (BPMN) [44]. Moreover,
the basic ideas can also be used to map graph-based languages onto other (partly) block-
structured languages.

1.3 WorkflowNet2BPEL4WS

In a technical report [9], we introduced an approach to automatically map a WF-net onto
BPEL using an iterative approach. To support this approach, we implemented the tool
WorkflowNet2BPEL4WS. This tool automatically translates Colored Petri Nets (CPNs,
[27]) into BPEL code. These CPNs are specified using CPN Tools [11]. Note that a CPN
may also contain detailed data transformations and stochastic information (e.g., delay
distributions and probabilities). However, in the transformation, we abstract from data,
time, and probabilities and mainly focus on the WF-net structure of the CPN. The code
generated by WorkflowNet2BPEL4WS can be imported into any system that supports
BPEL, e.g., IBM’s WebSphere Studio [22].

1.4 Evaluation Using 100 Protos Models

To evaluate the applicability of our approach we used 100 processes modeled using
Protos [36]. These models were automatically converted into CPN Tools using ProM
[12] and then we used WorkflowNet2BPEL4WS to map them onto BPEL. Protos (Pallas
Athena) uses a Petri-net-based modeling notation [36] and is a widely used business
process modeling tool. It is used by more than 1500 organizations in more than 20
countries. The number of users that use Protos for designing processes is estimated to
be 25000. Some of the organizations have modeled more than 1500 processes. The 100
process models used for the evaluation resulted from student projects where students
had to model and redesign realistic business cases.

1.5 Outline

The remainder of this paper is organized as follows. First, we provide an overview of re-
lated work. Section 3 describes the approach used to map WF-nets onto BPEL using an
iterative approach. Section 4 presents the implementation of WorkflowNet2BPEL4WS.
Section 5 evaluates our approach using 100 Protos models. These models where then
executed using IBM’s WebSphere Studio. Section 6 concludes the paper.



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 131

2 Related Work

Since the early nineties workflow technology has matured [20] and several textbooks
have been published, e.g., [6,13,23,29]. During this period many languages for mod-
eling workflows have been proposed, i.e., languages ranging from generic Petri-net-
based languages to tailor-made domain-specific languages. The Workflow Management
Coalition (WfMC) has tried to standardize workflow languages since 1994 but failed to
do so [17]. XPDL, the language proposed by the WfMC, has semantic problems [4] and
is rarely used. In a way BPEL [10] succeeded in doing what the WfMC was aiming at.
However, BPEL is really at the implementation level rather than the workflow modeling
level or the requirements level (thus providing the motivation for this paper).

Several attempts have been made to capture the behavior of BPEL [10] in some for-
mal way. Some advocate the use of finite state machines [18,19], others process algebras
[16,26], and yet others abstract state machines [14,15] or Petri nets [33,30,38,40]. For
a detailed analysis of BPEL based on the workflow patterns [7] we refer to [45].

The work reported in this paper is also related to the various tools and mappings used
to generate BPEL code being developed in industry. Tools such as the IBM WebSphere
Choreographer and the Oracle BPEL Process Manager offer a graphical notation for
BPEL. However, this notation directly reflects the code and there is no intelligent map-
ping as shown in this paper. This implies that users have to think in terms of BPEL
constructs (e.g., blocks, syntactical restrictions on links, etc.). More related is the work
of Steven White that discusses the mapping of BPMN onto BPEL [43] and the work
by Jana Koehler and Rainer Hauser on removing loops in the context of BPEL [25].
Note that none of these publications provides a mapping of some (graphical) process
modeling language onto BPEL: [43] merely presents the problem and discusses some
issues using examples and [25] focusses on only one piece of the puzzle. Also related
is the mapping presented in [34] where a subclass of BPMN is mapped onto BPEL us-
ing ECA rules as an intermediate format. Then these ECA rules are realized by BPEL
event handlers (onEvent). Note that this mapping heavily relies on the implementation
of events in BPEL. Moreover, the resulting code is not very readable for humans be-
cause this mapping does not try to identify patterns close to the BPEL constructs. A
more recent mapping tries to overcome this problem [35] but has not been implemented
yet.

The tool presented in this paper uses our translation which was described in detail
in a technical report [9]. The work is also related to [8] where we describe a case study
where for a new bank system requirements are mapped onto Colored Workflow Nets (a
subclass of Colored Petri Nets) which are then implemented using BPEL in the IBM
WebSphere environment.

3 Mapping WF-Nets to BPEL

In this paper, we would like to focus on the WorkflowNet2BPEL4WS tool and the
evaluation of it. Therefore, we do not show any details for the algorithms being used.
Moreover, we do not give any proof of the correctness of our approach. For this we
refer to the technical report [9] mentioned before. We also assume that the reader has



132 K.B. Lassen and W.M.P. van der Aalst

basic knowledge of BPEL and Petri nets. This allows us to focus on the application of
our translation from WF-nets to BPEL.

As indicated in the introduction, it is important that the generated BPEL code is intu-
itive and maintainable. If the generated BPEL code is unnecessary complex or counter-
intuitive, it cannot be extended or customized. Therefore, we try to map parts of the
WF-net onto BPEL constructs that fit best. For example, a sequence of transitions con-
nected through places should be mapped onto a BPEL sequence. We aim at recogniz-
ing “sequences”, “switches”, “picks”, “while’s”, and “flows” where the most specific
construct has our preference, e.g., for a sequence we prefer to use the sequence el-
ement over the flow element even though both are possible. We aim at an iterative
approach where the WF-net is reduced by packaging parts of the network into suitable
BPEL constructs.

We would like to stress that our goal is not to provide just any mapping of WF-nets
onto BPEL. Note that a large class of WF-nets can be mapped directly onto a BPEL
flow construct. However, such a translation results in unreadable BPEL code. Instead
we would like to map a graph-based language like WF-nets onto a hierarchical decom-
position of specific BPEL constructs. For example, if the WF-net contains a sequence
of transitions (i.e., activities) this should be mapped onto the more specific sequence
construct rather than the more general (and more verbose) flow construct. Hence, our
goal is to generate readable and compact code.

C

p1

p2

p1

tC C

t1

p1

tC

p1p2

C

p1

t1

p1

tC C

t1

tC

t2

Fig. 1. Folding a component C into a single transition tC

To map WF-nets onto (readable) BPEL code, we need to transform a graph structure
to a block structure. For this purpose we use components. A component should be seen
as a selected part of the WF-net that has a clear start and end. One can think of it as
subnet satisfying properties similar to a WF-net. However, unlike a WF-net, a compo-
nent may start and/or end with a transition, i.e., WF-nets are “place bordered” while
components may be “place and/or transition bordered”. The goal is to map components



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 133

onto “BPEL blocks”. For example, a component holding a purely sequential structure
should be mapped onto a BPEL sequencewhile a component holding a parallel struc-
ture should be mapped onto a flow. Figure 1 shows the basic idea. We try to identify
a place and/or transition bordered component C and fold this into a single transition
tC . The annotation of tC hold the BPEL code corresponding to C. By repeating this
process we hope to find a single transition annotated with the BPEL code of the entire
process.

So we can summarize our approach as follows: The idea is to start with an annotated
WF-net where each transition is labeled with references to primitive activities such as
invoke (invoking an operation on some web service), receive (waiting for a mes-
sage from an external source), reply (replying to an external source), wait (waiting
for some time), assign (copying data from one place to another), throw (indicat-
ing errors in the execution), and empty (doing nothing). Taking this as starting point,
a component in the annotated WF-net is mapped onto BPEL code. The component C
is replaced by transition tC whose inscription (cf. Figure 1) describes the BPEL code
associated to the whole component. This process is repeated until there is just a sin-
gle transition whose inscription corresponds to the BPEL specification of the entire
process. How this can be done is detailed using an example.

A

H

K

receive
paper

G

get review 2

time-out 2

collect
reviews

B

decide

M

accept

N

reject

F

E

get review 1

time-out 1

J

I

get review 3

time-out 3

decision =
“accept”

decision =
“reject”

LC

D

invite reviewer 1

invite reviewer 2

invite reviewer 3

Fig. 2. A Petri net describing the process of reviewing papers

Figure 2 shows a Petri net corresponding to a reviewing process. First we look for a
maximal sequence component, i.e., a component representing a sequence that is chosen
as large as possible. This component is mapped into a new transition with the corre-
sponding BPEL annotation. In Figure 2 there is a sequence consisting of transition K
and L and we replace this component by a transition F1. The resulting WF-net and the
annotation of transition F1 is shown in Figure 3.

After folding K and L into F1 there is no sequence component remaining. There-
fore, we replace M and N by a transition F2 tagged with a switch expression. Note
that this component is not mapped onto a pick construct because of the inscriptions



134 K.B. Lassen and W.M.P. van der Aalst

A

H

F1

receive
paper

G

get review 2

time-out 2

B

M

accept

N

reject

F

E

get review 1

time-out 1

J

I

get review 3

time-out 3

decision =
“accept”

decision =
“reject”

C

D

invite reviewer 1

invite reviewer 2

invite reviewer 3

<sequence  name ="Sequence_F1 ">
<invoke  name ="collect reviews "/>
<invoke  name ="decide "/>

</sequence >

Fig. 3. The Petri net after replacing K and L by a transition F1 tagged with a sequence ex-
pression

A

H

F1

receive
paper

G

get review 2

time-out 2

B

F2

F

E

get review 1

time-out 1

J

I

get review 3

time-out 3

C

D

invite reviewer 1

invite reviewer 2

invite reviewer 3

<sequence  name ="Sequence_F1 ">
<invoke  name ="collect reviews "/>
<invoke  name ="decide "/>

</sequence >

<switch  name="Switch_F2 ">
<case  condition ="decision = &quot;reject&quot; ">

<invoke name ="reject "/>
</case >
<case  condition ="decision = &quot;accept&quot; ">

<invoke name ="accept "/>
</case >

</switch>

Fig. 4. The Petri net after replacing M and N by a transition F2 tagged with a switch expres-
sion

on the arcs suggesting some choice based on data rather than a time or message trigger.
In our tool, we use a set of annotations to guide the generation of BPEL code. However,
for the basic idea this is of less importance. Figure 4 shows the resulting WF-net.

Because of the introduction ofF2 a new sequence is created. Clearly, this sequence is
maximal and we can replace is by a transition F3 tagged with a sequence expression
as shown in Figure 5.

In Figure 5 there are three components representing a pick component. Note that
we assume that these represent a pick because there are no conditions on the arcs
or the places with multiple outgoing arcs. As indicated, the WorkflowNet2BPEL4WS
tool can handle a variety of tags directing the mapping process. In case of a pick it



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 135

A

H

F3

receive
paper

G

get review 2

time-out 2

B

F

E

get review 1

time-out 1

J

I

get review 3

time-out 3

C

D

invite reviewer 1

invite reviewer 2

invite reviewer 3

<sequence  name ="Sequence_F3 "
               joinCondition ="bpws:getLinkStatus('Fragment5_Fragment3') and
                  bpws:getLinkStatus('Fragment7_Fragment3') and
                  bpws:getLinkStatus('Fragment9_Fragment3') ">

<target  linkName ="Sequence_F9_Sequence_F3 "/>
<target  linkName ="Sequence_F7_Sequence_F3 "/>
<target  linkName ="Sequence_F5_Sequence_F3 "/>
<sequence  name="Sequence_F1 ">

<invoke  name="collect reviews "/>
<invoke  name="decide "/>

</sequence >
<switch  name="Switch_F2 ">

<case condition ="decision = &quot;reject&quot; ">
<invoke  name ="reject"/>

</case >
<case condition ="decision = &quot;accept&quot; ">

<invoke  name ="accept "/>
</case >

</switch >
</sequence >

Fig. 5. The Petri net after replacing F1 and F2 by a transition F3 tagged with a sequence
expression

A F3

receive
paper

D

F7

F9

invite reviewer 3
<pick  name="Pick_F4 ">

<onMessage  operation ="">
<invoke  name="get review 3 "/>

</onMessage >
<onMessage  operation ="">

<invoke  name="time-out 3 "/>
</onMessage >

</pick>

F4

<sequence  name ="Sequence_F7 ">
<source  linkName ="Sequence_F7_Sequence_F3 "/>
<target  linkName ="receive paper_Sequence_F7 "/>
<invoke  name ="invite reviewer 2 "/>
<pick  name ="Pick_F6 ">

<onMessage  operation ="">
<invoke  name="time-out 2 "/>

</onMessage >
<onMessage  operation ="">

<invoke  name="get review 2 "/>
</onMessage >

</pick>
</sequence >

<sequence  name="Sequence_F9 ">
<source  linkName ="Sequence_F9_Sequence_F3 "/>
<target  linkName ="receive paper_Sequence_F9 "/>
<invoke name ="invited reviewer 1 "/>
<pick name ="Pick_F8 ">

<onMessage  operation ="">
<invoke  name="get review 1&#xA; "/>

</onMessage >
<onMessage  operation ="">

<invoke  name="time-out 1&#xA; "/>
</onMessage >

</pick>
</sequence >

Fig. 6. The Petri net after replacing I and J by a transition F4 tagged with a pick expression.
Then D and F4 can be merged into a sequence F5. Similarly, F7 and F9 can be created.

is possible to describe more about the nature of the choice (e.g., events, timers, etc.).
However, in this paper we focus on the control-flow. Each of the pick components can
be replaced by a single transition which is then merged with the preceding transition
into a sequence transition.

Figure 6 illustrates the sequence of steps that are taken. Note that the intermediate
result shown is actually not possible, i.e., first D and F4 would be merged into F5
before moving to the other two parallel branches. However, D and F4 are depicted
separately to show the process in more intuitive manner. If D and F4 are also merged
(i.e., the sequence of D and F4 is replaced by F5), there are 5 transitions remaining:
A, F3, F5, F7, and F9. Together they form a flow component.



136 K.B. Lassen and W.M.P. van der Aalst

F10

<flow  name ="Flow_F10 ">
<links>

<link name ="receive paper_Sequence_F7 "/>
<link name ="receive paper_Sequence_F9 "/>
<link name ="receive paper_Sequence_F5 "/>
<link name ="Sequence_F5_Sequence_F3 "/>
<link name ="Sequence_F7_Sequence_F3 "/>
<link name ="Sequence_F9_Sequence_F3 "/>

</links >
<invoke  name="receive paper ">

<source  linkName ="receive paper_Sequence_F5 "/>
<source  linkName ="receive paper_Sequence_F9 "/>
<source  linkName ="receive paper_Sequence_F7 "/>

</invoke >
<sequence  name="Sequence_F3 "
joinCondition ="bpws:getLinkStatus('Fragment5_Fragment3') and
bpws:getLinkStatus('Fragment7_Fragment3') and
bpws:getLinkStatus('Fragment9_Fragment3') ">

<target  linkName ="Sequence_F9_Sequence_F3 "/>
<target  linkName ="Sequence_F7_Sequence_F3 "/>
<target  linkName ="Sequence_F5_Sequence_F3 "/>
<sequence  name ="Sequence_F1 ">

<invoke  name ="collect reviews "/>
<invoke  name ="decide "/>

</sequence >
<switch  name ="Switch_F2 ">

<case  condition ="decision = &quot;reject&quot; ">
<invoke  name="reject "/>

</case>
<case  condition ="decision = &quot;accept&quot; ">

<invoke  name="accept "/>
</case>

</switch>
</sequence >

<sequence  name ="Sequence_F5 ">
<source  linkName ="Sequence_F5_Sequence_F3 "/>
<target  linkName ="receive paper_Sequence_F5 "/>
<invoke  name="invite reviewer 3 "/>
<pick  name="Pick_F4 ">

<onMessage  operation ="">
<invoke  name ="get review 3 "/>

</onMessage >
<onMessage  operation ="">

<invoke  name ="time-out 3 "/>
</onMessage >

</pick>
</sequence >
<sequence  name ="Sequence_F7 ">

<source  linkName ="Sequence_F7_Sequence_F3 "/>
<target  linkName ="receive paper_Sequence_F7 "/>
<invoke  name="invite reviewer 2 "/>
<pick  name="Pick_F6 ">

<onMessage  operation ="">
<invoke  name ="time-out 2 "/>

</onMessage >
<onMessage  operation ="">

<invoke  name ="get review 2 "/>
</onMessage >

</pick>
</sequence >
<sequence  name ="Sequence_F9 ">

<source  linkName ="Sequence_F9_Sequence_F3 "/>
<target  linkName ="receive paper_Sequence_F9 "/>
<invoke  name="invited reviewer 1 "/>
<pick  name="Pick_F8 ">

<onMessage  operation ="">
<invoke  name ="get review 1&#xA; "/>

</onMessage >
<onMessage  operation ="">

<invoke  name ="time-out 1&#xA; "/>
</onMessage >

</pick>
</sequence >

</flow>

Fig. 7. The Petri net after replacing the remaining part by one transition F10 tagged with a flow
expression

Figure 7 shows the result after applying the last step. Note that this is the 10th folding
and the result is a WF-net consisting of only one transition F10. The annotation of F10
is the BPEL code for the entire process. Hence, we provided an iterative approach to
translate the Wf-net shown Figure 2 into BPEL template code.

4 Implementation

For a detailed description of the algorithm we refer to [9]. In this section, we only high-
light the basic structure of the tool. The starting point is a WF-net. We assume that this
WF-net is modeled using CPN Tools [11,27]. Note that through ProM [12] and Woflan
[41], it is possible to map (abstractions of) languages like Protos, Staffware, MQSeries
Workflow, EPCs, YAWL, etc. onto WF-nets and export them to CPN Tools. In CPN Tools
we assume some annotation describing e.g. the nature of choice (pick or switch)
and the content of the activity represented by an atomic transition. We allow for the an-
notation of activity types like invoke (invoking an operation on some web service),
receive (waiting for a message from an external source), reply (replying to an ex-
ternal source), wait (waiting for some time), assign (copying data from one place
to another), throw (indicating errors in the execution), and empty (doing nothing).

In principle, no annotations are needed for the translation of Workflow nets in CPN
Tools to BPEL. If a choice construct (place with outgoing arcs) is not annotated, it is
assumed to be part of a switch. If an atomic transition is not annotated, it is assumed
to be an invoke activity.

An important assumption for the correctness of our approach is that the initial WF-
net is safe and sound. This can be checked with tools such as ProM [12] and Woflan
[41] and also the state-space tool of CPN Tools [11].



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 137

In [9] we described that the various components can be detected in a WF-net. Based
on this, WorkflowNet2BPEL4WS uses the following algorithm to produce BPEL code.

Definition 1 (Algorithm). Let PN = (P, T, F, τP , τG, τMA, τT ) be a safe and sound
annotated WF-net.

(i) X := PN
(ii) while [X ] �= ∅ (i.e., X contains a non-trivial component)2

(iii-a) If there is a maximal SEQUENCE componentC ∈ [X ], select it and goto (vi).
(iii-b) If there is a SWITCH componentC ∈ [X ], select it and goto (vi).
(iii-c) If there is a PICK component C ∈ [X ], select it and goto (vi).
(iii-d) If there is a WHILE component C ∈ [X ], select it and goto (vi).
(iii-e) If there is a maximal FLOW component C ∈ [X ], select it and goto (vi).

(iv) If there is a componentC ∈ [X ] that appears in the component library, select it
and goto (vi).

(v) Select a component C ∈ [X ] to be manually mapped onto BPEL and add it to
the component library.

(vi) Attach the BPEL translation of C to tC as illustrated in Figure 1.
(vii) X := fold(PN , C) and return to (ii).

(viii) Output the BPEL code attached to the transition in X .

The actual translation of components is done in step (vi) followed by the folding in step
(vii). The component to be translated/folded is selected in steps (iii). If there is still a
sequence remaining in the net, this is selected. A maximal sequence is selected to keep
the translation as compact and simple as possible. Only if there are no sequences left
in the WF-net, other components are considered. The next one in line is the SWITCH
component followed by the PICK component and the WHILE component. Given the
fact that SWITCH, PICK and WHILE components are disjoint, the order of steps (iii-
b), (iii-c), and (iii-d) is irrelevant. Finally, maximal FLOW components are considered.

Not every net can be reduced into SEQUENCE, SWITCH, PICK, WHILE, and
FLOW components. Therefore, steps (iv) and (v) have been added. The basic idea is
to allow for ad-hoc translations. These translations are stored in a component library. If
the WF-net cannot be reduced any further using the standard SEQUENCE, SWITCH,
PICK, WHILE and FLOW components, then the algorithm searches the component li-
brary (note that it only has to consider the network structure and not the specific names
and annotations). If the search is successful, the stored BPEL mapping can be applied
(modulo renaming of nodes and arc and transition annotations). If there is not a match-
ing component, the tool will save the irreducible net along with each of the components
in the net. A manual translation can be then provided for one of the components and
stored in the component library for future use.

The component library is composed of pairs of component and the translation of it
into BPEL activity. When we match a component against a library component we take
each pair of transitions that where matched successfully by that component and substi-
tute the BPEL activity in the library BPEL specification code by that of the transition
in the net that is being translated. So if a transition is annotated with a sequence and the

2 Note that this is the case as long as X is not reduced to a WF-net with just a single transition.



138 K.B. Lassen and W.M.P. van der Aalst

WorkflowNet2BPEL4WS

Fig. 8. A screenshot of CPN Tools and the resulting BPEL code after applying the Work-
flowNet2BPEL4WS tool

corresponding transition in the library component is an invoke then the invoke in the
library BPEL invoke is replaced by the sequence. If we did not do this, then each time
a library component is used for reduction, all previous translations would get lost.

Figure 8 shows a screenshot of WorkflowNet2BPEL4WS in action. The WF-net Fig-
ure 2 is loaded into CPN Tools and WorkflowNet2BPEL4WS iteratively creates BPEL
template code. Note that WorkflowNet2BPEL4WS saves the result of each step, i.e., for
Figure 2 there are 9 intermediate and one final model generated. This allows the designer
to check the translation process. If the net is irreducible, i.e. there is no predefined or li-
brary component that can match a component in the net, then WorkflowNet2BPEL4WS
stores the irreducible net along with a copy of the components that exists in the irre-
ducible net. This makes it easy to develop the library to cope with a particular Workflow
net, by choosing a component in the list that WorkflowNet2BPEL provides and trans-
lating it, and adding the component and the translation of it to the library.

The default component matching order in the tool is the one described in [9], but it
is possible to change the order in which components are matched. It is possible express
that FLOW components are selected before SEQUENCE components, or that a user-
defined component has priority over FLOW components. By doing this, the user of the
tool can adjust the “style” of the generated BPEL and not just settle with some fixed
order.



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 139

5 Evaluation

To evaluate our approach and to test the WorkflowNet2BPEL4WS tool, we used 100
process models developed by students in group projects. Each group modeled the pro-
cesses related to a realistic business case using Protos. Each group was free to select
their own business case. Using interviews and documentation, their assignment was to
model the business processes, to analyze them, and to propose redesigns. It is important
to stress that the processes were not selected or modeled by the authors of this paper,
i.e., the groups were free to choose a business case. There were only requirements with
respect to the size and complexity of the models. Moreover, the models had to be cor-
rect. Using Woflan the groups could verify the soundness of their models [41]. As a
modeling tool they used Protos. The reason is that this is the most widely used business
process modeling tool in the Netherlands (see Section 1.4). Moreover, we have devel-
oped interfaces to Petri-net-based analysis tools such as Woflan, ProM, ExSpect, and
CPN Tools.

Although there were more than Protos 100 models, we made an random selection
of 100 models. All these models where exported to our input format by, first importing
them into ProM and then exporting them to the CPN Tools format. On average the
generated CPN models contained 24 places and 27 transitions.

The goal of the evaluation was to take the WorkflowNet2BPEL4WS tool and convert
each of the 100 Protos models into BPEL. This was not trivial since only 11 of the 100
models could be reduced using the standard predefined components of the algorithm,
i.e., just 11 models could be completely reduced into SEQUENCE, SWITCH, PICK,
WHILE, and FLOW components. Therefore, we were forced to add components to
our component library. We started with an empty component library and each time we
encountered a WF-net that could not be reduced completely, we added a manual trans-
lation of the smallest irreducible component to our library. After adding 76 components
to the library we succeeded in completely reducing all Protos models.

In Figure 9(a) we see the relationship between components added to the library and
the number of nets reduced. It starts out in (0,11) (11 nets could be reduced using the
predefined components) and ends up in (100,76) (76 components had to be added to
reduce all 100 nets).

For each library component we added, we translated all of the 100 nets to check
the distribution of components types. Figure 9(b) shows how often each component
type could be applied to reduce the WF-nets in each of the 76 steps. For example, the
number of times a component could be reduced by mapping it onto a SEQUENCE
increases from less than 700 until 743 (top line). This number increases because each
time a component is added to the library a further reduction is possible and new SE-
QUENCE components may surface. The line “x” in Figure 9(b) shows the number of
reductions possible because of the component library. Initially, this value is 0 because
the component library is empty. After adding 76 ad-hoc components, 132 reductions
result from the component library. After adding these 76 each WF-net can be reduced
completely and as a result we obtain the BPEL code for all 100 models.



140 K.B. Lassen and W.M.P. van der Aalst

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70

R
ed

uc
ed

 W
or

kf
lo

w
 n

et
s

Components added

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70

C
om

po
ne

nt
s 

m
at

ch
ed

Components added

FLOW

LIBRARY

SEQUENCE

SWITCH

WHILE

(b)

0

100

200

300

400

500

600

700

800

FLOW LIBRARY SEQUENCE SWITCH WHILE

T
im

e
s

 u
s

e
d

(c)

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76

Component

T
im

e
s

 u
s

e
d

(d)

Fig. 9. Graphs displaying the performance of the algorithm

Figure 9(c) shows the final distribution of reductions, i.e., while generating the BPEL
code 73 FLOW components, 132 LIBRARY components, 743 SEQUENCE compo-
nents, 90 SWITCH components, and 24 WHILE components are encountered.3 These
numbers show that the standard reductions using the SEQUENCE, SWITCH, PICK,
WHILE, and FLOW components are doing remarkably well. On the total of 1062 re-
ductions required to generate the BPEL code, only 132 were due to LIBRARY compo-
nents (�12.4%).

After adding all 76 components to the library we checked to see how often a li-
brary component was used when translating all of the 100 WF-nets. This is shown in
Figure 9(d). The figure shows that most of the library components we used only once.
Only one library component (number 5) was used frequently, i.e., of the 76 library com-
ponents 50 components were used only once (� 66%), 21 were used twice (� 28%),
2 were used three times (� 3%), 1 was used four times (� 1%), 1 was used five times
(� 1%), and 1 was used 25 times (� 1%).

3 The reason that no PICK components where found was that the current export facility of ProM
to CPN Tools do not annotate the WF-nets with this information. Since the only difference
between a match for a PICK and a SWITCH component is the annotation of the place splitting
the flow, the reduction process is not influenced. If we would have transferred this information
from Protos, the sum of the number of SWITCH and PICK reductions would be 90 and the
other numbers would not be affected. Note that this information is available in Protos but
cannot (yet) be stored in the intermediate PNML format.



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 141

p1

tC

t1

t2

p2

t3

t4

Fig. 10. The reduction using the library component that was used 25 times

Figure 10 shows the library component that could be applied most frequently. Clearly,
this is a good candidate to be added to the set of standard components. None of the
other library components is used very frequently. This shows that some manual work
will always be necessary. We would like to point out that students were encouraged to
select complicated business processes, i.e., part of the grading was based on the use
of as many workflow patterns as possible [7]. As a result we expect the selected set
of Protos models to be more complicated than usual. For example, the students were
encouraged to use the “Milestone Pattern” [7] which cannot be reduced using any of
the standard components and is difficult to capture this pattern in a single component
to be added to the library. Therefore, the results should be interpreted as a worst-case
scenario. We expect that in a most situations, more than 95% of the components can be
reduced using the standard components and the component depicted in Figure 10.

The performance of the reductions and BPEL generation is not an issue. After adding
the 76 library components, each of the 100 Workflow nets was translated within a few
seconds.

6 Conclusion and Future Work

In this paper we presented an approach to generate BPEL code from WF-nets using
reductions, i.e., components are folded into transitions labeled with BPEL code. The
main goal is to generate readable BPEL code. Therefore, we did not aim at a compli-
cated full translation (e.g., using events handler [34]) but at recognizing “natural BPEL
constructs”. The approach is supported by the translation tool WorkflowNet2BPEL4WS.
The tool also supports an extensible component library, i.e., components and their pre-
ferred BPEL translations can be added thus allowing for different translation styles.

We have evaluated WorkflowNet2BPEL4WS and the underlying ideas using 100
complex Protos models. Based on this evaluation we estimate that more than 95% of
real-life process models can be automatically translated into readable BPEL code. How-
ever, some manual interventions are needed to translate the remaining 5%. As demon-
strated, larger component libraries could be used to achieve a fully automatic translation
in most cases.



142 K.B. Lassen and W.M.P. van der Aalst

The current implementation can be used in conjunction with a wide variety of Petri
net based tools, e.g., CPN Tools, ProM, Yasper, WoPeD, PNK, CPN-AMI, and Protos.
Moreover, the ideas are also applicable to other graph-based languages such as BPMN,
UML activity diagrams, EPCs , and proprietary workflow languages.

In the near future we plan to implement this algorithm directly into ProM [12] so
it will be possible to translate a wide variety of process modeling languages to BPEL.
Moreover, Pallas Athena is interested in integrating WorkflowNet2BPEL4WS into Pro-
tos. Give the widespread use of Protos, such an implementation would allow many
organizations to generate BPEL code.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors, Ap-
plication and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science,
pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-net-
based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of Lecture
Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin, 2000.

4. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 1–65. Springer-Verlag, Berlin, 2004.

5. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Composition
Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer, editors, Proceeding
of the 29th EUROMICRO Conference: New Waves in System Architecture, pages 298–305.
IEEE Computer Society, Los Alamitos, CA, 2003.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

8. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way: From Re-
quirements via Colored Workflow Nets to a BPEL Implementation of a New Bank System
Paper. In R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS,
DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Science, pages 22–39.
Springer-Verlag, Berlin, 2005.

9. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS. BETA
Working Paper Series, WP 145, Eindhoven University of Technology, Eindhoven, 2005.

10. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language
for Web Services, Version 1.1. Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation, 2003.

11. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page. http://wiki.daimi.
au.dk/cpntools/.



WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes 143

12. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The ProM framework: A New Era in Process Mining Tool Support. In G. Cia-
rdo and P. Darondeau, editors, Application and Theory of Petri Nets 2005, volume 3536 of
Lecture Notes in Computer Science, pages 444–454. Springer-Verlag, Berlin, 2005.

13. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information
Systems: Bridging People and Software through Process Technology. Wiley & Sons, 2005.

14. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control flow. In
D. Beauquier and E. Börger and A. Slissenko, editor, Proc. 12th International Workshop on
Abstract State Machines, pages 131–151, Paris, France, March 2005.

15. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the business
process execution language for web services. In W. Zimmermann and B. Thalheim, editors,
Abstract State Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages
79–94, Lutherstadt Wittenberg, Germany, May 2004. Springer-Verlag, Berlin.

16. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd inter-
national conference on Service oriented computing, pages 242–251, New York, NY, USA,
2004. ACM Press.

17. L. Fischer, editor. Workflow Handbook 2003, Workflow Management Coalition. Future
Strategies, Lighthouse Point, Florida, 2003.

18. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS business
collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Proceedings of the 5th In-
ternational Conference on Electronic Commerce and Web Technologies (EC-Web ’04), vol-
ume 3182 of Lecture Notes in Computer Science, pages 79–94, Zaragoza, Spain, August
2004. Springer-Verlag, Berlin.

19. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In International
World Wide Web Conference: Proceedings of the 13th international conference on World
Wide Web, pages 621–630, New York, NY, USA, 2004. ACM Press.

20. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

21. Object Management Group. OMG Unified Modeling Language 2.0. OMG, http://www.omg.
com/uml/, 2005.

22. IBM WebSphere. www-306.ibm.com/software/websphere.
23. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and

Implementation. International Thomson Computer Press, London, UK, 1996.
24. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der

Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

25. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solution Based on
Continuations. In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bussler, and A. Gal et al.,
editors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE:
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2004, volume
3290 of Lecture Notes in Computer Science, pages 121–138, 2004.

26. M. Koshkina and F. van Breugel. Verification of Business Processes for Web Ser-
vices. Technical report CS-2003-11, York University, October 2003. Available from:
http://www.cs.yorku.ca/techreports/2003/.

27. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri
Nets. International Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.

28. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
29. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall

PTR, Upper Saddle River, New Jersey, USA, 1999.



144 K.B. Lassen and W.M.P. van der Aalst

30. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor, Pro-
ceedings of the 8th International Conference on Fundamental Approaches to Software En-
gineering (FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer-Verlag, Berlin, 2005.

31. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Application
of workflow-driven Process Information Systems. Logos, Berlin, 2004.

32. Oracle BPEL Process Manager. www.oracle.com/technology/products/ias/bpel.
33. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, , and H.M.W. Verbeek. Formal

Semantics and Analysis of Control Flow in WS-BPEL. BPM Center Report BPM-05-15,
BPMcenter.org, 2005.

34. C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating Standard Process
Models to BPEL. BPM Center Report BPM-05-27, BPMcenter.org, 2005.

35. C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Translating BPMN
to BPEL. BPM Center Report BPM-06-02, BPMcenter.org, 2006.

36. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Netherlands, 2004.
37. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
38. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s thesis, Hum-

boldt University, Berlin, Germany, 2004.
39. S. Thatte. XLANG Web Services for Business Process Design, 2001.
40. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri Nets.

In D. Marinescu, editor, Proceedings of the Second International Workshop on Applications
of Petri Nets to Coordination, Workflow and Business Process Management, pages 59–78.
Florida International University, Miami, Florida, USA, 2005.

41. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes
using Woflan. The Computer Journal, 44(4):246–279, 2001.

42. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process Definition
Interface – XML Process Definition Language (XPDL) (WFMC-TC-1025). Technical report,
Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

43. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March 2005.
44. S.A. White et al. Business Process Modeling Notation (BPML), Version 1.0, 2004.
45. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web

Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, 22nd International Conference on Conceptual Modeling
(ER 2003), volume 2813 of Lecture Notes in Computer Science, pages 200–215. Springer-
Verlag, Berlin, 2003.



Let’s Dance: A Language for Service Behavior
Modeling

Johannes Maria Zaha1, Alistair Barros2, Marlon Dumas1,
and Arthur ter Hofstede1

1 Queensland University of Technology, Brisbane, Australia
{j.zaha, m.dumas, a.terhofstede}@qut.edu.au

2 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

Abstract. In Service-Oriented Architectures (SOAs), software systems
are decomposed into independent units, namely services, that interact
with one another through message exchanges. To promote reuse and
evolvability, these interactions are explicitly described right from the
early phases of the development lifecycle. Up to now, emphasis has been
placed on capturing structural aspects of service interactions. Gradually
though, the description of behavioral dependencies between service in-
teractions is gaining increasing attention as a means to push forward the
SOA vision. This paper deals with the description of these behavioral
dependencies during the analysis and design phases. The paper outlines
a set of requirements that a language for modeling service interactions at
this level should fulfill, and proposes a language whose design is driven
by these requirements.

1 Introduction

As the first generation of web service technology based on XML, SOAP, and
WSDL, reaches a certain level of maturity and adoption, a second generation
based on richer service descriptions is gestating. Whereas in first-generation web
services, service descriptions are usually equated to sets of operations and mes-
sage types, in the second generation the description of behavioral dependen-
cies between service interactions (e.g. the order in which messages must be ex-
changed) plays a central role.

Two standardization initiatives, BPEL [1] and WS-CDL [3], have promoted
the description of behavioral aspects of service interactions. However, these pro-
posals focus on the implementation phase of the service development lifecycle.
Indeed, although WS-CDL claims to be at a higher level than BPEL, they both
rely on procedural programming constructs such as variable assignment and in-
struction sequencing. One can argue that during analysis and design, capturing
constraints on possible interactions is more relevant than prescribing interac-
tion procedures. Furthermore, while BPEL focuses on describing interactions
from a local perspective, i.e. from the perspective of a specific service, WS-CDL
emphasizes global descriptions (also called choreographies).

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 145–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



146 J.M. Zaha et al.

Previous proposals have defined extensions of well-known behavior modeling
paradigms (e.g. Activity Diagrams) to capture message exchanges in the style
of service interactions. This is the case for example of BPMN [18] and BPSS (or
ebBP) [5]. However, these languages do not treat service interactions as first-
class citizens but rather as extensions to a core language centered around the
notion of actions and dependencies between actions. In particular, service inter-
actions in these languages are not composable, meaning that it is not possible
to aggregate several interactions and treat them as a single interaction to which
it is possible to apply the same operators as for elementary interactions. It is
thus questionable whether these languages meet the requirements of a language
for service interaction modeling. Also, these languages do not provide a uni-
fied framework for capturing interactions both from a local and from a global
viewpoint.

In prior work, we have captured suitability (i.e. fit-to-purpose) requirements
for service interaction languages and documented them in the form of 13 pat-
terns [2]. In this paper, we formulate additional requirements for a service inter-
action modeling language and use these as the basis for a language proposal. The
main contribution of the paper is thus a language, namely “Let’s Dance”, for
modeling behavioral dependencies between service interactions. The language is
targeted at business analysts and software architects involved in the initial phases
of the service development lifecycle. Accordingly, it abstracts away from imple-
mentation details and avoids reliance on imperative programming constructs.
At the same time, models defined in the proposed language contain information
that can be leveraged upon during the implementation and operations phases,
for example to generate BPEL templates or to ensure, through monitoring or
log analysis, that a given service implementation conforms to the requirements
expressed in the models.

The paper is structured as follows. In Section 2 the requirements for a service
behavior modeling language are formulated. Section 3 gives an overview of the
Let’s Dance language. In Section 4 the suitability of the language is illustrated
through scenarios corresponding to some of the interaction patterns of [2]. (An
extended version of this paper provides a full suitability evaluation against all
the patterns [19]). Section 5 introduces the meta model of the language as well
as its informal semantics. Finally, Section 6 concludes and gives an outlook on
future work.

2 Requirements and Related Work

The intended scope of the Let’s Dance language is to capture models of service
interactions from a behavioral perspective. The language is targeted at the anal-
ysis and design phases of the systems development lifecycle. As such, it should
be sufficiently abstract (i.e. conceptual), meaning that it should allow modelers
to focus on the essence of their service interaction analysis and design problems,
abstracting away from implementation details. Accordingly, we aim at defining a
language that is as free as possible from programming constructs such as explicit



Let’s Dance: A Language for Service Behavior Modeling 147

variable assignment. Examples of what the language should not force modelers
to do include:

– Having to intersperse variable assignment actions for book-keeping purposes,
e.g. using variables as counters or as “flags” to indicate that a state has been
reached, or as “buffers” to store the result of intermediate computations.

– Having to introduce unnecessary ordering or synchronization constraints, i.e.
sequentializing interactions that could otherwise be performed in any order
or in parallel.

A major use case of the language is to define models of service interactions that
can be refined into implementations, or compared against the behavior exhibited
by an existing implementation. Thus, the language should have an unambiguous
semantics and it should be possible to compare the semantics of a model with the
behavior exhibited by an implementation. In addition, it is desirable to reason
about the models defined in the language, e.g. to verify or test certain properties
through static analysis or simulation. One way to achieve these requirements is
to endow the language with a formal and executable semantics.

Another major purpose of the language is to facilitate communication be-
tween analysts, designers, and other stakeholders involved in the development
of service-oriented systems. Users of the language, including non-technical users,
will need to understand, critique, modify or suggest modifications to models or
parts thereof. The language must hence be comprehensible. This comprehensi-
bility can be achieved by: (i) attaching a graphical syntax to the language to
better exploit the perceptual capabilities of users, and (ii) allowing models to be
captured at different levels of detail and from different viewpoints. In particular,
the language should allow interactions to be decomposed into other interactions
so that users can choose the level of details at which they wish to view an in-
teraction model. Also, users should be able to design and view models from a
local and from a global perspective. In the global (or choreography) perspective,
interactions are described from the perspective of a collection of services (ab-
stracted as roles). This is useful when communicating about how services should
behave in order to seamlessly interact with one another. On the other hand,
local models focus on the perspective of either an existing or a “to be” service,
capturing only those interactions that involve that particular service. A possible
usage scenario is one where global models are produced by analysts to agree on
major interaction scenarios, while local models are produced during system de-
sign and handed on to implementers. To ensure proper handovers between these
users, it is necessary to have a mapping from global to local models and/or to
be able to check that a local model is consistent with a global one. In other
scenarios, reverse mappings from local to global models may also be useful.

Finally, the language must be expressive and suitable. Given the intended
scope, expressiveness refers to the ability to capture any set of service inter-
actions and their associated behavioral dependencies. Suitability on the other
hand, refers to the ability to capture common scenarios in an intuitive manner.
Languages such as Colored Petri nets [12] or Live Sequence Charts [6] allow
one to capture any service interaction scenario (in computational terms, they



148 J.M. Zaha et al.

are Turing complete). However, they are not necessarily suitable for the task
at hand: modeling certain common interaction scenarios would require the use
of programming constructs. So while expressiveness is certainly important and
we plan to investigate this in the future, our initial language design has been
driven by suitability. Suitability is arguably a subjective property and is ulti-
mately determined by the users and the use cases. We have chosen to take the
service interaction patterns proposed in [2] as a way of evaluating suitability.
These patterns have been derived from insights into real-scale B2B transaction
processing, use cases gathered by standardization committees (e.g. BPEL and
WS-CDL) during their requirements analysis phase, and scenarios identified in
industry standards (e.g. xCBL choreographies and RosettaNet PIPs [17]). The
proposed patterns, as such, are not complete but aim at consolidating recurrent
scenarios, abstracting them in a way that provides reusable knowledge to service
developers. Since the patterns are abstractions of recurrent scenarios, they can
be used to assess the suitability of a given language for service behavior descrip-
tion. Accordingly, a driving requirement of our language design is that it should
provide direct support for these patterns. Section 4 and [19] shows how these
patterns are captured in Let’s Dance.

Existing languages for capturing service interaction behavior include WS-
CDL [3], BPEL [1], BPMN [18], UML Activity Diagrams [15] (and variants
thereof as defined in related initiatives such as BPSS [5] or EDOC [14]). WS-
CDL and BPEL are aimed at the detailed design and implementation stages
of the development lifecycle. They both extensively rely on programming lan-
guage constructs such as sequence, “repeat until” and “while” loops, and vari-
able assignment. Capturing service interaction patterns related to multi-party
or streamed interactions in these languages requires extensive use of variables
for record-keeping purposes.1 Also, BPEL does not allow one to represent global
views. Moreover, these languages do not have a graphical syntax, although differ-
ent tools assign them various graphical representations. UML activity diagrams
and BPMN do have a prescribed graphical representations and are targeted at
analysts and designers. However, in these languages interactions are not treated
as first-class citizens. Elementary interactions (i.e. message exchanges) can be
represented through “message flows” and “object flows” respectively. However,
these constructs are not composable: It is not possible to represent an interac-
tion that is composed of other interactions. And as in the case of BPEL and
WS-CDL, UML and BPMN do not provide constructs to capture multi-party
and streamed interactions and these would need to be encoded using loops and
variable manipulation for record-keeping.

Another family of languages that have been proposed for capturing service
interactions are the so-called “semantic web service” description languages. This
family of languages includes OWL-S [13] and WSMO [16]. The basic idea of these
languages is to use logical statements to capture and manipulate service-related
information. In these languages, a service is described as a set of facts and rules
covering three broad aspects:

1 See sample code available at www.serviceinteraction.com.

www.serviceinteraction.com


Let’s Dance: A Language for Service Behavior Modeling 149

– Capability: what can the service do?
– Non-functional properties: conditions of usage, contractual terms, contextual

constraints, etc.
– Interface: preconditions, post-conditions and/or effects of each interaction in

which the service can engage. Interface descriptions are akin to local models
in Let’s Dance, although they cover both structural and behavioral aspects.

While semantic web service descriptions are suitable in view of applying auto-
mated reasoning techniques (e.g. automated planning) over service descriptions,
their suitability for use at the level of domain analysis and systems design is ques-
tionable. Domain analysts do not typically describe services down to the level of
details required for non-trivial automated reasoning. Thus, semantic web service
description languages can be seen as possible target languages for Let’s Dance.
For example, Let’s Dance local models could be used to generate templates of
WSMO descriptions, which after refinement, could be given to automated rea-
soning engines to determine if a service can be combined with other services to
achieve a given goal.

In [4], Finite State Machines (FSMs) are put forward as a suitable language
for modeling service interactions. However, while state machines lead to simple
models for highly sequential scenarios, they may lead to complex, spaghetti-like
models when used to capture scenarios with parallelism and cancellation (e.g.
scenarios where a given interaction may occur at any time during the execution
of another set of interactions).

Foster et al [9] suggest the use of Message Sequence Charts (MSCs) for de-
scribing global service interaction models. These global models are converted
into local models expressed as FSMs for analysis purposes. It should be noted
that MSCs are a notation for describing behavior scenarios as opposed to full
behavior specifications. In particular, basic MSCs do not allow one to capture
conditional branches, parallel branches, and iterations. Extensions to MSCs to
capture complex behavior have been defined, but in realistic cases they lead to
cluttered diagrams since MSCs are based on lifelines which are fundamentally
targeted at capturing sequencing rather than branching.

3 Language Overview

We have used the cognitive dimensions for visual programming environments
introduced in [10] as a guideline for optimizing the choice of constructs for the
visual syntax of Let’s Dance. For the design of a graphical modeling language,
important dimensions to consider, among those presented in [10], are abstrac-
tion gradient, consistency and diffuseness. The abstraction gradient covers the
minimum and maximum levels of abstraction that must be captured and the
possibility to encapsulate fragments of a certain model. In a language for service
behavior modeling there are two levels of abstraction: the global model is the
higher level while the local model is the lower one. Closer inspection shows that
these levels can themselves be described at different levels of abstraction and
this can be achieved by ensuring composability. The consistency or harmony of



150 J.M. Zaha et al.

a language testifies how much of a language has to be learnt by a user in order
to infer the rest. This inference should be easy for a language fulfilling the above
requirements, since the same constructs ought to be used for describing local
and global models. Finally, the dimension of diffuseness reflects how many sym-
bols or graphic entities are required to express a given issue. This dimension is
determined by the need to support local and global models and by the concepts
involved in each of these models.

Service interactions can be described in terms of message exchanges. A mes-
sage exchange consists of a message sending and a message receipt. Thus, at the
lowest level of abstraction, a language for modeling service behavior must pro-
vide these two constructs. To optimize the abstraction gradient and consistency
dimensions discussed above, we choose a notation wherein the visual juxtapo-
sition of the symbols for sending and receiving messages leads to the symbol
for elementary interactions (i.e. message exchanges). Interactions can then be
related and composed to form choreographies. Communication actions are rep-
resented by the non-regular pentagons shown in the left-hand side of Figure 1. As
illustrated in this figure, we distinguish between a message sending that requires
an acknowledgment and one that does not. Similarly, we distinguish between
message receipt actions that provide acknowledgment and those that do not.2

Fig. 1. Communication Actions and Interactions

A communication action is performed by an actor playing a role. This infor-
mation is specified at the top corner of the pentagon denoting a communication
action. Roles are written in uppercase and the actor playing this role (specifically,
the “actor reference”) is written in lowercase between brackets. The symbol for
sending and receiving messages are combined to form elementary interactions by
juxtaposing the respective symbols (see right-hand side of Figure 1). Again, we
distinguish between elementary interactions with and without acknowledgment.

Interactions can be inter-related using the constructs depicted in Figure 2.
The relationship on the left-hand side is called “precedes” and is depicted by a
directed edge: the source interaction can only occur after the target interaction

2 At the modeling level, we are only concerned with capturing whether an acknowl-
edgment is needed or not. The protocol used for acknowledging is an implementation
concern.



Let’s Dance: A Language for Service Behavior Modeling 151

Fig. 2. Relationships between interactions

has occurred. That is, after the receipt of a message “M1” by “B”, “B” is able to
send a message “M2” to “C”. The rectangle surrounding these two interactions
denotes a composite interaction, which can be related with other interactions
with any type of relationship. The sub-interactions of a composite interaction
may, but need not be related. If there is no relationship between them, they can
occur in any order or in parallel.

The relationship at the center of the figure is called “inhibits”, depicted by a
crossed directed edge. It denotes that after the source interaction has occurred,
the target interaction can no longer occur. That is, after “B” has received a
message “M1” from “A”, it may not send a message “M2” to “C”. The latter
interaction can be repeated until “x” messages have been sent, which is indicated
by the header on top of the interaction. The actor executing the repetition
instruction is noted in brackets. Additional to the “Until” construct, Let’s Dance
provides two more constructs to denote the repetition of an interaction, namely
“For each” and “While”.

Finally, the relationship on the right-hand side of the figure, called “weak-
precedes”, denotes that “B” is not able to send a message “M2” until “A” has
sent a message “M1” or until this interaction has been inhibited. That is, the
target interaction can only occur after the source interaction has reached a final
status, which may be “completed” or “skipped” (i.e. “inhibited”). In the exam-
ple, the upper interaction has a guard assigned, which is denoted by the header
on top of the interaction. Guards allow for the definition under which condi-
tion a given interaction can be executed and can be assigned to any interaction,
whereby the actor evaluating a guard has to be named explicitly.

All these constructs will be exemplified in the following section, where we
evaluate the suitability of Let’s Dance with respect to the interaction patterns
of [2].

4 Interaction Patterns in Let’s Dance

The service interaction patterns introduced in [2] have been put forward as an
instrument for benchmarking languages for service behavior modeling. In [2], so-
lutions to the patterns in BPEL are sketched (the full solutions can be found in



152 J.M. Zaha et al.

Fig. 3. Send/Receive (Pattern 3)

www.serviceinteraction.com). These patterns are divided in four categories:
single-transmission bilateral interaction patterns, single-transmission multilat-
eral interaction patterns, multi-transmission interaction patterns and routing
patterns.

We have assessed the suitability of Let’s Dance by modeling sample scenar-
ios corresponding to all 13 patterns. Due to space limitations, in this paper we
only consider representative patterns of each of the four categories. A discussion
on how Let’s Dance addresses the remaining patterns is given in [19]. Using
the nomenclature and numbering of [2] we have chosen the following patterns:
Send/Receive (pattern 3), Racing incoming messages (pattern 4), One-to-many
send/receive (pattern 7), Multi-responses (pattern 8) and Relayed Request (pat-
tern 12). For each of the patterns, its description and a model corresponding to
one of the sample scenarios given in [2] are provided. Each scenario is then
modeled in Let’s Dance and the resulting models are informally discussed.

Send/Receive. The Send/Receive pattern is described as follows [2]: “A party
X engages in two causally related interactions: in the first interaction X sends
a message to another party Y (the request), while in the second one X receives
a message from Y (the response).” The example for this pattern depicted in
Figure 3 shows a payment service sending a payment to a retail service provider.
The retail service provider sends a response indicating whether the payment de-
tails are valid or not. The interaction at the top shows the sending of the payment
details by an actor playing the role “payment service” to an actor playing the
role “retail service”. These actors are referred to as “p1” and “s1” respectively.
This interaction requires an acknowledgment (this is a design choice). The inter-
action at the bottom depicts the sending of the response. Again, this interaction
requires acknowledgment. Both interactions are related via a precedes relation-
ship, meaning that the lower interaction can only start if the upper interaction
has been completed. In this case, the upper interaction is completed if the pay-
ment service has received the acknowledgment from the retail service. The local
model for the actors participating in a given choreography would include every
interaction where the party in question is participating. Thus, in the depicted
example the local models for the participating parties “payment service” and
“retail service” would be equivalent to the global model. Subsequently and for
space reasons, we only show global models.

www.serviceinteraction.com


Let’s Dance: A Language for Service Behavior Modeling 153

Racing incoming messages. In Figure 4 an example for the racing incoming mes-
sages pattern is depicted. This pattern is defined as follows [2]: “A party expects
to receive one among a set of messages. These messages may be structurally
different (i.e. different types) and may come from different categories of part-
ners. The way a message is processed depends on its type and/or the category of
partner from which it comes.” The figure depicts the scenario of a manufactur-
ing process, which “involves remote subcontractors and uses a pull-strategy to
streamline its operations. Each step in the manufacturing process is undertaken
by a subcontractor. A subcontractor signals intention to execute a step when it
becomes available through a request. At the same time, progress is monitored by
a quality assurance service. The service randomly issues quality check requests
in addition to the pre-established quality checkpoints in the process. When a
quality check request arrives, it is processed in full before processing any new
quality check request or subcontractor intention. Similarly, when a subcontractor
intention arrives, it is processed in full before processing any other check request
or subcontractor intention. Thus, there are points in the process where quality
checks and subcontractor intentions compete.” Figure 4 describes this point in
the choreography. The two interactions at the top of the figure show the possible
receipt of two different types of messages by the manufacturer: “manufacturing
request” and “quality check request”. These interactions are connected via a
two-way inhibits relationship. In the figure an undirected crossed edge is used as
abbreviation for two directed crossed edges. This indicates, that after one of the
two messages has been received, the other one can no longer be received. With
skipping one of these elementary interactions, the following elementary interac-
tion will also be skipped, since the according prerequisite will never be fulfilled.
The “manufacturing request” interaction precedes a “manufacturing approval”
interaction while a “quality check request” interaction precedes a “quality check
response” interaction.

Fig. 4. Racing incoming messages (Pattern 4)

One-to-many send/receive. The one-to-many send/receive pattern goes as fol-
lows [2]: “A party sends a request to several other parties, which may all be
identical or logically related. Responses are expected within a given timeframe.
However, some responses may not arrive within the timeframe and some parties
may even not respond at all. The interaction may complete successfully or not



154 J.M. Zaha et al.

depending on the set of responses gathered.” The example for this pattern de-
picted in Figure 5 shows a scenario, where “an insurance company outsources
some aspects of its claims validation to its external search brokers. Brokers are
typically small agencies and have variable demands. For efficiency, the insurance
company sends search requests to all the brokers, and accepts the first three
responses to undertake the search.” The depicted interaction shows the repe-
tition of the sending of the search requests by the insurance company to the
search brokers and the according responses. The actors playing the roles of the
insurance company and the search brokers are referred to as “i1” and “B1”. As
introduced in Section 3, “i1” is named actor reference. “B1” is denoting a set of
actor references, indicated by starting with a capital letter instead of a small let-
ter for a single actor reference. The rectangle surrounding the two interactions is
depicting a repeated composite interaction, whereby the repetition instruction
and an additional stop-condition for the number of concurrent executions are
noted in small rectangles on top of the composite interaction. Both, the repeti-
tion instruction and the stop-condition are executed and evaluated respectively
by the actor referred to as “i1” and playing the role “Insurance”. The repetition
instruction denotes, that the message has to be sent to all actors that are referred
to in the set of actor references “B1”. This set of actor references is bound by
the actor executing the repetition instruction. All iterations are executed con-
current, which is noted in brackets after the repetition instruction. The whole
repeated interaction is initializing a variable “responses”, which is indicated by
the content of the small rectangle below the repeated interaction. This variable
is increased by the lower interaction, showing the receipt of the responses from
the brokers. The value of this variable is part of the stop-condition, denoting the
iteration is stopped if this variable has the value 3. The usage of this variable
does not contradict the postulation of omitting variables, noted in the require-
ments section. This variable is necessary from a business point of view, since
even responses that have been gathered need not necessarily change the value,
e.g. if the response does not contain the requested information.

Fig. 5. One-to-many send/receive (Pattern 7)



Let’s Dance: A Language for Service Behavior Modeling 155

Multi-responses. The pattern multi-responses is defined in [2] as follows: “A
party X sends a request to another party Y. Subsequently, X receives any number
of responses from Y until no further responses are required. The trigger of no
further responses can arise from a temporal condition or message content, and
can arise from either X or Ys side. Responses are no longer expected from Y after
one or a combination of the following events: (i) X sends a notification to stop; (ii)
a relative or absolute deadline indicated by X; (iii) an interval of inactivity during
which X does not receive any response from Y; (iv) a message from Y indicating
to X that no further responses will follow. From this point on, no further messages
from Y will be accepted by X.” The example for this pattern depicted in Figure 6
shows a goods deliverer who is providing an urgent transportation service. “For
optimization of travel, it subscribes to a local traffic reporting service provides its
destination nodes (goods dispatch and customer locations) and obtains regular
feeds on traffic bottlenecks, until it indicates that no feeds are required.” The
top left interaction depicts the subscription of the traffic service by the goods
deliverer. After the completion of this interaction the two remaining interactions
of the choreography are enabled. The interaction on the right-hand side shows the
receipt of traffic information by the goods deliverer. This interaction is repeated
sequentially until the iteration of the interaction is interrupted, since the stop
condition will is always false. Accordingly, the stop-condition is evaluated by the
actor referred to as “t1” and playing the role “Traffic service”. The interruption
of the repetition occurs, if the third interaction is completed, which shows the
sending of an unsubscribe message from the goods deliverer to the traffic service.
This interaction is thus connected via a inhibits relationship with the repeated
interaction.

Fig. 6. Multi-responses (Pattern 8)

Relayed request. According to [2], the relayed request pattern is defined as fol-
lows: “Party A makes a request to party B which delegates the request to other
parties (P1, ..., Pn). Parties P1, ..., Pn then continue interactions with party A
while party B observes a view of the interactions including faults. The interact-
ing parties are aware of this ‘view’ (as part of the condition to interact).” The
example depicted for this pattern shows a government agency that outsources
supportive work for managing regulatory provisions. Clients send requests to



156 J.M. Zaha et al.

Fig. 7. Relayed Request (Pattern 12)

the government agency concerned by the regulation and the government agency
forwards the request to the service providers. The government agency selects the
service providers and the way they interact with the clients, e.g. key points of
processing and key reports to be sent to the government agency. The above in-
teraction shows the sending of a request from a client to the government agency.
This interaction is connected via a precedes relationship with a repeated inter-
action, which is iterated concurrently for all service providers bound to a set
of actor references “S1”. The binding of this set of actor references, which is
part of the repetition instruction, is executed by an actor referred to as “g1”
and playing the role “Government”. The government agency is delegating the
request to each actor assigned to the set of actor references “S1” concurrently.
This instruction for the number of executions is noted in a small rectangle on
top of the repeated interaction. In this case there is no additional stop-condition
for the “For each”-repetition, since it would equal to the maximum number of
iterations expressed by the repetition instruction. During each iteration, the re-
maining two interactions are enabled after the service provider has received the
request. The interaction on the right-hand side shows the sending of a response
from the service provider to the client, while the interaction on the left side
depicts the sending of a report to the government agency.

The solutions to the interaction patterns presented above and those given
in [19] indicate that the Let’s Dance language can deal with most relevant
aspects necessary to model service choreographies. The following section presents
a meta-model and an informal semantics of the language. In separate work [8]
we have defined a formal semantics of the language by translation to π-calculus.
We do not present details of this formalization here for space reasons.

5 Meta-model and Informal Semantics

Figure 8 provides an abstract syntax of the Let’s Dance in the form of a meta-
model captured in the Object-Role Modeling (ORM) notation [11]. The basic



Let’s Dance: A Language for Service Behavior Modeling 157

concept of the meta-model is that of a Communication Action, which is per-
formed by an Actor (not shown in the diagram) designated by exactly one Actor
Reference. An Actor Reference (or more specifically the actor it refers to) plays
at least one Role and one Role is played by at least one Actor Reference. Commu-
nication Actions have exactly one type, which can be either Message Sending or
Message Receipt. These are the two basic communication primitives supported
in service oriented architectures. Naturally, the party that performs the mes-
sage sending is called the “sender” while the party that performs the message
receipt is the “receiver”. A Communication Action may require or may provide
an acknowledgment. A Message Sending marked as “requiring acknowledgment”
means that the sender expects to receive an ”acknowledge” message from the
receiver. In the case of a Message Receipt the receiver will send an “acknowl-
edge” message after receiving a message if the Message Receipt is marked as
“providing acknowledgment”.

Communication Actions can write Variables and can be combined to form
Interactions. Thereby a Message Sending action requiring acknowledgment (not
requiring acknowledgment) can only be combined with a Message Receipt action
providing acknowledgment (not providing acknowledgment).

An Interaction is a unit of information exchange and has exactly one type,
which can be either Elementary (one-to-one) Interaction or Composite Inter-
action. If an Interaction is composed of other Interactions, we talk about the
“sub-interactions” of a “super-interaction”. Composite Interactions are a super-
interaction of at least one Interaction and one Interaction can be the sub-
interaction of at most one Composite Interaction. An Elementary Interaction
involves two Communication Actions (one send and one receive) and corresponds
to the logical exchange of a message from one party to another, that is, a party
sends a message that the other party may receive. The sender can only perceive
that the message was received if the interaction requires acknowledgment.

An Interaction has exactly one “Type of Repeated Interaction”, which can
be either None, Sequential for each, Concurrent for each, While or Until. Thus,
the subtype Repeated Interaction has three specializations: For each, While and
Until. The first one can refer to a Iteration Expression, which can be Actor-based
(and thus consist of at least one Actor Reference) or Variable-based (and thus
consist of at least one Variable). Additionally the Iteration Expression can have
at most one Set expression assigned, which allows for the elaboration of the
repetition instruction. Let’s Dance does not impose any particular expression
language for describing set expressions and conditions. Arguably, domain ana-
lysts would want to specify these in natural language and let developers refine
them into an executable expression language.

Every repeated interaction has exactly one (stop) condition assigned. If this
condition evaluates to true, it implies that the iteration must stop (in case of
“Until” and “For each”) or must continue (in case of “While”). A condition has
at most one Conditional expression assigned, which allows for the elaboration of
the repetition instruction. Moreover Conditions can also be assigned to each type



158 J.M. Zaha et al.

F
ig

.8
.
St

at
ic

M
et

a-
m

od
el

of
th

e
L
an

gu
ag

e



Let’s Dance: A Language for Service Behavior Modeling 159

of Interaction, denoting a guard for the Interaction, whereby each Interaction
has at most one guard. The associated Conditional expression allows for the
elaboration of the guard instruction. A Condition is evaluated by at least one
Actor Reference and can consist of multiple Variables and Actor References.

Actor References are bound during the execution of at least one Commu-
nication Action and in a given scenario each Communication Action can alter
bindings executed earlier. This enables the passing of information where spe-
cific messages should be sent to, e.g. in a buyer-seller-shipper scenario, where
the buyer is binding the actor reference of the shipper in order to nominate
a transport service. If the nominated shipper is not available, the seller might
alter the binding of the actor reference and choose another transport service.
For Composite Interactions this leads to the possibility to change the recipient
of messages during the execution of an Interaction. During execution, the in-
formation about the binding has to be sent with every message following the
Interaction during which execution a specific Actor Reference has been bound,
until the Communication Action is reached, which is executed by the bound
Actor Reference.

Since a Condition is evaluated by at least one Actor Reference, it is possi-
ble to describe dependencies between Communication Actions and Interactions
occurring earlier. Thus Conditions have to be evaluated before executing the
respective Communication Action. For a condition evaluated by an actor send-
ing a message, this means before initiating the send action and for a condition
evaluated by an actor receiving a message before the completion of the receipt
action (in other words before the consumption of the message), since in the lat-
ter case it may be necessary for the receiving party to be aware of the content
of the message in order to evaluate a stated Condition. For an Actor Reference
to be able to evaluate a Condition at all, the necessary information has to be
available. This can only be ensured, if the information needed for the evaluation
of a Condition is sent with every message following the Communication Action
which initialized a certain Variable or Actor Reference, until the information
reached the specified Communication Action and Interaction respectively that
has the Condition assigned.

Any two interactions may be related by a “precedes”, a “weak-precedes” or
an “inhibits” relation. These relationships are defined as follows: an interaction
X is said to precede another interaction Y, if Y can not occur before X has
been completed. If two interactions X and Y are connected with a weak-precedes
relationship, then Y can not occur after X has been completed or after X has been
skipped (i.e., seen from a global perspective, X will never occur). The inhibits
relationship is defined as follows: an interaction X is said to inhibit another
interaction Y, if Y can not occur any more after X has been completed. Moreover,
the inhibits relationship is able not only to prevent the target interaction to be
started, but also to interrupt it (and all of its sub-interactions), if it has already
been started. These Relationships apply solely during the current execution of
the least common super-interaction of the considered interactions. For example,
if A and B are sub-interactions of interaction C and they are related through a



160 J.M. Zaha et al.

precedes relationship, then during each execution of C, B can only occur after
A has been completed.

The subtype Timer of an Interaction allows one to enforce time limits on other
interactions. It is started by exactly one actor (reference). A Timer is defined as
a composition of two Elementary Interactions with a fixed party “Clock”. The
first Elementary Interaction is the arming of the Timer by sending a Message to
the Clock (and the Clock receiving the Message), while the second Elementary
Interaction is the sending of a Message from the Clock in order to indicate that
the specified time period has expired. The latter of these messages is only sent
if a condition is evaluated to true, which compares the elapsed time since the
arming of the Timer with the period specified in the first Message. Since a Timer
is a subtype of Interaction it can be related to other Interactions arbitrarily.

6 Conclusion and Future Research Directions

In this paper, we have motivated the need for a service behavior modeling lan-
guage, spelled out a number of associated requirements, and proposed an initial
version of a language (Let’s Dance) that fulfills the most crucial of these require-
ments, namely abstraction, comprehensibility, and suitability. Unlike existing
service behavior description languages such as BPEL and WS-CDL, which focus
on supporting the implementation phase, the proposed language is not based on
imperative programming constructs such as variable assignment, if-then-else and
switch statements, sequence, and while loops. Also, the language supports the
description of both local and global views of service interactions (i.e. behavioral
interfaces and choreographies respectively).

The suitability of the language has been demonstrated on the basis of sce-
narios corresponding to 13 patterns of service interaction previously identified.
The paper also presented an abstract syntax of the language in the form of a
static meta-model, as well as an informal semantics. For a formal execution se-
mantics of Let’s Dance, defined in terms of a translation to π-calculus, we refer
to [8]. This work also discusses the issue of reachability analysis of Let’s Dance
choreographies (i.e. detecting interactions in a choreography that will never be
executed). A more in-depth discussion on desirable properties of Let’s Dance
choreographies is provided in [20]. In particular, this latter reference discusses
the issue of local enforceability of Let’s Dance choreographies, which is a pre-
requisite to generating local models from choreographies. It turns out that not
all choreographies defined as flows of interactions (the paradigm adopted in Let’s
Dance) can be mapped into local models that satisfy the following conditions:
(i) the local models contain only interactions described in the choreography; and
(ii) they collectively enforce all the constraints in the choreography. Proposals
around WS-CDL skirt this issue. Instead, they assume the existence of a state
(i.e. a set of variables) shared by all participants. Participants synchronize with
one another to maintain the shared state up-to-date. Thus, certain interactions
take place between services for the sole purpose of synchronizing their local view
on the shared state and these interactions are not defined in the choreography.



Let’s Dance: A Language for Service Behavior Modeling 161

In the worst case, this leads to situations where a business analyst signs off on a
choreography, and later it turns out that to execute this choreography a service
provided by one organization must interact with a service provided by a com-
petitor, unknowingly of the analyst. Thus, it is desirable to provide tool support
to analyze choreographies to determine whether or not they are enforceable by
some set of local models.

In [7], we present a tool that implements algorithms for static analysis of
Let’s Dance choreographies (including reachability and enforceability analysis)
and for generation of local models. Ongoing work is concentrating on defining a
translation from Let’s Dance local models into BPEL code.

Acknowledgment. The first author is funded in part by SAP. The third author
is funded by a “Smart State” Fellowship co-sponsored by Queensland Govern-
ment and SAP.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Pro-
cess Execution Language for Web Services, version 1.1, May 2003. Available at:
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

2. A. Barros, M. Dumas, and A. H.M. ter Hofstede. Service Interactions Patterns In
Proceedings of the 3rd International Conference on Business Process Management
(BPM), Nancy, France, September 2005. Springer Verlag, pp. 302-218. Extended
version available as Technical Report FIT-TR-2005-02, Faculty of IT, Queensland
University of Technology, http://eprints.qut.edu.au/archive/00002295

3. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November
2005. http://www.w3.org/TR/ws-cdl-10.

4. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modelling of
Web Service Conversations. In Proceedings of 15th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’03), Velden, Austria, June 2003.
Springer Verlag, pp. 449-467.

5. J. Clark, C. Casanave, K. Kanaskie, B. Harvey, J. Clark, N. Smith,
J. Yunker, K. Riemer (Eds). ebXML Business Process Specification
Schema Version 1.01, UN/CEFACT and OASIS Specification, May 2001.
http://www.ebxml.org/specs/ebBPSS.pdf.

6. W. Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19(1), pages 45–80, Hingham, MA, USA, 2001.
Kluwer Academic Publishers.

7. G. Decker, M. Kirov, J. M. Zaha, M. Dumas. Maestro for Let’s Dance: An En-
vironment for Modeling Service Interactions. In Demonstration Session of the 4th
International Conference on Business Process Management (BPM), Vienna, Aus-
tria, September 2006.

8. G. Decker, J. M. Zaha, M. Dumas. Execution Semantics for Service Choreographies.
In Proceedings of the 3rd International Workshop on Web Services and Formal
Methods (WS-FM), Vienna, Austria, September 2006. Springer Verlag.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://eprints.qut.edu.au/archive/00002295
http://www.w3.org/TR/ws-cdl-10
http://www.ebxml.org/specs/ebBPSS.pdf


162 J.M. Zaha et al.

9. H. Foster, S. Uchitel, J. Magee, J. Kramer. Tool Support for Model-Based En-
gineering of Web Service Compositions. In Proceedings of the IEEE International
Conference on Web Servies (ICWS), Orlando FL, USA, July 2005. IEEE Computer
Society.

10. T. R. G. Green, M. Petre. Usability Analysis of Visual Programming Environments:
A ’Cognitive Dimensions’ Framework. Journal of Visual Languages and Computing
7(2):131-174, 1996.

11. T. Halpin. Information Modeling and Relational Databases - From onceptual Anal-
ysis to Logical Design. Morgan Kaufman, 2001.

12. K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use – Volume 1. Springer-Verlag, Berlin, 1997.

13. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, K. Sycara. Bringing
Semantics to Web Services: The OWL-S Approach. In Proceedings of the First
International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), San Diego, California, USA, July 2004. Springer, pp. 26–42.

14. Object Mangement Group (OMG): UML Profile for EDOC. February 2004.
http://www.omg.org/technology/documents/formal/edoc.htm

15. Object Management Group (OMG): UML 2.0 Superstruc-
ture Specification. OMG Document ptc/04-10-02, October 2004.
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

16. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C.
Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied Ontology
1(1):77–106, 2005.

17. RosettaNet: Partner Interface Protocols. http://www.rosettanet.org
18. S. White: Business Process Modeling Notation (BPMN) – Version 1.0, May 2004,

http://www.bpmi.org.
19. J. M. Zaha, A. Barros, M. Dumas, A. ter Hofstede: Let’s Dance: A Unified Language

for Service Behavior Modeling. Technical Report FIT-2006, Faculty of IT, Queens-
land University of Technology. http://eprints.qut.edu.au/archive/00004468

20. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, G. Decker. Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings of the Tenth IEEE
International Conference on Enterprise Distributed Object Computing (EDOC),
Hong Kong, China, October 2006. IEEE Computer Society.

http://www.omg.org/technology/documents/formal/edoc.htm
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02
http://www.rosettanet.org
http://www.bpmi.org
http://eprints.qut.edu.au/archive/00004468


Dependability and Flexibility Centered Approach for
Composite Web Services Modeling

Neila Ben Lakhal1, Takashi Kobayashi2, and Haruo Yokota1�2

1 Tokyo Institute of Technology, Department of Computer Science
���������	
�����	���	��

2 Tokyo Institute of Technology, Global Scientific Information, and Computing Center
��������� ��������	
�����	���	��

Abstract. The interest surrounding the Web services (WS) composition issue
has been growing tremendously. In the near future, it is awaited to prompt a ver-
itable shift in the distributed computing history, by making the Service-Oriented
Architecture (SOA) a reality. Yet, the way ahead is still long. A careful investi-
gation of a major part of the solutions proposed so far reveals that they follow
a workflow-like composition approach and that they view failures as exceptional
situations that need not to be a primary concern. In this paper, we claim that obey-
ing these assumptions in the WS realm may constrain critically the chances to
achieve a high-dependability level and may hamper significantly flexibility. Mo-
tivated with these arguments, we propose a WS composition modeling approach
that accepts failures inevitability and enriches the composition with concepts that
can add flexibility and dependability but that are not part from the WS architec-
ture pillars, namely, the state, the transactional behavior, the vitality degree, and
the failure recovery. In addition, we describe a WS composition in terms of defi-
nition rules, composability rules, and ordering rules, and we introduce a graphical
and a formal notation to ensure that a WS composition is easily and dynamically
adaptable to best suit the requirements of a continuously changing environment.
Our approach can be seen as a higher level of abstraction of many of the cur-
rent solutions, since it extends them with the required support to achieve higher
flexibility, dependability, and expressiveness power.

1 Introduction

The interest surrounding the Web services composition (WSC) issue has been growing
tremendously. To date, it has triggered a substantial amount of research e�orts. A sig-
nificant progress exemplified with the emergence of a myriad of specification languages
(e.g., BPEL [1] and OWL-S [2]) and of a whole panoply of WSC strategies including
dynamic WSC models (e.g., eFlow [3]), declarative WSC models (e.g., SELF-SERV
[4]), and semantic WSC models (e.g., SHOP2 [5]), has been noticed.

Nevertheless, the WSC technology is still regarded as not mature enough and much
more must happen before it reaches its apogee. A careful investigation of major part of
the available solutions reveals that they share two limitations that preclude them from
being solutions that meet modern IT environment requirements (i.e., high dependability
and flexibility, automated discovery, composition, and enactment).

The first limitation is that the Workflow-based WSC approach is at the core of
the majority of the current solutions. Representative examples are eFlow platform [3],

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 163–182, 2006.
c� Springer-Verlag Berlin Heidelberg 2006



164 N. Ben Lakhal, T. Kobayashi, and H. Yokota

BPEL [1], and SELF-SERF framework [4]; all of these enable the composition of WS
as Workflows. Actually, this was the direct consequence of the prevailing current of
thought that the only major di�erence between Workflows and WSC is that the latter
aims chiefly at taking XML-based standards (e.g., WSDL, SOAP), yet to reach the same
goals. This line of thinking has yielded solutions that obey to restrictions that apply in
the field of Workflow systems but that are not accounted for in the WS realm since:

– In Workflow systems, the cooperating parts are set a priori, and only those parts
can cooperate within well-defined and closed boundaries with predefined policies
and Service Level Agreements (SLAs). However, the WS environment is widely
known for its heterogeneity, dynamism, and loose coupling, where di�erent parts
may interact beyond their boundaries, and where the interacting parts change even
at runtime. Therefore, the possibility to continue the process enactment without
interruption with the new changes is highly desired. Moreover, dealing with SLA
in such a dynamic environment gets very complex since each WS may interact with
many others simultaneously; if each interaction is governed by an SLA, managing
the di�erent SLAs becomes an overwhelming task [6].

– In Workflow systems, the definition of the process logic (i.e., decomposition of
the process among participants) is rarely subject to changes. However, the ability
to adapt easily, rapidly, and dynamically to changes without having to require the
developer manual intervention to re-generate the overall WSC, is fundamental in
the WS context. Otherwise, failure possibilities will be critical and the chances to
succeed in doing the best matchmaking between process components and WS that
are most likely to show better quality of execution will be seriously constrained.

As for the second limitation, many of the current WSC approaches, they only focus on
how to interleave pre-existing WS into a WSC and they consider WS failures as ex-
ceptional situations that need not to be a primary concern. In fact, only very few cases
provide simple failure handling mechanisms [1] [7]. We claim that in the WS realm,
relying heavily on the Internet makes failures unavoidable. Adding to the Internet un-
reliability, a whole set of characteristics of the modern computing environments (e.g.,
unpredictability, heterogeneity, autonomy, dynamism, etc.) in which the deployed WS
subsist, makes the most unexpected failure a normal part of the life of any WS. Further-
more, with assembling WS into WSC, failure frequency is more important than ever.
In this paper, we opt for a radically di�erent approach and we propose a novel WSC
modeling approach that can be seen as a higher layer of abstraction of the solutions
proposed so far, since it can extend them to support WSC in more powerful way, with
an increasing level of flexibility and dependability.

The first key strategy in our approach to add expressiveness power and the required
flexibility and dependability is to enrich the WSC model with concepts that are required
but are not yet part from the WS architecture pillars. We emphasize that these concepts
should be carefully selected to not restrict in any respect the WS architecture capabilities.

In our approach, we build mainly on the state (i.e., component behavior), vitality
degree, and transactional behavior concepts, widely recognized by the database com-
munity to have contributed in achieving significant improvements in dependability [8].

The second key strategy to realize the desired flexibility is based on allowing the
process definition (i.e., components order of execution, components nesting) changing



Dependability and Flexibility Centered Approach 165

and the process components dynamic composition and�or decomposition in view of the
WS availability�quality of execution. This will guarantee that the best matchmaking be-
tween the process components and the available WS could be done, and will ensure
that the obtained WSC are easily adaptable to the environment change. We identify a
process in terms of Definition Rules(DR) to provide the di�erent components descrip-
tion, Composability Rules(CR) to inform about the relation between the components,
and Ordering Rule(OR) to define the ordering relation between the components.

This paper is organized as follows. In Section 2, we introduce the limitations of
adapting a workflow-based WSC approach, then, we discuss the key requirements for
a flexible and dependable WSC. In Section 3, we define our model key concepts. In
Section 4, we describe how our approach can be applied to an illustrative example. In
Section 5, we discuss our approach contributions and show how the limitations iden-
tified in Section 2 can be addressed. In Section 6, we discuss several related work. In
Section 7, we conclude our paper and introduce several future directions.

2 Motivating Example and Key Requirements

We describe a motivating example and discuss several specific enactment scenarios of
a loan request process. In the light of this example, we will show the limitations of a
Workflow-based WSC approach. In particular, we intend to show first, to what extent
a such an approach may hamper significantly interoperation and leave no room for a
dynamic process change to increase flexibility. Second, how such an approach may
a�ect critically the dependability level of the overall composition. Throughout those
scenarios, we identify the key requirements that a typical WSC approach must satisfy
to achieve a higher level of flexibility and dependability. Specifically, we consider the
case of BPEL.

We emphasize that we are perfectly aware that BPEL remains only a specification
language, yet, in this paper, we propose a modeling approach, which would be assimi-
lated more to proposals like [4] [7]. Our justification is that BPEL is the current defacto
language and many are familiar with it. Thus, explaining our motivating example on
the base of a BPEL description would be straightforward and clearer. Moreover, as we
shall show later in this paper, our model can perfectly extend BPEL and can constitute
a higher level of abstraction. Therefore, the discussion that will follow is not restricted
to BPEL but it can be generalized to a wide range of solutions that share the same
workflow-like WSC approach. 1

2.1 Illustrative Example Description

We consider the case of a process where a customer requests a bank for a loan. The bank
passes a subset of the customer information on to a credit rating agency that comes back
with a credit report. The bank bases its decision on this data and responds to the cus-
tomer, quoting an interest rate for the desired loan. The customer can then confirm the
acceptance based on those terms or reject it. For illustration, the listing in (Appendix A.)

1 For space limitation, we only added a comparison with [3] [4] [7]in the related work section.



166 N. Ben Lakhal, T. Kobayashi, and H. Yokota

shows the BPEL syntax for the ���� ���� ��	
��� process from [9]. Each BPEL com-
position is a workflow that interacts with a set of WS to achieve a certain goal. BPEL
WSC are called ��������; the WS the process interacts with are called �������

[10]. In the case of the ���� ���� ��	
��� process, the WSC weaves together two
WS — the ������������������� and the ��������������������� �������.

2.2 Limitations of a Workflow-Like Composition

A workflow-like composition does not support dynamic changes. For instance, in the
BPEL listing of (Appendix A.), the only way to adapt the WSC to new changes in the
process logic (e.g., new business rule, new management policy, etc.) is by reviewing
all the interaction logic between the di�erent ������� and rewriting all the ������.
In the case of the above-described and simplified ���� ���� ��	
��� process, re-
generating the overall process specification can be somehow accepted; however, since
processes tend to be complex, regenerating to overall process every time will be a time-
consuming and costly task, and make such approach not satisfactory. The second limi-
tation of a Workflow-like composition is the limited support for dynamic binding. We
take again the case of BPEL. In a BPEL process, when a WSC is designed, it does
not contain any reference to any specific WS; it only lists partner port types, thereby
the abstract process appellation. To construct an executable process, the first alternative
is when concrete WS are mapped to the partners. Once this mapping is defined, it is
fixed for all invocations and cannot be changed automatically as the process runs. Even
though this feature can allow some flexibility since it o�ers the possibility of assigning
to the di�erent partners di�erent WS, this is far from being enough since the map-
ping is done statically before the WSC is invoked. The interaction between the di�erent
partners is only defined in one way and it presumes that the partners in question are
always available. Since it is very likely that any of the partners become unavailable for
any reason, the overall WSC success might be comprised. Adding the WS high-failure
tendency, the WSC invocation failures rate will be unacceptable.

The second alternative introduced in BPEL is the possibility to select and assign
actual partner services dynamically, and BPEL provides the mechanisms to do so via
assignment of endpoint references. Even though this adds some form of dynamic bind-
ing, still it is not possible to change the assigned values to the activity as the process
runs, to allow for instance, the execution with another alternative endpoint, in case of
failure. So far, this mechanism was only added to extend the service endpoint informa-
tion with instance-specific information to support the case of stateful partners.

2.3 Motivating Scenarios

Actually, there are many scenarios that a workflow-based composition can hardly sup-
port but that are highly desired to be feasible. We describe some of them in what follow,
using the above BPEL example, and we point out the requirements that a typical WSC
model must satisfy to support these scenarios:

Scenario 1. Based on the developer’s decision, two WS are mapped to the two roles
���������������,������������. If an error occurs at the WS bound statically to the
role ������������, a compensation handler is invoked, and all the completed activities



Dependability and Flexibility Centered Approach 167

will be compensated for. By providing the fault handlers and the compensation, BPEL
allows to add some reliability support. However, declaring the process as failed should
be the last resort if a successful execution is impossible. Envisaging the possibility of
dynamically binding failed partners to other WS is more promising, especially in the
WS context, since the probability of seeing a WS failing is high, and that WS providers
o�er their WS to several clients and clients can switch their providers. To this end, we
introduce the forward recovery and backward recovery.

Scenario 2. When a BPEL process is to invoked, a mapping between WS and partners
is set, and this mapping is fixed for all the executions. As the process runs, there is
no mean to know the execution progress, since WS are generally stateless and BPEL
provides only a correlation-based stateful interaction that allows only identifying in-
stances. Another mechanism is required to identify the interacting parts progress as the
process runs, and to derive the process instances progress. To fulfill this requirement,
we propose to attach a state to each of the partners; we will detail its functioning later.

Scenario 3. BPEL assumes that there are imperatively two ������� that must be
defined a priori to enact the above process. However, knowing that the WS environ-
ment dynamism, it is very probable that new �������(WS) that can satisfy at the
same time the functionalities of both of the two ������� together are made available.
For instance, assume that a WS that o�ers both of the two capabilities ������������
and ��������������������� is available. The way the WSC is defined in BPEL
precludes from dynamically and transparently switching from two ������� to only
one ������ without the process developers intervention to completely regenerate the
BPEL process definition. Invoking the process with two ������� instead of only one
������, will entail an unnecessary message exchange cost and a doubled failure risk.
This can be avoided if the process definition is enriched with clauses that inform about
the possibility of combining partners together, or exploding a partner in a set of part-
ners and so forth, and dynamically taking such decision in view of the WS availability,
without requiring the developer’s intervention.

Scenario 4. Suppose that one of the process components is actually the execution
of more than one operation; for instance, in partner �������������������, instead
of having only one operation, two operations are invoked: �������������� and
������������������. Suppose also that in all the previous invocations of the ser-
vice �������������������, a rather high failure tendency was noticed, and that in
all these invocations, ������������������was almost always behind the failure.

In the other hand, assume that there are WS that can perform separately the function-
alities of the two operations and with higher quality of execution. If the BPEL process
definition can switch dynamically, and select two partners for �������������� and
������������������, then failure rate can be ameliorated and better results from
the overall performance point of view can be acquired.

Scenario 5. Assume that a customer would like only to make a simulation of the loan
process, that is, he only wants to have an idea about the credit rating and term, but does
not desire to see its request considered for approval or rejection for the moment being. In
the shown listing in (Appendix A.), the di�erent activities in �����������������



168 N. Ben Lakhal, T. Kobayashi, and H. Yokota

are combined in the structured activity ��	
����. Thus, a correct execution of the pro-
cess requires the successful enactment of all the di�erent combined primitive activities
in the sequence. If any of those primitive activities will fail, a fault handler will be
triggered. Adding a mechanism that will permit both, a loan simulation and a real loan
request and decision, will increase the potential range of possible customers. To satisfy
this requirement, we introduce the concepts of vitality degree where some partners are
identified as optional whether the others are tailored as crucial for the overall process
they compose. We shall detail the vitality degree in the following section.

To fulfill the requirements we identified using the above-described scenarios, and to
make a composition suited in an ever-changing distributed environment, we present in
detail how we address these requirements in the following section.

3 Composite Web Service Specification Model

In this section, we introduce the model we tailored to answer the need of a specification
especially made to fit the specificities of the WS architecture. We first introduce the
salient features of our model: the process and the element concepts, the transactional
behavior, the state, the vitality degree, the failure recovery, and finally, the flexibility
support. Then, we describe how we depict a WSC in terms of Definition Rules, Com-
posability Rules, and Ordering Rules, how these rules are determined and noted.

3.1 Model Salient Features Description

Process and Element. The underpinning logic of a process (noted Pi) is depicted as
a composite WS (noted CWS i), with i ranging over the set of natural numbers IN to
designate di�erent processes. Since we target a dynamic execution, where the process
components are mapped on the fly to WS, instead of orchestrating a set of WS statically,
we introduce the concept of element and use it as a unit of composition. Each process
Pi is composed of di�erent elements (noted Ei�k), where k is ranging over [1���Pi�] and
�Pi� is the cardinality of Pi, that is, the number of elements composing Pi. On execut-
ing composite WS, WS are to be mapped to the di�erent elements. The possibility of
choosing every time di�erent WS and of composing and�or decomposing the process
in various ways according to the WS availability, will increase the chances to achieve
better quality of execution by doing the best matchmaking between elements and WS.

Transactional Behavior. It is widely recognized that there is a need for a transac-
tional support in the WS world to leverage dependability. There is a number of proposal
toward this direction including WS-Transaction [11], and WS-TXM [12]. The main
limitation of these proposals is that they define models for centralized and peer-to-peer
transactions, which support a two-phase coordination of WS. They do not support ap-
plications that involve dynamic composition of heterogeneous services in a peer-to-peer
context. Moreover, we are strongly convinced that applying the conventional transac-
tion model [8] would fail, given the loosely coupled nature of the WS environment and
the locking mechanisms to preserve ACID properties inappropriateness.

There are several advanced transaction models to allow the definition of ACID-like
properties. We investigated the applicability of several of them but we found out that



Dependability and Flexibility Centered Approach 169

WSC warrant a particular transactional support specially shaped for them. We propose
to inherit features of interest from several advanced transaction models [8], specifically,
the arbitrary nesting level, the relaxed ACID properties, the transaction compensation
mechanism for the backward recovery; and the vitality degree.

Failure Recovery. In our model, we define for each element, when possible, a com-
pensating element. On a failure of an element to commit, we o�er two choices: the
first is to attempt the element execution retrial where the element is reattempted with
another WS. If the first choice is not possible, then, a backward recovery is triggered by
either compensating or aborting the element to bring back the overall CWS to a consis-
tent state. To this end, for each compensatable element Ei�k, we define a compensating
element, denoted E�

i�k, which will be invoked if a failure later in the execution of Ei�k

makes it necessary. E�

i�k occurrence after Ei�k will restore the CWS to a state which is an
acceptable approximation of the state it had before the execution.

Vitality Degree. To improve the availability of the composite WS and to add flexibility
in the way failures cascade through a process Pi, we distinguish a ����� element (Ev

i�k)
from a ��������� element (Ev̄

i�k). The vitality degree obeys the following assumptions:

– A ����� element execution must be successful for its parent process to commit. A
��������� element may abort without preventing its parent process commitment;

– Aborting a ����� element will induce aborting the whole process it appertains to
if there is no alternative WS to retry the failed element. Aborting a ���������

element will not be reflected on the execution of the process it appertains to.

In the remaining of this paper, the notation (Ei�k) without specifying the vitality degree is
used for an element. The distinction between a ����� element (Ev

i�k) and a ���������
element (Ev̄

i�k) is only done when a special consideration is warranted.

State. Since the reasons behind an occurred failure should be investigated to avoid see-
ing the same scenario happening again, the WS stateless will make the task diÆcult,
our model overcame this limitation by making the elements�processes stateful and at-
taching to each one of them a state. At any given time, the state of every element Ei�k is
assumed to be exclusively in one of the following predefined six states:

1. �������: Ei�k is not yet submitted for execution;
2.  !��
����: Ei�k is e�ectively being executed;
3. "�����: Ei�k has encountered a failure;
4. �������: Ei�k has received a request to abort itself and has obeyed to it;
5. ���������: Ei�k has successfully terminated and was committed;
6. ����������: Ei�k has been compensated for.

Making the elements stateful helps increasingly to decide how to go forward in a pro-
cess execution, to tell when a failure happens and the element(s) that is�are behind the
failure. The state transition diagram is provided in [13].



170 N. Ben Lakhal, T. Kobayashi, and H. Yokota

...Ei.k

E
i.k+1

E
i.k+2

CWSi

Statei.k

State

Statei.k... E

E

CWS

i.k+1

State
DR(Pi )

DR(Ei.k)
DR(Ei.k+1)

...

identify
definition rules      identify

 composability 
rules

      identify 
ordering rules

identify vital/non vital elements, composite/atomic 
elements, compensating elements etc.

make diagram

Process Pi Textual description of the process 
underpinning logic

WSs repositories

ws

...

legend
Start
End

in

out Flow between elements
input data
output data

Atomic element
Composite element
Compensating element

Multiple DR, CR,
 or OR  of an
element/process

Formal CSP-like notation

CR(Pi )

...

OR(Pi )

...

      formalize
  process definition

ws
ws

ws

check WSs availability

update graph

update

updateupdateupdate

Fig. 1. Conceptual overview of the approach

Flexibility Support. We introduce the possibility of process components order chang-
ing, that is, we propose to allow the arbitrary nesting notion where the elements�
processes can be recursively composed�decomposed in order to facilitate and ensure
that the best matchmaking between the elements and the candidate WS is done.

Yet, this might not be possible�allowed for all kind of processes or it might be re-
stricted to only some of its components. That is why it is essential to have a compre-
hensive knowledge of the process definition (i.e., its elements full description, distin-
guish optional from essential elements, in which order they can be interleaved). Since
a textual description of the process underpinning logic may become complex and hard
to update, we propose to describe a process by identifying three di�erent kind of Rules,
which share the same tuple-like notation. Yet, their semantics are di�erent since the
Definition Rules (DR) provide the di�erent components description, the Composability
Rules (CR) inform about the relationship between the di�erent components, and the
Ordering Rule (OR) specify the condition to which the relationship between the di�er-
ent components must verify. To understand the process logic and how its components
relate to each other, we complement our specification model with a graphical notation
we shall use later in a running example.

3.2 Definition Rules (DR) Determination

To describe a process Pi as composite WS CWS i that follows our specification model,
the first step is to identify the di�erent DR on the base of the di�erent business rules
that the process logic defines (see Fig.1). Each DR gives relevant information about an
entity that either relates to the composite WS specification (e.g., a process, an element,
a component, etc.) or that intervenes in the composite WS execution (e.g., a WS, a
coordinator, etc.). We adopt the following tuple-like generic notation to define a DR,
where an attribute is an information about an Entity:

DR(Entityi) : �attribute1� ����

DR(Entity j) : �attribute2� ����

DR(Entityk) : �attribute3� ���� � (1)



Dependability and Flexibility Centered Approach 171

Specifically, in our specification model, we define DR to provide relevant information
about two di�erent entities: process and element.

Definition 1 (Definition Rule of a Process (DR(Pi))). We define it by an ordered tuple
that provides relevant information about Pi, namely its name, description, composabil-
ity, state, vitality, and finally input and output parameters. Extending the DR with other
attributes, such as QoS attributes is possible. The number of DR necessary to define
Pi depends on the number of component elements initially identified. The notation of a
process DR is a specialization of the generic DR notation in (1) for an Entity:

DR(Pi) : �name� description� composability� state� vitality��in� �out� � (2)

Where :

- name is the name of the process and description is a concise description of the
process main functionality;

- composability informs about the possibility of decomposing the process into ele-
ments. It verifies the condition: DR(Pi)�composability � ���
�� #�����;

- state informs about the execution progress of the process as a whole. The state of
Pi is deduced from the state of its di�erent composing elements.

- vitality informs about the vitality degree of the process; it is defined according to
the vitality degrees of the di�erent component elements appertaining to the process.
It verifies: DR(Pi)�vitality � ������� ���-������.

- �in is a tuple composed by the di�erent input parameters of the process. We denote
with �in tuples of input parameters; for instance, we may have: �in �� in1� in2���inp �,
for a process with p input parameters. Similarly, �out are the di�erent output param-
eters of the process. We denote with �out tuples of output parameters.

Definition 2 (Definition Rule of an Element (DR(Ei�k))). is an ordered tuple that pro-
vides relevant information about an element from a process Pi, with k ranging over
[1���Pi�]. For every element, DR(Ei�k)is defined in the same way we defined it for a pro-
cess. The same attributes apply for the element also. For every compensating element,
we may define DR(E�

i�k) in the same way we defined it for a process�element.

3.3 Composability Rules (CR) Determination

Each CR specifies the relation between the di�erent entities defined by the di�erent DR
(i.e., how the entities are composed together, how the entities interact together, etc.).
We adopt the following tuple-like generic notation to define a CR where CR(Entityi)
indicates the relationship that Entityi defines between Entity j and Entityk:

CR(Entityi) � �Entity j� Entityk� � (3)

In our model, the di�erent CR identify the relationship of composability between the
di�erent elements and processes:

Definition 3 (Composability Rule of a Process (CR(Pi))). Defines the di�erent ele-
ments the process is composed of. The CR existence�absence depends on the value of
the composability attribute in the process corresponding DR:



172 N. Ben Lakhal, T. Kobayashi, and H. Yokota

- If (DR(Pi)�composability � #����) then the process is ������ and no CR are
defined. It can be assimilated to only one ������ element;

- If (DR(Pi)�composability � ��
�) then the process is �������� and among the
di�erent CR, we must have a predefined rule that says how the process can be
decomposed in di�erent elements and what are those elements;

A CR of a process is a specialization of the entity’s CR described in (3) and it defines
that the process Pi logic is composed of a set of m elements with m � �Pi�:

CR(Pi) � �Ei�1� Ei�2� � � � � Ei�k� Ei�k�1� Ei�k�2� � � � � Ei� j� Ei� j�1� Ei� j�2� � � �Ei�m� � (4)

A particular CR is the first rule that appears at the head of the list of CR; it describes
the process logic as a whole: the set of the di�erent elements it is composed by. Any CR
can be recursively defined, that is, a particular element Ei�k can be part from a process
CR, yet, it can also define its own CR, if it is not atomic.

Definition 4 (Composability Rule of an Element (CR(Ei�k))). The existence of CR
depends on the composability attribute. In case it verifies: DR(Ei�k)�composability �

��
�, then, the element can be decomposed and it is defined with CR: it is considered
as a particular process that has a parent process. For every element, its CR(Ei�k) is
defined in the same way we defined it for a process. For every compensating element
E�

i�k, we may define CR(E�

i�k) in the same way we defined it for a process�element.

3.4 Ordering Rules(OR) Determination

Each OR defines the condition that the relationship between the di�erent entities de-
fined by the CR must verify (i.e., under which condition entities are composed together,
under which condition entities interact together, etc.). We adopt the following tuple-like
generic notation to define an OR in which op is the condition that the relation between
Entity j and Entityk must verify: OR(Entityi) � �Entity j op Entityk�. In our model, the
di�erent OR identify the ordering condition that every relationship of composability
between elements�process should verify:

Definition 5 (Ordering Rule of a Process (OR(Pi))). It defines the order of execution
of the component elements the process defined in its CR(Pi). For a process Pi, if an
OR(Pi) is not explicitly defined, then the di�erent elements order is interchangeable. A
typical OR of a process is constructed as follows; op is the operator that connects the
elements (e.g., sequence, join, etc.); it can be prefixed, post-fixed, or infixed:

OR(Pi)��(Ei�1 op Ei�2) � � � ((Ei�k op Ei�k�1) op Ei�k�2) � � �

(Ei� j op (Ei� j�1 op Ei� j�2)) op � � �Ei�m� � (5)

Definition 6 (Ordering Rule of an Element (OR(Ei�k))). Similarly, it defines the order
of execution of the components the element defined in its CR(Ei�k), if it is not ������.
For an element Ei�k. For every compensatable element, if it defines an (OR(Ei�k)), then
we should also define the corresponding OR for its compensating element, OR(E�

i�k), in
the same way we defined it for a process�element.



Dependability and Flexibility Centered Approach 173

Ei.k out Ei.k+1in

Statei.k Statei.k+1

... ...

 Sequence aggregation pattern

Ei.k out Ei.k+1in

Statei.k Statei.k+1

... ... Ei.k
out

Ei.k+1in

out

Ei.k+jin

Statei.k

Statei.k+1

Statei.k+j

...

...

...

...

Parallel aggregation pattern

Ei.k

Ei.k+1in

out

Ei.k+jin

Statei.k

Statei.k+1

Statei.k+j

...Select

 Selection aggregation pattern

...
Ei.k

Ei.k+1in

out

Ei.k+jin

Statei.k

Statej.k+1

Statei.k+j
Switch... Ei.k

Ei.k+1in

out

Ei.k+jin

Statei.k

Statej.k+1

Statei.k+j
Switch...

 Switch aggregation pattern

Ei.l
in

Ei.k out

Ei.k+j out

Statei.l

Statei.k

Statei.k+j
Rendezvous

... ...

RendezVous aggregation pattern 

...

...

Ei.l
in

Ei.k out

Ei.k+j out

Statei.l

Statei.k

Statei.k+j
Rendezvous

... ...

...

...

Ei.l
out

Ei.k in

Ei.k+j in

Statei.l

Statei.k

Statei.k+j

... Selective
merge

λ=|Q(Ei.l)pre|

λ

Selective merge aggregation pattern

Ei.l
out

Ei.k in

Ei.k+j in

Statei.l

Statei.k

Statei.k+j

... Selective
merge

λ |Q(Ei.l)pre|

timesEi.l
out

Ei.k in

Ei.k+j in

Statei.l

Statei.k

Statei.k+j

... Exclusive 
merge

λ =1 

λtimes

 Exclusive merge aggregation pattern

Ei.l
out

Ei.k in

Ei.k+j in

Statei.l

Statei.k

Statei.k+j

... Exclusive 
merge

λ =1 

times

Ei.k out

Ei.k+1in out

Statei.k

Statei.k+1

λ Times

Iterative aggregation pattern

......

Iterate

Fig. 2. Aggregation patterns considered by our approach

3.5 Aggregation Patterns

The op in the di�erent OR varies and depends on the aggregation patterns the process
logic follows. To define the di�erent aggregation patterns, we build on existing work
about Workflow patterns and on an analysis of existing Workflow languages reported in
[14]. The following reasons motivated our choice: a) control flow dependencies encoun-
tered in Workflow modeling comply well with the WS context, since the situations they
capture are also relevant in this domain; b) existing languages for WSC like BPEL and
BPML were built on the basis of languages for Workflow modeling [15]. By building
on the same patterns, we intend to provide a uniform comparison base.

The analysis of existing Workflow languages allowed us to identify the relevant pat-
terns necessary to model the logic of any process, no matter how it is. We identified
exactly eight patterns (see Fig.2). In [14], authors introduced twenty patterns, but we
limited our study to only eight and we deliberately excluded the others (like the cancel-
lation patterns or the state-based patterns) because, those eight, when combined with
the compensation, the state, and the vitality degree, they are enough to express any pro-
cess in the WS context. Yet, Workflow languages provide only a graphical notation of
these patterns, and to date, there is no universal notation.

To define the di�erent aggregation patterns, we propose to describe a syntax in the
spirit of Compensating CSP (Hoare’s Communicating Sequential Processes))[16][17]
defined by a grammar in BNF-like notation. This will also allow formalizing our model
and verifying its semantics, when required. We have chosen to build on Compensat-
ing CSP process algebra (PA) because it has already supports for compensation and
for reasoning about long-running transactions. If the atomic events of CSP are used to
model the elements in our model, then, the op in the di�erent OR can be replaced with
the operators provided by the CSP language to support sequence (;), and parallel(��).
Besides, in order to support failed transactions, compensation operator (�) is inherited
from Compensating CSP. To support the remaining patterns from all the eight aggrega-
tion patterns, we introduce other required operators that CSP does not define.

Syntax. To define the di�erent aggregation patterns, we describe a syntax in the spirit
of CSP defined by the following grammar in BNF-like notation:



174 N. Ben Lakhal, T. Kobayashi, and H. Yokota

P1� P2� P3 � Ev
1�k � Ev̄

1� j � P1; P2 � P1��P2 � P1 � P2 � �P1 � P1 � P�

1 �

P1 � (P2��P3) � P1 � (P2��P3) � (P1��P2)�P3 �

(P1 � P2)� P3 � (P1 � P2)� P3 � (6)

– P1� P2 and P3 designate three di�erent process;
– Ev

1�k and Ev̄
1� j represent respectively an atomic ����� element and an atomic ��� 	

����� element appertaining to the process P1, with k and j ranging in [1��m] and
m is the number of elements composing the process P1. The vitality degree of P1 is
determined according to the vitality degrees’ of its composing elements;

– P1; P2 represents the sequential construct that combines two processes. In P1; P2,
P1 is executed first, and only when P1 terminates successfully can P2 be executed;

– P1��P2 represents the parallel composition of two processes P1 and P2;
– P1�P2 represents the operator for constructing processes where the execution order

is arbitrary: it can be in parallel, sequentially, or a conjunction of these two orders;
– P1 � (P2��P3) represents the selective choice done by P1 which selects whichever of

P2 and�or P3 is�are to be enabled. P1 � (P2��P3) represents a particular case since
at least and at most only one is to be enabled;

– (P1��P2)�P3 represents the case where the processes P1 and P2 are synchronized at
a particular rendezvous point; that is to execute a particular process P3 that comes
directly after them, P1 and P2 must wait each other;

– (P1 � P2) � P3 represents the case where P1 and P2 converge but without syn-
chronization at a particular rendezvous point; that is, P3 is activated every time a
process reaches the rendezvous point. (P1 � P2)� P3 is similar since P1 and P2

converge but without synchronization at a particular rendezvous point, the di�er-
ence is that the process that comes directly after P1 and P2 is activated only once;

– �P1 represents iterating a process P1 a number of times (�);
– P1 � P�

1 represents the operator for constructing a compensation pair where P1 is
the forward behavior and P�

1 is its associated compensating process.

4 Illustrative Example

We consider the case of the same above-described process in BPEL of a customer re-
quest of a loan. Figure 3 is the graphical notation of the customer loan request process
P1, specified using our specification model. P1 description as CWS 1 is composed of
five elements with their compensating elements: four atomic elements and one compos-
ite element: Ev

1�5 is assimilated to an ������ element in CWS 1, while it is composed of
two elements (Ev

1�5�1 and Ev
1�5�2).

4.1 Rules Determination

A CWS 1 is formed by the triplet combining the list of DR,CR,OR of the process P1 and
of its composing elements�compensating elements:

– Fourteen DR: DR(P1), DR(Ev
1�1), DR(Ev

1�2), DR(Ev
1�3), DR(Ev

1�4), DR(Ev
1�5) DR(Ev

1�5�1),
DR(Ev

1�5�2), DR(Ev�
1�1), DR(Ev�

1�2), DR(Ev̄�
1�4), DR(Ev̄�

1�5),DR(Ev�
1�5�1), and DR(Ev�

1�5�2);
– Two CR: CR(P1) and CR(Ev

1�5); and two OR: OR(P1) and OR(Ev
1�5). For space limi-

tation, in what follow, we only describe some of them, the others can be defined in
the same way (see Table.1).



Dependability and Flexibility Centered Approach 175

E1.1in E1.2in out E1.4
outout inin E1.5

in out

CWS1in out

Loan approval process (P1) 

v vv

State1.1

v

State1.2 State1.5State1.4

(receive loan request) (get credit rating) (verify customer
decision)

Start

End
in

out

State   state
E   elementflow

input data

output data

Legend

v   vitality degree outin E1.5.1in out E1.5.2in out
vv

State1.5.1 State1.5.2

(receive customer decision) (reply loan response)

v

State1

(text)   description

(loan approval request)

E1.1
vE1.1
v E1.2

vE1.2
v

E1.5.1
vE1.5.1
v E1.5.2

vE1.5.2
v

E1.4
vE1.4
v

Atomic element Composite element Compensating element

outE1.3in out
v

State1.3

(get loan terms) (reply loan response)

E1.4
vE1.4
v' ' ' '

' '

Fig. 3. Composition graphical notation: example of a customer loan request process

Table 1. Determination of the di�erent rules of the loan request process

Definition Rules:

DR(P1) : �name � ��� description � �����������������
�� composability � ����� state �
�������� vitality � ������ �in � 	�
����������
�� �out � 	�
�������	�
����

DR(Ev
1�2) : �name � ����� description � ��	���� ��������
�� composability � !��
��

state � �������� vitality � ������ �in � 	�
����������
�� �out � 	������������

DR(Ev
1�5) : �name � ����� description � ����!���	�
���� composability � ����� state �

�������� vitality � ������ �in � 	�
�������	�
���� �out � 	�
�������	�
����

Composability Rules: Ordering Rules:

CR(P1) � �Ev
1�1 � Ev

1�2� Ev
1�3� Ev

1�4 � Ev
1�5� OR(P1) � �Ev

1�1; Ev
1�2; Ev

1�3; Ev
1�4; Ev

1�5�

CR(Ev
1�5) � �Ev

1�5�1 � Ev
1�5�2� OR(Ev

1�5) � �Ev
1�5�1; Ev

1�5�2�

4.2 Formalization

The formal notation using the syntax in the spirit of CSP that we defined in (6):

P1 � (Ev
1�1 � Ev�

1�1); (Ev
1�2 � Ev�

1�2); (Ev
1�3 � Ev�

1�3); (Ev
1�4 � Ev�

1�4); Ev
1�5

Ev
1�5 � (Ev

1�5�1 � Ev�
1�5�1); (Ev

1�5�2 � Ev�
1�5�2) �

4.3 Scenarios Feasibility Verification

We will show how the di�erent concepts our approach introduces are enough to sup-
port a highly flexible and dependable WSC. In particular, we show how the scenarios
described in Section 2 can be supported:

In scenario 1., as the process runs, a dynamic WS discovery and mapping process is
performed for each of the elements Ev

1�2 and E1�3, realizing respectively the functional-
ities of ��������������� and of ������������ in the process P1. Assume that the



176 N. Ben Lakhal, T. Kobayashi, and H. Yokota

mapped WS to Ev
1�2 failed, then, instead of stopping the overall execution, or requiring

the developer’s intervention to select another WS, a forward recovery is attempted by
allocating automatically any of the other candidate WS that satisfy the conditions:


 DR(Ev
1�2)�description � DR(WS )�description (i.e., element functionalities � WS

capabilities);

 DR(Ev

1�2)��in � DR(WS )��in (i.e., element � WS input parameters are compliant);

 DR(Ev

1�2)��out � DR(WS )��out (i.e., element � WS output parameters are compliant).

The allocated WS is invoked and the overall process execution can transparently re-
sume without interruption. The other extreme possibility is that all the candidate WS
are attempted and none of them was committed. Then, in such a case, a backward re-
covery is triggered by compensating all the committed elements and by aborting all the
still-executing elements. In the case of the process P1, OR(P1) indicates that the ele-
ment Ev

1�1, is the only element that preceded Ev
1�1 , hence, it will be compensated for by

executing its compensating element Ev�

1�1. In scenario 2., we pointed out the importance
of making the process stateful and we proposed to attach to the di�erent elements a
state. If we add a mechanism —like the one we introduced in [13]— that first, it stores
in a particular location (i.e., in the entity responsible of the process execution) all the
di�erent DR. Second, it keeps track of the execution progress of the process by updat-
ing it on every change in any of the elements’ state. Then, we can have a history of the
di�erent executions of all the invoked instances.

Furthermore, if we keep the history of all the invoked instances, we can have a step-
by-step execution progress of all the process instances that we can analyze later to have
valuable data about the failure reasons�locations [18].

The description of the ���� ���� ��	
��� process in terms of DR, CR, and OR
provides the exact requirements to realize scenario 3. and scenario 4.. Assume that
an analysis of the previous instances execution log has shown that the element Ev

1�3 is
frequently the stage of failure. Assume also that a WS discovery query has shown that
there are other newly added WS that satisfy the following conditions:


 DR(Ev
1�2)�description � DR(Ev

1�3)�description � DR(WS )�description (i.e., func-
tionalities of the two-joined elements� WS capabilities);


 DR(Ev
1�2)��in � DR(WS )��in (i.e., the input parameters of 1st element and of the WS

are compliant);

 DR(Ev

1�3)��out � DR(WS )��out (i.e., the output parameters of 2nd element and of the
WS are compliant);


 DR(WS )� �operation �� op1� op2 � (i.e., op1 and op2 have same order�semantics
as Ev

1�2 and Ev
1�3 in OR(P1)).

If these conditions are verified, then, we can transparently select one of the newly-
discovered candidate WS and allocate it to perform instead of (Ev

1�2 � Ev
1�3); a new

element’s DR and OR can be added. Similarly, to support scenario 4., we can explode
an element transparently and map it to more than one WS, if required. We emphasize
here that we are perfectly aware that the above described conditions in scenario 1.,
scenario 3., and scenario 4., defined for element-WS matchmaking are insuÆcient. We
deliberately gave only simplified conditions that can be developed in a future work.



Dependability and Flexibility Centered Approach 177

Table 2. The formal notation of the di�erent aggregation patterns

Pattern Notation Pattern Notation

Sequence (Ei�k ; Ei�k�1) Parallel (Ei�k ; (Ei�k�1 �������Ei�k� j))
Rendezvous ((Ei�k ��Ei�k�1 �� � � � ��Ei�k� j)�Ei�l) Switch (Ei�k � (Ei�k�1 ��Ei�k�2 �� � � � ��Ei�k� j))
Selective merge ((Ei�k� ��� �Ei�k� j)� Ei�l) Selection (Ei�k � (Ei�k�1 ��Ei�k�2 �������Ei�k� j))
Exclusive merge ((Ei�k� ��� �Ei�k� j)� Ei�l) Iteration (Ei�k ; �Ei�k�1)

Since assessing the similarity of WS to achieve the best matchmaking is an active area
of research, we can apply one of the available proposals ranging from keyword-based
methods to ontologies and reasoning algorithm enriched methods.

The vitality degree concept permits the fulfillment of scenario 5.. If the composite
element Ev

1�5 becomes ���-�����, that is, we have: DR(E1�5)�vitality � ���-�����,
DR(E1�5�1)�vitality � ���-�����, and DR(E1�5�2)�vitality � ���-�����, then, as the
process runs, even when a customer does not reach the element Ev̄

1�5, the process execu-
tion will be committed successfully. With changing transparently the vitality degree, we
can have di�erent scenarios of the same process. Finally, these scenarios have shown
that we can modify more easily and transparently the process logic by only handling its
di�erent DR, OR, and OR, exploding some rules, and joining others when required.

5 Discussion

We discuss the contributions in dependability and flexibility enhancement provided by
our approach against the Workflow-based composition approaches. For clarity sake, our
discussion is based on a confrontation of the BPEL specification of the loan approval
process with the specification of the same process we presented in the previous section.
Yet, the same arguments are valid for the other solutions that follow the same Workflow-
like composition strategy.

Our model is more expressive than BPEL since we define three kind of notations:
a textual notation, a graphical notation, and a formal notation. The textual notation
can be more easily understood by a business analyst who typically does not have any
programming experience and who has to update the business rules embedded in the
process, which cannot be said about the syntax of BPEL. Our textual notation can be
used as a higher level of abstraction on the top of BPEL. There is no universal graphical
notation for a BPEL process but there are several proposals to use UML-like notation
for descriptions. However, a standard notation is required to shorten the time necessary
for understanding the process.

In [19], authors presented an analysis of the di�erent Workflow aggregation patterns
that BPEL can support. To have a common comparison basis, we considered in this
work the same set of patterns. The patterns defined by BPEL are a subset of the patterns
supported by our specification model, and that we report in (Table.2); a detailed de-
scription of these patterns can be found in [20]. Our di�erent notations are rich enough
to depict all the di�erent patterns that BPEL supports. This can be particularly helpful
since the constructs defined by BPEL tend to be complex and their semantics are not al-
ways clear and can be sometimes misleading. For verifying the correctness of the WSC,



178 N. Ben Lakhal, T. Kobayashi, and H. Yokota

BPEL provides no way to verify correctness. Several tentative work have tried so far
to formalize BPEL and they employ formalisms based on Pas [21]. However, BPEL is
dealing more with implementation than specification. Thus, it is diÆcult to provide a
formalism to verify the correctness of BPEL flows. To allow the analysis of our model,
similarly, we introduced the CSP-like notation. We emphasize that the verification of
our model is beyond the scope of this paper, and that we intended to provide a solid
ground of comparison of our work with others proposal that use similar formalisms.

The vitality degree concept allows introducing a higher flexibility. For instance, con-
sider the listed BPEL process in (appendix A). The following listing shows how the
vitality degree can be added:

�������� ��	��”
����������
������” state�”waiting” vitality�”vital”����

������� ��	��”����������	�” state�”waiting” vitality�”vital”����������������

�������� ��	��”������������	����������” state�”waiting” vitality�”non�vital”��������������

����
� ��	��”���
�������������” state�”waiting” vitality�”non�vital”���������
�����������������������

If we change the vitality degree of the element Ev
1�5 from ����� to ���-�����, the loan

approval process can be used also as a simulation for loan request process. Since when
the element Ev̄

1�5 is ���-�����, the customer does not have to go up to its execution,
and Ev̄

1�5 failure or non invocation cannot a�ect the overall process commitment.
Similarly, the state concept can be attached to the di�erent activities in BPEL and

can provide very valuable information about the enactment progress of the di�erent
activities and of the process as a whole. Introducing the state concept can contribute to
acquiring the information necessary for discovering the faulty WS and discarding them
to improve the performances. Further details can be found in our previous work [18]
about the state-guided failure analysis approach, we proposed. Finally, the specification
of the process in terms of DR, CR, and OR allows a more flexible enactment. If we
define in a higher level on the top of BPEL, a specification of the process in terms of
DR, CR, and OR, and we provide the enactment environment with the possibility of
regenerating dynamically the process definition, then we can achieve better results.

6 Related Work

Making several entities work in tandem to reach a common goal is not a new chal-
lenge in itself since it has been widely addressed in several areas. In particular, mech-
anisms like the flexible process composition and decomposition —we propose in our
approach— were also proposed in other areas. The database community introduced the
notion of transaction decomposition into steps. A representative work is [22]. In their
approach, the authors target was to increase concurrency whereas we target flexibil-
ity. In addition, they proposed mechanism based on two-phase locking, not suitable for
the WS context. What is interesting about this work is that it directed our attention to-
ward the importance of generating correct process decomposition, and how developers
should obtain one; which can constitute a promising future direction for us.

In the area of Workflow systems, massive research e�orts were focused toward the
need for flexibility at runtime to avoid seeing the Workflow execution stopped due to re-
sources unavailability and to allow the users to deviate from the prescribed sequence of



Dependability and Flexibility Centered Approach 179

activities the Workflow definition imposes. The work reported in [23] exemplifies those
works. This work presented a mechanism for choosing alternatives to sub-Workflows,
thereby allowing the Workflow execution to resume when the predefined sub-Workflow
is unavailable; which present some overlaps with the ideas reported in our paper.

We can say the same thing about several formalisms from the area of AI, namely,
planning techniques and problem-solving methods (PMS). The work in [24] described
a framework that modeled a WSC as a PMS that describes how the WS is decomposed
into its components. The concept of task decomposition in HTN (Hierarchical Task
Network) planning is very similar to the concept of decomposition in our approach. The
work [5] reported how to exploit AI planning techniques for automatic WSC by treating
WSC as a planning problem. The SHOP2 system creates plans by task decomposition.
This work focused mainly on translating OWL-S WS descriptions to a SHOP2 domain.
This particular view oriented our attention toward the similarity between the concept
of decomposition in our approach and the concept of composite process in OWL-S
ontology. Our approach can complement this work with our di�erent notations and
especially with our transactional behavior and flexibility supports.

In the area of WSC, [7] introduced WebTransact. To date, this work is one of the few
that introduced a transactional support by defining a WS Transaction Language on top
of WSDL enhancing it with functionalities facilitating transactional WSC.

The main di�erences between our approach and WebTransact are that, first, the WS
are statically integrated in WebTransact by a developer who plays the role of WS in-
tegrator. Yet, this is not a flexible way. Second, WebTransact is mainly for integrating
WS that have their own local transaction support, yet this condition is not always ver-
ifiable since not all WS have a transaction support, and not all of them are compliant.
Our approach only supports compensatable, retriable, vital, and non-vital behaviors, but
it is easily extensible with other transaction behaviors (e.g., pivot). Finally, WebTrans-
act does not address the flexibility issue and it only provided an XML-based notation,
hardly understandable and diÆcult to update. We consider also eFlow [3] and SELF-
SERV [4], where WSC are created dynamically. In eFlow, the definition of a service
node encloses a service selection rule. When invoking the service node, the rule is ex-
ecuted to select a specific WS. eFlow supports dynamic process change by migration
of process instances from a source schema to a destination schema. Concerning SELF-
SERV, it exploits the concept of service community, a container of alternative services.
At run-time, when a community receives a request, it delegates it to one of its current
members. Separating the service description from the actual service provider increases
the flexibility. However, SELF-SERV does not support dynamic process changes such
as adding new WS type to the WSC. SELF-SERV advocates the use of state-charts in-
stead of formal specifications for easiness to use and modularity whereas eFlow used a
proprietary notation.

7 Conclusion

In this paper, we introduced a novel approach for a flexible and dependable compos-
ite WS specification. Our approach puts forward the view that WSC failures are not
exceptional situations —as exposed by many, but it takes a radically di�erent view by
accepting that failures are inevitable for any WSC. In addition, we noticed that the



180 N. Ben Lakhal, T. Kobayashi, and H. Yokota

Workflow-based composition approach is at the core of the majority of the current so-
lutions and we claimed that this line of thinking has yielded solutions that obey to some
restrictions that do not meet modern IT environment requirements. We discussed vari-
ous limitations caused by a Workflow-like composition approach.

In our approach, we enriched the WSC model with several mechanisms that can add
flexibility and dependability to the WSC but that are not part from the WS architecture
pillars, namely, the state, the transactional behavior, the vitality degree, and the fail-
ure recovery mechanisms. We identified a process in terms of Definition Rules (DR)
to provide the di�erent components description, Composability Rules (CR) to inform
about the relationship between the components, and Ordering Rule (OR) to define the
ordering relationship between the components. We also introduced three notations: a
graphical, a textual, and a CSP-like notation. Our approach can be seen as a higher
layer of abstraction of the solutions proposed so far, since it can extend them to support
WSC in more powerful way, with increasing level of flexibility and dependability.

Our notations allow modeling WSC in a formal and concise way, which can then
be used to verify the correctness of the WSC and reason on their semantics without
hindrance from technical limitations of an XML-based notation. As for the execution
environment, a distributed architecture, like the architecture we introduced in [13].

We can achieve the full potential of our approach since it provides the essential
concepts to realize the described failure recovery mechanisms, and the dynamic and
distributed execution. Currently, we are still working on an implementation of our pro-
posed model. Our next steps will be finalizing the implementation, experimentally mea-
suring its performances, and comparing it with other approaches.

Acknowledgement. Part of this research was supported by CREST of JST (Japan Sci-
ence and Technology Agency), a Grant-in-Aid for Scientific Research on Priority Ar-
eas from MEXT of the Japanese Government (#16016232), and the 21st Century COE
Program Framework for Systematization and Application of Large-scale Knowledge
Resources.

References

[1] IBM, Systems, B., Microsoft, AG, S., Systems, S.: Bpel4ws business process execution
language for web services (2005)

[2] Martin, D., al.: Owl-s: Semantic markup for web services. www.daml-s.org (2004)
[3] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and dynamic service

composition in eflow. In Wangler, B., Bergman, L., eds.: 12th inter. Conf. on Advanced
information Sys. Eng. Volume 1789 of LNCS., London (2000) 13–31

[4] Benatallah, B.and Dumas, M., Sheng, Q.: Facilitating the rapid development and scalable
orchestration of composite web services. Dist. and Parallel Databases 17(1) (2005) 5

[5] Wu, D., Parsia, B., Sirin, W., Hendler, J., Nau, D. In: Automating DAML-S Web Services
Composition Using SHOP2. Volume 2870. LNCS, Springer-Verlag (2003) 195 – 210

[6] Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated sla mon-
itoring for web services. In: DSOM ’02: Proc. of the 13th IFIP�IEEE Int.Workshop on
Distributed Sys., London, UK, Springer-Verlag (2002) 28–41

[7] Pires, P.F.and Mattoso, M., Benevides, M.: Building Reliable Web Services Compositions.
In: Web, Web-Services, and Database Systems. Volume 2593. LNCS (2002) 59–72



Dependability and Flexibility Centered Approach 181

[8] Elmagarmid, A.: Database transaction models for advanced applications. Morgan Kauf-
mann, San Mateo, California (1992)

[9] Khalaf, R., Mukhi, N., Weerawarana, S.: Service-oriented composition in bpel4ws. In:
WWW (Alternate Paper Tracks). (2003)

[10] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The next step in web services.
Commun. ACM 46(10) (2003) 29–34

[11] Cabrera, F., et al.: Specification: Web services transaction (ws-transaction). http:��www-
106.ibm.com�developerworks�webservices�library�ws-transpec� (2002)

[12] Fujitsu, IONA, O., Sun, A.T.: Web services composite application framework(ws-caf).
http:��www.arjuna.com�standards�ws-caf� (2003)

[13] Benlakhal, N., Kobayashi, T., Yokota, H.: Throws: An architecture for highly available dis-
tributed execution of web services compositions. In: IEEE 14th Intl. Workshop on Research
Issues on Data Engineering: Web Services for E-Commerce and E-Government Applica-
tions (RIDE’04), Boston, USA, IEEE (2004) 103–110

[14] van der Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(1) (2003) 5–51

[15] Aalst, W.: Don’t go with the flow: Web services composition standards exposed. IEEE
Intelligent Systems 18(1) (2003) 72–76

[16] C.A.R.Hoare: Communicating Sequential Processes. Prentice Hall (1985)
[17] Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running transactions.

In: 25 Years Communicating Sequential Processes. (2004) 133–150
[18] Benlakhal, N., Kobayashi, T., Yokota, H.: A failure-aware model for estimating and ana-

lyzing the eÆciency of web services compositions. In: IEEE 11th Int.Symp.on Pacific Rim
Dependable Computing (PRDC2005), Changsha,China, IEEE (2005) pp.114–121

[19] Wohed, P., van der Aalst, W.M., Dumas, M., al.: Pattern based analysis of bpel4ws (2002)
[20] Benlakhal, N., Kobayashi, T., Yokota, H.: A well-defined and failure-aware model for

estimating the eÆciency of web services compositions. In: Proc. of IEEE Intl. Workshop
on Challenges in Web Information Retrieval and Integration(WIRI) In conjunction with
ICDE2005, Tokyo, Japan, IEEE (2005) 47–54

[21] Salan, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services using
process algebra. In: Proc. of Int. Conf. on Web Services, USA, IEEE (2004) 43

[22] Ammann, P., Jajodia, S., Ray, I.: Applying formal methods to semantic-based decomposi-
tion of transactions. ACM Trans. Database Syst. 22(2) (1997) 215–254

[23] Vieira, T.A.S.C., Casanova, M.A., Ferrao, L.G.: An ontology-driven architecture for flexi-
ble workflow execution. la-webmedia 00 (2004) 70–77

[24] Gomez-Perez, Gonzalez-Cabero, R., Lama, M.: Ode sws: A framework for designing and
composing semantic web services. IEEE Intelligent Systems 19(4) (2004) 24–31



182 N. Ben Lakhal, T. Kobayashi, and H. Yokota

Appendix A. BPEL Specification of a Loan Request Process

�������� ��	��”
����������
������”�����������������������������

������������	��”�����	���������”	�����������”
������:�����	����������������”��

������������	��”�������������”	�����������”������������:��������������������”��

������������	��”������������”	�����������”������������:�������������������”��

������������	��”
������	�”	�����������”
������:
������	��������”��

������������	��”�����	����������”	�����������”
������:�����	�����������������”���������������

�������� ��	��”�����	��”���”	���
��”��������”��

�������� ��	��”�������������������”���”���������
��”������������”��

�������� ��	��”
������	�����	��������������”���”���������
��”
������	�������”�������������

��������������������	��”������������������” ��������”�����	��”���”����������”�������” ����

����������”�����	���������”����������

������� ��	��”���������������”��������”�������������������”���”����������”�����������”

���������������”�������������”����������������”������������”����������

������� ��	��”����������	�”��������”
������	�����	��������������”���

����������”����������	�”���������������”������������”����������������”
������	�”����������

����
� ��	��”���
�������������”��������”�����	��””����������”�������”����������”
������	�”

�����
������������	��”������������	����������”��������”�����	��”���”����������”������	”

����������”�����	����������”���������������
� ��	��”���
�������������”��������”�����	��”���

”����������”������	” ����������”�����	����������”�����
�������������



Aspect-Oriented Workflow Languages

Anis Charfi� and Mira Mezini

Software Technology Group
Darmstadt University of Technology

{charfi, mezini}@informatik.tu-darmstadt.de

Abstract. Most available aspect-oriented languages today are exten-
sions to programming languages. However, aspect-orientation, which is
a paradigm for decomposition and modularization, is not only applica-
ble in that context. In this paper, we introduce aspect-oriented software
development concepts to workflow languages in order to improve the
modularity of workflow process specifications with respect to crosscut-
ting concerns and crosscutting changes. In fact, crosscutting concerns
such as data validation and security cannot be captured in a modular
way when using the constructs provided by current workflow languages.
We will propose a concern-based decomposition of workflow process spec-
ifications and present the main concepts of aspect-oriented workflow lan-
guages using AO4BPEL, which is an aspect-oriented workflow language
for Web Service composition.

Keywords: Modularity, Separation of Concerns, Aspect-Oriented Soft-
ware Development, Workflow Languages.

1 Introduction

A workflow process is a specification of a business process in a form that can
be executed by a workflow management system. Typically, a workflow process
specification defines a set of activities, the order of their execution, the flow of
data between them, the participants that perform them, and the applications
that support their execution. The specification of a workflow process involves
several workflow aspects or workflow perspectives [12, 27]. The authors of [27]
differentiate five perspectives: the functional, the informational, the behavioral,
the operational, and the organizational. In the following, we will use the term
workflow perspective to avoid confusion with the term aspect [20] as used in the
terminology of aspect-oriented programming.

In this paper, we focus on the modularity of workflow process specifications.
Some few workflow languages such as MOBILE [18] allow for modular workflow
process specifications by separating the parts of the specification that corre-
spond to the different workflow perspectives. We will focus on the separation
of concerns and crosscutting concern modularity rather than the separation of

� Supported by the German Research Foundation (DFG) in the context of the Phd
Program Enabling Technologies for Electronic Commerce.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 183–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



184 A. Charfi and M. Mezini

perspectives. We observe that current workflow languages do not allow to prop-
erly modularize concerns that cut across process boundaries such as security and
data validation. Thus, the process code1 of those crosscutting concerns is spread
across several workflow process specifications (the scattering problem) and inter-
twined with the process code addressing other concerns (the tangling problem).
The lack of a module concept for crosscutting concerns in workflow languages
leads to monolithic and complex workflow process specifications that are hard
to understand, maintain, change, and reuse.

In addition, current workflow languages do not support a modular expression
of changes (and especially crosscutting changes) as first-class entities. Workflow
changes span the different workflow perspectives and there is no module concept
for encapsulating all workflow constructs that belong to some change. This makes
understanding and managing changes (e.g., undoing changes) a difficult task.

Similar modularity problems have been identified in the context of program-
ming languages, which lack mechanisms to encapsulate the code of a crosscutting
concern such as security, logging, persistence, etc. Aspect-Oriented Software De-
velopment (AOSD) [9] has emerged as a paradigm that explicitly addresses those
modularity problems by introducing some new programmatic constructs.So far,
aspect-orientation has been mostly applied to object-oriented and procedural
programming languages.

In this paper, we propose using aspect-orientation concepts in the context
of workflow languages to solve the modularity problems mentioned above. We
introduce aspect-oriented workflow languages, which provide concepts for cross-
cutting modularity such as aspects, join points, pointcuts, and advice. Aspect-
oriented workflow languages support a concern-based decomposition of workflow
process specifications instead of the perspective-based decomposition: The busi-
ness logic, as being the main concern in workflows, can be specified in a modular
way within a workflow process module and crosscutting concerns can be spec-
ified in a modular way using workflow aspects. Like workflow processes, the
specification of a workflow aspect involves the different workflow perspectives.

The concepts that will be presented in this paper are not just theoretical
ideas. They have been already validated in AO4BPEL [3, 6], which is an aspect-
oriented extension to BPEL. The prototype implementation of AO4BPEL [1]
can be considered as a proof-of-concept for aspect-oriented workflow languages.
As BPEL is a domain-specific, this paper tries to generalize those ideas to other
general-purpose workflow languages.

The remainder of this paper is organized as follows. In Section 2, we give
an overview of the WFMC workflow meta model and workflow languages. In
Section 3, we illustrate through examples the modularity problems of workflow
languages with respect to crosscutting concerns and changes. In Section 4, we
present the main concepts of aspect-oriented workflow languages and show how
they are incorporated in AO4BPEL. In Section 5, we report on related work and
Section 6 concludes the paper.

1 This includes activities, variables, transitions, participant and application declara-
tions.



Aspect-Oriented Workflow Languages 185

2 Workflow Languages

We introduce the WFMC meta-model for process definition to give an overview
of the main concepts encountered in workflow languages. Then, we present a
graph-based workflow language that we will use throughout this paper.

2.1 The WFMC Workflow Meta-model

The Workflow Management Coalition (WFMC) has defined a workflow process
definition meta-model, which provides a common method to access and describe
workflow definitions in a vendor independent way. This meta-model covers the
different workflow perspectives mentioned earlier. The different entities in this
meta-model are explained in the following.

Workflow Process Activity. A process activity comprises a logical, self-
contained unit of work that will be processed using a combination of a resource
and a software application. An activity could be either atomic or composite (the
functional perspective).

Transition Information. Activities are connected to one another via tran-
sitions. The transition information describes possible transitions between activ-
ities and the conditions which enable/disable them during workflow execution
(behavioral perspective).

Workflow Relevant Data. This defines the workflow data, which can be
either used to maintain decision data (e.g., to evaluate conditions) or to held the
input and output data of the activities. Activities can also access environment
and system data (informational perspective).

Workflow Participant Specification. This describes the resources (hu-
mans and/or software applications) that perform the process activities. There is
a participant assignment attribute of the activity, which associates it to the set
of resources that may be allocated to it (organizational perspective).

Workflow Application Declaration. This includes the applications and
tools that are invoked by the workflow engine to execute the process activities
(the activity implementation). The application assignment attribute of an activ-
ity associates it with the application that executes it (operational perspective).

2.2 A Basic Workflow Language

There are several classes of workflow languages: graph-based, Petri-net based,
state and activity charts, and script or workflow programming languages [21]. We
will use a the simple graph-based workflow language presented in [25] to illustrate
the issues of crosscutting concerns in workflow process specifications. We chose
this graph-based language because it illustrates well the activity graph, which is
the basis for the discussion on crosscutting concerns in Section 3. However, the
observations that we made apply also to the other kinds of workflow languages.
Moreover, this language allows us to explain the concepts of aspect-oriented
workflow languages independently of BPEL.



186 A. Charfi and M. Mezini

Fig. 1. Process modeling structures

This language provides two kinds of objects: nodes and transitions to model
processes. There are two classes of nodes: activity nodes that represent the work-
flow activities and choice/merge nodes. Activity nodes are represented by a rect-
angle and choice/merge nodes are represented by a circle. A transition links two
nodes in the graph and is represented by a directed edge. A transition shows
the execution order of its source node and destination node. A workflow pro-
cess can be modeled by connecting nodes with transitions into a directed acyclic
graph using the modeling structures shown in Figure 1. This language supports
the basic workflow control patterns [30]. In addition, it provides other generic
workflow modeling constructs such as iteration and nesting.

3 Crosscutting Concerns in Workflows

We consider two workflow processes: one for order processing and one for call
for bids (CFB for short) processing. Both processes are modeled in Figure 2
using the workflow language presented in Section 2. The order processing work-
flow (Wf1) is executed whenever a customer places an order. It first checks if
the requested product is available. If not, the order is rejected and the pro-
cess terminates. Otherwise, the price calculation activity executes; and after
its successful completion the workflow proceeds with the request confirmation
activity.

The second workflow process (Wf2) is executed whenever a call for bids is
received. It also checks for product availability. If the product is available, an
offer is made and sent to the party that published the CFB. Otherwise, the call
for bids data is stored and the process terminates. The activity make an offer is
a composite activity, which includes the price calculation activity.

We will elaborate on data validation and security as examples of crosscut-
ting concerns in workflow specifications. The point that we intend to convey
here is that workflow designers need in many situations to add data validation
and security activities, which cut across several workflow processes and lead to
modularity problems.



Aspect-Oriented Workflow Languages 187

Fig. 2. Two Workflow processes

3.1 Data Validation

According to the WFMC, workflow data is divided in three kinds: workflow con-
trol data, workflow relevant data, and workflow application data. In the following,
we focus on workflow application data because the other two types of workflow
data are generally not accessible to ordinary users. Hence, when we speak of
data, workflow application data is meant.

Business processes involve several business partners such as customers, sup-
pliers, financial institutions, etc. Consequently, the organization that deploys a
workflow process receives data from external sources outside its domain of con-
trol. Such data might be invalid and requires semantic or syntactic validation.

The order data is semantically invalid if e.g., the customer specifies a non-
existing product ID. The call for bids data is syntactically invalid if it does not
match some XML type specification (e.g., when this data is received from an
external broker).

Some commercial workflow products such IBM MQ Workflow [15] and BizTalk
Server [22] can be used with tools that support data validation. The WebSphere
Data Interchange tool supports several data validation and mapping operations.
The BizTalk Server provides data validation by verifying each instance of a
document against a specification. With those tools data validation activities are
added to the process without showing up in the workflow process. However, even
with those tools there are still cases where adding data validation activities to
the process specifications is necessary, e.g., for semantic data validation.

In order to insure the validity of order data and CFB data in the order and
CFB processing workflows, the programmer has to add data validation activities
to those workflows as shown in Figure 3, where those activities are represented
by small rectangles dashed with vertical lines. The data validation activities are
composite activities, which validate the order or the CFB and if it is invalid they
send a fault and terminate the process because there is no need to proceed with
the other activities in Wf1 and Wf2 when the order or CFB is invalid.



188 A. Charfi and M. Mezini

Fig. 3. Crosscutting concerns in workflow processes

We observe that the data validation activities are spread across the work-
flow processes Wf1 and Wf2. If the activity receive order for instance occurs
several times in one process or in many processes then the same activity for
validating the order data would have to be added after all those occurrences.
In addition, the resulting workflow processes address not only the business logic
concern but also the data validation concern. When we look at the workflow pro-
cess specifications of Wf1 and Wf2 (cf. left side of Figure 4) these observations
are confirmed. In fact, the workflow constructs (activities, variables, transitions,
participant and application declarations) that implement the data validation
concern are scattered across many workflow processes and are not localized in
a separate module although they all address the data validation concern. More-
over, the resulting workflow process specifications are tangled, i.e., business logic
activities are intertwined with activities that address other concerns. This leads
to complex workflow specifications, which are hard to understand, to maintain,
and to change.

3.2 Security

In [23], the authors differentiate three levels of security in workflows. Level 1
security (database-level) insures that each activity is performed by an authorized
subject i.e., the subject is granted access to the underlying data objects of the
activity. Level 2 security (workflow-level) insures that access to that data is
granted only during the execution of the respective activity. Level 3 security
(application-level) focuses on application-specific security requirements.

For the purpose of this discussion, we concentrate on level 2 and level 3 secu-
rity. In fact, some security requirements in workflows could be supported in layers
below the workflow level, e.g., in the database, in the messaging infrastructure,
or in the application that implements some activity. However, workflow-level and



Aspect-Oriented Workflow Languages 189

application-level security requirements have to be addressed in the workflow pro-
cess because they require knowledge about the workflow execution state and the
application semantics that is unavailable in the underlying layers. In that case,
it becomes necessary to have security activities in the workflow process.

Some commercial workflow management systems can be used with tools that
provide advanced security support. For example, the WebSphere MQ Extended
Security Edition is an add-on to the IBM MQ Workflow [15] that such workflow
data protection by signing and/or encrypting messages. In such case, security
activities are added to the workflow without showing up in the workflow specifi-
cation. However, this tool does not support workflow-level and application-level
security requirements, which can only be supported by adding security activi-
ties explicitly to the workflow process. So, there are always cases, where adding
security activities the workflow process is unavoidable.

For example, it might be necessary to insure the integrity and confidentiality
of application data at the workflow level if this feature is not provided by the un-
derlying layers. Assume that the price calculation activity in the order processing
workflow is performed in an external subsidiary by calling some application via
CORBA. Then, the subsidiary replaces that application with a Web Service that
uses WS-Security. If the workflow management system hosting the order process
does not support secure Web Service calls it becomes necessary to add activities
to the workflow to secure the data before and also after the price calculation
activity because the response of the price calculation Web Service might be se-
cured. In this case, one would have activities in the workflow processes for e.g.,
encrypting and signing data.

Another well-known example of workflow-level security requirements is that
authorized subjects should gain access to the required data only during the activ-
ity execution (and not before or after its execution). This means that the security
system should authorize the subjects in synchronization with the progress of the
workflow. Several workflow management systems do not support such temporal
authorization [31]. To support this authorization model in those systems, the
workflow designer has to add activities, which notify the authorization system
before and after the execution of the process activities as illustrated by the small
rectangle dashed with diagonal lines in Fig. 3.

Like for data validation, the security activities are scattered across Wf1 and
Wf2 and the resulting workflow process specifications suffer from tangling.

When the workflow designer needs to add support for crosscutting concerns
such as data validation and security, he/she not only has to modify the activity
graph by adding new activities as shown in Fig. 3. There are other workflow
constructs that should be added to the respective workflow process specifications
such as variables, participant declarations, application declarations, etc. In lack
of a module concept for modularizing the workflow constructs that belong to a
crosscutting concern, the scattering problem spans all those constructs and is
not only restricted to activities.

One might argue that the data validation and security could be implemented
as part of the activity implementation in separate modules; and thus would



190 A. Charfi and M. Mezini

not be referenced at the level of workflow process model. This means that the
activity implementation would consist of a core business object that is supported
by well-modularized help objects for data validation and security. Such solution
assumes a green-field engineering scenario and it is also not feasible if the activity
implementation is unavailable (e.g., only binary code) or unaccessible (a remote
application e.g., an external Web Service).

3.3 Crosscutting Changes and Change Modularity

When the workflow programmer adds support for security or data validation
to the workflows Wf1 and Wf2, he/she has to do with a crosscutting change
that spans several processes. In the following, we focus on the modularity of
expressing workflow changes and crosscutting workflow changes in particular.
To study how changes are expressed, we take as example the adaptive workflow
management systems ADEPT [24] and WASA [32].

We observe that ADEPT and WASA do not provide a module concept to
express a change as a first-class entity. They just provide a set of dynamic change
operations e.g., for adding or deleting activities and edges to/from the activity
graph. Therefore, understanding what the change is about can only be done
implicitly by looking at the change operations and the API calls that were used
to introduce it, or by comparing two workflow schemes.

In addition, we argue that a workflow change does not only encompass the
insertion or removal of workflow activities and control edges. Workflow changes
span and affect the different workflow perspectives. They may also require new
participant declarations, data declarations, and application declarations to be
added to the workflow schema.

The previous discussion motivates the need for a module that encapsulates all
workflow constructs that belong to a given change. In presence of such a module,
changes will be expressed as first-class entities. Thus, they can be understood
and managed more easily. In particular, to undo temporary changes one only
has to deactivate the change module. The need for modular change expression
is even stronger in the case of crosscutting changes, which affect several places
in various workflows.

4 Aspect-Oriented Workflow Languages

Aspect-oriented workflow languages are workflow languages that provide con-
structs typically found in aspect-oriented programming languages such as aspect,
pointcut, and advice.

4.1 Aspect-Oriented Programming

Aspect-Oriented Programming [20] introduces a new unit of modularity called
aspect aimed at modularizing crosscutting concerns in complex systems. In this
paper, we use the terminology of AspectJ [19], the most mature AOP language
today. It introduces three key concepts: join points, pointcuts and advice. Join



Aspect-Oriented Workflow Languages 191

points are points in the execution of a program. In object-oriented programs,
examples of join points are method calls, constructor calls, field read/write, etc.
A pointcut is a means to identify related join points. It can be thought of as a
predicate on attributes of join points. One can select related method execution
points, e.g., by the type of their parameters or return values, by pattern match-
ing, etc. The crosscutting functionality at join points identified by a pointcut is
specified in an advice. The advice code is executed when a join point in the set
identified by a pointcut is reached. It may be executed before, after, or instead
of, the join point at hand, corresponding to before, after and around advice.
With the around advice the aspect can control the execution of the original join
point: It can integrate the further execution of the intercepted join point in the
middle of some other code to be executed around it.

An aspect module consists, in general, of several pointcut definitions and
advice associated to them. In addition, it may define state and methods which
in turn can be used within the advice code. Advice code also has access to the
execution context at join points that trigger its execution.

4.2 Concern-Based Decomposition of Workflow Specifications

The aspect in aspect-oriented workflow languages is a module that encapsulates
a non-functional crosscutting concern. This breaks with the tyranny of the dom-
inant decomposition [28] and enables a multi-dimensional and concern-based
decomposition along the process dimension and the aspect dimension. Hence,
the workflow constructs that belong to some concern are specified in one mod-
ule: The workflow logic is encapsulated in a process module and non-functional
concerns are encapsulated in aspect modules as shown in Fig. 4. The left hand
side shows how workflow specification is done in current workflow languages.
The right hand side of the figure shows how workflow specification can be done
in a more modular way by using workflow aspects to encapsulate crosscutting
concerns such as security and data validation.

AO4BPEL [3, 6] is an aspect-oriented extension to (BPEL) [10], which pro-
vides a solution to the lack of appropriate means for the modularization of cross-
cutting concerns and for supporting dynamic changes in BPEL. AO4BPEL can
be considered as the proof-of-concept for aspect-oriented workflow languages. We
used AO4BPEL aspects to modularize various concerns such as measurement of
activity execution time, auditing data collection, security, and reliable messaging
[3, 6, 5, 7]. In the following, we will present the main concepts of aspect-oriented
workflow languages and will use AO4BPEL to illustrate them.

Aspects. An aspect contains several pointcut and advice declarations. In ad-
dition, it defines the activities, transitions, data, participants, and application
declarations that belong to a crosscutting concern as shown in Fig. 4. This Figure
illustrates how security and data validation are modularized by using aspects.
Each aspect defines appropriate pointcuts to select join points in the base work-
flow processes Wf1 and Wf2 where the data validation and security advices
will be executed. The left side of this figure shows how workflow specification is



192 A. Charfi and M. Mezini

Fig. 4. Concern-based decomposition of workflow specifications

done in current workflow languages and the right side shows how it is done in
aspect-oriented workflow languages.

An aspect-oriented workflow-based application consists of workflow processes
capturing the core logic of the business processes and aspects capturing the other
crosscutting concerns. The management staff would typically look only at the
workflow processes (BPM view). The IT staff, which deals with the technical
concerns would look at the workflow processes and the aspects (WFM view).

Aspects provide a cross-process view on how a certain concern is handled in
several workflows. In this way, if the workflow programmer needs to understand
or modify for example a security policy then he/she has to change one module
only (namely the security aspect). As shown in Fig. 4, there is one security aspect
that captures the security code of the two workflow processes Wf1 and Wf2.

Aspects can also be used for expressing changes and crosscutting changes
as first-class entities in a modular way. The pointcut of an aspect specifies all
places that are affected by the change. The advice and the declarations for
data, participants, and applications explain what the change is about. Moreover,
with aspects a change could be switched on/off more flexibly by deploying/un-
deploying the respective aspect.

In AO4BPEL, aspects are written in XML syntax in separate files. In addition
to pointcut and advice declarations, an aspect can also define the partner links,
the variables, and the handlers (fault handlers, event handlers, compensation
handlers) that are necessary to implement a crosscutting concern.

Join points and pointcuts. In our approach, aspect activities are defined
separately from process activities. Therefore, some means are needed to specify
when aspect activities should be executed with respect to the workflow process.



Aspect-Oriented Workflow Languages 193

The join point concept refers to a point in the execution of a workflow process.
Join points could be coarse-grained e.g., the execution of an activity [3] or fine-
grained e.g., internal points in the execution of an activity [5]. To simplify things,
consider the execution of a workflow activity as a join point.

The pointcut language provides means to select a set of related join points,
which could span different processes. A powerful pointcut language should pro-
vide constructs that enable a flexible join point selection according to the various
workflow perspectives for two reasons. First, this would increase the expressive-
ness of the pointcut language and allow a pointcut to select all join points where
some activity a that is reused in several workflows is executed (functional per-
spective), where some activity a is executed after another activity b (behavioral
perspective), where an activity is executed by a certain participant (organiza-
tional perspective), where an activity modifies a certain workflow variable (in-
formational perspective), where an activity is executed with help of an external
application (operational perspective), etc. Second, some crosscutting concerns
could be captured in a more natural and easy way when the pointcut language
supports certain workflow perspectives. For instance, the join points where data
persistence is needed could be selected in more natural manner when using a
pointcut language that supports the informational perspective. Join points where
security is needed could be expressed more easily with a pointcut language that
support the organizational and the operational perspectives.

The pointcut language of an aspect-oriented workflow language can operate
either on a text-based workflow specification (e.g., BPEL or XPDL) or on a
graphical representation of the workflow (we call the latter visual pointcuts).

AO4BPEL supports workflow-level join points, which correspond to the exe-
cution of a BPEL activity as well as interpretation-level join points [5, 4], which
correspond to internal steps in the interpretation of an activity capturing for
instance the point where a SOAP message of a messaging activity has been gen-
erated. As BPEL process specifications are XML documents, we use XPath [8]
as pointcut language in AO4BPEL. For example, one could define a pointcut se-
lecting all interactions with a certain partner Web Service by using the attribute
partnerLink of the activities invoke, reply, and receive.

Advice. After we selected a set of related join points with a pointcut, we specify
with the advice what should happen at those join points. The advice is basically
an activity that implements some crosscutting concern. The advice activity is
executed whenever the respective pointcut matches an activity during the exe-
cution of the workflow process.

The semantics of the advice is to replace each join point activity by a com-
posite activity that may contain the join point activity in addition to activities
belonging to the crosscutting concern. If the join point activity is source or tar-
get of transitions, the composite activity becomes the source or target of those
transitions. The advice is a self-contained activity, i.e., no transitions are allowed
between the advice and the other activities of the workflow process except the
join point. In the around advice, it is possible to integrate the execution of the



194 A. Charfi and M. Mezini

join point in the middle of the advice using the proceed activity. The latter acts
as a place holder for the current join point.

The advice activity can be executed before, after, or instead of the join points
selected by the pointcut depending on the advice type. Other orders of execution
between the join point activity and the advice are also possible according to the
variety of workflow control patterns [30]. E.g., it is possible to define a parallel
advice, which executes concurrently to the join point.

The advice activity needs in many cases to access the context of the join point
activity. For example, a data validation advice for the workflow processes of Fig.
3 needs to access the output data of the join point activities receive order and
receive CFB. The pointcut and advice languages should provide constructs to
access the join point context in a generic way because a pointcut could select
more than one activity, i.e., the advice cannot refer to the output variable of a
join point by its name. The advice language should also provide context collection
and reflection constructs to get the data and the other attributes of the current
join point activity.

According to the aspect deployment strategy, the advice is either applied to
all instances of the workflow process (process-level deployment) or to some work-
flow instances only (instance-level deployment). The pointcut language should
provide appropriate constructs to support instance-level aspect deployment.

In AO4BPEL, the advice is a BPEL activity that can be executed before,
after, or around of the selected join points. Some special constructs can be used
in the advice such as the proceed activity and the reflection and context col-
lection variables. For example, the reflective variable ThisJPActivity provides
information about the current join point such as activity name, activity type,
etc. The reflective variables ThisJPInVariable and ThisJPOutVariable refer to
the input and output variables of the join point activity. AO4BPEL currently
supports both process-level deployment and instance-level deployment. It also
provides constructs to specify the execution order of aspects that are triggered
at the same join point.

Aspect/Process Composition. A mechanism is required for the integration
of aspects with the workflow processes. In aspect-oriented programming lan-
guages, this mechanism is called weaving. The aspects and the base application
are integrated at compile time in static weaving approaches and at runtime in
dynamic weaving approaches.

In aspect-oriented workflow languages, the composition of aspects with the
workflow processes can be considered as a transformation of the workflow activity
graphs [13], whereby activities that are matched by a pointcut are replaced by
a new composite activity that contains the advice and the original join point
with appropriate transitions. This transformation can be performed physically
or logically, which results in two possible aspect/process composition approaches:

Process transformation: A tool is needed to merge the worfklow processes
and the aspects (physical transformation) before deploying the resulting process.
This tool performs the reverse work of what is shown in Fig. 4. The benefit of



Aspect-Oriented Workflow Languages 195

this approach is that the workflow engine does not need to be modified, which
makes the aspect-oriented extension independent of any specific engine. More-
over, one would have two versions of the workflow process (one before and one
after weaving). The version before weaving is useful to understand the business
process by abstracting away from technical details. The version after weaving
is required to exactly understand and predict the workflow process that will be
executed, which is necessary for workflow auditing and workflow log mining as
well as for debugging.

Aspect-aware engine: The workflow engine should be modified to check
for aspects before and after executing each activity (logical transformation). In
this approach, the workflow process is not modified. The implementation of an
aspect-aware engine is more complex than a process transformation tool and
it makes our proposal dependent on a particular engine. However, it supports
the dynamic composition of aspects and workflows, which could be very useful
to enable flexible and adaptable workflows [14]. It makes it possible to deploy
aspects that change running workflow processes. These aspects could be switched
on and off flexibly without need to edit the workflow process definition and
redeploy the process.

In addition to transforming the activity graph, there are common tasks that
should be performed by the composition mechanism independently of the pro-
cess/aspect composition approach. For example, aspect-local declarations for
data, participants, and applications should be handled similarly to the declara-
tions in workflow processes e.g., by adding those declarations to the workflow
processes that are affected by the aspect. Another task is pointcut matching i.e.,
to decide whether some activity is matched by a pointcut. In addition, the com-
position mechanism has to resolve all context collection and reflection constructs
(e.g., to get the input data of the join point) and special constructs (e.g., using
the proceed activity) used in the advice.

Our implementation of AO4BPEL [1] is based on the aspect-aware engine ap-
proach, which supports in a better manner the dynamic composition of workflow
aspects and workflow processes. Hence, it makes BPEL processes more flexible
and dynamically adaptable [3]. Moreover, pointcuts that depend on runtime data
and instance-based aspect deployment could be supported without adding hook
activities to the workflow process to evaluate such runtime conditions.

We extended the IBM BPWS4J engine [16] with support for aspects and dy-
namic aspect/process composition. The activity life cycle [11] of BPWS4J was
modified to check before and after each activity if there is an aspect with a point-
cut matching the current activity. If an aspect is found, the engine executes the
respective advice. The overhead of these local checks is negligible when com-
pared with the cost of Web Service interactions via the network as confirmed by
the performance measurements that we presented in [6].

4.3 Examples of Workflow Aspects

In the following, we show how the crosscutting concerns mentioned in Section 3
can be modularized using workflow aspects.



196 A. Charfi and M. Mezini

The data validation aspect defines two pointcuts selecting respectively all
occurrences of the activity receive order and the activity receive call for bids. The
data validation aspect defines two advice activities respectively for validating an
order and a call for bids.

Fig. 5. A data validation aspect in AO4BPEL

Fig. 5 shows an excerpt of the data validation aspect in AO4BPEL with the
assumption that the workflow processes Wf1 and Wf2 are specified in BPEL and
deployed on our AO4BPEL engine. The data validation aspect defines a partner
link to the validation Web Service and four variables for the input and output of
the invoke activities that call the operations validateOrder and validateCFB on
that Web Service. The pointcut of this aspect is an XPath expression that selects
all receive activities matching the operations placeOrder and placeCFB in any
deployed BPEL process. The after advice, which is associated with this pointcut
is a sequence activity that contains calls the data validation Web Service and if
the data of an order or a CFB is invalid (switch activity) the process terminates
(using the terminate activity).

In this data validation aspect, the pointcut selects two activities; each of them
could be reused in many workflows e.g., a third workflow Wf3 for processing
orders that are placed after an accepted bid could contain another occurrence of
the activity receive order.

The level-2 authorization concern could be modularized using an aspect that
defines a pointcut selecting the activities price calculation and make an of-
fer. This pointcut would be associated with an around advice, which calls the



Aspect-Oriented Workflow Languages 197

authorization system before and after each of the selected activities. The join
point activities are executed between the two calls to the authorization system
by using the proceed activity. The advice needs to pass reflective information
about the current join point activity to the authorization system. In AO4BPEL,
this is achieved by using the special AO4BPEL variable ThisJPActivity.

<aspect name=”Level2Authorization”>
<partnerLinks>

<partnerLink name=”AuthorizationWS” partnerLinkType=”AuthorizationPLT”
myRole=”Process” partnerRole=”AuthorizationSystem”/>

</partnerLinks>
<variables>

<variable name=”grantAccessRequest” messageType=”grantAccessInput”/>
<variable name=”revokeAccessRequest” messageType=”revokeAccessInput”/>

</variables>
<pointcutandadvice>
<pointcut name=”selected activities”>

//invoke[@operation=”processPayment”] | //invoke[@operation=”makeOffer”]
</pointcut>
<advice type=”around”>
<sequence>

<assign><copy>
<from variable=”ThisJPActivity” part=”name”/>
<to variable=”grantAccessRequest” part=”activityName”/>

</copy><copy>
<from variable=”ThisJPActivity” part=”process”/>

<to variable=”grantAccessRequest” part=”processName”/>
</copy></assign>

<invoke partnerLink=”AuthorizationWS” portType=”AuthorizationPT”
operation=”grantAccess” inputVariable=”grantAccessRequest”/>

<proceed>
<assign>...</assign>
<invoke partnerLink=”AuthorizationWS” portType=”AuthorizationPT”

operation=”revokeAccess” inputVariable=”revokeAccessRequest”/>
</sequence>

</advice>
</pointcutandadvice>

</aspect>

Listing 1. A level-2 authorization aspect in AO4BPEL

This level-2 authorization concern is a typical crosscutting workflow concern
in general-purpose workflow languages. However, it does not make sense in the
context of BPEL because BPEL does not support human tasks, role resolution,
and task-list management. Nevertheless, there are already some proposals for
extending BPEL with human tasks such as BPEL4People [17]. In listing 1, we
show the level-2 authorization aspect using the syntax of AO4BPEL, the only
available aspect-oriented workflow language to date.

5 Related Work

To our best knowledge, the idea of introducing aspect-oriented software devel-
opment concepts to workflow languages is a novel one. AO4BPEL is the first
aspect-oriented workflow language. We have presented the AO4BPEL language



198 A. Charfi and M. Mezini

in [3, 6]. In [6], we discuss several issues with regard to our approach such under-
standability, debugging, maintenance, static analysis, etc. In the current paper,
we abstract away from BPEL and generalize the ideas of AO4BPEL to other
workflow languages.

There are some other works such as [2], [26], and [29], which have used aspects
in the context of workflow management.

In [2], the authors use AspectJ for the dynamic evolution of workflow in-
stances. They use aspects in the object-oriented implementation of the workflow
management system. They show different kinds of control flow adaptations such
as insertion of a new activity to the process, replacement of an activity by an-
other, etc. Unlike our proposal, the authors of [2] apply AOP at the implemen-
tation level and not at the workflow specification level.

The work presented in [26] calls for the specification of workflows according to
the various workflow perspectives. In that paper, Schmidt and Assmann argue
that the different perspectives can be merged together using an aspect weaver,
but they do not present any implementation and do not give any details on how
an executable workflow process could be generated from the different specifi-
cations of those perspectives. In our approach, we merge the specifications of
the different concerns that are modularized in worklfow aspects (and not the
different perspectives).

In [29], the authors propose combining business process management and
AOP to enable flexible and dynamic business processes. They weave a generalized
process with participant process aspects, which are process steps that can be
included in a business process to customize it for execution by a particular
resource. Their implementation uses AspectJ and Java.

The papers mentioned so far do not introduce any aspect-oriented concepts
(pointcut, join points, advice) to the workflow language. They use aspect-oriented
languages at the workflow implementation level only, unlike our proposal, which
makes aspect-oriented extensions accessible to the workflow designer. Thus, we
provide language means to modularize crosscutting concerns.

In [13], the authors present a set of transformation operations on workflow
graphs that range from basic transformations such as encapsulation in a sequence
and moving join and splits to complex transformations. This work provides a
good basis for aspect/process composition using a process transformation tool.

6 Conclusion

In this paper, we illustrated the modularity problems in workflow languages
with respect to crosscutting concerns. To solve those problems, we proposed
a concern-based decomposition of workflow process specifications. We also in-
troduced aspect-oriented workflow languages, which support a more modular
workflow process specification and a better separation of concerns by provid-
ing new language constructs such as aspect, pointcut, and advice. The idea of
aspect-oriented workflow languages is not just theoretical but it was already
implemented in AO4BPEL. As BPEL is a domain-specific workflow language,



Aspect-Oriented Workflow Languages 199

this paper tries to trigger thoughts and research efforts on the application of
aspect-oriented concepts to other more typical workflow languages.

Acknowledgements. We thank Prof. Frank Leymann and Michael Haupt for
the helpful comments on an early draft of this paper.

References

1. Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition in
AO4BPEL, Demo at the International Conference on Aspect-Oriented Software
Development (AOSD). http://aosd.net/2006/demos/index.php, March 2006.

2. Boris Bachmendo and Rainer Unland. Aspect-based workflow evolution. In Work-
shop on Aspect-Oriented Programming and Separation of Concerns, August 2001.

3. Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition with
AO4BPEL. In Proceedings of the European Conference on Web Services (ECOWS),
volume 3250 of LNCS, pages 168–182. Springer, September 2004.

4. Anis Charfi and Mira Mezini. An Aspect-based Process Container for BPEL.
In Proceedings of the 1st Workshop on Aspect-Oriented Middleware Development
(AOMD), November 2005.

5. Anis Charfi and Mira Mezini. Using Aspects for Security Engineering of Web
Service Compositions. In Proceedings of the IEEE International Conference on
Web Services (ICWS), Volume I, pages 59–66. IEEE Computer Society, July 2005.

6. Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-Oriented Extension to BPEL.
World Wide Web Journal: Recent Advances on Web Services (special issue), to
appear, 2006.

7. Anis Charfi, Benjamin Schmeling, and Mira Mezini. Reliable messaging in bpel
processes. In Proceedings of the 3rd IEEE International Conference on Web Ser-
vices (ICWS), September 2006.

8. J. Clark and S. DeRose. XML Path Language (XPath)Version 1.0. W3C Recom-
mendation 16 November 1999.

9. AOSD Community. Aspect-Oriented Software Development Community and Con-
ference. http://www.aosd.net.

10. F. Curbera, Y. Goland, J. Klein, et al. Business Process Execution Language for
Web Services (BPEL4WS) Version 1.1, May 2003.

11. Francisco Curbera, Rania Khalaf, William Nagy, and Sanjiva Weerawarana. Imple-
menting BPEL4WS: The Architecture of a BPEL4WS Implementation. In GGF
10 Workshop on Workflow in Grid Systems, Berlin, Germany, March 2004.

12. Bill Curtis, Marc I. Kellner, and Jim Over. Process Modeling. Commun. ACM,
35(9):75–90, 1992.

13. Johann Eder, Wolfgang Gruber, and Horst Pichler. Transforming Workflow
Graphs. In Proceedings of the 1st International Conference on Interoperability
of Enterprise Software and Applications (INTEROP-ESA), February 2005.

14. Yanbo Han, Amit Sheth, and Christoph Bussler. A Taxonomy of Adaptive Work-
flow Management. In Workshop ”Towards Adaptive Workflow Systems” in con-
junction with CSCW, November 1998.

15. IBM. Websphere MQ Workflow. http://www-306.ibm.com/software/
integration/wmqwf/.

16. IBM. The BPEL4WS Java Run Time, August 2002.
17. IBM and SAP. WS-BPEL Extension for People - BPEL4People, July 2005.

http://aosd.net/2006/demos/index.php
http://www.aosd.net
http://www-306.ibm.com/software/integration/wmqwf/
http://www-306.ibm.com/software/integration/wmqwf/


200 A. Charfi and M. Mezini

18. Stefan Jablonski. MOBILE: A Modular Workflow Model and Architecture. In
Proceedings of the Fourth International Working Conference on Dynamic Modelling
and Information Systems, September 1994.

19. G. Kiczales, E. Hilsdale, J. Hugunin, et al. An Overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented Programming (ECOOP),
volume 2072 of LNCS, pages 327–353. Springer, 2001.

20. G. Kiczales, J. Lamping, A. Mendhekar, et al. Aspect-Oriented Programming.
In Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP), volume 1241 of LNCS, pages 220–242. Springer, 1997.

21. Mathias Weske and Gottfried Vossen. Handbook on Architectures of Information
Systems, chapter Workflow Languages, pages 359–379. Springer , Berlin, 1998.

22. Microsoft. BizTalk Server 2004 Architecture White Paper. december 2004.
23. Martin S. Olivier, Reind P. van de Riet, and Ehud Gudes. Specifying Application-

Level Security in Workflow Systems. In Proceedings of the 9th Workshop on
Database and Expert Systems Applications (DEXA), pages 346–351, August 1998.

24. Manfred Reichert and Peter Dadam. ADEPT flex -Supporting Dynamic Changes
of Workflows Without Losing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

25. Wasim Sadiq and Maria E. Orlowska. On Business Process Model Transformations.
In The 19th International Conference on Conceptual Modeling (ER), volume 1920
of LNCS, pages 267–280. Springer, October 2000.

26. R. Schmidt and Uwe Assmann. Extending Aspect-Oriented-Programming in order
to flexibly support Workflows. In Proceedings of the Aspect-Oriented Programming
Workshop in conjunction with ICSE 98, April 1998.

27. Stefan Jablonski and Christoph Bussler. Workflow Management: Modeling Con-
cepts, Architecture and Implementation. International Thomson Computer Press,
London, UK, 1996.

28. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), pages 107–119. ACM Press, 1999.

29. Simon Thompson and Brian Odgers. Aspect-Oriented Process Engineering. In
Proceedings of the Workshop on Object-Oriented Technology in conjunction with
ECOOP 99, June 1999.

30. Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and
Alistair P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5–
51, 2003.

31. Vijay Atluri. Security for Workflow Systems. Information Security Technical Re-
port, 6(2):59–68, 2001.

32. Mathias Weske. Flexible Modeling and Execution of Workflow Activities. In Proc.
of the 31st Hawaii International Conference on System Sciences (HICSS)-Volume
7, pages 713–723. IEEE Computer Society, 1998.



A Portable Approach to Exception Handling in

Workflow Management Systems

Carlo Combi1, Florian Daniel2, and Giuseppe Pozzi2

1 Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
carlo.combi@univr.it

2 Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy
{florian.daniel, giuseppe.pozzi}@polimi.it

Abstract. Although the efforts from the Workflow Management Coali-
tion (WfMC) led to the definition of a standard process definition lan-
guage (XPDL), there is still no standard for the definition of expected ex-
ceptions in workflows. Yet, the very few Workflow Management Systems
(WfMS) capable of managing exceptions, provide a proprietary excep-
tion handling unit, preventing workflow exception definitions from being
portable from one system to another one.

In this paper, we show how generic process definitions based on XPDL
can be seamlessly enriched with standard-conform exception handling
constructs, starting from a high-level event-condition-action language.
We further introduce a suitable rule compiler, enabling to yield portable
process and exception definitions in a fully automated way.

1 Introduction

Workflows are activities involving the coordinated execution of atomic activities
(tasks) performed by different processing entities (agents). The process model
(schema) of a workflow includes the description of its component tasks, of the
flow of execution, of routing nodes (connectors) to activate parallel (AND split)
and conditional executions (OR split), and to resynchronize executions (AND
join, OR join). Instances of schemas are known as cases. Workflow management
systems (WfMS) support the automatic execution of workflows [1,2].

The schema of a workflow considers the normal flow of execution, where cases
evolve through predefined execution paths according to the variables of every
case. Occasionally, during the execution of a case, some exceptional situations
may occur, possibly deviating the execution path from the set of normal exe-
cution paths. The semantics of these exceptions is not negligible and must be
foreseen at workflow design time: we call these exceptions expected exceptions [3].
Other exceptions (e.g. power fail, network disconnection. . . ) are not modelled at
workflow design time and will no longer be considered throughout the paper.

The Workflow Management Coalition (WfMC [1]), whose recommendations
and standards influence WfMS vendors, issues the XPDL language, which is
an XML-based process definition language, aimed at obtaining portability of
the process definitions among different WfMSs. While several efforts have been

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 201–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



202 C. Combi, F. Daniel, and G. Pozzi

done with respect to the normal process flow definition, and several WfMSs may
share the same schema based on XPDL, very few WfMSs come with an expected
exception handling unit and no standard has been achieved about exceptions.

In the following, we propose a technique to map expected exceptions inside the
XPDL schema, and: i) provide WfMSs with a primordial exception management
unit; ii) maintain the portability of the process definition among WfMSs, capable
of processing XPDL descriptions. As reference language to define, capture, and
manage exceptions we consider the Chimera-Exception language [4].

In this paper, Section 2 considers related work; Section 3 and Section 4
consider process and exception specification, introducing XPDL and Chimera-
Exception. Section 5 shows how to model ECA rules in XPDL. Section 6 describes
how to support expression evaluation in XPDL, used in Section 7 to map ECA
rules onto process specifications. Section 8 describes some practical experiences
gained. Finally, Section 9 draws some conclusions and anticipates future work.

2 Related Work

The literature covers several facets of exception handling in WfMS. Mourão et
al. [5] define a suitable environment to orchestrate ad-hoc human interventions
with a minimum impact on system integrity. Golani et al. [6,7] consider how
to increase the flexibility of a WfMS to deal with unexpected exceptions, and
propose a dynamic mechanism that allows backtracking and forward stepping at
the instance level. Luo et al. [8] focus on exception-handling schemes for conflict
resolution in the delivery of e-business transactions, with particular attention to
support conflict resolution in cross-organizational settings. Schuschel et al. [9]
exploit the functionalities of triggers defined within a WfMS to automate the
creation of process definitions by planning algorithms: by replanning and dy-
namically adapting the process, the newly defined process is capable of reacting
to unexpected events. Finally, van der Aalst et al. [10] propose a mixed approach
between workgroup management systems and WfMSs,where the normal evolu-
tion of the process is managed by predefined process control structures, while
exceptions are manually managed by a human agent and the case handling sys-
tem assists rather than guiding him/her in doing so.

Our particular attention is focused on expected exceptions as defined by Eder
et al. in [3]. To this regard, very few WfMSs include a fully fledged exception
handling unit to deal with expected exceptions. An interesting approach to ex-
ception handling is provided by the OPERA prototype [11], where exceptions
can be triggered by data events or by notifications from external applications:
tasks and control flows are used as reactions to captured exceptions. In OPERA,
as soon as an exception is detected, the process is suspended and the control
is transferred to the exception handler. COSA [12] comes with the notion of
trigger, defined as an event-action rule capturing events or deadline expirations,
and reacting by activating a task or a (sub)process instance. InConcert [13]
includes event-action triggers in its workflow model: triggering events can be
process state changes (e.g., a task becomes ready for execution), external (user



A Portable Approach to Exception Handling in WfMSs 203

defined) events, or temporal events; actions include notification of messages to
agents, activation of a new process, or invocation of a user-supplied procedure.
Staffware [14] and HP’s Changengine allow the definition of a special kind of
task called event node (or event step), which can suspend the case execution on
a given path until a defined (exceptional) event occurs, and can then activate
an event-handling path in the workflow.

The WIDE project has a powerful exception handling unit [4], where excep-
tions are specified by means of Event-Condition-Action (ECA) rules: workflow,
temporal, external, and data events may trigger actions as suspending a case
or a task, starting a new case, changing database instances, or notifying mes-
sages to agents. In this paper, we adopt the formal Chimera-Exception language
developed within the WIDE project.

3 Business Process Modelling and XPDL

The XPDL (XML Process Definition Language) is an XML file format from the
WfMC: it has the same expressive power as the visual process specification lan-
guage Business Process Management Notation [15] (BPMN). XPDL can be used
as file format of BPMN. In this paper we shall use BPMN modelling constructs
for expressing XPDL processes and activities, instead of providing unexpressive
snippets of XPDL code. Tasks are represented as boxes, whose names describe
the performed activity. Transitions are represented as directed arcs to connect
process nodes, which, for routing purposes, may have associated a condition over
workflow-relevant, application, or system data. Each process definition has one
start and one end task, depicted by thin or thick circles, respectively. Gateways
are represented as diamonds; condition gateways also have an associated textual
condition, while AND gateways are diamonds that contain a + symbol.

An XPDL document is structured hierarchically, represents a package made
of a set of process definitions, and includes package-wide workflow participants,
applications and relevant data fields. Process definitions may contain references
to separately defined sub-flows, making up part of the overall process definition,
and inherit globally defined entities. Process definitions are articulated in pools
and swim lanes. For instance, when modelling interactions in B2B scenarios,
pools represent private business processes, while swim lanes represent the dif-
ferent participants performing each of the private processes. Process activities
represent tasks and are associated to pools and lanes. Activities are connected
by means of transitions (intra-pool flows) or message flows (inter-pool flows).

An Example. As process model example, we consider (Figure 1) a company
trading in books with very limited editions and accepting orders by its customers
via telephone; payments are by credit card only. After receiving an order, the
Sales Office immediately checks the credit status of the customer’s credit card.
In case of overdraft, the order is declined. Otherwise, the Sales Office proceeds
and checks the stock for the requested books. If all the products are available, the
customer is notified of the immediate shipment, and the Production department



204 C. Combi, F. Daniel, and G. Pozzi

provides for shipment. If, instead, not all the requested products are available, the
Sales Office informs the user and asks for the approval of a delayed shipment. To
accelerate the overall process, the Production department plans the production
of the missing items in parallel, regardless of the user’s decision, produces them
and, if no cancellation is received, ships the complete order.

Receive 
Order

Start
Decline 
Order

End

Check 
Stock

Notify 
Shipment

Plan 
Production

Production
Ship and 
Report

End

S
al

es
 O

ff
ic

e
P

ro
d

u
ct

io
n

Enough Credit?

yes

no

Products available?

Notify Delay and 
Ask4Approval

Products available?

yes

no
Customer
approves?

Compensate 
and Decline

End

yes

no

Fig. 1. Example OrderManagement process definition

4 Handling Workflow Exceptions

Although “anomalous” with respect to the “normal” process flow, expected
exceptions are part of the semantics of the overall process and can be classi-
fied [4,16] according to synchronicity, scope, and triggering event.

Synchronicity: synchronous exceptions are bound to specific workflow events
(i.e., task start, task completion), while asynchronous ones may occur at any time
during process execution. Synchronous exceptions may be further subdivided
into localized exceptions, caused only by the execution of one or few tasks, and
sparse exceptions, caused at several stages during process execution.
Scope: process-specific exceptions may occur during the execution of one unique
process; cross-process exceptions may occur during the execution of more pro-
cesses; global exceptions may occur during the execution of any process.
Triggering event : events can be data, temporal, external or workflow events.

These characteristics strongly influence the way expected exceptions can be
mapped onto XPDL, and thus onto process definitions. Mapping exceptions
moves from Chimera-Exception definitions, as specified in the following.

4.1 The Chimera-Exception Language

Chimera-Exception builds on an object-oriented formalism. Classes are workflow-
independent (e.g., role, agent, task) or workflow-dependent (e.g., workflow-rele-
vant data fields). Rules are specified by event-condition-action constructs.



A Portable Approach to Exception Handling in WfMSs 205

Events. Rules can be triggered by the following events: data events (changes
of the content of workflow-relevant data or within the underlying data source,
by create, modify or delete statements); temporal events, which can be (i)
instant events expressed through the @-symbol (e.g. @timestamp ‘‘December
15th, 2005’’), (ii) periodic events defined by the during keyword (1/days
during weeks denotes the first day of every week [17]), (iii) interval events
expressed as elapsed duration since instant, (e.g. elapsed (interval 1 day)
since caseStart); external events (recognized by means of the raise primitive,
which – when an external event occurs – provides the name of the triggering event
and suitable parameters); or workflow events (start and completion of tasks and
cases by the primitives caseStart, caseEnd, taskStart, and taskEnd).
Conditions. A condition consists of predicates that inspect the content of the
database. The predicate occurred enables to refer to objects or tasks that were
affected by the triggering event. The predicate old enables to access the database
state at the time of the triggering.
Actions. The actions of Chimera-Exception focus on exception management
within the workflow environment and can assign a task or a case to an agent,
cancel a task or a case, start a task or a new case, suspend a task. . .

The trigger ProductionNotification valid for the schema OrderManagement
is an example of a Chimera-Exception trigger. It monitors – as event – the com-
pletion of the task Production: after the completion of the task, the trigger
notifies the Sales Office about the terminated production.

define trigger ProductionNotification for OrderManagement
events taskEnd("Production")
condition Agent(A), A.Name = "Sales Office"
actions notify(A,"Production done.")

end

The CustomerCancel trigger reacts to cancellations of the whole process. The
process is informed of the cancellation by changes to the workflow-relevant vari-
able CustomerCalledToCancel. During case execution, should the parameter
change to ”Yes”, the task CompensateAndDecline is started.

define trigger CustomerCancel for OrderManagement
events modify(CustomerCalledToCancel)
condition OrderManagement(O),

occurred(modify(CustomerCalledToCancel),0),
O.CustomerCalledToCancel="Yes"

actions startTask("CompensateAndDecline")
end

5 Modelling ECA Rules in XPDL

In the next sections, we show how the textual specification of high-level Chimera-
Exception rules can be translated into XPDL by a mapping mechanism based on



206 C. Combi, F. Daniel, and G. Pozzi

XPDL macros. Macro modules represent fragments of the process graph and
provide flexible interconnections of workflow fragments and macro modules.

Macros consider events, conditions, and actions. High-level macros are made
of lower-level macros, such as connector macros, and of a set of predefined sub-
processes, which serve for evaluating expressions.

5.1 The Rationale for Macros

A generic macro element has at least one input node, prefixed by “In-”, and one
output node prefixed by “Out-”. The suffix specifies the kind of graph element
that can be connected to the interface. Table 1 shows the possible suffixes for
interface nodes. Triggers may have a void condition primitive (if set to none),
while the event and the action part can not be null; for simplicity, conditions will
be considered as part of the action. Therefore, the Ac suffix can connect action
macros as well as condition macros.

Table 1. Possible interface suffixes for specifying the kind of graph element to connect
to a given macro element

Interface Suffix Graph element
Wf Primary workflow

In Ev Event macro
Ac Action or condition macro
Wf Primary workflow

Out Ac Action or condition macro
True/False Action macro

Connecting two macros requires connecting the output interface of the first
macro to the input interface of the second macro. In order to be connectable, the
two interfaces must present the same suffix. Interfaces are modelled by means
of task nodes, because task nodes enable more flexible connection configurations
than transitions. Transitions, in fact, would allow only one connection through
an interface, while the auxiliary tasks allow more than one incoming transition
to be connected to a specific interface.

5.2 ECA Macro Elements

We now consider the generic, minimal structure of the three high-level macros
representing events, conditions and actions.

Events. Figure 2(a) depicts a generic macro for events with one input interface
and one output interface. Actually, events should respect the macro structure
of Figure 2(b), as generally events are not activated by incoming transitions.
However, since we are tackling the problem of mapping events to XPDL process
definitions/graphs, events require an input interface for connecting them to the
primary process flow, too. Indeed, as shown in Section 7.1, event macros could
also contain the event-generating logic, rather than representing the event itself.



A Portable Approach to Exception Handling in WfMSs 207

In-Ev Out-AcEvent

(a) Macro with In-Ev and Out-Ac interfaces.

Out-AcEvent

(b) Macro with Out-Ac inter-
face.

Fig. 2. Generic macro for Chimera-Exception events

In-Ac

Out-True

Condition

Out-False

Fig. 3. Generic condition macro

Conditions. Figure 3 shows a generic condition macro with one input and two
output interfaces. This macro is the only one using the suffixes True and False
to denote the interface activated if the condition evaluates true or false.

The use of condition macros requires the introduction of an exception to
the general rule for connecting interfaces (see Section 5.1), as there is no input
interface with True or False suffixes. Therefore, if condition macros are used,
their output interfaces can only be connected to interfaces with Ac suffixes.

In-Ac Out-AcAction

Fig. 4. Generic description of Chimera-Exception actions

Actions. Figure 4 describes the generic macro for actions. It has one input
interface and one output interface, both to be connected to other Ac interfaces.

5.3 Basic Connector Macros

In order to switch between the “process environment” and the “exception en-
vironment” within an enriched process definition, proper connector macros are
introduced. Figure 5 depicts the three basic connectors adopted in this paper.

Serial macro. This macro (Figure 5(a)) allows splitting the normal process flow
and inserting an exception handling sub-flow. The normal process is connected
to the two interfaces with suffix Wf, while the two other interfaces connect to
conditions or actions. The serial macro is used only to map exceptions triggered
by workflow events, which are synchronous and localized (see Section 4). The
serial connector may therefore act as both connector and triggering event.



208 C. Combi, F. Daniel, and G. Pozzi

In-Wf

Out-Ac In-Ac

Out-Wf

(a) Serial XPDL macro element

AND Split

In-Wf

Out-Ev

Out-Wf

(b) AND Split macro element

AND Join

In-Ac

In-Wf Out-Wf

(c) AND Join macro element

Fig. 5. Basic connector macros

AND split. The AND split (Figure 5(b)) starts parallel flows, one for the normal
process execution, one for the exception handling. The output interface with
suffix Ev is arranged for attaching proper event macros; hence, the AND split
does not represent an event. The AND split is particularly suited for mapping
asynchronous or synchronous, sparse exceptions (see Section 4), when used in
combination with event macros that monitor the actual triggering event (i.e.,
data events, temporal events, external events).

AND join The AND join (Figure 5(c)) aims at joining a process flow and a par-
allel exception handling flow. The join represents the termination of a triggered
rule and allows connecting in input an action or a condition macro.

Process Graph Reduction. The use of task nodes for interfaces leads to
a high number of auxiliary tasks within the process graph. Input and output
interfaces as well as suffixes are particularly useful for the consistent enrichment
of the process graph with exception handling constructs. After the mapping
process is terminated, the additionally introduced interface nodes are no longer
needed and the enriched process graph can be optimized. Figure 6 exemplifies the
graph reduction or optimization process relative to two connected AND splits:
whenever the process graph contains an output interface connected to an input
interface having the same suffix, the two nodes can be removed.

6 Supporting Chimera-Exception Expressions

Chimera-Exception rules may contain complex expressions: we need some XPDL
constructs capable of interpreting object-oriented primitives. We propose a



A Portable Approach to Exception Handling in WfMSs 209

AND SplitAND Split

In-Wf

Out-Ev

Out-Wf In-Wf

Out-Ev

Out-Wf

(a) Two connected AND splits

AND Split AND Split

In-Wf

Out-Ev

Out-Ev

Out-Wf

(b) Elimination of redundant In/Out tasks

AND Split

In-Wf

Out-Ev

Out-Ev

Out-Wf

(c) Reduced graph after optimization

Fig. 6. Process graph reduction

Name

Var

Name

In Out

XPDL Macro Data Flow
Workflow-

relevant Data
XPDL

Subprocess

Fig. 7. Notation for modelling sub-processes and workflow-relevant data

solution based on sub-processes to provide basic and atomic functionalities for
expression evaluation and data access (basic sub-processes). We also define ex-
pression patterns referring to particular configurations of workflow primitives
and sub-processes, implementing higher-level functionalities with respect to those
supported by sub-processes. Figure 7 depicts the notation for sub-processes, data
flows and workflow-relevant data fields. Sub-processes exhibit the names of their
input data, positioned at the left hand side, and of output data, at the right



210 C. Combi, F. Daniel, and G. Pozzi

hand side. A workflow-relevant data field connected by an arrow to an input
variable represents consumed values, while a field connected to an output vari-
able gathers produced values. An appropriate use of workflow-relevant data fields
therefore allows combining sub-processes and propagating parameter values.

6.1 Basic Sub-processes for Expression Evaluation

Figure 8 depicts some basic sub-processes. Get(ExpRef) accesses persistent data
by object-oriented expressions (i.e., Task1.Status): ExpRef is a string vari-
able referencing the variable to be read. Set(Value,DataRef) assigns values to
workflow-relevant data fields: Value is the constant value to be assigned to vari-
able referenced by DataRef. Evaluate(PredRef) evaluates Chimera-Exception con-
dition predicates and returns the evaluation result that can be stored within
a workflow-relevant data field: PredRef references the predicate to be evalu-
ated. Calculate(OperatorRef,Op1Ref,Op2Ref) computes the 4 basic arithmetic
operations, referenced by OperatorRef, over the operands referenced by Op1Ref,
Op2Ref. Wait(IntRef) implements a temporal delay, where the termination of the
sub-process signals the expiration of the delay referenced by IntRef. Raise(Event)
implements the WfMS-specific logic required to detect external events, described
by a unique name; the termination of the sub-process implies the occurrence of
the specified external event.

Get Set

Exp Val “Value”

(a) Data access and storage

Evaluate Calculate

Exp Val

Operator
Op1
Op2 Val

(b) Expression evaluation and manip-
ulation

Wait

Interval

Raise

Event

(c) Extended workflow capabilities

Fig. 8. Basic subprocesses for evaluating Chimera-Exception expressions

Also proper sub-processes for Chimera-Exception actions are required. Actions
strongly depend on the adopted WfMS: each action requires a customized sub-
process, implementing the respective functionality on top of the chosen WfMS.

6.2 Expression Patterns

Complex expression patterns can now be defined. Expression patterns and basic
sub-processes are the starting point for the automatic translation of Chimera-
Exception triggers into XPDL.



A Portable Approach to Exception Handling in WfMSs 211

Figure 9 shows an example of a workflow pattern GetDataObject mapping to
XPDL Chimera-Exception expressions like Task1.Status. As shown, the pattern
is composed of one Set operation and one Get operation. The former assigns the
constant value ‘‘Task1.Status’’ to a workflow-relevant data field (Exp); the
latter evaluates the expression and accesses the respective data. The retrieved
value is then stored within the data field Val.

Exp

Set

“Task1.Status”

Get

Exp Val

Val

Fig. 9. Expression pattern for accessing persistent workflow data and status informa-
tion

Besides data access patterns, other patterns manipulate strings, correctly in-
stantiate Wait sub-processes, evaluate Chimera-Exception predicates. . .

By combining and concatenating basic sub-processes, according to such ex-
pression patterns, we build the specification and translation of complex expres-
sions, as exemplified by Figure 10, where the expression ‘‘Status of Process
= ’’ + C.Task1.Status is expressed by proper sub-processes. For this purpose,
two expression patterns are used, one for accessing persistent data within the
underlying data source, and one for the concatenation of generic strings.

Sys1 Sys2

Set

“Status of
Process =”

Sys3 Sys4

Set

“Task1.Status”

Get

Exp Val

Sys3Sys1

Set

“+”

Calculate
Operator
Op1
Op2 Val

Val

Access to data object Concatenation

Fig. 10. Mapping of the expression ‘‘Status of Process = ’’ + C.Task1.Status

The example in Figure 10 further shows how sub-processes are configured and
connected automatically. The constant values used by the Set operations within
the depicted workflow fragment can be directly taken from the expression to be
translated, while the passing of parameters from one sub-process to another can
be achieved by means of system-generated data fields (i.e., Sys1 or Sys2). The
result of the described chain of sub-processes is stored within the data field Val.
System-generated data fields can be derived at compilation time in a completely
automated way, starting from the expression to be translated and the set of
known expression patterns.



212 C. Combi, F. Daniel, and G. Pozzi

7 Mapping Exceptions to XPDL

The mapping of expressions can be achieved in a completely process-independent
way, while the mapping of the high-level ECA constructs can only be accom-
plished in a process-dependent way. Sub-processes can directly be translated into
proper XPDL constructs for building up event, condition and action macros,
which then are connected to the process graph by means of the already men-
tioned interface nodes. In this section, we describe in more detail how ECA
macros can be built, starting from basic sub-processes, and how they can be
connected to the process graph.

7.1 Mapping Events

Events are the starting point for the evaluation of ECA rules and directly depend
on the kind of exception. We have workflow, data, temporal, and external events.

Task 1 Task 2

(a) Start configuration:
two subsequent tasks

Task 2In-Wf

Out-Ac In-Ac

Out-WfTask 1

In-Ac Out-AcAction

(b) After insertion of the Serial macro

Fig. 11. Mapping of the taskEnd(Task1) workflow event

Workflow Events. Workflow events are synchronous, localized, and are mapped
by the serial connector macro described in Section 5.3. Figure 11(b) shows the
fragment of Figure 11(a) after the mapping of the event taskEnd(Task1). The
serial connector macro plays the twofold role of connector and event. The two
interface nodes available after the mapping process directly allow the connection
of action or condition macros. Events taskEnd(), caseStart() and caseEnd()
map analogously.
Data Events. Data events are asynchronous, not localized, and mapped by an
AND split connector, which splits the process flow immediately after the start
node into two parallel flows, one for the primary process, one for the handling
of the asynchronous exception.

Figure 12 exemplifies the mapping of the data event modify(Object) and its
connection to the process graph by means of the AND split connector (inside
the grey-shaded box at the bottom of the figure). The actual event macro is con-
nected to the Out-Ev interface of the connector by means of an In-Ev interface.



A Portable Approach to Exception Handling in WfMSs 213

AND Split

modify(Object)

Task 1Start In-Wf Out-Wf

Out-Ac

Temp1 Obj Temp2Obj

In-Ev Out-Ev

Temp1 != Temp2
yes

Set

“Object”

Get

Exp Val

Set

“10 sec”

Get

Exp Val

no

In-Ac

Interv

Wait

Interval

Fig. 12. Mapping of the modify(Object) data event

The modify(Object) event further presents two other interfaces towards condi-
tion or action macros (Out-Ac and In-Ac). The former enables the execution of
the rule’s actions in case of modifications of the data object Object, the latter
re-connects the output interface of the action macro to the event macro.

The event macro in itself, rather than representing a real event, contains the
runtime logic required for “generating” actual data events. This is achieved by
cyclic monitoring (polling) of the respective data attribute within the underlying
data source and transferring control to the condition and action macros, in case
a modification is detected. In such a case, re-connecting the output interface of
the action macro to the In-Ac interface of the event macro closes the polling
cycle, which is suspended for the whole time taken to execute the rule’s actions.

Internally, the modify(Object) event consists in the following steps: the
current value of the data object to be monitored is retrieved and stored in a
workflow-relevant data field (Temp1). After the expiration of a predefined time
interval, the (possibly changed) value of the monitored data object is stored in a
second data field (Temp2). The two stored values are compared and, if they dif-
fer, the Out-Ac interface is enabled and the rule’s condition and action parts are
evaluated. Otherwise, the macro continues polling the monitored data object.
The delete and create events map analogously.

Temporal Events. Temporal events require different mapping techniques,
mainly based on their synchronicity features.

– Instant events are asynchronous with respect to the normal process flow.
Their implementation is based on the use of suitable Wait operations;

– Periodic events are asynchronous, thus mapping similarly to instant events;



214 C. Combi, F. Daniel, and G. Pozzi

– Interval events are synchronous events as their evaluation depends on work-
flow events. The event elapsed(interval 1 day) since taskStart(Pro-
duction), for instance, is bound to the anchor event start of task Produc-
tion. These events are mapped by branching the normal process flow accord-
ing to the anchor event and by connecting the event handling constructs to
the parallel control flow. After the expiration of the time interval, the actual
event occurs, and the respective ECA rule is evaluated.

External Events. External events are asynchronous. The implementation of the
appropriate detection mechanism strongly depends on the particular used WfMS.
The detection of external events requires a proper sub-process (Section 6.1),
which is in charge of waiting for the incoming event. After receiving the notifi-
cation of the occurrence of the external event, the sub-process terminates, thus
signalling the occurrence of the event. The respective macro for raising asyn-
chronous, external events is based on cyclic activations of this sub-process, and
is attached in parallel to the process graph after the start task. A more detailed
treatment of external events exceeds the scope of this paper.

7.2 Mapping Conditions

The mapping of a condition involves as many instances of the Evaluate sub-
process (introduced in Section 6.1) as predicates in the condition expression.
The single intermediate evaluations are stored as workflow-relevant data, while
a final condition primitive determines the overall evaluation.

Condition

Set

“Expression”

In-Ac
Evaluate

Expr Val

Out-True

Out-False

Sys

Sys =
true?

yes

no

Fig. 13. XPDL macro element for expressing conditions

Figure 13 exemplifies the described mapping of condition expressions: the Set
operation stores the predicate to be evaluated (a string constant) in the data
field Expr, which is then consumed as input by the Evaluate operation. This
operation parses the predicate and stores the result in a system-generated data
field (Sys). The actual result of the condition macro is computed by the final
condition primitive.

7.3 Mapping Actions

Action implementation must be provided by basic sub-processes prior to the
mapping process. In order to form proper action macros and to connect such



A Portable Approach to Exception Handling in WfMSs 215

sub-processes to the process graph, action sub-processes are wrapped by means
of an In-Ac interface and an Out-Ac interface. Possible parameters are then
specified by means of complex Chimera-Exception expressions, interpreted, and
made available to the execution environment by workflow-relevant data fields.

In this way, the actions described in Section 4.1 can be seamlessly integrated
into the enriched process definition. While the translation of exception triggers
from Chimera-Exception to XPDL only requires the definition of the interface of
the actions to be mapped, their execution on top of a particular WfMS requires
their implementation according to the WfMS’s extension mechanisms.

8 Compiling Chimera-Exception into XPDL

As a proof of concept, we developed a Java prototype of a Compiler for the
automatic mapping into XPDL of exceptions defined in the Chimera-Exception
language. An additional Optimizer module is in charge of reducing the enriched
process graph by eliminating useless interface nodes.

The prototype demonstrates both the feasibility of the envisioned automatic
translation of Chimera-Exception triggers into XPDL at the process definition
level, and that the enriched process definitions are effectively executable by real
workflow engines, if proper WfMS-specific sub-processes are provided.

8.1 XPDL Process Modelling and Rule Compilation

To validate the compilation process, the open-source, graphical workflow process
editor JaWE [18] has been adopted. JaWE enables the visual specification of
workflow processes and their storage in XPDL as native file format. The process
definition example of Figure 1 is now modelled in JaWE by the swim lanes
Sales Office and Production of Figure 14: white nodes represent routing nodes
(automatically performed), while the gray shaded nodes represent the actual
tasks to be executed by the resource/role associated to the respective swim lane.

Several trigger definitions have been compiled to test the compilation process:
as an example, we consider here the CustomerCancel trigger described in Section
4.1 (Figure 14). The triggering event is an asynchronous data event, occurring
after changes to the workflow-relevant data field CustomerCalledToCancel. If
a modification to this parameter occurs, the case is aborted by activating the
CompensateAndDecline task.

The enabling event modify(CustomerCalledToCancel) has been connected
in parallel to the primary process flow by branching the primary flow imme-
diately after the start node. According to Figure 12, the data event is imple-
mented by a polling mechanism, monitoring the value of the workflow-relevant
data field CustomerCalledToCancel and represented in figure by the tasks Get,
Wait and the first Cond task. The second Cond task maps the conditional pred-
icate OrderManagement(O), occurred(modify(CustomerCalledToCancel),O),
and O.CustomerCalledToCancel = ‘‘Yes’’, while the specified action start-
Task(‘‘CompensateAndDecline’’) is achieved by connecting one of the outgo-
ing transitions of the Route node to the respective task.



216 C. Combi, F. Daniel, and G. Pozzi

F
ig

.
1
4
.
P

ro
ce

ss
m

od
el

af
te

r
co

m
pi

la
ti
on

of
th

e
C
u
s
t
o
m
e
r
C
a
n
c
e
l

tr
ig

ge
r



A Portable Approach to Exception Handling in WfMSs 217

The evaluation of the execution of enriched process definitions has been tested
by means of the open-source Java workflow engine Shark [19], which is completely
based on XPDL as native process definition format. In order to execute enriched
process definitions, the basic sub-processes introduced throughout this paper
have been implemented as “Java applications” to be associated to the so-called
application tasks (performed by means of predefined applications). The per-
formed tests allow us to cover successfully both compilation and execution of
enriched process definitions.

9 Conclusions and Future Work

In this paper we considered a relevant aspect of modern workflow management
systems, i.e., exception handling. We leveraged the use of a high-level speci-
fication language for the definition of workflow exceptions, such as Chimera-
Exception, and proposed a fully automated translation technique for rule defini-
tions. According to our approach, rules are translated into XPDL, the standard
process definition language proposed by the Workflow Management Coalition,
which hence fosters portable process and exception handling specifications. As
a proof-of-concept, the implemented rule compiler prototype allowed us to test
all the stages of the compilation process. The main contribution of this paper is
that it keeps the definition of exceptions at a conceptual level, by assuring – at
the same time – portability.

As future research directions, we plan a formal analysis of the complexity of
the outlined mapping approach, which however we expect being linear since
there are no interdependencies between the mappings of two triggers. We are
also confident about the termination of enriched processes, assuming a correct
termination of the input processes and of the Chimera-Exception triggers to be
mapped.

References

1. The Workflow Management Coalition. http://www.wfmc.org (2005)
2. Combi, C., Pozzi, G.: Architectures for a Temporal Workflow Management System.

In: SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, New
York, NY, USA, ACM Press (2004) 659–666

3. Eder, J., Liebhart, W.: The Workflow Activity Model WAMO. In: CoopIS. (1995)
87–98

4. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Transactions on Database
Systems 24 (1999) 405–451

5. Mourão, H., Antunes, P.: Exception handling through a workflow. In Meersman,
R., Tari, Z., eds.: CoopIS/DOA/ODBASE (1). Volume 3290 of Lecture Notes in
Computer Science., Springer (2004) 37–54

6. Golani, M., Gal, A.: Flexible business process management using forward step-
ping and alternative paths. In van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F., eds.: Business Process Management. Volume 3649. (2005) 48–63

http://www.wfmc.org


218 C. Combi, F. Daniel, and G. Pozzi

7. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10 (1998) 93–129

8. Luo, Z., Sheth, A.P., Kochut, K., Arpinar, I.B.: Exception handling for conflict
resolution in cross-organizational workflows. Distributed and Parallel Databases
13 (2003) 271–306

9. Schuschel, H., Weske, M.: Triggering replanning in an integrated workflow plan-
ning and enactment system. In Gottlob, G., Benczúr, A.A., Demetrovics, J., eds.:
ADBIS. Volume 3255 of Lecture Notes in Computer Science., Springer (2004) 322–
335

10. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53 (2005) 129–162

11. Hagen, C., Alonso, G.: Flexible Exception Handling in the OPERA Process Sup-
port System. In: ICDCS. (1998) 526–533

12. Baan Company N.V. - COSA Soultions: COSA Reference Manual (1998)
13. McCarthy, D., Sarin, S.: Workflow and transactions in In-Concert. IEEE Data

Engineering, 16(2):5356 (1993)
14. Staffware Corporation: Staffware for Intranet based Workflow Automation.

http://www.staffware.com/home/whitepapers/data/globalwp.htm (1997)
15. (BPMI.org), B.P.M.I.: Business Process Modeling Notation - Version 1.0.

www.bpmi.org (2004)
16. Casati, F., Pozzi, G.: Modeling Exceptional Behaviors in Commercial Workflow

Management Systems. In: CoopIS. (1999) 127–138
17. Leban, B., McDonald, D.D., Forster, D.R.: A Representation for Collections

of Temporal Intervals. In: Proceedings of the Conference on AAA-I, (AAAI86,
Philadelphia, PA) (1986) 367–371

18. ObjectWeb Consortium: Enhydra JaWE (Java Workflow Editor).
http://jawe.objectweb.org/ (2005)

19. ObjectWeb Consortium: Enhydra Shark. http://shark.objectweb.org/ (2005)

http://shark.objectweb.org/


Methods for Enabling Recovery Actions in

Ws-BPEL

Stefano Modafferi and Eugenio Conforti

Politecnico di Milano
Dipartimento di Elettronica e Informazione

P. zza L. da Vinci 32,
20133 Milano, Italy

modafferi@elet.polimi.it, conforti eugenio@bah.com

Abstract. Self-Healing is an emerging exigency for Information Sys-
tems where processes are everyday more complicated and where many
autonomous actors are involved. Roughly, self-healing mechanisms can
be viewed as a set of automatic recovery actions fired at run-time accord-
ing to the detected fault. These actions can be at infrastructure level,
i.e. transparently to the process, or they can be defined in the workflow
model and executed by the workflow engine. In the Service Oriented
Computing world Ws-BPEL is the most used language for web-service
orchestration, but standard recovery mechanisms provided by Ws-BPEL
are not enough to implement, with reasonable effort, lots of suitable re-
covery actions.

This paper presents an approach where a designer defines a Ws-BPEL
process annotated with some information about recovery actions and
then a preprocessing phase, starting from this “annotated” Ws-BPEL,
generates a “standard” Ws-BPEL, that is a file understandable for a
standard Ws-BPEL engine. This approach has the advantage of avoiding
any change in the engine using the standard capabilities to define specific
behaviors that will realize recovery actions, but at the end are still a set
of Ws-BPEL basic and structured activities.

1 Introduction

In Service Oriented Architectures languages and framework for managing pro-
cesses are becoming mature and quite stable. The de-facto standard for defining
Web-Service based process is Ws-BPEL [7]. Several engines [1,2,3] are available
for implementing Ws-BPEL processes.

The next step for research in this field is an advanced fault management to
realize Self-Healing Information Systems able to choose and implement appro-
priate recovery actions. Thus a Self Healing Information System will implement
a monitoring part to capture faults, a diagnosis part to detect what and where
is the source of the problem and to decide which recovery action has to be fired,
and a recovery part that actually implements the recovery action.

These actions can be at infrastructure level, i.e. transparently to the process
(e.g. the approach of [17]), or they can be defined in the workflow model and

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 219–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



220 S. Modafferi and E. Conforti

executed by the workflow engine. This paper focuses on the recovery part of a
Self Healing Information System following the latter approach and considering
recovery mechanisms that can be defined during the process design phase.

A designer who wants to use a language like Ws-BPEL as is, has very few and
basic mechanisms to implement recovery actions. It is possible to realize more
complex recovery behavior, but the effort is too much.

Our approach tries to extend Ws-BPEL strategies suggesting some composite
constructs that mix handlers and activities (standard and structured), to drive
the designer in his work, enabling standard, and therefore general, mechanisms
which perform repair actions at run time level.

During the design phase, the designer has to decide which mechanism must
be used, specializing it according to the given schema. That is, for instance,
inserting in the general mechanism the actual recovery actions.

The proposed mechanisms cover a wide range of possibility: i) the ability of
modifying the value of process variables by means of external messages, ii) the
specification of a time deadline associated with a task, iii) the ability of redoing a
single task or an entire scope, iv) the possibility of specifying alternative paths to
be followed, in the prosecution of the execution, after the reception of an enabling
message, v) the possibility of going back in the process to a point defined as safe
for redoing the same set of tasks or for performing an alternative path.

The work is so structured: Section 2 is devoted to the analysis of existing Ws-
BPEL constructs for recovery actions, then in Section 3 we define our general
approach to improve power expression in Ws-BPEL without modifying existing
engines, mechanisms are presented in Section 4, then in Section 5 we compare
our work with related literature and finally in Section 6 we draw our conclusion.

2 Ws-BPEL Recovery Mechanisms

In the Service Oriented Computing world Ws-BPEL [7] is the most used language
to specify Web-Service Orchestration. It defines a language to design workflow
processes by specifying the process tasks and their interaction with the external
world. Ws-BPEL has standard activities (invoke, receive, assign, wait, reply,
terminate etc.) called simply tasks, and structured activities (loop, pick, sequence
etc.) that can be combined to define the process.

An important concept is the Scope that defines a portion of workflow upon
which variables and handlers can be defined. Each Scope has a primary activity
that defines its normal behavior. The primary activity can be a complex struc-
tured activity, with many nested activities with an arbitrary depth. The Scope is
shared by all the nested activities. Each Scope has unique entry and exit points.

Ws-BPEL provides standard mechanisms for managing exceptions. Specific
handlers (fault, compensation and event) are associated with a single action or
with a Scope, that is, a set of actions. The major problems that handlers create
are about their lack of flexibility. Those handlers are enabled at different time
during execution: Fault and Event Handlers are enabled only during running
time (of a Task or Scope); Compensation Handler is enabled when the status is



Methods for Enabling Recovery Actions in Ws-BPEL 221

“completed” and therefore the execution point is ahead of the Scope. The fault
and compensation can be defined both at Task or Scope level, but Event Handler
exists only at Scope level. In the following a brief description of each handler is
provided:

– Fault Handler. Its aim is to undo the partial and unsuccessful work of a
Scope. The first thing it does is to terminate all the activities contained
within the Scope, then it performs its tasks defined at design phase. Sources
of faults can be: i) invoke activity responding with a fault WSDL message,
ii) a programmatic throw activity iii) standard fault that pertains to the
engine iv) “CatchAll” for anything else. If a fault is not consumed in the
current Scope it is recursively forwarded to the enclosed ones. If termination
of instance has not been invoked, after consuming the exception the normal
flow restarts at the end of the Scope associated with the fault.

– Compensation Handler. This is basically a wrapper for compensation activ-
ities. A Compensation Handler is available only after the related Scope has
been completed correctly. It represents a compensation process of already
executed activities. Activities see a snapshot of all the variables of the Scope
the Compensation Handler is attached to and they cannot update live data.
It can be used from within fault-handlers or Compensation Handlers. Call-
ing a compensation on a Scope without Compensation Handler, the default
handler is executed, that is all Compensation Handlers for the immediately
enclosed scopes in reverse order are invoked.

– Event Handler. The whole process as well as each Scope can be associated
with a set of Event Handlers that are invoked concurrently if the corre-
sponding event occurs. The actions taken within an Event Handler can be
any type of activity, such as sequence or flow. Event Handler is considered
a part of the normal processing of the Scope, i.e., active Event Handlers are
concurrent activities within the Scope. Events can be: i) incoming messages;
ii)temporal alarms.

Using these three handlers as they are, it is possible to realize very basic
“recovery” mechanism. In fact Ws-BPEL provides the three handles as stan-
dard mechanisms and leaves to designer any other specification about the tasks
actually executed when an handler is fired. Therefore more powerful and flex-
ible instruments could be built, but this effort is currently fully in charge of
the designer. For instance, no native method is available for redoing an action,
designer could use the Compensation Handler to do this, but it is not so easy
and a discussion about how to implement a redo action in Ws-BPEL is given in
Section 4.3.

Moreover in developing advanced recovery mechanisms, the designer has to
consider the side effect of each specific handler. For instance when Fault Handler
is invoked, it terminates all the activities in the Scope upon which it is defined,
therefore if the designer wants to provide a repair action on the process without
killing a part of it (or all), he needs to catch the fault with the Event Handler
that is executed concurrently to the normal flow. It does not kill any activity,
but, at the same time, it does not stop the process flow.



222 S. Modafferi and E. Conforti

3 Enhancing Design Capability

To overcome Ws-BPEL limitation in supporting recovery action three different
approaches can be followed: to define a totally new workflow language and work-
flow engine, to define an extended Ws-BPEL and the corresponding extended
engine or to use the concepts of annotation and preprocessing for enhancing
Ws-BPEL at design time without modifying the workflow engine.

Starting from the assumption that Ws-BPEL is currently the de facto stan-
dard for orchestrating Web Service based workflow, changing the model will be
useless, hardly limit the diffusion of the new model. Thus the followed direction
is to give to the designer several advanced recovery mechanisms asking him very
few changes of his current instruments.

For this reason the presented approach follows the third way. The payed price
is the necessity of interpreting an annotated Ws-BPEL and some limitations
(related to the nature of the language) that cannot be overcome with any mech-
anism. The advantages is to avoid any change in the engine supporting any
commercial engine complaint with Ws-BPEL 1.1 standard without imposing
any choice to the company interested in these mechanisms and moreover with-
out interfering with autonomous developments carried out by the actual owner
of each engine.

Our approach exploits Ws-BPEL annotation based on the XML nature of
Ws-BPEL, that is adding new tags in the XML during the design phase and
removing them during the preprocessing phase. Each Ws-BPEL process can be
invoked like a Web Service having a WSDL interface. The final WSDL, output
of pre-processing phase, is modified according to the new (recovery) operations
that the process supports. To realize a distinction between the operations re-
lated to the Business and those related to Management our approach follows the
direction proposed in WSDL-S [15] to specify the semantic associated with this
(recovery). This language is an extension of WSDL and supports the use of ex-
tension attributes, namely modelReference, that specify the association between
a WSDL entity and a concept in a semantic model.

As stated before, the enhancement of design capability is not related with
specific process schema. It is provided like the basic Ws-BPEL handlers and
thus each mechanism requires a design phase that is devoted to decide where
the mechanism is active and which are the actual recovery actions that have to
be performed once the mechanism has been fired.

4 Proposed Mechanisms

In this section the five mechanisms enabling specific recovery actions are de-
scribed. They are the focus of the paper and cover a wide range of possibility: i)
the ability of modifying the process variables value by external messages, ii) the
specification of a time deadline associated with a task, iii) the ability of redo-
ing a single Task or an entire Scope, iv) the possibility of specifying alternative
paths to be followed, in the prosecution of the execution, after the reception of



Methods for Enabling Recovery Actions in Ws-BPEL 223

an enabling message, v) the possibility of going back in the process to a point
defined as safe for redoing the same set of tasks or for performing an alternative
path. All the mechanisms, if not differently specified, can be associated both at
task level and at Scope level.

4.1 External Variable Setting

A common typology of errors in Business Process executions is related to data.
Actual recovery actions in this field are often performed outside the process by
human actions. Even if it is performed out of the process, this kind of recov-
ery usually produces the need for an update of several process variables. This
mechanism allows the designer to simply identify which variables can be set
from incoming message, leaving to the preprocessor the task of producing the
corresponding set of Event Handlers.

In fact the basic idea behind this mechanism is to use several Event Handlers
with a simple activity each one modifying the corresponding variable.

Abstract Extended Model. Even if the “annotated” Ws-BPEL is not ex-
ecutable on standard workflow engines, it can be still viewed as a workflow
description language. Step by step we will show what has to be added to the
original model for enabling advanced management of recovery actions. In the
following the term “attribute” has general meaning and does not imply that in
the corresponding XML structure it is actual an attribute, in fact in the XML
it could also be an element.

For this feature the model has to consider also an External Modifiable at-
tribute ExtV ar optionally associated with each Ws-BPEL variable definition.

The Transformation Algorithm. This is the algorithm performed by the
preprocessor to generate the “standard” Ws-BPEL:

1. Scan the “annotated” Ws-BPEL generating an Event Handler for each vari-
able having the attribute ExtV ar true.

2. Put an “assign” operation for modifying corresponding variable in each
Event Handler generated in the previous step.

4.2 Timeout

In the communication between two web services A problem is the time that one
actor can wait before the message arrival. We need a mechanism to manage,
at process level, timeout in the communication. In Ws-BPEL the possibility of
using timeout is associated to Event Handler and to Pick activity. In this section
a simple way to extend this possibility associating a timeout to a Receive activity
is presented.

The designer specifies a timeout for each selected Receive activity and the
corresponding recovery actions, that is the set of activities performed if the
timeout happens.



224 S. Modafferi and E. Conforti

With simple extension involving an Event Handler it is possible to associate a
timeout with activities different from Receive. This extension exploit the possi-
bility of using a timeout for firing an Event Handler. For terminating the current
Activity/Scope is used a Fault Handler.

Abstract Extended Model. For Timeout feature the model has to consider:

– Timeout attribute T ime optionally associated with “Receive” activity defi-
nition.

– Set of basic and structured Ws-BPEL activities RecActions. With respect
to the default execution flow RecActions identifies a semantically different
behavior because it is performed as a recovery action, but syntactically it is
composed of standard Ws-BPEL code.

The Transformation Algorithm. As shown in Fig. 1 and Fig. 2, to enable
this feature each Receive activity associated with a timeout is transformed in a
Pick activity with two branches, one associated with the original message and
the other associated with an alarm, that is the standard mechanism provided by
Ws-BPEL for managing timeout.

< receive > < pick >
...... < onMessage >

< Timeout = “duration − expression′′ >? < Empty/ >
RecActivity < /OnMessage

< /T imeout >
< /receive > < onAlarm(for = T imeout) >

RecActivity

< /OnAlarm >
< /pick >

Fig. 1. Transformation of a receive with timeout in a pick

Fig. 2. UML representation of transformation

This is the algorithm performed by the preprocessor to generate the “stan-
dard” Ws-BPEL:

1. Scan all the “annotated” Ws-BPEL transforming every receive action asso-
ciated with a timeout in a pick with two branches:



Methods for Enabling Recovery Actions in Ws-BPEL 225

– A branch characterized by onMessage property and associated with the
same message originally devoted to corresponding receive.

– A branch characterized by onAlarm property and associated with the
corresponding defined timeout.

2. Associate the “standard behavior” with the onMessage branch.
3. Associate the “recovery behavior” with the onAlarm branch.

4.3 Redo Mechanism

Redoing an activity is an action often useful repairing a process. In Ws-BPEL
there is not A mechanism to manage this type of situations. Redo means to
execute again a Task or a Scope (a set of activities) that is already completed.

The action of Redo is not related to the concept of rolling back a process or
part of it. According to [14] we are assuming that concurrently with a running
process, at a time, the system can ask for redoing a Task or a Scope without any
relationship with the current point in the execution flow.

Compensation Handler is enabled only when the related Task/Scope is com-
pleted. Event Handler and Fault Handler are enabled only during the running
phase of the Activity/Scope.

To redo an activity the mechanism is based on the Compensation Handler.

< CompensationHandler >?
< switch >

< casecondition = “bool − expr′′ > +
Redoactivity

< /case >
< otherwise >?

Compensateactivity

< /otherwise >
< /switch >

< /CompensationHandler >

Fig. 3. New structure of Compensation Handler

In this mechanism redo is viewed as a compensation activity. The basic idea
is to define a behavior that syntactically is inserted in a Compensation Handler,
but actually is the repetition of “normal” behavior. An Event Handler fired by
the specific redo message is used to activate this compensation.

It is possible to use the same construct also at single task level, because the
Invoke activity has an internal Compensation Handler.

It is important to remark that for each Task/Scope, only one Compensation
Handler can be defined and it cannot be invoked by an external message. For this
reason the message rising a redo action will syntactically be an event message.
The aim of the Event Handler is to set the variable that will drive the choice
between redo and compensation and then to call the Compensation Handler.



226 S. Modafferi and E. Conforti

Fig. 4. Overview of Redo mechanism at run-time

Using this approach it is possible to have two different messages for raising
compensation or redo action. The default behavior performed in the Compen-
sation Handler is the compensation path.

The designer has to only specify the Tasks/Scopes that could be redone.

Abstract Extended Model. For this feature the model has only to consider
the Redo attribute Redo optionally associated with Invoke activity definition
or with Scope. From the enhanced model perspective no other information is
necessary. Fig. 3 shows how the information can be provided.

The Transformation Algorithm. The following transformation algorithm is
performed for each Task/Scope upon which the redo attribute is defined:

1. A global variable vi is defined by the preprocessor. This variable will drive
the choice between compensation and redo action.

2. A new event message and the corresponding handler is created.
3. In the Event Handler an operation for setting vi to “redo action” value is

defined.
4. In the Event Handler an operation for calling the Compensation Handler

associated with the activity is inserted.
5. a Switch construct is put on the top of Compensation Handler by the pre-

processor.
6. The Task or the Scope is copied in a branch of the switch in the handler and

the normal compensation behavior in the other branch by the preprocessor.
7. This switch is driven by a variable vi that indicate if the wanted behavior is

compensate or redo.
8. An operation for setting the value of vi to “Compensation”, default value,

is inserted.



Methods for Enabling Recovery Actions in Ws-BPEL 227

In Fig. 4 a basic functional schema is depicted. Notice that the compensation
branch could be a shortcut if compensation is not defined upon the corresponding
Task/Scope.

4.4 Future Alternative Behavior

This mechanism provides a way for specifying that as consequence of an event,
in the future the process, in specific sections, will follow an alternative behavior
instead of the default one.

The typical example is when a given (and not vital) service, during the process
execution becomes not available and an incoming message carries this informa-
tion. Each operation related to this service will be skipped until the situation
does not change.

The designer has to define the following items:

1. The scopes of workflow sensible to one (or more) possible alternative behav-
iors. To do this he defines a Scope exactly covering every region that could
be substituted.

2. The set of “Alternative Behaviors” associated with the workflow, that is the
set of scopes available as alternative paths.

3. The relationship among default scopes and alternative scopes. Each region
can be associated with more than one different Alternative Behaviors.

High-level Overview. The idea behind this mechanism is to have some alter-
native behaviors available along the process and related to several portions of it.
The preprocessing phase uses a Switch activity to store all the possible alternative
behaviors in the corresponding places, specific variable drives one and only one
of this kind of Switch. Each alternative behavior is fired (or killed) by a specific
message. To manage this situation the Ws-BPEL Event Handler is used. The
incoming message carries a boolean information (Alternative/Default). When a
message arrives the Event Handler reacts and all the variables driving the Switch
activities containing the alternative behavior indicated in the message are set to
the indicated value.

This approach assumes that default and alternative behaviors are mutually
exclusive and that the incoming message fires the associated behavior along all
the process. If for a single Scope more than one alternative behavior has been
defined, the last incoming message will decide the actual behavior. This is quite
reasonable because the semantic associated with the message can be summarized
in: “From now perform the associate alternative behavior wherever it is defined”.

Figure 5 shows an high level picture of this mechanism. It is worth noticing
that in the message content it is possible to specify if the alternative pattern has
to be activated or if the default behavior has to be restored.

Even if not yet implemented, an important evolution of this mechanism is the
possibility of specifying the alternative behavior not as an absolute set of tasks
with a predefined topology defined at design-time, but as a set of rules defined
upon the default behavior (e.g. after each operation related to partner a perform
an Invoke operation to partner b informing about the content of the previous
communication).



228 S. Modafferi and E. Conforti

Fig. 5. Overview of future alternative behavior mechanism

Abstract Extended Model. The extended model for this feature has also to
consider:

– A Conditional Scope CSi which is a Scope with his alternative behaviours:
• Starting Point CSiPs of the Scope
• Ending Point CSiPe of a Scope.
• Set of Alternative Arcs AACSi linking the Scope with all the correspond-

ing available Alternative Scopes. Each arc is defined as AACSi−AltScopej .
– The set of Alternative Scope AltScope available for the workflow. Each

AltScopei is defined as a set of basic and structured Ws-BPEL activities.
AltScopeCSi identifies the set of alternative behaviors associated with a Con-
ditional Scope CSi. With respect to the default execution flow AltScopei

identifies a semantically different behavior because it is performed as a re-
covery action, but syntactically it is composed of standard Ws-BPEL code.

The Transformation Algorithm. The Pre-processing algorithm for each
Conditional Scope is defined as follow:

1. For each Conditional Scope CSi:
– In correspondence of each Conditional scope a Switch activity starting

from CSiPs and ending in CSiPe is placed. A variable rCSi drives the
switch construct.

– The associated AltScopeCSi is identified. It represents the set of alter-
native behaviors available for CSi.



Methods for Enabling Recovery Actions in Ws-BPEL 229

– The Switch structure have | AltScopeCSi | +1 branches. A branch is filled
with the default behavior and the others with an available Alternative
Scope.

2. For each Alternative Scope AltScopei:
– An Event Handler EHAltScopei associated with message MSGAltScopei

enabling the Alternative Scope AltScopei is defined.
– All the Scope (and the set of corresponding rCSi) where the AltScopei

behavior is defined are identified.
– The body of EHAltScopei is filled with a set of Assign activities devoted

to switch each involved rCSi from current value to AltScopei or to the
original CSi according to message content.

4.5 Rollback and Conditional Re-execution of the Flow

A common recovery action in workflow exception management is to compensate
a part of the executed process, rolling back the state to a “safe point”. it is
possible to compensate a Scope using the simple Compensation Handler provided
by standard Ws-BPEL, but the execution flow can only proceed ahead and no
“jump” or “go to” construct are provided. The only way to go back is to use a
loop in a proper way. In the following we will refer to a more general mechanism
that allows to rollback the process until a safe point and then to execute the
same or a possibly different behavior.

The concept of safe points is derived from [11] and their identification is in
charge of the designer. In the following they will be addressed as “migration
points” because each point can be the “starting point” for migrating to an al-
ternative behavior.

The designer has to specify:

– The point considered safe, that is the point suitable for ending a rollback
process and starting migration process. Migration process can be also “self-
migration”, that is starting and ending configurations/behaviors are the
same.

– The compensation process associated with the rollback action
– The arcs linking a “starting migration point” with related “ending migra-

tion point” of different behaviors and the optional transformation process
associated with each arc.

The use of both “Starting” and “Ending” Migration Point allows general
migrations without enforcing a symmetry among different behaviors.

High Level Overview. The solution is derived from the one presented in [16]
where the authors propose a way for specifying run-time change of configura-
tion as reaction to a context change. It uses the Fault Handler property that
terminates all the activities inside a Scope and restarts the flow after the end of
that Scope. This Scope is inserted in a loop and the Fault Handler modifies the
variable driving the loop for performing another iteration. Two different switch



230 S. Modafferi and E. Conforti

constructs drive the choice of the configuration that will be performed after the
rollback phase and the restarting from the correct point in the configuration.

In this way, by combining Fault Handler properties, specific code performed
in the Fault Handler and an appropriate main flow structure it is possible to
have a behavior that realize the rollback using the Ws-BPEL language.

Abstract Extended Model. The extended model will consider:

– A Context-sensitive region (CSR) that is a workflow subprocess that sup-
ports rollback and may have several configurations exporting different be-
havior according to specific conditions. A CSR will be defined exactly upon
a Ws-BPEL Scope.

A region is composed of alternative configurations linked with particular
arcs called migration arcs. A migration arc is associated with instructions to
migrate a workflow instance from one configuration to another.

– A Configuration that is always a workflow subprocess, but with different
characteristic with respect to CSR. A Configuration Confi is composed by:
i) an entry condition EC; ii) basic and structured activities; iii) a set of
Starting Migration Points MPs; iv) a set of Ending Migration Points MPe;
v) a set of directed Configuration Arcs FC.

The entry condition EC is an expression used to define when the configu-
ration has to be entered. In typical workflow execution the default behavior
satisfies the EC, but it could be that in the past the EC has been varied for
enabling specific behavior.

The Transformation Algorithm. The transformation algorithm for translat-
ing from an annotated Ws-BPEL, see figure Fig. 6, to a standard one, see Fig. 7,
is shown in the following:

1. For each configuration (each Context-Sensitive Region has some alternative
configurations) the preprocessor builds n + 1 sub-configurations (where n is
the number of migration points, the other sub-configuration is for the default
behavior), each one starting from a different migration point (or from the
start of the configuration) and ending at the end of the configuration.

2. All these sub-configurations become branch of a switch construct. This switch
will be driven from Ending mig point variable.

3. At this point there is a Switch construct for each configuration. Each con-
figuration becomes a branch of another Switch construct. This latter switch
will be driven from the behavior variable.

4. The Switch construct is put inside the Scope where the exception is managed.
This fact ensures that at the end of exception management the flow is just
outside the switch construct.

5. The Scope, that is the Switch, is put inside a Loop. This Loop is driven by
pass through variable, that is ”if no exceptions have been raised the flow go
away”, otherwise ”the flow go back to the start of the loop”.

6. In the place of each starting migration point put an activity called Update
MPs, necessary to maintain updated the last MPs variable.



Methods for Enabling Recovery Actions in Ws-BPEL 231

Fig. 6. Example of designer specification for a Scope supporting rollback execution

7. As first task of the Loop, before the beginning of the Scope, an activity called
UpdatePass through is put. The aim of this activity is to set Pass through
= true, to allow the flow to go out of the loop if an exception has been raised
previously.

To better understand the run-time behavior let us suppose that an exception
is raised. The handler starts and the actions performed are:

1. Compensate until last migration point.
2. Set Pass through = false.
3. Kill the current Scope and start again the flow at his end.

Now let us suppose that during the execution of Task 3 (see Fig. 7), a recovery
action that requires rollback has to be performed. This information is carried
in a fault message and then when it arrives all the activities in the Scope are
terminated and the Fault Handler is called. The Fault Handler sets the variable
pass through to false, then performs the recovery actions associated with the
rollback process, determines the new configurations that will be followed (again
“Default” or “Alternative”)and the Ending Migration point corresponding to
the last Starting Migration Point (that is the Safe Point) upon which the flow
is passed. Eventually, in case, perform the actions associated with the migration
process.

The main flow will restart immediately after the end of the Scope when the
Fault Handler ends. The variable that drives the loop construct has been set for
performing another iteration and then the main flow will go back to the start



232 S. Modafferi and E. Conforti

Fig. 7. Standard Ws-BPEL implementing specification of Fig. 6

of the loop. The first activity in the loop (Update pass through) is necessary to
allow the flow exiting the loop. Then the first switch will drive the choice of the
right configuration and the second, driven from the Ending migration point,will
determine which is the right point where the flow has to start in the new con-
figurations.

If the new configuration is the same of the previous one, the system is per-
forming a traditional rollback operation.

4.6 Harmonizations of Proposed Mechanisms

The changes of semantic applied to many constructs using our mechanisms are
very profitable, but attention has to be put in considering possible conflicts
among mechanisms. In fact final Ws-BPEL code is much more complicated then
the original one.

Some basic policies has been followed in defining mechanisms:

– Eachmechanism is raisedby a differentmessage for avoidingnon-determinism.
– Each mechanism is independent and self-contained, that is different mecha-

nisms do not communicate and therefore, given that each mechanism
terminates, deadlock introduced by cyclic and reciprocal calls of different
mechanisms is prevented.

– The definition of region upon which mechanisms are defined is the same of
Ws-BPEL Scope. This ensures that partial overlapping among them are not
allowed.



Methods for Enabling Recovery Actions in Ws-BPEL 233

This three policies and general considerations about mechanism behaviors
lead us to be sure that conflicts can be avoided.

Moreover we assume the hypothesis that the engine support a recovery mech-
anism at once. This choice definitively improves robustness and can be realized
blocking, and in case buffering, incoming message using an apposite firewall.

5 Related Work

Recovery actions for workflow systems have been wide studied in the past. The
works [6,8,18] present specific workflow models that widely support recovery ac-
tions; in [12] the authors focus on the analysis, prediction, and prevention of
exceptions in order to reduce their occurrences. The model presented in [13]
focuses on the handling of expected exceptions and the integration of excep-
tion handling in the execution environment, while in [5] the authors propose
the use of “worklets”, a repertoire of self-contained subprocesses and associated
selection and exception handling rules to support the modelling, analysis and
enactment of business processes. The work in [9] presents the requirements of a
Web Service Management framework which also includes the typical functional-
ities addressed in self-healing systems. The authors analyze and compare multi-
ple alternative architectures for the implementation of Web Service Management
systems proposing Web service substitution and complex service re-compositions
as repair actions.

In addition, an extensive amount of work on flexible recovery in the context
of advanced transaction models has been done, e.g., in [10,19]. They particularly
show how some of the concepts used in transaction management can be applied
to workflow environments.

A “minimal” approach to recovery can be built with BPML [4] that uses a
Petri nets based model focusing on flexibility. For this reason recovery actions
are viewed as a transition from the actual (faulty) state to a new (correct) one,
but constraints in state transitions for guarantying the correctness of recovery
action have to be defined by the designer. High flexibility is ensured but the
effort required becomes too cumbersome.

A specific comparison will be carried out with the systematic approach to
recovery actions presented in [14]. In this work the authors consider a set of
recovery policies both on task and region of a workflow. They use an extend Petri
Net approach to change the normal behaviour when an expected but unusual
situation or failure occurs. As in our approach the recovery policies are set at
design time.

Table 1 shows how the mechanisms presented in Hamadi’s work can be realized
using Ws-BPEL. Several solutions use standard Ws-BPEL handlers, others are
realized exploiting the mechanisms proposed in this paper.

When Hamadi uses the term “after”, he defines the moment after finishing
the execution of task/region and before initiating any subsequent task/region.
The terms region in his work is the same of Scope in our approach.



234 S. Modafferi and E. Conforti

Table 1. Comparison between recovery actions presented in [14] and the proposed
mechanisms

Recovery Policy Proposed solution Proposed solution
in [14] Task level Scope level

Redo Redo mechanism Redo policy
RedoAfter Redo mechanism Redo mechanism
Compensate Compensation Handler Compensation Handler
CompesateAfter Compensation Handler Compensation Handler
AlternativeActivity Catch fault rollback + Fault Handler
AlternativeProvider Dynamic Binding ———
Skip Catch fault empty Fault Handler
SkipTo Not supported Not supported
Timeout TimeOut mechanism TimeOut mechanism

The meaning of “redo” actions are analogous in our approach and in the
Hamadi’s one. With the mechanism presented in Section 4.3 it is possible to
have the same behavior.

The “compensation” is realized in Ws-BPEL by Compensation Handler.
According to Hamadi, the “Alternative recovery policy” allows another

task/region T’ to be executed in place of a running task/region T in case the
later fails. The proposed mapping with Ws-BPEL distinguishes between task
and region. In the first case the solution is simple and it is exploited by a Fault
Handler opportunely filled with the alternative behavior. In the second case an
analogous behavior can be realized using again a Fault Handler filled with the al-
ternative behavior or it can be better exploited using the mechanism of Rollback
and conditional re-execution of the flow. This mechanism allows the designer to
define more than one alternative behavior linking the choice of this behavior to
the current point during the workflow execution where the fault happens.

“Alternative Provider” for the single tasks can be exploited in Ws-BPEL using
some mechanisms for dynamic binding provided by several Ws-BPEL engines
however this is not supported by standard Ws-BPEL. It is still not possible to
implement an analogous behavior to the pattern of Alternative Provider at Scope
level.

The “skip” is mapped in Ws-BPEL with an empty Fault Handler defined
upon the single Task or the Scope.

The “skip to” is not mapped on Ws-BPEL because it does not support any
way to realize a free goto operation.

The “timeout” is implemented in Ws-BPEL using the corresponding method
presented in Section 4.2.

The other mechanisms presented in our work have not a direct mapping, this
is compliant with the idea of the authors of [14] stating that recovery patterns
should be extended and improved to cope with more complex situations.



Methods for Enabling Recovery Actions in Ws-BPEL 235

6 Conclusion and Future Work

In this paper some mechanisms for enabling recovery actions using standard
Ws-BPEL language and engine has been presented.

Ws-BPEL is the de-facto standard language for Web-based process orchestra-
tion an the possibility of overcoming several limitations about recovery without
modifying it is really a need because Self-Healing are an emerging exigence for
Information Systems where processes are everyday more complicated and where
many autonomous actors are involved.

The proposed mechanisms cover a wide range of possibility: i) the specification
of a time deadline associated with a task, ii) the ability of redoing a single Task
or an entire Scope, iii) the possibility of specifying alternative paths to follow in
the prosecution after the reception of an enabling message, iv) the possibility of
going back in the process to a point defined as safe for redoing the same set of
tasks or for performing an alternative path.

Ongoing research is spread in several direction: the improvement of “Future
alternative behavior” mechanism for defining a suitable set of rules allowing to
design the alternative behavior in a parametric way with respect to the default
behavior, the implementation of an efficient preprocessor, the demonstration of
absence of conflict among mechanisms.

Future research will cover the development of a graphical tool for Ws-BPEL
annotation and the study of new and more flexible mechanism that should allow
the freezing, and even killing, of a Ws-BPEL instance for creating a new one
that should inherit the state of the dead one. An orthogonal aspect in the future
work will be the enrichment of the simple and prototypical version of the used
ontology of faults and recovery actions.

Finally, interesting use of presented mechanisms can also be envisaged in de-
veloping of Self-Healing workflow engine in an advanced Self-Healing Information
System. In this scenario they can be leveraged in more complex recovery strate-
gies, decided somewhere in the environment, and composed of a part in charge
of the Ws-BPEL engine (i.e. these mechanisms) and of a part hidden to it and
managed outside.

Acknowledgement

This work is partially funded by by EU Commission within the FET-STREP
Project WS-Diamond. The authors are grateful to Prof. Fugini for the fruitful
discussions.

References

1. http://www.alphaworks.ibm.com/tech/bpws4j, 2002.
2. http://www.oracle.com/technology/products/ias/bpel/index.html, 2003.
3. http://www.activebpel.org, 2004.
4. A. Arkin et al. Business process modeling language BPML 1.0, 2002.



236 S. Modafferi and E. Conforti

5. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facilitat-
ing flexibility and dynamic exception handling in workflows through worklets. In
Short Paper Proceedings at (CAiSE), volume 161 of CEUR Workshop Proceedings,
Porto, Portugal, 2005.

6. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data Knowl.
Eng., 24(3):211–238, 1998.

7. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services, version 1.0,
2002. http://www.ibm.com/developerworks/library/ws-bpel/.

8. J. Eder and W. Liebhart. Workflow recovery. In Proc. of IFCIS Int. Conf. on
Cooperative Information Systems (CoopIS), pages 124 – 134, Brussels, Belgium,
1996. IEEE.

9. E. Esfandiari and V. Tosic. Towards a web service composition management frame-
work. In Proc. of Int. Conf. on Web Services (ICWS), Orlando FL, USA, 2005.

10. D. Georgakopoulos, M.F. Hornick, and F. Manola. Customizing transaction mod-
els and mechanisms in a programmable environment supporting reliable workflow
automation. IEEE Trans. Knowl. Data Eng., 8(4):630–649, 1996.

11. P. Grefen, B. Pernici, and G. Sanchez (Eds). Database Support for Workflow
Management - The WIDE Project. Kluwer Academic Publishers, 1999.

12. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving business process quality
through exception understanding, prediction, and prevention. In Proc. of Proceed-
ings of Int. Conf. on Very Large Data Bases (VLDB), Roma, Italy, 2001.

13. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Trans. Software Eng., 26(10):943–958, 2000.

14. R. Hamadi and B. Benatallah. Recovery nets: Towards self-adaptive workflow
systems. In Proc. of Int. Conf. on Web Information Systems Engineering (WISE),
pages 439–453, Brisbane, Australia, 2004.

15. J. Miller, K. Verma, P. Rajasekaran, A. Sheth, R. Aggarwal, and
K. Sivashanmugam. Adding semantics to wsdl. White paper, 2004.
http://lsdis.cs.uga.edu/library/download/wsdl-s.pdf.

16. S. Modafferi, B. Benatallah, F. Casati, and B. Pernici. A methodology for designing
and managing context-aware workflows. In Proc. of IFIP TC 8 Working Conference
on Mobile Information Systems (MOBIS), Leeds, UK, 2005.

17. B. Pernici (Ed). Mobile Information Systems Infrastructure and Design for Adap-
tivity and Flexibility. Springer, 2006.

18. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In Proc. of Int. Conf. on Data Engineering ICDE, pages 1113–1114,
Tokyo, Japan, 2005.

19. H. Wächter and A. Reuter. The ConTract model. In A.K. Elmagarmid, editor,
Database Transaction Models for Advanced Applications, pages 219–263. Morgan
Kaufmann, 1992.



BPEL Processes Matchmaking for Service Discovery

Juan Carlos Corrales, Daniela Grigori, and Mokrane Bouzeghoub

Prism, Universite de Versailles Saint-Quentin en Yvelines
45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Juan-Carlos.Corrales-Munoz@prism.uvsq.fr,

Daniela.Grigori@prism.uvsq.fr,
Mokrane.Bouzeghoub@prism.uvsq.fr

Abstract. The capability to easily find useful services (software applications,
software components, scientific computations) becomes increasingly critical in
several fields. Current approaches for services retrieval are mostly limited to the
matching of their inputs/outputs. Recent works have demonstrated that this ap-
proach is not sufficient to discover relevant components. In this paper we argue
that, in many situations, the service discovery should be based on the specifica-
tion of service behavior. The idea behind is to develop matching techniques that
operate on behavior models and allow delivery of partial matches and evaluation
of semantic distance between these matches and the user requirements. Conse-
quently, even if a service satisfying exactly the user requirements does not exist,
the most similar ones will be retrieved and proposed for reuse by extension or
modification. To do so, we reduce the problem of behavioral matching to a graph
matching problem and we adapt existing algorithms for this purpose. A prototype
is presented which takes as input two BPEL models and evaluates the semantic
distance between them; the prototype provides also the script of edit operations
that can be used to alter the first model to render it identical with the second one.

Keywords: web services, services retrieval, behavioral matching.

1 Introduction

The capability to easily find useful services (software applications, software compo-
nents, scientific computations) becomes increasingly critical in several fields. Examples
of such services are numerous:

– Software applications as web services which can be invoked remotely by users or
programs. One of the problems arising from the model of web services is the need
to put in correspondence service requesters with service suppliers, especially for
services which are not yet discovered or which are new, taking into account the
dynamic nature of the Web where services are frequently published, removed or
released.

– Programs and scientific computations which are important resources in the context
of the Grid, sometimes even more important than data [1]. In such a system, data
and procedures are first rank classes which can be published, searched and han-
dled. Thus, the scientists need to retrieve procedures with desired characteristics, to
determine if a required calculation was already carried out and whether it is more
advantageous to carry it out again or to retrieve data generated previously.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 237–254, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



238 J.C. Corrales, D. Grigori, and M. Bouzeghoub

– Software components which can be downloaded to create a new application. To
reduce the development, test and maintenance costs, a fast solution is to re-use
existing components.

In all these cases, users are interested in finding suitable components in a library or
collection of models. User formulates a requirement as a process model; his goal is to
use this model as a query to retrieve all components whose process models match with
a whole or part of this query. If models that match exactly do not exist, those which
are most similar must be retrieved. For a given task, the models that require minimal
modifications are the most suitable ones. Even if the retrieved models have to be tailored
to the specific needs of the task, the effort for the tailoring will be minimal.

In this paper we argue that, in many situations, the service discovery process requires
a matchmaking phase based on the specification of the component behavior. The idea
behind is to develop matching techniques that operate on behavior models and allow
delivery of partial matches and evaluation of semantic distance between these matches
and the user requirements. Consequently, even if a service satisfying exactly the user
requirements does not exist, the most similar ones will be retrieved and proposed for
reuse by extension or modification. To do so, we reduce the problem of service behav-
ioral matching to a graph matching problem and we adapt existing algorithms for this
purpose.

In the next section we present several motivating scenarios. Section 3 presents exist-
ing approaches for service retrieval and shows their drawbacks for the presented scenar-
ios. In section 4 we show how the behavioral matching is reduced to a graph matching
problem; a similarity measure is defined based on graph edit distance for which two
new graph edit operations are introduced. We show also how to combine two graph
models in order to satisfy user requirements. Section 5 shows how the graph match-
ing algorithm can be used for BPEL process matchmaking. In section 6 we present an
experimental study of the matchmaking algorithm. Finally section 7 present ongoing
work and conclusions.

2 Motivating Scenarios

In this section we present two scenarios requiring behavioral matchmaking. The first
example situates in the context of web services integration and consists in retrieving
services having compatible behavior. The second example is delta analysis which con-
sists of finding differences between two models.

Web services integration. Consider a company that uses service S to order office sup-
pliers. Suppose that the company wants to find retailers (say WalMart or Target) having
compatible web services (a new retailer or replacing the current partner). The allowed
message exchange sequences are called business protocols and can be expressed for
example using BPEL abstract processes, WSCL, or other protocol languages (see, e.g.,
[2]). The specification of the business protocol is important, as it rarely happens that
service operations can be invoked independently from one another. Thus the company
will search for a service having a compatible business protocol. Among retailer ser-
vices, the most compatible one has to be found. If the service is not fully compatible,



BPEL Processes Matchmaking for Service Discovery 239

the company will adapt its service or will develop an adaptor in order to interact with
the retrieved service. In both situations, the differences between the business protocols
have to be automatically identified. In the former case, finding the most similar service
allows to minimize the development cost. In the latter case, identifying automatically
the differences between protocols is the first stage in the process of semi-automatically
developing adapters (see [3]).

Delta-analysis. Delta analysis consists in finding the differences between two models.
For example, the first one is the model specified by a standard and the second one is
the model as it is implemented in an enterprise. Business definitions can be specified by
industry specific standards groups in the same way that, for example, RosettaNet PIPs
are specified by RosettaNet and used by participating enterprises. Enterprises need to
verify if their services follow the guidelines prescribed by the standards. Thus, they
need to compare the business model of their existing service with that prescribed by
the standards. Ideally a tool should identify all the differences between the two models.
Based on these differences the cost of reengineering of the existing service could be
evaluated.

3 Related Work

Currently, the algorithms for Web services discovery in registers like UDDI or ebXML
are based on a search by key words or tables of correspondence of couples (key-value).
Within the framework of the semantic Web, description logics were proposed for a
richer and precise formal description of services. These languages allow the definition
of ontologies, such as for example OWL-S, which are used as a basis for semantic
matching between a declarative description of the required service and descriptions of
the services offered ([4,5,6]). In [4,6], a published service is matched with a required
service when the inputs and outputs of the required service match the inputs and out-
puts of the published service (i.e., they have the same type or one is a generalization of
the other). In [7], independent filters are defined for service retrieval: the name space,
textual description, the domain of ontology that is used, types of inputs/outputs and con-
straints. The approach presented in [8] takes into account the operational properties like
execution time, cost and reliability. The authors of [9] provide a lightweight seman-
tic comparison of interfaces based on similarity assement methods (lexical, attribute,
interface and QoS similarity).

In the context of the Grid [1], the search of procedures is based on a high-level
language which expresses the relationships among procedures and their input/output
data.

Service retrieval based of key words or some semantic attributes is not satisfactory
for a great number of applications. The tendency of recent work is to exploit more and
more knowledge on service components and behavior. The need to take into account
the behavior of the service described by a process model was underlined by several
researchers [10,11,5,12,13,14]. In [5], in order to improve precision of web service dis-
covery, the process model is used to capture the salient behavior of a service. A query
language for services is defined which allows to find services by specifying conditions



240 J.C. Corrales, D. Grigori, and M. Bouzeghoub

on the activities which compose them, the exceptions treated, the flow of the data be-
tween the activities.

In [11], authors argue that the matchmaking based on service input and output is
not sufficient as some output data may be produced only under certain internal condi-
tions. Thus, they propose an algorithm that matches output data taking into account the
process structure, for instance conditional branching.

In [10], authors underline the importance of including behavior aspects in match-
making process in the B2B environment and mention it as a future work. The authors
of [13], which propose a model for dynamic service aggregation, stress also the ca-
pability to automatically verify the behavioral compatibility of various processes as a
requirement in electronic marketplaces.

In [12], authors deal with the equivalence of two processes modelled using Petri nets.
It is supposed that partners discover each other by searching in business registry, and
then agree on a common protocol. Their work verifies the compatibility between the
agreed protocol and the process existing in the enterprise. We take a different approach,
by allowing to find a partner that is fully or partially compatible to an existing enterprise
process.

Very recently, authors in the academic world have published papers that discuss sim-
ilarity and compatibility at different levels of abstractions of a service description (e.g.,
[15,16,17,14]). In terms of protocols specification and analysis, existing approaches
provide models (e.g., based on pi-calculus or state machines) and mechanisms to com-
pare specifications (e.g., protocols compatibility checking).

In [14], authors give a formal semantics to business process matchmaking based on
finite state automata extended by logical expressions associated to states. Computing
the intersection is computationally expensive, and thus does not scale for large service
repositories. To solve this problem, the authors of [18] present an indexing approach
for querying cyclic business processes using traditional database systems; they intro-
duce an abstraction function that removes cycles and transforms a potentially infinite
set of message sequences into a finite representation, which can be handled by existing
database systems. The choice of finite state automata as a modelling formalism limits
the expressiveness of the models, for instance representing parallel execution capabili-
ties can lead to very large models.

A new behavior model for web services is presented in [19] which associates mes-
sages exchanged between participants with activities performed within the service. Ac-
tivity profiles are described using OWL-S (Web Services Ontology Language). Web
services are modelled like non-deterministic finite automatons. A new query language
is developed that expresses temporal and semantic properties on services behaviors.

To summarize, the need to take into account the service behavior in the retrieval pro-
cess was underlined by several authors and some very recent proposals exist ([19],[14]).
The few approaches that exist give a negative answer to the user if a model satisfying
exactly his requirements does not exist in the registries, even if a model that requires a
small modification exists. Our objective is to propose an approach for service retrieval
based on behavioral specification allowing an approximate match. To the best of our
knowledge, there is not another approach allowing to retrieve services having similar
behavior and defining a behavior-based similarity measure.



BPEL Processes Matchmaking for Service Discovery 241

4 A Graph-Based Approach to Behavior Matchmaking

In this section we show how the behavioral matching is reduced to a graph matching
problem. Section 4.1 recalls the principles of the graph matching method that we use,
the error correcting subgraph isomorphism, which is based on the idea of graph edit
operations. Next sections show how we adapt it to our problem: we extend the set of
graph edit operations, we define a similarity measure for behavior matchmaking and we
show how to compose two library graphs to satisfy user requirements.

A business protocol describes the observable behavior of a web service. It com-
plements the web service interface definition by imposing constraints on the order of
exchanged messages. Most of existing proposals (standards and research models) are
graph based. For this reason, we choose to use a graph representation of business pro-
tocols in order to compare two models.

Using graphs as a representation formalism for both user requirements and service
models, the service matching problem turns into a graph matching problem. We want
to compare the process graph representing user requirements with the model graphs
in library. The matching process can be formulated as a search for graph or subgraph
isomorphism. However, it is possible that there does not exist a process model such
that an exact graph or subgraph isomorphism can be defined. Thus, we are interested in
finding process models that have similar structure if models that have identical structure
do not exist. The error-correcting graph matching integrates the concept of error cor-
rection (or inexact matching) into the matching process ([20,21]). To make the paper
self-contained, in the next section we briefly recall the principle of this graph matching
method and the basic definitions as given in [22].

4.1 Background and Basic Definitions

In order to compare the model graphs to an input graph and decide which of the models
is most similar to the input, it is necessary to define a distance measure for graphs.
Similar to the string matching problem where edit operations are used to define the
string edit distance, the subraph edit distance is based on the idea of edit operations
that are applied to the model graph. Edit operations are used to alter the model graphs
until there exist subgraph isomorphism to the input graph. For each edit operation, a
certain cost is assigned. The costs are application dependent and reflect the likelihood
of graph distortions. The more likely a certain distortion is to occur the smaller is its
cost. The subgraph edit distance from a model to an input graph is then defined to be the
minimum cost taken over all sequences of edit operations that are necessary to obtain
a subgraph isomorphism. It can be concluded that the smaller the subgraph distance
between a model and an input graph, the more similar they are.

In the following we give the definitions of error correcting graph matching as given
in [22].

A directed labelled graph is defined by a quadruple G = (V, E, α, β) where V is the
set of vertices, E ⊂ V × V is the set of edges, α : V → LV is the vertex labelling
function and β : E → LE is the edge labelling function.

Definition 1. Graph isomorphism. Let g and g’ be graphs. A graph isomorphism be-
tween g and g′ is a bijective mapping f : V → V ′ such that



242 J.C. Corrales, D. Grigori, and M. Bouzeghoub

- α(v) = α′(f(v)) for all v ∈ V
- for any edge e = (u, v) ∈ E there exists an edge e′ = (f(u), f(v)) ∈ E′ such

that β(e) = β′(e′) and for any edge e′ = (u′, v′) ∈ E′ there exists an edge
e = (f−1(u′), f−1(v′)) ∈ E such that β(e) = β′(e′).

If f : V → V ′ is a graph isomorphism between graphs g and g′, and g′ is a subgraph
of another graph g”, i.e. g′ ⊂ g”, then f is called a subgraph isomorphism from g to g”.

Given a graph G, a graph edit operation δ on G is any of the following:

◦ substituting the label α(v) of vertex v by l
◦ substituting the label β(e) of edge e by l′

◦ deleting the vertex v from G (for the correction of missing vertices). Note that all
edges that are incident with the vertex v are deleted too.

◦ deleting the edge e from G (for the correction of missing edges).
◦ inserting an edge between two existing vertices (for the correction of extraneous

edges).

Definition 2. Edited graph. Given a graph and an edit operation δ , the edited graph
δ(G) is a graph in which the operation δ was applied. Given a graph G and a sequence
of edit operations Δ = (δ1, δ2, · · · δk), the edited graph Δ(G) is a graph Δ(G) =
δk(· · · δ2(δ1(G)))..).

Definition 3. Ec-subgraph isomorphism. Given two graphs G and G′, an error cor-
recting (ec) subgraph isomorphism f from G to G′ is a 2-tuple f = (Δ, fΔ) where Δ
is a sequence of edit operations and fΔ is a subgraph isomorphism from Δ(G) to G′.

For each edit operation δ, a certain cost is assigned C(δ). The cost of an ec-subgraph iso-
morphism f = (Δ, fΔ) is the cost of the edit operations Δ, i.e., C(Δ) =

∑k
i=1 C(δi).

Usually, there is more than one sequence of edit operations such that a subgraph isomor-
phism from Δ(G) to G′ exists and, consequently, there is more than one ec-subgraph
isomorphism from G to G′. We are interested in the ec-subgraph isomorphism with
minimum cost.

Definition 4. Subgraph edit distance. Let G and G′ be two graphs. The subgraph
distance from G to G′, ed(G, G′) is given by the minimum cost taken over all error-
correcting subgraph isomorphism f from G to G′.

4.2 Extension of the Sub-graph Edit Distance

The models to be compared can have different granularity levels for achieving the same
functionality. For example, the first service has a single operation (activity) to achieve
certain functionality, while in the second service the same behavior is achieved by com-
posing several operations. Thus, new edit operations are required. Given a graph G, we
extend the definition of edit operation δ on G by adding two operations:

◦ decomposing a vertex v into two vertices v1, v2
◦ joining two vertices v1, v2 into a vertex v.

We limit ourselves to a simple case of decomposition, when a vertex is decomposed
into a sequence of two vertices. This simple type of decomposition is sufficient for



BPEL Processes Matchmaking for Service Discovery 243

applications that we analyzed. A more general decomposition operation would be to
decompose a vertex into a connected subgraph, this is subject of future work.

The operation of decomposing a vertex v into two vertices v1, v2 is executed in the
following way :

- all the edges having as destination the vertex v will have as destination the vertex
v1;

- all edges having as source the vertex v, will have as source the vertex v2;
- an edge between the vertex v1 and v2 will be added.

The joining operation is executed in a similar way. These two new edit operations
allow to model one-to-many dependencies among vertices of two graphs (i.e., a vertex
in one graph corresponds to two vertices in the second graph). The classical edit oper-
ations take into account only one-to-one mappings between vertices of the two graphs.
For example, if a vertex v in the first graph corresponds to the composition of two
vertices in the second graph (v1 followed by v2), a matching algorithm based on the
classical edit distance would map v to v1 and suppress v2. It would not be possible to
discover that v is mapped to a composition of v1 and v2.

4.3 Similarity Measure for Behavioral Matching

The subgraph edit distance defined previously expresses the cost of transformation
needed to adapt the model graph in order to cover a subgraph in the input model. This
distance is asymmetric, it represents the distance from the model graph to the input
graph. In order to rank the model graphs, the similarity measure has to take into ac-
count the number of vertices in the input graph that were covered by the model graph.
If two model graphs have the same subgraph distance to the input graph but are matched
to subgraphs with different number of nodes, the one that matches a subgraph with more
nodes will be preferred.

Depending on the application, the similarity measure can be defined in different
ways. The total distance between the two graphs can be defined as the sum of the sub-
graph edit distance and the cost of adding the nodes of the input graph not covered by
the ec-subgraph isomorphism. The second possibility is to define it as the subgraph edit
distance (ed) divided by the number of nodes of model graph (NM ): D = ed/NM .
The similarity measure is the inverse of this distance (S = 1/D).

4.4 Composing Fragments to Match the Input Graph

If two models are matched into 2 subgraphs of the input model that are disjoint (the set
of nodes are disjoint), then it is possible to combine them to form a graph that will be
matched to a larger subgraph of the input graph.

Suppose two model graphs G1 and G2 that are disjoint. Let f1 = (Δ1, fΔ1) and
f2 = (Δ2, fΔ2) be two ec-subgraph isomorphism from G1 and G2 to GI , respectively.
The problem is to find an ec-subgraph isomorphism from G = G1 ∪ G2 to GI that is
based on f1 and f2. f1 and f2 can be combined if no two vertices in Δ(G1) and Δ(G2)
are mapped into the same input vertex. More precisely, the intersection of the images
of fΔ1 and fΔ2 must be empty, i.e., fΔ1(V1) ∩ fΔ2(V2) = ∅.



244 J.C. Corrales, D. Grigori, and M. Bouzeghoub

The construction of an ec-subgraph isomorphism f = (Δ, fΔ) from f1 and f2
requires that a set of edit operations Δ and a subgraph isomorphism fΔ are gener-
ated on the basis of Δ1, Δ2, and fΔ1 , fΔ2 respectively such that Δ is a subgraph
isomorphism from (G1 ∪ G2) to GI . Let f1 = (Δ1, fΔ1) and f2 = (Δ2, fΔ2),
Δ1(G1) = (VΔ1 , EΔ1 , αΔ1 , βΔ1). Then :

fΔ(v) =
{

fΔ1(v) if v ∈ VΔ1

fΔ2(v) if v ∈ VΔ2

and Δ = Δ1 + Δ2 + ΔE . ΔE is constructed as follows. For each pair (vi, wj), vi ∈
V1, wj ∈ V2, if there is an edge eI = (fΔ1(vi), fΔ2(wj)) ∈ GI , then an edge (vi, wj)
must be inserted in ΔE .

If C1 and C2 are the cost of the ec-subgraph isomorphism f1 and f2 respectively,
then the cost of the ec-subgraph isomorphism f is : C(f) = C1 + C2 + C(ΔE).

To summarize, if two models G1 and G2 cover disjoint subgraphs in the input graph,
it is possible to construct a model that is their composition in order to find a better match
for the input graph.

5 BPEL Processes Matchmaking

In this section we illustrate the use of the error-correcting graph matching algorithm for
BPEL processes matchmaking. We first give an overview of the matchmaking process
and then we discuss each step in detail; finally, we illustrate it using an example.

We choose to exemplify our approach for business protocol matchmaking by using
the BPEL model. The same approach can be applied for other models, as long as the
business protocol can be transformed to a graph in a unique way (equivalent represen-
tations of a business protocol are reduced to the same process graph).

BPEL [23] has emerged as a standard for specifying and executing web services-based
processes. It supports the modelling of two types of processes: executable and ab-
stract processes . An abstract process is a business protocol, specifying the message
exchanges between different parties from the perspective of a single organization (or
composite service), whitout revealing the internal behavior. An executable process, in
contrast, specifies the actual behavior of a participant. A BPEL process is composed of
a set of activities, that can be either primitive or structured. Primitive activities include
operations involving web services like the invoke, the receive and the reply activity.
There are further activities for assigning data values for variables (assign) or wait to
halt the process for a certain time interval. Structured activities are used for defining the
control flow, e.g. to specify concurrency of activities using flow, alternative branches
(switch) or sequential execution (sequence). These structured activities can be nested.
Beyond that, links can be used to specify order constraints between activities composing
a flow, similar to control flow arcs.

BPEL builds on IBM’s WSFL and Microsoft’s XLANG and combines thus the fea-
tures of a block structured language (XLANG) with those for directed graphs (WSFL).
As a result there are sometimes two equivalent ways to implement a desired behavior.
For exemple, a sequence can be realised using a sequence or a flow with a link between



BPEL Processes Matchmaking for Service Discovery 245

activities, a choice based on certain data values can be realised using the switch or flow
elements, etc.

For this reason, we transform a BPEL process to a process graph and thus equivalent
constructs that are syntactically different will be transformed to the same graph frag-
ment. In the following we concentrate on the matchmaking of BPEL abstract processes,
but the approach can be adapted to matching executable processes.

The BPEL matchmaking process is composed of the following steps. First, the BPEL
processes to be compared are transformed to graphs. Next, the graph matching algo-
rithm is applied taking into account the comparison rules and possibly the nodes de-
composition. Finally the similarity result is shown.

Fig. 1. Architecture

The architecture of the behavior matchmaking system is presented in Figure 1. The
system is composed of a parser that transforms a BPEL document into a graph and a
similarity analyzer module that evaluates the similarity between the graphs. The simi-
larity analyzer is composed of the following elements (Figure 1):

– Graph matchmaking, that takes as inputs the graphs produced by the BPEL parser
and finds out the error correcting sub-graph isomorphism with minimal cost.

– Comparison rules module, that groups the cost functions for the graph edit opera-
tions.

– Decomposition module, that applies the decomposition operation if it is necessary
in order to have the same level of granularity in both models.

– Linguistic comparison, that implements different algorithms useful to find the sim-
ilarity between two strings.

In the next sections we present in detail the functionalities of each module.



246 J.C. Corrales, D. Grigori, and M. Bouzeghoub

5.1 Transforming BPEL to Graph

The parser function transforms a behavior model into a process graph. A process graph
has at least one start nodes and can have multiple end nodes. The graph has two kind
of nodes : regular nodes representing the activities and connectors representing split
and join rules of type XOR or AND. Nodes are connected via arcs which may have an
optional guard. Guards are conditions that can evaluate to true or false.

We implemented the flettening strategy presented in [24] to transform a BPEL to
a process graph. The general idea is to map structured activities to respective process
graph fragments. The algorithm traverses the nested structure of BPEL control flow in
a top-down manner and applies recursively a transformation procedure specific to each
type of structured activity.

Fig. 2. Correspondences between BPEL elements and graph elements

A BPEL basic activity is transformed to a node. The sequence is transformed by
connecting all nested activities with graph arcs; each sub-activity is then transformed
recursively. For the while activity a loop is created between an XOR join and an XOR
split, the condition is added to the edge. The graph representation of switch consists of
a block of alternative branches between an XOR split and an XOR join. The branch-
ing conditions are associated to edges. The flow is transformed to a block of parallel
branches starting with an AND split and synchronized with an AND join.

The nodes that represent the activities have the following attributes: Operation and
PortType. The connector nodes have two attributes: ConnectorType (AND-split,



BPEL Processes Matchmaking for Service Discovery 247

AND-join, XOR-split, XOR-join) and ActivityType (the BPEL structured activity from
which it was transformed). Figure 2 shows the correspondence between BPEL con-
structs and graph elements.

5.2 Graph Matchmaking

This module implements the algorithm for error-correcting sub-graph isomorphism de-
tection ([22]). The sub-graph isomorphism detection is based on a state-space searching
using an algorithm similar to A* [20]. The basic idea of a state-space search is to have
states representing partial solutions of the given problem and to define transitions from
one state to another, thus, the latter state represents a more complete solution than the
previous state. For each state s there is an evaluation function f(s) which describes the
quality of the represented solution. The states are expanding themselves according to
the value of f . In the case of each sub-graph isomorphism detection, given a model
graph G and an input graph GI , a state s in the search space represents a partial match-
ing from G to GI . Each partial matching implies a number of edit operations and their
cost can be used to define the evaluation function f(s). In other words, the algorithm
starts by mapping the first node of G with all the nodes of GI and chooses the best
mapping (with minimal cost)(Algorithm1, line 1). This represents a partial mapping
that will be extended by adding one node at a time (line 7 ). The process terminates
when either a state representing an optimal ec-subgraph isomorphism from G to GI

has been reached or all states in the search space have edit costs that exceed a given
acceptance threshold.

Algorithm 1. Error-correcting sub-graph isomorphism detection (G(V ), GI(VI))
1: Initialize OPEN: map the activity node in V onto each activity node in VI (call Activity-

Match), i.e. create a mapping p. Calculate the cost of this mapping C(p) and add p to OPEN.
2: IF OPEN is empty THEN Exit.
3: Select p of OPEN such that C(p) is minimal and remove p from OPEN
4: IF C(p)> Accept threshold THEN Exit.
5: IF p represents a complete mapping from G to GI THEN output p. Set accept threshold =

C(p). Goto 2.
6: Let p be the current mapping that maps k nodes from G.
7: FOR each activity node w in VI that has not yet mapped to a corresponding node

in V
7.1: extends the current mapping p to p’ by mapping the k+1 node of V to w and calculate

the cost of this mapping C(p’)
7.2: add p’ to OPEN

8: Goto 2

The cost of the mapping C(p′) (line 7.1) represents the cost of extending the current
mapping p with the next node in the model graph. Extending the mapping by mapping
a vertex v (in the input graph that has not yet mapped) to a vertex w in the model graph
(that does not belong to the current mapping) implies node edit operation and edge edit
operations. First, the label and attributes of v must be substituted by label attributes of



248 J.C. Corrales, D. Grigori, and M. Bouzeghoub

w, and secondly, for each mapping (v′, w′) ∈ p it must be ensured that any edge (v′, v)
in the model graph can be mapped to an edge (w′, w) in the input graph by means of
edge edit operations.

A process graph has two kind of nodes: activities and connectors. In contrast with
activities, connectors do not represent business functions, they express control flow
constraints. For this reason, in the matching process, we compare them in a manner
similar to edges. That is, when mapping edges between two activity nodes, we map also
the possible connectors binding directly to the nodes and calculate the corresponding
edit cost.

5.3 Comparison Rules

The Comparison rules module contains all the application-dependent functions allow-
ing to calculate the cost of graph edit operations. These functions are used by the graph
matching module for calculating the distance between the graphs. In order to support
applications with specialized cost function, user-defined cost function can be registered
in this module. In the following we explain the cost functions used for BPEL proto-
col matchmaking. The cost for inserting, suppressing edges and vertices can be set to
a constant. The cost for editing vertices (basic activities and connectors) are presented
below.

Algorithm 2. Function BasicActivityMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (Opi, PTi), Nodej: Struct (Opj,PTj)
OUTPUT: DistanceNode

Calculate Operation Similarity SimOperation = LS(Opi, Opj)
if SimOperation = 0 (different Operations) then

Return DistanceNode = 1
else

Calculate PortType Similarity SimPortType = LS(PT i, PT j)
Calculate DistanceNode

DistanceNode = 1− wop ∗ SimOperation + wpt ∗ SimPortType

wop + wpt

end if

Matching basic activites. The cost for editing a basic activity vertex (receive, invoke,
reply) is calculated by function BasicActivityMatch (see Algorithm 2). This cost ex-
presses the distance between two BPEL basic activities. Each activity has two attributes:
the Operation name (Op) and the PortType (PT ). The matchmaking gives priority to
operation comparison, and if two operations are similar (SimOperation > 0), it com-
pares the similarity of the PortT ype and calculates the distance between activities
(DistanceNode).

Weights wop and wpt indicate the contribution of Op (similarity of Operations) and
PT (similarity of PortTypes) respectively in the total DistanceNode score (0 ≤ wop ≤
1 and 0 ≤ wpt ≤ 1).



BPEL Processes Matchmaking for Service Discovery 249

Matching connectors. The connectors represent the control flow of process. The cost
for editing a connector vertex is calculated by function ConnectorMatch (see Algorithm
3). This cost verifies if two nodes depict the same connectors. Each connector has two
attributes: the Connector Type (CT ) and the Activity Type (AT ) that the connector
represents.

Algorithm 3. Function ConnectorMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (CTi, ATi), Nodej: Struct (CTj, ATj)
OUTPUT: DistanceNode

if CTi �= CTj (different Connector Type) AND ATi �= ATj (different Activity Type) then
Return DistanceNode = 1

else
DistanceNode = 0

end if

Matching wait activities. This function (see Algorithm 4) calculates the cost for edit-
ing a vertex which represents a wait activity. Each wait vertex has two attributes: a delay
for a certain period of time (F ) or until a certain deadline is reached (U ). The function
checks if two ForExpressions or two UntilExpressions are similar, and gives a re-
sult for DistanceNode respectively. The time similarity function (TS) calculates the
resemblance between the time expressions.

Algorithm 4. Function WaitMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (Fi, Ui), Nodej: Struct (Fj, Uj)
OUTPUT: DistanceNode

if ForExpression there exist then
Calculate ForExpression Similarity SimFor = TS(Fi, F j)
Calculate DistanceNode = 1 − SimFor

else
Calculate UntilExpression Similarity SimUntil = TS(Ui, Uj)
Calculate DistanceNode = 1 − SimUntil

end if

5.4 Linguistic Comparison

The Linguistic comparison module calculates the linguistic similarity between two la-
bels based on their names [25]. The labels are often formed by a combination of words
and can contain abbreviations. To obtain a linguistic distance between two strings, we
use existing algorithms: NGram, Check synonym, Check abbreviation, tokenization,
etc. The NGram algorithm estimates the similarity according to a number of common
qgrams between labels names [26]. The Check synonym algorithm uses a linguistic
dictionary (e.g. Wordnet [27] in our implementation) to find synonyms while Check
abbreviation uses a custom abbreviation dictionary.



250 J.C. Corrales, D. Grigori, and M. Bouzeghoub

If all algorithms return 1, there is an exact matching. On the other hand, if all the
algorithms return 0, it means that there is no matching between labels. If the NGram
value and the Check abbreviation value are equal to 0, and Check Synonym is between
0 and 1, the total linguistic similarity value will be equal to the Check Synonym one.
Finally, if the three algorithms values are between 0 and 1, the similarity LS ([25]) is
the average of them:

LS =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (m1 = 1 ∨ m2 = 1 ∨ m3 = 1)
m2 if (0 < m2 < 1 ∧ m1 = m3 = 0)
0 if (m1 = m2 = m3 = 0)
m1+m2+m3

3 if m1, m2, m3 ∈ (0, 1)

where, m1 = Sim(NGram), m2=Sim(Synonim Matching) and m3= Sim(Abbreviation
Expansion).

5.5 Decomposing Vertices

The decomposition operations are applied in order to have the same granularity level in
both models. The decomposition operation depends on the metamodel of the behavior
models to be matched. For instance, for BPEL metamodel, it is possible that in one
process a message exchange is modelled as an synchronous interaction, while in the
second process is modelled as an asynchronous interaction. Figure 3 shows how a mes-
sage exchange can be modelled as an asynchronous or synchronous interaction for an
operation invoked by the process.

Synchronous interaction Asynchronous interaction
Invoke (request/response) Invoke (one way) + Receive

Fig. 3. Synchronous vs. asynchronous interactions

Therefore, an invoke operation of type request/response (having min as input mes-
sage and mout as output message) can be decomposed in an invoke operation (one way,
having message min) and a receive operation (having mout as message).

Another example of decomposition operation is related to the granularity of the ex-
changed message. For example, the first process requires messages submitOrder and
sendShippingPrefereces separately, but the second process needs all of this information
included in the submitOrder message. In this case, an invoke operation (having a mes-
sage composed of two parts m1 and m2) will be decomposed in two invoke operations
(having as messages m1 and m2, respetively).

These decomposition functions are specific to BPEL model. For other applications,
user can specify a different decomposition function. The decomposition function has
always the same signature: it takes as argument a vertex and returns two vertices re-
sulting from decomposition (that are supposed to be sequential). The function behavior
is specific to the application (metamodel of the protocols to be matched) specifying
how the labels and attributes of the two vertices are obtained from the decomposed
vertex.



BPEL Processes Matchmaking for Service Discovery 251

5.6 Example

Suppose that we would like to find the similarity between two hotel reservation services
whose models have been described using BPEL.

Fig. 4. Example

The first service has the following activities: First, the customer should place his
Reservation Request (Activity type: Receive). Then the reservation service requires the
Hotels information (Activity type: Pick), either Catalog (RequestCatalog, Activity type:
Invoke) or Availability information (RequestAvailability, Activity type: Invoke). Next,
a confirmation (UserConfirmation Type: Reply) is sent to user. Finally, the reservation
service finishes the process by receiving the reservation Payment (Type: Receive). The
second service model has the following activities sequence: first, the customer should
place his Reservation (Activity type: Receive). Then, the hotel reservation service re-
ceives the customer reservation dates (ShowAvailability Type: Receive) and verifies
the hotels availability (CheckAvailability Type: Invoke), until finding availabile rooms.
Next, a confirmation (Confirmation Type: Reply) is sent to user. Finally, the hotel reser-
vation service requires the customer to pay (Payment Type: Switch), either with credit
card (are PaymentCC Type: Receive) or out of his checking account (PaymentCA Type:



252 J.C. Corrales, D. Grigori, and M. Bouzeghoub

Receive). Our system converts each BPEL document into a graph (input graph and
model graph, Figure 4). Next, the graphs are compared by the similarity analyzer mod-
ule. The dotted lines in Figure 4 represent the mappings found by the system between
the two graphs using the comparison rules. In conclusion, the edit script will show that
the two graphs are similar, but the activities ShowAvailability, CheckAvailability and
PaymentCC of the model graph are parts of different structured activities in the input
graph. However, the matchmaking algorithm will find similar activities for the right
branch of the input graph (Start, ReservationRequest, ShowAvailability, RequestAvail-
ability, UserConfirmation, Payment and End).

6 Implementation and Experiments

We implemented the first version of a desktop system having the architecture presented
in the previous section. In this section, we present an experimental study of the match-
making algorithm. The theoretical complexity of the graph matchmaking algorithm [22]
is (O(m2n2) in the best case (when the distance between the model and the input graph
is minimal) and O(mnn) in the worst case (m = the total number of vertices in the input
graph; n = the total number of vertices in the graph to be compared). The goal of the ex-
periments is to find how well the algorithm performs for BPEL process matchmaking.
Since most of the existing BPEL process have less than 50 activities, we considered a
maximum of 50 activities.

Fig. 5. Matchmaking two BPEL documents

Figure 5 shows the system behavior for two graphs with different structures and dif-
ferent names for activities operations and portTypes. For the comparison of operations
and portTypes, the linguistic comparison is used. Despite the exponential theoretical
cost, the graph shows that the matchmaking algorithm can be used for BPEL documents
having less than 50 activities. The current implementation does not include the two new
graph edit operations. We are currently investigating how to efficiently implement them
and evaluating the supplementary cost.



BPEL Processes Matchmaking for Service Discovery 253

7 Conclusion

In this paper we proposed a solution for service retrieval based on behavioral specifica-
tion. First we motivated the need to retrieve services based on their behavior model. By
using a graph representation formalism for services, we proposed to use a graph error
correcting matching algorithm in order to allow an approximate matching. Starting from
the classical graph edit distance, we proposed two new graph edit operations to take into
account the difference of granularity levels that could appear in two models. We defined
a similarity measure for behavior matchmaking and we showed how to combine frag-
ments in order to satisfy user requirements. We exemplified our approach for behavior
matching using the BPEL model. The behavioral matchmaking was implemented as a
web service that takes as input the graph representations of two BPEL processes and
calculates the degree of similarity between them and outputs also the transformations
needed to transform one process into the other.

We are working on generalizing the decomposition and joining graph edit operations
to tackle the situation when one node in the first graph corresponds to a subgraph of
the second graph. This situation appears when the first service has a single operation
(activity) to achieve certain functionality, while in the second service the same behavior
is achieved by receiving several messages.

The next step of this work will be to address the problem of comparing a process
with a set of processes in a library. Due to the complexity of the matchmaking al-
gorithm, some optimization techniques have to be developped (indexes, clustering to
regroup similar services in the library, etc.). We will also experimentally evaluate the
performance of the behavior based retrieval method in terms of precision and recall.

Acknowledgements

The researcher Juan Carlos Corrales is Alban Program Fellowship recipient (High-level
scholarship program for Latin America, http://www.programalban.org).

References

1. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing,
querying and automating data derivation. In: Proc. of 14th Conf. on Scientific and Statistical
Database Management. (2002)

2. Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: A cornerstone
for e-business automation. IEEE Internet Computing (2004)

3. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: Developing
adapters for web services integration. In: Proc. of CAISE. (2005)

4. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: Proc. of First International Semantic Web Conference (ISWC). (2002)

5. Bernstein, A., Klein, M.: Towards high-precision service retrieval. In: Proc. of Int. Semantic
Web Conference (ISWC). (2002)

6. Benatallah, B., Hacid, M., Rey, C., Toumani, F.: Semantic reasoning for web services dis-
covery. In: Proc. of WWW Workshop on E-Services and the Semantic Web. (2003)



254 J.C. Corrales, D. Grigori, and M. Bouzeghoub

7. Kawamura, T., De Blasio, J., Hasegawa, T., Paolucci, M., Sycara, K.: A preliminary report
of a public experiment of a semantic service matchmaker combined with a uddi business
registry. In: Proc. of 1st International Conference on Service Oriented Computing (ICSOC).
(2003)

8. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent Information
Systems 21 (2003) 191–225

9. Wu, J., Wu, Z.: Similarity-based web service matching. In: Proc. of IEEE International
Conference on Services Computing. (2005)

10. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A semantic web approach to service de-
scription for matchmaking of services. In: Proc. of Int. Semantic Web Working Symposium
(SWWS). (2001)

11. S. Bansal, S., Vidal, J.M.: Matchmaking of web services based on the DAML-S service
model. In: Proc. of Int. Joint Conference on Autonomous Agents and Multiagent Systems.
(2003) 926–927

12. Zdravkovic, J., P. Johanesson, P.: Cooperation of processes through message level agreement.
In: Proc. of Int. Conf. On Advanced Information Systems Engineering (CAISE). (2004)

13. Piccinelli, G., Di Vitantonio, G., Mokrushin, L.: Dynamic service aggregation in electronic
marketplaces. Computer Networks 2(37) (2001)

14. Wombacher, A., Mahleko, B., Fankhauser, P., Neuhold, E.: Matchmaking for business
processes based on choreographies. In: Proc. of IEEE International Conference on e-
Technology, e-Commerce and e-Service. (2004)

15. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web services protocols.
In: Proc. of ER. (2004)

16. Bordeaux, L., et al.: When are two web services compatible? In: Proc. of TES. (2004)
17. Dong, L., Halevy, A., Madhavan, J., Nemes, E., , Zhang, J.: Similarity search for web ser-

vices. In: Proc. of VLDB. (2004)
18. Wombacher, A., Mahleko, B., Fankhauser, P.: A grammar-based index for matching business

processes. In: Proc. of IEEE International Conference on Web Services. (2005) 21–30
19. Shen, Z., Su, J.: Web services discovery based on behavior signatures. In: Proc. of IEEE

International Conference on Services Computing. (2005)
20. Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Trans.

Pattern Anal. Mach. Intell. 3 (1981)
21. Bunke, H.: Recent developments in graph matching. In: Proc. of 15th Int. Conf. on Pattern

Recognition. (2000) 117 – 124
22. Messmer, B.: Graph Matching Algorithms and Applications. PhD thesis, University of Bern

(1995)
23. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.1. In: Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation. (2003)

24. Mendling, J., Ziemann, J.: Transformation of bpel processes to epcs. In: Proc. of the 4th GI
Workshop on Event-Driven Process Chains (EPK2005). (2005)

25. Patil, A., Oundhakar, S., Sheth, A., Verna, K.: Meteor-s web service annotation framework.
In: Proc. of WWW Conference. (2004)

26. Angell, R.C., Freund, G.E., Willett, P.: Automatic spelling correction using a trigram simi-
larity measure. Information Processing and Management 19(4) (1983) 255–261

27. Miller, G.: Wordnet: A lexical database for english. Communications of the ACM 38(11)
(1995) 39–41



Evaluation of Technical Measures for Workflow
Similarity Based on a Pilot Study

Andreas Wombacher

University of Twente,
7500 AE Enschede, The Netherlands
A.Wombacher@utwente.nl

Abstract. Service discovery of state dependent services has to take workflow as-
pects into account. To increase the usability of a service discovery, the result list
of services should be ordered with regard to the relevance of the services. Means
of ordering a list of workflows due to their similarity with regard to a query are
missing. In this paper different similarity measures are presented and evaluated
based on a pilot of an empirical study. In particular the different measures are
compared with the study results. It turns out that the quality of the different mea-
sures differ significantly.

1 Introduction

A service oriented architecture is based on services maintained by independent service
providers and invoked by service requesters. A service invocation of a stateless service
consists of a single request-response sequence. In case services are statefull further in-
teraction may be necessary. The set of allowed interaction sequences is also known as a
choreography. The challenge is to find services which guarantee a successful interaction
of service requester and service provider which is also known as service discovery.

Service discovery is not only applied at the run-time of a system to realize late bind-
ing of services, but can also be applied during the design process to support the re-use
of services and to reduce the maintenance costs of services. In particular, at design time
service discovery can be used to determine services which can be composed using e.g.
a programming in the large approach [4,28,22]. Further, service discovery may be used
to check whether a certain service has already been implemented before starting your
own implementation. In addition, it can be applied to reduce maintenance costs of a col-
lection of services by clustering services based on their functionality. The explication
of shared functionality and its re-use in services of the cluster ensures that the func-
tionality must be maintained only once. Due to the increasing number of services in
enterprises these techniques get more and more important.

Service discovery with a focus on choreographies has been addressed in different ap-
proaches like e.g. [18,15,7,11,25,10,8]. However, the usability of the service discovery
depends on the correctness and the applicability of the derived results. Let’s consider
the following two scenarios:

– the service discovery provides an extensive list of hundred or more services: in this
case a user of such a system would expect the result list to be ordered such that
the most significant results are at the top and the least significant results are at the
bottom of the list;

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 255–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



256 A. Wombacher

– the service discovery provides no result at all since the query is too specific: in this
case a user would expect that the services being most similar to the query - up to a
certain threshold - are provided in the result list ordered based on their significance.

In either case a metric is needed to express the equivalence / bisimulation of the query
stated in the service discovery with the service descriptions contained in the reposi-
tory. Such a metric is the similarity of services, or to be more focused the similarity of
choreographies.

From a conceptual point of view choreographies represent allowed sequences of in-
teractions, which can be represented as a workflow model. As a consequence, similarity
of choreographies can be represented in a more general way as similarity of workflow
models. In this paper, different workflow similarity measures are investigated, which
have been proposed in previous work [32,21] and are evaluated using the preliminary
results of a pilot study [33]. In particular, workflow mining measures and measures
comparing collections of workflow states are applied as similarity measures. The pre-
sented evaluation focuses on some measures of workflows and therefore is incomplete.
Additional approaches are discussed in the related work section. The above mentioned
approaches have been selected, because mining is a big research area and the used mea-
sures seem to work there pretty well and the approach based on collections of workflow
states turned out to be most promising in a previous more technical study [32]. Collec-
tions of workflow states are originally used to index workflow models / choreographies
improving the performance of service discovery [14,13]. The workflow mining mea-
sures are originally used to determine the compatibility of logging data and a workflow
model [21].

The contribution of this paper is to evaluate these measures by applying them on a
questionnaire [20] used in a pilot study [33]. The pilot study aimed to check whether the
used hypotheses and the constructed questionnaire are usable, thus, the empirical study
performed on it will provide reasonable results. However, the already obtained results
generated by workflow experts during the pilot study give some general indication on
the importance of different aspects of a workflow similarity measure which is now used
to evaluate the technical workflow similarity measures. The outcome of this compari-
son is that the collection of workflow states provide good results as long as there are
not to many cycles contained in the used workflows. Further, it seems that the mining
measures are less applicable to similarity in coordination processes.

The paper continues with a discussion of related work. Next, the pilot study and
its results are summarized in Section 3. Then the different measures are introduced
and their evaluation based on the pilot study results is described in Section 4, 5 and 6
respectively. Section 7 summarizes the findings and discusses future work.

2 Related Work

Similarity in general is a measurement indicating “closeness” between two entities,
that is, in our case a measure indicating the equivalence or bisimulation of workflows.
Similarity is a symmetric function, which is normalized (values are between 0 and 1)
and fulfills the triangular inequation, that is, the sum of the similarities of workflow A
and B, and B and C is bigger than the similarity of workflow A and C.



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 257

The approaches mentioned below are categorized into language and structure based
approaches 1.

Language based approaches often make use of distance measures of strings as a
basis to calculate the similarity measure. There exist different distance measures for
strings like for example the Hamming distance used in information theory [23] or the
edit distance usually applied on strings in the context of text. The edit distance (or Lev-
enshtein distance) [12] between two strings is the smallest number of substitutions, in-
sertions, and deletions of symbols that can be used to transform one string into another.
This definition based on a single string can be extended quite easily to a set of strings,
i.e. languages. However, this extension does not work in case at least one language is
infinite. In [17] an approach where costs are assigned to each change operation is pro-
posed, which can also be applied to infinite languages. Actually, the approach calculates
the minimal distance of a string accepted by the first automaton with a string accepted
by the second automaton. The issue with this approach is that the similarity drills down
to the difference of two strings, which is quite unspecific in case the languages contain
a lot of strings.

Structural based approaches are based on relating or transforming a structural rep-
resentation of a workflow. For instance, a workflow can be interpreted as a directed
graph and therefore graph similarity measures can be applied. An example similarity
measure based on edit distance has been proposed in [3] addressing graph isomorphism,
while [16] addresses subgraph isomorphism.

Another structural approach for reconciliation of processes is presented in [6] also
providing a similarity measure. The approach focuses on the common alphabet of two
workflows and removes the exclusively used messages of the alphabets. Further, work-
flow transformation rules, as specified in [26] for Workflow Nets, are used to transform
both workflows to the same automaton using only the shared alphabet.

An extended class of structural similarity measures also considers the probability
of the occurrence of certain interaction sequences for calculating the distance measure.
This is, e.g., the case for the mining based measure introduced in Section 4 and distance
definitions based on labeled Markov processes [24,5]. Since the setting in this paper is
per se without concrete interaction sequences, there is no knowledge about probabilities
of interaction sequences. In this paper an equal distribution of the interaction sequences
is assumed and the focus is on the mining measure in a first glance.

In either case, the language aspects are neglected and only structural aspects are
considered, which is not sufficient since e.g. language equivalent workflow models with
different graph representations are not considered equivalent.

3 Pilot Study

The evaluation of the technical measures introduced in Section 4, 5 and 6 aims to indi-
cate to which extend a measure is meaningful to a human user. Therefore, the evaluation
has to be based on an empirical study with the aim to get a good understanding of the
human intuition of workflow similarity. Potentially, each individual will have a different
intuition of what is important for the similarity of workflows. Therefore, the best way to

1 A detailed discussion of most of the approaches mentioned below is available in [32].



258 A. Wombacher

conduct an empirical study is to ask multiple persons, thus, the results will be more re-
liable. This can be achieved in an efficient manner using a questionnaire. To determine
whether the designed questionnaire will be suitable a pilot study has been conducted.
For this evaluation of the similarity measures, the preliminary findings of the pilot study
[33] are used as a first indication on the quality of the technical measures. While in [33]
the design, conduction and analysis of the study is described, in this paper the focus
is on the comparison of some technical measures with the results of the study. In the
following, the pilot study is described. In particular, a brief description of the design of
the questionnaire is provided, followed by a description of the data collection phase and
a summary of the preliminary finding of the pilot study.

3.1 Formal Workflow Model

Finite State Automata (FSA) [9] are the simplest possible model to represent workflows
offering mainly sequence, choice and iteration of tasks. More complex models provide
additional expressiveness like parallel execution or recursion. However, higher expres-
siveness requires to investigate more scenarios for determining/evaluating a similarity
measure and the aim is to keep it simple first. Thus, Finite State Automata are used as
a formal model. The results derived from this study are applicable to the service dis-
covery scenario since there exists a service discovery approach [31] which is based on
Finite State Automata extended by meta data for service matchmaking [30].

A Finite State Automaton is based on a set of states represented as circles, a start
state, a set of finite or accepting states represented by circles with thick lines, and la-
beled transitions represented as directed arcs. In particular, a labeled transition means
that a state is changed when a certain message is either sent or received. Example Finite
State Automata (FSA) are depicted in Figure 1. An automaton describes the potential
execution sequences of a workflow which is also called the language of an automaton.
The example automata can be classified in acyclic automata (like e.g. Figure 1 A and B)
providing finite languages and cyclic automata (like e.g. Figure 1 C and D) representing
infinite languages.

3.2 Questionnaire

It is expected that the workflow similarity is influenced by several aspects like the lan-
guage of an automaton, its structure and its semantics. With language the possible ex-
ecution sequences of workflow represented as an automaton is meant. Structure means
the structural representation of an automaton comparable to a directed graph. The se-
mantics of the used transition labels determines the semantics of the complete workflow.

Since there is no clear understanding on how the different aspects depend on each
other a set of hypotheses has been set up. Semantics is considered implicitly in all ques-
tions of the questionnaire by using semantically meaningful workflows. In particular,
RosettaNet Partner Interface Processes (or PIPs) [19] are used as transition labels. Ex-
amples of the used labels and brief descriptions of their semantics are given in Table
1. Since some of the PIPs are covering two messages which are usually request and
response messages these message are labeled without and with prime respectively.

The example automaton depicted on the left hand side of Figure 1 uses the labels
described in Table 1. This workflow starts with a request for a purchase order (transi-



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 259

tion labeled p), followed by an acceptance of the purchase order (p’). Then, an invoice
for this specific order (i) is sent. The customer can now choose to pay the order (r),
after which the order is shipped (n), or to send a cancellation request (c) followed by a
cancellation confirmation (c’).

Table 1. Examples of used PIPs

Code Label Name
PIP3A4 p and p’ Request purchase order (PO)
PIP3A9 c and c’ Request PO cancellation
PIP3B2 n Notify of advance shipment
PIP3C3 i Notify of invoice
PIP3C6 r Notify of remittance advice

Based on the hypotheses (see [33] for details) the questions of the questionnaire are
constructed in such a way that the intended decision criteria on ordering the results
gives some indication on the validity of the hypothesis. Each question contains a ref-
erence automaton and a set of either three or four solution automata (A, B, C, D). A
respondent has to order the solution automata by similarity with respect to the refer-
ence automaton. If a respondent finds multiple solution automata equally similar to the
reference automaton, she can assign several automata to the same position of the order.
Respondents are also asked to state their reason on how they derived the provided order.
An example question is depicted in Figure 1. The questionnaire is available at [20].

Fig. 1. Question 3

3.3 Results

The pilot study has been based on a group of 27 international technical workflow spe-
cialists from which 12 responded from seven different countries. The respondents have
different backgrounds and different areas of expertise, like e.g. inter-organizational
workflows, workflow matchmaking, or semantic service composition.



260 A. Wombacher

The questions are analyzed by having a look at the number of supporters of a hy-
pothesis and the maximum number of equal answers, as well as the number of op-
posing respondents. Due to the small number of respondents in the pilot study, only
those questions with a strong support can be considered for the evaluation of the sim-
ilarity measures. There are hypotheses with a strong support stating that the language
is more important than the structure on different levels of granularity (the correspond-
ing questions are Q1, Q3, Q5, Q6, Q13, and Q17). The question Q14 indicates that
super-automata are considered more similar than automata with extra transitions be-
fore or within the paths of the reference automaton. The questions Q16 and Q23 have
quite some supporters and only a few opposing respondents. The underlying hypothesis
states that an automaton having a transition as a loop is more similar than a comparable
automaton not having the transition at all.

In case of the remaining hypotheses and questions the number of supporters and
opponents is quite high and therefore they will not be considered for the evaluation of
the measures introduced in this paper. Figure 2 represents a chart where the number of
supporting respondents is given per question used in the evaluation.

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

Question

# 
su

p
p

o
rt

in
g

 p
ar

tic
ip

an
ts

pro
contra

Fig. 2. Relevant questions from the pilot study

These questions will serve as an evaluation criteria for the different similarity mea-
sures introduced in the next sections, that is, a measure used in process mining (Section
4), a workflow state set (Section 5) and a workflow state list (Section 6) measure. This
evaluation is preliminary due to the limited number of participants and focus on aspects
relevant to a similarity measure for service discovery, where e.g. additional information
on occurrences of execution sequences are usually not available. The different measures
can be evaluated in other scenarios with different results.

4 Mining Conformance Based Similarity Measures

4.1 Overview Approach

Workflow mining is quite a prominent field in the workflow community. It investigates
means to construct workflow models from log information gathered from application



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 261

software. The aim of mining is to determine a workflow model representing the occur-
rences of tasks/events in an optimal way. The work referred to is based on Workflow
Nets (WF-Nets) [27]. Where a distribution of tokens (called marking) is used to rep-
resent a state and markings are changed by executing / firing a transition. Thus, the
conformance testing is performed based on WF-Nets and log information. Since log
information is a set of typical execution sequences of an application, the different se-
quences occur a different number of times. In [1] an approach has been proposed to
construct log data based on a given Colored Petri Net, which can afterward be used in
the ProM framework [29] to calculate the conformance of the log with a Workflow Net.
In [21] three different measures have been proposed and are calculated by the ProM
framework: fitness, structural and behavioral appropriateness.

Fitness is based on replaying the log based on a given workflow model and mea-
suring the mismatch. The mismatch is indicated by two ratios: the first ratio gives an
indication of the missing parts in the workflow model described by the ratio of tokens
that have to be introduced in addition to generate a valid replay and the number of
tokens that have been consumed during the replay. The second ratio gives an indica-
tion of the proper completion of the workflow model described by the ratio of tokens
that remain in the workflow after completion of the log and the tokens that have been
produced.

This definition of mismatch differs from the language based edit distance. For ex-
ample, in case a workflow model contains the transition sequence ABCDE and the log
contains the sequence CDE then only one additional token is needed for the replay
to enable transition C without having executed transition A and B. In case of the edit
distance the measure is based on the length of the missing sequence, thus two.

Structural appropriateness addresses the minimality of the workflow model struc-
ture representing a certain log. In particular, the measure is high if the number of equally
labeled transitions is small. Therefore structural appropriateness is defined based on the
ratio of the used transition labels and the number of transitions in the workflow model.

Behavioral appropriateness addresses the minimality of the workflow model be-
havior representing a certain log. The aim is to avoid that the workflow model repre-
sents much more execution sequences than sequences are contained in the log. Thus,
the behavioral appropriateness is defined as the ratio of the mean number of enabled
transitions and the number of transition labels.

These three independent measures have to be combined to a single measure rep-
resenting the conformance of log data and a workflow model. Since not all possible
combinations can be checked in this investigation, the best possible individual result
out of all three measures per test case is considered at a first glance.

4.2 Evaluation

original automata. The evaluation of the mining conformance measures is conducted
such that the reference automaton of each question is used to construct the correspond-
ing log file. The log generation uses an equal distribution of all possible branches at
a particular state of the workflow execution. Afterward the log data and the Work-
flow Nets representing the corresponding solution automaton are loaded into the ProM
framework. Next, the conformance test is initiated and the values are manually



262 A. Wombacher

(fitness,behavior,
strucure)

conformance

generate 
log

log

(fitness,behavior,
strucure)

conformance

generate 
log

log

mini-
mize

conformance

generate 
log

log

mini-
mize

(fitness,behavior, strucure)

conformance

generate 
log

log

mini-
mize

average

a) b) c)

Fig. 3. Mining Conformance based similarity measure: a) original automata b) minimized au-
tomata c) symmetric approach

collected. The approach is sketched in Figure 3a). Based on these values the order of
the solution automata is derived for each conformance measure respectively. The cal-
culated order is then compared with the results of the pilot study and the conformance
with the supporting answers of the pilot study are represented in graphs. The presented
approach is further modified to improve the conformance with the pilot study.

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

question

# 
o

f s
u

p
p

o
rt

in
g

 r
es

p
o

n
d

en
ts

reference
fitness
behavior
structure

Fig. 4. Pilot results, fitness, and structural and behavioral appropriateness

Figure 4 presents the results. It can be seen that the behavior measure supports ques-
tions 1, 3 and 6, while the fitness measure supports questions 5 and 16. The structure
measure indicates support for questions 5 and 14. However, there is no support at all for
questions 13, 17 and 23, although question 13 has a strong support in the pilot study.
To support the reader doing the comparison the reference values taken from the pilot
study (see Figure 2) are also contained in Figure 4. Due to the readability the results
contradicting the hypothesis underlying the corresponding question are not depicted in
Figure 4. In particular, it turned out that in all questions supported by one measure there
is also at least one measure contradicting the underlying hypothesis.



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 263

minimized automata. As stated in Section 4.1 all conformance testing measures are
producing better results the smaller the used workflow model is. In particular, the fit-
ness measure can only return a conformance value of one if there is only a single final
state. This minimality requirement has not been considered in the original represen-
tation of the solution automata. Therefore, the evaluation process has been repeated
with minimized solution automata. That is, the solution automaton is minimized first
before its Workflow Net representation is loaded into the ProM framework to calculate
the conformance measures. Afterward, the collection of the conformance measures and
the analysis are done according to the previous evaluation. The approach is sketched
in Figure 3b). The results are depicted in Figure 5 again containing the results of the
pilot study (see Figure 2). The log data generated from the reference automaton is not
affected by this change since the log data depends on the accepted language rather than
the automaton structure.

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

Question

# 
su

p
p

o
rt

in
g

 p
ar

tic
ip

an
ts

reference
fitness
behavior
structure

Fig. 5. Pilot results, fitness, and structural and behavioral appropriateness of minimized automata

It turns out that there is now full support of question 13 by the behavior measure
although questions 17 and 23 still do not have any support. In particular, it can be seen
that the fitness measure is now supporting question 1 but on the other hand side it is
no longer supporting question 16. Thus, the consistency of the results derived from the
different measures has slightly improved since now the more important question 13 is
supported.

symmetric conformance measures based on minimized automata. The investiga-
tion of the previous results turns out that the derived measures are not symmetric, al-
though similarity is supposed to be symmetric (see Section 2). This is because transi-
tion labels contained in the solution automaton but not contained in the log data derived
from the reference automaton are simply considered to be irrelevant introducing asym-
metry. Since the asymmetric version has limited success, the asymmetric definition is
now applied in both directions and the average value of both intermediate results is
calculated. In particular, the average of the conformance values generated based on
the log of a reference automaton and those generated based on the log of a solution



264 A. Wombacher

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

Question

# 
su

p
p

o
rt

in
g

 p
ar

tic
ip

an
ts

reference
fitness
behavior
structure

Fig. 6. Pilot results, fitness, structural and behavioral conformance based on the average and min-
imized automata

automaton is calculated. In this approach minimized solution and reference automata
are used respectively. The approach is sketched in Figure 3c).

Figure 6 presents the results and as a reference the values of the pilot study (see
Figure 2). The resulting measure is indeed symmetric. Further, it can be seen that for
each question there exist at least one measure which supports the results of the pilot
study. However, using the three measures to construct a single measure returning the
best result for each question turns out to be difficult. This is because the three different
measures result in different orders of the solution automata and it can not be derived
which order is the most promising one. Finding a linear combination of the different
measures to get as many supported questions as possible turned out to be difficult. In
particular, all linear combinations have been tested where the factors weighting the
different measures have been varied in the interval of −1 to 1 based on the step size of
0.001 using a precision of the real values of 0.0001. It turned out that in the best case a
combination with a maximum of five supported questions out of the nine contained in
the evaluation could be found. Thus, based on the intuitive approach of combining the
measures, the applicability of the mining measures seems to be limited although there
exists a supporting measure for each question.

5 Workflow State Set Based Similarity Measure

5.1 Approach

The Levenshtein or edit distance [12] specifies the smallest number of substitutions,
insertions, and deletions of symbols to transform one string into another. For example,
the edit distance of the strings abab and aab is one by removing the first occurrence of b.
Based on this distance value d the similarity value sim can be calculated by subtracting



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 265

the distance value d from the maximum difference m and dividing the difference by the
maximum difference m, that is, sim := m−d

m . With regard to the previous example, the
similarity is 4−1

4 = 3
4 .

The distance of automata can be calculated based on their language representations
as long as the languages and words are finite. Since infinite strings are constructed from
a finite automaton, in [13] it has been proposed to represent an automaton based on its
finite set of states. Since state names in an automaton specification are meaningless,
the labels of all transitions leading into the state are used as a representation of the state
itself. However, the start state does not necessarily has a transition leading into the state,
thus, the $ character is introduced as a special symbol. Further to represent that a state
is a final state, the # character is introduced as a further special symbol.

1

2

3

4 5

a

b

c d

e

a)

1

2

3

4 5

a

b

c d

e

b)

f

Fig. 7. Example Automata

In Figure 7a) an automaton is depicted, where the start state 1 will be represented by
$, the final states 4 and 5 each by a # and the states 3, 4, and 5 by b, c, and d respectively.
State 2 is represented by the characters a and e since there are two transitions resulting
into state 2. As can be observed, a state can be represented by more than one character
as well as a single character can represent more than one state. Using this automaton
representation it is quite obvious that there exist a lot of different automata resulting
in the same representation, thus, the ambiguity of the representation is quite high. To
reduce this ambiguity context information has to be added comparable to resolving
ambiguity in grammars (lock-ahead in context sensitive grammars). Therefore, a state
is not represented by all single transitions leading to this state, but by the set of transition
sequences of length n leading into this state.

Applying this approach using a sequence length of 2 to the example in Figure 7a)
results in: The start state 1 is represented by $$, and the final states 4 and 5 are repre-
sented by c# and d# respectively. State 4 and 5 are described by bc and bd. In case
of state 3 there are now two sequences of length two reaching state 3 which are ab and
eb. State 2 is represented as $a and be. In [13] an algorithm is described to generate
the state representation for a given length n. In the following a sequence resulting in
and representing a state is called an n-gram, which is known from substring matching
in full-text indexes [2]. A combination of n-grams can be used to construct all possible
execution sequences of a single automaton and thus has a strong relation to the language
accepted by the automaton.

With regard to the example in Figure 7a) the 2-gram set representation is
{$a, be, ab, eb, bc, db, $$, c#, d#} which is the set of all 2-grams mentioned above.



266 A. Wombacher

5.2 Evaluation

The evaluation of n-gram sets is based on the similarity derived from the edit distance
between the n-gram sets of the reference and the solution automaton respectively. The
edit distance of two n-gram sets is calculated by summing up the minimum edit distance
of each n-gram within the first set and an n-gram in the second set, added to the sum
of the minimum edit distance of each n-gram within the second set and an n-gram in
the first set. This can be formally described for two n-gram sets A := {a1, . . . , al} and
B := {b1, . . . , bk} as

d(A, B) :=
l∑

i=1

(
min

j=1..k
d(ai, bj)

)
+

k∑

j=1

(
min
i=1..l

d(ai, bj)
)

where d(ai, bj) is the edit distance of the two n-grams ai and bj which are considered
as strings. Be aware that an n-gram is a sequence of transition labels, where each label
is treated as a unique token, that is, a character in terms of a string. The maximum
distance between the sets of n-grams is twice the product of the maximum number
of n-grams contained in one of the sets and the length n of the n-gram, that is, m =
2 ∗ Max(|A|, |B|) ∗ n, where |A| specifies the size of the set of n-grams A. Let’s
consider the following example based on the two 1-gram sets A = {$, a, b, #} and
L(B) = {$, a, #}, then the maximum distance m is m = 2 ∗ 3 ∗ 1 = 6.

This distance definition is applied to each solution automata and the reference au-
tomaton. Further, the maximum distance is calculated per reference and solution au-
tomaton pair since it is needed to calculate the similarity measure. The derived val-
ues are collected and the corresponding order of the solution automata is derived. An
overview of the approach is depicted in Figure 9a). The resulting order is compared
with the results from the pilot study and the results are depicted in Figure 8. In particu-
lar, values from one to five for n have been used. It turned out that the generated orders
never produced contradicting results.

The results are promising. It turns out that question 3 has no support independent
of the amount of context information taken into account. The reason for this is that the
n-gram set approach generates quite high distance values in case an automaton contains
cycles. In particular, question 3 (see Figure 1) has two solution automata containing
a lot of cycles, which result in a wrong order of the solution automata. However, the
other questions are supported for at least one specific n. It can be observed that e.g.
for question 1 the context information for n equals one is not sufficient to generate
the correct order, while the context information bigger than one is sufficient. Further, it
can be observed at question 14 that the correct order is determined as long as not too
much context information is considered. In particular, in case of n equals five the cor-
rect order can no longer be derived. Again this is due to the non-proportional increase
of distance values due to cycles in solution automata. A curiosity can be observed at
question 23. Here the correct order is determined for all n-gram sets except for n equals
two. The explanation for this is that the differences between the similarity values of
the corresponding solution automata are quite small. In particular, for n equals two the
similarity values for two solution automata get equal under the considered precision
which results in the wrong order of solution automata. For this particular data set, the



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 267

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

question

# 
o

f s
u

p
p

o
rt

in
g

 r
es

p
o

n
d

en
ts

reference
1-gramSet
2-gramSet
3-gramSet
4-gramSet
5-gramSet

Fig. 8. Pilot results and n-gram set results

similarity

edit distance & 
maximum distance

calculate

a) b)

n-grams

calculate

n-grams

similarity

edit distance & 
maximum distance

calculate

n-grams

calculate

n-grams

traverse

n-gramList

traverse

n-gramList

Fig. 9. State Collection Schema based Similarity measure: a) set based b) list based approach

best result is achieved for n equals four and the worst result for n equals one. However,
the usage of n equals one or two in general is really unlikely due to its high ambiguity.
The results for n equals three and five provide eight and seven supporting results re-
spectively. In future work we will investigate how to determine a good estimate for the
n and how to decrease the dominance of cycles on the similarity value.

6 Workflow State List Based Similarity Measure

6.1 Approach

N-gram sets represent an abstraction of the set of states of an automaton. This represen-
tation has high ambiguity which can only be resolved in a limited way by increasing the
size of n. Alternatively, a set of n-gram lists can be introduced abstracting the language



268 A. Wombacher

of an automaton, where each execution sequence is represented by a finite n-gram list
representing the state of the automaton passed during the execution of a sequence. To
represent the potentially infinite sequence by a finite n-gram list repeated occurrences
of n-grams (states) are removed. An automaton is then represented as a set of n-gram
lists, which has less ambiguity compared to n-gram sets, but also has a much higher
complexity in creating the automaton representation.

To illustrate the approach, the example in Figure 7a) is re-used. Please have a look
at the generation of the 2-grams in Section 5.1. The 2-gram list representation is based
on a list denoted as < . . . > containing the comma separated list of unique 2-grams.
In particular, the string abc accepted by the example automaton in Figure 7a) cor-
relates to the list of states < 1, 2, 3, 4 > which is represented in a 2-gram list as
< $$, $a, ab, bc, c# >. The set of 2-gram lists representation consists of the following
four lists: {< $$, $a, ab, bc, c# >,< $$, $a, ab, bd, d# >,< $$, $a, ab, be, eb, bc, c#>,
< $$, $a, ab, be, eb, bd, d# >} representing the sequences {abc, abd, abebc, abebd}.
No additional lists can be constructed because all longer sequences like e.g. abebebc
result in the same 2-gram list representation, that is, < $$, $a, ab, be, eb, bc, c# >. This
is because the repeated occurrence of the 2-grams be and eb are not repeated in the list.
Thus, the infinite language of a cyclic automaton can be represented as a finite set of
finite n-gram lists. The calculation of n-gram lists in automata with complex cycles, that
is, automata having at least two cycles sharing a single state, results in a high number
of n-gram lists and has a high computational complexity. The example automaton in
Figure 7b) requires to maintain more than 2500 2-gram lists.

6.2 Evaluation

The evaluation of the n-gram list approach goes along the lines of the n-gram sets except
that the automaton has to be traversed sufficiently to derive the n-gram lists and that a
modified distance notation has to be applied. An overview of the resulting approach is
sketched in Figure 9b). Be aware that an automaton is represented as a set of n-gram lists
where each n-gram list is considered to be a single string. Again, transition labels used
in an n-gram are considered as a token representing a single character in a string. Thus,
the edit distance of two n-gram lists ā :=< a1, . . . , al > and b̄ :=< b1, . . . , bk > can
be formally defined as d(ā, b̄) where ā and b̄ are considered as strings. The edit distance
of two sets of n-gram lists Ā := {ā1, . . . , āl} and B̄ := {b̄1, . . . , b̄k} is defined as

d(Ā, B̄) :=
l∑

i=1

(
min

j=1..k
d(āi, b̄j)

)
+

k∑

j=1

(
min
i=1..l

d(āi, b̄j)
)

where d(āi, b̄j) is the edit distance of two n-gram lists as defined above.
The maximum distance between the sets of n-gram lists is twice the product of the

maximum number of n-gram lists contained in one of the sets and the length of the
longest n-gram list contained in one of the sets, that is,

m = 2 ∗ Max(|Ā|, |B̄|) ∗ Maxs̄∈Ā∪B̄(|s̄|)
where |Ā| specifies the length of the set of n-gram lists Ā and |s̄| the length of an n-
gram list s̄. Let’s consider the following example based on the two sets of 1-gram lists



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 269

0

1

2

3

4

5

6

7

8

9

10

1 3 5 6 13 14 16 17 23

question

# 
o

f s
u

p
p

o
rt

in
g

 r
es

p
o

n
d

en
ts

reference
1-gramList
2-gramList
3-gramList
4-gramList
5-gramList

Fig. 10. Pilot and n-gram list results

Ā = {< $, a, # >, < $, b, # >} and B̄ = {< $, a, b, c, # >} then the maximum
distance m is m = 2 ∗ 2 ∗ 5 = 20.

The edit distance and the maximum values are calculated for each pair of reference
and solution automata. Based on these values the solution automata are ordered and
the order is compared with the results from the pilot study. The results are depicted in
Figure 10 and represent the pilot results and the results for sets of n-gram lists varying n
from one to five. Be aware that the variation of n up to five is only possible because non
of the automata in the relevant questions does contain a complex cycle with a length of
the cycles smaller than five 2.

The results are comparable to the ones of n-gram sets. The overall results are fine.
Questions 3 and 14 are only supported when n is smaller than four, while questions like
16 and 23 are only supported starting from n greater than two. It can be observed that
the 1-gram list supports already the questions 1,3,5,6,13,14, and 17. It is interesting to
see that this approach supports in particular question 3 which could not be supported by
any of the n-gram sets. However, questions 16 and 23 are not supported. As a conclusion
the 1-gram list delivers good results with reasonable complexity, although criteria for
selecting an appropriate n are subject to future work.

7 Conclusion and Future Work

Service discovery of statefull services requires to search for services based on their
choreography, that is, their workflow, and present the most significant results in an
ordered list to the human user. A measure of significance is the similarity of a workflow
describing a service and the query represented by a workflow again. Therefore different
similarity measures have been summarized and have been evaluated with regard to a
pilot study on the human understanding of workflow similarity.

2 The solution automaton C in Question 3 (see Figure 1) contains complex cycles, but the length
of a single cycle is six. Thus, the combinational explosion does not apply yet.



270 A. Wombacher

As a conclusion of this specific service discovery evaluation it turns out that the very
simple approach based on n-gram sets delivers the best results with regard to the sup-
port of the pilot study results. However, the approach can be improved by lowering the
impact of cycles on the similarity measure. This idea is compliant with the weighting
of execution sequences in the mining measures and instantiates in the support or non
support of question 3 respectively. The mining measures are based on generated exe-
cution sequence log data, where the generation of log data assumes that each choice at
a certain state is equally likely. The n-gram list approach turned out to be comparable
with the n-gram set approach but with a much higher complexity. As a consequence,
the n-gram set approach is preferable based on this preliminary evaluation.

Future work will be to conduct the empirical study and to further improve the n-
gram set approach. In particular, investigate the criteria for selecting a sufficient n and to
reduce the effects of cycles on the measure. Further, additional similarity measures have
to be implemented and evaluated based an the conducted study. Finally, the empirical
study has to be conducted with a bigger number of participants.

References

1. A. Alves De Medeiros and C. Gnther. Process mining: Using CPN tools to create test logs for
mining algorithms. In Proceedings of the Sixth Workshop on the Practical Use of Coloured
Petri Nets and CPN Tools (CPN), 2005.

2. R. A. Baeza-Yates. Text retrieval: theory and practice. In J. van Leeuwen, editor, Proceedings
of the 12th IFIP World Computer Congress, pages 465–476, Madrid, Spain, 1992. North-
Holland.

3. G. Chartrand, G. Kubicki, and M. Schultz. Graph similarity and distance in graphs. Aequa-
tiones Mathematicae, 55:129–145, 1998.

4. F. DeRemer and H. H. Kron. Programming-in-the-large versus programming-in-the-small.
IEEE Transactions on Software Engineering, 2:80–86, 1976.

5. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled markov
processes. Theoretical Computer Science, 318, 2004.

6. Z. Du, J. Huai, Y. Liu, C. Hu, and L. Lei. IPR: Automated interaction process reconcilia-
tion. In Proceedings of IEEE/ACM International Conference on Web Intelligence (WI), 2005.
accepted for publication.

7. E. Folmer and D. Krukkert. openXchange as ebXML implementation and validation; the
first results. In Proceeding of XML Europe 2003 Conference & Exposition, May 2003.

8. X. Fu, T. Bultan, and J. Su. Realizability of conversation protocols with message contents. In
Proceedings IEEE International Conference on Web Services (ICWS), pages 96–103. IEEE
Computer Society, 2004.

9. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 2001.

10. E. Kindler, A. Martens, and W. Reisig. Inter-operability of workflow applications: Local
criteria for global soundness. In Business Process Management, Models, Techniques, and
Empirical Studies, pages 235–253. Springer-Verlag, 2000.

11. D. Krukkert. Matchmaking of ebXML business processes. Technical Report IST-28584-
OX D2.3 v.2.0, openXchange Project, Oct 2003.

12. L. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals,.
Soviet Physics–Doklady, 10(8):707–710, 1966.



Evaluation of Technical Measures for Workflow Similarity Based on a Pilot Study 271

13. B. Mahleko, A. Wombacher, and P. Fankhauser. A grammar-based index for matching busi-
ness processes. In Proceedings of IEEE International Conference on Web Services (ICWS),
pages 21–30. IEEE Computer Society, 2005.

14. B. Mahleko, A. Wombacher, and P. Fankhauser. Process-annotated service discovery fa-
cilitated by an n-gram based index. In Proceedings of IEEE International Confernce on
e-Technology, e-Commerce and e-Service (EEE), pages 2–8, 2005.

15. M. Mecella, B. Pernici, and P. Craca. Compatibility of e-services in a cooperative multi-
platform environment. In F. Casati, D. Georgakopoulos, and M. Shan, editors, Proceedings
of 2rd International Workshop on Technologies for E-Services (TES), pages 44–57. Springer
LNCS 2193, 2001.

16. B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):493–504,
1998.

17. M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. Interna-
tional Journal of Foundations of Computer Science, 14(6):957–982, 2003.

18. C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Contract representation for
run-time monitoring and enforcement. In Proceedings of Conference on Electronic Com-
merce (CEC), pages 103–110. IEEE, 2003.

19. RosettaNet. RosettaNet home page. http://www.rosettanet.org, 2004.
20. M. Rozie and A. Wombacher. Questionnaire of the empirical workflow similarity study.

http://www.cs.utwente.nl/∼wombachera/papers/questionnaire v1.0.zip, 2005.
21. A. Rozinat and W. van der Aalst. Conformance testing: Measuring the fit and appropriateness

of event logs and process models. In Business Process Management Workshops, pages 163–
176, 2005.

22. M. P. Singh, A. K. Chopra, N. Desai, and A. U. Mallya. Protocols for processes: program-
ming in the large for open systems. SIGPLAN Notices, 39(12):73–83, 2004.

23. H. Tzschach and G. Hasslinger. Codes fuer den stoerungssicheren Datentransfer. Oldenburg
Verlag, 1993.

24. F. van Breugel. A behavioural pseudometric for metric labelled transition systems. In
M. Abadi and L. de Alfaro, editors, Proceedings 16th International Conference on Con-
currency Theory (CONCUR), volume 3653 of Lecture Notes in Computer Science, pages
141–155. Springer, 2005.

25. W. van der Aalst. Interorganizational workflows: An approach based on message sequence
charts and petri nets. Systems Analysis - Modelling - Simulation, 34(3):335–367, 1999.

26. W. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling problems
related to change. Theor. Comput. Sci., 270(1-2):125–203, uary.

27. W. van der Aalst and K. Hee. Workflow Management - Models, Methods, and Systems. MIT
Press, 2002.

28. W. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process management:
A survey. In W. van der Aalst, A. H. M. ter Hofstede, and M. Weske, editors, Proceedings
International Conference Business Process Management (BPM), volume 2678 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2003.

29. B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, and
W. van der Aalst. The proM framework: A new era in process mining tool support. In
G. Ciardo and P. Darondeau, editors, Proceedings 26th International Conference on Appli-
cations and Theory of Petri Nets (ICATPN), volume 3536 of Lecture Notes in Computer
Science, pages 444–454. Springer, 2005.

30. A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking for business
processes based on choreographies. In Proceedings of International Conference on e-
Technology, e-Commerce and e-Service (EEE-04). IEEE Computer Society, 2004.



272 A. Wombacher

31. A. Wombacher, B. Mahleko, and E. Neuhold. IPSI-PF:a business process matchmaking
engine based on annotated finite state automata. Journal on Information Systems and E-
Business Management, 3(2):127–150, 2005.

32. A. Wombacher and M. Rozie. Evaluation of workflow similarity measures in service dis-
covery. In Tagungsband der Multikonferenz Wirtschaftsinformatik - Service Oriented E-
Commerce Track (MKWI), volume P-80 of Lecture Notes in Informatics (LNI), pages 57–72.
Gesellschaft fuer Informatik, 2006.

33. A. Wombacher and M. Rozie. Piloting an empirical study on meassures for workflow simi-
larity. In accepted at IEEE International Conference on Services Computing (SCC), 2006.



Evolution of Process Choreographies in
DYCHOR

Stefanie Rinderle1, Andreas Wombacher2, and Manfred Reichert2

1 Dept. DBIS, University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

2 Informaton Systems Group, University of Twente, The Netherlands
{a.wombacher, m.u.reichert}@ewi.utwente.nl

Abstract. Process-aware information systems have to be frequently
adapted due to business process changes. One important challenge not
adequately addressed so far concerns the evolution of process choreogra-
phies, i.e., the change of interactions between partner processes in a
cross-organizational setting. If respective modifications are applied in an
uncontrolled manner, inconsistencies or errors might occur in the sequel.
In particular, modifications of private processes performed by a single
party may affect the implementation of the private processes of partners
as well. In this paper we present the DYCHOR (DYnamic CHOReogra-
phies) framework which allows process engineers to detect how changes
of private processes may affect related public views and - if so - how they
can be propagated to the public and private processes of partners. In par-
ticular, DYCHOR exploits the semantics of the applied changes in order
to automatically determine the adaptations necessary for the partner
processes. Altogether our framework provides an important contribution
towards the realization of adaptive, cross-organizational processes.

1 Introduction

The economic success of an enterprise more and more depends on its ability to
flexibly and quickly react on changes at the market, the development, or the
manufacturing side. For this reason companies are developing a growing interest
in improving the efficiency and quality of their internal business processes and
in optimizing their interactions with business partners and customers. Recently,
we have seen an increasing adoption of business process automation technologies
by enterprises as well as emerging standards for business process orchestration
and choreography in order to meet these goals. Respective technologies enable
the definition, execution, and monitoring of the operational processes of an en-
terprise. In connection with Web service technology, in addition, the benefits of
business process automation and optimization from within a single enterprise
can be transferred to cross-organizational business processes (process choreogra-
phies) as well. The next step within this evolution will be the emergence of the
agile enterprise being able to rapidly set up new processes and to quickly adapt
existing ones to changes in its environment.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 273–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



274 S. Rinderle, A. Wombacher, and M. Reichert

One important challenge not adequately addressed so far concerns the evo-
lution of process choreographies, i.e., the controlled change of the interactions
between partner processes in a cross-organizational setting. If one party changes
its process in an uncontrolled manner, inconsistencies or errors regarding these
interactions might occur. Generally, the partners involved in a process chore-
ography exchange messages via their public processes, which can be considered
as special views on their private processes (i.e., the process orchestrations). If
one of these partners has to change the implementation of his private process
(e.g., to adapt it to new laws or optimized processes) the challenging question
arises whether this change affects the interactions with partner processes and
their implementation as well. Obviously, as long as a modified business process
is not part of a process choreography, change effects can be kept local. The same
applies if changes of a private process have no impact on related public views.

In general, however, we cannot always assume this. The modification of a
private process may not only influence corresponding public processes, but also
the public and private processes of its partners. For this reason, it is indispens-
able for any IT infrastructure to provide adequate methods for (automatically)
propagating changes of a private process to the partner processes (if required).
This important issue has not been considered by current approaches so far. As a
consequence adaptations of process choreographies have turned out to be both
costly and error-prone. Note that the handling of respective changes is not trivial
since we must be able to precisely state which effects on partner processes result
after adaptating a (private) process. In any case we need precise and formal
statements about this in order to avoid implementation holes later on.

In this paper we deal with these challenges and present our DYCHOR ap-
proach which allows for the controlled evolution of process choreographies. We
show how changes of a private process may affect related public views and - if so
- how they can be propagated to the public/private processes of partners as well.
To be able to precisely state whether change propagations to partner processes
become necessary we introduce a formal model based on annotated Finite State
Automata. We further exploit the semantics of the applied change operations
in order to derive necessary adaptations automatically. Due to the autonomy of
partners, however, private partner processes cannot be adapted automatically
to changes of a process choreography. DYCHOR allows for the comprehensive
assistance of users in accomplishing this task in a correct and effective manner.
In this paper we restrict our considerations to structural changes (e.g., the inser-
tion or deletion of process activities). Other adaptations of process models (e.g.,
the change of transition conditions) require a similar approach, but are outside
the scope of this paper. We do also not address dynamic changes (i.e., the mi-
gration of running choreographies to respective changes at the type level) in this
paper. Dynamic adaptations of choreographies and process instances, however,
constitute an important part of our change framework [1,2].

Sect. 2 introduces an application scenario which we use throughout the paper
in order to illustrate basic concepts of our framework. In Sect. 3 we discuss
basic issues related to process choreographies and interactions between partner



Evolution of Process Choreographies in DYCHOR 275

processes. In particular, we introduce our formal model and show how it can be
used to automatically generate public processes out of private ones. This provides
the basis for dealing with process changes. Sect. 4 presents a classification of
changes and Sect. 5 provides methods for propagating changes on behalf of
selected scenarios. Sect. 6 sketches implementation issues and Sect. 7 discusses
related work. We close with a summary and an outlook in Sect. 8.

2 Practical Scenario

Further discussions are based on a simple procurement process within a virtual
enterprise (cf. Fig. 1). It comprises a buyer, an accounting department, and a
logistics department. The accounting department approves an order (order mes-
sage) sent by a buyer and forwards it to the logistics department (deliver mes-
sage) to deliver requested goods. The logistics department confirms the receipt
(deliver conf message) to the accounting department, which forwards this mes-
sage (extended by the expected delivery date and the parcel tracking number) to
the buyer (delivery message). The buyer can do parcel tracking (get status and
status messages) of the shipped goods. Corresponding messages are forwarded
by the accounting department to the logistics department.

logistic

department
accounting

department

deliver_conf

deliver

order

delivery

buyer

get_status

status

get_status

status

terminate terminate

Fig. 1. Example Overview

This scenario represents a process choreography, i.e., a conversation between
partner processes. More precisely, the participating partners exchange messages
via their public processes, which constitute special views on private processes
[3]. We describe the private process of the accounting department in more de-
tail denoting it according to the BPEL specification [4]. To keep the example
simple, we abstract from the structure of the exchanged messages and use sim-
plified message names. Concrete message structures could be, for example, taken
from the RosettaNet Partner Interface Processes (PIPs) 3A4 (Request Purchase
Order), 3A7 (Notify of Purchase Order Update), and 3B2 (Notify of Advanced
Shipment) [5].

Regarding Web services, for example, messages are exchanged by invoking
operations at the respective partner sites. A Web service may comprise one or
more operations (grouped within porttypes) which can be specified using WSDL.



276 S. Rinderle, A. Wombacher, and M. Reichert

Each operation then represents a potential message exchange between partners.
If an operation contains only one single input message, it is considered to be
asynchronous, otherwise the operation is synchronous. Regarding our example
all operations are asynchronous except the synchronous getStatusOP operation
provided by the logistics service.

We base the description of private processes on such porttype definitions (i.e.,
Web service specifications) by directly referring to them. In the following, pri-
vate processes are denoted in BPEL [4] and are therefore specified in terms of
tasks (named activities in the BPEL terminology) representing basic pieces of
work to be performed by potentially nested services. The control flow of a BPEL
process constrains possible execution orders of its activities and is based on con-
structs for selective (switch and pick activities), sequential (sequence activity),
and parallel (flow activity) execution. In addition, a BPEL process defines the
data flow between activities (variable handling and assign activity for mapping
data between messages) regardless of their concrete implementation. Based on
this understanding, the process model of one partner includes activities realizing
its interaction with the other partners. These interactions are represented by
exchanging messages (receive, reply, invoke, and pick activities in BPEL).

accounting

parcel tracking
condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer

orderOp

getStatusOp

terminateOp

accBuyer
logistics
deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics
deliver_confOp

accLogistis

buyer
deliveryOp

statusOp
buyer

getStatus terminate

receive invoke
synchronous

invoke

terminate pick while

variable

port

Fig. 2. Accounting BPEL Private Process

The BPEL specification of the accounting department private process is de-
picted in Fig. 2. The partnerLink definition associates a partner name to a
bilateral interaction between two roles. The association of roles to concrete par-
ties and operations is done in the partnerLinkType definition contained in the
related WSDL file. The process starts by receiving an order message sent by
the buyer, which is forwarded to the logistics department via a deliver message.



Evolution of Process Choreographies in DYCHOR 277

The logistics department answers asynchronously with a deliver conf message.
The accounting department process receives this message and forwards it to the
buyer via a delivery message. Since the buyer is allowed to do parcel tracking
arbitrarily often, this step is embedded in a non-terminating loop within the
accounting process. More precisely, the accounting department may receive a
get status message sent by the buyer, which is followed by a synchronous invo-
cation of the logistics get statusL operation (representing two messages) and the
reporting of the respective status back to the buyer (via a status message). Alter-
natively, it must be possible to terminate accounting as well as logistics process
at some point in time. For this, a termination message can be initiated by the
buyer; this message is then send to the accounting department process, which
forwards it to the logistics process. After this both processes are terminated.

As a second example consider the private process of the buyer, which is de-
picted in Fig. 3. – We omit further details and focus on the bilateral interaction
between the accounting and buyer process in the following.

buyer

parcel tracking
condition = “1 = 1”

order

delivery

order

status

getStatus

status
terminate

accBuyer
orderOp

getStatusOp

terminateOp

accBuyer

buyer

deliveryOp

statusOp
buyer   

getStatus terminate

continue otherwise
  

Blockstructure of buyer
private process:

BPELProcess,

Sequence: buyer process

While:tracking

Switch:termination?

cond

continue

cond

terminate

Fig. 3. Buyer BPEL Private Process

3 Process Choreographies

We discuss basic issues related to the evolution of choreographies between part-
ner processes. We show how this can be supported in a (semi-)automated way.

3.1 Overview

For several reasons business processes steadily evolve. Thus process-oriented in-
formation systems have to be continuously adapted as well. As long as the mod-
ified processes are not part of a process choreography, change effects can be kept
local. The same applies if changes of a private process have no impact on related
public processes. In general, however, we cannot always assume this. Regard-
ing process choreographies the modification of a private process may not only
influence related public processes, but also the public and private processes of
partners. As an example take an activity inserted into a private process and
invoking an external operation of a partner process (by sending a corresponding



278 S. Rinderle, A. Wombacher, and M. Reichert

message to it). If the partner process is not adapted accordingly (e.g., by insert-
ing a receive activity processing the message sent) the execution of the modified
process choreography could fail. Thus it is crucial to provide adequate methods
to (automatically) propagate changes of a private process to partner processes.

Private 

Process1 

Private 

Process2

Public Process1 Public Process2

B#A#msg0

B#A#msg2

B#A#msg1 

AND  

B#A#msg2

BPEL process
Annotated Finite 

State Automaton

Annotated Finite 

State Automaton

Annotated Finite 

State Automaton

Protocol

BPEL process

Changing 

private BPEL 

process

Producing 

public aFSA 

„from scratch“

consistency?

Propgate 

Changes to 

public aFSA

Propagate 

Changes to 

private BPEL 

process

No 

propagation 

necessary

no

yes

Initiator of change

Fig. 4. DYCHOR Approach

Fig. 4 depicts our DYCHOR approach for the evolution of choreographies.
Assume that private process 1 (left side) is modified and therefore is regarded as
initiator of the following choreography change (if necessary). Then, at first, the
public view on this process is recreated in order to reflect changes that might
affect the interactions with partner processes. If this results in a modification of
public process 1 (and only then) we further check whether adaptations of public
process 2 (right side of figure) become necessary as well. This is accomplished
by calculating the consistency of the two public processes, i.e., the guarantee of
a deadlock free execution of the interaction. In case of inconsistency the change
of public process 1 has to be propagated to public process 21; otherwise the
execution of the process choreography will fail. DYCHOR exploits semantics of
the applied changes in order to automatically adapt public process 2 in such a
case. After having performed respective modifications the adaptation of private
process 2 also becomes necessary. However, due to the autonomy of the partners
and due to the privacy of the mission critical business decisions (represented in
the private process), an automatic adaptation of private processes is generally
not desired. Nevertheless, the system should assist process engineers in accom-
plishing this task by suggesting respective adaptations of private process 2.

3.2 Formal Model

The sketched approach (i.e., the correct propagation of private process changes)
requires a formal model for representing public processes. Different approaches
have been proposed in literature, which can be classified according to their un-
derlying communication model: The models suggested in [6] and [7], for example,

1 A general correctness criterion for this is provided in Section 4.2.



Evolution of Process Choreographies in DYCHOR 279

support asynchronous communication. By contrast synchronous communication
is supported by [8]. Since Web services often use synchronous communication
based on the HTTP protocol, in the following we apply the annotated Finite
State Automata model as introduced in [8].

DYCHOR uses annotated Finite State Automata (aFSA) to represent mes-
sage sequences that can be handled by a public process. Transitions of such
an aFSA are labeled, whereas a label A#B#msg indicates that party A sends
message msg to party B (see, for example, the left aFSA in Fig. 5). Further-
more, aFSAs can differentiate between mandatory and optional messages. This is
achieved by annotating states with logical expressions. In the right aFSA from
Fig. 5, for example, the depicted conjunctive annotation expresses that both
messages B#A#msg1 and B#A#msg2, which may be sent by party B, have to
be supported by a trading partner. Thus the messages are mandatory. Obviously,
the aFSAs of two interacting public processes must meet certain constraints in
order to ensure correct execution of the respective process choreography. We
formalize this and summarize basic aFSA characteristics necessary for the fur-
ther understanding. Hence, we introduce the definition of formulas2 used in the
annotations, before introducing the aFSA.

Definition 1 (Definition of Formulas)
The syntax of the supported logical formulas is given as follows: (i) the constants
true and false are formulas, (ii) the variables v ∈ Σ are formulas, where Sigma
is a finite set of messages, (iii) if φ is a formula, so is ¬φ, (iv) if φ and ψ are
formulas, so is φ ∧ ψ and φ ∨ ψ. – The set of all formulas is defined as E.

Based on the set of formulas E the standard Finite State Automaton (FSA) [10]
is extended as follows:

Definition 2 (annotated Finite State Automaton (aFSA))
An annotated Finite State Automaton A is represented as a tuple A =
(Q, Σ, Δ, q0, F, QA) where Q is a finite set of states, Σ is a finite set of mes-
sages, Δ : Q × Σ × Q represents labeled transitions, q0 ∈ Q is a start state,
F ⊆ Q constitutes a set of final states, and QA : Q × E is a finite relation of
states and logical terms within the set E of formulas.

The graphical representation of an annotated Finite State Automaton (aFSA) is
based on the usual representation of FSA. States are represented as circles and
transitions as arcs (annotated with labels). Final states are depicted as states
with thick line. In addition to FSA, an aFSA can have state annotations (denoted
as squares connected to the respective states). Fig. 5 shows two aFSA examples:
Transitions are labeled whereas a label represents a message exchanged between
party A and party B.

In our DYCHOR framework, a public process (in terms of aFSA models) can
be automatically derived from the specification of a private one. In [11], for a
subset of BPEL, we have provided respective mapping rules. Based on the given
2 The logical formulas are specified adapting the definition in [9].



280 S. Rinderle, A. Wombacher, and M. Reichert

B#A#msg0

B#A#msg2

( B#A#msg1  AND  B#A#msg2 )

    AND  B#A#msg2
B#A#msg0

party A

B#A#msg2 B#A#msg2

party B

B#A#msg1

B#A#msg0

B#A#msg1

AND

B#A#msg2B#A#msg1

intersection of A and B

Fig. 5. aFSA Representation

aFSA definition, intersection and emptiness operations can be defined (cf. [8]),
which are quite similar to the ones of standard FSA.

Definition 3 (Intersection of two aFSAs)
Let A1 = (Q1, Σ1, Δ1, q10, F1, QA1) and A2 = (Q2, Σ2, Δ2, q20, F2, QA2) be two
aFSA. The intersection A := A1 ∩ A2 of these automata is given by
A = (Q, Σ, Δ, q0, F, QA), with: Q = Q1 ×Q2, Σ = Σ1 ∩Σ2, q0 = (q10, q20), F =
F1 × F2, Δ = {((q11, q21), α, (q12, q22))|β ∈ {α, ε}, (q11, β, q12) ∈ Δ1, (q21, β, q22)
∈ Δ2}, and QA =

⋃
(q1,e1)∈QA1,(q2,e2)∈QA2

{((q1, q2), e1 ∧ e2)}

In particular, the intersection of two aFSAs is based on the usual cross product
construction of automata intersection, where state annotations are combined by
conjunction. Fig. 5 illustrates the intersection applied on party A and B. Note
that the resulting aFSA only contains those transitions that can be processed by
both automata. The annotation in the intersection automaton is the conjunction
of the annotation contained in party B and the default annotation of party A,
that is, B#A#msg2, resulting in (B#A#msg1 ∧ B#A#msg2) ∧ B#A#msg2.

Based on the intersection automaton, it can be checked whether the accepted
language is empty. Emptiness means that the a set of message exchanges exists,
where all associated mandatory transitions are supported by a trading partner’s
aFSA. Again this emptiness test is based on standard automaton emptiness
test, where it is checked whether the automaton contains a single path to a final
state. Regarding aFSAs this emptiness test has to be extended by requiring that
all transitions of a conjunction associated to a single state are available in the
automaton and a final state can be reached following each of these transitions. As
a consequence, two automata are consistent, if their intersection is non-empty;
i.e., there is at least one path from the start to a final state, where each formula
annotated to a state on this path evaluates to true. A variable becomes true,
if there is a transition labeled equally to the variable from the current state to
another state where the annotation evaluates to true. Finally the automaton is
non-empty, if the annotation of the start state is true.

For the above example the intersection automaton for parties A and B is
depicted in Fig. 5. This aFSA is empty since it does not contain the mandatory
transition labeled B#A#msg1: The variable B#A#msg2 of the annotation
evaluates to true since there is a path to a final state. By contrast the variable
B#A#msg1 is evaluated to false because there is no such transition available
at that state providing a path to a final state.



Evolution of Process Choreographies in DYCHOR 281

The non-emptiness of the intersection of two automata guarantees for the ab-
sence of deadlock with respect to the execution of these two automata. This
property can be derived due to the differentiation between mandatory and
optional messages in an automaton. Deadlock freeness is also called consis-
tency. If consistency is defined between two parties then we call it bilateral
consistency.

3.3 Public Process Generation

We assume the private process being specified with BPEL. We sketch how BPEL
”blocks” from a private process have to be mapped to states of the related public
process (represented by an aFSA). As we will see later, this mapping is useful
when changing process choreographies. In this context it is not worth applying
the mapping on the originator side of a change. However, when propagating
changes of a public process to its underlying private process the mapping can be
used to determine the blocks in the private process to be modified.

The mapping is illustrated on behalf of the buyer process. It is based on
a depth first traversal of the BPEL structure where each block represents a
part of the automaton. As a consequence of the strict nesting of a BPEL doc-
ument, the names of the blocks are associated with a particular state of the
resulting automaton model. Regarding the private and public part of the buyer
process (cf. Fig. 3 + 6 a) we obtain the mapping shown in Table 1. It repre-
sents the relation between the state numbers (aFSA of the public process) and
the BPEL block names (BPEL specification of private process) of the private
and the public process. Note that a single state in the public process may be
assigned to several BPEL elements since, in general, not all elements have an
effect on the public process. As a consequence, the required modifications can be
limited to the first block mentioned due to the depth first traversal of the private
process.

Table 1. Buyer Mapping Table

State Number BPEL Block Name
1 BPELProcess, Sequence:buyer process
2 Sequence:buyer process
3 Sequence:buyer process,

While:tracking, Switch:termination?,
Sequence:cond continue, Se-
quence:cond terminate

4 Sequence:cond continue
5 Sequence:cond terminate

3.4 View Generation

As a basis for bilateral consistency checking, it has to be ensured that the pro-
cesses to be compared are representing the bilateral message exchanges only.



282 S. Rinderle, A. Wombacher, and M. Reichert

Fig. 6. (a) Buyer Public Process (b)Accounting Public Process

Deriving the bilateral view of a public process is illustrated next on behalf of
the accounting process. The accounting private process (cf. Fig. 2) can be trans-
formed in a public process (cf. Fig. 6 b).

The view τP (wf) of party P on the public process wf is generated by rela-
beling all transitions not related to P . E.g., in the buyer view τBuyer(Acc) of the
accounting process, messages exchanged with Logistics are relabeled with the
empty word ε. Effected messages are A#L#deliverOp, L#A#deliver confOp,
A#L#terminateLOp, A#L#get statusOp, and L#A#get statusOp. The mini-
mized Buyer view of the Accounting public process is shown in Fig. 7a. Applying
the same method for Logistics results in the automaton depicted in Fig. 7b.

A#B#deliveryOp

B#A#orderOp

B#A#

get_statusOp

A#B#statusOp

B#A#terminateOp

A#L#deliverOp

L#A#

deliver_confOpL#A#

get_statusLOp

A#L#

get_statusLOp

A#L#terminateLOp

(a) (b)

Fig. 7. Accounting Public Process: (a) Buyer View (b) Logistics View

4 Process Choreography Evolution

DYCHOR classifies process changes in two dimensions: The first one (change
framework) specifies whether the change adds message sequences to an automa-
ton (additive change) or removes messages from it (subtractive change). The
second dimension (change propagation) indicates whether a process change has
effects on trading partners or not, i.e., whether the protocol the trading partners
agreed has to be modified (variant change) or not (invariant change).

4.1 Change Framework

We give a definition for the difference between two aFSAs, which is used to
characterize two basic kinds of change operations on public processes.

Definition 4 (Difference of two aFSA)
Let A1 = (Q1, Σ1, Δ1, q10, F1, QA1) and A2 = (Q2, Σ2, Δ2, q20, F2, QA2) be two



Evolution of Process Choreographies in DYCHOR 283

aFSA. The difference A := A1 \ A2 of these two aFSA is given by
A = (Q, Σ, Δ, q0, F, QA1) with: Q = Q1 × Q2, Σ = Σ1 ∩ Σ2, q0 = (q10, q20),
F = F1 × (Q2 \ F2) , Δ = {((q11, q21), α, (q12, q22))|β ∈ {α, ε},
(q11, β, q12) ∈ Δ1, (q21, β, q22) ∈ Δ2}

This definition requires that the automata are complete; i.e, for every state there
exists an outgoing transition for each element of the alphabet Σ. In this paper
we focus on additive and subtractive changes and their application to aFSAs.
Based on such basic change operations more complex changes can be defined.
Our framework considers other operations (e.g., to shift process activities) as well
as complex changes (defined by applying a set of basic changes operations). Their
treatment, however, is outside the scope of the paper. Based on the difference
operator we can give a formal definition for additive/subtractive changes:

Definition 5 (Additive / Subtractive Change Operations)
Let A be the aFSA of a public process and let δ be a change operation which
transforms A into another aFSA A’. Then:

– δ is an additive change operation :⇐⇒ A’ \ A 	= ∅
– δ is a subtractive change operation :⇐⇒ A \ A’ 	= ∅

Based on this definition additive (subtractive) changes of an aFSA correspond to
the addition (deletion) of potential message sequences to (from) this aFSA. Note
that this does not relate to the structural complexity of the respective private
or public processes.

4.2 Propagation Criterion and Invariant Changes

Let A and B be the aFSAs of two public partner processes and let A ∩ B 	= ∅ be
the protocol (choreography) between them. If A is changed to A’ (by applying
change operation δ) the challenging question is whether δ has to be propagated
to B or not. Intuitively, no propagation is needed if the protocols before and
after applying δ are equivalent. Formally:

A ∩ B ≡ A′ ∩ B ⇐⇒ (A \ A′) ∩ B = ∅ ∧ (A′ \ A) ∩ B = ∅
This constraint, however, is too restrictive since we can also ignore options

that are completely under the control (i.e., are to be decided) by the party having
performed the change. More precisely, no propagation is needed if A′ ∩ B 	= ∅
(assuming that A and B have been bilaterally consistent before the change).

Definition 6 (Variant and Invariant Changes)
Let A and B be the aFSAs of two public processes which are consistent, i.e.,
A ∩ B 	= ∅. Let δ be a change operation which transforms A into another
aFSA A’. Then:

– δ is an invariant change :⇐⇒ A’ ∩ B 	= ∅
– δ is a variant change :⇐⇒ A’ ∩ B = ∅



284 S. Rinderle, A. Wombacher, and M. Reichert

The aFSA B expresses all options it considers as being mandatory for the respec-
tive public process. Thus if public process A′ has been changed in a way such
that these options are no longer met, change propagation becomes necessary.
Accordingly we can state that changes are invariant (i.e., no change propagation
is needed) if the intersection between A’ and B does not become empty. Note
that this can apply for both additive and subtractive changes.

In summary, if the changed public process A’ is still consistent with the public
process B of a partner it is considered as being invariant and no further actions
are needed. By contrast if A’ and B turn out to be inconsistent, additional actions
become necessary in order to guarantee the successful execution of the processes.
How corresponding actions look like is discussed in the following section.

5 Selected Evolution Scenarios

In the following, we provide methods for the propagation of additive changes to
partner processes. Due to lack of space we omit a discussion of further changes
here (for details on, for example, subtractive changes see [12]).

5.1 Invariant Additive Change

At first we consider invariant additive changes. For example, assume that the
accounting process wants to provide an additional order message format to buy-
ers. This change can be realized by adding an alternative activity (order 2) to
the accounting process which then receives and processes respective messages
B#A#order 2Op (cf. Fig. 8).

Since the added message B#A#order 2Op is received by the accounting work-
flow, the buyer view on the respective public process changes (cf. Fig. 9a). How-
ever, from the viewpoint of the buyer this change does not require an immediate
treatment and propagation to its public and private process. The reason is that
the intersection automaton (cf. Fig. 9b) of the modified public view of the buyer
on the accounting process and the buyer’s current public process (cf Fig. 6) is
non-empty. Thus, no change propagation is required.

Invariant subtractive changes can be handled accordingly and are therefore
not further treated in this paper. Generally, when adding received messages to
a process or removing sent messages from it we can obtain invariant changes.

5.2 Variant Additive Changes

The formal basis for variant additive changes is provided by Def. 5 and Def. 6:
Let A and B be the aFSAs of two public processes and let A ∩ B 	= ∅ be the
protocol between them. Let further δ be a change operation transforming A into
A’. Then: δ is called variant additive change if the following constraint holds:
A′ \ A 	= ∅ ∧ A′ ∩ B = ∅.

According to Def. 6 change propagation to B and the related private process
become necessary now. We illustrate this scenario by an example. Assume that



Evolution of Process Choreographies in DYCHOR 285

accounting

parcel tracking

condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer
orderOp

order_2Op

getStatusOp

terminateOp

accBuyer
logistics
deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics
deliver_confOp

accLogistis

buyer
deliveryOp

statusOp
buyer

getStatus terminate

order_2

Fig. 8. Invariant Change of Accounting Private BPEL Process

the accounting private process shall be extended with the option to cancel orders
(e.g., due to a product being out of stock). This change can be accomplished by
adding a respective decision node and an activity to send the cancel message to
the buyer (A#B#cancelOp) – the result is depicted in Fig. 10.

Next we derive the new version of the accounting public process and apply
the buyer view on it (cf. Fig. 11a). Then we calculate the intersection of this
automaton with the one of the buyer public process (cf. Fig. 6) which results
in the automaton shown in Fig. 11b). Note that this automaton is empty since
there exists no transition labeled A#B#cancelOp on any path to a final state.
This makes the annotation containing this message invalid and therefore results
in an empty automaton. As a consequence, the variant change of the accounting
process has to be propagated to the buyer process.

We now sketch the steps necessary for propagating addiditve changes to the
opponent’s private/public process:

1. Recalculate the opponent’s public view on the new public process of the
change originator and determine the newly inserted sequence (i.e., the mes-
sages potentially exchanged with the opponent’s public process).

2. Calculate the union of the opponent’s current public process and the newly
introduced message sequence (cf. Step 1.) The resulting aFSA provides the
basis for potential adaptations of the opponent’s public process.

3. Based on the outcome of Step 2 we can derive those regions of the opponent’s
private process where adaptations may have to be performed.



286 S. Rinderle, A. Wombacher, and M. Reichert

B#A#order_2Op

A#B#deliveryOp

B#A#orderOp

B#A#

get_statusOp

A#B#statusOp

B#A#terminateOp

terminateOp

AND

get_statusOp

(a) (b)

A#B#deliveryOp

B#A#orderOp

B#A#

get_statusOp

A#B#statusOp

B#A#terminateOp

Fig. 9. (a) Public Buyer View on Accounting Process After Invariant Change (b) In-
tersection of a) with Buyer Public Process

4. Perform the necessary changes of the opponent’s private process.
5. Recalculate the opponent’s public process. If it is consistent with the public

process of the change originator we are finished. Otherwise, go back to the
previous step and repeat it with a modified set of changes.

We explain the different steps along our example:

ad 1) We determine the changes of the buyer view on the accounting public
process A′. Based on this we calculate potential adaptations of the buyer public
process B. More precisely we determine A′′ := τBuyer(A′) \ B (cf. Fig. 11c). In
general, we have to consider the difference τBuyer(A′)\(τBuyer(A)∩B). However,
since only those message sequences must be added to B which have not been
contained before, derivation of τBuyer(A′) \ B is sufficient.

ad 2) We calculate the union of the described difference (cf. Step 1) with
the original buyer public process. Based on this we can derive potential changes
of the buyer public process. – The union of two aFSAs can be created using
the complement and intersection operator in accordance to the deMorgan law:
A ∪ B ≡ A ∩ B; thus, B′ := A′′ ∪ B (cf. Fig. 11d).

ad 3) We apply the potential changes to the buyer public process. The regions
to be adapted in the corresponding private process can then be derived from the
states that have been modified for the buyer public process. For this we use
the mapping that was created when generating the buyer public process out of
the corresponding private one. Note that observable states can be mapped to
a particular process region and that non-present transitions provide a hint on
what is missing exactly.

In order to derive the states which have been changed when transforming
aFSA B to aFSA B′ the difference automaton is traversed parallel to the original
public process (comparable to bisimulation). In particular, the first state where
the difference automaton contains a transition which is not contained in the
original public process, indicates the state where a new transition has been
added. The missing transition indicates which message has to be additionally
considered by the private process. With regard to the Buyer public process,
this is the case for state no. 2 in the original public process as depicted in
Fig. 6.



Evolution of Process Choreographies in DYCHOR 287

accounting

parcel tracking

condition = “1 = 1”

order

deliver

deliver_conf

delivery

order

status

terminateL
getStatus

status

terminate
getStatusL

accBuyer

orderOp

getStatusOp

terminateOp

accBuyer

logistics

deliverOp

getStatusLOp

terminateLOp

logistics

accLogistics

deliver_confOp

accLogistis

buyer

deliveryOp

statusOp

cancelOp

buyer

getStatus terminate

otherwise

cancel

creditStatus = “ok”

Fig. 10. Additive Change of Accounting Private BPEL Process

From the mapping table we can derive that the change in the Buyer pri-
vate process is related to the block specified by the sequence activity labeled
”buyer process”. The receive delivery activity contained in the sequence has
to be changed to a pick activity allowing to receive either the delivery or the
cancel message. Information to be added can be derived from the difference
automaton depicted in Fig. 11c). Fig. 12 shows the resulting Buyer private pro-
cess.

ad 4 and 5) Finally, we perform the change of the private process accordingly
and recalculate the public process on it. After this we check whether intersection
of the changed buyer public process and the buyer view of the accounting public
process is non-empty, i.e. whether related aFSAs are bilaterally consistent.

Fig. 11. Accounting Process: (a) Public (Buyer) View (b) Intersection of a) with Buyer
Public View (c) Difference at Buyer View of Accounting Public Process (minimized)
(d) New Buyer Public Workflow (minimized)



288 S. Rinderle, A. Wombacher, and M. Reichert

buyer’

parcel tracking

condition = “1 = 1”

order

delivery

order

status

getStatus

status

terminate

  

getStatus terminate

continue otherwise

otherwise

cancel

creditStatus = “ok”

Fig. 12. Buyer Process after Propagation of Additive Changes

6 Implementation Issues

We have implemented the core of the presented approach in a proof-of-concept
prototype [8]. Further, a partial mapping from BPEL (private processes) to
annotated Finite State Automata (public processes) has been realized [11] and
been used for implementing service discovery [13]. The extension of classical
UDDI proposed in this context uses BPEL specifications of public processes and
bilateral consistency to improve the precision of service discovery results. Finally,
we have proposed a protocol to derive a potential cross-organizational process
(i.e., a potential service composition in Web Service notation) in a decentralized
way resulting in a set of services as a basis for consistency checking [14].

These building blocks can be used for setting up the concrete change frame-
work of DYCHOR. As indicated the only information which has to be exchanged
between partners is about the changes applied to public processes. The difference
calculation as well as the necessary adaptations of the own public and private
processes can be accomplished locally. Finally, decentralized consistency check-
ing can be applied to guarantee the successful introduction of the changes and
the consistency of the changed choreography.

7 Related Work

Handling of changes is known in software engineering as refactoring like e.g.
[15], where the aim is to propagate changes without altering the behavior of the
application. These approaches propagate changes on a centrally available source
base and do not know different abstractions layers comparable to choreographies
and orchestrations as discussed in this paper.

Checking consistency of a cross-organizational process can be based on the set
of potential execution sequences. A straightforward approach is to check consis-
tency on a centralized process representation, which has to be split into several



Evolution of Process Choreographies in DYCHOR 289

public processes afterwards. This principle was applied to different process de-
scription formalism in the past, like Workflow Nets (WF Nets) [3], guarded
Finite State Automata [16], Colored Place/Transition Nets [17], and Statecharts
[18]. However, these top-down approaches are based on centralized consistency
checking, which is different to the DYCHOR approach described in this paper.

By contrast, the bottom-up approach of constructing the cross-organizational
process out of several public processes has not been investigated in sufficient
detail so far. Respective proposals have been made, for example, in [6,16,7].
However, they require centralized decision making and are also not construc-
tive; i.e., they only specify criteria for various notions of consistency but do not
provide an approach to adapt public processes in a way making the overall cross-
organizational process consistent. In addition, these approaches neither address
synchronous communication nor allow for decentralized consistency checking.

Issues related to dynamic workflow change have been investigated in detail
(e.g., [19,20,1]). Respective approaches address ad-hoc changes of single process
instances as well as process schema evolution (i.e., controlled change of pro-
cess types and propagation of these modifications to already running process
instances [20,1]). However, these approaches focus on the adaptation of process
orchestrations, i.e., process instances controlled by a single endpoint. By con-
trast, issues related to changes of process choreographies have been neglected
so far. What can be learned from approaches dealing with dynamic changes of
process orchestrations is the idea of controlled change propagation. These ap-
proaches aim at propagating process type changes to running process instances
without causing inconsistencies or errors. Similarly, we have provided an ap-
proach for the controlled propagation of the changes of private processes within
a choreography to the choreography itself and the respective partner processes.

8 Conclusion and Future Work

In this paper we have presented the DYCHOR framework for introducing changes
to private processes, for recalculating related public views automatically, and for
propagating resulting modifications to partner processes if required. We have pro-
vided a formal model and precise criteria allowing us to automatically decide
which adaptations become necessary due to changes of private partner processes.
The treatment of different change scenarios adds to the completeness of our ap-
proach. Finally, we have implemented the basic mechanisms presented in this
paper in a proof-of-concept prototype. We will analyze how to adopt the imple-
mented approach within a real application scenario.

Another challenging issue is the treatment of running process instances (par-
ticipating in a choreography) when changing private and public process models.
In particular, for long-running choreographies, the propagation of choreography
changes to already running instances is highly desirable. In future work we will
address this issue by elaborating different strategies. These strategies range from
managing change propagation by a central coordinator to completely decentral-
ized solutions (e.g., optimistic vs. pessimistic instance migrations). The ultimate



290 S. Rinderle, A. Wombacher, and M. Reichert

challenge will be to address the problem of concurrent process choreography and
process instance changes, i.e., how to propagate process choreography changes to
process instances which have already been subject to ad-hoc changes themselves.
Meeting these challenges will be key for future service-oriented infrastructures,
ultimately resulting in highly adaptive process choreographies.

References

1. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. DKE 50 (2004) 9–34

2. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

3. Aalst, W., Weske, M.: The P2P approach to interorganizational workflows. In:
Proc. CAiSE’06, Interlaken, Switzerland (2001)

4. Andrews et al., T.: Bpel4ws v 1.1 (2003)
5. RosettaNet: RosettaNet home page. http://www.rosettanet.org (2004)
6. Aalst, W.: Interorganizational workflows: An approach based on message sequence

charts and petri nets. Systems Analysis - Modelling - Simulation 34 (1999) 335–367
7. Kindler, E., Martens, A., Reisig, W.: Inter-operability of workflow applications:

Local criteria for global soundness. In: Business Process Management, Models,
Techniques, and Empirical Studies, Springer-Verlag (2000) 235–253

8. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold:, E.: Matchmaking for
business processes based on choreographies. IJWS 1 (2004) 14–32

9. Chomicki, J., Saake, G., eds.: Logics for Database and Information Systems. Kluwer
(1998)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. Addison Wesley (2001)

11. Wombacher, A., Fankhauser, P., Neuhold, E.: Transforming BPEL into annotated
deterministic finite state automata enabling process annotated service discovery.
In: Proc. of Intl. Conf. on Web Services (ICWS). (2004) 316–323

12. Rinderle, S., Wombacher, A., Reichert, M.: On the controlled evolution of process
choreographies. Technical Report TR-CTIT-05-47, University of Twente (2005)

13. Wombacher, A., Mahleko, B., Neuhold, E.: IPSI-PF: A business process match-
making engine. In: Proc. of Conf. on Electronic Commerce (CEC). (2004) 137–145

14. Wombacher, A.: Decentralized decision making protocol for service composition.
In: Proc IEEE Int Conf on Web Services (ICWS). (2005) (accepted for publication).

15. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering 30 (2004) 126–139

16. Fu, X., Bultan, T., Su, J.: Realizability of conversation protocols with message
contents. In: Proc. IEEE Intl. Conf. on Web Services (ICWS). (2004) 96–103

17. Yi, X., Kochut, K.J.: Process composition of web services with complex conversa-
tion protocols. In: Proc. Conf. on Design, Analysis, and Simulation of Distributed
Systems Symposium at Adavanced Simulation Technology. (2004) 141–148

18. Wodtke, D., Weikum, G.: A formal foundation for distributed workflow execution
based on state charts. In: Proc. ICDT’06. (1997) 230–246

19. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

20. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. DKE 24 (1998)
211–238



Worklets: A Service-Oriented Implementation of

Dynamic Flexibility in Workflows

Michael Adams1, Arthur H.M. ter Hofstede1, David Edmond1,
and Wil M.P. van der Aalst1,2

1 Business Process Management Group
Queensland University of Technology, Brisbane, Australia
{m3.adams, a.terhofstede, d.edmond}@qut.edu.au

2 Department of Technology Management
Eindhoven University of Technology, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. This paper presents the realisation, using a Service Oriented
Architecture, of an approach for dynamic flexibility and evolution in
workflows through the support of flexible work practices, based not on
proprietary frameworks, but on accepted ideas of how people actually
work. A set of principles have been derived from a sound theoretical base
and applied to the development of worklets, an extensible repertoire of
self-contained sub-processes aligned to each task, from which a dynamic
runtime selection is made depending on the context of the particular
work instance.

1 Introduction

Workflow management systems are used to configure and control structured
business processes from which well-defined workflow models and instances can
be derived [1,2]. However, the proprietary process definition frameworks imposed
make it difficult to support (i) dynamic evolution (i.e. modifying process defi-
nitions during execution) following unexpected or developmental change in the
business processes being modelled [3]; and (ii) deviations from the prescribed
process model at runtime [4,5,6].

Without support for dynamic evolution, the occurrence of a process deviation
requires either suspension of execution while the deviation is handled manually,
or an entire process abort. However, since most processes are long and complex,
neither manual intervention nor process termination are satisfactory solutions
[7]. Manual handling incurs an added penalty: the corrective actions undertaken
are not added to ‘organisational memory’ [8,9], and so natural process evolution
is not incorporated into future iterations of the process. Other evolution issues
include problems of migration, synchronisation and version control [4,10].

These limitations mean a large subset of business processes do not easily map
to the rigid modelling structures provided [11], due to the lack of flexibility
inherent in a framework that, by definition, imposes rigidity. Process models are
‘system-centric’, or straight-jacketed [12] into the supplied framework, rather

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 291–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



292 M. Adams et al.

than truly reflecting the way work is actually performed [13]. As a result, users
are forced to work outside of the system, and/or constantly revise the static
process model, in order to successfully support their activities, thereby negating
the efficiency gains sought by implementing a workflow solution in the first place.

Since the mid-nineties many researchers have worked on problems related to
workflow change (cf. Section 7). This paper is based on and extends the approach
proposed in [14]. It introduces a realisation of ‘worklets’, an extensible reper-
toire of self-contained sub-processes and associated selection rules, grounded in
a formal set of work practice principles called Activity Theory, to support the
modelling, analysis and enactment of business processes. This approach directly
provides for dynamic change and process evolution without having to resort to
off-system intervention and/or system downtime. It has been implemented as a
discrete service for the well-known, open-source workflow environment YAWL
[15,16] using a Service Oriented Architecture (SOA), and as such its applicability
is not limited to that environment. Also, being open-source, it is freely available
for use and extension.

The paper is organised as follows: Section 2 provides a brief overview of Ac-
tivity Theory and lists relevant principles derived from it by the authors, then
introduces the worklet paradigm. Section 3 describes the implementation of the
discrete worklet service. Section 4 details the worklet service architecture. Sec-
tion 5 discusses process definition methods, while Section 6 describes how the
worklet approach utilises Ripple Down Rules (RDR) to achieve contextual, dy-
namic selection of worklets at runtime. Section 7 discusses related work, and
finally Section 8 outlines future directions and concludes the paper.

2 Achieving Flexibility Through Worklets

Workflow management systems provide support for business processes that are
generally predictable and repetitive. However, the prescriptive, assembly-line
frameworks imposed by workflow systems limit the ability to model and enact
flexible work practices where deviations are a normal part of every work activ-
ity [12,17]. For these environments, formal representations of business processes
may be said to provide merely a contingency around which tasks can be formu-
lated dynamically [18], rather than a prescriptive blueprint that must be strictly
adhered to.

Rather than continue to try to force business processes into inflexible frame-
works (with limited success), a more adaptable approach is needed that is based
on accepted ideas of how people actually work.

A powerful set of descriptive and clarifying principles that describe how work
is conceived, performed and reflected upon is Activity Theory, which focusses
on understanding human activity and work practices, incorporating notions of
intentionality, history, mediation, collaboration and development [19]. (A full
exploration of Activity Theory can be found in [20,21]). In [22], the current
authors undertook a detailed study of Activity Theory and derived from it a



Worklets: A Service-Oriented Implementation 293

set of principles that describe the nature of participation in organisational work
practices. Briefly, the relevant principles are:

1. Activities (i.e. work processes) are hierarchical (consist of one or more ac-
tions), communal (involve a community of participants working towards a
common objective), contextual (conditions and circumstances deeply affect
the way the objective is achieved), dynamic (evolve asynchronously), and
mediated (by tools, rules and divisions of labour).

2. Actions (i.e. tasks) are undertaken and understood contextually. A repertoire
of applicable actions is maintained and made available for each action of an
activity; the activity is performed by making contextual choices from the
repertoire of each action in turn.

3. A work plan is not a prescription of work to be performed, but merely a
guide which may be modified during execution depending on context.

4. Deviations from a plan will naturally occur with every execution, giving rise
to learning experiences which can then be incorporated into future instanti-
ations of the plan.

Consideration of these derived principles have led to the conception, develop-
ment and implementation of a flexible workflow support system that:

– regards the process model as a guide to an activity’s objective, rather than
a prescription for it;

– provides a repertoire (or catalogue) of applicable actions to be made available
for each task at each execution of a process model;

– provides for choices to be made dynamically from the repertoire at runtime
by considering the specific context of the executing instance; and

– allows the repertoire of actions to be dynamically extended at runtime, thus
incorporating unexpected process deviations, not only for the current in-
stance, but for other current and future instantiations of the process model,
leading to natural process evolution.

Thus, each task of a process instance may be linked to an extensible repertoire
of actions, one of which will be contextually chosen at runtime to carry out the
task. In this work, we present these repertoire-member actions as “worklets”.
In effect, a worklet is a small, self-contained, complete workflow process which
handles one specific task (action) in a larger, composite process (activity)1. A
top-level or parent process model is developed that captures the entire workflow
at a macro level. From that manager process, worklets are contextually selected
and invoked from the repertoire of each task when the task instance becomes
enabled during execution.

In addition, new worklets for handling a task may be added to the repertoire at
any time (even during process execution) as different approaches to completing

1 In Activity Theory terms, a worklet may represent one action within an activity, or
may represent an entire activity.



294 M. Adams et al.

a task are developed, derived from the context of each process instance. Impor-
tantly, the new worklet becomes part of the process model for all current and
future instantiations, avoiding issues of version control. In this way, the process
model undergoes a dynamic natural evolution.

3 The Worklet Custom Service for YAWL

The Worklet Dynamic Process Selection Service has been implemented as a
YAWL Custom Service [15,16]. The YAWL environment was chosen as the im-
plementation platform since it provides a very powerful and expressive workflow
language based on the workflow patterns identified in [23], together with a for-
mal semantics. It also provides a workflow enactment engine, and an editor for
process model creation, that support the control flow, data and (basic) resource
perspectives. The YAWL environment is open-source and has a service-oriented
architecture, allowing the worklet paradigm to be developed as a service inde-
pendent to the core engine. Thus the deployment of the worklet service is in no
way limited to the YAWL environment, but may be ported to other environ-
ments by making the necessary amendments to the service interface. As such,
this implementation may also be seen as a case study in service-oriented com-
puting whereby dynamic flexibility in workflows, orthogonal to the underlying
workflow language, is provided.

Custom YAWL services interact with the YAWL engine through XML/HTTP
messages via certain interface endpoints, some located on the YAWL engine side
and others on the service side. Specifically, custom services may elect to be
notified by the engine when certain events occur in the life-cycle of nominated
process instantiations (i.e. when a workitem becomes enabled, when a workitem
is cancelled, when a case completes). On receiving a workitem-enabled event, the
custom service may elect to ‘check-out’ the workitem from the engine. On doing
so, the engine marks the workitem as executing and effectively passes operational
control for the workitem to the custom service. When the custom service has
finished processing the workitem it will check it back in to the engine, at which
point the engine will mark the workitem as completed, and proceed with the
process execution.

The worklet service utilises these interactions by dynamically substituting an
enabled workitem in a YAWL process with a contextually selected worklet – a
discrete YAWL process that acts as a sub-net for the workitem and so handles
one specific task in a larger, composite process activity.

An extensible repertoire (or catalogue) of worklets is maintained for each nom-
inated task in a parent workflow process. Each time the service is invoked for
an enabled workitem, a choice is made from the repertoire based on the data
attributes and values associated with the workitem, using a set of rules to deter-
mine the most appropriate substitution (see Section 6). The workitem is checked
out of the YAWL engine, the input variables of the original workitem are mapped
to the net-level input variables of the selected worklet, and then the worklet is
launched in the engine as a separate case. When the worklet has completed,
its net-level output variables are mapped back to the output variables of the



Worklets: A Service-Oriented Implementation 295

original workitem, which is then checked back into the engine, allowing the orig-
inal (parent) process to continue.

The worklet executed for a task is run as a separate case in the YAWL engine,
so that, from an engine perspective, the worklet and its parent are two distinct,
unrelated cases. The worklet service tracks the relationships, data mappings and
synchronisations between cases, and creates a process log that may be combined
with the engine’s process logs via case identifiers to provide a complete opera-
tional history of each process.

Worklets may be associated with either an atomic task, or a multiple-instance
atomic task. Any number of worklets can form the repertoire of an individual
task, and any number of tasks in a particular specification can be associated
with the worklet service. A worklet may be a member of one or more reper-
toires – that is, it may be re-used for several distinct tasks within and across
process specifications. In the case of multiple-instance tasks, a separate worklet
is launched for each child workitem. Because each child workitem may contain
different data, the worklets that substitute for them are individually selected,
and so may all be different.

The repertoire of worklets for a task can be added to at any time, as can
the rules base used for the selection process, including while the parent process
is executing. Thus the service provides for dynamic ad-hoc change and process
evolution, without having to resort to off-system intervention and/or system
downtime, or requiring modification of the original process specification.

4 Worklet Service Architecture

Figure 1 shows the external architecture of the worklet service. As mentioned
previously, the service has been implemented as a Custom YAWL Service [16].
The YAWL engine provides a number of interfaces, two of which are used
by the worklet service. Interface A provides endpoints for process definition,

Fig. 1. External Architecture of the Worklet Service



296 M. Adams et al.

administration and monitoring; Interface B provides endpoints for client and in-
voked applications and workflow interoperability [16]. The worklet service uses
Interface A to upload worklet specifications into the engine, and Interface B
for connecting to the engine, to start and cancel case instances, and to check
workitems in and out of the engine after interrogating their associated data.

The disk entities ‘Worklet specs’, ‘RDRs’ and ‘Logs’ in Figure 1 comprise the
worklet repository. The service uses the repository to store rule sets and load
them for enabled workitems; to store worklet specifications for uploading to the
engine; and to store generated process and audit logs. The YAWL editor is used
to create new worklet specifications, and may be invoked from the RDR (Ripple
Down Rules) Editor. The RDR Editor is used to create new or augment existing
rule sets, making use of certain selection logs to do so, and may communicate
with the worklet service via a JSP/Servlet interface to override worklet selections
following rule set additions (see Section 6).

Fig. 2. Internal Architecture of the Worklet Service

Figure 2 shows a representation of the internal architecture of the worklet
service. The WorkletSelector object handles all interactions with the YAWL
engine, and administrates the service. For each workitem that it checks out
of the engine, it creates a CheckedOutItem object. In YAWL, each workitem
is a ‘parent’ of one or more child items – one if it is an atomic task, or a
number of child items in the case of a multiple instance atomic task. Thus,
the role of each CheckedOutItem object is to create and manage one or more
CheckedOutChildItems, which hold information about worklet selection, data
associated with the workitem and the results of rules searches.



Worklets: A Service-Oriented Implementation 297

The WorkletSelector, for each workitem that is checked out from the engine,
also loads from file the set of rules pertaining to the specification of which the
workitem is a member into an RdrSet object. At any time, there may be a
number of RdrSets loaded into the service, one for each specification for which
a workitem has been checked out. Each RdrSet manages one or more RdrTree
objects, each tree representing the rule tree for a particular task within the
specification, of which this workitem is an instance. In turn, each RdrTree owns
a number of RdrNode objects, which contain the actual rules, conclusions and
other data for each node of the rule tree.

When a rule tree is evaluated against the data set of a workitem, each of the
associated nodes of that tree has its condition evaluated by the ConditionEvalu-
ator object, which returns the boolean result to the node, allowing it to traverse
to its true or false branch as necessary. Finally, the wsGateway object provides
communications via a JSP/Servlet interface between the service and the Rules
Editor (see Section 6 for more details).

5 Process Definition

Fundamentally, a worklet is nothing more than a workflow specification that has
been designed to perform one part of a larger, parent specification. However,
it differs from a decomposition or sub-net in that it is dynamically assigned to
perform a particular task at runtime, while sub-nets are statically assigned at
design time. So, rather than being forced to define all possible branches in a
specification, the worklet service allows the definition of a much simpler specifi-
cation that will evolve dynamically as more worklets are added to the repertoire
for particular tasks within it.

Figure 3 shows a simple example specification (in the YAWL Editor) for a
Casualty Treatment process. Note that this process specification has been inten-
tionally simplified to demonstrate the operation of the worklet service; while it
is not intended to portray a realistic process, it is desirable to not camouflage
the subject of this paper by using a more complex process specification.

In this process, the Treat task is to be substituted at runtime with the ap-
propriate worklet based on the patient data collected in the Admit and Triage
tasks. That is, depending on each patient’s actual physical data and reported
symptoms, we would like to run the worklet that best treats the patient’s con-
dition.

Each task in a process specification may be flagged to notify the worklet
service when it becomes enabled. In this example, only the Treat task is flagged
so; the other tasks are handled directly by the YAWL environment. So, when
a Casualty Treatment process is executed, the YAWL Engine will notify the
worklet service when the Treat task becomes enabled. The worklet service will
then examine the data of the task and use it to determine which worklet to
execute as a substitute for the task.

A worklet specification is a standard YAWL process specification, and as such
is created in the YAWL Editor in the usual manner. Figure 4 shows a very simple



298 M. Adams et al.

Fig. 3. Parent ‘Casualty Treatment’ Process

example worklet to be substituted for the Treat top-level task when a patient
complains of a fever.

In itself, there is nothing special about the Treat Fever specification in Figure
4. Even though it will be considered by the worklet service as a member of
the worklet repertoire and may thus be considered a “worklet”, it also remains
a standard YAWL specification and as such may be executed directly by the
YAWL engine without any reference to the worklet service, if desired.

Fig. 4. The ‘Treat Fever’ Worklet Process

The association of tasks with the worklet service is not restricted to top-level
specifications. Worklet specifications also may contain tasks that are associated
with the worklet service and so may have worklets substituted for them, so that
a hierarchy of executing worklets may sometimes exist. It is also possible to
recursively define worklet substitutions - that is, a worklet may contain a task
that, while certain conditions hold true, is substituted by another instance of
the same worklet specification that contains the task.

Any number of worklets can be created for a particular task. For the Casualty
Treatment example, there are currently five worklets in the repertoire for the
Treat task, one for each of the five conditions that a patient may present with
in the Triage task: Fever, Rash, Fracture, Wound and Abdominal Pain. In this
example, which worklet is chosen for the Treat task depends on which of the five
is given a value of True in the Triage task.



Worklets: A Service-Oriented Implementation 299

6 Context and Worklet Selection

The consideration of context plays a crucial role in many diverse domains, in-
cluding philosophy, pragmatics, semantics, cognitive psychology and artificial
intelligence [24]. In order to realise the worklet approach, the situated contex-
tual factors relevant to each case instance were required to be quantified and
recorded [25] so that the appropriate worklet can be ‘intelligently’ selected from
the repertoire at runtime.

The types of contextual data that may be recorded and applied to a busi-
ness case may be categorised as follows (examples are drawn from the Casualty
Treatment process):

– Generic (case independent): data attributes that can be considered likely
to occur within any process (of course, the data values change from case to
case). Such data would include descriptors such as created when, created by,
times invoked, last invoked, current status; and role or agent descriptors such
as experience, skills, rank, history with this process and/or task and so on.
Process execution states and process log data also belong to this category.

– Case dependent with a-priori knowledge: that set of data that are
known to be pertinent to a particular case when it is instantiated. Generally,
this data set reflects the data variables of a particular process instance.
Examples are: patient name and id, blood pressure readings, height, weight,
symptoms and so on; deadlines both approaching and expired; and diagnoses,
treatments and prescribed medications.

– Case dependent with no a-priori knowledge: that set of data that
only becomes known when the case is active and deviations from the known
process occur. Examples in this category may include complications that
arise in a patient’s condition after triage, allergies to certain medications
and so on.

Each worklet is a representation of a particular situated action, the runtime
selection of which relies on the relevant context of each case instance, derived
from case data. The worklet selection process is achieved through the use of Rip-
ple Down Rules (RDR), which comprise a hierarchical set of rules with associated
exceptions, first devised by Compton and Jansen [26].

The fundamental feature of RDR is that it avoids the difficulties inherent in
attempting to compile, a-priori, a systematic understanding, organisation and
assembly of all knowledge in a particular domain. Instead, it allows for general
rules to be defined first with refinements added later as the need arises [27].

An RDR Knowledge Base is a collection of simple rules of the form “if condi-
tion then conclusion” (together with other associated descriptors), conceptually
arranged in a binary tree structure. Each rule node may have a false (‘or’)
branch and/or a true (‘exception’) branch to another rule node, except for the
root node, which contains a default rule and can have a true branch only. If a
rule is satisfied, the true branch is taken and the subsequent rule is evaluated;
if it is not satisfied, the false branch is taken and its rule evaluated [28]. When



300 M. Adams et al.

a terminal node is reached, if its rule is satisfied, then its conclusion is taken; if
its rule is not satisfied, then the conclusion of the last rule satisfied on the path
to that node is taken. This tree traversal provides implied locality - a rule on an
exception branch is tested for applicability only if its parent (next-general) rule
is also applicable.

0 

true 

default 

1 

Fever = True 

TreatFever 

2 

Wound = True 

TreatWound 

3 

AbdominalPain = True 

TreatAbPain 

4 

Fracture = True 

TreatFracture 

7 

Pregnant = True 

TreatLabour 

5 

Rash = True 

TreatRash 

6 

HeartRate >= 190 

TreatHighHeartRate 

Condition not satisfied Condition satisfied 

condition 

conclusion 

Fig. 5. Conceptual Structure of a Ripple Down Rule (Casualty Treatment Example)

A workflow process specification may contain a number of tasks, one or more
of which may be associated with the worklet service. For each specification that
contains a worklet-enabled task, the worklet service maintains a corresponding
set of ripple down rules that determine which worklet will be selected as a sub-
stitute for the task at runtime, based on the current case data of that particular
instance. Each worklet-enabled task in a specification has its own discrete rule
set. The rule set or sets for each specification are stored as XML data in a disk
file that has the same name as the specification, except with an “.xrs” extension
(XML Rule Set). All rule set files are stored in the worklet repository.



Worklets: A Service-Oriented Implementation 301

Occasionally, the worklet started as a substitute for a particular workitem,
while the correct choice based on the current rule set, is considered by a user
to be an inappropriate choice for a particular case. For example, if a patient in
a Casualty Treatment case presents with a rash and a heart rate of 190, while
the current rule set correctly returns the TreatRash worklet, it may be more
desirable to treat the racing heart rate before the rash is attended to. In such
a case, when the worklet service begins an instance of the TreatRash process, a
user may reject it by advising an administrator (via a button on their worklist)
of the inappropriate choice. Thus the administrator would need to add a new
rule to the rule set so that cases that have such data (both now and in the
future) will be handled correctly.

If the worklet returned is found to be unsuitable for a particular case instance,
a new rule is formulated that defines the contextual circumstances of the instance
and is added as a new leaf node using the following algorithm:

– If the worklet returned was the conclusion of a satisfied terminal rule, then
the new rule is added as a local exception node via a new true branch from
the terminal node.

– If the worklet returned was the conclusion of a non-terminal, ancestor node
(that is, the condition of the terminal rule was not satisfied), then the new
rule node is added via a new false branch from the unsatisfied terminal node.

In essence, each added exception rule is a refinement of its parent rule. This
method of defining new rules allows the construction and maintenance of the
KB by “sub-domain” experts (i.e. those who understand and carry out the work
they are responsible for) without regard to any engineering or programming
assistance or skill [29].

Each rule node also incorporates a set of case descriptors that describe the
actual case that was the catalyst for the creation of its rule. This case is referred
to as the ‘cornerstone case’. The descriptors of the cornerstone case refer to
essential attributes of a case, in this example, the sex, heart rate, age, weight
and so on of a patient. The condition for the new rule is determined by comparing
the descriptors of the current case to those of the cornerstone case of the returned
worklet and identifying a sub-set of differences. Not all differences will be relevant
– to define a new rule it is only necessary to determine the factor or factors
that make it necessary to handle the current case in a different fashion to the
cornerstone case. The identified differences are expressed as attribute-value pairs,
using the normal conditional operators. The current case descriptors become the
cornerstone case for the newly formulated rule; its condition is formed by the
identified attribute-values and represents the context of the case instance that
caused the addition of the rule.

A separate Rules Editor tool has been developed to allow for the easy addition
of new rules and associated worklets to existing rule sets, and the creation of
new rule sets.

Each time the worklet service selects a worklet to execute as a substitute
for a specification instance’s workitem, a file is created that contains certain



302 M. Adams et al.

descriptive data about the selection process. These files are stored in the worklet
repository, again in XML format. Thus to add a new rule to the existing rule
set after an inappropriate selection, the particular selection file for the case that
was the catalyst for the rule addition is first loaded into the Rules Editor.

Figure 6 shows the Add New Rule screen of the Rules Editor with a selection
file loaded. The Cornerstone Case panel shows the case data that existed for the
creation of the original rule for the TreatRash selection. The Current Case panel
shows the case data for the current case - that is, the case that is the catalyst
for the addition of the new rule. The New Rule Node panel is where the details
of the new rule are added. Notice that the ids of the parent node and the new
node are shown as read only - the Rules Editor takes care of where in the rule
tree the new rule node is to be placed, and whether it is to be added as a true
child or false child node, using the algorithm described above.

Fig. 6. Rules Editor (Add New Rule Screen)

In this example, there are many data values that differ between the two case
data sets shown in Figure 6, such as PatientID, Name, Sex, Blood Pressure
readings, Height, Weight and Age. However, the only differing data item of
relevance here is HeartRate - that is the only data item that, in this case, makes
the selection of the TreatRash worklet inappropriate. Selecting the HeartRate
line in the list of Current Case data items will insert it to the condition field,
where it may be modified as necessary. In this case, the new rule would become,
as an example, “HeartRate ≥ 190”.



Worklets: A Service-Oriented Implementation 303

It is not necessary to define a conjunctive rule such as “Rash = True AND
HeartRate ≥ 190”, since this new rule will be added as an exception to the
true branch of the TreatRash node. By doing so, it will only be evaluated if the
condition of its parent, ”Rash = True”, first evaluates to True. Therefore, any
rule nodes added to the true branch of a parent node become exception rules,
and thus refinements, of the parent rule.

After defining a condition for the new rule, the name of the worklet to be
executed when this condition evaluates to true must be entered in the Worklet
field of the Editor (refer Figure 6). This input is a drop-down list that contains
the name of all the worklets currently in the worklet repository. An appropriate
worklet for this rule may be chosen from the list, or, if none are suitable, a new
worklet specification may be created.

After a new rule is added, the Editor provides an administrator with the
choice to replace the previously started (inappropriate) worklet instance with
an instance of the worklet defined in the new rule. If the administrator chooses
to replace the worklet, the Rules Editor contacts the worklet service via HTTP
and requests the change. The service responds with a dialog similar to Figure 7.

Fig. 7. Example Dialog Showing a Successful Dynamic Replacement

7 Related Work

Since the mid-nineties much research has been done on issues related to flexibility
and change in workflow management systems (cf. the classification into ad-hoc,
administrative, and production workflows in [30]). While it is not the intention
of this paper to provide a complete overview of the work done in this area,
reference is made here to a number of quite different approaches to providing
dynamic flexibility in workflows.

Generally, commercial workflow management systems provide various levels
of support for the decomposition of tasks and sub-processing. However, each
of the products require the model to be fully defined before it can be instan-
tiated, and changes must be incorporated by modifying the model statically.
Staffware provides ‘re-usable process segments’ that can be inserted into any
process. SAP R/3 allows for the definition of ‘blocks’ that can be inserted into
other ‘blocks’, thus providing some support for encapsulation and reuse. COSA
supports parent-sibling processes, where data can be passed to/from a process
to a sub-process. MQ Workflow allows sub-processes to be defined and called



304 M. Adams et al.

statically from within a process. Clearly, all of these static forms of decomposition
do not offer support for dynamic flexibility.

Among the non-commercial systems, ADEPT [31] supports modification of
a process during execution (i.e. add, delete and change the sequence of tasks)
both at the type (dynamic evolution) and instance levels (ad-hoc changes). Such
changes are made to a traditional monolithic model and must be achieved via
manual intervention. The WASA [32] system provides some support for dynamic
change, mainly focusing on scientific applications. It allows an administrator
to modify a (monolithic) specification and then restart a task, but then only
at the instance level. A catalog of ‘skeleton’ patterns that can be instantiated
or specialised at design time is supported by the WERDE system [5]. Again,
there is no scope for specialisation changes to be made at runtime. AgentWork
[33] provides the ability to modify process instances by dropping and adding
individual tasks based on events and ECA rules. However, the rules do not offer
the flexibility or extensibility of Ripple Down Rules, and changes are limited
to individual tasks, rather than the process-for-task substitution provided by
the worklet service. Also, the possibility exists for conflicting rules to generate
incompatible actions, which requires manual intervention and resolution.

It should be noted that only a small number of academic prototypes have had
any impact on the frameworks offered by commercial systems [34]. Nevertheless,
there are some interesting commercial products that offer innovative features
with respect to flexibility. Caramba [35] supports virtual teams in their ad hoc
and collaborative processes by enabling links between artifacts (for example,
documents and database objects), business processes (activities), and resources
(persons, roles, etc.). FLOWer supports the concept of case-handling; the pro-
cess model only describes the preferred way of doing things and a variety of
mechanisms are offered to allow users to deviate in a controlled manner [1].

The implementation discussed in this paper differs considerably from the
above approaches. Worklets dynamically linked together by extensible Ripple
Down Rules provide an alternative method for the provision of dynamic flexibil-
ity. An approach with some similarities to worklets is is the Process Orchestrator,
an optional component of Staffware [36], which provides for the dynamic alloca-
tion of sub-processes at runtime. It requires a construct called a “dynamic event”
to be explicitly modelled that will execute a number of sub-processes listed in an
‘array’ when execution reaches that event. Which sub-processes execute depend
on predefined data conditionals matching the current case. Unlike the worklet
approach, the listed sub-processes are statically defined, as are the conditionals –
there is no scope for dynamically refining conditionals, nor adding sub-processes
at runtime.

8 Conclusion and Future Work

Workflow management systems impose a certain rigidity on process definition
and enactment because they use frameworks based on assembly line metaphors
rather than on ways work is actually planned and carried out. An analysis of



Worklets: A Service-Oriented Implementation 305

Activity Theory provided principles of work practices that were used as a tem-
plate on which a workflow service has been built that better supports flexibility
and dynamic evolution. By capturing contextual data, a repertoire of actions is
constructed that allow for contextual choices to be made from the repertoire at
runtime to efficiently carry out work tasks. These actions, or worklets, directly
provide for process evolution and flexibility, and mirror accepted work practices.

The worklet implementation presents several key benefits, including:

– A process modeller can describe the standard activities and actions for a
workflow process, and any deviations, using the same methodology;

– It allows re-use of existing process components and aids in the development
of fault tolerant workflows using pre-existing building blocks [37];

– Its modularity simplifies the logic and verification of the standard model,
since individual worklets are less complex to build and therefore easier to
verify than monolithic models;

– It provides for a variety of workflow views of differing granularity, which
offers ease of comprehensibility for all stakeholders;

– It allows for gradual and ongoing evolution of the model, so that global
modification each time a business practice changes or a deviation occurs is
unnecessary; and

– In the occurrence of an unexpected event, the process modeller needs sim-
ply to choose an existing worklet or build a new one for that event, which
can be automatically added to the repertoire for current and future use as
necessary, thus avoiding manifold complexities including downtime, model
restructuring, versioning problems and so on.

This implementation used the open-source, service-oriented architecture of
YAWL to develop a service for dynamic flexibility independent to the core en-
gine. Thus, the implementation may be viewed as a successful case study in
service-oriented computing. It is the first instalment of a comprehensive ap-
proach to dynamic workflow and is intended to be extended in the near future
to also provide support for dynamic handling of process exceptions using the
same service paradigm. One of the more interesting things to be investigated
and incorporated is the application of process mining techniques to the various
logs collected by the Worklet service; a better understanding of when and why
people tend to “deviate” from a work plan is essential for providing better tool
support.

All system files, source code and documentation for YAWL and the worklet
service, including the examples discussed in this paper, may be downloaded via
www.yawl-system.com.

References

1. W.M.P. van der Aalst, Mathias Weske, and Dolf Grünbauer. Case handling: A new
paradigm for business process support. Data & Knowledge Engineering, 53(2):129–
162, 2005.

www.yawl-system.com


306 M. Adams et al.

2. Gregor Joeris. Defining flexible workflow execution behaviors. In Peter Dadam and
Manfred Reichert, editors, Enterprise-wide and Cross-enterprise Workflow Man-
agement: Concepts, Systems, Applications, volume 24 of CEUR Workshop Proceed-
ings, pages 49–55, Paderborn, Germany, October 1999.

3. Alex Borgida and Takahiro Murata. Tolerating exceptions in workflows: a uni-
fied framework for data and processes. In Proceedings of the International Joint
Conference on Work Activities, Coordination and Collaboration (WACC’99), pages
59–68, San Francisco, CA, February 1999. ACM Press.

4. S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems: A survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

5. Fabio Casati. A discussion on approaches to handling exceptions in workflows. In
CSCW Workshop on Adaptive Workflow Systems, Seattle, USA, November 1998.

6. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10–21,
Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

7. Claus Hagen and Gustavo Alonso. Exception handling in workflow management
systems. IEEE Transactions on Software Engineering, 26(10):943–958, October
2000.

8. Mark S. Ackerman and Christine Halverson. Considering an organization’s mem-
ory. In Proceedings of the ACM 1998 Conference on Computer Supported Cooper-
ative Work, pages 39–48. ACM Press, 1998.

9. Peter A. K. Larkin and Edward Gould. Activity theory applied to the corpo-
rate memory loss problem. In L. Svennson, U. Snis, C. Sorensen, H. Fagerlind,
T. Lindroth, M. Magnusson, and C. Ostlund, editors, Proceedings of IRIS 23 Lab-
oratorium for Interaction Technology, University of Trollhattan Uddevalla, 2000.

10. W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete ap-
proach to support workflow change. Information Systems Frontiers, 3(3):297–317,
2001.

11. Jakob E. Bardram. I love the system - I just don’t use it! In Proceedings of the
1997 International Conference on Supporting Group Work (GROUP’97), Phoenix,
Arizona, 1997.

12. W.M.P. van der Aalst and P.J.S. Berens. Beyond workflow management: Product-
driven case handling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International
ACM SIGGROUP Conference on Supporting Group Work, pages 42–51, New York,
2001. ACM Press.

13. I. Bider. Masking flexibility behind rigidity: Notes on how much flexibility people
are willing to cope with. In J. Castro and E. Teniente, editors, Proceedings of the
CAiSE’05 Workshops, volume 1, pages 7–18, Porto, Portugal, 2005. FEUP Edicoes.

14. Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van der
Aalst. Facilitating flexibility and dynamic exception handling in workflows through
worklets. In Orlando Bello, Johann Eder, Oscar Pastor, and João Falcão e Cunha,
editors, Proceedings of the CAiSE’05 Forum, pages 45–50, Porto, Portugal, June
2005. FEUP Edicoes.

15. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

16. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and implementation of the YAWL system. In A. Persson and J. Stirna, editors,
Proceedings of The 16th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 04), volume 3084 of LNCS, pages 142–159, Riga, Latvia,
June 2004. Springer Verlag.



Worklets: A Service-Oriented Implementation 307

17. Diane M. Strong and Steven M. Miller. Exceptions and exception handling in
computerized information processes. ACM Transactions on Information Systems,
13(2):206–233, 1995.

18. Jakob E. Bardram. Plans as situated action: an Activity Theory approach to
workflow systems. In Proceedings of the 1997 European Conference on Computer
Supported Cooperative Work (ECSCW’97), pages 17–32, Lancaster U.K., 1997.

19. Bonnie A. Nardi. Activity Theory and Human-Computer Interaction, pages 7–16.
In Nardi [21], 1996.

20. Y. Engestrom. Learning by Expanding: An Activity-Theoretical Approach to De-
velopmental Research. Orienta-Konsultit, Helsinki, 1987.

21. Bonnie A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, Cambridge, Massachusetts, 1996.

22. Michael Adams, David Edmond, and Arthur H.M. ter Hofstede. The application of
activity theory to dynamic workflow adaptation issues. In Proceedings of the 2003
Pacific Asia Conference on Information Systems (PACIS 2003), pages 1836–1852,
Adelaide, Australia, July 2003.

23. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

24. Paolo Bouquet, Chiara Ghidini, Fausto Giunchiglia, and Enrico Blanzieri. The-
ories and uses of context in knowledge representation and reasoning. Journal of
Pragmatics, 35(3):455–484, 2003.

25. Debbie Richards. Combining cases and rules to provide contextualised knowledge
based systems. In Modeling and Using Context, Third International and Interdis-
ciplinary Conference, CONTEXT 2001, volume 2116 of Lecture Notes in Artifical
Intelligence, pages 465–469, Dundee, UK, July 2001. Springer-Verlag, Berlin.

26. P. Compton and B. Jansen. Knowledge in context: A strategy for expert system
maintenance. In J.Siekmann, editor, Proceedings of the 2nd Australian Joint Artifi-
cial Intelligence Conference, volume 406 of Lecture Notes in Artificial Intelligence,
pages 292–306, Adelaide, Australia, November 1988. Springer-Verlag.

27. Tobias Scheffer. Algebraic foundation and improved methods of induction of ripple
down rules. In Procceedings of the Pacific Rim Workshop on Knowledge Acquisi-
tion, pages 279–292, Sydney, Australia, 1996.

28. B. Drake and G. Beydoun. Predicate logic-based incremental knowledge acqui-
sition. In P. Compton, A. Hoffmann, H. Motoda, and T. Yamaguchi, editors,
Proceedings of the sixth Pacific International Knowledge Acquisition Workshop,
pages 71–88, Sydney, December 2000.

29. Byeong Ho Kang, Phil Preston, and Paul Compton. Simulated expert evaluation
of multiple classification ripple down rules. In Proceedings of the 11th Workshop on
Knowledge Acquisition, Modeling and Management, Banff, Alberta, Canada, April
1998.

30. Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: From process modelling to workflow automation infrastructure.
In Distributed and Parallel Databases, volume 3, pages 119–153. Kluwer Academic
Publishers, Boston, 1995.

31. Clemens Hensinger, Manfred Reichert, Thomas Bauer, Thomas Strzeletz, and Pe-
ter Dadam. ADEPTworkflow - advanced workflow technology for the efficient sup-
port of adaptive, enterprise-wide processes. In Conference on Extending Database
Technology, pages 29–30, Konstanz, Germany, March 2000.



308 M. Adams et al.

32. G. Vossen and M. Weske. The WASA approach to workflow management for
scientific applications. In A. Dogac, L. Kalinichenko, M.T. Ozsu, and A. Sheth,
editors, Workflow Management Systems and Interoperability, volume 164 of ASI
NATO Series, Series F: Computer and Systems Sciences, pages 145–164. Springer,
1999.

33. Robert Muller, Ulrike Greiner, and Erhard Rahm. AgentWork: a workflow sys-
tem supporting rule-based workflow adaptation. Data & Knowledge Engineering,
51(2):223–256, November 2004.

34. Michael zur Muehlen. Workflow-based Process Controlling. Foundation, Design,
and Implementation of Workflow-driven Process Information Systems, volume 6 of
Advances in Information Systems and Management Science. Logos, Berlin, 2004.

35. S. Dustdar. Caramba - a process-aware collaboration system supporting ad hoc
and collaborative processes in virtual teams. Distributed and Parallel Databases,
15(1):45–66, 2004.

36. Michael Georgeff and Jon Pyke. Dynamic process orchestration. White
paper, Staffware PLC http://is.tm.tue.nl/bpm2003/download/WP%20Dynamic%

20Proce%ss%20Orchestration%20v1.pdf , March 2003.
37. Claus Hagen and Gustavo Alonso. Flexible exception handling in process support

systems. Technical report no. 290, ETH Zurich, 1998.

http://is.tm.tue.nl/bpm2003/download/WP%20Dynamic%20Proce% ss%20Orchestration%20v1.pdf
http://is.tm.tue.nl/bpm2003/download/WP%20Dynamic%20Proce%ss%20Orchestration%20v1.pdf


Change Mining in Adaptive Process

Management Systems

Christian W. Günther1, Stefanie Rinderle2,
Manfred Reichert3, and Wil van der Aalst1

1 Eindhoven University of Technology, The Netherlands
{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

2 University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

3 University of Twente, The Netherlands
m.u.reichert@ewi.utwente.nl

Abstract. The wide-spread adoption of process-aware information sys-
tems has resulted in a bulk of computerized information about real-world
processes. This data can be utilized for process performance analysis as
well as for process improvement. In this context process mining offers
promising perspectives. So far, existing mining techniques have been ap-
plied to operational processes, i.e., knowledge is extracted from execu-
tion logs (process discovery), or execution logs are compared with some
a-priori process model (conformance checking). However, execution logs
only constitute one kind of data gathered during process enactment. In
particular, adaptive processes provide additional information about pro-
cess changes (e.g., ad-hoc changes of single process instances) which can
be used to enable organizational learning. In this paper we present an
approach for mining change logs in adaptive process management sys-
tems. The change process discovered through process mining provides an
aggregated overview of all changes that happened so far. This, in turn,
can serve as basis for all kinds of process improvement actions, e.g., it
may trigger process redesign or better control mechanisms.

1 Introduction

The striking divergence between modeled processes and practice is largely due
to the rigid, inflexible nature of commonplace Process-Aware Information Sys-
tems (PAISs) [10]. Whenever a small detail is modeled in the wrong manner, or
external changes are imposed on the process (e.g. a new legislation or company
guideline), users are forced to deviate from the prescribed process model. How-
ever, given the fact that process (re-)design is an expensive and time-consuming
task, this results in employees working “behind the system’s back”. In the end,
the PAIS starts to become a burden rather than the help it was intended to be.
In recent years many efforts have been undertaken to deal with these drawbacks
and to make PAISs more flexible. In particular, several approaches for adaptive
process management have emerged (for an overview see [17]). Adaptive processes

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 309–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



310 C.W. Günther et al.

enable users to evolve process definitions, such that they fit to changed situa-
tions. Adaptability can be supported by dynamic changes of different process
aspects (e.g., control and data flow) at different levels (e.g., instance and type
level). For example, ad-hoc changes conducted at the instance level (e.g., to add
or delete process steps) allow to flexibly adapt single process instances to ex-
ceptional or changing situations [14]. Usually, such deviations are recorded in
change logs (see [18]), which results in more meaningful log information when
compared to traditional Process Management Systems (PMSs).

Adaptive PMSs like ADEPT or WASA offer flexibility at both process type
level and process instance level [14,17,21]. So far, adaptive PMSs have not sys-
tematically addressed the fundamental question what we can learn from this
additional information and how we can derive optimized process models from
it. Process mining techniques [2], in turn, offer promising perspectives for learn-
ing from changes, but have focused on the analysis of pure execution logs (i.e.,
taking a behavioral and operational perspective) so far.

This paper presents a framework for integrating adaptive process management
and process mining: Change information gathered within the adaptive PMS is
exploited by process mining techniques. The results can be used to learn from
previously applied changes and to optimize running and future processes accord-
ingly. For this integration, first of all, we determine which runtime information
about ad-hoc deviations is necessary and how it should be represented in order
to achieve optimal mining results. Secondly, we develop new mining techniques
based on existing ones which utilize change logs in addition to execution logs.
As a result we obtain an abstract change process which reflects all changes
applied to the instances of a particular process type so far. More precisely, a
change process comprises change operations (as activities) and the causal rela-
tions between them. We further utilize information about the semantics of change
operations (e.g., commutativity) in order to optimize our mining results. The re-
sulting change process provides valuable knowledge about the process changes
happened so far, which may serve as basis for deriving process optimizations in
the sequel. Finally, the approach is implemented within a prototype integrating
process mining framework ProM and ADEPT.

Sect. 2 introduces our framework for integrating process mining and adaptive
process management. Sect. 3 describes how we import change log information
into this framework and how changes are represented. Sect. 4 deals with our
approach for discovering change processes from these logs. In Sect. 5 we discuss
details of our implementation and show which tool supported is provided. Sect. 6
discusses related work and Sect. 7 concludes with a summary and an outlook.

2 Process Optimization by Integrating Process Mining
and Adaptive Process Management

In this section we argue that the value of adaptive PMSs can be further leveraged
by integrating them with process mining techniques. After introducing basics
related to process mining, we present our overall integration framework.



Change Mining in Adaptive Process Management Systems 311

2.1 Process Mining

Process-Aware Information Systems (PAISs), such as WfMS, ERP, and B2B sys-
tems, need to be configured based on process models. The latter specify the order
in which process steps are to be executed and therefore enable the information
system to ensure and control the correct execution of operational processes.

Usually, relevant events occurring in a PAIS (e.g., regarding the execution
of tasks or the modification of data) are recorded in event logs. Process mining
describes a family of a-posteriori analysis techniques exploiting the information
recorded in these logs. Typically, respective approaches assume that it is possible
to sequentially record events such that each event refers to an activity (i.e.,
a well-defined step in the process) and is related to a particular case (i.e., a
process instance). Furthermore, there are other mining techniques making use
of additional information such as the performer or originator of the event (i.e.,
the person / resource executing or initiating the activity), the timestamp of the
event, or data elements recorded with the event (e.g., the size of an order).

Process mining addresses the problem that most “process owners” have very
limited information about what is actually happening in their organization. In
practice there is often a significant gap between what is prescribed or supposed
to happen, and what actually happens. Only a concise assessment of the orga-
nizational reality, which process mining strives to deliver, can help in verifying
process models, and ultimately be used in a process redesign effort.

Fig. 1. Process Mining and its relation to BPM

There are three major classes of process mining techniques as indicated in
Fig. 1. Traditionally, process mining has focused on process discovery, i.e. deriv-
ing information about the original process model, the organizational context, and
execution properties from enactment logs. An example of a technique address-
ing the control flow perspective is the alpha algorithm [2], which can construct
a Petri net model [6] describing the behavior observed in the event log. The
multi-phase mining approach [7] can be used to construct an Event-driven Pro-
cess Chain (EPC) based on similar information. Finally, first work regarding the
mining of other model perspectives (e.g., organizational aspects [1]) and data-
driven process support systems (e.g., case handling systems) has been done.



312 C.W. Günther et al.

Another line of process mining research is conformance testing. Its aim is to
analyze and measure discrepancies between the model of a process and its actual
execution (as recorded in event logs). This can be used to indicate problems.
Finally, log-based verification does not analyze enactment logs with respect to
the original model, but rather checks the log for conformance with certain desired
or undesired properties, e.g., expressed in terms of Linear Temporal Logic (LTL)
formulas. This makes it an excellent tool to check a case for conformance to
certain laws or corporate guidelines (e.g. the four-eyes principle).

At this point in time there are mature tools such as the ProM framework,
featuring an extensive set of analysis techniques which can be applied to real
process enactments while covering the whole spectrum depicted in Fig. 1 [9].

2.2 Integration Framework

Both process mining and adaptive workflow address fundamental issues that are
widely prevalent in the current practice of BPM implementations. These prob-
lems stem from the fact that the design, enactment, and analysis of a business
process are commonly interpreted, and implemented, as detached phases.

Although both techniques are valuable on their own, we argue that their full
potential can be only harnessed by tight integration. While process mining can
deliver concrete and reliable information about how process models need to be
changed, adaptive PMSs provide the tools to safely and conveniently implement
these changes. Thus, we propose the development of process mining techniques,
integrated into adaptive PMSs as a feedback cycle. In the sequel, adaptive PMSs
need to be equipped with functionality to exploit this feedback information.

The framework depicted in Fig. 2 illustrates how such an integration could
look like. Adaptive PMSs, visualized in the upper part of this model, operate on
pre-defined process models. The evolution of these models over time spawns a set
of process changes, i.e., results in multiple process variants. Like in every PAIS,
enactment logs are created which record the sequence of activities executed for
each case. On top of that, adaptive PMSs additionally log the sequence of change
operations imposed on a process model for every executed case, producing a set
of change logs. Process mining techniques that integrate into such system, in
form of a feedback cycle, fall into one of three major categories:

Change analysis: Process mining techniques from this category make use of
change log information, besides the original process models and their vari-
ants. Their goal is to determine common and popular variants for each pro-
cess model, which may be promoted to replace the original model. Possible
ways to pursue this goal are through statistical analysis of changes or their
abstraction to higher-level models.

Integrated analysis: This analysis uses both change and enactment logs in
a combined fashion. Possible applications in this category could perform a
context-aware categorization of changes as follows. After clustering change
sequences, as found in the change logs, into groups, the incentive for these
changes can be derived. This is performed by inspecting the state of each
case, i.e. the values of case data objects, at the time of change, as known from



Change Mining in Adaptive Process Management Systems 313

Adaptive Workflow

Process Mining

Context-aligned
changes / variants

Process

Models

<
re

fe
rs

 to
>

Process

Instantiation

Case
(data)

Context-aware

adaptation
Enactment

Process
modelling

Continuous

adaptation

data
updates

Ad-hoc

adaptation

Enactment
Logs

Change Logs

Change analysis

Integrated analysis

Enactment

analysis

Fig. 2. Integration of Process Mining and Adaptive Process Management

the original process model and the enactment logs. A decision-tree analysis
of these change clusters provides an excellent basis for guiding users in future
process adaptations, based on the peculiarities of their specific case.

Enactment analysis: Based solely on the inspection of enactment logs, tech-
niques in this category can pinpoint parts of a process model which need
to be changed. For example, when a specific alternative of a process model
has never been executed, the original process model may be simplified by
removing that part. Further techniques may also clean the model repository
from rarely used process definitions.

These examples give only directions in which the development of suitable
process mining techniques may proceed. Of course, their concrete realization
depends on the nature of the system at hand. For example, it may be preferable
to present highlighted process models to a specialist before their deletion or
change, rather than having the system performing these tasks autonomously.

When such feedback cycle is designed and implemented consistently, the re-
sulting system is able to provide user guidance and autonomous administration
to an unprecedented degree. Moreover, the tight integration of adaptive PMSs



314 C.W. Günther et al.

and process mining technologies provides a powerful foundation, on which a new
generation of truly intelligent and increasingly autonomous PAISs can be built.

3 Change Logs

Adaptive PMSs do not only create process enactment logs, but they also log the
sequence of changes applied to a process model. This section introduces the basics
of these change logs. We first discuss the nature of changes and then introduce
MXML as general format for event logs. Based on this we show how change logs
can be mapped onto the MXML format. MXML-based log files constitute the
basic input for the mining approach described in Sect. 4.

3.1 General Change Framework

Logically, a process change is accomplished by applying a sequence of change
operations to the respective process model [14]. The question is how to represent
this change information within change logs. In principle, the information to be
logged can be represented in different ways. The goal must be to find an adequate
representation and appropriate analysis techniques to support the three cases
described in the previous section.

Independent from the applied (high–level) change operations (e.g., adding,
deleting or moving activities), for example, we could translate the change into
a set of basic change primitives (i.e., basic graph primitives like addNode or
deleteEdge). This still would enable us to restore process structures, but also
result in a loss of information about change semantics and therefore limit trace-
ability and change analysis. As an alternative we can explicitly store the applied
high–level change operations, which combine basic primitives in a certain way.

High–level change operations are based on formal pre-/post-conditions. This
enables the PMS to guarantee model correctness when changes are applied.
Further, high-level change operations can be combined to change transactions.
This becomes necessary, for example, if the application of a high-level change
operation leads to an incorrect process model and this can be overcome by
conducting concomitant changes. During runtime several change transactions
may be applied to a particular process instance. All change transactions related
to a process instance are stored in the change log1 of this instance (cf. [18]).

In the following we represent change log entries by means of high-level change
operations since we want to exploit their semantical content (see Fig. 3 for
an example). However, basically, the mining approach introduced later can be
adapted to change primitives as well. Table 1 presents examples of high-level
change operations on process models which can be used at the process type as
well as at the process instance level to create or modify models. Although the

1 A change log is an ordered series cL:=< Δ1, . . . ,Δn > of change operations Δi

(i = 1, ..n); i.e., when applying the change operations contained in cL to a correct
process schema S, all intermediate process schemas Si with Si := Si−1 +Δi

(i = 1,. . . , n; S0 := S) are correct process schemas.



Change Mining in Adaptive Process Management Systems 315

change operations are exemplarily defined on the ADEPT meta model (see [14]
for details) they are generic in the sense that they can be easily transferred to
other meta models as well (e.g. [15]).

Table 1. Examples of High-Level Change Operations on Process Schemas

Change Operation opType subject paramList
Δ Applied to S
insert(S, X, A, B, [sc]) insert X S, A, B
Effects on S: inserts activity X between node sets A and B
(it is a conditional insert if sc is specified)
Preconditions: node sets A and B must exist in S, and X must not be contained
in S yet (i.e., no duplicate activities!)

delete(S, X) delete X S
Effects on S: deletes activity X from S
Preconditions: activity X must be contained exactly once in S

move(S, X, A, B, [sc]) move X S, A, B
Effects on S: moves activity X from its original position between node sets A and B
(it is a conditional insert if sc is specified)
Preconditions: activity X and node sets A and B must be contained exactly once in S

3.2 The MXML Format for Process Event Logs

MXML is an XML-based format for representing and storing event log data,
which is supported by the largest subset of process mining tools, such as ProM.
While focusing on the core information needed for process mining, the format
reserves generic fields for extra information potentially provided by a PAIS. Due
to its outstanding tool support and extensibility, the MXML format has been
selected for storing change log information in our approach.

The root node of a MXML document is a WorkflowLog. It represents a log
file, i.e. a logical collection of events having been derived from one system. Ev-
ery workflow log can potentially contain one Source element, which is used to
describe that system the log has been imported from. Apart from the source
descriptor, a workflow log can contain an arbitrary number of Processes as child
elements, each grouping events that occurred during the execution of a specific
process definition. The single executions of a process are represented by child
elements of type ProcessInstance, each representing one case in the system.

Finally, process instances group an arbitrary number of AuditTrailEntry ele-
ments as child elements. Each of these child elements refers to one specific event
which has occurred in the system. Every audit trail entry must contain at least
two child elements: The WorkflowModelElement describes the abstract process
definition element to which the event refers, e.g. the name of the activity that
was executed. The second mandatory element is the EventType, describing the
nature of the event, e.g. whether a task was scheduled, completed, etc. The op-
tional child elements of an audit trail entry are Timestamp and Originator. The
timestamp holds the date and time of when the event has occurred, while the
originator identifies the resource, e.g. person, which has triggered the event.

To enable the flexible extension of this format with extra information, all men-
tioned elements (except the child elements of AuditTrailEntry) can also have a



316 C.W. Günther et al.

a) Process Instances  b) Change Logs   c) Change Process Instances 

Examine

patient

Deliver

report

Inform
Patient

Prepare

Patient

Instance I1 : Lab test

Enter
order

cLI1 = (

op1:=insert(S, Lab test, Examine Patient, Deliver report),

op2:=move(S, Inform Patient, Prepare Patient, Examine Patient))

cLI2(S) = (

op3:=insert(S, xRay, Inform Patient, Prepare Patient), 

op4:=delete(S, xRay),  

op5:=delete(S, Inform Patient),

op6:=insert(S, Inform Patient, Examine Patient, Deliver Report), 

op2 =move(S, Inform Patient, Prepare Patient, Examine Patient),

op1 =insert(S, Lab Test, Examine Patient, Deliver Report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I2 :

Enter
order

Examine

patient

Deliver

report

Inform
Patient

Prepare

Patient

Instance I3 : Lab test

Enter
order

cLI1 = (

op2 =move(S, Inform Patient, Prepare Patient, Examine Patient),

op1 =insert(S, Lab test, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I4 : Lab test

Enter
order

cLI4 = (

op1 =insert(S, Lab test, Examine Patient, Deliver report))

Examine

patient

Deliver

report

Inform
Patient

Prepare

Patient

Instance I5:

Enter
order

cLI5 = (

op1 =insert(S, Lab test, Examine Patient, Deliver report,

op7:=delete(S, Deliver report))

Lab test

Lab test

op1 op2op1 op2

op3 op5

op4 op6

op2

op1

op1 op2op1 op2

op1op1

op1

op7

op1

op7

op1 op2

op7

op1 op2

op7

op8op8

op8 op2

op9

op8 op2

op9

op1

op10

Examine

patient

Deliver

report

Inform

Patient
Prepare

Patient

Instance I6 : Lab test

Enter

order

cLI6 = (

op1 =insert(S, Lab test, Examine Patient, Deliver report),

op2 =move(S, Inform Patient, Prepare Patient, Examine

Patient),

op7 =delete(S, Deliver report))

cLI7(S) = (

op8:= insert(S, xRay, Examine Patient, Deliver report))
Examine

patient

Deliver

report

Inform

Patient
Prepare

Patient

Instance I7 :

Enter

order

Examine

patient

Deliver

report

Inform

Patient
Prepare

Patient

Instance I8 : Lab test

Enter

order

cLI8 = (

op2 =move(S, Inform Patient, Prepare Patient, Examine Patient),

op8 =insert(S, xRay, Examine patient, Deliver report),

op9:=insert(S, Lab test, xRay, Deliver report))

Examine

patient

Deliver

report

Inform

Patient
Prepare

Patient

Instance I9: Lab test

Enter

order

cLI9 = (

op1 =insert(S, Lab test, Examine Patient, Deliver report),

op10:=insert(S, xRay, Examine patient, Lab test))

xRay

xRay

xRay

Fig. 3. Modified Process Instances and Associated Change Logs

generic Data child element. The data element groups an arbitrary number of At-
tributes, which are key-value pairs of strings. The following subsection describes
the mapping of change log information to MXML, which is heavily based on
using custom attributes of this sort.

3.3 Mapping Change Log Information to MXML

With respect to an adaptive PAIS, change log information can be structured on
a number of different levels. Most of all, change events can be grouped by the
process definition they address. As we are focusing on changes applied to cases,



Change Mining in Adaptive Process Management Systems 317

i.e. executed instances of a process definition, the change events referring to one
process can be further subdivided with respect to the specific case in which they
were applied. Finally, groups of change events on a case level are naturally sorted
by the order of their occurrence.

The described structure of change logs fits well into the common organiza-
tion of enactment logs, with instance traces then corresponding to consecutive
changes of a process model, in contrast to its execution. Thus, change logs can
be mapped to the MXML format with minor modifications. Listing 1 shows an
MXML audit trail entry describing the insertion of a task “Lab Test” into a
process definition, as e.g. seen for Instance I1 in Fig. 3.

<AuditTrailEntry>
<Data>

<Attribute name="CHANGE.postset">Deliver_report</Attribute>
<Attribute name="CHANGE.type">INSERT</Attribute>
<Attribute name="CHANGE.subject">Lab_test</Attribute>
<Attribute name="CHANGE.rationale">Ensure that blood values

are within specs.</Attribute>
<Attribute name="CHANGE.preset">Examine_patient</Attribute>

</Data>
<WorkflowModelElement>INSERT.Lab_test</WorkflowModelElement>
<EventType>complete</EventType>
<Originator>N.E.Body</Originator>

</AuditTrailEntry>

Listing 1. Example of a change event in MXML

Change operations are characterized by the type (e.g., “INSERT”) of change,
the subject which has been primarily affected (e.g., the inserted task), and the
syntactical context of the change. This syntactical context contains the change
operation’s pre- and post-set, referring to adjacent model elements that are ei-
ther directly preceding or following the change subject in the process definition.
These specific change operation properties are not covered by the MXML format,
therefore they are stored as attributes in the “Data” field. The set of attributes
for a change event is further extended by an optional rationale field, storing a
human-readable reason, or incentive, for this particular change operation.

The originator field is used for the person having applied the respective
change, while the timestamp field obviously describes the concise date and time
of occurrence. Change events have the event type “complete” by default, be-
cause they can be interpreted as atomic operations. In order to retain backward
compatibility of MXML change logs with traditional process mining algorithms,
the workflow model element needs to be specified for each change event. As the
change process does not follow a prescribed process model, this information is
not available. Thus, a concatenation of change type and subject is used for the
workflow model element field.

On top of having a different set of information, change logs also exhibit spe-
cific properties making them different from enactment logs. The next section
investigates these specific properties and uses them for a first mining approach.



318 C.W. Günther et al.

4 Mining Compact Change Processes

In this section we describe an approach for analyzing change log information, as
found in adaptive PMSs. First, we explore the nature of change logs in more de-
tail. This is followed by an introduction to the concept of commutativity between
change operations in Sect. 4.2. This commutativity relation provides the foun-
dation for our mining algorithm for change processes, as introduced in Sect. 4.3.

4.1 A Characterization of Change Logs

Change logs, in contrast to regular enactment logs, do not describe the execution
of a defined process. This is obvious from the fact that, if the set of potential
changes would have been known in advance, then these changes could have al-
ready been incorporated in the process model (making dynamic change obsolete).
Thus, change logs must be interpreted as emerging sequences of activities which
are taken from a set of change operations.

In Sect. 3.3 it has been defined that each change operation refers to the
original process model through three associations: the subject, pre-, and post-set
of the change. As all three associations can theoretically be bound to any subset
from the original process model’s set of activities2, the set of possible change
operations grows exponentially with the number of activities in the original
process model. This situation is fairly different from mining a regular process
model, where the number of activities is usually rather limited (e.g., up to 50–100
activities). Hence, change process mining poses an interesting challenge.

Summarizing the above characteristics, we can describe the meta-process of
changing a process schema as a highly unstructured process, potentially involving
a large number of distinct activities. These properties, when faced by a process
mining algorithm, typically lead to overly precise and confusing “spaghetti-like”
models. For a more compact representation of change processes, it is helpful to
abstract from a certain subset of order relations between change operations.

When performing process mining on enactment logs (i.e., the classical applica-
tion domain of process mining), the actual state of the mined process is treated
like a “black box”. This is a result of the nature of enactment logs, which typ-
ically only indicate transitions in the process, i.e. the execution of activities.
However, the information contained in change logs allows to trace the state of
the change process, which is indeed defined by the process schema that is sub-
ject to change. Moreover, one can compare the effects of different (sequences of)
change operations. From that, it becomes possible to explicitly detect whether
two consecutive change operations might as well have been executed in the re-
verse order, without changing the resulting state.

The next section introduces the concept of commutativity between change
operations, which is used to reduce the number of ordering relations by taking
into account the semantic implications of change events. Since the order of com-
mutative change operations does not matter, we can abstract from the actually
observed sequences thus simplifying the resulting model.
2 Here we assume that the subset describing the subject field is limited to one.



Change Mining in Adaptive Process Management Systems 319

4.2 Commutative and Dependent Change Operations

Change operations modify a process schema, either by altering the set of activ-
ities or by changing their ordering relations. Thus, each application of a change
operation to a process schema results in another, different schema. A process
schema can be described formally without selecting a particular notation, i.e., we
abstract from the concrete operators of the process modeling language and only
describe the set of activities and possible behavior.

Definition 1 (Process Schema). A process schema is a tuple PS = (A, TS)
where

– A is a set of activities
– TS = (S, T, sstart, send) is a labeled transition system, where S is the set of

reachable states, T ⊆ S × (A∪ {τ}) × S is the transition relation, sstart ∈ S
is the initial state, and send ∈ S is the final state.

P is the set of all process schemas.

The behavior of a process is described in terms of a transition system TS with
some initial state sstart and some final state send. Note that any process mod-
eling language can be mapped onto a labeled transition system. The transition
system does not only define the set of possible traces (i.e., execution orders);
it also captures the moment of choice. Moreover, it allows for “silent steps”. A
silent step, denoted by τ , is an activity within the system which changes the
state of the process, but is not observable in the execution logs. This way we
can distinguish between different types of choices (internal/external or control-
lable/uncontrollable) [5]. While all change operations modify the set of states S
and the transition relation T , the “move” operation is the only one not changing
the set of activities A.

In order to compare sequences of change operations, and to derive ordering
relations between these changes, it is helpful to define an equivalence relation
for process schemas.

Definition 2 (Equivalent Process Schemas). Let ≡ be some equivalence
relation. For PS1, PS2 ∈ P : PS1 ≡ PS2 if and only if PS1 and PS2 are
considered to be equivalent.

There exist many notions of process equivalence. The weakest notion of equiva-
lence is trace equivalence [11,13,17], which regards two process models as equiv-
alent if the sets of observable traces they can execute are identical. Since the
number of traces a process model can generate may be infinite, such comparison
may be complicated. Moreover, since trace equivalence is limited to compar-
ing traces, it fails to correctly capture the moment at which choice occurs in a
process. For example, two process schemas may generate the same set of two
traces {ABC,ABD}. However, the process may be very different with respect
to the moment of choice, i.e. the first process may already have a choice after
A to execute either BC or BD, while the second process has a choice between



320 C.W. Günther et al.

C and D just after B. Branching bisimilarity is one example of an equivalence,
which can correctly capture this moment of choice. For a comparison of branch-
ing bisimilarity and further equivalences the reader is referred to [12]. In the
context of this paper, we abstract from a concrete notion of equivalence, as the
approach described can be combined with different process modeling notations
and different notions of equivalence.

As stated above, each application of a change operation transforms a process
schema into another process schema. This can be formalized as follows:

Definition 3 (Change in Process Schemas). Let PS1, PS2 ∈ P be two
process schemas and let Δ be a process change.

– PS1[Δ〉 if and only if Δ is applicable to PS1, i.e., Δ is possible in PS1.
– PS1[Δ〉PS2 if and only if Δ is applicable to PS1 (i.e., PS1[Δ〉) and PS2 is

the process schema resulting from the application of Δ to PS1.

The applicability of a change operation to a specific process schema is defined
in Table 1, and is largely dictated by common sense. For example, an activity X
can only be inserted into a schema S, between the node sets A and B, if these
node sets are indeed contained in S and the activity X is not already contained
in S. Note that we do not allow duplicate tasks, i.e. an activity can be contained
only once in a process schema.

Based on the notion of process equivalence we can now define the concept of
commutativity between change operations.

Definition 4 (Commutativity of Changes). Let PS ∈ P be a process
schema, and let Δ1 and Δ2 be two process changes. Δ1 and Δ2 are commu-
tative in PS if and only if:

– There exist PS1, PS2 ∈ P such that PS[Δ1〉PS1 and PS1[Δ2〉PS2,
– There exist PS3, PS4 ∈ P such that PS[Δ2〉PS3 and PS3[Δ1〉PS4,
– PS2 ≡ PS4.

Two change operations are commutative, if they have exactly the same effect on a
process schema, regardless of the order in which they are applied. If two change
operations are not commutative, we regard them as dependent, i.e., the effect
of the second change depends on the first one. The concept of commutativity
captures the ordering relation between two consecutive change operations. If two
change operations are commutative according to Def. 4 they can be applied in
any given order, therefore there exists no ordering relation between them.

In the next subsection we demonstrate that existing process mining algorithms
can be enhanced with the concept of commutativity, thereby abstracting from
ordering relations that are irrelevant from a semantical point of view (i.e., their
order does not influence the resulting process schema).

4.3 Mining Change Processes

Mining change processes is to a large degree identical to mining regular processes
from enactment logs. Therefore, we have chosen not to develop an entirely new



Change Mining in Adaptive Process Management Systems 321

algorithm, but rather to base our approach on an existing process mining tech-
nique. Among the available algorithms, the multi-phase algorithm [7,8] has been
selected, which is very robust in handling fuzzy branching situations (i.e., it
can employ the “OR” semantics to split and join nodes, in cases where neither
“AND” nor “XOR” are suitable). Although we illustrate our approach using a
particular algorithm, it is important to note that any process mining algorithm
based on explicitly detecting causalities can be extended in this way (e.g., also
the different variants of the α-algorithm).

The multi-phase mining algorithm is able to construct basic workflow graphs,
Petri nets, and EPC models from the causality relations derived from the log.
For an in-depth description of this algorithm, the reader is referred to [7,8]. The
basic idea of the multi-phase mining algorithm is to discover the process schema
in two steps. First a model is generated for each individual process instance.
Since there are no choices in a single instance, the model only needs to capture
causal dependencies. Using causality relations derived from observed execution
orders and the commutativity of specific change operations, it is relatively easy
to construct such instance models. In the second step these instance models are
aggregated to obtain an overall model for the entire set of change logs.

The causal relations for the multi-phase algorithm [7,8] are derived from the
change log as follows. If a change operation A is followed by another change B
in at least one process instance, and no instance contains B followed by A, the
algorithm assumes a possible causal relation from A to B (i.e., “A may cause
B”). In the example log introduced in Fig. 3, instance I2 features a change
operation deleting “Inform Patient” followed by another change, inserting the
same activity again. As no other instance contains these changes in reverse order,
a causal relation is established between them.

Fig. 4 shows a Petri net model [6] of the change process mined from the
example change log instances in Fig. 3. The detected causal relation between
deleting and inserting “Inform patient” is shown as a directed link between
these activities. Note that in order to give the change process explicit start
and end points, artificial activities have been added. Although the model con-
tains only seven activities, up to three of them can be executed concurrently.
Note further that the process is very flexible, i.e. all activities can potentially
be skipped. From the very small data basis given in Fig. 3, where change log
instances hardly have common subsequences, this model delivers a high degree
of abstraction.

If two change operations are found to appear in both orders in the log, it is as-
sumed that they can be executed in any order, i.e. concurrently. (Note that there
might be some order between concurrent changes determined by context factors
not directly accessible to the system. We aim at integrating such information in
our future work). An example for this is inserting “xRay” and inserting “Lab
Test”, which appear in this order in instance I8, and in reverse order in instance
I9. As a result, there is no causal relation, and thus no direct link between these
change operations in the model shown in Fig. 4.



322 C.W. Günther et al.

start

INSERT 
LabTest

DELETE
Deliver 
report

end

INSERT
xRay

DELETE
xRay

DELETE 
Inform
patient

INSERT 
Inform
patient

MOVE 
Inform
patient

Fig. 4. Mined Example Process (Petri net notation)

Apart from observed concurrency, as described above, we can introduce the
concept of commutativity-induced concurrency, using the notion of commuta-
tivity introduced in the previous subsection (cf. Definition 4). From the set of
observed causal relations, we can exclude causal relations between change oper-
ations that are commutative. For example, instance I2 features deleting activity
“xRay” directly followed by deleting “Inform Patient”. As no other process in-
stance contains these change operations in reverse order, a regular process mining
algorithm would establish a causal relation between them.

However, it is obvious that it makes no difference in which order two activities
are removed from a process schema. As the resulting process schemas are iden-
tical, these two changes are commutative. Thus, we can safely discard a causal
relation between deleting “xRay” and deleting “Inform Patient”, which is why
there is no link in the resulting change process shown in Fig. 4.

Commutativity-induced concurrency removes unnecessary causal relations,
i.e. those causal relations that do not reflect actual dependencies between change
operations. Extending the multi-phase mining algorithm with this concept sig-
nificantly improves the clarity and quality of the mined change process. If it
were not for commutativity-induced concurrency, every two change operations
would need to be observed in both orders to find them concurrent. This is espe-
cially significant in the context of change logs, since one can expect changes to
a process schema to happen far less frequently than the actual execution of the
schema, resulting in less log data.

5 Implementation and Tool Support

To enable experimentation with change logs and their analysis, an import plug-
in has been implemented for the ProMimport framework, which allows to extract
both enactment and change logs from instance files of the ADEPT demonstrator



Change Mining in Adaptive Process Management Systems 323

Fig. 5. Change Mining Plug-in within ProM

prototype [16]. ProMimport3 is a flexible and open framework for the rapid pro-
totyping of MXML import facilities from all kinds of PAISs. The ADEPT demon-
strator prototype provides the full set of process change facilities found in the
ADEPT distribution, except for implementation features like work distribution
and the like. The combination of both makes it possible to create and modify a
process model in the ADEPT demonstrator prototype, after which a respective
change log can be imported and written to the MXML-based change log format
described in Sect. 3.3.

These change logs can then be loaded into the ProM framework4. A dedicated
change mining plug-in has been developed, which implements the commutativity-
enhanced multi-phase algorithm described in Sect. 4.3. It is also possible to mine
only a selection of the change logs found in the log. The resulting change process
can be visualized in the form of a workflow graph, Petri net, or EPC.

Figure 5 shows the change mining plug-in within the ProM framework, dis-
playing the example process introduced in Fig. 3 in terms of a process graph.
The activities and arcs are annotated with frequencies, indicating how often the
respective node or path has been found in the log.

6 Related Work

Although process mining techniques have been intensively studied in recent
years [2,3,4,7,8], no systematic research on analyzing process change logs has
3 ProMimport is available under an Open Source license at

http://promimport.sourceforge.net/.
4 ProM is available under an Open Source license at http://prom.sourceforge.net/.



324 C.W. Günther et al.

been conducted so far. Existing approaches mainly deal with the discovery of
process models from execution logs, conformance testing, and log-based verifi-
cation (cf. Sect. 2.1). However, execution logs in traditional PMSs only reflect
what has been modeled before, but do not capture information about process
changes. While earlier work on process mining has mainly focused on issues re-
lated to control flow mining, recent work additionally uses event-based data for
mining model perspectives other than control flow (e.g., social networks [1], actor
assignments, and decision mining [19]).

In recent years, several approaches for adaptive process management have
emerged [17], most of them supporting changes of certain process aspects and
changes at different levels. Examples of adaptive PMSs include ADEPT [16],
CBRflow [20], and WASA [21]. Though these PMSs provide more meaningful
process logs when compared to traditional workflow systems, so far, only little
work has been done on fundamental questions like what we can learn from this
additional log information, how we can utilize change logs, and how we can derive
optimized process models from them. CBRflow has focused on the question how
to facilitate exception handling in adaptive PMSs. In this context case-based
reasoning (CBR) techniques have been adopted in order to capture contextual
knowledge about ad-hoc changes in change logs, and to assist actors in reusing
previous changes. [20]. This complementary approach results in semantically
enriched log-files (e.g., containing information about the frequency of a particular
change, user ratings, etc.) which can be helpful for our future work.

7 Summary and Outlook

In this paper we presented an approach for integrating adaptive process manage-
ment and process mining in order to exploit knowledge about process changes
from change logs. For this we have developed a mining technique and imple-
mented it as plug-in of the ProM framework taking ADEPT change logs as
input. We demonstrated that change log information (as created by adaptive
PMSs like ADEPT) can be imported into the ProM framework. Based on this
we have sketched how to discover a (minimal) change process which captures
all modifications applied to a particular process instance so far. This discov-
ery is based on the analysis of the (temporal) dependencies existing between
the change operations applied to the respective process instance. How single
change processes can be combined to one aggregated change process (capturing
all instance changes applied) has been presented afterwards. Finally we have
described the implementation framework behind our approach. Altogether, the
presented approach can be very helpful for process engineers to get an overview
about which instance changes have been applied at the system level and what
we can learn from them. Corresponding knowledge is indispensable to make the
right decisions with respect to the introduction of changes at the process type
level (e.g., to reduce the need for ad-hoc changes at the instance level in future).

In our future work we want to further improve user support by augmenting
change processes with additional contextual information (e.g., about the rea-
son why changes have been applied or the originator of the change). From this



Change Mining in Adaptive Process Management Systems 325

we expect better comprehensibility of change decisions and higher reusability
of change knowledge (in similar situations). The detection of this more context-
based information will be accomplished by applying advanced mining techniques
(e.g., decision mining [19]) to change log information.

Acknowledgements. This research has been supported by the Technology
Foundation STW, applied science division of NWO and the technology pro-
gramme of the Dutch Ministry of Economic Affairs.

References

1. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

2. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

3. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

4. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

5. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

6. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

7. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer-Verlag, Berlin, 2004.

8. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Ag-
gregating Instance Graphs into EPCs and Petri Nets. In Proceedings of the 2nd
International Workshop on Applications of Petri Nets to Coordination, Worklflow
and Business Process Management (PNCWB) at the ICATPN 2005, 2005.

9. B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

11. R. van Glabbeek and U. Goltz. Refinement of Actions and Equivalence Notions
for Concurrent Systems. Acta Informatica, 37(4–5):229–327, 2001.

12. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.



326 C.W. Günther et al.

13. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, 2002. (available via http://www.workflowpatterns.com/).

14. M. Reichert and P. Dadam. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

15. M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow
type and instance changes under correctness constraints. In Proc. Int’l Conf. on
Cooperative Information Systems (CoopIS’03), pages 407–425, Catania, 2003.

16. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In Proc. 21st Int’l Conf. on Data Engineering (ICDE’05), pages
1113–1114, Tokyo, 2005.

17. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey. Data and Knowledge Engineering, Special Issue
on Advances in Business Process Management, 50(1):9–34, 2004.

18. S. Rinderle, M. Reichert, M. Jurisch, and U. Kreher. On Representing, Purging,
and Utilizing Change Logs in Process Management Systems. In Proc. Int’l Conf.
on Business Process Management (BPM’06), Vienna, 2006.

19. A. Rozinat and W.M.P. van der Aalst. Decision mining in prom. In Proc. Int’l
Conf. on Business Process Management (BPM’06), Vienna, 2006.

20. B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR-Driven Business Process
Evolution. In Proc. Int. Conf. on Cased based Reasoning (ICCBR’05), Chicago,
2005.

21. M. Weske. Formal foundation and conceptual design of dynamic adaptations in
a workflow management system. In Proc. Hawaii International Conference on
System Sciences (HICSS-34), 2001.



A Link-Based Ranking Model for Services

Camelia Constantin1, Bernd Amann1, and David Gross-Amblard2

1 LIP6, Univ.Paris 6, France
camelia.constantin@lip6.fr, bernd.amann@lip6.fr

2 CEDRIC, CNAM, France
dgram@cnam.fr

Abstract. The number of services on the web is growing every day and
finding useful and efficient ranking methods for services has become an
important issue in modern web applications. In this paper we present
a link-based importance model and efficient algorithms for distributed
services collaborating through service calls. We adapt the PageRank al-
gorithm and define a service importance that reflects its activity and its
contribution to the quality of other services.

1 Introduction

The basic task of a ranking model is to define scores for ordering a set of entities
according to some specific criteria. A large number of ranking models and algo-
rithms have been proposed for various kinds of applications and information en-
tities (documents, tuples, services) in different domains like document retrieval,
Web search, service discovery and P2P query processing. Content-based rank-
ing models classify entities according to the relevance of their contents or other
associated metadata to a given input query. This kind of ranking has proven
its efficiency in document retrieval systems and quality-based data and service
selection. Link-based ranking exploits any kind of structural, semantic or naviga-
tional links between entities for estimating the importance of a service among all
other services. The most prominent example for this kind of ranking is certainly
Google’s PageRank, which estimates the importance of a page in the Web graph
for efficiently ranking Web search results. This article presents a new link-based
ranking model and algorithms for distributed collaborating services.

We consider service-oriented applications relying on a set of services that
collaborate for executing certain tasks. Our notion of service is abstract and
should be understood as any kind of node, with some local behavior and data,
which calls other nodes by exchanging messages. We do not put any restric-
tion neither on the structure and contents of the exchanged messages nor on
the functionality, local data and the implementation of each individual ser-
vice. This means that our model applies to heterogeneous service infrastructures
including, for instance, simple generic file sharing and document printing ser-
vices, database query interfaces and Web services encapsulating some complex
application-specific behavior.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 327–344, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



328 C. Constantin, B. Amann, and D. Gross-Amblard

Many kinds of applications fit our definition of a service and could bene-
fit from our importance based ranking approach. For instance, in a distributed
P2P search engine, each peer can be defined as a service searching some lo-
cal documents and calling other peer services. Search results can obviously be
ranked according to some content-based criteria like document/query relevance,
but in some situations, it also might be useful to rank results according to the
importance of their sources. Another example is standard web service discovery
and selection. Whereas it is possible to compare and rank web services accord-
ing to their WSDL and UDDI descriptions, these techniques are generally based
on homogeneous and semantically rich service descriptions. We claim that link-
based measures taking into account “collaboration links” between services are an
interesting alternative for ranking heterogeneous services in large-scale service-
oriented architectures (SOA).

We will use in the sequel an example of a distributed news syndication system,
where each node can play the role of a news server (provider), a news consumer
(client) or both (portal). Figure 2 shows an example of five collaborating news
services s1 to s5. Services s4 and s5 are provided by the French news agency
Agence France Press (AFP) and the U.S. agency Reuters. Services s2 and s3
correspond to two French journals providing daily news. Finally, s1 corresponds
to the Google News service. All services collaborate by exchanging news via
service calls. This is illustrated in Figure 1 below showing a graph where each
edge si ↪→t sj corresponds to a service call of service si to service sj at time
instant t. We see for example that AFP has been called by service Le Monde

S3

S1

20 Minutes
(daily)

(hourly)

(daily) (hourly)
AFPLe Monde

S2 S4

Google News

1

8

102 (hourly)
Reuters

2

9

1

6

S5

Fig. 1. A service call log

at three different instants 1, 2 and 9. In our model we assume that each such
call si ↪→t sj represents a contribution of the called service sj to the calling
service si and that this contribution also depends on timestamp t. For example,
suppose that Google News is interested in all news published by Le Monde which
updates its news every day. Then, the call-dependent contribution of Le Monde
for Google News at some given moment τ could be estimated by the age of the
last call received by Le Monde from Google News before τ . If this age is less than
one day, Le Monde is estimated to be highly useful for Google News at moment
τ . On the other hand, if the age of the last call exceeds a certain period, e.g. one
month, all results received from Le Monde become useless for Google News.



A Link-Based Ranking Model for Services 329

The contribution of a service to some of its clients not only depends on the
timestamps of the received service calls, but also on the way of how the service
contributes to the client’s quality compared to other services. If we assume that
Google News considers the news obtained from Le Monde of high quality, the
contribution of this service might be estimated higher than the contribution of
20 Minutes which provides less relevant news. Our notion of “quality” is abstract
and each individual service might use different quality features for estimating
the contribution of other services. For example, the French newspaper Le Monde
supposes that, in general, the French news agency AFP provides more interesting
news for its readers than the U.S. agency Reuters. On the other hand, 20 Minutes
tries to reduce cost and therefore prefers Google News which is free of charge
to AFP, which is not. This “quality contribution” is illustrated in the graph of
Figure 2 where each edge si →c sj is labeled by the value c ∈ [0, 1] representing
the contribution of service sj to the quality of its client si relative to the other
services used by si.

S3

S1

20 Minutes

AFP

0.8
0.6

S2 S4

0.2

0.7

0.4

0.3

S5

Google News
Le Monde

Reuters

Fig. 2. Quality contribution graph

We are not interested in the way each service defines and acquires this knowl-
edge about the relative quality contribution of other services. Whereas, for the
sake of simplicity, this information is considered to be public in our model, Sec-
tion 4 shows that public access is not needed for computing service importance.

The main goal of this article is to define a formal model and algorithms for
ranking collaborating services according to their contribution to other services.
The basic idea is to define and apply a link-based importance model consider-
ing service calls and quality contribution scores for estimating their importance
among all other services. For example, if we consider only the quality contribu-
tion graph in Figure 2, it is easy to argue that AFP is more important than
Reuters since it globally contributes more to the other services. This argument
is enforced by Figure 1 which shows that Reuters has never been called by any
other service. However, if we try to compare Le Monde and 20 Minutes in the
same way, we observe that both criteria (contribution and usage) are indepen-
dent of each other. For example, Le Monde is obviously more important than 20
Minutes when considering only its contribution to the quality of Google News
but, as it is shown in Figure 1, it has been called a long time ago, which decreases
its contribution to Google News compared to the one of 20 Minutes.



330 C. Constantin, B. Amann, and D. Gross-Amblard

The rest of the article is organized as follows. The next section presents re-
lated work. The formal model is defined in Section 3, followed by the presentation
of two scalable distributed algorithms for computing service importance. These
algorithms have been implemented and evaluated by simulation. The obtained
results are described in Section 5. Section 6 shortly presents ongoing implemen-
tation and future work.

2 Related Work

Ranking services has been recognized as an important issue in the context of
Web service discovery and dynamic service selection. Multiple criteria can be
used for ranking services. For example, [7] propose to use advanced sampling
techniques for comparing and ranking data-intensive Web services according to
their local data. Recommendation based techniques exploit user feedback [17,12]
and voting services [11] for dynamic service selection. Other ranking criteria are
based on the conformance of QoS features during given time periods [21,12].
All these parameters can be combined using different weights according to spe-
cific user requirements [21,17]. In this context, our method can be seen as a
recommendation-based approach for ranking services where each service call
corresponds to an implicit vote taking into account service quality and observed
usage during some time period.

Link-based ranking methods like PageRank [18] and HITS [14] have been
developed and applied with success for ranking Web search results. The basic
idea of this family of ranking models and algorithms is to consider that each page
p propagates a fraction of its importance to all other pages p′ it references. Most
of the existing algorithms compute the importance of a page by exploiting the
Web’s hyperlink structure. OPIC [1] avoids the construction of the Web matrix
by an adaptive on-line algorithm for estimating page importance dynamically
during the Web crawling process.

Our ranking method exploits temporal information concerning the usage of
a service for calculating a time-dependent importance score. More recent link-
based approaches also consider time-dependent importance measures. For exam-
ple, [4] observes that link-based importance penalizes new pages on the Web and
proposes to decrease the PageRank of older pages. The same kind of argument is
used by [8] that computes the importance of a page based on PageRank and its
time derivative. [10] exploits temporal information for ranking news and their
sources. A recent article is more important than an old one, and a source that
produced recent important news is more important than other sources.

Importance based models and algorithms also have been applied in the con-
text of P2P infrastructures. For example, [22] defines and computes importance
scores for pages distributed in a P2P network. The importance of a page is
defined as a combination of its local importance inside its peer and the global
importance of its peer among the other peers. A similar approach is presented
by [19], where each peer refines the score of its local pages by periodically meet-
ing with other peers. A synchronous algorithm for reputation management in
P2P systems is described in [13]. Each peer computes global trust value based



A Link-Based Ranking Model for Services 331

on the trust values of other peers and their local trust on it. [20] proposes a
distributed asynchronous version of PageRank based on chaotic iterations. A
totally asynchronous computation is presented by [15]. Our asynchronous itera-
tive algorithm for computing the importance of collaborating services is inspired
by [20,15] and considers the modification proposed by [5] for the termination of
the asynchronous computation.

3 A Link-Based Service Importance Model

A service-oriented system is a set of services exchanging messages. We suppose
that all messages are time-stamped by a synchronized continuous clock pro-
ducing an infinite set of clock values T 1. For the sake of simplicity, we do not
distinguish between different end-users and external applications and we assume
that they are all represented by a single service in the system.

We define a logging function that associates to each pair of services (si, sj)
the time-stamps of all messages sent by si to sj . More formally:

Definition 1 (logging function). Let S be a finite set of identified services
exchanging messages. A logging function Λ : T × S × S → 2T returns for
each instant t ∈ T and pair of distinct services (si, sj), the set of time-stamps
Λ(t, si, sj) = {ti|ti ≤ t} ⊆ T of all messages sent by si to sj before t.

Logging function Λ registers the collaboration between services as a set of ex-
changed messages. Note that Λ ignores local messages. At a higher level of ab-
straction it is possible to encode different kinds of message exchange patterns
for composing messages into service calls. For example, in a request-response
pattern (protocol) the service sending the first message (request) is considered
to be the client of the receiver service whereas in a solicit-response protocol the
sender of the first message (solicit) will be considered as the server of the second
one. In the following, we will assume that logging function Λ only registers the
timestamps t of request-response service calls si ↪→t sj where t corresponds to
the timestamp of the request message sent from si to sj .

Definition 2 (service call graph). Function Λ observes the activity between
distinct services and generates a directed service call graph SC(t) = (S, C, Λ)
where (i) S is the set of vertices (ii) C is the set of edges, such that (si → sj) ∈ C
iff Λ(t, si, sj) �= ∅.
A service that is called contributes, directly or indirectly, to other services in
the system. We denote by Out(t, si) = {sj | sj ∈ S ∧ Λ(t, si, sj) �= ∅} the set
of services called by si until time instant t. Similarly, In(t, sj) = {si | si ∈
S ∧ Λ(t, si, sj) �= ∅} is the set of services that called sj before t. Then, a service
sj can contribute at some instant t directly to all services si ∈ In(t, sj) and
transitively to all services sk to which si contributes.

As shown in the introduction, we claim that we should distinguish between
an intrinsic contribution of a service sj to the quality a service si with respect
1 Our model does not require exact synchronization between local clocks.



332 C. Constantin, B. Amann, and D. Gross-Amblard

to all other services and a usage-based contribution that represents the way in
which si actually uses sj (independently of all other services).

3.1 Service Quality Contribution Scores

We assume that each service defines some measure for estimating its quality
according to certain application-specific criteria. The key point behind these
measures is that the quality of a service also depends on the quality of the
services that it calls. For example, in a P2P search engine, the quality of a
service might be defined by the average number of relevant documents returned
to its clients. Other quality criteria might be the average freshness of its results
(in the case of data replication with update), the average response time or even
some simple business criteria based on the price of each service call.

We define the contribution score of a service sj to the quality of the service
si by a function Υ :

Definition 3 (local quality contribution). Let S be a set of services. The
contribution function Υ : S ×S → [0, 1] defines for each pair of distinct services
(si, sj) a local contribution score Υ (si, sj) = πji of service sj to the quality of
service si such that

∑
sj∈Out(si)

πji = 1.

Function Υ (si, sj) does not return a quantitative value but a score πji for com-
paring the contribution of all services sj ∈ Out(t, si) to the quality of service si.
We also suppose that these scores are static and statistically independent of a
particular call between si and sj

2.
Each service si defines the local contribution πki of all services sk that it uses

independently on the services sj that are used by sk. Nonetheless the contribu-
tion of sj to the quality of si through sk can be estimated as the part of πki

which is due to sj , i.e πki ∗ πjk.
The quality contribution graph SC(t, Υ ) is obtained by adding to each edge

si → sj in service call graph SC(t) a label Υ (si, sj) = πji (see for example the
graph in Figure 2). Any path p = si →πki sk → . . . sl →πjl sj in this graph then
represents a contribution of service sj to service si with a contribution score
πp = πki ∗ ... ∗ πjl. We define the global contribution of some service sj to the
quality of any service si ∈ S as follows :

Definition 4 (global quality contribution). We denote by Pij the set of
all possible paths from si to sj in the contribution graph SC(t, Υ ). The global
contribution π∗ji of service sj to the quality of si is the sum of the contribution
of sj to si on all the possible paths p from si to sj in SC(t, Υ ) : π∗ji =

∑
p∈Pij

πp.

Example 1. In Figure 2, Le Monde locally contributes to the quality of Google
News with a score of 0.8. Since Le Monde calls AFP, AFP indirectly contributes
to the quality of Google News with score 0.8 ∗ 0.6 = 0.48. Observe that the
contribution graph might contain cycles which lead to an infinite number of
2 This restriction can be relaxed but it simplifies the presentation and the understand-

ing of our importance model.



A Link-Based Ranking Model for Services 333

contribution paths. For example, there exists an infinite number of contribution
paths from Google News to AFP that pass through 20 Minutes. The set of paths
can be reduced to a finite one by eliminating the ones with πp < ε for a given ε.
The contribution of AFP to the quality of Google News can then be computed
as: (0.8 ∗ 0.6 + 0.2 ∗ 0.3) ∗Σi≥0(0.7 ∗ 0.2)i = 0.63.

3.2 Service Usage

The calls registered in Λ(t, si, sj) represent the effective usage of sj by si at some
given instant t (independently of the other services in the system). Obviously,
a service can effectively contribute to the quality of other services only if it is
called. In addition, the number and timestamps of the incoming calls influence
its local and global contribution to other services. For each service couple (si, sj)
we introduce a service usage score that expresses the way in which sj is used by
si, depending on the calls received from si:

Definition 5 (local service usage). The service usage function Ud : T ×S ×
S → [0, 1] returns for each time instant t and pair of services (si, sj) a local
service usage score Ud(t, si, sj) = uji(t) of service sj by service si obtained by
calls in Λ(t, si, sj).

The definition and implementation of the usage function depends on the ap-
plication semantics and any function aggregating service call time-stamps in
Λ(t, si, sj) with an appropriate semantics could be chosen. Each service sj can
choose a specific function for each client si ∈ In(t, sj), or apply the same func-
tion to all of its clients. In the following examples we assume wlg. that the usage
score uji(t) decreases with the age of the last call received from client si where
the decrease factor is the same for all clients of sj . For instance, if sj is a data
provider which updates its data very frequently, it might choose a usage function
which decreases very rapidly for all incoming service calls in order to take into
account that it should be called frequently for obtaining maximal usage.

Example 2. Service s1 (Google News) is interested by all news produced by ser-
vice s2 (Le Monde). Since Le Monde updates its news every day, Google News
has to call it daily. In this case the service usage of s2 by s1 is maximal, i.e
u21(t) = 1 for any t. If the only call s1 ↪→1 s2 from Google News to Le Monde
has happened several days before instant 10, the usage score of Google News for
Le Monde has decreased and might even be 0, reflecting the fact that no news
received by Le Monde are still useful.

Service usage does not take into account possible logical or temporal relationships
between incoming and outgoing calls of a service si. We introduce the notion of
call usage that describes this kind of relationship between service calls.

Call usage scores are obtained by a function combining the information on
the incoming service calls in Λ(t, si, sk) with the information on the outgoing
service calls in Λ(t, sk, sj) of the same service sk. More formally:



334 C. Constantin, B. Amann, and D. Gross-Amblard

Definition 6 (call usage). Let S be a set of services observed by a logging
function Λ. Call usage function Ui : T × S × S × S → [0, 1] returns for each
instant t and triple of services (si, sk, sj) the call usage score Ui(t, si, sk, sj) =
ujki(t) of outgoing service calls sk →t′ sj ∈ Λ(t, sk, sj) for incoming service calls
si →t′′ sk ∈ Λ(t, si, sk).

Score ujki(t) defines the degree in which calls received by sj from sk contribute
to calls received by sk from si. Similarly to local service usage scores, the way
in which incoming and outgoing service calls are compared depends on the ap-
plication and the service implementation. For example a service si whose calls
to some service sk regularly trigger calls from sk to some other service sj leads
to a high call usage score ujki(t).

Example 3. If we consider that all calls received by Le Monde only can exploit
news generated before, the call usage of the calls to AFP for the calls from Google
News via Le Monde at instant 1 is equal to 0 (Le Monde did not call AFP before
instant 1).

We use the definition of call usage to generalize the notion of service usage by
defining the global service usage score of a service sj by any service si ∈ S. When
a service si calls service sk that calls sj , we can compute the service usage of
sj for service si by taking into consideration the service usage ujk(t) of sj by
sk combined with the call usage ujki(t) between calls in Λ(t, si, sk) and calls
in Λ(t, sk, sj). Consequently, the service usage of sj by service si through sk is
estimated as ujki(t)∗ujk(t). More generally, for a call path p = si → sl → sm →
. . .→ sn → sk → sj in SC(t) the global usage score of sj for si on this path is
defined by the product up(t) = umli(t) ∗ . . . ∗ ujkn(t) ∗ ujk(t).

Definition 7 (global service usage). Let Pij be the set of all possible paths
from si to sj in the service call graph SC(t). The global service usage score u∗ji(t)
of service sj by service si at instant t is the sum of the service usage scores of
sj for si on paths in Pij : u∗ji(t) =

∑
p∈Pij

up(t).

3.3 Effective Contribution and Importance

Our objective is to compare and rank services with respect to their activity
observed by logging function Λ combined with the information about how each
service contributes to the quality of other services in a service-oriented system.

The importance of sj is related to its effective contribution to all services
si ∈ S, which is computed by combining contribution and usage scores on all
call paths in SC(t). The main idea is to weight contribution scores on each path
from si to sj with the corresponding usage score, an important service being one
that highly contributes by its usage to the quality of other services.

Definition 8 (local effective contribution). The local effective contribution
π̃ji(t) of service sj to service si ∈ In(t, sj) at instant t is the product of the local
quality contribution and the local usage score of sj by si : π̃ji(t) = πji ∗ uji(t).



A Link-Based Ranking Model for Services 335

As for quality contributions and for usage scores, we can extend the notion of
local effective contribution to services connected by service-call paths.

For a given service-call path p = si → sl → sm → . . . → sn → sk → sj in
SC(t) the effective contribution of sj to si on this path, denoted by π̃p(t), is
computed by multiplying the quality contribution score with the service usage
sore of sj for si on this path :

π̃p(t) = πp ∗ up(t) =
quality contribution

︷ ︸︸ ︷
πli ∗ πml . . . πkn ∗ πjk ∗

usage contribution
︷ ︸︸ ︷
umli(t) ∗ . . . ∗ ujkn(t) ∗ ujk(t) (1)

Definition 9 (global effective contribution). Let Pij be the set of all pos-
sible paths from si to sj in the service call graph SC(t). The global effective
contribution score π̃∗ji(t) of sj to si is obtained as the sum of the effective con-
tribution on all possible paths p ∈ Pij:

π̃∗ji(t) =
∑

p∈Pij

π̃p(t) (2)

A service is then important if it has a great effective contribution to all other
services in the system.

Definition 10 (service importance). The importance of a service sj is de-
fined as the sum of its global effective contributions to all services si ∈ S:

Ij(t) =
∑

si∈S
π̃∗ji(t) (3)

Example 4. Figures 2 and 1 show that service s4=AFP contributes to service
s2=Le Monde with score π42 = 0.6 and has been called by Le Monde at instant
9. If service usage u42(t) at instant t = 10 is estimated by the age of the last call
and the time elapsed between instant 10 and 9 is only several hours, the effective
contribution of AFP to Le Monde is high (close to the quality contribution
score). On the other hand, even if Le Monde highly contributes to the quality of
Google News, it has been called by Google News several days before instant 10,
which leads to a low effective contribution. By a similar kind of reasoning we
can see that even if the quality contribution π42 ∗ π21 of AFP to Google News
through Le Monde is high, the service contribution of AFP to Google News via
Le Monde is low. This is due to the low call contribution score of the calls to
AFP for the calls from Google News (when the call at a given instant exploits
news generated before this instant, as described in example 3). On the other
hand, the quality contribution π43 ∗ π31 of AFP to Google News via 20 Minutes
is enforced by a high service usage score u431(t) ∗ u43(t).

4 Computing Importance

This section presents two algorithms for computing the importance of services
at time τ in a service-oriented system S. The fundamental idea is to exploit the



336 C. Constantin, B. Amann, and D. Gross-Amblard

existing service-oriented architecture for distributing the computation on the
different service nodes. The presented algorithms can efficiently be deployed on
large-scale service infrastructures since each service computes its importance by
exchanging messages only with its already known neighbor services in the service
call graph. The computed importance values could then be registered along with
other information on the services in an UDDI registry.

In both algorithms, each service sk computes its own importance Ik(τ) at τ by
exchanging messages with neighbor services in In(τ, sk) and Out(τ, sk). Compu-
tation is iterative until convergence : each service sk starts its computation with
an initial importance value I0

k(τ) and computes a new importance approximation
based on importance values νki(τ) received from its neighbors si ∈ In(τ, sk). It
also sends importance updates νjk(τ) to services sj ∈ Out(τ, sk) and stops its
computation when the relative error between the newly computed importance
and the previous one is lower than a given (sufficiently small) ε.

The importance value νjk(τ) received by sj from each sk ∈ In(τ, sj) expresses
(i) the quality contribution πjk of service sj to service sk and, recursively, (ii)
the quality contribution and call usage of service sj for other services si via sk.
More formally, the received importance νjk(τ) received by sj from some client sk

is computed using the importance values νki(τ) received by sk from its clients
si :

νjk(τ) = πjk +
∑

si∈In(τ,sk)

νki(τ) ∗ ujki(τ) ∗ πjk (4)

Observe that by definition νjk(τ) = πjk if no service call from service sk to
service sj has been useful to any service call received by service sk.

The importance Ij(τ) of a service sj at some moment τ is the sum of the
received importance values νjk(τ) weighted by the direct utility scores ujk(τ) :

Ij(τ) =
∑

sk∈In(τ,sj)

νjk(τ) ∗ ujk(τ) (5)

We suppose that sj knows its own service usage ujk(τ) at the beginning of the
algorithm. The proof that equation 5 computes the same importance values as
defined by equation 3 is given in [9].

We propose in the following section two distributed algorithms which are
different by the protocol used for exchanging importance values between services.
In the first algorithm services synchronize their computation by sending new
importance values only after having received importance values from all of its
clients. In the second algorithm importance messages are not synchronized. Both
algorithms are evaluated and compared in Section 5.

4.1 Synchronous Distributed Computation

In this algorithm each service sk first collects importance values νki(τ) from all
services si ∈ In(τ, sk), recomputes its importance and sends it to services sj ∈
Out(τ, sk). Variables Ok and Nk are vectors where oki and nki are old and new
importance values received by sk from si ∈ In(τ, sk) during the computation.



A Link-Based Ranking Model for Services 337

All services choose a common time τ and start the computation with an initial
importance value I0

k equal to 0. Then each service sk ∈ S executes the following
algorithm:

ComputSync(τ )
Input: a time τ , ρ = ∅
Output: importance of the service sk at time τ
begin

Ok = Nk = 0
do

for each sj ∈ Out(τ, sk) do // forward importance values
νjk(τ ) = λ ∗ πjk + λ ∗

∑
si∈In(sk) nki ∗ ujki(τ ) ∗ πjk

send νjk(τ ) to sj

endfor
Tmp = In(τ, sk) //services that did not send their importance
while Tmp �= ∅ do // compute new importance

nki = νki(τ ) //wait for next importance message
Tmp = Tmp \ {si}

endwhile
if |Nk −Ok|/Ok ≥ ε then

ρ = ρ \ {si}
else

ρ = ρ ∪ {si} // local convergence
endif
Ik(τ ) =

∑
si∈In(sk) nki ∗ uki(τ ) //compute service importance

Ok = Nk

while ρ �= S // stop when all the services have converged
end

The above algorithm implements the Jacobi iterations which compute the
received importance as the solution of the linear system presented in [9]. Im-
portance values are multiplied by a constant value λ ∈ (0, 1) (similarly to [18])
which guarantees that the solution of the system exists and is unique and that
the Jacobi iterations converge to the solution of the system independently on
the initial importance values I0

k (see [9] for a formal proof). The received im-
portance of service sj converges locally when |Nk − Ok|/Ok < ε for a given ε.
Local convergence does not necessarily imply global convergence, some services
converge faster than others. ρ denotes the set of services that have converged
after each step of the algorithm. Computation stops when all services sk ∈ S
have converged locally, i.e, when ρ = S.

4.2 Asynchronous Distributed Computation

The algorithm presented in this section avoids additional computation messages
and the delays due to synchronization by embedding importance values into
application-specific service calls at instants t > τ . The only “synchronization”
between services consists in choosing a time τ for starting the computation.



338 C. Constantin, B. Amann, and D. Gross-Amblard

Similarly to the previous algorithm, we use a vector Nk whose elements are
initialized to 0 at the beginning of the algorithm. The algorithm is defined as
follows :

ComputAsync(τ) : At each service call sk ↪→t sj , where t > τ :
– Sender sk

1. computes importance value νjk(τ) = λ∗(πjk +
∑

si∈In(τ,sk) nki∗ujki(τ)∗
πjk)

2. embeds νjk(τ) into the service call sk ↪→t sj (e.g. as an additional ele-
ment of a SOAP message)

3. calls service sj
– Receiver sj

1. memorizes the received importance value in njk and
2. updates its importance Ij(τ) =

∑
sk∈In(τ,sj)

njk ∗ ujk(τ).
Each service sk recomputes its local importance at each incoming service call

without waiting for all services si ∈ In(τ, sk) to send their importance. Service sk

communicates its new importance values νjk(τ) to its clients sj ∈ Out(τ, sk) only
when it issues a new call to sj . The result is an asynchronous protocol where each
services computes its importance at its own pace, based on possibly outdated
importance values. Note that some services might update their importance or
might communicate more frequently than others.

The above algorithm implements the totally asynchronous iterations that
compute the solution of the linear system presented in [9]. We suppose that
our system fulfils the total asynchronism assumption [5], i.e., all importance val-
ues are updated infinitely often and old values are potentially purged from the
system. Each service sk has to be eventually informed on the importance up-
dates from all services si ∈ In(τ, sk). Then the totally asynchronous iterations
converge to the solution of the linear system (see [9]). For the algorithm to ter-
minate, conforming to [5], the importance νjk(τ) is sent to sj only if it differs
with more than ε from the last importance sent by sk to sj . When the compu-
tation converges, no update are sent to sj anymore. The algorithm termination
is detected when i) no message is in transit and ii) any recomputation of Ik(τ)
does not change its value (conforming to [5]).

The above algorithms compute the importance of each service sj at time in-
stant τ iteratively based on equations 4 and 5. In [9] we show that the importance
obtained when the algorithms converge corresponds to the sum of the global ef-
fective contribution of sj to all services si ∈ S (equation 3). It also is easy to
show that each services consumes limited memory of linear size depending on
the number of clients (for storing old and new importance values). Global com-
plexity (in terms of the maximal and average number of iterations) is evaluated
in the following section.

5 Experimental Evaluation

We implemented both algorithms in Java (JDK 1.5) on a AMD Turion 64 laptop
(1.6GHz, 2Gb RAM) under SUSE 10.0 Linux. In the following experiments we



A Link-Based Ranking Model for Services 339

considered a network of 1000 collaborating services which were simulated in form
of Java threads. We generated different network configurations (described later)
defined by the way each service si chooses its neighbor services sj ∈ Out(τ, si)
that contribute to its quality at some time instant τ . Quality contribution is
distributed uniformly for each service in Out(τ, si) : πji = 1/|Out(τ, si)|. For
modeling service and call utility we assign to each edge from si to sj a random
value δji ∈ [0, 10] representing the age of the last call from si to sj with respect
to the instant τ . We consider that all service use the same utility functions
uji(τ) = 1 − α ∗ δji (service utility) and ujki = 1 − α ∗ |δki − δjk|. Utility
factor α is used to control the influence of the utility function on the importance
computation (α = 0 means that all service contribution links are taken into
consideration during computation ignoring the age of the last service calls).

Each service si starts its computation with an importance value of 0, and
stops its computing after local convergence (when |Ni − Oi|/Oi < ε). In the
synchronous algorithm described in section 4, some services might converge faster
than others and we consider that a service si performs an iteration when it
receives importance updates from all services in In(τ, si) that did not converge
yet (this is different from the presented algorithm, where each service waits
for updates from all services in In(τ, si)). For asynchronous computation we
suppose that a service si performs an iteration when it makes a number of
importance updates which is equal to the number of its neighbors in In(τ, si). In
the following, unless specified otherwise, all experiments are run with threshold
ε = 10−4, utility factor α = 0 and λ = 0.85.

5.1 Service Graph Generation

In the following we will call the services in Out(τ, si) the neighbors of si. The
neighbors of a service are chosen by the following four strategies, leading to
service importance graphs with different topologies:

Max-graph [MAX]. This graph is similar to the Web graph model proposed
by [2]. Each service chooses as neighbors with probability 0.75 five “popular”
services, i.e. services which already have been chosen by many other services.

Linear-copying graph [LC]. Each service randomly selects a “prototype” service
p among all existing services. It then chooses five neighbors among all services
where each such neighbor is with probability 0.75 a neighbor of p. The obtained
graph is similar with the Web graph model proposed by [16].

Small-world network [SW]. This configuration simulates a small-world network
by creating 20 communities composed of 50 services. Each service in such com-
munity randomly connects to 5 neighbors in the same community and each
community interacts on average with 5 services of other, randomly drawn, com-
munities.

Client-server configuration [CS]. This configuration combines the above three
strategies to model a client-server setting with 80 client communities calling
services of a single server community (SW). Each client community contains 10



340 C. Constantin, B. Amann, and D. Gross-Amblard

services with a “prototype” service connected to some randomly chosen server
services. The other 9 services in the same community are connected randomly
to 1 service in the same community and to at most to 5 server services, each
server being with probability 0.75 a neighbor of the community’s prototype (LC
strategy). The server community is MAX graph composed of 200 server services
connected in average to 5 other server services.

5.2 Experimental Results

Figure 3 shows, for all four graph configurations, the average number of computa-
tion messages generated per service until convergence using global synchroniza-
tion, local synchronization (do not wait for services that already have converged)
and no synchronization. We see that global synchronization generates the highest
number of messages since services that already have locally converged at some
iteration step i still keep sending messages until all services have converged. With
local synchronization, services which have converged stop sending messages. Us-
ing the asynchronous algorithm services converge faster than with the locally
synchronous algorithm(as shown by figure 5). The reason for this gain is that a
service does not systematically send freshly computed importance values to all
its neighbors, as in the synchronous algorithm, but “optimizes” communication
by sending new importance values only once in a while. We see that SW and
LC generate more messages than the other configurations. Services in SW are
randomly connected, which might lead to many cycles and long contribution
paths for many services. The same argument holds for prototype services in LC
which are chosen randomly. On the contrary, contribution paths in MAX are
rather short, as all services link to the popular services. There are many services
which are not neighbors of other services and that converge very fast. In CS
there are many independent small communities with few connections.

Figure 4 shows the influence of the threshold value ε used for convergence on
the number of iterations. As expected, lower values for ε lead to a higher number
of iterations, since we should take into consideration longer paths (with lower
contribution) to achieve convergence. Nonetheless Figure 4 illustrates that the

Fig. 3. Number of messages for the dif-
ferent models

Fig. 4. Number of iterations for conver-
gence w.r.t. ε



A Link-Based Ranking Model for Services 341

(a) synchronous algorithm (b) asynchronous algorithm

Fig. 5. Ratio of converged nodes w.r.t. number of iterations

growth in the number of iterations is logarithmic independently on the graph
model. Similar results were reported by [6] on the convergence of PageRank.

Figures 5(a) and (b) show the ratio of the importance values that reached their
final ranking with respect to the number of iterations. With the synchronous al-
gorithm (figure 5(a)) for LC (resp. SW ) only 10% (resp. 1%) of the services
have converged after 30 iterations. Global convergence is achieved after about
50 iterations. This can be explained by the high connectivity of the small-world
communities that leads to a large number of possible paths to be explored. On
the contrary, the services in CS converge more quickly (after 10 iterations al-
most all the services have converged) since client services are grouped in many
small communities. By comparing figure 5(a) with figure 5(b) we first note that
removing synchronization allows services to converge faster. The reason is that a
service sends in each importance message more information on the contribution
paths than in the synchronous algorithms, the convergence being then acceler-
ated. In other words, with the asynchronous algorithm services “learn” more
quickly all their contribution paths.

We also performed several experiments to illustrate the impact of the utility
function on the importance computation. In Figure 6 we see that the number of
iterations decreases when the value of α increases, independently of the graph
model. This was expected since smaller utility values lead to lower connectivity
along with smaller paths since the quality contribution of a service on a path is
reduced by the utility factor α. In Figure 7 we study the influence of the utility
factor α on the ranking of the services for three graph configurations. We consider
as reference the ranking obtained for α = 0.0 (ranking obtained by considering
only service contribution links without service utility). For different values of
α we compute the fraction of the services that are still in the top 10 and top
50 services. We see that service utility strongly impacts the obtained ranking.
For example, in the SW configuration and for α = 0.2 only 20% of the most
important contributing services still belong to the top 10 (resp. top 50) services.

Finally Table 1 illustrates the influence of a service on the importance of other
services. After an initial importance computation, we removed a randomly cho-
sen node and recomputed the importance values of all services. The table shows



342 C. Constantin, B. Amann, and D. Gross-Amblard

Fig. 6. Number of iteration for different
utility functions

α LC SW CS
10 50 10 50 10 50

0.0 10 50 10 50 10 50
0.04 9 46 7 39 10 47
0.08 8 45 6 30 10 44
0.12 7 42 4 26 10 42
0.16 6 39 2 17 8 38
0.2 4 25 2 10 4 27

Fig. 7. Influence of the util-
ity on the result set

Table 1. Cost of the recomputing when 1 peer leaves

without utility utility: α = 0.1
sync async sync async

nodes path mess nodes path mess nodes path mess nodes path mess
LC 938 18 16682 887 99 7670 938 14 12694 764 61 2979
SW 990 32 12577 450 210 16325 995 16 2223 256 85 2854
CS 896 200 230 101 31 648 898 126 200 94 20 245

the number of services involved in the importance recomputation, the number of
recomputation messages that are exchanged and the length of the maximum path
that is taken into consideration. We see that with the locally synchronous algo-
rithm almost all services are involved in the importance computation, whereas
with the asynchronous one only a part of services in the neighborhood of the re-
moved node recompute their importance. For instance with α = 0.1 and CS
graph, only 94 nodes participate to the computation with the asynchronous algo-
rithm. Note also that the path lengths and the number of exchanged messaged are
smaller with a utility of 0.1. The difference in the path lengths and in the number
of exchanged messages between the synchronous and the asynchronous algorithm
seems to be dependent on the graph topology. For example, with the LC graph
the number of messages of the synchronous algorithm are greater than the ones
for the synchronous one for both values of α, whereas for SW the contrary is true.

6 Conclusion

This article presents a general framework for ranking services with respect to
their global contribution to other services. Whereas the basic approach has been



A Link-Based Ranking Model for Services 343

illustrated in the context of a service-based news syndication system, we believe
that the proposed model and algorithms are useful for many other applications
like web service discovery and selection [7,21], service-based P2P data warehous-
ing [3] and XML data integration. We are currently evaluating our model in the
context of data-centric web services where each service is defined as a parame-
terized views on a local data repository containing the results of calls to other
services [3]. The basic idea is to redefine service usage and quality contribution
in terms of service call expiration, data validity and queries.

Finally, we are also aware that there are many open security issues related
to our importance model and algorithms. In particular, we do not tackle the
problem of services which try to cheat by increasing their importance artificially
or by sending fake importance values. This phenomenon is also well-known in the
context of traditional web search engines and P2P systems and we believe that
existing solutions for securing the computation (like in [13]) could be adapted
to our algorithms. This is also part of our future work.

References

1. S. Abiteboul, M. Preda, and G. Cobena. Adaptive On-Line Page Importance
Computation. In Proc. Intl. World Wide Web Conference (WWW), pages 280–
290, 2003.

2. R. Albert, H. Jeong, and A.-L. Barabási. The Diameter of the World Wide Web.
Science, 286:509–512, 1999.

3. The Active XML Project. http://activexml.net.
4. R. A. Baeza-Yates, C. Castillo, and F. Saint-Jean. Web Dynamics, Structure, and

Page Quality. In Web Dynamics, pages 93–112. 2004.
5. D. P. Bertsekas and J. N. Tsitsiklis. Some aspects of parallel and distributed

iterative algorithms-a survey. Automatica, 27(1):3–21, 1991.
6. M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Transactions on

Internet Technology (TOIT), 5(1):92–128, 2005.
7. J. Caverlee, L. Liu, and D. Rocco. Discovering and ranking web services with

BASIL: a personalized approach with biased focus. In Proc. Intl. Conf. on Service-
Oriented Computing (ICSOC), pages 153–162, 2004.

8. J. Cho, S. Roy, and R. Adams. Page Quality: In Search of an Unbiased Web
Ranking. In Proc. ACM Symp. on the Management of Data (SIGMOD), 2005.

9. C. Constantin, B. Amann, and D. Gross-Amblard. A Link-based Ranking Model for
Services (long version), 2006. http://www-poleia.lip6.fr/˜ amann/coopis long.pdf.

10. G. M. D. Corso, A. Gulli, and F. Romani. Ranking a Stream of News. In Proc.
Intl. World Wide Web Conference (WWW), pages 97–106, 2005.

11. F. Emekçi, O. D. Sahin, D. Agrawal, and A. E. Abbadi. A Peer-to-Peer Framework
for Web Service Discovery with Ranking. In Proc. Intl. Conf. on Web Services
(ICWS), pages 192–199, 2004.

12. S. Kalepu, S. Krishnaswamy, and S. W. Loke. Reputation = f(User Ranking,
Compliance, Verity). In Proc. Intl. Conf. on Web Services (ICWS), pages 200–
207, 2004.

13. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm
for reputation management in P2P networks. In Proc. Intl. World Wide Web
Conference (WWW), pages 640–651, 2003.



344 C. Constantin, B. Amann, and D. Gross-Amblard

14. J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. J. ACM,
46(5):604–632, 1999.

15. G. Kollias, E. Gallopoulos, and D. B. Szyld. Asynchronous Iterative Computations
with Web Information Retrieval Structures: the PageRank Case. In Proc. Intl.
Conf. on Parallel Computing (PARCO), 2005.

16. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal.
Random Graph Models for the Web Graph. In Proc. Intl. Symp. on Foundations
of Computer Science (FOCS), pages 57–65, 2000.

17. Y. Liu, A. H. H. Ngu, and L. Zeng. QoS computation and policing in dynamic
web service selection. In Proc. Intl. World Wide Web Conference (WWW), pages
66–73, 2004.

18. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford Digital Library Technologies
Project, 1998.

19. J. X. Parreira and G. Weikum. JXP: Global Authority Scores in a P2P Network.
In Proc. Intl. Workshop on the Web and Databases (WebDB), pages 31–36, 2005.

20. K. Sankaralingam, S. Sethumadhavan, and J. C. Browne. Distributed Pagerank for
P2P Systems. In Proc. Intl. Symp. on High Performance Distributed Computing
(HPDC), pages 58–69, 2003.

21. L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Rank-
ing with Trust and Reputation Management. In Proc. Intl. Conf. on Cooperative
Information Systems (CoopIS), pages 466–483, 2005.

22. Y. Wang and D. J. DeWitt. Computing PageRank in a Distributed Internet Search
Engine System. In Proc. Intl. Conf. on Very Large Data Bases (VLDB), pages
420–431, 2004.



Quality Makes the Information Market�

B. van Gils, H.A. (Erik) Proper, P. van Bommel, and Th.P. van der Weide

Institute for Computing and Information Sciences, Radboud University Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

Abstract. In this paper we consider information exchange via the Web
to be an information market. The notion of quality plays an important
role on this information market. We present a model of quality and dis-
cuss how this model can be operationalized.

This leads us to quality measurement, interpretation of measurements
and the associated accuracy. An illustration in the form of a basic quality
assessment system is presented.

1 Introduction

The amount of information available to us has been increasing at an explosive
rate over the last few years, especially with the massive growth of the Web. Sev-
eral tools and systems have been developed to help us manage the vast amount of
available resources such as indexes, search engines, catalogues and so on. These
tools can, to some extent, be seen as information retrieval tools.

Basic background on information retrieval is found in [17] and [16]. The tra-
ditional information retrieval paradigm is introduced in Figure 1.

A main challenge in information retrieval is the correct formulation of infor-
mation requests. See the left part of Figure 1. In the middle and right part, we
see brokering or matching, and characterisation.

Characterising supply: Good characterisation of resources is imperative for
effective information discovery, as poor characterisations inevitably lead to
the retrieval of irrelevant information, or omit relevant information.

Matching demand and supply: The selection of relevant resources for a
given query is a well understood problem. The field of information retrieval
has developed a number of retrieval models.

Besides traditional performance measures such as precision and recall, a notion of
quality in the broader sense is essential in modern information retrieval. Relevant
quality aspects are the following. What is the quality of the characterisation of
resources? What qualities do resources have? What is the quality of a query?
How well is a query formulated and how accurately does it describe the searchers
information need? What is the quality of a search engine or match maker? What
are its qualities?
� The investigations were partly supported by the Dutch Organization for Scientific

Research (NWO).

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 345–359, 2006.
� Springer-Verlag Berlin Heidelberg 2006



346 B. van Gils et al.

Searcher

Knowledge gap

Information Need

Information request
Information selection /

Brokering
characterisationformulation indexing

refinement

learning

Information base

Fig. 1. The information retrieval paradigm

Quality has received a lot of attention in the general area of computing and
information science. Section 2 contains examples and references to the literature.
The specific domain of the Web information market still lacks a proper notion
of quality, though. Our research focus is to work towards a generic model of
quality of resources and to show how it can be used in the context of the Web.
This research on quality is part of a larger project on information supply on the
Web. This project has been introduced in [7]. More details about our approach
of information supply were presented in for instance [1] and [8].

The organisation of this paper is as follows. In Section 2 we give a survey
of the literature on quality in general. Then we discuss our quality model in
Section 3. We discuss the operationalisation of our quality model for the Web
context in Section 4. Finally, we illustrate an application in terms of an example
quality assessment system in Section 5, while Section 6 gives conclusions and
directions for future research.

2 Background

From the dictionary definition of quality1 we learn that the notion of quality
has two distinct interpretations: (1) a distinguishing characteristic similar to a
property, and (2) inherent or intrinsic excellence, in other words how good some
artefact is.

The term quality has a long history, for example in his work on the philosophy
of nature, Aristotle used the notion of quality2. In his view, quality is the category
according to which objects are said to be like or unlike. Other great philosophers
such as Descartes, Bacon, Newton, and Galileo oppose to Aristotle’s view on
quality3 mainly because they make a distinction between objective qualities and
largely subjective qualities.

1 We have consulted Webster’s third new international dictionary, unabridged and
Concise Oxford Dictionary

2 http://www.utm.edu/research/iep/a/aristotl.htm and
http://www.newadvent.org/cathen/12589c.htm

3 http://www.ul.ie/∼philos/vol1/eustac1.html

http://www.utm.edu/research/iep/a/aristotl.htm
http://www.newadvent.org/cathen/12589c.htm
http://www.ul.ie/~philos/vol1/eustac1.html


Quality Makes the Information Market 347

In e-commerce the notion of quality plays an important role. Two main ex-
amples in this respect are the problem of uncertainty with regards to the prod-
uct/service to be traded and the lack of quality information about the traded
assets, see [19] and [11] respectively. These problems are similar in the field of
operations management where one is mainly concerned with key dimensions of
quality such as product attributes, product performance, warranty, and service
availability This is discussed in [10]. A conformance to specification approach
is very popular in this field, but is criticized in [12] because it would focus too
much on the supplier perspective, whereas the consumer perspective would focus
on value for money. In [15] the focus is on the ex-post evaluation of quality of
information in organizations, based on the ISO-8402 definition of quality:

The totality of features and characteristics of a product, process or ser-
vice that bear on its ability to satisfy stated or implicit goals.

Using this definition, in [15] a dual view on quality is proposed. On the one
hand, the causal point of view deals with the quality of information, seen as the
result of the quality of the process in which it is produced. On the other hand,
in the teleological point of view the quality of information is seen as the degree
to which it satisfies stated or implicit needs, derived from the situation in which
it is used.

In the field of software engineering, the notion of quality plays the role of qual-
ity of software, and quality of the software engineering process. In this field the
emphasis is mainly on quality attributes. See for instance [18]. Examples of these
attributes are safety, security, reliability, resilience, robustness and learnability.
Furthermore software quality management can be structured into three principle
activities: quality assurance, quality planning, and quality control. See [3, 2, 13,
6] for further discussions on quality in the context of software engineering.

In [5] a discussion on the quality of data on the Web is presented. This dis-
cussion starts with the observation that “well-founded and practical approaches
to assess or even guarantee a required degree of the quality of data are still
missing”. In order to overcome this defect the authors propose that a quality
algebra be used for dealing with quality issues on the web. Such an algebra is
particularly useful for intermediaries on the information market. See for example
[7]. In [20] it is posed that user concerns about their perception of the quality of
information on the Web continues to be a strong incentive for “the emergence
and success of information intermediaries”. They can play an important role in
the trust relationship between suppliers and consumers, as well as in the con-
trol of quality versus price. Last but not least, the approach of [14] is that data
quality is the measure of the agreement between the data view presented by an
information system and some data in the real world.

3 A Model of Quality

Upon closer examination, the above definitions and applications of quality show
that there are three main views on quality:



348 B. van Gils et al.

Property: the quality properties some artefact may poses.
Excellence: the actual quality of some artefact with regards to some property.
Desirability: the desired qualities (by some actor/buyer/user) of some artefact

with regards to some property.

In computing terms, one might think of the first view as a variable, the second
view the value that can be assigned to this variable after evaluating the quality of
some artefact, while the third view corresponds to the value that can be assigned
to this variable when considering the desires of some actor/buyer4.

In our approach, quality has to be made specific and precise in order to be able
to reason about it. We therefore provide a more formal elaboration of the notion
of quality. We will do so in two steps. First we discuss quality as excellence, where
we will consider both the quality properties (the variables) and the excellence
(the value) of some artefact with regard to a property. Then we move on to the
desirability of quality properties.

3.1 Quality as Excellence

In this subsection we introduce a model for the properties that artefacts can
have. In the formalisation that follows we will use the following notation:

AF Artefact PT Property type
RO Role type PD property domain
FL Fulfillment VL Value

Let AF be the set of all artefacts that may have certain qualities or properties,
and let RO be the set of all roles that these artefacts can fulfill. The combination
of an artefact and a role is dubbed a fulfillment. So a fulfillment denotes an
artefact in a role. Fulfillments are captured by FL. The artefacts and roles that
participate in a fulfillment can be found using the functions Artefact : FL→AF
and Role : FL→RO respectively. Since a fulfillment denotes an artefact in a
role we know that an artefact and a role combination uniquely determines a
fulfillment:

Axiom 1 (Unique fulfillment)

Artefact(f1) = Artefact(f2) ∧ Role(f1) = Role(f2) =⇒ f1 = f2

For a fulfillment f ∈ FL we introduce the following notation:

〈a, r〉 � f such that Artefact(f) = a ∧ Role(f) = r

The following example illustrates this. Let Mug denoted by a be an artefact that
can play two roles. It either plays the role of type some artefact to drink from
denoted by r1, or the role of type art object denoted by r2. Both f1 = 〈a, r1〉
and f2 = 〈a, r2〉 are fulfillments such that:

Artefact(f1) = a Role(f1) = r1

Artefact(f2) = a Role(f2) = r2

4 We would like to thank one of the anonymous referees for suggesting this analogy.



Quality Makes the Information Market 349

Role types can have properties, the value of which are expressed in a property
domain. For example, the role type art object can have the property type color
and the values that this property can take are expressed in the domain RGB-
colors. Let PT be the set of property types and PD be the set of property
domains. The properties that can be played by a certain role type are given by
the function Props : RO→℘(PT ) and the domain in which values of a property
can be expressed is given by the function PrDom : PT →PD.

We continue the above mentioned example. Role type art object denoted by
r2 can have the property type color denoted by p which can be expressed in the
domain RGB-colors denoted by d. As a consequence, we have:

Props(r2) = {p}
PrDom(p) = d

Note that property types and domains are at the typing level. We still need to
assign values to entities having a certain property type. The first step to achieve
this is to create a link between PD and the values from this domain. The set VL
consists of sets of values for a certain domain. In other words, an element from
PD is the name of a certain domain and an element of VL consists of its values.
The functions Value : PD→VL and VlDom : VL→PD are used to find the values
of a domain or the name of a set of values respectively. For example, the domain
RGB-colors denoted by d has the values v = {#000000 . . .#FFFFFF}. More
specifically:

Value(d) = v
VlDom(v) = d

The actual value assignment of a fulfillment (the level of excellence of some
artefact in fulfilling a role) having a certain property is given by the function
ValAss : FL×PT →VL. In the example, the fact that mug a as an art object r2

has the color p with value red is expressed as follows:

ValAss(〈a, r2〉, p) = #FF0000

We have to ensure that the observations on the instance level do not conflict with
the typing level. For example, if a fulfillment is said to have a value assignment
for a property, then at least one of the roles of this fulfillment must have this
property. If f is a fulfillment, p is a property type and v is a value, we have:

Axiom 2 (Conformance)

ValAss(f, p) = v =⇒ p ∈ Props(Role(f)) ∧ PrDom(p) = VlDom(v)

In our framework of quality treatment, the axioms of conformance and unique
fulfillment express basic properties of wellformed quality models.

3.2 Quality and Desirability

To be able to assess the desirable quality of an artefact for a user, the actual
desires of this user must be made explicit. The question is how to do this. One



350 B. van Gils et al.

of the main problems is to choose a domain in which quality is expressed. As an
example, it does not make sense to say that the quality of an artefact is 24. The
notion of quality is, in that respect, similar to the notion of value as discussed
in [1]. A value is an abstract notion and can be used to compare artefacts.

Quality, in the sense of desirability, depends on the desires of actors such as
people. Here a distinction must be made between hard and soft desires with
regard to artefacts. These can be compared, to some extent, to functional and
non-functional requirements or hard goals and soft goals in requirements engi-
neering. In requirements engineering one often tries to make soft goals hard.
See for instance [4]. In our approach, goals and requirements are considered to
be soft if a human opinion is needed for the value assignment. Otherwise, it is
considered to be hard. In other words, hardness or softness of a requirement
depends on the way of measurement. The following are examples of hard goals
and soft goals:

hard goals: price below e20, contents of 25 liters, made of stainless steel.
soft goals: cheap, pretty, low, hard, strong.

Quality in the sense of desirability depends on the requirements of an individual.
More specifically, these requirements have to do with value assignments. The
quality of a fulfillment increases if properties have the right value. Putting it
differently, value assignments are constrained. Consider the following example
of a requirement for a fulfillment:

The price in euros may not exceed the price of a given cup.

In this example, price is a property type which is expressed in the domain e’s.
Furthermore, may not exceed the price of that cup is a constraint involving an
assignment.

Observe that all requirements involve a constraint and a property type. How-
ever, some also involve a specific value. We model this as follows. Let RQ be the
set of all requirements and let CS be the set of all constraints. A requirement
has a mandatory property type, a mandatory constraint and an optional expres-
sion. Expressions can either be values or fulfillments, as illustrated by the above
examples. In terms of our model, we have EX � VL∪ValAss.

Let Prop : RQ→PT , Constr : RQ→CS, and Expr : RQ� EX . In our frame-
work we use the following shorthand notations:

r1 = 〈p, c, e〉 � Prop(r1) = p ∧ Constr(r1) = c ∧ Expr(r1) = e

r2 = 〈p, c〉 � Prop(r2) = p ∧ Constr(r2) = c

This allows us to write 〈price , <,e10〉 for the constraint the price may not exceed
e10 and 〈price , min〉 for the constraint the price must be as low as possible. Note
that a requirement with respect to a fulfillment is of a certain actor. Let AC be
the set of actors and let Req : AC ×FL→℘(RQ) yield the requirements of an
actor with regard to a fulfillment. For example, we then have:

Req(a, f) = {r1, r2}



Quality Makes the Information Market 351

PropertyType
(name)

Value
(id)

Domain
(name)

RoleType
(name)

Artifact
(id)

Fulfillment

ValueAssignment

Expression

Constraint
Operator

Requirement
EU

FulfillmentAspect

Fig. 2. Object-role model of quality

This expresses that actor a has requirements r1 and r2 with regard to fulfillment
f . Here we conclude the discussion of our model of quality. The focus of the
next section is on operationalization. In order to have a graphical representation
of our quality definitions, we present an object-role model in Figure 2. See for
example [9] for details on object-role models.

4 Operationalizing Quality

In the previous section we have presented our model for quality which unifies
two interpretations of quality. In this section we will shift the focus to opera-
tionalizing this model in practice. The ambition of this paper is not to come
up with a tool that will determine the quality of a web resource for a searcher.
We will merely concentrate on determining which aspects play a role in such a
process and how these aspects could be tackled.

4.1 Uncertainty in Quality Assessment

Since a quality assessment system will measure the quality of a resource for a
certain actor, the system should be able to deal with uncertainty with regards
to the quality. A first kind of uncertainty has to do with the observations and
measurements of the system. For example, the fact that a resource has outgoing
hyperlinks can be be measured with near 100% certainty. However, the language



352 B. van Gils et al.

of a resource is more difficult to measure. This kind of uncertainty is mentioned
in the left part of Figure 3.

Quality
Assessment

System

Resource

Actor

assessment of
properties for
characterisation

assessment of
quality constraints
by actor

Fig. 3. Uncertainty in quality assessment

In the right part of Figure 3 a second kind of uncertainty is mentioned. This
uncertainty deals with the actor for which the quality assessment is made. Con-
sider, for example, the situation in which an actor assesses the quality of resources
based on their length, in number of words. Assume that if a text is long then the
quality of the resource is considered to be high. Although the number of words
is an objective measure, the adjective long is subjective and therefore it will be
difficult for the quality assessment system to assert with some level of certainty
whether a resource is long or not.

4.2 Linguistic Variables

In our quality framework, the concept of a linguistic variable is used to describe
the fuzzy assessments made by actors [22, 23, 24, 21]. A linguistic variable dif-
fers from a numerical variable in that its values are not numbers but words or
sentences in some language. For example, the linguistic variable age might take
young, not young, old, or not very old as its values.

More formally, a linguistic variable is defined by a quintuple
〈X , T (X ), U, G, M〉 in which X is the name of the variable. The set T (X )
or simply T denotes the termset of X , that is, the set of names of linguistic
values being fuzzy variables ranging over U . The rule G is a syntactic rule
which usually has the form of a grammar, for generating the names of the
values of X . The rule M is a semantic rule for associating with each name X
its meaning M(X). The fuzzy restriction is characterized by a membership
function µR : U→ [0, 1] which represents the grade of membership with respect
to the fuzzy restriction. For example, for a linguistic variable named age we
could compute that µyoung(50) = 0.35 which expresses how confident we are that
an age of 50 years is considered to be young.

In case of resources on the Web, we need a language for expressing qualities
of resources as well as domains in U in which these qualities can be expressed.
As an example, assume that importance of a resource is the only criterion by
which the quality is assessed. Using the terminology of Section 3 we then have:

– We are interested in resources which play the role of webpage. Let r be such
a resource and let f ∈ FL with Artefact(f) = r and Role(f) = webpage.



Quality Makes the Information Market 353

– We let X ∈ PT be a property type for importance, modelled as a linguis-
tic variable. Furthermore we define domain PrDom(X ) = PageRank and
Value(PageRank ) = {low, medium, high} which conforms to the termset of
the fuzzy variable X . The universe of discourse is the PageRank which can
vary from 0 to 10. The membership function is illustrated by Figure 4.

– We define the requirement R = 〈X , high〉 expressing that the importance
property of a resource must be high if it is to be judged as having high
quality. Now if a ∈ AC is the actor for which the quality assessment takes
place, we have Req(a, f) = {R}.

1

0

low medium high

10

Fig. 4. Membership function for importance with PageRank as universe of discourse

The membership function in Figure 4 is read as follows. When the quality
of a single resource is to be assessed then the actual pagerank can be used to
determine whether the importance is high. An actual pagerank can be extracted
from engines such as Google. For example, if the pagerank exceeds 9 then the
membership function states that we are 100% sure that this resource will have
a high importance. For a pagerank of approximately 7 the membership function
states that the degree of membership for high and medium is approximately the
same and equals roughly 0.4. This can be interpreted as being only 40% sure
that the quality of the resource is, indeed, high.

4.3 Quality Measurement

Actors use requirements and constraints to determine the quality of an artefact.
These requirements are often soft in the sense that they can not be measured
directly. Some examples are:

– The resource must have a high pagerank.
– The resource must be recent.

In our approach these soft requirements are translated to concrete statements:

– Data resource having attribution (with value “high” AND of type “pagerank”)
– Data resource having attribution (with value “recent” AND of type “modifica-

tion date”)



354 B. van Gils et al.

These statements are meaningful under the assumption that high and recent are
fuzzy values which are mapped to their respective hard domains.

Then we define what it means that we measure some property of an artefact
to have a value with some degree of certainty. Measurements depend on the
situation in which they are done. Measuring the weight of an artefact depends
on the location, for instance on the moon or earth. Furthermore, the measuring
device is another cause for concern. For example, one thermometer may be less
accurate than another. To model this we use a set SI describing possible relevant
situations andMD describing measuring devices.

Two additional observations are relevant to our discussion here. Firstly, dif-
ferent kinds of measurements can be done:

1. One can attempt to measure the value of some property of an artefact.
2. One can attempt to verify whether the value associated to a property of an

artefact satisfies a condition.

So a measurement results in a measured value or in a boolean. Let MV be the
union of all possbible value domains. A measuring device R ∈ MD can now be
modeled as a function that maps object-situation combinations into values:

R = [AF ×SI]�MV
Secondly, we denote a specific measurement with M(a, s, d) = v where a is the
artefact under consideration, s is the present situation, d is the measuring device
and v the observed value.

Example 1. Let c be a car. John is driving down the highway somewhere in
Europe. Let s denote his situation, that is his current point in space and time.
John drives past a police officer who uses a device d which checks the speed of
cars. The observation that John is driving at a speed of 125km/h is expressed
as M(c, s, d) = 125km/h.

4.4 Accuracy of Measurements

In this section we consider the accuracy of quality measurements. In this context
one must realize that measurements are expressed in a domain and that there
are standards for expressing them. For example, speed can be measured in terms
of kilometers per hour, weight can be measured in terms of grams, distances in
terms of meters and so on. Standards bodies, such as a department of weights
and measures, govern these standards. By comparing an actual measurement to
a standard measurement one obtains a metric for determining the accuracy of a
measurement device. We continue the above example as follows.

Example 2. Let ds be an approved measuring device for speed, that is it measures
exactly according the department of weights and measures. This means that
a measurement executed with this device is assumed to be 100% correct. If
M(c, s, d) = M(c, s, ds) then we know that John was indeed driving exactly at
125km/h.



Quality Makes the Information Market 355

In many cases a small deviation of measurement can be allowed when comparing
an actual measurement to a standard measurement. To put it differently, when
determining whether an actual measurement is equal to a standard measurement
one tests if they are sufficiently equal. We define � to be an operator that deter-
mines whether a measurement is sufficiently equal to a standard measurement.
In other words, a measurement is accurate or sufficiently equal to a standard
measurement if M(c, s, d) � M(c, s, ds).

We relate the above discussion to the uncertainty involved in measurements.
This uncertainty is caused by the accuracy of measurement devices and the many
possible situations in which they are used. The following illustrates this. Let d
be a measurement device and ds be a standard measurement device for the same
domain. The measurements of device d can be tested against ds in many but not
neccesarily all situations S ⊆ SI. In our framework, the accuracy of d is defined
as the average deviation of that device with respect to the situations in which it
is tested:

Acc(d) =
∑

s∈S M(c, s, d) � M(c, s, ds)
|S|

This accuracy is the basis for defining the measurement uncertainty. That is, if
we assert that a property can be measured with a degree of certainty n then
we mean that measurements done with this device are correct in n% of the
situations.

4.5 Interpretation of Measurements

The uncertainty involved with interpreting measurements is modeled similarly
and makes use of linguistic variables. Let 〈X , T (X ), U, G, M〉 be a linguistic vari-
able. In the running example X represents the variable volume of a mug with
termset T (X ) = {big, medium, small}. We interpret the membership degree for
these linguistic values as the degree of certainty that we have in this specific
interpretation of the actual measurement. Let µt : U→ [0 . . . 1] denote the mem-
bership degree for the terms in the termset. Consider the following example.

Example 3. Linguistic variable X denotes volume with termset {small, medium,
big}.
Domain U represents volume in cc’s. The following is an example of a linear
membership function for the linguistic value big:

µb(u) =

⎧
⎪⎨

⎪⎩

0 u ≤ 15
1
15u− 1 otherwise
1 u ≥ 30

Now we consider the following question. If the volume of a mug is measured to
be 25cc, what are the odds that this mug is considered to be big?

The answer to this question depends on the accuracy of measurements as
previously described, but also on the interpretation of the linguistic value big. In
our approach we interpret the membership degree as certainty of interpretation.



356 B. van Gils et al.

This is based on a conversion of the membership degree function to a probability
distribution.

5 Example Quality Assessment System

In this section we will illustrate our quality framework by means of an example
quality assessment system. This system is assigned the task to assess the quality
of the newsletter of an online news site. The role of this site is informative
medium. In terms of our formalism n ∈ AF denotes the newsletter and r ∈ RO
denotes the role played by this site. Furthermore f = 〈n, r〉 is the fulfillment for
this newsletter.

The assessment has to take place for a certain actor a ∈ AC. Suppose that the
actor has three requirements Req(f) = {r1, r2, r3} verbalized as follows:

r1: Data resource involved in Representation of type ”newsletter”
r2: Data resource of type ”Pdf”
r3: Data resouce having attribution (with value ”high”AND of type ”importance”)

These requirements are embedded in the quality framework as follows:

r1 = 〈p1, c1, e1〉 where p1 is the property type representation type, c1 is an
equality constraint and e1 is value expression newsletter.

r2 = 〈p2, c2, e2〉 where p2 is the property type data resource type, c2 is an
quality constraint and e2 is value expression Pdf which is a
data resource type.

r3 = 〈p3, c3, e3〉 where p3 is the property type importance, c3 is an equal-
ity constraint and e3 value high. Note that in this case the
system uses a linguistic variable to represent this constraint
since high is a soft value. The underlying hard domain for
importance is chosen to be the pagerank metric.

To be able to make a quality assessment the system uses three measuring devices
d1, d2, d3 ∈ MD, one for each constraint. The three measurements will be done
in parallel in one situation s ∈ SI. Suppose that, based on previous experiences
the system knows the following.

d1 is software tool that is designed with the sole purpose of determining whether
a given artefact is a newsletter or not. Acc(d1) = 0.95 which means that
the system is able to correctly judge whether a given artefact is actually a
newsletter in 95% of the cases.

d2 is a tool that checks the data resource type of artefacts. This tool has been
trained extensively on all known types and therefore Acc(d2) = 1.

d3 is a highly complex tool. It assumes that the PageRank is a good measure
for importances of artefacts but knows that this need not always be a 100%
correct assumption. Hence suppose Acc(d3) = 0.9.

The system uses linguistic variables to express the values of constraints. For
r1 and r2 the membership function is 1 if the condition is met and 0 if it is



Quality Makes the Information Market 357

not. However, for r3 the situation is a little more complex. The termset for this
variable is {low, average, high} and the underlying domain U = [0 . . . 10] is the
domain for expressing pagerank. After careful consideration of the user profile
of actor a the system chooses the following membership function for linguistic
value high:

µhigh(u) =

{
0 0 ≤ u ≤ 6
1
4u− 1 1

2 6 < u ≤ 10

In this example situation s the system makes the following measurements:

M(n, s, d1) = true means that the system suggests that s is indeed a newsletter.
So membership degree is 1.

M(n, s, d2) = Pdf means that the system suggests that s is a Pdf file. So the
membership degree is 1.

M(n, s, d3) = 9 means that the observed pagerank for n is 9. The member-
ship degree then is 0.75.

Now the system computes the certainty of the assertion that n is of high quality
to actor a as follows:

– Pr1 = 0.95× 1 = 0.95
– Pr2 = 1× 1 = 1
– Pr3 = 0.9× 0.75 = 0.675

Finally the total quality is the multiplication of these three certainties which
results in 0.64. The interpretation is that the system is able to assert with 64%
certainty that newsletter n is of high quality to actor a.

We are aware of the fact that the example quality assessment system sketched
in this section gives a basic illustration of the possibilities of our quality frame-
work. This is sufficient for the purpose of this paper. More complex case studies
will be part of future research.

6 Conclusions and Future Research

The notion of quality plays an important role on the Web, as we rely more and
more on information gathered on the Web to perform our day to day tasks. This
is why the focus of our project is on aptness-based search rather than topic-based
search. Not only topic, but other factors should be taken into account as well
when searching the Web. In the current paper we have focused on aptness of
Web resources in general, and on the notion of quality in particular.

The paper gives an overview of how the quality notion is used in different
fields. Also, we have presented a model which explains what quality is and how
the quality of an asset for a certain actor can be measured. This model is suf-
ficiently expressive but still needs more work. The fuzzy-logic approach using
linguistic variables provides a straightforward way to deal with quality on the
Web. We elaborated our approach in an example quality assessment system.



358 B. van Gils et al.

In future research we aim at more complex case studies. On the one hand, our
quality framework needs a more extensive validation. On the other hand, we plan
to apply the framework in different domains, such as scientific search, medical
information management, geographic applications, and bioinformatics. In the
area of technology we see the application of XML-based quality management as
a challenge to overcome the heterogeneity on the Web.

References

1. P. van Bommel, B. van Gils, H.A. Proper, M. van Vliet, and Th.P. van der Weide.
The information market – its basic concepts and its challenges. In Web information
systems engineering (WISE), New York, volume 3806 of Lecture Notes in Computer
Science, pages 577–583. Springer-Verlag, November 2005.

2. F.P. Brooks Jr. No silver bullet: essence and accidents of software engineering.
IEEE Computer, 20(4):10–19, April 1987.

3. G.B. Davis and M.H. Olson. Management Information Systems: Conceptual Foun-
dations, Structure and Development. McGraw–Hill, New York, USA, 1985.

4. P Donzelli and B. Bresciani. Improving requirements engineering by quality mod-
elling – a quality-based requirements engineering framework. Journal of Research
and Practice in Information Technology, 36(4), November 2004.

5. Michael Gertz, M. Tamer Özsu, Gunter Saake, and Kai-Uwe Sattler. Report on the
dagstuhl seminar: data quality on the web. SIGMOD Rec., 33(1):127–132, 2004.

6. T. Gilb. Principles of software engineering management. Addison Wesley, Reading,
Massachusetts, USA, 1988.

7. B. van Gils, H.A. (Erik) Proper, and P. van Bommel. A conceptual model of
information supply. Data & Knowledge Engineering, 51:189–222, 2004.

8. B. van Gils, H.A. (Erik) Proper, P. van Bommel, and Th.P. van der Weide. Trans-
formations in information supply. In Workshop of the 16th Conference on Advanced
Information Systems Engineering (CAiSE), Riga, pages 60–78, June 2004.

9. T.A. Halpin. Information Modeling and Relational Databases, From Conceptual
Analysis to Logical Design. Morgan Kaufmann, San Mateo, California, USA, 2001.

10. M. Harrison. Principles of operations management. Pitman, London, United King-
dom, EU, 1996.

11. V. Lala, A. Arnold, S.G. Sutten, and L. Guan. The impact of relative information
quality of e-commerce assurance seals on internet purchasing behavior. Interna-
tional Journal of Accounting Information Systems, 3(4):237–253, December 2002.

12. K.C. Laudon and J.P. Laudon. Management Information Systems, International
Edition. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1996.

13. Steve McConnell. Code complete, a practical handbook of software construction.
Microsoft Press, Redmond, Washington, USA, 2 edition, 2004.

14. Ken Orr. Data quality and systems theory. Commun. ACM, 41(2):66–71, 1998.
15. G. John van der Pijl. Quality of information and the goals and targets of the orga-

nization. In Computer personnel research conference on reinventing IS, Alexandria,
USA, pages 165–172, 1994.

16. C.J. van Rijsbergen. Information Retrieval. Butterworths, London, United King-
dom, EU, 1975.

17. G.E Salton and M.J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, New York, New York, USA, 1983.



Quality Makes the Information Market 359

18. I. Sommerville. Software Engineering. Addison Wesley, Reading, Massachusetts,
USA, 1989.

19. E. Turban, J. Lee, D. King, and H.M. Chung. Electronic Commerce, a managerial
perspective. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1999.

20. C. Vishik and A.B. Whinston. Knowledge sharing, quality, and intermediation. In
Conference on work activities coordination and collaboration, San Francisco, pages
157–166, 1999.

21. L. Zadeh. From computing with numbers to computing with words - from manip-
ulation of measurements to manipulation of perceptions. International Journal of
Applied Mathematics and Computer Science, 12:307–324, 2002.

22. L.A. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning – i. Information Science, 8:199–249, 1975.

23. L.A. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning – ii. Information Science, 8:301–357, 1975.

24. L.A. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning – iii. Information Science, 9:301–357, 1975.



Bid-Based Approach for Pricing Web Service

Inbal Yahav1, Avigdor Gal1, and Nathan Larson2

1 Technion - Israel Institute of Technology
Haifa 32000, Israel

2 University of Maryland, College Park
MD 20742 U.S.A.

Abstract. We consider a problem of Web service resource allocation in an eco-
nomic setting. We assume that different requestors have different valuations for
services and a deadline for executing a service, after which it is no longer re-
quired. We formally show an optimal offline allocation that maximizes the total
welfare, denoted as the total benefit of the requestors. We then propose a bid-
based approach to resource allocation and pricing for Web services. Using a de-
tailed simulation, we analyze its behavior and performance compared to other
known algorithms. We empirically show that flexibility in service price benefits
both the provider in terms of profit and the requestors in terms of welfare.

Our problem motivation stems from the expanding use of Service-Oriented
Architecture (SOA) for outsourcing enterprize activities. While the most common
method for pricing a Web service nowadays is a fixed-price policy (with a price
of 0 in many cases), A Service-Oriented Architecture will increasingly generate
competition among providers, underlying the importance of finding methodolo-
gies for pricing Web service execution.

1 Introduction

A Web service (WS) is an autonomous unit of application logic, hosted by a service
provider, which provides either some business functionality or database information to
service customers through the World Wide Web. A Service-Oriented Architecture en-
ables organizations to outsource software activities to individual Web service providers,
some of which may provide similar functionality. Like any other profit making organi-
zation, Web service providers use limited resources such as CPU and bandwidth to
provide services to requestors in return for benefits. A Service-Oriented Architecture
may, therefore, generate competition among providers, underlying the importance of
finding methodologies for pricing a Web service.

The most common method for pricing a Web service nowadays is a fixed-price pol-
icy (possibly at a 0 cost). Less common methods deal with dynamic pricing as price-
negotiation, logrolling - negotiation on the trade-off between quality of service (QoS)
and cost of service (CoS) [1] or usage-based-cost [2]. Yet, in all these cases the provider
determines the service cost. Service scheduling methods, resulting from limited re-
source availability, are typically first-in-first-out (FIFO) or a round-robin (RR) policy.
Both sustain fairness, yet fail to support varying client priority conditions.

In this paper we consider Service-Oriented Architecture in an economic setting. We
assume that different requestors have different valuations for services. We also assume

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 360–376, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Bid-Based Approach for Pricing Web Service 361

a hard deadline model where each requestor has a deadline for executing a service after
which it is no longer required. We refer to the evaluation of value and deadline of a re-
quest as a private knowledge, i.e., known to the requestor alone. We study two types of
problems: profit maximization and welfare maximization. While in a profit maximiza-
tion model the provider goal is to maximize its own benefit without considering clients
utility, a welfare problem deals with the overall benefit of both providers and requestors.
The latter can be measured as the fraction of the processed job requests (throughput) or
their total valuation (weighted throughput).

We model the problem of pricing Web services as an online scheduling problem. Re-
questors with different urgencies (deadlines) and priorities request services over time.
Due to resource constraints the provider cannot process all the requests simultaneously.
It therefore has to prioritize them. We introduce a bid-based approach for pricing Web
service execution and compare it to a fixed-price model under an economic setting. We
provide two main results:

– A bid-based method that heuristically optimizes the weighted throughput, yielding
similar performance as the best-performer algorithm, known so far in the literature
(RMix, [3]). The latter assumes public knowledge of request evaluation.

– In a server competition setting, customers have an incentive to choose the most
price-wise flexible server. Due to deadline constraints, high-value requestors are
willing to bid a higher value to the bid-based provider then the price required by
the fixed-price service. The result is higher server profit and higher throughput and
weighted throughput to the bid-based service provider.

1.1 Related Work

We discuss related work in two dimensions. We first summarize the research in the area
of pricing Web services. Then, following our modeling as a job scheduling problem, we
discuss online scheduling research in general and in economic setting in particular.

Pricing Web Services. Recently, grid computing is emerging as a new direction of
Internet computing with the combined power of individual computers and the Inter-
net. In grid computing, a QoS requirement involves computing constraints as CPU and
bandwidth. A Web service is subject to the same QoS requirement: optimizing request
allocation under limited resources [4].

QoS research on economics-based network resource allocation mechanisms supports
usage-based Web service pricing [2,4,5,6], where each customer pays relative to the
percentage of provided service. The main idea is to use market mechanisms to suppress
low-value data traffic. One common method is dynamic pricing, denoted as GSW pri-
ority pricing model, for network resource allocation [5]. The queuing schedule method
that is derived from GSW is FIFO or RR (Round Robin).

Another method for pricing a Web service, called logrolling, is suggested in [1,7].
The logrolling method supports sophisticated business models, in which the Web ser-
vice provider can provide a list of trade-off alternatives between the QoS they offer and
the CoS (Cost of Service) they use. In some models [8], both parties have to evaluate
the list of QoS and CoS alternatives for obtaining a combination that suits their needs.



362 I. Yahav, A. Gal, and N. Larson

This commercial negotiation is generally concerned with buying and selling of goods
or services and also with the associated topics of quality, specification, delivery, and
service [9].

In this paper we refer to each Web service as an atomic unit that can either be per-
formed as a whole or not at all. Therefore, usage-base models do not apply in our case.
We introduce a bid-based approach for pricing Web service and compare it to a fixed-
price method.

Online Scheduling. The weighted throughput of an online scheduler has many varia-
tions and implementations in the literature. For a non-preemptive model of unit-length
tasks on a single processor, some restricted versions of the problem are proposed and
studied [3,10,11,12,13]. The performance of an online scheduling algorithm is mea-
sured with a competitive ratio, first defined by Graham [14], where the algorithm is
compared against the optimal algorithm.

In a non-strategic setting, a naı̈ve greedy algorithm that schedules the heaviest task
or the earliest deadline first is known to be 2-competitive [11,15]. For the deterministic
case Hajek [11] proves a lower bound of θ ≈ 1.618. The RMix randomized algorithm
was introduced with a lower bound of e/(e− 1)≈ 1.582 [3]. Both algorithms assume
public knowledge of job evaluation.

The online scheduling with private information is introduced and motivated in [16,17].
In this setting each task is owned by a separate, self-interested agent. The agent in this
setting can manipulate the algorithm by artificially changing its private parameters. To
the best of our knowledge, there is no work done for the simple one-unit tasks in the
strategic case, which we handled in our case.

In this paper we introduce a bid-based algorithm Higher-Bid-First (HBF) that is sub-
ject to private knowledge. We empirically show that the HBF algorithms matches the
lower bound of the random algorithm RMix [3].

The remaining of the paper is organized as followed. in Section 2 we provide a
formal definition of the online scheduling problem in an economic setting. In Section 3
we study the online and offline bounds of the throughput and weighted throughput
maximization problem. In Section 4 we introduce a bid-based approach for pricing a
Web service. Additionally, we describe a scheduler that maximizes the total profit in a
fixed-price model. We study the empirical performance of the two algorithms separately
and in competition in Section 5. We conclude in Section 6.

2 Model and Problem Definition

We consider a server serving k requests at most at each time slot. We assume an identical
expected processing time for each request. A server needs to schedule requests to be
served at each time slot t. For ease of exposition, we assume from now on a capacity of
1 and expected processing time of 1 time slot.

A scheduling problem of size n is an assignment problem of n independent requests
to units of processing time under pre-defined constraints such as CPU and process-
ing rate [18]. A scheduler is called an online scheduler if it has no prior knowledge of



Bid-Based Approach for Pricing Web Service 363

future tasks, whereas an offline scheduler or a clairvoyant scheduler has full a-priori
information of the arrival of request. A performance of a scheduler is measured by
either throughput or weighted throughput.

Traditionally, scheduling mechanisms implicitly assume public knowledge of re-
quest evaluation. However, with the emerge of the Internet as a major platform of
computing, this assumption can no longer be taken for granted. We consider a Service-
Oriented Architecture (SOA) that is designed to combine services of different compa-
nies with possibly contradictory needs and goals. Therefore, each company will likely
try to manipulate the mechanism to increase its own benefit. We model this situation
using autonomous customers. Our goal is to design a Web service scheduling mecha-
nism under the conjecture of private information, which performs at least as good as
algorithms that utilize public information.

We use T = {ti} to denote the set of service requests, with ti being the ith arriving
request. We identify each request by the triple (ai,di,vi), representing respectively its
request time, deadline, after which it is not longer needed, and value. We define a span
(si for the ith job) of a request to be the difference between the deadline and the request
time. Time is divided into discrete units, represented by U = {1, 2, 3, ... }. We use vi j to
represent the value gained from processing request ti at time j, where:

vi j =
{

vi if ai ≤ j ≤ di

0 otherwise

We define xi j to be a Boolean variable to denote whether ti was processed at time j.
We study the scheduling mechanism of Web service requests from two different

aspects. The first aspect examines the general welfare of the Web service scheduling al-
gorithm. That is, checking the fraction of processed Web service requests (throughput),
given by Eq. 1, and the value of processed requests weighted throughput, given by Eq.
2. Our goal is to maximize one or two of the measurements.

T hroughput = max ∑
ti∈T, j∈U

xi j (1)

WeightedThroughput = max ∑
ti∈T, j∈U

vi jxi j (2)

The second aspect is the Web service provider profit. Formally, assume each cus-
tomer i pays pi if ∃ j ∈U |xi j = 1, i.e., ti is processed. The provider’s total profit maxi-
mization problem is therefore given by:

Pro f it = max ∑
ti∈T, j∈U

pixi j (3)

3 Upper Bounds

In assessing the performance of a scheduling algorithm, scheduling the processing of
Web service requests, we would like to set upper bounds on the best attainable perfor-
mance by any allocation scheme under the constraints of online scheduling and private
information.



364 I. Yahav, A. Gal, and N. Larson

The traditional approach to examine a performance of an online scheduling algorithm
is by formally comparing the worst case of the ratio between the cost incurred by an
online algorithm and the base case cost. This approach is called competitive ratio.

However, since our results are empirical, a formal optimal solution for the offline
problem is required for a comparison purpose. In Section 3.1 we use a graph represen-
tation to solve the offline problems of throughput and weighted throughput maximiza-
tion. We show that the given problem does not have an optimal solution in an online
setting, and therefore there is a need to apply a heuristic solution becomes apparent.
Additionally, we prove competitive ratio of 1 for the online throughput maximization
problem, that is, showing it to be optimal.

3.1 Studying the Offline Problem

Since each request requires exactly one unit of processing time, we can restate the
requests scheduling problem using a bipartite graph. Specifically, consider the set of
requests to be one set of nodes and the set of time slots to be another. Since a schedule
is a one-to-one mapping between requests and time slots, we may represent it as a
bipartite graph with an edge between request t and time slot i if t can be scheduled at i
(that is, if i is later than the request time and prior to its deadline). The weight on this
edge equals to the requestor’s value vi.

The bipartite graph representation of the scheduling problem enables us to restate
the offline throughput optimization problem (Eq. 1) as a maximum-matching problem,
to be solved in O(|V ||E|) time [19]:

max ∑
ti∈T, j∈U

xi j

s.t.

∑
ti∈T

xi j ≤ 1,∀ j ∈U

∑
j∈U

xi j ≤ 1,∀ti ∈ T

xi j ∈ {0,1} (4)

The weighted-throughput optimization problem is equivalent to determining the bi-
partite matching with the greatest sum of edge weights (maximum-weighted-matching),
with complexity of O(|V |2.5log(|E||V |)) [20]:

max ∑
ti∈T, j∈U

vixi j

s.t.

∑
ti∈T

xi j ≤ 1,∀ j ∈U

∑
j∈U

xi j ≤ 1,∀ti ∈ T

xi j ∈ {0,1} (5)



Bid-Based Approach for Pricing Web Service 365

Table 1. Example scenario of Web service requests

Request Request time Deadline Value
a 1 2 7
b 1 1 3
c 2 3 8
d 3 3 2

a

b

c

1

2

3

d

7

73

8
8

2

Web service 
requests Time slots

a

b

c

1

2

3

d

73

8

Web service 
requests Time slots

Fig. 1. Left: graph representation of the example scenario; Right: maximum-weighted-matching
on the graph

For example, consider the Web service requests scenario presented in Table 1. The
corresponding graph representation and maximum-weighted-matchingsolution in given
in Figure 1.

Theorem 1

max ∑
ti∈T, j∈U

vi jxi j→max ∑
ti∈T, j∈U

xi j

Theorem 1 gives the existence of an offline algorithm that maximizes both the through-
put and the weighted throughput.

We refrain from presenting the proof of this and other theorems in this paper for space
consideration. All proofs are given in [21].

3.2 Studying the Online Problem

An online Early-Deadline-First (EDF) scheduler is a greedy scheduler that processes at
each time slot the most urgent request in the queue. Formally, given a set X of pending
requests that arrive (ai) before time slot t (∀ti ∈ X : ai ≤ t), then the earliest request t0 is
defined by: ∀ti 	= t0 ∈ X : d0 < di or [d0 = di and a0 < ai]. The earliest-deadline-request
is uniquely defined.

Theorem 2. EDF under hard deadline model has a competitive-ratio of 1 in terms of
throughput.

Theorem 3. For each online scheduling policy there exists a request-arrival scenario
for which its weighted throughput is not optimal.



366 I. Yahav, A. Gal, and N. Larson

Table 2. Upper bounds summary

Throughput Weighted Throughput
Offline Max-Weighted-Matching Max-Weighted-Matching

Max-Matching
Online EDF Does not Exist

The heuristic online scheduling algorithm RMix, presented in [3] is claimed to have
the best weighted throughput competitive ratio (e/(e−1)≈ 1.582-competitive), under
public information assumption.

3.3 Upper Bounds Summary

Table 2 summarizes the bounds for the welfare problems (throughput and weighted
throughput) in offline and online settings. Based on Theorem 3 the weighted throughput
online maximization problem can only be solved heuristically. In the next section we
describe our heuristic scheduling, based on bidding.

4 Online Scheduling with Private Information

We consider the online scheduling in an economic setting, where each service request is
owned by a unique, independent customer. We assume that customers are self-interested
and therefore reveal only information that benefits them. We examine two types of mech-
anisms: the first is a bidding mechanism that prioritizes jobs in decreasing order of bids;
the second is a variation on Early-Deadline-First [22] that prioritizes job requests ac-
cording to an increased deadline as reported by the customer (strategic deadline).

Our setting includes one server and N independent unit-length service requests that
arrive online. We assume that the distribution of request deadline and value is a public
knowledge, whereas the evaluation of a deadline and value of a specific request is known
only to the customer.

4.1 Bid-Based Algorithm HBF

We model our mechanism as follows (see Figure 2). Each Web service customer presents
a request to the broker, along with a one dimension bid, defined as bi = F : (si,vi)→
R+. The broker then forwards it to a single service provider. The provider processes
the requests, giving higher priority to higher bids (Higher-Bid-First policy). Over-due
requests leave the queue (or alternatively withdrawn by their owners. In addition, the
broker publishes a success rate of serviced requests, based on request bids and spans,
allowing the customers to maximize their personal gain, given by:

Gain =
{

vi−bi, if ∃ j : xi j = 1
0, otherwise

The customer’s goal in the mechanism is to maximize its expected utility, given by its
personal gain multiplied by the probability of getting processed. Algorithm 1 provides
this decision making process.



Bid-Based Approach for Pricing Web Service 367

Provider
Requests queue, 
ordered by bids 
(Higher Bid 
First)

Requestor

Value

Deadline

2. Send request and bid

3. Place request 
in queue

1. Find optimal bid

Success Rate: 
F:(bid, span) R+

Broker

1. Pop request from 
queue and process

2. Update

1. Over due requests 
leave the queue

Server
Requests queue, 
ordered by bids 
(Higher Bid 
First)

Success Rate: 
F:(bid, span) R+

Broker

Fig. 2. Schematic representation of the bidding mechanism. Top: Sending bids to the server;
Bottom: Tasks processing.

Algorithm 1. Customer Decision Making Process
On New Service Arrival:
Input: {vi,ai,di}
Output: {bi}
ui = 0
bi = 0
si = di−ai
for all b ∈ [Bids Range] ≤ vi do

u← (vi−b)∗P(getting processed |{si,b})
if u > ui then

bi← b
ui← u

end if
end for

4.2 Early Strategic Deadline First Algorithm (EsDF)

For comparison we now present an online scheduler that prices its services using a fixed-
price policy. It is easy to show that maximum throughput entails maximum profit in a
fixed-price model. We therefore look for a scheduler that maximizes throughput. We
subject this alternative scheduler to the self-interested customers assumption as well.



368 I. Yahav, A. Gal, and N. Larson

In Theorem 2 we showed that the EDF algorithm maximizes throughput of an online
scheduling. Yet, EDF assumes that customers do not manipulate the server by providing
a false deadline. Since the scheduler prioritizes service requests by their deadline, giv-
ing higher priority to more urgent requests, a rational client has an incentive to declare
a deadline that is earlier then its actual deadline. In fact, the incentive is to declare a
deadline that equals its time of request.

To avoid such a scenario we define the following variation on EDF, called Early-
Strategic-Deadline-First (EsDF). Customers present requests to the server along with
a strategic deadline that maximizes their probability of getting processed. The server
then processes the requests, giving higher priority to more urgent-declared jobs. Over-
due requests, as declared by the customer deadline, are removed from the queue. In
addition, the server publishes a success rate of processed requests, as a function of the
declared span, allowing the customers to base their strategic deadline on processing
history.

Intuitively, if a customer declares a deadline that is smaller than its real deadline
evaluation, it gets higher priority in the queue, but at the same time it reaches its declared
deadline earlier. Therefore it might leave the queue without being processed before its
actual deadline is due. Obviously, customers have little incentive to declare a deadline
that is greater than their true deadline. We keep the customer and server algorithms as
before.

5 Experiments and Results

In this section we report our empirical results. We first describe in Section 5.1 our simu-
lation model, along with a detailed description of the experiment setup. We then present
the empirical behavior of HBF and EsDF policies and analyze their performance in Sec-
tion 5.2.

5.1 Simulation Setting

We implemented five online scheduling algorithms. The first two are HBF and EsDF
that were described in Section 4. The other three serve for comparison. We use EDF, the
optimal algorithm in terms of throughput, the randomized algorithm RMix, presented
in [3], and a FIFO algorithm. Additionally, we implemented a bipartite graph generator
that creates offline schedules. We used a VS.Net 2004 platform for implementing the
simulator and ILOG version 3.6.1 to solve the offline optimal solution.

Model. We simulate online scenarios to examine the performance of HBF and EsDF
algorithms. The HBF server is mainly composed of the components described below.
EsDF server is implemented similarly.

Requests. Each request in our mechanism has a private valuation and a request com-
pletion deadline. A request that misses its deadline is dropped from the system. We
assume an identical processing time (1-unit) for all the requests. When a new re-
quest is created, the customer calculates the best bid strategy according to a public
table of past success rates for each combination of span and bid.



Bid-Based Approach for Pricing Web Service 369

Table 3. Summary of customer setting

Parameter Distribution Range Notes
Value (vi) Uniform [1, 2 ... 10]
Span (si) Uniform [0, 1 ... 8]
Strategic Bid (bi) - [0, 10] ≤ vi 99% of the customers
Random Bid (bi) Uniform [0, 10] 1% of the customers

Servers. Customers submit bids to a broker, which then forwards them to the server.
The server places the requests in its queue, ranking them by their bids. Once in
every y units of time, the server publishes a statistics table of process success rates
at its queue, allowing the customers to calculate the best utility, based on history.
The calculation of the success rate for window [tx, tx+y] is given by:
S[x,x+y][b][s] - The number of requests that arrived in time window [tx, tx+y], with
a span of s and a bid of b, that were successfully processed.
T [x,x+y][b][s] - The total number of requests that arrived in time window [tx, tx+y],
with a span of s and a bid of b.
In each re-computation, the new probability table uses a smoothing function com-
bining new and old success rates, as followed:

Ptx+y (getting processed | bid, span) =
α∗ (S[x,x + y][b][s]/T[x,x + y][b][s])
(1−α)∗Ptx(getting processed | bid, span)

Different server configurations are distinguished by server service rate k, statistics
table publication frequency y and the smoothing coefficient α.

Experiment Setting. We have run experiments with HBF and EsDF algorithms sepa-
rately and in competition under various settings to evaluate their behavior and perfor-
mance.

We model the arrival rate of jobs as a Poisson process with an intensity parameter λ.
We assume a uniform distribution (uniform [0, 10]) for values and spans. Bidding are
modeled as discrete values in the range [0, 10]. We allow a small percentage (1%) of
random bids to simulate ‘noise’ in the system. Table 3 summarizes the customer setting
in our experiments.

A service rate of a server is set to be k = 1, meaning it can process one request at
most at any time slot. Every y = 1000 time slots the server refreshes its success rate
table. We use α = 0.9 for the smoothing function. The smoothing function by its na-
ture gives higher priority to recent history. Table 4 summarizes the server setting in our
experiments.

Evaluation. We evaluate the behavior of HBF using the following metrics:
– Stability: We examine the smoothness of the success rate table over time. We say

that the algorithm is stable if for each combination of span and bid the Δ between
two sequential success rates is negligible:

∀t ∈U,s ∈ Span,b∈ Bid :

|Pt(getting processed | s,b)−Pt−y(getting processed | s,b)| → 0 (6)



370 I. Yahav, A. Gal, and N. Larson

Table 4. Summary of server setting

Parameter Value
Service Rate (k) 1 request per time slot
Smoothing coefficient (α) 0.9
Success table refresh rate (y) 1000 sec

– Convergence: We study the empirical equilibrium of the algorithm in the long run.
We say that the algorithm converges if after finite initialization time j the changes
in the success rate table are negligible:

∃u ∈U∀ j > u∀s ∈ Span,b∈ Bid :

lim
t→∞
|Pt(getting processed | s,b)−Pj(getting processed|s,b) |→ 0 (7)

We evaluate the correctness of EsDF by studying the strategic span, declared by cus-
tomers, compared to request true span.

Next, we evaluate the performance of HBF by studying its throughput (see Eq. 1)
compared to the optimal algorithm EDF. We study its weighted throughput (see Eq. 2)
and compare HBF to EDF, FIFO, RMix and the optimal offline solutions.

In the competition setting, we run EsDF with fixed price against HBF. We study the
type, defined as typei = {vi,si} and number of requestors that choose each server. We
examine additionally the profit gained by each server. Formally, we define cik to be a
boolean variable that denotes whether customer i chooses server k; xi jk is a boolean
variable that denotes whether customer i was processed at time slot j by server k; and
pi is the amount paid by customer i. Then, the number of requestors that choose server
k is given by Eq. 8 and its profit by Eq. 9.

∑
ti∈T

cik (8)

∑
ti∈T

cikxi jk pi (9)

5.2 Results

HBF. We study the behavior of HBF as described in Section 5.1. First, we examine
the stability of the algorithm. Figure 3 presents the change in the success rate table
as a function of span and bid. For readability reasons, we chose to present represen-
tative bids-curve only. We show that ∀s ∈ Span,b ∈ Bid : max |Pt(getting processed |
s,b)−Pgetting processed|t−y(s,b)| < 0.1, meaning that the success rate table changes
smoothly and the algorithm is stable. To further examine the stability of HBF algorithm
we study the standard deviation of the success rate table as a function of span for each
bid. Figure 4 presents representative curves of the eventual decrease deviation after an
initialization period of 20,000 time slots, giving that the algorithm is stable.

Next, we examine the algorithm in terms of convergence. Figure 5 presents for each
bid, the maxΔp(t) = max(Probn(getting processed | s,b)− Probt(getting processed |



Bid-Based Approach for Pricing Web Service 371

0
0.02
0.04
0.06
0.08
0.1

0 1 2 3 4 5 6 7 8

Span

M
ax

[P
ro

b(
t)-

pr
ob

(t-
y)

] 
Bid = 0
Bid = 1
Bid = 5
Bid = 10

Fig. 3. Stability of HBF success rate table

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6 7 8

Span

St
de

v

Bid = 0
Bid = 1
Bid = 5
Bid = 10

Fig. 4. Standard deviation of the success rate table

s,b)) given by some span s as a function of time, where n is the last time slot. It is
shown that the algorithm converges after approximately 20,000 time slots. The empiri-
cal stability and convergence of HBF allow us to study the performance of the algorithm,
i.e., throughput and weighted throughput, in a short finite time and apply these results
to the long run behavior of the algorithm.

Finally, we examine the uniqueness of the algorithm empirical equilibrium. In
Figure 6 we show the throughput of HBF under different success rate table initializations
as a function of value and span, where at each run we give higher priority to different
types of requests: in the symmetric case the initial probability for each combination of
bid and span is exactly 1; in the High Bid initialization case, the initial probability for
each span and bid, where bid is greater than the average value, is a random value in
[ 2

3 ,1]. The initial probability for each span and bid, where bid is lower than or equal to
the average value, is a random value in [0, 1

3 ]; The Low Bid, Not Urgent Tasks and Ur-
gent Tasks cases are initialized similarly. The results for each initialization are similar,
indicating that the algorithm converges to a single equilibrium.

After studying the behavior of our mechanism we examine its performance with re-
spect to throughput and weighted throughput. We test our method under different re-
quest loads, comparing it to the bounds described in Section 3. In Figure 7 we compare
HBF throughput to the optimal algorithm EDF as a function of requests load. We show
that the throughput of HBF is larger than 95% of the optimal solution. In Figure 8 we
compare HBF weighted throughput to the optimal offline solution as a function of re-
quests load. We show a performance ratio of more than 92%. For both experiments, we
can see that worst performance is achieved whenever the arrival rate is approximately
the same as the server service rate. Which, in our case, equals 1. For much smaller
arrival rates the light load allows the server to process all tasks, independently on the
scheduling model, processing each task on its release time. At the other extreme, when



372 I. Yahav, A. Gal, and N. Larson

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Time

M
ax

[P
ro

b(
in

t) 
- p

ro
b(

u)
]

Bid = 0

Bid = 1

Bid = 2

Bid = 3

Bid = 4

Bid = 5

Bid = 6

Bid = 7

Bid = 8

Bid = 9

Bid = 10

Fig. 5. maxΔp(t)

20

40

60

80

100

1 3 5 7 9

Value

%
 P

ro
ce

ss
ed

50

60

70

80

90

0 2 4 6 8

Span

%
 P

ro
ce

ss
ed

Symmetric

High Bid

Low Bid

Not Urgent Tasks

Urgent Tasks

Fig. 6. Empirical equilibrium under Different Success Rate Initialization

30%
50%
70%
90%

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 2 3

Lambda

T
hr

ou
gh

pu
t HBF

EDF

Fig. 7. Throughput comparison

3.5

4

4.5

5

5.5

0.8 0.9 1 1.1

Lambda

W
ei

gh
te

d 
T

hr
ou

gh
pu

t

Offline

HBF

Fig. 8. Weighted throughput comparison

the load is very high the queue length is bigger then 1 and the server always have a task
in the queue to process. The scheduling therefore becomes most interesting when de-
laying a task may cause loosing it before another task arrives to the queue. This occurs
when the tasks arrival rate is close to the server service rate.



Bid-Based Approach for Pricing Web Service 373

3
4
5
6
7
8

0.5 1.5 2.5

Lambda

W
ei

gh
te

d 
th

ro
ug

hp
ut

HBF

RMix

3
4
5
6
7
8

0.5 1.5 2.5

Lambda

W
ei

gh
te

d 
th

ro
ug

hp
ut

HBF

FIFO

EDF

Fig. 9. Throughput comparison

Next, we measure the weighted throughput of our bidding by comparing it to known
mechanisms in the literature. In Figure 9 we present the performance of HBF compared
to EDF and to FIFO, both are known to be 2-competitive [11]. We show that the weighted
throughput of HBF increases with load whereas FIFO and EDF converge to the average
value, 5 (See Table 3). We also present a comparison to the RMix algorithm, that is
known to be 1.582-competitive. We show that in spite of the restriction of private value
and deadline, the weighted throughput gained by HBF is approximately 99% of RMix’s
weighted throughput.

EsDF. In the first set of EsDF experiments (Figure 10) we examine the behavior of re-
questors by studying the ratio between tasks true deadline and declared deadline under
different loads. We show that the average declared deadline in monotonic in deadline.
The monotonicity implies that the EsDF scheduler performance in terms of throughput
should be very similar to the optimal EDF scheduler. Next, we compare the two sched-
ulers throughput to strengthen our conclusion. Figure 11 shows that EsDF processes
more than 98% requests compared to EDF, for all λ (arrival rate) values.

Lambda = 1.3 

0
2
4
6
8

0 2 4 6 8

Span

St
ra

te
gi

c 
D

ea
dl

in
e

Lambda = 3

0
2
4
6
8

0 2 4 6 8

Span

St
ra

te
gi

c 
D

ea
dl

in
e

Fig. 10. Average strategic span as a function of the true span

98%
98%
99%
99%

100%
100%

0.8 1 1.2 1.4 1.6 1.8 2

Lambda

Pe
rfo

rm
an

ce
 R

at
io

0.45
0.55
0.65
0.75
0.85
0.95

0.8 1 1.2 1.4 1.6 1.8 2

Lambda

Th
ro

ug
ht

pu
t EDF

EsDF

Fig. 11. Throughput: EsDF Vs. EDF. Left: throughput comparison. Right: ratio between EsDF
throughput and EDF.



374 I. Yahav, A. Gal, and N. Larson

Fixed Price = 0

0%
20%
40%
60%
80%

100%

2 3 4 5

Lambda

%
C

lie
nt

s

EsDF

HBF

(a) 

Fixed Price = 1

0%
20%
40%
60%
80%

100%

2 3 4 5

Lambda

%
C

lie
nt

s

EsDF

HBF

 (b) 

Fixed Price = 2

0%
20%
40%
60%
80%

100%

2 3 4 5

Lambda

%
C

lie
nt

s

EsDF

HBF

(c) 

Fixed Price = 3

0%
20%
40%
60%
80%

100%

2 3 4 5

Lambda
%

C
lie

nt
s

EsDF

HBF

(d) 

Fig. 12. Fraction of customers that chooses each server as a function of arrival rate

Fixed Price = 0

0
1
2
3
4

2 3 4 5

Lambda

P
ro

fi
t EsDF

HBF

(a) 

Fixed Price = 1

0
1
2
3
4

2 3 4 5

Lambda

P
ro

fi
t EsDF

HBF

(b) 

Fixed Price = 2

0
1
2
3
4

2 3 4 5

Lambda

P
ro

fi
t EsDF

HBF

 (c) 

Fixed Price = 3

0
1
2
3
4

2 3 4 5

Lambda

P
ro

fi
t EsDF

HBF

(d) 

Fig. 13. Servers profit as a function of arrival rate

Server Competition. We simulate a competition between a HBF server and EsDF
server, with a fixed price. We allow bids in [0, 1 ... 10]. We vary the fixed price of the
EsDF server, in the range [0, 1, 2, 3]. Each Web service customer chooses the server
that maximizes his utilitiy.



Bid-Based Approach for Pricing Web Service 375

In the first experiment (Figure 12) we examine the fraction of customers that choose
each server as a function of arrival rate. The graphs differ by the EsDF fixed price.
Interestingly, even when EsDF server does not charge any price at all, around 50% of
the clients choose the HBF server (Figure 12a). We show that the higher the fixed price
is, the higher is the percentage of customers that choose the HBF server.

We then compare the profit per time slot gained by each server (Figure 13). We show
in Figure 13a that even when the EsDF server offers a free-of-charge service, the profit
of the HBF server is larger then 0, giving that some customers, presumably high-value
customers, prefer to pay for the service in order to increase their probability of getting
processed. Figures 13b, 13c and 13d show that increasing the fixed price positively af-
fects both servers, yet the HBF server constantly gains more profit.

6 Conclusion

In this paper we examined a problem of Web service provision subject to a QoS model.
We focused on requests allocation under capacity limitations. We presented a bid-based
algorithm, Higher-Bid-First. In this method a customer sends a request to the server,
along with a bid. The client maximizes its personal gain by basing its bid on history
success-rate table as revealed by a broker. We studied the algorithm in terms of welfare
and profit. We showed that under economic setting, the proposed bid-based algorithm
increases the benefits of service providers and customers.

The model we suggested in this paper is simple and subject to many limitations; we
assumed an atomic, equal in length Web service provided by each provider; we consid-
ered one server with capacity of 1; we also assumed same usage for all requestors.

In future work we plan to expand our model to support a multi-provider architecture,
where each provider offers a variety of atomic services. Apart from deadline and value,
we will allow requestors to base their bids on number and type of required services
and a CPU requirement. We will study a bid-per-service setting, where a customer can
submit each service request to a different provider, and a bid-per-server setting, where
a customer submits all of its requests to a single server.

Additionally, we plan to re-implement our simulation model using Maui scheduler
(available at http://mauischeduler.sourceforge.net/), which is designed to simulate intri-
cate grid architectures. The following will enable us to easily compare our methods to
other methods in a grid setting.

Acknowledgement

We thank Prof. Louiqa Raschid from the University of Maryland, College Park for her
useful comments.

References

1. Hung, P.C., Li, H.: Web services discovery based on the trade-off between quality and cost
of service: A tokenbased approach. ACM SIGecom Exchanges 4 (2003)

2. Lin, Z., Zhao, H., Ramanathan, S.: Pricing web services for optimizing resource allocation
an implementation scheme. Web2003, Seattle, WA (2003)



376 I. Yahav, A. Gal, and N. Larson

3. Bartal1, Y., Chin, F.Y., Chrobak, M., Fung, S.P., Jawor, W., Lavi1, R., Sgall, J., Tichy, T.:
Online competitive algorithms for maximizing weighted throughput of unit jobs. In: 21st
STACS, LNCS 2996, Springer (2004) 187–198

4. Li, D., Lin, Z., Stahl, D.O., Whinston, A.B.: Bridging agent-based simulations and direct
experiments - an experimental system for internet traffic pricing. AMCIS’01, Boston (2001)

5. Gupta, A., Stahl, D.O., Whinston, A.B.: A stochastic equilibrium model of internet pricing.
Journal of Economic Dynamics and Control (1997) 697–722

6. Lin, Z., Ow, P., Stahl, D.O., Whinston, A.B.: Exp loring traffic pricing for the virtual private
network. In: WITS. (1999)

7. Stratmann, T.: Logrolling, perspectives on public choice: A handbook. Cambridge University
Press, Cambridge, United Kingdom (1997)

8. Mani, A., Nagarajan, A.: Understanding quality of service for web services: Improving
the performance of your web services. http://www-106.ibm.com/developerworks/library/ws-
quality.html (2002)

9. Fowler, A.: Effective negotiation. Institute of Personnel Management (1986)
10. Chrobak, M., Jawor, W., Sgall, J., Tichy, T.: Improved online algorithm for buffer manage-

ment in qos switches. ESA (2004)
11. Hajek, B.: On the competitiveness of online scheduling of unit-length packets with hard

deadlines in slotted time. conference in Information Sciences and Systems (2001) 434–438
12. Li, F., Sethuraman, J., Stein, C.: An optimal online algorithm for packet scheduling with

agreeable deadlines. In: 16th ACM-SIAM SODA. (2005) 460–469
13. Sgall, J.: Online algorithms for scheduling unit jobs. In: 7th MAPSP. (2005)
14. Graham, R.: Bounds for certain multiprocessing anomalies. Bell Sys. Tech. Journal 45

(1966) 1563–1581
15. Kessekman, A., Lother, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko, M.:

Buffer overflow management in qos switches. SIAM J. Comput 33 (2004) 563–583
16. Buyya1, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resources man-

agement and scheduling in grid computation. The Journal on Concurrency and Computation:
Practice and Experience 14 (2002) 1507–1542

17. Porter, R.: Mechanism design for online real-time scheduling. In: ACM Conference on
Electronic Cemmerce. (2004)

18. Lawler, E., Lenstra, J., Kan, A.R., Shmoys, D.: Sequencing and scheduling: Algorithms and
complexity, Logistics of Production and Inventory. Volume 4: Logistics of Production and
Inventory. S.C. Graves, A.H.G. Rinnooy Kan and P.H. Zipkin, eds (1990)

19. Edmonds, J.: Paths, trees, flowers. Canadian Journal of Mathematisc (1965) 449–467
20. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries in image databases.

In: Twenty Sixth Very Large Databases (VLDB) Conference. (2001) 419–428
21. Yahav, I.: Bid-based online scheduling of unit-length tasks with hard deadlines. Master’s

thesis, Thechnion - Israel Institute of Technology (2006)
22. Liu, C., Wayland, J.W.: Scheduling algorithms for multiprogramming in a hard real time

environment. Journal of ACM (1973) 4661



Customizable-Resources Description,

Selection, and Composition:
A Feature Logic Based Approach

Yacine Sam, François-Marie Colonna, and Omar Boucelma

Aix-Marseille Universités, UMR CNRS 6168,
Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

{yacine.sam, colonnaf, omar.boucelma}@lsis.org

Abstract. Users preferences heterogeneity in distributed systems often
forces resources suppliers to offer customizable-resources in order to fulfill
different customer needs. We present in this paper a Feature Logic based
approach to customizable-resources description, selection, and composi-
tion. In our approach, resources and requests are both specified in a logi-
cal framework by feature terms. The feature terms unification technique
allows reasoning on these specifications in order to select and possibly
compose the resources that are candidate to satisfy a client request.

1 Introduction

Internet and grid technologies [6] development was accompanied by an exponen-
tial amount of resources that a customer (user, program, community) may have
access to. However, the great heterogeneity that characterizes customer prefer-
ences and needs often forces suppliers to offer their resources under different
versions/variants in order to satisfy different customer categories.

In order to better characterize the resources’ customization problem, we need
to provide an adequate theoretical framework for the description and selection
of customizable-resources, i.e., resources being able to be offered under differ-
ent variants. We believe that existing approaches are not adequate for resources
being able to be offered under different variants. These approaches are gen-
erally founded on the matchmaking of a ”attribute:value” pair, consisting of
expressions describing the resources on one side and the clients’ requests on the
other side (see for instance [10,11,16,21]). Indeed, a framework for customizable-
resources description and selection should satisfy two main requirements: (1) the
specification of alternative properties for the resources, and (2) the management
of the set of all variants of a given resource as a whole; these two characteristics
are not provided by the majority of existing resources descriptions frameworks.
The first one makes it possible to model different variants of a given resource,
while the second allows to publish each resource only once, with no obligation
to publish separately all its variants.

Feature logic [18] is a knowledge representation formalism that captures the
two characteristics mentioned above. This is why we will adopt it in this article

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 377–390, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



378 Y. Sam, F.-M. Colonna, and O. Boucelma

Service Hotel = [service : hotel, city : Paris, currency : {euro, usd, yen}]
Variants Hotel1 = [service : hotel, city : Paris, currency : euro]

Hotel2 = [service : hotel, city : Paris, currency : usd]
Hotel3 = [service : hotel, city : Paris, currency : yen]

Fig. 1. Web service providing information on Parisian hotels prices

for a customizable-resources description, selection, and composition framework.
Indeed, the feature logic syntax, based on feature terms, allows the expression
of alternative properties and the handling of the set of variants of an object (a
resource) like only one item. As an example, the first line of Fig. 1 illustrates a
feature term representing an informational Web service – a Web service being
a kind of resource – on hotels prices in Paris, where the prices are expressed in
three different currencies: euro, dollars, and yen. The second line represents the
feature terms of its three different variants.

The work described in this paper is the continuation of a previous work on
Web services customization [17]. However, in this paper, the term ”resource”
may refer, besides a Web service, a physical device, a data source, or any other
entity able to be supplied in different variants and for which the discovery
and selection procedures are required. Our interest in customizable-resources
is greatly justified by the strong tendency to the customization of resources:
a new paradigm in resources, products, and services supply, known as ”Mass
Customization Paradigm” (see [14]).

The remainder of this paper is organized as follows: in Section 2 we provide
the customizable-resource definition and motivate our choice of a feature logic
based language for the specification of a customizable-resource. In Section 3, we
introduce the syntax and the semantics of our resource description language as
well as a formal calculus that allows the selection and composition of resources.
Related works are discussed in Section 4, while conclusions and future directions
are in Section 5.

2 Motivation

We start this section in describing our motivating example, which consists of a
customizable Web service1 described by a feature term. We perform reasoning
on abstract representations of Web services: a customizable Web service is con-
sidered as a conjunction of constraints describing the set of all its variants – or
as a class whose instances are the set of its variants. Each request is however a
conjunction of constraints asking for a particular variant of a given Web service.
For instance, let us describe the informational Web service on hotel prices by
means of three features: a service (its name); a city (city of the required hotel);
and a currency (the currencies used by the service), where the currency feature
may be assigned a value coming from different currency units (see Fig. 1).
1 We are however convinced that our approach is largely generalizable for other kinds

of resources.



Customizable-Resources Description, Selection and Composition 379

The representation adopted for the service and its three variants in Fig. 1
follows a Feature Logic syntax. Our choice for this logic is motivated by the
adequacy of its concepts with the need to describe customizable-resources. These
concepts, namely set, feature, and feature unification, are detailed in the sequel,
in emphasizing their role in the customizable-resources description, selection and
composition processes.

2.1 Notion of Set

Feature Logic is a knowledge representation formalism which models set of ob-
jects by their properties and provides elementary operations for their manipula-
tion. As an example, the following feature logic syntax describes a set of three
Web services.

Hotel = [service : hotel,
city : Paris,
currency : {euro, usd, yen}]

The three features of this set are ”service”, ”city” and ”currency”, and their
respective values are ”hotel”, ”Paris” and ”{euro, usd, yen}”. This last value
means an alternative on three different values. It is thus possible to specify three
different Web services. This notion of set is very adequate for the resources we are
dealing with in this paper, i.e., resources being supplied under different variants.
Indeed, such resources can be seen as classes and the different variants under
which they can be offered as their instances.

2.2 Notion of Feature

In a Feature Logic formalism, set of objects are described by feature expressions.
The adoption of this formalism for customizable-resources description implies re-
sources identification, selection and composition schemes based on features. Fea-
ture propagation may be used as a technique for customizable-resources compo-
sition when the answer to a request requires the combination of several resources.

In other words, Feature Logic allows the specification of resources composi-
tional constraints together with resources descriptions. This characteristic en-
ables the composition in a consistent way of two variants of two different re-
sources without axiomatizing their composition rules. This kind of resources
composition is possible thanks to the fact that the compositional constraints are
included in the resources descriptions. As an example, let us consider two infor-
mational Web services: the first one provides the trip fares from a given French
city to Paris, the second one, already described in Fig. 1, provides the prices for
Parisian hotels. A query asking prices for a stay in Paris (trip + hotel), could
answered by the aggregation of these two services. However, this aggregation
needs to be consistent: it should be generated from two compatible variants of
two simple Web services. In this example, the variants to be composed should
have the same currency unit.



380 Y. Sam, F.-M. Colonna, and O. Boucelma

With the feature terms propagation technique [19], a consistent composite
Web service variant is obtained by the selection and the composition of two sim-
ple Web services variants. The inconsistent composite variants are eliminated
by means of feature terms unification [19]. We will formally clarify the fea-
ture terms propagation in section 4. However one can note that in the example
above, the Web services composition was carried out without using any external
information for the descriptions of the two simple Web services involved in the
composition.

2.3 Notion of Feature Unification

The customizable-resource selection process consists in determining the resource
variants whose features are consistent with those of a given ”environment”: a re-
quest in the case of a simple resource selection and an already selected resource
in the case of resources composition. The resources are typically specified by
conjunctions of ”feature:value” pairs, and the environment by a feature expres-
sion. Resources selection is then based on the unification of the feature terms
describing these two specifications.

The characteristics presented in this section are the three main motivations
of our choice for Feature Logic as a customizable-resource specification formal-
ism. In the following section, we formally present the syntax and the semantics
of Feature Logic as well as its inherent inference techniques. We illustrate par-
ticularly its application like a customizable-resources description and selection
formalism.

3 Framework Description

In this section, we respectively describe (1) the syntax and the semantics of
Feature Logic (See [22] for more details), (2) the foundations of our customizable-
resources description language and the techniques allowing (3) their selection and
(4) their composition during query processing.

3.1 Feature Logic: Syntax and Semantics

As already mentioned, Feature Logic is a knowledge representation formalism
based on feature terms (ft). A ft indicates a set of objects characterized by some
features. A feature is a functional property or a characteristic of an abstract
object. In its simplest form, a ft consists on a conjunction of ”feature:value” pairs
named slots, where each feature represents an object characteristic – an object
being a resource in our case. A feature value may include literals, variables, and
embedded ft. The ft syntax is summarized in Fig. 2 where variables are denoted
by x, y, z, attributes by f , g, h, constants by a, b, c, and ft by S,T . Complex ft
can moreover recursively be built on elementary ft in using well known boolean
operators such as intersection, union, and complement. These operators are used
to specify logical constraints on features terms and represent the set of objects
that satisfies them.



Customizable-Resources Description, Selection and Composition 381

Notation Name Interpretation

� (also [ ]) Top Universe
⊥ (also { }) Bottom Empty set, Inconsistency
a Atom Singleton set containing a
x Variable —
f :S Selection The value of f is in S
f :� Existence f is defined
f :↑ Divergence f is undefined
f↓g Agreement f and g have the same value
f↑g Disagreement f and g have the same value
∼S Complement S does not hold
S�T (also [S,T ]) Intersection S and T hold
S�T (also {S,T}) Union S and T holds
S→T Implication If S holds then T holds
S↔T Equivalence S holds if and only if T holds
∃x(S) Quantification There is an x such that S holds

Fig. 2. Feature terms syntax and semantics

As an example, if S = [f : a] is the set of objects whose feature f has value a
and T = [g : b] is the set whose feature g has value b, the set S �T = [f : a, g : b]
is the intersection of S and T . In other words, it is the set of objects whose
feature f has value a and feature g has value b. Similarly, S � T = [f : a, g : b] is
the union of S = [f : a] and T = [g : b]; it represents the set whose feature f has
value a or the feature g has value b. More generally, ft form a boolean algebra
and all the boolean transformations such as distribution and Morgan laws are
applicable to ft.

One of the fundamental characteristics of Feature Logic (shared by all ter-
minological logics) is the possibility to specify incomplete knowledge. As an
example, it is possible to specify that a feature exists (the feature is defined.)
in a ft without giving its value, this is indicated by f : �. It is also possible
to specify that an attribute does not exist in a ft, this is indicated by ∼ f : �
(abbreviation, f : ↑).

Note 1. The specification of incomplete knowledge is not allowed in the exist-
ing approaches to resource description and selection because they are based on
matchmaking, not on unification.

Logical complement is available in Feature Logic, which allows a great expres-
siveness. As an example, the term ∼[currency:euro] in the example of section 2
indicates all the services whose feature currency is undefined or having a value
other than euro. The term [currency:∼euro] indicates all the Web services whose
feature currency is defined but with a value other than euro.

There are also ft representing a single object without any feature (e.g., euro,
yen, etc.). Consequently, the equivalences a � b = ⊥ and a � f : � = ⊥ are
valid for any atom a and b and for any feature f . This led to a simple concept
of consistency: since Feature Logic supposes that any feature cannot have more



382 Y. Sam, F.-M. Colonna, and O. Boucelma

than one value at the same time, terms a � b = ⊥ and a � f : � = ⊥ are
equivalent to ⊥, the empty set. More formally:

[currency : euro, currency : yen] = [currency : [euro, yen]]
= [currency : ⊥]
= ⊥

The terms equivalent to ⊥ denote empty sets and are known as inconsistent
terms.

The verification of ft consistency is done by feature unification [19]. Feature
term unification is a constraints resolution technique which evaluates the con-
sistency of arbitrary ft. For terms with neither union nor complement, feature
unification behaves like first order logic terms unification. The only difference
is that the sub-terms are not identified by their position (as in Prolog), but by
feature names. In presence of union, the unification process calculates the union
of all the unifiers. However, the complement is usually handled by constraint
resolution, similar to the negation by failure.

Hotel � S = (Hotel1 � Hotel2 � Hotel3) � S
= (Hotel1 � S) � (Hotel2 � S) � (Hotel3 � S)
= ([service : hotel, city : Paris, currency : euro] � [currency : euro])�

([service : hotel, city : Paris, currency : usd] � [currency : euro])�
([service : hotel, city : Paris, currency : yen] � [currency : euro])

= ([service : hotel, city : Paris, currency : [euro, euro]])�
([service : hotel, city : Paris, currency : [usd, euro]])�
([service : hotel, city : Paris, currency : [yen, euro]])

= ([service : hotel, city : Paris, currency : euro])�
([service : hotel, city : Paris, currency : ⊥])�
([service : hotel, city : Paris, currency : ⊥])

= Hotel1 � ⊥ � ⊥
= Hotel1

Fig. 3. Customizable-resources selection by feature terms unification

3.2 Customizable-Resources Description

In our customizable-resources description approach, ft are used for the specifica-
tion of the resources’ providers as well as for the clients’ requests. Thus, resources
selection is done by unification of the resources’ and the requests’ feature terms.

For specifying different resources variants, no constraint is imposed on the
existence or the meaning of their features. However, to associate different variants
of a given resource, i.e., to describe a class of a given resource by its different
variants, one must have at least one common feature value for all the variants –
the name of the resource for example. One assumes that each resources variants
set can be identified in a single way through an identifier feature named resource.
This feature represents the resource name (class name), and the name of all its
variants.



Customizable-Resources Description, Selection and Composition 383

The universe of all resources 2 is thus denoted [resource : �], which is the set of
the sets of resources variants. In other words, it is the set of all resources classes
(simple or composite resources). In the sequel,we formally define the concepts
of: variants set of a given resource, variant of a given resource, variants class of
a given resource, variant of a variants class of a given resource.

Definition 1. A resource variants set is any set V such as V � [resource : �]
([resource : �] is the universe of all resources).

Definition 2. A variant of a variants set of a given resource is a singleton
variants set of such a resource i.e., a set V such as V � [resource : �] and
| V |= 1.

Definition 3. A given resource variants class is a set k � [resource : k] where
k is a feature identifying in an unique way all the resources variants.

Definition 4. A variant of a variants class of a given resource is a set k such
as k � [resource : k] and | k |= 1.

Note 2. The difference between a set of variants and a variants class of a given
resource is in the type of the considered resource (simple or composite). The
first definition can relate to a composition of two or several resources. However,
in the second, it relates to only the variants set of a simple resource.

The features of a given resource variants class are modeled as alternatives on the
features of each variant. Thus, a resource S supplied under n different variants
V1, V2, ..., Vn, is the union of all its variants.

S = V1 � V2 � · · · � Vn

= � Vi (1 ≤ i ≤ n)

As stated previously, for each resource variants class, at least one of the fea-
tures must have the same value for all its variants in order for those variants
to be grouped together. Thus, the features F allowing the identification of the
resources variants class w.r.t other resources variants classes can be factorized
as follows:

S = (F � V1) � (F � V2) � · · · � (F � Vn)
= F � (V1 � V2 � · · · � Vn)

For example, the informational Web service for Parisian hotels prices is avail-
able in three different variants,

Hotel1 = [service : hotel, city : Paris, currency : euro]
Hotel2 = [service : hotel, city : Paris, currency : usd]
Hotel3 = [service : hotel, city : Paris, currency : yen]

and may be described as follows:

2 By resource, we mean here a class, i.e., the set of all the variants of a given resource.



384 Y. Sam, F.-M. Colonna, and O. Boucelma

Hotel = Hotel1 � Hotel2 � Hotel3
= [service : hotel, city : Paris,

currency : {euro, usd, yen}]

3.3 Customizable-Resources Selection

In order to find a particular variant of a given resource, the resource requester
specifies a selection term S defining the features of the desired variant. Thus,
for each selection term S and a set of variants T , one can select the resource
variants that satisfies S by evaluating the expression T ′ = T �S. T ′ is the set of
variants being both a subset of S and T . If T ′ = ⊥, the selection fails because
it does not indicate any available resource variant.

In our example, the selection of S = {currency : euro} from our informa-
tional Hotel prices service returns Hotel1 because this is the only variant that is
compatible with the selection term S. More formally:

Hotel � S = (Hotel1 � Hotel2 � Hotel3) � S
= (Hotel1 � S) � (Hotel2 � S) � (Hotel3 � S)
= Hotel1 � ⊥ � ⊥
= Hotel1

Hotel2 � S = ⊥ et Hotel3 � S = ⊥ are valid since the feature ”currency”
cannot have more than one value at the same time (see Fig. 3).

When the resource description has more than one feature being able to be
specified under several alternatives, T ′ could be another variants set. Thus one
specifies a new selection term S′ and selects T ′′=T ′�S′, and so on. This selection
procedure narrows the choice set in an iterative way until a singleton set is
selected, this latter corresponds to the desired resource variant.

3.4 Customizable-Resources Composition

The problem of resources selection in distributed systems is often complicated
due to the fact that, in many situations, the response to a given request cannot
be satisfied by one resource only, but involves the combination of several ones.
This situation leads to the need for introducing compositional techniques into
the resources management system.

Within our customizable-resources specification framework, the resources com-
position is obtained by the intersection of the feature terms describing them. We
say thus that the composite resource inherits its feature terms from the re-
sources composing it. Thus, if K1, K2, . . . ,Kn are the feature terms describing
n resources being part of a composition, the composite resource is described by
the feature term C such that:

C = K1 � K2 � · · · � Kn

= � Ki(1 ≤ i ≤ n)



Customizable-Resources Description, Selection and Composition 385

However, the consistency of the composite customizable-resource must be
checked when making the intersection of the feature terms specifying the different
resources variants involved in the composition. In other words, the composition
of two resources variants is not consistent only when they do not share any fea-
ture or when the values of the shared features are the same. If the resources
to be composed share at least one common feature, the problem of resource
composition consists in selecting a consistent configuration (a variant of each
resource while ensuring mutual compatibility between them) through the fea-
ture propagation mechanism from one resource variants class to another. The
resources composition process proceeds as follows: one selects initially a variant
R1 of a first resource variants class R, then a compatible variant S1 of a second
resource variants class S. More generally, the composition of several resources
implies the selection and the composition of different resources variants classes
while ensuring the consistency of the resulting composite resources.

The Feature Logic propagation technique allows resources composition with-
out requiring any preliminary external knowledge. Indeed, knowledge governing
the composition is described in the resources themselves (second fundamental
characteristic of Feature Logic: the notion of feature, see Section 2). In our Web
services variants classes example, the composition constraints can be specified in
the selection term, but also in the features describing the Web services. For this
reason, resources heritage and consistency are carried out by modeling compos-
ite Web services like the intersection of the features describing the simple Web
services variants classes constituting them, while excluding inconsistent combi-
nations. One cannot for example compose two Web services variants described
by a feature currency in euro [currency:euro] and in yen [currency:yen] respec-
tively since a feature term cannot have more than one value at the same time.
More formally:

[currency : euro, currency : yen] = [currency : [euro, yen]]
= [currency : ⊥]
= ⊥

Thanks to this feature unification technique, only consistent composite re-
sources variants are selected during the customizable-resources composition pro-
cess. Nevertheless, this technique should not be applied to features identifying
the resources since those features must be aggregated: this is illustrated by the
example below.

Fig. 4 illustrates two Web services: the Parisian hotels prices service, and the
Rome-to-Paris trip fares service. If one wants to compose these two Web services
in order to offer an informational service on both hotels prices in Paris and trip
fares from Rome to Paris, the composite service name must be described by both
”hotel” and ”trip”. Thus, the feature service representing the name of a service
should not be unified during the Web services composition process.

The need for aggregating features identifying the resources descriptions means
that the intersection of feature terms is not well adapted for resource composi-
tion. Hence we define an operator equivalent to the intersection ”�” but with



386 Y. Sam, F.-M. Colonna, and O. Boucelma

Service 1 Hotel = [service : hotel, city : Paris, currency : {euro, yen}]
Service 1 Hotel1 = [service : hotel, city : Paris, currency : euro]
Variants Hotel2 = [service : hotel, city : Paris, currency : yen]

Service 2 Trip = [service : trip, departure : Rome, city : Paris,
currency : {euro, yen}]

Service 2 Trip1 = [service : trip, departure : Rome, city : Paris,
Variants currency : euro]

Trip2 = [service : trip, departure : Rome, city : Paris,
currency : yen]

Fig. 4. An example of two Web services offered in two different variants

the particularity of aggregating instead of unifying the ”independent” features:
this operator is denoted ”∇”. By independent feature we denote any feature
related to the resource itself, i.e., a feature that does not impact the features
of other resources during the resources composition processes. In addition to
the resources identifiers such as service, several other features may be consid-
ered as independent. Let us consider for example a feature describing the owner
of a given resource. In this example, two resources belonging to two different
providers can be aggregated in only one resource whose feature owner value is
the aggregation of the two resources composing its feature owner values.

Since each resource variants class Ki is a set of variants, there can be more
than one consistent composite resource. For example, the set of consistent com-
posite Web services variants of the two services mentioned above (Parisian hotels
prices and Rome-to-Paris trip fares) corresponds to lines 2 and 5 in Fig. 5 below.

However, the consistency of the composition to be realized from several re-
sources variants classes implies the inclusion at the same time of only one variant
of each resource variants class participating in the composition. In the compo-
sition example of Fig. 5, if we start with the selection of the variant in euro
Rome-to-Paris trip fares, it is impossible to select the variant in yen for the
Parisian hotels. Indeed, this makes the composition inconsistent because of the
two different values of the currency feature in the two services (see lines 3 and 4
in Fig. 5.

Now that we have described our customizable-resources language and its se-
lection and composition techniques, we survey, in Section 4, existing approaches
to resources description and selection and we discuss their inadequacy for the
specification of customizable-resources.

4 Related Work

The problem of resources selection was tackled under several contexts, and many
approaches, based mainly on resources matchmaking were proposed in the liter-
ature. We present in what follows the most known approaches.

In the information systems area, much efforts were devoted to develop sys-
tems allowing the publication, the interrogation and the aggregation of resources



Customizable-Resources Description, Selection and Composition 387

Hotel ∇ Trip = [service : hotel, city : Paris, currency : {euro, yen}] ∇
[service : trip, departure : Rome, city : Paris, currency : {euro, yen}]

= ([service : hotel, city : Paris, currency : euro] � (1)
[service : hotel, city : Paris, currency : yen]) ∇ (2)
([service : trip, departure : Rome, city : Paris, currency : euro] � (3)
[service : trip, departure : Rome, city : Paris, currency : yen]) (4)

(1) ∇ (3) = [service : hotel, city : Paris, currency : euro]∇
[service : trip, departure : Rome, city : Paris, currency : euro]

= [service : [hotel, trip], city : Paris, currency : euro, departure : Rome,
city : Paris, currency : euro]

= [service : [hotel, trip], city : [Paris, Paris], currency : [euro, euro],
departure : Rome]

= [service : [hotel, trip], city : Paris, currency : euro, departure : Rome]
= ⊥

(1) ∇ (4) = [service : hotel, city : Paris, currency : euro]∇
[service : trip, departure : Rome, city : Paris, currency : yen]

= [service : [hotel, trip], city : Paris, currency : euro, departure : Rome,
city : Paris, currency : yen]

= [service : [hotel, trip], city : [Paris, Paris], currency : [euro, yen],
departure : Rome]

= [service : [hotel, trip], city : Paris, currency : ⊥, departure : Rome]
= ⊥

(2) ∇ (3) = [service : hotel, city : Paris, currency : yen]∇
[service : trip, departure : Rome, city : Paris, currency : euro]

= [service : [hotel, trip], city : Paris, currency : yen, departure : Rome,
city : Paris, currency : euro]

= [service : [hotel, trip], city : [Paris, Paris], currency : [yen, euro],
departure : Rome]

= [service : [hotel, trip], city : Paris, currency : ⊥, departure : Rome]
= ⊥

(2) ∇ (4) = [service : hotel, city : Paris, currency : yen]∇
[service : trip, departure : Rome, city : Paris, currency : yen]

= [service : [hotel, trip], city : Paris, currency : yen, departure : Rome,
city : Paris, currency : euro]

= [service : [hotel, trip], city : [Paris, Paris], currency : [yen, yen],
departure : Rome]

= [service : [hotel, trip], city : Paris, currency : yen, departure : Rome]
= ⊥

Fig. 5. Customizable-resources composition

collections (SNMP [20], LDAP [8], MDS [4], UDDI [12]). Such systems differ from
each other in many aspects: their data model (e.g., MIBs [20], relations [7], ob-
jects LDAP [8]), and their query languages (e.g., SQL [7], XQuery [3], LDAP
query [8]). However they all share the asymmetrical mode of interaction between
the resources providers and requesters.

In the asymmetrical interaction, the providers describe and publish their re-
sources in order to be identified by the requesters before any request generation.
Requesting procedures are then carried out via simple requests or procedural
programs based on performance models for example [2,5]. In these approaches,



388 Y. Sam, F.-M. Colonna, and O. Boucelma

the access control to the resources systems is managed manually by an adminis-
trator through Accounts/Identifiers. However because of scalability constraints,
such management is not convenient. To overcome such situation, a resources
symmetrical selection method has been proposed.

Symmetrical selection has been introduced for the first time in the Condor
matchmaking system [9]. In Condor, requests and resources descriptions are spec-
ified in the same language (syntax add-class: advertising class) [10]. Resources
and requests properties are (attribute:expression) pairs and the constraints on
them are expressed in the form of Boolean expressions. Matchmaking succeeds if
there is a resource that proposes attributes values being able to satisfy those of
the client’s request. The Condor system maintains a set of classes describing the
resources (add-class) and starts the matchmaking procedure between the client’s
request and all the published resources in a resources directory.

Other systems adopting symmetrical matchmaking include Jini lookup ser-
vice [1], DAML-S matchmaker [13], LARKS matchmaker [21], and HP E-trade
matchmaker [15]. These systems use different syntaxes (Java objects, services
profiles, RDF classes, Description Logics concepts) and different matchmaking
levels (syntactic, semantic, or both), while sharing the symmetrical evaluation
principle and the fact that the resources and the requests are described by the
same syntax. However, none of them, including those previously mentioned, takes
into account the possibility of specifying a resource under several variants or the
possibility to specify a request on a particular variant of a given resource. This
need to specify knowledge on customizable-resources justifies the introduction
of our Feature Logic resources specification framework.

Our resources specification language is close to the LARKS one [21]. LARKS
is indeed a language for the specification of ”attribute:value” pairs describing the
role of Web services as well as their constraints usage (constraints on the ”at-
tribute:value” pairs). In a previous work [17], we presented an approach adapt-
ing LARKS for the Web services customization. However, in such approach,
resources selection procedure was founded on the resources and requests match-
making, and the resource customization was carried out by dynamic Web services
composition of other intermediate Web services, which is not always not con-
venient. The framework presented in this paper is based on the feature terms
unification [19], that is a Feature Logic reasoning technique. To the best of our
knowledge, no approach based on Feature Logic has already been proposed for
the resources description and selection in general, and for the customizable-
resources in particular.

Finally, for the customizable-resources description, the advantage of the unifi-
cation compared to matchmaking is twofold. On one hand, the unification makes
it possible to compare resources descriptions even in the presence of incomplete
information. On the other hand, when reasoning on resources described by fea-
ture terms, the resources customization becomes obvious, this is a direct con-
sequence of the intrinsic characteristics of Feature Logic: (1) the possibility to
express alternative properties and (2) the handling of a set of variants of a given
resource like only one item.



Customizable-Resources Description, Selection and Composition 389

5 Conclusion and Future Work

Users’ profiles heterogeneity in distributed systems forces resources suppliers to
provide customizable-resources in order to satisfy various customers needs and
categories. Existing approaches for the description and selection of resources are
not adequate for the specification of resources that might be supplied under
several variants. This paper proposes a Feature Logic based framework for the
description, selection, and composition of customizable-resources. Feature Logic
is a terminological logic that allows the specification of alternative properties
on objects, thus fulfilling the requirements for customizable-resources specifica-
tion. Feature Logic terms are used to describe clients’ requests and providers’
customizable-resources, while the feature terms unification allows reasoning on
those descriptions in order to select, and possibly compose, the resources that
satisfy different clients’ requests.

In this paper, soundness and applicability of a Feature Logic approach to the
customization of web resources have been highlighted. However, this work will
remain incomplete if an illustrating implementation is not provided. This will
result in a tool that should be compared to existing tools and formalisms for
customization and composite Web Services.

References

1. K. Arnold, B. Osullivan, R. W. Scheifler, J. Waldo, A. Wollrath, B. O’Sullivan,
and R. Scheifler. The Jini(TM) Specification. Addison-Wesley, MA, USA, 1999.

2. F. Berman and R. Wolski. The AppLeS project : A status report. Proceedings of
the 8 th NEC Research Symposium. Berlin, Germany, 1997.

3. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. W3C, 2002.

4. K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. T. Foster. Grid information
services for distributed resource sharing. In HPDC, pages 181–194, 2001.

5. H. Dail. A Modular Framework For Adaptive Schedulling in Grid Application De-
velopment Environments. Computer Science, University of California, San Diego,
2002.

6. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, San Francisco, 1999, xxiv, 667 pp, 2004.

7. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete
Book. Printice Hall, Upper saddle River, N1, xxvii, 1119pp, 2002.

8. T. Howes, M. C. Smith, G. S. Good, T. A. Howes, and M. Smith. Understanding
and Deploying Ldap Directory Services. Addison-Wesley Professional, 608 pp, 2003.

9. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter of idle workstations.
In ICDCS, pages 104–111, 1988.

10. C. Liu and I. T. Foster. A constraint language approach to grid ressource selection.
In niversite Of Chicago. Chicago., 2003.

11. C. Liu and I. T. Foster. A constraint language approach to matchmaking. In
RIDE, pages 7–14, 2004.

12. E. Newcomer. Understanding Web Services: Xml, Wsdl, Soap, and Uddi. Addison-
Wesley, Boston, xxviii, 332 pp, 2002.



390 Y. Sam, F.-M. Colonna, and O. Boucelma

13. T. R. Payne, M. Paolucci, and K. Sycara. Advertising and Matching DAML-S
Service Descriptions. International Semantic Web Symposium (SWWS), Standford
University, California, USA, 2001.

14. B. J. Pine and S. Davis. Mass Customization: The New Frontier in Business
Competition. Harvard Business School Press, 1993.

15. C. Preist. Agent Mediated Electronic Commerce at HP Labs Bristol. Hewlett-
Packard Labs, Bristol, 2001.

16. R. Raman, M. Livny, and M. H. Solomon. Matchmaking: Distributed resource
management for high throughput computing. In HPDC, pages 140–, 1998.

17. Y. Sam, O. Boucelma, and M. S. Hacid. Web Services Customization : A
composition-based approach, In ICWE’06. ACM Press, July 2006, to appear.

18. G. Smolka. Feature-logik. In GWAI, pages 477–478, 1989.
19. G. Smolka. Feature-constraint logics for unification grammars. J. Log. Program.,

12(1&2):51–87, 1992.
20. W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2 (3rd Edition).

Addison-Wesley, Reading, Mass, xv, 619 pp, 1999.
21. K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking

among heterogeneous software agents in cyberspace. Autonomous Agents and
Multi-Agent Systems, 5(2):173–203, 2002.

22. A. Zeller and G. Snelting. Unified versioning through feature logic. ACM Trans.
Softw. Eng. Methodol., 6(4):398–441, 1997.



Defining and Modelling Service-Based

Coordinated Systems

Thi-Huong-Giang Vu, Christine Collet, and Genoveva Vargas-Solar

LSR-IMAG Laboratory, BP 72,
38402 Saint Martin d’Hères, France

{Thi-Huong-Giang.Vu, Christine.Collet, Genoveva.Vargas}@imag.fr

Abstract. This paper introduces MEO - a model for securing service-
based coordinated systems. The model uses constraints for expressing
the application logic of a coordinated system and its required security
strategies. Coordination activities are the key concepts used for control-
ling the execution of participating services. Constraints are specified as
pre and post conditions of these coordination activities.

1 Introduction

The democratization of Internet along with recent advances in information tech-
nologies has made the global networked marketplace vision a reality. In such an
environment, companies form alliances for building information systems that ag-
gregate their services. Effective service sharing and integration is a critical step
towards developing next generation of information systems for supporting the
new online economy. Given the time-to-market, rapid development and deploy-
ment requirements, information systems are made up of the services of different
providers that are accessible through networks, e.g., Internet. Such information
systems are called coordinated systems. A service provider is an autonomous
organism that keeps control on the service execution with respect to some non-
functional aspects such as security. It predefines instructions and descriptions
for using its services (e.g., where and when functions of these services can be
accessed). Using a service implies invoking a method and (possibly) waiting for
execution results.

Numerous systems, models and languages have been proposed for supporting
services coordination, i.e., the way services invocations are orchestrated accord-
ing to the application logic of a given coordinated system. Existing solutions such
as workflow models [5,8] or Petri nets [18] tackle the specification and enactment
of services coordination. Using a workflow model, the execution of a coordinated
system is controlled by a data flow and a control flow. The data flow specifies
data exchange among participating services. The control flow describes their de-
pendencies and it is expressed by ordering operators such as sequence, selection
(OR-split, OR-joint) and synchronization (AND-split, AND-joint). Using a Petri
net, the execution of a coordinated system is expressed by rules applied on data
delivered to or consumed by participating services (i.e., places). It defines (i)

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 391–407, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



392 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

rules for abstracting the structure of exchanged data (i.e., tokens) among ser-
vices and (ii) rules for scheduling and sending input and output data that can
fire some service execution (i.e., transitions). The interaction among services has
been facilitated by current technologies that either adopt approaches based on
interoperation [9,6] and based on intercommunication [10].

While particular attention has been devoted to services coordination, non-
functional aspects such as security have been poorly addressed by existing coor-
dination models, languages and execution engines. It is hard to accurately specify
what a coordinated system has to do under specific security requirements such
as authentication, reliability, non repudiation and messages integrity. It is also
often difficult to consider in advance the coordination of participating services
under a large set of interactions and interdependencies among them. A loose
specification of an application logic can lead to a wrong order of interactions
among services. We can also mistreat real situations during the coordination
execution, e.g., invoked service is undesirably replaced by another. Another ex-
ample is that information exchanged among services in the coordination context
is altered without our knowledge. Managing secure coordination at execution
time implies:

– Verifying messages integrity (i.e., those exchanged among services) in order
to avoid their unauthorised alteration.

– Authentication of the services that participate in a coordination process
(i.e., identify the invoked service and the service that provides results after
an invocation).

– Ensuring non repudiation of coordination: post-check the validity of coor-
dinated system execution and prevent a participating service from denying
previous actions.

The challenges are to avoid security vulnerabilities of services coordination
and provide strategies for ensuring security at run-time. Moreover, the proposed
strategies should not contradict the facility of the coordinated system construc-
tion and services flexibility. It should be possible to adapt coordination and secu-
rity aspects of coordinated systems according to different topologies, scenarios,
delegation requirements and security configurations.

We focus on the functional safety of coordination. We propose to enrich and
adapt a coordination specification in a way that unintended behaviours can be
detected and rectified. We propose to model such a control as constraints asso-
ciated to so called coordination activities. Our model, called MEO (constraint-
based Model for sEcure cOordination) offers concepts to describe the coordina-
tion of services as coordination activities and their associated constraints. These
constraints are used to express coordination and security strategies for a coor-
dinated system.

The remainder of this paper is organized as follows. Section 2 introduces the
MEO model. Section 3 and 4 describe the way coordination and security strate-
gies are expressed in our model. Section 5 explains how to specify coordination
and security aspects of a coordinated system. Section 6 compares our work with



Defining and Modelling Service-Based Coordinated Systems 393

existing ones. Finally, section 7 concludes the paper and discusses further re-
search directions.

2 The Main Concepts of MEO

This section details the main concepts of MEO, the proposed constraint-based
Model for sEcure cOordination.

Fig. 1. Booking flight application

Let us consider a flight booking application expressed as a coordinated system
in Figure 1 (called coordinated system). The system is built from three existing
services (called participating services).

– Adventurer manages clients that are interested in booking flights.
– Payment executes online payment transactions on given client accounts.
– Seeking looks for available seats and performs flight pre-booking operations

on a flight database.



394 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

By invoking methods of these services, the flight booking application performs
the following functions:

(i) Lookup an available flight list according to given client’s needs.
(ii) Book a flight by choosing it from the returned available flights list.
(iii) Buy a tickets.

As shown in Figure 2, using MEO, such a coordinated system is modelled
through three fundamental concepts: coordination activity, coordination scenario
and constraint. The application logic of this coordinated system is specified as a
set of constraints on coordination activities within a given coordination scenario.
Similarly, constraints expressed on security properties provided by services are
coupled with reliability constraints used to express control flow among coordi-
nation activities in order to specify security strategies.

Fig. 2. Main concepts of MEO

2.1 Coordination Activity

A coordination activity specifies an interaction between two services, where one
invokes a function provided by another and (possibly) waits for its execution
results. Generally speaking a coordination activity (CA) is characterized as CA

= (P, F, S, I, O, A), where:

– P is the profile that identifies the coordination activity by a unique name.
– F denotes a specific function of a participating service.
– S is the current execution state of the coordination activity.
– I contains a set of parameters related to the input data of the coordination

activity.
– O contains a set of parameters related to the output data of the coordination

activity.
– A is a set of attribute. Every attribute represents a specific property of the

coordination activity and a possible value.

For instance, the reservation function in our example is described as follows:
In case of buying a booked flight, the booking confirmation is transferred to



Defining and Modelling Service-Based Coordinated Systems 395

the Payment service. These information is redirected to the Seeking service
to validate the reservation by invoking the method reserve Flight. We define the
following coordination activities:

– CA7, where the payment information is collected:
P7 = getPaymentInfos; F7 = Adventurer.get Booked Confirmation.

– CA8, for booking the flight according to the information received as input:
P8 = reserveFlights; F8 = Seeking.reserve Flights.

– CA9, for processing a client’s order according to the information received as
input: P9 = processingOrder; F9 = Payment.processing Order.

– CA10, for displaying the booking result:
P10 = showBookingResult; F10 = Adventurer.display Results.

2.2 Coordination Scenario

A coordination scenario is the history of the execution of a set of coordination
activities. A coordination scenario (CS) is characterized by CS = (N, L, {(ER, IT,

OT)}, CT), where:

– N is a name identifying the scenario.
– L is a log that registers the execution status of a coordination.
– ER is an execution reference of an identified coordination activity.
– IT (incoming trace), contains the values of the input parameters of an identified

coordination activity.
– OT (outgoing trace) contains the values of the output parameters of an iden-

tified coordination activity.
– CT (context trace) contains the values describing the execution context of an

identified coordination activity.

For every coordination activity CAj belonging to the scenario CSi, the follow-
ing information is traced: information about the instant in which a participating
service starts or finishes a function (i.e., ERi,j). Information about message pro-
ducers and consumers (e.g., services) is logged (CTi) with a time stamp and a
signature, i.e., ITi,j , OTi,j . All coordination activities of CSi result in a log that
contains information about successful or unsuccessful execution of the coordina-
tion scenario CSi. We can then analyze these traces to extract information that
can be used to diagnose coordination failures. Through the log provided by the
scenario, the coordination can be monitored and evaluated.

Considering our example, we have three coordination scenarios CS1, CS2, CS3,
which are respectively the execution information of the lookup, book and pur-
chase functions. For instance, the coordination scenario CS3 is defined as follows:

CS3 = (N3, L3, {(ER3,j , IT3,j , OT3,j)}, CT3), where N3 = ”reserve” and
(ER3,7, IT3,7, OT3,7), (ER3,8, IT3,8, OT3,8), (ER3,9, IT3,9, OT3,9), (ER3,10, IT3,10, OT3,10)

are respectively the traces of coordination activities CA7, CA8, CA9, CA10 of the
purchase function.



396 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

2.3 Constraint

Constraint is the basic concept used to manage and control coordination. A con-
straint defines the behaviour, the data, the characteristic or the interface that is
selected as a requirement for a coordination activity or to refer to coordination
scenarios. Constraints can be enabled, validated, observed and verified. Con-
straints are defined using set operators (∪,∩,−), logic operators (∨,∧,¬,→),
relation operators (∈, /∈,⊂,⊆,⊃,⊇, �=) and functions. A constraint (C) is char-
acterized as C = (P, SC, T, ST), where:

– P is a predicate defining the condition to be evaluated.
– SC defines the scope of the constraint. It may be a coordination activity and

a coordination scenario.
– T is the occurrence time of the constraint verification. It can be before, during

or after (i) the execution of a coordination activity, (ii) the activation of
a coordination context and (iii) the validation of another constraint. So,
constraints are of three types: pre-condition, post-condition and invariants.

– ST is the structure that characterizes possibilities for composing constraints.
It has three values: atomic, composite and nested.

Given a set of coordination activities needing to be orchestrated according to
specific functional (e.g. coordination) and non functional aspects (e.g. security),
constraints express these requirements. So for each coordination activity, con-
straints describe what is considered, permitted, obligatory and forbidden. The
following sections detail the constraints designed for our coordinated system
example to ensure its functional safety.

3 Coordination Strategy

A coordination strategy corresponds to a specific logic property of a coordi-
nated system. Properties are expressed by functional constraints considering
the exchanged data and the temporal relationships among a set of coordination
activities. Such constraints are added to coordination activities and are evalu-
ated on coordination scenarios. We identify the following functional constraint
types: ordering, firing and data dependency. The following sections define these
constraint types.

3.1 Ordering

An ordering constraint represents temporal relationships between two coordi-
nation activities. Let CAi, CAj be two coordination activities to be orchestrated,
and sti, stj and eti, etj their start and termination times respectively. Three or-
dering constraints can be associated to CAi in order to determine its relationship
with CAj .

– Before(CAj): TRUE if CAi starts before CAj , FALSE otherwise.
– After(CAj): TRUE if CAi terminates after CAj , FALSE otherwise.
– Simultaneous(CAj): TRUE if CAi starts and terminates simultaneously with

CAj , FALSE otherwise.



Defining and Modelling Service-Based Coordinated Systems 397

3.2 Firing

A firing constraint represents the situation where the execution of a coordination
activity cannot be fired until the execution of another coordination activity has
terminated in a particular state.

Let CA be a coordination activity to be orchestrated, and STATE = {S1,S2,..,Sn}
be the set of possible termination states for this coordination activity. The fol-
lowing constraints can be defined on each state Si ∈ STATE of CA:

– Consider(Si): TRUE if Si is considered to fire the execution of the coordina-
tion activity CA, FALSE otherwise.

– Permit(Si): TRUE if Si is permitted in order to decide whether to fire the
execution of the coordination activity CA, FALSE otherwise.

– Obligate(Si): TRUE if Si is obligatory to fire the execution of the coordination
activity CA, FALSE otherwise.

– Forbid(Si): TRUE if Si must not happen if the execution of the coordination
activity CA must be fired, FALSE otherwise.

3.3 Data Dependency

A data dependency constraint indicates the situation where a coordination ac-
tivity consumes data produced by another coordination activity.

Let CAi, CAj be two coordination activities to be orchestrated, Ii, Ij , and Oi,

Oj their input and output data respectively. There are three possibilities for the
input data Ii of the coordination activity CAi in relation with the output data
Oj of the coordination activity CAj :

– Contain(Oj): TRUE if Ii contains Oj , FALSE otherwise.
– Belong(Oj): TRUE if Ii belongs Oj, FALSE otherwise.
– Match(Oj): TRUE if Ii matches Oj , FALSE otherwise.

4 Security Strategy

We use non functional constraints to define security aspects such as integrity,
authentication, authorisation, non repudiation and the final objective is the func-
tional safety of coordination. Constraints are added to coordination activities to
define authentication, authorisation, non repudiation and the integrity of ex-
changed messages.

4.1 Integrity

An integrity constraint provides a way for ensuring that authorized changes made
to an application logic or a coordination activity do not violate their consistency.
The consistency of a coordinated system is defined by the properties of coordina-
tion activities (e.g., profile), a coordination scenario (e.g., execution state) and
constraints (e.g., scope). An integrity constraint associated to a specific property
restricts the values that can be assigned to it.



398 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

Let us denote such a property by Ch and the set of its possible valid values
by V = {v1,v2,..,vn}. The integrity Ch is determined by the following constraints:

– Unique(Ch): TRUE if the value v to be assigned to Ch is unique among all
possible values vi ∈ V, FALSE otherwise.

– Range(Ch, [vx, vy]): TRUE if the value v to be assigned to Ch belongs to an
interval [vx, vy], where vx and vy ∈ V, FALSE otherwise.

– Free(Ch): TRUE if the value v is free to be assigned to Ch, FALSE otherwise.
– Invariant(Ch): TRUE if the value v is not altered after having been assigned

to Ch, FALSE otherwise.

For a given tuple of characteristics (Ch1, Ch2,.., Chn) the following constraints
can be defined in relation with their real assigned values:

– Nul(Chi): TRUE if no value is assigned to Chi, FALSE otherwise.
– Exist(Chi): TRUE if there is a Chi with a valid assigned value, FALSE

otherwise.
– ForAll(Chi): TRUE all Chi have valid assigned values, FALSE otherwise.

The next paragraphs describe how to associate these constraints on coordi-
nation activities and an application logic.

For coordination activity: Given a set of coordination activities CA set =

{CA1,CA2,..,CAn}, where CAi = {Pi, Fi, Si, Ii, Oi, Ai}, the following integrity con-
straints can be defined:

– Unique(Pi): the profile (P) must have an unique combination of values for the
name and the description.

– Unique({Fi, provider, context}): (F) invoked within the coordination context,
must refer to a unique function provided by a unique service.

– Range(Si, [R1, R2, R3]): the execution state (S) of a coordination activity can
have one of the following values R1, R2, R3.
• In the preparation step there are three values to be assigned to the state

of a coordination activity CAi: R1 = {UNDERCONSIDERATION, WAIT,

READY}.
• In the treatment step there is one value to be assigned to the state of

coordination activity CAi: R2 = ACTIVE.
• In the termination step there are three values to be assigned to the state

of coordination activity CAi: R3 = {ABORT, COMMIT, COMPENSATION}.
– ForAll(Ii): all input parameters (I) must have associated valid values.
– Invariant((Oi)): output parameters (O), must be consistent when they are

exchanged.
– Exist(Ai): attributes (A) must have some valid associated values.

For application logic: Such a constraint is coupled with ordering constraints
to verify exchanged data among a sender and a recipient.



Defining and Modelling Service-Based Coordinated Systems 399

4.2 Authentication

An authentication constraint represents the situation where an invocation in
a coordination activity occurs only until its sender and/ or its recipient have
been identified. Typically, authentication constraints merely ensure that the in-
vocation sender is the coordinated system and/ or the invocation recipient is a
participating service. The authentication card is associated with a coordination
activity as its authentication attributes, e.g. digital certificates. It serves to the
mutual authentication.

Let CA set = {CA1,CA2,..,CAn} be a set of coordination activities to be orches-
trated, CAi = {Pi, Fi, Si, Ii, Oi, Ai}, a set of possible names used to identify these
coordination activities as NAME set = {N1,N2,..,Nn}, Ni ∈ Pi, and DEMO set =

{D1,D2,..,Dn}, Di ∈ Ai a set of possible cards used to authenticate these coor-
dination activities. The following authentication constraints are defined on the
identity and the identity card:

– NotConsidered(Ni): TRUE if the name Ni is not considered as an authenti-
cation identity of the coordination activity CAi, i.e., there is no need for
authenticating CAi, FALSE otherwise.

– Approved(Ni): TRUE if the name Ni is in the list of approuved identities of
the coordinated system, FALSE otherwise.

– Coupled(Ni, Di): TRUE if the authentication card Di of the coordination
activity CAi is correctly demonstrated for its identity Ni, FALSE otherwise.

At the execution level, once sender’s and recipient’s identities are explicitly
represented, authentication constraints are validated by the relationships be-
tween authentication demonstration and the implicit sender and recipient of a
coordination activity. Authentication constraints will be then applied on the
function dimension (F ) of a coordination activity.

4.3 Authorisation

Based on the identity of a specific coordination activity, an authorisation con-
straint represents the situation where the invocation of a function is granted.
Logically, authorisation constraints are checked after authentication constraints
because authorisation solvers use the results of authentication solvers as their
inputs. Authorisation constraints are defined by predicates that are similar to
those defining firing constraints.

Let us denote by FUNCTIONALITY = {f1,f2,..,fn} a set of possible functions
to be invoked. Let CA = (P,F,S,I,O,A) be a coordination activity needing to be
orchestrated and N ∈ P the approuved identity of CA produced by authentication
solvers. There are four authorisation constraints that define the relation between
an approuved identity IDi ∈ IDENTITY and an authorized function invocation fi
∈ FUNCTIONALITY in the scope of CA.

– Consider(N, fi): TRUE if N is under consideration to invoke the function fi
in the scope of CA, FALSE otherwise.



400 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

– Permit(N, fi): TRUE if N is authorised to invoke the function fi in the scope
of CA, FALSE otherwise.

– Obligate(N, fi): TRUE if N must obligatory invoke the function fi in the scope
of CA, FALSE otherwise.

– Forbid(N, fi): TRUE if it is forbidden for N to invoke the function fi in the
scope of CA, FALSE otherwise.

4.4 Non Repudiation

A non repudiation constraint represents the situation where we can post-check
the validity of coordination activities and prevent a participating service from
denying previous behaviours that are related to its input or output data. Let
{CA1,CA2,..,CAn} be the set of coordination activities to be orchestrated. The
following non repudiation constrains can be associated to coordination scenarios:

– Ordered({CAi}): TRUE if it is possible to proof from the previous evaluations
of constraints the real execution order of coordination activities, FALSE
otherwise.

– Approval(CAi): TRUE if from the coordination scenario we can proof who is
responsible for approving the exchange of data when a function was invoked
within the scope of a given coordination activity, FALSE otherwise.

– Sent(CAi, [invocation, result]): TRUE if from the coordination scenario we can
proof who sent an invocation and who sent the corresponding result within
the scope of a given coordination activity, FALSE otherwise.

– Original(CAi): TRUE if both Approval(CAi) and Sent(CAi) are TRUE, FALSE
otherwise.

– Received(CAi, [invocation, result]): TRUE if from the coordination scenario we
can proof that the recipient received an invocation or a result, FALSE
otherwise.

– Known(CAi, [invocation, result]): TRUE if from the coordination scenario we
can proof that the recipient recognised the content of a received invocation
or result, FALSE otherwise.

– Delivered(CAi): TRUE if both Received(CAi) and Known(CAi) proof that the
recipient received and recognised the content of an invocation or a result,
FALSE otherwise.

– Submitted(CAi): TRUE if from the coordination scenario we can proof that a
delivery authority has accepted the transmission of an invocation, FALSE
otherwise.

– Transported(CAi): TRUE if from the coordination scenario we can proof that
a delivery authority has given the invocation or the result of a specific sender
to an intended recipient, FALSE otherwise.

4.5 Safety

These constraints serve to diagnose following unintended behaviours:

– a required coordination activity is not performed;
– an incorrect or unsafe coordination activity is performed;



Defining and Modelling Service-Based Coordinated Systems 401

– a required coordination activity is performed at the wrong time or at the
wrong crosslink;

– a correct coordination activity is not stopped in prescribed order.

We suggest additional constraints for reinforcing the described constraints in
order to ensure a correct specification of an application logic. There are intra-
safety constraints of coordination activities and inter-safety constraints of coor-
dination activities. These constraints can be used as safeguards to detect and
handle unintended behaviours at execution time.

Intra-safety constraints diagnose if (i) a required functional constraint is not
considered or (ii) a non required functional constraint is considered in the ap-
plication logic. These constraints serve to compare and post check the execution
state of coordination activities. They are verified on L, CT , OT of coordination
scenarios.

Inter-safety constraints diagnose if a required functional constraint is con-
sidered at the wrong time. In this case, they serve to check the validity of a con-
straint corresponding with a given activity. Also, inter-safety constraints prevent
the dependencies that exist between constraints of the same type. They serve to
avoid the redundance and the contradiction of constraints imposed to a coordi-
nation activity.

5 Execution Policies

As shown in Figure 3, the execution of every coordination activity is done in
three steps: preparation, treatment, termination. Constraints are handled as
pre-conditions, post-conditions and invariants of the corresponding invocation
according to the following rules:

– Rule 1. Preconditions must be verified and treated before firing the execu-
tion of invoked functions of a participating service. For a given coordination
activity, preconditions are specified by firing, authentication and authorisa-
tion constraints. For a coordination activity (i.e. the current coordination
activity) in relation with another coordination activity (i.e. next coordina-
tion activity), preconditions of the next coordination activity are ordering
and data dependency constraints (see (1), (2)).

– Rule 2. Postconditions must be verified and treated after having the result
of an invoked function. For a coordination activity post conditions are spec-
ified by non repudiation constraints. For a coordination activity (i.e., the
current coordination activity) in relation with another coordination activity
(i.e., next coordination activity), the postcondition of current coordination
activity is specified by integrity constraints (see (1), (3)).

– Rule 3. Invariants are always translated as preconditions and postconditions.
They must be verified and treated respectively as part of the treatment of
preconditions and post conditions.



402 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

(1) coordination_activity := treatment |

( preparation ^ treatment ^ termination );

(2) preparation := precondition-checking |

( precondition-checking ^ exception-treatment ) |

UNDER_CONSIDERATION | WAIT | READY;

(3) treatment := invoked_functionality-execution |

( invoked_functionality-execution ^ faillure-treatment ) | ACTIVE;

(4) termination := postcondition-checking |

( postcondition-checking ^ exception-treatment );

(5) precondition-checking := TRUE | FALSE;

(6) postcondition-checking := TRUE | FALSE;

(7) faillure-treatment := STOP | ( STOP ^ exception-treatment )|

CONTINUE | COMPENSABLE;

(8) exception-treatment := ABORT | COMMIT | COMPENSATION;

Fig. 3. Handling rules of a coordination activity

– Rule 4. During the condition treatment process, the intra-safety and inter-
safety constraints must be ensured.

– Rule 5. If the result of an invoked function notifies and failure, failure treat-
ment must be executed as part of the treatment of post conditions (see (7),
(8)).

– Rule 6. The validity of a constraint is either TRUE or FALSE (see (5),
(6)).

– Rule 7. Constraints evaluation to FALSE is captured as the occurrence of
an exception (see (8)).

– Rule 8. The matching of coordination and security strategies to the execution
of the coordinated system are validated by post-checking the information
extracted from coordination scenarios.

Figure 4 illustrates the state automation of a coordination activity during exe-
cution.

To glue together a set of coordination activities {CA1, CA2, .., CAn}, we prede-
fine their associated constraints as constructors. The following constructors have
been identified: sequence, selection (OR-split, OR-joint), iteration, synchronisa-
tion (AND-split, AND-joint) and free (unordering).

– sequence(CA1,CA2) expresses a sequential order among coordination activities,
i.e. the fact that the execution of one coordination activity (CA2) is carried
out after another (CA1).

– OR-split(CA1,{CA2,..,CAn}), or sequence(CA1,CA2) ∨ .. ∨ sequence(CA1,CAn), is
used to select one coordination activity from a set of coordination activities
CA2,.., CAn. CA1 and only one of them ensure a sequential order.

– OR-joint({CA1,..,CAn−1},CAn), or sequence(CA1,CAn) ∨ .. ∨ sequence

(CAn−1,CAn), is used to select one coordination activity from a set of coordi-
nation activities CA1,.., CAn−1. Only one of them and CAn ensure a sequential
order.



Defining and Modelling Service-Based Coordinated Systems 403

Fig. 4. State automation of coordination activity

– AND-split(CA1,{CA2,..,CAn}), or sequence(CA1,CA2) ∧ .. ∧ sequence(CA1,CAn),
expresses the fact that two or more coordination activities are executed at the
same time, after the execution of another. This is an effect of synchronisation
among coordination activities {CA2,..,CAn}. CA1 and all of them ensure a
sequential order.

– AND-joint({CA1,..,CAn−1},CAn), or sequence(CA1,CAn) ∧ .. ∧ sequence

(CAn−1,CAn), expresses the fact that two or more coordination activities
CA1,.., CAn−1 are executed at the same time. All of them and CAn ensure
n-1 sequential orderings.

– iteration(CA1) expresses the fact that the execution of a coordination activity
CA1 is repeated.

– unordering(CA1, .., CAn) expresses the fact that no coordination constraints
described above are met. In other words, there is no dependency among
coordination activities. Such activities can be executed at the same time or
according to any order.

For example, consider the three coordination activities implementing the look
up function. The flight booking application first interacts with Adventurer ser-
vice to get information about a client and her/his needs by invoking the method
get Requirements (CA1). This information is used by the method seek Flights of
the Seeking service for looking for available flights (CA2). This service returns
a list of possible flights that are displayed by the method display Results of the
Adventurer service (CA3 ). A sequential constructor is expressed as a set of pre
and post conditions of these coordination activities. The following constraints
specify coordination and security aspects associated to CA2 as pre conditions:

– Obligate(S1 = COMMIT): once the execution status of CA1 (i.e., S1) is suc-
cesful, the method seek Flights of the Seeking service can be invoked.



404 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

– Match(O1): information about customer’s needs (i.e., (O1)) produced by the
method get Requirements of the Adventurer service is used as input data of
the method seek Flights provided by the Seeking service.

– After(CA1): the end of the execution of the method get Requirements must
precede the beginning of the execution of the method seek Flights.

– Approuved(searchFlights): the identity of the service providing the invoked
method (seek Flights) must belong to the list of valid names of the coordi-
nated system.

Similarly, the following post conditions of CA2 must hold:

– Permit(S3 = READY): CA3 can fire the invocation to a method of the Adven-
turer service. This constraint plays also the role of an authorisation constraint
for CA3.

– Invariant(O2): the flight search result cannot be altered until it is delivered
to the Adventurer service.

– Received(searchFlights, invocation) ∧ Sent(searchFlights, result): it ensures
that the invocation and the transmission of results are done within the same
execution scope. In the example, the invocation of the method seek Flights is
received and its results are sent within the scope of the coordination activity
CA2. This constraint is used for avoiding non-repudiation.

6 Related Work

Coordination is described and managed as constraints on interactions among
services. From this point of view, we consider existing related works according
to the service interaction mechanisms they support.

The first category of mechanisms is based on sharing data space, naturally
a common accessible data structure for all of participating services. Their com-
munication is realized by the way they control or process common data values
in sharing space. In this category, the target coordinated system configuration
is supported by suitable coordination languages at run-time, i.e. the Linda fam-
ily [16,17] and other varieties. [19] combines the Linda language with certain
standards of W3C (XML, XSL) to build a workflow system management on
the Internet. Polished [4] is a coordination language, which provides basic de-
scriptions and automatic analysis for mobile agent system architectures. The
security solution is to build a secured sharing space [7,13] corresponding with a
given coordination model in a concrete context.

The second category is based on data passing among participating services. A
participating service is then considered as a black box process that produces or
consumes data via well defined interfaces, called ports. These boxes communicate
directly in several ways: establishing connections among participating services
ports for exchanging data, diffusing control events or messages among processes.
The coordinated system is configured at runtime with the support of integration
tools or integration environments according to specified software architecture.



Defining and Modelling Service-Based Coordinated Systems 405

This category of mechanisms can be used to manage complex distributed sys-
tems [12], especially multi-agent systems [3]. ToolBUS [15] and coordination
orchestration [13] are used to facilitate and to control potential interactions be-
tween system components. A coordination protocol for distributed applications
(e.g. Web services) is specified in [11]. A coordination tool based on local data
space of participating Web services is also studied in [1].

Nevertheless, at the abstraction level of coordination, these works do not con-
sider the security by the way coordination is abstracted and specified. Security
and coordination are differently modelled. If we wish to consider security re-
quirements using the concepts and terminologies of a coordination model, there
is no way to explicitly determine the relation between such a coordination model
and a specific security model. Security management relies upon the architecture
components that implement coordinated systems.

At the execution level, existing security solutions are strictly proposed as tools
for securing the execution of specific components that carry out the coordina-
tion. With regard to the first category of coordination, the execution architecture
of coordination is the sharing space. So, the main security solution is to build
a secured sharing space [7,13] corresponding with a given coordination model
deployed in a concrete environment. Following this idea, security techniques for
controlling access (authorization, control privilege, etc.) and for identifying par-
ticipating services are focused. With regard to the second category, the execution
architecture of coordination is a tool that supports interconnection and commu-
nication among participating services. Security measures are then applied to
these tools. Efforts like WS-Policy and WS-Secure-Conversation combined with
WS-Security and WS-Trust are going in this direction. [7] presents an approach
for building a secure mobile agent environment. Moreover, some methodolo-
gies used to evaluate the security quality of participating services are quoted.
[2] presents a specification to secure exchanged messages among Web services
by using SOAP protocols. In [14], a component characterization diagram for
component-based system is proposed. Based on this diagram, a formal security
model to identify and quantify security properties of component functionalities is
also presented. The purpose is to protect user data by evaluating and certifying
the components and their composition (if they are re-used by another).

Security solutions that are defined at the abstraction level can be mapped and
reused as security solutions at the execution level. For example, at the abstrac-
tion level, we use constraints to define an authentication strategy of coordination
activities. At the execution level, this strategy is mapped and implemented as
one component that performs the coordination. It can be reused to define an au-
thentication strategy of participating services. In this case, it is implemented as
a tool for securing the execution of components that perform the coordination.

7 Conclusion

This paper presented MEO - a secure coordination model that enables the spec-
ification of secure service-based coordinated systems. Both functional and non



406 T.-H.-G. Vu, C. Collet, and G. Vargas-Solar

functional requirements of such coordinated systems are specified by constraints
for coordination activities and that refer to coordination scenarios.

The originality of our solution is that security requirements are considered
at both abstraction and execution level. In the MEO model, security solutions
(e.g., authentication strategy) are constructed in the same way in which coor-
dination solutions (e.g., application logic) are constructed. For this reason, the
first essential point making our proposition different from other current solutions
is that we can consider the functional safety requirements early on the coordina-
tion abstraction level, while other solutions can only consider it at the execution
level.

Our MEO model takes some advantages for defining a secure coordinated
system. First, MEO enables the definition of security strategies without redun-
dancy by distinguishing different levels of coordination and security. Moreover,
these strategies can be independently applied to different objectives at both
abstraction and execution level. Second, with MEO coordination and security
requirements of the coordinated system are specified in the same way, so there is
no need to consider the relation of terminologies and concepts amongst different
coordination and security models.

Further research focuses on the construction of a secure coordination frame-
work. It will support the building elements for coordinating services. Executing
a coordination in a secure way means defining tools that control and validate
the constraints specified at abstraction level. That means also supporting tools
for ensuring other security objectives at execution level: exchanged message in-
tegrity, service authentication and non repudiation of coordination activities. It
implies also the capability to enable the coordinated system to automatically
adapt the coordination and security strategies.

References

1. P. Alvarez, J. A. Banares, P. R. Muro-Medrano, J. Nogueras, and F. J. Zarazaga.
A java coordination tool for web-service architectures: The location-based service
context. In FIDJI ’01: Revised Papers from the International Workshop on Scien-
tific Engineering for Distributed Java Applications, pages 1–14, London, UK, 2003.
Springer-Verlag.

2. Khalid Belhajjame, Genoveva Vargas-Solar, and Christine Collet. Defining and
coordinating open-services using workflows. In Proceedings of the Eleventh Inter-
national Conference on Cooperative Information Systems (COOPiS03), number
2519, Catania Sicily-Italy, Novembre 2003. Lecture Notes in Computer Science.

3. Ciaran Bryce, Manuel Oriol, and Jan Vitek. A coordination model agents based
on secure spaces. In COORDINATION ’99: Proceedings of the Third International
Conference on Coordination Languages and Models, pages 4–20, London, UK, 1999.
Springer-Verlag.

4. P. Ciancarini, F. Franze, and C. Mascolo. Using a coordination language to specify
and analyze systems containing mobile components. ACM Trans. Softw. Eng.
Methodol., 9(2):167–198, 2000.

5. Workflow Management Coalition. Workflow management coalition: Terminology
and glossary, 1996.



Defining and Modelling Service-Based Coordinated Systems 407

6. Microsoft Corporation. http://msdn.microsoft.com/webservices /building /in-
terop/, 2003.

7. Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Coordination in con-
text: Authentication, authorisation and topology in mobile agent applications. In
COORDINATION ’99: Proceedings of the Third International Conference on Co-
ordination Languages and Models, page 416, London, UK, 1999. Springer-Verlag.

8. Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An overview of
workflow management: From process modeling to workflow automation infrastruc-
ture. Distributed and Parallel Databases, 3(2):119–153, 1995.

9. Object Management Group. http://www.corba.org/, 2002.
10. IBM. http://www-306.ibm.com/software/htp/cics/, 1999.
11. IBM, Microsoft, and BEA. Web services coordination. Technical report, 2003.
12. Paola Inverardi and Henry Muccini. Coordination models and software architec-

tures in a unified software development process. In COORDINATION ’00: Proceed-
ings of the 4th International Conference on Coordination Languages and Models,
pages 323–328, London, UK, 2000. Springer-Verlag.

13. Valerie Issarny, Christophe Bidan, and Titos Saridakis. Characterizing coordi-
nation architectures according to their non-functional execution properties. In
HICSS ’98: Proceedings of the Thirty-First Annual Hawaii International Confer-
ence on System Sciences-Volume 7, page 275, Washington, DC, USA, 1998. IEEE
Computer Society.

14. K. Khan, J. Han, and Y. Zheng. Characterising user data protection of software
components. In Proceedings of the 2000 Australian Software Engineering Confer-
ence, page 255, WCanberra, Australia, 2000. IEEE Computer Society.

15. Paul Klint and P. Olivier. The TOOLBUS coordination architecture - a demon-
stration. In Algebraic Methodology and Software Technology, pages 575–578, 1996.

16. Thomas W. Malone and Kevin Crowston. What is coordination theory and how
can it help design cooperative work systems? In CSCW ’90: Proceedings of the
1990 ACM conference on Computer-supported cooperative work, pages 357–370,
New York, NY, USA, 1990. ACM Press.

17. George A. Papadopoulos and Farhad Arbab. Coordination models and languages.
Technical report, Amsterdam, The Netherlands, The Netherlands, 1998.

18. James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

19. Robert Tolksdorf. Coordination technology for workflows on the web: Workspaces.
In COORDINATION ’00: Proceedings of the 4th International Conference on Coor-
dination Languages and Models, pages 36–50, London, UK, 2000. Springer-Verlag.



Properties: An Approach Based on Event
Calculus

Mohsen Rouached, Walid Gaaloul, Wil M.P. van der Aalst, Sami Bhiri,
and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{rouached, gaaloul, bhiri, godart}@loria.fr
Department of Technology Management, Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Web services are becoming more and more complex, involv-
ing numerous interacting business objects within complex distributed
processes. In order to fully explore Web service business opportunities,
while ensuring a correct and reliable execution, analyzing and tracking
Web services interactions will enable them to be well understood and
controlled. The work described in this paper is a contribution to these
issues for Web services based process applications.

This article describes a novel way of applying process mining tech-
niques to Web services logs in order to enable “Web service intelligence”.
Our work attempts to apply Web service log-based analysis and process
mining techniques in order to provide semantical knowledge about the
context of and the reasons for discrepancies between process models and
related instances.

1 Introduction

With the ever growing importance of the service-oriented paradigm in system
architectures, more and more (business) processes will be executed using service-
oriented systems. Indeed, Service Oriented Architectures (SOA) seems to be a
key architecture to support BPM (Business Process Management). In particular,
with SOA, an application can be now considered as a composition of services,
Workflow Management Systems (WfMSs), and legacy applications. Thus, a busi-
ness process becomes a set of composed services that are shared across business
units, organizations, or outsourced to partners.

Currently many products that offer modeling, analysis, and simulation fa-
cilities for such business processes exist. However, one of the great advantages
offered by the coupling of BPM and SOA is that designers can not only model,
analyze, simulate, but they can also use the result directly for deployment, us-
ing WSBPEL for instance. Functions at the modeling layer can be linked to
required services at the architecture level, and engines/systems can now manage

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 408–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Retracted: Web Service Mining and Verification

of

Retr
ac

ted



Web Service Mining and Verification of Properties 409

the overall business process. This is a great improvement, and it clearly shows
that BPM over SOA can add value over traditional WfMSs for instance.

However, there are many challenges for trully realizing BPM over SOA. A
first challenge deals with the ability to adapt and to offer self-management of
the designed processes [33]. This is an important topic since these processes are
quite complex and dynamic, and deviations from the expected behavior may be
highly desirable. In order to fully explore business opportunities while ensuring
a correct and reliable behavior, the transition from vast amounts of Internet
servers and Web Services transactions data to actionable modelling intelligence
would be one of the major challenges in Web Services research field. The second
challenge is the need for being able to check the consistency of the business
process. This can be done both statically, i.e. at design time, or dynamically,
i.e. at runtime. For the dynamic part of the verification, the business process
should be auditable. For that, we can use process mining techniques, because
processes (and their associated services) leave many traces of their behavior in
the underlying systems they used to be executed.

Obviously, the practical benefit of mining techniques depends on the quality
of the available log data. Though process execution logs can be used to reveal
errors and bottlenecks, they do not provide any semantical information about
the reasons for the observed discrepancies. In respect to the optimization of the
process models these logs therefore provide only limited information to process
engineers. Consequently, the PMS (Process Management System) is unaware of
the applied deviations and thus unable to log information about them. The lack
of traceability of process instance changes significantly limits the benefits of pro-
cess mining and data mining approaches especially in dynamic and unpredictable
environment such as in web service composition.

In this paper, unlike most process mining approaches, the emphasis is not on
discovery. Instead we focus on verification, i.e., given an event log we want to
verify certain specified properties, to provide knowledge about the context of and
the reasons for discrepancies between process models and related instances. We
focus on reasoning about event logs to capture the semantics of complex Web
service combinations and checking their consistency. Since services behaviors
and composition specifications we are modelling are event driven, our approach
uses the Event Calculus (EC) of Kowalski and Sergot [14], and an extension
proposed by Mueller on Discrete EC [18], to declaratively model event based
requirements specifications. Compared to other formalisms, the choice of EC
is motivated by both practical and formal needs, and gives several advantages.
First, in contrast to pure state-transition representations, the EC ontology in-
cludes an explicit time structure that is independent of any (sequence of) events
to model event-based interactions where a number of input events may occur
simultaneously, and where the system behavior may in some circumstances be
non-deterministic. Second, the EC ontology is close enough to existing types of
event-based requirements specifications to allow them to be mapped automati-
cally into the logical representation. More specifically, the EC ontology is close
enough to the WSBPEL specification to allow it to be mapped automatically

Retr
ac

ted



410 M. Rouached et al.

into the logical representation. This allows us to use the same logical foundation
for verification at both design time and runtime.

The remainder of the paper is structured as follows. Section 2 describes a
running example used to illustrate our ideas. The log based verification is intro-
duced in Section 3. Then, the existing web logging techniques are discussed and
the used web logger is explained. Section 5 shows how the behavioral properties
can be verified using the EC formalism. The related work is discussed in section
6. Finally, Section 7 concludes the paper and outlines some future directions.

2 Running Example

Throughout this article, we will illustrate our ideas using a running example of
Web services composition. We consider a car rental scenario that involves four
services. A Car Broker Service (CBS) acts as a broker offering its customers the
ability to rent cars provided by different car rental companies directly from car
parks at different locations. CBS is implemented as a service composition process
which interacts with Car Information Services (CIS), and Customer Management
Service (CMS). CIS services are provided by different car rental companies and
maintain databases of cars, check their availability and allocate cars to customers
as requested by CBS. CMS maintains the database of the customers and authen-
ticates customers as requested by CBS. Each Car Park (CP) also provides a Car
Sensor Service (CSS) that senses cars as they are driven in or out of car parks
and inform CBS accordingly. The end users can access CBS through a User In-
teraction Service (UIS). Typically, CBS receives car rental requests from UIS
services, authorizes customers contacting CMS and checks for the availability of
cars by contacting CIS services, and gets car movement information from CSS
services. However, many complications may arise. For example, CBS can accept
a car rental request and allocate a specific car to it if, due to the malfunctioning
of a CSS service, the departure of the relevant car from a car park has not been
reported and, as a consequence, the car is considered to be available by the UIS
service. Through this example, we aim to demonstrate how Web services logs can
be specified and formalized in a way that enable the checking of some behavioral
properties with respect to the composition process.

For the running example, we assume that we can log events such as the ones
shown in Figure 1. Variables li, vi, and ci represent respectively the park number,
the car number, and the customer identifier.

3 Log-Based Verification

3.1 Formal Specification of Composition Properties

Our framework assumes service composition processes expressed in WSBPEL
[2] and uses the Event Calculus [14] to specify the properties to be monitored.
In this paper, the monitorable properties may include behavioural properties of
the composition process and/or assumptions that service providers can specify

Retr
ac

ted



Web Service Mining and Verification of Properties 411

activity id service originator timestamp

... ... ...

Enter(v1,l1) CSS 2006-03-13 10:40:39

RelKey(v1,c1,l1) UIS 2006-03-13 10:40:44

Available(v1,l1) CIS 2006-03-13 10:40:48

RetKey(v1,l1) UIS 2006-03-13 10:40:54

Enter(v2,l2) CSS 2006-03-13 10:40:57

... ... ...

CarRequest(c1,l2) UIS 2006-03-13 10:41:01

FindAvailable(l2,veh) CIS 2006-03-13 10:41:02

CarHire(c1,l2,v2) UIS 2006-03-13 10:41:03

RetKey(v2,l2) UIS 2006-03-13 10:41:09

... ... ...

Fig. 1. A fragment of the event log

in terms of events extracted from this specification. The behavioural properties
are specified in terms of: (i) events which signify the invocation of operations
in different services or the composition process and responses generated at the
completion of these executions, (ii) the effects that these events may have on
state variables of the composition (e.g., assignment of values), and (iii) conditions
about the values of state variables at different time instances. The events, effects
and state variable conditions are restricted to those which can be observed during
the execution of the composition process. Assumptions are additional constraints
about the behaviour of individual services in the execution environment. These
constraints are specified by system providers and must be expressed in terms of
events, effects and state variable conditions which are used in the behavioural
properties directly or indirectly.

The behavioural properties of individual web services are extracted automat-
ically from their WSDL descriptions and the WSBPEL specification of their
composition process. Following the extraction of such properties, assumptions
are specified by system providers in terms of event and state condition literals
that have been extracted from the WSBPEL specification and, therefore, their
truth-value can be established during the execution of the composition process.
The extraction of behavioural formulas from WSBPEL specifications was done in
a previous work BPEL2EC developed in [28]. The BPEL2EC is a tool that takes
as input the specification of a web service composition expressed in WSBPEL
and produces as output a possible behavioural specification of this composition
in Event Calculus. This specification can be amended by service providers, who
can also use the atomic formulas of the extracted specification to additional
assumptions about the composition requirements if appropriate.

Once both behavioral properties and additional assumptions are formalized,
we move to annotate the execution log with semantical information to enable
reasoning on recorded events for checking the consistency of the above properties
and gathering reasons about deviations that may arise. This means that given an

Retr
ac

ted



412 M. Rouached et al.

event log and an EC property, we want to check whether the observed behavior
matches the (un)expected/(un)desirable behavior.

3.2 Formulating Properties: The EC Language

Assuming that the information system left a “footprint” in some event log, it is
interesting to check whether certain properties hold or not. Before being able to
check such properties, a concrete language for formulating dynamic properties is
needed [34]. Given the fact that we consider behavioral properties where ordering
and timing are relevant and we adopt an event driven reasoning, the Event
Calculus (EC) [14] seems to be a solid basis to start from.

EC is a logic-based formalism for representing and reasoning about dynamic
systems. We adapts a simple classical logic form of the EC, whose ontology con-
sists of (i) a set of time-points isomorphic to the non-negative integers, (ii) a
set of time-varying properties called fluents, and (iii) a set of event types (or ac-
tions). The logic is correspondingly sorted, and includes the predicates Happens,
Initiates, Terminates and HoldsAt, as well as some auxiliary predicates defined
in terms of these. Happens(a, t) indicates that event (or action) a actually occurs
at time-point t. Initiates(a, f, t) (resp. Terminates(a, f, t)) means that if event
a were to occur at t it would cause fluent f to be true (resp. false) immedi-
ately afterwards. HoldsAt(f, t) indicates that fluent f is true at t. The auxiliary
predicate Clipped(t1, f, t2) expresses whether a fluent f was terminated during
a time interval [t1, t2]. Similarly, the auxiliary predicate Declipped(t1, f, t2) ex-
presses if a fluent f was initiated during a time interval [t1, t2]. For using the
previous predicates, we distinguish 4 different types of events in the context of
web services:

1. The invocation of an operation by the composition process in one of its
partner services. These events are represented by terms of the form:
ic.Service.OperationName(parameters).

2. The return from the execution of an operation invoked by the composition
process in a partner service. These events are represented by terms of the
form: ir.Service.OperationName(parameters).

3. The reply following the execution of an operation that was invoked by a
partner service in the composition process. These events are represented by
terms of the form: re.Service.OperationName(parameters).

4. The assignment of a value to a variable. These events are represented by
terms of the form as.AssignmentName(assignmentId).

The above types are assumed to have instantaneous duration. We also use
fluents to signify the binding of specific variables of the composition process to
specific values. Thus and by using the EC ontology, some behavioral properties of
the services involved in the running example are specified as shown in Figure 2.
This figure shows five properties expressed in EC. These are described below.

Property P1 is about the behavior of CSS services. The variable tm refers to
the minimum time between the occurrence of two events. Then, according to
this property, if a car vID is sensed to enter a car park pID1 at time t1 and

Retr
ac

ted



Web Service Mining and Verification of Properties 413

Property EC specification

P1 (∀t1, t2)Happens(rc.CSS.Enter(oID1), t1)∧Initiates(rc.CSS.Enter
(oID1), equalTo(v1, vID), t1)∧Initiates(rc.CSS.Enter(oID1), equalTo
(p1, pID1), t1)∧Happens(rc.CSS.Enter(oID2), t2) ∧ (t1 + tm ≤ t2)∧
Initiates(rc.CSS.Enter(oID2), equalTo(v2, vID), t2)∧Initiates(rc.CSS.
Enter(oID2), equalTo(p2, pID2), t2) =⇒ (∃t3)Happens(rc.CSS.Depart
(oID3), t3)∧(t1 + tm ≤ t3 ≤ t2 − tm)∧Initiates(rc.CSS.Depart(oID3),
equalTo(v3, vID), t3)∧Initiates(rc.CSS.Depart(oID3), equalTo(p3,
pID1), t3)

P2 (∀t1, t2)Happens(ic.CIS.F indAvailable(oID, pID), t1)∧Happens(ic.CIS.
F indAvailable(oID), t2)∧(t1 ≤ t2)∧HoldsAt(equalTo(availability(vID1),
”not avail”), t2−tm) =⇒ ¬Initiates(ic.CIS.F indAvailable(oID), equalTo
(vID2, vID1), t2)

P3 (∀t1, t2, t3)Happens(ir.UIS.RelKey(oID1, vID), t1)∧Happens(ir.UIS.
RelKey(oID1), t2)∧(t1≤t2)∧Happens(ir.UIS.RetKey(oID2), t3)∧(t2≤
t3)∧Initiates(ir.UIS.RetKey(oID2), equalTo(v, vID), t3)=⇒
(∀t4)(t1<t4)∧(t4<t3)HoldsAt(equalTo(available(vID), ”not avail”), t4)

P4 (∀t1)Happens(ir.UIS.RelKey(v, c, l), t1)∧(∃t2)(Happens(rc.CSS.Depart
(v, l), t2)∧(t1≤t2≤t1+d*tm)) =⇒ ¬(∃t3)Happens(ic.CIS.Available(v, l)),
t3)∧(t1 + d ∗ tm ≤ t3 ≤ t1 + d ∗ tm))

P5 Happens(rc.UIS.CarRequest(c, l), t1)∧Happens(ic.CIS.F indAvailable(l
, v3), t2)∧(t1 ≤ t2 ≤ t1 + tm)∧Initiates(ic.CIS.F indAvailable(l, v),
equalTo(v, v3), t2)=⇒ (∃t3)Happens(ir.UIS.CarHire(c, l, v), t3) ∧ (t2 ≤
t3 ≤ t2 + tm)

Fig. 2. Behavioural properties and assumptions of the running example

later at time t2 the same car is sensed to enter the same or a different car park,
then a Depart event signifying the departure of vID from pID1 must have also
occurred between the two enter events. The Happens predicates in P1 represent
the invocation of the operations Enter and Depart in CBS by CSS following
the entrance and departure of cars in car parks. The Initiates predicates in the
same formula initiate fluents that represent the specific value bindings of the
input parameters vi and pi (i=1,2,3) of the operations Enter and Depart.

Property P2, which is about the behavior of CIS services, indicates that the
operation FindAvailable, which is provided by the CIS service and searches for
available cars at specific car parks should not return the identifier of a car to
CBS unless this car is available.

The property P3 states that whilst a customer has the key of a car, this car
cannot be available for rental.

The property P4 specifies that when CBS receives the event RelKey(v, c, l)
that signifies the release of a car key to a customer, it waits for an event signifying
the exit of the car from the car park for d time units (this message is to be sent
by CSS). If the latter event occurs, CRS invokes the operation Available(v, l) in
CIS to mark the relevant car as unavailable.

Retr
ac

ted



414 M. Rouached et al.

4 Web Service Logging

4.1 Web Service Collecting Solutions and Web Mining Log
Structure

In this section we examine and formalize the logging possibilities in service ori-
ented architectures which is a requirement to enable the approach described in
this paper. Thus, the first step in the Web Service mining process consists of
gathering the relevant Web data, which will be analyzed to provide useful infor-
mation about the Web Service behaviour. We discuss how these log records could
be obtained by using existing tools or specifying additional solutions. Then, we
show that the mining abilities is tightly related to what of information provided
in web service log and depend strongly on its richness.

Existing logging solutions provide a set of tools to capture web services
logs. These solutions remain quite “poor” to mine advanced web service be-
haviours. That is why advanced logging solutions should propose a set of
developed techniques that allows us to record the needed information to mine
more advanced behaviour. This additional information is needed in order to be
able to distinguish between web services composition instances.

4.2 Existing Logging Solutions

There are two main sources of data for Web log collecting, corresponding to
the interacting two software systems: data on the Web server side and data on
the client side. The existing techniques are commonly achieved by enabling the
respective Web servers logging facilities. There already exist many investigations
and proposals on Web server log and associated analysis techniques. Actually,
papers on Web Usage Mining WUM [25] describe the most weel-known means
of web log collection. Basically, server logs are either stored in the Common Log
Format 1 or the more recent Combined Log Format 2. They consist primarily
of various types of logs generated by the Web server. Most of the Web servers
support as a default option the Common Log Format, which is a fairly basic
form of Web server logging.

However, the emerging paradigm of Web services requires richer information
in order to fully capture business interactions and customer electronic behavior
in this new Web environment. Since the Web server log is derived from requests
resulting from users accessing pages, it is not tailored to capture service composi-
tion or orchestration. That is why, we propose in the following a set of advanced
logging techniques that allows to record the additional information to mine more
advanced behavior.

4.3 Advanced Logging Solutions

Identifying web service composition instance: Successful mining for ad-
vanced architectures in Web Services models requires composition (choreography/
1 http://httpd.apache.org/docs/logs.html
2 http://www.w3.org/TR/WD-logfile.html

Retr
ac

ted



Web Service Mining and Verification of Properties 415

orchestration) information in the log record. Such information is not available in
conventional Web server logs. Therefore, the advanced logging solutions must pro-
vide for both a choreographyor orchestration identifier and a case identifier in each
interaction that is logged.

A known method for debugging, is to insert logging statements into the source
code of each service in order to call another service or component, responsible
for logging. However, this solution has a main disadvantage: we do not have
ownership over third parties code and we cannot guarantee they are willing to
change it on someone else behalf. Furthermore, modifying existing applications
may be time consuming and error prone.

Since all interactions between Web Services happen through the exchange
of SOAP message (over HTTP), an other alternative is to use SOAP head-
ers that provides additional information on the message’s content concerning
choreography. Basically, we modify SOAP headers to include and gather the
additional needed information capturing choreography details. Those data are
stored in the special <WSHeaders>. This tag encapsulates headers attributes
like: choreographyprotocol, choreographyname, choreographycase and any
other tag inserted by the service to record optional information; for example,
the <soapenv:choreographyprotocol> tag, may be used to register that the
service was called by WS − CDL choreography protocol. The SOAP message
header may look as shown in Figure 3. Then, we use SOAP intermediaries [3]
which are an application located between a client and a service provider. These
intermediaries are capable of both receiving and forwarding SOAP messages.
They are located on web services provider and they intercept SOAP request
messages from either a Web service sender or captures SOAP response messages
from either a Web service provider. On Web service client-side, this remote agent
can be implemented to intercept those messages and extract the needed infor-
mation. The implementation of client-side data collection methods requires user
cooperation, either in enabling the functionality of the remote agent, or to vol-
untarily use and process the modified SOAP headers but without changing the
Web service implementation itself (the disadvantage of the previous solution).

Concerning orchestration log collecting, since the most web services orches-
tration are using a WSBPEL engine, which coordinates the various orchestra-
tion’s web services, interprets and executes the grammar describing the control
logic, we can extend this engine with a sniffer that captures orchestration infor-
mation, i.e., the orchestration-ID and its instance-ID. This solution provides is
centralized, but less constrained than the previous one which collects choreog-
raphy information.

Using these advanced logging facilities, we aim at taking into account web
services’ neighbors in the mining process. The term neighbors refers to other
Web services that the examined Web Service interacts with. The concerned levels
deal with mining web service choreography interface (abstract process) through
which it communicates with others web services to accomplish a choreography,
or discovering the set of interactions exchanged within the context of a given
choreography or composition.

Retr
ac

ted



416 M. Rouached et al.

< soapenv : Header >
< soapenv : choreographyprotocol

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > WS − CDL

< /soapenv : choreographyprotocol >
< soapenv : choreographyname

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : string” > OTA

< /soapenv : choreographyname >
< soapenv : choreographycase

soapenv : mustUnderstand = ”0”
xsi : type = ”xsd : int” > 123

< /soapenv : choreographycase >
< /soapenv : Header >

Fig. 3. The SOAP message header

Collecting Web service composition Instance: The focus in this section is
on collecting and analysing single web service composition instance. The issue
of identifying several instances has been discussed in the previous section. The
exact structure of the web logs or the event collector depends on the web ser-
vice execution engine that is used. In our experiments, where we have used the
engine bpws4j 3 uses log4j4 to generate logging events. Log4j is an OpenSource
logging API developed under the Jakarta Apache project. It provides a robust,
reliable, fully configurable, easily extendible, and easy to implement framework
for logging Java applications for debugging and monitoring purposes. The event
collector (which is implemented as a remote log4j server) sets some log4j prop-
erties of the bpws4j engine to specify level of event reporting (INFO, DEBUG
etc.), and the destination details of the logged events. At runtime bpws4j gen-
erates events according to the log4j properties set by the event collector. Below
we show some example log4j ’logging event’ generated by bpws4j engine.

2006-03-13 10:40:39,634 [Thread-35] INFO bpws.runtime - Outgoing res-

ponse: [WSIFResponse:serviceID = ’{http://tempuri.org/services/Custom-

erReg}CustomerRegServicefb0b0-fbc5965758--8000’operationName = ’’

isFault = ’false’ outgoingMessage = ’org.apache.wsif.base.WSIFDefau-

ltMessage@1df3d59 name:null parts[0]:[JROMBoolean: : true]’

faultMessage = ’null’ contextMessage = ’null’]

2006-03-13 10:40:39,634 [Thread-35] DEBUG bpws.runtime.bus - Response

for external invoke is[WSIFResponse:serviceID=’{http://tempuri.org/se-

rvices /CustomerReg}CustomerRegServicefb0b0-fbc5965758--8000’

operationName = ’authenticate’ isFault = ’false’ outgoingMessage =

org.apache.wsif.base.WSIFDefaultMessage@1df3d59 name:null parts[0]:

[JROMBoolean: : true]’faultMessage = ’null’ contextMessage = ’null’]

2006-03-13 10:40:39,634 [Thread-35] DEBUG bpws.runtime.bus - Waiting

for request

3 http://alphaworks.ibm.com/tech/bpws4j
4 http://logging.apache.org/log4j

Retr
ac

ted



Web Service Mining and Verification of Properties 417

The event extractor captures logging event and converts it to EC events by
applying regular expressions. These expressions are described below.

Regular expressions for capturing events. The following rules and assump-
tions are used in the regular expressions

R1 $LogString is the string representation of the ’logging event’ received by the
event receiver from the bpws4j engine

R2 SubString($string, $substring) extracts $substring at the beginning of $string
where $substring can be a regular expression.

R3 Matches($string, $substring) returns true if $substring appears in $string,
else returns false. $substring can be a regular expression.

R4 StripEnds($string) removes the first and the last character from $string and
returns the $string.

R5 $string1 + $string2 performs the concatenation of $string1 and $string2.

Below, we precise how we use these rules for extracting EC formulas for two
basic activities from WSBPEL:

Regular Expression for receive activity
Happens(rc.ServiceName.operation(vID, var1, var2), t1) is an EC predicate
that corresponds to a receive activity. A logging event from bpws4j that corre-
sponds to a receive activity looks as follows,

2006-03-13 11:41:59,714[Thread-34]

DEBUG bpws.runtime.bus Invoking external service with[WSIFRequest:se

rviceID=’{http://tempuri.org/services/CarReg}CarRegServicefb0b0-fbc59

65758-8000’operationName=’isAvailable’incomingMessage=’org.apache.wsi

f.base.WSIFDefaultMessage@155423name:nullparts[0]:[JROMString:loc:One

]’contextMessage=’null’]

In this event [http8080-Processor25] is the unique ID assigned by the bpws4j en-
gine to this instance of the receive activity and its corresponding reply activity.
Applying the above assumptions and rules the event extractor generates the EC
event as follows

if Matches($LoString, "http[0-9][0-9][0-9][0-9]-Processor[0-9]*") and

Matches($LogString, "operation") and Matches($LogString, "var1")

and Matches($LogString, "var2") then return

"Happens(rc.operation(" + SubString($LogString, "http[0-9][0-9]

[0-9][0-9]-Processor[0-9]*") + StripEnds(SubString(SubString($LogString,

"var1: [0-9A-Za-z]*]"), " [0-9A-Za-z]*]")) + StripEnds(SubString(

SubString($LogString, "var2: [0-9A-Za-z]*]"), " [0-9A-Za-z]*]")) + ")"

+ SubString($LogString, "[0-9][0-9][0-9][0-9]-([0][0-9]|[1][0-2])-[0-3]

[0-9] ([0-1][0-9]|[2][0-4]):[0-5][0-9]:[0-5][0-9],[0-9][0-9][0-9]) +

"R(SubString($LogString, "[0-9][0-9][0-9][0-9]-([0][0-9]|[1][0-2])-[0-3]

[0-9] ([0-1][0-9]|[2][0-4]):[0-5][0-9]:[0-5][0-9],[0-9][0-9][0-9]),

SubString($LogString,"[0-9][0-9][0-9][0-9]-([0][0-9]|[1][0-2])-[0-3]

[0-9]([0-1][0-9]|[2][0-4]):[0-5][0-9]:[0-5][0-9],[0-9][0-9][0-9]))" + ")"

Retr
ac

ted



418 M. Rouached et al.

The rest of the extraction schemes are analogous to those of receive activity. By
doing this, the event log fragment 2 can be represented in formalised manner as
shown in Figure 4.

L1 : Happens(rc.CSS.Enter(v1, l1), 1)
L2 : Happens(rc.UIS.RelKey(v1, c1, l1), 5)
L3 : Happens(ic.CIS.Available(v1, l1), 9)
L4 : Happens(rc.UIS.RetKey(v1, l1), 15)
L5 : Happens(rc.CSS.Enter(v2, l2), 18)
L6 : Happens(rc.UIS.RetKey(v2, l2), 23)
L7 : Happens(ic.CIS.Available(v2, l2), 26)
L8 : Happens(rc.CSS.Enter(v1, l1), 27)
L9 : Happens(rc.UIS.RelKey(v2, c2, l2), 29)
L10 : Happens(ic.CIS.Available(v2, l2), 34
L11 : Happens(rc.UIS.CarRequest(c1, l2), 49)
L12 : Happens(ic.CIS.F indAvailable(l2, veh), 50)
L13 : Happens(ir.CIS.F indAvailable(l2, veh), 51)
L14 : Initiates(ir.CIS.F indAvailable(l2, v2), 51)
L15 : Happens(re.UIS.CarHire(c1, l2, v2), 52)
L16 : Happens(rc.UIS.RetKey(v2, l2), 54)
...

Fig. 4. The CRS Event Log

5 Verifying Properties

5.1 The EC Checking

Given the properties specification shown in Figure 2 and the event log of Figure
4, the property P2 is found to be inconsistent with the expected behavior of
CBS at t=54. The inconsistency arises because the literals L13 and L14 in Fig-
ure 2 and the literal HoldsAt(equalT o(availability(v2), ”not avail”), 50), which
is derived from the literals L9 and L16 and the property P3 entail the nega-
tion of P2. In this example, the inconsistency is caused by the failure of the
CSS service to send an R.CSS.Depart(v2, l2) event to CBS following the event
Happens(Q.UIS.RelKey(v2, c2, l2), 28). Thus, according to P4, CBS invoked
the operation Available to mark the vehicle v2 as available (see the literal L10
in Figure 4). Subsequently, when the operation Q.CIS.F indAvailable(l2, v) was
invoked in CIS (see literal L12), CIS reported v2 as an available vehicle. Note,
however, that this inconsistency could only be spotted after the event signified
by the literal L16 and by virtue of P4 (according to P4, a car whose key is
released should not be considered as available until the return of its key).

One other case is that at t=54, the event L15 which was generated due to
P5 can be detected as unjustified behavior. This is because this event can only
have been generated by P5. Note that, although in this case CBS has functioned
according to P5, one of the conditions of this property is violated by the literal
Initiates(R.CIS.F indAvailable(l2, v), equalTo(v, v2), 51). This literal can be

Retr
ac

ted



Web Service Mining and Verification of Properties 419

deduced from P2, the literal L13, and the literal HoldsAt(equalT o(availability(
v2), not avail), 50). The latter literal is deduced from L9 and L16 and assump-
tion P3.

The property P2 is violated by the expected behaviour of CBS. According to
this property, the operation FindAvailable, which is provided by the CIS service
of CRS and searches for available cars at specific car parks should not return
the identifier of a car to CBS unless this car is available. The violation of P2 in
this case occurs since from P3 we can derive that v2 could not be available from
T=30 when its key was released (see literal L9 in Figure 4) until T=53 (that
is one time unit before its key was returned back - see literal L16 in Figure 4).
Nevertheless, the execution of the operation FindAvailable of the CIS service
at T=51 reported v2 as an available vehicle (see literal L14 in Figure 4).

5.2 Implementation Issues

In order to ensure an efficient satisfiability encoding for the EC, Mueller [19]
presented an alternative classical logic axiomatization of the Event Calculus
called Discrete Event Calculus, by restricting the timepoint sort to integers.
Then, Mueller shows how Discrete Event Calculus problems can be encoded in
first-order logic, and solved using a first-order logic automated theorem proving
system, and developed a tool called the Discrete Event Calculus Reasoner
(DEC Reasoner) 5.

Our approach has been implemented in Java and incorporates the following
components: a requirements (behavioural properties and assumptions) editor, an
event collector, a BPEL2EC tool, and a deviation viewer. Behavioural properties
are extracted according to the patterns that we describe in [28] and represented
in an XML-based language that we have defined to represent EC formulas.The
properties extractor also identifies events, effects and state variables in the com-
position process that provide the primitive constructs for specifying further
assumptions about the behaviour of the composition. These assumptions are
specified by service providers using the assumption editor as shown in Figure 5.

The assumption editor offers to service providers the different types of events
and fluent initiation predicates that have been identified in the composition
process and supports the specification of assumptions as logical combinations
of these event and fluent initiation predicates. Service providers may also use
the editor to define additional fluents to represent services, service states, and
relevant initiation and holding predicates. When an assumption is specified, the
assumption editor can check its syntactic correctness. Figure 5 presents the steps
in specifying assumptions using the assumption editor. The BPEL2EC tool is
built as a parser that can automatically transform a given WSBPEL process into
EC formulas according to the transformation scheme detailed in [28]. It takes as
input the specification of the Web service composition as a set of coordinated
web services in WSBPEL and produces as output the behavioral specification
of this composition in Event Calculus. This specification can be amended by

5 http://decreasoner.sourceforge.net

Retr
ac

ted



420 M. Rouached et al.

Fig. 5. The principal snapshot of the Monitoring Framework

the service providers to consider additional assumptions about the operations if
appropriate.

While executing the composition process, the process execution engine gener-
ates events which are sent as string streams to the event collector of our frame-
work. Irrelevant events are determined by the formulas that have been extracted
or specified for monitoring by the service provider. Then, the EC checker (DEC
for instance) processes the events which are recorded in the log by the event
collector in the order of their occurrence, identifies other expected events that
should have happened but have not been recorded (these events are derived
from the assumptions by deduction), and checks if the recorded and expected
events are compliant with the behavioural properties and assumptions of the
composition process. In cases where the recorded and expected events are not
consistent with these requirements, the EC checker records the deviation in a
log deviations. The framework incorporates also a deviation viewer that is used
to browse the detected violations of the formulas. A snapshot of this viewer is
shown in Figure 6.

To evaluate our monitoring framework we performed a series of experiments
in which we used an implementation of the CRS example as a case study. In this
case study, we extracted 7 behavioural properties from the WSBPEL specification

Retr
ac

ted



Web Service Mining and Verification of Properties 421

Fig. 6. Deviation Viewer

of the composition process of CRS and specified 4 assumptions. The WSBPEL
process of our case study and the behavioural properties and assumptions specified
for it can be found at http://www.loria.fr/∼rouached/crs.zip.

6 Related Work

Several attempts have been made to capture the behavior of BPEL [1] in some
formal way. Some advocate the use of finite state machines [9], others process
algebras [8], and yet others abstract state machines [7] or Petri nets [23,16,32].
Another branch of work concerning the area of “adapting Golog for composi-
tion of semantic web services” is carried out by Sheila McIlraith and others [17].
They have shown that Golog might be a suitable candidate to solve the planning
problems occurring when services are to be combined dynamically at run-time.
Additionally they propose to “take a bottom-up approach to integrating Seman-
tic Web technology into Web services”.

The need for monitoring web services has been raised by other researchers. For
example, several research groups have been experimenting with adding monitor
facilities via SOAP monitors in Axis http://ws.apache.org/axis/. [15] intro-
duces an assertion language for expressing business rules and a framework to
plan and monitor the execution of these rules. [4] uses a monitoring approach
based on BPEL. Monitors are defined as additional services and linked to the
original service composition. In [11,6], Dustdar et al. discuss the concept of web
services mining and envision various levels (web service operations, interactions,
and workflows) and approaches. Our approach fits in their framework and shows
that web services mining is indeed possible, especially when using the existing
process mining techniques. Related to the work in this paper is the work on
conformance checking using Petri nets and event logs. In [35] abstract BPEL is

Retr
ac

ted

http://www.loria.fr/~rouached/crs.zip
http://ws.apache.org/axis/


422 M. Rouached et al.

mapped onto Petri nets and the resulting Petri net is compared with the event
logs based on SOAP messages. ProM’s conformance checker [29] is used to do
this comparison and the approach has been tested using Oracle BPEL. To give
a complete overview of process mining, we refer to a special issue of Computers
in Industry on process mining [38] and a survey paper [37]. Process mining
can be seen in the broader context of Business (Process) Intelligence (BPI) and
Business Activity Monitoring (BAM). In [12,30] a BPI toolset on top of HP’s
Process Manager is described. The BPI toolset includes a so-called “BPI Process
Mining Engine”. In [20] Zur Muehlen describes the PISA tool which can be used
to extract performance metrics from workflow logs. In [24] a tool named the Web
Service Navigator is presented to visualize the execution of web services based on
SOAP messages. The authors use message sequence diagrams and graph-based
representations of the system topology.

Formal verification of Web Services is addressed in several papers. The SPIN
model-checker is used for verification [21] by translating Web Services Flow Lan-
guage (WSFL) descriptions into Promela. [13] uses a process algebra to derive a
structural operational semantics of BPEL as a formal basis for verifying proper-
ties of the specification. In [10], BPEL processes are translated to Finite State
Process (FSP) models and compiled into a Labeled Transition System (LTS)
in inferring the correctness of the Web service compositions which are specified
using message sequence charts. In [22], Web services are verified using a Petri
Net model generated from a DAML-S description of a service.

One common pattern of the above attempts is that they adapt static verifica-
tion techniques and therefore violations of requirements may not be detectable.
This is because Web services that constitute a composition process may not be
specified at a level of completeness that would allow the application of static
verification, and some of these services may change dynamically at run-time
causing unpredictable interactions with other services.

The Event Calculus has been theoretically studied. Denecker et al. [5] use
the Event Calculus for specifying process protocols using domain propositions
to denote the meanings of actions. In [31] the Event Calculus has been used
in planning. Planning in the Event Calculus is an abductive reasoning process
through resolution theorem prover. [39] develops an approach for formally rep-
resenting and reasoning about business interactions in the Event Calculus. The
approach was applied and evaluated in the context of protocols, which represent
the interactions allowed among communicating agents. Our previous work [27]
is close enough to the current work. It presents an event-based framework as-
sociated with a semantic definition of the commitments expressed in the Event
Calculus, to model and monitor multi-party contracts. This framework permits
to coordinate and regulate Web services in business collaborations. Our paper
[26] advocates an event-based approach for Web services coordination. We fo-
cused on reasoning about events to capture the semantics of complex Web service
combinations. Then we present a formal language to specify composite events for
managing complex interactions amongst services, and detecting inconsistencies
that may arise at run-time.

Retr
ac

ted



Web Service Mining and Verification of Properties 423

7 Conclusion and Future Directions

The paper presents a novel approach that uses event logs to enable the ver-
ification of behavioral properties in web service composition. The properties
to be monitored are specified in event calculus. The functional requirements
are initially extracted from the specification of the composition process that is
expressed in WSBPEL. This ensures that they can be expressed in terms of
events occurring during the interaction between the composition process and
the constituent services that can be detected from the log of the execution.
Then, we have introduced the idea of Web services mining that makes use of
the findings in the fields of process mining and apply these techniques to the
context of Web services and service-oriented architectures. The main focus has
not been put on discovery but on verification. This means that given an event
log and a formal property, we check whether the observed behavior matches the
(un)expected/(un)desirable behavior.

Future work will aim at the implementation of the approach in the context
of ProM framework. Specifically, we will try to implement a plugin that permits
to extract and adapt web service logs (using log4j for instance) to ProM’s log
format, and to express behaviour properties and assumptions about web ser-
vice composition in a manner that enable the use (or possibly an extension) of
ProM’s verification plugins. Moreover, we are also aiming at languages that are
more declarative and based on temporal logic. An example is the DecSerFlow:
a Declarative Service Flow Language based on LTL [36].

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corporation,
2003.

2. A. Arkin, S. Askary, B. Bloch, and F.Curbera. Web services business process
execution language version 2.0. Technical report, OASIS, December 2004.

3. M. Baglioni, U. Ferrara, A. Romei, S. Ruggieri, and F. Turini. Use soap-based
intermediaries to build chains of web service functionality, 2002.

4. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

5. M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with abductive
event calculus. In Proceedings of the 10th European Conference and Symposium on
Logic Programming (ECAI), pages 384–388, 1992.

6. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of
Technology, Wien, Austria, 2004.

7. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In D. Beauquier and E. Börger and A. Slissenko, editor, Proc. 12th Interna-
tional Workshop on Abstract State Machines, pages 131–151, Paris, France, March
2005.

Retr
ac

ted



424 M. Rouached et al.

8. A. Ferrara. Web services: a process algebra approach. In ICSOC ’04: Proceedings
of the 2nd international conference on Service oriented computing, pages 242–251,
New York, NY, USA, 2004. ACM Press.

9. J. Fisteus, L. Fernández, and C. Kloos. Formal verification of BPEL4WS business
collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Proceedings of
the 5th International Conference on Electronic Commerce and Web Technologies
(EC-Web ’04), volume 3182 of Lecture Notes in Computer Science, pages 79–94,
Zaragoza, Spain, Aug. 2004. Springer-Verlag, Berlin.

10. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for
web service choreography. In ICWS ’04: Proceedings of the IEEE International
Conference on Web Services (ICWS’04), page 738, Washington, DC, USA, 2004.
IEEE Computer Society.

11. R. Gombotz and S. Dustdar. On Web Services Mining. In M. Castellanos and
T. Weijters, editors, First International Workshop on Business Process Intelligence
(BPI’05), pages 58–70, Nancy, France, September 2005.

12. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M. Shan. Business
Process Intelligence. Computers in Industry, 53(3):321–343, 2004.

13. M. Koshina and F. van Breugel. Verification of business processes for web services.
Technical report, New York University, SFUCMPT-TR-2003-06.

14. R. Kowalski and M. J. Sergot. A logic-based calculus of events. New generation
Computing 4(1), pages 67–95, 1986.

15. A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd
International Conference on Service Oriented Computing, pages 94–104, New York,
NY, USA, 2004. ACM Press.

16. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli,
editor, Proceedings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin, 2005.

17. S. McIlraith and T. Son. Adapting golog for composition of semantic web ser-
vices. In Proc of the 8th International Conference on Principles of Knowledge
Representation and Reasoning, 2002.

18. E. T. Mueller. Event calculus reasoning through satisfiability. J. Log. and Comput.,
14(5):703–730, 2004.

19. E. T. Mueller. Event calculus reasoning through satisfiability. J. Log. and Comput.,
14(5):703–730, 2004.

20. M. Mühlen and M. Rosemann. Workflow-based Process Monitoring and Controlling
- Technical and Organizational Issues. In R. Sprague, editor, Proceedings of the
33rd Hawaii International Conference on System Science (HICSS-33), pages 1–10.
IEEE Computer Society Press, Los Alamitos, California, 2000.

21. S. Nakajima. Verification of web service flows with model-checking techniques. In
CW, pages 378–385, 2002.

22. S. Narayanan and S. A. McIlraith. Simulation, verification and automated composi-
tion of web services. In WWW ’02: Proceedings of the 11th international conference
on World Wide Web, pages 77–88, New York, NY, USA, 2002. ACM Press.

23. C. Ouyang, W. Aalst, S. Breutel, M. Dumas, , and H. Verbeek. Formal Semantics
and Analysis of Control Flow in WS-BPEL. BPM Center Report BPM-05-15,
BPMcenter.org, 2005.

24. W. Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J. Morar. Web Services
Navigator: Visualizing the Execution of Web Services. IBM Systems Journal,
44(4):821–845, 2005.

Retr
ac

ted



Web Service Mining and Verification of Properties 425

25. J. Punin, M. Krishnamoorthy, and M. Zaki. Web usage mining: Languages and al-
gorithms. In Studies in Classification, Data Analysis, and Knowledge Organization.
Springer-Verlag, 2001.

26. M. Rouached and C.Godart. An event based model for web services coordination.
In 2nd International Conference on Web Information Systems and Technologies
(WEBIST 2006), pages 384–388. Setubal, Portugal, 11-13 April 2006.

27. M. Rouached, O. Perrin, and C. Godart. A contract-based approach for monitoring
collaborative web services using commitments in the event calculus. In Sixth In-
ternational Conference on Web Information Engineering System (WISE05), pages
426–434, 2005.

28. M. Rouached, O. Perrin, and C. Godart. Towards formal verification of web service
composition. In Forth International Conference on Business Process Management
(BPM06), 2006.

29. A. Rozinat and W. M. P. van der Aalst. Conformance testing: Measuring the
fit and appropriateness of event logs and process models. In Business Process
Management Workshops, pages 163–176, 2005.

30. M. Sayal, F. Casati, U. Dayal, and M. Shan. Business Process Cockpit. In Pro-
ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880–883. Morgan Kaufmann, 2002.

31. M. Shanahan and M. Witkowski. Event calculus planning through satisfiability. J.
Log. and Comput., 14(5):731–745, 2004.

32. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

33. W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process mining
and verification of properties: An approach based on temporal logic. In OTM
Conferences (1), pages 130–147, 2005.

34. W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process mining
and verification of properties: An approach based on temporal logic. In OTM
Conferences (1), pages 130–147, 2005.

35. W. M. P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005.

36. W. M. P. van der Aalst and M. Pesic. Specifying, Discovering, and Monitoring
Service Flows: Making Web Services Process-Aware. BPM Center Report BPM-
06-09, BPMcenter.org, 2006.

37. W. M. P. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data and
Knowledge Engineering, 47(2):237–267, 2003.

38. W. M. P. van der Aalst and A. Weijters, editors. Process Mining, Special Issue of
Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers, Ams-
terdam, 2004.

39. P. Yolum and M. P. Singh. Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
Artificial Intelligence, 42(1-3):227–253, 2004.

Retr
ac

ted



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 426 – 443, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Establishing a Trust Relationship in Cooperative 
Information Systems 

Julian Jang, Surya Nepal, and John Zic∗ 

ICT Centre PO Box 76 Epping NSW 1710 Australia 
{Julian.Jang, Surya.Nepal, John.Zic}@csiro.au 

Abstract. One method for establishing a trust relationship between two servers 
in a co-operative information system is to use a mutual attestation protocol 
based on hardware that implements the Trusted Computing Group’s TPM 
specification. It has been our experience in developing an eHealth 
demonstration system that the efficiency of such a protocol was relatively low. 
This inefficiency was a result of the high number of TPM function calls in 
response to the large number of protocol messages that must be sent by the end 
server systems to establish mutual trust between them prior to sending each 
application message (in our case, a medical record). In order to address this 
inefficiency, we developed a session-based mutual attestation protocol, where 
multiple application messages are sent over an interval of time where an 
established trust relationship holds. Moreover, the protocol partially addresses 
the security flaw due to the time interval between the time-of-attestation and 
time-of-use. This paper presents this new protocol, once again utilizing TPM 
microcontroller hardware, and compares its performance with that of our 
previous (per record) mutual attestation protocol.  

1   Introduction 

Cooperative information systems, such as those found in government, medical and 
research organizations, facilitate the exchange and sharing of information between 
participating organizations. However, the ease with which new technologies allow 
easy sharing is counterbalanced by policy and legislative requirements on ensuring 
privacy and control of that information is maintained at all times by the custodians for 
the respective owners. It is also widely recognized that authentication, security, 
authorization and access control are major issues in cooperative information systems.  

Fundamentally, these issues are all related to the establishment of mutual trust 
between the major components, including the end users, through the respective 
elements of the cooperative information systems. Although trust establishment and 
related issues are applicable to most cooperative information systems such as 
homeland security and finance, we will draw on our experiences in developing a 
secure consent-based medical client and utilize a cooperative healthcare system as an 
example through out this paper.  In particular, we concentrate on the development of a 
hardware-supported mutual attestation protocol for healthcare providers’ hosts.  
                                                           
∗ Authors are listed in an alphabetical order. 



 Establishing a Trust Relationship in Cooperative Information Systems 427 

The issue of establishing and maintaining a trust relationship between remote hosts 
has been recognized and addressed by bodies such as the Trusted Computing Group 
(TCG) [1]. The TCG has defined a set of best-practice specifications for networking, 
storage, PC clients and hardware. In particular, the TCG defined a Trusted Platform 
Module (TPM), which is a cryptographic microcontroller system, and allowed the TPM 
to be a root of trust for authenticating the hardware and software configuration of the 
host computer. The TCG specifies that there are three main features that comprise a 
“trusted platform”: protected capabilities, attestation, and integrity measurement and 
reporting. This paper is concerned primarily with attestation, even though our 
demonstration system incorporated the remaining feature set required to meet a trusted 
platform specification. Attestation allows verification, according to a specification, of 
the hardware and software configuration of a remote host. Trust is increased that the 
local host is in contact with the correct, expected remote host if the local host can both 
authenticate and successfully complete the attestation of the remote host.  

The TCG remote attestation protocol is designed to establish one-way trust 
relationship, with the sending host establishing trust with a receiving host. As 
reported in another paper [5], we extended the TCG remote attestation protocol to 
allow mutual attestation of hosts in our cooperative healthcare prototype system. We 
refer to this protocol as message-based mutual attestation protocol, as it was designed 
to be run for each message exchanged between the end hosts. We make the following 
two observations, based on our experiences in using the protocol in our system. First, 
it is inefficient as the number of protocol (overhead) messages per application 
message is high (of the order of eight pairs of protocol messages per application 
message). As a result, there will be a large number of TPM function calls that are 
quite expensive. This is particularly noticeable in the cases such as the transfer of 
patient records from one hospital to another. Second, the difference in the time at 
which the attestation is completed and the time at which it is used to send the 
application message makes it vulnerable to attack.  

To overcome these shortcomings in this application scenario, we propose a session-
based mutual attestation protocol. As the name suggests, this protocol establishes a trust 
relationship between interacting hosts based on an application session rather than for 
each application message exchanged. Once this trust relationship is bound to the end 
hosts and the particular application session, any number of application messages can be 
sent and received (provided that they can be allocated to the session) without any further 
exchange and verification of the security context. Session-based mutual attestation locks 
the hardware and software environment for the duration of the session using the TPM 
“seal” operation [1]. Violations can be readily detected on the attested code/environment 
using the unseal operation.  

It is important to note that this session-based mutual attestation protocol is not 
meant for general application in arbitrary domains. One of the fundamental design 
assumptions for our session-based mutual attestation protocol is that the software and 
hardware configurations of the host systems do not change much over time, and that 
these changes are over a relatively long time. Examples of these include server-to-
server applications, where a session-based mutual attestation is highly suitable. 

It should be noted that adopting a session oriented approach implies that there needs 
to be a session termination protocol in place. We have taken a pragmatic approach by 
adopting the termination protocol specification of WS-BusinessActivity [2].  



428 J. Jang, S. Nepal, and J. Zic 

The rest of the paper is organized as follows. We first present a motivating 
scenario in the context of cooperative healthcare information systems in Section 2.  In 
Section 3, we review and present a performance and security analysis of the message-
based mutual attestation protocol. Section 4 presents a description of our session-
based mutual attestation protocol, and a performance comparison and analysis with 
respect to the message-based attestation protocol, both implemented on our 
demonstration system. Section 5 describes related work on different approaches of 
establishing mutual trust. The last section draws our analysis on the session-based 
protocol and presents some concluding remarks. 

 

Fig. 1. Distributed Cooperative Healthcare Environment 

2   Context and Motivation 

The effective coordination of individual’s health care relies on the sharing of personal 
health information among autonomous, independent healthcare providers such as 
local clinics, test laboratories and hospitals as shown in Figure 1 (we refer these 
providers as facilities). However, the ease of sharing of personal medical information 
must be counterbalanced with the need to ensure the privacy and security 
requirements of the patient and facility. The lack of such mechanisms may have 
serious consequences for patients; for example, a leaked patient record to an insurance 
company may block him from buying insurance products.  

In order to address the issue of control of private medical information, the CSIRO 
ICT Centre developed an eConsent model [7] within the context of the Australian 
Government Department of Health and Aging (DoHA) Electronic Consent Project [6]. 
The term eConsent was coined to refer to a mechanism through which patients can 



 Establishing a Trust Relationship in Cooperative Information Systems 429 

express their consent policies on their electronic records being accessed and shared 
between healthcare facilities. The eConsent model was developed and demonstrated 
to stakeholders from the Australian healthcare sector along with other three research 
and development projects commissioned by DoHA.  The issue of mutual trust has 
been addressed in the eConsent model fundamentally relying on someone at the 
receiver facilities for appropriate expression of patient consent in the receiver 
facility’s system.  

We later enhanced the trust between two cooperating healthcare providers in 
eConsent model by using a message-based mutual attestation protocol that utilizes the 
TPM devices and associated protocols between two server applications [5]. We 
presented the architecture of the new demonstrator built using TPM devices and 
explained the mutual attestation protocol between two healthcare facility server 
applications. We also reported our integrity measurement architecture that uses 
existing hardware and software infrastructure.  

When we applied the mutual attestation protocol to our e-consent application, we 
observed that in a number of cases the protocol performs poorly, incurring a 
noticeable delay in the transfer of medical records from one facility’s server to 
another. We illustrate these cases using the scenario shown in Figure 1.  These cases 
occur when sending a large number of records from one facility to another facility. 
This commonly occurs, for example, when a local clinic sends patients to nearby 
regional hospitals to perform tests. Large transfers occur at the conclusion of patients’ 
tests, where the regional hospital will send the patients’ records back to a local clinic 
at the end of the day. Again, a large number of records are usually transferred when a 
patient moves from one regional hospital to another. The message-based mutual 
attestation protocol was designed to exchange a message between two cooperating 
systems and runs for each message sent/received by them. The number of runs 
necessary for this protocol can be reduced if a trust relationship can be established for 
an entire application session such as those given above.  

We also observed that there is a possible security breach between the time when 
one facility reports the measurement of its hardware and software configuration to 
another facility to the time when the receiving facility verifies the measurement. The 
rational is that the measured hardware and software of the sending facility could have 
been compromised while the receiving facility is verifying the measurement and 
subsequently any application data sent based on the result of the measurement.  

In order to address issues of performance and security breach, we enhanced our 
message-based mutual attestation protocol, and developed and implemented a 
session-based mutual attestation protocol, which is the major focus of this paper. 

3   Message-Based Mutual Attestation Protocol  

In this section, we review the message-based mutual attestation protocol, focusing on 
trusted measurement and trusted reporting. We refer readers to [5] for the full 
description of the protocol and its implementation in our e-consent application. We 
also analyze and report our findings on this protocol’s performance.  



430 J. Jang, S. Nepal, and J. Zic 

3.1   Review of Message-Based Mutual Attestation Protocol 

Remote attestation allows a platform to verify the hardware and software running on 
remote host to decide whether or not it can trust the hardware and software 
configuration of remote host while protecting its privacy [1]. The TCG has proposed 
that remote attestation be based on two primary mechanisms.  

• Trusted measurement where the platform characteristics such as boot loader, 
operating system kernel, and application executables are measured. These 
measurements, as well as their cryptographic hashes, are stored in the TPM 
hardware memory. In particular, the measured values are stored in protected 
registers called Platform Configuration Registers (PCRs). The platform 
measurement process starts at boot time of the host, then proceeds onto measuring 
the operating system loading and finally to the loading of applications.  

• Trusted reporting of the trusted measurements is done by the TPM 
microcontroller and returns the value of a PCR digitally signed with the TPM’s 
public attestation identity key (AIK). The AIK is created by the owner of the 
TPM hardware after the platform’s credentials have been certified and the AIK 
is signed by a certifying authority such as TPM manufacturer, system 
manufacturer or dedicated certifying authorities.  

Together these provide the necessary assurance mechanisms that a host is 
functioning correctly and conforms to a specific configuration. A remote host can 
verify the digital signature on the trusted report using the public keys of the TPM 
certifying authorities and then compare the PCR values against its set of trusted 
configurations. These two mechanisms were used in the development of the “Mutual 
Attestation Protocol” that allows the establishment of bidirectional trust relationship 
between two healthcare providers as shown in Figure 2. 

5: quote(AIKB, nonceA) 

9: collateIdentity 

12: quote(AIKB, nonceA) 

14: challengeSuccess 

8: challenge (nonceB) 

6: challengeResponse (idCredB, {PCR, nonceA}, listProcB)

Facility A Facility B 

Privacy CA 

1: challenge 

4: identityCredB {AIKBPub, nonceA} 

7: challengeSuccess 

10: getIdentity (AIKApub, nonceB,  
tpm credentials + facility cred.)

11: identityCredB {AIKAPub, nonceB}

13: challengeResponse (idCredA, {PCRA, nonceB}, listProcA) 

3: getIdentity (AIKBpub, nonceA, 
 tpm Credentials + facility cred). 

2: collateIdentity 

 

Fig. 2. Message-based mutual attestation protocol  



 Establishing a Trust Relationship in Cooperative Information Systems 431 

In our implementation, we use a dedicated loader (MedicLoader) as a root of trust 
due to the lack of appropriate operating system support. The loader intercepts the 
loaded and unloaded applications, and performs measurements on the executables 
before their execution. A fundamental assumption is that the loader can be trusted to 
securely measure itself and the processes it loads before executing them. This means 
all components that are under this root of trust must also be trusted.  

We implemented a privacy certifying authority (CA) that can verify the platform 
credentials as well by signing valid AIK. Also, each healthcare facility must provide a 
list, composed of tuples, consisting of executable names and the expected 
cryptographic hashes (calculated by the trusted measurement) for these executables in 
both loaded and unloaded cases. The trusted reporting is done when each facility 
sends off a CA identity credential, signed AIK by privacy CA, signed PCR values, 
and the list of executables along with calculated loaded and unloaded hash values. 
The detailed description of the mutual attestation protocol between two healthcare 
facilities in our demonstration system is summarized in Figure 3. 

1. Facility A sends a challenge to facility B with an identifying nonce (nonceA).  
2. Facility B obtains its TPM credentials by calling a specific TPM function, which also 

generates an Attestation Identity Key (AIK). The TPM credentials, Facility Credential and 
the public part of the AIK are signed by the private part of the TPM Endorsement Key and 
then encrypted using the public part of the Privacy CA key.  

3. The encrypted blob is then sent to the Privacy CA as an identity credential request.  
4. The Privacy CA decrypts this blob with its private key. It verifies the signatures of the 

credential request and then creates and sends an identity credential back to Facility B. This 
credential is a digital certificate containing the public part of the AIK together with nonceA 
signed by the CA private key. 

5. Facility B then performs an integrity measurement using the TPM “Quote” function using 
the AIK, nonceA and one or more PCR values as input parameters. The AIK can only be 
used to sign the quoted PCR registers.  

6. The message containing the output of Quote function, the identity credential received from 
the CA and the list of recorded loaded and unloaded processes is then sent to Facility A 
from Facility B. On reception of this message, Facility A checks the identity credential, 
verifying that the Privacy CA has signed it. This also reveals that B has a TPM and that the 
AIK is an identity key in the TPM of B. With this information, A can then verify the signature 
of the PCR values and nonceA. If the signature is successfully verified, then A knows the 
PCR values of B. Facility A then does the following three verifications:  

a. All processes in the received list are in the database of acceptable processes  
with corresponding hash code.  

b. The expected PCR value is computed from the list of processes and compared 
with the PCR values of B. 

c. All processes that are marked as MUST in an acceptable process database  are 
loaded. 

7. If all checks are successful, Facility A sends a challengeSuccess message to facility B.  
8. Facility B receives the challengeSuccess message, and initiates the same procedure 

(steps 8-14 in Figure 2). At the end of these steps, B knows the PCR values of A and both 
A and B are authenticated. 

Fig. 3. Description of the message-based mutual attestation protocol 

3.2   Performance Analysis 

We implemented the message-based mutual attestation protocol into our distributed 
healthcare demonstration system, and observed that the server to server medical 
record transfer was slow, specifically when one needs to transfer a large number of 



432 J. Jang, S. Nepal, and J. Zic 

records at a time (for example, due to a patient transferring from one regional hospital 
to another). This observation led to an examination of the message-based mutual 
attestation protocol. We have conducted performance tests on our test bed machines 
(Dell Optiplex GX620 PCs, 3.39GHz Intel Pentium IV dual processors, 1GByte 
RAM, Windows XP Professional SP2 with the .NET framework v2.0).   

We found that a single run of the mutual attestation protocol between two servers 
took an average 111 seconds (from the issuing of a request for a medical record to the 
return of the result). A run consisted of initialization of the system, connection 
establishment between two servers, connection to a SQL database, and the TPM 
function calls required for the mutual attestation protocol. We found that, on average, 
39% time was spent on making TPM function calls via the TCG software stack (TSS), 
whereas 61% time was spent on non-TPM related function calls such as connection to 
remote hosts or SQL server, as shown in Figure 4. The cost of non-TPM related 
activities depend on specific applications, as well as connectivity of the sender, 
receiver and privacy CA. This cost can be optimized using different attestation 
architectures such as WS-Attestation [15], which is beyond the scope of this study. 
Our focus here is on minimizing the cost of TPM calls in a remote attestation, as we 
observed that TPM calls consume a significant portion of the time require for a 
mutual attestation.    

We further analyzed the time spent on TPM calls and identified four critical function 
calls in the mutual attestation protocol. This is done to ensure that there is no hidden 
overhead to any particular function calls to TPM chip other than the expense incurred to 
making TPM calls in general, as well as possibility of optimizing TPM calls. These are: 
CollateIdentity (step 2 in Figure 3), IdentityCredential (step 3 in Figure 3), Quote (step 
4 in Figure 3), and VerifyIdentityCredential (step 6 in Figure 3).  

Time incurred between TPM calls and non-TPM calls

tpm calls
39%

non-TPM calls
61%

 

Time incurred at each TPM call

collateIdentity
48%

identitycredential
19%

quote
19%

verifyIDcredential
14%

 

Fig. 4. Time incurred between TPM calls and 
non-TPM calls 

Fig. 5. Time incurred at each TPM call 

Figure 5 shows the time spent on these four different function calls. Out of time spent 
on TPM calls, CollateIdentity took 48% time (20 seconds), IdentityCredential took 19% (8 
seconds), Quote took 19% (8 seconds) and VerifyIdentityCredential took 14% (6 
seconds). We conducted further analysis of implementation code with the aim of 
minimizing the number of TPM calls and the complexity of code at each stage. This led us 



 Establishing a Trust Relationship in Cooperative Information Systems 433 

to the conclusion that TPM calls are stable as each TPM call at different stages took 
about the same time without having particular overhead on any specific TPM calls 
because of different implementation code. For example, both “IdentityCredential” and 
“Quote” made about 12 TPM calls each taking 8 seconds, whereas “VerifyIdentity 
Credential” made 9 TPM calls with 6 seconds response time. “CollateIdentity” made 
20 TPM calls, as well as complex calculation of bytes, to create and use credentials 
taking more time than calls used in other stages. These observations led us to believe 
that there is no overhead placed in any particular TPM calls in our implementation. 
However, if these calls are repeated for every message exchanged between two servers 
as done in message-based protocol, the TPM calls become a bottleneck for efficient 
transfer of data between the servers. From these experimental results, we observed that 
reducing a large number protocol messages that subsequently triggers a large number of 
TPM calls might result in an efficient attestation protocol. This has led to the 
development of a session-based attestation protocol.  

It must be noted that it is not our intention to do an exhaustive study on 
performance of a message-based mutual attestation protocol for a particular TPM 
implementation on a specific TPM chip. We understand the fact that various vendors 
and commercial IT companies are still working on improving the functionalities and 
corresponding technologies related to TPM chips. The performance figures in this 
section are indication purpose only to demonstrate that TPM calls are relatively 
expensive at currently provided chips and it could result a serious overhead if these 
calls are made extensively on today’s applications such as message-based mutual 
attestation protocol [5].  

3.3   Security Analysis 

Attestation in the TCG specification [1] is used to determine whether there have been 
any unexpected changes to a computer’s hardware and software environments. The 
hardware check utilise the cryptographic features of the TPM microcontroller, 
including the use of the Attestation Identity Key (AIK). The software environment 
and configuration is checked for validity, starting from boot time to application load 
time, with a set of identifying PCR values. During attestation, the PCR values and the 
AIK are used to validate that a remote machine (or indeed, the local machine, if 
required by some applications) may trust the platform. 

This TCG-type of attestation has been criticised because it performs the integrity 
validation only at load-time. Successful load-time attestation does not ensure that 
attestation is always maintained, with possible compromises not being detected post 
load-time attestation.  This feature, referred to as time-of-attestation to time-of-use 
gap, has been reported in the literature [3]. Figure 6  shows this gap as (1). 

From our implementation of the TCG-style attestation protocol, we further 
identified another gap, representing the time between the PCR values and AIK are 
being measured by the sending host, which we call the time-of-measurement, and the 
time at which these values are being validated by the receiving host, which we call the 
time-of-verification. This interval is illustrated in Fig. 6 as (2). During this interval, it 
is possible that by the time PCR values and the AIK are being validated by the 
receiving host, the sending host’s TPM and platform characteristics may have been 
compromised.  



434 J. Jang, S. Nepal, and J. Zic 

In service-oriented co-operative applications where messages are exchanged 
asynchronously, it is not difficult to imagine the gap between the time-of-
measurement and time-of-verification becoming an easy target for attackers to 
compromise the attested platform. Our performance analysis results indicated that the 
interval in between the time-of-measurement and time-of-verification is not small or 
insignificant, and hence offers an increase in the probability of a successful attack 
against the protocol over a system that has a smaller time-of-measurement to time-of-
verification gap. 

  

Fig. 6. The gaps between the time-of-attestation and time-of-use, and the time-of-measurement 
and time-of-verification 

4   Session-Based Mutual Attestation Protocol 

TPM provides a “Seal” function that encrypts a key, and ties specific platform 
measurements such that the key can only be decrypted when those platform 
measurements have the same values that they had when the key was created.  The 
TPM may be used o seal and unseal other data that is generated outside of the TPM. 
Our session-based protocol uses these sealing and unsealing functions to preserve the 
environment for a session.  

Our session-based mutual attestation protocol is based on the Web Services 
standard WS-BusinessActivity, and relies on sealing an application’s session context 
using the platform environment’s measurements. This sealed object is used as a 
shared secret between the two interacting parties, and can only be decrypted to the 
application session context if there has been no change in the platform environment. 
Further, should any change be detected, our session-based protocol terminates and all 
related session information is erased.  

The protocol itself consists of two phases: the first for the initialization and 
establishment of the trust relationships, and the second for the maintenance and 
termination of the protocol. 

PCR values of code are measured 
and AIK is created. 

PCR values and AIK 

PCRs and AIK are being 
validated by a remote host 

PCR values and 
AIK 

The codes, whose PCRs are 
measured, are being executed 

host machine A host machine B 

Gap between 
Time-of-

attestation and 
Time-of-use 

(1) 

Gap between
Time-of-

measurement and 
Time-of-verification 

(2) 

Timeline of host B Timeline of host A 



 Establishing a Trust Relationship in Cooperative Information Systems 435 

4.1   First Phase:  Establishing a Trusted Session 

Our protocol establishes a trusted session by applying some modifications to existing 
message-based attestation protocol described in [5]. During the first phase of our 
protocol (Figure 7), the sender facility sends an attestation challenge that contains a 
random nonce, which acts as a unique communication token from the sender facility 
to the receiver facility (as before, in the message-based mutual attestation protocol). 
The receiver facility then signs one or more PCR values representing its platform state 
using an attestation identity key (AIK). At the same time, it also seals the token 
(nonce) with its own PCR values using the AIK. The signed PCR values and public 
part of AIK are sent to the sender facility as a response. The receiver also sends along 
an attestation challenge that contains another random nonce to the sender, which acts 
as a unique communication token from the receiver facility to the sender facility. 
These two unique nonce values form an application session context. The sender then 
verifies the received signed values with the expected values to determine whether the 
challenge is succeed or fail.  

Initial ResponseChallengedChallenge Responded Succeed Succeed
i

Succeeded
Active 

Failing

Fail Fail

Failed

Challenge Response

Ended
Coordinator (sender) generated 

Participant (receiver) generated 

 

Fig. 7. State diagram of the first phase of the session-based mutual attestation. Coloured states 
show the difference between the message-based mutual attestation and the session-based 
mutual attestation protocols, where a sealing of application session context occurs. 

If the challenge is successful, the sender facility then signs one or more PCR 
values representing its platform state using an attestation identity key (AIK). It also 
seals nonce received from the receiver with its own PCR values using the AIK. After 
sealing, the sender sends the PCR values and the public part of AIK to the receiver 
facility, as a response along with the successful result for its response to the earlier 
challenge. The receiver facility verifies the received signed values with the expected 
values to determine whether the challenge is successful or fail. The successful result 
of the first phase of the session-based mutual attestation ends at the active state, where 
a trusted session is created and two interacting healthcare providers can exchange 
electronic patient records, whereas unsuccessful attestation ends at the ended state.   

In summary, the detailed description of the session-based protocol is similar to that 
of message-based protocol shown in Figure 3 except that it has a step in between steps 
5 and 6 for sealing a context using existing platform configuration. The application 
context could be a shared secret or any shared data (nonce).  



436 J. Jang, S. Nepal, and J. Zic 

4.2   Second Phase: Session Maintenance and Termination 

The second phase of the protocol maintains the trusted session and guarantees the 
session termination in an agreed outcome. As it uses the Web Services standard WS-
BusinessActivity, we briefly introduce the WS-BusinessActivity specification and 
then describe the use of it in the session-based protocol. 

WS-BusinessActivity defines a set of message types, and an ordering relationship 
between the messages, that may be used by application programmers as a building 
block for termination in their application protocols. Message types and their priority-
based ordering relationships define a possible set of allowable message exchanges 
when one party initiates the termination. Ordering relationships are defined in such a 
way that if two messages pass each other in transit when the protocol is in a certain 
state, one message gets priority over the other. This property guarantees that all 
possible race conditions at termination are handled, which is one of the problems for 
termination between two parties using asynchronous communication.  

WS-BusinessActivity defines two coordination protocols: Participant Completion 
and Coordinator Completion. In these protocols, one party is referred to as the 
coordinator while the other party is referred to as the participant. Coordinator 
completion is the appropriate one if the coordinator initiates termination; otherwise, 
participant completion protocol type should be used. The abstract state diagram for 
the business agreement with coordination completion protocol is shown in Figure 8. 
We omit the discussion on the participation completion protocol here due to the 
limitation of space, but the discussion in this paper applies to it as well. 

 

Fig. 8. WS-BA BusinessAgreementWithCoordinatorCompletion Coordination Type 

Cooperating facilities involved in sharing medical records can play two different 
roles: coordinator and participant. One facility must act as a coordinator and the other 
as a participant. The coordinator creates the context for the interaction and passes it to 
the participant, along with an application message, as an invitation to participate in an 
activity. The facility that initiates the interaction by sending challenge message first 
becomes a natural candidate for the coordinator. In our protocol, the facility A 
becomes a coordinator and the facility B becomes a participant.  



 Establishing a Trust Relationship in Cooperative Information Systems 437 

In our protocol, we always use coordinator completion protocol shown in Figure 8. 
However, one can easily use participation completion protocol as well. The 
coordinator completion defines nine possible paths. It is not necessary to use all paths 
and one can use a subset of these paths. We now give the semantics of those paths for 
session-based protocol and explain the second phase.  

 

Fig. 9. Implementation Architecture 

The second-phase starts with the Active state obtained at the end of the first-phase. 
The cooperating facilities exchange application messages (such as medical records) in 
this state. The application messages are encrypted and decrypted using AIKs. The 
sending party encrypts the messages using AIK public key of the receiving party 
obtained in the first phase of the protocol. When the receiving application receives the 
encrypted messages, the application requests trusted protocol monitoring code (see 
Figure 9) for decryption. Note that the application itself can not decrypt the messages 
as the AIK private key is securely stored in TPM and only accessible by trusted code. 
The trusted protocol monitor first checks the environment by running unsealing 
operation with input parameters such as the nonce created by the sending party in the 
first phase, PCR values, and the AIK. If the unsealing operation is successful, the 
application message is decrypted and passed to the application running in the user 
space. Otherwise, the protocol exchanges fault/faulted messages and terminates. Note 
that though the WS-BusinessActivity coordination completion supports fault message 
for participant, we modify it to support fault message for both coordinator and 
participant, which is not shown in Figure 8. If all messages are successfully 
decrypted, the protocol terminates using the successful path of WS-BA protocol such 
as complete/completed followed by close/closed. It implies that the platform 
configuration and software environments have not changed during the session.  

It is natural for facilities to start termination in the middle of a session due to many 
reasons such as there is a damaging report in the newspapers about how the 
interacting facility handles client reports. The sending facility uses exiting path 
whereas the receiving facility uses the canceling path to terminate the session in such 
situations.   

SSeeccuurree KKeerrnneell    

TTrruusstteedd HHaarrddwwaarree

UUsseerr  AAppppss..  
((MMeeddiiccCClliieenntt))  

TTrruusstteedd  PPrroottooccooll  MMoonniittoorr  

SSeeaalleedd    
SSttoorraaggee

TTrruusstteedd PPllaattffoorrmm  SSttaannddaarrdd  PPCC  

SSttaannddaarrdd  OOSS  KKeerrnneell    



438 J. Jang, S. Nepal, and J. Zic 

4.3   Security Analysis  

It is important to state the fundamental assumptions made by the session-based 
protocol before performing its security analysis. We assume that the code that runs 
the protocol is implemented as a trusted code as shown in Fig. 9. That is, the code is 
always run in an isolated memory space and can never be interfered by other 
concurrently running programs. The application data encrypted by AIK public key 
cannot be decrypted at the user space as the AIK private key is only known to the 
trusted component of the architecture.  This is a reasonable assumption in trusted 
computing as such protocol can be run as a trusted code in “nexus” of NGSCB. This 
assumption guarantees that the sealing and unsealing functions can be used to 
establish the trusted session. 

As explained in earlier section, the message-based mutual attestation protocol can 
suffer from a security attack. It is possible that a malicious attacker can hack the 
sending party’s host system and alter the code that was already attested as depicted in 
Figure 10. The receiving party cannot notice this malicious activity being done at the 
sending party’s host because the receiving party is still validating the sending party’s 
platform configuration based on the PCR values and AIK being received before the 
malicious attack at the sender’s host. The receiving party will validate the sending 
party’s host machine and sends a success message along with sensitive data only 
meant to be shared with the legitimate sender host. The malicious attacker at the 
sender’s host pretends nothing has happened and receives all sensitive data the 
receiving party is sending.  

 

Fig. 10.  Possible security attack in TCG remote attestation 

This situation is prevented in session-based mutual attestation protocol. In a 
session-based mutual attestation, a random nonce (or shared secret) used for the 
communication between the sending party and the receiving party is sealed with PCR 
values using AIK as soon as PCR values are measured and reported to the receiver. 
Whenever a message is arrived from a receiving party, unsealing operation is 
performed to test if the platform environment at the time of sealed operation is still 
preserved. For example, if there has been any malicious attack that has changed the 
PCR values since attested platform is measured, unsealing operation performed before 
each arriving message being decrypted will fail. When the unsealing operation fails, a 
fault message is sent off to the receiving party to indicate that the sender host’s 



 Establishing a Trust Relationship in Cooperative Information Systems 439 

platform environment has been altered. Moreover, our assumption of trusted code 
prevents already arrived message being decrypted by rouge host as AIK private key is 
secured by trusted component in the architecture. It is also important to note that the 
context tokens (nonce) are unique and they are attached with each message sent. 
Unmatched security tokens also generate fault message like “unsealing” operations.  

4.4   Performance Analysis 

This section compares the performance of our session-based protocol with the 
message-based protocol in the context of its use in a co-operative healthcare 
information system. An example of the patient record used for the performance 
analysis is shown in Figure 11.  

Patient name 
Patient DOB 
Date checked 
Doctor 
Description 

: char(30) 
: date 
: date 
: char(30) 
: char (200) 

Fig. 11. A structure of the sample patient record 

First, we used the mutual attestation protocol to send or receive a single encrypted 
patient health record between facility A and facility B. It took an average 50 seconds 
for total TPM calls made during the process. This includes 43 seconds spent on TPM 
calls made for the mutual attestation protocol, 3 seconds on TPM calls for the 
message encryption and 4 seconds on TPM calls for the message decryption.  

TPM response time without data encryption/decryption

0

200

400

600

800

1000

1200

1 2 5 10 20

Number of Patient Records

T
im

e 
in

 s
ec

o
n

d
s

Message-based
mutual attestation

Session-based mutual
attestation

TPM response time with data encryption/decryption

0

200

400

600

800

1000

1200

1 2 5 10 20

Number of patient records

T
im

e 
in

 s
ec

o
n

d
s

 

Fig. 12. Time incurred for TPM calls between message-based mutual attestation and session-
based mutual attestation 

When we applied the session-based protocol for sending a single encrypted patient 
health record, it took 129 seconds spending approximately 59 seconds on TPM calls. 
There was an overhead of 9 seconds due to additional TPM calls for sealing/unsealing 
operations. This small overhead was greatly compensated as the number of patients’ 
health records transferred between facilities is increased, as shown in Figure 12. The 
X-axis represents the number of patients’ records being sent and Y-axis represents the 



440 J. Jang, S. Nepal, and J. Zic 

time spent on TPM calls in seconds. We repeated the same test for other five different 
set of patients’ health records: 2, 5, 10, and 20. The purpose of these tests was to 
study the impact of the number of records on the performance, when different 
protocols were used for establishing mutual trust between cooperating facilities. It can 
be seen that the session-based mutual attestation starts outperforming the message-
based mutual attestation after exchanging two patients’ records. For five patient 
records, the session-based mutual attestation only takes about half the time than that 
for the message-based mutual attestation protocol.  

The left hand figure in Figure 12 shows the response time of TPM calls due to 
protocol messages without data encryption and decryption. The right hand figure  
Figure 12 in  shows the TPM response time with data encryption and decryption. As 
can be seen from the figures, the TPM response time increases linearly with the number 
of messages due to the encryption and decryption costs.  It is important to note that due 
to the expensive TPM calls in the current implementation, the performance figure of the 
session-based mutual attestation is much higher than one expects from such protocol.  

5   Related Work 

This section presents reviews on different methods of establishing a trust between two 
interacting parties including remote attestation. The most commonly used trust models 
in eBay like e-commerce application is reputation-based trust models [17]. In these 
models, each host is assigned a value of trustworthiness by other hosts based on their 
past experiences. Such trust models are vulnerable to attacks where attackers can create 
a large number of false hosts and increase/decrease the trustworthiness of the host.  
Another set of trust models are based on public-key infrastructure. In these models, 
when a host is challenged by a remote host, it can verify the identity and trustworthiness 
of the remote host by verifying the signature on remote host’s public key [23].  Despite 
the efforts of public key infrastructure trust models, the host still lacks the way of 
verifying the hardware and software environment of the remote hosts.  

One way of establishing trust is to use software stack to measure and verify the 
integrity of co-operating systems. Kennell and Jamieson [8] proposed a technique that 
computes the checksum of the memory space that are used by the software subject to 
measure. The host then sends the outcome of the checksum to the third party authority 
that can verify the checksum result. Monrose et al. [10] illustrated a similar system 
that verifies the correct execution of code between remote Java Virtual Machines to 
detect the possibility of rough JVM. SoftWare-based ATTestation (SWATT) [9] 
proposed a technique using a challenge-response protocol. A challenging party sends 
a challenge to the embedded device. The embedded device computes its memory 
content as a checksum and returns it to the challenging party. The challenging party 
can locally compute the correct answer to its challenge, and can thus verify the 
answer returned by the embedded device. One of the most critical disadvantages of 
using software-based solution is that the hardware that hosts the software stack can be 
stolen or the hardware can be hacked to monitor the behavior of the software stack. 

In recent times, hardware-based techniques have gained popularity due to the fact 
that hardware is relatively harder to hack than software. The most relevant to our 
work is TCG remote attestation [1] that allows distributed remote host to verify each 



 Establishing a Trust Relationship in Cooperative Information Systems 441 

other by sending the snapshot of current state of platform configuration. Several 
problems have been identified related to remote attestation  due to the difficulty to 
measure a platform configuration accurately in today’s complex system and 
inapplicability of having a trusted central authority in this untrusted world, where 
totally independent systems communicate with each other in an autonomous manner 
[11, 12]. These problems are driving further research activities in remote attestation. 

BIND [3] used a technique that attests only the critical code immediately before it 
executes and used a sand-boxing mechanism similar to Secure Kernel found in 
AMD’s Secure Execution Mode (SEM) [13] to protect the execution of the attested 
code. It can detect the changes of attested code at runtime caused by buffer overflows 
or string malformation. Alternative to such approaches is proposed by Terra [14], 
which is a flexible architecture for trusted computing. The key primitive that Terra 
builds on is a trusted virtual machine monitor (TVMM) that allows Terra to partition 
the platform into multiple isolated VMs. The TVMM provides a narrow interface for 
attestation. It first generates a certificate that forms the basis of attestation that 
contains the hash of a VM, TVMN’s public key and any other application data used 
for authenticating the VM. The remote party retrieves this certificate to check the 
validity of a VM. 

The most relevant work to our session-based attestation is the proposal of WS-
Attestation by Yoshiham et al. in [15], where they presented an attestation 
architecture that can be used in Web Services environment. In WS-Attestation, a 
secure communication channel is established between two interacting Web Services 
before the attestation. The challenging Web Service application then attests its 
platform environment using three security tokens; Measurement token that contains 
binary PCR values, Platform Measurement Description (PMD) token that contains 
software environment such as lists of components and their SHA-1 hash values, and 
Attestation Credential token that contains a certificate of valid AIK. These three 
security tokens are attached to each message (along with a HMAC authentication 
code) and send to another Web Service using the standard key exchange protocol WS-
Trust [16] over the secure channel. The receiving Web Service uses Attestation 
Credential to validate the authenticity of the sending Web Service whilst uses 
Measurement and PMD tokens to check the platform and software configuration and 
its freshness of the sending Web Service. First, this protocol is an extension of 
remote-attestation for Web Services world and does not support mutual attestation. 
Second, though this protocol addresses the problem of the gap to certain extent, it has 
the same drawback as message-oriented protocol in terms of performance. Rather 
than attaching a large set of validation messages along with each application message 
as in message-oriented attestation, our approach exploits the TPM functionalities and 
uses “sealing” and “unsealing” operations to preserve and validate the state of the 
platform for each message.  

6   Conclusions 

In this paper, we first analysed the message-based mutual attestation protocol and 
measured its performance in the context of cooperative healthcare information 
systems. Our observations and analysis have led us to the conclusion that the 



442 J. Jang, S. Nepal, and J. Zic 

implemented protocol had two major shortcomings: (a) poor performance and (b) a 
security flaw due to the time interval between the time-of-attestation and time-of-use. 
To compensate, we proposed a session-based mutual attestation protocol. 

One of the advantages of the session-based protocol is that cooperating parties can 
exchange any number of messages during an application session, without re-attesting 
already attested platform. This reduces the number of protocol related message 
exchanges and TPM calls, and improves the performance significantly, particularly 
when a large number of messages are exchanged. This is achieved by sealing the 
session context (or shared secret) using attested platform environment, and unsealing 
the context with the current environment along with the execution of the attested code 
in an atomic operation. If the environment is changed, the atomic operation fails 
before executing the attested code, thereby bridging the gap between the time-of-
attestation and time-of-use.  

We have implemented the session-based mutual attestation protocol in a 
cooperative distributed healthcare system, and conducted a performance analysis 
comparing it to the message-based mutual attestation protocol. As expected, by 
separating out control messages from the information exchanged during a session, 
performance did improve, and was directly proportional to the number of medical 
records and other related messages exchanged in a session.   

One of the drawbacks of the session-based attestation is that it enforces 
participating parties not to run any software (including maintenance activities during 
the session) as such activities could change the attested platform configuration. This 
type of protocol would not be suitable for deployment in general, desktop PCs or 
workstations, as the environments are highly variable. However, this protocol is more 
suited to systems such as server applications where the platform configurations 
remain stable for a longer duration.  

Between two aspects of remote attestation, the session-based protocol detects and 
prevents the changes in software environment, but the detection and prevention of rouge 
TPM during a session has not been addressed. That is, the trusted platform that issued 
AIK has been registered as rogue while interacting participants in a session are using it. 
We plan to address this problem in our future work. In future work, we plan to do 
detailed security analysis of the session-based protocol and study the relationships of 
this protocol with other Web Services standards such as WS-Security, WS-Policy and 
WS-Trust in the context of service oriented co-operative information systems.  

Acknowledgements 

This work is completed as part of CeNTIE project that is supported by the Australian 
Government through the Advanced Networks Program of the Department of 
Communications, Information Technology and the Arts. 

References 

1. TCG specification v1.1 https://www.trustedcomputinggroup.org/specs/TPM/ 
2. WS-BusinessActivity  

ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf 



 Establishing a Trust Relationship in Cooperative Information Systems 443 

3. E. Shi,   A. Perrig,   and Van D. L. BIND: a fine-grained attestation service for secure 
distributed systems. IEEE Symposium on Security and Privacy, pp.  154- 168, 2005 

4. S. Nepal, J. Zic, F. Jaccard and G. Krachenbuehl. A Tag-based Data model for privacy-
preserving medical applications.  In Proceedings of EDBT IIHA Workshop, Munich, 
Germany, 2006, pp. 77-88. 

5. S. Nepal, J. Zic, G. Krachenbuehl and F. Jaccard. Secure Sharing of Electronic Patient 
Records, 1st European Conference on eHealth, 2006, Fribourg, Switzerland 
October 12 – 13, 2006 (to appear).  

6. Australian Government Department of Health and Aging Project. Consumer consent in 
electronic health data exchange – e-consent. 

7. O’Keefe, C.M., Greenfield, P., and Goodchild, A. A Decentralised Approach to Electronic 
Consent and Health Information Access Control. Journal of Research and Practice in 
Information Technology, Vol. 37(2):161-178, May 2005. 

8. R. Kennell and L.H. Jamieson. Establishing the genuinity of remote computer systems. In 
Proceedings of the 11th USENIX Security Symposium. USENIX, August 2003. 

9. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWAtt: SoftWare-based Attestation 
for embedded devices. In Proceedings of IEEE Symposium on Security and Privacy, May 
2004. 

10. F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote audit. In 
ISOC Network and Distributed System Security Symposium, pages 103–113, 1999. 

11. V. Haldar and M. Franz. Symmetric Behavior-Based Trust: A New Paradigm for Internet 
Computing. New Security Paradigms Workshop, Sept 2004 

12. J. Reid, M. Juan, G. Nieto, E. Dawson and E. Okamoto. Privacy and Trusted Computing, 
14th International Workshop on Database and Expert Systems Applications (DEXA'03) 
pp. 383, 2003. 

13. AMD platform for trustworthy computing. WinHEC 2003, 
http://www.microsoft.com/whdc/winhec/papers03.mspx, Sept. 2003. 

14. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-
based platform for trusted computing. In Proceedings of Symposium on Operating System 
Principles (SOSP), Oct. 2003. 

15. S. Yoshihama, T. Ebringer, M. Nakamura, and S. Munetoh.. WS-Attestation: Efficient and 
Fine-Grained Remote Attestation on Web Services, International Conference on Web 
Services. pp 743-750. July 2005. 

16. Web Services Trust Language (WS-Trust) 
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf 

17. L. Xiong and L. Liu. A reputation-based trust model for peer-to-peer ecommerce 
communities, Proceedings of 4th ACM Conference on Electronic Commerce, 2003, pp. 
228-229. 

18. Jonathan K. Millen, Rebecca N. Wright: Reasoning about Trust and Insurance in a Public 
Key Infrastructure. 13th IEEE Computer Security Foundations Workshop (CSFW), 2000: 
16-22. 



A Unifying Framework for

Behavior-Based Trust Models

Christian von der Weth and Klemens Böhm

Institute for Program Structures and Data Organization
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

{weth, boehm}@ipd.uni-karlsruhe.de

Abstract. Trust models have been touted to facilitate cooperation
among unknown entities. Existing behavior-based trust models typically
include a fixed evaluation scheme to derive the trustworthiness of an
entity from knowledge about its behavior in previous interactions. This
paper in turn proposes a framework for behavior-based trust models for
open environments with the following distinctive characteristic. Based
on a relational representation of behavior-specific knowledge, we pro-
pose a trust-policy algebra allowing for the specification of a wide range
of trust-evaluation schemes. A key observation is that the evaluation
of the standing of an entity in the network of peers requires centrality
indices, and we propose a first-class operator of our algebra for computa-
tion of centrality measures. This paper concludes with some preliminary
performance experiments that confirm the viability of our approach.

1 Introduction

With the advent of a broad range of new services on the web such as auc-
tion sites (eBay, Yahoo! Auctions, Amazon), expert sites (ExpertCentral.com,
AskMe), distributed computing (Seti@Home, Folding@Home) and file-sharing
(Kazaa, Gnutella, Freenet), virtual social networks have proliferated as well. In
such environments, an entity that is part of the network may enter interactions
with another entity for many reasons [19]. An interaction always bears the risk
that the service is not performed as expected or desired. The other party can
impair the outcome of an interaction by behaving uncooperatively or maliciously
or simply because of bugs. Mechanisms to minimize the exposure to risky inter-
actions are indispensable.

Promising solution in this respect are trust models. Trust is a fundamental
concept of human behavior that lets entities distinguish between good and bad
partners. A lot of work has been done to formalize the notion of trust (see [17]
for an overview). Because of the many facets of human notion of trust, there are
many different approaches to this formalization as well. So-called behavior-based
trust models are a common way to derive the trustworthiness of an entity in
open environments. The behavior-based trust models we are aware of follow the
same principle: They define a representation of the knowledge about the previous

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 444–461, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Unifying Framework for Behavior-Based Trust Models 445

behavior of an entity and propose an evaluation scheme how to derive the trust-
worthiness of the entity from this knowledge. The number of such trust models
is large, e.g., [1,2,24,13,20,10,22]. However, a fixed evaluation scheme contradicts
the subjective nature of trust. Humans in social networks have different policies
to derive the degree of trust in another party.

In social networks in the physical world, humans do not bother to make their
trust policies explicit, i.e., how to derive the degree of trust in another party. This
article in turn considers networks where the entities are not humans, but soft-
ware artefacts controlled by humans. We refer to networks where user-controlled
entities interact with each other as virtual social networks. One important aspect
of the control over entities is that the control instance must be able to specify
the trust policy of the entities explicitly. To facilitate this, there exist so-called
trust policy languages, serving as an interface between a human and his entities
in the virtual social network. Existing policy languages such as [21] define rules
or clauses to derive the trustworthiness of an entity. However, various behavior-
based trust polices require complex operations such as aggregation or centrality
computation. To the best of our knowledge, existing policy languages do not
support this. Further, if logic-based approaches did, the resulting policies could
be very complex (we argue). On the other hand, existing behavior-based trust
models tend to propose only a fixed evaluation scheme to derive the trustwor-
thiness of an entity. One can only decide whether the derived trustworthiness
of another entity is sufficient or not. Only relatively little work has gone into
defining policy languages for behavior-based trust models.

In this paper we propose a unifying framework for behavior-based trust models
for the specification of a wide range of trust-evaluation schemes. The framework
consists of a formal representation of the knowledge about the behavior of an
entity in previous interactions and a mechanism to allow users to make his trust
policies explicit. This approach overcomes the limitation of a fixed evaluation
scheme and emphasizes the subjective nature of trust. More specifically, we make
the following contributions:

Specification of the characteristics of behavior-based trust models.
We provide an overview of existing behavior-based trust models, in the following
way: We outline all aspects of knowledge about the behavior of an entity that
we deem essential to model the human intuition of trust in a realistic way. Such
aspects are context-dependency and time-dependent decay of the knowledge, to
give examples. By pointing out which trust model considers which aspect, we
are in the position to illustrate similarities and differences between the models.
We will show that some aspects of trust are not considered by any model from
the literature we are aware of. For instance, an entity may wish to express its
certainty in a rating of another entity it has generated or its estimation of the
complexity of a task carried out by another entity.

Formal definition of underlying concepts. Based on the characteristics of
behavior-based trust models we define a representation of the knowledge about
an entity within our framework. There are different types of knowledge that
describe the behavior of a partner. A partner is an entity the current entity has



446 C. von der Weth and K. Böhm

interacted or is currently interacting with. In a nutshell, the types of knowledge
are feedback about an interaction with the partner, recommendations about the
partner from others, the reputation of the partner and the degree of trust in that
partner. We formalize the representation of these concepts. The representation
is the result of the analysis of existing behavior-based trust models and of our
own attempt to formalize trust. There are some design decisions which had to
be taken, and we will discuss these as well.

Definition of a query algebra for trust. Our representation of the un-
derlying knowledge maps to the relational model in a straightforward way. We
propose a mechanism based on relational algebra that lets a user make his trust
policies explicit. The basic operators of the relational algebra are not sufficient to
formulate sophisticated trust policies, as we will demonstrate. Thus, we extend
the algebra with a few new operators. In particular, we define an operator for
the computation of recursive centrality measures as a first-class operator of the
algebra. Centrality measures are graph-based concepts that define the standing
of an entity within the network. The basic operators and the extensions form our
query algebra for trust. This algebra lets us formulate all kinds of behavior-based
trust policies we have identified from the literature. We illustrate the expressive-
ness of our query algebra by formulating various example policies.

Performance experiments. The computation of recursive centrality mea-
sures is time-consuming and resource-intensive. To quantify the impact of our
new operator in this respect, we have carried out several experiments. We have
implemented different centrality measures in Oracle 10g. In this paper we present
some initial results that illustrate the performance of different centrality mea-
sures in populations of various sizes (up to 100.000 entities). The different mea-
sures have significantly different performance characteristics.

Summing up, after having reviewed existing trust models from literature, we
proposes a unifying framework for behavior-based trust models. While this is
interesting in itself, it is also the first step of a more long-term research effort.
We intend to compare the various trust policies regarding both effectiveness, i.e.,
rate of interactions whose outcome is as desired, and efficiency, i.e., performance
of the implementation. We will be particulary interested in the effectiveness
in situations where members of a population with different trust policies keep
interacting.

The remainder of this paper is organized as follows: In Section 2 we mo-
tivate our approach to a unifying framework for behavior-based trust models.
Section 3 discusses that representation of knowledge about an entity’s previous
behavior in detail. Section 4 introduces our query algebra. We present some first
experimental results in Section 5. Section 6 concludes.

2 Our Approach Towards a Unifying Framework

There has been wide-spread interest in the notion of trust from various scien-
tific disciplines. Consequently, many different definitions have come into being.
Among existing trust models for open environments, the following definition



A Unifying Framework for Behavior-Based Trust Models 447

prevails: The trust of an Entity A in Entity B is A’s subjective degree of belief
that B can and will perform a specific task in a certain situation. This definition
includes distrust as negative trust.

There are many ways to derive the degree of trust of an entity in a partner
within a social network. Ford [6] gives a good survey. Since some approaches
to establish trust rely on the social background, not all of them are suitable in
virtual social networks. With cognition-based trust, cognitive cues such as the
first impression determine the degree of belief in the future behavior of another
party. Another example is affect-based trust. Here, trust is based on emotional
bonds between the entities. According to Ford’s classification, we see three
common ways to derive trust within virtual social networks: Deterrence-based
trust stimulates entities to behave well because they fear punishment in case of
unsatisfactory performance. Newsgroups are a popular example. If a user is lack-
ing good manners, e.g., insults or bashing, he may be banned from the system.
Due to the fear of punishment, a user can trust others that their postings have a
useful and proper content. Institution-based trust reflects the degree of trust felt
due to guarantees or other structures. A popular example are public-key infras-
tructures to issue, distribute and verify certificates or passwords (e.g., X.509 or
Kerberos). They allow verifying authenticity or identity of an entity. Knowledge-
based trust is the result of aggregating relevant knowledge on another entity
in order to predict its behavior. This knowledge can include observations of
previous behavior of that individual, subsequently referred to as behavior-specific
knowledge, and personal information, e.g., its real name, location, or occupation.

In large-scale open environments, only some of these derivations are feasi-
ble. Deterrence-based trust requires a central instance, a so-called Trusted Third
Party, which can issue and conduct punishments. Regarding institutional-based
trust, even though decentralized infrastructures exist, e.g., Web of Trust [14],
verifying authenticity or identity of an entity is not sufficient to predict its be-
havior. Consequently, trust in open environments should be based on knowledge
as much as possible, cf. [12]. This includes the limitation to behavior-specific
knowledge about an entity. Personal knowledge about an entity in turn is prob-
lematic in open environments, for at least two reasons. First, since anonymity
and privacy are inherent characteristics of such environments, personal knowl-
edge is rarely available. Second, personal knowledge about a partner has little
significance for predicting the behavior of the partner in future interactions. The
large number of existing trust models for such environments reflects the relevance
of behavior-specific knowledge. We call this kind of trust models behavior-based
trust models. In what follows, when referring to knowledge about an entity, we
mean behavior-specific knowledge.

With these considerations in mind we now propose a unifying framework for
behavior-based trust models. We say how the knowledge about an entity’s pre-
vious behavior is represented, and how an entity can derive the trustworthiness
of a partner by means of a query algebra for trust. With that approach we allow
the specification of a wide range of trust-evaluation schemes and are not limited
to a fixed one like in existing behavior-based trust models.



448 C. von der Weth and K. Böhm

3 Representation of Behavior-Specific Knowledge

This section formalizes our representation of the knowledge about an entity. Sub-
section 3.1 gives an overview of the notions that form the knowledge about the
past behavior of an entity. Subsection 3.2 outlines the different characteristics of
those concepts, which we refer to as aspects of behavior-based knowledge. Finally,
Subsection 3.3 defines the representation of those notions.

3.1 Overview of Behavior-Specific Knowledge

In general, one can divide behavior-specific knowledge into two classes: While
first-hand knowledge is based on one’s own experiences, second-hand knowledge
is based on the experiences of others. Furthermore, we distinguish between the
following four types of behavior-specific knowledge:

– Feedback. A feedback item is Entity A’s rating of an interaction performed
by Partner B.

– Recommendation. A recommendation is the opinion of an Entity A about
the previous behavior of a Partner B. In existing models, a recommendation
typically is an aggregation of the direct experiences of A with B.

– Reputation. Reputation is the general opinion of the whole population of
the virtual social network towards a single entity B. Reputation is a global
value. With most existing models, it results from the aggregation of direct
experiences or recommendations of all entities about B. The aggregation
function is specified globally.

– Trust. The trust of an Entity A in a Partner B is A’s degree of belief that
B will behave as expected in future interactions. It is computed based on
the aggregation of direct experiences or recommendations about B or on the
reputation of B. The aggregation function – which is the trust policy in this
case – is left to the trusting entity A.

If Entity A evaluates an interaction with Partner B or provides a recommen-
dation about B to others, A makes that new information about B available to
other entities. We say that A issues knowledge about B.

Trust and recommendation are similar notions. Both represent the opinion
of an entity about the behavior of another one. In fact, some trust models,
e.g. [22], do not distinguish between a recommendation of A regarding B and
B’s trustworthiness in the eye of A. Other models in contrast, e.g., [13], make
this distinction. For instance, a recommendation of A regarding B is derived only
from A’s first-hand knowledge about B, and the trust of A in B is derived from
all kinds of knowledge about B. It is important that our framework will allow
for both alternatives: The policies of a user specify how recommendations and
trustworthiness are derived.

Based on these concepts, a user formulates trust policies to derive the trust-
worthiness of a partner. For instance, a trust policy could be ”I trust a partner
if the average of the values of all feedback items issued about it by the 10 most
reputable entities exceed a certain threshold”. Existing behavior-based trust



A Unifying Framework for Behavior-Based Trust Models 449

models are limited to one trust policy for all entities. In our framework in turn,
we let each user make his trust policies explicit for the entities under his control.
A user is free to choose which knowledge about a partner he wants to consider
and how to combine that knowledge to derive the trustworthiness of the partner.
For instance, a user can specify whether the trustworthiness of a partner depends
on first-hand knowledge only or on both first-hand and second-hand knowledge.
Furthermore, a user can explicitly limit the considered knowledge about a
partner within his policies. In particular, this lets him rule out spoof feedback,
or whatever he deems/could be spoof feedback. For instance, a user A can
reject feedback from entities that rated interactions with A negative, though A
showed a good behavior. Regarding the reputation of an entity, one can specify
its computation using our framework as well. A global policy accomplishes this.

3.2 Aspects of Behavior-Specific Knowledge

In the following, we outline all aspects of trust that we deem essential to model
the human intuition of trust as realistically as possible. Different trust models
from the literature consider different aspects, as we will illustrate. Furthermore,
there are aspects of trust currently not considered by any model we are aware of.

Reference to entities. A piece of behavior-specific knowledge always refers
to a certain entity. For feedback, recommendation and trust we can specify the
issuer of each piece of such knowledge in addition. M is the set of all entities that
currently participate in the virtual social network, and we refer to an element of
M as μ.

Context-dependency. The degree of trust in another entity is context-
specific. It depends on the circumstances and conditions which determine or
specify the meaning of a piece of knowledge. The context of the interaction is
the set of all facts or circumstances that surround an interaction. For instance, we
tend to trust a car mechanic to check our car, but not to check our health. There-
fore, trusting a partner to perform a certain task does not mean that one trusts
him for other tasks. Most existing trust models feature context-dependency. This
indicates the importance of the aspect. We denote the set of all contexts that
are possible in a given scenario as Φ and an instance of this set as φ.

In spite of context dependency, humans tend to use the knowledge about
another party in a certain context to assess its trustworthiness in other contexts.
Consider again the previous example. If the car mechanic has always provided
good service in fixing cars, one tends to believe that he will also fix motor bikes
well. This is particularly useful if one has only little knowledge about Entity μ in
Context φ1, but more knowledge about μ in the related Context φ2. Obviously,
the more related φ1 and φ2 are, the more significant is the knowledge transfer
between both contexts. There are few trust models, e.g. [20], which feature this
kind of knowledge transfer. We for our part model the relatedness of contexts
using a hierarchy of the elements of Φ. The query algebra which we are about
to define will then allow to specify the knowledge transfer between contexts.

Facets of a context. Even though the context may be the same, knowledge
about an entity may correspond to different facets of the context. Facets are



450 C. von der Weth and K. Böhm

distinct features of a context μ, they represent the different perspectives. Think
of our car mechanic. In the context of fixing cars, facets may be the speed
of his performance, his behavior, the price, etc. Thus, we can deem a partner
trustworthy or not in the same context, but according to different facets. Some
existing trust models consider different facets of a context, e.g., [24]. We denote
the set of all facets of a context φ as Ψφ, an instance of that set as ψφ. We
use the term situation to denote a combination of context and facet a piece of
behavior-specific knowledge may refer to.

Similarly to the knowledge transfer between different contexts, we define a
hierarchical structure over the set of all facets to model the relatedness between
them. This allows to support the knowledge transfer between different facets
within our query algebra.

Time-dependency. The trustworthiness of an entity is dynamic – it typically
changes with every new piece of information about the entity. Furthermore, more
recent information about the behavior of an entity influences our decision to trust
a partner or not more than older one. To allow for consideration of this aspect, we
make the age of each piece of knowledge explicit with a timestamp, denoted by τ .

Most existing models take the dynamic nature of trust into account: the trust-
worthiness of an entity at time t1 can differ from its trustworthiness at time t2.
But only few models consider the decay of behavior-specific knowledge, e.g.,
[5,20]. In contrast to our framework, the rate of decay is part of the fixed eval-
uation scheme, and the user cannot modify it.

Certainty. When a user assesses the previous behavior of a partner, he does
not necessarily feel confident about his own assessment. To assess the behavior
of the partner with ’good’ or ’bad’, the assessor must have an idea of what good
or bad behavior might be to him. Depending on the complexity of the task,
this is not always obvious. Consider the following example: A car mechanic has
fixed the broken front light of our car. To assess the outcome of the repair, in
this case the functioning of the front light, is simple. However, assessing the
task according to facet ’costs’ is more difficult, since we must have an idea of
current market prices. The degree of certainty is a subjective factor. Therefore,
our representation of (most kinds of) behavior-specific knowledge will include
this aspect as well. This does not extend to the reputation of an entity, since
it is a global value. We denote the degree of certainty with σ; its range is the
interval [0, 1] (0: absolutely uncertain, 1: absolutely certain). No trust model we
are currently aware of takes uncertainty into account.

Estimated Effort. In addition to the actual outcome of an interaction, the
estimated costs of the partner that has performed the task is an important factor
that describes his behavior. If a partner has shown a good behavior in a task
that has required much effort, it is likely that he will show a good behavior in a
similar task that requires less effort. The other direction is not true. Performing a
complex task satisfactorily tends to be a more useful indicator of trustworthiness
than a good performance on a simple task. The estimated effort refers to the
complexity of an interaction. Thus, we can only describe feedback with this
aspect, since a feedback item is the rating of an interaction. We denote the



A Unifying Framework for Behavior-Based Trust Models 451

estimated effort with ε; its range is the interval [0..1] (0: very simple task, 1:
very complex task). As far as we know, no existing trust model considers this
aspect of behavior-specific knowledge.

Valuation. In our model, the assessment of the previous behavior of a partner
is continuous. This allows for a finer granularity and for the ranking of different
assessments. We denote the valuation of each piece of behavior-specific knowl-
edge by ν from the interval [-1, 1]. Trust models like [20,10] feature a continuous
valuation. Other trust models use a discrete one. For instance, [1] distinguishes
four degrees of trust, namely ’very trustworthy’, ’trustworthy’, ’untrustworthy’
and ’very untrustworthy’. Few models use a binary valuation, e.g, [2]. Finally,
several trust models combine discrete and continuous valuations depending on
the type of behavior-specific knowledge, e.g., [11,26].

A trust policy, as we will define it, does not need to refer to all of those aspects
explicitly. It is left to the discretion of the policy designer how to take the aspects
into account, if at all.

3.3 Defining the Representation of Notions Behind
Behavior-Specific Knowledge

We now are in the position to specify the representation of the different types of
knowledge about the behavior of an entity in previous interactions. We propose
a tuple-structured representation.

Definition 3.1 (Feedback). A feedback tuple is an 8-tuple
feedback = (μrater , μratee, φ, ψφ, τ, σ, ε, ν)

The relation that contains all feedback tuples is Feedback (rater, ratee,
context, facet, timestamp, certainty, effort, value). It is clear that
Feedback is a base relation, since it is not derived from other data.

In this article, we do not address physical design issues, i.e., how to store the
data, or materialization strategies in case of derived data. We currently pursue a
centralized approach, i.e., use a RDBMS storing all feedback available. However,
and more realistically, one can also envision more sophisticated distributed
architectures, e.g., structured P2P systems [9]. For instance, each peer could
store the feedback it has generated and the one other peer have made available
to it.

Definition 3.2 (Recommendation). A recommendation tuple is a 7-tuple
recommendation = (μrecommender , μrecommendee, φ, ψφ, τ, σ, ν)

The relation that contains all recommendation tuples is Recommendation
(recommender, recommendee, context, facet, timestamp, certainty,
value). Clearly, when an algebra expression generates such tuples, the name of
the relation may be omitted. As indicated before, Recommendation is a derived
relation. We give examples of policies how to derive such knowledge in Section 4.



452 C. von der Weth and K. Böhm

Definition 3.3 (Reputation). A reputation tuple is a 5-tuple
reputation = (μ, φ, ψφ, τ, ν)

The relation that contains all reputation tuples is Reputation (entity,
context, facet, timestamp, value). Like recommendations, reputation is
derived from other knowledge. Reputation is a derived relation as well.

Definition 3.4 (Trust). A trust tuple is a 7-tuple
trust = (μtruster , μtrustee, φ, ψφ, τ, σ, ν)

The relation that contains all trust tuples is Trust (truster, trustee,
context, facet, timestamp, certainty, value). Trust is a derived rela-
tion, too.

Next to behavior-specific knowledge, our framework also consists of scenario-
specific knowledge. This includes the set of entities M, the set of contexts Φ and
the set of facets Ψφ. To formulate trust policies, a user also must have access to
scenario-specific knowledge. Thus, we specify the following relations: Entity(id)
contains the unique identifiers of all entities, and Situation(context, facet)
contains all possible combinations of contexts and facets.

This paper confines itself to behavior-specific and scenario-specific knowledge,
in order to compute trust, but this does not need to be the case in general. Any
knowledge about an entity could be taken into account, e.g., its online time,
its available resources, its workload, etc. If there is a relational representation
of this knowledge, the formulation of respective trust policies – we illustrate in
Section 4 - is straightforward.

Previous work, e.g., [7], has already discussed the relational representation
of hierarchies including operators for navigation. We borrow from this work
to facilitate specification of contexts and facets in trust policies. We do not
repeat the discussion here, i.e., do not describe the mapping of relations to
hierarchies and the definition of those operators. The rationale is that this would
not provide any further insight regarding the representation of the notions of
behavior-specific knowledge and the basic design of our framework.

In addition to the differentiation between behavior-specific and scenario-
specific knowledge, we can classify behavior-specific knowledge along two fur-
ther dimensions (we pick up this classification in a later section): (1) Number of
entities referenced. The relations contain either knowledge about a single entity
(entity-specific) or about a pair of entities (pair-specific). Feedback for instance
is pair-specific, since there are two roles, the rater and the ratee. (2) Source
of the knowledge. Some knowledge represents direct experiences regarding the
behavior of a partner (basic). This basic knowledge is used to derive the other
knowledge, which we refer to as derived knowledge. Note that the only kind of
basic behavior-based knowledge is feedback. We can now classify all relations
containing behavior-specific knowledge as shown in Table 1. According to the
previous classification, reputation, recommendation and trust are derived knowl-
edge. Since behavior-specific knowledge is subjective, each user has policies of
his own to derive trust or recommendations. Reputation requires the existence of



A Unifying Framework for Behavior-Based Trust Models 453

Table 1. Classification of the types of behavior-specific knowledge

entity-specific pair-specific
basic Feedback

derived Reputation Recommendation, Trust

(at least one) global policy. Our goal is the provision of mechanism for specifying
such policies. We do so by defining a query algebra for trust in the next section.

4 Defining a Query Algebra for Trust

The previous section has introduced our relational representation of behavior-
specific knowledge about an entity. In this section we define a mechanism that
allows users to make their trust policies explicit, based on the relational algebra.
We think that existing trust-policy languages do not support the complex opera-
tions necessary. To address this issue, we for our part favor an algebraic approach
over a logic-based one. Our algebra includes the operators from the relational
algebra. However, our query algebra for trust needs additional operators, to be
described next. All operators preserve the closure property of the algebra.

A trust policy is a user specification under which conditions he is willing to
trust a partner. For instance, behavior-based trust policies are ”I trust a partner
if the average feedback about it is positive” or ”I trust a partner if it is one
of the k entities with the highest reputation”. The result of a trust policy is a
set of entities deemed trustworthy. In our framework, we will use a relational
representation of the notions behind behavior-specific knowledge. A trust policy
in our framework is an algebra expression over the relational representation of
behavior-specific and scenario-specific knowledge. To ease presentation, a trust
policy in the examples that follow generates a relation of trust, recommendation
or reputation items whose structure conforms to the one from Subsection 3.3.
One still would have to filter these tuples (e.g., is the reputation value above a
given threshold?) and project out everything but the entity IDs to arrive at the
structure desired. To simplify the examples, we will however omit this last step.

Throughout the rest of this section we use the following notation: Let A
be a set of attribute names Ai and D a set of domains Di where each Di

is a set of atomic values. To associate an attribute Ai with a domain Di we
write Di :Ai. A relation schema R consists of a set of distinct attribute names
{A1,...,An}. A relation is a finite set R ⊆ D1 :A1 × ...× Dn :An. We write tuple
t ∈ R as (A1 :a1, ...,An :an) where value ai is from the domain Di of attribute Ai.
Schema(R) denotes the set of attributes {A1, ...,An} of R. To refer to the value
of an attribute Ai of a tuple t, we write t.Ai.

4.1 Conventional Extensions to the Relational Algebra

Our query algebra for trust includes some operators that have already been
proposed in the literature as extensions to the relational algebra.



454 C. von der Weth and K. Böhm

Grouping and Aggregation. Any realistic trust policy requires aggregation,
for instance, the average feedback value about an entity. Aggregation typically
comes together with grouping. To ease understanding of our example policies
to follow, we repeat the definition of the Group operator.

Definition 4.5 (Group operator).

GROUP[A,Γ(Ai), ∅](R) :=
{(A1 :a1, ...,An :an,A:a)|(A1 :a1, ...,An :an) ∈ R ∧ a = Γ(Ai)}

GROUP[A,Γ(Ai), {A1, ...,Ak}](R) :=
⋃

t∈R GROUP[A,Γ(Ai), ∅](SELECTION[
∧k

i=1(ai = t.Ai)](R))

where Schema(R) = {A1, ...,An}, Ai �∈ {A1, ...,Ak}, Ai ∈ Schema(R), Γ(Ai) ap-
plies the aggregation function Γ to the values of the attribute Ai and furthermore
{A1, ...,Ak} ⊆ Schema(R).

Deployment of External Functions. Many trust policies explicitly require
external functions. For instance, to express that recent feedback about a partner
has higher impact on his trustworthiness than older one, we require a function
that describe the decay of a feedback item according to its age. We accomplish
this using the Map operator (cf. [3]). It applies a user-defined expression to the
attributes of a relation, one tuple at a time. A new attribute stores the result.
Again, the Map operator (or similar operators with different names) is not new;
we just repeat it here to ease presentation.

Definition 4.6 (Map operator).

MAP[A, expression(a1, ..., an)](R) :=
{(A1 :a1, ...,An :an,A:a)|(A1 :a1, ...,An :an) ∈ R ∧ a = expression(a1, ..., an)}

where Schema(R) = {A1, ...,An} and A �∈ R.

Top operator. Within trust policies, the k tuples with the highest values of
an attribute frequently are of special interest. For instance, a policy might refer
to the entities with the highest reputation values. Several definitions of the Top
operator exist, e.g., [4]. Again, to ease presentation, we repeat the definition of
the Top operator here.

Definition 4.7 (Top operator).

TOP[0,Ai](R) := ∅, TOP[k,Ai](∅) := ∅

TOP[k,Ai](R) :=
(M = {t1, ..., tm ∈ R|(� ∃x ∈ R, x �= t : x.Ai > t.Ai) ∧ (m ≤ k)})
∪ TOP[k − |M|,Ai](R − M)

where Ai ∈ Schema(R) and k is a natural number. ≥ refers to a given partial
order over Ai.



A Unifying Framework for Behavior-Based Trust Models 455

To give an example, we consider the following policy: ”I (μself ) trust a Partner
μpartner in Context φ and Facet ψφ if the average of all available feedback values
about μpartner is positive. The certainty of the result depends on the average
certainty values of all considered feedback. Only feedback from the 10 entities
with the highest reputation is considered”. Example 1. shows the corresponding
algebra expression. The Top operator applied to Relation Reputation retrieves
the 10 most reputable entities in Context φ and Facet ψφ. The inner Group
operator computes the average feedback value. Its results are the values of the
new attribute avg value. Furthermore, a trust tuple requires a certainty value
σ and a timestamp τ . In this example, the second group operator computes σ
as the average of the certainty values of all feedback tuples. Its results are the
values of the new attribute avg certainty. The Map operator accomplishes the
computation of τ .

Example 1. The 10 most reputable entities in Context φ and Facet ψφ

PROJECTION[truster, trustee, context, facet, time, avg certainty, avg value](
SELECTION[truster=μself ](

RENAME[rater→truster, ratee→trustee](
MAP[time, getCurrentTime()](

GROUP[avg certainty, AVG(certainty), {ratee}](
GROUP[avg value, AVG(value), {ratee}](

JOIN[rater=entity](
TOP[10, value](

SELECTION[context = φ ∧ facet = ψφ](Reputation)),
SELECTION[ratee = μpartner ∧ context = φ ∧ facet = ψφ](Feedback))

) ) ) ) ) )

4.2 Centrality

A centrality index is a graph-based measure to quantify the importance of a vertex
among all vertices of a graph according to the structure of the graph. Centrality
indices are a heavily studied concept in social network analysis. A lot of mea-
sures have been developed, including degree centrality, closeness, betweenness,
eigenvector centrality and others. Existing trust models apply centrality indices
to evaluate the trustworthiness of entities, e.g., [13,25]. To support these schemes
in our framework, a user must be able to specify the computation of centrality in-
dices within his policies. To preserve the closure property of the algebra – allowing
the nesting of all operators – we introduce centrality as a first-class operator.

Computing centrality requires that the underlying graph is made explicit in
the first place. A language for the specification of trust policies should provide a
high degree of flexibility in this respect. A trust policy must be able to specify for
which entities centrality is computed, and what exactly the edges are, e.g., feed-
back, recommendations, etc. In other words, the trust policy specifies the underly-
ing graph. Recall that a trust policy is an algebra expression in the context of this



456 C. von der Weth and K. Böhm

paper. Hence, policies referring to centrality index values of entities must contain
a subexpression, subsequently referred to as Rvertices, which specifies the ver-
tices, and another one, subsequently referred to as Redges, specifying the edges.
Put differently, an operator for centrality computation has parameters Rvertices

and Redges. In addition, the operator will have the following parameters:

– Av: attribute of Rvertices that specifies the vertices
– As: attribute of Redges that specifies the start vertices of edges
– At: attribute of Redges that specifies the target vertices of edges
– Aw: attribute of Redges that specifies the weight of edges

If our algebra contained further graph-based operators, these would feature
these parameters as well. To ease presentation of further definitons, we intro-
duce following abbrevations to represent previous parameters for a graph G:
RG = (Rvertices,Redges) and AG = (Av,As,At,Aw).

Our goal is the definition of one Centrality operator for the computation
of various centrality measures. Note that we do not want to have several such
operators. The situation is similar to the deployment of external functions. There
is one Map operator that is part of the algebra, and the function is a parameter
of it. However, we cannot use the Map operator to compute centrality indices,
since the Map operator applies the function to one tuple at a time, independent
of the other tuples. Centrality measures in turn are more complex.

First, we specify the characteristics of a centrality measure, in order to serve
as a parameter of the Centrality operator. For illustrative purposes, we then
give the definition of one centrality measure. We choose PageRank [18], since it
is the basis for most existing centrality-based trust models. Finally, we define
our Centrality operator as first-class construct of the query algebra.

Definition 4.8 (Centrality Measure). A centrality measure is a parame-
terized function CentralityMeasure[Av,As,At,Aw](Rvertices,Redges, vi) with
the following arguments:

– Rvertices, Redges are database relations
– vi is a tuple from Relation Rvertices

– Av is an attribute of Relation Rvertices

– As,At,Aw are attributes of Relation Redges

– Redges must not contain two different tuples with identical values of At-
tributes As and At (we limit ourselves to centrality measures for graphs
without multiple edges).

If one of the previous characteristics is not fulfilled, the result of the centrality
measure is ⊥ (undefined).

Example: PageRank. The PageRank of a vertex in a directed, weighted graph
G(V,E) is defined as follows:

PageRank(vi) = (1 − d) + d ·
∑

vj∈In(vi)

wji · PageRank(vj)∑
vk∈Out(vj)

wjk
(1)



A Unifying Framework for Behavior-Based Trust Models 457

where wji denotes the weight of the edge from vertex vj to vertex vi. In(vi)
denotes the set of vertices that have an edge to vi and Out(vi) is the set of
vertices that have an edge from vi. We call In(vi) the In-set and Out(vi) the
Out-set of vi. – The following definitions are auxiliary in nature. We define the
concepts of the In-set and the Out-set of a vertex and the weight of an edge
according to our relational representation of the graph.

Definition 4.9 (In-set, Out-set, Weight).

IN[AG ](RG , vi) :=
{(Av : t.Av)| (t ∈ Rvertices) ∧ (∃e ∈ Redges : (e.As = t.Av ∧ e.At = vi.Av))}

OUT[AG ](RG , vi) :=
{(Av : t.Av)| (t ∈ Rvertices) ∧ (∃e ∈ Redges : (e.As = vi.Av ∧ e.At = t.Av))}

WEIGHT[AG ](RG , vs, vt) :=
∑

e∈{t∈Redges|t.As=vs.Av∧t.At=vt.Av}
t.Aw

These auxiliary definitions let us now define the PageRank measure. The
difference to Equation 1 is that the following definition is a centrality measure,
as defined earlier. It is based on the relational representation of graph structures.
It can be an argument of the Centrality operator of our algebra, to be defined
subsequently.

Definition 4.10 (PageRank measure).

PageRank[AG ](RG , vi) :=

(1 − d) + d ·
∑

vj∈IN[AG ](RG,vi)

⎛

⎜
⎜
⎝

WEIGHT[AG ](RG,vj,vi)· PageRank[AG ](RG ,vj)
∑

vk∈OUT[AG ](RG,vj)

WEIGHT[AG ](RG,vj,vk)

⎞

⎟
⎟
⎠

where Schema(Rvertices) = {A1, ...,An}.

Having introduced the notion of a centrality measure, we are now in the position
to define the Centrality operator. Note that only this operator has to preserve
the closure property of the algebra, since only this operator is a first-class
construct.

Definition 4.11 (Centrality Operator).

CENTRALITY[A,AG ,CentralityMeasure](RG) :=
{(A1 :a1, ...,An :an,A:a)| v = (A1 :a1, ...,An :an) ∈ Rvertices

∧ a = CentralityMeasure[AG](RG , v)}

where Schema(Rvertices) = {A1, ...,An}.



458 C. von der Weth and K. Böhm

To illustrate, we modify the trust policy of Example 1.. Instead of taking feedback
from the entities with the highest reputation into account, we specify explicitly
how the entities are ranked by PageRank, using the Centrality operator. To keep
the example simple, we assume that each entity has issued at most one other
feedback item about another entity.

Example 2. PageRank of all entities in Context φ and Facet ψφ

PROJECTION[truster, trustee, context, facet, time, avg certainty, avg value](
SELECTION[truster=μself ](

RENAME[rater→truster, ratee→trustee](
MAP[time, getCurrentTime()](

GROUP[avg certainty, AVG(certainty), {ratee}](
GROUP[avg value, AVG(value), {ratee}](

JOIN[rater=id](
TOP[10, pagerank](

CENTRALITY[pagerank,id,rater,ratee,value,PageRank](
Entity,
SELECTION[context = φ ∧ facet = ψφ](Feedback)))

SELECTION[ratee = μpartner ∧ context = φ ∧ facet = ψφ](Feedback))
) ) ) ) ) )

The examples so far provide an insight into the formulation of trust policies
with our framework. We think that our algebra lets us express most realistic
behavior-based trust policies, including the ones of existing behavior-based trust
models.

5 Preliminary Experimental Results

In the following, we describe preliminary experiments regarding the performance
characteristics of our Centrality operator. We have implemented various central-
ity measures in PL/SQL, including PageRank, Authorities (A) [15], Proxim-
ity Prestige (PP) [16], Integration (I ) [23] and Positional Weakness Function
(PWF ) [8]. As eigenvector centrality measures, PageRank and Positional Weak-
ness Function are implemented based on the power iteration algorithm. We car-
ried out various experiments to explore their performance in networks consisting
of up to 100.000 entities. Our testbed was a dual 2.2 GHz Opteron 64bit plat-
form, 2GB main memory, SCSI Ultra 320 hard drive running Red Hat Enterprise
Linux 3 and Oracle Database 10g Release 2.

Figure 1 graphs the performance of our implementations of the measures in
networks of up to 2.000 entities. Performance varies significantly from measure to
measure. In general, eigenvector centrality measures based on the power iteration
implementation show a better performance. This is because the power-iteration
implementation causes significantly less write operations on the database than
the implementations of the other measures. Having observed this, we ran another



A Unifying Framework for Behavior-Based Trust Models 459

 0

 5000

 10000

 15000

 20000

 25000

 600  800  1000  1200  1400  1600  1800  2000

tim
e 

in
 s

ec
on

ds

size of population

PageRank
Postional Weakness Function

Authority
Proximity

Integration

Fig. 1. Performace of all centrality mea-
sures

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 20000  40000  60000  80000  100000

tim
e 

in
 s

ec
on

ds

size of population

PageRank
Postional Weakness Function

Fig. 2. Performance of PR and PWF in
large networks

test with the eigenvector-based measures PageRank and Positional Weakness
Function in networks of up to 100.000 entities (see Figure 2). Again, there is a
huge difference between the performances of both measures. At this stage, we
cannot completely explain this effect. Other experiments (omitted here for lack
of space) indicate that performance hinges on the implementation of matrix op-
erations or the error threshold for the power iteration. A systematic investigation
which shall lead to a comprehensive cost model is part of our ongoing work.

Besides efficiency, effectiveness of the measures is important as well. In an-
other experiment we compared the rankings resulting from the various measures
in a network of 1.000 entities. Table 2 illustrates the differences between the
measures in percent (0%: equal ranking, 100%: maximum difference between
two rankings). The value reflects the mean distance between the positions of an
entity in two rankings. Except for Integration and Proximity Prestige, all mea-
sures yield different rankings. As a result, the choice of the centrality measure
influences the result of trust policies. We will have to analyze which measure is
most appropriate in a given situation.

Table 2. Difference between the rankings of various centrality measures

PWF HITS PP I
PR 6.2% 8.2% 5.3% 5.3%

PWF - 5.4% 9.5% 9.5%
A - - 9.7% 9.7%
PP - - - 0.0%

6 Conclusions and Future Work

In this paper we presented our approach towards a unifying framework for
behavior-based trust models. While existing models propose a fixed evaluation



460 C. von der Weth and K. Böhm

scheme to derive the trustworthiness of an entity, we have proceeded as follows:
First, we have described the different kinds of knowledge about the behavior of
an entity in previous interactions and have specified its representation. Given
this, we have proposed a query algebra to formulate trust policies, based on the
relational algebra. The basic operators of the algebra do not suffice to formulate
all policies that are conceivable. In particular, this includes centrality to com-
pute the standing of an entity in the network. We have addressed this issue by
defining a first-class operator for centrality computation.

Letting a user formulate trust policies gives way to new questions. For in-
stance, how efficient is the evaluation of the various trust policies, i.e., perfor-
mance of the implementation? In particular, computation of recursive centrality
measures is time-consuming and resource-intensive. How about effectiveness of
the different trust polices, i.e., the rate of interactions whose outcome is as de-
sired? We are particularly interested in effectiveness of the different policies in
situations where members of a community with different policies interact repeat-
edly over a period of time. We intend to answer these and related questions as
future work.

References

1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In
HICSS ’00: Proceedings of the 33rd Hawaii International Conference on System
Sciences-Volume 6, Washington, DC, USA, 2000. IEEE Computer Society.

2. K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system.
In H. Paques, L. Liu, and D. Grossman, editors, Proceedings of the Tenth Interna-
tional Conference on Information and Knowledge Management (CIKM01), pages
310–317. ACM Press, 2001.

3. K. Aberer and G. Fischer. Semantic query optimization for methods in object-
oriented database systems. In ICDE, pages 70–79, 1995.

4. E. Bertino, D. Montesi, and A. Trombetta. Fuzzy and presentation algebras for
web and multimedia data. ideas, 00:134, 2000.

5. J. Carter, E. Bitting, and A. Ghorbani. Reputation formalization within informa-
tion sharing multiagent architectures, 2002.

6. D. Ford. Trust and knowledge management: The seeds of success. Technical Report
WP 01-08, Queen’s School of Business, Queen’s University at Kingston, Canadas,
november 2001.

7. T. Grust and J. Teubner. Relational algebra: Mother tongue—xquery: Fluent. In
Proceedings of the first Twente Data Management Workshop on XML Databases
and Information Retrieval, Enschede, The Netherlands, 2004.

8. P. Herings, G. v. d. Laan, and D. Talman. Measuring the power of nodes in
digraphs. Technical report, 2001.

9. R. Huebsch, B. Chun, J. M. Hellerstein, B. Thau, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture of pier: an internet-
scale quey processor. In Proceedings of the 2005 CIDR Conference, 2005.

10. T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an integrated trust
and reputation model for open multi-agent systems. In AAMAS-04 Workshop on
Trust in Agent Societies, 2004.



A Unifying Framework for Behavior-Based Trust Models 461

11. R. Ismail and A. Josang. The beta reputation system. In Proceedings of the 15th
Bled Conference on Electronic Commerce, 2002.

12. A. Josang. The right type of trust for distributed systems. In Proceedings of the
1996 New Security Paradigms Workshop (ACM), 1996.

13. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm
for reputation management in P2P networks, 2003.

14. R. Khare and A.Rifkin. Weaving a web of trust. World Wide Web Journal, 2:77–
112, 1997.

15. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604–632, 1999.

16. N. Lin. Foundations of Social Research. New York: McGraw-Hill, june 1976.
17. S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, Department

of Mathematics and Computer Science, University of Stirling, UK, 1994.
18. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford University, 1998.
19. P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems:

Facilitating trust in internet interactions. In Communications of the ACM, pages
45–48, december 2000.

20. J. Sabater and C. Sierra. REGRET: reputation in gregarious societies. In J. P.
Müller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents, Montreal, Canada, 2001. ACM Press.

21. K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and
L. Yu. Requirements for policy languages for trust negotiation. In POLICY, pages
68–79, 2002.

22. R. Sherwood, S. Lee, and B. Bhattacharjee. Cooperative peer groups in nice.
Computer Networks, 50(4):523–544, 2006.

23. T. V. und R.K. Foreman. Integration and radiality: Measuring the extent of an
individual’s connectedness and reachability in a network. Social Networks, 20:89–
105, 1998.

24. Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks.
In Peer-to-Peer Computing, pages 150–, 2003.

25. A. Yamamoto, D. Asahara, T. Itao, S. Tanaka, and T. Suda. Distributed pagerank:
A distributed reputation model for open peer-to-peer networks. In SAINT-W ’04
(SAINT ’04 Workshops), Washington, DC, USA, 2004. IEEE Computer Society.

26. B. Yu and M. P. Singh. A social mechanism of reputation management in electronic
communities. In Cooperative Information Agents, pages 154–165, 2000.



A WS-Based Infrastructure for Integrating

Intrusion Detection Systems in Large-Scale
Environments

José Eduardo M.S. Brandão1,2, Joni da Silva Fraga1, Paulo Manoel Mafra1,
and Rafael R. Obelheiro1

1 Universidade Federal de Santa Catarina (UFSC), LCMI,
Caixa Postal 476 – CEP 88040-900 – Florianópolis – SC – Brasil,

{jemsb, fraga, mafra, rro}@das.ufsc.br
http://www.das.ufsc.br

2 Instituto de Pesquisa Econômica Aplicada (IPEA)
SBS Q.1 – Braśılia – DF – Brasil

Abstract. The growing need for information sharing among partnering
organizations or members of virtual organizations poses a great security
challenge. One of the key aspects of this challenge is deploying intrusion
detection systems (IDS) that can operate in heterogeneous, large-scale
environments. This is particularly difficult because the different networks
involved generally use IDSs that have not been designed to work in a co-
operative fashion. This paper presents a model for integrating intrusion
detection systems in such environments. The main idea is to build com-
positions of IDSs that work as unified systems, using a service-oriented
architecture (SOA) based on the Web Services technology. The neces-
sary interoperability among the elements of the compositions is achieved
through the use of standardized specifications, mainly those developed by
IETF, W3C and OASIS. Dynamic compositions are supported through
service orchestration. We also describe a prototype implementation of
the proposed infrastructure and analyze some results obtained through
experimentation with this prototype.

1 Introduction

The popularization of the Internet has brought about a new generation of coop-
erative, large-scale distributed systems. In this context, one of the trends is the
emergence of virtual organizations, which are formed when groups of organiza-
tions pool resources and share information in order to achieve common goals. The
need for information and resource sharing require a certain level of integration
of the networks pertaining to the different organizations. This integration raises
a number of security concerns, since most of these networks were architected to
operate in isolation, usually behind firewalls and other traffic-filtering devices,
and thus require adjustments to cooperate with other networks. This is espe-
cially true when one considers that virtual organizations are often established
dynamically, which means that such adjustments have to be made on-the-fly.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 462–479, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 463

One of the key challenges involves security monitoring and management, more
specifically in the area of intrusion detection systems (IDSs). Just as the networks
they are deployed on, these systems are seldom designed to cooperate with other,
potentially different, IDSs, whether on the same or on separate networks. In a vir-
tual organization, this is particularly troublesome, since a security manager may
need to collect information from — or even to act on — other networks in order
to analyze suspicious traffic and thwart ongoing attacks. These needs are hard to
satisfy with current IDS installations, and a better alternative becomes necessary.

We propose such an alternative in this paper. Our approach, called IDS com-
position, is an infrastructure for combining intrusion detection elements (which
can be complete IDS systems or components thereof) distributed across different
networks so that they operate in a cooperative fashion in order to provide a uni-
fied service. The infrastructure relies on standardized specifications to provide
the necessary interoperability across composition elements and is built according
to a service-oriented architecture (SOA) based on the Web Services technology
[1]. IDS compositions can be dynamically established and reconfigured, enabling
them to adjust to changing conditions and providing great flexibility to security
administrators; the dynamic aspects of IDS compositions are implemented using
service orchestration [2].
Paper contributions. The main contributions of this paper are the following.
First, we present an infrastructure for IDS composition based on Web Services
that is capable of supporting commercial off-the-shelf (COTS) IDS elements,
a crucial feature for providing interoperability and deployability. Second, we
introduce the use of service orchestration for building dynamic IDS compositions,
a powerful approach that provides security managers with great flexibility in
security monitoring and response.
Paper organization. In the next section we review related work. Section 3 in-
troduces our basic composition infrastructure. Section 4 discusses the creation
and management of IDS compositions using service orchestration. The evalua-
tion of the proposed infrastructure is presented in Section 5, which describes a
prototype implementation and the results of experiments conducted with this
prototype. Finally, Section 6 presents some concluding remarks.

2 Related Work

Web services composition applied to intrusion detection systems is a largely
uncharted territory, as both Web Services and large-scale IDS are still young
research areas. Therefore, we chose to discuss related work on each of those
areas separately, examining the few intersection points at the end of Section 2.2.

2.1 Web Services Composition

Web Services provide a standard means of interoperating between different soft-
ware applications, running on a variety of platforms and/or frameworks [1].
Characteristics such as platform transparency and loose coupling make the Web
Services technology a good choice for IDS integration.



464 J.E.M.S. Brandão et al.

Many solutions for creation and management of Web Services compositions
have been proposed in the literature, exploring themes such as orchestration,
choreography, workflow, and standards; Peltz [2] summarizes the most relevant
proposals in this area. Wang et al. [3] provide an overview on Web Services com-
position, analyzing the possible problems and solutions related to this topic. The
problems and requirements for the management of Web Services compositions
were discussed by Esfandiari and Tosic [4]. They affirm that the management
of service compositions must support a complete lifecycle, including service dis-
covery, composition requirements management, possible service rearrangements
and the contracting of services. These requirements are considered in our work.

Orchestration and choreography are terms usually applied to describe cre-
ation aspects of Web Services compositions [2]. Both terms are used to represent
business-oriented processes. A business process is a set of partially ordered steps,
whose objective is to reach a goal such as the construction of a large-scale IDS.

An orchestration describes a business process, involving Web Services interac-
tions with both internal and external Web Services of an administrative domain.
It includes the business logic (the desired composition behavior) and the order of
execution defined by control flows that cross organizations and applications. An
orchestration always represents the process flow, controlled from the perspective
of one of the parts involved; in an IDS composition, this would be a security
administrator’s vision of how the IDS elements are organized. A choreography,
another term used to describe compositions, concerns the observable interac-
tions of services with their users [5]. A choreography description is a multi-party
contract that describes from a global viewpoint the external observable behavior
across multiple clients (which are generally Web Services but not exclusively so),
where “external observable behavior” is defined as the presence or absence of
messages that are exchanged between a Web Service and its clients. Choreogra-
phy and orchestration are complementary ways for Web Services arrangement.

In this paper, we consider the use of the Web Services orchestration to describe
the management steps used to create IDS compositions. We use the Business
Process Execution Language for Web Services (BPEL4WS) [6][7] to write these
compositions.

A mechanism for composition management in a global scale was proposed by
Vambenepe et al. [8]. Their work consists of using Web Services to configure ser-
vices in a distributed environment and to monitor the activation of applications.
A workflow in BPEL describes the composition of tasks that will be executed.

2.2 Intrusion Detection in Large-Scale Environments

The literature on intrusion detection in large-scale systems is scarce. Conven-
tional IDSs in general are not a good fit for large-scale environments, since
usually their design cannot accommodate the exchange of security information
across organizations: such information are restricted to the scope of the organi-
zation or network where they are collected.

Recent proposals of distributed IDSs [9][10][11] generally do not use stan-
dard formats and protocols for the communication between intrusion detection



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 465

elements. However, the use of common formats is important to provide interoper-
ability between IDSs. Bass’s proposal [12] is an example of this. In his proposal,
security notifications are generated in a native format and then translated into
a single format; however, this format does not follow any existing standard.

Recent standardization efforts related to the exchange of security information
are being developed mainly by the IETF through its IDWG and INCH working
groups. IDWG is finishing up the Intrusion Detection Message Exchange Format
(IDMEF) [13] and Intrusion Detection Exchange Protocol (IDXP) [14] specifi-
cations. These efforts aim at the exchange of information among complete IDSs
and IDS elements. The INCH group is working on the exchange of information
and statistics about security incidents among incident response teams (CSIRTs).
The requirements [15] and the data model (IODEF—Incident Object Descrip-
tion Exchange Format) [16] for implementation are still in specification phase.
All these specifications are based on XML [17].

The IDWG also defines a general model for intrusion detection [18], as illus-
trated in Fig. 1. This taxonomy is adopted in our infrastructure. A sensor is an
element that collects data from one or more data sources. The sensor is setup to
forward events to the analyzer. An analyzer inspects data collected by a sensor
looking for signs of unauthorized or undesired activity or for events that might be
of interest to the security administrator. A sensor and an analyzer can be part of
the same component. A manager manages the various elements of an IDS. Man-
agement functions typically include (but are not limited to) sensor configuration,
analyzer configuration, event notification management, data consolidation, and
reporting. IDS elements can be parts of a monolithic IDS or can be distributed
on more than one location. In our model, sensors and analyzers can use IDMEF
to send messages to their peer elements in a composition, while managers can
use IDMEF or IODEF messages to communicate with other managers.

Configuration 

Notification 

Response 

Alerts 

Events 
Security Policy 

Activities 

 

Data Source Sensors 

Operator 

Analyzers 
Administrator 

Managers 

Fig. 1. Basic elements of the IETF intrusion detection model

There are few experiences in the literature or even products that use these
recent standards. Snort1, which is one of the most popular IDSs available, can
send alerts in the IDMEF format through a plug-in. However the IDMEF version
presently used is not fully compatible with the current specification. DOMINO
1 http://www.snort.org/



466 J.E.M.S. Brandão et al.

[19] and the STAT family of systems [20] extended the IDMEF format to ac-
commodate their necessities. The use of standards in these cases is limited and
the modifications (extensions) are not fully compatible with the original speci-
fications. On the other hand, our IDS composition infrastructure is fully based
on the original standard.

A Web Services-based IDS that uses the IDWG model is described in [21].
Unfortunately, the model uses only one method of detection and it centralizes the
analysis. Although it uses the IDMEF, originally, it is not possible to integrate
it with other IDSs. Our framework may be used to make this integration.

An IDS that is closely related to our proposal is Prelude2, which is a hybrid
IDS which adds and correlates alerts generated by many sensor types from di-
verse suppliers, distributed across a computer network. Messages are sent over
SSL connections, using an IDMEF adaptation. Prelude uses a hierarchical anal-
ysis model, which reports events to one or more managers. In the prototype
described in Section 5, Snort and Prelude are used as analyzers and sensors.

IDS composition using Web Services was previously introduced in [22], which
presented a preliminary version of our composition infrastructure. For the cur-
rent paper the infrastructure has been expanded, with a new format compat-
ibilization layer that enables the use of commercial off-the-shelf (COTS) IDS
elements. Also, this paper introduces and discusses in detail several aspects of
the use of service orchestration for building dynamic compositions, a key func-
tionality that was missing from our previous effort.

3 Infrastructure for IDS Composition

In this section we present the service infrastructure for IDS compositions. This
infrastructure allows the integration of stand-alone IDSs and of IDS compo-
nents as elements that form a single, unified IDS composition. We generally
assume that these intrusion detection elements are specialized, being responsi-
ble for monitoring certain types of activity within a single (sub)network; this
closely mirrors the reality of the Intranets found in medium- and large-sized or-
ganizations that are connected to the Internet. The infrastructure supports IDS
elements supplied by different vendors and which are incompatible with each
other (e.g. an analyzer from vendor A that cannot process events generated by
a sensor from vendor B).

IDS compositions can cross organizational boundaries, allowing e.g. the shar-
ing of security alerts. Such traffic is usually subject to policies that regulate
information flow across organizations. To better accommodate these policies,
both the IDS composition elements and the services in our infrastructure are
implemented as Web Services.

A composition can be permanent or temporary, and is usually defined with
a specific purpose, such as collecting data from a set of sensors, searching var-
ious event databases or sharing information about ongoing attacks. Dynamic

2 http://www.prelude-ids.org/



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 467

compositions allow for the adaptation to new situations in distributed large-
scale networks.

Since we want to integrate potentially incompatible intrusion detection el-
ements, interoperability becomes an key requirement of the infrastructure. To
satisfy this requirement, our work adopts specifications developed by the IETF3,
OASIS4 and W3C5 standards organizations.

The security of an IDS composition is essential to its effectiveness. Therefore,
we employ a number of mechanisms to guarantee the security of composition
elements and also of the information exchanged and processed by them.

3.1 Support Services for IDS Composition

Fig. 2 depicts our infrastructure for IDS composition. At the core of the in-
frastructure are a set of services based on the Web Services technology. These
services support the creation and management of compositions comprised of IDS
elements and other applications that support Web Services, either as a native
characteristic or through the use a format compatibilization layer. Communica-
tion across these WS-based components is implemented using the Simple Object
Access Protocol (SOAP) [23] and its underlying transport protocols.

Non-WS
IDS

Elements
(COTS)

Registry and Search
Service

Security Service

WS IDS
Elements

(IDS, Sensors,
Analyzers,

Managers, etc)

Management

SOAP

Transport (HTTP, SMTP, FTP, etc)

Format Compatibilization

Fig. 2. Infrastructure for IDSs compositions

Information about intrusion detection elements, necessary for these elements
to interact with each other, is provided by the Registry and Search Service (RSS),
which is based on the Universal Description, Discovery and Integration (UDDI)
specification [24]. The description of an element stored in the RSS contains the
service identification and its localization. It also supplies information related to
3 http://www.ietf.org/.
4 http://www.oasis-open.org/.
5 http://www.w3.org/.



468 J.E.M.S. Brandão et al.

the policies governing access to the service. Service interfaces are described using
the Web Services Description Language (WSDL) [25], a machine-processable
format. The location of these interface descriptions is also kept in the RSS. All
IDS composition elements must provide their WSDL interface descriptions.

The interactions between IDS elements follow the client/server model, and
consist of request/reply exchanges. An element can act as a client (in requester
mode), as a server (in provider mode), or as both. The services provided by
these elements will depend on their role: according to its specific functionality,
a provider may send several replies to a single request, and these replies may
not be sent immediately after the corresponding request. For example, when a
sensor, acting as a service provider, identifies a suspicious activity, a security alert
message is sent to the client service. This monitoring can have a limited lifetime
after which the service is no longer available, e.g. after the first occurrence of
some activity. But it also can run indefinitely, generating several alerts. In the
proposed infrastructure, the IDSs compositions elements communicate through
events and alert notifications.

Providing conventional IDS parts with a service interface requires the intro-
duction of a “format compatibilization” layer (Fig. 2). The main role of this
layer is to deal with the formats and protocols used in message exchanges in
service compositions. Its functions are used, for example, to mediate the com-
munication between conventional IDS parts (without WS support) and the Web
Services that make them available to compositions.

Configuration of service elements and message security (security context es-
tablishment, XML message encryption and signing, etc.) also use this layer. The
compatibilization layer translates the messages generated by IDS elements into
a standard format, such as IDMEF [13] or Syslog [26]. The translated messages
are enveloped in SOAP, encrypted and signed as specified by the WS-Security
standard [27] (using XML Encryption [28] and XML Signature [29]), and sent
over HTTP, as shown in Fig. 3.

 

IDMEF 
XML-Encryption + XML-Signature 

SOAP 
HTTP 

 

Fig. 3. Encapsulation of intrusion detection messages

In the next subsections, we provide further detail on the services provided by
the infrastructure.

3.2 Registry and Search Service

This service is a fundamental component in our proposal. The Registry and
Search Service is based on the UDDI specification [24], which adopts a reg-
istry approach [1] with emphasis on the creation of administrative domains for



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 469

information storage. The specification also defines mechanisms for associating
different UDDI servers, providing the necessary scalability to the RSS.

The elements that can be used in IDS compositions must be first registered
and described in the UDDI and then made available as Web Services. After
that, service elements can then be located to interact with other services in the
composition. Fig. 4 depicts the lifecycle of a composition element as a simplified
UML class diagram.

 

Intrusion Detection 
Element 

Web Service 

Exposes 
Registry and Search 

Service 
(UDDI) 

Registry 

1 

* 1 

1 

WSDL 

Refers to  Describe 
* 

* 

* 
* 

Interact 

* 

* 

Fig. 4. Lifecycle of a IDS composition element

In the UDDI, tModel structures represent reusable concepts, such as Web ser-
vice types, protocols used by Web services, or category systems. Service inter-
faces, described by WSDL documents, are obtained from the URLs available in
tModels. Each service instance is registered in the UDDI using a businessService
structure, whose bindingTemplate substructures contain technical information
necessary to use the service and references to tModels. The IDS element access
is made from the URL indicated by the accessPoint tag in a bindingTemplate
substructure.

Web Services applications are usually oblivious to the location of services and
their implementation details. However, these information can be highly impor-
tant for dynamic IDS compositions, as when one needs to find a sensor at a
specific network location. The IDMEF specification defines an Analyzer class
that identifies and provides detailed information on IDS components. This same
class, which is based on XML, is also adopted by other specifications [15][16] that
define standards for exchanging information about security incidents. Therefore,
it is naturally used to identify possible IDS composition elements. A bindingTem-
plate structure is used to store details of an IDS element, such as the original
element address and its Analyzer class. One or more tModelInstanceInfo will
indicate the protocols and native formats supported by the element that can be
used in a composition.

To facilitate the location of specific types of IDS elements for a composition,
we developed a classification scheme for these elements according to their roles.
In the UDDI registry, the categoryBag structure indicates the element category.
Sensor elements follow the taxonomy proposed in [30]. For analyzers and mono-
lithic IDSs, we use recent IDS taxonomies [31][32][33][34] which are combined



470 J.E.M.S. Brandão et al.

according to the architecture of the elements and the detection method they use.
These categories are represented by specific tModels, stored in the UDDI. Fig. 5
shows an example of an IDS registry in the UDDI. This IDS can be used both
as a sensor and as an analyzer; in both cases, its characteristics are identified in
categoryBag tag.

The registry and search messages are encapsulated in SOAP, using the WS-
Security recommended mechanisms.

<businessService businessKey="104522bf-f411-0452-a82b-8c7512184005"
serviceKey="10452c21-8ae1-0452-e610-300113d34ddc">
<name xml:lang="en">Snort WS1</name>
<description xml:lang="en">Snort IDS 1</description>
<bindingTemplates> ... </bindingTemplates>
<categoryBag>
<keyedReference keyName="Meta" keyValue="uddi:ids:sensor:informationsource:log:meta"/>
<keyedReference keyName="Simple rule-based"keyValue="uddi:ids:analyser:
detectionmethod:signature:programed:simplerulebased" />

<keyedReference keyName="Passive"
keyValue="uddi:ids:analyser:behaviorondetection:passive" />

<keyedReference keyName="Network"
keyValue="uddi:ids:analyser:informationsource:network" />

<keyedReference keyName="Real-time"
keyValue="uddi:ids:analyser:timeofdetection:real-time" />

<keyedReference keyName="Continuously"
keyValue="uddi:ids:analyser:data-processing:continuously" />

<keyedReference keyName="Central location"
keyValue="uddi:ids:analyser:processinglocus:central" />

<keyedReference keyName="Central location"
keyValue="uddi:ids:analyser:collectinglocus:central" />

</categoryBag>
</businessService>

Fig. 5. Example of element registry with category classification at UDDI

3.3 Security Service

The Security Service deals with authentication and access control of the compo-
sition elements. In its current version, it is also based on the UDDI. The security
mechanisms provided in the UDDI specification are used to authenticate opera-
tors and administrators in their interactions with the RSS, and also to provide
confidentiality and integrity to the information about IDS elements that is stored
in the RSS.

The public keys and the security contexts to be used in the communications
between the composition elements follow the WS-Security specification and are
obtained from these elements registry in the UDDI through the Security Service.
In an element registry, a bindingTemplate structure stores a public key or indi-
cates its location. The public and private keys are based on the X.509 model [35].

4 Service Orchestration

In order to take part in a composition, each IDS element must have a Web Service
interface (either native or through format compatibilization), and be associated



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 471

to a process flow. A process flow defines how an element interacts with other
elements and with the services infrastructure as part of the composition. Each
composition has a single process flow, which defines all the behaviors available
in this composition. The behavior of any given element will depend on the role
(sensor, analyzer, or manager) it plays in the composition.

Process flows are described using the Business Process Execution Language
for Web Services (BPEL4WS) [6][7], also called BPEL, which provides an XML-
based grammar to describe both the business logic of an element (in a specific
role) and the control logic needed to coordinate the composition. This grammar
can be interpreted and executed by an orchestration engine controlled by one of
the parts involved. The BPEL4WS process execution blocks describe the activ-
ities executed inside the composition. There are basic and structured activities.
Basic activities are instructions for interactions between Web Services, while
structured activities describe the process execution flow.

An IDS composition is created from its representation registered in the UDDI.
This registry is contained in a tModel structure. Documents indicated in tModel
overview Doc tags identify and describe the composition, as shown in Fig. 6.
These documents include a WSDL document that describes the interfaces of the
composition and an XML document that describes how the services interact and
how the elements of the composition are organized. From these two documents
it is possible to implement the composition.

 

UDDI 

WSDL 
Document 
(Interfaces) 

tModel 
Composition A 

Point to 

XML 
Document 

(Organization) Point to 

Fig. 6. Composition registry

The organization of the elements of a composition described in the XML doc-
ument expresses an orchestration. We have chosen orchestration over choreogra-
phy because it provides the flexibility needed to deal with dynamic compositions.
An orchestration allows a security manager to define a generic process flow that
can be used to form a composition and which remains unchanged when IDS
elements are added or removed, while a choreography lacks the flexibility to ac-
commodate such evolution (if elements are added or removed the choreography
has to be changed).

Fig. 7 shows a simplified orchestration for an IDS composition (adapted from
an example in [2]). The internal steps are interpreted by an orchestration engine
that will execute them sequentially or in parallel, as defined by the administrator.
The support services are invoked in the order defined by the process flow. In the



472 J.E.M.S. Brandão et al.

same way, the process flow determines the order in which the IDS elements are
added to the composition. The tools used for the creation and description of IDS
compositions are presented in Section 5.1.

 

Web Service 

Web Service 
Invoke 

Registry and 
Search 
Service 

Invoke 
Step 

1 

Step 
2 

Step 
3a 

Step 
3b 

Step 
3c 

Sequential Flow 

Parallel Flow 

Security 
Service 

Invoke 

Invoke 

W
SD

L
 

W
SD

L
 

Web Service 
Invoke 

Fig. 7. Using orchestration in an IDS composition

Every IDS composition has one or more Manager Services. These elements al-
low an administrator (or other responsible person) to interact with the composi-
tion. This interaction includes alert visualization and element reconfiguration. To
support reconfiguration and activation by Manager Services, all IDS elements
must provide interfaces based on the Web Services Distributed Management
(WSDM) specification [36], thus allowing services to be configured and monitored
using WS-specific management standards. These interfaces are grouped accord-
ing to their capabilities. The capabilities defined by WSDM include identifica-
tion, description, manageability characteristics, correlatable properties, metrics,
configuration, state, operational status, and advertisement. Each Web Service
defines in its WSDL document what capabilities are available. In this work, only
the advertisement (event notification) and configuration capabilities are defined
for IDS composition elements.

5 Experiments

In order to validate our proposal, we implemented a prototype of the services
infrastructure. For this prototype implementation we used BEA Weblogic Work-
shop 8.16, which provides an integrated programming environment, a Web Ser-
vice server and a UDDI. We also tested the JUDDI7 and WSDP8 UDDI Servers,
6 http://www.bea.com
7 http://ws.apache.org/juddi/
8 http://java.sun.com/webservices/downloads/webservicespack.html



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 473

in addition to the TomCat WS server TomCat9 and other tools to support
WSDM (Muse10) and SOAP (Axis11).

The prototype was tested with two popular open-source IDSs, Snort and Pre-
lude, which provided the sensors and analyzers in our composition. We devel-
oped one format compatibilization layer for each IDS; this layer is responsible
for converting IDS messages to and from the IDMEF standard format12 and for
providing a Web Services interface to the IDS.

5.1 Implemented Composition

Fig. 8 depicts the experiment that was built. This figure shows the composition
used for testing, together with the sensors and analyzers obtained from Prelude
and Snort. In a sub-net “A”, two Snort-based sensor services are configured
to send event notifications to a Prelude-based analyzer service. This analyzer
service correlates notifications received from the sensors and generates new alerts
according to criteria defined by the manager service. In a sub-net “B”, a sensor
service (Snort) sends its event notifications directly to the manager service.

Sensor Service 2
(SnortWS2)

Sensor Service 1
(SnortWS1)

Manager Service
(ManagerWS1)

Analyzer Service
(PreludeWS1)

Sub-net "A"

Sub-net "B"

Sensor Service 3
(SnortWS3)

Fig. 8. IDS composition used for testing

The manager service used in our experiments was implemented in Java using
resources provided by BEA Weblogic Workshop for creating Web Services. The
manager interface follows the format of a web portal. Through this portal it is
9 http://jakarta.apache.org/tomcat/

10 http://ws.apache.org/muse
11 http://ws.apache.org/axis
12 Prelude uses a binary-encoded IDMEF format. The Snort IDMEF plug-in is not

fully compliant with the current IDMEF specification.



474 J.E.M.S. Brandão et al.

possible to manage the composition and its services (elements) in an independent
way.

A composition is described using a modeling tool available in Weblogic Work-
shop. From this description, the composition can be deployed or exported to
BPEL with the corresponding WSDL document. From the WSDL and BPEL
documents it is possible to recover (rebuild) the IDS composition and its corre-
sponding orchestration. These documents are made available in the composition
registry in the UDDI.

5.2 A Generic Procedure for Composition

We developed a generic procedure for the creating and maintaining dynamic
IDS compositions. Table 1 presents the steps used to create an IDS composition.
Fig. 9 shows the basic operations of an orchestration defined by this procedure,
using a graphical interface.

Table 1. Steps for creating an IDS composition

Step Operation

1 Locate the Manager Service in the UDDI using the parameters specified
in the ClientRequestDiscovery operation.

2 Execute the ClientRequestCreate operation to create a composition reg-
istry in the UDDI.

3 Start the Manager Service (invoke).
4 Link the Manager Service to the composition using the ClientRequestReg-

istry operation.
5 Locate the Analyzer Service in the UDDI using the parameters specified

in the ClientRequestDiscovery operation.
6 Execute the ClientRequestSubscribe operation in the Analyzer Service for

subscribing to alerts, and send these alerts to the Manager Service.
7 Link the Analyzer Service to the composition using the ClientRequestReg-

istry operation.
8 Repeat steps 5, 6 and 7 for each one of the composition elements (sensors

1, 2 and 3).

In principle, one does not know where services are located, only what function-
alities are desired. The ClientRequestDiscovery operation (Fig. 9a) is responsible
for searching the service in the UDDI, using the Registry and Search Service,
according to certain defined parameters. In our tests with the prototype, two pa-
rameters have been used: the characteristics of the intrusion detection element,
described in the categoryBag structure (Sec. 3.2), and the subnetwork address
where the element is operating, contained in the Analyzer class.

The ClientRequestCreate operation (Fig. 9b) is responsible for the request
to create a composition registry. The Perform operation verifies the data in
the request and inserts the composition registry in the UDDI. The ClientRe-
questRegistry and ClientResponseRegistry operations (Fig. 9c) are responsible,



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 475

respectively, for the request and the reply of a service publication in the UDDI.
These service registries can be inserted in the UDDI or not according to the
security policies defined.

ClientRequestSubscribe and ClientResponseSubscribe (Fig. 9d) are the oper-
ations responsible for service subscription. These operations are based on the
SubscribeRequest and SubscribeResponse operations defined by the standard in-
terfaces of the Web Service Notification (WSN) [37] specification. The Clien-
tRequestSendAlert operation (Fig. 9e) is used by services already registered in
a composition for sending alerts to the composition. This operation is based on
the Notify operation of WSN. The orchestration of compositions follows a log-
ical and chronological sequence of the events represented in Fig. 9. From each
event it is possible to continue execution or to go to the end of the execution
flow (represented by Condition). In order to execute the ClientRequestSendAlert
operation, for instance, it is not necessary to execute the previous events if they
have already been executed at least once.

 

(a) (b) (c) (d) (e) 

Fig. 9. General composition model

5.3 Tests with the Prototype

The tests with the prototype were conducted on our campus network, using
IDS composition elements located in distinct subnetworks. We applied the com-
position described in Fig. 8 and performed simulated attacks against the test
network. The tests were executed in the sequence indicated in Table 2. In this
simulation, a user in subnet “B” executes a port scan attack using Nmap13

against a host in subnet “A”. In addition to the tests described, other services
could have been activated to isolate the source of the attack and to assess pos-
sible damage to the system. An event log database could also have been used
to search for evidence that would help to locate and identify the attacker with
greater accuracy.
13 http://www.insecure.org/



476 J.E.M.S. Brandão et al.

Table 2. Description of the tests with the prototype

1. Several possible IDS composition elements were registered in the UDDI.
2. A composition was initially created in subnet “A”, with two monolithic

Snort-based IDSs (SnortWS1 and SnortWS2 ) acting as sensors and send-
ing alerts to an analyzer based on Prelude (PreludeWS1 ). The Manager
Service (ManagerWS1 ) receives and sends notifications to the security
administrator.

3. A user on host 10.2.13.122, located in subnet “B”, starts a port scan
against a host located in subnet “A”.

4. SnortWS1 (in subnet “A”) detects suspicious traffic coming from a host
in subnet “B”.

5. The composition is modified to include a new sensor located in subnet
“B”. The SnortWS3 service is located and activated to collect traffic from
the suspicious host and to send events directly to ManagerWS1.

6. Alert messages sent by SnortWS3 confirm the attack.
7. After action is taken to stop the attack, the composition returns to its

original configuration.

6 Concluding Remarks

This paper presented the IDS composition approach for intrusion detection in
large-scale environments, based on an infrastructure that enables the cooper-
ation of IDS elements across network and organizational boundaries. This in-
frastructure uses the Web Services technology, and has as its chief advantages
the flexibility offered by its support for dynamic IDS compositions and the in-
teroperability provided by its use of standardized specifications for exchanging
security alerts and managing compositions and their elements.

Dynamic IDS composition is achieved through service orchestration, and al-
lows compositions to be started and (re)configured as needed, thus support-
ing the changing requirements that characterize large-scale environments. In-
teroperability is provided by a format compatibilization layer, which equips IDS
elements with a Web Services interface and is responsible for converting IDS mes-
sages to and from standardized formats. This integration of diverse standardized
specifications is not trivial in practice. The different standards-defining bodies
are often in disagreement, and some standards supposed to be complementary
are in fact incompatible. Another difficulty is related to incipient standardization
efforts.

We believe our approach brings interesting opportunities for cooperation.
Partner organizations can cooperate by providing a set of shared intrusion de-
tection elements that can be used for monitoring suspicious activity coming from
the various networks involved. This requires adequate specification and moni-
toring of security policies between the concerned parties. Another possibility is
the outsourcing of the security alert analysis task. Analyzer services provided
by Computer Security Incident Response Teams (CSIRTs) or other third par-
ties can be activated to receive alerts that are correlated with alerts from other



A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 477

customers. Benefits for customers include access to global security alerts, ac-
curate statistics about new incidents and parameters for the reconfiguration of
their security tools.

In future work, we intend to perform a quantitative assessment of the proposed
infrastructure, including its operational and computational costs, and to further
refine the security service.

Acknowledgement

The research described in this paper was sponsored by CNPq (Brazil) Project
No. 550114/2005-0.

References

1. W3C: Web Services Architecture. W3C Working Group Note 11 (2004)
2. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10)

(2003) 46–52
3. Wang, H., Huang, J.Z., Qu, Y., Xie, J.: Web Services: problems and future direc-

tions. Web Semantics: Science, Services and Agents on the World Wide Web 1(3)
(2004) 309–320

4. Esfandiari, B., Tosic, V.: Towards a Web Service composition management
framework. In: Proceedings of IEEE International Conference on Web Services
(ICWS’05), IEEE (2005) 419–426

5. Austin, D., Babir, A., Peters, E., Ross-Talbot, S.: Web services choreography
requirements. W3c working draft 11, W3C (2004)

6. Andrews, T., Curbera, F., Goland, Y., Klein, Y., Leymann, F., Roller, D., Weer-
awarana, S.: Business Process Execution Language for Web Services (2003) Version
1.1 - 5 May 2003.

7. OASIS: Business Process Execution Language for Web Services (2005) Version 2.0
- Committee Draft, 01 September 2005.

8. Vambenepe, W., Thompson, C., Talwar, V., Rafaeli, S., Murray, B., Milojicic, D.,
Iyer, S., Farkas, K., Arlitt, M.: Dealing with scale and adaptation of global web
services management. In: Proceedings of IEEE International Conference on Web
Services (ICWS’05), IEEE (2005) 339–346

9. Teo, L., Zheng, Y., Ahn, G.J.: Intrusion Detection Force: An infrastructure for
Internet-scale intrusion detection. In: First IEEE International Information Assur-
ance Workshop (IWIA 2003), Germany (2003) 73–88

10. Tolba, M., Abdel-Wahab, M., Taha, I., Al-Shishtawy, A.: GIDA: Toward Enabling
Grid Intrusion Detection Systems. 5th IEEE International Symposium on Cluster
Computing and the Grid (2005)

11. Leu, F.Y., Lin, J.C., Li, M.C., Yang, C.T., Shih, P.C.: Integrating Grid with
intrusion detection. In: Proceedings of AINA’2005. (2005) 304–309

12. Bass, T.: Service-oriented horizontal fusion in distributed coordination-based sys-
tems. IEEE MILCOM 2004 (2004)

13. Debar, H., Curry, D., Feinstein, B.: The intrusion detection message exchange
format. Internet Draft draft-ietf-idwg-idmef-xml-16, IETF (2006)



478 J.E.M.S. Brandão et al.

14. Feinstein, B., Matthews, G., White, J.: The Intrusion Detection Exchange Protocol
(IDXP). Internet Draft draft-ietf-idwg-beep-idxp-07, IETF (2002)

15. Keeni, G., Danyliw, R., Demchenko, Y.: Requirements for the format for incident
information exchange (FINE). Internet Draft draft-ietf-inch-requirements-08.txt,
IETF (2006)

16. Danyliw, R., Meijer, J., Demchenko, Y.: The Incident Object Description Exchange
Format data model and XML implementation. Internet Draft draft-inch-ietf-iodef-
08.txt, IETF (2006)

17. Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML)
1.0 (third edition)”. W3C Recommendation (2004)

18. Wood, M., Erlinger, M.: Intrusion Detection Message Exchange Requirements.
Internet Draft draft-ietf-idwg-requirements-10, IETF (2002)

19. Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the DOMINO
overlay system. In: NDSS, San Diego, California, USA, The Internet Society (2004)

20. Vigna, G., Valeur, F., Kemmerer, R.A.: Designing and implementing a family
of intrusion detection systems. In: Proceedings of the 9th European Software
Engineering Conference, Helsinki, Finland (2003) 88–97

21. Park, S., Kim, K., Jang, J., Noh, B.: Supporting interoperability to heteroge-
neous IDS in secure networking framework. The 9th Asia-Pacific Conference on
Communications (APCC 2003) 2(21-24) (2003) 844–848

22. Brandão, J.E., Mafra, P.M., Fraga, J.S.: A new approach for IDS composition.
In: Proceedings of the IEEE International Conference on Communications (ICC
2006), IEEE (2006)

23. W3C: Soap version 1.2. W3C World Wide Web Consortium (2003)
24. OASIS: UDDI Version 3.0.2. OASIS UDDI Spec Technical Committee Draft (2004)
25. W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-

guage. W3C Working Draft (2005)
26. Lonvick, C.: The BSD Syslog protocol. Request for Comments 3164, Internet

Engineering Task Force (2001)
27. OASIS: Web services security: SOAP message security 1.0 (2004) http://docs.

oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.

pdf.
28. Imamura, T., Dillaway, B., Simon, E.: XML Encryption syntax and processing.

W3c recommendation, W3C (2002)
29. Eastlake, D., Reagle, J., Solo, D.: (Extensible Markup Language) XML-Signature

syntax and processing. Request for Comments 3275, Internet Engineering Task
Force (2002)

30. Alessandri, D., Cachin, C., Dacier, M., Deak, O., Julisch, K., Randell, B., Riordan,
J., Tscharner, A., Wespi, A., Wüest, C.: Towards a taxonomy of intrusion detec-
tion systems and attacks. MAFTIA Deliverable D3, EU Project IST-1999-11583
Malicious- and Accidental-Fault Tolerance for Internet Applications (MAFTIA)
(2001) Version 1.01.

31. Axelsson, S.: Intrusion Detection Systems: A survey and taxonomy. Technical Re-
port 99-15, Department of Computer Engineering, Chalmers University of Tech-
nology, SE-412 96 Göteborg, Sweden (2000)

32. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion detection sys-
tems. Computer Networks (Amsterdam, Netherlands: 1999) 31(8) (1999) 805–822

33. Debar, H., Dacier, M., Wespi, A.: A revised taxonomy for intrusion detection
systems. Annales des Telecommunications 55(7–8) (2000) 361–378

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf


A WS-Based Infrastructure for Integrating IDS in Large-Scale Environments 479

34. McHugh, J.: Intrusion and intrusion detection. International Journal of Informa-
tion Security 1(1) (2001) 14–35

35. ITU-T: ITU-T recommendation X.509 (1993)
36. OASIS: Web Services Distributed Management: Management Using Web Services

(MUWS 1.0) Part 2 - Web Services Distributed Management: Management of
Web Services (WSDM-MOWS) 1.0. OASIS Web Services Distributed Management
(WSDM) TC (2004)

37. OASIS: Web services base notification 1.3. OASIS Web Services Notification
(WSN) TC (2005)



An Adaptive Probabilistic Replication Method for
Unstructured P2P Networks

Dimitrios Tsoumakos and Nick Roussopoulos

Department of Computer Science
University of Maryland

College Park, MD 20742, USA

Abstract. We present APRE, a replication method for unstructured Peer-to-Peer
overlays. The goal of our method is to achieve real-time replication of even the
most sparsely located content relative to demand. APRE adaptively expands or
contracts the replica set of an object in order to improve the sharing process and
achieve a low load distribution among the providers. To achieve that, it utilizes
search knowledge to identify possible replication targets inside query-intensive
areas of the overlay. We present detailed simulation results where APRE exhibits
both efficiency and robustness over the number of requesters and the respective
request rates. The scheme proves particularly useful in the event of flash crowds,
managing to quickly adapt to sudden surges in load.

1 Introduction

Peer-to-Peer (hence P2P) computing represents the notion of sharing resources avail-
able at the edges of the Internet. Its success can still be largely attributed to file-sharing
applications which enable users worldwide to exchange locally maintained content. A
basic requirement for every P2P system is fault-tolerance. Since the primary objective
is resource location and sharing, we require that this basic operation takes place in a
reliable manner. In a variety of situations, the distributed and dynamic nature of the
target environments stress the system’s ability to operate smoothly. For example, the
demand for certain content can become overwhelming for the peers serving these ob-
jects, forcing them to reject connections. Flash crowds, regularly documented surges in
the popularity of certain content, are also known to cause severe congestion and degra-
dation of service [1]. Failing or departing nodes further reduce the availability of various
content. Consequently, resources become scarce, servers get overloaded and throughput
can diminish due to high workloads.

Data replication techniques are commonly utilized in order to remedy these situ-
ations. Replicating critical or frequently accessed system resources is a well-known
technique utilized in many areas of computer science (distributed systems, databases,
file-systems, etc) in order to achieve reliability, fault-tolerance and increased perfor-
mance. Resources such as content, location of replicas, routing indices, topology infor-
mation etc, are cached/replicated by multiple nodes, alleviating single points of contact
in routing and sharing of data. This has the additional benefit of reducing the average
distance to the objects. Replication can be performed in a variety of manners: Mirroring,
Content Distribution Networks (CDNs [2, 3]), web caching [4], etc.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 480–497, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 481

Fig. 1. Part of the overlay network of our model. Dark nodes inside the bold dotted ellipse rep-
resent Mi, while those inside the thin dotted ellipse represent M j. Peers with a file attached also
serve objects i or j.

However, these approaches often require full control and provide static replication.
Static replication schemes require a priori knowledge of the popularity/workload distri-
bution in order to compute the amount of replicas needed. In large scale unstructured
P2P networks, peers usually operate on local knowledge, having variable network con-
nectivity patterns and no control over the induced topology or workload. Data availabil-
ity and efficient sharing dictate replication in this challenging environment. Structured
P2P systems (DHTs) provide with the state necessary to accurately identify the paths
that requests take. However, such information is not available in unstructured overlays.
File-sharing applications implicitly handle replication through object downloads, while
some force their users to maintain the new replicas for the benefit of others. Yet, this
does not tackle the issue of real-time replication responsive to workload for unstruc-
tured environments.

In this work we present APRE (Adaptive Probabilistic REplication), a replication
method based on soft-state probabilistic routing indices. Our approach focuses on pro-
viding an adaptive solution to the problem of availability together with minimizing the
instances of server overloads and serious service degradation. We intend for our sys-
tem to “expand” and “contract” its resources according to the workload as perceived
locally. New replicas are created in areas of high demand in the overlay, thus disposing
of the need of advertising them. Moreover, this will be done in a completely decentral-
ized manner, with minimal communication overhead and using absolutely affordable
memory space per node.

1.1 Our Framework and Overview of APRE

We assume a pure Peer-to-Peer model, with no imposed hierarchy over the set of par-
ticipating peers. All of them may serve and request various objects. Each peer locally
maintains its own collection of objects, as well as a local view of the system. Ignoring
physical connectivity and topology from our talk, we generally expect peers to be aware
of their one-hop neighbors in the overlay, while maintaining any other protocol-specific
information (e.g., search indices, routing tables, etc). The system is expected to exhibit
a dynamic behavior, with peers entering and leaving at will and also inserting/removing



482 D. Tsoumakos and N. Roussopoulos

objects from their repositories. The overlay structure will also be affected, since nodes
are not guaranteed to connect to the same neighbors each time.

As a motivating example, assume an unstructured P2P system, where peers share and
request replicated resources. Objects are assumed to be requested regularly, e.g., results
of a live sports meeting, weather maps, security updates, real time aggregated statistics,
software, etc. There exist some nodes (similar to the web servers or mirror sites in the
Internet) that provide with fresh content, but their connectivity or availability varies, as
happens with all other network nodes. Peers that are interested in retrieving the newest
version of the content conduct searches for it in order to locate a fresh or closer replica.

Figure 1 gives a graphic representation of our system. For each object i, there exists
a set of peers called the server set Si = {si1 ,si2 , . . . ,sik} that serve the specific object.
These are the nodes that, at a given time, are online, store object i and are willing
to share it. A subset of Si, the mirror set Mi ⊆ Si (the shaded peers) represents the
set of peers that, if online, always serve i. This does not imply that all peers in Mi

will always be online, their connectivity in the overlay will remain the same, or that
they will never refuse connections. But we can assume, without loss of generality, that
these nodes will be mostly available. Our assumption is not unrealistic: Imagine that
these servers can represent mirror sites/authority nodes that provide with up-to-date
content. Nevertheless, they are not guaranteed to be always on-line, nor do they provide
similar services. Apart from the mirror set, other peers that already host or have recently
retrieved an object can serve requests for it (nodes with files attached to them in Figure
1). A server set comprises of these nodes plus the corresponding mirror set.

Naturally, peers may belong to server or mirror sets for multiple objects. While this
is a symmetric environment, it is clear that nodes will exhibit different sharing abilities.
A variety of parameters, including storage and CPU capability, popularity of stored
objects, system workload, connectivity, etc, contribute to this fact. Some of these factors
remain more or less static over time (e.g., processing power or the maximum available
bandwidth of a host), while others change dynamically. In this work, we focus on two
of these parameters, namely workload and object popularity as they are manifested
through the request rate λ. It is obvious that servers of popular (or temporally popular)
items receive a larger number of requests, which can possibly affect their sharing ability
as well as the system’s behavior.

Given this general framework, our goal is to design and implement a replication
protocol that will provide efficient sharing of objects (in terms of providing low load
operation), scalability and bandwidth-efficiency. APRE is a distributed protocol that
automatically adjusts the replication ratio of every shared item according to the current
demand for it. By utilizing inexpensive routing indices during searches, loaded servers
are able to identify “hot” areas inside the unstructured overlay with a customizable
push phase. Chosen nodes receive copies thus sharing part of the load. Under-utilized
servers become freed and can host other content. The rationale behind APRE is the
tight coupling between replication and the lookup protocol which controls how searches
get disseminated in the overlay. By combining the Adaptive Probabilistic Search (APS)
state with APRE, we are able to identify in real-time “hot” or “cold” paths and avoid the
need of advertising constantly created replicas. Furthermore, we show that this method



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 483

Indices Initially After walkers finish After the updates
A→B 30 20 20
B→C 30 20 20
C→D 30 20 20
A→E 30 20 40
E→F 30 20 40
A→G 30 30 30

Fig. 2. Node A searches for an object stored at node F using APS (pessimistic) with two walkers.
The table shows how index values change. X→Y denotes the index value stored at node X for
neighbor Y relative to the requested object.

provides a very robust replication with minimum change in the server set per replication
cycle.

2 Probabilistic Resource Location

2.1 Probabilistic Search

We now briefly describe the APS [5] search method, which is the basis for our repli-
cation scheme. In APS, each node keeps a local index consisting of one entry for each
object it has requested per neighbor. The value of this entry reflects the relative prob-
ability of this node’s neighbor to be chosen as the next hop in a future request for
the specific object. Searching is based on the deployment of k independent walkers and
probabilistic forwarding. Each intermediate node forwards the query to one of its neigh-
bors with probability given by its local index. Index values are updated using feedback
from the walkers. If a walker succeeds (fails), the relative probabilities of the nodes on
the walker’s path are increased (decreased). The update procedure takes the reverse path
back to the requester and can take place either after a walker miss (optimistic update
approach), or after a hit (pessimistic update approach). Figure 2 shows an example.

APS exhibits many plausible characteristics as a result of its learning feature. Every
node on the deployed walkers updates its indices according to search results, so peers
eventually share, refine and adjust their search knowledge with time. Walkers are di-
rected towards objects or redirected if a miss or an object deletion occurs. APS is also
bandwidth-efficient: It induces zero overhead over the network at join/leave/update op-
erations and displays a high degree of robustness in topology changes.

2.2 Utilizing Search Indices

One interesting observation is that the values of the stored indices are refined as more
searches take place, enabling the network to build a useful soft-state. After some queries
take place, paths with large index values connect the requesters to the content providers
and identify query-intensive areas inside the overlay.



484 D. Tsoumakos and N. Roussopoulos

A

B
C

D

E

A
X1

100
30

X2 90
... ...

A 50

A
E
Y2
Y5

10
150

40
90

A

D

Z2

20

90

10

B
C
D
E

50
100

10
20

B
C
D
E

60
220

30
30

Reverse Indices

Fig. 3. Graphic explanation of the reverse indices. The filled table represents the reverse index
values stored at node A, which coincide with the APS index values that nodes B,C,D,E store
regarding A.

t

t2t1t0 t3

R
ev

er
se

 I
nd

ex
 V

al
ue

Fig. 4. Example of exponential de-
cay in the reverse index values

Contract Expand

Contract

Normal Operation

Overloaded

Under−utilized

Pe
er

 L
oa

d

Fig. 5. State transitions in our system

APS keeps an index value for each neighbor. Extending this, each peer P also main-
tains the index values that its neighbors hold relative to P. If X → P denotes the in-
dex value stored at node X concerning neighbor P for a particular object, then peer P
must know X → P, for each neighbor X . These values can be made known to P during
the search phase: Whenever a search is conducted and X forwards to P, it piggybacks
X → P. We call these new stored values the reverse indices, to distinguish them from
the indices used by APS in searches (see Figure 3).

Reverse indices are used by nodes in order to forward messages along high demand
paths in an unstructured overlay. These messages can be forwarded either to the top-k
or probabilistically selected neighbors on a hop-by-hop basis. They are discarded either
when their TTL value reaches zero or if they are received by a node more than once due
to a cycle. Reverse indices get updated during searches, but this is not enough: There
may be peers that have searched for an object and built large index values in the past,
but are no longer interested in it. If searches are no longer routed through those peers,
the respective reverse index values will not be updated and will remain high.



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 485

Fig. 6. The shaded oval represents a server set for a specific object. Our system expands by cre-
ating replicas inside two areas where demand (depicted by arrows) is high.

Algorithm 1. Expand
1: if Replica i at node s reaches its limit then
2: P ← FindPossibleServers(i); {P∩Si = /0}
3: Activate(i) at Y ⊆ P {Replicate at a subset of the nodes in the high-demand area}
4: end if

To correct this situation, we add an aging factor to the reverse indices, which forces
their values to decrease with time. Peers need to keep track of the time that a reverse
index was last updated in order to acquire its correct value before using it. When a
peer receives a search message, it sets the corresponding reverse index to the piggy-
backed value and its last modified field to the time of receipt. We describe this process in
Figure 4. The value of the index decreases exponentially, while two searches at times
t1, t2 reset its value. A push message received at time t3 will use the value as shown in
the figure. The last modified value is also reset when a reverse index is used, since a
peer computes its current value before using it.

3 Our “Expand-Contract” Technique

Our main goal is to provide a completely decentralized mechanism through which the
system will adaptively expand its replica size when demand is increased and will shrink
when demand will fall. APRE is based on two basic operations: Expand and Contract.

The high-level behavior of our system can be described using a simple model (Fig-
ure 5): In normal mode, nodes can adequately serve requests and also retrieve objects.
As load increases due to incoming requests, some reach their self-imposed limits. By
invoking the Expand process, we aim at bringing the node status back to normal and
lower the average load for a specific object through the creation of more replicas. Nor-
mal operation through the distribution of load will not be necessarily achieved in a
single step. Consider, for example, that a peer initiating Expand may receive requests
for multiple objects. Expanding with respect to one of them will probably lower its load,
but will not necessarily bring its level back to normal. As load decreases, nodes can free
up space (and the respective resources) and thus share a bigger portion of the workload.

Conversely, consider that one or more subsets of Si have recently received very few
requests for object i. This practically means that an amount of their storage space is
under-utilized. They could remove i to free up space or replace it with another object of



486 D. Tsoumakos and N. Roussopoulos

Fig. 7. Due to low demand in certain regions of the server set (depicted as white areas inside the
dotted line), our system contracts its replica set

Algorithm 2. Contract
1: if (Replica i at node s is under-utilized) or (s receives Activate( j)) then
2: i ← ChooseOb ject(); {i is among the candidates for eviction}
3: Deactivate(i);
4: if (s received an Activate( j)) then
5: Activate( j);
6: end if
7: end if

higher demand. We have to stress here the point that the system will not force any peer
to store or serve an object until this becomes necessary. Peers with available storage
can play that role. Contract will also be invoked when a peer is called to join Si but
cannot do so without exceeding its limits (e.g., available storage). Note that peers can
still choose to reject a certain action, e.g., refuse to remove an object in order to serve a
new one.

Algorithm 1 describes the high-level operation of the Expand process. It is invoked
by peers receiving more requests than those that they are willing to accept. Overloaded
peers have to identify the set P, i.e., candidate nodes for replication inside query inten-
sive areas. A subset Y of these nodes is selected and, upon their agreement, the new
replicas are transfered (Activate). Figure 6 shows an example of our system expanding
in response to increased demand for a specific object. On the left, we see some initial
server set (gray oval) and the demand for i (arrows from various parts of the network).
Servers in two areas are overloaded with requests, thus forcing extra replicas in those
two areas to be activated. Si expands, as we see on the right part of the picture, in
response to the current demand for object i.

Algorithm 2 describes our Contract process. It is invoked by a peer that either re-
ceives a low amount of requests for the object(s) it serves or is requested to serve a more
popular one but cannot do so without freeing up some space. In any case, peers stop
serving the object(s) that fall into these categories (Deactivate). Function ChooseOb-
ject decides at each point which object should be deactivated at nodes that have decided
to serve a new object (i.e., received an Activate) but have reached their storage capaci-
ties. Natural choices are to have the new replica replace the least recently requested or
the least popular one. Figure 7 shows that two areas of the server set (the areas inside the
dotted line) do not receive any requests for object i. This leads to the contraction of Si



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 487

s s

Fig. 8. After searches for an object at s take place, reverse index values are updated and a push
phase creates new replicas inside areas of high demand (dotted links)

which is now the gray oval on the right part of the figure. Our goal is to achieve a system
behavior that resembles the buffer management techniques in databases: Viewing the
P2P network as a large buffer, we want to decide (in a distributed and dynamic manner)
the ratios of objects in the buffer according to user-specified queries (i.e., workload).

3.1 Protocol Implementation

In this section we describe the actual implementation of the APRE protocol as described
by the Expand and Contract algorithms. We assume that servers measure load and per-
form replication on a per-object basis, at the same level of granularity with lookup and
reverse indices.

The conditions of line 1 in Algorithms 1 and 2 describe when Expand or Contract
are initiated. We believe that each peer can independently choose when to initiate an
expansion or when to deactivate a replica. Therefore, there is no need for any message
exchange between servers. We assume that each server s defines the maximum number
of requests that each object i can accept per time unit Limitup

s,i . If it receives less than

Limitdown
s,i requests for object i, this replica is deactivated/deleted from the node’s cache

without any further communication. Obviously, the total maximum capacity for server
s is equal to ∑

i
Limitup

s,i , where i refers to every object that s serves.

In order to discover candidate new servers to host replicas of i (i.e. locate subset Y ),
whenever the local load for object i (measured in requests per time unit) λs

i (t) exceeds
the limit Limitup

s,i , the respective server s issues a special message which is forwarded to
k neighbors with the k highest reverse index values. The push message also contains the
amount of overload Di(t) = λs

i (t)−Limitup
s,i . Each node that receives this message, inde-

pendently decides whether to join Si according to our implemented replication policy.
This phase continues with each intermediate node forwarding this message to k neigh-
bors in a similar fashion until either its TTL value reaches zero or a duplicate reception
is detected. Figure 8 shows an example of our scheme at work: Black nodes represent
requesters of the item held at node s. APS searches are depicted by arrows. In the push
phase, paths with high index values are visited (links with dotted lines). The new shaded
nodes with bold outline represent possible replicas created.

Each node on the path independently decides whether it will join Si according to our
replication policy. Currently, we have implemented three: FurthestFirst, ClosestFirst



488 D. Tsoumakos and N. Roussopoulos

and Uniform. In FurthestFirst, the probability of a node joining Si increases with the
message distance, while the opposite occurs in ClosestFirst. In Uniform, all nodes are
given the same probability. After subset Y has been identified, replicas are transmitted
and activated.

In order for APRE to adapt to various workloads and avoid system oscillation at
the same time1, we introduce a scaled replication policy: We regulate the number of
replicas activated per push phase according to the amount of overload for object i,
Di(t), as observed by the server initiating the push at time t. To achieve that, we de-
fine a set of intervals {d1,d2, . . . ,dm} that group the different values of Di. Each in-
terval dk : {(lk,uk),{pk1 , pk2 , . . . , pkT T L}} is defined by an upper and lower value and
TTL probability values, one for each hop distance. For the interval limits, we require
that l1 < u1 = l2 < u2 . . . < um. When a server receives a push message, it joins Si with
probability pkδ , if lk < Di ≤ uk and the message has travelled δ hops. Probability values
increase as D falls into higher number intervals (i.e., pkδ < p(k+1)δ

). Thus, a heavily
overloaded server will create more replicas than a less overloaded one and marginally
overloaded peers will not alter Si significantly. We note here that each server locally
estimates λi(t), the number of requests for object i per time unit.

4 Results

We test the effectiveness of APRE using a message-level simulator written in C. Object
requests occur at rate λr with exponentially distributed inter-arrival times. At each run,
we randomly choose a single node that plays the role of the initial Mi ≡ Si set and a
number of requesters, also uniformly at random. Results are averaged over several tens
of runs. We utilize 10,000-node random graphs with average node degrees around 4
(similar to gnutella snapshots [6]) created with the BRITE [7] topology generator.

To evaluate the replication scheme, we utilize the following metrics: The average
load Λ observed as the number of received requests per second in Si. To measure the
disparity of the load distribution, we measure its standard deviation σΛ. A high value for
σΛ indicates that load is very unevenly balanced across Si. Besides the size of the server
set, we also keep track of the number of replica activations/de-activations. Frequent
changes in Si incur huge overheads in terms of messages and bytes transferred.

APRE Parameters: We assume that (Limitup
s ,Limitdown

s ) = (18,3) requests/sec, for
each server s. When Expand is initiated, peers forward to 2 neighbors with the largest
reverse index values. We utilize a scheme with 3 distinct intervals for values of D: [0−5],
(5−20] and (20−∞). While we experimented with more fine-grained granularities, the
results did not vary considerably. Finally, we assume no item can be replicated at more
than 40% of the network nodes2.

We compare our method against a random replication scheme as well as
path-replication as applied by Freenet [8] (and in effect by lar [9]). In the first case,
we randomly create the same number of replicas as our method. In path replication
(hence path-cache), each time a server is overloaded we replicate the object along the

1 Replicas with perceived load a little above or below the limits, frequently entering and leav-
ing Si.

2 This external condition simulates the natural limitations in storage that exist in most systems.



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 489

5 10 15 20
lambda (requests/sec)

0

5

10

15

20

25
A

ve
ra

ge
 L

oa
d 

(r
eq

ue
st

s/
se

c)

APRE-FurthestFirst
APRE-ClosestFirst
APRE-Uniform
Path-cache

5 10 15 20
lambda (requests/sec)

0

500

1000

1500

2000

2500

3000

3500

4000

|S
i|

APRE-FurthestFirst
APRE-ClosestFirst
APRE-Uniform
Path-cache

Fig. 9. Variation in Λ and |Si| over increasing λr values

reverse path to the requester. In every case, the APS method is used for lookups, while
in path-cache replicas are also deactivated using our Contract scheme. Obviously, by
varying the push method and the replication probabilities, APRE can behave either as
path-cache, random, or in between with a variable rate of replica creation per workload.
This allows for full customization according to the system’s primary objects, namely
low load (more replicas) or space (replicas only where necessary).

4.1 Basic Performance Comparison

For our default setting, we assume 2000 random requesters as we vary their request
rate. Figure 9 presents the variation in Λ and |Si|.

APRE effectively expands Si in order to accommodate increased demand and man-
ages to keep all servers into the Normal Operation zone, well below Limitup (identified
by the bold horizontal line). Our first observation is that FurthestFirst achieves lower
Λ values by creating more replicas than ClosestFirst. Downstream paths during the
“push” phase contact an increasing number of nodes as their distance from the initia-
tor increases, thus giving FurthestFirst an increased probability of replication. Uniform
behaves in-between, creating replicas equally at all distances. Path-cache exhibits a
steeper increase in Λ and fails to keep its value within the acceptable region for large
λr. Choosing only successful walks to replicate along, quickly “saturates” the frequently
used paths with replicas. Increased demand merely forces the algorithm to utilize a few
more paths, which is the reason why this method fails to increase the replica set to meet
the limits.

It is interesting to note that APRE exhibits small σΛ values, ranging from 3.3 to 11.
It increases to 14.9 only when λr = 20/sec (see Figure 10). These values are either
smaller or at most comparable to Λ, a good indication of load balancing. On the other
hand, randomly placing the same number of replicas yields significantly worse load
distributions, with σΛ values roughly twice as large. This is a clear indication of the
need for correct placement inside structureless multi-path overlays. Finally, path-cache
behaves in-between, with larger deviation values than APRE that converge as load in-
creases. This happens since both methods base their replication on paths connecting
requesters and servers.

Moreover, we show that APRE achieves a much more robust replication. The stability
of the server population constitutes an important metric to the evaluation of a replication



490 D. Tsoumakos and N. Roussopoulos

5 10 15 20
lambda (requests/sec)

0

5

10

15

20
A

ve
ra

ge
 L

oa
d 

St
an

da
rd

 D
ev

ia
tio

n

APRE - ClosestFirst
APRE - FurthestFirst
Path-cache
Random

Fig. 10. Variation of σΛ vs. variable λr

5 10 15 20
lambda (requests/sec)

0

10

20

30

40

50

60

70

80

%
 c

ha
ng

e 
in

 S
i

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Fig. 11. Percentage of change in |Si|

5 10 15 20
lambda (requests/sec)

0

20

40

60

80

%
 o

f 
ov

er
lo

ad
ed

 s
er

ve
rs

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache
Random

Fig. 12. Ratio of overloaded servers vs. variable λr

scheme. This is measured by the average ratio of new replicas entering the server set per
replication phase over the size of the server set. This quantity approximates the amount
of marginally under-utilized replicas in the overlay: Receiving few requests, they get
deactivated. Server overloads force them to get re-activated, producing an oscillating
effect. Obviously, this is a highly undesirable situation: network and local resources
are burdened by a multiplicative factor, since replicas need both control messages and
data transfer for reactivation. Figure 11 shows that APRE is particularly robust, altering
at most 3% of Si per push phase, while Path-cache oscillates and performs poorly in
most runs. altering a large percentage of the server set. The variability in the amount
of oscillation is due to the effect we described before: An increase in the demand is
not always followed by an increase in the number of replicas. In these situations, the
existing ones receive the extra amount of requests (assisted by the APS scheme), thus
reducing the marginally idle servers.

Figure 12 displays the average percentage of overloaded servers at any time for all
three methods. Our technique clearly outperforms the two competing methods: For



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 491

.

.

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

0 200 400 600 800 1000
Si

1

10

100
L

oa
d 

(r
eq

ue
st

s/
se

c)

APRE.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.
................

........
200 400 600 800 1000

Si

Path-cache.
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................
........................

.......................................
500 1000

Si

Random.

Fig. 13. Si load distribution for λr = 4/sec

5301088 2219 2874
3355

3703

3999

3999

687

1040

1704

2122

2340

2528

2730

3068

772 1583 3210
3999

3997

3999

3998

3997

5 10 15 20
lambda (requests/sec)

0

5

10

15

20

25

30

35

A
ve

ra
ge

 L
oa

d 
(r

eq
ue

st
s/

se
c)

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Fig. 14. Variation in the average load vs. vari-
able λr (5000 requesters)

5 10 15 20
lambda (requests/sec)

0

10

20

30

40

50

%
 o

f 
ch

an
ge

 in
 S

i

APRE-FurthestFirst
APRE-ClosestFirst
Path-cache

Fig. 15. Percentage of change in Si and σΛ vs.
variable λr (5000 requesters)

λr < 10/sec, less than 4% of servers are overloaded, while about 10% and 25% are
documented as overloaded for the largest demand. Random, having the same number of
servers, exhibits twice as many overloaded nodes. Even though the learning feature of
APS helps in redirecting queries, yet the load cannot be evenly distributed. Path-cache
shows the worst performance (at least 3 times larger ratio of overloaded peers than
APRE), reaching 75% at the highest λr value. Replicating closer to requesters creates,
as we saw, more service points, thus marginally reducing the number of overloaded
instances for FurthestFirst (Uniform exhibits the same curve).

Figure 13 shows the load distribution of every server s at a random point in time
(λr = 4/sec). Servers are sorted in decreasing order of load. Our method exhibits a less
steep curve and, more importantly, has only 3 servers above Limitup, compared to 54
for path-cache. Random replication causes even more unbalanced load.

The same experiment is repeated with 5,000 requesters, which constitute 50% of the
overlay (see Figures 14 and 15). APRE again keeps the system within its limits, except
for the two cases where even the largest replica set cannot achieve that (75k and 100k
total queries per second). Still, our method shows remarkable stability in the Si popula-
tion for both strategies, while Path-cache exhibits even worse performance than before.

Finally, Figure 16 shows how Λ and |Si| vary with time, using ClosestFirst. For all
values of λr, APRE manages to bring Λ to a steady state in few time steps, a state which



492 D. Tsoumakos and N. Roussopoulos

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30

40

50

60
A

ve
ra

ge
 L

oa
d 

(r
eq

ue
st

s/
se

c)

lambda = 10/sec
lambda = 8/sec
lambda = 4/sec
lambda = 2/sec

100 200 300 400 500 600 700 800 900 1000
Time(sec)

1000

2000

3000

4000

|S
i|

lambda = 10/sec
lambda = 8/sec
lambda = 4/sec
lambda = 2/sec

Fig. 16. Λ and |Si| over time for 5000 requesters and multiple λr values

is hence maintained with almost no deviation. The same is true for the size of Si, with
the exception that for high total demand, it takes longer to reach the steady state. This
is due to the fact that there is a limit to the maximum amount of replication per push
phase for our method (as there is for path-cache) that causes the delay in reaching the
constant values.

4.2 Flash Crowds

Thus far we established our basic premise, that replication along high demand paths in
the overlay proves an effective and highly robust solution in a variety of metrics and
workloads. Although our method does not explicitly offer load-balancing, it achieves a
well-proportionate load distribution. We also showed that our method is advantageous
to randomly replicating inside the network or merely choosing a single path and fully
replicating along it. In the first case, few replicas receive the majority of requests, while
in the second case the composition of the replica sets changes very frequently. Our
method outperforms both alternatives by keeping fewer peers over the sharing limit and
showing less disparity in the distribution of load among servers.

In the next experiment, we examine the behavior of our method when we experience
a sudden surge in the workload. This is often referred to as a flash crowd, an unexpected
rise in requests towards specific item(s), typically due to some newsworthy event that
just took place. Flash crowds have been regularly documented in web traffic history
(e.g., September 11th) and are known to cause severe congestion at the network layer.
Requests may never reach content servers while others do so with significant delays,
caused by packet loss and retransmission attempts. Content holders are unable to handle
the volume of requests while end-users experience long delays and failures in their
queries.

To simulate a similar situation, we start our system with 500 requesters querying at
rate λr = 2/sec. At time t=401sec, 10 times as many requesters start querying for this
item at rate λr = 12/sec. The parameters return to their initial values at time t=601sec.
On average, the total demand during the flash-crowd period increases by a factor of over
70. Note that this is the worst case scenario, when simultaneously both requesters and
rates increase. We present the variations in Λ and |Si| in the first 2 graphs of Figure 17.



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 493

.
................ ..

..........
....................

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30
L

oa
d 

(q
u/

se
c)

APRE. .
Path-cache

....................

...
..
.....

....................
0 100 200 300 400 500 600 700 800 900 1000

Time(sec)

1000

2000

3000

4000

|S
i|

APRE. .
Path-cache

....................
..............................

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

10

20

30

L
oa

d 
(q

u/
se

c)

APRE. .
Path-cache

....................

...
.

..........................
0 200 400 600 800 1000

Time (sec)

1000

2000

3000

4000

|S
i|

APRE. .
Path-cache

Fig. 17. Effect of flash crowds in Λ and Si in two different settings

APRE promptly manages to meet the surge in requests by increasing the replication
ratio by a factor of 30. Excluding a very short window due to our mechanism’s response,
our method succeeds in keeping the load factor below the limit (with σΛ < 10) and
steady through time. At both moments of load change, replicas are activated and de-
activated rapidly to meet the extra requests or reduced traffic. While path-cache shows
similar response speed, it creates more servers in the low-workload period and less than
the minimum number required to keep content providers from overloading during the
surge.

The next two figures show how the same two metrics vary in a more challenging
flash-crowd setting. Here, we initially set 500 requesters with λr = 1/sec, while for
time t ∈ (400,480], 5000 requesters query at rate λr = 10/sec. On average, the work-
load inside the overlay increases by a factor of 120. Our results show that, even for
shorter and steeper changes, APRE very successfully adapts to the surge in requests.
On average, Si is expanded by a factor of 175 in order to reduce and balance load (our
results document an average σΛ 	 8.6).

4.3 Other Experiments

We test our method on a set of 4,000-node power-law graphs created with Inet-3.0
generator [10]. These graphs have an average degree of d = 4.3 (maximum degree
equals to 855), while over 30% of the nodes have only one neighbor. Figure 18 shows
how Λ varies with time for both replication strategies used in APRE using 1000 or 2000
nodes as requesters.



494 D. Tsoumakos and N. Roussopoulos

100 200 300 400 500 600 700 800 900 1000
Time (sec)

0

5

10

15

20

25

30

35

40

L
oa

d 
(q

u/
se

c)

FurthestFirst-2k requ
ClosestFirst-2k requ
FurthestFirst-1k requ
ClosestFirst-1k requ

Fig. 18. Average load for 1k and 2k requesters in power-law topologies (λr = 6/sec)

These topologies noticeably affect performance compared to our previous tests. Even
for average-range λr values, Λ moves close to the overload line, while expansion shows
diminished ability to extend Si. This is consistent with results documented in previous
work [5]. The tested topologies offer fewer paths between servers and clients, while
a large percentage of the nodes only have one neighbor. This also explains why Fur-
thestFirst outperforms ClosestFirst. Favoring replication close to the requesters quickly
saturates available nodes due to lack of alternate paths. Nevertheless, its is worth to no-
tice that our method still manages to keep Λ at lower levels. Even at the 2k-ClosestFirst
run, where Λ > Limitup, 14% of the servers are overloaded compared to 20% by path-
cache.

We must note here that the replication protocol is not always responsible for over-
loaded servers. In many occasions, the amount of demand or the overlay connectivity
cannot allow for more extensive or balanced replication. As we experiment with more
densely connected graphs, APRE performs inside the load limits where it failed to do
so over more sparse overlays.

In the accompanying technical report [11], we also present results on our method’s
behavior over variable maximum replication ratios and different values for the load
limits, as well as load-balancing analysis based on a different metric.

5 Related Work

Replication is a well-known technique utilized to achieve high availability and fault-
tolerance in large-scale systems. While applied to a variety of contexts, we focus in the
area of distributed (P2P) systems.

Structured overlays (DHTs) balance routing between network nodes, due to the na-
ture of the hashing functions used. Moreover, in systems like CFS [12] and PAST [13],
each item (or chunk of it) is replicated on a set number of network nodes. DHTs take
advantage of the routing structure, which in effect allows for almost-deterministic paths
between two nodes, thus identifying “hot” areas easily. Nevertheless, DHTs are not



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 495

optimized for skewed access patterns and direct such traffic to few nodes responsible
for popular content.

DHash [14] is a replication method applied on Chord [15]. The protocol allows for
r copies to be stored at the r immediate successors of the initial copy’s home. In [16],
the authors propose the storage of at most R replicas for an object. Their location is
determined by a hash function, allowing requesters to pro-actively redirect their queries.
The work in [17] proposes replicating one hop closer to requester nodes as soon as peers
are overloaded.

Lar [9] is a DHT-based approach similar to APRE, in that it adapts in response to
current workload. Overloaded peers replicate at the query initiator and create routing
hints on the reverse path. Hints contain some other locations that the content has been
previously replicated, so queries are randomly redirected during routing. The method
takes advantage of the DHT substrate in order to place the hints. Our scheme does not
attempt to re-route queries or shed load to the initiator, but rather places replicas inside
forwarding-intensive areas using multiple paths. Moreover, the state kept is accessible
at any time, not only at the time of the query arrival.

HotRoD [18] presents a load-balancing approach for DHTs handling range queries
in RDBMSs. It is based on a locality-preserving DHT and replication of overloaded arcs
(consecutive modes on the DHT ring). [19] employes minimization function that com-
bined high availability and low load to replicate video content inside a DHT. The ap-
proach requires knowledge of peer availabilities, workload and data popularity. In [20],
the authors show that load-balancing based on periodic load statistics suffer from oscil-
lation. By directing queries towards the the maximum capacity replica store, they show
that both heterogeneity and oscillation issues are tackled. This method, nevertheless, as-
sumes prior contact of an authority server which provides with a list of existing replicas.
Moreover, replicas regularly advertise their maximum capacities to the network.

There has also been considerable amount of work on flash crowd avoidance. In [21],
overloaded servers redirect future requests to mirror nodes to which content has been
pushed. This approach does not tackle the issue of which node to replicate to. PROOFS
[22] explicitly constructs a randomized overlay to locate content under heavy load con-
ditions or unwilling participants. In effect, the method relies on the combination of
custom overlay creation and a gossiping lookup scheme to locate objects and does not
involve replication. Finally, the work in [23] discusses static replication in unstructured
networks, given content popularity and random walks as a lookup method.

6 Conclusions

In this paper we presented our adaptive replication scheme for unstructured Peer-to-Peer
systems based on probabilistic soft state. APRE aims at providing a direct response
to workload changes, by creating server points in needy areas or releasing redundant
servers in areas of low demand. Our approach couples lookup indices together with an
aging mechanism in order to identify query intensive areas inside the overlay. Peers
then individually decide on the time and extent of replication, based on local workload
computation.



496 D. Tsoumakos and N. Roussopoulos

In this work, we show that it is important to couple replication with the search proto-
col in unstructured systems. Random replication performs poorly with informed lookup
schemes, unless extra state is added to enhance searches. Applying APRE over a scheme
such as APS mitigates this problem. APS-indices store local, per-object state to direct
queries to objects. While peers only keep metadata about their neighbors, this informa-
tion can be used to identify, hop-by-hop, where the queries are coming from. Moreover,
our scheme is highly customizable allowing control of both the size and the location (as
defined through reverse-indices) of replication.

Through thorough simulations, we show that APRE is extremely robust in eliminat-
ing server overloads while minimizing the communication overhead and balancing the
load. Specifically, we show that replicating along the reverse path is an extreme case of
our protocol. By effectively discovering all reverse paths, APRE manages to distribute
content proportional to demand in a variety of overlays and workloads. Finally, we show
that our method succeeds in creating a very stable server set with minimal amount of
oscillation.

Acknowledgments

This material is based upon work supported by, or in part by, the U.S. Army Research
Laboratory and the U.S. Army Research Office under contract/grant number DAAD19-
01-1-0494.

References

1. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks:
Characterization and implications for CDNs and web sites. In: WWW. (2002)

2. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally Distributed
Content Delivery. IEEE Internet Computing (2002)

3. Freedman, M., Freudenthal, E., Mazires, D.: Democratizing Content Publication with Coral.
In: NSDI. (2004)

4. http://www.squid-cache.org/: Squid Web Proxy Cache
5. Tsoumakos, D., Roussopoulos, N.: Adaptive Probabilistic Search for Peer-to-Peer Networks.

In: 3rd IEEE Intl Conference on P2P Computing. (2003)
6. Ripeanu, M., Foster, I.: Mapping the gnutella network: Macroscopic properties of large-scale

peer-to-peer systems. In: IPTPS. (2002)
7. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An Approach to Universal Topology

Generation. In: MASCOTS. (2001)
8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A Distributed Anonymous Information

Storage and Retrieval System. Lecture Notes in Computer Science (2001)
9. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive replication in peer-

to-peer systems. In: ICDCS. (2004)
10. Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator. Technical Report CSE-

TR443-00, Department of EECS, University of Michigan
11. Tsoumakos, D., Roussopoulos, N.: APRE: A Replication Method for Unstructured P2P

Networks. Technical Report CS-TR-4817, University of Maryland (2006)
12. Dabek, F., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage

with CFS. In: SOSP. (2001)



An Adaptive Probabilistic Replication Method for Unstructured P2P Networks 497

13. Rowstron, A., Druschel, P.: Storage Management and Caching in PAST, A Large-scale,
Persistent Peer-to-peer Storage Utility. In: SOSP. (2001)

14. Cates, J.: Robust and efficient data management for a distributed hash table Master’s thesis,
Massachusetts Institute of Technology, May 2003.

15. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-
To-Peer lookup service for internet applications. In: SIGCOMM. (2001)

16. Waldvogel, M., Hurley, P., Bauer, D.: Dynamic replica management in distributed hash
tables. Technical Report RZ–3502, IBM (2003)

17. Stading, T., Maniatis, P., Baker, M.: Peer-to-peer caching schemes to address flash crowds.
In: IPTPS. (2002)

18. Theoni Pitoura, Nikolai Ntarmos, and Peter Triantafillou: Replication, Load Balancing and
Efficient Range Query Processing in DHTs. In: EDBT. (2006)

19. Poon, W., Lee, J., Chiu, D.: Comparison of Data Replication Strategies for Peer-to-Peer
Video Streaming. In: ICICS. (2005)

20. Roussopoulos, M., Baker, M.: Practical load balancing for content requests in peer-to-peer
networks. Technical Report cs.NI/0209023, Stanford University (2003)

21. Felber, P., Kaldewey, T., Weiss, S.: Proactive hot spot avoidance for web server dependability
22. Stavrou, A., Rubenstein, D., Sahu, S.: A lightweight, robust p2p system to handle flash

crowds. In: ICNP. (2002)
23. Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured Peer-

to-Peer Networks. In: ICS. (2002)



Towards Truthful Feedback in P2P Data Structures

Erik Buchmann, Klemens Böhm, and Christian von der Weth

Universität Karlsruhe (TH), Germany
{buchmann, boehm, weth}@ipd.uni-karlsruhe.de

Abstract. Peer-to-Peer data structures (P2P data structures) let a large number
of anonymous peers share the data-management workload. A common assump-
tion behind such systems is that peers behave cooperatively. But as with many
distributed systems where participation is voluntary, and the participants are not
clearly observable, unreliable behavior is the dominant strategy. This calls for
reputation systems that help peers choose reliable peers to interact with. How-
ever, if peers exchange feedback on experiences with other peers, spoof feedback
becomes possible, compromising the reputation system. In this paper we propose
and evaluate measures against spoof feedback in P2P data structures. While oth-
ers have investigated mechanisms for truthtelling recently, we are not aware of
any studies in P2P environments. The problem is more difficult in our context
because detecting unreliable peers is more difficult as well. On the other hand, a
peer can observe the utility of feedback obtained from other peers, and our ap-
proach takes advantage of this. To assess the effectiveness of our approach, we
have conducted extensive analytical and experimental evaluations. As a result,
truthful feedback tends to have a much higher weight than spoof feedback, and
collaboration attacks are difficult to carry out under our approach.

1 Introduction

Peer-to-Peer systems (P2P systems) are distributed systems consisting of many nodes in
open, coordinator-free communities. Peers typically are known by pseudonyms, which
they can replace at little or no cost. P2P systems do not have a central instance that could
observe the behavior of peers. Thus, reputation systems [1] to identify and penalize
misbehaving peers are crucial building blocks of all kinds of P2P systems.

Reputation systems assign each peer a reputation value, be it positive or negative. A
reputation value is an aggregate of positive feedback or complaints from other partici-
pants that have observed the behavior of the peer in the past. Clearly, we cannot expect
that nodes issue only truthful feedback. A peer may wish to discredit others which have
complained about it, or attackers could try to harm nodes by issuing spoof feedback.
For instance, [2] has observed similar behavioral patterns at eBay. However, while oth-
ers have investigated mechanisms for truthtelling recently [3,4,5], we are not aware of
any studies in P2P environments.

This paper proposes and evaluates measures for truthful feedback for one partic-
ular kind of P2P system, namely P2P data structures (a.k.a. P2P overlay networks,
distributed hash tables, etc. [6]). Such structures let a large number of peers share
the data-management and query-processing workload. Designing mechanisms against
spoof feedback in P2P data structures is challenging, more than for other P2P systems.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 498–515, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards Truthful Feedback in P2P Data Structures 499

To lookup a data object, several peers must cooperate, and the lookup fails if only one of
them is not reliable. With other P2P systems in turn, there typically is only one peer that
carries out a service or a well-defined part of it. A related issue is that it is difficult to
identify the defector if a lookup request is not processed properly. Consequently, gener-
ating truthful feedback is more difficult as well. Further, a lookup in P2P data structures
consists of operations that are relatively simple. This means that reputation manage-
ment must be relatively simple as well so that it does not become disproportionately
expensive. Another issue is that P2P data structures have good scalability characteris-
tics, and reputation management must not get in the way of this. In addition to these
complications specific to P2P data structures, there are further ’more general’ issues:
Each node may change its behavior at any time and can behave differently with dif-
ferent peers. Thus, negative feedback on cooperative nodes and positive feedback on
unreliable nodes typically exists. We cannot readily distinguish it from spoof feedback.

This paper makes the following contributions: First, we describe the particular re-
quirements that an approach against spoof feedback in reputation systems for P2P data
structures must fulfill. We then describe our approach. It is a characteristic of P2P data
structures that a peer can observe the utility of feedback obtained from other peers, and
our approach takes advantage of this. For instance, a peer which has forwarded a query
to a certain node and has obtained a proper query result may conclude that complaints
about that node were wrong and positive feedback was correct. With our approach,
each peer uses such clues to derive weighting factors both regarding the issuers of feed-
back items and the peer the feedback refers to. Second, we provide an evaluation of
our approach, both with an analytic model and by means of experiments. The analysis
confirms that the differentiation between useful and less useful feedback is effective.
We point out the analysis is rather general, i.e., leaves aside the details of the particu-
lar underlying reputation system. The experiments address issues which are difficult to
examine analytically, such as collusion attacks and dynamicity issues. The experimen-
tal results are positive as well. For instance, our approach is effective against collusion
attacks in realistic settings. Third, the article features a discussion of the applicabil-
ity of our measures against spoof feedback to other reputation systems and application
scenarios.

The remainder of this article is organized as follows: Section 2 describes the tech-
nical background, followed by a description of our approach in Section 3. Section 4
will analyze the approach, Section 5 will evaluate it. Section 6 reviews related work. Fi-
nally, Section 7 provides a discussion of the applicability of our approach, and Section 8
concludes the paper.

2 Background

This section briefly reviews the characteristics of P2P data structures and reputation
systems and provides a short description of a reputation system which we will use as a
basis for our experiments. The section also quantifies the damage spoof feedback may
cause in P2P data structures without any countermeasures.

Content-Addressable Networks. P2P data structures (a.k.a. P2P overlay, distributed
hashtable) administer huge sets of (key, value)-pairs on top of a large physical



500 E. Buchmann, K. Böhm, and C. von der Weth

Fig. 1. Two-dimensional CAN

network. Content-Addressable Networks (CAN) [7] are a prominent variant of P2P data
structures. Other instances are P-Grid [8], Viceroy [9] or Chord [10] which differ pri-
marily with regard to contact selection and routing topology; cf. Section 6. We point
out that the presented measures are independent from the specific P2P data structure.
However, when presenting our results, we use a CAN for sample calculations and ex-
periments.

A CAN is a distributed system that consists of many nodes (peers). Each peer can
issue queries for any data object stored in the CAN, but it is supposed to store data
and participate in the evaluation of queries as well. Each CAN node is responsible for
a certain zone of the key space, and it knows all neighbors, i.e., peers responsible for
adjacent zones of the key space. The key space is an n-dimensional torus of Cartesian
coordinates in the unit space. It is independent from the underlying physical network
topology. The assignment of zones of the key space to peers results from the CAN
construction protocol. A peer which wants to join the CAN finds a random node that
is already in the CAN. That node splits its zone, keeping one half and reassigning the
other half to the new node.

The key space of the CAN in Figure 1 is two-dimensional. Node P1 is responsible
for Zone ([0.5; 0.5), [0.625; 0.75)) of the key space, i.e., it knows all (key, value)-pairs
where key ∈ ([0.5; 0.5), [0.625; 0.75)). The neighbors in the contact list of Node P1 are
Nodes P2, P3, P4, P5. Since the key space is mapped on a torus, Node P2 is a neighbor
of Node P6.

Every data object maps to a point in the key space. Accordingly, each operation
(query, insert, update, delete) in the CAN refers to a point in the key space. For
example, a query is the key of a particular (key, value)-pair, and its result is the value of
the pair. Query processing in CAN is a variant of greedy forward routing. A node that
has issued a query first checks if it can answer the query from its zone. Otherwise, it
forwards the query to the neighbor in its contact list whose distance to the query key is
minimal. The procedure recurs until the query arrives at the peer that can answer it. The
peer then sends the result back to the issuer. In a d-dimensional CAN with N peers, a
number of l = d/4 · N1/d participate in the processing of a lookup on average.



Towards Truthful Feedback in P2P Data Structures 501

Incentives Mechanisms for Cooperation in Structured P2P Systems. Research on
P2P data structures has tacitly assumed that peers follow the protocol. But participa-
tion actually is voluntary, and uncooperative behavior is the dominant strategy (in the
economic sense of the word). An uncooperative peer does not follow the protocol of
the P2P data structure, e.g., it drops incoming messages. In comparison to P2P systems
based on flooding, e.g., Kazaa1 or gnutella2, P2P data structures are more vulnerable
to uncooperative behavior. Few uncooperative peers can significantly reduce reliability
of a P2P data structure. For example, in a CAN consisting of N = 10, 000 peers with
d = 4 dimensions, l = d/4 · N1/d = 10 peers on average forward a query (cf. [7]).
Now suppose that the CAN contains u = 500 peers which do not forward any incoming
query message. Then the probability to obtain a query result is only (1−u/N)l ≈ 60%.

FairNet [11] is our proposal for a reputation system that renders uncooperative
behavior unattractive. Peers in FairNet, the feedback issuers, generate and distribute
feedback items. Such items are the observations of the feedback issuers regarding a par-
ticular transaction. Thus, a feedback item consists of a positive or negative statement
and contains the identifiers of the issuer and the peer the feedback refers to (the feedback
subject). Only peers with a number of positive feedback items above a threshold value
are allowed to participate in the P2P data structure. Peers can obtain positive feedback
in short time by carrying out proofs of work [12,13]. A proof of work is a problem that
is easy to formulate, and the solution is easy to verify, but solving it requires a lot of
resources.

Each peer maintains a private local reputation repository for feedback on its neigh-
bors. The repository has a capacity of s feedback items per subject. If an item is added
to a repository that is already full, one item in the repository will be replaced. Con-
sequently, as soon as a peer starts to behave unreliably, negative feedback items tend
to replace positive ones. Based on the feedback items in its local repository, each peer
can derive an individual reputation value for each feedback subject. Peers do share
feedback: A peer that has observed cooperative behavior of another peer generates a
feedback item and stores it in its local repository. The next time the peer sends out a
message, it attaches recent feedback items whose subject is a neighbor of the recipient
of the message. Therefore the repositories do not only contain feedback generated by
the maintainer of the repository, but also feedback forwarded by adjacent peers. In the
following, we refer to such intermediate peers as forwarders.

Note that the ratio of positive and negative feedback items in a repository on an
uncooperative peer does not exactly follow its failure probability. For example, if a peer
does not handle 50% of all incoming messages, it does not obtain 50% positive and
50% negative feedback as well. One reason for this is that not only this peer, but also
any other peer later in the sequence of forwarders can drop the query. This results in
negative feedback on all peers in the sequence.

The Impact of Spoof Feedback. We know from previous work [11] that the measures
outlined in the previous subsection are effective even against peers which process mes-
sages properly at a variable rate. For example, a peer which does not work off 10% of

1 http://www.kazaa.com
2 http://www.gnutella.com



502 E. Buchmann, K. Böhm, and C. von der Weth

all incoming queries ends up with more than the double effort compared to a peer that
handles all queries properly. (The additional effort is the result of a higher number of
proofs of work, in order to remain in the CAN.) However, the experiments show also
that dishonest peers issuing spoof feedback can impair the effectiveness of the reputa-
tion system significantly.

Suppose that a peer maintains a repository of size s that consists of feedback on only
one peer. If feedback is truthful, ppos is the probability that an arbitrary feedback item
in the repository is positive. The peer assigned to the repository is deemed reliable if the
repository contains at least t positive feedback items, i.e., if s · ppos ≥ t. Any feedback
item has been issued by one of a peers. Now we wonder: How many dishonest peers
are necessary to affect the reputation of one peer? Let x ≤ a be a number of dishonest
peers issuing spoof positive feedback. The overall probability for positive feedback now
changes to p̂pos = a−x

a · ppos + x
a · 1. Equating this with s · p̂pos ≥ t, we obtain an

estimate of the rate of x
a dishonest peers required to induce positive feedback into the

repository such that an uncooperative peer is above the threshold:

x

a
≥

t
s − ppos

1 − ppos
(1)

For example, consider a FairNet instance with a repository size of s = 10 and a
threshold t = 6. In this setup each uncooperative peer does not forward or answer
50% of all incoming messages. We know from previous work [11] that this results in
a probability of ppos ≈ 0.13 for uncooperative peers. Equation 1 now tells us that an
uncooperative peer is deemed cooperative if at least 54% of the peers it has interacted
with issue spoof positive feedback.

3 Measures Against Spoof Feedback

This section motivates the requirements that an approach against spoof feedback in
reputation systems for P2P data structures must fulfill. The section also describes our
approach with its measures and data structures. We stress that the presented approach
does not depend on particular implementations of reputation systems or P2P data struc-
tures. Instead, the peers just need to know the nodes which forwarded the feedback,
the feedback subjects and the correlation between the feedback and the transaction out-
comes; no matter how the implementation handle this. Section 7 provides a discussion
on the applicability of our approach.

Approaches Against Spoof Feedback – Requirements. Measures to detect and avoid
spoof feedback in a reputation system for P2P data structures must meet the following
requirements:

Effectiveness. Obviously, the most urgent issue is the effectiveness of the detection of
spoof feedback. Effectiveness means that it does not pay off to issue spoof feedback
in any case. There are two worst-case scenarios that might impair the effectiveness:
First, there are situations where the distinction between spoof feedback and truthful
feedback is not feasible. If a transaction fails with a probability of 50%, any feed-
back is correct with a probability of 50% as well. Second, peers may run collusion



Towards Truthful Feedback in P2P Data Structures 503

attacks to feed spoof feedback into the repositories of others. When such an at-
tack takes place, it can be the case that the majority of the peers displays dishonest
behavior.

Short response times. The time required to adapt to new situations is an important
criterion in any P2P system where peers can change their behavior at any time.
Peers can gain advantages during the period of time required to detect such changes.
This period of time needs to be as small as possible.

Filtering ’wrong’ feedback. There are several reasons why honest peers can some-
times generate wrong feedback. For instance, a cooperative peer may forward a
message to an uncooperative neighbor only once, because it does not know any
better as yet. If the peer obtains negative feedback but does not forward to the
uncooperative neighbor again, the feedback could be seen as spoof. Thus, our ap-
proach should differentiate between spoof feedback and feedback that is wrong in
spite of best intentions.

Tamper-resistant design. The measures must not introduce new ’holes’ which dis-
honest and/or unreliable peers can exploit. Therefore the measures should rely on
local operations as much as possible, in contrast to other peers, which could be
dishonest.

Preserving trust relationships that already exist. The idea that a peer either gener-
ates spoof feedback all the time or not at all is too undifferentiated. For instance,
a peer can generate spoof feedback on selected neighbors only, or wrong feedback
could be the result of successful attacks. Thus, we strive for an approach that does
not break existing trust relationships after having observed wrong feedback items
from one forwarder. Instead, it differentiates between useful and spoof feedback
from the same forwarder.

Low resource consumption. P2P data structures aim to process large numbers of
small transactions. It is acceptable that a few transactions get lost due to unreli-
able peers. On the other hand, a measure against spoof feedback must not slow
down the processing of transactions due to excessive resource consumption.

Overview. With our approach, each peer individually determines the weight of the
feedback. In particular, a peer can assign different weights to each combination of sub-
ject and forwarder. The weights depend on the differences or similarities between the
transaction outcomes observed and the outcomes predicted by the feedback. In P2P
data structures, the feedback is used to identify a reliable peer to forward a query to.
Here, the weights ensure that messages go to reliable peers only, even in the presence
of dishonest peers issuing positive spoof feedback.

We now explain briefly the rationale behind our design decisions. A peer needs to
associate feedback items with the forwarder they have come from. The assignment helps
the peer to reduce the impact of spoof feedback and to determine the weight of future
feedback coming from that peer. At first sight, we could have associated feedback with
the issuer instead of the forwarder. Namely, the issuer is responsible for the feedback it
has generated. However, the forwarder is able to manipulate incoming feedback items,
and it can decide which feedback is forwarded and which one is not, i.e., apply some
kind of censorship. In other words, the receiver of a feedback item can only pin down
the last forwarder of the item with certainty, but not the issuer. Further, one might ask



504 E. Buchmann, K. Böhm, and C. von der Weth

why there are separate weights for each forwarder and each feedback subject. This is
because a peer which forwards useful feedback on one feedback subject might forward
spoof feedback on another one.

Data Structures. We now specify the data structures required to implement our ap-
proach against spoof feedback on top of an existing reputation system. Our approach
introduces two variables individually maintained by each peer, weighting factors and
transaction logs. The log is the history of all recent transactions handled by the peer,
i.e., it contains the identifier of a transaction and the peer the query was forwarded to.
A peer also maintains a weighting factor wσ,φ in the interval [0; 1] for each feedback
subject σ and forwarder φ.

In addition, two data structures implement the reputation system as described in
Section 2, namely feedback items and reputation repositories. Assuming the presence
of such data structures does not restrict the applicability of our approach: [14] indicates
that the referred structures are common for most of the P2P reputation systems.

How to Weight Reputation Values. When a peer wants to compute the reputation
value of a particular node, it first calculates several auxiliary reputation values, based
on the feedback from the different forwarders. It then aggregates these auxiliary val-
ues using the weighted average. Let Pσ denote the set of all peers that have forwarded
feedback for subject σ, and let r(σ, i) be a function that computes the auxiliary reputa-
tion value for peer σ based on feedback from peer i.3 The reputation value v then is as
follows:

vσ =

∑

i∈Pσ

r(σ, i) · wσ,i

∑

i∈Pσ

wσ,i
(2)

Equation 2 ensures that feedback with a low weight does not affect the reputation
value significantly. Thus, in P2P data structures the messages go to reliable peers only,
even in the presence of dishonest peers issuing positive spoof feedback.

Updating the Weighting Factors. Having observed the outcome of a transaction, each
node can determine the utility of the feedback available to it. For example, negative
feedback on a node that has handled the transaction properly has been less informative,
therefore the weight assigned to the corresponding (forwarder, subject)-pair shall be
decreased.

P2P data structures are dynamic systems where the peers are free to change their
behavior at any time. Thus, there should be weights that allow to focus on recent trans-
actions. In addition, single stochastic occurrences should not impact the weights. This –
and the fact that it does without additional data structures – motivates the use of the ex-
ponential moving average over time to adapt the weights to new observations. Factor z
with 0 ≤ z ≤ 1 specifies the importance of recent information, i.e., larger values of z
prefer new values. Let a(Fσ,φ, θ) be a function to express the correlation between the

3 In FairNet, the reputation value is the number of positive feedback items in the repository that
refers to the peer in question.



Towards Truthful Feedback in P2P Data Structures 505

transaction result θ and the set of feedback items Fσ,φ with Subject σ forwarded from
Peer φ. The new weight w′ is derived from the old weight w as shown in Equation 3.

w′σ,φ = (1 − z) · wσ,φ + z · a(Fσ,φ, θ) (3)

In FairNet the transaction results and the feedback items are binary: a query is either
answered or not, and the number of positive feedback items about a particular peer can
only be above the threshold t or below. Let T pos, T neg be the sets of all successful and
unsuccessful transactions, respectively. We now can develop the following correlation
function a(Fσ,φ, θ):

a(Fσ,φ, θ) =
{

1 if (θ ∈ T pos ∧ |Fσ,φ| ≥ t) ∨ (θ ∈ T neg ∧ |Fσ,φ| < t)
0 if (θ ∈ T pos ∧ |Fσ,φ| < t) ∨ (θ ∈ T neg ∧ |Fσ,φ| ≥ t) (4)

Other reputation systems may depend on measures that express more sophisticated
correlations between the transaction outcomes observed and the feedback. However, our
experiments in Section 5 will show that a relatively simple solution leads to remarkably
positive results already.

4 Analysis

This section provides an analysis of the measures proposed. The analysis is indepen-
dent from the underlying reputation system and data structures. On the other hand, the
analysis (not the experimental evaluation) is based on various assumptions. We will
discuss the impact of these assumptions later in the paper. First, transaction processing
takes place in rounds. In every round, each node issues one query and forwards or an-
swers l queries on average. In addition, we assume that the system is in steady state,
and the load of query processing and message forwarding is equally distributed among
all nodes. Our formal analysis further assumes that uncooperative and dishonest peers
are evenly distributed over the key space, i.e., there is not any cluster of neighboring
peers that are unreliable and/or dishonest. Finally, we assume that the underlying rep-
utation system handles the creation and distribution of feedback as follows: At the end
of a transaction, each forwarder will be informed about its outcome. If a query remains
unanswered, each forwarder generates negative feedback with the next forwarder in the
sequence as feedback subject. In the other case, these peers generate positive feedback.
The generated feedback will then be forwarded to all neighbors of the feedback subject.

The analysis only refers to the measures against untruthful feedback, not to the P2P
data structure and the reputation system together with these measures. Hence, the anal-
ysis uses the quality of the feedback available, the frequency of successful transactions
in the P2P data structure etc. as external parameters. In particular, the characteristics of
P2P data structures are represented by two values: A query will not be processed suc-
cessfully with probability g, and the processing of each query requires the cooperation
of l peers that are not observable from the outside. In order to model the reputation
system we use the following parameters: A peer forwards and handles transactions of
another one only if it has at least t positive feedback items in its repository whose sub-
ject is the peer in question. The repository has the capacity to store s feedback items per



506 E. Buchmann, K. Böhm, and C. von der Weth

Table 1. Parameters used in the analysis

Parameters of the data structure Symbol

Probability of an unsuccessful transaction g

Number of peers that have to cooperate to process one transaction l

Parameters of the reputation system Symbol

Probability of positive feedback ppos

Number of feedback items in the repository of one peer s

Threshold for the number of positive feedback items for a reliable peer t

Parameters of the countermeasure Symbol

Ratio of spoof feedback provided by dishonest peers b

Smoothing factor of the Exponential Moving Average z

subject. As a result of feedback generation in the reputation system, ppos is defined to
be the probability that an arbitrary feedback item issued by a honest peer on a reliable
subject is positive. The values of ppos then depend on the reputation system.4

The rate of spoof feedback b in the reputation system is the input variable of our
analysis. A value of b = 0 denotes an honest peer that disseminates truthful feedback
only, while dishonest peers forward spoof feedback at a rate of b > 0. Finally, the
factor z specifies the smoothness factor of the Exponential Moving Average and can be
customized according to the preference for newer values. Table 1 lists all parameters
used in the analysis.

To examine the impact of spoof feedback, we first determine the expected average
values of the weights. A dishonest peer issues spoof feedback with a rate of b and
accurate feedback with a rate of (1−b) that is positive with probability ppos. Equation 5
gives the probability that an arbitrary feedback item generated by a dishonest node is
positive.

pdis
pos =

{
b · 1 + (1 − b) · ppos for spoofed positive feedback
b · 0 + (1 − b) · ppos for spoofed negative feedback

(5)

If at least t feedback items in a repository with s items are positive, the maintainer
of the repository deems the peer reliable. Each honest peer (characterized by b = 0)
generates positive feedback with probability ppos. Therefore, it happens with a certain
probability pt that an honest peer generates less than t positive feedback items on a
reliable node. In consequence, other nodes could suspect the peer to disseminate spoof
feedback and reduce the weight of its feedback. The share of positive feedback items in

4 See [11] where the value of ppos is derived in one specific reputation system.



Towards Truthful Feedback in P2P Data Structures 507

a repository follows a binomial distribution. Equation 6 now calculates the probability
pt for a repository containing less than t positive feedback items:

pt = P (Number of positive feedback in the repository < t)

=
t−1∑

i=0

(
s
i

)
· (ppos)i · (1 − ppos)s−i (6)

In order to determine the same probability for dishonest peers, we change the value
in Equation 6 from ppos to pdis

pos, as shown in Equation 7:

pdis
t =

t−1∑

i=0

(
s

i

)

· (pdis
pos)

i · (1 − pdis
pos)

s−i (7)

The expected average weight now is the probability that a transaction is not success-
ful and that a repository contains less than t positive feedback items plus the probability
of the opposite case. Equation 8 determines the weight of feedback issued by honest
peers, Equation 9 does so for dishonest ones.

whon = pt · g +(1 − pt) · (1 − g) (8)

wdis = pdis
t · g +(1 − pdis

t ) · (1 − g) (9)

A participant in a P2P system is free to change its behavior at any time and with
any frequency. For example, one peer might work hard to obtain a high standing in the
eyes of others and try to disseminate spoof feedback afterwards. Thus, the time needed
to adapt to new behavior is crucial. This time can be quantified as the number k of
repository updates needed to adapt w to a new ratio of spoof feedback b. The weights
are updated according to Equation 3. Therefore, k is a function of the smoothing factor
z of the exponential moving average. Let ak be the correlation a(Fσ,φ, θ) between the
transaction result and the set of feedback items at time k. We can now rewrite Equation 3
to Equation 10.

wk = z · ak + z · (1 − z)1 · ak−1 + z · (1 − z)2 · ak−2 + · · · + (1 − z)k · a0

= z · ak + a0 · (1 − z)k + z ·
k−1∑

i=1
ak−i · (1 − z)i (10)

The initial parameter a0 is the value of w before the change in the behavior. To ease
the calculation, the number of positive and negative feedback items in the repository
and the rate of unsuccessful transactions after the change is assumed as constant, i.e.,
a1, a2, · · · , ak are equal. Now Equation 10 is a geometric sequence and can be solved
and rewritten to obtain the value of k, as shown in Equation 11.

k =

⎡

⎢
⎢
⎢

log(wk − ak
a0 − ak

)

log(1 − z)

⎤

⎥
⎥
⎥

(11)



508 E. Buchmann, K. Böhm, and C. von der Weth

5 Evaluation

Having described the fundamentals of our approach independent from a concrete imple-
mentation of a P2P data structure or a reputation system, we will now evaluate the ef-
fectiveness with numeric methods and by means of experiments. Our intention with this
section is to confirm that truthful feedback tends to have higher weight than spoof feed-
back even in worst-case settings, that the reputation system adapts quickly to changes
in the behavior of nodes, and that it is effective against collaboration attacks. In order
to obtain expressive results, the evaluation is based on FairNet.

Weights for Truthful and Spoof Feedback. The first question is whether spoof feed-
back may obtain a higher weight than honest feedback. We accomplish this by interpret-
ing the formulae of the analysis. To do so, we use realistic values taken from a FairNet
instance consisting of 10, 000 peers organized in a four-dimensional keyspace. In this
setup, u is the rate of uncooperative peers. Each uncooperative peer does not forward
or answer 50% of all incoming query. The rationale behind a failure rate of 50% is to
analyze a ’more difficult’ setting – even in the presence of spoof feedback, a completely
uncooperative peer would be quickly discovered. In contrast, a failure rate of 50% is a
worst-case scenario for settings with a small number of uncooperative peers u, because
any feedback item is wrong with probability 50%. In this setting the probability for
each uncooperative node to obtain positive feedback is ppos ≈ 0.13.5 I.e., it is less than
its failure probability of 50%. This is because FairNet generates more negative than
positive feedback.

In settings with a large fraction u of uncooperative peers, the number of truthful pos-
itive feedback in the repositories goes against zero, as do the probabilities of successful
transactions. Thus, it is easy to detect spoof positive feedback. On the other hand, if the
probability of a successful transaction is about 50%, spoof feedback cannot be detected.
Therefore, in a setting with few queries properly processed and a small ppos, we expect
the weighting factors to be smaller on spoof feedback, compared to a setting where ppos

is smaller than the probability of successful queries. However, we can already declare
success if the weights of spoof feedback never are above the ones of nodes following
the protocol.

We now determine the weight of a dishonest peer for a ratio of b = 0 to b = 1 spoof
positive feedback generated on an uncooperative feedback subject. Figure 2 graphs the
result of our analysis. The figure confirms our expectations: For values such as u = 10%
or below, i.e., in our worst-case scenario with 50% successful transactions, the weight
of honest feedback (b = 0) is only slightly larger than the one of a peer issuing spoof
positive feedback only (b = 1). In contrast, in settings with a large number of uncooper-
ative peers and a high rate of unsuccessful transactions, i.e., with high certainty regard-
ing the accuracy of feedback, the weight of honest feedback is significantly larger than
the weight of spoof feedback. Summing up, the analysis so far has shown that our ap-
proach assigns higher weights to honest feedback in any case. However, the difference
between truthful feedback and spoof feedback might be small in worst-case settings. In

5 Determining the probability ppos in FairNet requires a complex algebraic model which we
omit here for the lack of space. See [11].



Towards Truthful Feedback in P2P Data Structures 509

 0
 0.2

 0.4
 0.6

 0.8
 1 0 0.2 0.4 0.6 0.8 1 b

 0

 0.2

 0.4

 0.6

 0.8

 1

w

u

Fig. 2. Average weights for different shares of dishonest peers and spoof feedback

these settings however, truthful and spoof feedback would lead to the same decisions.
We will address the applicability of our measures under worst-case conditions by means
of realistic experiments later on.

Dynamicity. As a next step, we want to determine the number of updates k needed
to adapt a weight w to a new ratio of spoof feedback b. The setup of our simulation
is similar to the one used for Figure 2, i.e., the system consists of 10,000 peers in a
four-dimensional topology. In order to have expressive results, the setup contains 50
uncooperative peers which do not handle 80% of incoming transactions.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

k

z

b = 0.25
b = 0.50
b = 1.00

Fig. 3. Number of interactions to update the weight depending on the smoothing factor z

Equation 9 provides an estimate of w, depending on the ratio of spoof feedback b.
Figure 3 graphs the number of updates k needed to decrease the weight of a truthful
repository (b = 0) to 99% of the weight of a dishonest repository.6 The number of

6 Because of the exponential moving average, the weights asymptotically converge to the ex-
pected value. Hence, we are satisfied with a conformance of at least 99%.



510 E. Buchmann, K. Böhm, and C. von der Weth

updates is shown in comparison to the smoothing factor z and for three different ratios
of spoof feedback. The exponential moving average replaces old information at a con-
stant rate z. This explains why it requires more updates k to adapt to a repository with
b = 1 in comparison to one with b = 0.25, as shown in Figure 3. However, in P2P data
structures a peer usually interacts with its neighbors frequently. The example calcula-
tion of Section 2 has shown that it requires around 10 interactions between neighboring
peers to forward one query from the issuer to the peer that can actually answer it in
a setting with 10,000 peers and a four-dimensional key space. Thus, even though the
value of k = 35 at z = 0.1 and b = 1 might seem to be large, it actually tells us that
the weights are adjusted within less than four rounds. Larger smoothing factors shorten
this period of time even more.

Robustness Against Collaboration Attacks. The last question that we have to address
is: How useful is our approach in the presence of peers running a collaboration attack?
In particular, does it pay off for a group of dishonest peers to ’boost’ the reputation of an
uncooperative peer by issuing and forwarding spoof feedback? A series of experiments
addresses these questions. Our experimental setup consists of 1,000 peers in a setup
where each peer has 26 neighbors. 50 uncooperative peers ignore 50% of the incoming
queries. x dishonest peers surround each uncooperative peer. These x peers try to push
the standing of the uncooperative one by disseminating spoof positive feedback items
at a rate b. In other words, they generate honest feedback at a rate (1 − b). In a series of
625 experiments, we varied the number of attackers from x = 0 to 25 and changed the
ratio of spoof feedback from b = 0 to 1. As outlined in Section 2, only the neighbors
can observe the behavior and generate feedback on a peer. Thus, the experiments with
x = 25 identify extreme settings where dishonest nodes almost completely surround
the uncooperative peer.

 0  5  10  15  20  25x  0
 0.2

 0.4
 0.6

 0.8
 1

b
 0

 100
 200
 300
 400
 500
 600

c

Fig. 4. Unhandled transactions in FairNet

Each experiment consists of 200,000 queries. The numbers are taken after an initial-
ization period that allows the reputation system to reach a steady state. We measured
the number c of queries dropped per round by all uncooperative peers, i.e., the total
number of unanswered queries caused by 50 uncooperative peers, ’supported’ by up to



Towards Truthful Feedback in P2P Data Structures 511

950 dishonest peers issuing spoof positive feedback. Figure 4 shows the results of our
experiments without our measures. It indicates that uncooperative peers drop a small
fraction of queries even without the involvement of any dishonest peers (x = 0). This is
because our experimental setup does not include data replication, and queries referring
to keys in the zones of uncooperative peers are answered with a probability of 50% only.
Except for this phenomenon, the reputation system does well without countermeasures
against spoof feedback, even in the presence of dishonest peers. Only collaboration
attacks where more than one third of the neighbors of an uncooperative node issue sig-
nificantly more than 70% spoof feedback increase the number of unanswered queries.
On the other hand, there have already been distributed attacks on the Internet with thou-
sands of ’zombie computers’ compromised by viruses and directed by a single attacker.
Similar attacks on P2P data structures are conceivable as well. Thus, measures against
spoof feedback are still necessary.

 0  5  10  15  20  25x  0
 0.2

 0.4
 0.6

 0.8
 1

b
 0

 100
 200
 300
 400
 500
 600

c

Fig. 5. Unhandled transactions in FairNet with weights

But how do the experimental results change with our approach? To investigate this,
we replayed our series of experiments with our measures activated. Figure 5 contains
the results. The figure shows two findings: The impact of the attacks has been largely
reduced, and the number of collaborators required for a successful attack has increased
considerably. At least 17 attackers have to disseminate more than 80% spoof positive
feedback to increase the number of unanswered queries significantly. Moreover, the
maximal number of messages lost resulting from x = 25 absolutely dishonest collabo-
rators is approximately one third of the one observed in the experimental setup without
our approach. Other experiments with spoof negative feedback on cooperative feedback
subjects (omitted here for lack of space) yield similar results. Summing up, repository
weights are an effective countermeasure against collaboration attacks in reputation sys-
tems for P2P data structures.

6 Related Work

This section reviews approaches that are related to our measure against spoof feedback
in reputation systems for P2P data structures. The section starts with a (very) short



512 E. Buchmann, K. Böhm, and C. von der Weth

outline of related P2P data structures, followed by a review of P2P reputation systems.
An overview on truthtelling mechanisms that are not specific to P2P systems concludes.

P2P Data Structures. P2P data structures address a core issue in data management: ad-
ministering of huge sets of (key, value)-pairs under a high rate of parallel transactions.
The various approaches [7,8,9,10] differ primarily with regard to contact selection and
path selection, i.e., which are the peers a node can communicate with and forward mes-
sages to. The topology of the key space is closely related to contact selection and path
selection. Common topologies include hypercubes (e.g., CAN [7]), rings (Chord [10]
), virtual search trees (P-Grid [8]), and butterfly networks (Viceroy [9]); see [6] for an
analysis of the impact of the topology on the characteristics of the data structures.

P2P Reputation Systems. All of these approaches assume that nodes readily follow
the protocol. We think that this is not realistic. Reputation systems allow the peers to
deal with unreliable nodes by collecting, distributing and aggregating feedback on the
behavior of the participants in the past. One of the first reputation systems based on
P2P data structures is [15]. The approach is based on complaints, i.e., negative feed-
back. Each peer stores the feedback it has generated in a global repository that is ac-
cessible by all peers. A peer assigned with more negative feedback than the global
average is deemed unreliable. As a measure against spoof feedback, the approach pro-
poses to check not only the number of complaints on the peer in question, but also the
reputation of the peers which issued the complaints. But this does not help against a
compromised global repository and comes with a large overhead. EigenTrust [16] is an
approach to reputation systems that is based on a distributed eigenvector computation.
The approach uses a P2P data structure to store a global trust vector. For each pair of
peers, the trust vector contains a normalized reputation value, based on the number of
satisfying and unsatisfying transactions. In order to avoid spoof feedback the reputation
value of each peer is recursively weighted with the reputation of its ’observers’. How-
ever, cooperative peers are not forced to provide truthful feedback in settings such as
ours. Another assumption that does not hold in P2P data structures is that an initial set
of users is known to be trustworthy. PeerTrust [17] derives trust values from the satis-
faction earned by each transaction, the credibility of the participating peers, the context
of the transactions and community-specific issues. Similar to the other approaches, the
trust model of PeerTrust depends on a secure, global data structure that stores feedback.
Spoof feedback is addressed with a credibility factor derived from the assumptions that
uncooperative peers tend to disseminate spoof feedback and cooperative peers usually
issue truthful feedback. These assumptions may fail in the presence of groups of collud-
ing peers which strive for ’strategic’ goals, e.g., discrediting other nodes. A comparison
of other P2P-based reputation systems is shown in [14].

It is challenging to secure global data structures against dishonest peers. A peer
which wants to influence the reputation system could try to insert spoof feedback, tam-
per with feedback items it is supposed to forward and manipulate feedback in its local
zone. FairNet [11], our reputation system for P2P data structures, avoids these vulnera-
bilities by introducing mechanisms that work on local data structures. In particular, the
peers maintain local repositories and exchange feedback with every message that is sent
out to another peer. With local repositories, an attacker that wants to modify a certain



Towards Truthful Feedback in P2P Data Structures 513

reputation value is forced to compromise the repositories of many peers. However, local
repositories without further countermeasures may still fall prey to spoof feedback.

Truthtelling Mechanisms. In addition to mechanisms designed for certain reputation
systems, others have investigated approaches to incentivize truthtelling. The approaches
do not depend on a specific implementation. CONFESS [3] aims at eliciting truthful
feedback in buyer-seller situations. The idea is that buyers who appear repeatedly will
build a reputation for truthtelling in equilibrium. The authors formally prove the effec-
tiveness of the mechanism under the given assumptions. However, their solution is not
readily applicable to our setting, for two reasons. First, CONFESS requires a central
instance that all participants deem trustworthy. This is different from P2P architectures.
Another issue is that uncertainty/subjectivism is not part of the model, at least currently:
If a seller behaves cooperatively, the buyer will always notice this. If the seller does not,
the buyer will notice this as well. Our approach in turn does without this assumption.
The rate of such errors is an endogenous parameter of our approach.

Other proposals, e.g., Bayesian Truth Serum [5] and Peer-Prediction [4], pursue a
different (i.e., not reputation-based) approach to the same problem, albeit in a slightly
different setting. They compare the probability distribution of truthful answers to other
probability distributions (the one of the answers of all participants in the case of Peer-
Prediction, and the one predicted to be the distribution of the answers of all participants
in the case of the Bayesian Truth Serum). This comparison allows to maximize the
expected payoff of truthful answers, as formally shown in the respective publications.
Unlike CONFESS, it does so without requiring repeated interactions. However, both
approaches are not applicable to our setting as well. First, Peer-Prediction requires that
the probability distributions of answers (of truthful feedback, to translate this to our
setting) is known; Bayesian Truth Serum in turn requires that peers come up with an
estimate of this distribution. Another issue is that, in spite of the name of one of the
approaches, they are not Peer-to-Peer. More specifically, it is unclear how to implement
them in an environment consisting of only the peers (and no other instances that could
act as coordinators etc.). Finally, to the best of our knowledge, there have only been few
experiments evaluating these approaches [18].

7 Discussion

The experiments presented so far have acknowledged that our countermeasure can be
used with CAN and FairNet. But it remains to be discussed if our countermeasure are
applicable to other reputation systems and application scenarios as mentioned in Sec-
tion 6. Unlike many other approaches, FairNet does not depend on global data struc-
tures. Instead, the peers manage and exchange feedback locally with each interaction.
However, our approach does not depend on the location where the feedback is stored.
Instead, the peers just assign weights to the nodes which forward the feedback, accord-
ing to the correlation between that feedback and the transaction outcomes observed.
Thus, our approach is applicable to each reputation system where nodes exchange feed-
back items, e.g., [15,19] or (with some changes in the architecture) [17].

Our approach relies on mechanisms to detect spoof feedback with little resource
consumption. The downside is that the approach requires several interactions before



514 E. Buchmann, K. Böhm, and C. von der Weth

adapting to the behavior of a node, according to our evaluation. Thus, our approach
requires reputation systems characterized by a high throughput of feedback. However,
this is generally the case in systems such as P2P data structures, and it is an attribute of
many fields of application, e.g., semantic web or distributed search engines.

The experiment on collaboration attacks has indicated a significant improvement of
the reliability in the presence of many peers issuing spoof feedback at a high rate. But
the experiment has also shown that the countermeasure cannot prevent any transaction
from being forwarded to unreliable peers. Therefore, our approach is only applicable in
settings with many ’inexpensive’ transactions where a few messages may get lost.

8 Conclusions

Spoof feedback is an important issue in any kind of reputation systems. Dishonest par-
ticipants may wish to discredit others or try to take advantages from disseminating spoof
feedback. The problem becomes even more difficult in distributed reputation systems
for P2P data structures. Such settings are characterized by a high throughput of feed-
back and complex collaboration models with peers that cannot be observed from one
instance. In this paper we describe the requirements that a reputation system for P2P
data structures must fulfill and propose our new approach for truthful feedback. The
approach takes advantage of the fact that each peer can observe the utility of feedback
obtained from others after having observed the outcome of a transaction. The peers
derive weighing factors of (feedback forwarder, feedback subject)-pairs.

We evaluate our approach with an analytic model and by means of extensive exper-
iments. The analysis confirms that the differentiation between useful and less useful
feedback is effective, irrespective of the particular implementation of the reputation
system. The experimental evaluation demonstrates the applicability of our approach
in realistic settings. It shows a significant reduction of the impact of collusion attacks
where more than 90% of the peers issue spoof feedback.

References

1. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation Systems. Communi-
cations of the ACM (CACM) 43 (2000)

2. Khopkar, T., Li, X., Resnick, P.: Self-Selection, Slipping, Salvaging, Slacking, and Stoning:
The Impacts of Negative Feedback at eBay. In: Proceedings of the 6th ACM Conference on
Electronic Commerce (EC’05). (2005) 223–231

3. Jurca, R., Faltings, B.: CONFESS: Eliciting Honest Feedback without Independent Ver-
ification Authorities. Proceedings of the 6th International Workshop on Agent Mediated
Electronic Commerce (AMEC’04) (2004)

4. Miller, N., Resnick, P., Zeckhauser, R.: Eliciting Informative Feedback: The Peer Prediction
Method. Management Science 51 (2005) 1359–1373

5. Prelec, D.: A Bayesian Truth Serum for Subjective Data. Science 306 (2004) 462–466
6. Gummadi, K., Gummadi, R., Gribble, S.D., Ratnasamy, S., Shenker, S., Stoica, I.: The

Impact of DHT Routing Geometry on Resilience and Proximity. In: Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM’03). (2003)



Towards Truthful Feedback in P2P Data Structures 515

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proceedings of the ACM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM’01). (2001)

8. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Systems.
In: Proceedings of the 9th International Conference on Cooperative Information Systems
(CoopIS’01). (2001) 179–194

9. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A Scalable and Dynamic Emulation of the
Butterfly. In: Proceedings of the 21th ACM Symposium on Principles of Distributed Com-
puting (PODC’02). (2002) 183–192

10. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakr-
ishnan, H.: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications. In:
Proceedings of the ACM Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM’01). (2001)

11. Böhm, K., Buchmann, E.: Free Riding-Aware Forwarding in Content-Addressable Networks.
International Journal on Very Large Data Bases (VLDB) (2006)

12. Back, A.: Hashcash - A Denial of Service Counter-Measure. http://hashcash.org (2002)
13. Jakobsson, M., Juels, A.: Proofs of Work and Bread Pudding Protocols. In: Proceedings of

the 4th International Conference on Communications and Multimedia Security (CMS’99).
(1999)

14. Dewan, P., Dasgupta, P.: Securing P2P Networks Using Peer Reputations: Is There a Sil-
ver Bullet? In: Proceedings of the 2nd IEEE Consumer Communications and Networking
Conference (CCNC’05). (2005)

15. Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Pro-
ceedings of the 10th International Conference on Information and Knowledge Management
(CIKM’01). (2001)

16. Garcia-Molina, H., Schlosser, M.T., Kamvar, S.D.: The EigenTrust Algorithm for Reputation
Management in P2P Networks. Proceedings of the 12th International World Wide Web
Conference (WWW’03) (2003)

17. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering (TKDE) 16 (2004)

18. Prelec, D., Weaver, R.G.: Truthful Answers are Surprisingly Common:Experimental Tests
of the Bayesian Truth Serum. In: Proceedings of the Conference on Econometrics and Ex-
perimental Economics (CEEE’06). (2006)

19. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Choosing Rep-
utable Servents in a P2P Network. In: Proceedings of the 11th International World Wide Web
Conference (WWW’02). (2002) 376–386



Efficient Peer-to-Peer Belief Propagation�

Roman Schmidt and Karl Aberer

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract. In this paper, we will present an efficient approach for dis-
tributed inference. We use belief propagation’s message-passing algo-
rithm on top of a DHT storing a Bayesian network. Nodes in the DHT run
a variant of the spring relaxation algorithm to redistribute the Bayesian
network among them. Thereafter correlated data is stored close to each
other reducing the message cost for inference. We simulated our approach
in Matlab and show the message reduction and the achieved load balance
for random, tree-shaped, and scale-free Bayesian networks of different
sizes.

As possible application, we envision a distributed software knowledge
base maintaining encountered software bugs under users’ system config-
urations together with possible solutions for other users having similar
problems. Users would not only be able to repair their system but also to
foresee possible problems if they would install software updates or new
applications.

1 Introduction

Peer-to-peer systems currently share local information by pairwise interactions
in a cooperative way. The most popular application to date is file-sharing such
as Gnutella and BitTorrent providing search functionality respectively efficient
content distribution. Shared data is usually file-based and files are not correlated
with each other, i.e., it is sufficient to find a desired file and to be able to download
it. More sophisticated applications rely on correlated data probably spread out
among several nodes and downloading each part for local processing can be too
expensive. Another solution is to perform distributed inference directly in the
network so that data remains at providing nodes and only small messages to
process the inference are exchanged.

Distributed inference is already applied for various applications in other net-
works such as sensor networks [1] where network limitations are probably more

� The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322 and was (partly) carried out in the framework of the EPFL
Center for Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European project NEPOMUK No FP6-027705.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 516–532, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Peer-to-Peer Belief Propagation 517

obvious. We envision applications on top of a peer-to-peer system relying on
knowledge provided by nodes and used to solve inference problems. A practical
example is a distributed knowledge base for software bugs observed by users.
Currently, bug reports are submitted on user acceptance to a central knowledge
base for further processing. We assume that most of the bug reports are not
submitted because users are afraid to reveal their identity. In our distributed
scenario, the reports are inserted into a peer-to-peer system concealing the users
identity. Distributed inference is then used to suggest solutions for occurred er-
rors as known from central knowledge bases.

Belief propagation [2] enables distributed inference by a simple message-
passing algorithm between nodes in a Bayesian network modeling correlations
between variables. A node can represent any kind of variable, be it an observed
measurement, a parameter, a latent variable, or a hypothesis. Belief propa-
gation was first successfully applied in the domain of error correcting codes
(Turbo Codes [3]), speech recognition, image processing and medical diagnosis.
Recently, it was used in peer-to-peer systems in the context of content distri-
bution [4] and in sensor networks [5]. The simplicity of the message-passing
algorithm holds the risk of being not scalable towards large-scale networks be-
cause many small messages have to be sent between nodes. Approaches to re-
duce communication costs such as Generalized Belief Propagation [6] cluster
nodes and build a hierarchy based on common variables of clusters. The mes-
sage reduction comes with the drawback that the size of sent messages increases
exponentially (number of statesnodes in the cluster) because the exchanged mes-
sages now contain the joint probabilities of all nodes and states in the cluster.
What remains unsolved is how nodes are clustered in a distributed way requir-
ing no global knowledge and coordination so that the communication costs are
minimized.

In this paper, we will present a decentralized algorithm to cluster variables
at nodes to reduce the number of physical messages sent over the network by
not increasing message sizes. The overall number of messages to run Pearl’s
belief propagation algorithm remains the same but most of them are sent node-
internally which does not induce any bandwidth nor latency costs. Our clustering
algorithm is based on the spring relaxation technique used for example in peer-
to-peer systems for virtual coordinate systems [7] and for path optimization in
stream-based overlays [8] to find minimal energy configurations. In our case, we
try to find the minimal configuration for variables stored on nodes organized
in an P-Grid [9] overlay network. P-Grid provides us a distributed index of the
Bayesian network and efficient lookup mechanisms.

In the following, we will first explain briefly the background and the basis
of our approach, belief propagation in Section 2 and P-Grid in Section 3. Af-
terwards, we will present peer-to-peer blief propagation in Section 4 before we
evaluate our approach in Section 5. The paper discusses related work in Section 6
and future work in Section 7. We conclude in Section 8.



518 R. Schmidt and K. Aberer

2 Belief Propagation

Pearl’s belief propagation [2], also known as the sum-product algorithm, is an
iterative algorithm for computing marginal probabilities, “beliefs” about pos-
sible diagnoses, of nodes on a probabilistic graphical model such as Bayesian
networks. A Bayesian network is an directed acyclic graph of nodes representing
variables and edges representing dependence relations among the variables. If
there is an edge from node A to node B, then node B’s state depends on node
A’s state. This is specified by a conditional probability distribution for node B,
conditioned on the state of node A. A Bayesian network is a representation of
the joint distribution over all the variables represented by nodes in the graph.
We assume that the joint probability distribution factors into a product of terms
involving node pairs and single nodes. These factors are called edge potentials
ψij(xi, xj) and local potentials φi(xi). Evidence nodes are nodes with a known
value. A node can represent any kind of variable, e.g., an observed measurement,
a parameter, a latent variable, or a hypothesis. For example, consider the simple
Bayesian network in Figure 1 consisting of 3 variables OS1, Driver1 and App1.
The dependencies are as follows: if the hardware driver Driver1 is installed on
the operating system OS1, the application App1 is likely to run smoothly with
90% probability. If the driver is missing, the application runs only to 40% and
if OS1 is not installed, then the application does not run at all independent of
the driver. If it is known that OS1 is installed, then its probability would be
set to 1 and the probabilities for App1 to run would only depend on Driver1
thereafter.

OS1 Driver1

App1

   True    False
Installed    0.2      0.8

   True    False
Installed    0.2      0.8

OS1 Driver1    Runs    Error
  T       T      0.9      0.1
  T               F         0.4      0.6
  F               T         0.0      1.0
  F               F         0.0      1.0

Fig. 1. Bayesian network example

The belief propagation algorithm is provably efficient on trees and experi-
ments demonstrate its applicability to arbitrary network topologies using loopy
belief propagation for loopy networks [10], which we will present in the fol-
lowing. The algorithm is currently used with success in numerous applications



Efficient Peer-to-Peer Belief Propagation 519

including low-density parity-check codes, turbo codes, free energy approxima-
tion, and computer vision.

2.1 The Message Passing Algorithm

The algorithm passes messages across the edges in the graphical model, i.e., in
each iteration, a node sends a message to an adjacent node if it has received
messages from all of its other adjacent nodes at the previous iteration. In the
first iteration, nodes send an initial message, usually set to 1, to all adjacent
nodes. In subsequent iterations, messages passed from node xi to node xj are
updated using the following rule:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k �=j

mki(xi)

where φi(xi) are the local potentials of node xi and ψij(xi, xj) are the edge po-
tentials. The product of messages excludes the message received in the previous
iteration from node j, the node we are passing the message to. The messages
mij(xj) and the local potentials φi(xi) are vectors whose length corresponds to
the number of states a node xi can be in. The edge potentials ψij(xi, xj) are
N x M matrices where N is the number of states node xj can be in and M
is the number of states for node xi. Therefore, the message size of the belief
propagation algorithm grows exponentially with the number of states of nodes.

Finally, the marginal probabilities of nodes, called the beliefs, can be com-
puted by multiplying all received messages by the local potentials:

bi(xi) = αφi(xi)
∏

k

mki(xi)

The beliefs are normalized by α to avoid numerical underflow. The algorithm
converges if none of the beliefs in successive iterations changes by more than
a small threshold. For singly connected graphs, it is proven [2] that beliefs at
nodes converge to the marginal probability at that node, which is:

bi(xi) = α
∑

xj/xi

p(x) = pi(xi)

In networks with loops, evidence is counted multiple times. As all evidence is
double counted in equal amounts, Pearl’s belief propagation also provides good
approximations of the marginal probabilities in loopy networks.

3 The P-Grid Overlay

The approach presented in this paper uses the P-Grid [9] distributed hash table
(DHT). We assume that the reader is familiar with the general concepts of DHTs
and will thus only address the specific and relevant properties of P-Grid.



520 R. Schmidt and K. Aberer

In P-Grid peers refer to a common underlying binary trie structure to organize
their routing tables. Data keys are computed using an order-preserving hash
function to generate keys. Without constraining general applicability binary keys
are used in P-Grid. Each peer constructs its routing table such that it holds peers
with exponentially increasing distance in the key space from its own position.
This technique basically builds a small-world graph [11], which enables search in
O(logN) steps. Each peer p ∈ P is associated with a leaf of the binary trie, i.e.,
a key space partition, which corresponds to a binary string π(p) ∈ Π called the
peer’s path. For search, the peer stores for each prefix π(p, l) of π(p) of length
l a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where π is
the binary string π with the last bit inverted. This means that at each level of
the trie the peer has references to some other peers that do not pertain to the
peer’s subtrie at that level which enables the implementation of prefix routing.

Each peer stores a set of data items δ(p). For d ∈ δ(p) key(d) has π(p) as
prefix but it is not excluded that temporarily also other data items are stored
at a peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can
be a proper subset of δ(p). Moreover, for fault-tolerance, query load-balancing,
and hot-spot handling, multiple peers are associated with the same key-space
partition (structural replication), and peers additionally also maintain multiple
references σ(p) to peers with the same path (data replication).

Figure 2 shows a simple example of a P-Grid tree consisting of 6 peers re-
sponsible for 4 partitions, e.g., peer F’s path is 00 leading to two entries in its
routing table: peer E with path 11 at the first level and peer B with path 01 at
the second level. Further, peer F is responsible for all data with key prefix 00. A
search initiated at peer F for key 100 would first be forwarded to peer E because
it is the only entry in F’s routing table at level 1*. As peer E is responsible for
11 and not for the key 100, peer E further forwards the query to peer D, which
can finally answer the query.

A
1* : C, D
01* : B

Stores data 
with key 
prefix 00

F
1* : E
01* : B

Stores data 
with key 
prefix 00

B
1* : C, D
00* : F

Stores data 
with key 
prefix 01

C
0* : A, B
11* : E

Stores data 
with key 
prefix 10

D
0* : A, F
11* : E

Stores data 
with key 
prefix 10

E
0* : B, F
10* : D

Stores data 
with key 
prefix 11

00* 01*

0* 1*

10* 11*

Fig. 2. P-Grid overlay network

4 Peer-to-Peer Belief Propagation

So far, we presented two independent approaches, on the one hand a distributed
inference algorithm based on a simple message-passing algorithm and on the



Efficient Peer-to-Peer Belief Propagation 521

other hand an overlay system to store and retrieve data. At first sight, those two
systems have not much in common but we will show in this section that both
can benefit from each other. Our focus lies thereby on P-Grids ability to improve
the scalability of belief propagation as the application of belief propagation to
improve P-Grid’s load balancing is already shown in [12].

4.1 Distributed Knowledge Base Scenario

To motivate our idea of providing a large-scale peer-to-peer inference system,
we will describe in this section our distributed knowledge base scenario for soft-
ware dependencies. Examples for centralized knowledge bases are the one from
Microsoft [13] and Mozilla [14] providing comprehensive information about their
products and support for encountered bugs. Both use a bug report and track-
ing system, for example BugZilla [15] from Mozilla, to collect bug reports from
users with their permission. In our opinion and from our personal experience,
we assume that most users do not permit submitting bug reports to a central
authority such as Microsoft or Mozilla because they do not want to reveal their
identity and system configuration. A distributed solution would allow users to
conceal their identity because bug reports are inserted and stored at various
nodes of the peer-to-peer system making it more difficult to track user identi-
ties. Therefore, we hope to be able to collect more reports from users with our
decentralized solution leading to a more comprehensive knowledge base.

A knowledge base stores data together with their dependencies usually for
the purpose of having automated deductive reasoning applied to them. Belief
networks are one way to define those dependencies and belief propagation is an
appropriate probabilistic reasoning method. In our scenario, any kind of soft-
ware such as operating systems, device drivers and applications are nodes in our
Bayesian network and their dependencies and distributions are learned from bug
reports. A simplified bug report could look like:

� �

IF
OS = [ ’ Linux ’ , ’ 2 . 4 . 1 2 . 1 8 ’ ] AND
PACKAGE = [ ’MySQL−s e rver ’ , ’ 4 . 0 .20 −0 ’ ] AND
PACKAGE = [ ’MyODBC’ , ’ 2 .50 .39 −18 .1 ’ ]
. . .

THEN
ERROR = ’MySQL’

END
� �

A bug report starts with the used operating system, in this case with Linux
and the kernel version 2.4.12.18, followed by a list of installed packages on the
system. The second part consists of the affected application (MySQL) causing
the error. The bug report enables us already to learn that the given system
configuration leads to problems for the MySQL application. Therefore, each bug
report allows us already to create a small dependency graph, i.e., a Bayesian
network, but we are still not able to identify responsible packages causing the



522 R. Schmidt and K. Aberer

problem. Therefore, we need a larger number of bug reports with probably vary-
ing system configurations to identify the strength of package dependencies, e.g.,
if a version of a package always occurs in a bug report for an application, it is
very likely to cause the problem. A solution proposal for our example bug could
be to install a different version of MyODBC as this version is listed in many bug
reports for the MySQL application.

4.2 The Inference Architecture

Our idea of providing a generic distributed inference system is based on two
fundamental design decisions: (i) no central coordination of the variables in the
system and their dependencies; (ii) no global knowledge and only pair-wise in-
teractions between nodes. Both requirements are satisfied by the P-Grid overlay
infrastructure and Bayesian networks and belief propagation. P-Grid is first used
to maintain the Bayesian network by indexing all variables in the system and all
dependencies between them. In our scenario, variables would be software compo-
nents with their version number, and their dependencies would be derived from
bug reports at their insertion. At this stage, nodes are able to derive small depen-
dency graphs from the bug reports they store and all the variables they maintain
locally. Those dependencies are already represented by Bayesian network and
have now be connected with each other. Learning a Bayesian network structure
and probabilities from distributed data is studied in various papers [16,17,18].
The bug reports itself are also stored in P-Grid together with solutions for bugs
provided by users. Therefore, users have the possibility to help each other with
solutions and if no solution exists, inference can help to restrict the cause of
error.

So far, we have a system storing a Bayesian network derived from bug reports.
Belief propagation requires multiple message-passing iterations between all nodes
of the Bayesian network which are currently spread over physical P-Grid nodes.
On a global scale, this can lead to scalability problems for our system because
messages would be sent around the globe multiple times. To tackle this problem,
we uncouple variable values, the local potentials, from the P-Grid index and allow
them to be stored at different physical P-Grid nodes to improve the efficiency of
belief propagation. The current location of a variable’s local potential is stored
with the variable’s index entry. The problem remains how those local potentials
are stored close to each other, in the best case even on the same physical P-
Grid node, without central coordination and knowledge. Our proposed solution
is based on the spring relaxation technique and presented in more details in the
following section.

4.3 The Relaxation Algorithm

In this section we describe the developed relaxation algorithm based on the
spring relaxation technique. In our case, Bayesian variables are connected by
springs and the Bayesian network forms a spring network which has to be re-
laxed, i.e., the network has to be in a state requiring least possible energy. The



Efficient Peer-to-Peer Belief Propagation 523

energy a spring requires is directly proportional to the distance between the
two P-Grid nodes the Bayesian variables are stored at. The spring between two
variables remaining at the same node requires no energy. Therefore, the optimal
solution of the spring relaxation algorithm would be to place all variables at
one node. This is of course not desirable because peer-to-peer systems are based
on the idea of load sharing which is in contradiction with the optimal solution
mentioned before. Thus, the spring relaxation algorithm also has to consider
load balancing of variables among participating nodes. P-Grid provides already
heuristic statistics about the current load of each level of the trie represented
by a peer’s routing table. These statistics are required by P-Grid itself to pro-
vide load-balancing of stored index information and are used in the following for
our approach too. The statistics are based on periodic interactions with random
peers of the routing table to sample the current load distribution. The periodic
sampling enables peers to estimate the current load of a routing table level and
the global average load.

The developed algorithm used to relax the Bayesian network is shown in Algo-
rithm 1. The algorithm is executed by each node iteratively till no improvement
is achieved anymore or a maximum number of iterations is reached. The following
list provides an overview of the used variables in the algorithm:

– localVars: list of variables the local node maintains
– avgLoad: local estimate of the global average load
– currentLoad: the current load of the local node
– routingTable: the routing table of the local node
– routingTable.levels: the number of levels in the local routing table
– candidate(j).tension(i): the tension at level i for candidate variable j
– candidate(j).tension: all tensions at all levels for candidate variable j

First, in line 1 to 4, each node checks if it has “free” variables it can move
to other nodes or not. Currently, nodes are allowed to move variables as long
as they have more than avgLoad/2 variables. P-Grid obtains an estimate for
the current average load in the system but the accuracy of this estimate is not
crucial for the algorithm. In line 5, nodes determine those local variables which
have a tension to other nodes remaining at the same level of the local routing
table leading to one tension at one level. Ideally, variables have a tension to only
one node and not to different nodes at the same level. If the local node can move
variables and it found such unidirectional variables, it moves them directly to
the corresponding level or node (line 6 to 10). Moving a variable always requires
only one message between the two involved peers.

A node can try to balance the load in the system if it maintains above average
many variables. It therefore uses all non-unidirectional variables, i.e., variables
which have tensions at multiple levels (line 12 and 13). Next, the node tries to
balance each level of its routing table, starting with the highest level, i.e., its
closest neighbors (line 14). Starting with the closest neighbors allows nodes to
balance load first locally before they try to balance load on peers further away
from them, i.e., on peers stored in lower levels. If a level is underpopulated (line



524 R. Schmidt and K. Aberer

Algorithm 1. The spring relaxation algorithm
1: freeV ars = length(localV ars) − avgLoad/2;
2: if (freeV ars <= 0) then
3: return;
4: end if
5: undirV ars = variables having a tension only at one level;
6: while ((freeV ars > 0) AND (length(unidirV ars) > 0)) do
7: move variable to a peer from the level with the tension;
8: removeFirst(unidirV ars);
9: freeV ars = freeV ars − 1;

10: end while
11:
12: multidirV ars = variables having tensions to multiple levels;
13: while ((currentLoad > avgLoad) AND (length(multidirV ars) > 0)) do
14: for i = routingTable.levels to 1 do
15: if (level i is underpopulated) then
16: candidates = variables having a tension at level i;
17: for j = 1 to length(candidates) do
18: if (candidate(j).tension(i) >= max(candidate(j).tension)) then
19: move variable to a peer from level i;
20: remove(multidirV ars, candidate(j));
21: currentLoad = currentLoad − 1;
22: if (currentLoad <= avgLoad) then
23: break;
24: end if
25: end if
26: end for
27: end if
28: end for
29: end while

15), i.e., a level maintains below average many variables, then the node first
selects candidate variables out of its local variables (line 16). Candidates are all
variables which have a tension at the current level. Next, starting from line 17,
the node checks if the tension at the current level for the candidate variable is
the strongest tension the variable has considering all levels. This ensures that
variables are moved to levels with their strongest tension. This process continues
as long as candidates are available and the node has enough variables to move.

5 Evaluation

The algorithm presented in the previous section was implemented in Matlab
and evaluated with diverse networks. We present results for random networks,
binary trees and scale-free networks with up to 2048 variables in the Baysian
network and 512 nodes in the P-Grid network. Considering our scenario we
have in mind for our system, tree-based belief networks and scale-free networks



Efficient Peer-to-Peer Belief Propagation 525

are the most realistic network topologies. The network size and the number of
variables is difficult to estimate but the evaluation shows that our approach scales
well even though no proof can be given so far. All experiments were repeated
10 times and the figures show the average of those 10 repetitions with their
standard deviation. Each time a new belief network was created and variables
were assigned randomly to nodes.

5.1 Network Topologies

We briefly describe some properties of the network topologies we used for our
evaluation. The networks were visualized with the Pajek tool [19] using the
2D Fruchterman Reingold layout for random networks and the Kamada-Kawai
layout for the others. Additionally, we show the node degree distribution by
sorting nodes according to their node degree and plotting their degree in log-log
scale.

Random Networks. We constructed random networks by adding for each
node degree/2 edges to other nodes with equal probability to reach the desired
average node degree. Figure 3 shows a network of 1024 nodes with an average
node degree of 4, nodes have between 2 and 10 edges. The degree distribution
indicates that most of the nodes have a degree around the average.

(a) Network visualization

10
0

10
1

10
2

10
3

2

5

10

variable

de
gr

ee

(b) Node degree distribution

Fig. 3. A random network: 1024 nodes with average node degree 4

Binary Trees. The second used topology is a binary tree with each node having
exactly two children excluding leaf nodes. Each node has exactly one parent
excluding the root of the tree. Therefore, the node degree varies between 1 and
3 with an average around 2. Figure 4 shows a binary tree with 1023 nodes. The
degree distribution shows the leave nodes (half of the nodes) at the bottom with
1 edge, the root with 2 edges in the middle and the intermediate nodes with 3
edges at the top.



526 R. Schmidt and K. Aberer

(a) Network visualization

10
0

10
1

10
2

10
3

1

2

3

variable

de
gr

ee

(b) Node degree distribution

Fig. 4. A binary tree: 1023 nodes

Scale-Free Networks. The last used network topology is a scale-free network
with the property that the number of links k originating from a given node ex-
hibits a power law distribution IP(k) ∼ k−gamma. The network is constructed by
progressively adding nodes to an existing network and introducing links to exist-
ing nodes with preferential attachment so that the probability of linking to a given
node i is proportional to the number of existing links ki that that node has, i.e.,

IP(linking to node i) ∼ ki
∑

j

kj

Scale-free networks occur in many areas of science and engineering, e.g., in-
cluding the topology of web pages (where the nodes are individual web pages
and the links are hyper-links), and are therefore a good model for our scenario.
Figure 5 presents a scale-free network on the left side with highly connected

(a) Network visualization

10
0

10
1

10
2

10
3

1

5

10

50

variable

de
gr

ee

(b) Node degree distribution

Fig. 5. A scale-free network: 1024 nodes with average node degree 4



Efficient Peer-to-Peer Belief Propagation 527

nodes in the center and loosely connected nodes at the periphery. The node
degree varies between 1 and 62 with an average around 4. The node degree
distribution follows a power-law distribution.

5.2 Message Reduction

The most interesting evaluation criterion is of course the message reduction
achieved by redistributing the variables close to each other in the P-Grid net-
work. Figures 6 – 8 present the results obtained for the three network topologies.
The plots show the achieved message reduction after each iteration of the spring
relaxation algorithm by relating the number of required messages to run one
iteration of the belief propagation algorithm. At the beginning, 100% of the mes-
sages are required, while after each iteration of the spring relaxation algorithm,
less messages are required. The message reduction is given with the standard
deviation of 10 repeated simulations for each setup.

Figure 6 shows that the algorithm does not perform well for any evaluated
random network as expected. The random correlations of variables in these net-
works makes it difficult for the spring relaxation algorithm to cluster variables
close to each other to reduce the message effort. The average node degree seems
to have the strongest influence on the achieved message reduction which is not
larger than 25%. As random networks are not considered as the most realistic
model for our use case, this result is tolerable in our opinion. For binary trees,
see Figure 7, the relaxation algorithm is already able to reduce the number of
required messages to around 35% of the initially required number before running
the relaxation algorithm. The obtained results seem to be independent of the

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(a) 256/1024/4

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(b) 512/2048/4

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(c) 256/2048/8

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(d) 512/2048/8

Fig. 6. Message reduction for random networks with different numbers of nodes/vari-
ables/degree



528 R. Schmidt and K. Aberer

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(a) 256/1024

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(b) 256/2048

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(c) 512/2048

Fig. 7. Message reduction for binary tree-based networks with different numbers of
nodes/variables

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(a) 256/1024

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration

m
es

sa
ge

s 
[%

]

(b) 256/2048

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

iteration
m

es
sa

ge
s 

[%
]

(c) 512/2048

Fig. 8. Message reduction for scale-free networks with different numbers of nodes/
variables

number of nodes and variables. Finally, we observe similar results for the scale-
networks as shown in Figure 8. The relaxation algorithm is able to reduce the
message cost by about 75% independent of the number of nodes in the P-Grid
network and the number of variables in the Bayesian network.

The standard deviation is small for all network topologies and network sizes
which is an indicator that the algorithm scales well. In all experiments, the
algorithm was iterated 50 times but the main reduction is achieved in the first
10 iterations. Again, this seems to be independent of the number of nodes and
number of variables in the networks.

5.3 Load-Balancing

Apart from the reduction of required messages for the message-passing algo-
rithm, it is important that the load of variables is balanced among the partic-
ipating nodes. Figures 9 – 11 present the corresponding results obtained again
for random networks, binary trees and scale-free networks. All figures show the
average variable load which remains constant over all iterations as the number
of variables and nodes does not change. The standard deviation indicates the
load balance in the system. Additionally, the maximum load of nodes is given
by the dotted line.



Efficient Peer-to-Peer Belief Propagation 529

Whereas the relaxation algorithm did not perform well for random networks
to reduce the number of required messages, it was more successful to balance
the load among the nodes, as shown in Figure 9. The standard deviation is
decreasing for all network sizes as well as the maximum number of variables
per node (dotted line). Similar results were obtained for the binary tree-based
networks (see Figure 10). Figure 11 shows that scale-free networks cause a slight
increase of unbalance and a large increase in the maximum load for nodes. We
think this is due to the fact that 1 or 2 nodes usually have very high degrees and
therefore cause an overload at the P-Grid node they are currently maintained.
Our relaxation algorithm is currently not able to handle this problem and we
leave this as future work. A simple solution could be to allow nodes to decline
maintaining further nodes by introducing an upper bound for the load.

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

iteration

va
ria

bl
es

/n
od

e

(a) 256/1024/4

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

iteration

va
ria

bl
es

/n
od

e

(b) 512/2048/4

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

iteration

va
ria

bl
es

/n
od

e

(c) 256/2048/8

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

iteration

va
ria

bl
es

/n
od

e

(d) 512/2048/8

Fig. 9. Variables per node for random networks with different numbers of nodes/vari-
ables/degree

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

iteration

va
ria

bl
es

/n
od

e

(a) 256/1023

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

iteration

va
ria

bl
es

/n
od

e

(b) 256/2047

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

iteration

va
ria

bl
es

/n
od

e

(c) 512/2047

Fig. 10. Variables per node for binary tree-based networks with different numbers of
nodes/variables



530 R. Schmidt and K. Aberer

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

iteration

va
ria

bl
es

/n
od

e

(a) 256/1024

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

iteration

va
ria

bl
es

/n
od

e

(b) 256/2048

5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

60

70

80

iteration

va
ria

bl
es

/n
od

e

(c) 512/2048

Fig. 11. Variables per node for scale-free networks with different numbers of nodes/-
variables

5.4 Discussion

The results obtained from the first evaluations look very promising. One way
to probably further reduce the number of messages apart from the relaxation
algorithm is to combine messages to one large message if local variables have a
relation with variables at the same remote node. It is usually more efficient to
send less large messages than more small messages in a peer-to-peer system.

6 Related Work

6.1 Belief Propagation

Generalized Belief Propagation [6] reduces the number of messages by cluster-
ing correlated variables together and sending only one message between those
clusters. This approach has three drawbacks: (i) the message sizes increase expo-
nentially (number of statesnodes in the cluster) because the exchanged messages
now contain the joint probabilities of all nodes and states in the cluster; (ii) the
complexity of processing the messages and beliefs at nodes also increases consid-
erable with increasing number of nodes in a cluster; (iii) it is not obvious for us
how clusters are formed in a distributed way without central coordination and
knowledge which is essential in peer-to-peer systems. Though Generalized Belief
Propagation provides more accurate beliefs than Pearl’s belief propagation, it is
currently not applicable for large-scale networks.

Reference [1] presents an inference architecture for sensor networks based on
message-passing on a junction tree. For this approach, a distributed algorithm
is first used to form a spanning tree of nodes which is used later to construct the
junction tree for inference. Junction trees group variables into cliques and their
size determines the computation costs at nodes whereas the separator size be-
tween cliques determines the communication costs. The approach was evaluated
with 54 sensor motes in a local experiment showing spanning tree optimizations
and the communication costs of the junction tree. Inference on junction trees is
exact and always results in the exact marginals at the cost of requiring building
a tree with larger messages and higher computation costs. Belief propagation
only provides approximate inference on lower overheads.



Efficient Peer-to-Peer Belief Propagation 531

6.2 Spring Relaxation

Spring relaxation is used in various domains and we will only present two exam-
ples for peer-to-peer systems. Vivaldi [7] is a decentralized network coordinate
system using a spring-mass model to position nodes in a virtual coordinate sys-
tem according to their latencies. Nodes run the distributed spring relaxation
algorithm as soon as a new latency measurement was performed to reduce the
distance error between nodes. An application of Vivaldi is described in [8] to op-
timize the path in stream-based overlay networks. Services are placed on nodes
close to each other in the virtual latency space.

7 Future Work

An open issue is the introduction of a stop criteria for the relaxation algorithm
so that nodes detect that further iterations will not reduce the number of mes-
sages noticeably any more. This is crucial because a constant maximum number
of iterations may influence the scalability of our approach. Further, the algo-
rithm currently runs absolutely synchronized at all nodes. As this is not realistic
in peer-to-peer systems, the influence of an asynchronous execution has to be
investigated. We plan to implement our algorithm in P-Grid to evaluate it on
PlanetLab, a global-scale testbed with real network characteristics.

8 Conclusions

We presented a relaxation algorithm making large-scale distributed inference
possible in peer-to-peer systems. Our approach is based on belief propagation’s
simple message-passing algorithm to perform inference and the P-Grid overlay
network to store and maintain the required Bayesian network. Nodes of the
Bayesian network are redistributed among P-Grid nodes to cluster correlated
nodes together to minimize the required message costs for inference. Our purely
distributed approach does not require any central coordination nor global knowl-
edge. Matlab evaluations show promising results with message reductions up to
70% for various network topologies and network sizes.

References

1. Paskin, M.A., Guestrin, C.E., McFadden, J.: A robust architecture for distributed
inference in sensor networks (2005)

2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, USA (1988)

3. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting
codes and decoding: Turbo codes. In: Proceedings of the IEEE International Com-
munications Conference. (1993)

4. Bickson, D., Malkhi, D., Rabinowitz, D.: Efficient large scale content distribution.
In: Proceedings of the Workshop on Distributed Data and Structures (WDAS),
Lausanne, Switzerland (2004)



532 R. Schmidt and K. Aberer

5. Ihler, A.T., John W. Fisher, I., Moses, R.L., Willsky, A.S.: Nonparametric belief
propagation for self-calibration in sensor networks. In: Proceedings of the Third
international symposium on Information processing in sensor networks, New York,
NY, USA, ACM Press (2004) 225–233

6. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Ad-
vances in Neural Information Processing Systems (NIPS). Volume 13. MIT Press
(2000) 689–695

7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: Proceedings of ACM SIGCOMM. (2004)

8. Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., Roussopoulos, M.: Path op-
timization in stream-based overlay networks. Technical Report TR26-04, Harvard
University, Cambridge, Massachusetts (2004)

9. Aberer, K.: P-grid: A self-organizing access structure for p2p information systems.
In: Proceedings of the 6th International Conference on Cooperative Information
Systems (CoopIS), London, UK, Springer-Verlag (2001) 179–194

10. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Computation 12(1) (2000) 1–41

11. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: ACM
STOC. (2000)

12. Bickson, D., Dolev, D., Weiss, Y., Aberer, K., Hauswirth, M.: Indexing data-
oriented overlay networks using belief propagation. In: Proceedings of the Work-
shop on Distributed Data and Structures (WDAS), Santa Clara, CA, USA (2006)

13. Corporation, M.: Microsoft help and support (2006)
http://support.microsoft.com/.

14. Organization, T.M.: Mozillazine knowledge base (2006) http://kb.mozillazine.org/.
15. Organization, T.M.: Bugzilla (2006) http://www.bugzilla.org/.
16. Yamanishi, K.: Distributed cooperative bayesian learning strategies. In: COLT

’97: Proceedings of the tenth annual conference on Computational learning theory,
New York, NY, USA, ACM Press (1997) 250–262

17. Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, USA (1995)

18. Chen, R., Sivakumar, K., Kargupta, H.: Collective mining of bayesian networks
from distributed heterogeneous data. Knowledge and Information Systems 6(2)
(2004) 164–187

19. Batagelj, V.: Pajek - program for large networks analysis and visualization (2001)



Designing Cooperative IS:
Exploring and Evaluating Alternatives

Volha Bryl, Paolo Giorgini, and John Mylopoulos

Department of Information and Communication Technology,
University of Trento,

via Sommarive 14, 38050 Povo (TN), Italy
{bryl, paolo.giorgini, jm}@dit.unitn.it

Abstract. At the early stages of the cooperative information system develop-
ment one of the major problems is to explore the space of alternative ways of
assignment and delegations of goals among system actors. The exploration pro-
cess should be guided by a number of criteria to determine whether the adopted
alternative is good-enough. This paper frames the problem of designing actor
dependency networks as a multi-agent planning problem and adopts an off-the-
shelf planner to offer a tool (P-Tool) that generates alternative actor dependency
networks, and evaluates them in terms of metrics derived from Game Theory lit-
erature. As well, we offer preliminary experimental results on the scalability of
the approach.

1 Introduction

During the requirements analysis and design of cooperative information systems one
has to cope with the fundamental problem of planning, i.e. finding optimal/good-enough
delegations to a set of system actors which collectively fulfill a given set of goals. These
goals are initially assigned to the actors which may not have enough capabilities to
satisfy them, so they are decomposed and delegated to other actors, thereby creating
networks of delegations. The process ends when all initial goals can be fulfilled if all
system actors deliver on their delegations.

Exploring the space of alternative dependency networks is a difficult design task.
This is so because such networks represent complex socio-technical systems where or-
ganizational, human and system actors depend on each other to fulfill root-level goals.
Moreover, there are no generic criteria to guide the design process by determining
whether a solution is good-enough, or even optimal. Our ultimate goal is to identify
suitable metrics for evaluating alternative sets of delegations to help a designer to select
the best one.

The purpose of this paper is to propose a framework for the automatic selection and
evaluation of alternative dependency networks, or design alternatives. The framework
supports both the generation and evaluation of alternatives. Specifically, the framework
adopts multi-agent planning techniques and uses an off-the-shelf planning tool. Alter-
natives are evaluated with respect to individual interests of system actors (i.e. their own
goals). Ideas from Game Theory [14] are used to determine whether an alternative is
an equilibrium. In particular, an alternative is an equilibrium if no actor can do better

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 533–550, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



534 V. Bryl, P. Giorgini, and J. Mylopoulos

with respect to its own goals by adopting a different strategy for delegating and ac-
cepting delegations. When combined together, these two steps support the designer of
an information system in selecting alternatives that are in equilibrium with respect to
the local strategies of each actor. An early version of this idea is used in [3] to pro-
pose a framework to generate alternative designs for secure systems. This paper goes
further by describing a prototype tool that generates alternatives, presents some exper-
imental results, and also proposes the evaluation techniques for alternatives based on
game-theoretic notions.

The process of the best alternative selection consists of the following steps:

1. Identify system and human actors, goals and their properties. Define goal decom-
positions and dependency relationships among actors.

2. For each actor identify criteria to evaluate alternatives.
3. Automatically explore the space of alternatives “on the upper level” to identify

assignments of coarse-grained goals to actors.
4. Separately for each actor, automatically explore the alternative ways to satisfy the

goals the actor was assigned at step 3. According to the above identified evaluation
criteria, select “the best” alternative for each actor. During this step, alternative
refinements of coarse-grained goals and delegation dependencies among actors are
explored.

5. Evaluate the combined solution consisting of alternatives identified at step 4. In
case it does not satisfy one or several system actors (e.g. they are overloaded with
respect to others), return to step 4 to search for another alternative.

Ideally, the process stops after a number of iterations when the system structure is
optimized enough to comply with the individual interests of the system actors. If no
satisfactory alternatives can be generated at some step, the designer should return to
steps 1 or 2, and revise either the initial structure, or the evaluation criteria.

Figure 1a presents a simple example of the problem of exploring design alterna-
tives. Note that in this paper we use the i*-like graphical notation [20]. The i* modeling
framework and an associated requirements analysis process (Tropos [2]) are based on
the intentional concepts of an actor, a goal and a social dependency, and supports mod-
eling and analysis during the requirements and design phases. So, in the example Actor
1 has to achieve a Goal, which can be refined into two subgoals Subgoal 1 and Sub-
goal 2. The actor can decide to achieve the goal by itself or delegate it to Actor 2. In
both cases, there are a number of alternative ways that can be adopted. So, for instance,
Actor 1 can decide to delegate to Actor 2 the whole Goal (Figure 1b), or a part of it
(Figure 1c). Shaded goal in the circle of an actor means that the goal is the responsibil-
ity of this actor. Even for this primitive example, exploring all the alternatives is quite
tedious, and a support for alternative generation and evaluation would be beneficial.

The rest of the paper is structured as follows. In the next section we introduce the
example we use through the paper to describe our framework. In Section 3 the issue
of alternative generation and evaluation is detailed. Section 4 describes the P-Tool, an
implemented prototype tool to support the exploration of alternatives, and reports some
experimental results. Finally, in Section 5 we describe the related work, and discuss
conclusions and future work directions in Section 6.



Designing Cooperative IS: Exploring and Evaluating Alternatives 535

(a) Sample problem

(b) 1st alternative

(c) 2nd alternative

Fig. 1. Sample problem and two alternative solutions

2 SDS System Example

Let us consider a small software development company, which typical projects are
medium-scale web based information systems (like, e.g., online library catalog, or
travel agency home page with online trip booking, etc.). Within the company there are
three teams of developers each focused on its area: GUI development, web design, and
database support. Each team can develop subcomponents and/or consult other teams on
questions related to their expertise. A manager is supposed to divide the project into
meaningful parts and perform the assignment of goals to achieve to the development
teams. Note, that a manager can assess how the project goals are refined and what skills
are required to satisfy each subgoal only on the coarse-grained level.

The company has decided to use a software development support system (SDS
system or supporting system in the following), which will facilitate and report commu-
nication among actors, archive a library of reusable components, organize the search
for such components, store and provide the information specific to the project under
development (e.g. contain a glossary of domain specific terms, store domain specific



536 V. Bryl, P. Giorgini, and J. Mylopoulos

Fig. 2. Goal tree for eBooking project

classifications, etc.). Communication between manager and members of the develop-
ment teams is supposed to be carried out only through the supporting system. Teams can
communicate with each other in two cases: when one team wants to redirect a subgoal
which requires the development skills these team does not possess to another team, and
when one team needs to consult another one. The first type of communication is possible
only through the supporting system, while the communication on consultancy can be
done both through the supporting system and e-mail (or even personal communication).

To analyze the above described system let us consider a typical project it might deal
with: web based eBooking system for the travelling agency. As it is represented in
Figure 2, the high-level goal provide eBooking system is refined into three subgoals:
provide user interface, support communication with DB and provide web page. In order
to fulfil the high-level goal, all three subgoals should be satisfied. Two subgoals are
further refined, e.g. provide user interface subgoal can be reached in two alternative
ways: by developing eBooking GUI and consulting web designers to adopt it for web
environment, or by developing web booking interface together with consulting GUI
team on which standard components to use.

The OR-decomposition of the subgoals provide user interface and design web page
introduces alternative solutions for the development of the eBooking system. One of the
alternatives to achieve provide user interface subgoal is depicted in Figure 3. The goal
is decomposed by GUI team actor, which selects one of the alternatives among the two
or-subgoals. The selected subgoal is further decomposed into two subgoals: consult on
standard GUI components and provide booking web interface. The former is satisfied
by GUI team, while the latter is delegated to Web design team.

3 Exploring and Evaluating Alternatives

3.1 Formalization of the Planning Problem

As it was discussed in the Introduction, requirements to the information systems are
conceived as networks of delegations among actors – at least within the frameworks



Designing Cooperative IS: Exploring and Evaluating Alternatives 537

Fig. 3. An alternative way to achieve provide user interface subgoal

such as i* [20], Tropos [2] and the like. Every delegation involves two actors, where
one actor delegates to the other the fulfillment of a goal. The delegatee can either
fulfill delegated goal, or further delegate it, thus creating another delegation relation
in the network. Intuitively, these can be seen as actions that the designer/requirements
engineer ascribes to the members of the organization and the system-to-be. Further,
the task of constructing such networks can be framed as a planning problem: selecting
a suitable system structure corresponds to selecting a plan that satisfies the goals of
human and software agents.

Thus, we have chosen the AI (Artificial Intelligence) planning approach to support
the designer/requirements engineer in the process of selecting the best design alterna-
tive. The basic idea behind planning approach is to automatically determine the course
of actions (i.e. a plan) needed to achieve a certain goal where an action is a transition
rule from one state of the system to another [19,15]. Actions are described in terms of
preconditions and effects: if the precondition is true in the current state of the system,
then the action is performed. As a consequence of an action, the system will be in a new
state where the effect of the action is true.

Planning approach requires a specification language to represent the planning do-
main, i.e.

– the initial state of the system;
– the goal of the planning problem (i.e. the desired final state of the system);
– the description of actions;
– the axioms of background theory.

Once the domain is described, the solution to the planning problem is the (not necessar-
ily optimal) sequence of actions that allows the system to reach the desired state from
the initial state.



538 V. Bryl, P. Giorgini, and J. Mylopoulos

Table 1. Primitive predicates

Goal Properties
type(g : goal, gt : gtype)
subtype(child : gtype, parent : gtype)
and decompositionn(g : goal, g1 : goal, . . . , gn : goal)
or decompositionn(g : goal, g1 : goal, . . . , gn : goal)
satisfied(g : goal)
Actor Properties
can satisfy(a : actor, g : goal)
can satisfy gt(a : actor, gt : gtype)
can decompose gt(a : actor, gt : gtype)
wants(a : actor, g : goal)
Actor Relations
can depend on(a : actor, b : actor)
can depend on gt(a : actor, b : actor, gt : gtype)

To describe the initial state of the system we should specify actor and goal properties,
and social relations among actors. We propose to represent the initial state in terms of
predicates that correspond to

– the possible ways of goal decomposition;
– actor capabilities and desires to achieve a goal;
– possible delegation relations among actors.

The desired state of the system (or the goal of the planning problem) is described
through the conjunction of predicates derived from the description of actor desires in
the initial state. Essentially, for each desired goal a predicate is added to the goal of the
planning problem.

Different types of logic could be applied for this purpose, e.g. first order logic is
often used to describe the planning domain with conjunctions of literals specifying
the states of the system. In Table 1 predicates used to describe the domain of infor-
mation system design are introduced. Predicates take variables of three types: actors,
goals and goal types. To typify goals, type predicate is used. Actor capabilities are de-
scribed with can decompose and can decompose gt predicates, which means that an
actor has enough capabilities to satisfy a specific goal or any goal of a specific type,
accordingly. Social dependencies among actors are reflected by can depend on and
can depend on gt predicates, which means that one actor can delegate to another actor
the fulfilment of any goal or, in the latter case, any goal of a specific type. Predefined
ways of goal refinement are represented using decomposition predicates, while with
can decompose gt the scope of each actor can be represented: an actor can refine, or
knows how to refine, only goals within his scope. Initial actor desires are represented
with wants predicate. When the goal is fulfilled satisfied predicated becomes true for it.

In Figure 4, a part of SDS System example formalization is presented. The goal types
tConsult, tWDDevel and ManagScope are used.

In i*/Tropos approach, when drawing the model of a system, the de-
signer/requirements engineer assigns goals to actors, defines delegations of goals from



Designing Cooperative IS: Exploring and Evaluating Alternatives 539

type (ConsultOnGUIToWebAdoption, tWDConsult)
subtype (tWDConsult, tConsult)
can depend on gt (GUITeam, WDTeam, tConsult)
can depend on gt (WDTeam, GUITeam, tConsult)

type (ProvideBookingWebInterface, tWDDevel)
type (DesignFromScratch, tWDDevel)
type (ProvideRegistrationForm, tWDDevel)
can satisfy gt (WDTeam, tWDDevel)

type (ProvideEBookingSystem, tManagScope)
can decompose gt (Manager, tManagScope)

Fig. 4. Predicates for SDS System example

one actor to another, and identifies appropriate goal refinements among the predefined
alternative refinements. Thus, the following actions will be used by a planner to find a
way to fulfill the goals of the system actors.

Goal satisfaction. An actor can satisfy a goal only if the achievement of the goal is
among its desires and it can actually satisfy it. The effect of this action is the ful-
fillment of the goal.

Goal delegation. An actor may have not enough capabilities to achieve its goals by
itself, and so it has to delegate their satisfaction to other actors. This passage of
responsibilities is performed only if the delegator wants a goal to be achieved and
can depend on the delegatee to achieve it. The effect of this action is that the delega-
tor does not worry any more about the satisfaction of the goal, while the delegatee
takes the responsibility for the fulfillment of the goal and so it becomes its own
desire to achieve it. The delegator does not care how the delegatee satisfies the goal
(e.g. by its own capabilities or by further delegation), it is up to the delegatee to
decide it.

Goal decomposition/refinement. As in different goal-oriented modeling frameworks
(e.g. as in Tropos and KAOS [5]) two types of goal refinement are supported: OR-
decomposition, which suggests the list of alternative ways to satisfy the goal, and
AND-decomposition, which refines the goals into subgoals which all are to be sat-
isfied in order to satisfy the initial goal. An actor can decompose a goal only if it
wants it to be satisfied, and only in the way which is predefined in the initial state
of the system. The effect of decomposition is that the actor which refines the goal
focuses on the fulfillment of subgoals instead of the initial goal. It is assumed that
different actors can decompose the same goal in different ways.

In addition to actions, axioms of the planning domain can be defined. These are
rules that hold in every state of the system and are used to complete the description of
the current state. For example, to propagate goal properties along goal refinement the
following axiom is used: a goal is satisfied if all its and-subgoals or at least one of the
or-subgoals are satisfied.



540 V. Bryl, P. Giorgini, and J. Mylopoulos

3.2 Evaluation Procedure

The alternative designs generated by the planner should be evaluated, amended and ap-
proved by the designer. The tricky point here is the solution evaluation which can be
complex enough even for experienced designers with considerable domain expertise.
Alternative requirements structures can be evaluated both from global and local per-
spectives, i.e. from the designer’s point of view and from the point of view of individual
actors. The optimality of a solution in the global sense could be assessed with respect
to the following.

– Length of the obtained plan. The number of actions in the obtained plan is often
the criteria for the planner itself to prefer one solution to another. Thus, it can be
assumed that the obtained plan is already (locally) optimal in the sense of the length
minimization.

– Overall plan cost. This is closely related with the idea of plan metrics introduced
in PDDL 2.1 [8]. Plan metrics specify the basis on which a plan is evaluated for
a particular problem (e.g. action costs or duration), and are usually numerical ex-
pressions to be minimized or maximized. However, the complexity of the problem
of optimizing a solution with respect to the defined metrics is very high and the
feature is still poorly supported by the available planning tools [8].

– Degree of satisfaction of non-functional requirements. E.g. in [12], a set of rules
is proposed to identify application-specific parameters and functions to quantify
impacts of different explored alternatives on non-functional goals (e.g. security,
performance, usability) satisfaction.

In this paper we are not dealing with the global evaluation of generated alternatives.
However, the first point, (sub)optimality of the solution with respect to the plan length,
is automatically taken into account by the planner.

Local evaluation of the obtained plan is a much more complex task. Indeed, a chal-
lenging characteristic of modern information system design is that the human agents
should be taken into account. They can be seen as players in a game theoretic sense
as they are self-interested and rational. This means they want to minimize the load im-
posed personally on them, e.g. they want to constraint the number and the complexity
of actions they are involved in1. In a certain sense non-human agents, i.e. system com-
ponents, are players as well as it is undesirable to overload them. Each player has a
set of strategies he could choose from, e.g. he could decide whether to satisfy a goal
himself or to pass it further to another system actor. Strategies are based on the player’s
capabilities and his relations (e.g. subordination, friendship, or trust – all represented as
possible dependencies in our framework) with other human and artificial agents in the
system.

The substantial difficulty in applying game theoretic ideas to our problem is that
all actors of an information system should work cooperatively as a solid mechanism
satisfying the overall organizational goal. Differently from classical non-cooperative
game theory, where all players choose their strategies independently and simultaneously

1 In this work we focus on the load constraints only, and do not consider other factors which
influence the player’s decision to deviate, e.g. risk concerns.



Designing Cooperative IS: Exploring and Evaluating Alternatives 541

Table 2. Costs for the SDS System example

Action Cost Actors and Goals
Satisfy 3 goals of type tConsult for WDTeam, GUITeam and DBTeam;

goal FindStandardTemplate for SupportingSystem
4 goals of type tWDDevel for WDTeam, goal ProvideBookingGUI

for GUITeam; goal SupprtDBCommunication for DBTeam
Delegate 1 SupportingSystem; delegations between WDTeam, GUITeam

and DBTeam
2 all other actors and goals

Refine 2 all actors and goals

before the game, in our problem actors’ choices are closely interrelated. A player cannot
independently change his strategy because the new action sequence will very likely be
unsatisfactory, i.e. it will not be a solution anymore. Thus, to satisfy the system goals
it will be necessary to impose some additional load (to compensate the load this player
tries to avoid) on some other actors – and it might happen that they will not be satisfied
with the new solution, and will try to deviate from the strategy they were imposed, and
so on and so forth. Thus, if one actor wants to deviate from the generated solution, the
re-planning is needed to search for another alternative option, which is then evaluated,
possibly, to be re-plan again. The process stops when a (sub)optimal alternative option is
found. In our framework the following “replan-towards-optimality” procedure is used.

First, for all actors ai, i = 1, n and all goals gk, k = 1, m, where n and m are the
number of actors and goals, respectively, the costs are defined:

– csik is the cost for the actor ai of satisfying the goal gk;
– crik is the cost for the actor ai of refining the goal gk;
– cdijk is the cost for the actor ai of delegating a goal gk to the actor bj .

In Table 2 the costs of actions for actors from the SDS System example are defined.
Then, the cost of a given alternative P for the actor ai is calculated by summing up

the costs of actions in P which ai is involved in, and is denoted by

c (P, ai) =
∑

delegate(ai,bj ,gk)∈P

cdijk+

∑

decomposel(ai,gk,gk1,...,gkl)∈P

crik +
∑

satisfy(ai,gk)∈P

csik,

where decomposel(ai, gk, gk1, ..., gkl) stands for the decomposition of gk into l sub-
goals gk1, ..., gkl.

If P is the alternative depicted in Figure 3, then c (P, GUITeam) = 2+2+3+2 =
9, c (P, WDTeam) = 2 + 4 = 6 and c (P, SupportingSystem) = 1 + 1 = 2.

Note, that in our framework we do not use the notion of utility, which is an important
game theory construct. This is done mainly for the simplicity reasons. The utility of an
alternative P for the actor ai can be defined as the difference between maximum upper
bound for the solution cost for actor ai and c (P, ai). Basically, utility says how much
an actor “saves” with the alternative P being selected.



542 V. Bryl, P. Giorgini, and J. Mylopoulos

After the costs are computed, for each actor the conditions are defined upon which
an actor decides whether to deviate from an alternative P or not. The conditions could
be either one of the following, or both.

– Actor ai whose predefined upper cost bound cup
i is less than c (P, ai) is willing to

deviate from P.
– Actor ai whose predefined upper bound cdevup

i on cost deviation is less than
c (P, ai) − avgi(c (P, ai)) wants to deviate from P .

In this work we consider only the first deviation condition – predefined upper cost
bounds.

Finally, the evaluation procedure is the following.

– An alternative P is generated with the help of a planner.
– Cost c (P, ai) is calculated for each ai.
– Actor amin is identified which value of c (., .) is minimal among all actors which

want to deviate from P .
– The first most expensive action dworst (the one with the highest cost) is identified

among actions of P in which amin is involved.
– Negation of dworst is added to the initial planning problem, and replanning is per-

formed. If no plan can be found, the next dworst is identified.

The process stops when an equilibruium-like solution is found, i.e. no actors are willing
to deviate from it and the designer approves this solution. The designer remains in
the process all the time, and can stop the iterations whenever he thinks the satisficing
alternative is generated.

This evaluation procedure is used at the following steps of the selection of the best
alternative, defined in the Introduction.

– At step 3, while selecting the best assignments of coarse-grained goals to actors.
– At step 4, separately for each actor, when exploring the ways to satisfy the goals

the actor was assigned.
– At step 5, when evaluating the combined solution consisting of alternatives iden-

tified at step 4. Here the replanning is performed only for the alternative to which
dworst belongs to.

4 P-Tool and Experiments

4.1 Choosing the Planner

One important step we have performed during the implementation of the proposed
framework, is choosing the “right planner” among off-the-shelf tools available. In the
last years many planners have been proposed [15]. In order to choose one of them the
following requirements were considered:

– The planner should not produce redundant plans. Under non-redundant plan we
mean that, by deleting an arbitrary action of the plan, the resulting plan is no more
a “valid” plan (i.e. it does not allow to reach the desired state from the initial state).



Designing Cooperative IS: Exploring and Evaluating Alternatives 543

(: action Satisfies
: parameters(?a − t actor, ?g − t goal
: precondition (and

(or(can satisfy?a?g)
(exists(?gt − t gtype)(and(type?g?gt)

(can satisfy gt?a?gt)))
(wants?a?g)

: effect (and
(satisfied?g)
(not(wants?a?g))))

(: derived
(type?g − t goal?parent − t gtype)
(exists(?child − t gtype)

(and(subtype?child?parent)(type?g?child))))

Fig. 5. Domain description using PDDL

– The planner should use PDDL (Planning Domain Definition Language) since it is
becoming a “standard” planning language and many research groups work on its
implementation.

– The language should support a number of “advanced” features (e.g. derived predi-
cates) that are essential for implementing our planning domain, i.e. it should be at
least PDDL 2.2. [6].

The first requirement is related to the question of the optimality of the generated
design decisions. We argue that it is not necessary to focus on the optimal design: human
designers do not prove that their design is optimal, why should a system do it? Instead,
in our framework the plan is required to be non-redundant, which guarantees at least
the absence of alternative delegation paths since a plan does not contain any redundant
actions.

We have compared a number of planners with respect to above requirements (see
[3] for the details). Finally, we have chosen LPG-td [13], a fully automated system for
solving planning problems, supporting PDDL 2.2 specification for implementing our
planning domain.

Then, we have implemented our planning domain in PDDL 2.2. Figure 5 presents
the specification of one action and one domain axiom in PDDL 2.2.

Figure 6 shows the plans generated by LPG-td for satisfying provide user interface
and provide web page subgoals. The former plan is illustrated in Figure 3, the latter –
in Figure 7.

Preliminary experiments were conducted to test the scalability of the approach. A
very simple “core” problem was considered, with three actors A, B and C and two
goals, G1 and G2, which A wants to be achieved, and B and C can satisfy. Then “ad-
ditional” actors with the dependencies among them were added to the problem, but
they did not interfere at all with “core” subproblem. The idea was to check whether the
search time of the plan to achieve G1 and G2 depends on the number of “additional” ac-
tors and dependencies among them. The experiments showed that, at least with respect



544 V. Bryl, P. Giorgini, and J. Mylopoulos

(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI1

ProvideBookingWebI ConsultStandGUI)
(SATISFIES GUITeam ConsultStandGUI)
(PASSES GUITeam SupportingSystem ProvideBookingWebI)
(PASSES SupportingSystem WDTeam ProvideBookingWebI)
(SATISFIES WDTeam ProvideBookingWebI)

(a) Provide user interface

(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegistrProc
ProvideRegForm ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(SATISFIES WDTeam DesignFromScratch)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)

(b) Provide web page

Fig. 6. Plans for ProvideUI and ProvideWebPage subgoals

Fig. 7. Diagram for the plan for ProvideWebPage subgoal

to this example, the approach is scalable. Basically, the search time for the problem
with 10 and with 120 “additional” actors is the same (less than one second), only the
parsing time increases insignificantly. At the same time, search time for the plan with
long delegation chains (more than 30 steps) is much greater (around 15 seconds). Of
course, the scalability issue should be explored much more carefully (actually, this is



Designing Cooperative IS: Exploring and Evaluating Alternatives 545

(a) Identifying actor properties

(b) i* diagram for the generated alternative

Fig. 8. P-Tool

one of our future work plans), but the above reported preliminary experiments have
shown promising results.

4.2 P-Tool

We have developed P-Tool, an implemented prototype to support the de-
signer/requirements engineer in the process of exploring and evaluating alternatives.
The tool has the interface for the input of actors, goals and their properties, which
can be seen in Figure 8a. LPG-td is built in the tool, and is used to generate design



546 V. Bryl, P. Giorgini, and J. Mylopoulos

alternatives, which are then represented graphically using i* notation, see Figure 8b for
an example.

In the following we will illustrate how the steps 3–5 of our approach (see Introduc-
tion) could be supported by the P-Tool. For the sake of simplicity we will leave out
some details. Steps 1 and 2 are illustrated in Section 3. Predefined upper cost bound cup

i

for all actors ai, i = 1, n is equal to 14 units on step 4, and 18 units on step 5 (if no
solution can be found at step 4, the constraints could be relaxed by increasing the upper
cost bound up to 18).

Step 3. First, the planning “on the upper level” for Manager actor is performed. We
will skip the process description. The resulting alternative can be seen in the screen-
shot in Figure 8b. Manager decomposes ProvideEBookingSystem goal into ProvideUI,
ProvideWebPage and SupportDBCommunication subgoals, and passes them through the
SupportingSystem to GUITeam, WDTeam and DBTeam, respectively.

Step 4. We will illustrate this step with exploring alternatives for the subgoal
ProvideWebPage assigned to WDTeam actor. Firstly, an alternative presented in Figure 6
and Figure 7 is generated. For this alternative c (P1, WDTeam) = 2+2+2+4+4+1 =
15, which does not satisfy WDTeam actor (cup

i = 14 < 15), so it tries to decrease the
imposed load. According to the evaluation procedure described in Section 3.2, the ac-
tion (SATISFIES WDTeam ProvideRegForm) is selected as dworst. When this action
is negated, the planner is not able to find a solution. Thus, the next dworst is identified,
which is (SATISFIES WDTeam DesignFromScratch). New alternative is generated,
see Figure 9, for which c (P2, WDTeam) = 2 + 2 + 2 + 4 + 2 + 1 = 13. This last
alternative is then fixed as it satisfies WDTeam actor.

Step 5. When partial plans are combined into the plan P and evaluated, it appears
that c (P, GUITeam) = 9 and c (P, WDTeam) = 13 + 6 = 19. Actor WDTeam tries
to deviate from the alternative P , and (SATISFIES WDTeam ProvideBookingWebI)
of the plan depicted in Figure 6 is identify as dworst and negated. By replanning we get
an alternative presented in Figure 10, for which c (P ′, GUITeam) = 2+2+1+2 = 9
and c (P ′, WDTeam) = 1 + 3 = 4, thus the overall cost of a new combined solution
for WDTeam being equal to 4 + 13 = 17 < 18. This new alternative satisfies both
GUITeam and WDTeam actors.

5 Related Work

Modeling requirements and designing information systems and organizations in terms
of goals and their interdependences has been a topic of considerable research interest
during the last decades [18]. A number of goal-oriented approaches for requirements
representation and reasoning were introduced, e.g. KAOS [5]. Requirements engineer-
ing is considered to be a crucial part of software development process [18]. Careful
elicitation and analysis of requirements help to develop a system that meets user’s ex-
pectations, is trustful and robust.

The field of AI planning has been intensively developing during the last decades, and
has found a number of applications (robotics, process planning, autonomous agents,
etc.). Planning approach recently has proved to be applicable in the field of automatic
Web service composition [15]. There are two basic approaches to the solution of plan-



Designing Cooperative IS: Exploring and Evaluating Alternatives 547

(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegForm
ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(PASSES WDTeam SupportingSystem FindStandardTemplate)
(SATISFIES SupportingSystem FindStandardTemplate)

(a) Plan

(b) Diagram

Fig. 9. New plan for ProvideWebPage subgoal

ning problems [19]. One is graph-based planning algorithms in which a compact struc-
ture, called Planning Graph, is constructed and analyzed. In the other approach the
planning problem is transformed into a SAT problem and a SAT solver is used.

There exist several ways to represent the elements of a classical planning problem,
i.e. the initial state of the world, the system goal, or the desired state of the world, and
the possible actions system actors can perform. The widely used, and to the certain
extend standard representation is PDDL (Planning Domain Definition Language), the
problem specification language proposed in [10]. Current PDDL version, PDDL 2.2
[6] used during the last International Planning Competition [11], supports many useful
features, e.g. derived predicates and timed initial literals.

A few works can be found which relate planning techniques with information sys-
tems requirements analysis and design. In [1] a program called ASAP (Automated
Specifier And Planner) is described, which automates a part of the domain-specific
software specification process. ASAP assists the designer in selecting methods for



548 V. Bryl, P. Giorgini, and J. Mylopoulos

(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI2

ProvideBookingGUI ConsultOnGUIToWebAdoption)
(SATISFIES GUITeam ProvideBookingGUI)
(PASSES GUITeam WDTeam ConsultOnGUIToWebAdoption)
(SATISFIES WDTeam ConsultOnGUIToWebAdoption)

(a) Plan

(b) Diagram

Fig. 10. New plan for ProvideUI subgoal

achieving user goals, discovering plans that result in undesirable outcomes, and finding
methods for preventing such outcomes. The disadvantage of the approach is that the
designer still performs a lot of work manually while determining the combination of
goals and prohibited situations appropriate for the given application, defining possible
start-up conditions and providing many other domain-specific expert knowledge.

Castillo et al. [4] present an AI planning application to assist an expert in design-
ing control programs in the field of Automated Manufacturing. The system they have
built integrates POCL, hierarchical and conditional planning techniques (see [4,15] for
references). The authors consider standard planning approaches to be not appropriate
with no ready-to-use tools for the real world, while in our paper the opposite point of
view is advocated. Another recent application of the planning approach to the design
of the secure systems is proposed by Gans et al. [9]. The work is based on i* modeling
approach [20] and ConGolog (see [15] for description and references), a logic-based
planning language. However, the authors focus more on representing/modeling trust in
social networks, than on the design automation, and do not go far in explaining how
they exploit the planning formalism.

Game theory is an established discipline which deals with conflicts and cooperation
among rational independent decision-makers, or players. The key concept in classical
game theory is the notion of equilibrium [14] which defines the set of strategies, one
for each player, which none of the independent rational players wants to deviate from.
By playing an equilibrium each player maximizes his utility locally, given some con-
straints. For example, playing the Nash equilibrium means that no player can benefit



Designing Cooperative IS: Exploring and Evaluating Alternatives 549

when deviating from his equilibrium strategy given that all other players play the equi-
librium.

Game theory is applied in various areas, especially in economics (modeling markets,
auctions, etc.), corporate decision making, defense strategy, telecommunications net-
works and many others. Among the examples are the applications of game theory to so
called network games (e.g. routing, bandwidth allocation, etc.), see [17] for references.

6 Conclusions

We have proposed a framework for automatic exploration of the space of alternative ac-
tor dependency networks that satisfy an initial set of system actor goals. The framework
uses planning techniques to explore the space of design alternatives. A prototype tool
(P-Tool) with a built-in off-the-shelf planner is used to generate alternatives. These are
evaluated in terms of criteria founded on game-theoretic notions.

This is clearly a first step towards making more systematic and tool-supported the
process of designing actor dependency models for a given set of initial stakeholder
goals. More needs to be done to ensure the scalability of the P-Tool. In particular, we
would like to include the use of heuristic (e.g., A*-like [16]) techniques to reduce the
space of alternatives under considering by filtering away early on alternatives that look
bad. We would also like to adopt proposals for better structuring actor dependency
models. One such proposal [7] is to make i* models “service-oriented” by encapsulating
composite actors and allowing delegations to it only through a well-defined service
interface. Such proposals reduce dramatically the number of possible solutions to a
given multi-actor planning problem.

Acknowledgements

We thank Alfonso Gerevini and Alessandro Saetti for the support on the use of LPG-td
planner. This work has been partially funded by EU Commission, through the SEN-
SORIA and SERENITY projects, by the FIRB program of MIUR under the ASTRO
project, and also by the Provincial Authority of Trentino, through the MOSTRO project.

References

1. J. S. Anderson and S. Fickas. A proposed perspective shift: viewing specification design as
a planning problem. In IWSSD ’89: 5th Int. workshop on Software specification and design,
pages 177–184, 1989.

2. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An agent-
oriented software development methodology. JAAMAS, 8(3):203–236, 2004.

3. V. Bryl, F. Massacci, J. Mylopoulos, and N. Zannone. Designing secure systems through
planning. In CAiSE’06, pages 33–47. Springer, 2006.

4. L. Castillo, J. Fdez-Olivares, and A. Gonzlez. Integrating hierarchical and conditional plan-
ning techniques into a software design process for automated manufacturing. In ICAPS 2003,
Workshop on Planning under Uncertainty and Incomplete Information, pages 28–39, 2003.



550 V. Bryl, P. Giorgini, and J. Mylopoulos

5. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20:3–50, 1993.

6. S. Edelkamp and J. Hoffmann. Pddl2.2: The language for the classical part of the 4th inter-
national planning competition. Technical Report 195, University of Freiburg, 2004.

7. H. Estrada. Private communication.
8. M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal planning do-

mains. J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.
9. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the impact of trust and distrust

in agent networks. In AOIS-01, pages 45–58, 2001.
10. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and

D. Wilkins. PDDL – The Planning Domain Definition Language. In AIPS-98, 1998.
11. IPC-4 Homepage. International Planning Competition 2004. http://ls5-www.cs.uni-

dortmund.de/ edelkamp/ipc-4/.
12. E. Letier and A. van Lamsweerde. Reasoning about partial goal satisfaction for requirements

and design engineering. SIGSOFT Softw. Eng. Notes, 29(6):53–62, 2004.
13. LPG Homepage. LPG-td Planner. http://zeus.ing.unibs.it/lpg/.
14. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
15. J. Peer. Web Service Composition as AI Planning – a Survey. Technical report, University

of St. Gallen, 2005.
16. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, second

edition, 2002.
17. E. Tardos. Network games. In Proceedings of the Annual ACM Symposium on Theory of

Computing, 2004.
18. A. van Lamsweerde. Requirements engineering in the year 00: a research perspective. In

ICSE-00, pages 5–19. ACM, 2000.
19. D. S. Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93–123, 1999.
20. E. S.-K. Yu. Modelling strategic relationships for process reengineering. PhD thesis, Uni-

versity of Toronto, 1996.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 551 – 568, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Natural MDA: Controlled Natural Language for Action 
Specifications on Model Driven Development 

Luciana N. Leal1, Paulo F. Pires2, Maria Luiza M. Campos1, and Flávia C. Delicato2 

1 DCC - IM/NCE  
Federal University of Rio de Janeiro 

P.O. Box 2324 - Rio de Janeiro - RJ - 20.001-970 - Brazil 
2 DIMAp 

Federal University of Rio Grande do Norte 
P.O. Box 1524 - Natal - RN - 59.072-970 – Brazil 

luciananl@posgrad.nce.ufrj.br, paulo.pires@dimap.ufrn.br, 
mluiza@nce.ufrj.br, flavia.delicato@dimap.ufrn.br 

Abstract. Current technologies are continuously evolving and software 
companies need to adapt their processes to these changes. Such adaptation often 
requires new investments in training and development. To address this issue, 
OMG defined a model driven development approach (MDD) which insulates 
business and application logic from technology evolution. Current MDD 
approaches falls short in fully derive implementation from models described at 
a high abstraction level. We propose a controlled natural language to 
complement UML models as an action specification language. In this article, 
we describe the language, its impact on systems development and the tools 
developed to support it. In order to demonstrate the language usability we 
present an application example.  

1   Introduction 

Modeling techniques have a long tradition in the software engineering area and their 
efficient use is a critical factor to the success of every enterprise-scale solution. 
Recent researches have tried to push modeling techniques a step further by focusing 
on two main points: (i) enhancing existent models with notations that allow users to 
express system perspectives with value added to software architects and developers; 
and (ii) proposing tools and techniques that allow models to be directly and fully 
mapped into a programming language code. One widely investigated proposal in this 
sense is Model Driven Development (MDD) [15]. MDD is a model driven system 
development approach where extensive models are progressively built and refined 
during project life cycle until there is enough information to generate code. Model 
Driven Architecture (MDA) is the OMG [23] view of MDD. The main goal of MDA 
approach is to make the application logic independent from the technology that will 
be used to implement the system. OMG tries to achieve this goal by specifying 
mechanisms for standardization of notations and tool interoperability [15].  

The MDA approach adopts the Unified Modeling Language (UML) [24] as its 
system modeling language. MDA exploits the UML extensibility mechanisms, such 



552 L.N. Leal et al. 

as stereotypes and tagged values, in order to extend it, raising its code generation 
capacity to a level where it is possible to generate artifacts of any target technology. 
However, in spite of the fact that the UML notation already includes mechanisms to 
represent system behavior, such mechanisms are not enough to express, in a complete 
and precise way, all the execution logics of a given system. By system behavior we 
mean a set of actions that must be executed to concretely realize a use case, i.e., the 
description of a given system behavior should refine and complement the 
corresponding use case. Using current UML techniques, it is not possible to fully 
automatize the source code generation from UML models. The central problem in 
specifications of system behavior is that the UML interaction diagrams are scenario-
based [8]. A use case can be realized by a set of sequence diagrams, where each one 
describes each possible scenario. The problem that rises is to process the several 
diagrams which are related to a use case in a single implementation [27].  

To overcome this limitation, in early 2000, influenced by discussions on action 
semantics theory [22], a working group was set up by the OMG to create a definition 
of action semantics that was first added to version 1.5 of UML™ in 2003 [24]. This 
initiative comprised a meta-model to support the formal description of actions and the 
proposition of associated languages. The goal of these languages is to make systems 
specification complete and independent from any given target technology. With this 
goal in mind, many action specification languages have been created such as the: 
Kabira Action Semantics [13], Object Action Language (OAL) [4] and Action 
Specification Language (ASL) [34]. By using these languages, all system 
implementation can be automatically generated since such languages have the same 
constructors that general purpose programming languages, thus facilitating 
transformations between them. As MDA approach states, the users of these languages 
are the system designers. However, we argue that current ASLs are too close to 
programming languages since they need explicit mechanisms to declare variables, to 
assign values and to create, destroy and associate objects. Therefore, they can not be 
assumed as having a high level of abstraction, mainly when considering the MDA 
goal, which is to be used as a design level language. As a consequence, they are not 
suitable as specification languages for business and system designers. To deal with 
these problems, we consider a solution that can bring the system behavior 
specification closer to the problem definition and, at the same time, is accurate 
enough to be processed and transformed into executable code. 

In this paper, we discuss the use of the Natural MDA language, which was initially 
presented in [16, 17]. Natural MDA is an action specification language with a high 
abstraction level that is aligned to MDA objectives. The proposed language aims to 
raise the systems specification abstraction level, to complement UML and, as a 
consequence, to reduce the gap between the business domain objects and 
programming language elements. An application example is presented, exploring the 
language functionalities by using two associated tools specifically designed to 
augment MDD tools with Natural MDA language.  

Since it complements UML and, at the same time, is directly translated to 
programming code, the proposed language has the frequently conflicting requirements 
of keeping a high abstraction level and being machine-processable. To meet such 
requirements, we consider the hypothesis where controlled natural languages can be 
used to specify systems and to transform these specifications into executable code. 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 553 

Despite the existence of many controlled natural languages [6, 28], we have not found 
any that is aligned to MDA goals. 

The next sections cover the following topics: (i) the grammar and the main features 
of the language; (ii) a brief discussion on the language shortcomings; (iii) the 
description of a tool developed to process the language; (iv) the description of a tool 
developed to aid the language usage; (v) the description and analysis of an example of 
application built to validate the language. 

2   Model Driven Architecture 

MDA is an OMG initiative whose goal is to provide a greater separation between the 
system specification and its implementation [15]. MDA approach includes three 
different system models: 

• Computational Independent Model (CIM): this model represents the system 
independently from the computational model. It focuses on the system 
requirements. The structural and processing details are hidden or not described. 
This model is also known as the domain model. 

• Platform Independent Model (PIM): this model is the representation of the system 
functionalities. It focuses on business rules, which are the part of the specification 
that do not depend on the technology. 

• Platform Specific Model (PSM): this model is the representation of the 
technological details of the system implementation platform. 

A key MDA feature is the adoption of transformation mechanisms. Through these 
mechanisms a high level model can be transformed in a lower level model. For 
instance, PSMs are generated by transformation mechanisms using as input PIMs and, 
in the same way, implementation code can be generated from PSMs.  

MDA has adopted UML as the language for modeling PIMs and PSMs. By being 
based on a standard system modeling language, the generated specification is 
platform independent and can be transformed into a platform specific model.  

Besides the existence of these different abstraction levels of models, there are six 
modeling maturity levels [33], indicating the role that models play on system 
development process: 

• Level 0: there are no specification documents. The success of the project depends 
exclusively on the software developers. 

• Level 1: the specification is textual and written by using natural language. Since 
natural language is ambiguous, software developers make their decisions based on 
their own interpretation of the text. 

• Level 2: the specification is written in controlled natural language, with some 
diagrams to explain its structure. 

• Level 3: the specification is composed of models, represented through both 
diagrams and text, with a well defined and specific meaning. The texts in natural 
language only explain the motivation and the context of the models and 
complement some details. The models are the most important artifact of the 
analysis and the design. At this level, software developers still make their own 
decisions, but such decisions have less influence over the system architecture. 



554 L.N. Leal et al. 

• Level 4: the specification is composed of models with text written in natural 
language. The models are precise enough to have a direct association with the final 
implementation, despite being in different abstraction levels. This modeling level is 
the main goal of MDA. At this level, software developers can not make their own 
decisions. The models and the implementation keep themselves synchronized. 
Iterative and incremental development is made easy by the direct transformation 
between model and code. 

• Level 5: the specification is based only in models. Models are precise and detailed 
enough to allow complete code generation and no interference is needed for this 
transformation. At this level, the UML code generators are as trustworthy as 
compilers, therefore there is no need to directly handle the generated code. The 
languages in which these models are written can be considered to be the next 
generation of programming languages. 

2.1   Action Specification Languages 

Object Constraint Language (OCL) [33] was the first step of UML to raise the models 
expressivity, defining business rules in a clear and unambiguous way. However, OCL 
is not sufficient to precisely define a system behavior, because it represents only static 
aspects of the system, and does not have mechanisms to express the occurrence and 
execution of events and actions. Despite ambiguity problems, textual descriptions are 
employed to capture those actions and events in UML models. The Precise Action 
Semantics for UML [21] which incorporates the theory of action semantics in UML 
1.5 was proposed to fill this gap. 

The main purpose of action languages is to complement the specification of 
operations with enough details to allow verification of models and to translate them 
into executable code [23]. OMG states that action languages should follow an 
industry standard, have a complete processing specification, be verifiable through 
simulation and generate complete code from UML models. OMG also determines 
some basic required features. Action languages should be: 

• UML compatible 
• Executable and complete 
• Implementation independent 
• At a level of abstraction above implementation 

However, OMG does not specify nor recommends any action specification 
language. Some authors proposed their own action specification languages, like 
Action Specification Language [34] and Java like Action Language (JAL) [9]. These 
languages are compliant with the first three features listed above, but they are not at a 
level of abstraction above implementation. Both languages contain constructors 
directly related to programming such as: attribute reading and modification, variable 
declaration, and object manipulation. Another proposal is to extend OCL to include 
actions [14]. The main concerns of the authors are to keep the result language 
compatible with UML and to avoid overlapping modeling representations. Thus, the 
designers can specify dynamic requirements in a declarative way and still at an 
abstract level. However, these action languages are still very close to programming 
languages. We believe action languages should not contain specific details of 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 555 

programming languages if they are intended to reach a separation between the 
specification and the implementation system.  

Although there are some initiatives to implement action semantics [4,9,13,14,34], 
they are also not at the desired abstraction level. Since functionality specification is a 
designer role, the definition of a more suitable language for the design phase is 
necessary. 

UML has many ways of representing behavior and there is little consensus on 
which technique should be used in the context of MDA. In [20] there is a 
classification of these techniques and a discussion on the strengths and weakness of 
each one. UML divides the universe of modeling artifacts into structural and 
behavioral models. A large amount of the infrastructure code for an application can be 
generated from structural models. A number of tool vendors provide code generators 
that create code skeletons, but the business logic has to be added by programmers. In 
case of relatively simple operations, some tools can generate the implementation of an 
operation from OCL post-conditions. But the dynamics of the system still can not be 
fully specified in OCL [15]. An alternative to the utilization of current languages is 
the adoption of controlled natural languages, which will be presented in next sections. 

2.2   Controlled Natural Languages 

A controlled natural language is a subset of natural languages that can be processed 
by computers and is expressive enough to allow intuitive use by non experts. 
Controlled natural languages seek the reduction or elimination of the complexity and 
ambiguity of natural languages [1]. Despite the contradictions that exist on the term 
“controlled natural language”, because the term “natural” implies that it should not be 
“controlled” and vice-versa, we chose to adopt it because it is widely used in the 
literature. 

Considering the conceptual differences of the application domain and software 
development, it is not a trivial task to specify a system. To reduce these differences, 
some works propose the use of controlled natural language as an application-specific 
declarative specification language. Thus, these specifications can be automatically 
transformed into some programming language and, therefore, become executable. 

Some authors argue that the use of formal specification languages can eliminate 
problems related to natural language, such as ambiguity and imprecision. However, 
due to the necessity of communication and comprehension among the members of the 
development team, we can not always substitute documents written in natural 
languages by formal specifications. To improve the quality of specifications without 
loosing readability, some works propose controlled natural languages with well-
defined syntax. 

In [19] the use of controlled natural language is suggested to invoke previously 
developed components. To accomplish this, the components are described by an 
ontology. This ontology represents the components functionalities, their inputs and 
outputs and the types of these inputs and outputs. The contribution of this work is the 
usage of an interlingua, which is an universal language that can be expressed in 
different human languages [30]. The specifications can be expressed by many natural 
languages. Despite being targeted to software components reuse, this work is focused 



556 L.N. Leal et al. 

on implementation reuse, and not on modeling reuse. On the other hand, MDA 
focuses on models. 

Considering the need of a requirements specification language that is convenient 
for domain experts, but is also capable of being mapped to an implementation, in [6] a 
Two-Level Grammar (TLG) is defined. TLG is an object-oriented requirements 
specification language, based on natural language, with enough formalism to derive 
the corresponding implementation. The technique used on the transformation consists 
on identifying objects and relations on the problem domain based on nouns and verbs 
between them. This grammar was initially created as a language to specify 
programming languages. With the appearance of executable models, it became an 
executable specification language, allowing the transformation of requirements 
expressed in natural language to a formal specification. 

Although TLG allows platform independent specifications, presenting a smaller 
gap to domain terms, its specifications are only text written in natural language, thus 
hindering the specification understanding. Our opinion is that a graphical notation, 
like UML, eases visualization and can be complemented by a natural language 
grammar, instead of completely replaced by it. 

Natural language oriented models are widely used in requirements modeling. This 
kind of requirements model has to be reinterpreted by system analysts into a more 
precise representation [18]. Therefore, a semi-automatic transformation to map the 
requirements models into conceptual object models would be really useful. The 
author in [18] states that it would be necessary to incorporate linguistic approaches to 
achieve a better processing of the information. 

3   Natural MDA: An Action Specification Language 

In Section 2, we presented the main goals of the MDA approach and the main 
advantages and limitations of action specification languages and controlled natural 
languages. We realized that by combining the advantages of both controlled natural 
languages (to lay on an abstraction level above implementation) and action languages 
(to be UML compatible, executable, complete and platform independent) we can 
reach the main goal of MDA, which is the complete system modeling, in a precise and 
technology independent way. 

This Section describes Natural MDA language. The design of the proposed 
language was based on two essential requirements: to provide a suitable abstraction 
level for the system design phase; and to be processable and complementary to UML 
(MDA compliant). 

The main idea is that the language grammar should define only the valid sentence 
types; i.e., the sentence composition rules. Terms that are not keywords of the 
language should be represented as references to model elements (classes, attributes 
and operations) through their descriptions. We use the UML extension mechanism 
known as tagged values to associate descriptions to these model elements. These 
model element descriptions are used to describe the actions for operations. 

According to the maturity level classification for modeling languages presented in 
Section 2, UML models augmented with Natural MDA language is a step further 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 557 

towards a level 5 language. In the following section, we show the details of the 
proposed language grammar. 

3.1   Action Specification Language Grammar 

In Table 1 we introduce the grammar of the Natural MDA language. This grammar 
builds on the language presented by [28], which is based on end-user programming 
principles. The main change that we introduced in the grammar consists on replacing 
the domain ontology by UML model elements; i.e., the object references that are 
quoted on that work correspond to class and operation references that exist on a UML 
model. For the sake of simplicity, in this table we hide token declarations.  

Table 1. Controlled Natural Language Grammar 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

…
rule : ((operations DOT) | (sentence) | (after_all) )+;
operations: (operation ((COMMA | AND) operation)*) |

(show_error_warning) | (return_statement);
show_error_warning : SHOW(ERROR | WARNING)ASPAS message ASPAS;
return_statement: RETURN alpha_numeric;
sentence: (conditional (OTHERWISE COMMA operations DOT)?) |

(loop) | (exceptional) ;
conditional : IF conditions COMMA

((operations DOT) | loop);
loop: FOR EACH item OF THE collection COMMA

((operations DOT) | (conditional )) ;
exceptional : WHEN event COMMA operations DOT;
after_all : AFTER_ALL alpha_numeric COMMA

((operations DOT) | (sentence));
conditions: condition ((AND | OR ) condition)*;
condition : operand verb ( (equal | not_equal |

greater_or_equal_to | greater_than |
lower_or_equal_to | lower_than) ) operand;

equal : EQUAL TO ;
not_equal : NOT EQUAL TO;
greater_or_equal_to : GREATER OR EQUAL TO;
greater_than : GREATER THAN;
lower_or_equal_to : LOWER OR EQUAL TO;
lower_than : LOWER THAN;
verb : IS | ARE;
alpha_numeric : (CHARACTER | DIGIT)(DIGIT | CHARACTER)* ;
collection: alpha_numeric;
event: alpha_numeric;
operation: alpha_numeric ;
message: alpha_numeric ;
operand: alpha_numeric ;  

The grammar main term is “rule”. As it can be seen in line 2, this term consists of a 
set of operations, followed by a dot, or sentences, or “after_all”. The set of operations, 
which is called “operations” in our grammar, consists of a sequence of operations, 
followed by the connector “and” or comma, and another operation; or error or alert 
(“show_error_warning”) messages, or a return statement. As it can be seen in line 5, 
an error or alert message is a sequence of the terms: “show”, followed by “error” or 
“warning”, and finally the message between double quotes. 

A sentence can correspond to either a conditional, or iteration, or exceptional 
expression. A conditional expression is composed of a set of conditions and a set of 
operations that must be executed whenever the conditions are satisfied. The set of 



558 L.N. Leal et al. 

conditions must be expressed in the form of a stream of conditions, with the connector 
“and” or “or” between each condition. Each condition is composed of two operands 
and an operator. Conditional expressions can include a set of operations to be 
executed whenever none condition is met. Line 7 shows a composition of sentences. 

The allowed operators are: “equal”, “not_equal”, “greater_or_equal_than”, 
“greater_than”, “lower_or_equal_than” and “lower_than” (see lines 17-19). The 
iterations are represented by a collection which must be iterated and a set of 
operations and conditional expressions to be executed, as shown in lines 11-12. The 
expression “after all”, which is described in lines 14-15, was created to fulfill the need 
to declare commands to be executed after the scope of the iteration. Event expressions 
should be used to deal with events, which correspond to exceptions declared in the 
model. 

Up to this point we have described the basic features of the language used to 
describe actions. Next, we describe how the model elements (classes, attributes and 
methods) can be referenced within Natural MDA. To reduce the gap between business 
and model concepts, we used the UML extension mechanism known as tagged value. 
The designer must set the corresponding tagged value in each model element. This 
tagged value is used to link Natural MDA elements such as: operations, messages, 
return_statements, collections, etc. to model elements. Tagged values provide a more 
readable and natural name for designers to recognize the model elements, working as a 
mapping between model elements and business terms. The defined tagged values are: 

• element.description: it assigns a description to model elements; 
• return.description: it assigns a description to the return value of an operation; 
• operation.behaviour: it assigns the actions of an operation. 

4   Language Supporting Tools 

After defining the proposed action language, we developed a set of tools to support it. 
These tools are the language processor (syntactic and semantic analyzer) and an editor 
to aid the language use while building action specifications. Fig.1a shows the 
conventional process of MDA tools, which generates skeleton code from structural 
models. Fig. 1b shows how our tools interact with existent MDA tools. The language 
editor does not interact with MDA tools; it only reads the XMI representation (to get 
the information to describe the action specifications) and saves action specifications 
in XMI files. On the other hand, the language processor must interact with a MDA 
tool. In order to generate the application code, the language processor must combine 
the skeleton code, generated by a MDA tool, with the body implementation of each 
operation previously specified by the designer using our language editor.  

“Another Tool for Language Recognition” (ANTLR) [3] is an open source tool 
that, from a grammar description, generates a program capable of recognizing 
sentences written on that grammar. We used this tool to generate the grammar lexical 
analyzer. On the synthesis phase, we chose String Template [29], which is an open 
source tool that generates texts using templates. The advantage of using such kind of 
tool is that we can change the output language by changing only the templates, 
without modifying the transformation logic. Currently, Java code is generated, but 
 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 559 

 

 

Fig. 1. MDA tool extended with Natural MDA Language Supporting tools 

whenever it is needed, we can change the output language by only changing the 
templates. 

Despite the existence of these tools, there is no integration between them capable 
of applying a transformation (defined by the templates) in a syntactic ANTLR tree. 
So, we had to implement a syntactic and semantic analyzer. Another reason to 
implement the semantic analyzer is to verify if the operation descriptions used on the 
action descriptions were specified on the UML model. 

Since our goal is only to generate the operation implementation, we had to 
integrate our tool with another MDA tool to generate the complete and executable 
code. As we aim that our tool is independent from a specific MDA tool, we defined a 
set of interfaces to be used as contracts. We chose AndroMDA [2], an MDA open 
source tool which is extensible, well documented and widely used to develop our 
study. For the integration with AndroMDA, we had to create a set of classes to 
implement those interfaces. These classes work as an adapter. If we want to integrate 
our tool with another MDA tool, we have only to implement this adapter.  

AndroMDA transformations are based on cartridges. A cartridge is a set of 
templates for a specific platform: Hibernate [12], Enterprise Java Beans (EJB) [10] 
and others. AndroMDA knows which cartridge must be applied by querying the 
model elements, stereotypes and tagged values and the transformation configuration 
for each project. Samples of predefined stereotypes are Entity and Service. Classes 
stereotyped as Entity can be transformed into Hibernate classes, for example. Classes 
stereotyped as Service can be transformed into Session Beans, for example. Whenever 
a class is marked as an Entity, for Hibernate cartridge, AndroMDA generates all 
artifacts (classes and mapping files) needed for CRUD operations (create, restore, 
update, delete). Whenever a class is marked as a Service, for EJB cartridge, 



560 L.N. Leal et al. 

AndroMDA only generates the skeleton code and the deployment descriptor files. The 
skeleton code generated by AndroMDA is the point where we integrate our tool with 
AndroMDA. To implement this integration, we used one of the extension mechanisms 
of AndroMDA known as metafacades. 

4.1   Syntactic and Semantic Analyzer and Synthesis 

We implemented a parser that reads the action specification and builds a 
corresponding expression tree. Afterwards, we developed a transformer that navigates 
through this expression tree and translates it into code. In order to manage variable 
creation and scope during the translation phase, the transformer includes a context 
manager. The context manager stores the variables of the current scope. The 
translation context is always initialized with variables that represent each operation 
parameter. Then, the translation context is applied to the expression tree root node 
which in its turn applies the context to its children, and so on. Each node uses the 
translation context to discover which variables will be created or reused to generate 
the corresponding code. 

These translation contexts implement lexical scoping - whenever a complex 
expression receives a context, it creates a new context based on the received context, 
and it propagates the newly created context to its children. After the translation of this 
complex expression, this new context is discarded. This behavior simulates the concept 
that variables created inside iteration can not be accessed outside iteration scope. 

From action specifications, the parser generates an expression tree containing a 
logical sequence of expressions according to the defined grammar. These expressions 
consist of model operations invocations (method call) and control structures 
(conditional, iterations and event calls). After the expression tree is built, the 
transformer starts an in-depth navigation through it, where each expression is 
requested to update the translation context according to its type. 

When the expression is a method call, the model is queried for a method that has 
the corresponding description. If the method is not found, an error is shown. When the 
method is found, the translation context is analyzed to discover if there is a class 
instance that owns the operation. If it exists, this instance is selected. Otherwise, it is 
checked whether the method is static or not. If it is static, the class is not instantiated 
to make the call. If it is not static, it is checked if the class has a service or entity 
stereotype. If it is a service class, its business interface is selected, and if it is an entity 
class, the corresponding data access class is created. Next, it is verified if the method 
has parameters and a return value. If it has parameters, the translation context is 
searched for variables that have the same description (more recently used variables 
have preference). If none variable is found, it is checked if the variables contain 
attributes or associations with the desired description (associations are recursively 
navigated, and stop conditions are defined to avoid an infinite loop). After all, if a 
variable is not found, a search by type is performed. The type search is analogous to 
the description search. When the method has a return value, it is added to the variable 
context, so that it can be used during the translation of the following expressions. 

When the expression is an event call, the model is searched for an exception that 
has the corresponding description. If this exception is found, it is used to handle the 
event. If not, an error is shown. 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 561 

When the expression is a conditional call, it is verified if there is more than one 
condition. Each condition can be a call expression or a logical expression. If the 
condition is a call expression, it is verified if the method exists in the model. If it 
exists, it is processed. Otherwise, an error is shown. If the condition is a logical 
expression, it is verified if the operands already exist in the translation context. If the 
operands are not found, an error is shown. 

When the expression is an iterative call, it is verified if the collection to be iterated 
already exists in the translation context. If it exists, the type of each element of the 
collection is found by searching for dependencies of the operation at the model. 
Whether the collection is not found in the translation context or dependencies of 
method are not found in the model, an error is shown. 

4.2   Language Editor 

To facilitate the use of Natural MDA by system designers, a tool was developed at 
our research group [7]. The goal of this tool is to guide the designer to use, in an 
integrated manner, both the action specification language and a given target UML 
model. The tool takes UML models represented in XML Metadata Interchange (XMI) 
as its input. It reads the model and shows the model elements in a similar way to 
modeling tools. In addition, the tool executes a consistency check, indicating the valid 
sentences and suggesting fixes according to the grammar and the UML model. The 
users also have an option to save the descriptions that were specified. When this 
option is selected, each action description is saved back to the model on the tagged 
value “operation.behaviour” of the corresponding operation in the model. 

Another feature is that designers can visualize business logic of action 
specifications graphically. Simple graphic elements for decisions, for structuring 
logic, and executing actions are used. Therefore, despite the textual nature of our 
language, through its editor, it can be visually presented. 

5   Development Process 

The usage of MDA approaches to build systems requires some changes in the 
software development process [5]. The development process is also affected by the 
use of Natural MDA language, because it requires the addition of new activities and 
the elimination of others in comparison to traditional development processes. In order 
to illustrate how Natural MDA language influences on system development process, 
we will see how Rational Unified Process (RUP) [26] workflows are affected by the 
use of Natural MDA. 

RUP framework consists of phases and disciplines. Phases represent aspects of the 
process life cycle: Inception, Elaboration, Construction and Transition. Disciplines 
represent a logical grouping of activities: Requirements, Analysis and Design, 
Implementation, Test, Change and Configuration Management, Project Management 
and Environment Configuration. Each activity has a corresponding workflow. Next, 
we show the changes imposed by the use of our language in these workflows.  

The use of Natural MDA language does not incur any changes in the requirements 
workflow, because such workflow is focused on capturing system requirements. At 



562 L.N. Leal et al. 

the analysis and design workflow, we identified that model driven development along 
Natural MDA language usage bring some advantages. This workflow comprises 
implementing the system architectural proof of concept, which includes the most 
critical architectural decisions. Since it is possible to fully generate the system code 
from models augmented with Natural MDA specifications, the architectural proof of 
concept can be rapidly built, thus allowing testing different model transformations in 
order to choose the most appropriate ones to be applied to the critical system 
requirements. Therefore, we consider necessary to include a new activity whose 
objective is to define the most suitable transformations according to system needs. An 
additional change is that the designer must associate descriptions (through tagged 
values) to attributes and operations when creating the classes. Moreover, during use 
case design, the designer may describe the behavior using Natural MDA language or 
UML interaction diagrams. By using MDD, the database design phase is simplified, 
consisting in refining the schema generated from the domain model. 

At the implementation workflow, the activity “Implement design elements” is 
considerably affected because a great part of the implementation is generated from the 
action specifications defined in the model. The code revision activity is also affected, 
since in the MDA approach it is more proper to revise the specification instead of 
revising the code. Furthermore, great part of code implementation does not need revision, 
because the transformations were already validated during the Elaboration phase. 

At the test workflow, the activities remain unchanged because the current version 
of the language supporting tools does not generate automated tests. The use of Natural 
MDA language does not impact on the activities included in the change and 
configuration management workflow. At the project management workflow, the only 
change is that the team allocation activity must include a new role that is responsible 
for model transformations. 

As the goal of the environment configuration workflow is to right-size the software 
development process according to the specific needs of the project and to provide a 
relevant and accessible process description to the members of the project, the Natural 
MDA language usage does not impose any changes to such workflow activities. 

6   Application Example 

In this section, we present an application example to illustrate the use of the Natural 
MDA language. The goal of this study was to analyze the expressiveness of the 
language, the level of difficulty on its use and its adherence to model driven 
development cycle, rather than measuring productivity gains derived from the 
language use. The complete observational study can be found in [17]. 

The following application example is an excerpt of a software system for academic 
management of the Federal University of Rio de Janeiro, whose goal is to manage 
administrative and academic activities. In this example, we will see only the use cases 
for class registration, grade registration and enrollment registration. Since our goal 
with the application example is to demonstrate the use of Natural MDA language, the 
activities related to requirement identification, schedule elaboration and project 
planning were not executed. In the Inception phase, we used the requirements already 
defined by the actual development team of the Academic System. Next, the candidate 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 563 

architecture was defined and the proof of concept was implemented. We consider that 
the interface layer activates the components of the service layer, which in turn 
activate the domain layer. In the scope of the domain layer, we identified that a course 
has several subjects. A subject may have other subjects as requirements and they are 
offered through classes. A class is associated to a classroom and in each segment, the 
students must enroll to subjects.  

The next step was to detail the elected use cases. Fig. 2 shows the initial service 
modeling derived from the use case analysis. The method “addEnrollmentOrder” of 

 

 
Fig. 2. Academic System service class diagram 



564 L.N. Leal et al. 

the component EnrollmentManager realizes the use case of enrollment registration. 
The methods “addClass” and “addGrade” of the component ClassManager realize the 
use cases of class registration and grade registration. In order to specify the actions of 
these methods, other methods were defined to divide responsibilities. Note that all 
methods have an associated tagged value named “element.description”. The values 
defined in these tags are used in the action specifications.  

Next, the use cases were refined using Natural MDA language and the language 
editor. In the editor, the user selects a model in order to describe the behavior of each 
class operation belonging to this model. After selecting the model, the tool shows all 
its classes grouped by package, in the same way they are grouped in UML modeling 
tools. When a class is expanded, the tool shows its operations, and when an operation 
is expanded, input parameters (arrow pointing right) and return value (arrow pointing 
left) are shown. When double clicking an operation, the corresponding action 
descriptions are opened in the top-right side. The tool provides auto-complete facilities 
to edit actions. When selecting the menu option “Translate”, the tool shows the 
corresponding source code for the current action description in the bottom-right side. 
When selecting the menu option “Validate”, the tool validates the actions according to 
the grammar definition and the UML model, and it shows the error or success 
messages on the bottom-right side. By selecting the menu option “Diagram”, the tool 
shows a flow chart that graphically represents the current operation description. Table 2 
shows the action specifications for “addEnrollmentOrder” operation based on the model 
elements and the Natural MDA language grammar. To highlight both the grammar 
elements and the references to UML model elements, we used words in bold to refer to 
model elements, and words in italic to refer to grammar elements. 

Table 2. Description of addEnrollmentOrder operation 

1.  Sum the credits of classes. 
2.  For each class of the class list, list the requirements and  
3.  for each requirement of the requirement list, if subject was not  
4.  coursed by student, show error 'Requirement not coursed'. 
5.  After all requirement list, register the enrollment order. 
6.  When the limit of credits was exceeded, show error 'The limit of  
7.  credits was exceeded'. 

 
In line 1 a method is invoked to verify if the limit of credits allowed for a term was 

exceeded. Next, we verify if the student has taken all the requisites of the selected 
subject and if the subject was previously taken. In case of success, the enrollment 
order is registered. When the limit of credits is exceeded, this event is handled as 
described in lines 6-7. 

Table 3 shows the implementation generated from the action specification in  
Table 2. The steps executed during the translation are: 

• Variable context initialization: the input parameters of the method to be translated 
are added to the context; 

• Mapping between actions and operations: for each action used in the specification 
the corresponding operation that has the same description is searched. If the 
operation has an output parameter, it is added to the context; 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 565 

Table 3. Generated code for addEnrollmentOrder operation 

public void addEnrollment(br.ufrj.academic.domain.Student student,
java.util.Collection classes) {

try {java.lang.Integer var1 = this.sumCredits(classes);
for (java.util.Iterator var2 = classes.iterator();

var2.hasNext();) {
br.ufrj.academic.domain.Class var3 =

(br.ufrj.academic.domain.Class) var2.next();
java.util.Collection var4 =

this.listRequirements(var3.getSubject());
for (java.util.Iterator var5 = var4.iterator();

var5.hasNext();) {
br.ufrj.academic.domain.Subject var6 =

(br.ufrj.academic.domain.Subject) var5.next();
java.lang.String var7 =

br.ufrj.academic.domain.Subject.findSubjectById(var6.getId());
if (this.verifySubjectNotCoursed(student, var7)) {

logger.error("requirement not coursed"); } }
this.registerEnrollment(student, var3); }

} catch (br.ufrj.academic.service.EnrollmentException var2) {
logger.error("the limit of credits was exceeded"); }}  

 
• Searching inputs and output of each operation: when it is necessary to call an 

operation that has input/output parameters,  such parameters are searched by their 
type and description in the context; 

• Dealing with iterations: the context is queried for the variable with the same 
description of the collection to be iterated. Then, for each element of the collection, 
a new variable with the corresponding type is added to the context; 

• Dealing with events: an exception with the same description as the event described 
in action specification is searched in the model and it is used in the translation. 

In order to ease the visualization of the action specification, the editor allows 
presenting the corresponding flowchart. It shows the iterations, conditions and 
operation calls in the same order as they occur.  

The designer can refine the use case using the Natural MDA language, sequence 
diagrams or collaboration diagrams.  

6.1   Evaluation 

The example previously described highlights some advantages of using MDA 
augmented by Natural MDA language. First, it is noted that the main flow (lines 1-5) 
of the use case is kept apart from the alternative flow (lines 6-7), thus making the 
business rules more readable.  

The second advantage is the reduction of the number of characters that must be 
written to represent the systems behavior compared to the number of code characters 
that are generated. Table 4 shows the number of characters in the specification and the 
implementation. Another important advantage is the improvement of readability due 
to the reduction of constructors directly related to programming languages. This is a 
major advantage since great portion of system code can be generated without the need 
of knowledge in any specific programming language. Considering the increasing 
complexity of current programming languages this feature of our proposal provides 
significant benefits in the system development. Moreover, this feature also facilitates 
 



566 L.N. Leal et al. 

Table 4. Percentual of characters reduction 

 Enrollment registration 
Specification characters 300 
Implementation characters 803 
Percentual of characters (spec/impl) 37% 

 
the interaction among the development team since team members without 
programming skills can understand the whole system specification. 

7   Conclusion 

The majority of current action specification languages for Model Driven 
Development (MDD) lack a suitable abstraction degree to leverage the task of system 
designers. We argue that an MDD action specification language should be closer to 
the abstraction level of system models and more independent from the underlying 
implementation syntax. To tackle this problem, we defined an action specification 
language based on controlled natural language. Besides having a higher abstraction 
level, the proposed language complements UML, is platform independent and can be 
automatically transformed into executable code. The proposed language seeks to 
increase the abstraction level while keeping the capability of being machine-
processable. This goal is achieved by adopting an approach in which low level 
instructions closely related to implementation are replaced by of higher level 
constructions. 

The proposed language is fully aligned to the MDA goals. The adoption of this 
language can foster the MDD process by reducing the gap between the problem 
domain and the implementation language, facilitating the communication between 
clients and designers. Moreover, since the proposed language is a natural controlled 
language it does not have the drawbacks of totally visual languages [32]. 
Furthermore, it seamlessly integrates with UML diagrams, augmenting their 
expressivity power. 

Since Natural MDA is basically text-based, one can argue that a visual-based ASL 
would be more aligned to UML goals. We believe that as complexity increases, a 
diagrammatic representation does not scale well. Even UML, which is a visual 
modeling language, adopts textual languages like OCL and Action Specification 
Language (ASL) to describe restrictions and actions. Additional drawbacks of totally 
visual languages are discussed by the author of the programming language Visula 
[32]. Although Visula is a visual language, its author recognizes some advantages of 
textual languages: (i) they do not require a special notation; (ii) they do not require 
special editors; (iii) visual programming languages are hard to discuss inside 
discussion groups. 

It is worthwhile mentioning that Natural MDA language can not be fully employed 
in all possible application domains. For instance, it is not suitable for complex or 
expert systems, since such kind of systems requires notations more appropriate than 
natural languages. We are now working on three main directions: (i) integration with 
an execution environment, in which the artifacts can be executed, debugged and 



 Natural MDA: Controlled Natural Language for Action Specifications on MDD 567 

validated; (ii) grammar extension to include the usage of ellipsis and other linguistic 
resources to make the language closer to natural languages; and (iii) formal validation 
about the equivalence between inputs (specification) and outputs (implementation) of 
the transformation process. 

Acknowledgements 

This work was partially supported by the Brazilian funding agency CNPq. 

References 

1. Allen, J. (1995) “Natural Language Understanding”, The Benjamin/Cummings Publishing 
Company Inc, ISBN: 0-8053-0334-0. 

2. AndroMDA (2004) “AndroMDA: Getting started”, http://www.andromda.org. 
3. ANTLR (2004) “Another Tool for Language Recognition”, http://www.antlr.org/. 
4. BridgePoint (2005) “Object Action Language”, http://www.acceleratedtechnology.com. 
5. Brown, A. W.; Conallen, J. (2005) “An introduction to model-driven architecture – How 

MDA affects the iterative development process”, http://www-106.ibm.com/ 
developerworks/ rational/library/may05/brown. 

6. Bryant, B. and Lee, B. S. (2002) “Two-Level Grammar as an Object-Oriented 
Requirements Specification Language”, XXXV Hawaii International Conference on 
System Sciences, IEEE Computer Society, Volume 9, p. 280. ISBN:0-7695-1435-9. 

7. Cianni, N. M. and Cabeço, T. (2006) “Editor for Action Specifications in Controlled 
Natural Language”, http://dataware.nce.ufrj.br:8080/dataware_en. 

8. Damn, W., Harel, D. (2001) “LSCs: Breathing Life into Message Sequence Charts”, 
Formal Methods in System Design, V. 19, p. 45-80, July, 2001. ISSN:0925-9856. 

9. Dinh-Trong, T. (2005) “JAL: Java like Action Language”, Specification 1.1, Department 
of Computer Science, Colorado State University, October. 

10. EJB (2003) “Enterprise Java Beans”, http://java.sun.com/products/ejb. 
11. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (1999) “Refactoring: Improving 

the Design of Existing Code”, Addison-Wesley, ISBN 0201485672. 
12. Hibernate (2006) “Hibernate”, http://www.hibernate.org/. 
13. Kabira (2002) “Kabira Action Semantics”, http://www.kabira.com. 
14. Kleppe, A. and Warmer, J. (2000) “Extending OCL to include actions”, International 

Conference on the Unified Modeling Language, p. 440-450. 
15. Kleppe, A., Warmer, J. and Bast, W. (2002) “MDA Explained: The Model Driven 

Architecture: Practice and Promisse”, Addison-Wesley. 
16. Leal, L. N., Pires, P. F. and Campos, M. L. M. (2006) “An Action Specification Language 

based on Controlled Natural Language”, Proceedings of XX Brazilian Symposium on 
Programming Languages, Rio de Janeiro, Brazil (in portuguese). 

17. Leal, L. N. (2006) “Natural MDA: An action specification language based on controlled 
natural language”, Ms Thesis, http://dataware.nce.ufrj.br:8080/ dataware_en/public/thesi/ 
ObservationalStudy, UFRJ, Brazil. 

18. Leonardi, M. C. and Mauco, M. V. (2004) “Integrating Natural Language Oriented 
Requirements Models into MDA”, Workshop on Requirements Engineering, Argentina, 
http://www.sigmod.org/dblp/dp/conf/wer/wer2004.html. 



568 L.N. Leal et al. 

19. Linhalis, F. and Moreira, D. A. (2005) “Execution of Imperative Natural Language 
Requisitions Based on UNL Interlingua and Software Components”, International 
Conference on Enterprise Information Systems (ICEIS). 

20. McNeile, A. and Simons, N. (2004) “Methods of behaviour modeling: a commentary on 
behaviour modeling techniques for MDA”, http://wwwmetamaxim.com/download/ 
documents/Methods.pdf. 

21. Mellor, S. J. et al. (1998) “Software-Platform-Independent, Precise Action Specifications 
for UML”, Proceedings of UML´98. 

22. Mosses, P. D. (1996) “Theory and Practice of Action Semantics”, BRICS Report Series. 
RS-96-53. ISSN 0909-0878. December. 

23. OMG (1999) “Action Semantics for the UML – Request for Proposal”, 
http://www.omg.org/docs/ad/98-11-01.pdf. 

24. OMG, Action Semantics Consortium (2001) “Action semantics for the UML”, 
http://www.omg.org/docs/ad/2001-03-01. 

25. Pender, T. (2003) “UML Bible”, Wiley Publishers, ISBN: 0-7645-2604-9. 
26. Rational (2006) “Rational Unified Process V7.0 Evaluation”, http://www-

128.ibm.com/developerworks/downloads/r/rup. 
27. Selonen, P., Systa, T., Koskimies, K. (2001) “Generating Structured Implementation 

Schemes from UML Sequence Diagrams”, Proceedings of TOOLS USA, Santa Barbara, 
California, USA, July-August (p. 317-328). IEEE Computer Society. 

28. Silva, S. R. P. and Souza, C. S. (2002) “The Definition of an End-User Programming 
Language for Extensible Applications”, Proceedings of V Symposium on Human Factors 
in Computer Systems, Fortaleza, Brazil. Volume 1, p. 72-83. 

29. String Template (2005) “String Template”, http://www.stringtemplate.org/. 
30. Ushida, H. and Zhu, M. (2001) “The Universal Networking Language beyond Machine 

Translation”, International Symposium on Language and Cyberspace, September. 
31. Visual Rules (2006) “Visual Rules”, http://www.visual-rules.de. 
32. Visula (2004) “The Visula Programming Language”, http://visula.org. 
33. Warmer, J. and Kleppe, A. (2003) “The Object Constraint Language - Getting Your 

Models Ready for MDA”, Addison Wesley. ISBN: 0-321-17936-6. 
34. Wilkie, I. et al. (2001) “ASL Manual”, Kennedy Carter Ltd, http://www.kc.com. 



Managing Distributed Collaboration in a

Peer-to-Peer Network

Michael Higgins, Stuart Roth, Jeff Senn,
Peter Lucas, and Dominic Widdows

MAYA Design Inc.�

{higgins, roth, senn, lucas, widdows}@maya.com

Abstract. Shared mutable information objects called u-forms provide
an attractive foundation on which to build collaborative systems. As we
scale up such systems from small fully-connected workgroups to large,
highly distributed, and partially disconnected groups, we have found
that peer-to-peer technology and optimistic replication strategies provide
a cost-effective mechanism for maintaining good performance. Unfortu-
nately, such systems present well-known coordination and consistency
problems. This paper discusses strategies for addressing those difficulties
at different levels of the system design, focusing on providing solutions
in the information architecture rather than at the infrastructure layer.
Addressing problems at this higher layer allows greater freedom in de-
sign, and simplifies moving from one infrastructural base to another as
technology evolves. Our primary strategy is to enable robust decentral-
ized and asynchronous collaboration while designing architectures that
do not rely on two users writing to the same u-form at the same time in
different venues. Techniques are provided for simple messaging, collab-
orative maintenance of collections, indexing supporting rich query, and
stand-off annotation and elaboration of third-party datasets. We outline
the application of these techniques in a working collaborative system.

1 Introduction

This paper describes a variety of structures that enable robust peer-to-peer col-
laboration on many semantic levels. The strategy we pursue is to create infor-
mation architectures that allow widespread replication but minimize the danger
of conflicted data. This pattern pervades many of our techniques, from a simple
asynchronous messaging protocol to the ability of many publishers to contribute
content about the same phenomena.

For some time, MAYA Design and our collaborators have been building pow-
erful collaborative applications by allowing users to share and modify mutable
information objects called u-forms [1]. This sort of “shared memory” approach
to managing collaboration is both elegant and powerful. As the breadth and
reach of our systems has expanded, we have encountered a variety of challenges,
both obvious and subtle. In brief:
� This work was supported by Defense Advanced Research Projects Agency grant

SB031-008 for the Cluster-Based Repositories and Analysis project.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 569–586, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



570 M. Higgins et al.

– Systems with many users generate large amounts of storage and retrieval
cost.

– Systems with many users are rarely completely connected. Users are mobile:
they come and go, and need information even when they have little or no
network connectivity.

– Systems with many users generate large amounts of disagreement. These
disagreements range from mismatches between versions of specific informa-
tion objects to high-level differences of opinion on certain topics. Many such
disagreements cannot and should not be resolved automatically.

We have found optimistic peer-to-peer replication to be a useful tool for at-
tacking the first and second problems. Such a replication model permits a very
scalable infrastructure, does not require a major datacenter investment, and tol-
erates disconnected and poorly connected users [2]. The difficulty of managing
an optimistically replicated system is well-understood; it was most famously
articulated in [3].

However, this model does nothing to address the third problem, and, if any-
thing, exacerbates it by allowing concurrent and inconsistent updates to the
system. Book-keeping to detect such concurrency problems can become signif-
icant, and the management of trust and security in the system is complicated.
While good work has been done on managing and automatically resolving con-
flicts (see e.g., [4]), those who have worked hardest on this topic acknowledge
how difficult it is to provide automatic conflict resolution in general, because the
semantics of conflict resolution criteria are always heavily application dependent,
and may depend on several replicated objects, not just one.

Our experiences building working applications and a shared Information Com-
mons [5] collaborative space on top of a particular replication system (called
Shepherds) has led us to evolve techniques to minimize and in some cases avoid
these difficulties. Instead of trying to create rules for resolving all conflicts, we
have taken a quite different approach, relying on careful information architecture
to enable direct collaboration while minimizing the danger that two users will
concurrently update the same replicated u-form.

It is our belief that the assumptions that our system depends upon are weak
enough that our strategies will be applicable to other systems. There are many
exciting recent developments in peer-to-peer systems that could support such
collaboration strategies. Important systems include Chord [6], Pastry [7], and
OceanStore [8]. Chord and Pastry supply only lookup and routing technology;
OceanStore is a more complete system providing replication and object storage.
Other higher-level systems include CFS (built on Chord) [9] and PAST (built
on Pastry) [10]. Several of these systems use cryptographic hashes to identify
immutable data as do we.

This paper describes the Shepherds system, the relevant engineering and de-
sign assumptions, and some interesting applications and collaborative structures.
The paper is organized as follows. Section 2 discusses u-forms and the collabo-
ration model they enable, as well as a brief survey of systems we have developed
using this model. Section 3 discusses engineering and design issues, including



Managing Distributed Collaboration in a Peer-to-Peer Network 571

the particular choices and assumptions that our system makes, and the costs
and trade-offs entailed. This discussion includes details about conflict detection,
shepherdable indexes, trust management and digital signatures, and some infor-
mation about our underlying replication and storage infrastructure, elaborating
on the problem areas raised in this introduction. Section 4 describes how we layer
higher level data structures upon this foundation to support messaging, shared
maintenance of information collections, and collaborative publication and an-
notation, without running afoul of the pitfalls above. In addition, by layering
our solutions at a higher level of the system, we give ourselves the freedom
to more readily change infrastructure technologies. Finally, Section 5 ties these
techniques together by briefly describing a distributed collaborative geographic
information system that makes use of every layer of the system.

We conclude with a fundamental observation: optimistic replication systems
scale well and provide a wonderful opportunity for very large-scale collaboration.
But the guarantees provided by such systems are necessarily weak. Instead of
trying to ensure that conflicting updates to the same u-form are resolved be-
fore users notice, we try to create information architectures that minimize the
possibility of such conflicts occuring in the first place — while still empower-
ing users to collaborate in real time and to make contributions about definitive
data. Clever layering in the design and engineering of the system allow us to
support very powerful applications without burdening the entire system with
the maintenance of low-level guarantees.

2 U-Forms and the Visage Collaboration Model

All well-designed replication and collaboration systems depend on a fundamental
unit of storage and replication, such as a file, a data table, or an individual
data record. In Visage [11] and all its descendents, including our Shepherds
system, this unit is called a u-form [12,1]. A u-form is an extensible bundle of
attribute-value pairs identified by a universally unique identifier or UUID. U-
forms are mutable (though sometimes changes to a u-form can be recognized as
evidence of unauthorized tampering and rejected, as discussed in section 3.3).
Attribute names are unique within a u-form. Attribute values can be any data:
lists, dictionaries, binary blobs, and, of course, UUIDs of other u-forms. A UUID
appearing as the value of an attribute is called a relation1 from one u-form to
another (sometimes thought of as a pointer or a reference). The ability to store
a UUID as a value in a u-form is important: it allows us to construct complex
structures of u-forms by reference. A simple example might be a u-form whose
members attribute is a list of UUIDs. Such a u-form is called a collection. We
1 This use of the word “relation” carries the traditional philosophical meaning of

a relation between two objects (c.f. Aristotle, Categories Ch. 7) rather than the
mathematical meaning of a relation between two sets, the meaning used in relational
database systems. These uses are closely related: a relation between sets can be
thought of as a subset of a Cartesian product, while a relation between objects is an
element of a Cartesian product.



572 M. Higgins et al.

will see more sophisticated examples exploiting u-form relations throughout the
paper.

The name u-form is an homage to Michael Dertouzos’ e-form [13]. UUIDs are
used quite commonly in many areas of computer science, particularly distributed
systems. One contemporary reference relating UUIDs and the Web’s URN sys-
tem is [14]. A good overview of u-forms is found in [1]. A formal resemblance
exists between the (UUID, attribute, value) triple in the u-form, the (URI, predi-
cate, object) triple of RDF [15]. The u-form is an abstract datatype, and u-forms
can be serialized using many formats including XML, though our implementa-
tions commonly use a recursive bytecode format called the Visage Standard
Message Format, which is considerably more efficient than XML in practice.

Although u-forms per se are completely schemaless, schemata can be layered
on top of the basic u-forms by including relations to special role u-forms [16].2

Roles are u-forms that reserve the use of particular attributes and explain their
intended interpretation. Storing relations to roles inside u-forms helps in making
u-forms self-describing and introspective, which contributes to the effectiveness
of replication and enables a single u-form to be a useful member of many het-
erogeneous datasets.

Updates to u-forms are simply changes to the attribute-value set. Changes to
a single u-form can be made atomically in the local venue. The entire state of a

Fig. 1. U-forms and several related aspects of the system, including attributes, values,
relations between u-forms, roles, and the VIA repository

2 This use of a single syntax to describe both data and metadata is reminiscent of
XML Schema’s use of XML as its definition language. See [17].



Managing Distributed Collaboration in a Peer-to-Peer Network 573

u-form is replicated when replication occurs. Because users may be disconnected
for a long period, we replicate only the state of a u-form, not a log of all opera-
tions on that u-form (which could be quite large).

U-forms support collaboration because they are mutable but have universal
identity, so the underlying replication system allows a user to “subscribe to” a
u-form: any changes are then propagated to that user. In this way multiple users
can be interested in a shared set of u-forms. As they modify this shared set,
the u-forms act as a common collaborative space and all the interested parties
observe the evolution of that space.

2.1 A Brief History of the U-Form Style

It is useful at this point to give a quick overview of some of the systems we have
built over the years using u-forms. This demonstrates the utility of a simple,
sound foundation, and will give us a set of concrete touchstones to refer to
during the development of some of the more abstract ideas later in the paper.

Visage and Visage2. We first used this collaborative style in an information
visualization system called Visage (see [11] and [18]), so we have come to think
of it as the “Visage collaboration model.” Visage pioneered an interaction model
called information-centricity; the idea was to simultaneously provide:

– An easy-to-use direct-manipulation user interface.
– Fine-grained access to small units of information (scraps of text and rows of

tables, not just whole documents).
– Data strongly separated from presentation to encourage multiple visualiza-

tions of the same data.
– Easy collaboration despite the fact that different users might prefer very

different visualizations of the same data.

This last feature was added for Visage2, and cemented the definition of u-
form that we use today. In particular, the fact that we use UUIDs to identify
data objects (rather than locally scoped primary keys or location-specific URLs)
enabled us to envision much more flexible collaboration scenarios [19]. Our com-
mitment to the information visualization application domain made it critical
that collaboration was mediated through changes to the data space, not simple
sharing of the user interface (see Figure 2 and further discussion in [20]).

Visage2’s implementation depended upon client-server technology, not peer-
to-peer technology. Therefore replication was limited and controlled. It is the
increase in scale, and corresponding relaxation of our controls on replication,
that has led to much of the present work.

CoMotion. Success in the laboratory and in limited deployments of the Visage
system encouraged us to commercialize the technology. In 1998 we spun off a
company called MAYA Viz to develop a commercial product. The framework
they created is called CoMotion. Products built on top of CoMotion are used by
the U.S. Military for command, control, and logistics applications [21]. CoMotion
applications are also used in the medical and energy industries. MAYA Viz was
acquired by General Dynamics in 2005 and is now GD Viz [22].



574 M. Higgins et al.

Fig. 2. Polymorphic visualization of a u-form

The Geobrowser. Meanwhile, we continued our research and became inter-
ested in very large scale, loosely coupled systems. This pushed us toward peer-
to-peer replication as a scheme that can scale much better than client-server
systems.

The Geobrowser [23] began as a collaborative GIS system built on our Shep-
herds peer-to-peer system, but has been evolving toward a more general in-
formation browsing and publishing system. The Geobrowser is discussed more
thoroughly in Section 5.

The Community Directory and Buskarma. U-forms are not limited to use
in exotic information management domains. We have built a variety of useful
web applications on top of the Shepherds architecture. These include the Com-
munity Directory family of websites [24,25], winners of the Exemplary Systems
in Government Award from URISA, an international organization of government
information professionals. Another application is Buskarma, a public transporta-
tion website for the Pittsburgh area [26]. The underlying peer-to-peer nature of
these sites is not very visible, since websites require a stable server to function,
but the webservers themselves are connected through the Shepherds system to
the same shared information space that the Geobrowser uses. This information
space is called the Information Commons [5].

2.2 Some General Observations About U-Form Usages

U-forms are the unit of information in our system, but this same unit is often
exploited for a variety of purposes, including:

– Conceptual units, in 1-1 correspondence with objects in the world. This
perspective is about semantics and the world.



Managing Distributed Collaboration in a Peer-to-Peer Network 575

– Collaborational units (e.g., data that users share and update). This perspec-
tive is about interaction design.

– Trust units, for digital signatures and encryption. This perspective is about
social cooperation and trust.

– Basic data storage and transport units. This perspective is about engineering
and system efficiency.

Each of these perspectives will be important as we explore collaboration tech-
niques, and there are often trade-offs among them. For example, computing
digital signatures imposes a non-trivial computational cost per u-form, so there
are sometimes pressures to put lots of related data from the same publisher into
a single u-form. On the other hand, an index to a dataset is often a single con-
ceptual unit, but for effective use of resources, and to serve the purposes of a
variety of users with different interests, this conceptual unit needs to be broken
up across several related u-forms.

3 Design and Engineering Issues and Background

This section gives an overview of three basic computer science areas that are
necessary ingredients for our collaboration architectures. These are the shep-
herds (replications agents) themselves, shepherdable indexes, and digital secu-
rity issues. We do not intend to provide a detailed description of all aspects of
the engineering of the Shepherds system. It would be beyond the scope of this
paper, and would distract from the general applicability of the techniques de-
scribed later. For more information about the Shepherds system, consult [27].
It is nonetheless important to give some sketch of how the Shepherds system
works, in order to make clear the kinds of guarantees we require from the low
level portions of the system.

One major theme of this section is that while our system allows u-forms to
be updated anywhere in principle, in practice this is problematic for a variety
of reasons. The techniques described later in the paper will show how we can
perform collaboration while attempting to minimize the number of venues in
which a given u-form is updated.

3.1 Shepherd Agents, Version Vectors, and Conflict Recognition

Shepherds is a large-scale peer-to-peer system that uses optimistic replication
to facilitate collaboration through shared u-forms. Let us quickly examine some
facets of the system.

The system contains a potentially very large number of venues. There is an
extremely large number of u-forms; no venue is likely to contain a significant
fraction of all u-forms. U-forms can be created at will by any user in any venue.
U-forms can, in general, be updated in any venue (but we will discuss practical
restrictions). The system uses peer-to-peer agents called shepherds to replicate
u-forms amongst the venues. The shepherd agents are guided by application-
specific business rules, the specification of which are the job of the designers of
a particular system.



576 M. Higgins et al.

The precise details of the replication schemes used are beyond the scope of
this paper, and, indeed, have varied significantly over the history of the system.
One of the strengths of the techniques described here is that they do not depend
strongly on the underlying replication schemes. This means that as new peer-to-
peer techniques arise we can use them without major application-level changes.

The essential characteristics of the replication scheme are these:

– It is optimistic. That is, it does not defer replication or updates in an attempt
to guarantee consistency. Instead, it replicates under the optimistic assump-
tion that inconsistent updates are rare and can be detected and repaired
when they are detected.

– If a user has subscribed to updates on a given u-form, she will eventually
receive all relevant updates (though the order and timeliness of those updates
is not guaranteed).

We use version vectors to detect concurrent updates [28]. A version vector is
a list of counters: one counter is kept for each venue in which a given u-form has
been modified. A venue’s counter for the u-form is incremented when the u-form
is updated in that venue. Therefore the storage required for version vectors scales
with the number of venues in which a u-form is updated. Version vectors are a
rather old technique; perhaps the original reference is [28] (though we believe it
to have been independently invented many times). Version vectors are known to
be a minimal representation for detecting violations of causal history [29]. An
alternative mechanism for capturing causal history is the Hash History approach
[30]. While it provides some interesting advantages over version vectors, it must
be periodically pruned and can therefore lead to dangerous numbers of false
conflicts in a large system.

If, upon replication of a u-form, we discover that one replica’s version vector
does not strictly dominate the other replica’s, then we can conclude that con-
current modification has taken place. In some cases, the shepherd agents may
be able to determine that two concurrent updates are not incompatible, so they
are merged. Generally, however, concurrent updates result in a conflict. The
conflicted u-form is annotated with pointers to the alternate versions.

Users may manually resolve conflicts, or applications may have specific au-
tomatic conflict resolution rules. Manual conflict resolution, while sometimes
necessary, imposes a burden on the user, and automatic conflict resolution is
only reliable in particularly well-understood application contexts (as also demon-
strated by the designers of the Bayou system [4]). These problems grow worse as
the system scales in size and as inter-dependencies between objects grow. This
experience is consistent with the analytic results obtained by Gray in [3].

It is often better to avoid conflicts—in essence, to try to justify the optimism
of our replication strategy through appropriate design. We will see u-form data
structures that achieve this goal in section 4.

3.2 Shepherdable Indexes

Our repository infrastructure provides only very limited expressivity: given a
UUID, one can update the associated u-form or subscribe to others’ updates.



Managing Distributed Collaboration in a Peer-to-Peer Network 577

There is no low-level provision for value-based search, only UUID-based lookup.
This narrow expressivity gives us a great deal of freedom to choose different
underlying storage and replication models, and improvements in storage and
replication speed and reliability have a beneficial effect on all applications that
use the Shepherds system.

Instead of hard-wiring a few value-based searches into the infrastructure, we
build index structures that effectively enable the implementation of value-based
searches by composing several UUID-based searches. An index is a data structure
that efficiently maps a key or range of keys to one or more values (typically
UUIDs).3 We represent indexes by organizing u-forms into tree-like structures,
and annotating the u-forms in the tree with key information dictating which
sub-tree is relevant to the query at hand. For example, a typical “index node
u-form” may contain information that an index reader will interpret as “follow
relation u1 for names beginning A–L, follow relation u2 for names beginning
M–Z.”

A hallmark benefit of this approach is that index nodes are replicated on
demand by the shepherds, just like any other u-forms. This means that once a
user has performed a particular search while online, this search can be repeated in
the future when offline. An index with this property is called shepherdable. For a
detailed account of shepherdable index structures see [31]. We have implemented
and routinely use B-tree style structures [32] for handling one dimensional queries
and R-tree style structures [33] for multi-dimensional and geo-temporal queries.

One important use of indexes in collaborative systems is the support of what
we call virtual relations. Recall that a relation is formed when a u-form con-
tains a UUID (or set of the UUIDs) as the value for one of its attributes. It is
not always desirable (for all the usual reasons: access control, scalability, etc.)
to directly encode relations in one of the u-forms implicated. Instead, we can
construct an index whose keys and values are both UUIDs. Such an index is
a mapping from UUIDs to UUIDs: thus, a virtual relation. Virtual relations
are used extensively in the Universal Genetics Database [34], a research project
that uses the Shepherds system to represent and share publicly available genetic
databases, and enables researchers to annotate and reuse particular genes from
these databases for special purpose projects, without writing to the centrally ad-
ministered database. We will use this technique in section 4.3 to support standoff
annotation and commentary.

3.3 Digital Signatures, Security, and Trust

We have seen that modifying the same u-form in many venues increases the
likelihood of conflicts, and increases the amount of book-keeping information we
must store in the form of longer version vectors. These facts act as forces that
encourage us to keep the number of venues modifying a particular u-form small.

In practical systems, another consideration also plays a major role. In many
cases, not every user has the authority to modify every u-form in the system. It
is not necessary for a user to consistently use the same venue, but it is common
3 In some sense a collection is a trivial sort of index with linear query performance.



578 M. Higgins et al.

that a given user will only use a small number of venues. Therefore, if the number
of users permitted to modify a u-form is small, the number of venues in which
it will be modified is also likely to be small.

To protect u-forms from being maliciously or accidentally modified, we employ
digital signatures. A good comprehensive introduction to technologies such as
digital signatures, cryptographic hashing, and encryption can be found in [35].
Signatures are attached to u-forms as normal attribute values, and public key
credentials are published in the system as u-forms. This allows shepherd agents
and applications to verify that u-forms are only updated by their proper owner.4

Fully- or partially-immutable u-forms can also be created by using crypto-
graphic hashes of the u-form content as part of the UUID for the u-form. These
are of somewhat less interest in highly dynamic collaborative systems, but are
very useful for storing certain kinds of data.

4 Collaborative Structures

Our experience with the Visage project demonstrated to us the value of using
u-forms as a shared collaborative space that operates by allowing a set of users
to update a shared set of u-forms. We wish to design publicly available systems
that do not presuppose investment in major datacenters, and that also sup-
port collaboration between users with poor or intermittent connectivity. These
requirements guided us towards investigating optimistic replication and a peer-
to-peer approach.

We have seen, though, three distinct pressures that require us to minimize
the number of venues in which a given u-form is modified. One is the book-
keeping associated with version vectors and conflict detection; a second is the
difficulty of lazily reconciling conflicts; and a third is the natural tendency to
need to restrict write access to a subset of users. On the other hand, a legitimate
worry is that restricting the original update-anywhere-anytime policy will impair
collaboration.

In this section we examine techniques that help us to have our cake and eat it
too. We describe a series of multi-u-form structures, along with conventions for
using them, that let us perform many kinds of collaboration without needing to
update the same u-form in many venues.

4.1 The Carrier Pigeon Protocol

One useful tool for collaboration is simple messaging: the ability for one user
to send another user a message. Not only are the messages themselves handy

4 There remain a variety of potential attacks that we will not discuss in this paper.
One is a spoofing attack that we call a “land grab” in which a malicious user creates
a new u-form with a pre-existing UUID. This results in two apparently valid but
competing signed u-forms. Such an attack must resolved through human arbitration
or high quality automated reasoning. Another class of attacks involves denial-of-
service, and is best addressed in the replication layer.



Managing Distributed Collaboration in a Peer-to-Peer Network 579

for instant messenger or email style applications, but having such a technique
available allows a distributed workflow: one user can request another user or
automated agent to perform an action on his behalf.

As we have seen, our replication system does not presuppose that any two
users are simultaneously connected. If each user is only intermittently connected,
it may be that there is never transitive connectivity between them in the under-
lying network. However, our system does guarantee that replication eventually
makes progress. Therefore the solution is to mediate messaging through u-form
updates.

The most obvious way to do this is to have the two users who wish to commu-
nicate simply read and write to a shared u-form. This, however, leads to frequent
conflicts.

Instead, we arrange matters so that each user has an outbox. User A writes
to the A outbox, and listens to updates on the B outbox, while User B writes to
the B outbox and listens to updates on the A outbox. We arrange the protocol
as follows:

1. User A desires to send a message to user B. So User A writes an attribute
into his outbox called message X, where X is any locally unique token he
chooses (a number is a reasonable choice). The content of the message is
simply the value of the attribute message X. User A also writes an attribute
called current message id whose value is X.

2. Since User B is listening for updates on User A’s outbox, User B will even-
tually see the message. She can then decide upon a response and write an
attribute response X into her own outbox, where X matches the message
identifier token chosen by user A. The value of the attribute response X is
the response to User A’s message.

3. Since User A is listening for updates on User B’s outbox, he will eventually
see the response. At that point, he can remove the message X attribute from
his outbox, keeping the outbox size reasonably small.

4. User B will eventually notice that User A has removed the message X mes-
sage. Consequently, User B can remove the response X response from her
outbox.

The important thing to notice about this technique is that it is guaranteed
to eventually succeed as long as the underlying replication scheme—no matter
what it is—can make progress. Moreover, no single u-form is modified by more
than one user, so no conflicts occur, no security policies are violated, and no
extra version vector housekeeping is incurred.

4.2 Collections and Recursive Collections

As we mentioned earlier, it is easy to construct a u-form that holds references to
many other u-forms. We call such u-forms collections, and they are very useful
for defining datasets, that is, sets of u-forms that a given user community is
interested in.



580 M. Higgins et al.

Fig. 3. Several collections

Many of our visualization appli-
cations depend strongly on shared
collections. For instance, a military
commander may be examining a col-
lection of his aircraft in a map vi-
sualization, while, simultaneously, a
logistics officer is viewing the same
set of aircraft in a chart showing fuel
and ammunition supplies. It is very
useful for these visualizations to be
encoding the same collection u-form,
so that if it is modified (say, to add
or remove an aircraft), both visual-
izations are updated.

Collections, however, are very dif-
ficult to update consistently in a dis-
tributed fashion if many writers are involved. There is no unique “ground truth”
method for producing a single collection by resolving several edits in different
venues, especially if a globally consistent ordering is to be preserved. Moreover,
the expense of version vectors is incurred and many users must have the author-
ity to update the collection u-form.

One solution to the problem is to make one user the owner of the collection,
and have any other user that wishes to modify the collection send a message (see
section 4.1) to that user. This, in effect, converts our multi-master distributed
system into a single-master client-server system for this particular piece of data.
The nice thing about this approach is that any collection semantics can be
supported, and we can assign ownership however we like for various pieces of data
and datasets. The downside is that if the owner of the dataset is unreachable
then no updates can be performed.5

Another solution is to factor a single collection u-form into a recursive col-
lection. A recursive collection is a collection u-form whose member u-forms are
themselves collections, together with some annotation to distinguish between the
intent of adding a single collection or adding all the members of that collection.
We can assign ownership of each “child” collection to a different user, and we
can interpret the recursive collection as containing the union of the members of
its children.

This works well provided ordering is not crucial to the application, and pro-
vided no single user needs to be able to fully delete an item from the recursive
collection (since she cannot delete it from other people’s “child” collections, only
her own). Version vectors are kept small and digital signatures are easy to man-
age, because there is a one-to-one relationship between users and the collection
u-forms they modify. In some situations it can be argued that managing the

5 It should be noted, though, that the carrier-pigeon message approach will automat-
ically queue messages until connectivity is restored, so updates are not lost, only
deferred.



Managing Distributed Collaboration in a Peer-to-Peer Network 581

security policy, the conflict resolution, and the large version vector on a single
collection provides superior performance to tracking all the child collections in a
recursive collection. It must be noted, though, that safety demands that version
vectors be kept forever, whereas only currently interested users need maintain
child collections.6

Setting up the recursive collection can be handled using a single-writer-via-
carrier-pigeon approach, since changes to the set of interested users (who also
need to write) are probably comparatively infrequent.

It is likely that recursive collections can be generalized with additional annota-
tions to support approximate or limited guarantees on the ordering of elements,
but we have not yet experimented with this concept.

4.3 The Publication and Annotation Mechanism

Virtual relations, described in section 3.2, arm us with a powerful tool. A user
can associate one u-form with another without requiring write access to either u-
form. Instead, the user simply needs write access to a virtual relation index that
supplies the mapping or, more commonly, someone to add the virtual relation
on the user’s behalf.

We have established a convention for using such virtual relations to perform
collaborative enrichment of information. (The application of this mechanism to
annotation of linguistic corpus data is described in [36].)

We define an author to be a user who creates u-forms and may be interested
in annotating existing u-forms.

A publisher is some agent who vouches for the veracity of a piece of infor-
mation. Each publisher also maintains a well-known virtual relation index. An
author may be his own publisher, or may cooperate with a well-known publishing
organization.

A theme is a u-form defining an area of interest for some community of users.
These could be created in an ad-hoc fashion, or worked out in a standardization
process. It depends on what the publishers and users find most convenient; the
system doesn’t care what mechanism is used to agree upon the meaning of
themes—they are treated as unique labels.

An annotation is a u-form that comments upon another u-form with respect
to some theme. (Because an annotation is itself a u-form, it might be the target
of further annotations. The same goes for themes themselves.)

Each publisher maintains an index whose keys are UUIDs of u-forms that
are being annotated (it is thus, by our earlier definition, an index of virtual
relations). The values in the index are UUIDs of collections that store UUIDs of
annotation u-forms, sorted by theme.

A user who wishes to publish an annotation on an existing u-form creates
the annotation u-form, and uses a carrier-pigeon channel to ask the publisher to

6 Technically, it is possible to prune version vectors if a safe distributed transaction
can be performed over every venue in the system. Unfortunately, for internet-scale
systems with intermittent connectivity such a transaction is essentially impossible.



582 M. Higgins et al.

relate the new annotation to the existing u-form through the publisher’s index7.
To maintain the integrity of the index, a publisher will typically copy the user’s
annotation to u-form that is signed by the publisher, and publish this version,
rather than publish the user’s original annotation (this avoids “bait and switch”
abuses).

Similarly, if a user knows of a publisher’s index, and a source u-form of interest,
she can efficiently find all the themes and annotations published by that publisher
for that source u-form by looking up the source u-form UUID in the publisher’s
index.

In practice, this technique supports rich stand-off annotation and commentary
without requiring users to modify each others’ u-forms. We will discuss an exist-
ing application of this mechanism in section 5. An advantage to using stand-off
annotation over direct modification of data is that competing viewpoints and
opinions can be captured and expressed. This is a much more natural mode of
discourse in many respects than a tug-of-war over a single mutable information
object.

Stand-off annotation is only a recent description of the much older scholarly
practice of citation with commentary. This technique can be found in ancient
Greek writings and in early scriptural scholarship. The tendencies apparent in
such practices are the same as those we see today: the more definitive a text, the
more people wish to comment upon it, and the less likely they are to be able to
edit the definitive version with inline annotation or markup.

5 A Comprehensive Application: Collaborative,
Distributed GIS

Our Geobrowser application [23] leverages all these techniques to support col-
laborative, distributed GIS. What do we mean by that? A Geobrowser user can
browse and explore a large shared dataset of u-forms describing political and
physical features of the Earth. (This dataset, called the Information Commons
Gazetteer, is quite complex and is built from many freely available sources. Its
structure is described in detail in [37].) The user can also create her own data
and datasets and share them. She can also enrich existing datasets through the
publication mechanism.

Each Geobrowser contains a database node that is part of the Shepherds
system. Consequently, the Geobrowser application works well whether or not it
is currently connected to the internet.

Let’s walk through some of the techniques we have discussed and identify how
they support specific Geobrowser features.

– U-forms are used to represent all of the data and much of the implementation
of the Geobrowser application. It is thus “self-updating” since the underlying
replication mechanism will update relevant u-forms transparently.

7 The publisher, of course, is free to pursue any policy for deciding whether or not
to publish an annotation. And, of course, a user may self-publish if no publisher is
willing to work with him.



Managing Distributed Collaboration in a Peer-to-Peer Network 583

Fig. 4. The Geobrowser

– Digital signatures are created and checked automatically by the tools in the
application using the active user’s credentials.

– Carrier-pigeon protocols are used to support creating new Geobrowser users
(a master index of users and public key credentials is maintained).

– Collections are used extensively to structure and organize data. Users can
easily create and share new collections (as well as other sorts of u-forms).

– U-form based indexes are used to accelerate access to over 5 million physi-
cal and political features of the world. Both geo-temporal and string-search
indexes are provided.

– The publication mechanism can be employed by users to provide free-text
comments on any u-form in the system. The publication mechanism is also
used to associate more structured data from multiple sources: for instance,
data from the Wikipedia has been associated with the Information Commons
Gazetteer through the publication mechanism.

The Geobrowser is in active development and is becoming a tool that reaches
far beyond GIS. It is being used to as a content management system for the
Community Directory websites [24,25], and to support research and collaboration
in the biomedical domain [34].

6 Conclusion

U-forms as a shared collaborative space are a valuable and powerful tool. Op-
timistic peer-to-peer replication allows us to increase the reach of u-form based
systems by improving scalability, and by allowing us to operate in disconnected
or poorly connected environments.



584 M. Higgins et al.

This capability comes at a price, however. Managing conflict-detection book-
keeping in the form of version vectors can grow expensive over time as u-forms
are updated in many venues. Lazy conflict resolution increases in difficulty as
the number of conflicts grows and as the complexity of u-form structures grows.
As the number of users grows, the desire for access control to protect data from
accidental or malicious tampering also argues against overpermissive editing
policies.

To continue to support rich collaboration despite these challenges, we have
developed a variety of higher-level structures and protocols on top of our basic
u-form storage and replication system. The high-level techniques demand only
very weak guarantees from the underlying system, allowing us the freedom to
exploit technological progress as it becomes available.

These high-level structures support simple user-to-user messaging, multi-
writer datasets, and rich multi-user annotation and elaboration of data. We be-
lieve that other researchers interested in large-scale collaborative systems may
also find these patterns efficient and effective.

Future work will continue to improve the efficiency and utility of these struc-
tures without compromising their ability to scale. Simultaneously, we are con-
tinuing to explore new replication and storage technologies for the underlying
system. We are also developing end-user applications and tools for a variety of
domains, including bio-informatics and GIS.

References

1. Lucas, P., Senn, J., Widdows, D.: Distributed knowledge representation using
universal identity and replication. Technical Report MAYA-05007, MAYA Design
(2005)

2. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37 (2005)
3. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a

solution. In: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data. (1996) 173–182

4. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated stor-
age system. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP-15), Copper Mountain Resort, Colorado. (1995)

5. Lucas, P.: Civium: A geographic information system for everyone, the Information
Commons, and the Universal Database. In: Vision Plus 10, Lech/Arlberg, Austria
(2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference. (2001) 149–160

7. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001) 329

8. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)



Managing Distributed Collaboration in a Peer-to-Peer Network 585

9. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: Symposium on Operating Systems Principles. (2001)
202–215

10. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage
utility. In: Proceedings of HOTOS (Hot Topics in Operating Systems). (2001)
75–80

11. Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M., Stroffolino, P., Kolojejchick,
J., Dunmire, C.: Visage: A user interface environment for exploring information.
In: Proceedings of Information Visualization, San Francisco, IEEE (1996) 3–12

12. Lucas, P., Senn, J.: Toward the Universal Database: U-forms and the VIA Repos-
itory. Technical Report MTR02001, MAYA Design (2002)

13. Dertouzos, M.: What Will Be. Harper, San Francisco (1997)
14. Leach, P., Mealling, M., R.Salz: A UUID URN namespace. Technical report, The

Internet Society (2004) Current draft, awaiting approval.
15. Manola, F., Miller, E.: RDF primer (2004)
16. Lucas, P., Widdows, D., Hughes, J., Lucas, W.: Roles in the universal database:

Data and metadata in a distributed semantic network. Technical Report MAYA-
05009, MAYA Design (2005)

17. van der Vlist, E.: XML Schema. O’Reilly (2002)
18. Higgins, M., Lucas, P., Senn, J.: VisageWeb: Visualizing WWW Data in Visage.

In: Symposium on Information Visualization (Infovis), IEEE (1999) 100–107
19. Lucas, P.: Mobile devices and mobile data: Issues of identity and reference. Human

Computer Interaction 16 (2001) 323–336
20. Bishop, D., Lucas, P.: Polymorphic collaboration: Beyond relaxed WYSIWIS in

Visage-Link. Technical Report MTR-02007, MAYA Design (2002)
21. General Dynamics: Command post of the future (CPOF) (2005)

http://www.darpa.mil/ato/programs/CPOF/DT.htm .
22. General Dynamics: GD Viz (2005) http://www.gdviz.com/.
23. MAYA Design, Inc.: Civium Workbench (2002) http://civium.maya.com/.
24. Allegheny County Department of Human Services: HumanServices.net (2006)

http://www.humanservices.net/.
25. A-Plus Schools: Pittsburgh After School (2006) http://www.pghafterschool.com.
26. MAYA Design, Inc.: Buskarma (2002) http://www.buskarma.com/.
27. Higgins, M., Roth, S.: Shepherds and shepherd spaces. Technical Report MAYA-

06009, MAYA Design, (prepared for DARPA) (2006)
28. Parker, D., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow,

J., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency in dis-
tributed systems. IEEE Transactions on Software Engineering SE-9 (1983) 240–
247

29. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems.
Information Processing Letters 39 (1991) 11–16

30. Kang, B.B., Wilensky, R., Kubiatowicz, J.: Hash history approach for reconcil-
ing mutual inconsistency in optimistic replication. In: 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS’03). (2003)

31. Higgins, M., Widdows, D., Balasubramanya, M., Lucas, P., Holstius, D.: Shepherd-
able indexes and persistent search services for mobile users. In: 8th International
Symposium on Distributed Objects and Applications (DOA 2006), Montpellier,
France (2006)

32. Sedgewick, R.: Algorithms in C. Addison-Wesley (1990)
33. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-

ceedings of SIGMOD. (1984) 45–47

http://www.darpa.mil/ato/programs/CPOF/DT.htm
http://www.gdviz.com/
http://civium.maya.com/
http://www.humanservices.net/
http://www.pghafterschool.com
http://www.buskarma.com/


586 M. Higgins et al.

34. Widdows, D., Barmada, M.: The Universal Genetics Database: Information sharing
in genetics and beyond. BioTech International 18 (2006) 11–13 (Byline article).

35. Schneier, B.: Applied Cryptography. 2nd edn. John Wiley and Sons (1996)
36. Balasubramanya, M., Higgins, M., Lucas, P., Senn, J., Widdows, D.: Collabora-

tive annotation that lasts forever: Using peer-to-peer technology for disseminating
corpora and language resources. In: Fifth International Conference on Language
Resources and Evaluation (LREC 2006), Genoa, Italy (2006)

37. Lucas, P., Balasubramanya, M., Widdows, D., Higgins, M.: The Information Com-
mons Gazetteer: A public resource of populated places and worldwide adminis-
trative divisions. In: Fifth International Conference on Language Resources and
Evaluation (LREC 2006), Genoa, Italy (2006)



Developing Collaborative Applications

Using Sliverware

Seth Holloway and Christine Julien

Mobile and Pervasive Computing Group
The Center for Excellence in Distributed Global Engironments

The University of Texas at Austin
{sethh, c.julien}@mail.utexas.edu

http://mpc.ece.utexas.edu

Abstract. Despite computers’ widespread use for personal applications,
very few programming frameworks exist for creating synchronous collab-
orative applications. Existing research in CSCW (computer supported
cooperative work), specifically approaches that attempt to make current
application implementations collaboration-aware, are difficult to imple-
ment for two reasons: the systems are focused too narrowly (e.g., on
Internet-only applications), or the systems are simply too complicated
to be adopted (e.g., they are hard to set up and adapt to concrete ap-
plications). Enabling real-time collaboration demands lightweight, mod-
ular middleware—sliverware—that enables the fine-grained interactions
required by collaborative applications. In this paper, we introduce sliv-
erware and give a specific example in the guise of a distributed keyboard
that multiplexes input from several users into a single stream that each
user receives just like input from a normal keyboard. The result is simple,
real-time collaboration based on a shared, distributed view of data that
enables rapid development of highly coupled coordinating applications.

1 Introduction

Even though computers worldwide are connected, the computer is still largely a
personal experience; CSCW (computer supported cooperative work) research has
focused on expanding the limitations of traditional computers to allow for more
collaboration amongst users. However, CSCW has mainly provided information
exchange rather than information sharing [6]. While both allow for collaboration,
information sharing provides real-time interaction with a consistent global view
of shared data. Despite the large volume of work that has been done in connecting
people, simultaneous collaboration and information sharing are still relegated to
face-to-face meetings and telephone or video conferences. Existing research into
enabling collaboration is too narrowly focused to be usable by everyone; for
example, available solutions may only work online or with a specific operating
system, or they may rely on a particular programming framework. Additionally,
the approaches often rely on heavyweight, unchangeable middleware systems
which provide excessive functionality; the vast amount of functions cannot be
easily understood and fully utilized yet they dominate the software size.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 587–604, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



588 S. Holloway and C. Julien

This paper introduces sliverware, which aims to simplify the development of
collaborative software. A sliverware component (a sliver) is a thin slice of a
modular middleware that provides a specific functionality appropriate to im-
plementing collaborative software. Each piece of sliverware includes not only
the programming abstractions a developer uses to create the particular interac-
tion, but also the protocol implementations required to realize that interaction.
By hiding the details of this implementation from the application programmer,
sliverware allows developers of collaborative software to focus on interactions
instead of low-level communication. An application requiring multiple modes
of interaction pulls together exactly the required sliverware components in a
modular fashion to create a tailored middleware layer that implements the in-
teractions’ underlying behavior. By providing full application stacks within one
sliver, collaborative programs can be constructed out of sliverware with very
little knowledge of distributed programming. Common components among sliv-
ers are automatically optimized at compile time to provide the smallest-possible
implementation. Traditional middleware provides a horizontal abstraction, but
sliverware introduces the notion of lightweight, cross-cutting, vertical abstrac-
tions.

This paper details the sliverware concept including an overview of the ap-
proach, details of each abstraction layer, and a description of how to program
using sliverware. We then show an example to demonstrate sliverware’s flex-
ibility. This example, the distributed keyboard, logically multiplexes multiple
users’ inputs into one input stream. By replacing the normal keyboard listener
with a distributed keyboard listener, an application developer can program real-
time text-based collaboration. There are numerous applications in which the dis-
tributed keyboard can play a critical role, including interactive presentations—
lectures in which the professor’s material is broadcast to students instantly while
students create annotations on the fly—and simultaneous text editors that al-
low multiple people to author a document simultaneously. These possibilities
make the abstraction ideally suited for educational software and software de-
velopment tools although many more potential applications exist. Results show
that the approach is easy to implement and scalable.

In Section 2 we motivate this research and define the problem that sliverware
solves; Section 3 details sliverware and its approach to program construction.
Section 4 covers the implementation details for one example of sliverware—the
distributed keyboard, and in Section 5 we discuss work related to sliverware and
collaborative software. Finally, we conclude with Section 6.

2 Motivation and Problem Definition

Real-time collaboration is long overdue in software; for nearly 40 years people
have only had access to single-user applications. With the advent of Internet-
based communication, many people saw the power of multi-user applications.
Today, almost everyone communicates via a chat program such as AOL In-
stant Messenger [3]. However, while everyone is chatting with peers, they are



Developing Collaborative Applications Using Sliverware 589

working on single-user applications [13]. For increased collaboration, group mem-
bers often meet face-to-face rather than using their computers directly. This is
due largely to the fact that existing collaborative software provides only coarse-
grained interactive capabilities. The types of tasks we commonly cooperate on
demand varying levels of granularity and sharing of dynamic data in real time.

If such flexible interaction primitives are available, software could further
enhance collaboration. For example, real-time collaboration in a shared word
processor may improve productivity by allowing multiple authors to contribute
simultaneously: everyone editing the document would see exactly the same up-
to-date version. In a setting where collaboration is employed, contributors have
a shared goal and work towards producing higher quality work in less time than
is possible using only non-collaborative word processors. Another example is a
collaborative software development environment that utilizes simultaneous text
editing similar to the collaborative word processor. Agile development meth-
ods such as extreme programming (XP) [5] very nearly demand collaborative
software environments. Rather than waiting for code to be checked into a ver-
sion control system, programmers could view one another’s progress in real time.
The synchronous development environment may be an ideal collaboration target
because the developer is also the end user, thus the end user has a solid under-
standing of the capabilities of software which avoids many of the traditional
groupware pitfalls [8].

There is also great promise in enabling interactive lectures, particularly in an
educational or industrial meeting. A growing number of lectures currently utilize
computers through standard methods like slide shows and more diverse means
such as electronic whiteboards [1]. Many of these technological improvements
have removed several of the interactive qualities of traditional classroom environ-
ments. Enabling digital collaboration during lectures would foster an interactive
environment where students personally augment the lecture with relevant anno-
tations in real time. This method of note-taking gives students the opportunity
to absorb the lecture and clarify notes without having to focus solely on copying
the lecturer’s words. The synchronicity also allows the audience to review the
lecture and understand how different parts relate as opposed to seeing notes
scattered in the margin. Real-time feedback from students enables lecturers to
dynamically adapt the lecture’s content and pace. These combined effects would
allow for a truly interactive lecture with a room of active participants.

There are many CSCW ideas and applications related to this research, but
none have received widespread usage due to several fundamental problems. First
many collaborative approaches are complex and hard to use—the basic idea is
incomprehensible or the development method is ill-defined. In addition, there is
a general lack of programming tools tailored to enabling development of collabo-
rative applications—the granularity of programming constructs is too low-level,
focused on communication routines, and not tailored to the high-level interac-
tive qualities of collaborative applications. The CSCW approaches are also too
specific so they do not integrate with other systems easily. These combined chal-
lenges scare even seasoned programmers away.



590 S. Holloway and C. Julien

In summary, existing programming constructs do not adequately address col-
laborative software developers’ needs, including: expressive coordination and
group membership primitives, an extensible and easy to use programming frame-
work, and responsive communication-based interactions.

The work undertaken in this paper addresses the above challenges and presents
the following specific essential characteristics:

– Tailored collaborative abstractions: we introduce abstractions that make col-
laborative programs easier to write and deploy quickly by encapsulating
interactive capabilities within reusable programming constructs.

– Extensible programming framework: our approach allows the system to be
modified by collaborative application developers at various levels of com-
plexity.

– Lightweight software footprint: we provide a simple, efficient solution that
dynamically minimizes the resources required by applications.

The next section introduces sliverware, which stands to overcome barriers to
enabling collaboration in numerous ways. Sliverware supplies easy-to-understand
abstractions tailored to collaboration functions so application developers can
construct applications from existing components rather than having to program
applications from the bottom up. This also frees the programmer from writ-
ing complicated, low-level communication methods. Also, the real-time interac-
tions provided by sliverware help to solve the mismatch between face-to-face
and mediated communication. Finally, sliverware can be extended and used in
three distinct ways, providing tailorable abstractions for programmers of all skill
levels.

3 Sliverware: A Constructive Programming Model

Sliverware is thin modular middleware that offers the functionality necessary for
writing collaborative software. Application developers do not need to know vast
amounts of distributed computing solutions before using sliverware; instead the
programming model provides a hierarchical collection of components that each
implement a specific functionality necessary to collaborative software. The sliv-
erware approach abstracts all aspects of collaborative programming into three
layers: collaborative services (the collaborative functionality and application pro-
gramming interface, or API), group membership, and network communication.
A specific sliver teams three components (one from each layer) to provide an ab-
straction that allows programmers to develop collaborative applications quickly
and effectively. Novice programmers can use particular slivers through the slivers’
high-level programming interfaces, while more advanced developers can combine
components in a different manner to create new slivers.

Sliverware provides all the functionality application developers have come to
expect from middleware while also allowing for execution on more resource-
constrained devices. The latter benefit stems from the fact that sliverware’s
modularity enables an application developer to incorporate only the middleware



Developing Collaborative Applications Using Sliverware 591

components required for the particular application instance. The framework im-
plements many common collaboration tasks through the reuse of components.
The model is flexible because it can provide many varying potential solutions
from a vast library and ultimately trims the system at compile time. Sliverware
is also specifically collaborative-oriented which allows it to tailor the program-
ming interfaces and functionality underlying them to a specific set of tasks. This
simplifies the complexity of the development task while still enabling a large
number of similar applications as described in the previous section. Finally, sliv-
erware is component-based which provides developers the ability to mix and
match components at varying levels of abstraction.

Fig. 1 depicts the

Fig. 1. Sliverware-program interaction model. Sliver-
ware extends vertically through three layers: the net-
work communication, group membership, and coop-
erative services layers. The sliverware hooks into the
application via an API.

sliverware-program inter-
action model and shows
that sliverware interacts
with four layers in the
application stack: the
network, group, service,
and API levels. Fig. 2,
the sliverware component
model, shows the essential
components of a single
sliver. High level sliverware
functionality is decom-
posed into pieces for each
of the three layers. An
underlying network proto-
col is necessary to enable
coordinating partners to
exchange information; this
is handled by the network communication layer. It plugs into the sliver via an
adapter that provides the communication interface, described in Section 3.3.
Collaboration also requires the coordinating partners to be organized into
a group that contains all of the distributed application components that
must be kept consistent. The group membership layer provides support for
organizing and coordinating the group itself, and may provide specialized logic
for distributing information to all group members. This group membership
and the group interface for connecting group policies to collaborative services
is described in Section 3.2. Finally, we think of the implementation and API
layers as a single entity that encapsulates the collaborative functionality which
is separate from the coordination or distribution method. This layer, described
in Section 3.1, incorporates algorithms that provide collaborative support for
the local application such as the methods to allow information sharing (e.g.,
creating periodic snapshots to build a consistent global view or processing
snapshots from other group members). In the remainder of this section, we
describe the responsibilities of each of these component layers in more detail.



592 S. Holloway and C. Julien

We then describe how developers program with slivers and how slivers can be
combined automatically to optimize the resultant, tailored sliverware.

3.1 Collaborative Services

The uppermost layer in the sliverware model log-

Fig. 2. Sliverware component
model. An individual sliver
combines one component from
each of the three layers.

ically combines the collaborative functions and
an API that presents the programming model
to the developer to create a suite of collaborative
services. This layer is founded on the premise
that programming collaborative applications
can be made easier if the programming prim-
itives focus on functions integral to collabora-
tion while hiding the necessary underlying group
cooperation and network communication proto-
cols. Implementations at this layer provide dis-
crete fine-grained services that enable different
pieces of functionality required for collaborative
applications. For example, collaborative appli-
cations may exchange input information (e.g.,
keyboard or mouse events) occurring across a
set of distributed devices, diffs of the same file
open concurrently on multiple machines, simple
idle/active status information of participants, or
even screen shots for each connected user. For
each such function, a collaborative service is de-
fined that implements exactly the behavior dic-
tated. A collaborative application can then be
defined by integrating one or more such collaborative functions and providing
application-specific behavior on top. This application-specific behavior is not
part of the sliverware model, and includes determining how shared information
is displayed and how often information should be exchanged. Some collabora-
tive services may also automatically collect context information from the user
or device generating data and attach it as part of the collaboration information.

Section 4 gives an example of a specific collaborative function, the distributed
keyboard. In this collaborative service, every participant in the collaboration
group has attached a keyboard listener to a component in the application.
When a keyboard event occurs in that component, the event is not only dis-
played appropriately on the user’s local device (e.g., by displaying the letter
typed), but the event is also automatically distributed to all other group partic-
ipants. The distributed keyboard’s API is defined to interact with the applica-
tion in both directions (event generation and event reception). The information
exchanged when interacting with different collaborative services likely differs
greatly (e.g., interacting with a distributed keyboard listener is clearly quite
different from interacting with a distributed mouse listener). In the sliverware
model, we present this service interaction through a common serviceListener



Developing Collaborative Applications Using Sliverware 593

that can be subclassed by a sliver component developer to be made to resemble
local interfaces with which the developer is familiar. All context collection and
event distribution is hidden from the application programmer and handled by the
implementation of the collaborative service, and, ultimately, by the underlying
communication and coordination protocols described next.

3.2 Group Membership

One of the most important aspects to supporting the collaborative services de-
scribed above is the ability to support collaborative groups. Without defining
the group that is collaborating (even if this group contains only two partici-
pants), then it is difficult to understand and specify the collaborative behavior
(in the layer above) or to implement the collaborative behavior (which relies
on the communication protocols described in the next section). For these rea-
sons, group membership specification and implementation is the second, middle
component, of any sliver in our model, and this component handles all steps
necessary to store, collect, and learn group identities. The group membership
policy that dictates how members are added to the group can present varying
levels of complexity depending on how restrictive, consistent, and/or private the
group should be. For example, the simplest group policy allows anyone who
hears a communication to be part of that group. This policy offers no consis-
tency guarantees however, because there is no information provided about which
parties have received the message. More complicated group policies may require
potential members to explicitly join, they may require members to periodically
update their status to remain active, or they may even require members to know
a shared password to participate.

Regardless of their semantics, groups are represented by well-defined data
structures that contain the following components, if applicable:

group � (groupName, groupAddress, members)

This group data structure is maintained independently by each member; unless
explicitly implemented by the group policy, no guarantee is provided that every
group member has the same view of the current group. The groupName is a
unique group identifier, groupAddress contains the group IP address for multicast
purposes, and finally members is a list of all group participants. Any of these
fields can be empty; though such null values make some sliver combinations
impossible (for example, if the multicast address is not set, but the underlying
communication is provided by a multicast protocol, there is no way to contact
the other group members). These subtleties, their implications, and how our
sliverware model and framework handles them are discussed in the next section.
The members portion of the group data structure is a list of individual members
each presented in the form:

members � (name, address, attributes)

where name is the group member’s identifier, address is the group member’s
IP address, and attributes contain any other information that the program may



594 S. Holloway and C. Julien

track. As with the group data structure, none of these aspects are required; if the
underlying communication protocol is using a multicast address, it is possible
that an IP address for each individual member is superfluous. The attributes
are largely open-ended, and different group policies may use them for different
purposes. As one example, if the group policy requires periodic heartbeats from
each group member, the time to the next expected heartbeat would be included
as an attribute for each member. Context information about the node, such as
physical location, can also be included in the attributes.

The actual implementation of a group membership component depends on
the particular policy employed by the group membership protocol. In our pro-
totype, we present two widely applicable group membership policies: announce
and n-heartbeat. The first of these, announce, provides open access to the
group that allows anyone to join by simply announcing their intent. The policy
does not attempt to prune unproductive members and instead relies on explicit
departures from the group. To join the group, an application component’s group
membership component broadcasts a join request for the group. This is received
by every node in the network, and, if the node supports an application partic-
ipating in the specified group, the associated group data structure is updated
with information about the new member. At this point, when any member of
the group sends collaborative information, it is received by all other members
specified in the group data structure if they are still connected. When an appli-
cation component wishes to depart the group, it sends a depart message to all
nodes it knows to be part of the group.

While the announce policy is useful for supporting many applications that
are relatively static, more complex policies are necessary to support more so-
phisticated applications. For example, more stringent joining processes or more
rigorous exit criteria may be programmed to suit the application. This brings us
to our second prototype group membership policy, n-heartbeat, which requires
that all participants periodically broadcast heartbeat messages; if a member
does not communicate within n heartbeat periods, the member is assumed to
have disappeared and is removed from each member’s group data structure.
Each member performs this removal independently; there is no guarantee that
all members will have the exact same lists at all times, but if a node is no longer
sending heartbeat messages, every active group member will eventually remove
that node from the group data structure. To join a group, a new member sends
a join request as above, but in addition, the node must periodically send a
short message indicating it is still present and active. Still more sophisticated
group membership policies are possible, for example, based on relative physical
location and its implied notion of future connectivity [9].

Because of its modular design, the sliverware framework allows for more group
membership policies to be integrated quickly and easily. A group membership
component developer simply needs to provide functionality for joining the group
and any constraints on the group interactions; this allows support for managing
user group life cycles. The interface the group membership layer presents to the
collaborative service layer contains a send(Message m) method (for calls coming



Developing Collaborative Applications Using Sliverware 595

from a collaborative service above) and a GroupListener for delivering group
events from other group members to the collaborative service. Before invoking
the collaborative service’s listener, the group membership implementation is re-
sponsible for ensuring that the message received is in fact destined for this group
and that the sender is a part of the group. The interface the group membership
protocols use to interact with the lower, network communication layer contains
some additional methods and is discussed in more detail next. In summary, to
add a new group policy to the framework, the policy developer is responsible for
understanding how to use the underlying communication interface, for provid-
ing an implementation of the send method called by the collaborative service,
and for invoking any registered group listener to deliver messages to a registered
collaborative service.

3.3 Network Communication for Collaboration

Communication is a necessary part of collaboration—without proper commu-
nication there is no collaboration. With real-time collaboration in mind, com-
munication should generally include every group member, be immediate, and
ensure that every contribution that is made is registered. However, many factors
influence the quality and cost of communication, including the degree of syn-
chronicity, priority requirements, timeliness, etc. Combinations of these factors
lead to numerous ways to provide communication for collaborative applications.
Complicating this is the fact that different applications have different perfor-
mance requirements and communication approaches perform differently when
faced with different operating constraints. Given these discrepancies, it becomes
apparent that there is no common communication approach that is the best
choice for all applications or even for a particular application in every scenario.
For this reason, the sliverware programming model simply defines a common in-
terface, or adapter [7], that communication approaches must adhere to in order
to be usable by the other, higher level, sliverware components. This is similar
to the requirement above that new group policies adhere to the specified in-
terface, but in this case we make the particular interface an explicit individual
component because we do not modify the communication protocols themselves.
Because a standard interface is used, an application developer can swap in dif-
ferent communication implementations without altering any of the higher level
implementation components.

The basic interface for collaborative communication in our sliverware model
allows both communication with a single member of the collaborative group and
simultaneous communication with the entire group. While reliable multicast [12]
appears at first glance to be an obvious widely applicable solution, it is difficult to
implement in the dynamic, lightweight, wireless systems we are targeting [11]. A
reliable multicast implementation may be the correct choice in some cases, but,
depending on the situation, a simpler flooding-based broadcast may be suffi-
cient. In other cases, more tailored protocols may be appropriate. For example a
cooperative text editor that will only involve a select group of individuals in the
same boardroom (such as in a meeting) could utilize simple flooding, while the



596 S. Holloway and C. Julien

same application connecting a small group within in a large audience (such as a
conference) may use ad-hoc on-demand distance vector routing (AODV) [15] or
multicast ad-hoc on-demand distance vector routing (MAODV) [16]. In either
case, the application developer needs only to select the proper network commu-
nication component for the sliver and the common send interface (defined by the
adapter) will distribute the necessary data to the group.

Method Description

join(String name) called by the group membership layer on the
network communication layer to enter the callee
into the group with the specified name

depart(String name) called by the group membership layer on the
network communication layer to remove the callee
from the specified group

send(Address a, Message m) called by the group membership layer on the
network communication layer to send the specified
message to a single recipient: the node indicated
by the specified address

sendAll(Group g, Message m) called by the group membership layer on the
network communication layer to send the specified
message to all members of the specified group

receive(Message m) called by the network communication layer on the
group membership layer to deliver the specified
message; implemented within the
CommunicationListener

Fig. 3. The interface between group membership and network communication

The methods comprising the interface between group membership and net-
work communication are shown in Fig. 3. The join and depart methods were
discussed previously; they are used by some group membership protocols that
need to explicitly join and leave groups. At first glance, one might think these
methods ought to be implemented within the group membership layer itself and
not involve the network communication layer, but some join activities require
participation of the communication protocol (e.g., joining a multicast group)
while others do not (e.g., communication that relies on broadcast for every mes-
sage). Because our foremost goal is pushing all knowledge of communication
to the network layer, we require the group membership layer to know only the
name of a group in which it participates, and the protocol delegates knowledge
of how the communication protocol operates to whatever implementation resides
in the network communication layer of a particular sliver. In this manner, the
group membership protocol performs exactly the same behavior regardless of
the nature of the underlying communication protocol.

The remaining three methods allow data to be exchanged among group mem-
bers. The common element in these three methods, Message, includes the group
name, the source, and the data to be transmitted. The functionality required



Developing Collaborative Applications Using Sliverware 597

to send a message to everyone in the group changes with the networking proto-
col, but the interface distances the application developer from low level details.
Overall multicast functionality is provided by the sendAll(group, message)
method; here, group refers to the data structure presented earlier that contains
the group name, group address, and members list. Recall, however, that the group
data structure does not have to contain each of these elements for the commu-
nication protocol to be able to function correctly. For example, AODV does not
support multicast, so the group address provides no useful information. How-
ever, if the elements of the members list are omitted, AODV cannot reach the
other group members since it relies on unicasting the message to each of them.
In this case, the method triggers a NoMulticast exception. On the other hand,
MAODV is a multicast protocol that automatically provides group-wide com-
munication. In this case we expect the group element to contain a group address,
and we trigger an exception if the element is undefined. It is important to note
that we do not alter the communication protocol implementations themselves
and instead implement these behaviors in the adapter interface. As an example,
the code implementing sendAll for an AODV adapter looks like the following:

void sendAll(Group g, Message m) throws NoMulticast, UnreachableHost {
if(g.members == null){

throw new NoMulticast();

return;

}
for(int index = 0, index < g.members.size(); index++){

if(g.members[index].address != null){
AODVSend(g.members[index].address, m);

}
else{

throw new UnreachableHost(g.members[index]);

}
}

}
The above is an example of the simple interfacing code that a sliver developer
must write to be able to include a new communication protocol as a component
in the network communication layer.

If the network communication is implemented by a brute-force broadcast pro-
tocol, the sendAllmethod will deliver the message to every connected node, even
those that do not support members of this particular group. As the group mem-
bership layer is communication agnostic, so the network communication layer is
group agnostic. When the network communication layer receives a message, it
delivers it to the group membership layer. It is then the group membership pro-
tocol’s responsibility to filter these messages and ensure only proper messages
are delivered to the collaborative service and ultimately the application.

There may also be a need for communication between single members of the
group; this may be used to implement join and depart, but it may also be
useful for sidebar coordination within the group. This unicast style of behavior
is achieved through the send method in Fig. 3. In AODV this method is the



598 S. Holloway and C. Julien

base functionality, so little extra work is necessary. In the case of MAODV and
flooding we rely on the group membership layer at the receiving end to filter all
messages where the target address does not match the host address.

All incoming messages trigger the receive method in the
CommunicationListener interface. This method’s implementation is likely
quite simple in all cases; it is a basic pass-through of information from the
network to the group membership layer. If the message received was not sent by
a member of the group, or if the group identifier in the message does not match
a group id of the receiver, the group membership layer filters the information
rather than passing it to the application layer.

Our prototype contains an implementation for flooding, unicast, and multi-
cast based protocols; a sliver component programmer can easily insert another
protocol by creating an adapter for that protocol. In no cases is it necessary
for the programmer to modify the existing communication protocol implemen-
tation; the adapter simply changes the interface to conform to our framework.
Therefore, this system allows very low-impact changes to the network layer while
providing extreme flexibility and extensibility.

3.4 Programming with Sliverware

Sliverware is an extensible, modular model for enabling collaboration in applica-
tions. The abstractions provide collaborative services that are easy to understand
and use. Referring back to Fig. 2, each sliver provides a discrete collaborative
function and comprises the local implementation of that function, the imple-
mentation of a group membership policy that defines who participates in that
collaboration, and a network communication component that facilitates physical
message exchange. Programming collaborative applications with the sliverware
model is straightforward and simply requires a developer to select, use, and
combine slivers that provide the high-level collaborative functions the applica-
tion demands. This programming may result in a sophisticated application that
encompasses several collaborative functions and may even combine views of in-
formation from multiple different groups. For example, in a classroom support
application, a group may be defined for the entire class so the teacher can share
materials with every student, and there may be additional groups defined for a
team project. A single student’s display may simultaneously show information
from both of these collaborations side by side.

From the programmer’s perspective, each of these behaviors is programmed
independently as a single sliver. When the application is compiled, the sliverware
framework optimizes the resulting implementation by combining functionality
that is duplicated across slivers. Fig. 4 shows this process in a bit of detail. The
left of the figure pictorially represents an application that combines three sepa-
rate slivers: a distributed keyboard shared with all of the members of the class,
a distributed keyboard shared with the team members, and a distributed mouse
shared with the team members. The classroom application may have a dedicated
window for keyboard events shared with the class and a separate window for key-
board and mouse events shared with the team. When a keyboard event occurs,



Developing Collaborative Applications Using Sliverware 599

Fig. 4. A visualization of the sliverware simplification; components that are reused are
combined to create a minimal set of functionality that is lightweight yet functional

the collaborative application implementation (not shown) first determines which
window had the focus and then triggers the appropriate collaborative service.

When compiled, the actual middleware deployed in support of the application
is shown on the right of Fig. 4. The duplicate components (i.e., the MAODV
implementation used and the group membership policy implementation for the
team) have been combined for efficiency. When a message is received at a node,
the MAODV implementation passes it to both group implementations (because
it doesn’t know how to read or process group information). Each group processes
only the messages destined for its members (as indicated by the groupName car-
ried in the message). The team group implementation passes all group messages
to both collaborative services (i.e., both the distributed keyboard and the dis-
tributed mouse), but each of these services only passes along events whose data
portions match the type for that service. In general, duplicated network commu-
nication protocols are always combined. Ultimately, the compiler optimizes the
set of slivers to create a tailored lightweight middleware. This is in contrast to
traditional approaches where an entire middleware system must be deployed and
invariably contains functionality that will not be employed by every application.
Sliverware’s approach leads to a much leaner execution environment which can
translate into increased performance and greater support for heterogeneity.

The flexibility described above illustrates an important property of the sliv-
erware programming model: the ability to create new slivers by adding and ex-
changing components. Overall, sliverware can be programmed by three distinct
classes of developers with increasing levels of programming expertise. First are
the collaborative application developers who access suites of available preconfig-
ured slivers and combine them into applications as described above. Second are
the sliver developers who combine sliverware components from each of the three
layers to create new combinations presented as slivers. Finally, the most expe-
rienced class of programmers, sliverware component programmers can develop
new sliverware components that can be used in sliver combinations. For each



600 S. Holloway and C. Julien

component level, we discussed previously the steps this developer must take to
create a new implementation that adheres to the well-defined sliverware model.

Sliverware allows users of all skill levels to use and extend the sliverware
system by the unique hierarchical structure of the sliverware approach. Multiple
layers of abstraction lead from the low-level implementation to useful high-level
functionality. By providing a complete framework based on multiple layers of
abstraction, sliverware is a flexible, extensible, and reusable model that provides
collaborative services.

4 An Example Sliver: The Distributed Keyboard

Sliverware enables collaborative applications to be developed quickly and re-
moves repetitive, burdensome communication and coordination methods. To aid
understanding of sliverware we present an example application, a chat program in
which a group of users shares keyboard inputs that occur within the application.
The collaboration is achieved using a distributed input device, the distributed
keyboard. The distributed keyboard listener replaces the traditional keyboard
listener and multiplexes all the users’ key-presses from within the application
into a stream similar to the input from a standard keyboard.

Fig. 5(a) demonstrates how the traditional keyboard listener connects indi-
vidual users to their machines. Fig. 5(b) shows the simple approach taken by the
distributed keyboard listener; the individual inputs are joined into one logical
distributed input device which is fed to each machine. This approach allows in-
dividuals to remain at their own computer while maintaining a consistent global

Fig. 5. The traditional keyboard listener connects a single user to a computer (top).
The distributed keyboard listener connects multiple users while still allowing them to
use their local machine (bottom).



Developing Collaborative Applications Using Sliverware 601

Fig. 6. The application stack for our Chat Application

view. The distributed keyboard appears to function as a standard client-server
implementation, however, instead of routing all packets through a server, the
sliver automatically multicasts users’ input to the group. Bypassing a central
server speeds the implementation, allowing for more immediate interactions.
The result is a chat program that immediately broadcasts each group member’s
key-preses and displays the input in a text box which is consistent across the
group.

Fig. 6 shows the application stack underlying the Chat Application implemen-
tation. The collaborative application programmer contributes only the upper-
most block of this stack. The programmer uses the ServiceListener interface
and the notify method to plug into the sliver used (in this case, a distributed
keyboard implementation). The distributed keyboard demultiplexes events from
other group members and delivers them to the application. It also receives the
local user’s events, packages them, and sends them to the group implementation
(in this case, an instance of the announce group). Through the GroupListener
interface, the announce group implementation distributes incoming events to the
registered collaborative service (i.e., the distributed keyboard). The announce
group implementation also passes the message from the local collaborative ser-
vice on to the communication implementation through the sendAll method
which delivers the key event to all other group members. The interfaces between
the layers in Fig. 6 are generic sliverware interfaces included in the sliverware
framework. Regardless of the type of component employed at each layer, it is a
given that the same interfaces are used. These generic interfaces enable sliverware
components to be exchanged for each other without impacting other components
in the sliver.

Fig. 7 shows a screen shot the sliverware chat application; the implementation
can be found on our group webpage at http://mpc.ece.utexas.edu/research/
sliverware.html. Each group member appears in the chat window; as the
user types, their key-presses are displayed in real-time on all connected users’
screens. This particular application chooses to display distributed key events

http://mpc.ece.utexas.edu/research/sliverware.html
http://mpc.ece.utexas.edu/research/sliverware.html


602 S. Holloway and C. Julien

from different users based on the events’ relative times of arrival. Other applica-
tion uses of the distributed keyboard may also use cursor position information
to allow users to edit a single, shared document.

Fig. 7. The distributed keyboard listener in action

5 Related Work

Since the rise of CSCW, there has been a great deal of research devoted to en-
abling collaboration; however, current collaborative approaches are largely based
on asynchronous communication such as that provided by the Microsoft Suite’s
Track Changes function [4]. To collaborate on a document, a group member can
turn on Track Changes, then edit the document, save it, and distribute it to the
rest of the group. This edit, save, send cycle leads to an asynchronous commu-
nication that effectively locks the document while someone else edits. Another
common approach, simply emailing an individually edited document to another
team member, also provides only asynchronous collaboration based on informa-
tion exchange. Sliverware provides more synchronous communication that allows
all connected group members to make and share changes concurrently.

Similar to sliverware, many new products offer synchronous editing. For ex-
ample, Writely [18] provides an online collaborative word processor with the use
of AJAX. There are a raft of similar solutions as part of the WebOS revolu-
tion [2] including SynchroEdit [17] and JotSpot Live [10]. While these systems
are a great step forward in real-time cooperation, they have a reliance on an
external server which may not always be accessible or secure. Also, software
functionality can only be provided by the product team; users must trust the
content provider to protect the data and add necessary features in a timely man-
ner. Sliverware can be used to provide similar functionality for applications on
the Internet or the desktop with greater control of the application which allows
for greater security and extensibility.

The aforementioned applications are written with a specific collaborative goal
in mind, so while they may be useful, they are only useful for the tasks they can
already perform. Sliverware is an extensible framework and has broad goals for
enabling collaboration through diverse means. Sliverware shares goals with ex-
isting CSCW frameworks such as DISCIPLE and BSCW which allow users to



Developing Collaborative Applications Using Sliverware 603

simultaneously change documents. DISCIPLE [14] is a framework for sharing
JavaBeans applications in real-time through the use of CORBA to replicate ob-
jects. BSCW provides information sharing across the world wide web with a
web server that is extended using CGI scripts. DISCIPLE and BSCW provide
limited usability due to the reliance on web programs; while the ideas may be ex-
tended to existing applications, the frameworks themselves cannot. Sliverware’s
collaborative abstractions work in desktop publishing applications as well as web
applications. Sliverware focuses on a broader abstraction to enable collaboration
on a larger scale.

While all the related work in collaboration is useful, the offerings do not
explicitly define a simple framework for adding synchronous collaboration to
existing systems across domains. Sliverware enables collaboration in a manner
that is comprehensible and easily extended. Collaborative application developers
have complete control of their product without spending valuable time on low
level programming.

6 Conclusions

Sliverware is designed to enable collaboration in applications through an exten-
sible, lightweight framework that is easy to understand and easy to use. Sliver-
ware provides the same benefits as traditional middleware, but unlike traditional
middleware which provides a horizontal layer that pre-invents the wheel, sliver-
ware focuses on thin vertical pieces of the complete application stack—network
communication, group membership, and a collaborative service. Additionally,
while traditional middleware provides a great deal of functionality regardless of
the applications’ needs, sliverware provides more focused pieces of functional-
ity that can be optimized to ensure that the system remains as lightweight as
possible.

Sliverware’s extensible framework enables programmers at all levels to con-
tribute to and use the system. Sliverware provides a framework to quickly enable
collaboration in programs by furnishing a set of lightweight middleware modules;
application-developers can build a system by assembling sliverware and writing
minimal amounts of code to utilize the collaborative service through the API—
the developer is not bogged down with low-level details and can instead focus
on high-level programming.

Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the NSF, Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.



604 S. Holloway and C. Julien

References

1. G. Abowd, C. Atkeson, A. Feinstein, C. Hmelo, R. Kooper, S. Long, N. Sawhney,
and M. Tani. Teaching and learning as multimedia authoring: The classroom 2000
project. In ACM Multimedia, pages 187–198, 1996.

2. S. Adler. WebOS: Say goodbye to desktop applications. netWorker, 9(4):18–26,
2005.

3. Aim. http://www.aim.com/, 2006.
4. B. Barrios. Tutorial microsoft office word 2003: Collaboration. http://getit.

rutgers.edu/tutorials/word collaboration/media/collaborative.pdf, 2002.
5. K. Beck and C. Andres. Extreme Programming Explained : Embrace Change (2nd

Edition). Addison-Wesley Professional, 2004.
6. R. Bentley, T. Horstmann, J. Trevor, and K. Sikkel. Supporting collaborative

information sharing with the world wide web: The BSCW shared workspace system.
4th International World Wide Web Conference, pages 63–74, 1995.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software (Addison-Wesley Professional Computing Se-
ries). Addison-Wesley Professional, 1995.

8. J. Grudin. Groupware and social dynamics: Eight challenges for developers. Com-
munications of the ACM, 37(1):92–105, 1994.

9. Q. Huang, C. Julien, and G.-C. Roman. Relying on safe distance to achieve strong
partitionable group membership in ad hoc networks. IEEE Transactions on Mobile
Compututing, 3(2):192–205, 2004.

10. Jotspot live. http://www.jotlive.com/, 2006.
11. J. Kuri and S. K. Kasera. Reliable multicast in multi-access wireless LANs. Wire-

less Networks, 7(4):359–369, July 2001.
12. J. Lin and S. Paul. RMTP: A reliable multicast transport protocol. In INFOCOM,

pages 1414–1424, 1996.
13. T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM

Compututing Survey, 26(1):87–119, 1994.
14. I. Marsic. DISCIPLE: A framework for multimodal collaboration in heterogeneous

environments. ACM Computing Survey, 31(2es):4, 1999.
15. C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. In WM-

CSA ’99: Proceedings of the Second IEEE Workshop on Mobile Computer Systems
and Applications, page 90, Washington, DC, USA, 1999. IEEE Computer Society.

16. E. M. Royer and C. E. Perkins. Multicast operation of the ad-hoc on-demand
distance vector routing protocol. In MobiCom ’99: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and networking, pages
207–218, New York, NY, USA, 1999. ACM Press.

17. Synchroedit. http://www.synchroedit.com/, 2006.
18. Writely. http://www.writely.com/, 2006.

http://www.aim.com/
http://getit.rutgers.edu/tutorials/word_collaboration/media/collaborative.pdf
http://getit.rutgers.edu/tutorials/word_collaboration/media/collaborative.pdf
http://www.jotlive.com/
http://www.synchroedit.com/
http://www.writely.com/


A Framework for Building Collaboration Tools
by Leveraging Industrial Components

Du Li, Yi Yang, James Creel, and Blake Dworaczyk

Center for the Study of Digital Libraries (CSDL)
Texas A&M University
lidu@csdl.tamu.edu

Abstract. Groupware applications allow a distributed group of human
users to work apart together over a computer network. They are difficult
to develop due to the needs to suit a range of collaboration tasks that
are often with diverse and evolutionary requirements. To address this
problem, we propose a new framework in which shared data components
conforming to a well-defined interface can be dynamically plugged in for
flexible sharing, and a simple transformation tool is provided such that
the myriad of industrial collaboration-transparent components can be
transformed into shared components. The validity of our framework is
evaluated by building a suite of typical collaboration tools such as group
editors. Under our framework, most components in the Java Develop-
ment Kit (JDK) can be transformed automatically for prototyping col-
laboration tools. With minimal manual work, those tools can be adapted
to achieve advanced flexibility, e.g., data and control components can be
bound dynamically to switch control protocols.

1 Introduction

The support of distributed collaboration has been penetrating modern com-
puter systems in the past decade. This is evidenced by the increasing popularity
of standalone groupware applications, such as instant messengers, multiplayer
games, and electronic meeting systems, and groupware features integrated in
group productivity tools, such as many recent programming environments and
office products. In general, groupware needs to win a critical mass of users to be
a success [5]. This often requires that they be sensitive to the needs of a variety
of user groups and collaboration tasks. However, the needs of users and tasks
often differ and evolve over time [18].

One way to address this challenge is to provide customizable groupware tools
which allow users to set parameters that match their particular preferences.
However, this approach often results in bloated systems that are difficult to
maintain and evolve, while the level of flexibility is limited to what are foreseen
and parameterized at design time. If groupware tools are developed ad hoc as
separated applications, reusability and extensibility will be limited.

An alternative approach is to provide a reusable groupware infrastructure for
users to easily prototype desired groupware tools as the needs emerge. Conceptu-
ally, this would make the practices of groupware development more systematic,

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 605–624, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



606 D. Li et al.

resulting in lower engineering and re-engineering costs, well-architected systems,
and a consistent look and feel across different tools.

Recent works such as [7,17,22] represent a trend to integrate the practices
of groupware development and the practices of component-based development
(CBD) in software engineering [20]. While it is well understood that groupware
infrastructures must provide suitable programming abstractions [16], open issues
include how to model components in groupware and how to fill the gap between
groupware components and current industrial components that do not observe
custom groupware component models.

We propose a novel framework called EXEC (an Evolvable and eXtensible
Environment for Collaboration) that addresses these two issues. First, it in-
cludes a groupware component model, which decomposes a range of groupware
applications into shared data components and control components. Based on
this model, data and control components can be developed as independent li-
braries, and the infrastructure provides services to dynamically compose them
at run time. Second, it includes a transformation tool which is able to trans-
form existing collaboration-transparent components (e.g., JavaBeans) such that
they conform to our custom component model and can be plugged into our plat-
form for sharing. This way our framework can leverage the myriad of industrial
components for fast-prototyping flexible groupware applications.

In the next section, we review related works to motivate the proposed frame-
work. Then we elaborate the proposed framework in Sections 3 and 4. Next,
Section 5 evaluates the framework by concrete design examples. Section 6 sum-
marizes contributions and future directions.

2 Related Work

There are generally two approaches to developing groupware: The first is col-
laboration awareness, in which the system is designed to support multiuser in-
teraction, possibly aided by an infrastructure (toolkit) with reusable services
[10]. The second approach is collaboration transparency, in which a (reusable)
collaboration-aware infrastructure is provided such that an existing single-user
application is shared for multiuser interaction without modifying its source code
[12]. Recent component-based approaches combine the advantages of both [17].

Collaboration Awareness. There are a plethora of specialized groupware
applications, e.g., [19]. Over the years, many of the collaboration services such as
those for group communication, consistency control and session management are
identified as common to a variety of groupware applications. Reusable services
are provided in groupware toolkits such as DistEdit [10], Suite [3], and GroupKit
[16] such that new groupware applications can be built more easily.

Toolkits generally provide custom programming abstractions with embedded
consistency control protocols, and assume that groupware applications are devel-
oped based on these abstractions. For example, when used for building a group
editor, Suite and GroupKit both require that the shared data be manually con-
structed in their custom data structures (e.g., sequences [3] and dictionaries



A Framework for Building Collaboration Tools 607

[16]). In general, they do not address how to reuse existing single-user programs.
DistEdit [11] explores how to manually convert existing single-user applications
(editors) into collaboration tools. However, it assumes that the program is well-
structured so that it is easy to modify the source code to call the toolkit APIs.
For programs that are not well-structured, the work is admittedly tedious.

Collaboration Transparency. Any single-user application can be turned into
a multiuser application automatically by generic application sharing infrastruc-
tures such as Microsoft NetMeeting. Due to the lack of application semantics
in the infrastructure, however, all collaborators must see exactly the same view.
The infrastructure only allows one user (floor holder) to modify the content at
a time by intercepting the window events. Flexibility is generally traded off for
reuse of single-user applications in entirety.

Flexible JAMM [1] can dynamically replace components in (Java Swing based)
single-user applications with custom multiuser versions. It is a major step to-
wards achieving more flexible sharing in collaboration transparency systems.
However, while it allows for flexible concurrent work on those custom-built mul-
tiuser components, the whole application is still subject to floor control. More-
over, Flexible JAMM does not address how to build the custom multiuser com-
ponents that allows for flexible sharing. Several recent systems achieve flexible
sharing at the application level. ICT [13,14] and CoWord [21] explored how to
convert familiar single-user editors into group editors without modifying source
code. However, they both require considerable manual implementation of adap-
tation code for detecting state changes and implementing synchronization. In
those approaches, flexibility is achieved at the loss of automation.

Component-Based Frameworks. The increasing acceptance of component-
based development provides new opportunities. Component-based architectures
such as JavaBeans and .Net define standard ways for introspecting the inter-
nals of components and composing components to construct new applications.
Accordingly, a number of component-based groupware frameworks have been
proposed recently, such as [7,17,22]. The main differences lie in how groupware
components are modeled and how existing components are leveraged.

The JView architecture [7] supports the dynamic composition of groupware
components that implement a well-defined interface. It does not automatically
leverage or transform components not based on the custom interface. In addi-
tion, their groupware components as a unit of composition do not distinguish
between data and collaboration control services. For example, in its group editing
component, the locking protocol is hardwired. Consequently, it is not possible
to dynamically apply alternative consistency protocols (e.g., operational trans-
formation [19]) on the shared document without a redesign of components.

CAISE [2] is a recent extensible platform aiming to support the entire collabo-
rative software engineering process. However, from the perspective of groupware
frameworks, it is essentially not different from early groupware toolkits in the
sense that it requires that new collaboration tools be coded to call APIs such
that a number of common collaboration services can be accessed with reduced



608 D. Li et al.

costs. In the APIs, typically functions such as consistency protocols are hard-
wired and the resulting collaboration tools suffer from rigid control. It does not
automatically transform existing single-user programs as does this work.

The work of [17] is a recent component-based framework that supports flex-
ible composition of both application and infrastructure components. It extends
the naming conventions in JavaBeans such that component properties can be
defined in a more general manner. Their work does not address automatic pro-
gram transformation. The essential difference is how state change events are
intercepted before they take effect on shared data. They either use user- or
timer-triggered diffing, which is admittedly not efficient, or require the devel-
oper to manually add notification code to the original component programs.
By comparison, shared components in our framework proactively notify the in-
frastructure of state changes, which is more efficient. The notification code is
automatically injected into the subclasses automatically derived from bytecode
of the original components, which means that we do not need to modify source
code of components that are to be shared. At current stage, often a few lines
of code is required to implement accumulative (or indexed) properties in some
components for achieving fine-grained control. This could be refined in future
work, e.g., by exploring heuristics such that arrays, vectors, and hash tables can
be transformed automatically to implement insert and delete methods.

Our recent work of EFG [22] separates shared data and control components
and dynamically composes them at run time. This way the same editing compo-
nent can be reused with different control protocols for different tasks. However,
EFG requires that the editing component be coded following its custom shared
component interfaces. It does not address how to transform existing components
that fail to observe the custom interfaces. Nonetheless, EFG provides the basic
mechanism for implementing dynamic protocols, on which EXEC is based.

3 A Model of Groupware Components

Figure 1 shows our abstract groupware model: A groupware application con-
sists of a multiuser graphical user interface which visualizes shared data for each
user and allows the user to interact with the shared data objects; a repository
of shared data components that model the application states; and a set of col-
laboration control services that implement functions such as consistency on the
shared data. The data and control components conform to well-defined inter-
faces such as JavaBeans such that they can be introspected and composed. The
infrastructure provides services such as event interception and execution, events
broadcasting and notification, data replication and persistence, and session man-
agement. It also implements mechanisms for dynamic composition of data and
control components as well as user interfaces for achieving so.

In this section, we will model shared data components, present an embodiment
in JavaBeans, and then give a brief summary of the runtime system. In the next
two sections, we will show how to transform components that do not observe
our custom component interfaces.



A Framework for Building Collaboration Tools 609

m
u
l
t
i
-
u
s
e
r
 
i
n
t
e
r
f
a
c
e

shared data 
components

interceptor

executor

collaboration
services

network

model

control

view

Fig. 1. The groupware component model in EXEC

3.1 Modeling Shared Data

Shared data components are expected to have the following attributes:
First, as in any distributed environment, the infrastructure must be able to

uniquely identify different instances of the same shared data component, be-
cause property changes must be eventually applied on all replicas to maintain
consistency across cooperating sites.

Second, a shared component must provide a well-known way for the infras-
tructure to intercept its shared property changes before they actually take effect.
This happen-before interception is necessary to allow for both optimistic (aggres-
sive) and pessimistic (conservative) control.

Third, a shared component must define a well-known way for the infrastruc-
ture to apply desired property changes.

Fourth, a shared container component that has composite structures must
provide a standard way for the infrastructure to introspect and access its sub-
ordinate components.

Fifth, to implement flexible and efficient control, a shared component should
provide a well-known way for the infrastructure to intercept and apply shared
property changes both atomically (to replace an old value with a new one) and
accumulatively (to model, e.g., the increase and decrease of text), if it contains
shared properties that are incrementally changeable.

3.2 Java Embodiment

The above requirements can be easily fulfilled in any modern programming lan-
guage that supports components. Here we presents an embodiment in Java,
which includes two interfaces, ISharedComponent and ISharedContainer, the
latter extending the former. The reason for defining them as interfaces instead
of classes is that Java allows only single inheritance in sub-classing. Using inter-
faces allows more flexibility when the user wants to convert existing components



610 D. Li et al.

public interface ISharedComponent {
//(1) to return the global unique id of shared component
public String getOid();

//(2) to modify shared properties
public void insert(String propertyName,

int offset, Object value);
public void delete(String propertyName, int offset);
public void update(String propertyName,

Object oldValue, Object newValue);

//(3) to hook collaboration services
public void addSharedPropertyChangeListener(

ISharedPropertyChangeListener p);
public void removeSharedPropertyChangeListener(

ISharedPropertyChangeListener p);
public void fireSharedPropertyChange(

ISharedPropertyChangeEvent e);
}

Fig. 2. Shared component interface

into shared components. We include a default implementation called Default-
SharedComponent, which extends the JDK JComponent class and implements
the ISharedComponent interface. It provides a starting point for building fresh
new shared components.

Figure 2 shows a Java specification of the shared component interface. The
methods defined in this interface fall into three groups. The first consists of
a method, getOid(), that returns the global unique id of the shared compo-
nent. By this method, each shared component instance identifies itself globally.
The second group of methods is used for the runtime system to cause property
changes (insert, delete, and update) on this component. They indirectly define
the shared properties. The third group includes three methods: the first two
allow the runtime system to register (deregister) itself to (from) the shared com-
ponent for intercepting property changes, respectively, while the third method is
for happen-before notification of property changes. Definitions of ISharedProp-
ertyChangeEvent and ISharedPropertyChangeListener resembles the standard
interfaces of events and listeners in Java.

The ISharedPropertyChangeEvent class wraps up the event type (insert,
delete, or update) and their corresponding parameters into one object. When-
ever a method (insert, delete, or update) of a shared component is invoked,
this shared component invokes its fireSharedPropertyChange method to fire a
corresponding ISharedPropertyChangeEvent. This method iterates all registered
ISharedPropertyChangeListener instances and then invokes the well-known no-
tification method defined by the ISharedPropertyChangeListener interface. The
runtime is itself a ISharedPropertyChangeListener instance which is registered



A Framework for Building Collaboration Tools 611

public interface ISharedContainer extends ISharedComponent {
public void insertChildren(int offset, ISharedComponent child);
public void deleteChildren(int x);
public ISharedComponent getChildren(int x);

}

Fig. 3. Shared container interface

to be a listener of all shared component instances. Whenever a SharedProper-
tyChangeEvent is fired, the runtime system will be notified before the property
change takes effect on the shared component. Then the runtime delivers the
event to corresponding collaboration services.

We distinguish two types of shared properties: Atomic properties are defined
by the update method, and accumulative properties are defined by the insert and
delete methods. Atomic and accumulative properties directly map to the atom
and indexed properties, respectively, in JavaBeans and .Net. Hence our shared
property model retains the expressive power of the original host component
model. While all properties can be treated as atomic properties, by distinguishing
some of them as accumulative properties we can achieve more fine-grained control
and better system performance.

Figure 3 specifies a shared container interface for modeling data objects that
have composite structures. A shared container is also a shared component. Hence
it extends the ISharedComponent interface. Additionally, it defines three meth-
ods for retrieving, inserting and deleting subordinate components. By this defini-
tion, collaboration services such as consistency can be applied on more efficiently
based on the knowledge of the logical structure of the shared component. For
example, when the component hierarchy is known, locking can be applied on
specific components as well as branches of the tree structure. Note that the pair
of methods, insertChildren and deleteChildren, effectively define a shared accu-
mulative property called “Children”. They directly correspond to the insert and
delete methods in the ISharedComponent interface. The other methods in the
ISharedComponent interface are inherited in ISharedContainer.

3.3 Runtime System of EXEC

As shown in Figure 1, the EXEC runtime system implements the proposed com-
ponent model as follows. The interceptor registers itself as a shared property
change listener to all shared data components as they are plugged in. Whenever
the application triggers a shared property change, the interceptor is notified first.
Then the property change is pushed into related collaboration service compo-
nents (e.g., consistency protocol) for processing. The processed property change
is then delivered to the executor to be applied on the shared component. Because
property changes are intercepted before taking effect, we can implement both
pessimistic and optimistic concurrency control.

The shared property change event is a tuple of (OID, PropertyName, Prop-
ertyChangeType, Parameters). Based on OID, the executor locates the shared



612 D. Li et al.

component instance. Based on the other three elements in the event tuple, the
executor decides the execution method (insert, delete, or update) signature for
changing the property. Finally, the executor invokes the method on the target
property dynamically.

As long as a Java component conforms to the shared component model, it can
be used for composing collaboration tools in our framework. Due to the clean
separation between data and control, the runtime is table-driven: The associa-
tion of data and control components is stored in a table. As a result, different
control protocols can be dynamically associated with different data objects in the
same workspace, and the same object can be dynamically associated with differ-
ent protocols over time. Note that “objects” here can be individual properties,
components as well as containers.

Notably the mechanisms required for implementing the proposed groupware
component model, e.g., introspection and dynamic method invocation, are widely
available in modern industry component technologies such as JavaBeans and
.Net. Hence although the model has been prototyped only in Java, the same
results can be achieved on other platforms as well.

4 Transforming Industrial Components

There are a number of client-side component technologies, such as COM, Ac-
tiveX, .Net and JavaBeans. Their vendors as well as third parties provide an
ever-growing base of reusable components for developing applications. Unfor-
tunately, as analyzed in Section 2, traditional approaches to leveraging those
components for building groupware cannot achieve the desired level of automa-
tion and flexibility. In this section we describe a simple transformation tool
for transforming existing JavaBeans components such that they conform to the
shared data component interface defined in Section 3. As a result, the myriad
of existing and emerging components can be reused for developing groupware
applications with little effort.

The transformation tool converts components that follow the standard Jav-
aBeans naming conventions into shared data components as defined above. It is
worth noting that the tool does not need the source code of the input compo-
nents. Instead, it generates a subclass of an input component directly from its
byte code. The subclass implements the ISharedComponent interface.

The transformation of a component generally takes four steps: First, the user
is prompted to specify the name of the source component and the name, package,
and output directory of the target component. Second, properties of the source
component are introspected and presented in a dialog. By default, all properties
are shared and atomic. From the dialog, the user can deselect properties not to
be shared and toggle the types of some properties to accumulative. Third, the
target component source code is output to the specified directory by incorporat-
ing provided template code. Finally, if necessary, the user can manually adapt
the source code, e.g., by adding new shared properties that are not defined in the



A Framework for Building Collaboration Tools 613

(a) interface for specifying source and target components

(b) interface for selecting shared properties

(c) interface for manually adapting
    generated shared component source

Fig. 4. The component transformation interfaces

original source component. The user interfaces in the first, second, and fourth
steps are shown in Figure 4.

Code to implement the shared component interface is actually very simple.
Because Java does not allow for multiple inheritance, we provide the imple-
mentation in templates. Corresponding to the above ISharedComponent and
ISharedContainer interfaces, we provide four default implementation templates:
SharedComponent, SharedContainer, and two BeanInfo classes which describe
the shared properties of corresponding components.

As an example, Figure 5 shows the template source code of the shared com-
ponent class. It contains special markups in the form of @markup@, each of
which is replaced with actual values when the target component source code
is generated. Most markups are configured in the beginning of the transfor-
mation process, including the package name, shared component name, and base



614 D. Li et al.

Fig. 5. Template source code of the shared component implementation

component name. The generated shared component class inherits the original
component class and implements the ISharedComponent interface.

In Figure 5, the @VirtualProperties@ markup is replaced by code for imple-
menting heuristic virtual properties such as boundbox in shared graphical user
interface components, which will be explained in the next section. The main
methods for modifying shared properties and hooking collaboration services im-
plement those defined in Figure 2. The listeners vector is used to store registered
ISharePropertyChangeListener instances. Variable oid is the id of the shared
component instance. Both oid and listeners are initialized when the shared com-
ponent is instantiated. The default constructor invokes getUUID(), which is a
utility function for generating the global unique id.



A Framework for Building Collaboration Tools 615

5 Experience and Framework Evaluation

We have done extensive experiments to study the extent to which our framework
can be used for prototyping collaboration tools. In this section, we present what
we learned in the experiments. In particular, we discuss what can be automated
and what cannot, how some typical tools are built, and the level of flexibility
that is achieved in our work.

5.1 Automatic and Manual Adaptation

Using our transformation tool, we automatically transformed all Swing compo-
nents (derived from the JComponent class) and all AWT components (derived
from the Component class) that come with JDK 1.5. The experiments used de-
fault settings, e.g., all original properties are treated as shared properties and all
shared properties are atomic. All the generated shared component source passed
Java compilation without any exception.

However, we note several problems with automated transformation that entail
manual intervention by the developer. These problems are not necessarily limi-
tations of the transformation tool or the proposed approach. Some of them may
disappear as new conventions are established in JavaBeans, while some others
must involve context-sensitive decisions by human users. Ultimately, there is al-
ways a limit with automation; only the users (developers) know what they want
and how to implement certain features more intelligently in specific collaboration
tools. We document our experience as follows.

First, automatic transformation typically results in an overwhelmingly large
number of shared properties. For example, a converted JButton component
contains as many as 87 shared properties (due to that number of original proper-
ties). AWT components have relatively fewer properties than Swing components.
Nevertheless, in most practical situations, not all the properties of a component
need to be shared. Delivering a lot of unnecessary property changes may degrade
performance and overwhelm the users. Current component models such as Jav-
aBeans have no standard convention for describing the semantics of properties.
It is impossible at this stage to automatically decide shared properties. In fact,
even the same property of a component may be shared in one application while
not shared in another. Only the developer knows whether a property should be
shared in a specific application. Our transformation tool allows the developer to
determine shared properties via a simple spreadsheet-like user interface.

Secondly, manual adaptation is necessary when the developer wants to add
additional shared properties that do not exist in the original component.
Sometimes even though the properties do exist, the developer may still want to
create virtual properties to simplify control. For example, each Swing component
has properties X, Y, Width, and Height, which describe the relative coordinates
of the component in its container. Instead of using these four properties directly,
we may create one virtual property called Boundbox that logically congregates
them, the value of which can be modified by direct manipulation. As this kind



616 D. Li et al.

of adaptation often happens on user interface components, we provide the vir-
tual property and its implementation in separate templates for the developer to
choose during the transformation process. However, in general manual coding is
required to create new properties.

Thirdly, a few JDK components cannot be transformed automatically to im-
plement accumulative properties for fine-grained sharing. Take the “text”
property of the JTextPane component as an example. By default, it is adapted
as an atomic property implemented by an update method. The transformation
tool can automatically create insert and delete method signatures to implement
it as an accumulative property. However, it turned out that this simple-minded
automation failed to work properly due to some hidden issues, which will be
explained in Section 5.2. Fortunately, this kind of manual adaptation is only
required for a few JDK components and the amount of work is minor.

Additionally, while our framework aims for supporting fast-prototyping of col-
laboration tools, there are problems that cannot be solved in a once-and-for-all
manner. As shown in Figure 1, our framework includes graphical user interfaces
to visualize shared components and for users to change their properties. However,
different properties might need customized ways for users to change their values
intuitively. For example, a color property needs a special color selector, while a
string-based property needs a text editor. To mitigate this problem, we provide
a spreadsheet-like shared property editor (adopted from Sun BeanBuilder), as
shown in Figure 6 bottom left corner, which supports a few basic types of prop-
erties, such as numeric, string and color. Nonetheless, it is possible that there
are shared properties of non-basic types that are not supported by BeanBuilder,
and the property editor, mostly designed for developers, may not be intuitive for
end users. Per-application adaptation is generally necessary to achieve refined
user interface design.

5.2 Building and Adapting Components

We surveyed about 40 commercial and research systems and identified several
common groupware tools, such as group text editors, group sketch, group cal-
endar, group browser, and group todo-list. We did experiments to evaluate how
easy it was to prototype these typical groupware tools under our framework.
For each tool, the general strategy is to first find (or develop) a correspond-
ing single-user component and then transform it into a shared component. The
experiments are described as follows.

Group Text Editor. A group text editor allows users to edit a shared docu-
ment together. Our objective is to adapt some existing component into a shared
component following our shared component model. There are three built-in
text components in JDK: JTextField, JTextArea, and JTextPane, among which
JTextPane is the most sophisticated component supporting both plain text doc-
ument and styled text document such as HTML and RTF. We chose JTextPane.

The component transformation tool can directly convert the JTextPane com-
ponent into a shared component. Original properties, e.g. x, y, width, height,



A Framework for Building Collaboration Tools 617

background, and even the text content itself, can be translated into shared prop-
erties automatically. Then we plug the resulting component into EXEC plat-
form for sharing. However, the preliminary experiment revealed some usability
problems: it turned out that the automated implementation of the shared text
property did not work properly. We explain the problems and their solutions.

First, the automatically generated code failed to achieve happen-before in-
terception. Due to the well-known model-view-controller (MVC) design, the
JTextPane component uses the StyledDocument component as its model. Text
changes first happen in the model, which in turn notifies JTextPane to retrieve
the new value for its text property. Hence the value of the text property in
JTextPane is always a happen-after state if extra care is not taken. Fortunately,
the StyledDocument class provides a method setDocumentFilter, through which
we can hook a custom document listener to implement happen-before intercep-
tion of the accumulative text property. The custom code simply fires a shared
property (“text”) change and then exits. This way JTextPane is able to intercept
atomic as well as accumulative changes before they take effect on the model.

Second, the above-adapted JTextPane component still suffered from a subtle
side effect on the user interface. Specifically, after a change is caused by the
consistency control component, the caret is not moved accordingly, which causes
subsequent changes by the local user to happen at wrong positions. This is, again,
due to its MVC design: The view is implemented by the JTextPane class itself,
while the model is implemented by the StyledDocument class. When property
changes work around the JTextPane methods, the caret position maintained
in JTextPane is thrown out of sync. Therefore, in the automatically generated
insert and delete methods, we need to add a few lines of code for adjusting the
caret position every time after an incremental property change is applied.

The deeper reason is that many JDK components separate their model and
GUI delegates on purpose in order to reuse both. For example, the same
JTextPane component can use different document models, e.g., RTF, HTML,
and plain text. However, while achieving reuse, this separation makes it difficult
for GUI delegates to wrap up the model events as their own events for, otherwise,
they would be bound with one model and can not be reused with others.

Fortunately, the kind of indepth plumbing work is only required on a few
(text editing related) JDK components in order to achieve fine-grained sharing of
incremental state changes. The manual adaptation is done via well-documented
APIs and does not require analysis of source code. To implement the above
explained manual adaptation of the JTextPane component, it only takes about
100 lines of code (including moderate comments) in total.

Group Sketch. A group sketch tool allows multiple users to draw graphic
shapes such as scribbles, lines, and circles on the canvas of a shared workspace.
In our approach, the problem is reduced to finding or developing a corresponding
single-user component. Since there is no single-user sketch in JDK, we need to
build one from scratch, which takes two steps.

First, a base shape component is implemented with common properties such
as lineStyle, lineWidth, lineColor, filledColor, and bounds. The bounds property



618 D. Li et al.

defines a minimum bounding box which covers the shape. By directly manip-
ulating the bounding box of a shape, its position parameters such as location,
width, and height are changed automatically.

Next, we build shape components, including lines, circles and rectangles, by
inheriting the base shape component. The difference between them is very minor,
mainly in that they have different paint functions for drawing the corresponding
shapes. The base component takes around 100 lines of code to implement the
setter and getter methods for the common properties. Each inherited shape
simply overloads the paint function, which is about 10 lines of code.

The single-user shape components are transformed into shared components
automatically. This experiment demonstrates that, when needed single-user com-
ponents are not available, we first build them and then transform them into
shared components. With support by the EXEC runtime system, flexible shar-
ing can be achieved without the burden of implementing collaboration functions.

Group Browser. A group browser allow multiple users to browse web pages
together. There is no single-user web browser component in JDK. Components
such as JEditorPane and JTextPane support HTML documents browsing but
they do not have address bars and history mechanisms as in web browsers. We
chose to extend JTextPane into a single-user web browser such that it allows
users to type in new URLs and navigate back and forth.

The extension only adds an address bar (JTextField), two buttons (JButton)
for backward and forward navigation, and three properties: bound, currentURL
and history. Whenever a user types in a new URL in the address bar or clicks
on a web link or the backward/forward button, the currentURL property is set
to the corresponding URL. Building this single-user browser takes around 100
lines of Java code. Note that the adaptation in this case is very simple because
there is no need to implement the aforementioned fine-grained sharing on the
“text” property as in a group text editor.

Group Calendar. A group calendar allows users to browse, add and remove
tasks together. This is convenient for collaborators to detect schedule conflicts.
Almost all meeting software and enterprise applications have some form of group
calendar. There is no single-user calendar component in JDK. We implemented
a single-user calendar component as follows: First, we found an open-source
component (about 350 lines of code) on the Internet that was able to display a
calendar and allowed the user to pick dates. Next, we extended the source code
by 250 lines, which implemented task management functions such as displaying,
adding, removing tasks associated with a specific date. The adaptation simply
declares the events property of the self-built single-user component as an accu-
mulative property, which requires the developer to manually add a few lines of
code to implement the inserting and deleting of events.

Group Todo-List. A group todo-list allows multiple users to browse and main-
tain a list of tasks together. The tasks might or might not be associated with due
dates. Unlike a calendar which organizes activities by dates, a todo-list organizes
activities by themselves.



A Framework for Building Collaboration Tools 619

There is no single-user todo-list in JDK. So we developed a simple one which
is but a list with three columns: a checkbox to indicate whether a task has
been completed or not, a description of the task, and the due date of the task.
This single-user todo component takes about 300 lines of code, which is very
straight-forward. Similarly to the adaptation of the events property in the cal-
endar component, we share the tasks property of todo-list component as an
accumulative property. The developer needs to manually add a few lines of code
to implement the function signatures for inserting and deleting tasks.

5.3 An Integrated Evaluation Environment

Now we use an integrated example to demonstrate how the above adapted JDK
components and the five groupware tools can be used for supporting flexible
collaboration. The graphical user interface of our experimental system, EXEC,
is shown in Figure 6. It is intended to be a collaboration platform for supporting
our daily collaborative research and education activities, focusing on exploring
the following two research ideas: First, its functionality can be continuously ex-
tended, by transforming single-user components into new collaboration tools (as
in the presented work) and by sharing familiar single-user applications without
modifying source code (as in [13,14]). Secondly, shared data components can
be flexibly controlled by a variety of collaboration protocols, including those for
session management, awareness control, access control, consistency maintenance,
and processes and procedures (as in [22]). Protocols control data at various gran-
ules (property, component, and workspace) and can be switched dynamically at
run time to cater for evolutionary collaboration needs. EXEC provides a unified
testbed for a variety of projects in our group.

In Figure 6, panels on the left side are for control and the one on the right
side is the current workspace. The users can create workspaces, which are but
container components that contain other components. Workspaces are organized
in a tree structure, which is displayed on the upper left panel. By selecting dif-
ferent workspaces in the hierarchy, the user implicitly switch between different
collaboration sessions, similar to [4]. A presence awareness panel on the mid-
dle left lists users who are in the current workspace or in the whole system.
The infrastructure provides persistency and communication services, which are
implemented via a storage and notification server. All workspaces and user in-
teraction events are logged and persisted on the storage server automatically.
Events are delivered to collaborating sites by the notification server.

The vertical toolbar lists available groupware components and tools. When a
user clicks on a toolbar icon, a new instance of the corresponding shared compo-
nent will be created and inserted into the current shared workspace. We have im-
plemented a library of shared components by transforming JDK, third-party and
self-built collaboration-transparent components. The screenshot displays a few
components transformed from JDK and the five tools discussed in Section 5.2:
group text editor, group sketch, group calendar, group todo, and group browser.
The workspace is also a sketch tool itself, on which the user(s) can draw graphics
in individual or in group.



620 D. Li et al.

Fig. 6. A screenshot of EXEC showing the brainstorming workspace of this paper

As shown on the bottom left panel, a spreadsheet-like user interface is pro-
vided for users to apply and switch object-level protocols. An object here means
a property, a component, or a container. Different properties of the same com-
ponent can be controlled by different protocols. If a protocol is applied on a
component, updates on all properties of that component will be controlled by
the same protocol. A protocol applied to a workspace (container) will control all
components in that workspace (container).

As shown in Figure 1, whenever an update event is intercepted on an object,
it is routed to the protocol associated with the object. Depending on the level
of optimism implemented, the protocol either first applies the event on the local
object and then communicates with collaborating sites to resolve conflicts (op-
timistic), or communicates with collaborating sites first to make sure that the
proposed update is safe and then applies it locally (pessimistic). Intermediate
levels of optimism are possible [22].

The screenshot in Figure 6 shows the following example scenario. The EXEC
environment is used for projects management and papers writing in our group. In
the writing of this paper, the process is organized into several phases: brainstorm-
ing, related work review, group writing, and submission. In the brainstorming
phase, objects in the workspace are controlled by optimistic protocols such that
coauthors are allowed to modify anything at any time [9]. In the literature survey



A Framework for Building Collaboration Tools 621

Table 1. Efforts to prototype typical groupware tools

groupware tools single-user component source lines of manual code
group text editor JTextPane 120

group sketch self-built 100+(10/shape)
group browser extended from JTextPane 100
group calendar extended from third-party source 250
group todo-list self-built 300

and the group writing phases, the work is divided among coauthors and the sub-
workspaces are locked by members who are responsible for them, respectively.
In the submission phase, the whole workspace is locked and members take turns
to smooth out the draft until it is submitted. The brainstorming workspace is
shown in Figure 6, in which the collaboration tools are used for coordinating the
writing of this paper: The group calendar and todo list are used for describing
deadlines and expectations; The browsers show possible places to submit this
work; The texts and graphics show a raw division of tasks among the coauthors
with visual annotations. The control panel shows a component on which a lock-
ing protocol is applied for concurrency control: because the component is locked
in entirety, all properties are locked.

5.4 Discussions of Work and Benefits

In general it takes little work to transform existing single-user components into
shared components. The key issue is to find the right single-user components.
However, even if a needed component is not available, with collaboration func-
tions offloaded, building a single-user component is generally far less complicated
than implementing its multi-user counterpart.

The experimental results are summarized in Table 1 These five tools together
only took one person (the second author) two weeks, which, of course, does not
include the time to develop the runtime infrastructure and the transformation
tool. It is worth noting that this work aims to serve the purposes of fast prototyp-
ing. It would certainly take more lines of code if more complex functionality and
polished user interfaces were required. However, this extra work does not under-
mine the validity of our framework, which transforms collaboration-transparent
components for prototyping flexible collaboration tools.

Under the proposed framework, most single-user components that conform
to industry standards such as JavaBeans can be automatically transformed into
shared components. With no extra coding effort except some simple configura-
tion, e.g., to provide output component names or to select shared properties,
much flexibility can be achieved with the generated component. Due to the
happen-before interception of property change events, both optimistic and pes-
simistic control can be applied on shared components and their properties.

With some minor manual coding work, e.g., to add some additional shared
properties and to adapt some accumulative properties, much more flexibility and
efficiency can be achieved. For example, after JTextPane is tweaked to support



622 D. Li et al.

fine-grained insert and delete notifications, consistency protocols alternative to
locking and serialization, such as operational transformation (OT) [19], can be
applied on the “text” property. With OT, multiple users are allowed to edit any
part of a shared accumulative property simultaneously in a nonblocking manner
and local response time is not sensitive to networking latencies.

Moreover, the infrastructure allows for the following extra flexibility that is
not found previously to the best of our knowledge [22]. First, different shared
properties of the same shared component can be controlled by different pro-
tocols. For example, the bounds property of a group editor component can be
locked to fix its position and size in the workspace, while the text property can
be controlled by OT to allow for concurrent editing of content. Secondly, con-
trol protocols can be applied at the property level as well as any congregate of
properties. For example, at the component level, it means the same protocol is
applied on all shared properties of that component, and at the workspace level, it
means a protocol applies on all components in that workspace. Thirdly, different
consistency protocols can be applied on the same object (property, component,
workspace, etc.) dynamically over time. For example, in a brainstorming meet-
ing, a group editor may be first controlled by OT to encourage free contribution
and then be applied a turn-taking protocol to smooth out the meeting minutes.

6 Conclusions

Our work reduces the problem of developing collaboration tools to developing
and reusing collaboration-transparent components in which collaboration func-
tions are offloaded. A groupware component model is proposed which distin-
guishes components of shared data and collaboration services. With the support
of a runtime infrastructure, these components can be independently
developed and dynamically composed for prototyping flexible collaboration tools.
Moreover, a simple transformation tool is provided such that the myriad of
collaboration-transparent components can be transformed into shared data
components. As evidenced by our experiments, all JDK components can be
transformed for building collaboration tools. Even automatic transformation of
components can achieve flexible sharing, e.g., dynamic object-level consistency
control. Usually only minor manual adaptation on the transformed components
is required to achieve fine-grained control and refined user interface effects.

We plan to extend this work into a full-fledged collaboration platform (EXEC)
by leveraging single-user components as far as possible. In particular, we will
investigate how user interfaces for manipulating groupware components can in-
tegrate seamlessly into the platform, as in [6], and how workspace awareness
information can be automatically collected and presented in groupware compo-
nents, complementary to [8]. Next, we will investigate how existing methods in
software engineering, such as [15], can be extended to help users find needed
components for developing groupware applications.



A Framework for Building Collaboration Tools 623

Acknowledgment

This work was supported in part by the National Science Foundation under
CAREER award IIS-0133871.

References

1. J. B. Begole, M. B. Rosson, and C. A. Shaffer. Flexible collaboration transparency:
supporting worker independence in replicated application-sharing systems. ACM
Transactions on Computer-Human Interaction, 6(2):95–132, June 1999.

2. C. Cook and N. Churcher. Constructing real-time collaborative software engi-
neering tools using CAISE, an architecture for supporting tool development. In
Proceedings of the 29th Australasian Computer Science Conference, Jan. 2006.

3. P. Dewan and R. Choudhary. A high-level and flexible framework for implementing
multiuser user interfaces. ACM Transaction on Information Systems, 10(4):345–
380, 1992.

4. S. Greenberg and M. Roseman. Using a room metaphor to ease transitions in
groupware. In M. Ackerman, V. Pipek, and V. Wulf, editors, Beyond Knowledge
Management: Sharing Expertise, pages 203–256. MIT Press, Cambridge, MA, 2003.

5. J. Grudin. Groupware and social dynamics: Eight challenges for developers. Com-
munications of the ACM, 37(1):92–105, 1994.

6. J. Grundy and J. Hosking. Developing adaptable user interfaces for component-
based systems. Interacting with Computers, 14(3):175–194, Mar. 2002.

7. J. Grundy and J. Hosking. Engineering plug-in software components to support
collaborative work. Software – Practice and Experience, 32(10):983–1013, Aug.
2002.

8. J. Hill and C. Gutwin. The MAUI toolkit: Groupware widgets for group awareness.
Computer Supported Cooperative Work, 13(5):539–571, 12 2004.

9. C. M. Hymes and G. M. Olson. Unblocking brainstorming through the use of
simple group editor. In ACM CSCW Conference, pages 99–106, Nov. 1992.

10. M. J. Knister and A. Prakash. DistEdit: A distributed toolkit for supporting
multiple group editors. In ACM CSCW Conference, pages 343–355, Oct. 1990.

11. M. J. Knister and A. Prakash. Issues in the design of a toolkit for supporting
multiple group editors. Computing Systems, 6(2):135–166, 1993.

12. J. C. Lauwers and K. A. Lantz. Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems. In
Proceedings of ACM CHI’90 Conference, pages 303–311. 1990.

13. D. Li and R. Li. Transparent sharing and interoperation of heterogeneous single-
user applications. In ACM CSCW Conference, pages 246–255, Nov. 2002.

14. D. Li and J. Lu. A lightweight approach to transparent sharing of familiar single-
user editors. In ACM CSCW Conference, Nov. 2006. To appear.

15. B. Morel and P. Alexander. Automating component adaptation for reuse. In Proc.
of the 18th IEEE International Conf. on Automated Software Engineering, pages
142 – 151, Oct 2003.

16. M. Roseman and S. Greenberg. Building real-time groupware with GroupKit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction, 3(1):66–
106, Mar. 1996.

17. V. Roussev, P. Dewan, and V. Jain. Composable collaboration infrastructures
based on programming patterns. In ACM CSCW Conference, pages 117–126, 2000.



624 D. Li et al.

18. L. Suchman. Plans and Situated Actions. Cambridge University Press, 1987.
19. C. Sun and C. Ellis. Operational transformation in real-time group editors: issues,

algorithms, and achievements. In ACM CSCW Conference, pages 59–68, Dec. 1998.
20. C. Szyperski. Component technology – what, where, and how. In Proceedings

of International Conference on Software Engineering, pages 684–695, Portland,
Oregon, May 2002.

21. S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging single-user applications
for multi-user collaboration: the CoWord approach. In ACM CSCW Conference,
pages 437–446, Nov. 2004.

22. Y. Yang and D. Li. Separating data and control: Support for adaptable consistency
protocols in collaborative systems. In ACM CSCW Conference, pages 11–20, Nov.
2004.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 625 – 642, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Evaluation of a Conceptual Model-Based Method for 
Discovery of Dependency Links 

Darijus Strasunskas and Sari Hakkarainen 

Dept. of Computer and Information Science,  
Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 

{dstrasun, sari}@idi.ntnu.no 

Abstract. In practice dependency management often suffers from labor inten-
sity and complexity in creating and maintaining the dependency relations. Our 
method targets projects, where developers are geographically distributed and a 
wide range of tools is used. A conceptual domain model is used to inter-relate 
the development objects and to automate dependency link discovery. The pro-
posed method is based on association of development objects with concepts 
from domain model. These associations are used to compute dependency 
among development objects, and are stepwise refined to direct dependency 
links. 

A preliminary empirical evaluation of the method is conducted. The method 
is evaluated both on performance and psychological variables. The evaluation 
has been performed in laboratory settings using two real cases. The results, al-
though preliminary, provide positive evidence about the ability of our method 
to automate discovery of dependency relations, the analysis indicates that the 
method is perceived to be easy to use and useful by its potential users. 

Keywords: Conceptual model-centric development, geographically distributed 
development, cooperative systems development, dependency management. 

1   Introduction 

Traditional systems development has been centered on small projects and co-located 
teams using a limited toolset. Today, the organisations meet a large number of stake-
holders, broad geographical distribution alongside a wide range of tools [24]. The 
output from a systems development process ranges from requirements specification 
and architecture to design and code. Typically, all these parts should be integral and 
related. Thus, the end product of IS development is not a homogeneous specification, 
but rather a collection of loosely correlated product fragments (e.g., requirements 
specification, design, code, test scenarios, and documentation).  

Distributed development projects have special settings and needs. One problem 
here is the management of product fragments diversity; discovery and maintenance of 
dependency links among the heterogeneous product fragments. However, dependency 
management often suffers from an extensive effort and complexity of creating and 
maintaining the traces [4]. To solve the problem, we have proposed to use conceptual 
model not only to guide the design of a system, but also to actually access and man-
age the information produced during the IS development. We propose to use a  



626 D. Strasunskas and S. Hakkarainen 

conceptual model throughout whole IS development life-cycle [20], i.e. we advocate 
for conceptual model-centric IS development [12]. In our method, associations of 
product fragments using concepts from a domain model constitute the base to calcu-
late a semantic distance between the product fragments [20, 22]. The computed se-
mantic distance is further used to assess change impact and establish dependency 
links between the product fragments.  

Utility of the method has been evaluated with respect to the state-of-the-art in [20, 
22]. There it was argued that the method is capable to solve the problem of depend-
ency management in a geographically distributed development. While, the utility is 
demonstrated in application of the method in a prototype, called CO2SY (COOpera-
tive SYstem), implementation [20]. The contribution of this paper is an empirical 
evaluation of the method and its implementation by presenting and discussing the 
results from a laboratory experiment that investigates whether the proposed method 
achieves its objectives. The goal of the preliminary experiment is to evaluate the 
method and implemented prototype, receive hints for further method improvement. In 
order to achieve the goal, we analyse its effectiveness and likelihood of adoption in 
practice from the point of view of possible users. The paper addresses broad evalua-
tion research questions as follows. 

RQ1. Is the method potentially effective? That is, does the method facilitate depend-
ency establishment among product fragments and helps to explore relatedness of 
product fragments and discover “hidden” dependencies? 
RQ2. Is the method apt to be adopted in practice? That is, what are users’ perceptions 
about method usefulness and ease of use? 

The method is evaluated by the means of the experiment and a post-task question-
naire. The analysis performed using the Method Evaluation Model (MEM) [11]. As 
our method is user-centric, we have chosen to test users’ perceptions regarding ease 
of use and intention to use. Usefulness of the proposed method is tested analysing 
observed efficiency and perceived usefulness. In addition, we want to collect the 
responses for further possible improvement of the method and CO2SY. 

The paper is structured as follows. In Section 2 our method is presented. In Section 3 
the evaluation method and design of the experiment are presented. Then in Section 4 the 
results are discussed. In Section 5 the cause and threats to validity are analysed, as well 
our method is compared to related work. Finally, in Section 6 conclusions are drawn 
and future work is laid down. 

2   Conceptual Model-Centric Cooperative IS Development 

Success in system development depends on effective human communication [18], 
where early understanding and modeling of problem domain is a key to managing 
large scale systems and projects [18]. Furthermore, conceptual modeling is “the first 
step and one of the most important steps for application engineering” [2, p. 297]. 
Here, we propose to use conceptual models not only to guide the design of a system, 
but also to actually access and manage the information produced during IS develop-
ment, in particular for computation of dependency between product fragments. Fur-
ther, associations of development objects with a concept from a domain model are 



 Evaluation of a Conceptual Model-Based Method for Discovery 627 

used to communicate the meaning of development objects between stakeholders. This 
requires the stakeholders to reach a certain level of shared interpretation of the do-
main referred throughout the development [20]. 

2.1   Overall Method 

The goals, the means to achieve them and the functional steps of the method are 
summarized in Figure 1. The modeling environment [20] is used for collaborative 
problem modeling and to reach a common conceptualization of a domain. The result-
ing conceptual domain model is used for product fragment management, and change 
impact assessment. Since IS development activities are iterative and product frag-
ments are changed many times, we are able to accumulate statistics about fragments 
dependency. A log of confirmed change impacts serves as a means to refine and es-
tablish direct dependency links between the product fragments, finally achieving 
product lifecycle traceability. 

More specifically, the method is comprised from four functional steps [20, 22] as 
follows. 

Step1. Developing a conceptual domain specific model. Each developer pro-
duces a model fragment based on his/her view. The views are aligned semi-
automatically resulting in a common domain model and aligned terminology. The 
developers still maintain their personal view and preferred terminology as advocated 
in [6, 20]. 

Step2. Fragments association with concepts. Each developer uploads a product 
fragment developed by him/her. While uploading to the repository the developed 
product fragment is associated with one or more concepts from an earlier defined 
domain model. An association process here can be treated as a classification of deliv-
erables, i.e. by related the product fragments to the structure of problem domain. De-
velopers can choose confidence level when associating with concepts, e.g., to specify 
the strength of association. 

Step3. Dependency discovery. Thus, dependency relations (relatedness) are based on 
the semantics of the product fragments. Given that all developed fragments are linked 
through the conceptual model, there exists a set of domain concepts {C1, C2, …, Cn} 
 

Goals

Means

Process

Common 
reference point 

(space)
Common 

conceptualization
Product fragment 

management Product traceability

Externalised 
knowledge as 

conceptual 
model

Modelling 
framework

Conceptual 
domain 
model

Log of 
confirmed 

change impacts

Developing 
conceptual 

domain 
specific model

Association of 
fragments with 

concepts
Conceptual 

Domain 
Model

Fragments 
are stored in 
a repository

Repository Dependency 
discovery

Refinement of 
depndency 

links
!

Change 
impact 

confirmed

21 3 4

 

Fig. 1. Overall method: goals, means and process 



628 D. Strasunskas and S. Hakkarainen 

and a set of product fragments {F1, F2, …, Fm}. The fragments are related as  
follows. First, if product fragment Fi is associated to domain concept Ci and product 
fragment Fj is associated to Ci, then transitively Fi also relates to Fj. Second, given the 
related domain concepts Ci and Cj, and product fragment Fi associated to concept Ci 

and product fragment Fj associated to Cj, then dependency to a certain degree exists 
between Fi and Fj. 

Step4. Refinement of dependency links. Since IS development activities are it-
erative, the product fragments are changed many times. Statistics on confirmed 
change impacts enable to refine and establish direct dependency links between the 
product fragments, finally achieving product lifecycle traceability.  

Step1 is elaborated in details in [20]. The subsequent steps are more relevant to the 
experiment reported here; therefore a more detail account for the remaining steps is 
given in section 2.2. The method has been applied in the CO2SY prototype [20] im-
plemented in Python with a repository support implemented using PostgreSQL 
ORDBMS. 

2.2   Conceptual Model-Based Dependency Discovery 

In this subsection we elaborate on the method part concerning change impact predic-
tion and dependency discovery. Here a common conceptualization of the domain is 
used to compute relatedness among the product fragments.  

Dependency management in practice often suffers from an extensive effort and 
complexity of creating and maintaining traces [4]. Therefore, given earlier discussed 
special settings of distributed development, our method is based on a “fuzzy” associa-
tion of product fragments with concepts in a particular domain model. We tackle the 
challenge of describing heterogeneous information by semantically enriching the 
product fragments, i.e., providing means to explicate their meaning through associa-
tions with concepts. The facts that concepts are interrelated with each other in the 
conceptual model and all fragments are linked to domain concepts enable us to com-
pute semantic distance between different fragments. Further, a conceptual model is 
used to interoperate across different representation formats used in distributed devel-
opment throughout whole lifecycle. 

Each time when a new revision of the product fragment is uploaded into a reposi-
tory, change impact is computed based on associations of the product fragments with 
the conceptual model (recall step3 in section 2.1). Developers can specify a confi-
dence level for every association, e.g., specifying the strength of association. For 
usability sake we use categorical ranges for confidence levels instead of numerical. 
Three confidence levels are defined. They are as follows. High confidence level of 
association corresponds to numerical value of 0.2; medium is represented by 0.5 when 
computing overall semantic relatedness and low confidence level is equal to 0.8. 

A semantic distance algorithm [20] (see simplified version in Algorithm 1) is a 
base for the dependency (change impact) computation. Here we have adapted an ap-
proach [23] which is based on computing cosine similarity [1] using concept feature 
vectors. The feature vectors are constructed from extension of the concepts, i.e. pro-
vided natural language descriptions of the concepts or accessed from the WordNet 
database. Semantic distance (SD) between concepts is computed as follows. 



 Evaluation of a Conceptual Model-Based Method for Discovery 629 

( )

( ) ( )∑∑

∑

==

=

×

×
−=

×
×−=−=

n

i

b
i

n

i

a
i

n

i

b
i

a
i

ba

ba
ba

ba

CC

CC

CC

CC
CCsimSD

1

2

1

2

1
),( 11),(1

. 

(1) 

Where, Ca and Cb are feature vectors for concepts a and b; n is the dimension of the 
feature vectors, |Ca| and |Cb| are lengths of the two vectors. Result of sim(Ca, Cb) is 
deducted from 1 in order to convert a semantic similarity value to represent a seman-
tic distance. Our method is based on the semantic distance between concepts and 
product fragments, where smaller value shows concepts (product fragments) being 
semantically closer, i.e. contrarily to the semantic similarity value, where higher val-
ues show concepts being more similar. 

Algorithm 1 presents an overall computation of relatedness between the product 
fragments. First, a semantic distance is calculated between every pair of concepts 
based on Eq. 1. Last, a path length is computed between an altered product fragment 
and other associated product fragments. Here, we adopted Dijkstra’s shortest path 
algorithm [3]. Final values are normalized to fall into range [0…1]. 

Algorithm 1. Semantic distance computation between product fragments 

Variables MF – model fragment; 
C – a set of concepts in a model fragment MF; 
TRc – textual resource for concept c (concept extension), where c∈C; 
PF – a set of product fragments associated with model fragment. 
PFC – a set of changed product fragments, such as PFC ⊆ PF. 

Function ∀ a (a ∈C): 
 ∀ b (b∈C): 
  If ∃ R(a, b): 
   If TRa≠0 ∧ TRb≠0: 
    W(a,b)=sim(a,b) //i.e. Eq.1 
    
∀ pfc (pfc∈PFC): 
 ∀ pf (pf∈PF): 
  Return Shortest_path(pfc, pf) //i.e. [3, 22] 

The product fragments are altered many times during IS development life-cycle. 
Each change generates a list of possible impacts, which are either confirmed or re-
jected. That allows us to accumulate reliable statistics regarding dependency for each 
pair of the product fragments. The accumulated statistics are used to refine and estab-
lish direct dependency (more precise) links between the product fragments, and 
achieve product traceability at a certain stage of IS development.  

3   Evaluation Model and Experimental Settings 

Empirical study provides a means to evaluate the efficacy (i.e. both the efficiency and 
the effectiveness), while feasibility and acceptance of the method are determined by 
measuring users’ perceptions [15]. Therefore, we adopt the Method Evaluation Model 



630 D. Strasunskas and S. Hakkarainen 

(MEM) [11], a model for evaluating design research methods. The MEM (see Figure 
2) incorporates both aspects we are interested to measure: observed (actual) efficacy 
and likelihood of adoption in practice.  

 

Fig. 2. The Method Evaluation Model (adapted from [11]) 

The constructs of the MEM are defined as follows. Observed (Actual) Efficiency is 
the degree to which the method reduces the effort required to apply it. Observed (Ac-
tual) Effectiveness is the degree to which the method improves the quality of the re-
sult. Actual Usage is the degree to which the method is used in practice. Perceived 
Ease of Use is the degree to which a person believes that using the method would be 
effortless. Perceived Usefulness is the degree to which a person believes that the 
method would be useful. Intention to Use is the degree to which a person intends to 
use the method. 

Observed Efficacy measures whether the method actually improves a task, while 
Perceived Efficacy represents perceptions of both the method’s efficiency and effec-
tiveness. Adoption in practice is determined by perceptions, which in turn are deter-
mined by performance [11]. Psychological variables are central constructs and consti-
tute the Method Adoption Model in MEM. 

3.1   Experimental Settings 

The experiment is designed to evaluate the effects and the usability of the proposed 
method for dependency assessment in distributed development. The experiment de-
sign is summarised in Figure 3, where experimental treatment, experimental tasks, 
materials and collected data are illustrated. As our method is user centric, we organise 
the experiment in a way that best records users’ perceptions. Despite of user centred 
measurements being subjective, conclusions can be drawn by measuring consistency 
and reliability of the answers. In addition, performance measures and observations 
support the users’ feedback. In the following subsections the experiment design is 
further elaborated as in Figure 3. We start from discussion about participants and 
experimental treatment, then the experimental materials and used cases are discussed 
and exemplified. But prior to that, we decompose relevant evaluation research ques-
tions (recall section 1) to the hypothesis underlying the experiment. 



 Evaluation of a Conceptual Model-Based Method for Discovery 631 

 

Fig. 3. Design of the experiment 

Hypotheses. A priori, based on the MEM constructs the assumed effects of using the 
domain model to manage relatedness of product fragments and their dependency are 
hypothesised as follows. 

H1: The method is effective, i.e. domain model facilitates dependency establish-
ment among product fragments and helps to explore relatedness of product fragments 
and discover “hidden” dependencies; 

H2: The method is perceived as easy to use, i.e. “fuzzy” linking is easier than di-
rect dependency linking; 

H3: The method is perceived as useful; and consequently,  
H4: There is an indication of intention to use the method. 
 

Participants selection and experimental treatment. Since the proposed method is 
intended to be used by a variety of stakeholders, we’ve selected test subjects with 
different backgrounds, though all of them from computer science area (information 
management, databases, information systems, and knowledge management). All 6 test 
subjects are from Dept. of Computer and Information Science at NTNU. 5 out of 6 
subjects have experience of work in IT industry, 3 have participated in big software 
projects, while one has experience from a big geographically distributed project. 

The subjects participated in a 45 minutes long training session. First, the method to 
be tested together with the overall idea was presented. Then, an evaluation task and 
the procedure was presented, and discussed at a common meeting. Finally, short tuto-
rials on each of the tools used in the experiment were given. 

Couple of subjects was familiar with the concepts of the method and have seen the 
CO2SY prototype, but had not been using it themselves. Other subjects had not seen 
the tool before. The test subjects have extensive computer experience (5 of them have 
11-25 years experience, and one 5-10 years experience). Though, none of them is an 
expert user of the tested tools (see next subsection), in fact only one had experience of 
using traceability matrix before. None of the users had addressed the problem of de-
pendency management prior to the experiment, with one exception that has earlier 
been working with dependencies and traceability links. 

Experimental material. The instrumentation used in the experiment included 
experimental materials, tools (CO2SY, Telelogic® Doors™, and traceability matrix 
implemented in MS Excel™). Further, a log for performance measurement and 
survey techniques (a questionnaire and “think aloud” protocol) were used. 



632 D. Strasunskas and S. Hakkarainen 

 

Fig. 4. Example of (a) questionnaire, (b) domain model and (c) case description provided to 
users 

The experimental materials [20, 21] consisted of two cases and their descriptions in 
natural language, domain models in RML [17], and some diverse product fragments. 
Case 1 was taken from a MSc project [5], where figures 4b1 and 4c illustrate a domain 
model and description of the case 1. The MSc project was similar to the method pro-
posed here, i.e. dealing with dependency and traceability. Case 1 consisted of 4 dif-
ferent product fragment types, i.e., requirement statements (natural language), design 
fragments (UML™ sequence diagrams), code fragments (C#) and user manual in a 
form of screenshots (see Figure 5). Case 2 was based on development materials of the 
MEIS (Model Evaluation Information System) system that is used for an introductory 
course on information systems [10]. The MEIS system is used for exercise delivery, 
peer-to-peer review and for the evaluation of both, the exercise and the review. Case 2 
had two types of product fragments, i.e. requirements statements (natural language) 
and code (php). 

The conceptual domain models that the researcher designed for the projects had 18 
concepts 21 relationships in case 1 and 18 concepts 26 relations in case 2. Case 1 had 
83 product fragments, and case 2 had 23 fragments. For both cases, the task assigned 
to the subjects was to study the materials and afterwards, specify dependency rela-
tionships for a set of selected development objects.  

Experimental task. The task for test subjects was to do the both, to establish the direct 
dependency links among fragments and to associate the fragments with concepts from 
the provided domain model. After dependency between product fragments has been 

                                                           
1 Here figures 4 and 5 are used for the explanatory purposes. 



 Evaluation of a Conceptual Model-Based Method for Discovery 633 

computed, they needed to choose three random product fragments and investigate 
three top ranked relatedness values (not items) provided by CO2SY. They were asked 
to treat the list as indication that product fragments are dependent. They were further 
asked to investigate the list and to classify the fragments returned by CO2SY as to-
tally wrong (having nothing to do with each other), partially correct (for those that 
seems to be dependent, but needed more detail investigation), or totally correct (the 
fragments are dependent).  

 

Fig. 5. Illustration of product fragments type in case 1: (a) C# code fragment, (b) requirement 
statement, (c) user manual (screenshot and description) and (d) sequence diagram 

Comparative tools. In addition to the CO2SY prototype, two tools were used, namely, 
Telelogic Doors™ and a traceability matrix implemented in MS Excel™. Both consider 
direct linking of related product fragments, by means of different interfaces. In order 
not to be biased by graphical user interface, the test subjects were put in two groups. 
Group A first established direct dependency links using Doors (with case 1 materials) 
and traceability matrix (with case 2 materials), then associated product fragments 
using the CO2SY prototype. While group B first assigned associations using CO2SY 
(with materials of both cases), and then established direct links using the comparative 
tools. 

Survey. At the end of the evaluation, the test subjects answered a questionnaire [20, 
21] (see Figure 4a) in order to obtain general feedback on the system as well as to 
discuss its drawbacks. To gain a deeper insight into subjects’ views, “think aloud” 



634 D. Strasunskas and S. Hakkarainen 

protocol was used, where subjects were asked to think aloud while performing the 
tasks. Most of the questions were closed. The questionnaire included 21 closed ques-
tions, 3 closed questions with unordered responses, and 3 open questions. A five-point 
Likert scale was used to measure 13 out of 21 closed questions, i.e. subjects were 
asked to express agreement or disagreement of a five-point scale. Each degree of 
agreement is given a numerical value from one to five. Thus a total numerical value 
can be calculated from all these responses. 

3.2   Dependent Variables 

We distinguish two types of dependent variables (recall Figure 3): performance based 
and psychological variables. Evaluation of the observed efficacy requires measuring 
the efforts needed to use the method and quality of output. We have chosen to meas-
ure one performance based variable and three psychological variables as follows. 

Amount of correct dependencies is measured as comparison of results from direct 
dependency linking and associating through domain model for each test subject. This 
construct was analysed using a log and one question (i.e. practical task, Q6 in [21]) 
from the questionnaire. 

Perceived Ease of Use (PEU) is measured using four questions. Perceived Useful-
ness (PU) is measured using two questions. Intention to Use (IU) is measured using 
three questions. 

The order of the questions in the questionnaire was randomized to avoid monoto-
nous responses. To avoid a possible ceiling effect, there was no time limit for the 
experiment restricting the subjects. 

4   Results of Experiment 

In average, the subjects used 3,5 hours to perform the task. Approximately 3/5 of the 
time was used to study the experimental materials. There are three reasons why meas-
urement of time is not used to calculate efficiency. Namely, 1) the subjects were not 
studying the material equally before and during the actual linking; 2) some subjects 
found “short cuts” in some interfaces; and 3) some encountered the lack of “undo” 
command in CO2SY more than others. An interaction with the tools is otherwise as-
sumed to take similar time if disregarding the routines forced by the interface. Analy-
sis of the log, showed that in average a fragment had 3,8 (in case 1) and 2,5 (in case 
2) directly linked fragments. Similarly, a fragment had been associated with 3,3 (in 
case 1) and 3,1 (in case 2) concepts in average (see Table 7). These parameters are 
similar, i.e. the time used is comparable. 

Observed effectiveness, i.e. amount of correct dependencies. Recall that the sub-
jects were asked to classify the correctness of the output. The results for our method 
are displayed in Table 1. Where all partially correct are new dependency pairs for the 
users, i.e. additional links discovered by the CO2SY prototype. Correctly identified 
dependency pairs are grouped exclusively as mutual (identified by the test subject as 
dependent already when establishing direct dependency links) or additional  



 Evaluation of a Conceptual Model-Based Method for Discovery 635 

knowledge (new dependency links, proposed by CO2SY and identified being correct 
by the test subject), see columns 4 and 5 in the table. 

Table 1. Analysis of dependency discovery performance 

Partial

additional mutual additional %

(1) (2) (3) (4) (5)
(6)

=(5)/((4)+(5))
(7)

=(2)+(3)+(4)+(5)
(8)

=(3)+(5)
(9)

=((5)+(4))/(7)
(10)

=((8)+(4))/(7)
(11)

=(2)/(7)

1 0 3 5 1 17 % 9 4 67 % 100 % 0 %
2 4 3 4 0 0 % 11 3 36 % 64 % 36 %
3 5 8 12 3 20 % 28 11 54 % 82 % 18 %
4 2 0 13 2 13 % 17 2 88 % 88 % 12 %
5 6 1 4 3 43 % 14 4 50 % 57 % 43 %
6 6 1 5 0 0 % 12 1 42 % 50 % 50 %

Total 23 16 43 9 17 % 91 25 57 % 75 % 25 %

1 2 3 4 0 0 % 9 3 44 % 78 % 22 %
2 3 2 3 0 0 % 8 2 38 % 63 % 38 %
3 1 3 7 0 0 % 11 3 64 % 91 % 9 %
4 5 3 4 1 20 % 13 4 38 % 62 % 38 %
5 1 2 6 2 25 % 11 4 73 % 91 % 9 %
6 9 1 5 0 0 % 15 1 33 % 40 % 60 %

Total 21 14 29 3 9 % 67 17 48 % 69 % 31 %

C
ase 1

C
ase 2

% of  
wrong

Subject 
ID

Totally 
wrong

Total 
additional

% of possbily 
correct (incl. 

Partial)

Totally correct % of  
correct

Total 
inspected

 

In case 1 CO2SY helped to discover 9 additional correct links (column 5), and 16 
possibly correct (column 3). Overall, 17% (column 6) of correct dependency links 
computed by CO2SY was identified as a new knowledge for the test subjects, i.e. the 
dependencies overlooked when making direct dependency links. While the amount of 
total additional (both, totally correct and partially correct) equals to 25 (column 8). In 
case 2, the results are slightly worse, i.e. only 3 dependency pairs were considered 
being correct additions to the set already identified by the users. That makes 9% being 
new knowledge to the test subjects. Total additional dependency links identified by 
the CO2SY prototype sum up to 17 (column 8). Effectiveness of the method is proved 
by increased recall compared to manually linked product fragments. Therefore, hy-
pothesis H1 is confirmed. Difference in results between cases is explained by the size 
of the cases, i.e. 89 and 23 product fragments (in case 1 and case 2, respectively). 
Since the bigger amount of product fragments makes it possible to oversee some de-
pendencies. However, section 5 presents more detailed analysis of the difference 
between the results with case 1 and case 2. 

The Perceived Ease of Use (PEU). Hypothesis H2 can be statistically tested by 
verifying whether the scores that subjects have given to the questions related to the 
PEU constructs of MEM are significantly better than the middle score, i.e. the score 3 
on the Likert scale for the questions. The score 3 means, that a subject’s perception is 
neutral, i.e. the method was perceived neither easy nor difficult to use. If subject’s 
rating is higher than the middle score, then he/she perceives an advantage of the 
method. Therefore, the null hypothesis for the hypothesis H2 is formulated as follows. 

H2N: The perception of the method being ease of use is neutral. 

Table 2 shows an average score for each of the subjects, calculated from the re-
sponses to the PEU relevant questions. The One-Sample Kolmogorov-Smirnov test 
(with Normal theoretical distribution) was applied to the answers related to the PEU 



636 D. Strasunskas and S. Hakkarainen 

constructs. The distributions were normal, i.e. p values were high (lowest was 0,33 for 
Q13 Ease of Using CO2SY) indicating that distribution is quite normal.  

Consequently, one-tailed t-test was used to check for the difference in mean of 
PEU construct and the middle score value 3. To evaluate the significance of the ob-
served difference, we applied a statistical test with a significance level of 5%. Table 3 
provides descriptive statistics for the PEU construct.  The results in Table 4 allow for 
the rejection of the null hypothesis H2N, meaning that we empirically corroborated 
that participants perceived the tool and method to be easy to use. 

Table 2. Mean scores assigned by users for PEU 

Subject ID 1 2 3 4 5 6 
PEU 4,00 3,20 3,40 4,20 3,60 4,40 

Table 3. Descriptive statistics for PEU 

N Min Max Mean Std. Deviation Std. Error Mean 
6 3,200 4,400 3,800 0,473 0,193 

Table 4. One sample t-test for difference in mean for PEU 

t 1-tailed p Mean difference 95% Confidence Interval of the difference 
4,140 0,005 0,800 0,303(lower) 1,297(upper) 

To measure reliability, Cronbach’s alpha was computed for the construct PEU. Al-
pha value was 0,86 (usually values over 0,7 are expected in order for construct to be 
reliable). Results of total item statistics show that all items are consistent, i.e. Cron-
bach’s alpha is still above 0,8 if any of the items deleted [20]. So, we conclude that 
the items used to measure Perceived Ease of Use are reliable and valid measures for 
this perception based construct. 

The Perceived Usefulness (PU) we have measured using two items from the ques-
tionnaire [21]. Answers to one question were identical, i.e. all test subjects answered 
that the prototype helped to discover some new correct dependency links. While an-
swering to another question about the accurateness of the results provided by the 
prototype, two test subjects have chosen “neutral”, i.e. middle value in a scale from 
1=Total disaster to 5=Very accurate. Others have chosen value 4. 

In order to validate the users’ consistency in answering, we have compared an-
swers to that question (i.e. Q18) with observed (actual) effectiveness, i.e. the answers 
presented in Table 1. Data in Table 5 are taken from Table 1, except the last column. 
Table 5 explicitly shows that the same subjects had least percentage of the additional 
correct dependency links discovered by CO2SY that scored “neutral” in Q18. So, we 
can treat their answers as honest and consistent.  

In summary, the PU construct shows that the usefulness of the method and proto-
type system has positive perceptions among users. In section 5 we return to the analy-
sis why 1/3 of users ranked accuracy of CO2SY results as “neutral” (average). 

 



 Evaluation of a Conceptual Model-Based Method for Discovery 637 

Table 5. Consistency in responses about PU 

Subject ID 1 2 3 4 5 6 
# of total inspected 18 19 39 30 25 27 
# of total additional 7 5 14 6 8 2 
% of additional 38,9% 26,3% 35,9% 20,0% 32,0% 7,4% 
Q18 4 4 4 3 4 3 

Remark. Values for the last three lines are calculated from the data in Table 1. 
 
Intention to Use (IU) has been measured by three items in the questionnaire. The 

subjects were asked in two questions (i.e. Q10 and Q11, see Figure 4a) and [20, 21]) 
to rank the tools in preferable to use order, i.e. placing to 1st, 2nd or 3rd place. Because 
of specificity of the response format, we have used non-parametric test. Namely, 
Kendall coefficient of concordance W [16] has been used to measure agreement 
among users’ ranking. Table 6 displays the ranks given by users and average of the 
ranks ( iR ). Kendall coefficient of concordance WQ10 = 0,58 for Q10 and WQ11 = 0,86 
for Q11. 

Table 6. Responses to Q10/11 and mean of ranks 

Question Q10 Q11 
Subject ID 1 2 3 4 5 6 iR

 1 2 3 4 5 6 iR
 

CO2SY 1 1 1 2 1 1 1,17 1 1 1 1 1 1 1,00 
Doors 3 2 2 1 2 3 2,17 3 2 2 2 2 2 2,17 
Trace.matrix 2 3 3 3 3 2 2,67 2 3 3 3 3 3 2,83 

The subjects needed to choose the preferable tool in third question measuring IU 
(i.e. Q24). There all test subjects selected the prototype, though subject #2 in addition 
selected traceability matrix, and subject #4 – Telelogic Doors. The latter has provided 
justification that “Doors is more suitable for moderate-sized project”, “CO2SY would 
be great for large scale / distributed development”. Based on the above presented data 
analysis, we can claim that there is an intention to use the tool (method), i.e. H4 is 
confirmed. Next section takes a closer look to the results discussed in this section.  

5   Analysis and Discussion 

Here we further analyse the possible reasons behind the results. Furthermore, we 
discuss the results in comparison with other methods and finally, we elucidate on 
threats for validity of the conducted experiment. 

5.1   Cause Analysis 

In order to investigate the difference between the results with case 1 and case 2 re-
spectively, we have analysed average amount of concepts associated with a product 
fragment (see Table 7). Generally, it can be observed that the bigger concept cluster 
the bigger result set per fragment is produced, i.e. the result set will contain more 



638 D. Strasunskas and S. Hakkarainen 

false positive. No significant correlations have been found between an average con-
cept cluster size (Table 7) and the result set (recall Table 1). 

However, there is a notable difference in a cluster size between group A and group 
B. The difference exists in both cases. This difference in an average amount of con-
cepts used to describe semantics of a product fragment is an outcome of different 
usage sequence of the experimental tools. Group B has started performing task with 
the CO2SY prototype, and later proceeding to direct linking using the comparative 
tools. While group A did it other way around. Therefore, group A needed to investi-
gate the product fragments more thoroughly when performing the direct dependency 
linking task, i.e. they had more clear perception of the semantics (content) of the 
product fragments when associating them with the concepts. Consequently, they have 
used smaller concepts cluster to define semantics of product fragments. 

Next, we have analysed the responses on the quality of case 1 and case 2. We as-
sume that high quality of the domain model and the case description will facilitate 
association of product fragments with concepts, while lower quality of the product 
fragments makes the direct dependency linking more difficult. The results of quality 
assessment are summarised in Table 8. Values in Table 8 are displayed as count of 
answers, e.g. 3 subjects responded that quality of fragments in case 1 was fair. The 
weighted total quality, WT, is calculated as in eq.2, as follows. 

∑
=

×=
5

1

)(
i

ii VwWT  . (2) 

VC is an exhaustive set of value categories, i.e. VC = {very bad; bad; fair; good; 
very good}, Vi is a set of all occurrences of a response type from VC, v∈VC and v ∈  
V; W is a set of weights, w∈W, where W is a set of weights, i.e. W= {-2; -1; 0; 1; 2}. 

Table 7. Mean of concepts cluster size associated per fragment 

code
require-
ments

user 
manual

design code
require-
ments

1 2,3 3,0 2,0 2,3 2,4 (±0,8) 1,2 2,5 1,9 (±1,0)
2 3,0 4,5 1,5 4,0 3,3 (±1,4) 3,2 2,8 3,0 (±2,4)
3 2,1 2,2 1,9 3,0 2,3 (±1,2) 3,4 4,8 4,1 (±2,1)
4 4,5 5,5 4,5 4,0 4,6 (±0,7) 4,2 1,3 2,7 (±2,5)
5 4,5 4,5 4,0 5,0 4,5 (±1,1) 4,4 4,3 4,3 (±1,0)
6 4,0 4,5 1,5 2,0 3,0 (±1,5) 2,0 3,0 2,5 (±1,4)

Overall 3,3 (±1,4) 3,1 (±2,0)
group A 2,3 (±1,2) 2,7 (±1,0)
group B 4,1 (±1,2) 3,4 (±2,1)

Overall
mean (± st.dev.)

Case 2Case 1
Mean

Overall
mean (± st.dev.)

Subject 
ID

Mean

 

The quality of case 2 description and domain model was perceived much higher 
than of case 1 (in addition, half of subjects identified lack of domain knowledge in 
case 1), while the variation of the individual fragments’ quality is not so big. How-
ever, that does not explain the differences of results in Table 1. Small variation in 
perceived quality of product fragments suggests, that the direct linking should have 
been easier in case 1, meaning less additional correct links identified by CO2SY. 



 Evaluation of a Conceptual Model-Based Method for Discovery 639 

However, one test subject noted that fragments were more related to the structure of 
the problem in case 1, whereas in case 2 fragments seemed to be related to the structure 
of program (software). That sounds reasonable and explains the results in Table 1, as 
case 1 was based on the MSc project. 

Further, in order to analyse the variance of the subjects’ perceptions regarding PU 
construct, we decided to take a look at users’ pattern using confidence level when 
associating with concepts. It is reasonable, since high confidence level of association 
gives a numerical value of 0,2 (0,5 is for medium and 0,8 is for low confidence level) 
- these values are denoting semantic relatedness of fragments, i.e. lower value shows 
that fragments are closer in their semantics [22]. Table 9 shows that, actually subject 
#4 used only high confidence level (100%) and subject #6 used over 90% of high 
confidence level for associations. This was the reason to generate a lot of false posi-
tive dependency assessments and is considered to be the reason for different answers 
for the construct of Perceived Usefulness. 

Table 8. Quality of cases 

Very bad Bad Fair Good Very good Weighted total Median

description - 1 4 1 - 0 3,0
domain model - - 4 2 - 2 3,0
fragments - 1 3 1 1 2 3,0
description - - 2 4 - 4 4,0
domain model - - 1 5 - 5 4,0
fragments - 2 2 2 - 0 3,0

Quality of

Case 1 

Case 2

 

Table 9. Percentage of confidence levels used for associations and overall performance 

Subject ID 1 2 3 4 5 6 
High 68% 80% 67% 100% 64% 91% 
Medium 29% 15% 28% 0% 33% 9% 
Low 3% 5% 5% 0% 3% 0% 

# of total inspected 18 19 39 30 25 27 
# of total additional 7 5 14 6 8 2 
% of additional 38,9% 26,3% 35,9% 20,0% 32,0% 7,4% 

Remark. The last three lines are from Table 5. 

5.2   Related Work 

Most approaches for traceability concern process traceability by recording rationale 
for change, etc (cf. [14]). Our focus here is product traceability, i.e. relating various 
product fragments throughout whole IS development life-cycle. The special settings 
(i.e. distributed development) for which our method is developed and span of the 
whole development life-cycle by our method [20, 22], makes it difficult to compare 
with the evaluation of other methods. Other approaches mainly deal with a limited set 
of development life-cycle phase (i.e. limited set of product fragments types), e.g., 
from requirements to architecture [13]. Some approaches are based on a particular 
tool (e.g., IBM® Rational Rose™ [9]) or specific notation family (e.g., UML [8]). 



640 D. Strasunskas and S. Hakkarainen 

Furthermore, there are approaches tackling the problem of dependency discovery 
adopting Information Retrieval techniques (e.g., [1, 7, 19]). Unfortunately, they sup-
port only natural language based fragments.  

However, precision and recall are two commonly used metrics to evaluate the util-
ity of traceability techniques (e.g., [7, 19]). Recall is the percentage of all true links 
retrieved, and precision equals the percentage of true links in the answer set. How-
ever, in evaluations of other traceability approaches, the set of true links is usually 
based on relations identified by users (cf. [19]), i.e. the complete set of correct (true 
positive) dependency links has not been known.  

The precision level for case 1 is 75% (see column 10 in Table 1) including the par-
tially correct. While precision of totally correct (column 9) is 57%2. The correspond-
ing values for case 2 are 69% and 48%. The experiment does not lend itself to calcu-
late recall, however. Firstly, the complete set of correct (true positive) dependency 
links was not known. We have decided not to use relations identified by users since 
our experiment has shown that users can easily overlook some of true dependency 
links, simply either because of the amount of product fragments they need to investi-
gate, or not being experts in a particular domain or product fragment notation. Sec-
ondly, as our method is user-centric, it was more important to observe users’ percep-
tion of effectiveness. However, the earlier discussed amount of additional dependency 
links (correct and partial correct, see column 8 in Table 1), indicates that our method 
is effective, i.e. CO2SY has discovered more dependency links than processing the 
fragments “manually”. Furthermore, without any enforced threshold (at the cost of 
precision) on the dependency (semantic distance) computation, our method can actu-
ally provide 100% recall, since associated product fragments and concepts in domain 
model comprise a network of indirectly linked product fragments. 

5.3   Threats to Validity 

The following possible threats to the validity of this experiment have been identified.  

− The case study is executed at the university. However, the experiment examined 
real cases and 5 out of 6 test subjects had industrial experience. 

− Fair answers vs. colleagues answers. However, the analysis of the perceived use-
fulness construct shows that answers are consistent and likely to be fair. 

− Users provided subjective evaluations. The individuals interpret the experimental 
materials and tasks according to their experience. Experience seemed to be similar 
for most of individuals. 

− Subjective choice of comparative tools. Telelogic Doors is one of the leading tools 
in the area. Traceability matrix was chosen to use as one of the traditional tech-
niques. Availability of IR techniques-based tools (e.g., [1, 7, 19]) is limited, since 
most of them are academic prototypes. Even if we would have such a tool, its ap-
plicability would be limited because of variety of product fragments types (e.g. bi-
nary files). 

− Fatigue effect. On average 3,5 hours were spent to complete the tasks and fill the 
questionnaire. Therefore, this effect is not considered relevant.  

                                                           
2  Precision ratio of 50% means that developer has to examine about one false positive per true 

link. 



 Evaluation of a Conceptual Model-Based Method for Discovery 641 

6   Conclusions and Future Work 

A method for dependency management using a conceptual domain model has been 
briefly presented here. The objective of this paper has been to discuss and present an 
empirical evaluation of the method and its implementation. In the experiment de-
scribed here, we have focused on testing its possible effectiveness and practical appli-
cability. The results, although preliminary, provide positive evidence about the ability 
of our method to automate discovery of dependency relations. The subjects’ percep-
tions seem to confirm the performance-based results. The test subjects have perceived 
our method as easy to use and useful, and they have expressed intention to use the 
method.  

We have corroborated that the test subjects produced consistent answers, though 
the number of participants was limited in this experiment. Despite the fact that the 
scope was limited, results of the experiment give indications on the method applica-
bility and feasibility. Yet, the results should be interpreted only as preliminary, due to 
limited scope and amount of data, as well as artificial, different than intended, use of 
the method and tool. In intended settings of usage, developers first collaborates in 
problem modeling and later on associating their own product fragments (he/she has 
developed) with the concepts from the domain model. Therefore, a larger scale ex-
periment that would imitate the intended use of the method is necessary in order to 
reconfirm the results obtained here. Furthermore, a certain future need is to investi-
gate model quality issues in more detail, i.e. how detail and intricate the model has to 
be to encourage more selective association and thereby detect really useful hidden 
relationships among fragments. 

Moreover, the experiment has shown the necessity to improve the user interface of 
the current version of CO2SY. Telelogic Doors outperformed CO2SY in visualisation 
of dependency links. Therefore, we consider enhancing manipulation of results by 
providing different views and filters. 

References 

1. Cerbah, F., and Euzenat, J. Traceability between models and texts through terminology. 
Data and Knowledge Engineering 38(1), Elsevier Science Publishers (2001) 31-43. 

2. Chen, P.P., Thalheim, B., and Wong, L.Y. Future directions of conceptual modeling. In 
Chen, P.P. et al. (Eds.), LNCS 1565, Springer-Verlag (1999) 287-301. 

3. Dijkstra, E.W. A note on two problems in connextion with graphs. Numerische Mathe-
matik 1 (1959) 269–271. 

4. Egyed, A., and Grunbacher, P. Supporting software understanding with automated re-
quirements traceability. JSEKE 15(5) (2005) 783-810. 

5. Erichsen, K.O. Enabled traceability in distributed system development. Master thesis, IDI, 
NTNU, Trondheim, Norway (2003). 

6. Halpin, T. Information modeling and relational databases, from conceptual analysis to 
logical design. Morgan Kaufman, San Mateo, California, USA (2001) 792 p. 

7. Hayes, J.H., Dekhtyar, A., and Osborne, J.  Improving requirements tracing via informa-
tion retrieval. In Proc. of Intl. Conf. on Requirements Engineering (RE’2003) 138-147. 



642 D. Strasunskas and S. Hakkarainen 

8. von Knethen, A. Change-oriented requirements traceability: Support for evolution of em-
bedded systems. In Proc. of 18th Intl. Conf. on Software Maintenance (ICSM 2002), Mont-
real, Canada, IEEE Computer Society (2002) 482-485. 

9. Letelier, P. A framework for requirements traceability in UML based projects. In Proc. of 
the 1st Intl. Workshop on Traceability, Edinburgh, UK (2002) 32–41. 

10. Matulevicius, R. et al.  MEIS system requirements specification. Technical report, IDI, 
NTNU, Norway (2004). 

11. Moody, D.L. Dealing with complexity: A practical method for representing large entity re-
lationship models. PhD thesis, University of Melbourne, Australia (2001) 354 p. 

12. Olive, A. Conceptual schema-centric development: A grand challenge for information sys-
tems research. In Proc. of CAiSE 2005. LNCS 3520, Springer-Verlag (2005) 1-15. 

13. Pohl, K., Brandenburg, M., and Gulich, A. Integrating requirement and architecture infor-
mation: A scenario and meta-model based approach. In Proc. of the 7th Intl. Workshop on 
Requirements Engineering: Foundation for Software Quality (REFSQ’01) (2001). 

14. Ramesh, B., and Jarke, M. Toward reference models for requirements traceability. IEEE 
Transactions on Software Engineering 27(1) (2001) 58–93 

15. Riemenschneider, C.K., Hardgrave, B.C., and Davis, F.D. Explaining software developer 
acceptance of methodologies: A comparison of five theoretical models. IEEE Transactions 
on Software Engineering 28(12) (2002) 1135-1145. 

16. Siegel, S., and Castellan, N.J. Nonparametric statistics for the behavioural sciences. 
McGraw-Hill, Inc. 2nd edition (1988). 

17. Solvberg, A. Data and what they refer to. In Conceptual modeling: Current issues and fu-
ture trends. LNCS 1565. Springer-Verlag (1999) 211-226. 

18. Solvberg, A., and Kung, D.C. Information systems engineering – An introduction, 
Springer (1993). 

19. Spanoudakis, G., Zisman, A., Perez-Minana, E. and Krause, P. Rule-based generation of 
requirements traceability relations. Journal of Systems and Software 72(2) (2004) 105-127. 

20. Strasunskas, D. Domain model-centric distributed development. An approach to seman-
tics-based change impact management. PhD thesis, NTNU, Norway (2006) 311 p. 

21. Strasunskas, D. Evaluation of domain model-based change impact management. The ex-
perimental materials. Technical Report, IDI, NTNU (2005). Available at 
http://www.idi.ntnu.no/~dstrasun/evaluation/ 

22. Strasunskas, D., and Hakkarainen, S. Process of product fragments management in distrib-
uted development. In Proc. of the CoopIS'2003, LNCS 2888, Springer-Verlag (2003)  
218-234. 

23. Su, X., and Gulla, J.A. An information retrieval approach to ontology mapping. Data & 
Knowledge Engineering 58(1) (2006) 47-69.  

24. VA Software. Leveraging open source processes and techniques in the enterprise. White 
Paper. VA Software, November (2004). 



Advanced Recommendation Models for Mobile
Tourist Information

Annika Hinze and Saijai Junmanee

University of Waikato, New Zealand
a.hinze@cs.waikato.ac.nz, saijai.j@egat.co.th

Abstract. Personalized recommendations in a mobile tourist informa-
tion system suffer from a number of limitations. Most pronounced is
the amount of initial user information needed to build a user model. In
this paper, we adopt and extend the basic concepts of recommendation
paradigms by exploiting a user’s personal information (e.g., preferences,
travel histories) to replace the missing information. The designed algo-
rithms are embedded as recommendation services in our TIP prototype.
We report on the results of our analysis regarding effectiveness and per-
formance of the recommendation algorithms. We show how a number of
limiting factors were successfully eliminated by our new recommender
strategies.

1 Introduction

A number of mobile or location-based tourist information systems have been
designed [5,12,20] and used (e.g., [19]). To the best of our knowledge, none of
these systems address the problem of how to give recommendations to mobile
users that go beyond simple predefined lists of interesting sites near by.

Recommendations have been used successfully in E-commerce. Recently, the
number of tourism portals on the Internet that provide information filtered by
users’ preferences has increased [17]. However, the algorithms used there can-
not simply be re-applied in a mobile, location-based and personalized context.
We support Zipf’s [23] observation that a successful tourist application requires
good integration of personalization and context-awareness. Inherently, tourists
frequently change their location during their travel, leading to a fluid change
of context. Furthermore, tourists’ information needs are location-dependent by
nature, often indicating the user’s current position as a parameter for the rec-
ommendation system. The systems additionally need to consider contextual in-
formation about the sights [1].

Related work in tourist guides as well as in recommender systems has been
extensively examined in our previous study [9]. We have shown that none of the
other tourist information systems provide advanced personalized and context-
aware recommendations. In the same study, we introduced an initial recommen-
dation service to our mobile personalized tourist guide TIP. Our earlier study
confirmed the high potential for employing recommendation services in mobile

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 643–660, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



644 A. Hinze and S. Junmanee

tourist information systems. Following that study, we identify the following lim-
itations and challenges for the existing recommendation models:

New user problem: Recommendations depend on information about the user,
such as the users’ explicit interests or their feedback scores given for sights
on previous visits. When a new user enters the system, no or little infor-
mation may be available. The lack of sufficient initial information prevents
recommendations.

Sparse feedback scores or cold start problem: Identifying a group of
users who have similar interests as a given user depends on the feedback
given by these users. If the number of users is small relative to the num-
ber of sights, especially at the beginning of the system usage, the feedback
becomes sparse. Similar users may not be identified. Cold-starts are a signifi-
cant problem as the initially given recommendations may be of poor quality,
which negatively influences the user’s confidence in the system.

Users with specific preferences: Also known as the Gray Sheep problem [22],
it refers to a user whose preferences are unusual compared to the other users in
the system. Typically, feedback given by this user does not consistently agree
with any groups of users in the system. These individual users will rarely re-
ceive accurate recommendations that match their interests.

Over-specialization: The user may be restricted to see only items that are
similar to those they have already seen (and given feedback about) since the
system may only recommend items scoring highly against the user’s specified
preferences. Discovering of preferences that are not explicitly known to the
user is often not possible.

Transparency and user control: Understanding the relationship between
their input to the system (feedback) and system’s output (recommendations)
allows the user to interact effectively with the system. Transparency allows
users to meaningfully revise their input in order to improve recommenda-
tions, rather than being blinded by the given result [21]. Lacking a feeling
of control, users may be unwilling to follow the system’s recommendations.

User satisfaction: The user’s satisfaction with the recommendations reflects
the quality of the implemented recommendation models and algorithms and
the quality of the available data. However, user satisfaction is difficult to
evaluate [6]. One simple way is to record the user interaction with the system.
If the user follows a given recommendation, we may assume they are satisfied
with the recommendation.

Scalability: Providing recommendations requires expensive computation that
may grow non-linearly with the number of users and items in the database.
Therefore, to successfully employ recommendations on a mobile device, so-
phisticated data structures and advanced, scalable architectures are required
to provide recommendations with acceptable delay time responding to the
users’ requests [16].

Consequently, the project reported in this paper addresses the identified limita-
tions. Our goal was to introduce collaboration between TIP’s information service
and the recommendation service. We propose recommendation methods that can



Advanced Recommendation Models for Mobile Tourist Information 645

retain the existing advantages and balance the current drawbacks of providing
recommendation in a mobile tourist information system. This paper introduces
extended recommendation models and reports about their implementation. We
discuss our findings from the analysis of the extended models in respect to the
identified limitations. We believe the new models will shield the users from in-
formation overload as well as provide the users with satisfactory personalized
recommendations in a mobile tourist information environment.

The remainder of the paper is organized as follows: Section 2 recaps foun-
dations of recommender models and the TIP system. Section 3 introduces the
concepts our advanced recommendation models; details of which are given in
Section 4. In Section 5, we report about the results of the evaluation of the
implemented models. Section 6 summarizes the results of the project.

2 Background

This section gives background information about recommendation methods and
the TIP system.

2.1 Recommendation Paradigms

This section introduces the three basic recommendation principles. In the general
formwork of recommendation models, tourist sights are considered as items.

Content-based Recommendation uses information about items and a user’s
preferences. Preferences are stored in user profiles and may be defined either
explicitly by the user or implicitly by extracting user information from past
activities, e.g., their purchase history. Items that are similar to the items
the user bought in the past, or items that adhere to the user’s profile are
recommended. This approach is independent of other users’ feedback; after
profile definition, recommendations can be given immediately. Also users
with a unique interest can be catered for. However, users may be restricted
to recommended items similar to what they liked before [13]. This approach
has been used in E-commerce systems for music [4] and books [15].

Collaborative Filtering provides recommendations based on the feedback of
like-minded users about items in their past activities. Feedback can be given
explicitly as a rating score, or can be implicitly derived, e.g., from purchase
records [18]. The more feedback ratings are available the better the predic-
tion. Based on the similarities between ratings provided by the given user
and other users, a group of neighbor users is defined that have similar pref-
erences. Items that neighbors liked are then recommended to the given user.
The system must be initialized with a large amount of data to generate
effective recommendations [2]. This approch has been used in amazon.com.

Knowledge-based Recommendation uses knowledge about users and items
to reason which products meet the users requirements. These systems offer a
dialog interaction that walks the user through a discrimination tree of item
features. A sequence of questions is designed to eliminate some items from



646 A. Hinze and S. Junmanee

consideration. This system neither needs explicit user feedback scores nor
user preference definitions. However, a complex knowledge engineering algo-
rithm is required. Only static suggestions can be gained [2,5]. This approach
has been used for FindMe [3].

Each of the three recommendation paradigms has advantages and drawbacks
that need to be balanced to provide effective recommendations in TIP.

2.2 TIP Background

The Tourist Information Provider (TIP) is a mobile tourist information system.
The system is a combination of an event notification service and a location-
based service (for details see [10]). The main focus of the system is the delivery
of information about sights based on user location, interest, travel route and
sight-related information to hand-held devices such as PDA. We refer to this
feature as TIP’s information service. In TIP 2.0, the initial recommendation
service had been extended by the authors to provide three basic recommendation
methods [9]: (1) sights near by the current user location, (2) similar to sights
that the user liked in the past, and (3) sights enjoyed by similar users.

The set of data that is used for the information delivery in TIP may be re-used
for the recommendation service. We classified the data into six parameters:

(R1) User profile: A user’s profile specifies information of interest about the
user. The system learns the user’s preferences from the given information
and provides information based on the acquired knowledge about the user.
A user may have different profiles depending on context. Here, we assume
that at each point i tie only one profile is active.

(R2) Context of a user: A user’s context may specify current location, time,
means of travel, or other background information. It is used to personalize
the information and its delivery.

(R3) Context of a sight: The sight context contains information about
groups or types of sights for recommendation, which have certain features
in common e.g., churches. The context of sights also covers their location,
operating hours and weather conditions. Sight groups may be used to find
similar sights within a group.

(R4) User travel history: The user’s travel history includes sights, times
and locations the user previously visited. The system should not recommend
sights the user has already visited (or indicate them as such).

(R5) User Feedback: User feedback are ratings or scores given to the sights
on past visits. We distinguish two forms:
a) Feedback of this user: The user receives recommendations based on the

similarity of sights to other sights this user gave positive feedback about.
b) Feedback of similar users: Sights which other similar users liked may be

recommended to the user.
As a result, the user gains wider information based not only on their prefer-
ences but also their similar preferences with other users.



Advanced Recommendation Models for Mobile Tourist Information 647

We propose to combine the six parameters with the three recommendation
paradigms. We believe that our approaches will achieve better balance between
advantages and drawbacks of the three paradigms.

3 Concepts of Advanced Recommendation Models

In this section, we describe general concepts of the proposed recommendation
methods. We distinguish five major approaches as shown in Table 1. They
illustrate our concept of combining parameters and existing recommendation
paradigms. We now describe the motivation and concept of each approach.

Table 1. Proposed Recommendation Approaches

A.Pure Approaches
A1.Content-based based on a particular user’s profile (R1) and their feedback

(R5a). Recommends sights that are similar to what the user
liked in the past.

A2.Collaborative
Filtering

based on previous feedback of this and other users (R5a and
R5b). Recommends sights that are highly rated by these sim-
ilar users.

A3.Knowledge-
based

based on sight context; recommends sights that are
semantically-related to sights this user has visited in the past
(R2 and R4).

A4.Must-see
Sights

preset sights that are the points of interest in a particular
area, e.g., Sky Tower in Auckland. These points of interests
can be defined based on the feedback of a large set of users
(R5a and R5b).

A5.Nearby Sights based on user context, sight context and user history (R2, R3
and R4). User context may be the current location and means
of their travel. Recommends sights that can be reached con-
veniently and the user has not seen before.

A6.User Profile sights that match this user’s profile (R1).
B.Compound Approaches

B1.Nearby Sights
and User Profile

extends A5 by further filtering its results according to the
user’s profile

B2.Revise Profile based on user profile (R1) revised according to their feedback
given to the system (R5a).

B3.Extend Profile based on user profile that is extended by information about
other users (R5a and R5b). Information in profiles of similar
users is added to this user’s profile (R1).

C.Extended Content-based Approaches
C1.Implicit Feed-
back

based on content-based methods but without explicit feed-
back. Feedback is created from the information in the user
profile (R1) and the information in the user history (R4).



648 A. Hinze and S. Junmanee

Table 1. (continued)

C2.Content-
boosted Recom-
mendation

combination of the content-based method and the collab-
orative filtering. The data set for collaborative filtering is
extended by simulating missing user feedback based on the
feedback of similar users (as proposed in [13]).

C3.Context-aware
Feedback

based on content-based methods where the user gives feed-
back according to their context, e.g., the user prefer going
to restaurant X when it is raining or the user likes going to
cafe Y on a sunny day because it is near the beach.

C4.Implicit
Context-aware
Feedback

based on this user’s feedback (R5a) that are recorded ac-
cording to sight context (R3) and user history (R4). User
feedback is created from the information in the user history
(R4) and the sight context (R3).

C5.User Informa-
tion and Feedback

considers user profile (R1), user context (R2), sight context
(R3), user history (R4) and their feedback (R5a). User con-
text may or may not be considered.

D.Extended Collaborative Filtering Approaches
D1.User Profile Assumes that the users like items that match their user pro-

file (R1). Therefore if no feedback (both R5a and R5b) is
available from the number of users, the feedback is simu-
lated by creating positive synthetic feedback data based on
the user’s profile. This synthetic feedback is then used as
input for collaborative filtering.

D2.User History Similar to E1. Synthetic feedback is created based on the
information in users’ histories (R2).

D3.User Profile
and User History

A combination of E1 and E2. Synthetic feedback is created
for a group of similar users based on information from their
user profiles (R1) as well as their user histories (R4).

E.Extended Knowledge-based Approach
E1.Supplementary
Sight Context

Updates sight context according to the feedback of the user
(R5a and R5b). Recommendations are given based on the
information stored about the sights, e.g., the semantic groups
they belong to. Feedback from user given about the sights
may create new groups.

A - Pure Approaches. In addition to the three pure recommendation models
introduced before (A1–A3), we use models with one main parameter each
(A4–A6): the points of interest in a particular area, everything near by, or
sights that match the preferences defined in their profile.

B - Compound Approaches. The models combine user information such
as the user’s current location and profile to create filtering criteria. Nearby
sights which match a user’s preferences are recommended to the user (B1).
Users are often reluctant to define or adjust profiles explicitly. We therefore



Advanced Recommendation Models for Mobile Tourist Information 649

take feedback as well as information from other users to revise and/or extend
the user’s profile (B2/B3). These methods address the new user problem,
the cold start problem, the gray sheep problem as well as over specialization.

C - Pure and Extended Content-based Approaches. The pure content-
based recommendation approach relies heavily on similarity between the
items’ content and the users’ preferences. The user is restricted to recom-
mendations similar those already rated (over specialization). When a new
user starts to use the system, due to missing feedback no recommendations
can initially be given. The extended content-based models therefore aim at
enlarging available information about the users’ preferences. More user feed-
back is generated implicitly from information in user profile and user travel
history. We also combine content-based and collaborative filtering. Similar
users are determined based on their profile and their travel history. As a
result, the user need not explicitly provide much feedback on the sights they
have visited, but it is still not restricted to receiving recommendations only
on sights similar to those highly rated in the past. The extended approaches
avoid the limitation discussed before as well as reduce user effort in giving
feedback scores.

D - Pure and Extended Collaborative Filtering Approaches. The ap-
proach focusses on the similarity of the users. For each user a set of nearest
neighbor by calculating correlations between a user and other users. Pre-
dicted feedback is calculated for all sights based on the neighbors’ feedback.
High scoring sights are recommended to the user. The pure method suffers
from the cold start problem as well as the gray sheep problem. The system
might be unable to detect a neighborhood due to sparse feedback, or lack of
similarity, respectively. To overcome these problems, user feedback is taken
from other sources, such as user profiles and their travel history. We assume
that a user would give high feedback scores to sights that match their user
profile. We also believe that sights that the user has visited several times
are likely to be their favorites. Therefore, we give high feedback scores to
sights the user has visited at least twice in their travel history. The three
extended collaborative filtering models remedy sparse user feedback scores
from information in the user profiles, their travel history and a combination
of their profile and travel history.

E - Pure and Extended Knowledge-based Approaches. The pure
knowledge-based recommendation model typically use the user’s behavior as
a representation, commonly using machine-learning techniques to discover
useful patterns [14]. TIP 1.0 employed a simple knowledge-based recommen-
dation based on the user profile. The extended model uses supplementary
sight context with the existing semantic groups. New semantic groups may
be created based on the feedback score given by the user.

All models introduced here have been implemented in TIP. The next section will
give selected details about the implemented design.



650 A. Hinze and S. Junmanee

4 Design of Recommendation Algorithms

In this section, we explain the design of the algorithms generated for the recom-
mendation models introduced in the previous section. We first define important
terms and then introduce details of the extended filter algorithms.

4.1 Terms and Definitions

Users: A user ux is a person who registers with TIP. Let m be the number of
registered users; the set of all users is referred to as U . The active user ua ∈ U
is a particular user who is currently asking for recommendations.

Sights: A sight sx is an item a user might be interested in. The number of sights
stored in the TIP system is denoted n; the set of all sights is S.

A sight group gx is a set of sights which have some features in common. A
given sight can belong to more than one sight group, or to a hierarchy of sight
groups. The set of all sight groups is G, with k being the number of all sight
groups. Sight groups may be predefined (as in our case) or determined using
machine learning approaches.

Sight group profiles: A sight group profile p is a set of sight groups a user ux

has chosen as their sight groups of interests. A sight group profile p is defined
as p : U → {0, 1}k and a sight group profile of a particular user ux is pux =
{α(ux, g1), α(ux, g2), . . . , α(ux, gk)} where α(ux, gi) is the (Boolean) interest of
user ux in the particular sight group gi.

Travel history: A travel history H(u) is defined as a temporally ordered list of
sights visited by a user u in the past: H(u) = {(sj, tj)|sj ∈ S ∧ u ∈ U ∧ tj ∈
T ∧ u visited sj}, where T is the set of all time stamps.

Feedback: A feedback f is a numeric value which represents a user’s opinion
about a sight. It is a rating score f : U × S → [1, 10] ⊆ N with

f(u, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 . . . 4 : user u has negative impression of sight s
5 : user u has indifferent impression of sight s
6 . . . 10 : user u has a good to excellent impression of

sight s
no − value : user u has not yet given an impression of sight s

If a user changes their opinion, the new value is kept and the existing one
discarded. We distinguish two types of feedback: the given feedback and the
predicted feedback. The given feedback can be either provided explicitly (fg) or
inferred from available information of this user (f ′g to f ′′′′g ). The number of (′) in
the implicit given feedback indicates the type of user information used, e.g., f ′′g
uses information from the user sight groups profile. The predicted feedback fp is
a numeric value calculated by the system.



Advanced Recommendation Models for Mobile Tourist Information 651

Similarity and Neighborhood. A similarity factor ζ identifies similarity of pref-
erences between the active user ua and another user. A similarity factor ζ
is a numeric value which is calculated by the applied calculation algorithm
ζ : U × U → [−1, 1] ⊆ R. The similarity factor between the active user ua and
user u, ζ(ua, u), can be calculated based on historical information such as their
feedback scores given to sights in their past visits, their travel histories or their
interests in sight groups that have been defined in their sight group profiles. A
neighborhood N of an active user ua are other users who have historically shown
preferences similar to the active user. Typically, a specific numeric value is set as
criterion c for a valid similarity factor (we use c = 0.7). Therefore, the neighbor-
hood N of the active user ua is N(ua) = {u|u ∈ U ∧u �= ua ∧ζ(ua, u) > c} where
ζ(ua, u) describes the similarity factor between the active user ua and user u.

Recommendation. A recommendation R is a set of sights that the system predicts
an active user ua would like to visit. Recommendations given to the active user
may vary depending on the recommendation model selected by the active user.

4.2 Design of Algorithms Using Collaborative Filtering

The idea behind these algorithms (A2, D1, D2 and D3) is that it may be useful
to consult the behavior of other users who share the same or related interests.
To compute the recommendations for an active user ua, we use neighborhood-
based methods [7] that can be separated into three steps: (1) feedback scores
collection, (2) neighborhood formation, and (3) recommendation generation. For
our advanced models, we change the first step, the feedback score collection.

New Feedback Score Collection. The problem space can be described as a matrix
of users versus sights. In this case, we formulate a m × n user-sight matrix F
where each entry F (i, j) = fg(ui, sj) is the feedback of the user ui for the sights
sj . This matrix is usually sparse because of numerous no-feedback values. To
remedy the sparsity of the initial user-sight matrix, we insert implicit feedback
scores to replace the no-feedback values. We propose these implicit feedback
scores to be generated using the following techniques:

– Default Feedback: We change the user-sight matrix F in the pure collab-
orative filtering approach (A2) by placing neutral default feedback scores
instead of no-feedback values:

f ′g(u, s) =
{

fg(u, s) : if user u rated sight s
5 : otherwise

– Using information in the user profile (D1):

f ′′g (u, s) =

⎧
⎪⎪⎨

⎪⎪⎩

fg(u, s) : if user u rated sight s
10 : if sight s belongs to sight groups user u

has defined in their sight group profile
5 : otherwise



652 A. Hinze and S. Junmanee

– Using information from the user travel history (D2):

f ′′′g (u, s) =

⎧
⎨

⎩

fg(u, s) : if user u rated sight s
10 : if user u has visited sight s at least twice
5 : otherwise

– Using a combination from user travel history and user profile (D3):

f ′′′′g (u, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fg(u, s) : if user u rated sight s
10 : if sight s belongs to sight groups user u

has defined in their sight group profile
or if user u has visited sight s at least twice

5 : otherwise

In our four algorithms using collaborative filtering, we address the sparsity of the
feedback scores matrix by using implicit feedback to fill in the missing values.
The feedback scores are used to find similarities between the active user and
other users. The next two steps of neighborhood formation, and recommendation
generation remain the same as in the original collaborative filtering approach:
A weighted combination of these neighbors given feedback scores is used to
calculate the predicted feedback for sights for the active user. Sights with high
predicted feedback scores (≥ 7) are then recommended.

4.3 Design of Algorithms Using Content-Based Paradigm

In content-based recommendations (A1, C1, C2, C3, C4, and C5), the user first
expresses preferences for a set of items (i.e., sight groups). The system then re-
trieves from a catalogue the items that share common features with the items the
user is interested in. For pure content-based recommendations (A1), we select
sight groups with sights that the active user visited. We calculate the average
value γ̄(ua, g) of the feedback scores given to sights in each of these groups.
Sights in sight groups that have high γ̄(ua, g) are given as recommendations.
The algorithm tends to over-specialization and suffers from the new user prob-
lem. We extend the method by applying knowledge of the neighborhood-based
methods from the collaborative filtering paradigm: We focus on similarities be-
tween available user information. The basic method has the following three steps:
(1) user information collection, (2) neighborhood formation, and (3) recommen-
dation generation; we change the first and the second step, the user information
collection and the neighborhood formation.

New User Information Collection. Note that we do not collect the feedback
scores as in the collaborative filtering algorithms. Rather, we form a user-user
information matrix V which can be either a m × k user-sight group matrix or a
m × n user-sight matrix. We assign a score to each of the entries using one of
the following techniques:



Advanced Recommendation Models for Mobile Tourist Information 653

– User-sight group profile matrix: Each entry V (i, j) represents the interest
v′(ui, gj) of user ui in sight group gj with

v′(u, g) =

⎧
⎨

⎩

10 : if the user u defined their interest in
the sight group g

5 : otherwise

– User-user travel history matrix: Each entry V (i, j) represents the interest
v′′(ui, sj) of the user ui in the sight sj based on a number of their visits:

v′′(u, s) =

⎧
⎨

⎩

10 : if the user i has visited the sight j
at least twice

5 : otherwise

– User-sight group profile and travel history matrix: Each entry V (i, j) in
matrix V represents the interest v′′′(ui, sj) of the user ui in the sight sj based
on two conditions: The sight is in the sight groups the user is interested in
or the user has visited the sights at least twice in the past.

v′′′(u, s) =

⎧
⎪⎪⎨

⎪⎪⎩

10 : if sight s belongs to sight groups user u
has defined in their sight group profile
or if the user has visited sight j at least twice

5 : otherwise

New Neighborhood Formation and Recommendation Generation. We apply prin-
ciples from collaborative filtering but use different measures depending on the
user information gathered in the user-user information collection step: ’Simi-
larity on sight group of interest’ and ’Similarity on sights of interest’. We also
divide the recommendations generation into two categories: recommendations
generated from other users who have the similar sight groups of interest and
recommendations generated from other users with similar sights of interest.

The extended content-based recommendation algorithms address the over-
specialization and the new user problems found in the pure approach. We employ
knowledge of collaborative filtering to form a group of users who have similar
interests in sight groups and/or travel history. We then recommend to the active
user a set of sights liked by these users.

4.4 Design of Algorithms Using Knowledge-Based Paradigm

This method extracts information about the user’s behavior from their past
activities. This knowledge is used to initialize the system with a set of implicit
preferences. The system then creates a dialogue to obtain the user’s feedback to
the system’s recommendations. This feedback is then used to improve the model
of the user’s preferences (used in A3 and E1). For method A3, we assume that the
user who has seen several sights in the group is interested in seeing more of the
same. The user history is used for this process. The extended knowledge-based
recommendation (E1) applies the principles of the content-based algorithm.



654 A. Hinze and S. Junmanee

4.5 Design Summary

We described details of the recommendation algorithms for the models A2, D1,
D2, and D3 (using collaborative filtering), A1, C1, and C5 (using content-based
techniques), and A3 and E1 (knowledge-based recommendation). For each of the
above recommendation models, we transformed the outline given in the previous
section into the calculation formulas. An overview of all formulas and the details
of their implementation in TIP can be found in [11].

5 Evaluation and Analysis

We evaluated three aspects: effectiveness and performance of the implemented
recommendation algorithms as well as the presentation and interactions of the
recommendation models. The effectiveness evaluation determined the influence
of our new methods on the problems of new users, cold starts, gray sheep and
over-specialization. Evaluation of interface and interaction addressed the issues
of transparency and user control and the user satisfaction. The performance
evaluation determined the influences on scalability. In particular, we concentrate
on rising number of users and sights.

5.1 Qualitative Evaluation

The effectiveness of the system was evaluated in two extensive exemplary sce-
nario studies. The details of this study cannot be discussed here; interested
readers may turn to [11] for details. Figures 1(a) to 1(c) show screen shots of
scenario studies. The results of the qualitative study are as follows:

1. The new user and cold-start problem due to a shortage of the user’s feedback
scores for the collaborative filtering algorithms are solved. In addition, users
that used the system but did not give feedback can also be supported.

2. The Gray sheep problem was diminished since the users did not have to
give feedback. However, we see this only as a short term remedy. Neither do
we follow suggestions to weaken the representation of the unusual opinion
of the gray sheep in favor of the more usual opinions of members of the
neighborhood. Further research is necessary.

3. The main problem of over-specialization was remedied with our extended
content-based recommendation; users now receive wider recommendations
than before. We believe that this type of recommendation helps users to
discover new interests and sights.

We also performed a first-cut study of transparency and user control and user
satisfaction issues using the measures of acceptability and tractability. The re-
sults are promising (for details see [11]) and lead the way to further long terms
studies.



Advanced Recommendation Models for Mobile Tourist Information 655

(a) content-bd. (C1) (b) collabor. (D1) (c) knowld-bd. (E1)

Fig. 1. Screen shots of scenario studies

5.2 Quantitative Evaluation

We examined the performance of the algorithms as response time. We also veri-
fied the coverage as a measure for the number of items for which an algorithm
can provide predictions. Here we set our focus on the algorithms using extended
Collaborative Filtering. The test setting consists of off-line synthesized users and
sights information (cf. [8] for a discussion of the use of synthetic data sets to
identify the promising recommendation algorithms for future study).

The recommendation service in the TIP system and its evaluation are based on
two assumptions: The system will be utilized in a particular area, e.g., downtown
Hamilton (location-based pre-caching can be used to restrict the accessed sight
data); and there are many more users than items in the tourist information
system domain. Accordingly, a typical test data set used in our experiment
consists of 1,000 users and 100 sights. We divide the test data sets into a training
and a test portion with p = 0.8 (80%/20% distribution). Each of the sights is
rated by at least one of the users. We use 10 sight groups with randomly assigned
sights. Each user specifies 5 random sight groups in their profiles. The number
of sights stored in the user travel history is is 20% higher than the number of
user feedback scores. The sparsity level (cf [18]) of the data matrix is set to 90%.
All experiments are run on a Windows based PC with AMD Athlon XP 2700+
processor with 2.16 GHz and 512 MB RAM.

Complexity Discussion. Vozalis et al. [22] claimed that some existing rec-
ommendation algorithms offer theoretically promising mathematical techniques
in order to generate their results but nonetheless require complex calculations.



656 A. Hinze and S. Junmanee

Fig. 2. Response time vs co-rated users Fig. 3. Response time vs feedback sights

We consider both complexity and response time. Our complexity analysis con-
centrates on the user-user similarity calculation step as the performance bottle-
neck. We present a worst case estimate and give an approximation for real-world
conditions.

The traditional computation complexity of the user-user similarities is
O(m2n), where m is the number of users and n the number of sights. The sim-
ilarity between each pair of users needs to be computed for the subset of their
co-rated sights. For our extended collaborative filtering algorithms we further
need to take into account the number of sight groups k and the number of sights
h in a user’s history. The complexity when using the user sight group profile is
O(m2nk) as we need to verify whether a sight with no-feedback score belongs
to any of the sight groups stored in the user profile. When using the user travel
history, the complexity is O(m2nh) since we need to compare a no-feedback sight
with the sights stored in the user travel history.

In general, the number of sight groups k is rather static and much smaller
than the number of sights in the database, (k � n). Although the number of
sights visited by the user h will increase, it still holds h � n. Consequently, k
and h have less influence on the overall complexity O(m2n). Our experiments
are designed to test this theoretical analysis.

Experiments Regarding Response Time. We focus on the influence of the
number of users and sights. We designed the typical usage setup described above.
We use the following experimental variables:

– m′ is the number of users with whom the active user has at least one co-rated
sight, with m′ � m;

– n′ is the number of feedback given to sights by the active users, with n′ � n;
– k′ is the number of sight groups defined in the user profile of the active user

and other users, with k′ ≤ k;
– h′ is the number of sight visited by the active user, with h′ ≥ n′ since the

user may not give their feedback to every sight they have visited.

We refer to these four variables as co-rated users, feedback sights, sight groups
and visited sights, respectively.



Advanced Recommendation Models for Mobile Tourist Information 657

Fig. 4. Extend CF with user profile Fig. 5. With user profile and travel history

We performed three experiment series; we now discuss the results of each in
turn. Firstly, we evaluated the influence of an increasing number of co-rated users
(m′). The results can be seen in Fig 2. The average response time of these four
algorithms (A2, D1, D2, and D3) is linear in the increasing number of co-rated
users. We observe a separation when using the travel history: These algorithms
require more accesses to the database to retrieve the information about the
visited sights and the number of visits of each user in the user-sight matrix F .
Secondly, we evaluated the influence of increased number of feedback sights (n′).
Fig. 3 shows that the response time grows linearly with the number of co-rated
sights. Thirdly, we evaluated the influence of the number of sight groups (k′)
defined in the active user’s profile and the feedback sights (n′). Here, we only
focus on algorithms that use profile information. The results are shown in Figs 4
and 5: increasing number of sight groups k′ has less impact than the increasing
number of feedback sights n′.

We conclude that the results of experiments one and two confirm our theoret-
ical analysis. Using default values or profile information to replace no-feedback
values is less costly than evaluation of user histories. Results of experiment three
show that an increase in the number of feedback sights strongly influences the
performance. Further extensive experiments on each of these four variables are
required. The results of this pilot study (using synthetic test data) will guide
further extensive analysis with real world data.

Experiments Regarding Coverage. We examine the algorithms ability to
provide predictions over the number of un-rated sights of the active user. As
the design of the extended collaborative filtering primarily aims to solve the
problem of the missing feedback scores, we use a sparse user-sight matrix (≈
93%). The experimental data contains 3000 users and 100 sights. The number of
sight groups per user profile is randomly allocated (between 1 and 10). All other
settings are as in the previous tests. We randomly select 4 test data sets with
user groups of 1000 to 2500. We observe the coverage (Fig. 6) and the percentage
of the users who get recommendations (Fig. 7).

The coverage is lowest for the algorithm exploiting user profiles (≈ 0.58 on
average) and highest for using default values (≈ 0.88 on average). The other



658 A. Hinze and S. Junmanee

Fig. 6. Coverage values Fig. 7. Users with recommendations

two algorithms have similar coverage values. We also see that the user number
is not as influential as the quality of their feedback. For example, the third test
data (2,000 users) has always the lowest coverage due to its low fraction of rated
sights. Consequently, some users have many neighbours and sights but only a
few predictions. The quality of the predictions is expected to be high. A large
number of users (65% − 99%) will receive recommendations (see Figure 7)The
algorithm that uses user profiles shows the highest number in every data set
(91% − 99%); numbers are lowest for the combination of user profile and travel
history (65% − 75%).

Summary of evaluation. We presented a multi-faceted evaluation of our im-
proved recommendation service. In summarizing our results, we draw four key
findings from our evaluation:

1. Our theoretical analysis concluded that the algorithms have a complexity of
O(m2n) for m users and n sights. The results of the experiment regarding
the system’s response time confirm our theoretical analysis.

2. The results of the experiments show that using the default value to replace
the missing feedback scores has the best performance. It provides highest
coverage and serves a large number of users.

3. The extended algorithms with user profiles serves most users but fails to
provide good coverage. The complexity i similar to using default values.

4. Algorithms using the travel history suffer from high computational complex-
ity due to extensive data access. Incremental indexing methods and view
update strategies may provide solutions.

6 Conclusion

The goal of our project was to develop a recommendation component for TIP
without the limitations of typical algorithms. Earlier in this paper, we identified
seven critical limitations to existing designs. To eliminate these shortcomings,
we proposed a collaboration between TIP’s information delivery service and



Advanced Recommendation Models for Mobile Tourist Information 659

the recommendation service to re-use user-related information. Based on six
parameters, we introduced 18 models in 5 groups. We implemented 15 algorithms
to facilitate a systematic initial comparison. The most promising four algorithms
were selected for a closer, multi-faceted evaluation.

Our evaluation analyzed the new recommendation component in regard to
the identified limitations. We measured the recommendation quality as well as
the system performance. Quality was evaluated in scenario-based tests. We found
that the problems of new users, cold-start and over-specialization were remedied.
The gray sheep problem was lessened but we see the need for future research.
The quantitative evaluation focussed on system performance and scalability.
We discussed the computational complexity (O(m2n)) and evaluated response
time and coverage of the four recommendation algorithms using collaborative
filtering paradigm. The simple default-value algorithm is the most effective one
and reaches a high number of users. Using information from profiles and history
also shows good performance results. The next step is now an extensive user
study to determine the quality of the recommendations and the user satisfaction.
We are currently focussing on improving performance and user acceptance by
including trust measures, which will significantly reduce the number of user users
that need to be evaluated.

To summarize, our study has addressed all limitations we initially identified.
The lack of user information used for building a user model has been remedied.
The current system has been analyzed in multi-faceted studies based on artificial
data. The promising results will direct further studies involving users and real-
world data. Future research will include extensive real-world evaluation as well
as trust-based communication to further improve transparency, user control,
and scalability. Further research is needed to explore the handling of multiple
context-dependent user profiles.

References

1. I. Amendola, F. Cena, L. Console, A. Crevola, C. Gena, A. Goy, S. Modeo, M. Per-
rero, I. Torre, and A. Toso. UbiquiTO: A multi-device adaptive guide. In Mobile
HCI: Mobile Human-Computer Interaction, Glasgow, UK, September 2004.

2. R. Burke. Knowledge-based and collaborative-filtering recommender systems. In
Proceedings of the Workshop on AI and Electronic Commerce. AAAI 99, Orlando,
Florida, 1999.

3. R. Burke, K. Hammond, and B. Yong. The findme approach to assisted browsing.
IEEE Expert: Intelligent Systems and Their Applications, 12(4):32–40, 1997.

4. H. Chen and A. Chen. A music recommendation system based on music data
grouping and user interest. In Proceedings of the tenth international conference on
Information and knowledge management, Atlanta, Georgia, USA, October 2001.

5. K. Cheverst, K. Mitchell, and N. Davies. The role of adaptive hypermedia in a
context-aware tourist guide. Communication of the ACM, 45(5):47–51, 1997.

6. C. Hayes, P. Massa, P. Avesani, and P. Cunningham. An on-line evaluation frame-
work for recommender systems. In Workshop on Personalization and Recommen-
dation in E-Commerce, Malaga, Spain, May 2002.



660 A. Hinze and S. Junmanee

7. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework
for performing collaborative filtering. In Proceedings of the SIGIR’99, Berkley,
California, USA., August 1999.

8. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems, 22(1):5–53,
January 2004.

9. A. Hinze and S. Junmanee. Travel recommendations in a mobile tourist information
system. In Proceedings of Information Systems and its Application ISTA’2005,
Palmerston North, New Zealand, May 2005.

10. A. Hinze and A. Voisard. Location and time-based information delivery in tourism.
In Proceedings of Advances in Spatial and Temporal Databases, 8th International
Symposium, Santorini Island, Greece, July 2003.

11. S. Junmanee and A. Hinze. Design and implementation of an advanced recom-
mendation component in the tourist information system tip. Technical Report
X/2006, University of Waikato, Computer Science Department, Hamilton, New
Zealand, June 2006. based on Master’s Thesis.

12. P. Klante, J. Krosche, and S. Boll. Accessights - a multimodal location-aware
mobile tourist information system. In Proc. of the 9th Int. Conf. on Computers
Helping People with Special Needs ICCHP 2004, Paris, France, July 2004.

13. P. Melvile, R. Mooney, and R. Nagarajan. Content-boosted filtering for improved
recommendations. In Proceedings of the Eighteenth National Conference on Arti-
ficial Intelligence (AAAI-2002), Edmonton, Canada, July 2002.

14. S. E. Middleton, N. Shadbolt, and D. D. Roure. Ontological user profiling in
recommender systems. ACM Transactions on Information Systems, 22(1):54–88,
January 2004.

15. R. Mooney and L. Roy. Content-based book recommending using learning for text
categorization. In Proceedings of the fifth ACM conference on Digital libraries, San
Antonio, Texas, USA, June 2000.

16. M. Papagelis and D. Plexousakis. Qualitative analysis of user-based and item-
based prediction algorithms for recommendation agents. In Proc. of the Workshop
for Cooperative Information Agents VIII, Erfurt, Germany, September 2004.

17. C. Paris. Information delivery for tourism. IEEE Intelligent System, 17(6):61–63,
November/December 2002.

18. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of 10th International World Wide Web
Conference ,WWW10, Hong Kong, May 2001.

19. Scottish citylink online bus ticket booking. available at
http://www.citylink.co.uk/howtobuy.htm Accessed on 19/4/2005 4:42 p.m.

20. T. Simcock, S. Hillenbrand, and B. Thomas. Developing a location based tourist
guide application. In Proceedings of the Australasian information security workshop
conference CRPTIS’21, ACSW frontiers, Australia, 2003.

21. R. Sinha and K. Swearingen. The role of transparency in recommender systems. In
Proceedings of Conference on Human Factors in Computing Systems, pages 830–
831, London, UK, April 2002.

22. E. Vozalis and K. Margaritis. Analysis of recommender system’s algorithm. In
Sixth Hellenic-European Conference on Computer Mathematics and its Applica-
tions(HERCMA), Athens, Greece, September 2003.

23. A. Zipf. Adaptive context-aware mobility support for tourists. IEEE Intelligent
System, 17(6):57–59, November/December 2002.

http://www.citylink.co.uk/howtobuy.htm


R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 661 – 678, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Keeping Track of the Semantic Web: Personalized 
Event Notification 

Annika Hinze and Reuben Evans 

University of Waikato, New Zealand 
{hinze, rjee1}@cs.waikato.ac.nz 

Abstract. The semantic web will not be a static collection of formats, data and 
meta-data but highly dynamic in each aspect. This paper proposes a personal-
ized event notification system for semantic web documents (ENS-SW). The  
system can intelligently detect and filter changes in semantic web documents by 
exploiting the semantic structure of those documents. In our prototype, we 
combine the functionalities of user profiles and distributed authoring systems. 
Typically, both approaches would lack the ability to handle semantic web 
documents.  

This paper introduces the design and implementation of our event notifica-
tion system for semantic web documents that handles the XML representation 
of RDF. We analyzed our prototype regarding accuracy and efficiency in 
change detection. Our system supports sophisticated change detection including 
partial deletion, awareness for document restructuring, and approximate filter 
matches. 

1   Introduction 

In this project, we address the problem of alerting users of changes in semantic web 
documents. Some work on change detection in the semantic web (SW) has already 
been done; most of the projects focus on ontologies (see, Qin and Atluri, 2004). Here, 
we focus on changes in documents containing data or metadata.   

A system for detecting, filtering and notifying about events is called an event noti-
fication system (ENS). We identified two possible approaches to our problem:  either 
to extend a SW system with ENS functionality or to add SW support to an existing 
ENS system. We focused on the latter approach, extending a proven event notification 
system, and combining it with a well-accepted distributed authoring system to handle 
semantic web documents. Typically, both types of systems lack the ability to handle 
semantic web documents. In this paper, we introduce concept, implementation, and 
evaluation of the proposed system ENS-SW. 

The details and challenges of our project are discussed after an introduction to 
background knowledge about Semantic Web technologies. Section 2 provides a de-
scription of the document formats RDF and RDFS, which are used in semantic web 
models. We identified several challenges for detecting changes or updates in these 
models. In Section 3, the detailed focus of our project is defined. In Section 4, we 
discuss the conceptual design of our system. Section 5 describes the prototype  



662 A. Hinze and R. Evans 

implemented. Section 6 presents the evaluation to test the performance of the system 
under significant load. Section 7 outlines our conclusions from this work and identi-
fies areas for future work. 

2   Background and Project Focus 

This section describes the context of the study and introduces the main concepts.  

2.1   Brief Introduction to Semantic Web and RDF/S 

The semantic web is an extension of the current Internet (Berners-Lee et al., 2001). 
Information contained in semantic web documents is enhanced by semantic annota-
tions. Agents and services will give access to these data (metadata and knowledge).   
    Three complementary components, the Resource Description Framework (RDF), 
RDF Schema (RDFS) and Ontologies are the implementation level methods of repre-
senting metadata and its related knowledge representation within the semantic web.  

RDF and RDF Schema 
In order to have unique semantic annotations for representing items in the semantic 
web, it is not sufficient, or desirable, to have a single definition for all the semantic 
concepts needed. The Resource Description Framework (RDF) is a “general-purpose 
language for representing information in the Web” (Beckett, 2004). RDF has a triple 
structure that combines three resources: subject, property, and object. Several RDF 
triples can be combined to form RDF networks; a network can be defined in one or 
several documents. These RDF networks can be represented in a number of ways, for 
example by XML, Graph or in N3 notation. The example in Figure 1 shows a simple 
RDF relationship of a course to its lecture notes expressed in each of the three formats. 

 
As a Graph: 

 
Using N3 notation: 

:Course a rdf:Class. 
:Notes a rdf:Class. 
:has a rdf:property. 
:Course :has :Notes. 

As XML: 
 
<rdf:RDF> 
  <rdf:Property rdf:about=”#has”/> 
  <rdf:Description rdf:about=”#Course”>  
    <:has rdf:resource=”#Notes”/> 
  </rdf:Description> 
  <rdf:Description rdf:about="#Notes"/> 
</rdf:RDF> 

Fig. 1. The three major ways of representing RDF structures 

RDF provides the structure for the metadata, but is not sufficient to concisely de-
scribe complex semantic relationships. RDF Schema (RDFS) deals with knowledge 
representation in RDF. RDFS (Brickley and Guha, 2004) adds to RDF the ability to 
specify classes and more restrictive relationships between the resources described  
in the document. For example, we could use RDFS to extend our example from  
 

 



 Keeping Track of the Semantic Web: Personalized Event Notification 663 

A Graph: 

 

As XML: 
<rdf:RDF> 
 <rdf:Property rdf:about=”#has” /> 
 <rdfs:Class rdf:about=”#Course” >  
  <:has rdf:resource=”#Notes” > 
 </rdfs:Class> 
 <rdfs:Class rdf:about="#Notes"> 
  <rdfs:subClassOf=”#Documents”> 
 </rdfs:Class> 
 <rdfs:Class rdf:about=”#Docu-
ments”/> 
</rdf:RDF> 

Fig. 2. Extension of the example in Figure 1 to use RDFS 

Figure 1, so that we can record not only that lecture notes relate to a course but that 
lecture notes are documents. An example of an RDF network using RDF Schema is 
shown in Figure 2 above. By converting our existing type descriptions to RDFS 
classes we turn our example into a schema, which, in turn, can be used to define in-
stances of type Course and Notes.  

Ontologies  
One of the key requirements of the semantic web is the common definition of terms 
and concepts among agents. An ontology bridges the gap (Heflin, 2004) by describing 
both what an identifier means and how that identifier relates to other identifiers. An 
ontology can further provide rules for reasoning relationships between resources that 
are not explicitly linked by RDF triples but which are implied by those triples. RDF 
Schema defines basic ontological modelling primitives on top of RDF, e.g., the con-
cept of a subclass, domain and range for properties. Other semantic web languages 
with richer modelling primitives, such as disjoints and rules, can be constructed by 
extending RDF Schema. Examples are DAML+OIL (Connolly et al., 2001) and OWL 
(Patel-Schneider et al., 2004). Here, we focus on documents using RDF and RDF 
Schema. Our system could be easily adapted for similar SW languages. 

2.2   Problem Description 

We will use the example of a semantic network for teaching-related documents, to 
illustrate the problem addressed in this paper. Figure 3 shows an RDF/RDFS network 
representing the data instances in the lower part of the schema (RDF) and the concep-
tual relationships between lecturers, courses and lecture notes in the upper part of the 
schema (RDFS in dashed lines). The network given here can be seen as a sub-section 
of the network that could describe all the courses and lecturers at the university.  

A user may search the XML representation of this network (e.g. by querying the 
XML document shown in Figure 4) to retrieve the data. This is satisfactory as long as 
the semantic data and the underlying schema remain unchanged. Difficulties would 
arise if another user changes the information (e.g., about a lecturer of a particular 
course) or changes the structure (e.g., lecture notes are no longer tied to a course in 
general but to a specific semester). The user may want to know that their retrieved 
 
 



664 A. Hinze and R. Evans 

 

Fig. 3. A diagram of an RDF/RDFS network 

Fig. 4. A portion of Figure 3 expressed in RDF’s XML representation 

result may have become invalid. Consequently, search is an insufficient mechanism to 
deal with changes in the data or data structure. 

This problem becomes more pronounced if the schema is used as a global standard 
by universities around the world to categorise their lecture material. Then, the task of 
updating the network (with all implications) becomes complex. In addition, external 
users could use the data as a component in their semantic web documents. From this 
example scenario, the following questions arise:  

<rdf:RDF xmlns=http://isdb.waikato.ac.nz/nonExistant/SchemaDoc# 
 xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema# 
 xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
 <rdfs:Class rdf:about="#Person" /> 
 <rdfs:Class rdf:about="#Lecturer"> 
  <rdfs:subclassof rdf:resource="#Person" />  
 </rdfs:Class> 
 <rdfs:Class rdf:about="#Course" /> 
 <rdfs:Class rdf:about="#Document" /> 
 <rdfs:Class rdf:about="#LectureNotes"> 
  <rdfs:subclassof rdf:resource="#Document" />  
 </rdfs:Class> 
 <rdf:Property rdf:about="#fName" /> 
 <rdf:Property rdf:about="#lName" /> 
 <rdf:Property rdf:about="#name" /> 
 <Lecturer rdf:about="#Annika"> 
  <fName>Annika</fName> 
  <lName>Hinze</lName> 
 </Lecturer> 
</rdf:RDF>



 Keeping Track of the Semantic Web: Personalized Event Notification 665 

1. How will user find out when the data they are using has changed?  
2. How does the owner of a network know who needs to be notified about a 

change in their network? 
3. How does a user find out when a part of a network to which they refer in their 

network is changed? 
4. How does a user identify what needs to be changed in their network in response to 

a notification they have received about changes in a network to which they refer? 

There are complex issues behind each of these questions. In this paper, we address the 
first two questions as a starting point of the larger problem outlined above. Our aim is 
to detect changes in semantic data and process such changes so as to notify the users 
or agents that have expressed an interest these changes. Consequently, the goal is to 
design and implement an event notification system for semantic web documents that 
exploits information about the semantic structure of the documents for filtering.  

2.3   Principles of Event Notification 

Users can define their interests in certain events, such as a change in a document, in 
profiles. An event notification system matches observed events to profiles in a process 
called ‘filtering’. In the context of the semantic web, events are changes to the RDF 
files (e.g., new, changed, deleted). Typically, events have to be sent to the Event Noti-
fication System (ENS) by the producer, see Figure 5. They are filtered individually 
against an index of user profiles. Profiles are similar to continuous queries; they are 
created by users of the ENS to specify their area of interest. An ENS indexes profile 
queries, not documents. When the system receives a message about an event, it filters 
the message against the stored profiles and where a match is found, it notifies the 
owner of that profile about the event. 

 

 

Fig. 5. User interaction with an event notification system 

For our problem, new or changed RDF documents have to be submitted to the sys-
tem to be matched against the profiles and then to be sent out to interested users. Fig-
ure 6 shows the internal components of the system: The RDF documents are proc-
essed by the observer which isolates the events within the documents and passes them 
to the filter. The filter compares the event messages to the stored profiles. Whenever 
it detects a match, it will pass the event and the profile to the notifier. 

 

 

Fig. 6. Internal components of an event notification system 



666 A. Hinze and R. Evans 

Proposed Solution  

Typically, ENS neither support event observation in documents nor semantic web 
specific features. Our approach combines an event notification system with a distrib-
uted authoring system and adapts both components to adapt for application in a se-
mantic web context. The system needs to support a profile language that can express 
RDF constructs. One may extend XML or RDF query languages to cover events, such 
as XML-QL (Deutsch et al. 1999) or RQL (Karvounarakis et al. 2002). As these com-
ponents need to be tightly integrated, the system will include the profile store and 
notifier as well as the filter. The observer component has requirements that differ 
from the standard ENS. In Figure 6, we see the events coming in from the producers. 
However, the producers in this situation provide edited documents where very few of 
the triples have changed. They do not provide explicit event messages but whole 
documents. Accordingly, the observer component needs to be an active observer 
comparing new versions of semantic web documents that it receives against previous 
states of those documents. It will forward information about the actual changes, addi-
tions, and deletions that occur between one document version and the next. Accord-
ingly, we chose to use a distributed authoring system that supports change detection 
and WebDAV (Whitehead and Goland, 1999). WebDAV is an extension of the http 
protocol that will allow the producers to easily supply their documents to the system. 

4   Conceptual Design 

Addressing research questions 1 and 2, we focus here on the design of a local system, 
which can later be extended as a broker component in a distributed system. Our ENS-
SW system consists of five main components as seen in Figure 7: a repository for 
storing the RDF data, an observer to isolate changes in the RDF data, a store and 
index for profiles, a filter to identify matches between those changes and the collec-
tion of profiles, and a notifier to send out the notifications for profiles that have been 
matched. We now briefly describe each of the components. 
 

 

Fig. 7. Concept Architecture of ENS-SW 

4.1   Repository 

The repository designed either as active repository that includes some or all of the 
observer functionality or as passive repository that must be monitored and polled by 
an observer. We will use an active repository for which we identify three key  
requirements: 



 Keeping Track of the Semantic Web: Personalized Event Notification 667 

1. The repository needed means to represent change. Various forms can be envi-
sioned, such as changes that are committed to a database in a transaction, or ver-
sioning through the use of diff files as in CVS. This will not be sufficient to de-
tect all details of the events. Instead it will act as the trigger mechanism that alerts 
the event detector that some changes may have occurred. The trigger would also 
give an indication of where the potential changes have occurred.  

2. The repository was required to represent data in the chosen format. For our de-
sign, we decided to consider the XML representations of RDF/S documents (see 
Figure 4). XML filter languages are sufficiently and prior approaches using RDF 
triple representations have shown the limitations of those languages. Conse-
quently, the repository needs to support storage of XML data. It should also be 
able to indicate those documents that might have changes in XML format to the 
change detector. This requirement is fundamental due to our design decision to 
work exclusively with the XML representation of RDF.  

3. The final requirement for the repository was that it should be accessible via the 
Internet to be included in larger semantic networks. This would also allow for 
easier system deployment. We identified WebDAV as the protocol that the sys-
tem should support for document updating; WebDAV provides a powerful yet 
simple way for agents to access the repository. 

4.2   Observer 

The observer has complex functionality; we decided to design it as separate compo-
nent. However, the observer needs to be tightly coupled with the repository. When 
presented with a file in which some form of change may have occurred, the observer 
has to (1) detect the change and (2) determine which effect the change in the XML 
document has on the structure of the RDF network that is described by the XML.  

This problem is not trivial, as there are a number of different changes that can oc-
cur in a file that would not necessarily change the underlying RDF network. The rea-
sons for this lie, amongst others, in the wide variety of ways in which a particular 
RDF network can be represented in XML. The syntax is verbose, allows considerable 
redundancy and does take into account the order of attributes. This means that there 
may be significant changes to a file without any change to the RDF network. In addi-
tion, simple syntactical changes, such as blanks, should be discarded. These con-
straints make it difficult to use many of the existing XML diff algorithms.  

The observer component must be able to detect the following types of events:  

• Modification: change to existing triples 
• Insertion: creation of new triples 
• Deletion: removal of existing triples 

Modification events are the simplest ones; they can have only two different forms of a 
class substitution or literal value change. Class substitution occurs when the object of 
a triple is changed to some other resource within the RDF structure. Literal value 
changes involve the substitution of one metadata literal for another. For example, 
changing the name property of the resource COMP582 (see Figure 3) from ‘Topics in 
Information Systems’ to ‘Event-Based Systems’. Insertions and deletions both follow 
the structure as shown in Figure 8. For deletions, we can see the limitations of relying 



668 A. Hinze and R. Evans 

simple diff programs to obtain the event 
information: The available information is 
insufficient to detect the deletion pattern. In 
deletions, there are eight different event 
patterns. Multiple change events, each with 
a different pattern, could be caused by a 
single actual deletion within the RDF docu-
ment, some of which may or may not be 
apparent from the event. Changes to the data 
may be inconsistent. Thus, deciding when to 
notify of a deletion involves more process-
ing than just considering the individual 
resources that have been removed from the 
network. Consider the XML fragment in 
Figure 9, which defines four triples, on lines 
six, seven, nine, and ten. Using this as the 
base XML fragment, each of the eight dele-
tion patterns is illustrated in Figure 10. 
Insertions follow the same patterns as dele-

tions but in reverse. Detecting the number of new triples is not a straightforward opera-
tion but involves considerable processing of the surrounding XML. This problem could 
be reduced if the document editor would check that all references were updated when 
changing a document. However, this is not always feasible because of the large multi-
file semantic networks that are used to describe and assist with real world problems.  

 
1: <?xml version="1.0"?> 
2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
3:   xmlns:dc="http://purl.org/dc/elements/1.1/" 
4: xmlns="http://www.example.com/stuff#" 
5: xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 
6:   <rdfs:Class rdf:about="Subject"> 
7:      <property rdf:resource="Object"/> 
8:   </rdfs:Class> 
9:   <rdfs:Class rdf:about="Object" /> 
10:  <rdf:Property rdf:about=“http://www.example.com/stuff#property” /> 
11:</rdf:RDF> 

Fig. 9. Example RDF document 

4.3   Profile Store/Index 

For the profile store and profile index, two critical factors exist: efficiency and ease of 
filtering. Both are served by the use of a tree storage structure which minimises the 
number of profile nodes that need to be visited by the filter for each event and simul-
taneously reduces the number of nodes that need to be remembered for each profile. 

4.4   Filter 

The primary action of the filter is the matching of event message to stored profiles. 
Ideally, the filter would use the changed RDF triples identified by the event  
 

Fig. 8. The eight patterns of change 



 Keeping Track of the Semantic Web: Personalized Event Notification 669 

6:   <rdfs:Class rdf:about="Subject"> 
8:   </rdfs:Class> 
9:   <rdfs:Class rdf:about="Object" /> 

Removed lines: 7 & 10 
Triples removed: 2  
Deletion type a. 

9:   <rdfs:Class rdf:about="Object" /> Removed lines: 6-8 & 10 
Triples removed 3  
Deletion type b. 

6:   <rdfs:Class rdf:about="Subject"> 
8:   </rdfs:Class> 

Removed lines: 7,9 & 10 
Triples removed: 3  
Deletion type c. 

 Removed lines: all 
Triples removed: 4  
Deletion type d. 

6:   <rdfs:Class rdf:about="Subject"> 
8:   </rdfs:Class> 
10:  <rdf:Property 
rdf:about=http://www.example.com/stuff#property /> 

Removed lines: 7 & 9 
Triples removed: 2 
Deletion Type e 

9:   <rdfs:Class rdf:about="Object" /> 
10:  <rdf:Property 
rdf:about=http://www.example.com/stuff#property /> 

Removed lines: 6-8 
Triples removed: 2 
Deletion Type f 

10:  <rdf:Property 
rdf:about=http://www.example.com/stuff#property /> 

Removed lines: 6-9 
Triples removed: 2 
Deletion Type g 

6:   <rdfs:Class rdf:about="Subject"> 
8:   </rdfs:Class> 
9:   <rdfs:Class rdf:about="Object" /> 
10:  <rdf:Property  
rdf:about=http://www.example.com/stuff#property /> 

Removed line: 7 
Triples removed: 1 
Deletion Type h 

Fig. 10. Deletion patterns in XML 

observer/detector and map those to the registered profiles. The filter would need to 
handle XML namespaces and attributes. RDF Syntax encodes almost all significant 
features in these two forms; element tags and text nodes are rarely used. In addition, it 
is important that the profile language supports profiles that distinguish particular 
change patterns, as outlined before. Another question is the scope of the detected 
changes: When matching an event to a given set of profiles, should a profile that reg-
isters an interest in change in a given resource be notified on any change to a triple 
involving that resource or only when the resource itself is changed? 

4.5   Notifier 

The Notifier is the least complex component of the system. It sends notifications to 
users that own matched profiles. It should support a variety of means for notification 
to cater for different types of users: sending emails, RSS feeds, or making the notifi-
cation available through a web site. Sending an email is good for occasional notifica-
tions to human users; a website or RSS feed would involve storing the notification on 
disk and retrieving it later when the feed was requested or the user logged into the 
site. Automatic messages via a given interface could cater for automatic/agent clients. 

5   Implementation of ENS-SW  

This section describes the implementation details of our XML-based ENS for the 
Semantic Web called ENS-SW. The repository and the observer are based on the  
authoring system SVN, which provides the necessary data storage functions and basic 



670 A. Hinze and R. Evans 

change detection. Subversion (SVN) is a relative of CVS (Collins-Sussman et al., 
2004). It supports distributed authoring of documents. The detailed event detection is 
performed by a Delta Adapter component that we developed. It receives documents 
from the SVN and performs an XML diff to locate the relevant changes. It analyses 
the XML differences in the document before and after the changes were made. For the 
profile store and filter components, we extended the XML-based ApproXFilter (Mi-
chel and Hinze, 2005) to process RDF data. Our system exploits knowledge of the 
structure of the RDF Schema to create useful notifications to interested users. The 
ENS-SW can be accessed using the WebDAV protocol.  
    The system consists of three components as shown in Figure 11: a repository 
(SVN), an observer that is tightly coupled to the repository (Delta Adapter), and an 
event filter (ApproxFilter). Whenever SVN receives a new or changed document it 
activates the adapter program by the use of a hook script. This program obtains a list 
of all changes to the repository since the latest revision. In this list, the adapter identi-
fies the RDF files that changed in this revision and obtains both the version before 
and after the revision (see example in Figure 12). 

 

 
 

 
    The Adapter accesses copies of all changed RDF files (before and after the change) 
and uses DeltaXML libraries (La Fontaine, 2001) for the comparison. DeltaXML 
performs an unordered Tree-based diff. It records for each sub tree the insertions,  
changes, deletions or if the node and all its children remain the unchanged. The result-
ing mark-up that DeltaXML in the XML file can be seen in Figure 13.  

    Although Delta XML identifies the changes in the XML file, it is not sufficient 
for identifying RDF events. Triples are interconnected; a change on one part of the 
network may affect other resources. In RDF, unlike in XML, a class and its properties 

 
RDF Before Editing RDF After Editing 
<rdf:RDF xmlns:rdf=“…” 
xmlns:rdfs=“…”> 
 
<rdf:Property rdf:about=“#Teaches” /> 
<Course rdf:about=“#COMP582”/> 
 
<Lecturer rdf:about=“#Annika”> 
 <fName>Annika</fName>  
 <lName>Hinze</lName> 
 <Teaches 
rdf:resource=“#COMP582”/> 
</Lecturer> 
</rdf:RDF> 

<rdf:RDF xmlns:rdf=“…” 
xmlns:rdfs=“…”> 
 
<rdf:Property rdf:about=”#Teaches” /> 
<Course rdf:about=“#COMP582”/> 
<Lecturer rdf:about=“#Annika”> 
 <fName>Annika</fName> 
 <lName>Hinze</lName> 
 <Teaches 
rdf:resource=“#COMP319”/> 
</Lecturer> 
 
</rdf:RDF> 

Fig. 12. Portion of an RDF file in XML changes made to it 

Fig. 11. Components of the ENS-SW system and their interactions



 Keeping Track of the Semantic Web: Personalized Event Notification 671 

<rdf:RDF xmlns:deltaxml=“…" xmlns:rdf=“…" del-
taxml:delta="WFmodify"> 

 <rdf:Property deltaxml:delta="unchanged" rdf:about="#Teaches"/> 
 <Course deltaxml:delta="unchanged" rdf:about="#COMP582"/> 
 <Lecturer deltaxml:delta="WFmodify" rdf:about="#Annika"> 

 <fName deltaxml:delta="unchanged" >Annika</fName>  
 <lName deltaxml:delta="unchanged" >Hinze</lName> 
  <Teaches deltaxml:delta="WFmodify" deltaxml:old-
attributes="rdf:rescouce=&quot;#COMP582&quot;" deltaxml:new-
attributes="rdf:resource=&quot;#COMP319&quot;"/> 

 </Lecturer> 
</rdf:RDF> 

Fig. 13. The results of running DeltaXML on the files in Figure 12 

may be kept separate from one another. Profiles interested in changes in a property 
that is used with a class in this manner will be interested in events that occur on the 
class as well as directly on the property. To correctly identify the events, the results 
from DeltaXML are passed through an XML style sheet transformation (XSLT). For 
example, it transforms the result of the Delta XML from Figure 13 into the event 
message seen in Figure 14. It removes superfluous DeltaXML information, e.g., about 
unchanged elements.  

<Annika>
<action>modify</action>
<Teaches>COMP582
 <action>delete</action> 
</Teaches>
<Teaches>COMP319
 <action>add</action> 
</Teaches>
</Annika>  

Fig. 14. Message after XSLT transformation 

    The DeltaXML libraries only work with changed documents. For the addition and 
deletion of entire documents, the system simulates a change by creating a temporary, 
empty document. This enables us to treat these events in the same manner as changed 
documents and thus allow for filtering.  

 
Profile Interpretation 
1) Annika [Teaches[“*”]] and 
Teaches[action[“add”]] 
2) Course[action[“modify”]] 
3) Lecturer[action[“add”]] 
4) Lecturer[fName[“*”]] 

1) Annika teaches another course 
2) A course is changed 
3) Another Lecturer is added to the network 
4) Any events that affects a Lecturers First Name 

Fig. 15. Some profiles that users might register on the data in Figure 12 

    The next step is to filter the event message using an XML filter algorithm. We 
employ the XML filter algorithm ApproXFilter (Michel and Hinze, 2005). We 
adapted ApproXFilter to match profiles regarding triple changes in the makeup the 
RDF document (for example profiles see Figure 15).These profiles specify a set of 



672 A. Hinze and R. Evans 

elements that the user is interested in and the types of changes that will trigger a noti-
fication. Elements are separated by square brackets to enable the user creating a pro-
file to specify the relationships that the elements must have to one another. 
    In our implementation supports three points of user interaction: Document authors 
submit documents to the SVN server either by using WebDAV in an Apache server, 
the dedicated SVN server, or directly to the repository. New profiles enter the filter 
via a connection to port 8088; the system inserts them to its profile tree. Direct inser-
tion via the profile directory is also possible. Finally, notifications are sent via email. 

6   Evaluation 

In this section, we report the results of our performance evaluation. We designed two 
main tests: The first test evaluated the efficiency and accuracy of the Delta Adapter 
program. The second set of tests evaluated the performance of the filter for different 
numbers and types of profiles. The separate parts of the system were tested independ-
ently of each other since they are distinct programs that co-operate.  

6.1   Observer (DeltaAdapter) Testing 

These tests determine the efficiency of the event detection process in the observer. 
Since deletions and insertions use the same operations, we only test triple deletions. 
The variables for the observer tests are shown in Figure 16. OT and NT represent the 
size of the input document before and after changes, respectively. They influence the 
Delta generation as each document is created as a tree and then compared node by 
node. C denotes the number of triples that have changed between OT and NT. The 
more changes the more time is consumed by the tree comparisons. CS is large when a 
high number of changes is large compared to the document size. Processing a change 
with large CS should be very quick. Large CI adds noise to the filtering process.   

 
Symbol Description 
OT Number of triples in original document 
NT Number of triples in changed document 
C Number of changed triples 
CS Changes relative to size of document (C/OT) 
CI Number of Changes that do not represent a triple change 

Fig. 16. Variables for observer tests 

Observer test 1 – Triple change test 
Goal: Test the performance of the observer. We use a specified number of changes in 
RDF documents of increasing size.  
Hypothesis: Regardless of the number of changes it is expected that there will be a 
linear increase in time taken to process a document as the number of triples increases.  
    Figure 17 shows the time to process a document for increasing numbers of triples 
(one triple removed, NT = OT -1, C=1, CI=0; all triples removed, NT = 0, C= OT, CI 
=0). We see the linear dependency on the number of triples in the document. This 



 Keeping Track of the Semantic Web: Personalized Event Notification 673 

behaviour is independent of 
the number of triples re-
moved. The jump between 
10000 and 20000 triples is 
investigated further in Figure 
18, which shows the average 
time per triple in millisec-
onds. This graph clearly 
shows the heavy influence the 
size of the document has on 
the speed of event detection. 
The reason is that the system 
has to build DOM trees in 
main memory for both docu-
ments and then compare to 

find the minimum difference. This graph shows the influence of the two different 
costs associated in the change detection process: below 20,000 triples the initialisation 
structures used to compare the XML files is the main influence. The second factor is 
the cost of comparing the DOM trees; it dominates above 30000 where the fixed ini-
tialisation costs are divided among many more triples. 
 

Observer test one (average per triple)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

5000 10000 20000 30000 40000 50000 60000 70000 80000 90000 1E+05

Number of Triples in Document (Ot)

T
im

e 
(m

s)

All Triples Removed

1 Triple removed

 

Fig. 18. Triple change test (averaged) 

Observer test 2 – Non change test 
Goal: Test the effect of a change that does not change the meaning of the RDF on the 
performance of the Delta Adapter. 

Hypothesis: regardless of the number of changes, it is expected that there will be a 
linear increase in the time it takes to process a document with increasing numbers of 
non triple changes. 
    We observe that an increasing number of non triple changes cause an increase in 
the processing time. It is important to note that OT and NT were identical in this test 
 

Observer test one

0

2000

4000

6000

8000

10000

12000

50
00

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Number of Triples in Document (Ot)

T
im

e 
(m

s)

All Triples Removed

1 Triple removed

Fig. 17. Triple change test 



674 A. Hinze and R. Evans 

(Parameters: NT = 10,000 
OT=10,000, C=0, Cs=0). 
All the changes involved 
adding extra c  arriage 
returns or swapping the 
order of child nodes, 
neither of which makes 
any difference to RDF. 
There were no effective 
RDF changes; the system 
had to match the different 
portions of the DOM tree 
to confirm that nothing 
had changed in the model. 
Comparing Figure 19 with 
the respective data in 

Figure 17 (10,000 triples) one finds that five non structural changes to the RDF file 
result in the doubling of the observer time. 

6.2   Filter Testing 

The second series of tests are efficiency tests for the filter. Because the system per-
forms approximate matching, the number of profiles that match an event is not a fac-
tor in the processing time. The filter does not stop unless all profiles and the whole 
document are tested. Non-matches create costs for each profile. The match cost also 
do not influence the performance. Only those profiles with match cost below a given 
threshold will be notified. The variables for the filter tests are described in Figure 20. 
E affects the filtering as each member of the triple needs to be checked against the 
profile tree. P are PC expected to be major influences on the performance. PD indicates 
the increases in the size of the filter tree. PC is important since every conjunct adds 
between one and three extra nodes to the tree for the profile. This increases the num-
ber of nodes to be evaluated. S represents equivalent words. The size of the profile 
tree increases linearly with the size of the synonym net. The parameters for the tests 
are E = 2, P = 10K – 100K, PD=0, S=0, PC=0,1,2. 

 
Symbol Description 
E Number of Triples in Event Message 
P Number of profiles 
PD Degree of independence in profiles  
PC Average Number of Conjuncts in profile 
S Number of terms in the synonym net 

Fig. 20. Variables for filter tests 

Filter test 1 – Event parsing Test 
Goal: Test the effect of increasing number of distinct profiles and number of con-
juncts on the event parsing stage of the filtering process 

Fig. 19. Non triple change test 

Observer test two

5400

5600

5800

6000

6200

6400

6600

6800

5 10 15 20

Number of Non Triple Changes (Ci)

T
im

e 
(m

s)



 Keeping Track of the Semantic Web: Personalized Event Notification 675 

Hypothesis: We expect than an increase in the number of distinct profiles should have 
a linear effect on the processing time. Increasing the number of conjuncts should not 
affect the runtime of the event parsing. 
    The results are given in Figure 21. We observe a linear influence of the number of 
profiles on the performance due to the increase in the size of the profile tree caused by 
the increase in the number of distinct profiles. The influence of the number of con-
juncts is not statistically significant. 

 

Filter test one

0

100

200

300

400

500

600

700

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Number of Profiles (P)

T
im

e 
(m

s)

No  Conjuncts

One In Literal

One joining profiles

Both Conjuncts

 

Fig. 21. Event parsing test 

Filter test 2 –Profile matching test 
Goal: Test the effect of increasing the number of distinct profiles and the number of 
conjuncts on the profile matching. 

Hypothesis: An in-
crease in the number of 
profiles has a linear 
effect on the runtime of 
the filtering process. 
Increasing the number 
of conjuncts should 
have a linear effect on 
the runtime due to the 
extension of the filter 
process. 
    We observe that the 
number of profiles has 
a linear influence on 
the performance. This 
relationship is not as 
pronounced as we 
expected, because of 
the considerable initial Fig. 22. Profile matching test

Filter test two

0

200

400

600

800

1000

1200

1400

1600

1800

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

Number of Profiles (P)

T
im

e 
(m

s)

No  Conjuncts

One In Literal

One joining profiles

Both Conjuncts



676 A. Hinze and R. Evans 

 

overhead. The effect of adding conjuncts is interesting: when adding a conjunct to 
the end of the profile we achieved the expected linear increase in profile match 
time (see Figure 22). However, when the conjunct was joining two distinct triples, 
the profile matching was as quick as if there had been only one. We believe that 
this is caused by the profile cost calculation: Once the filter has checked a profile 
it evaluates the cost of that profile to see if it exceeds the cost threshold. When a 
profile consists of multiple independent parts connected by a conjunct, the filter 
can stop processing that profile. This would account for conjuncts joining two 
independent profiles taking the same time as single profiles with no conjuncts. 
Profiles incorporating both types of conjuncts behaved exactly as the first type 
with only one conjunct. 

7   Conclusions and Future Work 

We identified four research questions to be addressed to keep track of changing se-
mantic web models. In this paper, we focussed on two closely related questions from 
that list: how to detect changes in the semantic web data and how to identify users 
who need to be notified about a change in the SW network? We presented a common 
solution for both challenges. Our ENS-SW system allows the user to register a profile 
indicating an interest in a portion of the RDF network stored in the repository. When-
ever a change occurs on the network, it will be filtered against all the profiles stored 
in the ENS, and when a match is found, the corresponding users will be notified. Our 
evaluation has shown that the system performs as expected.  
    The key points of our system are as follows:   

(1) Easy Deletion Detection: Detection of deletions is often ignored in ENS due to 
the complexity. Often, a mirror would need to be used for the data repository. 
Since we store the data in the form of deltas, deletion detection becomes a 
trivial task.  

(2) Using Subversion and diff: To the best of our knowledge, versioning software 
or XML diffs have not been used to detect changes in XML data. Typically, 
only new XML files can be processed by filters.  

(3) Using the ApproXFilter algorithm: The matching algorithm supports  
approximative filtering. A user can state how close a match has to be to count 
as a match. This approach removes the need for a user to register several  
similar.  

For future research, we plan to address the challenge of distribution. The current sys-
tem supports connection to any number of observers that each connect to one filter 
only. Support for XML namespaces and attributes is also planned to be added to the 
system, both on the observer side and for the filtering. Finally, two further questions 
identified early in the paper remain open for future research. The fourth question – that 
of identifying what needs to be changed in an RDF network in response to a notifica-
tion – is a particularly interesting and significant problem. We aim to automatically 
adapt the network in response to notifications received from other filters in order to 
automatically synchronise distributed semantic web networks. 



 Keeping Track of the Semantic Web: Personalized Event Notification 677 

References 

1. Beckett, D. (2004) “RDF/XML Syntax Specification, W3C Recommendation, 10 February 
2004.” Available at http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210 (23 
March 2005). 

2. Berners-Lee, T., Hendler, J. and Lassila, O. (2001) “The Semantic Web.” Scientific 
American 284(5):34-43; May. 

3. Berners-Lee, T., Fielding, R.T. and Masinter, L. (2005) “Uniform Resource Identifier 
(URI): Generic Syntax.” Available at http://www.gbiv.com/protocols/uri/rfc/rfc3986.html 
(23 March 2005). 

4. Brickley, D. and Guha, R. V. (2004) “RDF Vocabulary Description Language 1.0: RDF 
Schema, W3C Recommendation 10 February 2004.” Available at 
http://www.w3.org/TR/2004/REC-rdf-schema-20040210 (23 March 2005). 

5. Broekstra, J., Kampman, A., van Harmelen, F. (2001) “Sesame: An Architecture for Stor-
ing and Querying RDF Data and Schema Information.” In Semantics for the WWW, ed-
ited by D. Fensel, J. Hendler, H. Lieberman and W. Wahlster, 2001. MIT Press, Boston, 
Massachusetts. 

6. Collins-Sussman, B., Fitzpatrick, B.W. and Pilato, C. M (2004) Version Control with Sub-
version. O’Reilly, Cambridge, Massachusetts.  

7. Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D.L. and Patel-Schneider, P.F. 
(2001) “DAML+OIL (March 2001) Reference Description W3C, Note 18 December 
2001.” Available at http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218 (24 
March 2005). 

8. Deutsch A., Fernandez M., Florescu D., Levy A., Suciu D. (1999) “XML-QL: a Query 
Language for XML”. Proc. of the Int. World Wide Web Conference (WWW), Toronto 

9. Gibbins, N., Harris, S. and Shadbolt, N. (2004) “Agent-based Semantic Web Services.” 
Web Semantics: Science, Services and Agents on the World Wide Web 1(2):141–154. 

10. Heflin, J. (2004) “OWL Web Ontology Language Use Cases and Requirements, W3C 
Recommendation 10 February 2004.” Available at http://www.w3.org/TR/2004/REC-
webont-req-20040210 (24 March 2005). 

11. Hinze, A. (2003) “A-mediAS: An Adaptive Event Notification System.” Proc 2nd Interna-
tional Workshop on Distributed Event-based Systems, San Diego, USA. 

12. Karvounarakis, G, Alexaki, S,Christophides V, Plexousakis, D, Scholl, M,(2002) “RQL: a 
declarative query language for RDF.” In WWW, pages 592–603, 2002. 

13. Klyne, G. and Carroll, J.J. (2004) “Resource Description Framework (RDF): Concepts and 
Abstract Syntax, W3C Recommendation, 10 February 2004.” Available at 
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210 (24 March 2005). 

14. Kozuka, T. (2004) “The Adaptive Semantic Web.”; Comp 591 Dissertation, Department of 
Computer Science, University of Waikato, Hamilton, New Zealand. 

15. La Fontaine, R. (2001) “A Delta Format for XML: Identifying Changes in XML Files and 
Representing the Changes in XML.” Proc XML Europe 2001, Berlin, Germany. 

16. Michel, Y. and Hinze, A. (2005) “ApproxFilter – An Approximative, XML-based Event 
Filter.” Technical Report 06/2005, Department of Computer Science, University of Wai-
kato, Hamilton, New Zealand. 

17. Patel-Schneider, P.F., Hayes, P. and Horrocks, I. (2004) “OWL Web Ontology Language 
Semantics and Abstract Syntax, W3C Recommendation 10 February 2004.” Available at 
http://www.w3.org/TR/2004/REC-owl-semantics-20040210 (24 March 2005). 



678 A. Hinze and R. Evans 

18. Qin, L. and Atluri, V. (2004) “Ontology-guided Change Detection to the Semantic Web 
Data.” Proc 23rd International Conference on Conceptual Modeling (ER2004), Shanghai, 
China, pp. 624–638.  

19. Silva Filho, R.S., de Souza, C.R.B. and Redmiles, D. F. (2003) “The Design of a Config-
urable, Extensible and Dynamic Notification Service.” Proc 2nd International Workshop 
on Distributed Event-based Systems, San Diego, USA. 

20. Whitehead, J. and Goland, Y. Y., (1999) WebDAV: A NetworkProtocol for Remote Col-
laborative Authoring on the Web. In Proc. of the European Computer Supported Coopera-
tive Work Conference (ECSCW’99),. Available at http://www.webdav.org. 



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 679 – 696, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Gestures and Freehand Writing Interaction Based 
Electronic Meeting Support System with Handhelds 

Gustavo Zurita1, Nelson Baloian2, Felipe Baytelman1, and Mario Morales1 

1 Department of Information System and Management of the Economy and Businesses 
School, University of Chile, Diagonal Paraguay 257, Santiago, Chile 

gnzurita@usistemas.cl, felipe@baytex.net, mmorales@usistemas.cl 
2 Department of Computer Science of the Engineering School  of the University of Chile, 

Blanco Encalada 2120, Santiago, Chile 
nbaloian@dcc.uchile.cl 

Abstract. In this work, we present an Electronic Meeting Support system for 
handhelds. The design principles applied for developing the system are aimed 
to help reduce the problems associated with having a small size screen to inter-
act with. The human-handheld interaction is based only in gestures and free-
hand writing, avoiding the need of widgets and virtual keyboards. The content 
of the generated documents are organized as concept maps, which gives more 
flexibility to reorganize and merge the contributions of the meeting attendees.  
Our system is based on handhelds interconnected with an ad-hoc wireless net-
work. The system architecture is a peer-to-peer one, avoiding the need of cen-
tral repositories thus allowing meetings to take place anywhere. 

1   Introduction 

In any organization, small teams and work groups undertake a broad spectrum of 
face-to-face meeting processes, including deliberation, negotiation, consensus build-
ing, decision making, idea generation, problem solving, planning, [1], [9], [25], which 
are becoming increasingly important in most business initiatives, [2]. An Electronic 
Meeting Systems (EMS) is an interactive computer-based system for supporting 
meeting processes. [1]. EMS goal is to help group members to overcome the well-
known problems that arise in a meeting, thus improving its productivity, efficiency, 
and effectiveness. Since a group meeting may involve different activities, the system 
should be flexible enough to support most of them. 
    Technology for supporting face-to-face meetings has been around for nearly two 
decades using mainly desktop computers, networks and software implementing sophis-
ticated awareness mechanisms. However, adoption statistics measuring their “accessi-
bility and availability” to organizational end-users have been somewhat disappointing. 
The findings of [25] indicate that EMS systems have been adopted in organizations in 
the USA; Australia and New Zealand only to a limited extent. Several possible barriers 
to EMS adoption have been suggested and a recent survey of EMS researchers also 
identified several potential obstacles to their adoption, [25]. Some organizational issues 



680 G. Zurita et al. 

such as compatibility of EMS with user cognitive styles, lack of organizational incen-
tives, resistance to change combined with difficulty in measuring and demonstrating 
EMS benefits are the most commonly perceived barriers. These findings also are sup-
ported by [19], who stated “for Groups Support software to be an organizational suc-
cess, one must plan for and overcome extreme resistance to change”.   

It has been also mentioned that another fundamental reason for the low level of 
adoption and use of EMS is that they still lack of fundamental functionalities support-
ing the creation of an agenda or an agenda-setting process, implementation of common 
workspace for participants, support for drawing up of minutes, procedures for support-
ing follow-up on commitments, and voting mechanisms [25]. Although some success-
ful systems have been developed and tested based on desktop computers ([10], [11]) it 
has been demonstrated in [3] and [28] that the EMS interfaces on PC and notebook 
capture the attention and cognitive concentration of participants to such an extent that 
face-to-face interaction is reduced. According to [28], handhelds are a more suitable 
support tool for face-to-face meetings. In fact, handheld portable computer devices are 
non-obstructive and create a feeling of belonging because they are used in various ac-
tivities and may be used in any place and used at any time [16], [17] and [20]. 

In this paper we propose a face-to-face EMS system based exclusively on the use 
of handhelds wirelessly connected through a peer-to-peer ad-hoc network. The aim of 
the system is to overcome in a simple way the cognitive styles, adoption, resistance to 
change, and some meeting problems (lack of common work space for members, diffi-
culties while drawing up the minutes, lack of follow up commitments, and absence of 
voting mechanism among others). The system supports various processes of a meet-
ing life-cycle, both individual and collaborative. The user interface is based on free-
hand input allowing: a) freehand writing and sketching over the screen of the hand-
held for taking notes; b) activation of special functionalities for, creating, managing 
and navigating through conceptual maps; c) synchronous and asynchronous coordina-
tion of the work and;  d) voting.  

2   Related Work 

Some analyses have been carried out of both proposed and already-developed EMS 
systems that use freehand input, concept maps and especially handhelds, as well as 
the functionalities offered by handhelds for supporting face-to-face meetings: agenda 
creation, distribution and discussion support; task and processes development support; 
distributed on-screen viewing; individual note-making; and generation of minutes.  

The We-Met project [30], supports face-to-face meetings although using Tablet 
PCs (TPC) for each of the participants all of whom are interconnected through a TPC. 
Attendees can work in the same virtual work area on their tablet screens, which is 
shared through the connection with the TPC and is freehand input-based. The pro-
ject’s objectives are (a) to facilitate communication between meeting participants, and 
(b) to facilitate documentation of knowledge and information generated by the meet-
ing for easy review. Users of this system found that it was necessary to have private 
work areas where they can develop ideas that are not yet ready to be presented to the 
other attendees. The Pebbles project [18], though not conceived to be used exclu-
sively for meetings, can be used to provide support to collaborative groups in various 



 A Gestures and Freehand Writing Interaction 681 

contexts. It consists of applications that interconnect handhelds through a PC. The de-
vices are used as though they were PC mice or keyboards. The project’s objective is to 
mediate social interaction techniques between persons through a shared screen. 
RoamWare [28], is a handheld architecture that supports informal face-to-face reun-
ions, including those held in such places as corridors. Each handheld can detect and 
interconnect to others located within a limited space, while the participants make notes 
on their devices. These notes are sent to a central computer where they are stored for 
later distribution. Costa et al. (2001) have developed the idea of combining handhelds 
and a PC to explore the relationships that may exist between a meeting and these tech-
nologies. They show that the use of handhelds is neither annoying nor obstructive to 
the flow of the meeting, and suggest the devices be utilized as tools to generate reports, 
a traditional technique for linking meeting processes to organizational ones. The au-
thors of the study also attempt to improve meeting report generation by making use of 
the capacities handhelds can contribute to the EMS for managing individual and group 
information. [1] have studied the impact of including handhelds as a support to meet-
ings, pointing out the important role they can play in managing individual information. 
The authors note the following requirements: a) creation, distribution and support for 
the development of an agenda; b) recording of decisions taken; c) inclusion of the 
foregoing in the minutes for later distribution; d) support for typical meeting structures; 
and e) support for various agenda, issue, decision, report and logistics templates. 

We made a comparative analysis of the above-described meeting support systems. 
Antunes and Costa [5] are the only ones to propose the creation, distribution and dis-
cussion of the agenda. None of the systems provides any support for negotiations 
aimed at reaching agreements or for commitment follow-up. We also see that there is 
no system trying to overcome the typical problems of handhelds by exploiting the 
gesture based interaction or improving the structure of the document. This work fo-
cuses on incorporating those ideas in the design principles of a handheld based EMS.  

3   Design Principles 

Handhelds are considered to be a good platform for reading brief, concrete content 
because their interface is simple and insensitive to content formats, thus allowing in-
formation to be read quickly. They are also considered to be suitable for providing 
support to diverse collaborative work groups, [23]. However, their reduced screen 
size and use of virtual keyboards or widgets for entering and handling information 
introduces new complexities into the user-handheld interaction, [6]. In order to over-
come these problems we propose the following design principles:  

• Interaction is based exclusively on gestures thus minimizing the number of wid-
gets and virtual keyboards and maximizing the space available for entering con-
tent. The content will be exclusively free handwriting. Although free handwritten 
text may take more space than typed text, it allows also a flexible combination of 
sketching and writing. According to [6] and [15], sketching and gesturing with 
pen-based systems are natural modes of design-task-oriented interaction. In [26] 
it is noted that a sketch is a quick way of making designs that a) facilitate the 
creator’s idea generation process, b) stimulate communication of ideas with oth-
ers, c) stimulate the use of early ideas thanks to the accessibility and interpretation 



682 G. Zurita et al. 

they provide, and d) gives the opportunity to see and get inspired by other group 
members’ ideas. 

Many systems use the metaphor of pages and/or scrolling bars for the documents 
generated in order to offer more “space” to the user. This is indeed a simple and very 
intuitive way of organizing the content of a document, but when the working area is 
extremely small, which is the case of handhelds, is seems to be better to organize the 
content as a structure which is also intuitive and may contain more information with-
out having to enter more data. A structure like a concept map  will be indeed more 
suitable to order the ideas generated during the meeting since this is an intuitive yet 
flexible structure which adds more information to the content than the “list of pages” 
(which in fact is a simple form of a concept map) without having to input more  
content.  

A decision-meeting often follows the template of idea generation, idea organiza-
tion and idea prioritization [1]. Idea generation is a divergent phase where group 
members typically engage in a kind of brainstorming activity, drawing, talking, and 
sketching. This has also been called brainsketching, [26]. This phase is characterized 
by creativity, freethinking, lack of critical analysis and lack of restrictions or controls. 
After ideas are generated or explained by text note-taking, or sketching, they need  
to be organized. This activity includes accepting/rejecting ideas, refining, rearranging, 
and consolidating items representing the ideas. The final phase should produce a 
summary of the ideas as a list of the issues or topics that are most important or  
relevant. From these three phases, the organization of the different ideas contributed 
by the group members is often the most problematic. The output of an electronic 
brainstorming or brainsketching session is typically extremely “dirty”, and needs to 
be organized in an easy way by using editing, marking, deleting and cutting.  
The graph structure of a concept map offers a more flexible way to do this than a  
list of pages. The use of concept maps enables the drafting of a meeting summary 
through the follow-up of the structure, and facilitates the determination of actions to 
be taken.  

Using a graph structure for a document opens new challenges which include the 
development of an easy gesture-based mechanism to create and fill with content this 
structure. Also the design of the document viewing options the system should provide 
is an interesting issue.  These issues will be addressed later in this paper. 
    In addition to the principles mentioned above, an EMS should provide some fun-
damental functionality. Because EMS are mostly aimed at supporting small group 
work in a face-to-face setting, they should provide the capability to share information, 
exchange ideas, express opinions, create solutions, develop consensus to resolve prob-
lems, and collaborate on tasks. This can be achieved by a shared workspace where the 
members of the meeting would write, depict or sketch their ideas simultaneously in a 
common workspace by freehand input based system.  
    According to [27], voting before discussing certainly seems to increase the sense of 
group identity, reduce personality conflicts, and reduce needless discussion. Some 
experimental studies have shown that computer support helps to generate agreement  
among the members.  In a meeting support system voting is used as a rational choice 
tool, being usually highly formal and used once at, or towards the end of the meeting.  
 



 A Gestures and Freehand Writing Interaction 683 

Meeting
life-cycle

Review agenda

Create Group

Pre-meeting Between-meetingsPost-meetingMeeting

Start of
meeting

Run Topics
of Agenda

End of
meeting

Individual
note-makingVotingDiscussion and

NegotiationOrganization

Meeting
summary

Follow-up on
commitments

Actions to be
taken

Brainstorming
Brainsketching

Creation of
minutes

Distribute
minutes

Review
meeting

Communicate
following stages

Notify agenda

Agree agenda

Create Meeting

Group

Schedule
Meeting

Meeting

Set Topics
of Agenda

Proposed
agenda

Topics

Ideas Remarks
Organized

Ideas
Prioritized

Ideas

Distribution of
commitments

Recorded
commitments

Assignment of
commitments

Review of
commitments

Agenda Minute

Review of
minute

 

Fig. 1. Hierarchical diagram of the meeting system 

 
    Synchronizing the work of a group may represent a higher challenge, especially if 
we want to support the collaborative work synchronous and asynchronously at the 
same time. Problems arise when it comes to merge the work of participants who have 
been working asynchronously with people working synchronously. Simple rules  
for avoiding inconsistencies are needed. A method based on working on private  
notes and publishing them to the group serves to this purpose and at the same time 
allows a participant to try sketching/writing of new ideas before showing them to  
the rest.  

4   Meeting System Structure 

The Fig. 1 shows a hierarchical diagram of the meeting life-cycle, representing the 
stages for the tasks and processes that can be supported by the meeting system. A 
meeting (or a number of meetings) is triggered by a problem the group has to discuss 
and solve.  



684 G. Zurita et al. 

    In any stage of the meeting, users record their ideas by making private remarks or 
comments about specific and ideas by individual note-taking. The brainstorming proc-
ess is characterized by the generation of possible solutions, which are registered by 
the system and distributed to all members in order to be evaluated. This process can 
be carried out by anonymous and/or nominal contributions. In a face-to-face meeting 
group members can discuss about the convenience or inconvenience of the different 
ideas. Because all processes and tasks are reflected by annotations on the handheld, 
the minute of the meeting can be created as the different possible discussion topics are 
being proposed. This generated the documentation of a meeting which could also be 
complemented with a log of actions being taken, like additions, deletions or modifica-
tions made to the document for a posterior analysis and evaluation. Agreed commit-
ments could be registered by mean of annotations or sketches, and distributed to the 
corresponding members at the end of the meeting. The system may manage a register 
which will be used to control the fulfillment of the assignments. 

5   System Description  

The basic content of a meeting document are the notes produced by the group mem-
ber during the discussion by sketching and writing. In this section we will explain 
how our system combines the input of all the members in a structured document, 
based on nodes and relations among them thus building a concept map. Also, as men-
tioned in section 2, other tools and functionalities required enhance a group meeting 
will be presented. Current implementation has been developed with Microsoft .NET 
2.0 Compact Framework’s C#, and deployed on Windows Mobile 2005. 

In order to describe how the system allows collaborative writing and content man-
aging, we will first review each one of these individual functionalities in order to sim-
plify the system understanding. After each feature, we will shortly describe how it has 
been implemented. At the end of this section, we describe the collaborative process 
and the system architecture, including the communication protocol.  

The basic action a user is allowed to do in a meeting document is to enter free hand 
writing and sketching.  A free-hand input is done by “writing” with the stylus any 
figure which is not recognized by the system as a special gesture. This hinders the 
user for entering a sketch with is similar to a gesture, but this is better than having to 
switch from a “sketching mode” to a “writing mode” back and forth with a special 
functionality. Therefore, the system must be able to recognize free-hand writing and 
sketching from special gestures. In order to achieve this, the system tries to match the 
drawn figure with each possible gesture only after the user raises the stylus tip. The 
analysis of the input is made instantly after each stroke is made, without interfering in 
the writing/drawing process. In case a gesture triggers an action, the system stops 
matching the figure with the next gestures and performs the corresponding action. In 
case no gesture has been acknowledged, the system classifies the stroke as writing 
and “writes” it in the document.  

 
 



 A Gestures and Freehand Writing Interaction 685 

 
 
 

 
 
 

 
 
 
 
 
 
 
 

Fig. 2. System’s screenshot during sample meeting:  Double tapping a node (2.a) displays the 
node’s inner page (2.b) 

5.1   Annotations and Sketching 

Writing and drawing is made through freehand input with the handheld stylus. The 
system will analyze the drawn figure and, after discarding every possible action-
gesture, accepts it as written symbol. Repeating this process, the user is able to write 
sentences or draw complex figures, representing his or her idea. 
    Because the drawings are shared with other participants only when the pen tip is 
raised, other users might start drawing in the same areas where others are already writ-
ing. This may lead some users into confusion, because they were not aware someone 
was drawing in the same space. To address this issue, the system display a temporary 
message making other members aware that someone is already writing in a particular 
area (Fig. 3), warning other users to avoid drawing in the same space. Therefore, two 
or more users may still write in the same area, but they are aware that other partici-
pant’s drawing may interfere, encouraging agreement among users before occur. 

 
 
 
 
 
 
 
 
 
   
 
 
  a. Gustavo’s device  b. Felipe’s device 

Fig. 3. Gustavo’s writing (b) won’t be shared until he raises the stylus pen. Meanwhile, Felipe’s 
device shows the current received strokes and a warning saying Gustavo is still writing. 

Mode icon
currently set to 
Work Mode Private notes 

a. Root page b. Node inner page 



686 G. Zurita et al. 

    A user might need to correct or organize his or her writings. For this, methods to 
edit and manage writings and drawings are required. To allow this, we have included 
cut and move actions. When the user wants to remove something written from the 
screen, he or she needs to draw a cross gesture. This gesture will remove every stroke 
the cross touches, as shown in Fig. 4.a. 
 

 

 

 

 

 

Fig. 4. a: A cross gesture removes touched strokes. b: A cross gesture removes selected ele-
ments only. 

    There are special situations where removing some elements might be difficult for 
the user (for example, removing a misspelling). For these cases we have included a 
second method for cutting: the user clicks one by one those lines he or her wishes to 
remove, selecting them; once all the strokes selected and ready to be removed, the 
user draws the same cross gesture, removing only those selected lines, leaving un-
touched the rest of the writing. An example of this process can is shown in Fig. 4.b. 

Selection is an important tool to edit information in our system. We have quickly men-
tioned in the previous paragraph how to add single strokes to the selection. Clicking an 
already selected line deselects it. Also, clicking on an empty area clears the selection. In 
some cases, the user might want to select a complex group of strokes. We have included a 
method to do this with a single gesture, called double lasso gesture. This gesture consists 
in double surrounding an area with a certain closed shape. Every element included within 
the shape will be added to the selection, as illustrated in Fig. 5. 

 

Fig. 5. A double lasso gesture selects enclosed items 

   Another way to manage the contents in our system is by moving them. The user 
may decide to join some terms, or to separate two concepts and write something in 
between. We have included the move action to allow this. After selecting some 
strokes, the user can hold and drag any of the selected lines in order to move all the 
selection.  

Finally, our system allows the user to paste previously cut objects. This lets the 
user to undo the last removal, or to move objects between pages. In order to paste, the 
user must hold the stylus pressed in the clicked point for a certain time. The removed 
elements will re-appear in the clicked point. 

a

b



 A Gestures and Freehand Writing Interaction 687 

5.2   Conceptual Map Building and Navigation 

As mentioned in section 2, our system allows to hierarchically organize the content of 
a meeting document in pages in order to solve the handheld limited screen size prob-
lem. These pages are associated to parent nodes, which is usually labelled. In order to 
create a new page, the user must write or draw some strokes, as a title. Then, he or she 
has to surround them with a rectangle or a partial rectangle. The system will recognize 
this gesture as a node creation (Fig. 6). Automatically, a new page will be associated 
to this new node. 

 

Fig. 6. Surrounding with a partial rectangle gesture creates a new node with the contained 
strokes as label 

Once a node has been created, the user can enter into the associated page double 
clicking on the node. After this, the handheld screen will display the clicked node’s 
content page, as shown in figure 2. In order to exit the page associated with the node 
and go back to the parent page, the user can double click in any empty area. 

On every page, the user can use the same writing and drawing methods, as well as 
every gesture, including those for creating new nodes. In this way, the user builds an 
implicit conceptual map of the information being represented, through hierarchical 
contained pages.  

 

 

Fig. 7. The document tree view shows a scaled summary of the document, including user’s 
current location 

 
    The user might get confused about his or her current location in the conceptual map 
if the document has too many nodes. To help the user get oriented within the docu-
ment, we have included a document tree view button. This view shows an organized 
version of all the nodes in the document, sorted hierarchically. The node where the 
user is currently located shows a yellow highlight. Clicking on any node will lead the 
user to its content page, just like double clicking its label. This makes the hierarchical 

Group icon
with current node’s 

attendance

Attendees 
list

Votes are 
displayed as 

pie graphs

Current loca-
tion is highlighted 

Document tree 
view icon is high-
lighted to inform 
current system state 



688 G. Zurita et al. 

view of the document also a powerful navigation tool. An example of the document 
tree view is shown in Fig. 7. 

By default, the document tree is scaled down in order to display all the nodes at the 
same time. When the tree is big enough, some downscaled nodes could turn difficult 
to read or understand. Therefore, a method for zooming in and scrolling through the 
tree has been added to our system. In the document tree view, the user can hold the 
stylus down over an empty area, and then drag the pen right or left to zoom in and 
zoom out respectively, and up and down to scroll. In this way, with a single gesture, 
the user can zoom and scroll through an entire complex document tree. See Fig. 8 for 
a diagram of this two-in-one innovative gesture’s functionality. 

 

 

  

Fig. 8. Dragging the stylus on the document tree view allows users to zoom and scroll with a 
single gesture 

5.3   Collaborative Process 

During a group meeting, the user needs to get some information about other attendees. 
The system informs the user when other users enter or leave the session, but this is not 
enough to follow current attendees location. Our system provides two methods to 
retrieve some information about the participants group: the group icon displays user’s 
current node attendance percentage (how many of the total participants are looking 
the same screen the user is), and the attendees’ list (Fig. 7). The group icon warns the 
user when he or she is alone, with no other user’s attention, becoming red. The more 
users share the same screen, the greener the icon will turn. This allows the user to 
quickly know how many other participants are sharing the writing space.  
    The system allows users to vote for or against nodes. Thus, at a certain point of the 
meeting, attendees could agree to vote about certain ideas. In order to vote, the user 
needs to click the mode icon from the menu bar (Fig. 2). Votes are represented as a 
pie graph at the lower left corner of the node, as shown in Fig. 7. The green portion of 
the pie represents positive votes, and the red portion represents negative votes. The 
black portion represents users who have not voted. 

Once in the voting mode, the user can vote for a node by drawing a tick mark, 
starting on the node (Fig. 9.a: in the example, the pie shows 25 percent of positive 
votes: 1 of 4 attendees has voted). In order to vote against an element, the user draws 
the same cross gesture used for cutting (Fig. 9.b). A user can change his or her vote 
by replacing the old one (drawing a cross will replace a previous tick and vice-versa). 
    The full session tree can be represented as an XML document. During a meeting, 
each user can freely decide to save the current state of the document into an XML file, 
in his or her handheld’s memory. Later, a new meeting could be started from this file, in 
order to continue the same reunion based on the previous work. A user who saved such 
files could revise a previous meeting to remember discussed subjects and conclusions. 

Zoom out Zoom in

Scroll down Zoom in and scroll down 

Scroll up



 A Gestures and Freehand Writing Interaction 689 

 

 

 

 

 

Fig. 9. a: Drawing a tick gesture under vote mode adds a positive (green) vote to the node. b: 
Drawing a cross gesture under vote mode adds a negative (red) vote to the node. 

During a meeting the user might want to take some private notes, without sharing 
them with the rest of the participants. In order to allow this, our system counts with 
the private note menu (Fig. 2), which lets the user write private notes on a blank page 
associated to the user’s current location, or over the current page. Later, the user can 
share this note with the group by choosing “Publish note” option, from the same 
menu. In the menu, the user can find his or her previous privates and published notes; 
as well as other users’ published notes. 

There are certain situations when meeting attendees could have previously worked 
by their own, developing new ideas or individually building their part of the meeting, 
based on a previous meeting, or on a brand new document. Later, during a meeting, 
the user decides to share his offline work with the other users. The system has two 
special options for this scenario: one where the work needs to be merged with the 
current session, called merge versions, and other where the user want to show as a 
separate version the offline work, called open as version. Merge versions merges the 
saved document with the current one. All new elements (writing and nodes) will be 
added to the current session, and repeated elements will be updated to the saved 
document version. On the other hand, open as version creates a new node in the 
document root page, using the file’s name as the node label. Inside this node, as its 
content page, the saved document’s root page is copied. All these changes, as de-
scribed in next section, are shared and updated on everyone’s handheld.  

5.4   System Achitecture 

Gesture matching and action triggering. Every concept of the system is considered 
a gesture object. Some of these elements live temporary, executing an action, and 
some persist and are represented graphically, called drawbleGestures. Some gestures 
are used in order to create another gesture. For example, a cross gesture mutates into 
a cut gesture under work mode; while under vote mode it becomes a voteAgainst ges-
ture (see Fig. 10). 

Every gesture class has a analyze method, which receives the analyzed figure (the 
last user pen-based input) as a parameter, and tries to check if this stroke follows the 
internal rules to be considered such gesture. After a gesture class accepts the drawn 
shape as its own, the class triggers its internal actions (like adding the clicked shape to 
selection, creating a new node, or cutting some writing) and returns a TRUE value, 
stopping the gesture matching chain. In case the class refuses the given shape (return-
ing a FALSE), the system will assume the figure does not belong to the queried  
 

a

b



690 G. Zurita et al. 

 

Fig. 10. Simplified class hierarchy with action triggering. Some gestures actions depend on the 
context. 

 
family. As mentioned, every class does this process using rules matching, instead of 
pattern matching or neural networks, because rules are easy to be described without 
need to teach the system, and they can analyze an indeterminate number of conditions 
or parameters: for example, the double lasso figure cannot be limited to a certain 
amount of points.  

To determine what action to follow, the system starts checking the gesture against 
the highest priority class and, in case it fails, continue this matching with the next 
class in the priority chain. Once a gesture has replied TRUE, the system stops check-
ing the gesture. In case all other classes return FALSE, the last gesture (the click ges-
ture) always returns TRUE. 

Content structure. There are some special drawbleGestures called containerOwner, 
which own two instances of another type of element called gesturesContainer: one for 
its content page, and a second one for its label. These gesturesContainers can storage 
multiple nested gestures. ContainerOwners are referred in this paper as nodes, be-
cause their nature allows building hierarchical structures. The document root is a con-
tainerOwner itself. Another containerOwner subclass is the rectGesture, motioned in 
section 4.2: for rectGestures it is more clear the use of both gesturesContainers, be-
cause they clearly have some writing associated as a label and a whole set of nested 
elements as their content page, viewable with a double click (enter action).  

Some special gestures exploit this hierarchical structure: for example, vote gestures 
are abstract objects contained in the contents gestureContainer of the voted node. 
Thus, in order to draw the vote pie, the system looks into the node content for vote 
gestures (voteFor and voteAgainst gestures), summarizing them in the round graph.  



 A Gestures and Freehand Writing Interaction 691 

Communication Protocol. As soon as each user launches the system, it searches the 
local network for other participants: our system works over local area networks 
(wired and wireless), as well as for ad-hoc peer to peer wireless networks. Each time 
another peer is discovered, it is added to the known participants list. The user gets 
informed every time another user connects or disconnects from the current session.  
    When a new user is discovered, the system will send him the current state of the 
meeting: A complete version of the session tree will be transfer as an XML document. 
Also, every time the user modifies the document tree, by writing, adding or removing 
elements, or any other change, a short XML message describing the changes is sent to 
every known participant, ensuring the data consistency between peers.  

On the other side, users will receive XML information: a complete document when 
joining a session or small XML chunks when receiving changes. Both messages are 
analyzed the same way: each XML entity is used as a parameter for a gesture inter-
preter, exactly as if it would have been drawn.  

6   First Usability Testing and Analysis 

We made a first usability analysis of the system using think-aloud and heuristic 
evaluation methods in order to detect and correct possible design or programming 
failures of the prototype developed. The evaluation was aimed to the detection of 
problems in: a) the collaboration supported by the system, identifying the circum-
stances where the system does not provide he adequate support for or hinders the col-
laborative work among the members; b) the user interface, identifying which aspects 
difficult the understanding and learning the way it works, the user satisfaction when 
using the diverse functionalities, particularly, when sketching, using gestures, and 
navigating; and c) combinations of both. We classified the possible problems we may 
found according to their severity, as suggested by [12], [14], [28] and [22]: a) Critical 
problems include crushes, breaks of the working flow, information lose, lose of the 
focus of the work; b) serious problems include lost of functionality, difficulties but 
not break of the working flow; and c) cosmetic problems include orthographic errors, 
minor visual problems which not affect the function of the system. 

In the Think-aloud evaluation method users verbalize their thoughts about the sys-
tem while using it, thus avoiding distortions, wrong cognitive translations or omis-
sions that may be introduced by a guided questionnaire [4]. This type of evaluation is 
more user-oriented than the heuristic evaluation, where experts play an important role, 
[4], [13], and [14]. The process is guarded by a monitor and observed by examiners, 
who are in charge of gathering the oral information in real time or by analysing the 
video recording of the session. According to [12], this method can be used to evaluate 
the collaboration inside a working group supported by a computer system. En each 
session, the participants acted just as they were holding a real meeting and verbalizing 
their thoughts at the same time. The monitor has to first instruct the participants about 
the usage of the system explaining the functionalities. During the meeting the monitor 
mainly observes its development and the way the participants use the system. Only if 
the participants do not speak any word for 30 seconds the monitor asks the partici-
pants to start thinking aloud again, [4]. The examiners observe the development of the 



692 G. Zurita et al. 

meeting registering in real time the usability problems detected and verbalized by the 
participants. After finalizing the meeting, they are in charge of analysing the problems 
encountered. Two think-aloud test meetings were organized with 4 to 5 people each. 
In one of the sessions all participants were experts in the use and development of col-
laborative systems. The participants of the other two meetings were people who fre-
quently use computers and often participate in meetings at work. The same goal and 
specific tasks were applied for both test meetings. The discussion subject was to iden-
tify 3 benefits and 3 drawbacks of face-to-face meetings. We also asked them to per-
form specific tasks during the meeting.  The participants have to a) take all necessary 
notes they think will help to the development of the meeting; b) store in a file the 
notes taken during the meeting. Additionally, they were instructed to use the voting 
mechanism if there is any need to take decisions. During 5 to 10 minutes before start-
ing the test meeting the monitor instructs the people how to use the system. Each ses-
sion lasted for 35 to 45 minutes, and was registered by video-recorder. During the 
meeting, the monitor and the examiners took notes about usability problems detected 
and verbally expressed by the participants. Once the meeting was over, the monitor 
and the examiners discussed for about one hour the outcome of the test meeting ac-
cording to the IDA method described in [13].  

We also conducted a heuristic evaluation (HE) of the software. The heuristic 
evaluation is very popular because of its low cost and low time consumption. It is also  
 

Table 1. Compilation and classification of the problems encountered and their solutions 

Problem    SV    TP Solution 
Participants do not know who was the author of 
 a certain action  

CE CL SZ Use different colour for user 

Unwanted nodes are created * CE IU GZTuning gesture recognition  

Confusion in the collaborative writing* CR IU SZ Use mechanism of  collaborative writing 
awareness (Figure 3) 

Free-hand writing is not accurate or swift. * CR IU TR Modify the graphic refreshment procedure 
for nodes 

Confusion in the synchronization of the work,
people add or delete to many things at the same
time + 

SE CL SZ Provide flexibility for private notes, pro-
vide floor control policy options  

Unwanted explosion  (getting inside) of a node * CR UI GZ Tuning gesture recognition 

Writing becomes slow when there are more
strokes on the screen *  

SE UI TR Optimize synchronizing process   

Slow distribution of the new information * SE CL SZ Optimize synchronizing process   

Same strokes are not distributed* SE CL TR Optimize synchronizing process   

Some nodes are not distributed * SE CL GTOptimize synchronizing process   

It is difficult to tell if the current node corresponds
to a private node or not+  

CE UI ND Provide a more evident awareness icon 

It is difficult to know which node is currently
being explored + 

CE UI ND Label the pages with the label of the cor-
responding node. (Figure 2b) 

With the think-aloud test many critical and not so critical problems were found (those marked with *). 
These were solved before the HE testing, where those problems marked with + arose.  



 A Gestures and Freehand Writing Interaction 693 

proved to be a very assertive one [12]. According to [12], HE is very good at detect-
ing usability problems in mobile devices and cosmetic problems, so we applied it af-
ter the improvements and with experts as users. The results just confirmed those of 
the Think-Aloud evaluation. 

The table 1 compiles the most relevant information obtained during the test meet-
ings. Each one of the problems encountered was classified according to first its degree 
of severity (SV): critical (CR), serious (SE), or cosmetic (CE). Then according to the 
type of problems (TP): collaboration (CL) or user interface (UI). And within the type 
of problem, related to which aspect of the system it was encountered: synchronization 
(SZ), gestures (GZ), strokes (TR), or nodes (ND). 

7    Conclusions 

After correcting the problems found in the tests and taking into account the opinion of 
the people involved we can conclude that we designed and developed an electronic 
meeting support system for handhelds which is simple, easy to use, and supports ef-
fectively the development of a discussion, at least in the form we asked them to hold 
the meeting, which we think is general enough for validating a tool in a first stance. 
Of course, a deeper and wider study which does not only involve “laboratory condi-
tions” like the one described in the previous chapter, but in “real meeting situations” 
should be carried out in order to validate this tool as a successful meeting support 
system in a concluding manner.  

With the developing and first testing of this system we found evidence that the two 
most important design principles applied do really work. In fact, we can assert with a 
certain degree of confidence that developing a system for handhelds based only in 
gestures and handwriting input, avoiding the “traditional” widgets is not only feasible 
bud very good accepted by the user. We can also assert that the structuring of the 
document content as a concept map gives the necessary flexibility to manage the dif-
ferent contributions of the users. The idea of structuring a collaborative authored 
document as a concept map was already presented in [24] already in the year 1994, 
but the novelty of this work is to find a way to effectively manage such a structure 
with just gestures and in a reduced screen, allowing an easy navigation through the 
document. We believe that the contributions of the work reported here can be also 
applied in to various kinds of systems for handhelds with goals and aims for support-
ing different work as the one targeted here.   

The tests have shown that after fixing the initial critical and serious problems de-
tected the system has a good acceptance. An interesting issue about the testing is that 
they have been conducted in different cultural environment (Latin American and 
Asian). The absence of labeled widgets and text contributed to the fact that the cul-
tural background is not and obstacle to use the system. In fact the Asian people took 
notes more easily using Chinese characters than the Latin American using Latin al-
phabet. The collaborative meeting support of the system evaluated based on gesture 
and sketch enhances the design in a natural and concordant way, enabling the share  
 



694 G. Zurita et al. 

and exchange of information. The user interface designed is away from the rigidity of 
traditional user interfaces, supporting instead the flexibility and ambiguity inherent in 
a natural mode of communication. Therefore, member’s meeting can put their focus 
on specific meeting tasks, instead of things in low-level.  

Finally, we think that the proposed system can also be used to support undergradu-
ate/postgraduate students develop skills required during a meeting. In this scenario 
teachers may use the system for presenting ideas to the students and involve them in 
common meeting activities like taking decisions, solving problems collaboratively, 
etc. The students will be able to learn the diverse stages and processes of a meeting by 
doing them. This will allow a simulation of the real conditions of a meeting; there-
fore. it will produce positive motivation and participation levels in the students [31]. 
According to , the anonymity supported by handhelds helps reducing evaluation ap-
prehension by allowing group members to submit their ideas without having to speak 
them in front of the group. This, and the fact that people can “express” their ideas 
concurrently, not having to wait for a slot, encourages the contribution from people 
who normally would play a more passive role in a discussion meeting. The system 
also helps members to follow the agenda of the meeting thus reducing coordination 
problems. Furthermore, the system can also support a wider spectrum of activities, 
including the generation and organization of ideas, group analysis, decision making, 
group writing and action planning.  

 
Acknowledgements. This paper was partially supported by Fondecyt 1050601, and 
the DI - Universidad de Chile Nro. I2 04/01-2.  

References 

1. Antunes, P., and Costa, C. Handheld CSCW in the Meeting Environment. Proceedings of 
the CRIWG’02, LNCS 2440 (2002) 47-60. 

2. Bates, S. E. What is IS’ Role in Re-engineering? Business Leaders Should Lead. Com-
puterworld 29(39) (1995) 134. 

3. Bergqvist, J., Dahlberg, P., Kristoffersen, S., and Ljungberg, F. Moving out of the meeting 
room: exploring support for mobile meetings. Proceedings of the Sixth European confer-
ence on Computer supported cooperative work. Copenghagen, Denmark (1999) 81-98. 

4. Boren, T., and Ramey, J. Thinking Aloud: Reconciling Theory and Practice. IEEE Trans-
actions on Professional Communication, 30(3) (2003) 261-278. 

5. Costa, C., Antunes, P., Dias, J. The Meeting Report Process: Bridging EMS with PDA. 
Third International Conference on Enterprise Information Systems, ICEIS 2001. Setubal, 
Portugal (2001) 821-826. 

6. Dai, G. and Wang, H. Physical Object Icons Buttons Gesture (PIBG): A new Interaction 
Paradigm with Pen. Proceedings of CSCWD 2004, LNCS 3168,  11-20, 2005.  

7. dos Santos, A. Vasconcelos, S., Fagundes, L. Kayo, R., Zanfolim, T., and Brunetto, C. SACE-
CSCW: A Synchronous Asynchronous Common Environment for Computer Supported Coop-
erative. Work to Aid Concurrent Engineering Processes. SCCC (1997) 218-226. 

8. Haag, S., M. Cummings, and Dawkins, J. Management Information Systems for the In-
formation Age, 2nd Ed., Boston, MA: Irwin McGraw-Hill (2000). 

 



 A Gestures and Freehand Writing Interaction 695 

9. Hayne, S. The facilitators’ perspective on meetings and implications for group support 
System. Database, 30(4) (1999) 72-91. 

10. Jessup, L., and Valacich, J. Group Support Systems: A New Frontier. New York: MacMil-
lan (1993). 

11. Kjeldskov J., and Skov M. B. Evaluating the Usability of a Mobile Collaborative System: 
Exploring Two Different Laboratory Approaches. Proceedings of the 4th International 
Symposium on Collaborative Technologies and Systems, Orlando, Florida (2003) 134-141.  

12. Kjeldskov J., Skov M.B., and Stage J. Instant Data Analysis: Evaluating Usability in a 
Day. Proceedings of NordiCHI, Tampere, Finland. ACM (2004) 233-240. 

13. Kjeldskov J., Skov M.B., and Stage J. Does Time Heal? A Longitudinal Study of Usabil-
ity. Proceedings of OzCHI 2005, Canberra, Australia, ACM (2005). 

14. Landay, J. and Myers, b. Sketching interfaces: Toward more human interface design, IEEE 
Computer, 2001 34(3) (2001) 56-64. 

15. Luff, P., Heath, C. Mobility in Collaboration. Proceedings of Computer Supported Col-
laborative Work, CSCW’98. ACM Press, 1998, 305-314. 

16. Marshall, C., Ruotolo, C. Reading-in-the-Small: A Study of Reading on Small Form Fac-
tor Devices. Proceedings of the JCDL’02, Portland, Oregon, USA, 2002, 13-17. 

17. Myers, B.A., Stiel, H., and Gargiulo, R. Collaboration using multiple PDAs connected to a 
PC. Proceedings of the ACM, Conference on Computer Supported Cooperative Work. Se-
attle, WA (1998) 285-294. 

18. Nunamaker, J. F. Future research in group support systems: needs, some questions and 
possible directions. International Journal of Human-Computer Studies, 47, 1997, p 357-
385. 

19. Perry, M. O’hara, K., Sellen, A., Brown, B., and Harper, R. Dealing with mobility: under-
standing access anytime, anywhere. ACM Transactions on Computer-Human Interaction-
TOCHI, 4(8) (2001) 323-347. 

20. Po, S., Howard, S., Vetere, F., and Skov, M. B. Heuristic Evaluation and Mobile Usability. 
Bridging the Realism Gap. In Proceedings of the 6th International Conference on Human 
Computer Interaction with Mobile Devices and Services, (Mobile HCI 2004), Springer-
Verlag, LNCS 3160 (2004) 49-60. 

21. Schmidt, A. Lauff, M., and Beigl, M. Handheld CSCW. Workshop on Handheld. Proceedings 
of the Computer Supported Collaborative Work - CSCW '98, November, Seattle (1998). 

22. Streitz, N.A., Geißler, J., Haake, J.M., Hol, J. DOLPHIN: integrated meeting support 
across local and remote desktop environments and LiveBoards, Proceedings of the 1994 
ACM conference on Computer supported cooperative work, October 22-26, Chapel Hill, 
North Carolina, United States (1994) 345-358, 

23. Tropman, J. E. Effective meetings: Improving Group Decision Making. Sage Publications  
(1996). 

24. van der Lugt, R. Functions of sketching in design idea generation meetings. In TT Hewett 
& T Kavanagh (Eds.), Creativity & cognition, New York: ACM, 2002, 2002, 72-79. 

25. Whitwort, B. and McQueen, R. Voting before discussing: Computer voting as social 
communication. Proceedings of the 32nd Hawaii International Conference on Systems 
Sciences (1999) 1020-1031. 

26. Wiberg, M. RoamWare: an integrated architecture for seamless interaction in between 
mobile meetings. Proceedings of the 2001 International ACM SIGGROUP - Conference 
on Supporting Group Work (2001) 288-297. 

27. Wilson, C. Defining, Categorizing, and Prioritizing Usability Problems. UPA 2003 Idea 
Market, July, 2003. Available in http://www.upassoc.org/conferences_and_ events/ 
upa_conference/2004/call/sample/ideamarket_usability%20problems_wilson.doc  



696 G. Zurita et al. 

28. Wolf, C., and Rhyne, J. Communication and Information Retrieval with a Pen-Based 
Meeting Support tool. Proceedings of CSCW - ACM (1992) 322-329. 

29. Burleson, W. Developing creativity, motivation, and self-actualization with learning sys-
tems International Journal of Human-Computer Studies 63(4-5) (2005) 436-451. 

30. Tyran, G., Sherpherd, M. Collaborative Technology in the Classrom: A Review of the GSS Re-
search and a Researh Framework. Information Technology and Management 2 (2001) 395-418. 



ODBASE 2006 International Conference
(Ontologies, DataBases, and Applications of

Semantics) PC Co-chairs’ Message

Welcome to the Fifth International Conference on Ontologies, Databases, and
Applications of Semantics (ODBASE 2006). This year’s ODBASE conference
was held in Montpellier, France from October 29 to November 3, 2006.

The ODBASE conferences provide a forum for exchanging the latest research
results on ontologies, data semantics, and other areas of computing related to
the Semantic Web. We encourage participation of both researchers and prac-
titioners in order to facilitate exchange of ideas and results on semantic issues
in Web information systems. Towards this goal, we accepted both research and
experience papers.

This high-quality program would not have been possible without the authors
who chose ODBASE as a venue for their publications. Out of 82 submitted
papers, we selected 19 full papers, 9 short papers, and 7 posters. To round
up this excellent program, Marie-Christine Rousset agreed to be our keynote
speaker.

We are grateful for the dedicated work of the 39 top experts in the field
who served on the Program Committee. Special thanks goes to the external
referees who volunteered their time to provide additional reviews. Finally, we
are indebted to Kwong Yuen Lai, who was immensely helpful in facilitating the
review process and making sure that everything stayed on track.

August 2006 Maurizio Lenzerini, Universitá di Roma “La Sapienza”, Italy
Erich Neuhold, Darmstadt University of Technology, Germany

V.S. Subrahmanian, University of Maryland College Park, USA

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, p. 697, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SomeWhere: A Scalable Peer-to-Peer

Infrastructure for Querying Distributed
Ontologies

M.-C. Rousset2, P. Adjiman1, P. Chatalic, F. Goasdoué, and L. Simon1

1 LRI, bâtiment 490, Université Paris-Sud 11, 91405 Orsay Cedex, France
2 LSR-IMAG, BP 72, 38402 St Martin d’Heres Cedex, France

Abstract. In this invited talk, we present the SomeWhere approach
and infrastructure for building semantic peer-to-peer data management
systems based on simple personalized ontologies distributed at a large
scale. Somewhere is based on a simple class-based data model in which
the data is a set of resource identifiers (e.g., URIs), the schemas are
(simple) definitions of classes possibly constrained by inclusion, disjunc-
tion or equivalence statements, and mappings are inclusion, disjunction
or equivalence statements between classes of different peer ontologies. In
this setting, query answering over peers can be done by distributed query
rewriting, which can be equivalently reduced to distributed consequence
finding in propositional logic. It is done by using the message-passing
distributed algorithm that we have implemented for consequence finding
of a clause w.r.t a set of distributed propositional theories. We summa-
rize its main properties (soundness, completeness and termination), and
we report experiments showing that it already scales up to a thousand of
peers. Finally, we mention ongoing work on extending the current data
model to RDF(S) and on handling possible inconsistencies between the
ontologies of different peers.

1 Overview of SomeWhere

SomeWhere promotes a ”small is beautiful” vision of the Semantic Web [1]
based on simple personalized ontologies (e.g., taxonomies of atomic classes) but
which are distributed at a large scale. In this vision of the Semantic Web intro-
duced by [2], no user imposes to others his own ontology but logical mappings
between ontologies make possible the creation of a web of people in which person-
alized semantic marking up of data cohabits nicely with a collaborative exchange
of data. In this view, the Web is a huge peer-to-peer data management system
based on simple distributed ontologies and mappings.

For scalability purpose, we have chosen a simple class-based data model
in which the data is a set of resource identifiers (e.g., URIs), the ontologies
are (simple) definitions of classes possibly constrained by inclusion, disjunction
or equivalence statements, and mappings are inclusion, disjunction or equiva-
lence statements between classes of different peer ontologies. That data model
is in accordance with the W3C recommendations since it is captured by the

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 698–703, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SomeWhere: A Scalable Peer-to-Peer Infrastructure 699

propositional fragment of the OWL ontology language (http://www.w3.org/TR/
owl-semantics).

Query answering through ontologies is achieved using a rewrite and evaluate
strategy. In SomeWhere the query rewriting problem can be reduced to a con-
sequence finding problem in distributed propositional theories. It is performed by
a message-passing algorithm named DeCA: Decentralized Consequence finding
Algorithm [3]. As a result, query answering in SomeWhere is sound, complete
and terminates. Moreover, the detailed experiments reported in [4] show that it
scales up to 1000 peers.

2 Illustrative Example

We illustrate the SomeWhere data model on a small example of four peers
modeling four persons Ann, Bob, Chris and Dora, each of them bookmarking
URLs about restaurants they know or like, according to their own taxonomy for
categorizing restaurants.

Ann, who is working as a restaurant critic, organizes its restaurant URLs
according to the following classes:

• the class Ann:G of restaurants considered as offering a ”good” cooking,
among which she distinguishes the subclass Ann:R of those which are rated:
Ann:R � Ann:G
• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2,

Ann:S3 corresponding respectively to the restaurants rated with 1, 2 or 3 stars:
Ann:R ≡ Ann:S1 �Ann:S2 �Ann:S3
Ann:S1 �Ann:S2 ≡ ⊥ Ann:S1 �Ann:S3 ≡ ⊥
Ann:S2 �Ann:S3 ≡ ⊥
• the classes Ann:I and Ann:O, respectively corresponding to Indian and

Oriental restaurants
• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O de-

noting Chinese, Täı and Vietnamese restaurants respectively: Ann:C � Ann:O,
Ann:T � Ann:O, Ann:V � Ann:O

Suppose that the data stored by Ann that she accepts to make available deals
with restaurants of various specialties, and only with those rated with 2 stars
among the rated restaurants. The extensional classes declared by Ann are then:
Ann:V iewS2 � Ann:S2, Ann:V iewC � Ann:C, Ann:V iewV � Ann:V ,
Ann:V iewT � Ann:T , Ann:V iewI � Ann:I

Bob, who is fond of Asian cooking and likes high quality, organizes his restau-
rant URLs according to the following classes:

• the class Bob:A of Asian restaurants
• the class Bob:Q of high quality restaurants that he knows

Suppose that he wants to make available every data that he has stored. The ex-
tensional classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses
of Bob:A and Bob:Q): Bob:V iewA � Bob:A, Bob:V iewQ � Bob:Q



700 M.-C. Rousset et al.

Chris is more fond of fish restaurants but recently discovered some places
serving a very nice cantonese cuisine. He organizes its data with respect to the
following classes:

• the class Chris:F of fish restaurants,
• the class Chris:CA of Cantonese restaurants

Suppose that he declares the extensional classes Chris:V iewF and Chris:
V iewCA as subclasses of Chris:F and Chris:CA respectively:
Chris:V iewF � Chris:F , Chris:V iewCA � Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her pre-
ferred restaurants, among which she distinguishes the subclass Dora:P of pizze-
rias and the subclass Dora:SF of seafood restaurants.

Suppose that the only URLs that she stores concerns pizzerias: the only ex-
tensional class that she has to declare is Dora:V iewP as a subclass of Dora:P :
Dora:V iewP�Dora:P

Ann, Bob, Chris and Dora express what they know about each other using
mappings stating properties of class inclusion or equivalence.

Ann is very confident in Bob’s taste and agrees to include Bob’ selection
as good restaurants by stating Bob:Q � Ann:G. Finally, she thinks that Bob’s
Asian restaurants encompass her Oriental restaurant concept: Ann:O � Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what
Ann classifies as Oriental cooking. This may be expressed using the equivalence
statement : Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann
regarding the mappings between Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora
seafood specialties: Chris:F � Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A
� Ann:G � Dora:DP

Figure 1 describes the resulting overlay network. In order to alleviate the
notations, we omit the local peer name prefix except for the mappings. Edges are
labeled with the class identifiers that are shared through the mappings between
peers.

3 Query Rewriting in SomeWhere Through Propositional
Encoding

In SomeWhere, each user interrogates the peer-to-peer network through one
peer of his choice, and uses the vocabulary of this peer to express his query.
Therefore, queries are logical combinations of classes of a given peer ontology.

The corresponding answer sets are expressed in intention in terms of the
combinations of extensional classes that are rewritings of the query. The point is
that extensional classes of several distant peers can participate to the rewritings,
and thus to the answer of a query posed to a given peer.



SomeWhere: A Scalable Peer-to-Peer Infrastructure 701

Dora
ontology :

DP � �,
P � DP , SF � DP,

V iewP � P

mappings :

Bob:A � Ann:G � Dora:DP

Bob
ontology :

A � �, Q � �,
V iewA � A,
V iewQ � Q

mappings :

Bob:A ≡ Ann:O

Chris
ontology :

F � �, CA � �,
V iewF � F ,V iewCA � CA

mappings :

Chris:F � Dora:SF

Ann
ontology :

G � �, O � �, I � �,
R � G,
(S1 � S2 � S3) ≡ R,
S1 � S2 ≡ ⊥,
S1 � S3 ≡ ⊥,
S2 � S3 ≡ ⊥,
(C � V � T ) � O,
V iewC � C,
V iewV � V ,
V iewT � T ,
V iewI � I ,
V iewS2 � S2
mappings :

Ann:O � Bob:A,
Bob:Q � Ann:G

Dora:SF

Bob:A

Ann:G

Bob:Q,

Bob:A,

Ann:O

Fig. 1. The restaurants network

In general, finding all answers in a peer data management system is a critical
issue [5]. In our setting however, we are in a case where all the answers can be
obtained using rewritings of the query: it has been shown [6] that when a query
has a finite number of maximal conjunctive rewritings, then all its answers (a.k.a.
certain answers) can be obtained as the union of the answer sets of its rewritings.

In the SomeWhere setting, query rewriting can be equivalently reduced to
distributed reasoning over logical propositional clausal theories by a straighfor-
ward propositional encoding of the query and of the distributed ontologies and
mappings of a SomeWhere network. It consists in transforming the query and
each ontology and mapping statement into a propositional formula using class
identifiers as propositional variables.

The propositional encoding of a class description D, and thus of a query, is
the propositional formula Prop(D) obtained inductively as follows:

• Prop(�) = true, Prop(⊥) = false
• Prop(A) = A, if A is an atomic class
• Prop(D1 �D2) = Prop(D1) ∧ Prop(D2)
• Prop(D1 �D2) = Prop(D1) ∨ Prop(D2)
• Prop(¬D) = ¬(Prop(D))

The global schema S of a SomeWhere peer-to-peer network is the union of
the ontology and mapping statements distributed over the network. Its propo-
sitional encoding is the distributed propositional theory Prop(S) made of the
formulas obtained inductively from the statements in S as follows:



702 M.-C. Rousset et al.

• Prop(C � D) = Prop(C)⇒ Prop(D)
• Prop(C ≡ D) = Prop(C)⇔ Prop(D)
• Prop(C �D ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

We have shown in [3] that the maximal conjunctive rewritings of a query q
in SomeWhere are the negation of the prime proper implicates of ¬q w.r.t the
propositional encoding of the schema. We use the distributed message-passing
DeCA algorithm [3] to compute them.

4 Ongoing Work

We are involved in two extensions of SomeWhere. The first one concerns
SomeRDFS which extends the very simple class-based data model of Some-
Where to RDFS. The second one deals with possible inconsistencies of the
global schema of SomeWhere. Though the data model of SomeWhere is very
simple, it allows negation. It is thus very likely that mappings between consistent
ontologies cause inconsistencies at the global level. The problem is twofold: the
inconsistencies have to be detected at join time ; they must then be handled at
query time to compute only well-founded answers.

4.1 Extending the Data Model to RDFS

In SomeRDFS the ontologies and mappings are expressed in the core fragment
of RDFS allowing to state (sub)classes, (sub)properties, typing of domain and
range of properties. The mappings that we consider in SomeRDFS are inclu-
sion statements between classes or properties of two distinct peers, or typing
statements of a property of a given peer with a class of another peer. Therefore,
mappings are RDFS statements involving vocabularies of different peers which
thus establish semantic correspondances between peers.

We have shown that query answering in SomeRDFS can be achieved using a
rewrite and evaluate strategy, and that the corresponding rewriting problem can
be reduced to the same consequence finding problem in distributed propositional
theories as in [3]. Moreover, the consequence finding problem resulting from the
propositional encoding of the fragment of RDFS that we consider is tractable
since the resulting propositional theories are reduced to clauses of length 2 for
which the reasoning problem is in P. The experiments reported in [4] show that
it takes in mean 0.07s to SomeWhere for a complete reasoning on randomly
generated sets of clauses of length 2 distributed on 1000 peers.

4.2 Dealing with Inconsistencies

Since peer ontologies are personalized they model possibly different viewpoints.
Therefore, the global schema made of the union of the local ontologies and the
mappings may be inconsistent even if each local ontology is consistent. Given
the lack of centralized control, all peers should be treated equally. It would be
unfair to refuse the join of a new peer just because the resulting global schema



SomeWhere: A Scalable Peer-to-Peer Infrastructure 703

becomes inconsistent. Our choice is to accept the presence of inconsistency. The
problem is first to detect inconsistencies, second to reason in spite of them in a
satisfactory way. We thus compute only well-founded answers to a given query,
i.e., answers that can be computed w.r.t. to a consistent subset of the global
schema.

We assume each local ontology to be consistent. Therefore, the possible in-
consistencies result from interactions between local ontologies and are caused by
mappings. Before adding a mapping, a peer checks whether this mapping (pos-
sibly with other mappings) can be the cause of some inconsistency. In that case,
the peer stores locally as a nogood the set of mappings involved in the corre-
sponding inconsistency. At query time, the concerned distributed nogoods must
be collected to check whether the answers under construction are well-founded:
an answer is well-founded if the set of mappings used to infer it is not included in
any nogood. This can be done using the distributed algorithms extending DeCA
that are designed and studied in [7].

References

1. Rousset, M.C.: Small can be beautiful in the semantic web. In: ISWC. (2004)
2. Plu, M., Bellec, P., Agosto, L., van de Velde, W.: The web of people: A dual view

on the WWW. In: WWW. (2003)
3. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed

reasoning in a P2P setting: Application to the semantic web. Journal of Artificial
Intelligence Research (JAIR) (2006)

4. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Scalability study
of P2P consequence finding. In: IJCAI. (2005)

5. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data man-
agement systems. In: ICDE. (2003)

6. Goasdoué, F., Rousset, M.C.: Answering queries using views: a KRDB perspective
for the semantic web. ACM Journal - Transactions on Internet Technology (TOIT)
4(3) (2004)

7. Chatalic, P., Nguyen, G., M-C.Rousset: Reasoning with inconsistencies in proposi-
tional peer-to-peer inference systems. Proceedings of ECAI (2006)



Querying Ontology Based Database Using

OntoQL (An Ontology Query Language)

Stéphane Jean, Yamine Aı̈t-Ameur, and Guy Pierra

LISI-ENSMA and University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

{jean, yamine, pierra}@ensma.fr

Abstract. Nowadays, ontologies are used in several research domains
by offering the means to describe and represent concepts of information
sources. Therefore, several approaches and systems storing ontologies and
their instances in the same repository (database) have been proposed.
As a consequence, defining a query language to support ontology-based
database (OBDB) becomes a challenge for the database community. In
this paper, we present OntoQL, an ontology query language for OBDBs.
Firstly, we present formally the OBDB data model supported by this
language. Secondly, an overview of the algebra defining the semantics of
operators used in OntoQL is described. Several query examples showing
the interest of this language compared to traditional database query
languages are given along this paper. Finally, we present a prototype of
the implementation of OntoQL.

1 Introduction

It is well accepted to state that database models have been defined in order to
store collections of data that are instances of given concepts defined by concep-
tual models. Usually, the developed conceptual models are specific to the de-
signed database and the meanings, definitions, descriptions and identifications
of these concepts are not formalized nor stored in the database. Moreover, the
definition of these conceptual models and their translation to logical models have
been well studied by a wide community of researchers. Formal data models and
algebras have been proposed for managing such databases.

Nowadays, several data models recommending the use of domain ontologies to
describe data and their semantics have been developed. These models enable an
user or a system to retrieve the definition, meaning, translation and/or identifier
of a given data item corresponding to a given data concept stored in an ontology.
Therefore, the idea of storing the ontology as well as the data in a single database
model emerged. We call Ontology Based Databases (OBDB) such a database
model.

In parallel to the work consisting in equipping database models with ontolo-
gies led by the database community, the semantic web community made several
persistence proposals to store the data described by instances of RDFS [1] or
OWL [2] schemas. These approaches either define persistence models for RDF

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 704–721, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Querying Ontology Based Database Using OntoQL 705

triples or use specific storage approaches on these instances [3,4,5]. Languages
exploiting such models have been proposed. Examples are RQL [6], OWL-QL [7]
etc. They support several specific features like instance resonating, graph traver-
sal etc. However, they do not preserve any database compatibility with database
models. Therefore, migration of instances is necessary.

If several persistence data models and query languages have been proposed
by artificial intelligence community for the semantic web, few work have been
conducted and originated from a database-oriented perspective. In this paper,
we present OntoQL, an exploitation language for an OBDB data model, named
OntoDB designed by a layered approach on top of a relational database model.
It has been proved useful for several database applications (e.g. semantic in-
tegration [8]) in several application domains (electronic, automotive, medical
data).

This paper is structured as follows. Next section presents the formalization of
the OBDB data model addressed in this paper. Section 3 presents the algebra
designed for the OntoQL query language and section 4 discusses optimization
techniques for this algebra. Section 5 introduces the OntoQL data definition and
query languages by a set of examples showing the differences with traditional
query languages. Section 6 discusses the OntoQL implementation and processing
issues when implemented on top of an object-relational database (ORDBMS).
Section 7 describes, on a toy example, how our approach runs. Section 8 discusses
related work. Finally, section 9 concludes the paper by summarizing the main
results and suggesting future work.

2 The OBDB Data Model

The OBDB database model is based on the definition of two main related parts:
ontology and content. Instances are stored in the content part while ontologies
are stored in the ontology part.

2.1 Ontology

The ontology part allows to store ontologies as instances of an ontology model.
It is formally defined by a 7-Tuple as < E, OC, A, SuperEntities, TypeOf,
AttDomain, AttRange, Val>, where:

– E is a set of entities representing the ontology model. It provides with a
global super entity Concept, the predefined entities C and P described below
and user-defined entities.

– OC is the set of concepts of ontologies (classes, properties . . . ) available in
the database or that can be constructed by a query. All the concepts of
ontologies have an unique identifier.

– A is the set of attributes describing each ontology concept.



706 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

– SuperEntities : E→ 2E1 is a partial function associating a set of super en-
tities to an entity. It defines a lattice of entities. Its semantics is inheritance
and it ensures substitutability.

– TypeOf : OC→ E associates to each concept of an ontology the lower
(strongest) entity in the hierarchy it belongs to.

– AttributeDomain, AttributeRange : A→ E define respectively the domain
and the range of each attribute.

– Val : OC× A→ OC gives the value of an attribute of an ontology concept.

The OBDB data model provides with atomic types (Int, String, Boolean)
and with two parameterized types Set[T] and Tuple. Set[T] denotes a type for
collections of elements of type T and {o1, . . . , on} is an object of this type (the
oi’s are objects of type T). The Tuple[< (A1, T1), . . . , (An, Tn) >] parameterized
type creates relationships between objects. It is constructed by providing a set of
attribute names (Ai) and attribute types (Ti). Tuple[< (A1, T1), . . . , (An, Tn) >]
denotes a type tuple constructed using the Ai attribute names and Ti attribute
types.< A1 : o1, . . . , An : on > is an object of this type (the oi’s are objects of type
Ti). The Tuple type is equipped with the Get Ai value functions to retrieve the
value of a Tuple object o for the attribute Ai. The application of this function
may be abbreviated using the dot-notation (o.Ai)

E provides the predefined entities C and P. Instances of C and P are respec-
tively the classes and properties of the ontologies. Entity C defines the attribute
SuperClasses : C→SET[C] and entity P defines the attributes PropDomain : P→C
and PropRange : P→ C. The description of these attributes is similar to the defini-
tions given for SuperEntities, AttributeDomain and AttributeRange
replacing entities by classes and attributes by properties. Moreover, a global super
class Root is predefined.

Finally, an ontology gives a precise definition of concepts with more attributes
(comment, version, multi-lingual definition, synonymous names, . . . ) to describe
classes and properties of ontologies. These predefined entities and attributes
constitute the kernel of the ontology models we have considered. User-defined
entities (illustration, document, . . . ) and attributes (note, remark, . . . ) may be
added to this kernel in order to take into account other specific ontology models.

Notice that the ontologies stored in this part are defined with the different
characteristics shared by the standard ontology models PLIB[9] and OWL[2].
The multi-instantiation and property subsumption (subproperty) specific fea-
tures of OWL are not taken into account in this formalization. They have been
removed to get an optimal database representation (OBDB Light). However, a
full version of the OBDB model with these features is under development (OBDB
Full). Nevertheless, for several examples and significant applications2,3 we have
developed, this limitation had neither effect nor impact on the expressive power
of the treated problems. [10] gives our precise view of ontologies with respect to
their exploitation in a database context.
1 We use the symbol 2E to denote the power set of E.
2 See http://www.plib.ensma.fr for references to IEC/ISO standards ontologies.
3 For example, the EPICEM project (http://www.episem-action.org)



Querying Ontology Based Database Using OntoQL 707

2.2 Content

The content part stores instances of ontology classes. It is formalized by a 5-tuple
< EXTENT, I, TypeOf, SchemaProp, Val> where:

– EXTENT is a set of extensional definitions of ontology classes.
– I is the set of instances of the OBDB. Each instance has an identity.
– TypeOf : I→ EXTENT associates to each instance the extensional definition

of the class it belongs to (collection of its instances).
– SchemaProp : EXTENT→2P gives the properties used to describe the instances

of an extent (the set of properties valued for its instances).
– Val : I× P→ I gives the value of a property occurring in a given instance.

This property must be used in the extensional definition of the class the
instance belongs to.

2.3 Relationship Between Each Part

The relationship between ontology and its instances (content) is defined by the
partial function Nomination : C→ EXTENT. It associates a definition by intension
with a definition by extension of a class. Classes without extensional definition
are said to be abstract. The set of properties used in an extensional definition of
a class must be a subset of the properties defined in the intensional definition of
a class (propDomain−1(c) ⊇ SchemaProp(nomination(c))).

2.4 Related Work

Storing ontologies and their instances in databases has been the subject of several
research studies and proposals. In the context of the semantic web, several OBDB
models [3,4,5,11] have been proposed to manage data described by ontologies
represented in the standard ontology models RDFS [1] or OWL [2]. In these
approaches, an instance, often called an individual, has its own property and
class structure. Therefore, to manage instances, a generic database schema, not
meaningful to an user and not customizable, is used. The simplest and more
general one uses an unique table of triples [11] for storing both the ontology and
its instances. Other approaches [3,4] separate the representation of the ontology
and its instances in two parts. In these approaches, the most common practice for
storing instance data is to use the so-called vertical model [12] where information
is stored in triples (subject, property, value) a variant of which, called the
binary model is to have one table per property that contains only pairs of the
form (subject, value).

Our approach differs from the ones listed previously. Indeed, the conceptual
model of the instances is part of the OBDB data model (EXTENT, SchemaProp in
the formalization of this data model). This conceptual model may be created and
customized by users from the ontology (see section 5.1). Thus, many different
logical models may be derrived/related to the same ontology. This possibility
promotes a database approach preserving compatibility with RDBMs and pro-
motes semantic integration of OBDBs by offering an ontology for different logical
models.



708 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

3 Query Algebra for OBDB

The specific aspects of our OBDB data model, where not all the values of prop-
erties of a class are required in an instance of this class, raised the necessity to
define an exploitation language for such OBDBs. [13] provides with the precise
requirements we have set up at the beginning of our work for designing such a
language. More details about the positioning of this language among the differ-
ent database models are given in section 8. To reach this goal, we suggest to
build an algebra OntoAlgebra, for managing OBDB databases.

Since the OBDB model uses extensively object-oriented database (OODB)
features, we suggest to specialize, extend and reuse the operators issued from
the ENCORE algebra [14] in order to get benefits of the work achieved in the
context of OODBs. Signatures of the operators defined on the OBDB data model
belong to (E ∪ C)× 2OC∪I → (E ∪ C)× 2OC∪I. These main operators of this algebra
are OntoImage, OntoProject, OntoSelect and OntoOJoin. For clarity purpose,
solely these operators are formally presented below restricted to the signature
C× 2I → C× 2I. However, the defined semantics is adapted for querying both
ontology, content and simultaneously ontology and content parts.

- OntoImage. The OntoImage operator returns the collection of objects re-
sulting from applying a function to a collection of objects. Its signature is
C× 2I × Function→ C× 2I. Function contains all the properties in P and all
properties that can be defined by composing properties of P (path expressions).
Differently from the object-oriented data model, the OBDB data model autho-
rizes the fact that one or more of the properties occurring in the function pa-
rameter may not be valued in the extensional definition of the class. Notice that
this capability weakens the data model in order to support richer and flexible
descriptions than those allowed in classical OODBs. Thus, it becomes necessary
to extend the domain of the Val function to the properties defined on the in-
tensional definition of a class but not valued on its extensional definition. This
extension requires the introduction of the UNKNOWN value. We call OntoVal this
extension of Val. It is defined by:

OntoVal(i, p) = Val(i, p), if p ∈ SchemaProp(TypeOf(i)) else, UNKNOWN .

UNKNOWN is a special instance like NULL is a special value for SQL. Whereas NULL
may have many different interpretations like value unknown, value inapplicable
or value withheld, the only interpretation of UNKNOWN is value unknown, i.e.,
there is some value, but we don’t know what it is. To preserve composition,
OntoVal applied to a property which value is UNKNOWN returns UNKNOWN (strict
interpretation). So, the semantics of OntoImage is defined by:

OntoImage(T, {i1, . . . , in}, f) =
(PropRange(f), {OntoVal(i1, f), . . . , OntoVal(in, f)}) .

- OntoProject. The OntoProject operator extends OntoImage allowing the
application of more than one function to an object. The result type is a Tuple
which attribute names are taken as parameter. It is defined by:



Querying Ontology Based Database Using OntoQL 709

Project(T, It,{(A1, f1), . . . (An, fn)}) =
(Tuple[< (A1, PropRange(f1)), . . . , (An, PropRange(fn)) >],

{< A1 : OntoVal(i, f1), . . . , An : OntoVal(i, fn) > |i ∈ It}) .
It returns the type of elements together with the set of corresponding values.
- OntoSelect. It creates a collection of objects satisfying a selection predicate.
Its signature is C × 2I × Predicate→ C× 2I and its semantics is defined by:

OntoSelect(T, It, pred) = (T, {i|i ∈ It ∧ pred(i)}) .
If the predicate taken as parameter of OntoSelect contains function applications,
then OntoVal must be used. So, operations involving UNKNOWN, that may appear
in a predicate, must be extended to handle this value (interpreted like NULL). If
any operator involves this value as parameter, then it returns UNKNOWN (strict
interpretation).

- OntoOJoin. It creates relationships between objects of two collections.

OntoOJoin(T, It, R, Ir, A1, A2, pred) =
(Tuple[< (A1, T), (A2, R) >], {< A1 : t, A2 : r > |t ∈ It ∧ r ∈ Ir ∧ pred(t, r)}) .

- Operator *. It is the explicit polymorphic operator to distinguish between
queries on instances of a single class C and instances of all the classes subsumed by
C and denoted C∗. ext : C→ 2I returns the instances of a class and ext∗ : C→ 2I

its deep extent. If c is a class and c1, . . . cn are the direct sub-classes (in the sense
of the subsumption relationship) of c, ext and ext∗ are derived recursively4 by:

ext(c) = TypeOf−1(Nomination(c)) .
ext∗(c) = ext(c) ∪ ext∗(c1) ∪ . . . ∪ ext∗(cn) .

The ext and ext∗ make it possible to define the ∗ operator as ∗ : C→ C× 2I

where∗(T) = (T, ext∗(T)).
In addition to these main operators, OntoAlgebra includes set operations

(OntoUnion, OntoDifference, and OntoIntersection) and collection operations
(OntoFlatten, OntoNest and OntoUnNest).

Next section shows how operators of OntoAlgebra can be optimized using the
characteristics of the OBDB data model.

4 Optimizations of OntoAlgebra’s Operators

As identified when defining the OBDB model, some of the properties occurring
in the ontology part may not be valued (and thus not available) in the corre-
sponding instances of the content part. This is a main difference with OODBs
where properties of a class are valued in the instances. As a consequence, impor-
tant optimizations based on partial evaluation techniques can be set up. Indeed,
4 To simplify notation, we extend all functions f by f(∅) = ∅.



710 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

it is not necessary to search the values of a property in the instances of a class
using a property defined as not available in the extensional definition of this
class. This source of optimizations is characterized by the formal logical expres-
sion(invariant property) (1). When this expression evaluates to true, it becomes
possible to reduce, and sometimes avoid, accesses and traversals of the content
part which is cost effective.

Let p ∈ P, let C be a class, let Ic be a set of instances of C,

p /∈ SchemaProp(Nomination(C))⇒
OntoImage(C, Ic, p) = {UNKNOWN|i ∈ Ic} . (1)

This optimization can be generalized to the OntoProject operator. It can also be
applied to the OntoSelect and OntoOJoin operators when the predicate taken
in parameter of these operators involves the use of a property. More precisely,
assume this predicate is in conjunctive normal form and that one of the con-
junctive element involves a property satisfying the logical expression (1), then,
the OntoSelect and OntoOJoin operators return the empty set.

This optimization is only available for local queries on instances of a class C.
The operator ∗ and path expressions introduce polymorphism. To optimize the
polymorphic operators of the OntoAlgebra, it is necessary to translate them into
non polymorphic operators acting on the class at each level of the polymorphic
hierarchy (flattening the hierarchy).

Assume p1 and p2 are two properties which domains are respectively C1 and
C2. Path expressions involving these two properties can be decomposed according
to the following algebraic law:

OntoImage(C1, ext(C1), p1 ◦ p2)⇔ OntoImage(
LeftOuterOntoOJoin(C1, ext(C1),∗ (C2), A1, A2, A1.p1 = A2.oid), A2.p2) (2)

Since a result is required for each instance of C1, a left outer join is necessary.
This decomposition is easily extended to paths of any length. Moreover, the
same equivalence may be used for the OntoProject operator by decomposing
each path expression taken in parameter in the same way.

Path expressions may also appear in the predicate of the OntoSelect and
OntoOJoin operators. For example, assume the predicate is p1 ◦ p2 θ c where
θ is a comparison operator and c a constant, then, the following equivalence can
be used to decompose this predicate :

OntoSelect(C1, ext(C1), p1 ◦ p2 θ c)⇔ OntoImage(OntoSelect(
LeftOuterOntoOJoin(C1, ext(C1),∗ (C2), A1, A2, A1.p1 = A2.oid),
A2.p2 θ c), get A1 Value) . (3)

The ∗ operator can be removed using the set operator OntoUnion. Assume
θ1 . . . θn to be a set of OntoAlgebra operators, C a class having C1 . . . Cn as di-
rect sub-classes. Removing ∗ operator is preformed by applying the following
equivalence recursively (unfolding operation).



Querying Ontology Based Database Using OntoQL 711

Research Institute

type : String
birthdate : Date

Laboratory

title : String
acronym : String
headmaster : Person

Person

first name : String
last name : String
address : String
email : String

#name[fr]=’Laboratoire’
#name[es]=’Laboratorio’
#definition[fr]= ’lieu où des 
  recherches sont conduites’
#definition[en]=’workplace 
  for the conduct of research’

#synonymous_names[en]=
           {’human’, ’individual’}
#illustration=’person.jpg’

#note[en]=’abstract concept: 
  must not be instancied’

Fig. 1. Ontology example

E_Laboratory

PK oid

p_title
FK1 p_headmaster

E_Person

PK oid

p_first_name
p_last_name
p_email

Fig. 2. Content example

θ1(. . . θn(∗(C))⇔ θ1(. . . θn(C, ext(C)) OntoUnion

θ1(. . . θn(∗(C1)) OntoUnion . . .OntoUnion θ1(. . . θn(∗(Cn)) (4)

The (1), (2), (3) and (4) algebraic laws will be exploited by the query plans
presented in section 6 below.

5 The OntoQL Language

OntoQL is the OBDB exploitation language built on the defined database model.
An overview of the querying capabilities of OntoQL has been given in [15]. Its
semantics is given by the OntoAlgebra previously defined. This section presents
the details of this language (DDL and QL). A toy example, presented on figure
1, is used along this description in order to avoid complex syntactic definitions.
Next subsections focus on the specific parts of this language. We will discuss
the positioning of this language among database and semantic web languages in
section 8.

5.1 The Data Definition (DDL) and Manipulation (DML) Parts of
OntoQL

OntoQL allows to create, alter and drop concepts of ontologies (classes, proper-
ties . . . ) as well as their attributes values (name, definition . . . ). Let’s consider
the following expression :

CREATE #CLASS Laboratory EXTENDS "Research Institute" (

DESCRIPTOR(#name[fr,es] = (’Laboratoire’,’Laboratorio’),

#definition[fr] = ’lieu où des recherches sont conduites’,

#definition[en] = ’workplace for the conduct of research’)

PROPERTIES(title String, headmaster Person, acronym String) );

This expression creates an ontology class named Laboratory in English (the
default language) as a subclass of Research Institute. Thus, it inherits the prop-
erties of Research Institute. DESCRIPTOR and PROPERTIES clauses make the dis-
tinction between the definition of the attributes values describing a class (name,



712 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

remark, note . . . ) and the definition of its characterisation properties (those fixed
by the user). This distinction is carried by the attributes prefix # (see section 5.2).

On the content part, an extent can be attached to this class by the following
expression:

CREATE EXTENT OF Laboratory (title, headmaster);

Notice that the acronym property will not be valued in the content part. One
may define another content for the class Laboratory according to another logical
database model. When executed, this expression creates a relational schema
presented in figure 2 to store instances of this class.

Data Manipulation Language (DML) operators are also provided by OntoQL.
These operators may add, delete and update each parts of an OBDB. Indeed,
concepts and their instances may be managed by these operators. Moreover, since
the metadata describing the ontology model are themselves stored in a relational
database, the same operators allow adding/deleting/updating attributes of the
ontology model (e.g. adding the attributes unit, comment, etc. defining a new
translation language more than English, etc.).

5.2 The Query Language Part of OntoQL

The query language part of OntoQL is designed as an extension of SQL to query
ontologies, their contents and both ontologies and contents stored in an OBDB.
The syntax of a query is given by:

SELECT attributeList, propertyList, iteratorList

FROM iteratorDeclarationList

WHERE condition

GROUP BY attributeList, propertyList, iteratorList

HAVING condition

ORDER BY attributeList, propertyList

where attributeList (resp. propertyList) is a list of attributes (resp. properties);
iteratorList is a list of iterators declared in the FROM clause;
iteratorDeclarationList introduces iterators over a set of entity and/or class
instances. Moreover, the SELECT block of OntoQL supports the following features,
all expressed by OntoAlgebra operators composition.

– Path expressions. Associations may be traversed using the dot notation.
– Polymorphic query. The * operator is provided to distinguish between local

queries on instances of a class/entity C and instances of all the classes/entities
denoted C* subsumed by C.

– Dependent collection. A collection returned as the value of a property/
attribute may be traversed using an iterator introduced in the FROM clause.

– Nested queries. Queries may be nested not only in the WHERE clause but also
in the SELECT and FROM clauses.

– Aggregate functions. OntoQL provides aggregate functions count, sum, avg,
min and max.



Querying Ontology Based Database Using OntoQL 713

– Quantification. Existential (ANY, SOME) and universal (ALL) quantification may
be expressed.

– Set operators. Union, Intersection and Except operators are provided.

Next subsections show how this general model of an OntoQL query is used to
express query on ontology, on content and both on ontology and on content.
Moreover, these sections show on several query examples, specific usages of On-
toQL to exploit ontology characteristics, content characteristics or both.

Ontology Querying. Ontologies querying retrieve descriptive information
from the ontology part. The FROM clause of an ontology query introduces itera-
tors over instances of predefined entities (class, property) of the ontology model
as well as on user-defined entities. The SELECT clause defines projection on pre-
defined attributes (name, definition, scope, superclasses . . . ) and user-defined
attributes. The value of some attributes, such as name are given in different nat-
ural languages. The query Q1 searches for the English name of the class which
French name is ”Institut de Recherche”.

Q1. SELECT #name[EN] FROM #class WHERE #name[FR]=’Institut de Recherche’

Remember that the prefix # is used to distinguish between attributes of entities
and properties of classes.

Moreover classes and properties are implicitly named. For example, the query
Q2 uses Research Institute class name to retrieve the name in French of the
properties defined on this class.

Q2.SELECT p.#name[FR] FROM "Research Institute".#properties

This capability is also offered by OQL. However, to use it on a given object of a
class, users must explicitly name this object.

Content Querying. The FROM clause of a content query introduces iterators
over instances of ontology classes and the SELECT clause defines projection on
properties defined on this class but not necessary provided by the CREATE EXTENT

clause. The following queries search for the names of all laboratories with an En-
glish (Q3a) a French (Q3b), using external identifiers (Q3c) and internal identifiers
(Q3d) queries:

Q3a.SELECT acronym FROM Laboratory Q3c.SELECT @710C-01 FROM @7194-01

Q3b.SELECT accronyme FROM Laboratoire Q3d.SELECT !1012 FROM !1068

Here !x and @x are respectively internal identifiers (known by database develop-
ers) and external references (like URI).

Ontology and Content Querying. OntoQL introduces an iterator over in-
stances of classes retrieved by an ontology query. Q4a query illustrates this feature
using a dependant collection.



714 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

Q4a.SELECT i.oid, i.p, p.#name[en]

FROM C in #class, p in C.#properties, i in C*

WHERE C.#name[fr] like ’Per%’

Q4b is equivalent to Q4a. It uses a SELECT operator in the FROM clause to access
simultaneously the ontology and the content parts (nested query).

Q4b.SELECT i.oid, i.p, p.#name[en]

FROM C in (SELECT C FROM C in #class

WHERE C.#name[fr] like ’Per%’),

p in C.#properties, i in C*

This query retrieves classes which name begin with "Per". The iterator i ranges
over instances of these classes and is used to access and return property English
name and value for these instances.

OntoQL proposes the operator typeof to retrieve the base class of a content in-
stance. This operator allows to express queries from the content to the ontology.
For example, the query Q5 searches for the address and email of all polymorphic
instances of the class Person and uses the operator typeof to retrieve the French
name of the base class of these instances.

Q5.SELECT i.address, i.email, typeof(i).#name[fr] FROM i in Person*

The typeof operator returns only one base class for an instance. This query could
not be written this way if multi-instantiation was allowed.

6 Processing of OntoQL

We have implemented OntoQL and the OntoAlgebra operators on an OntoDB
prototype. Demonstrations of this prototype are available at http://
www.plib.ensma.fr/plib/demos/ontodb/index.html. This section briefly outlines
how these operators are processed on this platform.

The prototype considered is an implementation of the OntoDB data model in
a object-relational database (ORDBMS), namely PostgreSQL [16]. In this pro-
totype, the link between the ontology and its content parts are defined using an
identifier. To simplify, assume that the identifier of the ontological (intensional)
definition of a class is cid, then its content (extensional) definition is represented
by a table identified by ecid. A similar mechanism for properties is used. Indeed,
assume that the identifier of a property is pid in the intensional definition of a
class, then it is represented by a column identified by ppid if used in the content
definition.

To processOntoAlgebra operators, they are translated in the underlying query
language, i.e. SQL99. With this approach, the optimization process is split into
two sub-processes. The first one is related to the OntoQL engine and the second
one is performed by the underlying database engine. The translation process
follows six identified steps.



Querying Ontology Based Database Using OntoQL 715

1. Logical query plan generation. The query, written in OntoQL, is parsed
and turned into an expression tree involving OntoAlgebra operators in its
nodes (logical query plan). Entities, classes, properties and attributes occur
in leaves.

2. Logical query plan transformation. Path expressions and * operators
are removed from the logical query plan using equivalence algebraic laws (2),
(3) and (4) defined on OntoAlgebra (see section 4). In this step, we use
an algorithm avoiding multiple decomposition of identical paths and thus
avoiding unnecessary join operations.

3. Optimize the tree. The optimization situations, identified in section 4, are
used to reduce the logical query plan. This step is performed together with
the previous step to avoid duplicating unnecessary parts of the tree.

4. Translation of an OntoAlgebra tree to relational algebra trees. This
translation is achieved by applying the following rules:
(a) the identifier of the intensional definition of a class is replaced by the

identifier of its extensional definition. If the class is abstract then its
identifier is replaced by the name of an empty table (e.g., Dual in Oracle);

(b) if the property is not used in the extensional definition of a class,
UNKNOWN is translated to NULL.

(c) OntoImage andOntoProject are translated into the projection operator
of the relational algebra. Other operators of OntoAlgebra are translated
into their relational counterpart.

An OntoQL query often requires access to the content of an OBDB according
to the query on the ontology part. Thus, this translation may require to build
more than one relational algebra tree.

5. Optimization of the relational algebra trees. This step consists in
using the different algebraic laws that hold for relational algebra to turn the
relational trees into equivalent trees that may be executed more efficiently
by the underlying ORDBMS. The ORDBMS optimizer may perform other
optimizations it supports.

6. Translation of the relational algebra trees into SQL queries. The
optimized relational trees are translated into SQL queries according to the
underlying ORDBMS and executed to get the OntoQL query result.

7 Example

To illustrate our language proposal, let us develop a practical example showing
how a query, written in OntoQL, is processed. This example extends the previous
one by precising the address property in the class person.

An Example of Data Model. Figure 3 shows an UML data model. Specific
annotations d/v are added to the property names to take into account the specific
features of the OBDB data model. d means that this property is defined on this
class ; v means that this property is valued in the extensional definition of
this class. This schema is defined to manage names of persons. Students and



716 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

-name (d/v)
-address (d)
-phone (d)

Person

-name (d/v)
-address (d/v)
-phone (d/v)

Employe

-street (d)
-zip (d)
-state (d)
-city (d)

Address

-name (d/v)
-address (d/v)
-phone (d)

Student

-street (d/v)
-zip (d/v)
-state (d )
-city (d/v)

FrenchAddress

-street (d/v)
-zip (d/v)
-state (d/v)
-city (d/v)

AmericanAddress

Fig. 3. Schema example

employees are also described by their addresses. Since Address is an abstract
class (its name is in italic), addresses are located either in the USA or in France.
Notice that for French addresses, the property state is not valued on instances.

An Example of Query. Assume we want to find in which cities of the state
Utah some persons are living. To answer this query, an OntoQL statement using
English attributes (left) or French ones (right) may be written:

SELECT address.city SELECT adresse.ville

FROM Person* <=> FROM Personne*

WHERE address.state=’Utah’ WHERE adresse.etat=’Utah’

Query Processing Steps. The first step of our processing generates the log-
ical plan presented in Fig. 4 (a). The path expressions are removed from this
query plan. If the application of the property address is decomposed in each
path, the transformed logical plan is the one presented in Fig. 4 (b). In this
logical plan, the upper left outer join is unnecessary. Therefore, application of
the property address is decomposed only once and paths composed with this
property are changed using an alias of the class Address. The query plan re-
sulting from this processing is presented in Fig. 4 (c). In step 3 and 4, * op-
erators applied to Person and Address are removed. Because address is not
used on classes Person, optimization (1) allows to deduce that the result of the
LeftOuterOntoOJoin is {< p, UNKNOWN > |p ∈ ext(Person)}. Thus, the predicate
a.state =′ Utah′ is always UNKNOWN. As a consequence, this query doesn’t return
any result for the class Person. Therefore our logical query plan must be dupli-
cated for the classes Employee and Student only. Let’s consider removing of ∗

from class Address. Because the property state is not used on classes Address
and FrenchAddress the result of the OntoSelect operator is empty and it is
not necessary to run it. Finally, our logical query plan must only be duplicated
for the AmericanAddress class. Logical query resulting from this processing is
presented in Fig. 4 (d).

In this example, translation of this query plan to a relational query plan is
straightforward. It consists, first, in replacing names of classes and properties by
names of tables and columns corresponding to their extensional definitions, and,
second, in switching OntoAlgebra operators to their corresponding relational



Querying Ontology Based Database Using OntoQL 717

OntoUnion

*

OntoImage

OntoSelect

*

Person

p.address = a.oidp.address = a.oid

OntoImage

OntoSelect

ap

a.state=’Utah’

LeftOuterOntoOJoin

a.city
OntoImage

OntoSelect

ap

a.state=’Utah’

LeftOuterOntoOJoin

a.city

OntoImage

Address

LeftOuterOntoOJoin

a1.city

a1

OntoImage

OntoSelect

Address

a**

Person

p

a.state=’Utah’

p

LeftOuterOntoOJoin

p.address = a.oid
p.address = a.oid

OntoImage

OntoSelect

Address

a**

Person

p

a.state=’Utah’

LeftOuterOntoOJoin

a.city

address.city

address.state=’Utah’

(c)

(a)

(b) (d)

AmericanAddressStudentEmployee AmericanAddress

p.address = a1.oid

Fig. 4. Logical query plans for our query example

operators. In step 6, the relational tree may be modified to replace operators not
supported by the underlying DBMS (e.g., outer join) or to optimize it according
to the generation and optimization of the logical query plan supported by the
DBMS. Without modification of our logical query plan, the obtained SQL query
running on the underlying DBMS is:

SELECT a.pcity

FROM eEmployee p LEFT OUTER JOIN eAmericanAddress a

ON p.paddress = a.oid

WHERE a.pstate=’Utah’

UNION

SELECT a.pcity

FROM eStudent s LEFT OUTER JOIN eAmericanAddress a

ON s.paddress = a.oid

WHERE a.pstate=’Utah’

This query returns the results of our OntoQL query.

8 Related Work

OntoQL is a language based on a database model for exploiting ontologies and the
knowledge they describe. Therefore, one can compare it with database languages
on the one hand and with semantic web based languages on the other hand.

8.1 Database Exploitation Languages

Compared to classical database languages, OntoQL preserves upward compati-
bility with existing database exploitation languages associated to different lay-
ered database models.

– RDB. When an user is aware of internal identifiers for tables and columns of
the OBDB model, classical SQL can be used to retrieve and manage table
data.



718 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

– ORDB. When all properties values of a class are provided at the instance
level, one can use the OBDB model as an OODB model and use OntoQL
constructs as an exploitation language.

– When the previous conditions are not fulfilled, we can use OntoQL as an
ontology exploitation language as shown in this paper.

– Finally, the top layer is the one of a linguistic based exploitation of an OBDB.
Indeed, when the attributes #name, #remark, #synonymous, #translations
are exploited by OntoQL constructs, it is possible to envisage a linguistic
exploitation as shown in queries Q2 and Q3 given in section 5.2 .

Moreover,OntoQL has been defined as an extension of SQL to exploit an
OBDB model defined for exploiting data and their semantics and for semantic
integration. According to these applications, related languages are multidatabase
languages like SchemaSQL [17] or MSQL [18]. OntoQL shares with these lan-
guages the capability to express queries on data independently of their schemas.
However, whereas these languages use the system catalog as an abstraction for
database schemas, OntoQL uses the ontologies themselves to encode this ab-
straction providing a dynamic approach for encoding different abstractions cor-
responding to different point of views of application domains. Consequently, On-
toQL presents many differences with these languages such as its object-oriented
nature or its independency w.r.t the model (relational, object-relational, object)
used to represent the schemas of the data.

The SOQA-QL [19] language (SIRUP project) allows querying ontologies and
the data they describe independently of the ontology model and of the hard-
ware/software used platform. Like OntoQL, the main application of SOQA-QL
is semantic integration. Moreover, they are both based on SQL and defined on
a core ontology model (the SOQA Ontology Meta Model for SOQA-QL) rep-
resenting the shared modelling capabilities of some ontology models in order
to provide an access to data independently of the used ontology model. Never-
theless, there are crucial differences between these two languages. First, in the
opposite of SOQA-QL, the core ontology model of OntoQL can be extended to
take into account particularities of some ontology models (e.g. adding new at-
tributes that characterize ontology model concepts). To provide this capability,
OntoQL is based on an algebra not tight to the core ontology model whereas the
SOQA-QL algebra (i.e, encoded in the SIRUP Ontology Query API) provides
access methods for all ontological components defined in the SOQA Ontology
Meta Model and the user does not have the possibility to dynamically update
this API. Another difference is that SOQA-QL and OntoQL do not keep the
same level of compatibility with SQL. Indeed, whereas SOQA-QL queries on on-
tologies are expressed in a SQL-like syntax, SOQA-QL queries on data require to
call the value function for each projection. Moreover, SOQA-QL doesn’t provide
all the useful operators of the object-oriented paradigm introduced in SQL99 like
path expressions or collection manipulation. Last, SOQA-QL is a platform inde-
pendent language whereas OntoQL is a language for OBDBs. As a consequence,
OntoQL assumes that the data queried are stored in an OBDB and therefore it
addresses some database problems such as query optimization or data definition



Querying Ontology Based Database Using OntoQL 719

and manipulation specific to OBDBs that cannot be considered by SOQA-QL
due to its platform independency.

8.2 Semantic Web Exploitation Languages

Over the last years, many semantic web query languages have been proposed.
Recently, a survey [20] classifies these languages into six categories with three
main categories:

1. the SPARQL [21] category which groups query languages considering all
data, both ontologies and their instances, as a set of triples;

2. the RQL [6] category which gathers query languages that make the distinc-
tion between the ontology and the data information (ontology instances).
These languages provide operators to exploit the subsumption hierarchies of
classes/properties and to combine data and schema querying;

3. the deductive languages (e.g, OWL-QL [7]) category for query languages
expressing rules that define how new data can be derived from existing ones
and thus be in the answer of a query.

OntoQL shares many characteristics with the second category. Indeed, like
these languages, OntoQL offers the possibility to query ontologies, instances and
both ontologies and instances but it does not offer rule based reasoning. However,
contrary to these languages, OntoQL presents the following characteristics:

– SQL Upward Compatibility. OntoQL extends the SQL syntax and semantics.
Thus, it has the benefits of SQL and it can be implemented as additional
components of existing ORDBMS.

– Schema manipulation. In a lot of semantic integration approaches, the ma-
nipulation of the structure of the data is useful. OntoQL allows retrieving,
creating, altering and dropping the schema of the data thanks to the pos-
sibility left to manage the metadata in both of the instance part or of the
ontology part. Moreover, OntoQL uses this schema for query optimization;

– Exploitation of multi-lingual definitions. Concepts describe by an ontology
may be associated with a linguistic representation in different natural lan-
guages. Using OntoQL, one can retrieve this representation and express
queries in different natural languages.

– Ontology model independency. OntoQL is based on a core ontology model
which can be extended to take into account specific features of a given on-
tology model. The RDF meta-model may also be extended. However, query
languages such as RQL restrict this extension to specializing the meta-classes
rdfs : Class (the class of all classes) and rdfs : Property (the class of all
of properties) to ensure a clear separation of the three abstraction layers
of RDF and RDFS (data, ontologies and meta-schema). There is no such
restriction with OntoQL. As a consequence, new attributes (e.g, comment,
remark, illustration) and new entities (e.g, document, restriction) may be
added and managed using OntoQL.



720 S. Jean, Y. Aı̈t-Ameur, and G. Pierra

Regarding the expressive power, OntoQL doesn’t allow to express query with-
out specifying the search scope (the FROM clause is mandatory) and doesn’t sup-
port yet the multi-instanciation capability. However, OntoQL is equipped with
grouping operators (GROUP BY), sorting operator (ORDER BY) and collection ma-
nipulation operators not yet provided by semantic web query languages [22].

9 Conclusion

In this paper, we have formally presented an OBDB data model called OntoDB.
This model differs from classical database models as well as other OBDB data
models propositions. The need for a new exploitation language to manage this
OBDB data model was a result of this constatation.

As a consequence, we proposed a formal algebra of operators together with
the definition of the OntoQL database exploitation language for managing OB-
DBs. We have shown on some query examples how this language exploits the
characteristics of the OBDB data model to support the multilingual querying
of OBDBs at the ontology, content and both ontology and content levels. As a
further step, we have defined an operational approach implementing these oper-
ators on top of a relational database model. The interested reader is invited to
see the demonstrations of this prototype available at

http://www.plib.ensma.fr/plib/demos/ontodb/index.html.
OntoQL differs from the semantic web languages in the sense that it originates

from databases approaches. It is built on top of RDBs and ORDBs preserving an
upward compatibility and getting benefits of the power of database approaches
keeping the possibility to exploit Web Semantic data.

For the future we plan to work in two directions related to database and to
the semantic web. From a database perspective, it is important to study the
query optimization on large databases and then the scalability of the OntoQL
implementations in order to address large sets of data. Optimizations on the
algebra operators and their composition shall be studied as well.

From a semantic web point of view, it it is planned to relax some assumptions
made in the OBDB data model in order to offer an efficient storage capability
for the instances described in the logic based approaches for ontologies like in
OWL. The objective is to unify the proposition issued from the semantic web
community which extensively use triples and descriptive logic and their deriva-
tives, and the object orientation and database communities which use strong
typing approaches.

References

1. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
World Wide Web Consortium. (2004)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. World Wide
Web Consortium. (2004)



Querying Ontology Based Database Using OntoQL 721

3. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ics-forth rdfsuite: Managing voluminous rdf description bases. In: SemWeb. (2001)

4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. In: International Semantic Web
Conference. (2002) 54–68

5. Pan, Z., Heflin, J.: Dldb: Extending relational databases to support semantic web
queries. In: PSSS. (2003)

6. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: Rql:
a declarative query language for rdf. In: WWW. (2002) 592–603

7. Fikes, R., Hayes, P.J., Horrocks, I.: Owl-ql - a language for deductive query an-
swering on the semantic web. J. Web Sem. 2 (2004) 19–29

8. Bellatreche, L., Pierra, G., Xuan, D.N., Dehainsala, H., Aı̈t-Ameur, Y.: An a priori
approach for automatic integration of heterogeneous and autonomous databases.
In: DEXA. (2004) 475–485

9. Pierra, G.: Context-explication in conceptual ontologies: Plib ontologies and their
use for industrial data. Journal of Advanced Manufacturing Systems (2004)

10. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Domain ontologies: a database-oriented anal-
ysis. In: Web Information Systems and Technologies (WEBIST’2006). (2006) 341–
351

11. Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage. In: PSSS. (2003)
12. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In:

VLDB ’01: Proceedings of the 27th International Conference on Very Large Data
Bases, Morgan Kaufmann Publishers Inc. (2001) 149–158

13. Jean, S., Pierra, G., Aı̈t-Ameur, Y.: Ontoql: an exploitation language for obdbs.
In: VLDB PhD Workshop. (2005) 41–45

14. Shaw, G.M., Zdonik, S.B.: A query algebra for object-oriented databases. In:
ICDE. (1990) 154–162

15. Jean, S., Aı̈t-Ameur, Y., Pierra, G.: Querying ontology based databases. the ontoql
proposal. In: 18th International Conference on Software Egineering and Knowledge
Engineering (SEKE’2006). (2006) 166–171

16. Douglas, K., Douglas, S.: PostgreSQL. New Riders Publishing (2003)
17. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: Schemasql - a language for

interoperability in relational multi-database systems. In: VLDB. (1996) 239–250
18. Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B., Vigier, P.: Msql: A multi-

database language. Inf. Sci. 49 (1989) 59–101
19. Ziegler, P., Sturm, C., Dittrich, K.R.: Unified querying of ontology languages with

the sirup ontology query api. In: BTW. (2005) 325–344
20. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and semantic web query languages:

A survey. In: Reasoning Web. (2005) 35–133
21. W3C: Sparql. visited on (2005) retrieved from http://www.w3.org/TR/rdf-sparql-

query/.
22. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of rdf query lan-

guages. In: SemWeb. (2004)



Description Logic Reasoning with Syntactic Updates

Christian Halashek-Wiener1, Bijan Parsia2, and Evren Sirin1

1 Department of Computer Science,
University of Maryland, College Park, MD USA

{halasche, sirin}@cs.umd.edu
2 School of Computer Science,

The University of Manchester, UK
bparsia@cs.man.ac.uk

Abstract. Various data sources on the Web tend to be highly dynamic; this is ev-
ident in prominent Web services frameworks in which devices register or dereg-
ister their descriptions quite rapidly and in Semantic Web portals which allow
content authors to modify or extend underlying ontologies and submit content.
Such applications often leverage Description Logic (DL) reasoning for a variety
of tasks (e.g., classifying Web service descriptions, etc); however, this can intro-
duce substantial overhead due to content fluctuation, as DL reasoners have only
been considered for relatively static knowledge bases. This work aims to provide
more efficient DL reasoning techniques for frequently changing instance bases
(ABoxes). More specifically, we investigate the process of incrementally updat-
ing tableau completion graphs used for reasoning in the expressive DLs SHOQ
and SHIQ, which correspond to a large subset of the W3C standard Web On-
tology Language, OWL-DL. We present an algorithm for updating completion
graphs under the syntactic addition and removal of ABox assertions. We also
provide an empirical analysis of the approach through an implementation in the
OWL-DL reasoner, Pellet.

1 Introduction

Recently, there has been increased interest in providing formal representation of Web
content using ontologies that correspond to expressive Description Logics (DLs). Due
to data sources that produce fluctuating data, there exists a variety of reasoning use
cases which require frequent updates at both the assertional (ABox) and terminological
(TBox) levels, some of which are briefly highlighted below:

– Prominent web services frameworks (e.g., OWL-S) use Description Logics for ser-
vice discovery and matchmaking [24,25,21]. Services, especially device services
in pervasive contexts, may register or deregister their descriptions (and supporting
ontologies) quite rapidly, yet the matchmaking service must remain responsive.

– Semantic Web portals often allow content authors to modify or extend the ontolo-
gies which organize their site structure or page content. While in some cases a
“defer update” strategy is acceptable, in general it is more gratifying to users if
changes they make are reflected immediately in the site.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 722–737, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Description Logic Reasoning with Syntactic Updates 723

– Perhaps the single most common use of Description Logic reasoners is in ontol-
ogy editors. Most editors do not do continuous reasoning while one is editing (one
exception is [18]), relying on an analogue of the edit-compile-test loop of most
programming environments. However, if this cycle is very long (e.g., hundreds of
seconds) then users will be forced to perform larger sets of edits before testing. This
discourages experimentation, particularly in debugging contexts.

– Syndication (publish/subscribe) systems on the Web have recently been transition-
ing to more expressive approaches; that is subscribers (and publishers) are provided
with more expressive means for describing their interests (resp. published content),
enabling more accurate dissemination. Recently, there has been interest in utiliz-
ing OWL and DL reasoning for the purpose of matching published content with
subscription requests [8,9,26,17]. When disseminating time sensitive information
(e.g., in the financial domain), efficient reasoning for frequently changing KBs (due
to continuously published information) will be critical in achieving practical DL-
based approaches.

While there exists such use cases for reasoning under changing data, current DL rea-
soning algorithms have been developed considering relatively static knowledge bases.
In this paper, we investigate performing incremental consistency checking in the ex-
pressive Description Logics SHOQ and SHIQ, which correspond to a large subset
of the W3C standard Web Ontology Language, OWL-DL. In particular, we present an
approach for incrementally updating tableau completion graphs created during consis-
tency checks under syntactic addition and removal of ABox (instance) assertions. This
provides a critical step towards DL reasoning over fluctuating data, as it has been shown
that in KBs with substantially sized ABoxes, consistency checking can dominate rea-
soning time; further, all standard reasoning tasks are reduced to consistency checks.
Lastly, we provide an empirical analysis of the optimizations through an experimental
implementation in an open source OWL-DL reasoner, Pellet.

2 Preliminaries

In this section, we briefly discuss background information directly relevant to this work.
First, we present the syntax and semantics of the Description Logic SHOIQ, which
corresponds to OWL-DL, with the slight extension of qualified cardinality restrictions.
Additionally, we provide a brief overview of tableau algorithms for Description Logic
reasoning.

2.1 SHOIQ Description Logic

Let NC , NR, NI be non-empty and pair-wise disjoint sets of atomic concepts, atomic
roles and individuals respectively. The set of SHOIQ roles (roles, for short) is the set
NR ∪ {R−|R ∈ NR}, where R− denotes the inverse of the atomic role R. Concepts
are inductively defined using the following grammar:

C ← A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | �� nS.C | {a}



724 C. Halashek-Wiener, B. Parsia, and E. Sirin

where A ∈ NC , a ∈ NI , C(i) a SHOIQ concept, R a role, S a simple role 1 and
��∈ {≤,≥}. We write � and ⊥ to abbreviate C � ¬C and C 	 ¬C respectively.

A role inclusion axiom is an expression of the form R1 
 R2, where R1, R2 are
roles. A transitivity axiom is an expression of the form Trans(R), where R ∈ VR.
An RBox R is a finite set of role inclusion axioms and transitivity axioms. For C,D
concepts, a concept inclusion axiom is an expression of the form C 
 D. A TBox T is
a finite set of concept inclusion axioms. An ABox A is a finite set of concept assertions
of the form C(a) (where C can be an arbitrary concept expression) and role assertions
of the form R(a, b). A knowledge base K = (T,R) consists of a TBox and an RBox.

An interpretation I is a pair I = (W , .I), whereW is a non-empty set, called the
domain of the interpretation, and .I is the interpretation function. The interpretation
function assigns to A ∈ NC a subset ofW , to each R ∈ NR a subset of ofW×W and
to each a ∈ NI an element ofW . The interpretation function is extended to complex
roles and concepts as given in [14].

The satisfaction of a SHOIQ axiom α in an interpretation I, denoted I |= α is
defined as follows: (1) I |= R1 
 R2 iff (R1)I ⊆ (R2)I ; (2) I |= Trans(R) iff for
every a, b, c ∈ W , if (a, b) ∈ RI and (b, c) ∈ RI , then (a, c) ∈ RI ; (3) I |= C 
 D iff
CI ⊆ DI ; The interpretation I is a model of the RBox R (respectively of the TBox T)
if it satisfies all the axioms in R (respectively T). I is a model of K = (T,R), denoted
by I |= K, iff I is a model of T and R.

2.2 Tableau Algorithms

The algorithm presented here is based on the tableau decision procedure for ABox
consistency checking in SHOQ [12] and SHIQ [13]. DL tableau-based algorithms
decide the consistency of an ABox A w.r.t a TBox T (by TBox, we are additionally
referring to all axioms for roles) by trying to construct (an abstraction of) a common
model for A and T, called a completion graph [14]. Formally, a completion graph for
an ABox A with respect to T is a directed graph G = (V , E ,L, ˙�=). Each node x ∈ V
is labeled with a set of concepts L(x) and each edge e = 〈x, y〉 with a set L(e)
of role names. The binary predicate ˙�= is used for recording inequalities between
nodes.

The completion graph is constructed by repeatedly applying a set of expansion rules.
Whenever a contradiction is encountered, a DL reasoner will either backtrack and se-
lect a different non-deterministic choice, or report the inconsistency and terminate if no
choice remains to be explored. While there may exist more than one model for A and
T, the tableau algorithm will only find one such model. We also point out that blocking
is utilized to ensure termination of tableau algorithms [11]. Blocking is used to detect
cycles encountered during the application of tableau expansion rules, therefore stop-
ping the expansion of a branch when the same labels reoccur. For example, blocking is
clearly necessary to ensure termination for the following KB, K = {a:C,C 
 ∃R.C}.
Further details can be found in [11]. We lastly note that in our work, we utilize a slightly
modified version of the SHOQ and SHIQ expansion rules, which are augmented for
axiom tracing as defined in [10,16,15].

1 See [14] for a precise definition of simple roles.



Description Logic Reasoning with Syntactic Updates 725

3 Syntactic ABox Updates

In this work, we consider ABox addition and deletion of individual equality and in-
equality assertions x = y and x �= y, concept assertions x:C and role assertions
〈x, y〉:R. In general updating ABox assertions in the presence of a TBox and an RBox
brings up several issues with the semantics.

For the purpose of this work, we adopt syntactic changes/updates of ABox assertions,
which we refer to as Syntactic Updates. By syntactic we refer to the explicitly asserted
ABox facts; this is similiar to the distiction between belief bases and belief sets in belief
revision literature [20]. Intuitively, Syntactic Updates can be described as an update in
which all new ABox assertions are directly added (or removed) to the asserted (base)
axioms; therefore the only changes that occur are those explicitly stated in the ABox
update. Removing an assertion from the ABox under these semantics does not guarantee
that the removed assertion will not be entailed anymore. Furthermore, in this work we
do not address resolving inconsistencies introduced by the addition of a new axiom.
Formally, we describe this update as follows:

Definition 1. (Syntactic Updates) Let S be the set of assertions in an initial ABox A.
Then under Syntactic Updates, updating S with an ABox addition (resp. deletion) α,
written as A + α (resp. A − α), results in an updated set of ABox axioms S′ such that
S′ = S ∪ {α} (resp. S′ = S \ {α}).
This type of ABox update is different when compared to related work in formal update
semantics [19,23] and belief revision [5,6] for DLs, however real world use of this type
of changes is directly present in many document-oriented services, including Semantic
Web Service repositories, publish/subscribe (syndication) application, Semantic Web
portals, etc. For example, an OWL-S Web Service description can be seen as a set of
ABox assertions and publishing/retracting this service description to/from a repository
would be typically done under Syntactic Updates; therefore we feel these semantics is
warranted. Lastly, we note that ABox additions under Syntatic Updates is similar to the
expansion operator as traditionally defined belief revision [1].

4 Update Approach

The goal of the approach presented here is to update a previously constructed comple-
tion graph in such a way that it is guaranteed to correspond to a model of the updated
KB (in the event some model exists). The approach presented here is applicable to the
Description Logics SHOQ [12] and SHIQ [13], as the difference between the two
completion algorithms is independent of the update algorithm.

4.1 ABox Additions

Conceptually, tableau algorithms for SHOQ [12] and SHIQ [13] can be thought of
as incremental in that expansion rules are repeatedly applied in a non-deterministic
manner to labels in the completion graph. Hence, new ABox assertions can be added
even after previous completion rules have been fired for existing nodes and edges in



726 C. Halashek-Wiener, B. Parsia, and E. Sirin

the graph. After the addition, expansion rules can subsequently be fired for the newly
added nodes, edges and their labels.

In order to update a completion graph upon the addition of a type assertion, x:C, the
approach first checks if the individual exists in the completion graph. If x �∈ V , then
x is added to V . Then C is added to L(x) if it does not already occur in L(x). If an
individual inequality relation, x �= y, is added to the KB, the algorithm checks if x ∈ V
and y ∈ V . If either does not exists, then they are added to the graph. Additionally, if the
〈x, y〉 �∈ x ˙�=y, then it is added. Alternatively, if an individual equality relation, x = y,
is added to the KB, the approach checks if x ∈ V and y ∈ V . If either does not exists,
then they are added to the graph. Additionally, x and y are merged. Lastly, if a role,
〈x, y〉:R, is added to the KB and 〈x, y〉 �∈ E , then 〈x, y〉 is added to E and R is added to
L(〈x, y〉). If however, 〈x, y〉 ∈ E but R �∈ L(〈x, y〉), then R is added to L(〈x, y〉).

After the graph has been updated, the completion rules must be reapplied to the
updated completion graph, as the update may cause additional expansion rules to be
fired. We note here that if there has previously been a deletion update, then previously
explored branches which had a clash must be re-explored as the deletion could have
removed the axiom which caused the clash.

4.2 ABox Deletions

When updating a completion graph under ABox axiom removals, components (nodes,
edges, labels, etc.) in the graph that correspond to the removed axiom cannot be simply
removed. This is because as completion rules are applied, newly added portions of the
graph are dependent on the presence of the original axioms in the KB. By deleting an
ABox assertion, components of the graph that are dependent on that assertion need to
be updated as well.

In order to account for this, we propose using axiom pinpointing [2,15,16], which
tracks the dependencies of completion graph components on original source axioms
from the ontology through the tableau expansion process. More specifically, the appli-
cation of the expansion rules triggers a set of events, denoted EV , that change the state
of the completion graph, or the flow of the algorithm. In [15,16] a set of change events
is defined, which include the following:

– Add (C,L(x)) represents the action of adding a concept C to the label of a node
x, i.e. the operation L(x)← L(x) ∪ {C}.

– Add (R,L(〈x, y〉)) represents the addition of a roleR to the label of an edge 〈x, y〉,
i.e., L(〈x, y〉)← L(〈x, y〉) ∪ {R}.

– x E y is the action of merging the nodes x, y. A detailed description of the merge
operation can be found in [14].

– x NE y stands for the addition of an inequality relation between two nodes x,y i.e.
˙�=← ˙�= ∪ {〈x, y〉}.

In order to record the changes on the completion graph, [15,16] introduces a tracing
function, which keeps track of the asserted axioms responsible for changes to occur.
The tracing function, τ , maps each event e ∈ EV to a set of sets, each set containing



Description Logic Reasoning with Syntactic Updates 727

a fragment of the KB that cause the event to occur. This tracing function is maintained
throughout the application of tableau expansion rules.

For purpose of this work, the original set of change events has been extended [10] to
include all possible events that can occur during the application of expansion rules. The
extension of events includes the following additional events:

– Add (x,V) represents the action of adding a node x to the vertex set, V , a comple-
tion graph, i.e. the operation V ← V ∪ {x}.

– Add (〈x, y〉, E) represents the action of adding a edge 〈x, y〉 to the edge set, E , in a
completion graph, i.e. the operation E ← E ∪ {〈x, y〉}.

– Remove (x,V) represents the action of removing a node x from the vertex set, V ,
a completion graph, i.e. the operation V ← V \ {x}.

– Remove (〈x, y〉, E) represents the action of removing an edge 〈x, y〉 from the edge
set, E , in a completion graph, i.e. the operation E ← E \ {〈x, y〉}.

– Remove (C,L(x)) represents the action of removal a concept C from the label of
a node x, i.e. the operation L(x)← L(x) \ {C}.

– Remove (R,L(〈x, y〉)) represents the removal of a role R from the label of an
edge 〈x, y〉, i.e., L(〈x, y〉)← L(〈x, y〉) \ {R}.

– Remove x E y represents the action of undoing a previous merge between the
nodes x, y. A detailed description of the merge operation can be found in [14].

– Remove x NE y represents the removal of an inequality relation between two
nodes x,y, i.e. ˙�=← ˙�= \ {〈x, y〉}

Additionally, the tracing function maintenance through expansion rule application
has been extended [10]. Although the tracing extension has been provided for SHOIQ
[14], it is trivial to see how they are applied to SHIQ and SHOQ completion strate-
gies. Further details can be found in [10].

The general idea is to utilize axiom tracing in order to track the dependencies of parts
of the completion graph, so that the effects of ABox assertions being removed can be
rolled-back. We note here that portions of the completion graph can be introduced by
multiple (explicitly) asserted axioms, however each concept or role name in a label will
only occur once. Therefore, axiom traces must be maintained for each asserted axiom
sets that can potentially introduce a particular concept or role name in a label.

To clarify, consider the following KB, K = {1. a:C	D, 2.D 
 B} (axiom numbers
are provided for tracing purposes). After the completion graph is initially created for this
KB, the node in the graph corresponding to a would have a variety of concept names in
L(a), includingD with an axiom trace of {1} (this would be added from the	-rule) and
B with an axiom trace of {1, 2} (this would be added from the unfolding-rule). Next
consider an incremental update of (Add a:D); since there already exists a trace for D,
another axiom set is added to its trace. Therefore the axiom traces are sets of traces, as
defined in [10,15,16]. In this case the axiom trace for D ∈ L(a) would be {{1}, {3}},
where {3} corresponds to the added assertoin. We note here that in [15,16], the tableau
algorithm runs to saturation (i.e, it continues applying all expansion rules until no rules
are applicable, even if a clash is detected). However for purpose of this work, we use
the normal tableau termination procedure, in which the algorithm proceeds until either



728 C. Halashek-Wiener, B. Parsia, and E. Sirin

all completion graphs are closed or one complete and clash-free completion graph is
found. We additionally note that this does not affect the tracing procedure.

In general, the update algorithm for deletion works as follows. When an ABox ax-
iom is removed, the algorithm performs a lookup in the graph for all change events
whose axiom traces include the axiom number of the deleted axiom. These events are
rolled-back if and only if their axiom trace sets only include sets which contain the
deleted axiom, possibly among other axioms. By roll-back we refer to simply undoing
(the inverse) the event (e.g., rolling back the event Add(x,V) would be the process of
removing x from V). If there exists additional axiom traces for that particular event that
do not include the removed axiom, then only the sets including the removed axiom are
deleted from the axiom trace set; in this situation the actual event is not rolled-back.
This holds as there still exists support for that particular event.

As in the approach for additions, the completion rules must be reapplied to the up-
dated completion graph as it is possible for the graph to be incomplete. Axiom tracing
additionally requires a slight modification to the update approach for ABox additions in
order to maintain axiom traces. For example, in the case that a individual type assertion
is added to the KB, the algorithm must add a new tracing set to the axiom trace for the
affected components (this set will consist of the new axiom number).

4.3 Update Algorithm

We now define the update algorithm UPDATE(G,α), which takes as input a comple-
tion graph G (for a knowledge base K) and an update α and returns a new completion
graph; the algorithm is shown in Figure 1. Note that τ is the tracing function and deps
(dependents) is the inverted tracing function index (asserted axiom to a set of change
events).

Now we provide the correctness proof for update algorithm under ABox additions.
We first make the following observation: due to the generating tableau expansion rules,
namely the ∃ − rule and the ≥ −rule, new individuals could have been introduced to
the graph that would not have been added in the completion graph if it were built from
scratch; therefore it cannot simply be shown that UPDATE(G,α) will obtain a com-
pletion graph that could have been built if we applied the expansion rules to the updated
KB (explicit ABox and TBox assertions). For example, this is evident if there is an ad-
dition b:C to an ABox that consists of a:∃R.C and 〈a, b〉:R. If the completion graph
where built from scratch, the ∃-rule would be blocked for the node with label ∃R.C as
there already exists a R-neighbor b (i.e., R ∈ L(b)). In contrast, in UPDATE (G,α)
the ∃ − rule would have already fired prior to the addition.

Theorem 1. Under ABox additions, UPDATE (G,α) is sound, complete, and termi-
nating.

Proof Sketch

It is obvious that every graph generated from a subpart of a KB is a possible state of the
completion graph for the KB, though it is potentially incomplete as more rules can fire.
In UPDATE(G,α), the newly induced structure from the syntactic update is added to
the graph, as it would’ve existed if the completion graph for K ∪ {α} were built from



Description Logic Reasoning with Syntactic Updates 729

function UPDATE( G, α )
if α is an addition then

if α is a x �= y or x = y then
let op be the operation, such that op ∈ {=, �=}
if x �∈ V then
V ← V ∪ {x}

if y �∈ V then
V ← V ∪ {y}

if op is �= then
if 〈x, y〉 �∈ x ˙�=y then add it

if op is = then
Merge x and y

τ(x op y)← τ(x op y) ∪ {{α}}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α}}
τ(Add(y,V))← τ(Add(y,V)) ∪ {{α}}
deps(α) ← deps(α) ∪ {{x op y}, {Add(x,V)}, {Add(x,V)}}

else if α is a individual type addition, x:C then
if x �∈ V then
V ← V ∪ {x}
L(x)← L(x) ∪ {C}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α)}}
τ(Add(C,L(x)))← τ(Add(C,L(x))) ∪ {{α}}
deps(α) ← deps(α) ∪ {{Add(x,V)}, {Add(C,L(x))}}

else if α is a role assertion addition, 〈x, y〉:R then
if 〈x, y〉 �∈ E then
E ← E ∪ {〈x, y〉}
L(〈x, y〉)← L(e) ∪ {R}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α)}}
τ(Add(y,V))← τ(Add(y,V)) ∪ {{α)}}
τ(Add(〈x, y〉,E))← τ(Add(〈x, y〉,E)) ∪ {{α)}}
τ(Add(R,L(〈x, y〉)))← τ(Add(R,L(〈x, y〉))) ∪ {{α}}
deps(α) ← deps(α) ∪ {{Add(x,V)}, {Add(y,V)}, {Add(〈x, y〉, E)}, {Add(R,L(〈x, y〉))}}

Apply expansion rules to G
if there is a clash then

Perform backjumping
else if α is a deletion then

events ← deps(α)
deps(α) ← ∅
for each e ∈ events do

traces← τ(e)
for each t ∈ traces do

if α ∈ t do
traces← traces \ t

if traces = ∅ do
roll-back e

τ(e)← traces
Apply expansion rules to G
if there is a clash then

Perform backjumping
return G

Fig. 1. Pseudo-code of update procedure for SHOQ and SHIQ KBs

scratch. From our discussion earlier, it is clear the initially updated completion graph
can contain clashes; however the completion rules are then re-fired. It can therefore be
shown that the resulting completion graph must correspond to a model if and only if
at least one exists, as if it were the case that the completion graph did not correspond
to a model (via some clash), then the soundness or completeness of [12,13] would be
contradicted (i.e., if a model exists yet the initially updated completion graph contains
a clash, it would be removed by shrinking expansion rules or backjumping). Further,
if a non-deterministic choice were taken and backjumping occurs, the newly added



730 C. Halashek-Wiener, B. Parsia, and E. Sirin

structures imposed by the update will remain, as they are explicitly asserted. It is clear
that if some model exists, the tableau algorithm then proceeds as usual and a closed,
clash-free completion graph is found. Therefore, it can be shown that under ABox ad-
ditions, UPDATE(G,α) is sound, complete, and terminating. �

Additionally, the correctness proof for the update algorithm under ABox deletions is
presented.

Theorem 2. Under ABox deletions, UPDATE(G,α) is sound, complete, and termi-
nating.

Proof Sketch

As shown in [16,15,10], the tracing function captures all change events in G that were
caused in part by α. It can be shown that by undoing all events that are only reliant on an
axiom trace that includes α, G is effectively rolled-back to a state in which the effects
of the rule firings caused by α are removed. This holds because the tracing algorithm
is shown to be complete [16,15,10], thus all necessary components will be rolled-back.
Because UPDATE(G,α) performs this rollback, it can be shown that the updated
completion graph is a possible intermediate state of the a completion graph for the KB
after the deletion. While this graph is potentially incomplete (e.g., due to blocking),
reapplying expansion rules guarantees (by [12,13]) the algorithm will arrive at some
completion graph that could be obtained by simply applying the completion rules to
K ∪ {α}. It can therefore be shown that under ABox deletions, UPDATE(G,α) is
sound, complete, and terminating. �

5 Implementation and Evaluation

We have implemented the approach presented in this paper in an open source OWL-DL
reasoner, Pellet [22]. In order to evaluate the algorithm, we have performed an em-
perical evaluation using two different KBs with large ABoxes - the Lehigh University
Benchmark (LUBM)2 and AKT Reference Ontology 3.

For the LUBM test case, three experiments were run over three different KBs con-
sisting of one, two, and lastly three universities created by the LUBM dataset generator.
First an initial consistency check was performed and then in each test a random update
was selected which was used to update the KB. In the regular version of the reasoner,
the cached completion graph was discarded, while in the optimized reasoner the up-
date algorithm was utilized. For each KB size, varying sized additions and deletions
were randomly selected from the dataset. Update sizes include single axiom, twenty-
five axioms, and fifty axioms (individuals and/or roles). Each test was averaged over
twenty-five times iterations. Expressivity and KB statistics are provided in Table 1.

Results for additions and deletions in the LUBM test are presented in Figures 2
and 3 (timing results are shown in milliseconds and the scale is logarithmic). We note

2 LUBM Ontology: http://swat.cse.lehigh.edu/projects/lubm/
3 AKT Ontology: http://www.aktors.org/publications/ontology/



Description Logic Reasoning with Syntactic Updates 731

Table 1. LUBM and AKT Portal Dataset Statistics

Name Classes / Properties / Individuals / Assertions Expressivity
LUBM-1 Univ 43 / 32 / 18,257 / 97,281 SHI
LUBM-2 Univ 43 / 32 / 47,896 / 254,860 SHI
LUBM-3 Univ 43 / 32 / 55,110 / 295,728 SHI
AKT-1 160 / 152 / 16,505 / 70,948 SHIF
AKT-2 160 / 152 / 32,926 / 143,334 SHIF

Fig. 2. Addition Updates of LUBM datasets

that the ‘0’ axiom value represents the initial consistency check. In both versions of
the reasoner, initial consistency checks are comparable. However for both update types
(additions and deletions), performance improvements ranging from one to three orders
of magnitude are achieved under updates in the reasoner with the optimized update
algorithm. This is due to the avoidance of re-firing of completion rules by maintaining
the previous completion graph; therefore very few (if any in some cases) completion
rules must be fired. It can also be observed that as the update size is increased, the
performance of the update approach scales well. This provides direct empirical evidence
for the effectiveness of the update algorithm.

In a second evaluation, two datasets4 adhering to the AKT Reference ontology were
used (statistics shown in Table 1). The tests were structured in the same manner as
the LUBM test. Again, each test was performed twenty-five times and the results are

4 Hyphen-REA: http://www.hyphen.info/rdf/hero complete.zip



732 C. Halashek-Wiener, B. Parsia, and E. Sirin

Fig. 3. Deletion Updates of LUBM datasets

averaged over these iterations. All timings are in milliseconds and the scale is loga-
rithmic. Similar to the LUBM test, update performance is improved between one to
three orders of magnitude (as shown in Figures 4 and 5). It is interesting to observe
that the performance of the deletion updates is slightly better in the LUBM test cases
for larger sized updates. This is primarily due to the increased complexity of the AKT
Reference Ontology; therefore, a larger number of expansion rules are applied after the
update. However, the update algorithm greatly outperforms the regular reasoner again
demonstrating the effectiveness and overall impact of the update approach.

6 Discussion and Future Work

One limitation of the approach presented in the work is related to potential overhead
introduced by the algorithm, specifically related to tracing. However, we point out here
that in [16] the tracing approach was shown to introduce small memory overhead and
only marginally increase the running time of the normal reasoning procedure. For ex-
ample, in the Tambis 5 ontology, tracing introduced only 56ms to the running time and
3.65mb memory overheard [16]. Therefore, we feel the approach is acceptable due to
the observed performance improvements.

5 Tambis ontology: http://www.cs.man.ac.uk/ horrocks/OWL/Ontologies/tambis-full.owl



Description Logic Reasoning with Syntactic Updates 733

Fig. 4. Addition Updates of AKT datasets

The approach presented in this work is applicable to the Description Logics SHOQ
and SHIQ; this is primarily due to fact that there is no expansion rule ordering imposed
by the tableau algorithms [12,13]. We are currently working to extend the approach to
SHOIQ (and therefore all of OWL-DL), which will be addressed in future work.

While we achieved dramatic results for consistency checking under syntactic ABox
updates, one may wish to update TBox axioms as well. This presents the additional
issue of rolling back through pre-processing steps, such as absorption. We are currently
investigating this problem and plan to address it in future work.

In the current approach, if the KB is inconsistent after the update, nothing is done to
resolve the inconsistency. As future work, we are working towards developing a revision
algorithm for OWL-DL KBs; with such a technique, inconsistencies resulting after the
update would be resolved using a revision operator.

This work only directly addresses consistency checking under ABox changes; how-
ever, standard reasoning tasks in DL reasoners, including classification, realization, and
query answering are all reducible to KB consistency checking [3]. Currently, we are
investigating the utility of the update algorithm for generalized reasoning services. We
note here that initial results on leveraging the approach presented in this paper for con-
tinuous conjunctive query answering demonstrates orders of magnitude improvements
in performance.



734 C. Halashek-Wiener, B. Parsia, and E. Sirin

Fig. 5. Deletion Updates of AKT datasets

7 Related Work

To our knowledge there has been no previous work in DL reasoning algorithms for
incremental maintenance of completion graphs. We do note that this work can be paral-
leled to view maintenance [7] and truth maintenance [4]; however we deal with a more
expressive logic and a different proof theory.

In this work, we have leveraged and extended previous work in axiom tracing
[2,15,16]. [2] introduces the notion of axiom pinpointing for the purpose of computing
extensions of default theories. [15,16] extends [2] to support a more expressive logic.
As discussed earlier, we have further extended [15,16] as further effects of axioms were
needed to be identified.

Recently, there has been interest in specifying formal update semantics for descrip-
tions logics [19,23]. Additionally, [5,6] has investigated applying traditional AGM be-
lief revision [1] theory to DL knowledge bases; the authors show however, that in cer-
tain expressive DLs (including those considered in this work) the AGM postulates for
contraction cannot be satisfied. This finding does not impact this work, as we assume
syntactic updates of asserted axioms. Further, this work is independent of belief revi-
sion and formal update semantics as we are concerned with maintaining the internal
state of the reasoner.



Description Logic Reasoning with Syntactic Updates 735

8 Conclusion

Current Description Logic reasoners are traditionally oriented toward providing reason-
ing services for relatively static ontologies. However, there are numerous use cases in
which the ontology itself is in flux, requiring frequent updates. This includes promi-
nent Web services frameworks (e.g., OWL-S), in which Web ontologies are used for
service discovery and matchmaking. In such settings devices register or deregister their
descriptions quite rapidly. Additionally, Semantic Web portals often allow content au-
thors to modify or extend the ontologies which organize their site structure or page
content. Lastly, there has been recent interest in utilizing DL reasoning for the purpose
of matching published content with subscription requests [8,9,26,17]. When dissemi-
nating time sensitive information efficient reasoning for frequently changing KBs will
be critical in achieving practical DL-based approaches.

While there exists such use cases for reasoning under changing data, current DL rea-
soning algorithms have been developed considering relatively static knowledge bases.
In this paper, we have presented an algorithm for updating tableau completion graphs
for the Description Logics SHIQ(D) and SHOQ(D) under both the addition and
removal of ABox assertions, providing a critical step towards reasoning procedures
for fluctuating or streaming data. We have provided an empirical analysis of the al-
gorithm through an experimental implementation in the Pellet reasoner, in which our
initial results are very promising as they demonstrate orders of magnitude performance
improvement.

Acknowledgments

This work was supported in part by grants from Fujitsu, Lockheed Martin, NTT Corp.,
Kevric Corp., SAIC, the National Science Foundation, the National Geospatial Intel-
ligence Agency, DARPA, US Army Research Laboratory, and NIST. We would also
like to thank Aditya Kalyanpur, Yarden Katz, and Vladimir Kolovski for all of their
contributions to this work.

References

1. Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2):510–530,
1985.

2. F. Baader and B. Hollunder. Embedding defaults into terminological representation systems.
J. Automated Reasoning, 14:149–180, 1995.

3. F. Baader and W. Nutt. Basic description logics. In Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Description Logic
Handbook: Theory, Implementation, and Applications, pages 43–95. Cambridge University
Press, 2003.

4. Jon Doyle. A truth maintenance system. Artificial Intelligence, 1979.
5. G. Flouris, D. Plexousakis, and G. Antoniou. On applying the agm theory to dls and owl. In

4th International Semantic Web Conference (ISWC 2005), 2005.



736 C. Halashek-Wiener, B. Parsia, and E. Sirin

6. G. Flouris, D. Plexousakis, and G. Antoniou. Updating description logic using the agm the-
ory. In 7th International Symposium on Logical Formalizations of Commonsense Reasoning,
2005.

7. A. Gupta and I. Mumick. Materialized views: Techniques, implementation, and applications.
In MIT press, 1999.

8. V. Haarslev and R. Moller. Description logic systems with concrete domains: Applications
for the semantic web. In In Int. Workshop on KR meets Databases, 2003., 2003.

9. V. Haarslev and R. Möller. Incremental query answering for implementing document re-
trieval services. In Proceedings of the International Workshop on Description Logics (DL-
2003), Rome, Italy, September 5-7, pages 85–94, 2003.

10. Christian Halaschek-Wiener, Aditya Kalyanpur, and Bijan Parsia. Extend-
ing tableau tracing for abox updates. In UMIACS Tech Report, 2006.
http://www.mindswap.org/papers/2006/aboxTracingTR2006.pdf.

11. I. Horrocks. Implementation and optimisation techniques. In Franz Baader, Diego Calvanese,
Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, The Description
Logic Handbook: Theory, Implementation, and Applications, pages 313–355. Cambridge
University Press, 2003.

12. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In
B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204. Morgan Kaufmann, 2001.

13. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description log-
ics. In Proc. of the 6th Int. Conference on Logic for Programming and Automated Rea-
soning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

14. Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005). Morgan Kaufman, 2005.

15. Aditya Kalyanpur. Debugging and repair of owl ontologies. In Ph.D. Dissertation, Uni-
versity of Maryland, College Park. http://www.mindswap.org/papers/2006/AdityaThesis-
DebuggingOWL.pdf.

16. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsatisfiable
classes in owl ontologies. In Journal of Web Semantics - Special Issue of the Semantic Web
Track of WWW2005, 2005.

17. L. Li and I. Horrocks. A software framework for matchmaking based on semantic web
technology, 2003.

18. T. Liebig and O. Noppens. Ontotrack: Combining browsing and editing with reasoning and
explaining for owl lite ontologies. In Proceedings of the 3rd International Semantic Web
Conference (ISWC) 2004, Japan, November 2004.

19. H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic aboxes. In Interna-
tional Conference of Principles of Knowledge Representation and Reasoning(KR), 2006.

20. Bernhard Nebel. Base revision operations and schemes: Semantics, representation, and com-
plexity, 1994.

21. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Semantic match-
ing of web services capabilities. In The First International Semantic Web Conference, 2002.

22. Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In Third International Semantic
Web Conference - Poster, 2004.

23. Mathieu Roger, Ana Simonet, and Michel Simonet. Toward updates in description logics. In
International Workshop on Knowledge Representation meets Databases, 2002.

24. Evren Sirin, Bijan Parsia, and James Hendler. Composition-driven filtering and selection of
semantic web services. IEEE Intelligent Systems, 19(4):42–49, 2004.



Description Logic Reasoning with Syntactic Updates 737

25. Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Automated
discovery, interaction and composition of semantic web services. Journal of Web Semantics,
1(1):27–46, 2003.

26. Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia Smith, Stephen
Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A semantic infosphere. In
Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2003 International
Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer Sci-
ence, pages 882–896. Springer, 2003.



From Folksologies to Ontologies: How the Twain Meet

Peter Spyns, Aldo de Moor, Jan Vandenbussche, and Robert Meersman

Vrije Universiteit Brussel - STAR Lab,
Pleinlaan 2 Gebouw G-10, B-1050 Brussel - Belgium

{Peter.Spyns, Aldo.De.Moor, javdbuss, Robert.Meersman}@vub.ac.be

Abstract. Ontologies are instruments for capturing and using formal semantics,
and are often the result of a "central committee controlled" style of working. A
new trend on the Web is the increasing popularity of folksologies in the form
of social bookmarking sites. Folksologies provide informal semantics and can
be created and adopted by anybody anytime anywhere on the Internet. Shared
meaning in a folksology emerges through the use of tags that are used to book-
mark web pages, their usage frequency being considered a reliable indicator of
their usefulness and acceptance.

Rather than choosing for either ontologies or folksologies, hybrid emergent
semantics systems are needed that combine elements of both perspectives, de-
pending on the particular application. There is a need to analyse the larger picture
(including the full range of semantics’ functionalities in their context of use.

In this paper, we outline a number of key design characteristics of emergent
semantics systems (ESS). We examine the functionalities of two existing exam-
ples of well-known ESSs: del.icio.us and Piggy Bank. Using the results of this
comparison, we introduce DogmaBank as a proof of concept implementation of
a next-generation ESS that introduces a more advanced combination of lexical
and conceptual emergent semantics functionalities.

1 Introduction

Many definitions of ontologies exist [18, 20, 58, 57]. We prefer the one from Guar-
ino [22, p.7]1. Combining various definitions, an ontology can be seen as a formal,
shared, explicit but partial specification of the commonly agreed upon intended mean-
ing of a conceptualisation. With some form of simplification, one could say that an on-
tology is like a dictionary with unambiguous meaning defining entries linked by many
formal relationships. A taxonomy on the other hand has only a single structuring rela-
tionship between its constituents - e.g., is_a_kind_of, is_a_part_of.

The term ’folksology’ has been coined by Stefano Mazzocchi [36] in analogy with
’folksonomy’, created by Thomas Vander Wal 2. It basically means that ontologies resp.

1 An ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e.
its ontological commitment to a particular conceptualisation of the world. The intented models
of a logical language using such a vocabulary are constrained by its ontological commitment.
An ontology indirectly reflects this commitment (and the underlying conceptualisation) by
approximating these intended models.

2 http://en.wikipedia.org/wiki/Folksonomy

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 738–755, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



From Folksologies to Ontologies: How the Twain Meet 739

taxonomies emerge on the fly thanks to individuals who autonomously create and use
any tag they like to annotate any web page they deem worthwhile3. The tag as well
as the tagged web page (URL) is published in a repository (= a social bookmarking
site). Anybody can also re-use any tag from anybody else if it has been published on
the social bookmarking site. Within what is called the Web2.0 community these social
bookmarking sites are becoming very popular [25]. Flickr4, an image sharing site, and
del.icio.us5, a bookmark collection site are seen as the two most successful representa-
tives of such sites. In the academic world, there is, for instance, Bibsonomy6, a site to
share bibliographic references.

As a consequence, some (e.g., Shirky [50]) even hail folksologies as the best way to
create meaning on the Internet as opposed to ontologies as defined in the tradition of
Gruber [18] and Guarino [20]. Note that an ontology by definition is a social construct
as it constitutes a shared agreement resulting from some form of meaning negotiation
by the various domain stakeholders, although this social aspect in practice is often at
best assumed by ontology engineers - in many cases acting on their own.

For those familiar with the world of database schema modelling, the current social
bookmarking services closely correspond, albeit it in a more global and networked en-
vironment, to the situation in which a database schema modeller invents his own table
and column names and expects other modellers to understand them as such. The shared
meaning, however, only resides in the brain of each individual that uses and tries to
understand such a column name (or tag in the folksology case), as it basically equals a
natural language word. As soon as multiple database applications are supposed to in-
teroperate with each other (federated databases, data warehouse, ...), problems arise as
more often than not the meaning of the labels has not been made explicit. Well-known
issues like ambiguity, cryptic abbreviations, multilinguality etc. inhibit database inter-
operability and are bound to also manifest themselves in the area of folksologies as the
many people involved in creating and using the tags have different mental models.

Much research effort in the database community has been dedicated to schema
matching, schema merging, DB-mediators (e.g., [3, 28]) and so on to solve or at least
reduce interoperability problems. Ontologies are recognised by many as instrumental
for solving the interoperability problem as they are basically a meaning repository for
labels and, in principle, independent of any specific application [38].

1.1 Bridging the Gap

Folksologies and ontologies are not two opposite ways of organising a (more) meaning-
ful Internet, but rather constitute two ends of a range. The strenghts of one approach can
offset the weaknesses of the other. Shirky distinguishes some characteristics that makes

3 There is a lot of confusion about and inconsistent use of both terms. Folksonomies relate to
folksologies in the same way as taxonomies relate to ontologies, i.e. a single vs. multiple types
of relationships between the concepts. Their commonality, however, is the focus on the social
process leading to informal semantics. In the remainder of this paper we will use the term
‘folksology’, since that is the clearest counterpart of ontology.

4 http://flickr.com/
5 http://del.icio.us
6 www.bibsonomy.org



740 P. Spyns et al.

Table 1. ontologies vs. folksologies: their characteristics and participants [50]

characteristics ontology folksology

corpus small large
categories formal non formal

entities stable and restricted non stable and unrestricted
edges clear unclear

paticipants ontology folksology

users coordinated and expert uncoordinated and amateur
authority authoritative sources of judgment no authority

cataloguers expert naive

a domain more (or less) suited for an ontology to be built for it [50] 7. In the same
way, he contrasts the participants of ontologies and folksologies. Table 1 lists these two
aspects.

Whereas Shirky overall favours folksologies for real-world applications, Gruber
makes the case that ontologies have an important role to play as well in supporting
the tagging process. This view is reflected in the TagOntology project, which is about
identifying and formalizing a conceptualisation of the activity of tagging, and building
technology that commits to the ontology at the semantic level [19].

Although the debate is ongoing about the pros and cons of folksologies versus on-
tologies, still little attention is paid to the next step: what do the systems look like that
are going to be built on top of these approaches? We define emergent semantics systems
as information systems that combine informal and formal semantics approaches (i.e.
folksologies and ontologies) to optimally serve the evolving requirements of commu-
nities of human and machine information providers and users. To support our points,
we have implemented a proof of concept ESS combining a social bookmarking tool
with ontology technology. It should help to build bridges not only between these in-
formal and formal semantics approaches, but also between the theoretical research and
practical systems development communities. In this respect, this paper can be seen as a
position paper complemented by a proof of concept implementation.

1.2 Structure of the Paper

The remainder of this paper is organised as follows. The next section treats the no-
tion of emerging semantics theory and systems in more depth. In section 3, we out-
line six characteristics that need to be taken into account in the design of an ESS. In
section 4, we illustrate our ideas on two existing Web2.0 systems (del.icio.us - sec-
tion 4.1 - and Piggy Bank - section 4.2) as well as propose a new system for semantic

7 Shirky sees an ontology mainly as a (library) classification system with, for instance, the Ya-
hoo directory as its Internet version, which leads Gruber to state that "Shirky uses ’ontology’
where he should have used ’taxonomy’, and therefore he "misses the point [on ontologies]
... so beautifully [19]. See also [41] for a rebuttal of Shirky’s opinions. Note that in general
statements in the folksologies vs. ontologies debate represent individual positions that have
not been submitted to scientific peer review.



From Folksologies to Ontologies: How the Twain Meet 741

annotation (section 4.4) based on the DOGMA ontology framework (section 4.3). We
end the paper with a section on related and future work - section 5 - and a conclusion
(section 6).

2 Emerging Semantics: From Theory to Systems

Research on the Semantic Web and ontologies posits that these technologies are meant
to be used by software agents (rather than human agents) that offer and look for all
kinds of services [5]. For these kinds of Semantic Web applications, a formal and ex-
plicit definition of meaning shared by these agents is prerequisite as they are expected
to reason about or infer new knowledge. For a domain of discourse or application do-
main a conceptualisation is created and later on implemented as an ontology [22].
Consequently, many resources are spent focusing on defining (semantic) web (service)
languages and (reasoning) formalisms. This in contrast to social bookmarking services
that are more tailored towards humans interacting. As an implicit consequence, the Se-
mantic Web seems to be primarily oriented towards business rather than social use.
Many of the classical Semantic Web motivating examples involve humans, but through
the use of software agents, merely as individual consumers or clients who book trav-
els, buy books and CDs, use smart house-hold devices and enjoy health monitoring and
personal scheduling services. Typical usage of current Web2.0 applications, in partic-
ular community building and social aspects, is less considered by the Semantic Web
research community. On the other hand, the Semantic Web interoperability topics, cru-
cial for the intelligent software agents that will ease our on-line life, are hardly valued
(or even plainly critised e.g., [49]) by the Web2.0 community.

A novel topic in the Semantic Web domain is called "Emergent Semantics". Al-
though the original theme addressed by Emergent Semantics was rather restricted to
database query meaning transformation and preservation in a peer-to-peer setting [2],
the meaning of the expression has been widened to the result of dynamic and distributed
local processes during which new or additional semantics are obtained and applied on a
global level 8. Another application domain concerns multimedia annotation (e.g., [17]).
Aberer et al. [1] discuss the following characteristics of emergent semantics. It concerns
agreements that

1. are a semantic handshake protocol
2. emerge from negotiations
3. emerge from local interaction
4. are dynamic and self-referential approximations
5. induce semantic self-organisation

In that respect, folksonomy and folksology techniques and software facilitate the
emergence of distributed semantics. The semantics emerge from the implicit but imme-
diate feedback from the community in the form of usage frequencies of tags as well as
the listing of tags per URL and URLs per tag. A tag creator can conform his usage of
tags to the "average", and thus implicitly agrees on the meaning attributed to a tag.

8 Conclusions of the scientific meeting of the IFIP WG 2.6 on Databases at 30/10/2005 - see
[8].



742 P. Spyns et al.

Our overall position is that there will many emergent semantics systems consisting
of multiple semantic webs and light-weight ontologies that are "valid" for a specific ap-
plication or business domain, (professional) organisation and the like. These semantic
webs will include social aspects in their creation, maintenance, and evaluation stages.
Nowadays company-wide controlled vocabularies (e.g. within Boeing and General Mo-
tors), and even world-wide classification systems for a specific domain (e.g., the 10th
edition of the International Classification of Diseases) exist, are permanently used and
regularly updated. As ontologies are, said in a simplifying way, formal representations
of such vocabularies and classifications, there is in principle no reason why the transi-
tion to the Semantic Web of these existing mechanisms of establishing meaning agree-
ments should not work. On the other hand, ontology engineers should have the candour
to admit that this transition phase has not yet been studied thoroughly.

In a nutshell, folksologies have to differentiate between natural language words and
a language-independent artificially created label indicating a concept or sense, and on-
tologies have to adopt strategies and tools as used for social bookmarking sites to make
the meaning of concepts spontaneously emerge and converge.

3 Characteristics of Emergent Semantics Systems

In this section, we describe six key characteristics of emergent semantics systems in-
cluding human agents. The core issue is how informal and formal meaning emerges, is
agreed upon and shared by a community, and is used subsequently for various, includ-
ing unforeseen, scenarios on a global or potentially world-wide scale by human and
software agents that can organise themselves in (virtual) communities or societies. The
choice of characteristics has been inspired by contrasting essential features proposed by
proponents of the Semantic Web and the Web2.0, respectively. For each characteristic,
we sketch how the informal and formal semantics approaches do or could meet.

3.1 Natural Language Words vs. Language Independent Concept Labels

Folksologies are based on a very basic but implicit assumption: everybody speaks
the same language - in practice US English. The meaning agreement happens uncon-
sciously: individuals understand what a tag means since the tag is a single9 plain US
English word 10. We’ve already mentioned synonyms and homonyms, but what with
other languages ? E.g., is a Dutch speaking individual simply expected to use US En-
glish to conceptualise his small world ? What happens if somebody uses a wrong or
inappropriate translation ? Maybe somebody doesn’t understand the meaning of a tag ?
A word lexicalises a concept that is an idea, notion or meaning (cf. the meaning triangle
of Ogden and Richards [45]). There is an m:n mapping of words on concepts, i.e. one
word expresses several meanings (homonym) or several words express the same mean-
ing (synonym)11. In addition, according to the context and language, a concept can be

9 Del.icio.us does not allow compound words - e.g., ’semantic web’ is considered as two tags.
10 We avoid to use ’term’ as it means logical term on the one hand or technical term of a special

purpose (natural) language on the other.
11 See [34] for some "life examples" from Del.icio.us regarding ambiguity and synonyms.



From Folksologies to Ontologies: How the Twain Meet 743

expressed differently (e.g., fish is translated in Spanish by ’pez’ or ’pescado’ depending
on whether or not the fish is still living (’pez’) or on your plate to be eaten (’pescado’)
12. The point is that one should not use words to label concepts but rather unique identi-
fiers that stand for language independent (or neutral [43]) concepts to which words are
mapped [54]. Of course, this requires that the meaning uniquely identified by a tag is
explicitly defined - cf. e.g., WordNet synsets. Meaning definitions can come from dictio-
naries, encyclopedias, company controlled vocabularies etc. An important consequence
is that additional software support is needed to avoid that duplicate and redundant tags
are created and to steer a tag user into selecting the most appropriate tag. Unfortunately,
also ontology engineers often fail to make this fundamental difference between a word
and a concept [43].

3.2 Informal vs. Formal Semantics

Folksologies suffer from the fact that they stay on the language level and thus are unable
to cope with issues such as synonymy, notational variants and homonymy13. Ontologies
(formal models) on the other hand are unable to "connect" to the real world as they are
represented in some first order language [14, pp.30-31]14.

Informal and formal semantics can, for example, be aligned resulting in explicit
meaning circumscriptions that are linked to a concept identifier or label (= the logical
term) and that group various lexicalisations (= the language term) depending on the con-
text and language [54]. A concept label is a unique identifier for a synset or sense (as is
the case for (Euro)WordNet). Formal semantic restrictions (e.g., expressing uniqueness
or mandatoriness) and reasoning rules (e.g., defining transitivity for a certain relation-
ship) use the concept identifiers as logical terms. In most of the cases, a system internal
(alpha-)numerical ID exists next to a more human-friendly pseudo-word string. The
signature of an ontology is now explicitly rooted in "natural" semantics (e.g., by means
of dictionary definitions), while at the same time meaning ambiguity is avoided (a tag
is unambiguously linked to a specific sense). Thanks to the additional formal seman-
tic restrictions and definitions, the fuzziness of informal natural language definitions is
further reduced. Formal definitions are also needed for inferencing.

3.3 A Bag of Loose Words vs. a Well Structured Semantic Network

As already mentioned earlier, a folksonomy consists of words. In addition, there is a
complete absence of any structuring relationship. Some (e.g., [34]) consider that the
absence of a hierarchy to agree upon favours cooperation for social bookmarking. In
fact, the term ’folksonomies’ is semantically speaking too broad as there is no taxonomy

12 Cf. also the difference in U.K. English between ’pig’ and ’pork’ (but in Dutch there is only the
word ’varken’).

13 Simply adding an OWL "SameAs" or "DifferentFrom" statement, as suggested by Mazzoc-
chi [36] is insufficient as it only marks an equivalence/difference between two language terms
but does not provide any explicit definition of the meaning of the tag.

14 Model-theoretic semantics does not pretend, and has no way to determine what certain words
and statements "really" mean. (...) It [= model theoretic semantics] offers no help in making
the connection between the model (the abstract structure) and the real world.



744 P. Spyns et al.

involved, but only a vocabulary (a bag of words) 15. ’Folksabularies’ (in analogy with
vocabularies) would thus be a more accurate term. Relationships are a fundamental part
of ontologies. A classical relationship is the ’subclass_of’ relation. Description Logics
reasoners rely on these relationships. Ontologies allow for the formal representation
and analysis of many other types of relationships and constraints as well, thus allowing,
for instance, for advanced retrieval services on large knowledge bases.

3.4 Effort at Creation Time vs. Effort at Usage Time

As usual, there is a trade-off: the higher quality results have to be, the more (prepar-
ative) time and resources it takes. A folksology is relatively easy to build (anybody is
able to create tags or use anybody else’s tags), but at the cost of potential misunder-
standings and noise at browsing and retrieval time for which an individual user has
to compensate by evaluating and selecting the look-up results himself. An ontology
requires a substantial effort of experts on reaching meaning agreements and formally
representing them, but then has the advantage of setting the semantics as precise as
possible and grounded in the domain, which should remove potential ambiguities and
misunderstandings in favour of interoperability. The situation is comparable to the clas-
sical word-based search engines that produce a large amount of noise. Semantics-based
search engines, such as OntoSeek [21] and Swoogle [12], offer the promise of return-
ing more accurate results and reducing noise. Typically IE/IR results are measured in
terms of recall (how many elements of the ideal answer set are contained in the actual
answer set?) and precision (how many elements of the actual answer set are correct ?).
It is widely assumed that indexing pages with ontology tags will improve IE/IR results.
Likewise, bookmarking pages with tags for which there exists an agreement and explicit
definition of their meaning will result in more accurate look-up results.

3.5 Individual Creation Decision vs. Group-Wise Creation Agreement

The fact that in a folksological setting, any individual is the allmighty "deus ex machina"
who can very easily create, rename, group, split, merge and delete tags and thus cat-
egorise and classify his small universe at will largely explains the success of folk-
sonomies - see e.g., [34]. In addition, by making use of social bookmarking sites and
their software, the individual receives an immediate feedback on how other individ-
uals use (the same) tags (e.g., all sites bookmarked by the ’tools’ tag are listed by
browsing http://del.icio.us/tags/tools) and can adapt/conform his tagging behaviour. Al-
though in principle, ontologies should be the result of a group-wise negotiation process,
the current practice unfortunately still is that a single ontology engineer encodes his
conceptualisation of a domain (or in many cases an application) in an ontology lan-
guage such as OWL and subsequently hopes that other stakeholders in the domain are
happy with it and adopt it. The immediate feedback loop of folksologies is missing
here. In order to support the agreement process that links a unique label to a meaning
description, a distributed negotiation and decision support system and logging mech-
anism is needed. The suggestion of using folksologies as the start for professional

15 Del.icio.us allows a user to define a label regrouping tags, but the system then only uses it for
local display purposes.



From Folksologies to Ontologies: How the Twain Meet 745

controlled vocabularies ( [40]) should be retained 16 and could serve in the same way as
quantitative linguistic corpus analysis does to determine the most important terms for a
domain.

3.6 The (Unbearable?) Lightness of Being a Tag Creator vs. the Authoritative
Weight of a Relevant Stakeholder

As anybody is allowed to create a social bookmark, no single individual is able to reli-
ably assess the value of the tags. Only the frequency of use gives an indication of how
others perceive the relevance and value of a tag. On the Internet, all tag creators are
equal. But also here, some are more equal than others. Some persons simply are more
knowledgeable and have better expertise so that their view on a part of the world is ac-
cepted as more relevant, better organised, etc. Not just anybody should participate in a
committee of representative experts and prime stakeholders that decides on the content
of an ontology. In a professional environment this way of working is widely applied to
build controlled vocabularies or decide on the use of XML tags, for instance. The cre-
ators of an ontology are attributed an authoritative weight that inspires trust to potential
users of this ontology about its quality, especially as objective measures to evaluate on-
tologies - see e.g. [55] - are still in their infancy [6,24]. Web pages annotated with qual-
itative tags will be preferentially visited by intelligent software agents. Merely looking
at frequencies of tag use is too simplistic a measure 17. One could attribute weights
to authoritative users, but this implies a preliminary agreement (and limited in time ?)
on the weigths attributed to these authorities. We prefer a combination of authoritative
weights and frequency of usage as, for instance, has been implemented in the FolkRank
algorithm [26]. In the areas of cultural anthropology and group communication theory,
interesting research on consensus analysis is done taking into account the authority of
an information source [4].

4 Implementing an Emergent Semantics System

In this section, we describe how a social bookmarking system has been combined with
an ontology server in order to create an ESS along the lines as described in the previous
section and summarised by the following requirements:

– differentiate words from senses
– combine formal and informal semantics
– structure the domain of discourse
– combine individual suggestions with committee style decisions
– combine spontaneous trends with expert opinions

Before discussing the actual implementation (section 4.4), we summarise the charac-
teristiscs of two existing social bookmarking tools, namely del.icio.us (section 4.1) and
Piggy Bank (section 4.2) to mark their inadequateness. Our system called DogmaBank
extends the Piggy Bank open source software 18 with DOGMA technology (section 4.3)
in order to meet the requirements mentioned above.
16 However, the fact that only simple words are used as tags seriously biases the outcomes.
17 E.g., one cannot simply state that a definition is incorrect only because it is hardly used.
18 Piggy Bank is licensed under the BSD license - see http://simile.mit.edu/piggy-bank/ .



746 P. Spyns et al.

4.1 Del.icio.us

Del.icio.us is representative of most social bookmarking sites - other well known ones
are Connotea [31] and Bibsonomy. Any human (tagger) is able to create, rename, delete,
merge and split tags (= a single word) and associate them with a web page. The system
stores a tag, its associated URL and tagger and makes this information available to
any other user (subscriber) who can annotate his web pages with these tags. Relations
between tags are either based on frequencies ("Related tags") or aggregates of tags
(using the "Bundle" functionality to create containers of tags).

Homonyms nor synonyms can be detected at creation time. Only when a subscriber
examines with which pages a certain tag is associated he discovers potential cases of
homonymy and synonymy. No informal or formal definitions are provided. As there is
no possibility to create conceptual representations, only human agents can make use of
this tool. There is no explicit group interaction foreseen (only implicitly as via usage
frequencies one sees how the group behaves).

4.2 Piggy Bank

Piggy Bank [27] is another, more recently developed, social bookmarking tool that dis-
poses of an extended functionality compared to del.icio.us, especially regarding the
sharing, organising and re-using of the information collected during bookmarking (and
scraping) activities. A user creates a new tag (= keyword) but "under the hood" a URI
to an RDF resource (with the keyword as the OWL label) is created. However, the user
interface does not yet support applying the OWL:DifferentFrom and OWL:SameAs
primitives to cope with synonymy and homonymy.

Nevertheless, except for the merely syntactic definition of the RDF resource, no ex-
plicit formal or informal description of its exact meaning is available. As a consequence,
only human agents are intended to make use of this tool. But at least, the Piggy Bank
system designers are aware of the difference between a keyword and a concept and have
foreseen an initial mechanism for it - although not yet applied in practice. It implies that
no relationships between the tags (or rather the keywords pointed to) are available, ex-
cept for a listing of URLs per tag.

4.3 DOGMA

The DOGMA (Developing Ontology-Grounded Methodologies and Applications) on-
tology engineering framework developed in our group builds on the fundamental dis-
tinction between an ontology base and a commitment layer [29]. This double articula-
tion [51] in an intuitive ontology base and formal commitment layer (formal semantic
constraints on a selection of the represented domain knowledge) is combined with ba-
sic insights from linguistics to offer a powerful framework for ontology engineering
and modelling [39] that takes into account the difference between a natural language
word and a concept label (logical term) identifying some notion or concept [54]. To
cope with homonyms and synonyms we state that a concept is lexicalised for a cer-
tain language in a certain context by a specific word [56] 19 (cf. the famous example

19 We refer to [9] for a formal description of these ideas.



From Folksologies to Ontologies: How the Twain Meet 747

of the many meanings of "bank" [7] or the various denominations for beer glasses in
Australia [23, p.206]. As the DOGMA Concept Definition Server implementation in-
corporates the principles mentioned above, its functionalities (e.g., one method returns
the concept label associated with a particular term) constitute a good basis to add a
conceptual layer to Piggy Bank. To our knowledge, there are not so many ontology
servers that distinguish between a natural language term and a concept - another one is
for example KAON-220.

Methods and practices of distributed collaboration and negotiation for ontology en-
gineering are an important aspect of ontology engineering - [11] describes a collabora-
tive approach within the DOGMA framework. Not only "committee-style" approaches
should be looked at, but also spontaneously emerging meaning agreements. Especially
for the latter scenario we hope to incorporate some of the "folksological" techniques
next to methods from social sciences, possibly supported by ontologies [10].

4.4 DogmaBank

In the following, we outline how we have (partially) complemented and extended the
Piggy Bank software with an ontology server that is able to link words or terms to con-
cepts and vice versa. Remember that the del.icio.us and Piggy Bank lack any conceptual
machinery and collapse words and meaning but offer an intuitive way to create annota-
tions, while the DOGMA technology should include means to cater for the phenomenon
of emergent meaning definition in its formal conceptual engineering framework.

We could have chosen to build YABT (Yet Another Bookmarking Tool) from scratch,
using one of the rapid Web2.0 development frameworks that are increasingly becom-
ing available. However, we feel this would have been an isolated attempt. Instead, we
have adapted a well known system, Piggy Bank (see section 4.2), of which we pre-
served all of the existing functionality in our DogmaBank implementation. This makes
the transition easier for a Piggy Bank user. We have implemented a new user interface
to support ontology-based tag creation and tagging processes (the upper part of Fig-
ure 1). This interface replaces the standard Piggy Bank interface. It is implemented as a
Firefox plug-in 21. The plug-in connects to the DOGMA Concept Definition Server to
retrieve WordNet 22 (or other WordNet-style) senses that are associated with the key-
word entered (the right part of Figure 1). We refer for the remainder of this paragraph to
Figure 2 to illustrate how one can tag web pages with concepts (step 1). The user types
in a keyword (step 2), hits the fetch button or enter key (step 3) and a list of potential
senses (i.e., informal lexicographic definitions of its different meanings or concepts)
appears as well as some additional explanatory descriptions or glosses (e.g., examples
of use). Retrieving senses is performed in two stages: (i) the synsets are checked on the
presence of the term (e.g., ‘car’) and (ii) associations between a term and concept(s)
as recorded in the DOGMA Ontology Server are looked up. Duplicates are removed
and the resulting senses are displayed. The user now selects a particular sense (step 4)

20 http://kaon2.semanticweb.org/
21 The same internet technology as the original Piggy Bank interface (Chrome, XUL, Javascript,

XPCOM, Jetty and Ajax) is used.
22 As WordNet mainly contains general vocabulary, more domain specific terminological sources

will be needed. A suggestion found in the literature is to refer to Wikipedia entries.



748 P. Spyns et al.

DOGMA Server

Firefox browser

Commands Tag Bar nsIPiggyBank

The DogmaBank extension

Chrome additions in XUL and Javascript XPCOM component in Javascript

Java Virtual Machine

PiggyBank.java

LiveConnect
(Java to
Javascript
bridge)

Servlet in Jetty web server
using Velocity templating engine

127.0.0.1:port

HTTP POST
sends tag
command

HTTP GETs
retrieve

DHTML-based
user interface

My Piggy Bank profile

Sesame Java-based
Native Store (on
disk)

Lucene
Text
Indices

File System

3-tier
web

server

Concept BaseBusiness Delegate

Lexon Base

Commitment
Layer

Fig. 1. The system architecture - partially adapted from [27]

to tag the web page (step 5). It is also still possible to tag a web page with a freely
chosen keyword (arrow 6). A user might be waiting for a concept to be added to the
ontology by the moderator (see below), and decides to use such a keyword for the time
being. Or he might want to mark a web page as “toread”, which is a popular tag on
current bookmarking tools, but without any relationship at all with the content or topic
of the web page. All tags being alphanumeric, the original Piggy Bank system mod-
ules are re-used as they are (the lower part of Figure 1). Only, we have subverted (or
rather ‘smartened’) the Piggy Bank system by having it store concept labels pointing to
explicitly and commonly defined senses rather than personal interpretations of natural
language words.

The same mechanisms as used by folksonomies (usage frequencies, URLs per tag
and tags per URLs) are now available to facilitate the meaning negotiation process for
ontologies. It constitutes an interesting bottom-up complement (or maybe even alter-
native) to the traditional top-down or middle-out approach of engineering ontologies
- see also [42]. Note that we are mainly considering what some call "lightweight on-
tologies", i.e. first order logic vocabularies without associated inference rules, but with



From Folksologies to Ontologies: How the Twain Meet 749

Fig. 2. The DogmaBank Firefox plug-in input and tag window with the senses for the term ’car’

Fig. 3. The slightly adapted Piggy Bank interface showing a user’s DOGMA concept tags and
descriptions and illustrating the "refine as you type" functionality



750 P. Spyns et al.

explicit definitions for the vocabulary signature23. These mechanisms will provide the
"ontology stakeholder committee" mentioned above with feedback on how their ontol-
ogy is being used in practice. So one cannot create new concept tags at will, instead
one suggests new tags with their definition (arrow 8 of Figure 2) to a committee of
representative stakeholders for acceptance or rejection 24 to avoid an ontology from
wildly and anarchically expanding. In order to avoid ending up with a huge collection
of sligthly varying definitions, similarity checks have to be performed before a new con-
cept description is entered in the system. Even the existing "folksabularies" are useful
for ontology creation. In the same way as natural language processing methods clus-
ter words of a corpus based on their distribution, tags can be "clustered" around the
URL tagged. In both cases, it is assumed that the words or tags express somehow a
similar meaning. Experience shows that this kind of information is very helpful when
building an ontology. Formal definitions still have to be added by ontologists as this re-
quires extra technical skills. The formal definitions mainly serve for machine-machine
interoperability purposes, such as semantic web services. Also user-machine interaction
(e.g., searches) will be improved by applying taxonomic and other reasoning mecha-
nisms (see e.g. [21, 37]). For that purpose, formal relationships between the concepts
are needed. In a first phase defining relationships are restricted to ontologists as this
activity is more complex. Semantic Web tools [16, p.293 ff.] support this activity.

Also for information browsing and retrieval purposes - see Figure 3, a user will be
able to enter keywords (step 1) and choose the appropriate sense as displayed by the
system (step 3). To optimise the latter step, a "refine while you type" functionality has
been implemented that searches the synsets and related term sets (step 2). It limits the
number of potentially relevant senses shown to the user. The DogmaBank system is able
cope with synonymy, homonymy and multilinguality - the latter not yet finalised. The
Piggy Bank software has been slightly adapted to include the "browse data by concept"
pane. Searching by key word tags is still possible (arrow 4). Figure 4 shows the search
results for "car".

5 Related and Future Work

In this paper, we examined and illustrated how informal semantics resources (i.e. folk-
sologies) and formal semantics resources (i.e. ontologies) meet productively in the form
of an ESS supporting Internet-based communities in their collaborative work. Our anal-
ysis and upgrade of a current state-of-the-art system has helped us identify new focal
points as well as gaps in current research and development: semantic matching and
the development of similarity measures, and the groupwise usage of the information
gathered via the (social) bookmarking process (including ways how to operationalise a
stakeholder committee [11] and methods how to formalise a decision process leading
to meaning consensus [4]) emerge as key issues here.

We will extend the DogmaBank system to transparantly determine at creation time
whether or not the intended meaning of a new tag (i.e. its sense) is similar to an already

23 It might be possible that inheritance and subclass relationships have been defined but are trans-
parent for human taggers. More research needs to be done here.

24 This part of the DogmaBank system is still under development.



From Folksologies to Ontologies: How the Twain Meet 751

Fig. 4. The Piggy Bank interface showing the search results for the concept "car"

existing one. Therefore, semantic similarity measures (e.g., [15, 33]) will be of prime
importance not only for the work mentioned in this paper, but for many Semantic Web
applications. Euzenat et al. [13] have gathered a large number of metrics of different
origins that measure semantic distance (albeit in the context of ontology aligning and
merging) between concepts. The key point will be to identify the most relevant and
effective ones to be incorporated in DogmaBank-alike software.

Another area of related work concerns semantic and community portals (e.g., [12,30,
32, 52]). A community portal stores and allows retrieval of all kinds of information of
interest to a certain community. It is a centralised repository in which community mem-
bers following a work flow upload data and annotate it with pre-defined tags, which
might belong to an ontology, for easy retrieval purposes. A semantic portal basically
adds semantic technology (i.e., searching on ontological meta-data instead of regular
data) to retrieve information more accurately. The big difference with our upgraded so-
cial bookmarking tool is that a semantic community portal receives its meta-data from
a central repository or from a crawler that gathers meta-data instances and URLs from
all over the Web. In this case, the web site creators have to provide for the meta-data
schema to be used by the crawler. No new tags can be added. In the context of the
DogmaBank social bookmarking tool, a human more or less acts as the crawler (i.e.
encounters relevant information and decides to semantically tag a web page and store



752 P. Spyns et al.

the reference). The "regular" Piggy Bank store however offers much less sophisticated
retrieval possibilities (cf. Figure 4) than e.g., the OntoWeb semantic portal [44]. From
the above, it should be clear that a semantic community portal is the natural complement
of a semantically upgraded social bookmarking tool.

Also, many semantic annotating tools exist - cf. [16, p.344 ff.] for an overview25.
The main difference with DogmaBank is that these tools only load a fixed set of tags
of a predefined (and visualised) ontology. Tagging is an individual activity and happens
with a finer granularity (single information items (instances) rather than entire web
pages). When combined with language technology, it mostly concerns named entity
recognition - cf. e.g., [35, 46]. These tools can also be used for automated ontology
population.

Semantic annotators, crawlers, social bookmarking tools and community portals are
applied in different contexts and settings and complement each other. They all con-
tribute to the same overall goal, i.e. adding meta-data to the web and offering a means
to share within a community information on the web. The challenge in ESSs is to find
bridges between these automated and human approaches to creating and using formal
semantics, thus working towards hybrid, semi-automated approaches, which is exactly
what our DogmaBank tool aims at.

6 Conclusion

Semantics play an ever more important role on the Internet. Two major streams in re-
search and development are distinguished: the world of formal semantics, exemplified
by ontologies and the Semantic Web, and the world of informal semantics, of which
folksologies (as frequently used by the Web2.0 community) are important bearers. The
mission of the Semantic Web is to promote interoperability of information resources,
so that machine agents become better at information retrieval. The Web2.0 wants to
exploit the power of human communities to do the same.

Increasingly, the two worlds meet. In order to tap the full potential of the Web,
emergent semantics systems will be required: well-designed socio-technical systems
of formal and informal semantics, filled and used by well-calibrated combinations of
machine and human agents. To help to analyse the larger picture (including the full
range of semantics’ functionalities in their context of use [48], which paves the way
to a Pragmatic Web [47, 53], there is a need for the development of a meta-model of
emergent semantics systems. We have implicitly already presented some elements of
such a meta-model.

The main message of this paper is that there is a need and possibility (proven by
our DogmaBank implementation, albeit still a preliminary one) to shift from thinking
in terms of individual techniques to more holistic systems supporting communities of
practice. In that way, it becomes much easier to identify the linkages and gaps between
these techniques, and opportunities for new applications. We hope that this paper will
contribute to further catalyzing and focusing the fundamental emergent semantics de-
bate which is currently defining the future of a World Wide Web, be it as a Web2.0, a
Semantic or Pragmatic web, or a combination of all.

25 See also http://annotation.semanticweb.org/tools/.



From Folksologies to Ontologies: How the Twain Meet 753

Acknowledgements

Part of this research has been financed by the Flemish OntoBasis project (IWT GBOU
2001 #10069) [PS] and the DIP project (EU IST - FP6 507483). With many thanks to
Luk Vervenne for pointing us to Piggy Bank.

References

1. Karl Aberer, Tiziana Catarci, and Philippe Cudré-Mauroux et al. Emergent semantics sys-
tems. In M. Bouzeghoub, C. Goble, V. Kashyap, and S. Spaccapietra, editors, Semantics for
Grid Databases, First International IFIP Conference on Semantics of a Networked World:
ICSNW 2004, Revised Selected Papers, volume 3226 of LNCS, pages 14–43. Springer, 2004.

2. Karl Aberer, Philippe Cudré-Mauroux, and Manfred Hauswirth. A framework for semantic
gossiping. SIGMOD Record Special Issue, 31(4):48 – 53, 2002.

3. C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

4. C. Behrens and V. Kashyap. The "Emergent" Semantic Web: A consensus approach for
deriving Semantic Knowledge on the Web. Real World Semantic Web Applications. Frontiers
in Artificial Intelligence and Applications, Vol 92, IOS Press, 2002.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

6. Andrew Burton-Jones, Veda Storey, and Vijayan Sugumaran. A semiotic metrics suite for
assessing the quality of ontologies. Data and Knowledge Engineering, 55(1):84 – 102, 2005.

7. S. Buvac. Resolving lexical ambiguity using a formal theory of context. In Van Deemter and
Peters, editors, Semantic Ambiguity and Underspecification. CSLI Publications, 1996.

8. Philippe Cudré-Mauroux and Karl Aberer et al. Viewpoints on emergent semantics. Journal
of Data Semantics, 2880. to appear.

9. P. De Leenheer and R. Meersman. Towards a formal foundation of DOGMA ontology Part
I: Lexon base and concept definition server. Technical Report STAR-2005-06, STAR Lab,
Brussel, 2005.

10. Aldo de Moor. Patterns for the pragmatic web. In Proc. of the 13th International Conference
on Conceptual Structures (ICCS 2005), volume 3596 of LNAI, pages 1–18. Springer, 2005.

11. Aldo de Moor, Pieter De Leenheer, and Robert Meersman. DOGMA-MESS: A meaning
evolution support system for interorganizational ontology engineering. In Proc. of the 14th
International Conference on Conceptual Structures (ICCS 2006), LNCS. Springer, 2006.

12. L. Ding, T. Finin, A. Joshi, Y. Peng, R. Scott Cost, J. Sachs, R. Pan R, P. Reddivari, and
V. Doshi. Swoogle: A semantic web search and metadata engine. In Proceedings of the 13th
ACM Conference on Information and Knowledge Management. ACM, 2004.

13. J. Euzenat, T. Le Bach, J. Barrasa, P. Bouquet, and J. De Bo et al. State of the art on ontology
alignment. Knowledge Web Deliverable #D2.2.3, INRIA, Saint Ismier, 2004.

14. James Farrugia. Model-theoretic semantics for the web. In Proceedings of the WWW2003
Conference, pages 277 – 287, 2003. http://www2003.org/cdrom/.

15. F. Giunchiglia and M. Yatskevich. Efficient semantic matching. In Gomez perez A. and
Euzenat J., editors, Proceedings of the 2nd European semantic web conference (ESWC’05),
volume 3532 of Lecture Notes in Computer Science, 2005.

16. Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological Engi-
neering. Springer Verlag, 2004.

17. W. Grosky, D. Sreenath, and F. Fotouhi. Emergent semantics and the multimedia semantic
web. SIGMOD Record Special Issue, 31(4):54 – 58, 2002.



754 P. Spyns et al.

18. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 6(2):199–221, 1993.

19. Tom Gruber. Ontology of folksonomy: A mash-up of apples and oranges. In First On-line
Conference on Meta-Data and Semantics Research (MTSR05), 2005. http://tomgruber.org/.

20. N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a terminological
clarification. In N. Mars, editor, Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pages 25 – 32, Amsterdam, 1995. IOS Press.

21. N. Guarino, C. Masolo, and G. Vetere. Ontoseek: Content-based access to the web. IEEE
Intelligent Systems, May-June4-5:70–80, 1999.

22. Nicola Guarino. Formal ontologies and information systems. In Nicola Guarino, editor,
Proceedings of FOIS ’98, pages 3 – 15. IOS Press, 1998.

23. Terry Halpin. Information Modeling and Relational Databases. Academic Press, 2001.
24. Jens Hartmann, Peter Spyns, Diane Maynard, Roberta Cuel, Mari Carmen Suarez

de Figueroa, and York Sure. Methods for ontology evaluation. KnowledgeWeb Deliverable
#D1.2.3, 2005.

25. Dion Hinchcliffe. 10 issues facing web2.0 today.
http://web2.wsj2.com/10_issues_facing_web_20_going_into_2006.htm#, 2005.

26. Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Information retrieval
in folksonomies: Search and ranking. In Proceedings of the 3rd European Semantic Web
Conference, LNCS. Springer, 2006.

27. David Huynh, Stefano Mazzocchi, and David Karger. Piggy bank: Experience the seman-
tic web inside your web browser. In Proceedings of the third International Semantic Web
Conference (ISWC05), LNCS. Springer Verlag, 2005.

28. M. Jarke, M. Lenzerini, Y. Vassiliou, and Y. Vassiliadis. Fundamentals of Data Warehouses.
Springer-Verlag, 1999.

29. M. Jarrar and R. Meersman. Formal ontology engineering in the dogma approach. In
R. Meersman, Z. Tari, and al., editors, On the Move to Meaningful Internet Systems 2002:
CoopIS, DOA, and ODBASE, volume 2519 of LNCS, pages 1238 – 1254. Springer, 2002.

30. H. Lausen, Y. Ding, M. Stollberg, D. Fensel, R. Lara, , and S.K. Han. Semantic web portals:
state-of-the-art survey. Journal of Knowledge Management, 9(5), 2005.

31. Ben Lund, Tony Hammond Martin Flack, and Timo Hannay. Social book-
marking tools (ii): a case study - Connotea. D-Lib Magazine, 11(4), 2005.
http://www.dlib.org/dlib/april05/lund/04lund.html.

32. A. Maedche, S. Staab, R. Studer, Y. Sure, and R. Volz. SEAL — tying up information integra-
tion and web site management by ontologies. IEEE Data Engineering Bulletin, 25(1):10–17,
March 2002.

33. Ana Maguitman, Filippo Menczer, Heather Roinestad, and Alessandro Vespignani. Algo-
rithmic detection of semantic similarity. In Proc. of the WWW2005 Conference. ACM, 2005.

34. Adam Mathes. Folksonomies: Cooperative classification and communication
through shared metadata. http://www.adammathes.com/academic/computer-mediated-
communication/folksonomies.html, 2004.

35. Diane Maynard. Benchmarking ontology-based annotation tools for the semantic web. In UK
e-Science Programme All Hands Meeting (AHM2005) Workshop Text Mining, e-Research
and Grid-enabled Language Technology, 2005.

36. Stefano Mazzocchi. Folksologies: de-idealizing ontologies. Blog
http://www.betaversion.org/˜stefano/linotype/news/85/, 2005.

37. Deborah McGuinness. Question answering on the semantic web. IEEE Intelligent Systems,
(january/february):82 – 85, 2004.

38. R. Meersman. Semantic web and ontologies: Playtime or business at the last frontier in
computing ? In NSF-EU Workshop on Database and Information Systems Research for
Semantic Web and Enterprises, pages 61 – 67. NSF-EU, 2002.



From Folksologies to Ontologies: How the Twain Meet 755

39. Robert Meersman. The use of lexicons and other computer-linguistic tools in semantics,
design and cooperation of database systems. In Y. Zhang, M. Rusinkiewicz, and Y. Kam-
bayashi, editors, The Proceedings of the Second International Symposium on Cooperative
Database Systems for Advanced Applications (CODAS99), pages 1–14. Springer, 1999.

40. Peter Merholz. Metadata for the masses. http://www.adaptivepath.com/publications/essays/
archives/000361.php, 2004.

41. Peter Merholz. Clay Shirky’s viewpoints are overrated.
http://www.peterme.com/archives/000558.html, 2005.

42. P. Mika. Ontologies are us: A unified model of social networks and semantics. In Proc. of
the 4th Internat. Semantic Web Conf. (ISWC05), LNCS, pages 522–536. Springer, 2005.

43. S. Nirenburg and V. Raskin. Ontological semantics, formal ontology, and ambiguity. In
Proceedings of the Second International Conference on Formal Ontology in Information
Systems, pages 151 – 161. ACM Press, 2001.

44. Daniel Oberle and Peter Spyns. Handbook on Ontologies, chapter OntoWeb - Knowledge
Portal, pages 499 – 516. International Handbooks on Information Systems. Springer, 2004.

45. C.K. Ogden and I.A. Richards. The Meaning of Meaning: A Study of the Influence of Lan-
guage upon Thought and of the Science of Symbolism. Routledge & Kegan Paul Ltd., Lon-
don, 10 edition, 1923.

46. Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, and Angel Kirilov.
KIM - a semantic platform for information extaction and retrieval. Journal of Natural Lan-
guage Engineering, 10(3-4):375 – 392, 2004.

47. Mareike Schoop, Aldo de Moor, and Jan Dietz. The pragmatic web: a manifesto. Commun.
ACM, 49(5):75–76, 2006.

48. Amit P. Sheth, Cartic Ramakrishnan, and Christopher Thomas. Semantics for the Semantic
Web: "The Implicit, the Formal and the Powerful". International Journal on Semantic Web
and Information Systems 1(1): 1–18, 2005.

49. Clay Shirky. The semantic web, syllogism, and worldview. http://www.shirky.com, 2003.
50. Clay Shirky. Ontology is overrated: Categories, links and tags. http://www.shirky.com, 2005.
51. Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data modelling versus ontology engi-

neering. SIGMOD Record Special Issue, 31 (4): 12 - 17, 2002.
52. P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and R. Meersman.

Ontoweb - a semantic web community portal. In D. Karagiannis and U. Reimer, editors,
Proceedings of the Fourth International Conference on Practical Aspects of Knowledge Man-
agement (PAKM02), volume 2569 of LNAI, pages 189–200. Springer Verlag, 2002.

53. Peter Spyns and Robert Meersman. From knowledge to interaction: from the semantic to the
pragmatic web. Technical Report 05, STAR Lab, Brussel, 2003.

54. P. Spyns and J. De Bo. Ontologies: a revamped cross-disciplinary buzzword or a truly promis-
ing interdisciplinary research topic? Linguistica Antverpiensia NS, (3):279–92, 2004.

55. P. Spyns and M.-L. Reinberger. Lexically evaluating ontology triples automatically generated
from text. In A. Gómez-Pérez and J. Euzenat, editors, Proceedings of the second European
Semantic Web Conference, volume 3532 of LNCS, pages 563 – 577. Springer Verlag, 2005.

56. Peter Spyns. Object Role Modelling for Ontology Engineering in the DOGMA framework.
in R. Meersman and Z. Tari and P. Herrero et al. On the Move to Meaningful Internet Systems
2005: OTM 2005 Workshops, volume 3762 of LNCS, pages 710 – 719. Springer Verlag, 2005.

57. M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
Sharing and Review, 11(2), June 1996.

58. M. Ushold and M. Gruninger. Ontologies: Principles, methods and applications. The Knowl-
edge Engineering Review, 11(2):93 – 155, 1996.



Transactional Behavior of a Workflow Instance

Tatiana A.S.C. Vieira and Marco A. Casanova

Pontifical Catholic University of Rio de Janeiro
Rua Marquês de São Vicente, 225

Rio de Janeiro, RJ - Brazil - CEP 22.451-900
Phone: +55-21-3527-1500 ext. 4347; FAX: +55-21-3527-1530

tascvieira@yahoo.com.br,
casanova@inf.puc-rio.br

Abstract. Workflow management systems usually interpret a work-
flow definition rigidly, allowing no deviations during execution. However,
there are real life situations where users should be allowed to deviate
from the prescribed static workflow definition for various reasons, in-
cluding lack of information about parameter values and unavailability
of the required resources. To flexibilize workflow execution, this paper
proposes an exception handling mechanism that allows the execution to
proceed when otherwise it would have been stopped. The proposal is in-
troduced as a set of extensions to OWL-S that capture the information
required for the flexibilization mechanism. In particular, this paper focus
on the transactional behavior of a workflow instance, in the sense that
it guarantees that either all actions executed by the instance terminate
correctly or they are all abandoned.

1 Introduction

Workflow management systems, or workflow systems, for short, have an extensive
list of requirements, from cooperation and coordination to synchronization. In
this work, we focus on a requisite that we call flexible execution.

Usually, workflow systems execute a workflow instance rigidly, not allowing
any deviation from the workflow definition at runtime. However, this rigid inter-
pretation may sometimes lead to a long waiting time, among other problems.

We therefore propose a model for workflow instance execution based on a no-
tion of workflow flexibilization. For example, the flexibilization mechanism allows
a workflow instance to proceed execution without waiting for the availability of
a resource or the value of a parameter. The mechanism can be interpreted as
a component substitution strategy, applied to workflow execution, where sub-
workflows and resources act as components.

Our strategy is to consider as an exception any situation not pre-defined
in the process structure that can be properly handled at runtime. We define
the flexibilization mechanism with the help of an abstract machine that adopts
triggers to specify state changes and instance flexibilization. Furthermore, we
describe workflows with the help of an extension of OWL-S, that accommodates
the necessities of the flexibilization mechanism.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 756–771, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Transactional Behavior of a Workflow Instance 757

This paper is organized as follows. Section 2 summarizes related work. Sec-
tion 3 presents some preliminary concepts for the understanding of the paper,
including a brief description of the flexibilization mechanism. Section 4 presents
the ontologies constructed to support the mechanism. Section 5 discusses the
transactional behavior of a workflow instance. Finally, Section 6 presents the
conclusions.

2 Related Work

The evolution of workflow systems towards less restrictive coordination ap-
proaches is discussed in [13]. Most of the earlier proposals for flexibilization
mechanisms suggest to dynamically change the workflow structure [3].

Rule-driven frameworks that support structural changes in a workflow, by
dictating how tasks can be inserted or removed from the workflow at runtime, are
presented in [10]. The flexibilization mechanisms described in [1][15] also offer the
possibility to include, remove or even stop activities during workflow execution.
The mechanisms proposed in our paper follow a different strategy by allowing
execution to proceed in the presence of incomplete or negative information, with
minimal user intervention.

The OPENflow system [9] offers two distinct flexibilization approaches: flex-
ibility by selection and flexibility by adaptation. Flexibility by selection allows
several paths to be included in the workflow description, but only one path is
chosen at runtime. Flexibility by adaptation leads to workflow adaptation, at
the instance level, when changes occur in the workflow structure at runtime
(inclusion of one or more execution paths). Flexibility by adaptation, however,
is used when, during runtime, a workflow instance is considered incomplete or
erroneous. Our approach does not cover flexibility by selection, but it achieves
flexibility by adaptation by using semantic information about workflow descrip-
tion to partly guide instance execution. Our proposal differs from the notion of
flexibility by adaptation in OPENflow in that we also consider the case where
an instance is delayed beyond some pre-specified time limit.

The flexibilization mechanisms in [8] account for the cooperation between
users and for the anticipation of task execution. This mechanism offers a special
transaction model for cooperative systems that deviates from the conventional
start-end synchronization model [2].

The construction of workflow schemas from a standard set of modeling con-
structs is proposed in [11]. This is partially done at design time, and completed at
runtime, according to selection, termination and workflow definition constraints,
which dictate how each fragment of work can be included in the workflow, under
what conditions the workflow instance can be terminated, and what conditions
must hold during workflow definition. Flexibilization is achieved, in this case,
by leaving workflow definition to be completed at runtime, according to the
specified constraints. To some extent, our mechanism for choosing alternatives
achieves a similar effect, as discussed in Section 3.



758 T.A.S.C. Vieira and M.A. Casanova

With respect to the transactional behavior of workflow instances, our work
proposes an execution model that guarantees that either all actions executed by
the instance terminate correctly or they are all abandoned, according to certain
transactional properties. In addition, the transactional behavior takes into ac-
count execution consistency in the presence of flexibilization. It is similar to WS-
Transaction Framework [6] [7], except that the latter focuses on Web services.

Lastly, the flexibilization mechanisms we propose bear some similarity to the
query relaxation strategy adopted in the CoBase system [4] and in the CoSent
system [5]. CoBase is a database system that uses the idea of cooperative queries.
When queries are submitted, CoBase analyzes a hierarchy of additional infor-
mation to enhance the query with relevant information. The information added
to the query is bounded by a maximum semantic distance from the informa-
tion present in the original query. This query modification mechanism is similar
to the strategy we propose to deal with negative or incomplete information. In
our proposal, the workflow description is enhanced with additional information
available in the workflow ontology, as discussed in Section 4.

3 Preliminaries

3.1 Basic Concepts

Following OWL-S [12], we will use the terms process and process instance, instead
of the terms workflow and workflow instance, from now on.

A process is a representation of a set of activities that are composed to reach a
common goal. A process instance represents the execution os a process. A process
is atomic if it is indivisible, and composite if it is a composition of two or more
processes, called subprocesses or component processes. A composite process is
defined with the help of control constructs, such as join, split and sequence.

An abstract process is a process that cannot be directly executed because it
does not have any associated implementation. Hence, an abstract process cannot
generate any process instance. By contrast, a concrete process has an associated
implementation and, consequently, may generate process instances.

A process may require resources to be executed. A resource may be physical or
logical and must be allocated to the process instance before it starts executing.

A process also has pre- and post-conditions. A pre-condition defines under
which conditions the process can be executed. We assume that the availability
of the necessary resources is an implicit precondition of a process.

3.2 A Brief Description of the Flexibilization Mechanism

The flexibilization mechanism we propose allows:

– the definition of a process to be completed at runtime, depending on execu-
tion data;

– the execution of a process instance to proceed even when some resource is
unavailable or when the value of a parameter is unknown.



Transactional Behavior of a Workflow Instance 759

The ontologies explained in the Section 4 guide the flexibilization mech-
anism to:

– select concretizations for abstract processes and resources;
– compute default values for the parameters;
– find alternative processes and resources, used when the original processes or

resources cannot be used;
– find processes to handle certain (types of) exceptions.

The flexibilization mechanism is based on the notion of exception, that is, a
situation that is not considered in the static process definition and that, once
registered with the mechanism, can be properly treated. Exceptions form a hi-
erarchy, as shown in Figure 1, where an exception at level n can only be reached
if an exception at level n-1 was reached, but could not be treated.

Exception

Termination
Timeout

Concretization
(of process or

resource)

Cancellation

Unknown
value

Resource
missing

Process
Substitution

Initialization
Timeout

Unknown
value

Fig. 1. Hierarchy of exceptions

At the first level of the hierarchy, we have four (types of) exceptions, namely:

initialization timeout exception: the system throws this exception when it
cannot initialize an instance because the value of a parameter is unknown
or because a required resource is unavailable, and the instance exceeded the
allowed initialization waiting time, included in the process definition. The
flexibilization mechanism treats this exception by selecting another process
for execution, if one is available;

termination timeout exception: the system throws this exception when the
instance cannot terminate within the allowed running time, included in the
process definition. The flexibilization mechanism treats this exception by
selecting another process for execution, if one is available;

concretization exception: the system throws this exception when it finds,
during instance execution, a reference to an abstract process or to an abstract
resource. The flexibilization mechanism treats this exception by finding a
concrete process or a concrete resource which is associated with the abstract
one;



760 T.A.S.C. Vieira and M.A. Casanova

cancellation exception: the system throws this exception when an atomic
process instance is aborted. The flexibilization mechanism treats this excep-
tion by running a process to undo the instance effects, if one is available,
before aborting the instance.

Under the initialization timeout exception, we have two second-level
exceptions:

unknown input value exception: the system throws this second-level excep-
tion when the flexibilization mechanism does not find a process to handle
the initialization timeout exception, and the exception was caused by an
unknown input parameter value. The flexibilization mechanism treats this
exception by trying to find default values for the unknown input parameters;

resource missing exception: the system throws this second-level exception
when the flexibilization mechanism does not find a process to handle the
initialization timeout exception, and the exception was caused by an un-
available resource. The flexibilization mechanism treats this exception by
trying to find alternative resources that are semantically equivalent to the
resources that could not be allocated.

Under the termination timeout exception, we have a second-level exception:

unknown output value exception: the system throws this second-level ex-
ception when the flexibilization mechanism does not find a process to handle
the termination timeout exception. The flexibilization mechanism treats this
exception by trying to find default values for the unknown output parame-
ters.

Under the unknown input value and the resource missing exceptions, we have
a third level exception:

process substitution exception: the system throws this third-level excep-
tion when the flexibilization mechanism does not find default values for the
unknown input parameters, or alternative resources for the unavailable re-
sources. The flexibilization mechanism treats this exception by trying to find
alternative processes.

In addition to the concept of exception, the flexibilization mechanism depends
on the concept of weighted semantic proximity, defined as a relationship between
pairs of objects, processes or resources, with an attribute representing the weight.
For instance, let p and p’ be two processes. We indicate that p’ is an alternative
process for p by defining a semantic proximity relationship between p and p’. The
weight of the relationship indicates the similarity of p’ and p. The flexibilization
mechanism will use such weights to find the best alternative for p. Note that, if
p’ substitutes p, then there must be a valid mapping between the parameters of
p and p’.

Concretizations of abstract processes and resources are similarly modeled.



Transactional Behavior of a Workflow Instance 761

Default values can be treated statically, by including them in the process
definition, or dynamically, through presupposition rules that take into account
the status of the process instance execution.

We say that an instance selected for execution by the flexibilization mechanism
is a flexibilization instance.

Finally, the subinstances of a given instance P are not directly defined by
the static structure of p. They are rather defined as those instances that are
under the control of P, after flexibilization. Instances that undo other instances
do not have superinstances and cannot suffer flexibilization. In this sense, the
flexibilization of an instance dynamically generates an instance tree.

4 Processes, Resources and Application Ontologies

The flexibilization mechanism we propose depends on additional information
represented by mean of two basic ontologies:

– pr, the central ontology of processes and resources, which is domain indepen-
dent. This ontology contains classes and properties that capture the concepts
of process and resource;

– lib, a library of process definitions and resource descriptions, which applica-
tions can reuse. This ontology contains instances of the classes and properties
defined at pr ontology.

The user may then define application processes, using the pr and the lib
ontologies, and organize them as a new namespace. In what follows, we will use:

– app, an ontology of application processes, defined using the pr and the lib
ontologies.

The pr ontology must allow the definition of: abstract and concrete processes;
atomic and composite processes; abstract and concrete resources; concrete pro-
cesses that implement abstract processes and the weight of this relationship;
which process(es) treat(s) the nitialization/termination timeout exception of a
process p; the execution cost of a process; the utilization cost of a resource; if
a resource is or is not available; the default value of process parameters; and
the parameter mappings between related processes. Since OWL-S covers many
of these aspects, we opted to define the pr ontology by extending OWL-S.

Figure 2 shows the composition of the pr ontology and how it relates to the
library of processes and resources and to the application ontology. It also presents
the extensions (classes and resources) added to each ontology. The namespaces
used in Figure 2 are (omitting the actual URIrefs):

process: namespace of the OWL-S process ontology
p-ext: namespace of the extended OWL-S process ontology
r: namespace of the OWL-S resource ontology
r-ext: namespace of the extended OWL-S resource ontology
pr: namespace of the pr ontology



762 T.A.S.C. Vieira and M.A. Casanova

Process-extended.owl
(p-ext)

ForAll e propriedades
beginTimeout/endTimeout
beginTimeoutTreatedBy/endTimeoutTreatedBy
canBeDelegated
flexibilize
defaultParameterValue
processUndo
costP

imports

Process.owl (OWL-S)
(process)

Resource-extended.owl
(r-ext)

AbstractResource
ConcreteResource
implementedBy/implementationOf
allocated
costR

imports

Resource.owl (OWL-S)
(r)

Relation_for_value,
ParameterMap,
ResourceMap
and properties

requires
requiredBy

appOntology.rules
and domain

dependent rules

imports imports

classes and
properties
definitions

rules
definition

imports

prOntology.owl
(pr)

Application
Ontology

(app)

imports

prLibrary.owl
(lib)

Fig. 2. pr ontology composition

lib: namespace of the lib library of processes and resources
app: namespace of the application ontology.

We refer the reader to [14] for the details of the pr ontology, since it is not the
focus of the paper. We just mention that, to define relationship weights, we used
ternary relations and created ontology rules to complement the definition with
information that could not be readily represented using OWL. We also observe
that, to clarify the semantics of OWL-S and the extensions we proposed, we
defined an operational semantic for OWL-S, based on the concept of an abstract
machine [14], briefly outlined the next section.

5 Transactional Model for Flexible Workflow Execution

This section presents the abstract machine and the transactional model that dic-
tates the way process instances are executed. The specification of an operational
semantic for OWL-S and its extensions through the definition of an abstract
machine (AM) is justified for two reasons:

– the abstract machine uses very simple concepts, and is therefore easy to
understand;



Transactional Behavior of a Workflow Instance 763

– the definition of the abstract machine can be made incrementally, through
successive extensions that incorporate new language constructs.

5.1 Abstract Machine Without the Flexibilization Mechanism

The abstract machine AM does not include the flexibilization mechanism and
consists of (see Figure 3):

– a Controller, responsible for instance management;
– an Active Triggers Manager, responsible for firing triggers. The triggers cap-

ture the semantics of atomic and composite processes, based on their control
constructs, and guide the state transitions during instance execution. The
Active Triggers Manager and the Controller exchange messages to guide
instance execution.

– a workspace area, responsible for maintaining process instances. Each process
instance P contains: the representation of the corresponding process defini-
tion p, called process ; a unique id, called instanceId ; the identification of its
superprocess instance, called superInstance; a tuple with the current state
and the associated timestamp; and a set of attributed values for the defined
parameters, called instance blackboard ;

– a log, responsible for registering the execution steps of the running instances.

Controller
Active

Triggers
Manager

messages

Instance1

...

AM (Abstract Machine)

Instancen

Workspace Area

process

instanceId

superInstance

(state,timestamp)

initTime

blackboard

Instance2

Log Area

Instance1 Log Instance2 Log Instancen Log

... ... ......
process

instanceId

superInstance

(state,timestamp)

initTime

blackboard

process

instanceId

superInstance

(state,timestamp)

initTime

blackboard

Fig. 3. Abstract machine (without the flexibilization mechanism)

When defining the AM , we assumed that a process can be selected for execu-
tion only when: (1) all input parameter values are known; (2) all preconditions
evaluate to true; (3) all required resources are available. The dataflow in OWL-
S is also unclear. This forced us to assume that, if a process p receives input
values from the parameters of another process p’, then p and p’ must have a
superprocess in common, i.e., they must belong to the same process hierarchy.
Moreover, in the case of multiple instances of the same process, to capture the
most recently terminated instance, each instance keeps the timestamp in which



764 T.A.S.C. Vieira and M.A. Casanova

the current state was reached. Finally, since the AM does not have strict control
over the atomic actions of an instance, it does not automatically undo the effects
of the abandoned actions (as in a database management system).

Figure 4 shows the states a process instance traverses. As depicted in the
shaded areas, a process instance is closed if and only if its state is Completed or
Aborted, and it is open if and only if its state is Initiated, Running or Prepared-
ToComplete.

PreparedTo
Complete

Aborted
initiate

RunningInitiated

open

complete

run

Completed

closed

doComplete

abort

abort

abort

Fig. 4. State transition diagram of an instance P (without extensions)

By transactional behavior we mean that either all actions of an instance ter-
minate correctly or all of them are abandoned and properly identified. This
transactional behavior of an instance in the AM is formalized as two properties.

Let P be a composite process instance:

Property 1: If P terminates in the Completed state, then all direct subinstances
of P also terminate in the Completed state.

Property 2: If P terminates in the Aborted state, then all direct subinstances
of P also terminate in the Aborted state.

Property 1 immediately implies that, if P terminates in the Completed state,
then all direct and indirect subinstances of P also terminate in that state (and
analogously for Property 2).

5.2 Abstract Machine Extended with the Flexibilization Mechanism

5.2.1 Components of the Extended Abstract Machine
Figure 5 sketches the extended abstract machine (EAM) that includes the flex-
ibilization mechanism.

The EAM contains a new component, the Ontology Manager, that is responsi-
ble for implementing the flexibilization mechanism and that exchanges messages
with the Controller.

In the EAM , each instance P keeps additional information: the set of process
subinstances of P; the instance type (if it is an instance executed in the predefined
order in the superprocess definition, or if it was generated by the flexibilization
mechanism, as explained later on); the default values for process parameters; the
resource substitutions performed; the resource concretizations performed; the
instance that caused the flexibilization of the current instance (if it is the case);
the process concretizations performed; and the parameter mappings between the
processes of related instances.



Transactional Behavior of a Workflow Instance 765

Controller
Active

Triggers
Manager

messages

Instance1

EAM (Extended Abstract Machine)

Instance2
Instancen

Workspace Area

Ontology
Manager

messages

Log Area

Instance1 Log Instance2 Log Instancen Log

... ... ......

...

process

instanceId

superInstance

{subInstances}

(state,timestamp)

pointer_original_p

pointer_flex_p

abstract_p

parameters_mapping

instanceType

initTime

{(parameter, default)}

{(original_r, substitute_r)}

{(abstract_r, concrete_r)}

blackboard

process

instanceId

superInstance

{subInstances}

(state,timestamp)

pointer_original_p

pointer_flex_p

abstract_p

parameters_mapping

instanceType

initTime

{(parameter, default)}

{(original_r, substitute_r)}

{(abstract_r, concrete_r)}

blackboard

process

instanceId

superInstance

{subInstances}

(state,timestamp)

pointer_original_p

pointer_flex_p

abstract_p

parameters_mapping

instanceType

initTime

{(parameter, default)}

{(original_r, substitute_r)}

{(abstract_r, concrete_r)}

blackboard

Fig. 5. Extended abstract machine (EAM)

Each instance P’ has a type defined as follows:

“temporal”: when P’ is related to a process which was selected to treat a
timeout exception raised by another instance;

“concretization”: when P’ is related to a concrete process which was selected
to treat a concretization exception raised by an abstract process found in
the superprocess definition;

“substitution”: when P’ is related to a process which was selected to treat an
exception that called for the substitution of a process;

“undo”: when P’ is related to a process which was selected to undo the ef-
fects of an aborted atomic instance (PreparedToAbort state), as a result of
a cancellation exception; and

“null”: when the instance P’ is related to a process p’ statically defined by the
control flow of the superprocess definition of p’.

In the above cases, we say that P’ is a flexibilization instance. If the exception
called for a process substitution, we say that P’ substituted P. We suppose that
any flexibilization process instance P’ can also be flexibilized, except for instances
which are undoing the effects of an atomic process instance which was aborted.

The pointer original p entry of P’ identifies the instance P for which the
instance P’ is executing; the entry pointer flex p of instance P refers to P’. If
the instanceType value of P’ is “null”, the pointer original p for P’ is also null.

Let P be an instance of a process p. In the presence of flexibilization, the
subinstances of P are not directly induced by the control structure of p. We
consider as subinstances of P those instances listed in the entry subInstances of



766 T.A.S.C. Vieira and M.A. Casanova

P. This entry is updated each time the instance suffers flexibilization. In other
words, flexibilization induces instance trees that are dynamically generated.

In the EAM , the triggers had to be redefined as follows:

– triggers must verify the current state of the subinstances registered in the
{subinstances} entry of an instance P. Indeed, recall that, in the EAM , the
subinstances of an instance P are the instances that in fact executed until
termination.

– triggers must consider that it is possible to undo atomic instances and, con-
sequently, composite instances.

– triggers responsible for completing the execution of an instance P must also
check if any subinstance of P terminated using default parameter values for
its output parameters.

The Controller of the EAM is also more sophisticated. For example, to find
parameter values in the same data flow, when instance P’ is the receiver of
the values of instance P, the Controller must: (1) traverse all the instances list
formed by the pointer flex p of instance P, until it reaches the last flexibilization
instance; (2) compare its timestamp with the timestamp of all other flexibiliza-
tion instances of P: (3) choose the most recently finished instance.

Note that, when an instance P is flexibilized by P’, the Controller must obey
the information about parameter mappings saved at instance P’.

The EAM also includes a log that registers information about instance ex-
ecution and instance flexibilization. The log saves the states reached during
instance execution, the input and output parameter values of the instance, the
concrete resources and processes used as implementations of the abstract re-
sources and processes found during instance execution, the default values used,
and the flexibilization instances adopted, together with the resources and pa-
rameter mappings between the original instance and the instance run as a result
of flexibilization.

5.2.2 State Transitions in the Extended Abstract Machine
Figure 6 shows the state transition diagram adapted to support flexibilization. It
has seven new states: BeginTimed-out, EndTimed-out, Skipped, PreparedToBy-
Pass, Forced, PreparedToAbort and Undone. The dotted arrows indicate that the
corresponding messages are processed by the Controller during the execution of
the superinstance of the instance P that had its state changed.

Let P be an instance of a process p. We explain the state transition diagram
in Figure 6 as follows.

The Controller moves P to the Initiated state when it processes the initiate
message for P.

The Controller may move P from the Initiated state to:

– Running, when it receives the run message for P, that signals that all pre-
conditions of p are satisfied.

– BeginTimed-out, when P reaches its initialization timeout limit.



Transactional Behavior of a Workflow Instance 767

in
it
ia

te
R

u
n
n
in

g
In

it
ia

te
d

c
lo

s
e
d

o
p
e
n

P
re

p
a
re

d
T
o

C
o
m

p
le

te

e
x
c
e
p
ti
o
n
T

re
a
tm

e
n
tP

ro
c
e
s
s
L
is

tF
o
u
n
d
,

e
x
c
e
p
ti
o
n
T

re
a
tm

e
n
tP

ro
c
e
s
s
L
is

tN
o
tF

o
u
n
d
,

s
u

b
s
ti
tu

te
P

ro
c
e

s
s
L

is
tF

o
u

n
d

,
s
u

b
s
ti
tu

te
P

ro
c
e

s
s
L

is
tN

o
tF

o
u

n
d

,
s
k
ip

ru
n

d
e

fa
u

lt
P

a
ra

m
e

te
rV

a
lu

e
F

o
u

n
d

,
s
u

b
s
ti
tu

te
R

e
s
o

u
rc

e
L

is
tF

o
u

n
d

b
e

g
in

T
im

e
o

u
tR

e
a

c
h

e
de
n

d
T

im
e

o
u

tR
e

a
c
h

e
d

e
x
c
e
p
ti
o
n
T
re

a
tm

e
n
tP

ro
c
e
s
s
L
is

tF
o
u
n
d
,

e
x
c
e
p
ti
o
n
T
re

a
tm

e
n
tP

ro
c
e
s
s
L
is

tN
o
tF

o
u
n
d
,

a
b
o
rt

A
b
o
rt

e
d

a
b
o
rt

d
e
fa

u
lt
P

a
ra

m
e
te

rV
a
lu

e
F

o
u
n
d

fo
rc

e

s
k
ip

a
b

o
rt

C
o
m

p
le

te
d

d
o

C
o

m
p

le
te

u
n
d
o

d
o
A

b
o
rt

d
e

fa
u

lt
P

a
ra

m
e

te
rV

a
lu

e
N

o
tF

o
u

n
d

c
o

m
p

le
te

a
b

o
rt

B
e
g
in

T
im

e
d
-o

u
t

E
n
d
T

im
e
d
-o

u
t

P
re

p
a
re

d
T
o

B
y
P

a
s
s

P
re

p
a
re

d
T
o

A
b
o
rt

U
n
d
o
n
e

F
o
rc

e
d

S
k
ip

p
e
d

F
ig

.
6
.
M

o
d
ifi

ed
st

a
te

tr
a
n
si
ti
o
n

d
ia

g
ra

m



768 T.A.S.C. Vieira and M.A. Casanova

The Controller may move P from the BeginTimed-out state to:

– Skipped, when the Ontology Manager finds a process p’ that handles the
initialization timeout exception for p, or if there is no way to execute P
and the Ontology Manager finds no process p’ that handles the initialization
timeout exception for p.

– Initiated, when the Ontology Manager finds default parameter values for the
missing value parameters, if this was reason for not starting the execution
of P, and when the Ontology Manager finds alternative resources that can
be allocated to P, if this was reason for not starting the execution of P.

The Controller may move P from the Running state to:

– PreparedToComplete, when it receives the complete message for P, that sig-
nals that P wishes to terminate, and it detected that no conflict occurred
because of a possible use of default parameter value when P was in the
BeginTimed-out state.

– PreparedToAbort, when it receives the abort message for P, that signals that
P must be aborted, or when it receives the complete message for P, but it
detects that a conflict occurred because of a possible use of default parameter
value when P was in the BeginTimed-out state.

– EndTimed-out, if P reaches its termination timeout limit.

The Controller may move P from the PreparedToComplete state to:

– PreparedToAbort, when at least one of the subinstances of P reached the
PreparedToAbort state.

– Completed, when all subinstances of P reached the Completed state or the
Forced state.

The Controller may move P from the EndTimed-out state to:

– PreparedToAbort, when it receives the abort message for P, when the Ontol-
ogy Manager finds a process p’ that handles the termination timeout excep-
tion for p, and when the Ontology Manager finds no process p’ that handles
the termination timeout exception for p and P cannot use default values for
its output parameters.

– PreparedToByPass, when the Ontology Manager finds no process p’ that
handles the termination timeout exception for p and no default values for
the missing output parameters of P.

– Forced, when the Ontology Manager finds default values for the missing
output parameters of P.

The Controller may move P from the PreparedToByPass state to:

– Forced, when the Ontology Manager finds default values for the missing
output parameters of P among the output parameters of the superinstance
of P.

– PreparedToAbort, otherwise.



Transactional Behavior of a Workflow Instance 769

The Controller may move P from the PreparedToAbort state to:

– Undone, when P is an atomic instance and the Ontology Manager finds at
least one process p’ that handles the cancellation exception for p, the instance
P’ of p’ thereby created executes successfully and without flexibilization;

– Aborted, otherwise.

5.2.3 Transactional Behavior in the Extended Abstract Machine
We can also define properties that capture transactional behavior under flex-
ibilization. Such properties indeed guided the definition of the triggers in the
extended abstract machine.

Let P be a composite process instance:

Property 1’: If P terminates in the Completed state, then all direct subin-
stances of P terminate in the Completed or Forced states.

Property 2: If P terminates in the Aborted state, then all direct subinstances
of P terminate in the Aborted, Undone or Forced states and at least one
subinstance, direct or not, of P terminates in the Aborted state.

Property 3: If P terminates in the Undone state, then all direct subinstances
of P terminate in the Undone or Forced states.

Property 4: If P terminates in the Forced state, then all direct subinstances of
P terminate in the Aborted or Undone states.

Note that, if P is an instance of a composite process, it may terminate in
the Abort or Undone state, depending on the termination of its subinstances,
as defined in Property 2 and in Property 4, respectively. If all subinstances of P
terminated in the Undone or Forced states, then P also terminates in the Undone
state.

6 Conclusions

Our approach to workflow flexibilization is based on an exception handling mech-
anism that allows the execution to proceed when otherwise it would have been
stopped. The proposal was cast as a set of extensions to OWL-S, and is based on
process and resource ontologies that capture the semantic information needed
for the flexibilization mechanism. In this paper, we focused on the transactional
behavior of a workflow instance, in the sense that it guarantees that either all
actions executed by the instance terminate correctly or they are all abandoned.

As for future work, we may suggest to enhance the flexibilization mechanism
with new features that: (1) consider environmental variables that change value
independently of instance execution; (2) include the temporal analysis of lower
cost process alternatives; (3) allow instance execution to be redone when conflicts
are detected as consequence of the use of default parameter values.

Acknowledgment

This work was partially supported by CNPq, under grants 140600/01-9 and
550250/05-0.



770 T.A.S.C. Vieira and M.A. Casanova

References

1. Ilia Bider and Maxim Khomyakov. Is it Possible to Make Workflow Management
Systems Flexible? Dynamical Systems Approach to Business Processes. In Pro-
ceedings of the 6th International Workshop on Groupware (CRIWG’ 2000), pages
138-141, Madiera, Portugal, October 2000.

2. G. Canals, C. Godart, F. Charoy, P. Molli, and H. Skaf. COO Approach to Sup-
port Cooperation in Software Developments. In IEEE Proceedings in Software
Engineering, volume 145, pages 79-84, April/June 1998.

3. Fabio Casati, Stefano Ceri, Barbara Pernici, and Giuseppe Pozzi. Workflow Evo-
lution. In Bernhard Thalheim, editor, International Conference on Conceptual
Modeling / the Entity Relationship Approach (15th ER’ 96), pages 438-455, Cot-
tbus, Germany, October 1996. Lecture Notes in Computer Science.

4. Wesley W. Chu, Q. Chen, and M. Merzbacher. Studies in Logic and Computation
3: Nonstandard Queries and Nonstandard Answers, volume 3, chapter CoBase: a
Cooperative Database System, pages 41-72. Oxford University Press, New York,
1994. Edited by R. Demolombe and T. Imielinski.

5. Wesley W. Chu and Wenlei Mao. CoSent: a Cooperative Sentinel for Intelligent
Information Systems, March 2000. Computer Science Department - University of
California, LA.

6. Tom Freund and Tony Storey. Transactions in the World of Web
Services, Part 1: an Overview of WS-Transaction and WS-Coordination.
http://www-106.ibm.com/developerworks/library/ws-wstx1/ , August 2002.
IBM, DeveloperWorks.

7. Tom Freund and Tony Storey. Transactions in the World of Web
Services, Part 2: an Overview of WS-Transaction and WS-Coordination.
http://www-106.ibm.com/developerworks/library/ws-wstx2/ , August 2002.
IBM, DeveloperWorks.

8. Daniela Grigori, François Charoy, and Claude Gobart. Flexible Data Management
and Execution to Support Cooperative Workflow: the COO Approach. In Proceed-
ings of the Third International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS 2001), pages 124-131, April 2001.

9. J. J. Halliday, S. K. Shrivastava, and S. M. Wheater. Flexible Workflow Manage-
ment in the OPENflow System. In Proceedings of the Fifth IEEE International
Enterprise Distributed Object Computing Conference (EDOC ’01), pages 82–92.
IEEE, September 2001.

10. G. Joeris. Defining Flexible Workflow Execution Behaviors. In Enterprise-wide
and Cross-enterprise Workflow Management - Concepts, Systems, Applications,
GI Workshop Proceedings - Informatik ’99, pages 49-55, 1999. Ulmer Informatik
Berichte Nr. 99-07.

11. Peter Mangan and Shazia Sadiq. On Building Workflow Models for Flexible Pro-
cesses. In ACM International Conference Proceeding Series - Proceedings of the
Thirteenth Australasian Conference on Database Technologies (ADC’2002), vol-
ume 5, pages 103-109, Melbourne, Australia, January/February 2002. Australian
Computer Society, Inc. Darlinghurst.

12. David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott,
Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry
Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Seman-
tic Markup for Web Services. W3C Member Submission, November 2004.
http://www.w3.org/Submission/2004/SUBM-OWL-S20041122/Overview.html .

http://www-106.ibm.com/developerworks/library/ws-wstx1/
http://www-106.ibm.com/developerworks/library/ws-wstx2/
http://www.w3.org/Submission/2004/SUBM-OWL-S20041122/Overview.html


Transactional Behavior of a Workflow Instance 771

13. Gary J. Nutt. The Evolution Toward Flexible Workflow Systems. In Distributed
Systems Engineering, volume 3, pages 276-294, December 1996.

14. Tatiana A. S. C. Vieira. Execução Flex́ıvel de Workflows. PhD thesis, Department
of Informatics - Pontifical Catholic University of Rio de Janeiro, Brazil, Rio de
Janeiro, RJ - Brazil, August 2005. In Portuguese.

15. Mathias Weske. Flexible Modeling and Execution of Workflow Activities. In Pro-
ceedings of the Thirty-First Hawaii International Conference on System Sciences,
volume 7, pages 713-722, January 1998.



An Open Architecture for Ontology-Enabled

Content Management Systems:
A Case Study in Managing Learning Objects

Duc Minh Le1 and Lydia Lau2

1 Department of Computing, Imperial College London, 180 Queen’s Gate London
SW7 2AZ, U.K.

dmle@doc.ic.ac.uk
2 School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

llau@comp.leeds.ac.uk

Abstract. An important goal of a content management system (CMS)
is to acquire and organise content from different data sources in order
to answer intelligently any ad-hoc requests from users as well as from
peer systems. Existing commercial CMSs address this issue by deploy-
ing structured metadata (e.g. XML) to categorise content and produce
search indices. Unfortunately, these metadata are not expressive enough
to represent content for sophisticated searching. This paper presents an
open architecture framework and a Java-based reference implementation
for Ontology-enabled Content Management System. The reference im-
plementation uses an open-source CMS called OpenCMS, the Protégé’s
OWL library, and RacerPro reasoning engine. The implemented system
is a web-based management system for learning objects which were de-
rived from the course and instructional materials used in several post-
graduate taught courses. We believe that our OeCMS architecture and
implementation would provide a strong platform for developing semantic
web protals in general.

1 Introduction

A content management system (CMS) provides an integrated environment for
an organisation to develop and manage presentable content in a wide variety
of formats. A primary goal of a CMS is to automatically acquire and organise
the content from different sources in order to answer intelligently any ad-hoc
requests from users as well as from other peer systems. To achieve this, the
following challenges would need to be addressed [13] [7]:

– To provide an extensible technology framework for connecting to and ma-
nipulating heterogeneous data sources; such as relational databases, web
contents, documents as well as legacy contents

– To analyse, categorise and integrate (i.e. merge or map) contents in their
corresponding domain contexts to reveal semantic structures

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 772–790, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Open Architecture for Ontology-Enabled Content Management Systems 773

– To formalise these semantic structures using some form of descriptive rule
set and serialise them in hierarchical concept repositories

– To provide intelligent access interfaces appropriate for people and/or com-
puter software (agents) to search and make use of the underlying ontologies.

In this paper, we propose an open architecture for an ontology-enabled CMS
(OeCMS) which is an attempt to address the challenges outlined above. Since
ontology helps unambiguously define the meaning of things in terms of formal
concepts with clearly defined relationships [10], it would serve well as a common
integrator for the different types of content in a CMS. This framework could
also be used for developing semantic web portals in general as their underlying
concept is very similar to the combination of semantic web technologies and
CMS. We will clearly show in this architecture how the required semantic web
components could be developed and/or integrated to the content management in-
frastructure. The reference implementation of this architecture uses mostly Java
open-source technologies at the core layer. This implementation was based on a
case study for managing learning objects in a number of selected taught post-
graduate courses at the University of Leeds. The rest of the paper is structured
as follows. Section 2 reviews the related work in the areas of content management
system and semantic web portals. Section 3 characterises an OeCMS in terms
of a set of requirements and design criteria. This is then followed by Section 4
which discusses the general OeCMS architecture. Section 5 presents a reference
implementation in Java with a set of essential functions. Finally, Section 6 con-
cludes the paper.

2 Related Work

This section will highlight the current development in three main areas which
are relavant to our research.

Content Management System. A content management system [5] is designed
to support a content management cycle which includes the creation and collec-
tion of content, the publication of content for access by users and/or other sys-
tems and the management of these content. An important glue for these different
CMS components is content metadata which are extracted (semi-)automatically
from the content. However, a major limitation of the existing CMSs is inad-
equate support for expressing this metadata to allow for accurate retrieval of
content. Recent research work have shown that ontology would provide a viable
solution to this problem because it can help define the formal specification of
a problem domain [10]. The most recent work which bear some similarities to
ours is Infoflex [8]. This system also used semantic web technologies in content
management systems but mainly for integrating existing CMSs while answering
content search requests. This differs from our approach in that we propose that
each CMS system should adopt an open architecture to tackle ontology-enabled
content management.



774 D.M. Le and L. Lau

Semantic Web Portals. Another related area is the development of a Se-
mantic Web Portal (SWP). In essence, a semantic web portal [19] is a content
management system to the extent that it also needs to acquire, organise and
distribute information to interested users. A SWP, however, differs in that it
deploys semantic web technologies such as ontology and related tools in order
to improve the representation of content metadata and, therefore, information
retrieval. Two recent work in this area have proposed a system infrastructure
[24] and an architecture [19] for SWPs. In [19], a SWP is viewed as an enrich-
ment of a three-layer web-based information portal by adding Semantic Web
technologies as a sub-layer of its ”Grounding Technologies” layer. However, it
is not clear from this proposal how this addition would gel in with the existing
portal technologies. Also, this paper did not discuss if any changes to its in-
formation processing (i.e. middle) layer would be needed in order to utilise the
semantic web technologies. In [24], a detailed technical infrastructure for SWPs,
called Semantic Web application server, was discussed. The main advantage of
this architecture lied in its modularity which considered all software modules
as self-contained components with a standard system interface. This KAON
SERVER [25] application server was implemented in Java based on JBoss [9]
open-source application server. However, this system only focussed on function-
alities at the infrastructure layer and did not address the content management
cycle. Although the proposed system in [24] represents an alternative application
server component to that of our architecture, its all-in-one design makes it less
flexible compared to our approach (see Section 5.1).

Web-Based Learning Systems. These represent the class of e-learning sys-
tems that cover the scope of our case study. These systems may tackle a range
of issues including the delivery of instructional materials and the management
of learning objects about students and assessment. Research in this area have
begun exploring the use of ontology for describing these learning objects. It was
argued that ontology can help improve the representation and organisation of
teaching resources and student profiles [20] [23] [26]. However, these research
lacked openness in their underlying technical platforms.

In brief, no research work reported so far in the literature have explored the
design and development of semantic web portals from the perspective of a content
management system. We argue that it is advantageous to follow this approach
given the similarities between these portals and CMSs and that it is possible
to develop the semantic web extensions for the content management cycle in a
CMS.

3 Requirements and Design Criteria of an
Ontology-Enabled CMS

As suggested earlier, the OeCMS aims to improve the search results by extend-
ing the capability of a CMS with semantic web technologies. Hence, it should



An Open Architecture for Ontology-Enabled Content Management Systems 775

meet the requirements of the traditional CMS and those of the Semantic Web
technologies.

3.1 Requirements

The main requirements of an OeCMS are:

– Multiple representation [24] to support multiple ontology languages (e.g.
RDF and OWL Lite/DL/Full [2]).

– Semantic content syndication to (semi-)automatically acquire contents
from different data sources, extract the key concepts and establish the rela-
tionships between these concepts.

– Ontology Mapping [24] which is a pre-requisite of semantic content syn-
dication. This is a fast-evolving and challenging research area of ontology
which aims to achieve some degree of automation in matching and merging
ontologies from potentially different but overlapping domains.

– Integrated ontology engineering method which consists of techniques
and tools that allow the CMS development team to identify, design and
build a knowledgebase for a problem domain and to seemlessly deploy and
maintain this knowledgebase in the system.

– Integrated access to harness the expressiveness of semantic content for the
purpose of producing system interfaces (e.g. for navigation or searching) that
can greatly increase the accuracy and relevancy of the requested information
from both users and peer systems.

– Ease of use [24] to provide at least a compatible level of ease-of-use of the
ontology interface for existing users of an CMS.

– Inferencing and Verification [24] which are two primary functionalities
of the ontology reasoning engine in the OeCMS. Through reasoning, the
system is able to search the knowledgebase in a finite time for instances
matching a query. Also through reasoning, the system is able to compute
any inconsistencies or anomalies that exist in the ontology.

– Access Control and Versioning [24] to manage multiple user access; to
detect and monitor user’s access to content documents and the knowledge-
base. While access control to content documents is a built-in feature of the
underlying CMS, it still remains an open quesion as to how to do the same
for the knowledge-base. Ontology versioning is a background process for sup-
porting the evolution of an ontology knowledgebase. Different versions of the
knowledgebase are maintained persistently to allow for easy roll-back to a
previous version when needed.

3.2 Design Criteria

Since ontology and related tools are continuously evolving, it is important to
have an adaptable OeCMS architecture which can scale well with changes. The
following list summarises the main criteria ([15] [24]) of such a design:



776 D.M. Le and L. Lau

– Modularity. The system is component-based with self-contained software
modules to allow for maximum development and maintenance flexibility.

– Interoperability. The ability to communicate with other systems via open-
standard protocols such as XML [2], Web Service Definition Language [6],
OWL-S [21], and Description Logic Implementation Group (DIG) for ontol-
ogy reasoning [4].

– Manageability. The ability to streamline the management of content, on-
tology and system functionalities.

– Scalability. The ability to cope with an ever-increasing number of requests
and an increasing demand of resources (e.g. processing, storage) without
major changes to the architecture.

– Integrability. The ability to upgrade the system with new functionalities
without major changes to the overall architecture.

4 An Open Architecture for Ontology-Enabled CMS

The proposed OeCMS, see Figure 1, is based on a layered approach to clearly
define the responsibilities and services of each distinct class of components. The
clear advantages of this layering are modularity, interoperability and easy inte-
gration. The following sub-sections will discuss each layer in greater detail.

4.1 The Web Interface Layer

This layer provides a uniform web-based interface for users to access and manage
both content documents and their ontology-enabled semantics. The web tech-
nologies involved, e.g. HTML/XML and client-side scripting, should conform to
W3C standards [33]. The major technical challenge at this layer is in the building
of a dynamic and user-friendly view of an ontology using the rather restrictive
set of browser technologies (e.g. HTML and Javascript). The difficulty lies in the
ability to draw an incremental picture of the ontology in order to hide from the
user the complexity inherent in the many-to-many relationships between onto-
logical concepts. A diagramatic view of a modest ontology is sometimes hard for
a novice user to understand. In addition to the use of HTML/Javascript, several
emerging technologies such as TouchGraph [30] and Formal Concept Analysis
[11] have been proposed as alternatives for the ontology view component of this
layer. However, these tools require browser plug-ins (e.g. Java Applet) which are
not always accessible to the users.

4.2 The Semantic Content Management Layer

This layer consists of two main components: content management and ontology
management. The content management component provides functionalities to
support the four main phases of a typical content management cycle [5]: (1)
create content (2) publish content (3) access content (from user or other systems)
and (4) management content. Each phase in this cycle is supported by one or
more primitive ontology management functions. The primitive functions shown



An Open Architecture for Ontology-Enabled Content Management Systems 777

Fig. 1. The OeCMS Architecture

in Figure 1 are not meant to be exhaustive but they form the core of the ontology
management:

– map: when a content document is defined or uploaded to the system, one or
more ontology instances are created and mapped to elements of this docu-
ment. A typical mapping technique is to store the url of a content document
with each ontology instance defined for that document so that the system
can later retrieve all associated content documents for a given set of ontology
instances. It is worth noting that here we define a generic map function for
all types of source documents including raw (typically binary) and (semi-
/un)structured. Although the techniques for (semi-/un)structured types are
well documented (e.g. [1] [17] [18] [22]), those for raw type remain largely
unexplored.



778 D.M. Le and L. Lau

– retrieve: retrieves the ontology instances related to a content document so
that the system can automatically annotate the document’s view with addi-
tional information.

– annotate: this function produces a component view of related ontology in-
stances to a content document. This function depends on the retrieve func-
tion to access information about the properties of the ontology instances.

– search: this important function searches the ontology knowledgebase in the
”Data Management” layer for instances matching a specific criterion. This
function naturally depends on retrieve and annotate to generate the results.

– create/edit/delete/commit: these are the standard functions for maintaining
the ontology knowledgebase. They can be applied to all types of ontological
objects including concept, property and instance.

To increase modularity, these primitive functions rely on the manager compo-
nents of the core layer for detailed algorithmic implementations. The next sub-
section will discuss the structure of the core layer which enables this modularity.

4.3 The Core Layer

This core layer has three basic sub-layers:

– operating system interface: this sub-layer implements the basic system
functionalities (e.g. creating network sockets, accessing local/networked files,
etc.) and make them available as service to upper layers.

– application server: this sub-layer represents the environment in which an
OeCMS can easily be deployed and managed. This layer leverages the exist-
ing application servers many of which are open-source (e.g Tomcat [28] and
JBoss [9]). In practice, the operating system interface may be implemented
as part of this sub-layer.

– content management engine: supports both content and ontology man-
agement functionalities of the semantic content management layer. This en-
gine is typically implemented as a bare-bone CMS system which provides
a CMS API for developers access to content management functionalities.
More importantly, it must support the deployment of an ontology API, an
ontology reasoner and a set of custom-built ontology management functions:

ontology API: implements the state-of-the-art ontology language specifi-
cations (e.g. RDF/OWL) and provides developers with the functionalities
needed to design, develop and test ontologies. This API also provides a
standard programming interface for interacting with the ontology reasoner.

ontology reasoner: implements the logics behind ontology languages and to
provide the facility needed for answering such complex queries as ’Find all
lecturers who teach subject Information System Enginering in 2005 ’. Note
from Figure 1 that the separation of ontology reasoner from other core sub-
layers is only logical to reflect the fact that there are two possible methods of
integrating a reasoner engine to the core layer: (1) as an independent appli-
cation accessible via a network programming interface (e.g. RacerPro [12])



An Open Architecture for Ontology-Enabled Content Management Systems 779

and (2) as an embedded software component accessible via a programming
interface (possible with future reasoners).

ontology management components: are implemented as a set of managers
and component classes. These software components are not provided by the
CM engine and, thus, developed as plugged-in modules of this engine. Figure
1 shows the dependencies of these components on the core sub-layers.

• Search Manager: this is a self-contained search component that encapsu-
lates the different ontology-related search algorithms. The main objective
of this component is to perform an integrated search which leverages the
powerful text expression provided by existing text-based search and the
reasoning capability provided by ontology language.

• Ontology Manager: manages the run-time cycle of an ontology knowl-
edgebase. For example, this component is responsible for loading the
knowledgebase and controlling run-time application access to ensure the
the knowledgebase integrity.

• Reasoner Manager: is responsible for communication with the ontology
reasoner via a standard query interface such as DIG. In particular, the
reasoner manager defines standard function calls for instructing the rea-
soner engine to load a given ontology and for subsequently executing an
ontology query on the reasoner.

• View Manager: is responsible for dynamically generating the web inter-
faces for ontology-based and content-based tasks.

• Component Classes: these are atomic classes that are generated (either
through coding or code engineering) to encapsulate the state and be-
haviours of the primitive domain entities. An example of a component
class would be Department which represents the department concept in
the knowledge-base.

4.4 The Data Management Layer

This is the bottom layer of the architecture which is responsible for database
and/or file access. This layer provides a common access interface for both con-
tent base and ontology knowledgebase. The content-base is typically stored in
a relational database for easy management and querying, whilst the ontology
knowledgebase can be serialised into a database or to a file for convenient re-use
by other systems.

5 A Reference Implementation in Java

The OeCMS architecture discussed in Section 4 was used in developing a web-
based system, called WOICMS, for managing learning objects metadata at the
University of Leeds. This section will discuss this prototype implementation
which demonstrates the performance of the essential semantic content manage-
ment functions of the OeCMS architecture (see Section 4.2). The prototype
requirements are:



780 D.M. Le and L. Lau

– the creation of a learning-object ontology for teaching materials used in a
number of selected courses

– the development a web-based navigation interface assisted by the learning
object ontology

– the development of two ontology-integrated search methods based on the
learning object ontology

The choice of an implementation platform will be explained first because this dic-
tates the development environment and deployment strategy for the WOICMS
prototype. This is then followed by separate sub-sections on the implementation
for each of the above requirements.

5.1 The Java-Based Implementation Platform

The implementation platform consists of the following software components
which form the core layer of the OeCMS architecture: the application server
with its operating system interface, the CMS API, the ontology API and the
reasoner engine. Again, the design criteria for this platform is openness so that
it can be used not only for adding new functions to the prototype in later stages
but also for developing semantic web protals in general. We decided to use Java
as the base platform which supports the following:

– Tomcat as an open-source application server and operating system interface
– OpenCMS [32] as an open-source CMS engine (deployed in Tomcat)
– Protégé/OWL [14] as an open-source ontology development API
– RacerPro [12] as the DIG-compliant reasoner engine

The combination of OpenCMS and Tomcat provides a favourable technical in-
frastructure (compared to others such as Zope [31]) because it naturally supports
the deployment of the ontology development tool. In addition, the deployment
of OpenCMS as a web application in Tomcat provides an extra, infrastructure-
level modularity. We used Protégé-OWL plug-in which allows the developers to
develop and test concepts and instances in OWL-DL. This also provides an API
for writing Java code to manage ontology and to interact with RacerPro through
a TCP-based programming interface called JRacer. The RacerPro engine pro-
vides OWL-based inference and verfication services through its DIG-compliant
programming interface.

5.2 The WOICMS Implementation

Having concluded an implementation platform, let us now briefly discuss the
development of the essential functions of the WOICMS system prototype using
this platform. Firstly a virtual site was created in OpenCMS for the WOICMS’s
application space which represents the semantic content management layer of
the OeCMS architecture. Next the manager and component classes of the core
layer and the management functions of the semantic content management layer
were developed using the OpenCMS and Protégé-OWL APIs. The manager and



An Open Architecture for Ontology-Enabled Content Management Systems 781

component classes were deployed to OpenCMS, whilst the semantic content man-
agement functions were developed as JSP pages and deployed to the WOICMS
virtual site.

Note also that each web page presented to the user at the web interface layer is
generated dynamically by a functional JSP page at the semantic content manage-
ment layer. At its final processing stage, this JSP page invokes the appropriate
ViewManager’s methods to produce the component views for the required web
page from a set of pre-defined HTML/Javascript templates. A template can ei-
ther be specifically tailored to one web page or be a generic view component
such as URL link, list box, text box, table and the like. The decomposition of
our templates down to the HTML-tag level allows us to conveniently annotate
individual view components of a result web page with ontology-enabled content.
Refer to Section 5.4 for an examplary use of templates.

5.3 Developing the Learning Object Ontology

The domain for the learning object ontology covered information used in a num-
ber of selected postgraduate taught courses. For each course, we were interested
in knowing about its syllabus, teaching staff, instructional materials and ref-
erences to other relavant resources. Course materials included web pages and
binary files such as Powerpoint slides and Word documents. The preliminary
design of the learning object ontology was carried out in the Protégé ontology
editor tool [16] using the OWL-DL language as it provides more expressive power
over its predecessors. Figure 2 shows the conceptual view of this ontology. For
brevity, the super-parent concept, ModuleElement, is not shown in this figure.
Let us take the relationship set between Reference and its sub-concepts as an
example. This set is characterised by the following rules:

– A Reference instance must be of type PrintedPublication,
OnlinePublication or HybridPublication (i.e. both printed and online)

– A Reference instance may contain links to a number of other reference
instances

– Book and Journal are disjoint sub-types of Publication, i.e. a Book instance
is distinctively different from all other Journal instances.

Using the DL-based syntax [3], this set of inter- and subsumed relationships can
be defined in the Protégé-OWL editor as follows (� implies necessary and ≡
implies necessary and sufficient):

Reference � ModuleElement

� (∃ belongsToModuleSkeleton)

� (∃ authoredBy Author)

� (∃ hasReferenceReference)

Publication � Reference

Publication ≡ OnlinePublication � PrintedPublication

� HybridPublication



782 D.M. Le and L. Lau

OnlinePublication � Publication � (∃ webAddressWebAddresss)

PrintedPublication � Publication � (∃ publisher PublishingHouse)

HybridPublication ≡ OnlinePublication � PrintedPublication

Book � Publication � (¬ Journal)

Journal � Publication � (¬ Book)

Fig. 2. The Conceptual View of Learning Object Ontology

After the initial design, the LearningObject ontology was serialised into a file
using the RDF/XML syntax and later deployed in OpenCMS. At application
start-up, the ontology file would be pre-loaded into memory and also onto the
RacerPro server. Ontology instance(s) were created and mapped to each content
document through the ontology editor interface in Figure 3. Each editor’s view
is dynamically generated by the ViewManager for an ontology instance of a given



An Open Architecture for Ontology-Enabled Content Management Systems 783

Fig. 3. The Web-Based Ontology Editor

concept. In this example, the ontology instance is titled ’Information Modelling’
and the concept is ModuleSkeleton. A useful feature of the editor is that the
view component of an object-type property is generated with a set of Javascript-
enabled controls which are used to manage the property’s range.

5.4 Ontology-Assisted Navigation

A practical and widely used method to visualise an ontology using the current
web browsers technologies is to render the ontology subsumption hierarchy as
a tree and uses it to assist with content navigation. Figure 4 illustrates such
an interface developed in this project. Technically, this interface is consisted
of two frames working in coordination. The left-frame contains two naviga-
tion controls: (1) a concept search box which helps retrieve a concept’s def-
inition from the knowledgebase and (2) an ontology tree to guide user’s in-
put. Actions performed on the left-frame are processed by the corresponding
JSP pages at the server who invoke the appropriate methods provided by the
manager classes at the core layer to produce the result view. This result view
is then pushed back to the right-frame for display. The main advantage of
using a frame-based design for this interface is the significant reduction in
response time by avoiding the re-contruction of the ontology tree everytime
a new web page is displayed. The sequence diagram illustrated in Figure 5



784 D.M. Le and L. Lau

Fig. 4. The Ontolog-Assisted Navigation Interface

Fig. 5. The Sequence Diagram for Ontology-Assisted Navigation

explains the interaction between different components in creating the ontology
tree:

– upon receiving a request to view the ontology, the OntologyVisualiser.jsp
page invokes the OntManager.openKB() method to load the OWL-DL on-
tology (LearningObject.owl) into memory (this is performed once)



An Open Architecture for Ontology-Enabled Content Management Systems 785

– the OntologyVisualiser.jsp then instantiates a singleton object of the
class KBTreeViewHelper with the loaded LearningObject ontology. This is
followed by an invocation of the KBTreeViewHelper.parseTree() method
which recursively traverses the ontology’s sub-sumption hierarchy and con-
structs the corresponding tree view as shown in the left-frame of Figure 4.
This tree is rooted at the owl:Thing concept which is the default parent of
all OWL concepts.

– the OntologyVisualiser.jsp retrieves the ontology tree view and calls the
ViewManager.parseSingleDimTemplate() method which operates on the
the page template of the left-frame to produce the final view before pushing
it back to the client’s browser for display

5.5 Ontology-Integrated Search

The motivation behind ontology-integrated search are the capability gaps be-
tween the native ontology search and reasoning and text-based search. The first
gap is between the rather restrictive text-matching facility currently supported
by ontology search and the rich regular expression provided by text-based search
methods (e.g Lucene [27]). The second gap is between the lack of support for a
formal (i.e. unambiguous) definition of search queries in text-based search and
the reasoning capability of the ontology language. Therefore, ontology-integrated
search methods were devised to bridge these gaps by leveraging:

– the expressiveness of the ontology language for designing formal search queries
– the reasoning capability of the ontology language for defining a semantic

search scope for content documents
– the rich regular expression of text-based search to retrieve the relavant con-

tent documents from the semantic search scope

In our project, two ontology-integrated search methods were implemented
(refer to Table 2 for their psuedocodes):

– Guided search: has an incremental design interface for generating on-the-
fly RacerPro’s queries in nRQL [29] language (refer to Table 1 for an exam-
ple). The result of executing this query on the reasoning engine produces a
semantic-search scope in which text-based search is performed. This method
uses RacerPro and the Lucene search API (included in the OpenCMS API)

– Parameterised search: the query interface uses the simple text-based
search provided by the ontology API to locate a branch (i.e. a concept and
its sub-concepts) of the ontology sub-sumption tree to scope the text-based
search that follows. This method uses the Protégé and Lucene search API

We evaluated the usefulness of these two search methods by uploading the con-
tents of three courses web sites on to the system. Based on the overall knowledge
about these courses, we then designed a set of 18 query pairs for 18 different
query requirements. Each pair had a query in nRQL language and a query in
Lucene query format both seeking answer for the same requirement. The query



786 D.M. Le and L. Lau

Table 1. An Example of Evaluation Queries

Integrated Search Content Search

- define the search scope using nRQL query:

(retrieve (?ModuleSkeleton
?Topic ?Reference )
(and (?ModuleSkeleton |ModuleSkeleton|)
(?ModuleSkeleton ?Topic |discussTopic|)
(?Topic ?Reference |hasReference|)))

- search content documents using text expres-
sion ”*SQL*”

Use the following text expres-
sion to search:

’module’ AND
(’topic’ AND "*SQL*")

- The Guided Search Interface

requirements were chosen to have different levels of complexity. For example, the
query pair shown in Table 1 answers to the requirement Find all course modules
that discuss topics about SQL?. Also illustrated in this table is the guided search
interface which defines the scope of the semantic search. This interface has two
parts: (1) the top part, which covers steps 1 and 2, is a wizard-like dialog which
helps the user design an nRQL query for the search scope and (2) the bottom
part (step 3) has a text field for entering an optional text expression for the
subsequent text-based search. The evaluation result showed that on average the
relavancy of content documents returned from the integrated search methods
was above 90% compared to around 50% relavancy of those returned from the
normal text-based search.



An Open Architecture for Ontology-Enabled Content Management Systems 787

Table 2. The Psuedocodes of Two Search Methods

Guided Search Parameterised Search

OWL_M = load OWL model from
file ’LearningObject.owl’
Initialise RacerPro with owlModel
as follows:
initialise reasoner_manager with
OWL_M
Connect reasoner_manager to Racer
server’s URL via HTTP port 8080
Send OWL_M

Construct matched instance set
M_I_S as follows:
C_S = concepts selected by user
P_S = properties selected by user
V_S = property values specified
by user
rql_query = generate RQL query
from (C_S, P_S, V_S)
Execute rql_query as follows:
Connect to Racer via TCP
port 8088
result_string = send rql_query
Parse result_string into M_I_S

Retrieve file reference set
F_R_S from M_I_S as follows:
For each instance I in M_I_S
O_P_S = set of OWL object
properties of I
For each property P in O_P_S
R = range of P
If R equals ’FileReference’
P_V_S = set of property
values of P
Put P_V_S to F_R_S

Retrieve content document set
C_D_S as follows:
Q = content query specified
by user
C_D_S = Execute Lucene search
of Q

Filter content result set
C_R_S from C_D_S using F_R_S
as follows:
For each file url F in C_D_S
If F exists in F_R_S
F_O = file object (F) in F_R_S
F_M = Construct file_metadata
of F_O
Put F_M to C_R_S

Display C_R_S

OWL_M = load OWL model from file
’LearningObject.owl’
Initialise Racer with OWL_M as follows:
initialise reasoner_manager with
OWL_M
Connect reasoner_manager to
Racer server’s URL via HTTP port 8080
Send OWL_M

C = concept name specified by user
Pt = knowledge-base search pattern
specified by user
Q = content query specified by user
C_S = set of concepts in the concept tree
of C in OWL_M
Construct instance set I_S containing
instances matching Pt in OWL_M as follows:
P_S = set of all user-defined RDF
properties from OWL_M
For each property P in P_S
If value V of P matches Pt
P_I_S = set of instances in OWL_M
that owns P
For each instance I in P_I_S
If I not exists in I_S
Put I to I_S

Filter matched instance set M_I_S from
I_S using C_S as follows:
For each instance I in I_S
D_C_S = set of concepts which are the
direct parents of concept of I
If D_C_S intersects with C_S
Put I to M_I_S

Retrieve file reference set F_R_S from M_I_S
as in ’Guided Search’ method
Retrieve content document set C_D_S
and filter C_R_S from C_D_S
using F_R_S as in ’Guided Search’ method
Display C_D_S



788 D.M. Le and L. Lau

6 Summary and Future Work

This paper presented an open architectural framework for the class of ontology-
enabled content management system. This architecture has a semantic content
management layer which provides the functionalities for developing both content
documents and their semantic descriptions on the system. This is supported by
a core layer which has a modular design to leverage the traditional content man-
agement engine and ontology development tools. A reference implementation
based on a Java technical platform consisting of proven open-source components
was also discussed. This implementation showed that it is possible to extend
the support for a traditional content management cycle in a CMS with a set
of primitive ontology management functions. These ontology management func-
tions help construct the content semantics in terms of the formal ontological
concepts. When expressed in a powerful language such as OWL, more intelligent
interface could be designed for user to navigate and access the content. More im-
portantly, our implementation showed that a number of search methods could be
developed to leverage the benefits of the content ontology to deliver more accu-
rate results to users. The proposed OeCMS architecture and its implementation
together would provide a strong technical platform for developing semantic web
portals in general. An extension to this work would be the integration of (se-
mantic) web service technologies to the core layer to support an open model of
distributed collaboration with other systems.

References

1. K. Ahmad and L. Gillam. Automatic ontology extraction from unstructured texts.
In Proceedings of the ODBASE 2005, pages 1330–1346, 2005.

2. G. Antoniou and F. van Harmelen. A Semantic Web Primer. The MIT Press,
Cambridge, Massachusetts, 2004.

3. F. Baader, D. Calvanese, D. McGuineness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

4. S. Bechhofer, R. Moller, and P. Crowther. The DIG description logic interface.
In Proc. of International Workshop on Description Logics (DL2003), San Diego,
California, USA, 2003.

5. B. Boiko. Content Management Bible. Wiley Publishing, New York, 1st edition,
2002.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. W3C, 2001. Available from
http://www.w3.org/TR/wsdl.

7. D. Fensel. Semantic Web application areas. In Proceedings of the 7th International
Applications of Natural Language to Information Systems, Stockholm, Sweden,
2002.

8. N. Fernandez-Garcia, L. Sanchez-Fernandez, and J. Villamor-Lugo. Next genera-
tion web technologies in content management. In Proceedings of the WWW2004
Conference, New York, USA, 2004.

9. M. Fleury and F. Reverbel. The JBoss extensible server. In Proceedings of the
International Middleware Conference, 2003.



An Open Architecture for Ontology-Enabled Content Management Systems 789

10. T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5:199–220, 1993.

11. J. Guoqian and R. S. Harold. FCA view tab, 2004. Available from
http://info.med.hokudai.ac.jp/fca/fcaviewtab/fcaviewtab.html.

12. V. Haarslev and R. Möller. Racer: An OWL reasoning agent for the Semantic
Web. In Proceedings of the International Workshop on Applications, Products and
Services of Web-based Support Systems, in conjunction with the 2003 IEEE/WIC
International Conference on Web Intelligence, pages 91–95, Halifax, Canada, Oc-
tober 2003.

13. J. Hartmann and Y. Sure. Semantic Web challenge: An infrastructure for scalable,
reliable, Semantic Portals. IEEE Intelligent Systems, 19(3):58–65, May 2004.

14. K. Holger et al . The Protégé OWL plugin: An open development environment for
Semantic Web applications. In Third International Semantic Web Conference -
ISWC 2004, Hiroshima, Japan, 2004.

15. R. Kazman et al . ATAM: Method for architecture evaluation. Technical report,
Carnegie Mellon University, 2000.

16. H. Knublauch, M. A. Musen, and A. L. Rector. Editing description logic ontologies
with the Protégé OWL plugin. In International Workshop on Description Logics
- DL2004, Whistler, BC, Canada, 2004.

17. L. Kof. An application of natural language processing to domain modelling – Two
case studies. International Journal on Computer Systems Science Engineering,
20(1):37–52, 2005.

18. N. Kozlova. Automatic ontology extraction for document classification. Master’s
thesis, Computer Science Department, Saarland University, February 2005.

19. H. Lausen et al . Semantic Web Portals - state of the
art survey. Technical report, DERI, 2004. Available from
http://www.deri.ie/publications/techpapers/documents/DERI-TR-2004-04-
03.pdf.

20. C. W. Lo, K. T. Ng, and Q. Lu. CJK knowledge management in multi-agent m-
learning system. In Proceedings of the First International Conference on Machine
Learning and Cybernetics, IEEE, 2002.

21. D. Martin et al . Bringing semantics to web services: The OWL-S approach. In
Proceedings of the First International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC 2004), San Diego, California, USA, 2004.

22. G. Modica. A framework for automatic ontology generation from autonomous web
applications. Master’s thesis, Department of Computer Science, Mississippi State
University, December 2002.

23. D. L. Musa et al . Sharing learner profile through an ontology and web services. In
Proceedings of the 15th International Workshop on Database and Expert Systems
Applications, IEEE, 2004.

24. D. Oberle, S. Staab, R. Studer, and R. Volz. Supporting application development
in the Semantic Web. ACM Transactions on Internet Technology, TOIT, 5(2),
2005.

25. D. Oberle, S. Staab, and R. Volz. An application server for the Semantic Web. In
Proceedings of the 13th International WWW Conference, 2004.

26. D. Woelk and P. Lefrere. Technology for performance-based lifelong learning. In
Proceedings of the International Conference on Computers in Education, IEEE
Computer Society, 2002.

27. Lucene performance benchmarks, 2005. Available from http://lucene.apache.org.
28. Apache Tomcat, 2005. Available from http://jakarta.apache.org/tomcat/index.html.



790 D.M. Le and L. Lau

29. RacerPro User Guide Version 1.8, 2005. Available from http://www.racer-
systems.com.

30. Touchgraph, 2005. Available from http://www.touchgraph.com.
31. The Zope Book 2.6 Edition, 2005. Available from

http://zope.org/Documentation/Books/ZopeBook/2 6Edition/.
32. OpenCMS 6.0 interactive documentation, 2005. Available from

http://www.opencms.org/opencms/en/download/documentation.html.
33. HTML 4.01 specification. W3C Recommendation, 1999. Available from

http://www.w3.org/TR/REC-html40/.



Ontology Supported Automatic Generation of

High-Quality Semantic Metadata�

Ümit Yoldas1 and Gábor Nagypál2

1 Conemis AG, Karlsruhe, Germany
yoldas@conemis.com

2 FZI Research Center for Information Technologies
at the University of Karlsruhe, Karlsruhe, Germany

nagypal@fzi.de

Abstract. Large amounts of data in modern information systems, such
as the World Wide Web, require innovative information retrieval tech-
niques to effectively satisfy users’ information need. A promising ap-
proach is to exploit document semantics in the IR process. For this pur-
pose, high-quality semantic metadata is needed. This paper introduces a
method to automatically create semantic metadata by using ontologically
enhanced versions of common information extraction methods, such as
named entity recognition and coreference resolution. Furthermore, this
work also proposes the application of ontology-specific heuristic rules to
further improve the quality of generated metadata. The results of our
method was evaluated using a small test collection.

1 Introduction

To find relevant documents to a user query, most existing information retrieval
(IR) systems merely perform a syntactical comparison between the term-based
document representations and the keywords in the query. E.g., if a user initiates
a full-text query by typing in the phrase “Semantic Web”, a typical IR system
on the Web returns a list of hyperlinks pointing to documents that also con-
tain this string syntactically. Although this method may be sufficient for some
applications1, it definitely lacks the linguistic and semantic awareness, which be-
comes increasingly valuable in large information systems and for complex search
requests.

In common IR systems, documents are often represented merely as a set of
terms — i.e., strings — together with their corresponding frequency measures.
In this model, some crucial aspects of natural languages such as synonyms2 and
homonyms3 are not considered. E.g., from the system’s perspective, the terms
� This work was partially funded by the VICODI (EU-IST-2001-37534), DIP (FP6-

507483), and IMAGINATION (FP6-034626) EU IST projects.
1 For so-called navigational searches, where the exact keywords in the document are

already known for the user.
2 Different words that may denote the same things.
3 Words with more than one meaning.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 791–806, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



792 Ü. Yoldas and G. Nagypál

“doctor” and “physician” differ completely, although in many documents they
have the same meaning.

Apart from this trivial deficiency, several other problems lead to decreased IR
performance. According to [1], the major reasons why purely text-based search
fails to find some of the relevant documents are the following:

– Abstract concepts: Some high-level, vaguely defined abstract concepts like
“World War Two” or “Industrial Revolution” are often not mentioned ex-
plicitly in relevant documents. Therefore, most text-based search engines do
not consider those documents relevant for queries containing these terms.

– Semantic and temporal relations: No connections can be discovered between
the terms “Germany” and “Berlin” or the terms “1990s” and “1994” because
non-linguistic relations among concepts are not exploited.

Statistical algorithms can detect coexisting terms in texts, which sometimes
(but not always) coincides with semantic relations among terms. Thesaurus-
based approaches, such as systems using WordNet [2], can exploit some basic
linguistic relations. Such approaches cannot, however, handle the problem of
indirectly relevant abstract concepts or exploit semantic and temporal relations
to find relevant documents.

Ontologies provide an “explicit specification of a conceptualization” [3], and
make it possible to define knowledge in a machine-processable form using a
formal language such as OWL [4]. Using ontologies, it is possible to exploit
semantic and temporal relations to improve IR effectiveness.

Semantic metadata link documents with their relevant ontology instances from
the knowledge base (KB). High-quality semantic metadata is a major require-
ment for any ontology-based information system, including the Semantic Web
[5]. Because of the large amount of data in modern information systems, manual
or semi-automatic approaches for metadata generation, which rely on significant
human input during the annotation process [6,7,8,9], are not feasible for most
of the applications. It is therefore a very important question how to generate
high-quality semantic metadata with as little human effort as possible.

Inspired by the ontology-based IR project VICODI [10], we are currently de-
veloping a new ontology-based IR system [1]. This paper describes the metadata
generation aspect of this complex system. We present an approach that facilitates
the automatic creation of semantic metadata, and provides a framework for the
definition of certain ontology-based, domain-specific heuristics. Such heuristics
help extend and improve the quality of semantic metadata. To test the claim that
such an approach increases the quality of the generated metadata, we evaluated
the results of the system using a small test collection.

The structure of the paper is the following. Section 2 gives an overview of our
ontology-based metadata generation approach. Section 3 describes our evalua-
tion methodology, and analyzes evaluation results. Section 4 discusses related
work, Section 5 concludes the paper and provides some outlook.



Ontology Supported Automatic Generation 793

2 Approach

2.1 Ontology Formalism

First, some basic requirements are formulated, which have to be met by the
ontology formalism in our system. The application domain of our IR system is
history and news articles. Therefore, time plays an important role. The ontologi-
cal structure must provide for temporal restrictions for relation or attribute def-
initions. These properties are called temporal relations and temporal attributes,
respectively. E.g., it should be possible to define a certain time interval as a
validity constraint for the relation isMemberOf(Steve-Ballmer, Microsoft).
Moreover, the usual ontological features, such as symmetry and transitivity of
relations, and inverse relations, should be supported for temporal relations, too.
E.g., we would like to use the temporal transitive part-of relation between
locations.

As temporal transitive relations are not supported by the current W3C OWL
standard [4], an appropriate ontology framework and API is provided by the IR
project presented in [1]. Apart from the temporal relations and attributes, our
ontology formalism supports the usual ontology modeling constructs, including
concepts, instances, relations and attributes4. The formalism is implemented
using the KAON2 reasoning engine [11], where KAON2 is used as an efficient
Datalog engine5.

2.2 Semantic Metadata Model

Because of performance reasons, we use a metadata model, which is inspired
by the common vector space model [12] used in most traditional full-text search
engines. This allows us to exploit full-text search engines during the search phase,
similarly to [13,14,15]. The classical vector space model represents documents as
a weighted set of terms6. Therefore, our model is also based on a weighted set
of various model elements.

As was mentioned, semantic metadata links documents with ontology ele-
ments. Therefore, our metadata model has a conceptual part, which consists of a
weighted set of ontology instances7 (OI). In our system, elements of the concep-
tual part are termed weighted ontology instances (WOI). A WOI contains the
URI of the ontology instance, together with its weight, denoting its semantic
relevance to the document content.

As was also mentioned, time plays a very important role in our application
domain. Moreover, from the IR point of view, time has different characteristics
4 We will sometimes refer to relations and attributes together as “properties”, which

is the usual Semantic Web terminology.
5 In addition, KAON2 also supports OWL-DL reasoning and DL-safe rules, but these

features are not used in this work.
6 Also called as the “bag of words” model.
7 Although the model does not prohibit using other ontology elements, such as con-

cepts, we use the term ontology instances because in our application scenario the
conceptual part includes only instances.



794 Ü. Yoldas and G. Nagypál

from terms or ontology entities. While in the case of terms (and ontology entities)
(non-)equality is the only interesting relation, in the case of time, users are mostly
interested in other, more complex relations. E.g., if we search for documents
about the XX. century we are interested in documents, which are between 1901
and 2000. Therefore, our model includes a temporal part, which consists of a
weighted set of temporal intervals. Actually, for the application domain of history
we use fuzzy temporal intervals instead of usual temporal intervals. In this paper,
however, we assume for the sake of simplicity that the intervals in the model are
all usual time intervals. Details on the fuzzy temporal intervals were reported
in [16]. Elements of the temporal part are termed weighted temporal intervals
(WTI), containing the (fuzzy) temporal interval and its relevance weight.

Finally, it is important to see that for the majority of information systems
it is practically impossible to guarantee 100% ontology coverage. I.e., there will
be cases, when a relevant concept in the document does not have its respective
counterpart in the ontology. For this purpose, we also have a textual part in our
model, which contains usual strings as its elements. The only difference from the
classical full-text vector space model is that our “terms” are not necessary single
words. They can be complex phrases, too, such as “Karlsruhe, the German city”.
Phrases that are semantically important for the document content, but do not
have their counterparts in the ontology, are included in this part of the metadata.
Elements of the textual part are termed weighted terms (WT), containing the
term string and its relevancy weight.

The relevance weight values are between 0.0 (no relevance) and 1.0 (maximum
relevance) for all metadata parts.

An example of a possible (partial) metadata of a document describing the
causes and consequences of the Russian Revolution is shown in Fig. 1.

textual: {"Vladimir Ilich Lenin":1.0, "Attack on the Winter Palace":0.7}

conceptual: { #Lenin:1.0, #Russia:0.8, #Russian-Revolution:1.0 }

temporal: {1917-1920:1.0}

Fig. 1. Example metadata about the Russian Revolution

2.3 Semantic Annotation Steps

We agree with [14] that common information extraction (IE) techniques can
substantially support the automatized process of metadata generation. We also
accept the statement made there that named entities8 (NE) occurring in text
documents constitute a major part of their semantics. Therefore, we start our
metadata generation with an IE step, which extracts named entities from the
document text. Based on this information, it is possible to generate an ini-
tial version of semantic metadata, using the metadata model introduced before.
Finally, various ontology-based heuristic rules can be exploited, to extend the

8 Named entities are terms referring to people, organizations or locations; the defini-
tion often includes tokens representing dates, percentage numbers etc.



Ontology Supported Automatic Generation 795

initial metadata with relevant ontology entities that are not mentioned in the
document text explicitly.

The whole metadata generation process is shown in Fig. 2. In the following,
we describe the individual steps in more detail.

Fig. 2. Steps of the annotation process

2.4 Information Extraction

Classical IE methods comprise some techniques from natural language processing
(NLP), such as token and sentence splitting or part-of-speech detection. This
procedure is sometimes referred to as shallow parsing because unlike pure NLP
applications, it usually does not include a full (costly) linguistic analysis of the
text. The linguistic information obtained by the shallow parsing serves as input
to the named entity recognition (NER) step.

Detected NEs may also have referring phrases in the text with different no-
tions. These are called coreferences and can be distinguished between nominal
and pronominal type. An example for a nominal coreference is the term “chief
executive officer” referring to the NE “Steve Ballmer” in a document. The “he”
reference pointing to “Steve Ballmer” is a pronominal coreference.

To our best knowledge, currently there is no existing IR system which exploits
coreference information to create semantic metadata. However, we consider this
an important step, since coreference resolution9 can improve term relevance es-
timation, as our tests have shown.

With respect to the IE process, we used the established text engineering frame-
work GATE10, which includes modules for the NLP, NER and coreference reso-
lution tasks. We used the standard ANNIE components, which are included in
the standard GATE installation.
9 Modern implementations may achieve an F-measure of up to 70 percent.

10 General Architecture for Text Engineering, http://gate.ac.uk/

http://gate.ac.uk/


796 Ü. Yoldas and G. Nagypál

The result of the described IE operations are GATE annotations following a
special annotation scheme. They contain detailed linguistic information about
each identified term, such as its position within the sentence, part-of-speech
information, and a list of its coreferences. These annotations are automatically
stored for each document in a relational database for later use during ontology-
supported post-processing.

This separation of expensive IE operations from subsequent ontology depen-
dent tasks has some significant advantages. First, linguistic annotations can be
generated independently from ontology-lookup operations and thus are inde-
pendent from any changes in the ontology11. Second, different ontology-based
heuristics can be applied and tested without complete regeneration of GATE
annotations.

2.5 Initial Semantic Metadata Generation

In our ontology-based approach, the system must be able to identify appropriate
NEs as ontology instances12. It is a hard task, because a term in the document
can syntactically match many ontology instances. To reduce this ambiguity to
a minimum, our implementation follows the “longest match principle”, which
is also used by other approaches [17]. According to this principle, always the
longest possible text snippet is matched with the ontology instance labels. I.e.,
we prefer “Bill Gates Foundation” to “Bill Gates”.

Next, linguistic annotations covering an ontology instance are transformed
to ontology annotations (OIAnnotation). Every OIAnnotation consists of URIs
of possibly matching ontology instances (OI), and the number of occurrences
of its candidate OIs. The resolved coreferences are taken into account simply
by increasing the occurrence counter of the OIAnnotation. E.g., if a pronoun is
detected as a coreference to a certain entity, and that entity is known to be an
OI, the occurrence counter of the OIAnnotation is increased by one.

The remaining entity annotations are categorized as term annotations (Ter-
mAnnotation) and date annotations (DateAnnotation). Term annotations con-
tain the (normalized) terms from the text, together with their occurrence coun-
ters; whereas date annotations are special term annotations, where the term
text represents a valid date (or time) specification, such as “May 12, 2006” or
“today”.

After this step, all annotations are transformed to the initial document meta-
data, using the model introduced in Section 2.2.

The mapping from linguistic annotations to metadata elements is straightfor-
ward. WTIs are generated from date annotations, WTs from term annotations
and WOIs from ontology annotations. If an OIAnnotation is ambiguous, i.e.,
contains more than one possible URIs, WOIs are created for each OI candidate.
11 For better coreference recognition, it is sometimes necessary to update the gazetteer

lists of GATE based on the ontology labels.
12 Actually we consider all tokens in the text during this step, not only the text snippets

that were identified by GATE as NEs. This is needed because GATE sometimes fails
to correctly identify text parts as NEs.



Ontology Supported Automatic Generation 797

WOI and WT weights are calculated according to the following logarithmic
function:

w (x) =
(

log (x + 1)
log (rmax + 1)

)2

(1)

where w (x) denotes the resulting weight of a new metadata element; x denotes
the occurrence counter of the corresponding annotation element and rmax the
largest occurrence counter of all annotation elements for the document. Be-
cause the co-occurence pattern cannot be applied to date specifications, rec-
ognized WTIs always get a weight of 1.0 in the current implementation. A
more sophisticated weighting scheme for temporal intervals is subject of future
work.

Table 1 illustrates the transformation from annotations to an initial document
representation (with rmax = 30).

Table 1. Initial metadata generation

Entity Ann. type Occurence Metadata type Metadata weight

#Bill-Gates OIAnnotation 30 WOI 1.0
#Microsoft OIAnnotation 15 WOI 0.65

“Oracle Corporation” TermAnnotation 7 WT 0.37
“Steve Ballmer” TermAnnotation 2 WT 0.10

2000-2005 DateAnotation N/A WTI 1.0

2.6 Metadata Extension Using Heuristic Rules

The main idea of our approach is that after the initial generation of the document
metadata, certain ontology-specific heuristics are used to adapt this metadata
to the document’s semantics.

Similar to human readers’ cognitive processing, some basic conclusions are
drawn automatically by the system. We achieve this by providing a framework
for defining and applying specific rules within the document metadata gener-
ation process. A special algorithm iteratively applies these heuristic rules and
terminates when no further adaptations can be made to the document metadata.

Our rules follow the pattern shown in Fig. 3. To put it simple, the pattern
allows domain experts to specify rules, which add new OIs to the conceptual
part of the metadata, if they exist in the temporal context13 of the document,
and if they are connected with other instances in the metadata through relations
which are valid in the temporal context of the document. If according to the rule
an instance should be added to the metadata, which is already there, only the
weight of the instance is adjusted.

Concrete examples of rules following this pattern are shown in Fig. 5(a) and
5(b).

13 The temporal context of the document is defined by the temporal part of the meta-
data.



798 Ü. Yoldas and G. Nagypál

Add x to M if all of the following conditions hold

– C(x)
– aT (x)
– ∃x1,1 · · · x1,n1 : n1 ≥ N1 ∧ x1,1 ∈ M ∧ · · · ∧ x1,n1 ∈ M ∧ C1(x1,1) ∧ · · · ∧ C1(x1,n1) ∧

pT
1 (x1,1, x) ∧ · · · ∧ pT

1 (x1,n1 , x)
...

– ∃xk,1 · · · xk,nk : nk ≥ Nk ∧xk,1 ∈ M ∧· · ·∧xk,nk ∈ M ∧Ck(xk,1)∧· · ·∧Ck(xk,nk )∧
pT

k (xk,1, x) ∧ · · · ∧ pT
k (xk,nk , x)

where M denotes the current document metadata; C(x) denotes that x is instance
of the concept C; rT (x, y) denotes that the instances x and y are connected with a
relation r, whose validity time is in the temporal context of the document; and aT (x)
denotes that the value of the attribute a on instance x is in the temporal context of
the document.
The input parameters of the pattern are M , the C1 · · · Ck concepts, the N1 · · · Nk

minimal cardinalities, the C concept, the r1 · · · rk relations, and the a attribute. The
specification of a is optional, and k ≥ 1 must hold.

Fig. 3. Rule pattern

Our weight calculation scheme for the WOIs introduced by the rules is the
following:

w =

(
p∑

i=1

wi

p

)

·
n∏

j=p+1

(

1 +
wj

2 + p

)

(2)

where w denotes the resulting weight of the new WOI; w1, w2, ..., wp, wp+1, ..., wn

are the weights of all n WOIs in decreasing order, which are used as input values
of the rule with a minimum cardinality of p =

∑
Ni. This means, at least p WOIs

of the current metadata have to meet the rule requirements. The more additional
elements are contained in the metadata, the higher the resulting weight of the
WOI gets (until a maximum of 1.0).

E.g., if a rule needs at least two metadata elements, which must fulfill the rule
conditions, but the current metadata contains three such elements with weights
0.7, 0.6 and 0.4, the resulting weight is calculated as

w =
(

0.7 + 0.6
2

)

·
(

1 +
0.4

2 + 2

)

= 0.65 · 1.1 = 0.715

In our system, rules following the pattern from Fig. 3 can be comfortably
defined in an XML file. Thus, the rules can be easily adapted without any pro-
gramming expertise. Using the XML file, additional parameters can be defined,
as well. One parameter determines the minimum weight a WOI must have, so
that the rule application algorithm uses it. Another parameter is the weaken-
ing factor, which determines how the weight of the resulting WOI is weakened14.
14 The value of the weakening factor is always less than 1.0.



Ontology Supported Automatic Generation 799

This is an important feature, because it ensures the termination of the algorithm
(weight changes will monotonically converge to zero).

2.7 Metadata Extension Algorithm

Starting with an initial document metadata and some heuristic rules, the meta-
data extension process is executed. The actual semantic metadata is altered by
the following algorithm:

1. Read in the initial document metadata.
2. Read all defined rules from the XML file.
3. Set the current document metadata as the initial metadata.
4. Apply the following steps iteratively

(a) Execute all applicable rules on the current metadata.
(b) Extend the current metadata with WOIs added by the rules (or adjust

the weights of existing WOIs, if they are already there).
(c) If the metadata has been modified, restart the iteration.

5. Return the current metadata as the final metadata.

The resulting metadata is the final semantic metadata for our IR system, and
stored in the document database for later indexing.

3 Evaluation

We compared the quality of metadata generated by our approach with manually
generated semantic metadata. This section discusses the evaluation methodology
we used and the results of the evaluation.

3.1 Document Collection

First, we needed to build a small document collection for the purposes of the
evaluation. We chose the domain IT news and created a small collection of fifteen
documents selected from the ZDNet news portal15. The selected documents are
related to one of the three topics acquisitions, product launches and IT fairs.

3.2 Domain Ontology

Using the documents in our document collection, we designed an ontology for
the areas acquisitions, product launches and IT fairs. The high-level structure
of the resulting ontology is shown in Fig. 4. It is important to see that some of
the relations and attributes were defined as temporal (indicated by “T”).

Here we will only briefly introduce some concepts and properties, which we
consider helpful to comprehend the example heuristics we will provide later.
The ontology itself contains 331 instances, 147 relation instances, 91 temporal
relation instances, and 24 temporal attribute values.
15 http://news.zdnet.com/



800 Ü. Yoldas and G. Nagypál

F
ig

.
4
.
E

va
lu

at
io

n
on

to
lo

gy
fo

r
th

e
IT

ne
w

s
do

m
ai

n



Ontology Supported Automatic Generation 801

Every ontology instance is modeled as direct or indirect instance of the Thing
concept. An important subconcept of Perdurant (a subconcept of Thing) is
the Event class. It is important for the heuristics-based approach because it has
many relations to different concepts. Among others, it is related to Organization
instances (via the relation hasParticipant). An example for this relation is:
hasParticipant(Microsoft-launches-BizTalkServer-2004, Microsoft).

The temporal attribute happensDuring defining the temporal extension of an
event, can be exemplified by:
happensDuring(PeopleSoft-replaces-CEO, ’2004-10-01;2004-10-31’).

The time interval given by the start date 2004-10-01 and the end date
2004-10-31 marks the interval when the event happened.

3.3 Heuristic Rules

Generally, heuristic rules must be carefully aligned with the domain ontology.
Otherwise, they may unintentionally disturb the document’s semantics, or may
not find the expected relevant concepts.

For our evaluation, we defined fourteen heuristic rules, of which we now in-
troduce two for demonstration purposes. These rules are formulated and briefly
explained in Fig. 5(a) and 5(b).

Add x to M if all of the following conditions hold

– Event(x)
– happensDuringT (x)
– ∃x1 · · · xn : n ≥ 2 ∧ x1 ∈ M ∧ · · · ∧ xn ∈ M ∧ Agent(x1) ∧ · · · ∧ Agent(xn) ∧

participatesIn(x1, x) ∧ · · · ∧ participatesIn(xn, x)

Idea: If at least two agents – i.e., instances of the concepts Person or Organization

– are contained in the current semantic metadata, these agents are related via
participatesIn to the same event instance, and the temporal context of the document
is compatible with the time interval given by the temporal attribute happensDuring

then the targeted ontology instance of Event is considered relevant to document.

(a) Event rule

Add x to M if all of the following conditions hold

– Process(x)
– ∃x1 · · · xn : n ≥ 1 ∧ x1 ∈ M ∧ · · · ∧ xn ∈ M ∧ Event(x1) ∧ · · · ∧ Event(xn) ∧

subPerdurantOf(x1, x) ∧ · · · ∧ subPerdurantOf(xn, x)

Idea: At least one ontology instance of the concept Event in the metadata leads to the
addition of all related process instances (via relation subPerdurantOf).

(b) Process rule

Fig. 5. Example rules

E.g., if a the ontology contains information on the Peoplesoft-replaces-CEO
event, and the initial semantic metadata contains Peoplesoft, Craig-Conway



802 Ü. Yoldas and G. Nagypál

and Dave-Duffield, Peoplesoft-replaces-CEO is added to the metadata ac-
cording to the Event rule (Fig. 5(a)).

Using this extended metadata, the Process rule (Fig. 5(b)) adds the informa-
tion about the high-level concept Process Oracle’s-takeover-of-Peoplesoft.

As this example illustrates, heuristic rules can often build on the result of
previous rules. This way, semantically related OIs are added stepwise to the
initial document representation.

3.4 Evaluation Methodology

The evaluation consisted of three steps. First, domain experts were asked to
manually define reference document representations for each document in our
evaluation corpus. I.e., they were told to select ontology instances from the
knowledge base, and assign them to one of five equidistant intervals between 0.0
and 1.0.

Next, we executed two runs of the system. One run without using any of our
heuristics (i.e., only generating the initial metadata representation), and another
run with all heuristics activated.

Finally, we compared the generated semantic metadata with the reference
metadata defined by the experts, using the following evaluation measure. If the
calculated weight of a metadata element lies within the reference interval of that
element, a conformity value of 1.0 is assigned to this element. If it is within one
interval above or below, a conformity value of 0.5 is assigned. If a calculated
element is not contained in the reference metadata, or its weight is not one
interval above or below reference weight, the assigned conformity value is 0.0.
Finally, for elements that appear only in the reference metadata, but do not
appear in the generated metadata, a conformity value of 0.0 is assigned.

By averaging the conformity values for the metadata elements, we obtained
average conformity values for each document, which indicate how similar the
generated metadata are to the manual (perfect) metadata.

3.5 Results

Fig. 6 compares the measured conformity values without heuristics to those
where the rules were applied.

As we can see, almost every document representation was improved by ap-
plying the heuristic rules. The average conformity value of the initial document
metadata was 0.67, whereas applying the rules lead to an average of 0.81. In
none of the cases a decrease in annotation quality was observed. Moreover, no
improvement of the semantic metadata could be observed at only two documents
(number 3 and 15). In these cases no rules could be applied on the initial meta-
data. This can be either due to insufficient ontological knowledge16, or because
the documents would need heuristics which are not described by the existing
rule set.

16 WOIs that would be preconditions in rules are not included in the initial metadata.



Ontology Supported Automatic Generation 803

Fig. 6. Evaluation results

4 Related Work

Generating high-quality semantic metadata with the least possible human effort
is agreed to be an important step toward the Semantic Web. Thus, there are
several projects that aim to support or replace human experts in the metadata
generation task.

Approaches such as [6,8,18,9] propose frameworks for manual annotation of
metadata. E.g., a GUI17 application which facilitates the annotation of semantic
tags is provided by [8]. However, fully manual approaches do not scale well for
large information systems.

There are a couple of automatic annotation systems, as well. These include
the KIM system [14], the SemTag system [19], and the system of Vallet et al [17].
Unfortunately, they do not exploit the full ontology structure, but use only labels
of ontology elements (the KIM system) or exploit only the concept taxonomy in
addition to ontology labels (Vallet et al. and SemTag).

S-CREAM [7] uses a semi-automatic annotation approach, which includes
a machine learning algorithm. They use the ontology to refine the structure
of the semantic metadata, i.e., to find the exact ontological relations between
metadata elements. Our approach is different because we concentrate on finding
new, only implicitly relevant ontology instances — a task what S-CREAM does
not address.
17 Graphical User Interface.



804 Ü. Yoldas and G. Nagypál

The authors of C-PANKOW [20] propose an advanced annotation and dis-
ambiguation system without any machine learning technique. Their approach is
to identify correct conceptual entities by measuring statistical information from
Google search results. The system uses, however, only syntactical information,
i.e., cannot find indirectly mentioned instances.

5 Conclusion and Outlook

In this work, we presented a system for automatic ontology-supported generation
of semantic metadata, as part of our ontology-based IR system. We showed
how common IE methods can be used in combination with a simple lookup on
ontology labels to create an initial document representation. On top of that, we
propose our framework for heuristic rule definition for semantically extending
document metadata.

Our evaluation results verified the thesis that suitably parameterized heuristic
rules can indeed significantly improve the quality of semantic metadata. With
our selected evaluation corpus, the average conformity value could be increased
by 20.9 percent.

As the manual definition and parameterization of adequate heuristic rules for
larger ontologies is a quite laborious task, the integration of some automatic
techniques may be reasonable. A promising step in this direction is done by [21].
We will consider to integrate the proposed spread-activation approach to our
heuristics-based system.

Currently, we are working on a more elaborated temporal information extrac-
tion module. Another scheduled improvement is to include a disambiguation step
into the metadata generation process. In the current system only new ontology
elements can be added, or weights can be adjusted. There is no way, however, to
remove apparently irrelevant ontology entities from the semantic metadata — a
deficiency, which we would like to address.

References

1. Nagypál, G.: Improving information retrieval effectiveness by using domain knowl-
edge stored in ontologies. In: On the Move to Meaningful Internet Systems 2005:
OTM 2005 Workshops. Volume 3762 of Lecture Notes in Computer Science. (2005)
780–789

2. Voorhees, E.M.: Using WordNet to disambiguate word sense for text retrieval. In:
Proceedings of SIGIR-93, 16th ACM International Conference on Research and
Development in Information Retrieval, Pittsburgh, US (1993) 171–180

3. Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5 (1993) 199–220 the definition of the word ”ontology”.

4. Dean, M., Schreiber, G.: OWL web ontology language reference. Recommendation,
W3C (2004)



Ontology Supported Automatic Generation 805

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34–43

6. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access
to distributed and semi-structured information. In Meersman, R., Tari, Z., Stevens,
S.M., eds.: Database Semantics - Semantic Issues in Multimedia Systems, IFIP
TC2/WG2.6 Eighth Working Conference on Database Semantics (DS-8). Volume
138 of IFIP Conference Proceedings., Kluwer (1999) 351–369

7. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM - semi-automatic CREAtion
of metadata. In Gómez-Pérez, A., Benjamins, V.R., eds.: Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, 13th International
Conference, EKAW 2002. Volume 2473., Springer (2002) 358–372

8. Hendler, J., Heflin, J.: Searching the web with SHOE. In: Artificial Intelligence
for Web Search. Papers from the AAAI Workshop., AAAI Press (2000) 35–40

9. Martin, P., Eklund, P.: Embedding knowledge in web documents. In: Proceedings of
the Eighth International World Wide Web Conference, Toronto, Canada, Elsevier
(1999) 325–341

10. Nagypál, G., Deswarte, R., Oosthoek, J.: Applying the Semantic Web – the VI-
CODI experience in creating visual contextualization for history. Literary and
Linguistic Computing 20 (2005) 327–349

11. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004). (2004) 152–162

12. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18 (1975) 613–620

13. Finin, T., Mayfield, J., Joshi, A., Cost, R.S., Fink, C.: Information retrieval and the
Semantic Web. In: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS’05). (2005)

14. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annota-
tion, indexing, and retrieval. Journal of Web Semantics 2 (2005) 49–79

15. Davies, J., Weeks, R.: QuizRDF: Search technology for the Semantic Web. In: Pro-
ceedings of the 37th Hawaii International Conference on System Sciences (HICSS-
37 2004),. (2004)

16. Nagypál, G., Motik, B.: A fuzzy model for representing uncertain, subjective,
and vague temporal knowledge in ontologies. In Meersman, R., Tari, Z., Schmidt,
D.C., eds.: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE. Volume 2888 / 2003 of Lecture Notes in Computer Science., Springer-
Verlag (2003) 906 – 923

17. Vallet, D., Fernández, M., Castells, P.: An ontology-based information retrieval
model. In: The Semantic Web: Research and Applications: Second European Se-
mantic Web Conference, ESWC 2005. Volume 3532 of Lecture Notes in Computer
Science., Heraklion, Crete, Greece, Springer (2005) 455–470

18. Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: An open
RDF infrastructure for shared web annotations. Computer Networks 39 (2002)
589–608

19. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T.,
Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: SemTag and Seeker: Boot-
strapping the semantic web via automated semantic annotation. In: Proceedings
of the Twelfth International World Wide Web Conference, WWW 2003, Budapest,
Hungary (2003) 178–186



806 Ü. Yoldas and G. Nagypál

20. Cimiano, P., Ladwig, G., Staab, S.: Gimme’ the context: context-driven automatic
semantic annotation with C-PANKOW. In Ellis, A., Hagino, T., eds.: Proceedings
of the 14th international conference on World Wide Web, WWW 2005, Chiba,
Japan, ACM (2005) 332–341

21. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: Proceedings of the 13th international conference on World Wide
Web (WWW ’04), New York, NY, USA, ACM Press (2004) 374–383



Brokering Multisource Data with Quality

Constraints

Danilo Ardagna, Cinzia Cappiello, Chiara Francalanci, and Annalisa Groppi

Politecnico di Milano, Department of Electronics and Information
{ardagna, cappiell, francala, groppi}@elet.polimi.it

Abstract. Access to multisource heterogeneous data is a fundamental
research issue in a variety of contexts, including syndicated data retrieval,
Web service selection and cooperative information systems. In these vari-
able contexts, the brokering approach to multisource data access provides
greater flexibility with respect to the more traditional data integration.
The general brokering model assumes that the broker is submitted a
query and has the responsibility to optimize the response along speci-
fied parameters such as time efficiency, completeness, and consistency.
This paper takes a data quality perspective on data brokering and con-
siders data accuracy. Furthermore, the data quality literature assumes
that metadata are associated with data to describe their quality. Meta-
data support data selection without viewing and assessing data directly.
On the contrary, previous brokering approaches view data. This paper
compares previous results with those of a brokering approach based on
metadata which assumes that actual data are transparent to the bro-
ker. Testing results comparing the delta between the data visibility and
transparency approaches to data brokering are presented.

1 Introduction

Access to multisource data is a fundamental research issue in a variety of con-
texts, including syndicated data retrieval, Web service selection and cooperative
information systems. These contexts are characterized by high heterogeneity and
variability. The number of data sources can vary over time. Furthermore, data
sources can overlap with each other and, in turn, overlapping data can cause in-
tegration conflicts. These conflicts are usually solved at a schema level, according
to the Local As View (LAV) or Global As View (GAV) approaches [6]. However,
they may persist at a data level. For example, syndicated data providers typ-
ically offer overlapping data sets that are updated at different points in time.
In cooperative information systems, schemas themselves may be only partially
integrated and typically undergo rapid change over time [12]. In these highly
variable contexts, the brokering approach to multisource data access provides
greater flexibility with respect to the more traditional data integration.

The general brokering model assumes that the broker is submitted a query
and has the responsibility to optimize the answer by providing the knowledge
necessary to make a choice among multiple query answers [12][2]. In the litera-
ture, optimization parameters are typically time efficiency in query optimization

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 807–817, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



808 D. Ardagna et al.

[3], completeness in the distributed database domain [9] and consistency in data
integration [13]. This paper takes a data quality perspective on data brokering
and considers as an important dimension, data accuracy. Available data values
are considered accurate if they coincide with their actual values. The accuracy
dimension of data quality has rarely been considered as a brokering dimension.
The correspondence between available and actual data values is clearly difficult
to measure and accuracy is usually provided a statistical estimate based on sam-
pling [11]. These estimates represent an instance of metadata, which represent
a description of data properties.

The data quality literature hypothesizes that metadata are associated with
data along all quality dimensions. The choice among alternative answers to a
user query can be based on metadata, which allow selecting the answer that
maximizes overall data quality. This allows the broker to select an answer without
viewing and assessing data directly. On the contrary, the majority of previous
brokering approaches are based on the assumption that data are visible [12][2].
This assumption raises a number of limitations to the applicability of brokering
in a business context, where data are often strictly private.

The paper presents testing results comparing the delta between the data
transparency and visibility approaches (DTA and DVA respectively) to data
brokering. In the first case, the answer returned to the user is selected by using
metadata. In the second case, the broker selects an answer by using data and
calculating the actual improvement that can be obtained for each data source.
The purpose of the paper is to verify the extent to which the greater compu-
tational complexity of the DVA is counterbalanced by a higher quality of the
answer and to study the properties of data sources affecting this trade-off. In
particular, the degree of overlap among data sources and the relevance of data
quality dimensions are properties that are considered in the analyses.

The presentation is organized as follows. Section 2 describes the broker ar-
chitecture and the data model in the DTA and DVA. Considering the DVA, the
model for the evaluation of accuracy after merging and data cleaning opera-
tions is also presented. Section 3 discusses the brokering methodology. Section
4 presents the experimental results in which the two approaches are compared.
Section 5 discusses the innovative aspects of the paper compared to previous
work presented in the literature. Conclusions are drawn in Section 6.

2 A Quality-Oriented Architecture to Query Multi-source
Data

The broker is supposed to receive a query from a customer specifying both the
data request and the quality requirements that must be satisfied by the answer.
Considering the providers’ data available in the system, it calculates the set of
sources that better satisfies user requirements. The broker is modelled according
to the Local-As-View (LAV) perspective [6], representing the schema of a source
as a view of a global schema (GS). The broker knows both the GS and the lo-
cal views of all sources. The GS is defined as a set of relations, called Global



Brokering Multisource Data with Quality Constraints 809

Relations, which are tied to each other by join attributes. The Universal Relation
(UR) is defined as the join of all global relations. Assuming that A is the set of
attributes of the UR, a user query Q is a conjunction of selection and projection
operations on attributes ak∈ AQ, and of quality requirements. Selection opera-
tions and quality constraints are expressed in the form “ai [or QDr] θ constant”,
where θ ∈ {<,>,≤,≥,=} and QDr is a generic quality dimensions defined in
the range [0, 1]. Users specify the minimum level of quality that they consider
acceptable, referred to as QD∗r. Users can also rank the importance of quality
dimensions by specifying weights wr, with 1≤r≤R, such that

∑R
r=1wr = 1. The

overall quality q required by the customer is expressed as
∑R

r=1 wr · QDr. A
constraint q* on the overall value of quality q is also specified by the user.

The data quality literature has defined a set of quality dimensions. This paper
focuses on accuracy, since it has rarely been considered as a brokering dimension.
The difference between DTA and DVA mainly impacts on the accuracy dimen-
sion. In DVA, all the cleaning operations that can improve such a dimension are
evaluated and mathematically modelled as described in Section 2.2.

2.1 The DTA: The Broker Cannot View Data Values

The main assumption of the DTA is that the broker cannot view data values,
but it can view metadata and knows the quality of local data sets. It also knows
the extent to which local data sets overlap with each other. In details, local
data sets are divided into fragments and the broker knows the cardinality of
all data fragments (i.e. the number of data values contained in the fragments).
The response Q* to query Q is a set of fragments. The local data sets that can
contribute to build response Q* are referred to as di. Each data set di represents
the smallest subset of data with which a provider can contribute to satisfying
Q. We assume that data quality is homogeneous within each data set (HP1).
A data set di is defined as a set of fragments.

In general, the response to query Q, can be built by using multiple combina-
tions of di, i.e query plans. The broker identifies all possible query plans that
can be used to build Q*. Note that data sets can overlap with each other and
the broker also knows the cardinality of overlap among data sets. The average
value of quality of each di is indicated as QDr(di). We assume that providers
are responsible for the evaluation of the quality of their data. To support the
selection of the most suitable set of suppliers, the broker must calculate the
overall quality of each query plan. Mathematical details of DTA are omitted in
this paper. The entire model is thoroughly described in [1].

2.2 The DVA: The Broker Can View Data Values

According to the DVA, the broker can view the data values supplied by providers.
Therefore, it is possible to hypothesize that quality values are associated with
values of attributes included in the data sets as opposed to fragments. We sup-
pose that quality values have a Gaussian distribution over data values. With
this additional information, the broker can perform data cleaning activities to



810 D. Ardagna et al.

improve the quality of local data and perform quality-based merging of local
data. These improvement actions are discussed in the next sections.

Data cleaning activities. The data cleaning theory provides the following
classification of data cleaning actions [4]: (a) normalization of data format and/or
representation; (b) resolution of acronyms and abbreviations; (c) elimination
of duplicated records; (d) reconciliation of contradicting records; (e) control of
external references; (f) extraction of embedded values through data parsing.

In our approach, the broker does not control external references, since we as-
sume that providers guarantee the referential integrity of their sources. Further-
more, the extraction of embedded values is not required, since a global schema
is supposed to exist according to the LAV approach. Thus, the data cleaning
actions performed by the broker are the normalization of data format, the res-
olution of acronyms and abbreviations, and the elimination of duplicated and
contradicting records. The normalization of data format is a data cleaning ac-
tion suitable for particular attributes such as date, currency, and measurement
unit. Resolution of acronyms and abbreviations requires a dictionary providing
the full words corresponding to different acronyms and abbreviations. Finally,
for the elimination of duplicated and contradicting records, the literature pro-
vides several techniques to identify records referring to the same object [5]. In
general, similar records are more likely to refer to the same object and to be
either duplicated or contain attributes with contradicting values. If two such
records are identified, a new tuple t* is created replacing the original records
and storing correct values. Correct values are identified as follows. Null values
are considered first. If a field contains a null value in a record and a non-null
value in the other record, the new tuple t* will include the non-null value. If
both records have an admissible value for a specific field, the “distance” between
the two values is calculated to understand whether records should be considered
different. This degree of similarity is calculated by using the EditDistance tech-
nique. The algorithm that solves this problem can be found in [8]. If similarity is
greater than a certain value Simmin the two values are considered equal (dupli-
cated records) and the value with greater accuracy is selected. If the two values
are not similar, but the difference between their values of accuracy is greater
than a specified value Δ min, the value with the higher value of accuracy is con-
sidered correct. Otherwise, business rules are applied, if possible. Business rules
have commonly the following schema: ”if Condition then Action” and verify if
existing constraints associated with each attribute are violated.

Improvement of accuracy. In this section, the improvement of accuracy for
each data cleaning technique considered is modeled and calculated.

1 - Normalization of data format - The normalization of data format
impacts the data representation. For example, the same data measured with
different units may appear as different data, while storing the same content with
a different representation. It is necessary to transform data in the right format
by maintaining the same content. Note that if the content is not accurate, the
format transformation does not improve data quality. It is possible to state that
the accuracy of data attribute ak in a tuple ti is calculated as a weighted average



Brokering Multisource Data with Quality Constraints 811

of two components: content accuracy and format accuracy. Note that weights
have to be defined by considering that content is more relevant than format. If
the format of some attribute needs to be changed, errors can be modelled by
the Poisson distribution. If N is the number of tuples to be checked, p is the
probability that each data have a wrong format, and λ = Np the parameter of the
Poisson distribution. Since the average number of format errors in the database
is λ, it is possible to estimate the accuracy increase related to a single attribute
as: ΔAcc(ti[ak]) = [(λ · α)/n] · Acc(ti[ak]. The average accuracy improvement
ΔAcc([ak]) of an attribute ak on all N tuples of the data set can be expressed as
ΔAcc([ak]) =

∑N
i=1ΔAcc(ti[ak])/N .

2 - Resolution of acronyms and abbreviations - Abbreviations and
acronyms are considered a format mismatch and are modelled as described in
the previous section.

3 - Deletion of duplicated and contradictory records - When two
records refer to the same object, it is necessary to choose which value has to
be considered in the final solution. It is possible to identify different situations:
− both values are Null: null value is inserted in the final solution and the accu-
racy improvement is equal to 0.
− one of the two values is null: the not null value is considered for the final
solution. If Acc(ti[ak]) and Acc(tj [ak]) are the accuracy values associated with
the data values, the accuracy improvement is: ΔAcc(t∗[ak]) = |Acc(ti[ak]) −
Acc(tj [ak])|/2 and since, in this case, one data value is equal to Null ΔAcc(t∗[ak])
∈ (0, 0.5].
− both values are not null and are similar: the value associated with the greater
value of accuracy is considered. The accuracy improvement is defined in the in-
terval ΔAcc(t∗[ak]) ∈ (0, 0.5].
− both values are not null, are not similar and the difference of their accu-
racy values is greater than a specified Δmin: the data value associated with
highest accuracy is chosen. The accuracy improvement is defined in the interval
ΔAcc(t∗[ak]) ∈ [Δmin/2, 0.5].
− both values are not null, the values are not similar and the difference of their
accuracy values is lower than a specified Δmin: in this case, it is not possible
to choose a value by considering the accuracy value. It is necessary to apply
business rules related to the specific attribute. As explained above, a business
rule verifies the data value along specified conditions: if the rule is not satis-
fied, accuracy is equal to 0, otherwise accuracy is equal to 1. Then, the data
value characterized by the higher value of accuracy is chosen. Three cases can
be verified: first, no business rule is associated with the attribute. In this case,
the result is the value associated with the greater value of accuracy. The accu-
racy improvement is defined in the interval ∈ (0, Δmin/2]. In the second case,
business rules exist. If they are not verified for both values, the final accuracy is
equal to 0. Otherwise, if they are verified for both values the solution includes
the data value associated with the greater value of accuracy and the evaluation
of the accuracy improvement is similar to the previous case. In the third case,



812 D. Ardagna et al.

business rules are verified for one value. The accuracy improvement is defined in
the interval ∈ [Δmin/2, 1−Δmin/2].

The seven cases above are considered as events eh with probability ph. E[eh]
is the expected value of the accuracy improvement related to the h-th event.
The value of the accuracy improvement associated with generic attribute k of
the tuple ti that is: ΔAcc(t∗[ak]) =

∑
h ph ·E[eh] where 0 ≤ ph ≤ 1 and

∑
ph=1.

The average accuracy improvement associated with the record is: ΔAcc(t∗) =
∑K

k=1ΔAcc(t∗[ak])/K where K is the number of attributes in the database
schema.

Finally, it is necessary to estimate the probability of duplicated or contra-
dictory data. We associate a value β to this probability and estimate the total
accuracy improvement as: ΔAccTot(t∗) = β ·ΔAcc(t∗).

Merging different sources. The broker selects the data sets that build the
most complete and accurate answer. Data sets are provided by different sources
and can overlap. We assume that each source has a unique ID and that two
tuples refer to the same object if they have the same ID. In order to solve
conflicts among data values it is necessary to define a resolution function. Let
us consider the domain D of a given attribute, D+ = D

⋃
Null, and [0,1] is the

domain of the accuracy value associated with the attribute. A resolution function
is an associative function f:(D+ × [0,1])×(D+ × [0,1])→ D+ that works on the
same logic presented for the deletion of duplicated and contradictory records.

When data sources overlap, the standard relational operators are not suitable
for integration. The literature provides the following merge operators:

– Join-Merge Operator j-m(t[am])): can be applied in two situations: (a) the
join attribute ti[am] is the ID for both sources; (b)the join attribute ti[am]
is the ID for one source, while it represents a foreign key in the other source.

– Left (Right) Outerjoin-Merge-Operator (l-m(t[am])): guarantees that all the
tuples of the data set at the left (right) of the operator belong to the final
solution and the join with the other attributes of the data set is performed
wherever possible, otherwise corresponding data values are set to Null.

– Full Outerjoin-Merge Operator (f-m(t[am])): guarantees that all the tuples
of both data sets are included in the final solution.

In [9], these operators are defined for the completeness dimension. We have de-
fined these operators for the accuracy dimension and the total value of accuracy
calculated using these operators can be represented as the ratio between the sum
of the accuracy value associated with each data values and the total number of
attributes is:

I∑

i=1

K∑

k=1

Acc(t∗i [ak])/(I ·K)

where I is the number of tuples that are included in the final result, K is the
number of attributes included in the final result and Acc(ti

∗[ak]) is the accuracy
of the generic data value ti

∗[ak] belonging to the final solution.



Brokering Multisource Data with Quality Constraints 813

3 The Data Quality Brokering Methodology

In this section we summarize the data quality brokering methodology we pre-
sented in [1]. A query plan is considered feasible if it satisfies both quality and a
price constraint Price∗. A query plan is optimum if it is feasible and maximizes
quality. The goal of the broker is to select the optimum query plan −→x *. If no fea-
sible plan exists, the broker can negotiate data quality characteristics with data
providers which can improve the quality of their data with an additional cost.
Negotiation identifies a new set of candidate data sets whose combination may
provide a solution satisfying constraints (see Figure 1). In [1] we have modeled
the identification of the optimum query plan as a NP-hard mixed-integer non lin-
ear problem which has been solved by the tabu search algorithm. The negotiation
process is based on multi-party, multi-attribute, single-encounter negotiation.

Query

formulation

Select

best plan
Negotiate

Constraints

satisfied

(Return Q*)

Constraints

not satisfied

Price

condition

not violated

Price condition

violated (Failure)

Improved

data sets

No data sets

(Failure)

End

Fig. 1. Data quality brokering methodology

In this paper, in order to evaluate the enhancement of the data accuracy
quality dimension which can be obtained by implementing the data cleaning op-
erations discussed in Section 2.2, we relax the price constraint and we assume
that a feasible solution of the problem always exists. In the following the nego-
tiation approach will not be investigated and we will limit our analyses only to
the data accuracy and data completeness quality dimensions.

4 Experimental Results

The effectiveness of our approach has been tested on a wide set of queries. A
distributed data citizen information database adopted by the Italian Public Ad-
ministration has been considered as UR. Data fields accuracy values have been
randomly generated according to a Gaussian distribution for the probability
density function. Analyses have been performed by varying as in [1] the follow-
ing parameters: (i) the data field Null probability, (ii) the expected value of the
Gaussian probability density function, (iii) its corresponding variance. Queries
with up to 16 data sets and 23 attributes have been considered. The compari-
son of DVA and DTA has been performed by considering the same number of
iterations and the maximum number of iterations for the tabu search algorithm
has been set equal to 100. On average, the DVA implies a 30% execution time
overhead. In all analyses, for a given value of parameters several tests have been
performed. In the following, results of representative test cases are reported.



814 D. Ardagna et al.

4.1 Data Accuracy Heterogeneity vs. Data Cleaning Analysis

The aim of this test is to estimate how the improvement of accuracy changes
with the heterogeneity of the local data sets. Analyses consider four test cases:
– case 1: 16 data sets have an expected value of accuracy equal to 0.7;
– case 2: 8 data sets have an expected value of accuracy equal to 0.7, and 8

data sets have an expected value of accuracy equal to 0.8;
– case 3: 4 data sets have an expected value of accuracy equal to 0.7, 6 data

sets have an expected value of accuracy equal to 0.8, and 6 data sets have
an expected value of accuracy equal to 0.9;

– case 4: 4 data sets have an expected value of accuracy equal to 0.7, 4 data
sets have an expected value of accuracy equal to 0.8, 4 data sets have an
expected value of accuracy equal to 0.9 and 4 data sets have an expected
value of accuracy equal to 0.99.

The accuracy of the initial data sets increases from case 1 to case 4. The Null
data probability value and the variance of the Gaussian density function have
been set equal to 0.01 and 0.02, respectively. Completeness greater than 0.8
and accuracy greater than 0.65 are required. The query includes all attributes.
Results are reported in Figure 2. Note that, the accuracy of the final query plan
increases both for the DTA and DVA as the accuracy of the data fragments
is increased. The percent improvement decreases and the effectiveness of the
broker tends to decrease as the accuracy of the data sets increases. This is due
to two factors: (i) if the accuracy of data sets increases, the improvement from
data cleaning operations become less effective since there is a lower number of
errors to correct; (ii) if the number of data sets with a high value of accuracy
increases, the merging procedure becomes less efficient since overlapping data
often coincide with the data characterized by the highest average accuracy: the
DVA and DTA select tuples from the same data set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case 1 Case 2 Case 3 Case 4

R
e

su
lt

 A
cc

ur
a

cy
 V

a
lu

e

Data Visibility Approach Data Trasparency Approach

Fig. 2. Acc. heter. and Data Cleaning

0.45

0.55

0.65

0.75

0.85

0.95

0.5 0.6 0.7 0.8 0.9 1

Data Set 1 Accuracy

R
es

ul
t 

A
cc

ur
ac

y 
V

al
ue

Data Visibility Approach Data Trasparency Approach
Random Selection

Fig. 3. Acc. heter. and Data Merge

4.2 Data Accuracy Heterogeneity and Merging

The goal of the analysis is to determine how the quality heterogeneity of the
local data sets influences the effectiveness of merging. Intuitively, the greater
the difference of accuracy for overlapping data, the greater the improvement
obtained from merging. Two data sets are considered. Initially they have the
same value of accuracy, equal to 0.5; then, the accuracy of the first data set is



Brokering Multisource Data with Quality Constraints 815

0.84

0.86

0.88

0.9

0.92

0.94

0 10 20 30 40 50 60 70 80 90 100

Percentage of Overlapping Records
R

es
ul

t 
A

cc
ur

ac
y 

V
al

ue

Data Visibility Approach Data Trasparency Approach

Fig. 4. Accuracy trend as a function of the percentage of overlapping records

increased by 0.1 at each step, until accuracy is equal to 1. The data field Null
probability and the variance of the Gaussian density function have been set equal
to 0.01 and 0.02, respectively. The query includes the overlapping data fields that
are not involved in data cleaning operations in order to evaluate the enhancement
of data quality due to the merging algorithm only. The completeness constraint
is equal to 0.8, while the accuracy constraint is set equal to 0.45. We consider
also the random selection of tuples from the two data sets. Results are shown in
Figure 3. Note that the accuracy of the query plan of the DVA is always greater
than that determined by the other two solutions. The improvement with respect
to the random selection increases, since if one of the two data sets becomes more
accurate, the selection of the best data performed by the merging algorithm
becomes more effective. On the other hand, the improvement with respect to
the DTA decreases, since if one of the two fragments becomes more accurate,
the DVA and DTA select tuples from the same data set.

4.3 Fraction of Records and Merging

The aim of this analysis is to evaluate the dependency of the accuracy on the
fraction of overlapping records. Two data sets are considered. The query includes
the overlapping data fields that are not involved in data cleaning operations in
order to evaluate the enhancement of data quality due to the merging algorithm
only. Accuracy and completeness constraints have been set greater than 0.8. The
data fields Null probability and the variance of the Gaussian density function
have been set equal to 0.01 and 0.02 respectively, while the expected value has
been randomly generated in the range [0.8, 0.9]. The fraction of overlapping
records has been varied in the range [0, 100%] with step 20%. The results of
a representative test case are reported in Figure 4. As the percentage of over-
lapping records increases, the accuracy of the final query plan grows for both
the DTA and DVA. The improvement is more significant for the DVA since the
merging algorithm always selects the best of the overlapping data. Note that the
accuracy of the DTA is always greater than that of the DTA. The percent im-
provement of accuracy obtained by the DVA with respect to the DTA increases
up to 7%.



816 D. Ardagna et al.

5 Related Work

The problem of accessing multisource heterogeneous data has attracted vast
attention by the research community. If the same data can be obtained by mul-
tiple providers, the data quality becomes a selection driver. Several dimensions
have been proposed in the data quality literature. For example, accuracy and
completeness assess data along their numerical extension and correctness. Time-
liness evaluates the validity of data along time. Several architectures for the data
quality management and data provider selection based on quality criteria have
also been proposed in the literature. In the particular context of Cooperative
Information Systems (CIS), a Data Quality Broker has been proposed for the
selection of the best data sources satisfying quality requirements [12]. The broker
receives a user request and sends corresponding data requests to the organiza-
tions belonging to the CIS. The broker is based on a GAV (Global As View)
approach, since it is responsible for data retrieval and reconciliation. Reconcili-
ation is performed by choosing the data values characterized by highest quality.
Anyway, the paper does not provide a mathematical model for the calculation
of overall quality. The optimization of the query plan has been addressed in
[2,7,10]. Authors in [2] have considered a linear formulation of the optimization
problem which is obtained by considering a priori all possible intersections of
overlapping data sets and by pre-computing corresponding quality values. The
problem is solved by state of the art integer linear solvers and the optimum
solution is identified. Authors in [7] and [10] proposed a similar formulation of
our optimization problem which is solved by a branch and bound algorithm. The
branch and bound can identify the optimum solution of the problem, but the
worst case execution time grows exponentially with the number of nodes of the
underlying decision tree [14], which is obtained when no feasible solution exists.

6 Conclusions and Future Work

In this paper we have presented a comparison between the DVA and DTA to
data brokering. Results show that the accuracy improvement obtained by using
the DVA justifies the additional computational complexity. In particular, the
accuracy improvement is more significant when data sets have low accuracy and
data cleaning techniques are adopted. Future work will extend the optimization
algorithm and implement column generation techniques in order to identify the
global optimum. Negotiation phase will be also considered with the introduction
of the evaluation of price constraints in the optimization problem. Finally, the
methodology will be extended by considering other data quality dimensions.

Acknowledgements

This work has been partially supported by the MAIS FIRB Italian Project.
Thanks are expressed to Marco Comuzzi and Barbara Pernici for many fruitful
discussions.



Brokering Multisource Data with Quality Constraints 817

References

1. D. Ardagna, C. Cappiello, M. Comuzzi, C. Francalanci, and B. Pernici. A Broker
For Selecting And Provisioning High Quality Syndicated Data. In ICIQ 2005 Proc.,
2005.

2. A. Avenali, P. Bertolazzi, C. Batini, and P. Missier. A formulation of the data qual-
ity optimization problem in cooperative information systems. In CAiSE Workshops
(2), 2004.

3. R. Braumandl. Quality of service and optimization in data integration systems. In
BTW Proc., 2003.

4. L. P. English. Improving data warehouse and business information quality: methods
for reducing costs and increasing profits. John Wiley & Sons, Inc., 1999.

5. M. A. Hernández and S. J. Stolfo. Real-world data is dirty: Data cleansing and
the merge/purge problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.

6. M. Lenzerini. Data integration: A theoretical perspective. PODS 2002 Proc., 2002.
7. U. Leser and F. Naumann. Query Planning with Information Quality Bounds. In

FQAS 2000 Proc., 2000.
8. U. Manber. Introduction to Algorithms. Addison Wesley, 1989.
9. F. Naumann, J. C. Freytag, and U. Leser. Completeness of integrated information

sources. Inf. Syst., 29(7):583–615, 2004.
10. F. Naumann, U. Leser, and J. C. Freytag. Quality-driven Integration of Heteroge-

neous Information Systems. In VLDB Proc., 1999.
11. J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, 2003.
12. M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, and R. Baldoni. The

daquincis architecture: a platform for exchanging and improving data quality in
cooperative information systems. Inf. Syst., 29(7):551–582, 2004.

13. M. Turner, F. Zhu, I. A. Kotsiopoulos, M. Russell, D. Budgen, K. H. Bennett,
P. Brereton, J. Keane, P. J. Layzell, and M. Rigby. Using web service technologies
to create an information broker: An experience report. In ICSE04 Proc., 2004.

14. L. Wolsey. Integer Programming. Wiley, 1998.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 818 – 835, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Enhancing the Business Analysis Function with  
Semantics 

Sean O’Riain1 and Peter Spyns2 

1 Semantic Infrastructure Research Group 
European Software Centre, Hewlett-Packard, Ballybrit Business Park, Galway, Ireland  

Sean.ORiain@hp.com 
http://h40055.www4.hp.com/galway/ 

2 Vrije Universiteit Brussel, STAR Lab 
Pleinlaan 2, Gebouw G-10, B-1050 Brussel, Belgium 

Peter.Spyns@vub.ac.be 
http://www.starlab.vub.ac.be 

Abstract. This paper outlines a prototypical work bench which offers 
semantically enhanced analytical capabilities to the business analyst. The 
business case for such an environment is outlined and user scenario 
development used to illustrate system requirements. Based upon ideas from 
meta-discourse and exploiting advances within the fields of ontology 
engineering, annotation, natural language processing and personal knowledge 
management, the Analyst Work Bench offers the automated identification of, 
and between business discourse items with possible propositional content. The 
semantically annotated results are visually presented allowing personalised 
report path traversal marked up against the original source. 

1   Introduction 

1.1   Background 

Business analysis is largely performed as a Business Intelligence1 (BI) activity with 
data mining and data warehousing acting as the driving force in the monitoring, 
identification and gathering of information on topics of interest. On-line analytical 
processing performed on historical data allows report generation and data views, from 
which further BI analysis is typically performed. Data not formally mapped as part of 
the extract, transform and load phases, passes through the process unaltered. Current 
efforts to mine this unstructured data rely heavily upon problematic document level 
technologies such as string-based searching resulting in data being overlooked and its 
information value being lost. Enterprises performing customer analysis as a means to 
identify new business opportunities by necessity have to work their way through large 
volumes of free text to identify information of interest and check whether there are 
other informational items which are relevant to them. Current BI technologies present 

                                                           
1  Term coined by Gartner in the late 1980s that refers to the user-centred process of data 

gathering and analysis for the purpose of developing insights and understanding leading to 
improved and informed decision making. 



 Enhancing the Business Analysis Function with Semantics 819 

limitations in facilitating this identification and association activity when processing 
information. Introducing semantic technology offers the potential to address these 
limitations and contribute towards a more accurate and sophisticated analytical 
function for the analyst. 

For informational analysis purposes the Form 10-Q2 may be considered as 
comprising financial accounts and statements from the CEO3. CEO statements 
concern a company’s performance, are seen as a promotional medium designed to 
present a corporate image and are hugely important in building credibility and 
investor confidence. They also serve to present the quantitative aspects of the 
financial accounts. Despite the fact that analysts have a clear expectation of 
information content that the statements may contain, it remains a huge task to search 
for, identify and filter actual relevant information due to the writing style being 
purposely rhetorical, argumentative and subjective. The writing style attempts to 
restrict the readers in developing alternative interpretations of the information 
presented and draws upon meta-discourse (cf. section 3.1 below) to achieve these 
goals, i.e. the CEO in making financial commentary would attempt to guide the 
reader/analyst into accepting and agreeing with the company position or view point. 
Despite this, an analyst engaged in the analytic process intuitively filters, refines and 
ultimately infers relevant information from what is being presented. Analysts are 
largely assisted by experience coupled with an inherent awareness and understanding 
of the meta-discourse employed whether consciously aware of it or not.  

With information identification as the context, this paper’s aim is to present the 
idea of a semantically enabled analysts work bench which would allow the 
identification of business discourse items and their relationships to other discourse 
items if present. The business case, technical requirements and design for such an 
application are presented. Development work to date is outlined along with the 
experimental scenario and its evaluation framework. 

1.2   Business Case 

HP4 for a number of years has provided outsourced services to Independent Software 
Vendors (ISV’s). Due to changing business practices the Business Process 
Outsourcing (BPO) business team was tasked with exploring the possibility of 
extending the current service offerings to different areas of the product development 
cycle where HP has considerable competencies. Which ISVs to pursue for business 
was determined on the basis of findings from company health checks5. Forms 10-Q 
consisting of consolidated financial information and management statements were 
identified as a major source for this type of information.6 
                                                           
2  Quarterly report filed to the Securities and Exchange Commission (SEC) in the US. It 

includes un-audited financial statements and provides a continuing view of the company's 
financial position. Investors and financial professionals rely upon these 10-Q forms when 
evaluating investment opportunities. 

3  Chief Executive Officer, the highest ranking officer of a company, who oversees the 
company's finances and strategic planning. 

4  European Software Centre, Hewlett-Packard Galway Limited. 
5  Analysis of a company’s performance and its strategic plans. 
6  Typically downloadable from a company’s web site. 



820 S. O’Riain and P. Spyns 

An initial 70 candidates were selected and subjected to a lengthy analysis process 
resulting in the identification of five which were then approached for business 
discussion. The elapsed time period for this activity was nine months. The majority of 
it was taken up with the identification and extraction of information of potential 
interest hidden within the Forms 10-Q sections containing the management’s 
discussion and analysis of financial conditions. Contributory factors impeding this 
manual intelligence gathering activity were the volume of available information, its 
growth rate and the fact that much of the information is available in free text form 
only, for which no automated processing procedures have been applied until now. 

There is clearly a requirement for an automated intelligence monitoring solution 
that would offer an opportunity to make more manageable the identification, analysis 
and facilitate extraction for re-use of this information within the specific domain area. 
This paper discusses how the use of semantic technologies and natural language 
processing techniques along with business specific input is currently being applied to 
develop such a workbench. 

The remainder of the paper is organized as follows. Section 2 presents the 
functional requirements in terms of a user scenario development and introduces the 
case study. Section 3 introduces the linguistic analysis approach (subsections 3.1 & 
3.2) and ontology methodology (subsection 3.3 & 3.4) adhered to. Section 4 outlines 
the proposed solution, its high level components and grounding technologies 
accompanied by a worked example covering all implementation steps from natural 
language identification to eventual semantic annotation. Section 5 discusses 
preliminary evaluation results. Section 6 presents related work areas, and finally 
Section 7 concludes the paper. 

2   Requirements 

Business requirements are presented in two steps. The first (cf. section 2.1) involves 
gathering high level requirements before moving to general usability and functionality 
considerations of which the former is only outlined here. The second (cf. section 2.2) 
presents the results of translating the user requirements to application design. To 
facilitate understanding detailed requirements functionality are presented in terms of 
user scenario development. This approach was also utilised to present and refine the 
application design with the user community. 

2.1   General 

The business requirement put succinctly is for an application that contributes to the 
analytic function by reducing the time taken and subsequently the resources necessary 
to accurately process and evaluate Form 10-Qs for the purpose of performing 
company health checks. The two main areas identified where analytic processing 
resource savings could be achieved were: 

1. Identification and association of information items: 
The ability to perform automated analysis on the free text areas of a Form 10-Q 
would assist analysts in the identification of information of importance to them. 



 Enhancing the Business Analysis Function with Semantics 821 

Importance was defined on two levels. Firstly as relevant information containing 
some element of propositional information7 (here termed informational items). 
Secondly as defined relationships between these information items, allowing them 
to be considered collectively, which would additionally contribute towards the 
further identification of propositional content and hence the analytic function. 

2. Personal Knowledge Management: 
Having the ability to view the level of relevant informational items and their 
relationships instantiations (termed semantic paths) would assist in providing the 
analyst with an overview of the documents information content. Path traversal to 
information items of interest along with the ability to view these paths in entirety, 
accompanied with supporting functionality allowing for information extraction 
and/or exclusion, would assist an analyst in structuring, managing and 
personalising the analysis approach. 

2.2   Scenario Development 

Fig. 1 represents an application mock up for the work bench based upon business 
requirements by the analysts involved. It comprises the three viewing areas of: 

− Navigator:  
A tree view hierarchical ontology navigator allowing report traversal and 
selection of terms, their roles8 and instances for viewing.  

− Browser Display: 
Displays and allows dynamic traversal of the semantically annotated report with 
instance mark up 

− Relationship Viewer:  
A tree view hierarchical ontology navigator which displays the roles between 
terms along with the text associated with either the role or term instance. 

An analyst in performing a company health check analysis will typically scan the 
introductory section to gain an insight as to what sections within the report may 
contain useful information. The remainder of the report is then systematically gone 
through using these identified areas to guide analysis function on. The major 
difficulty faced is the search for, identity of and filtering of actual relevant 
information involving substantial document traversal through large volumes of free 
text. The viewing areas presented will provide the functionality to perform these 
activities. In a prototypical case, an analyst having loaded the Form 10-Q will have 
the report automatically processed and annotated (i.e. enriched with meta-data related 
to the typical content of a Form 10-Q) based upon the argumentation categories and 
term/roles like those listed in section 4.1. 

Using the Navigator to traverse a report allows context specification (here ’Sales’) 
and provides a listing of all associated terms and roles. As illustrated in Fig. 1, further  
 

                                                           
7  This is information about thoughts, actors or state of affairs outside of the text [15]. Here 

interpreted as information that may contribute towards an understanding of the actual 
information content in the text. 

8  DOM2 terminology, refer to section 3.4. 



822 S. O’Riain and P. Spyns 

 

Fig. 1. AWB Main in-text Visualization Area 

traversal provides indicators as to which information items such as ‘Products’ have 
multiple instances within the report. The indicators also provide a summary of which 
anticipated partial semantic paths binary relationships are actually instantiated (here 
‘Products’ has one instantiated relationship ‘Announcements’, ‘Announcements’ in 
turn has two instantiated relationships, ‘Release’ and ‘Delay’). In effect the analyst 
has the capability to select and instantiate semantic paths9 through the document.  

Individual or multiple term or role annotation instances selected for viewing (here 
‘Delay’) will be highlighted with a background colour in the report displayed within 
the Browser Display. Within this area the analyst can easily identify and select a 
particular annotation instance (here ’market delay’) to view its instantiated in-text 
binary relationships within the Relationship Viewer.  

The Relationship Viewer taking the original context (’Sales’) as its root presents 
the semantic traversal path between terms in the binary relationship (cf. section 4.1). 
Based upon the ontology structure used by the Navigator, it additionally includes the 
annotation instance information item as part of the tree view allowing the analyst to 
build up a complete picture of in-context business informational items, without the 
overhead of having to actually consider the context. The overall in-text viewing 
capability allows quick identification of informational items and their binary 
relationships which when considered collectively (i.e. the semantic path) offer the 
best opportunity to access their actual propositional content value. Once accessed 
semantic paths terms, binary relationships or specific information item instances can 

                                                           
9 Currently the functionality for the partial semantic path recognition is under development.  



 Enhancing the Business Analysis Function with Semantics 823 

be selectively excluded and filtered out from further consideration. Exclusion used in 
this manner provides the analyst with varying degrees of flexibility in managing the 
information overload as part of the analytic process. 

3   Methods 

The critical research question is whether it is possible to express what the analyst is 
looking for in terms of meta-discourse functions, and if so, to what extent can it be 
automated. Expressing analyst information needs therefore requires an understanding 
of how meta-discourse and its function intrude into the activity. It is the identification 
of this propositional information (but stripped from the rhetorical and subjective 
elements) that is the overall goal of the Analysts Work Bench (AWB). To achieve this 
aim, a multidisciplinary approach combining natural language processing and 
ontology engineering is proposed. The following sections describe the theories, 
methodologies and tools used in this experiment. 

3.1   Linguistic Analysis 

Hyland defines meta-discourse as a linguistic tool that creates a textual structure that 
goes beyond the statement of the subject matter and gives clues as to the purpose and 
attitude of the writer [18]. In effect meta-discourse consists of text tokens that do not 
contribute to the propositional development of the text but serves to guide the reader 
in interpretation and response to the text [17]. In describing the functional categories 
of meta-discourse, Hyland incorporates Thompson’s classification to model meta-
discourse as comprising the functional categories of interactive and interactionable 
[17,24]. Interactive refers to the writers attempts at constraining the text to their 
preferred interpretation and goals. Resource usage is this category is concerned with 
how discourse is organized and the extent to which the text is structured with 
knowledge of the reader and their needs in mind. Interactive resources are used by the 
writer to organize propositional information in a manner that the reader is likely to 
find coherent and convincing, effectively managing the information flow. 
Interactionable refers to the level of writer intrusion into the text by way of comment, 
opinion and evaluation [18]. Interactionable resources are employed to anticipate, 
acknowledge, challenge or negate alternate interpretations being drawn, in effect 
restricting opportunities for alternate views in the first instance. Table 1 below details 
the meta-discourse categories and their functional descriptions.  

Hyland uses the proposition meta-discourse distinction as a starting position for 
academic meta-discourse exploration, but others have included propositional content 
as part of meta-discourse [5,18]. To further blur the issue it is often the case that 
meta-discourse and propositional elements occur within one sentence and what is 
considered propositional in one context is meta-discourse in another. 

Results from the study of meta-discourse within CEOs’ letters indicate that the 
functional devices of transitions and hedges (see Table 1) together account for 66% of 
all discourse items [17]. Within the area of business postgraduate studies, this figure 
 



824 S. O’Riain and P. Spyns 

Table 1. Model of Meta-discourse in Academic Texts (adapted from [18]) 

Interactive Resource 

Category Function Device lexicalisation 

Transitions Express semantic relation between 
main clauses 

And/or/but /in addition/thus 

Frame 
Markers 

Draw attention to discourse goals or 
indicate topic or argument shifts 

Finally/to conclude/my purpose 
here is to/  I argue here/  Well now 

Endophoric 
Markers 

Refers to information in other parts 
of the text 

See section X/noted above/see Fig 
X/In section X 

Evidentials Refer to source of information in 
other parts of the text 

According to X/ 2005, X/X states 

Code 
Glosses 

Assist reader in interpretation of 
ideational material 

Such as/for instance/in other 
words/namely/e.g. 

Interactional Devices 

Hedges Withhold writers full commitment to 
proposition 

Possible/might/perhaps/about 

Boosters 
Emphatics 

Emphasises force or writers certainty 
in proposition 

In fact/it is obvious/definitely/ 
clearly/it is clear that 

Attitude 
markers 

Express writers attitude to 
proposition 

Unfortunately/I agree/agreement/ 
surprise/surprisingly 

Engagement 
markers 

Explicitly refer to or build 
relationship with reader 

Consider/note that/you can see 

Self mentions Explicit reference to author(s) I/we/my/our 

rises to 90% [5]. While we were unable to use the meta-discourse devices themselves 
as a means to assist in propositional content identification, we were however able to 
use the idea of the transitions and hedges functional categories when constructing the 
ontology and subsequent grammar rules (expanded upon in section 3.3). 

3.2   The GATE Linguistic Engineering Framework 

The General Annotation for Text Engineering (GATE)10 is a component-based 
general architecture and graphical development environment for natural language 
engineering. Provided APIs allow selective inclusion of languages, processing and 
visual resources components such as tokenisation, semantic tagging, verb phrase 
chunking and sentence splitting. GATE’s Java Annotation Patterns Engine (JAPE) 
providing finites state transducers over annotations, allows grammar rule specification 
and recognition of regular expressions within these annotations. The annotations 
organised as a graph are modelled as java sets of annotations facilitating 
manipulation. The last decade has seen the acceptance of shallow analysis techniques 
involving pattern analysis and regular expressions. GATE provides flexibility 
                                                           
10 May be downloaded from http://gate.ac.uk. Further details on GATE may be found in [1]. 



 Enhancing the Business Analysis Function with Semantics 825 

allowing adaptation to activities such as these and to follow on activities such as 
ontology based information extraction – e.g., for technology watch [20]. It is for these 
reasons that we selected GATE. 

3.3   Ontology Modelling 

Reports written in the language of business discourse ensure that analysts face the 
problem of first identifying information items of interest and then attempting to 
interpret their actual business message. In tackling identification within this context 
we adopted the idea of the meta-discourse hedges category and used it predominately 
as an assist to the analyst in targeting sentence clauses that were making a 
contribution to actual information content. Complicating the problem was the fact that 
any single information item provides only part of the overall proposition being made 
and the level of company commitment to it. Interpretation therefore had to be based 
upon considering relevant information together, requiring a level of semantic 
association between items that adhered to business logic. Consequently we drew upon 
the meta-discourse transition category for semantic association and hedges category 
for assisting the analyst in introducing business logic. Combining both approaches 
offered the possibility to draw out from the manner in which something is being said, 
what in fact is being said. It provides the analyst with the ability to actually determine 
what proposition is being made. (cf. section 4.1 for results of these influences). 

Adhering to this novel approach, domain experts were used to manually construct a 
taxonomy for business argumentation categories and their lexicalisation. Due to the 
domain of application requiring deep background knowledge of the discourse used, 
the inclusion of large vocabularies which would eventually require gazetteers was 
purposely avoided and domain specific terms and phrases considered only. This 
helped to address a secondary problem introduced by the nature of discourse itself, 
namely that uniform use of synonyms was not possible or practicable in all 
circumstances as they can and do vary in their meaning. E.g. While the phrase ‘delays 
some_text introduction’ or ‘delays in market acceptance’ could be rephrased with a 
delay synonym of postpone, neither could be rephrased with other “delay” synonyms 
such as “wait/stay/check” and still retain their intended business meaning.  

Wishing to build upon database modelling and development experience as a means 
of bridging the knowledge gap between database and ontology design, we required an 
ontology development methodology that would facilitate the transition. Resultantly 
the DOGMA Ontology Modelling Methodology (DOM2) [30,31], inspired by the 
principles of Object Role Modelling (ORM) [14] 11 and aN Information Analysis 
Method (NIAM) [33], was selected. The ontology engineering process resulted in the 
manual construction of a high level domain ontology (see Table 3 and Table 4 for an 
example extract). 

3.4   The DOGMA Ontology Engineering Framework 

Developing Ontology Guided Mediation for Agents” or DOGMA [23] has as its core 
the notion of double articulation, which decomposes an ontology into an ontology 
base (intuitive binary and plausible conceptualisations of a domain) and a separate 
                                                           
11 Familiarity with ORM and its use in Relational Database Design is assumed. 



826 S. O’Riain and P. Spyns 

commitment layer, holding a set of instances of explicit ontological commitments (or 
domain rules) for an application [29,31].  

The ontology base 
An ontology base consists of intuitively plausible conceptualisations of a real world 
domain, i.e. specific binary fact types, called meta-lexons, formally noted as a triple 
<concept1 – relationship – concept2>. They are abstracted (see below) from lexons, 
written as sextuples <(γ,ζ): term1, role, co-role, term2>. Informally we say that a lexon 
is a fact that may hold for some domain, expressing that within the context γ and for 
the natural language ζ the term1 may plausibly have term2 occur in role with it (and 
inversely term2 maintains a co-role relation with term1) [30] (example in subsection 
4.1). Lexons and meta-lexons are meant to reach a common and agreed understanding 
about the domain conceptualisation (important/relevant notions and how they are 
expressed in one or more natural languages [22]) and assist human understanding. 

Lexons are independent of specific applications and should cover relatively broad 
domains (linguistic level). They form a lexon base, which is constituted by lexons 
grouped by context and language [29]. Meta-lexons are language-neutral and context-
independent (conceptual level). Natural language terms are associated, via the 
language and context combination, to a unique word sense represented by a concept 
label (e.g. the WordNet [9] identifier person#2). With each word sense, a gloss or 
explanatory information is associated that describes that notion. To account for 
synonymy, homonymy and translation equivalents there is an m:n relationship 
between natural language terms and word senses [30]. Going from the language level 
to the concept level corresponds with converting the lexons into meta-lexons.  

The commitment layer 
The layer of ontological commitments mediates between the ontology base and its 
applications. Each commitment is a consistent set of rules (or axioms) that add 
specific semantics to a selection of meta-lexons of the ontology base [19]. The 
commitment layer, with its formal constraints, is meant for interoperability issues 
between information systems, software agents and web services, as is currently 
promoted in the Semantic Web area. The constraints are mathematically founded and 
concern rather typical DB schema constraints e.g. cardinality, optionality etc. While 
we note the purpose and function of the commitment idea and indeed use it (cf. 
section 4.1), our implementation does not require the formal definition of rules. The 
selection of application relevant meta-lexons to form a commitment rule while 
corresponding to the notion of a semantic path differs as it requires formal constraints 
to instantiate the particular commitment. The semantic path does not. Simply stated, 
the domain model as represented in the ontology base can be richer than the actual 
content of the semantic paths.  

4   Proposed Solution 

The workbench primary functions are firstly information identification and secondly 
information extraction. Fig. 2 provides a high level overview of the workbench 
conceptual architecture and its natural language processing components.  



 Enhancing the Business Analysis Function with Semantics 827 

 

Fig. 2. The AWB High Level Component Modules 

The work bench browser component is responsible for display and user related 
interaction while the Natural Language Processing (NLP) component is responsible 
for NLP, source mark up and information extraction (IE). The NLP module tokenizes 
the report, stems the tokens and performs sentence splitting. JAPE grammar rules 
identify and categorize recognized patterns to concept categories. The source mark up 
module semantically marks up the patterns found in the source report and renders the 
annotated result to the AWB browser for display. The IE module using the 
ontological concept structure is responsible for template slot filling (cf. Table 5) and 
ontology population. The applications data store can be a relational database, RDF 
data store (e.g., [3,4]) or both.  

4.1   Prototype Development 

In conjunction with domain experts, (syntactic) analysis of information sources (e.g. 
the report text displayed in Fig. 1) was embarked upon to identify domain specific 
categories, terms and binary relationships. Applying the DOGMA philosophy as 
explained in section 3.4 to the analysis results, the ontology engineer manually 
constructed a series of lexons such as the one presented in Table 2. The approach 
taken was that searching for a combination of these patterns would provide the best 
opportunity for propositional content identification. Table 2 represents the lexon set 
for the semantic path from ’Product’ to ‘Announcement’ to ‘Delays’. From an 
analyst’s view point the lexon extract (expressed as elementary notions) would be 
interpreted as: When constructing a picture of the sales area, references12 to products 
are of interest. To understand what is occurring in the ‘Product’ space, references to 
‘Announcements’ are of interest. Lastly for ‘Announcements’, references to items that 
bring to attention ‘Developments’, ‘Releases’ or ‘Delays’ are important. 

                                                           
12 Term purposely used to simplify dealings with the business community that refers to the tacit 

binary relationship. 



828 S. O’Riain and P. Spyns 

Table 2. Sales Lexon Extract 

Context (γ) = Sales, Language (λ) = UK English 

Head term (t1) Role (r1) Co-role (r2) Tail term (t2) 

Product Follows Precedes Announcement 

Product Is_described_by Describes Announcement 

Announcement Publicises Is_announced_in Delay* 

Announcement Publicises Is_announced_in Release 

Announcement Publicises Is_announced_in development 

Next, synsets (as used in WordNet [9]) and natural language explanations and 
glosses were introduced allowing the grounding of concepts and relationships (cf. 
Table 3) and the creation of meta-lexons <C1, R1, C2> afterwards. Conversion of 
lexons into meta-lexons copes with ideas expression in several ways, e.g. by 
morphology (whether inflection or conjugation allowing different forms of the same 
word), by synonymic wording (lexicology / terminology) or by syntax such as 
organising a sentence using a noun instead of a verb. As there was no requirement13 to 
have multi–lingual capability the principle of having ontologies transcend in so far as 
possible specific linguistic influences14 has not been strictly adhered to. Resultantly 
schema mapping issues with different language usage where words in one language 
do not have a direct equivalent lexical translation in another necessitating 
paraphrasing were not of concern15 and allowed us combine the role and co-role into a 
single semantic relationship. The labels assigned to the concepts and relationships do 
not mimic any existing language expressions [25] – cf. Table 3. 

Due to issues with synonyms introduction (see section 3.3) and the lack of 
requirement to cater for multi-lingual aspects, the combination of language and 
context normally associated with term disambiguation was only used as a means of 
moving from the language to concept level. The resulting meta-lexons based upon the 
Sales Lexon Extract in Table 2 are shown in terms of their constituent concept labels 
(as established in Table 3) in Table 4, along with invoked sample grammar rules.  

Automated concept identification was implemented as a set of JAPE grammar 
rules using the GATE tool (see section 3.2). The grammar rules provided the 
implementation vehicle for the meta-lexons that correspond to the semantic path 
building blocks. Referring to the row indicated by an astrix in Table 2 and Table 4, 
Rule 1 provides the JAPE rules to recognise the concept “announcement” while Rule 
2 detects the presence of ”delays in market acceptance”. The former rule uses the 
macro (ANNOUNCE) based upon stemming16 and synonym expansion to identify the 
inflected word form for annotation. Once found the right hand side of the rule  
 

                                                           
13 Form 10-Qs are a requirement for US companies only 
14

 Due to the difficulty of such an exercise, some authors argue for language neutral  
  representations rather than language independent ones [160]. 

15 See [80] for details on how multilinguality is handled within DOGMA. 
16 GATE’s provided stemmer plug-in is based upon the Porter stemmer for English. 



 Enhancing the Business Analysis Function with Semantics 829 

Table 3. Grounding of concepts (excerpt) 

Context (γ) = Sales, Language (ζ) = UK English 
Label {Explanation; gloss; synonyms etc.} 
C1002  Item manufactured/made and sold to general public; Saleable item; item, 

goods 
C1005 Public statement made for public consumption; Scheduled event; Inform, 

proclaim, advise  
C1014 Delay in market indicating reduction in average order in take; Reduction 

in order intake; No synonyms 
R1001 Set of Program to expand; Intention; Postponement 
R1003  Cancel or reduce; Order; Timely 
R1005 Cycle; Resources; Market; Longer product 

Table 4. Sales Meta-lexon 

C1 R C2 

C1002 R1001 C1005  

C1002 R1002 C1005 

Rule: C1005 

(  (ANNOUNCE) ) 

: C1005-->  : C1005.C1005 

 
 
Rule 1 

C1005 R1003 C1014* 

C1005 R1004 C1016 

C1005 R1005 C1017 

Rule: C1014 
 ( (DELAY)                  
(SPACE_WORD_SPACE)*      
((MARKET)  (ACCEPT)  ) 
: C1014-->  : 1014.C1014 

 
 
Rule 2 

 

(denoted by ‘ ’) fires to annotate the pattern with the ontology concept label 
‘C1005’. The latter rule working in a similar manner first recognising (DELAY) 
followed by multiple white spaces and noise words before recognising occurrences of 
(MARKET) and (ACCEPT). The entire concept is then given the label ‘C1014’.  

The JAPE rules cope with morphological variations. General synonym expansion 
using WordNet [9] produced “noise” in intermediary results due to issues of general 
language knowledge applicability. Resultantly synonym expansion introduction was 
only possible with analyst selection and agreement17. Subsequently, a combination of 
scenario and relational templates are used to reflect abstract representations of the 
domain and present an instantiated part of the ontology. Table 5 provides such a 
reduced Information Template used for ontology population based upon the meta-
lexons introduced earlier in Table 4. 

Instantiated templates can be built per report source from which specific IE actions 
and expert system reasoning (here business analysis) can be performed e.g., checking  
 

                                                           
17 After this annotation stage more complex JAPE rules operating on the concept level could be 

applied to add specific tags for meta-lexon instances indicating partial semantic paths. We 
opted however to not search for implicit relationship at this point but leaving them to the 
ontological association stage where they are based upon both semantic and business logic. 



830 S. O’Riain and P. Spyns 

Table 5. Information Template (Reduced) 

Announcement  

InstanceID Auto generated 

InfoItem Further, the announcement of the release … and the actual release, of new 
Windows-based server operating systems or products incorporating 
similar .. could cause our existing …. 

LinkedConcept1 C1005 

LinkedRelationship R1002 

LinkedConcept2 C1014 

Delay in market acceptance 

InstanceID Auto generated 

InfoItem If we are unable to keep pace with technological developments … 
hindered by: delays in our introduction of new products… delays in 
market acceptance of new products and services or new releases …  

LinkedConcept1 C1014 

LinkedRelationship R1003 

LinkedConcept2 C1005 

of whether or not a company’s products, already announced, suffer from a delay in 
being brought to market. 

Template slots essentially act as database records lending themselves easily to SQL 
operations within an RDB context or RDF triples if using an RDF store (e.g., [3,418]). 
Construction of closed semantic paths with specific meta-lexons in this manner 
ensures inherent semantics and a bounded view. In this regard the templates 
themselves and the semantic path correspond closely to the DOGMA notion of a 
commitment bridging the gap between the ontology base and application layers and 
representing a particular view of the ontology. Here the ontology concepts themselves 
as defined by a semantic path perform the constraint function, removing the necessity 
for formalised rules as only a selection of relevant meta-lexons are needed. 

5   Preliminary Evaluation 

The requirements identify the two areas of identification and association of 
information items and Personal Knowledge Management as areas where business 
resource savings are possible. As the application is still under development the 
discussion will be limited to a preliminary (and reduced in scope) validation of the 
initial research hypothesis, i.e. that a combination of NLP, IE and ontology 
technology contributes to a tangible resource reduction for the business analysts in 
gathering business intelligence from company reports. The purpose of the evaluation 
                                                           
18 May be down loaded from http://jena.sourceforge.net/index.html. 



 Enhancing the Business Analysis Function with Semantics 831 

exercise was to gain an initial indication as to the tool’s usefulness and whether 
overhead associated with the initial setup was justifiable. Therefore, we only involved 
a single senior annotator expert. Thus, for reasons of methodological soundness, 
precision and recall have not been calculated as such. In the future, a thorough 
evaluation according to the method described in [11] will be conducted.  

In performing the evaluation (see. Table 6 for results) we had a senior domain 
expert analyse manually 10-Q forms19, with the instruction to identify and annotate 
information items based upon partial semantic path recognition. The semantic path 
used was the full sales meta-lexon extract of which Table 4 mentioned previously is 
only an excerpt. From these the analyst performed further expert validation to identify 
only those items of actual relevance. The same activity sequence was then performed 
on reports that were automatically annotated to identify partial semantic paths. The 
outcomes have been evaluated in a three-fold manner. The first phase involved the 
performance comparison of manual vs. automated annotation, while the second 
measured the overall impact of the tool on the business intelligence activities (manual 
vs. automated relevance). Finally, the time needed by a business analyst to perform 
his/her task with and without tool support has been compared (cf. Table 7). 

The tool supported analysis outperformed the manual by 34% translating in 
actually relevant terms (8 vs. 12) to an increase of 50% in the number of additional 
informational items annotated by the analyst (11 vs. 22). Further expert analysis on 
these additional relevant items indicate that they directly contributed to reinforcing 
analysis hypothesis and most significantly in one instance, brought to attention an 
item that led to new analysis thinking.  

Table 6. Partial Semantic Path Identification results 

Information Item No. 
Manual Automated 

 
 
Concept Annotated Relevant Annotated Relevant 
C1002 2 2 8 4 
C1005 1 1 2 1 
C1011 0 0 0 0 
C1012 0 0 2 0 
C1013 0 0 0 0 
C1014 4 3 4 4 
C1015 2 0 2 1 
C1016 2 2 4 2 
C1017 0 0 0 0 
 Totals 11 8 22 12 

Table 7 lists the timings taken for an analyst performing the report analysis activity 
mentioned previously, first manually and then after automated semantic annotation. 
Automation resulted in a 78% overall resource saving over manual activities and 
removed completely the need for the introductory section analysis. 
                                                           
19 Based upon the average of a year’s quarterly reports for one company. 



832 S. O’Riain and P. Spyns 

Table 7. Resource Saving 

 Time (minutes)  
Report section Manual Automated Difference Resource Saving (%) 
Introduction 10 ignored -10 100 
Main body 80 20 -60 75 
Totals 90 20 -70 78 

6   Related Work 

The application of IE techniques to SEC Form 10-Q business reports is principally 
similar to the MUC evaluation exercises (e.g. [15]). Recent efforts such as OntoText’s 
KIM [26] have extended the classical (but limited) nature and number of entity 
recognition sets to include proper names, geographical names, business names etc. 
These sets however remains insufficient for the nature and type of information that an 
analyst would wish to extract from the Form 10-Q. 

The medical field in particular has seen earlier large scale research efforts 
conducted to extract complex knowledge from documents (e.g., cf. [10,27]). Typical 
of these projects is that they draw upon “deep” linguistic and semantic analysis along 
with well developed models of knowledge representation and reasoning. The last 
decade has seen the emergence and adaptation of light weight pattern analysis 
techniques based upon regular expressions such as RegExTest20 applied to the 
identification of Nigerian fraud emails [13]. Shallow NLP analysis techniques, in 
many cases involving pattern analysis and regular expressions such as the GATE 
system have become mainstream [6].  

A more recent step has been the combination of ontologies with information 
templates as used in IE 21. The template fillers are instances of a domain ontology 
concepts of which a selection constitutes the building blocks of a template. In a 
further step reasoning procedures can be added to the templates (turning the templates 
into frames in the tradition of Schank [28]. A rule based IE application concerned 
with market monitoring and technology watch within the employment market place, 
obtained promising results (precision 97%, recall 92%), be it on a small test-bed of 
documents [20]. Moreale using the same approach but within an e-learning context, 
constructed a service that presented the argumentation content of a student essay [24].  

Typical of these prototypes is that while the results were said to be favourable, in 
each case the conclusions were that the tool required further work for large scale 
deployment. These findings confirm earlier results, namely that IE is improved when 
based upon an ontology [14,20]. Having conducted literature reviews, we remain 
unaware of a similar application such as the AWB in a business setting as described 
above that has as its basis a pressing business case and represents for HP a 
considerable resource saving opportunity and intelligence gathering assist for the 
Business Process Re-Engineering Group. 

                                                           
20 http:// sourceforge.net/projects/regextest/. 
21 A good introduction on combining ontologies with IE can be found in [70]. 



 Enhancing the Business Analysis Function with Semantics 833 

7   Conclusion 

The paper’s main contribution is the outline of the AWB prototype offering 
semantically enhanced analytical capabilities to the business analyst based upon the 
notion of semantic paths. Preliminary ‘in development’ findings have been presented 
outlining promising results of greatly enhanced relevant information identification 
and association capabilities which resulting in both resource savings and new analysis 
insight. As efforts to date have been directed toward the partial semantic path we now 
aim to expand upon this to high light the semantic relationship by implementing the 
complete semantic path. We are confident that evaluation on the resultant fully 
functional prototype will reinforce these findings. The other key learning has been 
that a blanket adaptation of NLP for particular domains (here Business Process 
Outsourcing) will be problematic without tailored usage of synonym expansion, 
particularly if a complex understanding of discourse within the domain is required. 
With the idea of semantic paths providing encouraging results even at this early 
developmental stage, investigative research into functionality allowing restricted 
domain natural language querying and reasoning based upon the ontology being 
expressed in OWL is currently underway. 

Acknowledgements 

We gratefully thank John Collins, Business Development & Business Engineering 
Manager, HP Galway, for his evaluation effort, and David O’Sullivan, DERI Galway 
along with Robert Meersman VUB-STAR Lab, for their comments on draft versions 
of this text. 

References 

1. Bontcheva K., Tablan V., Maynard D. & Cunningham H., (2004), Evolving GATE to 
meet new challenges in language engineering, Journal of Natural Language Engineering 
10 (3/4): 349-373 

2. Broekstra J., Kampman A., van Harmelen F., (2002), SESAME: A generic architecture for 
storing and querying RDF and RDF Schema, in Horrocks I. & Hendler J., (eds.), Proc. of 
the First International Semantic Web Conf. (ISWC02), LNCS 2342, Springer, pp. 54-68 

3. Cao T.-D., R.D.-K. & Fiès B. (2004), An Ontology-Guided Annotation System for 
Technology Monitoring. in Proc. of IADIS International WWW/Internet 2004 Conference.  

4. Caroll J., Dickinson I., Dollin C., Reynolds D., Seaborne A., Wilkinson K., (2004), Jena: 
implementing the semantic web recommendations, Proceedings of the 13th international 
World Wide Web conference on Alternate track papers & posters 

5. Crismore A. and Farnesworth R, (1990), Metadiscourse in popular and professional 
science discourse. The Writing Scholar, Studies in Academic Discourse, in W. Nash, 
(ed.),. New Bury Park: Sage. 119-36 

6. Cunningham H., Maynard D., Bontcheva K. & Tablan V., (2002), GATE: A Framework 
and Graphical Development Environment for Robust NLP Tools and Applications, in 
Proc. of the 40th Anniversary Meeting of the Association for Computational Linguistics  

7. Cunninham H., Bontcheva K. & Li Y., (2005), Knowledge Management and human 
language: crossing the chasm, Journal of Knowledge Management, 9 (5): 108-131 



834 S. O’Riain and P. Spyns 

8. De Bo J., Spyns P. & Meersman R., (2003), Creating a "DOGMAtic" multilingual 
ontology infrastructure to support a semantic portal. in Meersman R., Tari Z. et al., (eds.), 
On the Move to Meaningful Internet Systems 2003: OTM 2003 Workshops, LNCS 2889, 
Springer Verlag, pp. 253 - 266 

9. Fellbaum C. (ed.), (1998), Wordnet, An Electronic Lexical Database, MIT Press 
10. Friedman C., Hripcsak G., Alderson P., DuMouchel W., Johnson S. & Clayton P., (1995), 

Natural Language Processing in an operational clinical information system, Journal of 
Natural Language Engineering 1 (1): 83 - 103 

11. Friedman C. & Hripcsak G., (1998), Evaluating Natural Language Processors in the 
Clinical Domain, Methods of Information in Medicine 37 (4/5): 334 - 44 

12. Gao Y & Zhao G., (2005), Knowledge-based Information Extraction: a case study of 
recognizing emails of Nigerian frauds, in Montoyo A., Munoz R. & Metais E., (2005), 
Proceedings of the 10th  International Conference of Applications of Natural Language to 
Information Systems (NLDB05), LCNS, 3513, Springer, pp. 161 – 172 

13. Guarino N., Masolo C. & Vetere G., (1999), OntoSeek: Content-Based Access to the Web, 
IEEE Intelligent Systems, (4-5): 70-80 

14. Halpin T, (2001), Information Modeling and Relational Databases: from conceptual 
analysis to logical design, Morgan-Kaufmann, San Francisco. 

15. Hirschmann L. (1998), Language Understanding Evaluations: Lessons learned from MUC 
and ATIS, in Rubio A., Gallardo N., Castro R. & Tejada A. (eds.), 1st International 
Conference on Language Resources and Evaluation (LREC 98), ELRA, pp. 117-122 

16. Hovy, E. & Nirenburg S. (1992). “Approximating an interlingua in a principled way”. 
Proceedings of the DARPA Speech and Natural Language Workshop, 
http://www.isi.edu/natural-language/people/hovy/papers/92darpa-il.pdf  

17. Hyland, K., Exploring corporate rhetoric: metadiscourse in the CEO's letter. The Journal 
of Business Communication, 1998 

18. Hyland K. and Tse P., Metadiscourse in Academic Writing: A Reappraisal. Applied 
Linguistics, 2004. 25 (2): p. 156-177 

19. Jarrar M. & Meersman R., (2002), Formal Ontology Engineering in the DOGMA 
Approach, in Meersman R., Tari Z. et al., (eds.), On the Move to Meaningful Internet 
Systems 2002: CoopIS, DOA, and ODBASE; Confederated International Conferences 
CoopIS, DOA, and ODBASE 2002 Proceedings, LNCS 2519, Springer, pp. 1238 – 1254 

20. Maynard D, et al. Ontology-based information extraction for market monitoring and 
technology watch. in ESWC Workshop "End User Apects of the Semantic Web". 2005.. 

21. McGuiness D., (2004), Question Answering on the Semantic Web, IEEE Intelligent 
Systems Jan/Feb 2004: 82-85 

22. Meersman R., (1999), The Use of Lexicons and Other Computer-Linguistic Tools, in 
Zhang Y., Rusinkiewicz M, & Kambayashi Y., (eds.), Semantics, Design and Cooperation 
of Database Systems, Proceedings of CODAS 99, Springer Verlag, pp. 1 – 14.  

23. Meersman R., (2001), Ontologies and Databases: More than a Fleeting Resemblance, In, 
d'Atri A. and Missikoff M. (eds), OES/SEO 2001 Rome Workshop, Luiss Publications. 

24. Moreale E. and Vargas-Vera M., Semantic Services in e-Learning: an Argumentation Case 
Study. Internat. Forum of Educational Technology & Society, 2004. 4 (7): p. 112-128 

25. Nirenburg, S. & Raskin V. (2001). “Ontological Semantics, Formal Ontology, and 
Ambiguity”. Proceedings of the Second International Conference on Formal Ontology in 
Information Systems. ACM Press, 151 – 161 

26. Popov B., Kiryakov A., Kirilov A., Manov D., Ognyanoff D. & Goranov M., (2003), 
KIM: Semantic Annotation Platform, in Proceedings of the 2nd International Semantic 
Web Conference (ISWC 03), Springer Verlag, pp. 484-499 



 Enhancing the Business Analysis Function with Semantics 835 

27. Sager N, Friedman C & Lyman M., (1987), Medical Language Processing: computer 
management of narrative data, Addison Wesley 

28. Schank R. & Abelson R., (1977), Scripts, Plans, Goals and Understanding, Lawrence 
Erlbaum Associates, Hillsdale N.J. 

29. Spyns P., Meersman R. & Jarrar M., (2002), Data modelling versus Ontology engineering, 
in Sheth A. & Meersman R. (ed.), SIGMOD Record Special Issue 31 (4): 12-17 

30. Spyns P., (2005), Adapting the Object Role Modelling method for Ontology Modelling . 
In, Hacid M.-S., Murray N., Ras Z. & Tsumoto S.,(eds.), Foundations of Intelligent 
Systems, Proceedings of the 15th International Symposium on Methodologies for 
Information Systems, LNAI 3488, Springer Verlag, pp. 276 – 284 

31. Spyns P., (2005), Object Role Modelling for Ontology Engineering in the DOGMA 
framework, in Meersman R., Tari Z., Herrero P. et al. (eds.), Proceedings of the OTM 
2005 Workshops, LNCS 3762, Springer Verlag, pp. 710 - 719 

32. Thompson, G., Intreraction in academic writing: Learning to argue with the reader. 
Applied Linguistics, 2001. 22 (1): 58-78 

33. Verheyen G. & van Bekkum P., (1982), NIAM, aN Information Analysis Method, in Olle 
T., Sol H. & Verrijn-Stuart A. (eds.), Information Systems Design Methodologies: A 
Comparative Review, North-Holland/IFIP WG8.1, pp. 537—590 



Ontology Engineering: A Reality Check

Elena Paslaru Bontas Simperl1 and Christoph Tempich2

1 Free University of Berlin, Takustr. 9, 14195 Berlin, Germany
paslaru@inf.fu-berlin.de

2 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
tempich@aifb.uni-karlsruhe.de

Abstract. The theoretical results achieved in the ontology engineering field in
the last fifteen years are of incontestable value for the prospected large scale take-
up of semantic technologies. Their range of application in real-world projects is,
however, so far comparatively limited, despite the growing number of ontologies
online available. This restricted impact was confirmed in a three month empir-
ical study, in which we examined over 34 contemporary ontology development
projects from a process- and costs-oriented perspective. In this paper we give
an account of the results of this study. We conclude that ontology engineering
research should strive for a unified, lightweight and component-based method-
ological framework, principally targeted at domain experts, in addition to consol-
idating the existing approaches.

1 Introduction

The emergence of the Semantic Web has marked an important step in the evolution of
ontologies. Regarded as a means for a shared knowledge understanding and a way to
(formally) represent real world domains, they are expected to play a crucial role in data
and application integration at public and corporate level. In the last decades researchers
have proposed process methodologies for various ontology engineering scenarios [7].
Given the difficulties related to building and maintaining ontologies, a methodologi-
cal framework provides important benefits: it structures the process, thus breaking its
complexity down to manageable tasks, clarifies the responsibilities of the process par-
ticipants, increases its traceability and enables systematic quality assurance procedures.

The theoretical results achieved in the ontology engineering field in the last fifteen
years are of incontestable value for the prospected large scale take-up of semantic tech-
nologies. Their range of application in real-world projects is, however, so far compar-
atively limited, despite the growing number of ontologies online available.1 This re-
stricted impact was confirmed in a three month empirical study, in which we surveyed
34 recent ontology engineering projects from industry and academia in order to give an
account of the current ontology engineering practice and of the efforts involved in these
activities. The study focused on process-related rather than modeling issues; in par-
ticular it analyzed the impact of actual research achievements on real world ontology
engineering projects, the complexity of particular ontology building tasks, the quality
of the support tools, and the various usage scenarios for ontologies.

1 Refer for example to http://swoogle.umbc.edu/ for recent statistics on this topic.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 836–854, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://swoogle.umbc.edu/


Ontology Engineering: A Reality Check 837

The majority of the investigated case studies did not follow a systematic approach
to ontology building, because the participants each underestimated the associated ef-
forts or were not aware of the availability of methodological support. Nevertheless, the
inventory of activities carried out in each of the ontology engineering projects largely
overlapped with the ones described in the literature—though the concrete order of exe-
cution of these activities or the way they were combined were not necessarily the same
as foreseen within academic process descriptions.

Accounting for the experiences gained during the survey, this paper argues that there
is a need for a unified ontology engineering process model—following the analogue
development in the software field, which moved from a multitude of different process
models towards the idea of method engineering. Complementarily to initiatives aim-
ing to outreach existing results to the industry, ontology engineering research should
consider aligning previous disparate efforts in order to provide real added value to the
community of domain experts building ontologies. Methodologies should offer their
applicants support at a level of detail which is adjusted to the complexity of each on-
tology development activity and to the challenges of the project setting. They should
be customizable to various special needs, such as, the learning of ontologies from text,
and should concentrate on providing a comprehensive range of methods which can be
arbitrarily combined and exchanged rather than postulating static process models.

The remainder of this paper begins with a review of analytical and empirical eval-
uations of existing methodologies in Section 2. After a brief description of ontology
engineering processes in Section 3, we present our survey and discuss its results in Sec-
tion 4. We draw conclusions for future research in Section 5. Section 6 summarizes our
work and concludes this paper.

2 Related Work

This section introduces surveys on ontology engineering methodologies and empirical
ontology engineering case study descriptions previously published in the literature.

2.1 Analytical Surveys

This paper is concerned with the impact of existing methodologies on current ontology
engineering practice. Previous work primarily focused on the analytical evaluation of
these approaches. The surveys defined a number of criteria derived from various sources
and evaluated methodologies accordingly. By contrast, our considerations are based on
case study experiences distilled from multiple expert interviews.

[11] summarizes the main ontology engineering activities covered by the method-
ologies available at that time. The authors identify the need for guidance on ontology
reuse.2 They further demand that ontology engineering methodologies should not be
based on singular project experiences, but should be applied in more settings in or-
der to claim generality. They argue that methodologies become useful for practitioners
only with a larger record of projects successfully carried out. They conclude that most
methodologies offer some guidance on the major engineering activities, but that there

2 By 1998 no methodologies for ontology reuse had been proposed yet.



838 E.P.B. Simperl and C. Tempich

is plenty of scope for refinement. [3] compare different ontology engineering method-
ologies w.r.t. the granularity of their process descriptions. They introduce a series of
ontology engineering activities, classified in the categories “ontology management”,
“ontology development” and “ontology support”, and analyze which methodologies
implement which activities to which extent. They conclude that no methodology cov-
ers all required ontology engineering activities, and that tool support is still missing
for most of the analyzed methodologies (due to 2003). More recently, [25] identified
requirements on ontology engineering methodologies to support the development of
ontologies for knowledge management applications. The authors compare the support
offered by existing methodologies against these requirements and outline a number of
open issues for further research and development. In particular, they emphasize that
current methodologies are not integrated into classical business process models and do
not take into account this dimension to a satisfactory extent.

In summary, analytical surveys identify open issues for ontology engineering method-
ologies from a theoretical perspective. This is orthogonal to our empirical approach,
which examines the utility of existing methodologies for current practice, thus forming
the basis for new analytical evaluations in the future.

2.2 Empirical Studies

In the following we give an overview of the most prominent case studies related to on-
tologies which have been published in the Knowledge/Ontology Engineering literature
from the early nineties to now. Claiming by no means for completeness, this overview
concentrates on empirical studies reporting on concrete experiences in developing or
deploying ontologies—with or without the help of a specific methodological frame-
work. Our aim is to point out the practical conclusions, lessons learned and guidelines
derived from these studies, in order to endorse and complete the results of our own
investigations.

The case studies can be classified according to two dimensions: the method em-
ployed to construct the ontology, and the purpose of the experiment. According to the
former we can distinguish among those aiming at building ontologies i) from scratch,
ii) by reuse or iii) with the help of (automatic) knowledge acquisition techniques. The
objectives followed by the studies are twofold: the majority of the experiments have
been carried out to validate a particular methodology or method, or to exemplify the
usage of a specific tool for ontology engineering; a considerably lower number of stud-
ies applied existing results in ontology engineering as methodological or technological
support for creating a specific ontology. This last category of studies gives an account of
the impact, the usability and the added value of current ontology engineering research
and development in real-world settings.

[2,5,6,14,15,27,29], to name only a few, report on the application of self-developed
methodologies and methods to manually build different types of ontologies. The re-
sults of these experiments are centered on the (positive) usability of the proposed ap-
proach in the designated context and marginally address the question of process op-
erationalization. With this respect each paper emphasizes the need for high quality
tools (e.g. for translating, matching or merging, to name the most frequently men-
tioned ones). Furthermore the authors acknowledge the resource-intensive nature of the



Ontology Engineering: A Reality Check 839

manual application of the proposed approaches, and propose (or highlight the need for)
dedicated ontology engineering environments. More details on this type of empirical
studies can be found for example in [7].

In the remaining of this section we overview several case studies applying exist-
ing ontology engineering research and development to real-world settings. Some of
these experiments are situated in the originating context of particular methodologies
and methods, therefore resorting to these as guidance for the completion of the on-
tology construction tasks (e.g., the ontologies introduced in [1,13,21,24,30]). The ex-
periments primarily consist of a description of the engineering process followed by
superficial observations related to the lack of adequate technological support, at most.
By contrast, other experiments evaluate several methodologies and methods w.r.t. their
relevance and usability, prior to applying them in a particular application setting, or
operate the engineering process without nominally committing to existing techniques
[10,12,17,18,22,26,28]. The results of these evaluation procedures reveal the limited
usability or the poor impact of the most part of existing ontology engineering method-
ologies and methods.

Uschold and Healy report on an experiment in which an engineering mathematics
ontology is used to detail the specification of a simple software tool and to allow units-
conversion and dimensional consistency checking capabilities to this application [28].
In this attempt they tackle some of the most important issues related to ontology en-
gineering processes, from ontology evaluation to more technical activities such as the
translation to new representation languages and the integration of multiple ontologies to
a new application setting. The case study reported in [28], though not investigating the
complete ontology life cycle, reveals several important limitations of ontology-driven
research: the difficulties of automatic translation between representation formats and
the need for scalable and efficient technologies. Russ and colleagues describe a case
study in which an ontology covering the air campaign domain was built by reusing ex-
isting ontologies partially covering its context [22]. The conclusions of this case study
are comparable to the ones stated by Uschold and Healy: while reusing ontologies was
perceived to be beneficial for this particular setting, the authors emphasize the limi-
tations of the techniques available so far, in particular related to language translators
and ontology merging. The case study in [17] reports on the feasibility of current tech-
nologies in managing and using large scale medical ontologies, emphasizing the need
for a more task-oriented approach to ontology engineering at methodological level, and
the lack of feasible methods for extracting ontological knowledge from semi-structured
models. Paslaru and Mochol point out the limitations of current technologies for trans-
lating, comparing and merging ontologies in [18], as resulted from a case study in which
a Human Resources ontology was built on the basis of standard eRecruitment classifi-
cations. Challenges related to organizational aspects of ontology engineering processes
are mentioned in [10,12,26].

Summarizing existing methodologies were applied in a small number of in situ case
studies under the direct supervision and with the participation of the methodology de-
velopers, at most. The methodologies were only used in the application scenarios they
were originally designed for, and little is known about their use for related application
areas.



840 E.P.B. Simperl and C. Tempich

3 Ontology Engineering in a Nutshell

Ontology Engineering (OE) is formally defined as “the set of activities that concern the
ontology development process, the ontology life cycle, and the methodologies, tools
and languages for building ontologies”[7]. This section summarizes the most important
of these activities.

Ontology engineering methodologies support ontology building for centralized on-
tology applications.3 [4,20] focus on the consensus building process in collaborative
ontology engineering. Methodologies guiding the ontology reuse process, e.g., [6,19]
or the ontology learning process, e.g., [16] complete the picture.

Fig. 1. Ontology Engineering Activities

Methodologies divide the ontology building process in a varying number of stages,
and propose a number of activities for each stage. The importance of a particular activ-
ity within a methodology primarily depends on, e.g., the characteristics of the ontology-
based application, the complexity of the ontology to be built, the availability of infor-
mation sources, and the experience of the ontology engineers.

[7] differentiates among management, development-oriented and support activities
within an ontology engineering process (cf. Fig. 1). The organizational setting of the
overall process is covered by so-called ontology management activities. In the pre-
development phase the feasibility study examines if an ontology-based application or

3 Refer for example to [7,25] for recent overviews.



Ontology Engineering: A Reality Check 841

the use of an ontology in a given context is the right way to solve the problem at hand.
Domain analysis, conceptualization and implementation are classical ontology develop-
ment activities. The maintenance and the use of the ontology are post-development ac-
tivities. Ontology support activities e.g., knowledge acquisition (KA), evaluation, reuse,
and documentation are performed in parallel to the core development activities.

Methodologies additionally define the roles of the individuals involved in the ontol-
ogy building process. They primarily differentiate between domain experts providing
knowledge w.r.t. the domain to be modeled, ontology engineers with expertise in fields
such as knowledge representation or ontology tools, and users applying the ontology
for a particular purpose.

4 Our Survey

4.1 Survey Overview

The survey had the objective to capture the basic understanding of semantic technology
applicants w.r.t. ontology development, to give an account of current ontology engi-
neering practice, and to identify common problems with available ontology engineering
methodologies, methods and tools.

The findings reported in this paper are based on 34 structured interviews conducted
within a three months period.4 After a short tutorial on the utilized ontology engineering
terminology, the participants were requested to answer 28 questions related to partic-
ular aspects of ontology development. Complementarily to detailed answers to these
questions the interviewers collected general comments.

The survey gives a comprehensive assessment of the current state of the art in on-
tology engineering. Prior to the data collection procedure, the contents, organization
and presentation of the survey were evaluated and revised by a group of three academia
and industry experts in the area of ontology engineering. Moreover, the respondents
are representative for the community of users and developers of semantic technologies.
They were IT practitioners, researchers and experts from various disciplines, affiliated
to industry or academia, who were involved in the last 3 to 4 years in ontology building
projects in areas such as skill management, human resources, medical information sys-
tems, legal information systems, multimedia, Web services, and digital libraries. The
survey was targeted exclusively at technology applicants (as opposed to methodology
or tool developers in the Semantic Web area) in order to give a real account on the im-
pact of the results achieved so far beyond their originating context. At the time of the
interviews the interviewees possessed an average ontology engineering experience of
1 to 1.5 years. Around 50% were affiliated to industry. Only a small fraction, mostly
domain experts, had received ontology engineering training in advance.

The target application the ontologies were built for ranged from proof-of-concept
implementations to commercial solutions. Consequently, most of the surveyed ontolo-
gies were domain ontologies—either application-dependent or -independent. A sin-
gle ontology had upper-level character, while 6 were core ontologies. The ontologies
had an average size of 1000 ontology entities (concepts, properties, axioms and fixed

4 The detailed survey results may be obtained from the authors on request.



842 E.P.B. Simperl and C. Tempich

instances). The development efforts were approximated to 4 person months on the av-
erage. 50% of the ontologies were built from scratch. If other ontologies were reused,
they made up to 50% of the final ontology.

Fig. 2. Size Distribution of Surveyed Ontologies

4.2 Survey Design

The study covered both open-ended and close-ended questions (cf. Table 1).5 The for-
mer do not impose any constraints on the form or the content of the responses, and are
intended to capture general facts about the surveyed ontology engineering projects. By
contrast, in the second category the answers of the respondents are limited to a fixed
set of responses. Typical examples of close-ended questions are dichotomous (yes/no)
questions, multiple choices, as well as scaled (also called ranking) questions using vari-
ous scale models. In our case we used five point ranking scales to assess the complexity
of ontology engineering activities, the quality of the methodological and tool support
and the level of experience of the engineering team.

The questionnaire can be divided into 4 categories. 6 introductory questions are in-
tended to describe the most important facts about an ontology engineering project: the
ontology which was built, its name, size, scope, purpose, as well as the overall develop-
ment efforts. The second group of 13 questions focused explicitly on particular aspects
of the ontology engineering process (process questions, cf. Table 1): the domain analy-
sis, the conceptualization, the implementation, the ontology population as well as reuse
and knowledge acquisition. For each ranking question the ontology builders rated on a
scala from 1 to 5 whether the respective activity was very easy (1) or very difficult (5)
to perform in their case. For each rating level and each question, the survey included
detailed examples in order to facilitate the ranking and make the results comparable.
For instance, in the case of the conceptualization the interviewees estimated the score
in relation to the complexity of the conceptual model (cf. Figure 3). If reuse was rele-
vant, they were asked to estimate the contingent of the final ontology, which was built

5 Refer to [23] for a detailed account of questionnaire design principles.



Ontology Engineering: A Reality Check 843

Table 1. Survey Organization

No. Acronym6 Topic Response

Introductory questions
1 ONTNAME The name of the ontology open-ended
2 ONTNS The namespace of the ontology open-ended
3 SCOPE Purpose and scope of the ontology open-ended
4 SIZEO Total size of the ontology open-ended
5 TYPE7 Ontology type scaled
6 COSTS Ontology development effort in person months open-ended

Process questions
7 SIZEB Percentage of final ontology built from scratch open-ended
8 DCPLX Complexity of the domain analysis scaled
9 CCPLX Complexity of the ontology conceptualization scaled
10 ICPLX Complexity of the ontology implementation scaled
11 DATA Complexity of the ontology instantiation scaled
12 SIZER Percentage of the final ontology built by reuse open-ended
13 COMPRH Complexity of the ontology understandability task scaled
14 USAB Complexity of the usability assessment scaled
15 TRANS Complexity of translation operations scaled
16 MOD Complexity of modification operations scaled
17 INT Complexity of merging and integration tasks scaled
18 DOCU Complexity of the documentation task scaled
19 OEVAL Complexity of the evaluation of the final ontology scaled

Organizational questions
20/21 OCAP/DCAP Capability of the ontologists/domain experts scaled
22/23 OEXP/DEXP Level of experience of the ontologists/domain experts scaled
24/25 LEXP/TEXP Level of experience w.r.t. languages and tools scaled
26 SIZET Team size open-ended
27 TURN Personnel turnover scaled

Technological questions
28 TOOL Level of technological support for particular activities scaled

in this way, and to rate the understandability and clarity of the source ontologies, the
complexity of the translation between differen representation languages, the difficulties
in adapting the reused ontologies to the own needs, or the integration of multiple reused
ontologies. The complexity of the evaluation and documentation were further aspects
of the questionnaire.

The third part of the survey contained 8 organizational questions. The interviewees
assessed ranking for the average capability of the ontology building team as domain
experts and ontology engineers, respectively. Further questions covered, for instance,
the average experience in building ontologies and the available know-how as regarding
ontology representation languages and tools. A last part of the survey was concerned
with technological issues, primarily related to the available tool and methodological

6 We make use of these notations within the discussion of the survey results.
7 The scale model for the description of ontology types included 5 elements: upper-level, do-

main, application, task and core ontologies cf. [8].



844 E.P.B. Simperl and C. Tempich

Fig. 3. The Conceptualization Complexity Question

support and its quality. The interviewed persons also commented on the activities which
were most difficult to carry out, and on the methods and tools utilized in particular
projects.

The survey contributed to a better understanding of the ontology building process in
general. Furthermore, the results of the survey provide more detailed information about
the effort related to ontology building in the future.

4.3 Survey Results

The presentation of the results of the conducted interviews is divided into four cate-
gories: general issues, process issues, organizational issues and technological issues.

General Issues. This category of results is not directly related to specific survey ques-
tions, but are distilled from the plethora of general concerns and comments expressed
by the interviewees during the operation of the study.

The survey clearly pointed out that the popularity of ontologies—as a means to solve
many non-trivial IT problems—is not equally shared by the discipline of ontology engi-
neering. While the reasons for this situation are traceable in the case of the interviewed
domain experts, many of the IT professionals or researchers seemed not to perceive
ontology building as a systematic process which should be performed according to a
pre-defined methodology. Nevertheless, the way ontology development has been car-
ried out was on the whole compatible with the recommendations made by method-
ologies available in the field (see below). A more serious issue is related to the lack
of terminological knowledge and to the controversial understanding of the participants
w.r.t. core concepts of ontology engineering. Starting from the oft-enunciated fuzzy
definition of ontologies, this confusion is further propagated to activities involving the
usage of external knowledge sources to aid the manual ontology development. The sur-
vey showed that the majority of the participants associate ontologies with almost every
type of lightweight conceptual structure, and that they have difficulties in distinguishing
between tasks such as ontology reuse, ontology learning and, more generally, knowl-
edge acquisition. Further on, the notion of reuse was often associated with informative



Ontology Engineering: A Reality Check 845

materials consulted by domain experts while constructing the ontology. A last termino-
logical weak-point is constituted by the basic understanding of IT experts, who did not
distinguish between a conceptual and an implementation level of an ontology. Terms
such as “conceptualization” and “formalization” seemed not to be prevalent in current
ontology engineering practice.

Table 2. Summary of General Issues

Result

80% of the projects did not follow a particular ontology engineering methodology
90% of the projects followed implicitly established ontology engineering activities
80% of the participants expressed the need for a terminological clarification
very broad understanding of the term ontology in 100% of the cases
ontology reuse interpreted as usage of arbitrary information sources in 90% of the relevant cases

Process Issues. As aforementioned the structure of the survey assumed a “classical”
breakdown of ontology engineering processes at the level of activities introduced in
Section 3. This set-up proved to match to a satisfactory extent to the way the survey
participants carried out the process. The interviews emphasized however some discrep-
ancies between i) the complexity and significance of particular process stages as per-
ceived by ontology engineering practitioners, and ii) the attention these process stages
received in the research community so far. This applies in particular to the following
issues:

Domain analysis: All participants emphasized the resource-intensive nature of this
process step and the lack of low entry barrier methods and tools to support the
knowledge elicitation task. Moreover, in projects building highly specialized ontolo-
gies such as for the legal or the medical domain, ontology engineers—who were
responsible for guiding the rest of the team during this phase—manifested their con-
cern w.r.t. their ability to accomplish this task appropriately. Consequently the inter-
viewed engineers commonly agreed on the (partial) arbitrariness of the knowledge
elicitation procedure in the questioned projects. Methodologies tend to handle these
particular issues at a very generic level and were thus not utilized for the domain
analysis, excerpt in form of competency questions in individual cases. Further on, the
interviews revealed the difficulties encountered by ontology developers in combining
multiple strategies for building fragments of the same ontology. Some of them were
puzzled about the means to choose among alternative strategies and the way and the
time point partial engineering results emerging from these complementary activities
should be integrated.

Conceptualization and implementation: The majority of the interviewees did not
perceive a clear cut between the conceptualization and the implementation steps as nec-
essary. After a lightweight description and classification of the expected outcomes the
engineering team implemented the ontology with the help of a common ontology editor.



846 E.P.B. Simperl and C. Tempich

This task was primarily performed by domain experts, who did not report any particular
difficulties in getting familiar with or utilizing simple ontology editors.8

Ontology reuse: In over 50% of the cases the final ontology was built with the help
of other ontological sources. In 11 of the reuse-relevant projects the engineering team
pointed out the considerable resources invested in understanding the reused sources
and assessed high complexity ratings to the task of translation. By contrast, issues like
merging and integration were not relevant to the investigated scenarios or were assigned
lower complexity scores. This situation might, however, be caused by the fact that the
average number of reused ontologies per project was very low (maximal 2). The mod-
ification of the ontologies to be reused was performed in two stages: first the relevant
fragments were extracted from the sources, then they were customized and integrated to
the target ontology. The effort required to perform these activities was often estimated
to a nominal value.

Ontology evaluation: All domain experts manifested concerns w.r.t. the quality of the
implemented ontology. They claimed for usable methods guiding them within this task.
This holds true for both ontology engineering experts, who were not able to appro-
priately assist this endeavor, but also for the non-IT survey participants, and caused
acceptance problems. In over 40% of the cases the results of the process were not nom-
inally evaluated. In the remaining ones, 95% have been manually evaluated by their
authors without the help of a methodical approach. 3 ontologies have been evaluated
through external expert judgement. A further result of the study was the necessity of an
incremental approach to ontology evaluation. Ontology developers were not sure about
the most adequate point in time for performing first evaluation tests, and pointed out the
implications of this issue for evolving ontologies or for long-term projects, in which the
application using the created ontology is not timely available for preliminary evalua-
tions. In this context they spoken out the question of how to feasibly determine the real
start and the end points of an ontology engineering project, this being a prerequisite for
any controlling and planing activities.

Ontology population: The question related to the complexity of the ontology popula-
tion task addressed two aspects: the data sources used as input to create the ontology
instances and the required mapping between the input scheme and the target ontological
model. Both were estimated with the highest scores among all questions on ontology
development (between 3 and 4), comparable to the ones associated to the domain anal-
ysis. In most of the cases the ontology population task was exercised on semi-structured
data expressed in natural language and required complex mappings covering concepts
and properties.

Ontology maintenance: This task was not properly represented in any of the analyzed
projects. Some ontology engineers raised, however, the issue of clearly determining the
transition point from ontology development to maintenance or evolution. In correlation
with the fuzzy nature of the evaluation task, ontology engineers were not in the position
to distinguish between the two phases.

8 This situation might correlate with the fact that of the ontologies had a relatively simple struc-
ture, i.e. taxonomies augmented by properties between concepts.



Ontology Engineering: A Reality Check 847

Documentation: The majority of the projects reported above average documentation
efforts, and expressed the need for an automatization of this task.

The survey pointed out that only a small percentage of ontology-related projects
follow a systematic approach to ontology building, and even less commit to a specific
methodology. Most of the projects are executed in an ad-hoc manner. In the early project
phases ontology builders underestimate the efforts underlying this endeavor and the im-
portance of a methodological framework. It is the early project phase, however, where
methodologies could offer most gains, as our analysis illustrates. In later stages of the
process this perception changes; however, the a posteriori adoption of a certain devel-
opment strategy is complicated by the lack of methods to evaluate the suitability and
the general quality of existing methodologies.

The activities carried out in the examined case studies are covered by at least one
methodology. However, the provided guidelines are insufficient for the most challeng-
ing process stages and no methodology handles the complete range of activities regis-
tered in our survey. Furthermore, different real-world scenarios require customizable
method assemblies, rather than pre-defined rigid workflows as proposed by current
methodologies.

Table 3. Summary of Process Issues

Question Average Comments
acronym result9

DCPLX 3.3 lack of fine-grained guidance for the domain analysis
resource-intensive activity
challenging if the ontology integrates knowledge from diff. domains

CCPLX 3 widespread use of ontology editors
no clear distinction between conceptualization and implementation

ICPLX 3.5 use of existing structured data sources to populate ontology
extraction of instances from text

SIZER 50% max. 2 ontologies reused for a new ontology
50% of the final ontology built by reuse

TRANS 3.5 high complexity of language translation
MOD 3.5 mainly partial reuse involving customization
OEVAL 3 need for clear guidelines for ontology evaluation

very complex activity, rarely performed
DOCU 3.5 documentation is a time consuming activity

dedicated tool support required

Additional comments
lack of guidelines for the use of ontology learning algorithms
lack of guidelines to combine different knowledge acquisition techniques
no methodology covers all relevant ontology engineering activities
need for methodological support seldom perceived at project start

Organizational Issues. The surveyed case studies contained on the average relatively
small teams (two ontology engineers and two domain experts), which regularly

9 We used the following five point scale 1:very low, 2:low, 3:nominal, 4:high, 5:very high.



848 E.P.B. Simperl and C. Tempich

Table 4. Summary of Organizational Issues

Question acronym Average result

SIZET 4
OEXP/DEXP 1.25 years
TURN 15% personal turnover

Additional comments
definition of common terminology in teams often difficult
process support for consensus making required

organized F2F meetings to help on the ontology development. The personnel turnover
was very low, this being also related to the relatively short project duration. In this con-
text we can not make any reliable statement on the effects of this factor in long-standing
projects. Nevertheless, in the projects in which domain experts did not possess IT com-
petency the participants reported communication and comprehension problems. Prior
to specifying the ontology, considerable efforts were invested in agreeing on a similar
understanding upon the domain of interest. This issue had consequences on the way the
engineering process was performed. However, we did not record major problems w.r.t.
the achievement of a shared ontology, though the importance of methods assisting the
consensus making process was acknowledged by many interviewees.

Technological Issues. As stated in other similar investigations in the past, tools are a
crucial factor for an efficient ontology engineering practice. As illustrated in Figure 4,
phases such as the conceptualization and the implementation received satisfactory rat-
ings, while the evaluation and the domain analysis are de facto manual tasks.

Fig. 4. The Results of the Tool Support Question

Besides the well known absence of computer-aided ontology evaluation support,
our survey pointed out the need for dedicated conceptualization tools. All investigated
projects used ontology editors for this purpose. Their functionality was positively evalu-
ated by many of the participants. Further on, the answers repeatedly referred to the need



Ontology Engineering: A Reality Check 849

Table 5. Summary of Technological Issues

Question Average Comments
acronym result

TOOL:
domain analysis

2,1 technological support limited to text analysis tools

TOOL:
conceptualization

3,1 satisfactory support for conceptualization
conceptualization supported by text editors, mind maps and OE
environments

TOOL:
implementation

3,6 satisfactory results for OE environments
no lightweight ontology engineering environments available
no tool supports the easy translation of an ontology to different
natural languages

TOOL:
evaluation

2,7 ontology editors used for technical evaluation of ontologies
semantic ontology evaluation not tool supported

TOOL:
documentation

3,1 text editors
no specialized ontology documentation tools available

TOOL:
knowledge acquisition

1,6 existing KA tools not used or not helpful in most cases
no tools to leverage ontologies from existing data sources

for tools for translating between representation languages, including methods to convert
semi-structured conceptual structures to OWL and RDF(S). The notion of lightweight
technological support was mentioned in relation to every ontology engineering activity:
apart from the challenging research questions approached in the last fifteen years, the
community of ontology engineering practitioners require simple means to extract onto-
logical structures from existing knowledge sources, to translate concept labels to other
natural languages and to ease the creation of documentation.

5 Discussions of the Results

The survey highlighted several weak-points of existing ontology engineering method-
ologies from an empirical point of view. In this section we introduce research directions
which explicitly address the problems the community of ontology engineering practi-
tioners is facing, and sketch a possible solution for the alleviation of the present state of
the art.

General Issues. Despite the long history and the multitude of research initiatives in
the area of ontology engineering methodologies, the visibility of the achieved results
remains restricted to a small community of experts affiliated to academia. Methodolo-
gists should thus invest more efforts in the dissemination of their results to a wider audi-
ence and in promoting the achievable returns of a methodologically supported ontology
building approach. Case study reports comparing ontology building efforts with and
without methodological support may be one way to demonstrate the efficiency gains.
Further on there is a need for support in selecting methodologies which suit certain
application settings. The advantages and disadvantages of manual, semi-automatic or



850 E.P.B. Simperl and C. Tempich

reuse-oriented ontology creation for a specific use case are not obvious for potential on-
tology builders, even when they have a strong IT background. A methodology selection
framework should include application-oriented decision criteria to support this activ-
ity. Moreover, the methodology itself could include a step in which the engineers pick
from a list of available methods the ones suitable for a particular task and build up their
own process model. Template process models covering standard requirements could be
made available. This is an alternative to the current trend to create new methodologies
for emerging application scenarios. Once the workflow has been specified, the devel-
opers need requirements engineering support techniques. This includes, for instance,
means to determine the optimal formality level for the prospected ontology or to an-
alyze the trade-off between development effort and size/complexity of the conceptual
model.

Process Issues. Knowledge elicitation is one of the most time consuming tasks in the
process of building an ontology. Current methodologies lack a comprehensive guidance
for this task and instruments to choose among knowledge elicitation techniques. With
the introduction of selection metrics this problem may be alleviate. A comprehensive
methodology should allow for modular and customizable process models in which on-
tology builders combine different methods for the stages of the ontology development
process they require. Ontology builders may leave out process descriptions for activities

Table 6. Summary of Recommendations

No. Recommendation

General recommendations
1 enforce dissemination, e.g. publish more best practices
2 define selection criteria for methodologies
3 define a unified methodology following a method engineering approach
4 support decision for the appropriate formality level given a specific use case

Process recommendations
5 define selection criteria for different KA techniques
6 introduce process description for the application of different KA techniques
7 improve documentation of existing ontologies
8 improve ontology location facilities
9 build robust translators between formalisms
10 build modular ontologies
11 define metrics for ontology evaluation
12 offer user oriented process descriptions for ontology evaluation

Organizational recommendations
13 provide ontology engineering activity descriptions using domain-specific terminology
14 improve consensus making process support

Technological recommendations
15 provide tools to extract ontologies from structured data sources
16 build light-weight ontology engineering environments
17 improve the quality of tools for domain analysis, ontology evaluation, documentation
18 include methodological support in ontology editors
19 build tools supporting collaborative ontology engineering



Ontology Engineering: A Reality Check 851

which are automated by tools. Moreover, methodologies should provide more support
on the evaluation of ontologies beyond completeness and soundness. In commercial ap-
plications trade-offs between additional modeling and costs are balanced. This requires
an evaluation w.r.t. the achievable gains of modeling additional ontology entities.

Organizational Issues. Ontology builders had no major organizational problems. For
collaborative ontology engineering in distributed environments with participants orig-
inating from different domains, methodologies should offer support on the consensus
finding process. The reformulation of existing method descriptions in a less computer
science-oriented way, using domain-specific terminology, may facilitate the compre-
hensibility of the engineering process. Positive experiences in the biology domain attest
the value of such domain-close descriptions.

Technological Issues. From a technological point of view several ontology manage-
ment tools (e.g. editors or reasoners) have reached a feasible maturity level. Never-
theless many ontology engineering activities are not supported adequately at technical
level. Available tools in this context originate from academic research projects, and fo-
cus on solving non-trivial generic research questions instead of operationalizing simple
tasks whose automatization is clearly not problematic. Further on ontology builders
require easy-to-use ontology engineering environments which are extensible to sup-
port different kinds of ontology engineering processes. Current editors do not support
discussion-based ontology engineering, in which a number of ontology builders first
argue about modeling decisions before they decide on them. The provision of ontology
engineering patterns and high-quality ontologies for commonly used domains may also
ease the effort to build ontologies.

In summary, this survey demonstrates the limited impact of methodologies in real-
world ontology-related projects. However, the results also evidence that ontology engi-
neering research has reached a level of development with a basic inventory of methods
and tools which, if properly utilized, considerably ease the work of ontology practi-
tioners. Therefore, a first conclusion of the survey is the need for initiatives aiming at
promoting these results to a wider audience and consolidating them for an increased us-
ability. European projects such as Sekt-Semantically-Enabled Knowledge Technologies
are taking first steps in this direction. Complementarily, the experiences gained during
this survey let us assume that a method engineering approach to the area of ontologies
could be a viable alternative to the creation of new methodologies and methods. Soft-
ware engineering is already moving in this direction, cf. [9]. They describe software
engineering activities according to predefined templates. Templates include input and
output factors, available methods to support the activity, required preceding activities
and possible succeeding activities among other things. Additional to this new method-
ological approach practitioners require evaluation methods to compare the trade-offs
between investing in additional modeling and gained functionality.

6 Summary and Outlook

Despite the growing popularity of ontologies as a knowledge representation formalism
used on the Web, very little is known about the engineering process underlying their



852 E.P.B. Simperl and C. Tempich

construction in practice. The literature reports predominately on case studies which in-
volved methodologists, while ontologies are envisioned to be built by domain experts
possessing limited to no professional skills in ontology engineering. We alleviate this
information gap with a survey interviewing over 30 practitioners who developed on-
tologies for commercial, as well as academic applications for a wide range of domains.
Although this number is not large w.r.t. the number of ontologies available on the Web
it is the largest study conducted so far; and we continue to collect ontology engineering
experiences.

The survey investigated the systematics, the invested effort and the general problems
encountered in building these ontologies. The main findings are i) practitioners do not
follow any particular ontology engineering methodology, though there is some over-
lapping ii) they require selection support to choose from manual, semi-automatic or
reuse oriented engineering approaches, iii) they need cost benefit analysis methods to
determine the transition point between ontology engineering activities and iv) existing
ontology management tools have reached a feasible level of functionality to be useful.

In order to overcome some of the problems revealed in this survey we suggest to in-
crease the efforts invested in promoting the advantages of methodological ontology en-
gineering to a wider audience. Furthermore, we propose to establish a unified methodol-
ogy which supports domain experts to customize ontology engineering process models
according to their application scenario. This requires the creation of compliant method
components or the adjustment of existing ones to enable their joint utilization. Evalua-
tion metrics for ontologies need to be defined in order to assess the usability of similarly
scoped methods in particular circumstances. We will continue our research in these di-
rections.

Acknowledgements. This work has been partially supported by the European Net-
work of Excellence “KnowledgeWeb-Realizing the Semantic Web” (FP6-507482), as
part of the KnowledgeWeb researcher exchange program T-REX, and by the Euro-
pean project “Sekt-Semantically-Enabled Knowledge Technologies”(EU IST IP 2003-
506826). We thank all interviewees for the valuable input without which this paper
could not have been produced. We also want to thank York Sure (University of Karl-
sruhe) and Richard Benjamins (iSOCO) for contributing to the realization of the final
version of the survey.

References

1. V. R. Benjamins, D. Fensel, S. Decker, and A. Gómez-Pérez. (KA)2: Building Ontologies
for the Internet. International Journal of Human-Computer Studies, 51(1):687–712, 1999.

2. A. Bernaras, I. Laresgoiti, and J. Corera. Building and Reusing Ontologies for Electrical
Network Applications. In European Confernce on Artificial Intelligence (ECAI’96), 1996.

3. O. Corcho, M. Fernández-López, and A. Gómez-Pérez. Methodologies, tools and languages
for building ontologies: where is their meeting point? Data & Knowledge Engineering,
46(1):41–64, 2003.

4. J. Euzenat. Building Consensual Knowledge Bases: Context and Architecture. In Proc. of the
2nd Int. Conference on Building and Sharing Very Large-Scale Knowledge Bases (KBKS),
pages 143–155, Enschede the Netherlands, 1995.



Ontology Engineering: A Reality Check 853

5. M. Fernández-López, A. Gómez-Pérez, J. P. Sierra, and A. P. Sierra. Building a Chemical
Ontology Using Methontology and the Ontology Design Environment. Intelligent Systems,
14(1), January/February 1999.

6. A. Gangemi, D.M. Pisanelli, and G. Steve. Ontology Integration: Experiences with Medical
Terminologies. In Formal Ontology in Information Systems. IOS Press, 1998.

7. A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineering. Springer,
2003.

8. N. Guarino. Formal Ontology and Information Systems. In Proc. of the 1st Int. Conf. on
Formal Ontologies in Information Systems (FOIS), 1998.

9. B. Henderson-Sellers. Method engineering for OO system development. Commmunications
of the ACM, 46(10):73–78, 2003.

10. M. Hristozova and L. Sterling. Experiences with Ontology Development for Value-Added
Publishing. In Proceedings of the International Workshop on Ontologies in Agent Systems
OAS03 co-located with the AAMAS, 2003.

11. D. Jones, T. Bench-Capon, and P. Visser. Methodologies for Ontology Development. In Proc
of the IT&KNOWS Conference of the 15th IFIP World Computer Congress, 1998.

12. N. J. J. P. Koenderink, J. L. Top, and L. J. van Vliet. Expert-Based Ontology Construction:
A Case-Study in Horticulture. In Proceedings of the International Database and Expert
Systems Applications Workshops DEXA05, 2005.

13. I. Laresgoiti, A. Anjewierden, A. Bernaras, J. Corera, Schreiber A. T., and B. J. Wielinga.
Ontologies as vehicles for reuse: a mini-experiment. In Proceedings of the 10th Banff Knowl-
edge Acquisition for Knowledge-Based Systems Workshop K-CAP96, pages 1–21, 1996.

14. T. Lau and Y. Sure. Introducing Ontology-based Skills Management at a large Insurance
Company. In Modellierung 2002, Modellierung in der Praxis - Modellierung für die Praxis,
Tutzing, Deutschland, 25.-27. März 2002, pages 123–134, 2002.

15. D. B. Lenat and R. V. Guha. Building large knowledge-based systems. Representation and
inference in the CYC project. Addison-Wesley, Reading, Massachusetts, 1990.

16. A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academics, February
2002.

17. E. Paslaru Bontas. Practical Experiences in Building Ontology-Based Retrieval Systems.
In Proceedings of the 1st International ISWC Workshop on Semantic Web Case Studies and
Best Practices for eBusiness SWCASE05, 2005.

18. E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in Ontology Reuse. In Proc.
of the 5th International Conference on Knowledge Management IKNOW05, 2005.

19. H. S. Pinto and J. Martins. Reusing ontologies. In AAAI 2000 Spring Symposium on Bringing
Knowledge to Business Processes, pages 77–84, 2000.

20. H. S. Pinto, C. Tempich, and S. Staab. DILIGENT: Towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engingeering of oNTologies. In Proc. of the
16th European Conference on Artificial Intelligence (ECAI 2004), pages 393–397, 2004.

21. Dip European Project. Financial Ontology (Deliverable 10.3 DIP FP6 - 507483).
http://dip.semanticweb.org/documents/D10.3.pdf, 2005.

22. T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical Experiences in Trading
Off Ontology Usability and Reusability. In Proc. of the Knowledge Acquisition Workshop
KAW99, 1999.

23. Seymour Sudman and Norman M. Bradburn. Asking Questions : A Practical Guide to Ques-
tionnaire Design. Jossey-Bass, 1st edition, 1982.

24. Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC Ontology - Seman-
tic Web for Research Communities. In Proc. of the 12th Portuguese Conference on Artificial
Intelligence - Progress in Artificial Intelligence (EPIA 2005), pages 218 – 231, 2005.

25. Y. Sure, C. Tempich, and D. Vrandecic. Ontology Engineering Methodologies. In Semantic
Web Technologies: Trends and Research in Ontology-based Systems. Wiley, UK, 2006.



854 E.P.B. Simperl and C. Tempich

26. C. Tautz and K. D. Althoff. A Case Study on Engineering Ontologies and Related Processes
for Sharing Software Engineering Experience. In Proc. of the International Conference on
Software Engineering and Knowledge Engineering SEKE00, 2000.

27. C. Tempich, H. S. Pinto, and S. Staab. Ontology Engineering Revisited: an Iterative Case
Study with DILIGENT. In Proc. of the 3rd European Semantic Web Conference (ESWC
2006), pages 110–124, 2006.

28. M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology Reuse and Appli-
cation. In Int. Conference on Formal Ontology and Information Systems FOIS98, 1998.

29. M. Uschold, M. King, S. Moralee, and Y. Zorgios. The Enterprise Ontology. Knowledge
Engineering Review, 13(1):31–89, 1998.

30. G. Zhao, J. Kingston, K. Kerremans, F. Coppens, R. Verlinden, R. Temmerman, and
R. Meersman. Towards an Ontology of Forensics covering Financial Securities Fraud. In
Proceedings of the International Workshop on Regulatory Ontologies WORM04 co-located
with the OTM Conferences, 2004.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 855 – 862, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Conceptual Design for Domain and Task Specific 
Ontology-Based Linguistic Resources* 

Antonio Vaquero1, Fernando Sáenz1, Francisco Alvarez2, and Manuel de Buenaga3 

1 Universidad Complutense de Madrid, Facultad de Informática, Departamento de Sistemas 
Informáticos y Programación, C/ Prof. José García Santesmases,  

s/n, E-28040, Madrid, Spain 
2 Universidad Autónoma de Sinaloa, Ángel Flores y Riva Palacios, s/n, C.P 80000, Culiacán, 

Sinaloa, México 
3 Universidad Europea de Madrid, Departamento de Sistemas Informáticos,  

28670 Villaviciosa de Odón. Madrid, Spain 
{vaquero, fernan}@sip.ucm.es, fjalvare@fdi.ucm.es, 

buenaga@uem.es 

Abstract. Regardless of the knowledge representation schema chosen to 
implement a linguistic resource, conceptual design is an important step in its 
development. However, it is normally put aside by developing efforts as they 
focus on content, implementation and time-saving issues rather than on the 
software engineering aspects of the construction of linguistic resources. Based 
on an analysis of common problems found in linguistic resources, we present a 
reusable conceptual model which incorporates elements that give ontology 
developers the possibility to establish formal semantic descriptions for concepts 
and relations, and thus avoiding the aforementioned common problems. The 
model represents a step forward in our efforts to define a complete 
methodology for the design and implementation of ontology-based linguistic 
resources using relational databases and a sound software engineering approach 
for knowledge representation. 

1   Introduction 

Existing linguistic resources (LR) can be used as a source of knowledge by any 
natural language processing application. However, most of these LR were developed 
focusing on coverage and implementation issues rather than on questions of design. 
This approach to LR construction has yield LR with huge quantities of information 
but poorly structured. A situation that severely limits their reuse and integration (with 
other LR), and has proven to be a major obstacle to obtain better results.  

We claim that design issues are an important part of the construction of a LR, 
because in order to develop, reuse and integrate diverse available LR, into a common 
                                                           
*  The research described in this paper has been partially supported by the Spanish Ministry of  

Education and Science and the European Union from the European Regional Development 
Fund (ERDF) - (TIN2005-08988-C02-01 and TIN2005-08988-C02-02). 



856 A. Vaquero et al. 

information system (perhaps distributed), requires compatible software architectures 
and sound data management from the different databases to be integrated. Hence, 
under this view, a LR must be carefully designed before any implementation is made, 
by following a software engineering approach. 

With that in mind, we have developed a methodology based on relational databases 
(RDB) and software engineering principles, for the design and implementation of 
ontology-based LR [1]. The methodology already proposes a conceptual model (an E-
R schema). However, the model has to be modified if it is to be used to create 
structurally sound LR. In this paper, we present an upgrade of this conceptual model 
as a refinement of the representational power of our previous model. Nevertheless, we 
only present here the first stage of the classical RDB design (i.e., conceptual design) 
and only for the ontology side of the model. Thus, leaving the other two stages (i.e., 
logical and physical) and the lexical side of the model for future papers. 

The rest of the paper is organized as follows. In section 2, we point out the 
importance of conceptual design in the construction of linguistic RDB, and explain 
our decision to use an ontological model for knowledge representation. In section 3, 
some common problems of LR are summarized, and the need to develop application-
oriented LR is signaled.  In section 4, the methodological gaps of past developing 
efforts that used RDB are underlined. In section 5, we depict a set of ideas intended to 
help developers to formally specify and clarify the meaning of concepts and relations 
in more detail. In section 6, a conceptual model that integrates the aforementioned 
ideas is introduced and described. Finally, in section 7 some conclusions are outlined. 

2   Conceptual Design of LR Using RDB 

RDB have various drawbacks when compared to newer data models (e.g., the object-
oriented model): a) Impossibility of representing knowledge in form of rules; b) 
Inexistence of property inheritance mechanisms; and c) Lack of expressive power to 
represent hierarchies. However, as shown in [2, 3, 4] a careful design (i.e., conceptual 
modeling) can overcome these drawbacks, and let us take advantage of all the benefits 
of using RDB technology to design and implement linguistic databases [1, 2, 3]. In 
addition, and following [4, 5, 6, 7], we believe that the computationally proven 
ontological model with two separated but linked and concurrently developed levels of 
representation (i.e. the conceptual-semantic level and the lexical-semantic level) is 
our best choice for linguistic knowledge representation.   

3   Some Common Problems in LR 

It is relatively easy to create a conceptual model of linguistic knowledge. As seen in 
the previous section, this has already been done. However, existing LR (ontology-
based or not) are plagued with flaws that severely limit their reuse and negatively 
impact the quality of results. Thus, it is fundamental to identify these flaws in order to  
 



 Conceptual Design for Domain 857 

avoid past and present mistakes and create a sound conceptual model that leads to a 
LR where these errors can be avoided. 

Most of the problems of past and present LR have to do with their taxonomic 
structure. For example, once a hierarchy is obtained from a Machine-Readable 
Dictionary (MRD), it is noticed that it contains circular definitions yielding 
hierarchies containing loops, which are not usable in knowledge bases (KB), and 
ruptures in knowledge representation (e.g., a utensil is a container) that lead to wrong 
inferences [8]. WordNet and Mikrokosmos have also well-known problems in their 
taxonomic structure due to the overload of the is-a relation [9, 10]. In addition, 
Mikrokosmos represents semantic relations as nodes of the ontology. This entails that 
such representation approach where relations are embedded as nodes of the ontology 
is prone to suffer the same is-a overloading problems described in [9, 10], as well as 
the multiple inheritance ones. In the biomedical domain, the UMLS has circularities 
in the structure of its Metathesaurus [11], because of its omnivorous policy for 
integrating hierarchies from diverse controlled medical vocabularies. Some of the 
consequences of these flaws, as well as additional ones have been extensively 
documented in [5, 6, 9, 12, 13, 14, 15, 16] for these and other main LR. 

3.1   Application-Oriented LR 

We have come a long way from the days of MRD. However, still today, the focus is 
on coverage and time-saving issues, rather than on semantic cleanness and application 
usefulness. Proof of this are the current different merging efforts aimed at producing 
wide-coverage general LR [16, 17], and the ones aimed at (semi)automatically 
constructing them from texts [18, 19]. However, no amount of broad coverage will 
help to raise the quality of output, if the coverage is prone to error [6].  We should 
have learned by now, that there are no short cuts, and that most experiments aimed at 
saving time (e.g., automatically merging LR that cover the same domains, or applying 
resources to NLP that are not built for it, like machine-readable dictionaries and 
psycholinguistic-oriented word nets) are of limited practical value [20]. Furthermore, 
in the current trend of LR development, issues such as how to design LR are 
apparently less urgent, and this is haphazard. More attention must be paid on how LR 
are designed and developed, rather than what LR are produced. 

The experience gained from past and present efforts clearly points out that a 
different direction must be taken. As [13] pointed out back in the days of MRD: 
“rather than aiming to produce near universal LR, developers must produce 
application-specific LR, on a case by case basis”. In addition, we claim that these LR 
must be carefully conceived and designed in a systematic way, according to the 
principles of a software engineering methodology.  This is especially true if RDB are 
to be used as a knowledge representation schema for LR. 

4   Methodological Gaps in the Development of LR Using RDB 

Since we are interested in the development of LR using RDB, it is worth mentioning 
that all the cited efforts in section 2, although they produced useful resources, they 



858 A. Vaquero et al. 

forgot about the methodological nature of RDB. They all stopped at the conceptual 
design phase and then presented the interface(s) of their respective resources. Thus, 
there is not a complete description of the entities, relationships and constraints 
involved in the conceptual and logical design of the DB.  

The methodology we propose in [1] encompasses all of the database design stages. 
Nonetheless, the conceptual model from which it departs has several problems with 
respect to ontology representation; mainly, its does not foresee any control and 
verification mechanism for clarifying the semantics relations, a problem that as seen 
in section 3 is of main concern. 

Therefore, if we are to design an ontology-based LR using RDB, our conceptual 
model must take also into account the semantic relations issue. Thus, as a first step, 
we enhance the conceptual model presented in [1] as shown in the next section. 

5   Refining the Semantics of Concepts and Relations 

In order to give our first step towards the enhancement of the conceptual model, we 
need to clearly state what are the elements that will be abstracted and represented in 
our upgraded conceptual model, that will help us to: a) build application-oriented LR 
(as pointed out in section 3.1); and b) avoid the problems present in existing LR as 
described in section 3.  

These elements are concepts, properties of concepts, relations, and algebraic and 
intrinsic properties of relations. They will help an ontology developer to specify for 
concepts and relations formal and informal semantics that clarify the intended 
meaning of both entities in order to avoid the problems discussed in section 3. 
Informal semantics are the textual definitions for both concepts and relations, as 
opposed to formal semantics that are represented by the properties of concepts and 
relations. 

However, the fact that these elements will be part of the enhanced conceptual 
model does not imply that they are an imposition but rather a possibility, a 
recommendation that is given to each ontology developer. 

In the following, we detail the elements surrounding the basic element of our 
model: concepts. 

5.1   Properties of Concepts 

These are formal semantic specifications of those aspects that are of interest to the 
ontology developer. In particular, these specifications may be the metaproperties of 
[10] (e.g., R, I, etc.). In our application-oriented approach to LR development, only 
the properties needed for a concrete application domain should be represented. These 
properties play an important role in the control of relations as it will be seen later. 

5.2   Relations 

Instead of relations with an unclear meaning (e.g. subsumption), we propose the use 
of relations with well-defined semantics, up to the granularity needed by the ontology 



 Conceptual Design for Domain 859 

developer. Moreover, we refuse to embed relations as nodes of the ontology (because 
of the problems commented in section 3) or to implicitly represent any relation as it is 
done in Mikrokosmos with the is-a relation. This represents a novelty and an 
improvement when compared to similar design and implementation efforts as [4] 
based on ontological semantics and RDB. In the next two subsections, we will 
describe the elements that help clarifying the semantics of relations.  

5.3   Algebraic Properties of Relations 

The meaning of each relation between two concepts must be established, supported by 
a set of algebraic properties from which, formal definitions could be obtained (e.g., 
transitivity, asymmetry, reflexivity, etc.). This will allow reasoning applications to 
automatically derive information from the resource, or detect errors in the ontology 
[21]. Moreover, the definitions and algebraic properties will ensure that the 
corresponding and probably general-purpose relational expressions are used in a 
uniform way [21]. Tables 1 and 2 (taken from [21]) show a set of relations with their 
definitions and algebraic properties. 

Table 1. Definitions and Examples of Relations 

Relations  Definitions Examples 
C is-a C1 Every C at any time is at 

the same time a C1 
myelin is-a lipoprotein 

C part-of C1 Every C at any time is part 
of some C1 at the same time 

nucleoplasm part-of nucleus 

Table 2. Algebraic Properties of Some Relations 

Relations Transitive Symmetric Reflexive 

Is-a + - + 

part-of + - + 

5.4   Intrinsic Properties of Relations 

How do we assess, for a given domain, if a specific relation can exist between two 
concepts? The definitions and algebraic properties of relations, although useful are 
not enough. As [9, 10] point out, we need something more. Thus, for each relation, 
there must be a set of properties that both a child and its parent concept must fulfill 
for a specific relation to exist between them. We call these properties, intrinsic 
properties of relations. For instance, in [10] the authors give several examples 
(according to their methodology) of the properties that two concepts must have so that 
between them there can be an is-a relation. 



860 A. Vaquero et al. 

6   Designing the Conceptual-Semantic Level for a LR 

In this section, we present a conceptual model (an E/R scheme upgraded from our 
model in [1]) for the conceptual-semantic level of an ontology-based LR as a result of 
the first design phase, where all the ideas described in section 5 have been 
incorporated. However, as it was previously established in the introduction, the model 
will reflect only the ontology part of the LR. 

 

Fig. 1. Conceptual Model for an Ontology-Based LR 

The entity set Concepts denotes the meaning of words, and it has two attributes: 
ConceptID (artificial attribute intended only for entity identification), and 
ConceptDefinition, intended for the textual definition of the meaning (informal 
semantics). The entity set ConceptProperties represents the set of formal properties 
described in section 5.1, and it has one attribute: ConceptProperty used to represent 
each property. 

The entity set Relations represents the set of relations that can exist in an ontology, 
and it has two attributes: Relation that captures the textual name of each relation (e.g., 
is-a, part-of, etc.), and RelationDefinition for the textual definition of relations 
(informal semantics) as illustrated in table 1. 

The entity set AlgebraicProperties represents the properties of relations (formal 
semantics) as seen in table 2, and it has one attribute: AlgebraicProperty that denotes 
each algebraic property. The entity set IntrinsicProperties conveys the set of 
properties mentioned in section 5.4 and has one attribute: IntrinsicProperty which 
represents each intrinsic property. 

The relationship set HasProperty is used to assign properties to concepts. The 
ternary relationship set HasRelation is used to represent that two concepts in an 
ontology can be linked by a given relation. The relationship set HasAlgProperty is 



 Conceptual Design for Domain 861 

used to convey that relations could have attached a set of algebraic properties; the 
same applies for the relationship set HasIntProperty, but for intrinsic properties.  

7   Conclusions  

We have pointed out that an important and normally put aside step in the development 
of linguistic databases is the conceptual modeling or conceptual design step. With that 
in mind, we have used a semantic data model (i.e., the E-R model) to create a 
conceptual model (departing from the one in [1]), which accounts for a set of ideas 
that could help developers to create domain and task specific ontology-based LR, 
where the use of semantic relationships can be controlled. Although we have selected 
RDB to represent lexical and conceptual knowledge, the model is totally independent 
of any knowledge representation schema (i.e., databases or knowledge bases). In this 
paper, we have focused on the ontology side of the model; however, the lexical side 
of our previous model (see [1]) also needs to be upgraded as it is quite limited. Thus, 
we are considering the integration of the E-R model for the lexical side of an 
ontology-based LR proposed and described in [2].  

Moreover, a thing that must be clearly understood is that our efforts lean towards 
the establishment of a software engineering methodology for the design and 
implementation of ontology-based LR using RDB. However, it is not a methodology 
aimed at saving time by:  a) constructing or extracting a LR from texts using machine 
learning methods [18, 19] or b) merging different LR into a definitive one [16, 17]. 
We follow a software engineering approach (where thinking precedes action) by 
focusing on analysis, design and reuse (as understood by software engineering) 
aspects. Thus, we apply the principled methods and techniques of software 
engineering (which guide the development of user-oriented, readable, modular, 
extensible, and reusable software) to the design and implementation of ontology-
based LR. 

Finally, a very important aspect in developing a LR is the development of its 
graphical user interface(s). However, the majority of the management software tools 
for LR are just briefly described, and although some are extensively described [4, 14], 
there is no declared software engineering approach for their development [1]. 
Although not covered in this paper, our methodology encompasses this aspect too. 

References 

1. Sáenz, F. and Vaquero, A. Applying Relational Database Development Methodologies to 
the Design of Lexical Databases. Database Systems 2005, IADIS Virtual Multi 
Conference on Computer Science and Information Systems, (2005)  

2. Moreno A. Diseño e Implementación de un Lexicón Computacional para Lexicografía y 
Traducción Automática. Estudios de Lingüística Española, vol(9), (2000) 

3. Hayashi, L. S. and Hatton, J. Combining UML, XML and Relational Database 
Technologies - The Best of all Worlds for Robust Linguistic Databases. Proceedings of the 
IRCS Workshop on Linguistic Databases, (2001) 

4. Moreno, A. and Pérez, C. Reusing the Mikrokosmos Ontology for Concept-Based 
Multilingual Terminology Databases. In Proc. of the 2nd International Conference on 
Language Resources and Evaluation , (2000) pp 1061-1067. 



862 A. Vaquero et al. 

5. Nirenburg, S., McShane, M. and  Beale, S. The Rationale for Building Resources 
Expressly for NLP.  In Proc. of  the 4th International Conference on Language Resources 
and Evaluation, (2004) 

6. McShane, M.; Nirenburg, S. and Beale, S. An Implemented, Integrative Approach to 
Ontology-based NLP and Interlingua . Working Paper #06-05, Institute for Language and 
Information Technologies, (2005) 

7. Cimino, J. Desiderata for controlled medical vocabularies in the twenty-first century. 
Methods of Information in Medicine, 37(4-5):394—403, (1998) 

8. Ide, N., and Veronis, J. Extracting Knowledge Bases from Machine-Readable 
Dictionaries: Have we wasted our time? In Proc. of the First International Conference on 
Building and Sharing of Very Large-Scale Knowledge Bases, (1993) 

9. Guarino, N. Some Ontological Principles for Designing Upper Level Lexical Resources. 
A. Rubio et al. (eds.), In Proc. of the First International Conference on Language 
Resources and Evaluation, (1998) pp 527-534. 

10. Welty, C. and Guarino, N. Supporting ontological analysis of taxonomic relationships", 
Data and Knowledge Engineering vol. 39(1), (2001) pp 51-74. 

11. Bodenreider O. Circular Hierarchical Relationships in the UMLS: Etiology, Diagnosis, 
Treatment, Complications and Prevention. In Proceedings of the AMIA Symposium, 
(2001) 

12. Bouaud, J., Bachimont, B., Charlet, J. and Zweigenbaum, P. Acquisition and Structuring 
of an Ontology within Conceptual Graphs. In Proceedings of the ICCS'94 Workshop on 
Knowledge Acquisition using Conceptual Graph Theory, (1994) 

13. Evans, R., and Kilgarriff, A. MRDs, Standards and How to do Lexical Engineering. In 
Proceedings of the Second Language Engineering Convention, (1995) pp. 125–32. 

14. Feliu, J.; Vivaldi, J.; Cabré, M.T. Ontologies: a review. Working Paper, 34. Barcelona: 
Institut Universitari de Lingüística Aplicada. DL: 23.735-2002 (WP), (2002) 

15. Martin, P. Correction and Extension of WordNet 1.7. In Proc of the 11th International 
Conference on Conceptual Structures, (2003) pp 160-173. 

16. Oltramari, A.; Prevot, L.; Borgo, S. Theoretical and Practical Aspects of Interfacing 
Ontologies and Lexical Resources.  In Proc. of the 2nd Italian SWAP workshop, (2005) 

17. Philpot, A., Hovy, E. and Pantel, P. The Omega Ontology. In IJCNLP Workshop on 
Ontologies and Lexical Resources, (2005) pp 59-66. 

18. Makagonov, P., Ruiz Figueroa, A., Sboychakov, K. and Gelbukh, A. Learning a Domain 
Ontology from Hierarchically Structured Texts. In Proc. of Workshop “Learning and 
Extending Lexical Ontologies by using Machine Learning Methods” at the 22nd 
International Conference on Machine Learning, (2005) 

19. Makagonov, P., Ruiz Figueroa, A., Sboychakov, K. and Gelbukh, A. Studying Evolution 
of a Branch of Knowledge by Constructing and Analyzing Its Ontology. In Christian Kop, 
Günther Fliedl, Heinrich C. Mayr, Elisabeth Métais (eds.). Natural Language Processing 
and Information Systems. 11th International Conference on Applications of Natural 
Language to Information Systems, (2006)  

20. Nirenburg, S., McShane, M., Zabludowski, M., Beale, S. and Pfeifer, C. Ontological 
Semantic text processing in the biomedical domain. Working Paper #03-05, Institute for 
Language and Information Technologies, University of Maryland Baltimore County, 
(2005)  

21. Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall CJ, Neuhaus F, 
Rector A, Rosse C. Relations in Biomedical Ontologies. Genome Biology, 6(5), (2006) 



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 863 – 881, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Model-Driven Tool Interoperability:  
An Application in Bug Tracking* 

Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez 

ATLAS Group, INRIA and LINA University of Nantes 
2, rue de la Houssinière, BP 92208, 44322, Nantes cedex 3, France 

{marcos.didonet-del-fabro, jean.bezivin}@univ-nantes.fr, 
patrick.valduriez@inria.fr 

Abstract. Interoperability of heterogeneous data sources has been extensively 
studied in data integration applications. However, the increasing number of 
tools that produce data with very different formats, such as bug tracking, 
version control, etc., produces many different kinds of semantic heterogeneities. 
These semantic heterogeneities can be expressed as mappings between the tools 
metadata which describe the data manipulated by the tools. However, the 
semantics of complex mappings (n:1, 1:m and n:m relationships) is hard to 
support. These mappings are usually directly coded in executable 
transformations using arithmetic expressions. And there is no mechanism to 
create and reuse complex mappings. In this paper we propose a novel approach 
to capture different kinds of complex mappings using correspondence models. 
The main advantage is to use high level specifications for the correspondence 
models that enable representing different kinds of mappings. The 
correspondence models may be used to automatically produce executable 
transformations. To validate our approach, we provide an experimentation with 
a real world scenario using bug tracking tools. 

Keywords: complex mappings, semantic heterogeneities, tool interoperability, 
MDE (Model Driven Engineering). 

1   Introduction 

A software tool, e.g., text editing, bug tracking, needs to manipulate data that may be 
persistent (e.g., stored in a relational database) or transient (e.g., the execution state of 
the tool). Today, many different tools can be used to solve similar problems. As a 
result of increased collaboration between organizations and to rapidly changing 
environments, it is often necessary that one tool uses the data produced by another 
tool. However, the data produced by distinct tools are often heterogeneous with very 
different data formats, thus making tool data integration difficult.  

The integration of heterogeneous data sources has been studied for a long time in 
data integration applications [21, 26, 1, 10]. In order to integrate the data of different 
tools, it is necessary to identify the semantic heterogeneities. The format and 
                                                           
* This work is partially supported by ModelPlex project. 



864 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

semantics of tool data is typically specified as tool metadata. Semantic heterogeneities 
can be expressed as mappings which specify the relationships between elements of 
tools metadata. 

Many solutions have proposed different kinds of mappings ranging from 1-to-1 
correspondences [26, 27, 24] to ontology bridges [22, 13, 11]. However, they 
typically provide a limited set of semantic relationships, e.g., equality and 
equivalence. They do not provide support to explicitly define the semantics of 
complex kinds of mappings such as mapping expressions. Mapping expressions are 
manipulations over tool elements that involve 1:m, n:1 or n:m relationships, e.g., 
splitting an element Address into Street and Number. Most solutions implement 
complex mappings directly in executable transformations using generic arithmetic 
expressions, e.g., project_duration = end_date – start_date, name = first_name + 
last_name. In this case, the semantics of the entire mapping (e.g., “name 
concatenation”) is not defined in the mapping specification, but in the mapping 
expression itself. Therefore, it is difficult to create and reuse these expressions. The 
lack of explicit semantics also hardens the task of deriving these mappings into 
executable transformations. The transformations are responsible to translate the data 
produced by a tool into a different format that can be understood and consumed by 
another tool. 

In this paper, we propose a practical solution based on Model Driven Engineering 
together with data integration techniques. Our approach is useful to specify and 
capture complex semantic heterogeneities, and to automatically produce executable 
transformations. In our approach, the data manipulated by a tool is a model, called a 
tool model. A model conforms to a metamodel which is a formal description of the 
model. 

We classify different kinds of tool semantic heterogeneities according to their 
complexity, and we propose a practical solution to express the mapping semantics in a 
correspondence metamodel, i.e., at the specification level. The metamodel elements 
are created with a vocabulary close to their semantic meanings, e.g., override, 
concatenate, split. A correspondence model conforming to this metamodel contains 
the mappings between the tool metamodels. 

The correspondence models are used to generate executable transformations. A 
transformation is also a model, so the heterogeneities (e.g., mapping expressions) are 
translated into constructs of specific transformation languages, e.g., XSLT. We 
generalize the process of producing transformations into a pattern that is 
automatically executed. This pattern may be incrementally modified to handle 
different semantic heterogeneities. This is a frequently executed operation in model 
driven engineering which can be encapsulated in a TransfGen operation.  

The main contributions of this paper are the following. First, we develop 
correspondence metamodel extensions that fully capture different kinds of semantic 
heterogeneities between tool metamodels. We emphasize the creation of complex 
mapping expressions. Second, we provide a generic pattern to automatically generate 
transformations based on correspondence models. Third, we consider all entities as 
models. This allows us to apply the same principles to manipulate the tool, 
correspondence and transformation models. To validate our approach, we provide an 
experimentation with a real world interoperability scenario using bug tracking tools 
and our AMW (Atlas Model Weaver) prototype [9]. 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 865 

This paper is organized as follows. Section 2 describes a motivating example in 
bug tracking tool interoperability. Section 3 presents the base concepts and the 
definition of tool correspondences. Section 4 explains how these correspondences are 
translated into a transformation model. Section 5 presents our experimental 
validation. Section 6 discusses related work. Section 7 concludes. 

2   Motivating Example 

We illustrate different kinds of semantic heterogeneities in tool interoperability with a 
bug tracking scenario. Bug tracking tools manage the bugs (reporting, fixing, etc.) of 
a given application. Today, many bug tracking tools are available, e.g., GNATS, 
Mantis, Bugzilla, and many others [15]. Consider two autonomous software 
development companies, CA and CB, and a set of N bug tracking tools. Company CA 
uses tool Ti and company CB uses tool Tj. They need to collaborate without aligning 
their software development practices. This is due to pragmatic reasons, e.g., the 
companies already participate in other cooperative projects. 

We illustrate this situation using two bug tracking tools, Bugzilla [6] and Mantis 
[23]. Bugzilla is a general purpose, open source bug tracking tool. It provides features 
such as error tracking and quality assurance management. The metadata of Bugzilla is 
illustrated in Figure 1. 

bug_id : String
bug_status : StatusType
resolution : ResolutionType
priority : PriorityType
rep_platform : String
assigned_to : String
target_milestone : String
creation_ts : String
op_sys : OSType

Bug

who : String
bug_when : Date
the_text : String

LongDesc
bug_id : String

DependsOn

bug_id : String

Blocks
long_desc

blocks

depends_on

0..*

0..*

0..*

 

Fig. 1. Bugzilla metadata 

Mantis is another bug tracking tool. It differs from Bugzilla as a light weight tool 
which allows adding new modules. The metadata of Mantis is illustrated in Figure 2.  

We observe that it is possible to establish different kind of mappings between the 
elements of the tools metadata. The most common kind of mappings is equality, 
where two concepts are said to be equal. For example, a software bug is represented 
by Bug in Bugzilla and Issue in Mantis. As another example, the date a bug is created 
is represented by creation_ts and date_submitted. There are also elements 
representing equivalent data, but not the same, e.g., target_milestone is the version 
where a bug will be fixed, and fixed_in_version is the version where a bug was fixed. 

There are also more complex kinds of mappings. For example, Bugzilla has two 
kinds of relationships between bugs: depends_on and blocks. In Mantis, bugs are 



866 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

related to each other using the element relationships, which points to Relationship. 
The relationship type is stored in the element type. As another example, assigned_to 
contains the responsible to solve a given bug in Bugzilla. In Mantis the relationship 
assigned points to element Person (that contains elements login, value and id). 

  

version : String
platform : String
os : String
os_version : String
date_submitted : Date
fixed_in_version : String

Issue

id : Integer

Identifier

text : String

Note

value : String

ValueWithId

login : String

Person

type : RelationshipType

Relationship

notes

relationships

0..1
resolution

reproducibility

st
at

us

pr
io

ri
ty

1 1

0..1

0..*

0..*

0..1

assigned

 

Fig. 2. Mantis metadata 

In addition, there are semantic heterogeneities at the data level. For instance, the 
element bug_status in Bugzilla and relationship status in Mantis (that points to 
ValueWithId) contains the bug state (e.g., a bug was included in the database, a bug 
was solved, etc.), and the element priority contains the priority to solve a given bug 
(e.g., immediate, urgent). Each tool has its own set of status and priorities. For 
example, it is necessary to take into account that the priority with value “P_1” in 
Bugzilla is translated into the value “urgent” in Mantis. The same analogy applies to 
the element status. Different kinds of heterogeneities and the other elements not 
explained here are discussed later in the paper. 

Traditional data integration applications usually create mappings to capture similarity 
heterogeneities (e.g., equality, equivalence). These mappings can be used to produce 
transformations that execute the translations from Bugzilla to Mantis. However, 
complex mapping expressions and data level heterogeneities are coded either in some 
element in the mappings, either in the produced transformations. For example the 
developer must code how to translate between the enumerations values  in one specific 
language. The lack of explicit semantics for complex expressions hardens the creation 
of mappings because there is no domain information about the possible mappings. The 
possible mappings are virtually unlimited when using generic arithmetic expressions. 
This way is not possible to understand all the mappings without analyzing the entire 
expression in the produced transformations. This also reduces the reusability of these 
expressions. In addition, there is not enough semantic information to automatically 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 867 

produce the transformations, which is a frequently executed operation in model 
management. The mappings and produced transformations must be kept synchronized. 

In order to efficiently achieve tool interoperability, all these kinds of mappings 
must be explicitly specified. These mappings must be derived into executable 
transformations. This process must be efficient, such that new transformations 
between other tools can be rapidly developed. 

3   Tool Heterogeneity 

In this section, we motivate the use of correspondence metamodel extensions to 
capture different kinds of tool semantic heterogeneities. First, we define what is a 
model which is the basic concept underlying our solution. Second, we define the tool 
heterogeneity problem and a core correspondence metamodel. Finally, we classify 
different kinds of tool semantic heterogeneities and we propose a set of metamodel 
extensions to express these heterogeneities. 

3.1   Models 

We abstract implementation and representation issues by using an integrated 
modeling platform. We present the model definition below (following [17]). 

Definition 3.1 (Directed graph). A directed multigraph G = (NG, EG, ΓG, v) consists 
of a finite set of nodes NG and a finite set of edges EG, a mapping function ΓG : EG → 
NG × NG and a labeling function v : NG ∪ EG → A. The type A is of any data type, 
such as characters, integers or classes. 

Definition 3.2 (Model). A model M = (G, ω, μ) is a triple where: 
− G = (NG, EG, ΓG) is a directed multigraph, 
− ω is itself a model (called the reference model of M) associated to a graph Gω = 

(Nω, Eω, Γω), 
− μ : NG ∪ EG → Nω is a function associating elements (nodes and edges) of G to 

nodes of Gω. 

The relation between a model and its reference model is called conformance. This 
definition allows an indefinite number of levels. However, we observe from different 
domains (XML, RDBMS, ontologies) that only three levels are needed. We call these 
three levels metametamodel (M3), metamodel (M2) and terminal model (M1). A 
metametamodel is a model that is its own reference model. A metamodel is a model 
such that its reference model is a metametamodel. A terminal model is a model such 
that its reference model is a metamodel. 

3.2   Tool Heterogeneity 

The tool data and metadata are represented as models and metamodels. Thus, the tool 
heterogeneities are expressed as mappings between tool metamodels. The mappings 
types are specified in a correspondence metamodel. We define tool, mappings and 
correspondence metamodel below. 



868 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

Definition 3.3 (Tool). A tool T is a tuple <Mt, St>, where: 

− Mt = (G, MMt, μ) is the tool model. Mt is the data that is manipulated by T, 
− MMt is the reference model (metamodel) that represents the tool metadata, 
− St = {si; i = [1..n]} is the set of services (querying, updating, inserting, etc.) 

provided by T. Every service s ∈ St must respect the constraints specified in MMt. 

Consider a bug tracking tool Ta = <Mta, Sta>. The metamodel MMta specifies how 
the bugs are organized, the properties of a bug, the possible states of a bug during its 
life cycle, etc. The model Mta has the value of the bugs, e.g., that a given bug “B” has 
a status of “in correction” to a developer called “Joseph”. The set Sta contains 
miscellaneous services: the inclusion a new bug in the database, the update of a bug 
status, the query of a set of bugs, and so on. 

Consider another bug tracking tool, Tb = <Mtb, Stb> with a different model, 
reference model and set of services. The semantic heterogeneities between 
metamodels MMta and MMtb are expressed as mappings. The mappings between tool 
metamodels have different types, structures and semantics. However, intuitively, they 
depict the notion of typed-links between (meta) model elements. 

Definition 3.4 (Mapping). Given two models Mta and Mtb, a mapping M is a tuple 
<Sa, Sb, T>, where: 

− Sa is a set of elements from the model Mta, 
− Sb is a set of elements from the model Mtb, 
− T is the type of mapping between the sets Sa and Sb. 

There are many different kinds of mappings, for instance equality, equivalence or, 
generalization. These are simple kind of mapping that express element similarity, 
usually denoting 1-to-1 links. Complex mappings have multiple cardinalities and 
semantic meaning. These kind of mappings abstract commonly used mapping 
expressions, e.g., the average between a set of elements, or the concatenation of 
strings. We specify the different mapping types in a correspondence metamodel. 

Definition 3.5 (Correspondence metamodel). A correspondence metamodel is a 
model MC = (GC, ωC, μC) that define mapping types, such that: 

− GC has two basic types of nodes: links and link endpoints, 
− link denote the mapping type, and refers to multiple link endpoints, 
− link endpoints refer to the mapped elements. 

Consider the mapping expression t = s1 + s2 + s3 + s4 / 4. The mapping language 
contains the addition and subtraction operators, plus the tokens (the model elements). 
The language does not explicitly specify that it is possible to create average 
expressions. The semantic is only known if we analyze the expression itself. In our 
solution, we create a link type average that abstracts the semantics provided by the 
combination of operations “+” and “/”. This process is the promotion of the mapping 
semantics into the correspondence metamodel. The link type refers to a link endpoint 
with cardinality N (the source elements), and to a link endpoint with cardinality 1 (the 
target element). The mapping expression (the link between the elements) is created in 
a correspondence model conforming to the correspondence metamodel. 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 869 

3.2.1   Core Correspondence Metamodel 
We create a core correspondence metamodel based on Definition 3.5. The metamodel 
is illustrated in Figure 3. The core metamodel has elements with information about 
link type, link endpoints and element identification. Element identification is a 
practical solution for saving unique identifiers for the linked elements. 

 

name : String
description : String

WElement

WModel
ref : String

WRef

WLinkEnd
WModelRef WElementRef

WLink

m
od

el
 

ownedElement (1-*)

end (1-*)

element

parent

ch
ild

 (
0-

*)

w
ov

en
M

od
el

 (
1-

*)

 

Fig. 3. The core correspondence metamodel 

WElement is the base element from which all other elements inherit. It has a name 
and a description. WModel represents the root element that contains all model 
elements. WLink denotes the link type. WLink has a reference end to associate it with 
a set of link endpoints (WLinkEnd). WLink can have children links (child reference). 
Every WLinkEnd references one WElementRef. The attribute ref contains a unique 
identifier of the linked elements. WElementRef is not referenced directly by WLink 
because it is possible to refer to the same model element by different link endpoints, 
e.g., one model element may participate in more than one mapping expression. 
WModelRef is similar to WElementRef, but it contains references to the models as a 
whole. The WLink element must be extended to create different link types, e.g., 
equality, average and others. Different link types and link endpoints are added using 
metamodel extensions [9]. 

3.3   Metamodel Extensions for Tool Interoperability 

As already stated, it is not possible to create a metamodel containing all types of links 
for tool interoperability. We propose to create metamodel extensions to capture 
different types of links. We classify them in three major groups according to the 
complexity of the links semantics. 

The link types are defined in a simplified version of the KM3 metametamodel (see 
the complete syntax in [17]). KM3 is formed by classes. Classes may inherit from 
other classes, and are formed by attributes and references (attributes and references 
have a type and a cardinality). The syntax of KM3 is similar to object notations. 



870 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

3.3.1   Similarity Expressions 
Similarity expressions represent resemblance links between metamodel elements. 
These expressions are the link types encountered in most semantic-based mapping 
solutions. There are different kinds of similarity expressions. We describe them 
below. 

Equality: a pair of element represents exactly the same information. For example the 
platform of the application the bug was detected is represented by rep_platform in 
Bugzilla and platform in Mantis. The link type does not specify the exact data type 
(String, Class, etc.). The data type is specified when deploying the solution (as 
extensions of WLinkEnd). 

class Equal extends WLink { ref source : <DataType>; ref target : <DataType> } 

Equivalence: the linked elements contain similar information, but not exactly the 
same. However, the translation semantics may be the same as in equality links, i.e., 
one target element receives the value of a source element. We add a description 
attribute to provide additional information about the equivalence, and a similarity 
measure. 

class Equivalence extends WLink {ref source:<DataType>;  
ref  target: <DataType>; attr description : String; attr similarity : Integer} 

Disjointness: two elements cannot be present at the same time because they have 
incompatible data. The link type also contains a description. 

class Disjoint extends WLink {ref source:<DataType>;  
ref target : <DataType> ; attr description : String } 

Generality: one model element is more general than the other. 
class Inherit extends WLink { ref parent : <DataType>; ref child : <DataType>} 

Non equivalence: it is not always possible to translate all the information produced 
by one tool into another tool. Some elements from the tool metamodels do not have 
any semantic relationship, or are not relevant for a given translation and do not need 
to be generated. The element may be simply ignored. However, it is important for the 
application developer to be aware of what is not translated. For example the 
reproducibility element contains the frequency of reproduction of a given issue. This 
element does not exist in Bugzilla. 

class Unique extends WLink { ref element : <DataType> } 

3.3.2   Mapping Expressions 
Mappings expressions are mappings that involve a set of source elements and a set of 
target elements. The definition of high level mapping expressions capable of 
capturing different kinds of semantic heterogeneities is a main contribution of this 
paper. The correspondence metamodel encapsulates mapping expressions in 
metamodel elements. 

Many-to-one: many-to-one expressions links set of elements of the source model 
with a single target element. For example the elements os and os_version from Mantis 
contains the operating system and the operating system version. In Bugzilla, this 
information is available in one single attribute op_sys. 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 871 

class ManyToOne extends WLink { 

      ref source [*]: <DataType>; ref target: <DataType>} 

Split or one-to-many: the opposite of many-to-one expressions, i.e., split expressions 
link more than one target element with a single source element. 

class OneToMany extends WLink { 

     ref source: <DataType>; ref [*] target: <DataType>} 

Many-to-many: links a set of elements of source models with a set of elements of 
target models, for instance the reorganization of the elements of LongDesc into the 
elements of Note. 

class ManyToMany extends WLink { 
          ref source [*]: <DataType>; ref [*] target: <DataType>} 

New values in the target: generates values in the target model that do not have a 
correspondence in the source model. The values are automatically generated (e.g., to 
automatic generate IDs elements) or take a predefined value from user input. 

The class AutoSetValue is extended into AutomaticGenInt and ManualInput. The 
class AutomaticGenInt reads the element that is referred by the target reference and 
generates a random number for it. The class ManualInput sets the target reference 
attribute with the value of sourceValue. 

class AutoSetValue extends Equal {} 
class AutomaticGenInt extends AutoSetValue {} 
class ManualInput extends AutoSetValue { attr sourceValue : <DataType>} 

3.3.3   Data Value Expressions 
Data value expressions differ from mapping expressions because they also evaluate 
the model elements, not only the metamodel elements. Data value expressions modify 
the source model values to make them compatible with the target model. 

The class DataExpression refers to a set of value equivalences. The source element 
is evaluated, and if it is equal to one sourceValue from the set of equivalences, it sets 
the target element with the corresponding targetValue. The equivalences may be of 
any data type. 

class DataExpression extends WLink { ref equiv [*] : Equivalence} 
class Equivalence extends WLinkEnd { 

ref sourceValue : <DataType>; ref targetValue : <DataType> } 

We illustrate data value expressions with the resolution element. The resolution 
contains the correction status of a bug (e.g., if it was fixed or not). In Mantis, this 
element may have the values: OPEN, FIXED, REOPENED. The possible values in 
Bugzilla are: NEW, FIXED, INVALID, WONTFIX. 

4   Interpreting Tool Heterogeneity 

In the previous section, we explained how to define different metamodel extensions to 
capture semantic heterogeneities. The next step is to create a correspondence model 
conforming to these extensions and to derive the model into executable 
transformations. These transformations translate one tool model into another. 



872 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

In this section, we first introduce a match operation that creates a correspondence 
model. Then, we present a generic pattern used to automatically produce a model 
transformation, which is responsible to translate one tool model into another. 

4.1   Match Operation 

The match operation creates a correspondence model conforming to an extended 
correspondence metamodel. The match operation is divided into an automatic and a 
manual phase. The automatic phase executes a set of matching algorithms to search 
for similar concepts in the tool metamodels. First, we generate a correspondence 
model containing the cross product of all metamodel elements of each tool. Then, a 
set of matching algorithms is executed sequentially to calculate a similarity value for 
every pair of elements. We use existing string comparison algorithms [7], e.g., 
Levenshtein distance, edit distance and QGrams, and an adaptation of the similarity 
flooding algorithm [24]. We match only classes, attributes and references. The result 
is filtered to obtain only the best similarity values, based on a similarity threshold. 
The correspondence model contains only equality mappings. 

The manual phase refines the correspondence metamodel by deleting wrong 
equality matchings and by adding the complex mapping expressions and data value 
expressions. This operation is done with the help of a user interface. 

4.2   Generic Transformation Pattern 

The definition of the generic transformation pattern relies on three facts. First, the 
core correspondence metamodel is formed by links, link endpoints and extensions of 
these elements. Second, declarative transformations languages have similar structure. 
Third, we use declarative transformation patterns that specify only what to transform, 
and not how to transform. The transformation pattern contains the execution 
semantics of the correspondence model, because it transforms the different types of 
links into executable mapping expressions in some transformation language. 

We use higher-order transformations (HOT) to specify the generic pattern. A HOT 
takes as input a correspondence model conforming to an extension of the 
correspondence metamodel and transforms it into a transformation model. 

Definition 4.1 (Higher-order transformation). A higher-order transformation is a 
transformation THOT : TIN → TOUT, such that the input and/or the output models are 
transformation models. Higher-order transformations either take a transformation 
model as input, either produce a transformation model as output, or both. 

We create a simple syntax for a transformation metamodel to define the generic 
pattern (as illustrated in Figure 4). The keywords are in bold font. The transformation 
has a set of declarative rules. The input element matches the input correspondence 
metamodels. The output element creates a new element in the output model. The 
output element has bindings to assign the source values to the target elements. The 
correspondence metamodel has one extension of WLink (as shown below) to denote 
source and target elements. The pattern can also be used with different metamodel 
extensions. 

class WLinkST extends WLink { ref source : WLinkEnd; ref target : WLinkEnd } 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 873 

The pattern contains four rules (see Figure 4). The rule newRule creates 
transformation rules. The rule newOutput creates the output elements. Both are based 
on the value of the target reference of a given link. The rule newInput creates the 
input element, and it is based in the value of the source reference. This rule may have 
a filtering condition depending on the link type. The rule newExpression creates 
different mapping expressions. The mapping expressions are created as bindings to 
the output elements. 

 

Module TransfGen (C: ωC)
inputModel:  C: ωC /* a correspondence model conforming to a metamodel ωC*/
outputModel: T: ωT /* a transformation model conforming to ωT */
rule newRule

input WLinkST (parent isA WModel)  /*classifiers (classes, references, attributes)*/
output Rule

input source
output target

rule newInput
input WLinkEnd (link.source = self)
output InputElement

element getElement (element.ref)
condition /*depends on the WLinkST and WLinkEnd types*/

rule newOutput
input WLinkEnd (link.target = self)
output OutputElement

element getElement (element.ref) 
bindings link.child /*get the sibling WLinkEnd*/

rule newExpression
input WLinkST (parent isA WLinkST)
output Binding

source MapExp (getElement (source.element.ref) ) /*mapping expressions here,*/
target  getElement (target.element.ref)                 /*according to the WLinkST type*/

 

Fig. 4. Higher-order transformation pattern 

This pattern is the basis to define a new model management operation called 
TransfGen. This way it is possible to separate the tool interoperability process into 
distinct operations. The correspondence model is created by a Match. The 
correspondence model is translated into a transformation model using TransfGen. The 
translation between models are encapsulated in automatically generated 
transformations, which are themselves specific data transformation operations. 

5   Experimental Validation 

In this section we validate our approach with experiments using the bug tracking tools 
from the motivating example, Mantis and Bugzilla. The experiments are conducted 
using our model management platform, which is composed by different plugins to 
manipulate models. The two plugins used are the AMW (ATLAS Model Weaver) 
plugin [9] and the ATL (ATLAS Transformation Language) plugin [16]. AMW is 
responsible for managing the metamodel extensions and for the manual match. ATL 
is used to implement all the model transformations of the process. ATL has a textual 



874 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

concrete syntax and an engine to execute the transformations. Both plugins are open 
source and are available as Eclipse subprojects [2, 3]. 

We first show the creation of a correspondence model based on the correspondence 
metamodel extensions from Section 3. Then we demonstrate how we use the generic 
transformation pattern to interpret the correspondence model and to automatically 
produce model transformations. We end with a discussion about our results. 

5.1   Correspondence Model 

The metamodels of both tools are stored in different data sources. The tool 
metamodels are originally in SQL-DDL. They are translated into Ecore [12], which is 
the metametamodel used by our plugins (AMW and ATL). The semantics of Ecore is 
very close to KM3. This allows us to write metamodels using KM3 textual syntax. 
One part of the metamodels is illustrated in the graphical concrete syntax in the 
motivating example. The Bugzilla metamodel has 146 elements. The Mantis 
metamodel has 62 elements. 

We implement the metamodel extensions defined in Section 3. We show below an 
excerpt of the correspondence metamodel. It specifies a data value expression used to 
translate enumeration values. It compares the value of given source element with the 
set of sourceValue, and sets the target element with the corresponding targetValue. 

class EnumerationEquiv extends DataExpression {ref equiv [*] : EnumEqual}; 
class EnumEqual extends Equivalence { 

ref sourceValue: String; ref targetValue: String }; 

We create the correspondence model using ATL transformations to execute the 
sequence of matching algorithms, which refine the initial input (the cross-product of 
elements) and generate a correspondence model. Our AMW plugin is used to generate 
the interoperability metamodel based on a set of extensions and to refine the 
correspondence model during the manual phase. 

An excerpt of the correspondence model is shown in Figure 5. We use a human 
readable syntax to represent information models, similar to HUTN [29].  

EnumerationEquiv = {
     source.ref = Left.priority.id;  
     target.ref = Right.priority.id;
     equivalence = { source = "NONE";  target = "pt_null"};
     equivalence = { source = "low";  target = "pt_P1"};
};
Left = {
     name ="Mantis";
     ref = "c:\Tool_interoperability\Mantis.ecore";
     priority {  id = "EAttribute_priority";   }
};
Right = {
    name ="Bugzilla";
    ref = "c:\Tool_interoperability\Bugzilla.ecore";
     priority {   id = "EAttribute_priority";   }
}  

Fig. 5. A correspondence model 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 875 

The model contains the equivalencies between the priority values. Note that both 
tool models have a priority property and both have the same ID “EAttribute_priority”. 
This does not cause problems because it is relative to the containing model.  

The complete correspondence model has 312 elements. This difference on the 
number of elements is due to the structure of the correspondence metamodel, because 
for every couple of referred elements there is at least one element indicating the link 
type, plus the source and target elements. In addition, the source and target elements 
refer to an element that contains their identifiers (in the Left and Right elements). 

5.2   Interpreting the Correspondence Model 

The execution semantics of the correspondence model is specified in a transformation 
that takes the correspondence model as input and produces a transformation model as 
output. The transformation (485 lines) is implemented based on the generic 
transformation pattern. The ATL transformation rules are divided in three parts: the 
from block filters the appropriated model elements by their type; the to block contains 
the declarative code; the do block contains imperative code. We show in Figure 6 the 
rules that interpret the metamodel extension to translate the enumeration values. The 
AMW identifier denotes the correspondence metamodel. The ATL identifier denotes 
the transformation metamodel. 

 

rule EnumDataTranslation {
from amw : AMW!EnumerationEquiv  
to atl : ATL!Binding (

propertyName <- MOF!EClassifier.getInstanceById(amw.target.element.ref).name
    )

do { atl.value <- thisModule.CreateEnum(amw, amw.enumEqual);}
}
rule CreateEnum(amw: AMW!EnumerationEquiv, attrEnum: Sequence (AMW!EnumEqual)){

to ifExp : ATL!IfExp (
  thenExpression <- targetEnum,
  condition <- operation
),
operation : ATL!OperatorCallExp (
  operationName <- '=',
  arguments <- sourceEnum
),
endExp : ATL!StringExp (),
sourceEnum: ATL!StringExp (
  stringSymbol <- attrEnum->first().sourceValue.toString()
),
targetEnum : ATL!StringExp (
  stringSymbol <- attrEnum->first().targetValue.toString()
)

do { operation.source <- amw, amw.source->collect(e | e.element.ref),true);
if ( attrEnum->size() = 1 ) {

ifExp.elseExpression <- endExp;
  } else {

ifExp.elseExpression <- thisModule.CreateIfEnum(amw, 
attrEnum->subSequence(2,attrEnum->size()));

  }
  }
}  

Fig. 6. Higher-order transformation 



876 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

The rule EnumDataTranslation matches the element EnumerationEquiv from the 
correspondence model. It produces a Binding element conforming to the ATL 
metamodel. A binding has a propertyName that corresponds to the target model 
element. The target element is obtained by getInstanceById function. The property 
value calls the rule CreateIfEnum. It receives the set of enumerations as parameters 
and produces a model with a set of nested IfExp (conditional expressions).  

The IfExp contains a condition expression, which is formed by an equality operator 
(OperatorCallExp). This operation compares the source value of the enumerations 
and sets the correct target value specified at thenExpression. The StringExp elements 
return the sourceValue and targetValue (an empty String if there is no equivalence). 
The complete transformation produces a transformation model with a set of rules. 
This model is extracted into a text representation that is executed in the ATL engine. 

5.3   Discussion 

The metamodel extensions enable producing a domain specific (tool interoperability) 
correspondence metamodel. Among the different metamodel extensions that are 
created, the most used are the concatenation of elements (e.g., os concatenated with 
os_version), data type conversions (e.g., Integer to String, references to attributes, 
etc.) and conversion of enumerations values. 

One interesting observation is that the values of the enumerations from Mantis are 
not described in the metamodel, only in a Php file. Since the tool metamodels cannot 
be modified (otherwise the services provided might not work properly), the 
enumerations are added in one metamodel extension. This is a very specific 
extension, which is probably not useful outside the bug-tracking example, but it is still 
necessary to be able to create the output transformation. 

The correspondence model has composite elements that conform to a combination 
of metamodel extensions. For instance we combine the conversion of “references to 
attributes” extension with the “concatenation” extension. This way, it is possible to 
create more complex output transformation models with the same set of extensions. 

The metamodel extensions ease the task of repeatedly creating complex mapping 
and data value expressions between tool metamodels. The adaptive user interface is 
used together with semi-automatic matching algorithms (see the survey at [32]). The 
extensibility of the correspondence metamodel enables leaving human intervention 
essentially on the matching phase, because all the necessary information to produce 
transformations is available in the correspondence model. This is different from 
traditional approaches that have an extra step of mapping discovery [19, 26]. 
However, it is still possible that a correspondence metamodel covers most semantic 
interoperability cases, but not all. Complex expressions that are not often used can be 
coded manually in the final generated transformation. 

The declarative structure of the correspondence metamodel allows a clear 
separation of the input model (the correspondence model) from the output model (a 
transformation model). Thus, it is relatively straightforward to modify only the output 
model and produce different transformation models. This also enables generating  
 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 877 

different expressions in the output transformation. For instance, the translation of 
enumeration values may be implemented as nested ifs (our final choice), or using 
case-like statements. This opens the possibility of optimizations of the output 
transformations (however, this is not the focus in this work). On the negative side, 
transformation languages may have complicated metamodels, in particular for 
querying and navigation expressions (e.g., OCL, XPath). 

Another important result is that we are capable to use most of the metamodel 
extensions also in the importing process from SQL-DDL to an Ecore metamodel. The 
process is the following: we create a SQL-DDL metamodel conforming to Ecore (to 
support standard CREATE TABLE statements). The textual SQL-DDL is translated 
into a model conforming to the SQL-DDL metamodel. We then use most part of the 
correspondence metamodel extensions (excluding for instance the extensions 
concerning enumerations) to create a correspondence metamodel with AMW, and 
then a correspondence model to link the SQL-DDL model with a KM3 metamodel 
The translation from KM3 to Ecore is straightforward. The SQL-DDL model has 48 
elements. The KM3 metamodel has 47. The correspondence model has 132. The 
output transformation has 83 lines. This transformation translates the SQL-DDL 
model into a KM3 model. In this case, extensions to generate default values are 
constantly used, because KM3 models have attributes such as lower, upper (for 
cardinality), isAbstract, that are not present in the SQL-DDL definition. 

To summarize, our experiments demonstrate that the use of MDE enables to 
improve two data integration phases (matching and transformation production) to 
solve tool interoperability problems in a practical and efficient manner. We are able to 
define different extensions of the core correspondence metamodel to cope with 
distinct kinds of semantic heterogeneity. We create a correspondence model using 
some matching algorithms and a user interface. We implement the transformation 
pattern that automatically generates a transformation to transform the tool models. 

6   Related Work 

There has been extensive work on data integration that can be applied to tool 
interoperability. The usual approach is to identify the relationships between elements 
and to save these relationships in some kind of mapping. The most common mappings 
are 1-to-1 correspondence [1, 27, 26, 24]. These correspondences are not adapted to 
represent complex mappings semantics. 

The use of model-based correspondences was introduced in [30]. The 
correspondence model is used to merge models. However, it has only equality and 
similarity link types. More expressive representations have been proposed to bridge 
between different ontologies [28, 22, 11]. These approaches have mappings as first 
class entities. The set of valid mapping constructs involve complex axioms, such as 
equivalence and generalization. The main limitation is that the fixed set of mapping 
constructs cannot be extended in a straightforward way as in our approach. 

In our solution, we present a correspondence metamodel that is capable of 
capturing virtually all of the representations above, because the metamodel is 



878 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

extensible. This means we may specify a domain specific mapping with only 1-to-1 
relationships until complex structures as in ontology-based approaches. 

InfoQuilt [31] provides ways to represent mapping expressions through a library of 
mapping functions. However, the library can be used with no restriction, i.e., they are 
not separated by application domain. The functions are not part of the mapping 
definition, but expressions written in terms of the mapping language. The work in 
[18] presents a classification of the semantic and syntactic differences between 
schemas. This work proposes a semPro predicate to formalize the semantic proximity 
between elements. It is a formal work that focuses in the semantic heterogeneities, 
and not a complete integration platform as in our solution. It is a basis for our 
classification of tool heterogeneities, but we separate the heterogeneity types based on 
their complexity. 

Our approach is complementary to existing matching algorithms, as we provide an 
efficient way to represent mapping expressions. For example the iMAP prototype [8] 
could be used to create a set of complex mapping expressions in our solution. iMAP 
implements different complex searchers. Every searcher could be associated with a 
correspondence metamodel extension.  

The work in [14] proposes the alignment of ontologies based on the computation of 
similarities of 1-to-1 and 1-to-m mappings. The similarities are computed taking into 
account ontological structures. However, the similarities denote only equivalence 
mappings. The 1-to-m similarities could be used as input to algorithms that generate 
correspondence models with complex kinds of mappings. 

The mappings are used to produce transformations. Clio [26] is one of the first 
solutions to provide a semi-automatic mechanism to produce transformations based 
on a set of correspondences. Our proposal has a similar architecture. However, Clio 
focuses on the generation of nested structures and on foreign key dependencies. There 
is no support for different kinds of complex mapping expressions. The work in [19] 
proposes an algorithm to generate XQuery. The algorithm uses 1-to-1 
correspondences between a set of input XML schemas. 

We differ from both approaches because we factor out part of the generation 
problem into a generic pattern. We leave the complexity of creating expressions to the 
matching phase, as in [8]. This means for instance that we do not implement a chase 
procedure to identify possible joins as in Clio. The generic pattern is independent of 
the structure of the input models (e.g., nested format), though still dependent of the 
core correspondence metamodel. 

Model management solutions [5, 24, 4, 20] propose the creation of operations that 
encapsulate the most frequently executed metadata tasks. The work in [25] 
implements a model management platform using a logic mapping language. The logic 
language is translated into XSLT using an ad-hoc implementation. Our approach 
presents a model management solution focusing on the creation of element level 
constructs. The correspondence model as a whole acts as a high level specification for 
data integration operations. 

To the best of our knowledge, none of the existing solutions consider the 
transformations and correspondences as models at the same time as in our approach. 
The model management operations may be applied to transformations as well. This 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 879 

enables using the declarative pattern to generate transformations from a 
correspondence model, and to encapsulate this pattern into a TransfGen operator. 

7   Conclusions 

In this paper, we have presented a practical and flexible approach that improves data 
integration techniques applied to tool interoperability problems. We based our 
solution on MDE principles to capture the semantic heterogeneities and to produce 
operational mappings between these tools. 

Considering two tools in a set of tools dealing with the same problem domain (bug 
tracking in our case), the main problem is to deal with different kinds of semantic 
heterogeneities, in particular, complex heterogeneities that involve mapping 
expressions. After having provided a classification of semantic heterogeneities 
between tools, we have shown how this classification may be translated in various 
types of links defined in a correspondence metamodel. Furthermore, the 
correspondence metamodel may be seen as an extension of a core metamodel that 
provides basic support for link management. The main original aspect of our approach 
is to offer maximum extensibility to capture the semantic of complex mapping and 
data value expressions. 

We have shown that metamodel extensions allow expressing the different kinds of 
semantic heterogeneities with a dedicated vocabulary and in a declarative way. Every 
domain specific metamodel prevents from developing a generic language (and not 
well adapted) without the capability to explicitly express the semantic heterogeneities. 

The correspondence models conforming to these metamodel were used to produce 
transformations. We have shown that the correspondence model can be interpreted 
following a generic and declarative pattern. The semantic of this pattern is the basis 
for a novel model management operation called TransfGen. Based on this pattern, we 
were capable to develop higher-order transformations that automatically produced 
output transformation models. The transformations were generated automatically 
because we leave all the human intervention to the matching phase. 

Finally, considering all entities as models (tools, correspondence and 
transformations) enabled to manipulate all of them using the same set of principles. 
The main principle is to define different types of domain models and to apply 
transformations between them. This was particularly useful when specifying the 
semantic heterogeneities and when translating a correspondence model into 
executable transformation models. 

We validated our approach within our model management platform using AMW 
and ATL plugins. We developed a domain specific metamodel to solve a set of tool 
interoperability problems. We created metamodel extensions for mapping 
expressions, data value expressions, and for elements that do not have equivalencies. 
We applied our solution in bug tracking tools using a real world setting. 

As future work, we plan to extend the correspondence metamodel for different tool 
interoperability scenarios. We envisage verifying if our techniques adapt well to 
create ModelGen [4] operations. We also plan to study how to adapt existing 
matching algorithms to automatically create complex mappings. 



880 M. Didonet Del Fabro, J. Bézivin, and P. Valduriez 

References 

1. Abiteboul S, Cluet S, Milo T. Correspondence and Translation for Heterogeneous Data. In 
proc. of ICDT 1997, pp 351-363 

2. AMW: The ATLAS Model Weaver. Ref. site: http://www.eclipse.org/gmt/amw, 06/2006 
3. ATL: ATLAS Transformation Language. Ref. site: http://www.eclipse.org/gmt/atl, 

06/2006 
4. Atzeni P, Cappellari P, Bernstein P A. Model independent schema and data translation. In 

proc. of EDBT 2006, pp 368-385 
5. Bernstein P A. Applying Model Management to Classical Meta Data Problems. In proc. of 

the 1st CIDR 2003, pp 209-220 
6. Bugzilla Bug Tracking Tool. Reference site: http://www.bugzilla.org, 06/ 2006 
7. Cohen W, Ravikumar P, Fienberg S E. A Comparison of String Distance Metrics for 

Name-Matching Tasks. In proc. of IIWeb 2003, pp 73-78 
8. Dhamanka R, Lee Y, Doan A, Halevy A, Domingos P. iMAP: Discovering Complex 

Semantic Matches between Database Schemas.In proc. of SIGMOD 2004 
9. Didonet Del Fabro M, Bézivin J, Jouault F, Valduriez P. Applying Generic Model 

Management to Data Mapping. In proc. of BDA 2005, Saint-Malo, France, pp 343-355 
10. Doan A, Halevy A. Semantic Integration Research in the Database Community: A Brief 

Survey. AI Magazine, Special Issue on Semantic Integration, Spring 2005, pp 83-94 
11. Ehrig M, Haase P, Hefke M, Stojanovic N. Similarity for Ontologies - A Comprehensive 

Framework. In proc. of ECIS 2005 
12. EMF. Eclipse Modelling Framework. Reference site: http://www.eclipse.org/emf, 06/2006 
13. Euzenat J. An API for Ontology Alignment. In proc. of ISWC 2004, pp 698-712 
14. Euzenat J, Valtchev P. Similarity-based ontology alignment in OWL-Lite. In proc. of 

ECAI2004, pp 333-337, Valencia, Spain, August 2004 
15. Flanakin M. Web Log. Comments and complaints on software and technology in general. 

Comparison: Web-based Tracker. 08/08/2005. 
http://geekswithblogs.net/flanakin/articles/CompareWebTrackers.aspx 

16. Jouault F, Kurtev I. Transforming Models with ATL. In proc. of the Model 
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica, pp 128-
138 

17. Jouault F, Bézivin J. KM3: a DSL for Metamodel Specification. In proc. of 8th FMOODS, 
LNCS 4037, Bologna, Italy, 2006, pp 171-185 

18. Kashyap V, Sheth A P. Semantic and Schematic Similarities Between Database Objects: A 
Context-Based Approach. VLDB J. 5(4): 276-304, 1996 

19. Kedad Z, Xue X. Mapping discovery for XML data integration. In proc. of CoopIS 2005, 
Agia Napa, Cyprus, November 2005, pp 166-182 

20. Kensche D, Quix C, Chatti M A, Jarke M. GeRoMe: A Generic Role Based Metamodel for 
Model Management. OTM Conferences (2) 2005, pp 1206-1224 

21. Lenzerini M. Data Integration: A Theoretical Perspective. In PODS 2002. pp 233-246 
22. Maedche A, Motik B, Silva N, Volz R. Mafra - a mapping framework for distributed 

ontologies. In proc. of EKAW 2002, pp 235-250 
23. Mantis Bug Tracking System. Reference site: http://www.mantisbt.org/, 06/2006 
24. Melnik, S. Generic Model Management: Concepts and Algorithms, Ph.D. Dissertation, 

University of Leipzig, Springer LNCS 2967, 2004 
25. Melnik S, Bernstein P A, Halevy A, Rahm E. Supporting Executable Mappings in Model 

Management. In proc. of SIGMOD 2005, Maryland, US, pp 167-178 



 Model-Driven Tool Interoperability: An Application in Bug Tracking 881 

26. Miller R J, Hernandez M A, Haas L M, Yan L-L, Ho C T H, Fagin R, Popa L. The Clio 
Project: Managing Heterogeneity. In SIGMOD Record 30, 1, 2001, pp 78–83 

27. Milo T, Zohar S. Using Schema Matching to Simplify Heterogeneous Data Translation. In 
proc. of VLDB 1998, pp 122-133 

28. Mitra P, Wiederhold G, Kersten M. A graph-oriented model for articulation of ontology 
interdependencies. LNCS, 1777:86+, 2000 

29. OMG (Object Management Group). Human Usable Textual Notation (HUTN) 
Specification, Final Adopted Specification. (ptc-02-12-01) 

30. Pottinger R A, Bernstein P A. Merging Models Based on Given Correspondences. In proc. 
of VLDB 2003. Berlin, Germany, pp 862-873 

31. Sheth A P, Thacker S, Patel S. Complex relationships and knowledge discovery support in 
the InfoQuilt system. VLDB Journal. 12(1): 2-27, 2003 

32. Shvaiko P, Euzenat J. A Survey of Schema-Based Matching Approaches. Journal of Data 
Semantics IV: 146-171 (2005) 



Reducing the Cost of Validating Mapping Compositions
by Exploiting Semantic Relationships

Eduard Dragut1 and Ramon Lawrence2

1 Department of Computer Science, University of Illinois at Chicago
2 Department of Computer Science, University of British Columbia Okanagan

Abstract. Defining and composing mappings are fundamental operations re-
quired in any data sharing architecture (e.g. data warehouse, data integration).
Mapping composition is used to generate new mappings from existing ones and is
useful when no direct mapping is available. The complexity of mapping composi-
tion depends on the amount of syntactic and semantic information in the mapping.
The composition of mappings has proven to be inefficient to compute in many sit-
uations unless the mappings are simplified to binary relationships that represent
“similarity” between concepts. Our contribution is an algorithm for composing
metadata mappings that capture explicit semantics in terms of binary relation-
ships. Our approach allows the hard cases of mapping composition to be detected
and semi-automatically resolved, and thus reduces the manual effort required
during composition. We demonstrate how the mapping composition algorithm is
used to produce a direct mapping between schemas from independently produced
schema-to-ontology mappings. An experimental evaluation shows that compos-
ing semantic mappings results in a more accurate composition result compared
to composing mappings as morphisms.

Keywords: mapping, composition, integration, model management, semantics,
metadata.

1 Introduction

The focus of this work is the study of mappings between models. A model is a schema,
an ontology, or some other data representation construct. Mappings are designed to re-
late the information stored in models. There has been a wide variety of model and map-
ping representations [2,6,7,9,15,19] defined. Each representation has its own benefits
and characteristics related to expressability, applicability, and operability. The problem
of semi-automatically creating mappings can be divided into two steps. First, a match
between two schemas specifies semantic correspondences between their elements [18].
These correspondences can be as simple as inter-schema correspondences [16] (or mor-
phisms [15]) or they can convey certain semantic relationships (e.g. IsA, HasA) [8].
Second, these correspondences are elaborated to generate instance (data) level map-
pings (e.g. using a system such as Clio [16]). In this paper we are concerned with the
former, which we refer to as metadata level mappings.

Our contribution is an efficient algorithm for composing semantic mappings at the
metadata level that is able to focus human attention only on the potential problems ar-
eas in the composition result. Previous composition/reusing algorithms [2,4,5,12,15]

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 882–890, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Reducing the Cost of Validating Mapping Compositions 883

did not use semantic mappings, and consequently, require the user to validate the entire
mapping. We propose a semantic mapping that can be easily expressed and constructed,
preserves semantics under composition, complements data level mappings defined us-
ing views and it is supported by the state of art matching algorithms [3,4,8,14]. We show
that by capturing explicit semantics in mappings, the composition result contains more
semantic information, and it is possible to quickly identify problems in the computed
mapping that require human intervention. We identify the composition issues both ana-
lytically and experimentally.

The organization of this paper is as follows. In Section 2, we overview existing meta-
data mapping representations and discuss the issues in capturing semantics and per-
forming composition. Our main contribution is in Sections 3 and 4 where we define se-
mantic metadata mappings between models and provide a set of rules for inverting and
composing mappings. An experimental evaluation in Section 5 shows that composing
semantic mappings, as opposed to morphisms, results in a better mapping composition
result. The paper closes with future work and conclusions.

2 Background

Various forms of metadata level mappings have been used to define model management
[2] operators and their semantics. In this setting, models are assumed to have the same
expressive characteristics as an EER model. We assume the same definition for models
in this work. Two different mapping representations have been proposed: morphisms
[15] and helper models [2,13].

Morphisms. are simple binary relationships between model elements [15,16] that
carry loose semantics about the actual relation of the concepts mapped. Formally, given
two models, A and B, a mapping map between them is defined as a morphism that
consists of a set of pairs < a, b >, where a ∈ A and b ∈ B, which implies that a and
b are similar. Composition of morphisms assumes similarity relation to be transitive.
That is, given a morphism, m1, between models A and O, and another morphism, m2,
between O and B, and if < a, o > ∈ m1 and < o, b > ∈ m2, then a is assumed to be
similar to b.

The composition of morphims has several problems. First, any time an m:1 mapping
is composed with an 1:n mapping, the composition result is a cross-product consisting
of m × n correspondences [4,5]. Many of these correspondences incorrectly specify a
relationship between the elements. Second, an even worse case occurs when there are
no direct correspondences between the concepts. For example, there are no direct rela-
tionships between {Street1, Street2} and {City, Country, State, Street}. These problems
arise due to the lack of an explicit semantic information in the mapping representation.

Mappings with helper models. [2,17] have also been defined for use in model man-
agement [2]. In this case, a mapping between two models A and B can be expressed
by using a model, map, and two morphisms, one between A and map and the other
between map and B. This mapping format allows a set of objects of A to be related
to a set of objects in B in complex ways. It uses the elements and the relationships
within the helper model to relate sets of objects in A and B (see [2] for a compre-
hensive description). A mapping composition algorithm is presented in [2,17] for use



884 E. Dragut and R. Lawrence

in model management. This composition algorithm is imperfect as it does not exploit
relationships in the helper model to yield a more accurate composition result. Conse-
quently, the algorithm may miss some of the relationships and second it may suggest
false relationships.

3 Mapping Representation

We aim to provide a mapping definition that subsumes most of the relationship kinds
that the state of the art matching algorithms discover and investigate operations over this
mapping definition. A mapping is a metadata level semantic correspondence between
elements in different models.

Definition 1. Given two models A and B, a mapping between them map consists of a
set of mapping elements. Each mapping element is a directed, kinded binary relation-
ship between a pair of elements not in the same model. That is, it is a set of triplets
< a, type, b >, where a ∈ A, b ∈ B, and type is the semantic type of the relation-
ship. The values of type ∈ {IsA, AKindOf, HasA, PartOf, =, Contains, ContainedBy,
Unknown, Complex, NoRel}.

Fig. 1. Mapping example

The mapping is directed from A to B. The
relationships used in our mapping repre-
sentation are well-known except for Un-
known, Complex, and NoRel which will
be defined later. We assume a set-theoretic
framework for defining the semantics of
the relations as in [8,19,22]. For instance,
a IsA b if the content of b contains the con-
tent of a, a HasA b if the content of b is
part of the content of a. An example map-
ping in our representation is in Figure 1.
The semantic relationship types are:

– Equality: An Equality relationship between two elements a and b, < a, =, b >,
means that the concept a is equivalent to b.

– IsA: An IsA relationship between two elements a and b, < a, IsA, b >, means
that the concept a is a specialization of b. As this is a binary relation its inverse
can be defined as in the algebra of relations [10]. That is, < b, a >∈ IsA−1 iff
< a, b >∈ IsA. We assign a more descriptive name to the inverse of IsA, i.e.
AKindOf. Since all remaining relations are binary, a similar approach is assumed
for the definition of their inverses.

– HasA: A HasA relationship between two elements a and b, < a, HasA, b >,
means that the concept a has a concept b as part of its representation. The inverse
of HasA relationship is HasA−1 and its descriptive name is PartOf .

– Contains: A Contains relationship between two elements a and b,
< a, Contains, b >, means that the concept a fully encapsulates concept b which
cannot independently exist without a. Contains is a stronger relationship than



Reducing the Cost of Validating Mapping Compositions 885

HasA. The inverse of Contains relationship is Contains−1 and its descriptive
name is ContainedBy.

– Complex: A Complex relationship between two elements a and b,
< a, Complex, b >, means that the relationship between concept a and b may
require a functional specification: f(a) = b. That is, two concepts related by
Complex do not have a direct equivalence relationship, but the equivalence re-
lationship can be revealed through a function, whose purpose is to “equalize” the
meaning of the two concepts. Complex is considered a Level 2 relationship in [6]
and it is the chief subject of the work in the iMap project [3].

– NoRel: A NoRel relationship between two elements a and b, < a, NoRel, b >,
means that there is no relationship between concept a and b. The inverse of the
NoRel relationship is still a NoRel relationship (i.e. it is symmetric).

– Unknown: An Unknown relationship between two elements a and b, < a, Un−
known, b >, means that the relationship between concept a and b is not known.
Unknown relationships often arise after composition and can be considered the
default relationship between all elements until a mapping is defined.

Our mapping relationships capture the semantics of the relationship between model
elements like using helper models, but retain the simplicity of inversion and composi-
tion given by algebra of relations [20,21]. The usefulness of relationship types besides
equality and similarity in specifying mappings is clear from the example in Figure 1.
For instance, the IsA relationship clearly captures the semantic relationship between
WorkPhone and HomePhone to Phone. It is evident that if morphisms were used then
we would have lost the semantic information between these concepts.

4 Invert and Compose Operators

The two fundamental operators required in integration scenarios is the ability to Invert
a mapping and the ability to Compose two mappings to produce another mapping. We
discuss how these operators are defined in this section.

Invert Operator: The Invert operator has been defined for morphisms [15] and
is simply the swapping of the left and right elements of the morphism. Such a simple
definition is possible since the similarity relationship is symmetric.

A mapping in our framework consists of a set of directed, kinded, binary relation-
ships. Thus, the semantic type of the relationship must also be inverted when applying
the Invert operator. The approach is very similar in spirit with other works that manip-
ulate relations, e.g. [1] in the field of temporal logic.

Definition 2. Consider two models A and B and a mapping, map, between them. Let
m be a mapping element whose expression is < a, type, b >, where type is one of the
types defined above. Then its corresponding inverted mapping element, denoted m−1,
is given by the following expression: < b, type−1, a >. Moreover, the invert of map,
denoted by map−1, is defined from B to A and its expression is given by: map−1 =
{< b, type−1, a >|< a, type, b >∈ map}.

For example, <HomePhone, IsA, Phone>−1 = <Phone, IsA−1, HomePhone>.



886 E. Dragut and R. Lawrence

Table 1. Composition rules

(a,b)
(b,c) = IsA IsA−1 Contains Contains−1 HasA HasA−1

= = IsA IsA−1 Contains Contains−1 HasA HasA−1

IsA IsA IsA Unknown Unknown Unknown Unknown Unknown
IsA−1 IsA−1 Unknown IsA−1 Contains Contains−1 HasA HasA−1

Contains Contains Contains Unknown Contains Unknown Contains Unknown
Contains−1 Contains−1 Contains−1 Unknown Unknown Contains−1 Unknown Contains−1

HasA HasA HasA Unknown Contains Unknown HasA Unknown
HasA−1 HasA−1 HasA−1 Unknown Unknown Contains−1 Unknown HasA−1

Compose Operator: Composing two mappings involves defining a composition
operation between the elements of the mappings (i.e. triplets of form < a, type, b >).
The relationship types that constitute the core of a mapping definition have well defined
composition properties. Table 1 provides the composition rules that govern our com-
position technique. This table can be read where a cell that has a row header of type
T , a column header of type U , and a cell value of V means that composing the map-
ping elements < a, T, b > with < b, U, c > results in a composed mapping element
of < a, V, c >. For instance, composing < a, =, b > with < b, IsA, c > results in a
composed mapping element of < a, IsA, c >.

Definition 3. Given two mappings mapAB between models A and B and mapBC be-
tween models B and C the Compose operator, denoted by ◦, produces a new mapping
mapAC = mapBC ◦ mapAB = mapBC(mapAB) between models A and C:

mapAC =df {< a, t, c > |∃b :< a, t1, b >∈ mapAB∧ < b, t2, c >∈ mapBC∧

t = T (t1, t2)}, where T (·, ·) is the entry in Table 1.

Some of the entries in the table were presented in other works. For instance, the com-
position between IsA, IsA−1, Equality and NoRel are presented in [6] and some of the
composition outcomes between IsA, Contains and HasA are reported in [17].

There are no entries for the Unknown, Complex and NoRel relationships in the
table because Unknown composed with any other type gives Unknown, Complex
composed with Equality preserves Complex and composed with any other type is
Unknown. We do not explicitly handle NoRel relation because we prefer Unknown
over NoRel since it helps us establish desirable indirect relationships, which would
have been lost employing NoRel. For instance, if we followed the directions of other
works that handle relations (e.g. [1,6]) we would have obtained No Info, which is
not a desirable outcome. An example (in Figure 2) has convergent IsA relationships
(<Shipper, IsA, Organization> and <Organization, IsA−1, Supplier>). For this case
it is desirable to retain the information that the two are IsA siblings. The motivation is
two fold: (1) it is hard, if not impossible, to define a direct relationship between such
concepts and (2) such information might prove valuable if a merge or an alignment [11]
operation is performed between the models.



Reducing the Cost of Validating Mapping Compositions 887

Fig. 2. An example of the problematic cases

Having relationship types that capture more semantics besides the generic similarity
relationship, we are able to create a composition result with better semantics and avoid
the false relationships that simple similarity can produce. Further, the cases where the
result is Unknown are especially important as they are direct indicators that the com-
position of these elements are not well-defined and should be investigated by the user.

The mappings in this system have the following desirable properties:

Proposition 1. Consider two models A and B and a mapping, map, between them. We
denote the invert of map by map−1. The following properties hold:

1. b ∈ (map(map−1))(b), b ∈ B,
2. a ∈ (map−1(map))(a), a ∈ A.

Proposition 2. Mapping composition is symmetric in our framework, i.e.

map−1
AC = (mapBC ◦ mapAB)−1 = map−1

AB ◦ map−1
BC = mapCA.

An important feature of the composition algorithm is that it only suggests correct di-
rected, kinded relationships in the composition result. This can be seen by examining
the table of composition rules. False results are not produced as transitivity is only
applied when it is safe to do so, and the Compose operator uses the Unknown rela-
tionship to indicate when it is not possible (in general) to suggest a relationship type
given only the information expressed in the two mappings. Thus, Unknown relation-
ship types are valuable as they are the ones that require semi-automatic resolution (e.g.
human intervation). Note that we do not claim to retrieve the set of all true relationships,
but state that the set of relationships we retrieve consists only of true relationships.

5 Experimental Evaluation

The experiment has two main goals: to show that our framework is robust when applied
to real world application and that we are able to correctly identify problematic cases.

Experiment Setup: We considered five real-world XML schemas in the purchase
order domain: CIDR, Excel, Noris, Paragon, and Apertum [14]. They are assigned



888 E. Dragut and R. Lawrence

Table 2. Mapping distribution

relations CIDR Excel Noris Paragon Apertum

equality 18 30 32 36 34
isa 6 11 24 2 13

hasa/part of 14 18 0 10 2
complex 0 0 2 2 2

overlap ratio 0.775 0.84 0.65 0.62 0.61

Fig. 3. Schema-to-Schema Mapping Statistics Fig. 4. Algorithm Output Breakdowns

numbers 1, 2, 3, 4, and 5 respectively in order to reference them in our graphs. We
also considered a reference ontology to which each XML schema is manually mapped.
The reference ontology (see [5]) was created such that it did not have all concepts in the
five schemas, such as unitOfMeasure, count, and VAT information. Table 2 shows in the
last row the ratio of schema elements that can be mapped to the ontology. These ratios
are an useful indicator of the inherent limitation in the performance of the composition
because the composition may miss some valid correspondences. Table 2 also shows the
mapping broken down in terms of the relationship types defined in this paper for each
of the schema-to-ontology mappings.

Measures for composition quality: We measure the performance of our system via
three metrics: Precision, Recall, and Overall [4,5,14]. Overall is defined as Overall =
Recall ∗ (2 − 1/Precision). We introduce a new metric, called User Effort, meant to
characterize the post-processing user effort after the composition algorithm is applied.

The Experiment: After we have manually defined the mappings between the five
schemas and the ontology we have applied the composition algorithm developed in this
work to compute the direct mappings between the schemas. We have also applied com-
position when the mappings are morphisms (using a natural join). The results are given
in terms of the Overall statistic in Figure 3. The first striped bar is our semantic ap-
proach, while the second bar is for morphisms. The results are shown for all 10 possible
schema-to-schema mappings.

Observe that overall our composition algorithm outperforms composition with mor-
phisms. In five cases, the performances of the two systems are comparable. These
cases are an indication that transitivity plays by the rules and both systems are able to



Reducing the Cost of Validating Mapping Compositions 889

correctly compute the composition. However, in the bad cases, where assuming tran-
sitivity is costly and produces many false matches, composing semantic mappings is
much better and results in much higher overall performance. For instance, the com-
posed mapping between schemas 1 and 4 produced using our approach has an overall
value double that of morphisms. This supports our statement that our composition rules
preserve the transitivity of composition as exhibited by morphisms only when it is safe
to do so.

Let’s consider the two cases when our composition is apparently outperformed, i.e.
1<–>3 and 2<–>3 in Figure 3. In order to understand the behavior of composition
in these situations we provide in Figure 4 a detail breakdown of the output of the two
composition algorithms. The result of our algorithm is divided into the percentage of
the correct and Unknown relationships suggested (as we do not produce incorrect rela-
tionships). The morphism output is divided into the percentage of correct and incorrect
relationships suggested. All percentages are relative to the total number of output re-
lationships. In these two cases our composition algorithm casts doubts on the set of
relationships that later turn out to be true. They are mostly the effect of composing
divergent HasA relationships.

Other interesting cases are 1<–>2 and 1<–>4. For these two cases the percentage
of the incorrect relationships among the set of all Unknowns is 64% and 89%, respec-
tively. Every time incorrect relationships are likely to be produced during composition
our algorithm is clearly better than the composition over morphisms.

User Effort: Define the User Effort metric as the ratio of the number of Unknown
relationships to the number of all produced relationships. These statistics are repre-
sented by the percentage of Unknown’s in Figure 4. This measure does not consider
the effort required to find the relationships missed by the composition operator. Within
the mapping composition frameworks presented in Section 2 (e.g. morphisms) the user
effort is at its peak since every proposed relationship needs to be investigated and vali-
dated.

In our experimental environment, on average the User Effort is only 19%, and even
lower rates of user involvement occur when transitivity can be safely applied and thus
no validation is required. The worst two cases that require a substantial user effort are
the computation of a direct mapping between CIDR and Excel, and CIDR and Paragon.

6 Future Work and Conclusions

Our contribution is a mapping representation that captures explicit semantics that can be
efficiently inverted and composed. Unlike morphisms, semantics are preserved during
composition and only correct mapping correspondences are retained. Unknown map-
pings formed during composition are highlighted for semi-automatic correction by the
user. We have shown using experiments that the mappings are efficient to construct and
the composition result is much improved as opposed to composing morphisms. This is
important as the mappings are simple enough such that it is realistic that they could be
semi-automatically generated, but also expressive enough to ensure that composition is
well-defined and produces correct results. The composition algorithm is closed under
the defined mapping relationships and composition rules and does not produce false



890 E. Dragut and R. Lawrence

relationships. In addition, we have provided sound arguments that this representation
system is able to isolate the hard composition cases, which significantly reduces user
effort in finding bad matches and validating the entire mapping produced.

Our future efforts will strive to further confine the cases captured by the Unknown
relationship and to find a set of heuristics that would allow us to efficiently suggest
relationships between model elements.

References

1. James F. Allen. Maintaining knowledge about temporal intervals. In Communications of the
ACM, v.26 n.11, pages 832–843, 1983.

2. P. Bernstein. Applying Model Management to Classical Meta Data Problems. In CIDR,
2003.

3. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering Complex
Mappings between Database Schemas. In SIGMOD Conference 2004, pages 383–394, 2004.

4. Hong Hai Do and E. Rahm. COMA - A System for Flexible Combination of Schema Match-
ing Approaches. In VLDB, pages 610–621, 2002.

5. E. Dragut and R. Lawrence. Composing mappings between schemas using a reference on-
tology. In ODBASE, pages 783–800, 2004.

6. J. Euzenat. An API for Ontology Alignment. In International Semantic Web Conference,
pages 698–712, 2004.

7. R. Fagin, P. Kolaitis, L. Popa, and W. Tan. Composing schema mappings: Second-order
dependencies to the rescue. In PODS, pages 83–94, 2004.

8. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an Algorithm and an Implementa-
tion of Semantic Matching. ESWS, pages 61–75, 2004.

9. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294, 2001.
10. Robin Hirsch and Ian Hodkinson. Relation algebras by games. North-Holland, Amsterdam,

2002.
11. K. Kotis and G. A. Vouros. The HCONE Approach to Ontology Merging. In ESWS, pages

137–151, 2004.
12. J. Madhavan, P. Bernstein, A. Doan, and A. Halvey. Corpus-based Schema Matching. In

ICDE, 2005.
13. J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy. Representing and reasoning about

mappings between domain models. In AAAI, pages 80–86, 2002.
14. J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema Matching with Cupid. In VLDB,

pages 49–58, 2001.
15. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A Programming Platform for Generic Model

Management. In SIGMOD Conference 2003, pages 193–204, 2003.
16. L. Popa, Y. Velegrakis, R. Miller, M. Hernndez, and R. Fagin. Translating web data. In

VLDB, pages 598–609, 2002.
17. R. Pottinger and P. Bernstein. Merging Models Based on Given Correspondences. In VLDB,

pages 826–873, 2003.
18. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB

Journal, 10(4):334–350, 2001.
19. S. Spaccapietra and C. Parent. View integration: A step forward in solving structural con-

flicts. IEEE Trans. Knowl. Data Eng., 6(2):258–274, 1994.
20. A. Tarski. On the calculus of relations. J. Symbolic Logic., 6:73–89, 1941.
21. A. Tarski. Some methodological results concerning the calculus of relations. J. Symbolic

Logic., 18:188–189, 1953.
22. L. Xu and D. Embley. Discovering Direct and Indirect Matches for Schema Elements. In

DASFAA, pages 39–46, 2003.



Using Fuzzy Conceptual Graphs to Map
Ontologies

David Doussot1, Patrice Buche1, Juliette Dibie-Barthélemy1,
and Ollivier Haemmerlé2

1 UMR MIA INA P-G/INRA, Mét@risk MIA INRA
16, rue Claude Bernard, F-75231 Paris Cedex 05
2 Département de Mathématiques-Informatique

Université Toulouse le Mirail
5, Allées Antonio Machado 31058 Toulouse Cedex 1

{David.Doussot, Patrice.Buche, Juliette.Dibie}@inapg.inra.fr,
Ollivier.Haemmerle@univ-tlse2.fr

Abstract. This paper presents a new ontology mapping method. This
method addresses the case in which a non-structured ontology is to be
mapped with a structured one. Both ontologies are composed of triplets
of the form (object, characteristic, value). Structured means that the
values describing the objects according to a given characteristic are hier-
archically organized using the a kind of relation. The proposed method
uses fuzzy conceptual graphs [8] to represent and map objects from a
source ontology to a target one. First, we establish a correspondence
between characteristics of the source ontology and characteristics of the
target ontology based on the comparison of their associated values. Then,
we propose an original way of translating the description of an object of
the source ontology using characteristics and values of the target ontol-
ogy. The description thus translated is represented as a fuzzy conceptual
graph. Finally, a new projection operation is used to find mappings be-
tween translated objects and actual objects of the target ontology. This
method has been implemented and the results of an experimentation
concerning the mapping of ontologies in the field of risk in food are pre-
sented.

1 Introduction

Strong capacities of treatment associated with the availability of huge amounts
of data storage make it possible to deal with huge amounts of data. On top of
that, network capacities allow one to gather information from many different
sources. Nevertheless, those data are generally not or poorly organized. Even
if they are, this organization is rarely based on on an ontology standardized
expressly for the domain, but on many different ones. That is why a work on
ontology mapping has to be done in order to merge data coming from different
sources and based on different ontologies.

Much work has already been performed on ontology mapping [7]: the exist-
ing mapping algorithms generally deal with well-structured ontologies and their

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 891–900, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



892 D. Doussot et al.

goal is to align those structures. The structure is usually represented by a set
of hierarchically organized classes containing attributes. The instances of classes
provide values for those attributes. We can distinguish two families of mapping
algorithms. The first family of algorithms tries to establish a correspondence
between classes and then between attributes of both ontologies [1,3]: this cor-
respondence is generally based on linguistic similarities of class and attribute
names [11] combined with heuristics. The second family tries to find common
instances in both ontologies and to deduce a correspondence between classes
[2,10].

In this paper, we want to address the mapping process of a non-structured
ontology noted O with a structured one noted R and considered as a reference.
There is no class categorization, but each ontology is composed of triplets of
the form (object, characteristic, value) and the number of triplets is different for
each object described in the ontology. We say that an ontology is structured if
the values of a given characteristic describing an object are organized according
to the a kind of partial value function. As one of the two ontologies is not
structured, the different methods proposed in the bibliography are not suitable.
It is the reason why we propose to use fuzzy conceptual graphs. This choice
has been mainly motivated by: (i) the support of the conceptual graph model
which is well adapted to the representation of the taxonomies of ontology R,
(ii) the projection operation which takes into account the specialization relation
between concepts (mainly used in this paper to compare values of the ontologies),
(iii) the fuzzy extension which permits to represent similarities between objects
(resp. between values) of both ontologies. In the first step of the processing, we
establish a correspondence between characteristics of both ontologies. Then we
use fuzzy conceptual graphs to represent objects, to establish correspondences
and to calculate scores of similarity between objects of both ontologies.

In section 2, we recall some backgrounds about the fuzzy set theory and fuzzy
conceptual graphs. In section 3, we present the terminological matching tech-
nique we use, based on strings structure similarity to map values. In section 4,
we propose a new method based on fuzzy conceptual graph operations to map
objects of both ontologies. Then in section 5, we present first experimentations.

2 Backgrounds

2.1 Fuzzy Set Theory

In this article, we use the representation of fuzzy sets proposed in [12,13].

Definition 1. A fuzzy set f on a definition domain Dom(f) is defined by a
membership function μf from Dom(f) to [0, 1] that associates the degree to
which x belongs to f with each element x of Dom(f).

In this paper, the fuzzy set formalism is used to represent similarities, one of
the three semantics usually associated with fuzzy sets [4]. More precisely in our
approach, a fuzzy set represents the similarities between one value belonging to



Using Fuzzy Conceptual Graphs to Map Ontologies 893

ontology O and a list of values belonging to ontology R. Values in R are organized
according to the a kind of relation. A part of the taxonomy of values we have
used in our experimentation is presented in figure 1. The fuzzy set of figure 2
represents the similarities between the value Cheese: pressed-curd of ontology O
and values of ontology R. The calculus of the membership function of such a
fuzzy set is presented in section 3.

Whole
milk

Semi-
skimmed 

milk

Milk Cheese

Dairy product

Skimmed 
milk

Yoghurt

Milk:
sterilised Whole

milk: sterilised

Cheese: soft

Camembert

Fig. 1. A part of the taxonomy of values belonging to ontology R used in our experi-
mentation: arrows represent the a kind of relation

0

1

Cheese Cheese: soft

0,4
0,5

Fig. 2. A fuzzy set noted (0.5/Cheese + 0.4/Cheese: soft) representing similarities of
values belonging to ontology R with the value Cheese: pressed-curd of ontology O

2.2 Fuzzy Conceptual Graphs

The conceptual graph model we use is based on the formalization presented in [9].
In the conceptual graph model, conceptual graphs are defined using a predefined
vocabulary contained in the support. The support is notably composed of a
concept type set, a set of markers and a relation type set. The concept type
set defines the types of objects, characteristics, values, events and states which
have to be represented. The concept type set is partially ordered according to
the “a kind of” relation. A part of the concept type set we have used in our
experimentation is presented in figure 1. An individual marker represents an
instance of a concept. An unspecified instance of a concept is represented by the
generic marker, noted ∗. The relation type set defines the types of semantic links
which can be represented between the concepts.

We have proposed an extension of the conceptual graph model to represent
fuzzy values in [9]. We only remind that extension through an example. A fuzzy
set can appear in two ways in a concept vertex: (i) as a concept with a fuzzy
type, the type being a fuzzy set defined on a subset of the concept type set;



894 D. Doussot et al.

0

1

Cheese Cheese: soft

0,4
0,5

Camembert : *
:*

Fig. 3. Two examples of vertices: the left one is a vertex with a fuzzy type, the right
one is a classic vertex with a crisp type

(ii) as a concept with a fuzzy marker, the marker being a fuzzy set defined
on the set of individual markers. In this paper, we only use concepts with a
fuzzy type. One example of vertex with a fuzzy type is given in figure 3. In [9],
we proposed different kinds of comparisons between fuzzy conceptual graphs.
A mandatory preliminary step to perform these comparisons is that the fuzzy
types possibly included in the fuzzy conceptual graphs are all defined in the same
definition domain: the concept type set. It is the reason why we have introduced
the notion of fuzzy type closure in [9]. Intuitively, the degrees associated with the
concept types which belong to the fuzzy type are propagated to more specific
values of the concept type set. The value 0 is associated with the other concept
types of the concept type set. An example of fuzzy type closure corresponding
to the fuzzy type of figure 3 is presented in figure 4. In this paper, we need to
compare a fuzzy conceptual graph representing a fuzzy knowledge to a crisp (ie
not fuzzy) conceptual graph representing a crisp knowledge. We use the following
comparison operation for that purpose.

0/Whole 
milk

0/Semi-
skimmed 

milk

0/Milk 0.5/Cheese

0/Dairy product

0/Skimmed 
milk

0/Yoghurt

0/Milk: 
sterilised 0/Whole 

milk: sterilised

0.66/Cheese: soft

0.66/Camembert

Fig. 4. The closure of the fuzzy type presented in figure 2: concept types belonging to
the fuzzy type and their associated degree appear in italic bold

Definition 2. A δ-projection from a fuzzy conceptual graph G into a crisp con-
ceptual graph G′ is a triple (g, h, δ), g (resp. h) being a mapping from the set of
concept (resp. relation) vertices of G to the set of concept (resp. relation) vertices
of G′ such that: (i) the edges and their numbering are preserved; (ii) ∀ concept
ci ∈ G, i ∈ [1, . . . , n], labeled ti : mi, ti being a fuzzy type, ci is mapped with its
image g(ci) ∈ G′ labeled t′i : m′i, t′i being a crisp type, with a satisfaction degree



Using Fuzzy Conceptual Graphs to Map Ontologies 895

δi = μclos(ti)(t
′
i), μclos(ti) being the membership function of the fuzzy type closure

of ti. The satisfaction degree of G by G′, noted δ, is defined by δ = mini=1,...,nδi.

Example 1. According to definition 2, there is a 0.4-projection from the con-
ceptual graph restricted to the fuzzy concept vertex of figure 3 into the conceptual
graph restricted to the crisp concept vertex of figure 3. This projection has been
obtained thanks to the fuzzy type closure given in 4 which propagates the degree
0.4 from the type Cheese : soft to the more specific type Camembert.

3 A Syntactic Relevance Score for Fuzzy Matching of
Values

In order to compare ontology O with ontology R, we propose to compute a
relevance score between each value of O with values of R. For that, we chose the
Dice coefficient based on the words common to both values (see [5] for a review
of similarity measures).

Definition 3. Let V ={v1, . . ., vn} and W={w1, . . ., wp} be the sets of lemma-
tized words respectively of a value of ontology O and a value of ontology R. The
relevance score between V and W is defined as their Dice coefficient:

relevance(V, W ) = 2 ∗ |V ∩ W |
|V | + |W |

A set of values {W1, . . ., Wq} of ontology R can thus be associated with a given
value V of ontology O, weighted by their syntactic closeness to the value V . We
propose to represent such a set by a discrete fuzzy set defined on {W1, . . ., Wq}
whose membership function is the relevance score between the value V and each
value in the set {W1, . . ., Wq}. Note that for a given value V of ontology O, the
set of associated values belonging to ontology R can be empty.

Example 2. Let fresh fish be an object of ontology O. The list of couples (char-
acteristic : value) associated with fresh fish is:

– presentation: whole
– which fish ? cod

Let cod, raw be an object of ontology R. The list of couples (characteristic :
value) associated with cod, raw is:

– product type: seafood or seafood product
– origin of main ingredient: cod or codfish
– part of plant or animal: skeletal meat part, without bone or shell
– physical state, shape: whole, shape solid
– preservation method: preserved by refrigeration or freezing

relevance(whole, whole shape solid)=0.5 and relevance(cod, cod codfish)=0.66
are two examples of comparisons between a value of ontology O and a value of
ontology R.



896 D. Doussot et al.

This syntactic mapping between values of ontology O with values of ontology
R allows the identification of correspondences between characteristics of O and
characteristics of R. Those correspondences are refined manually such that each
characteristic of O corresponds to at most one characteristic of R. When a char-
acteristic of O has no correspondence with a characteristic of R, such a charac-
teristic could be interpreted as no meaningful in ontology R.

Example 3. According to the mapping between values of example 2, the charac-
teristic “presentation” of ontology O is associated with the characteristic “phys-
ical state, shape” of ontology R and the characteristic “which fish ?” of ontology
O is associated with the characteristic “origin of main ingredient” of ontology
R.

So, at the end of the first step we have identified a set of linked values of O with
values of R and a set of linked characteristics of O with characteristics of R as
defined below.

Definition 4. We call linked values of ontology O, noted LVO, the set of values
of O such that each of them is associated with a set of values of ontology R
with a given relevance score, represented by a discrete fuzzy set. We call linked
characteristics of ontology O, noted LCO, the set of characteristics of O such
that each of them is associated with one characteristic of ontology R.

4 Using Conceptual Graphs for Fuzzy Matching of
Objects

We are now interested in comparing objects of ontology O with objects of on-
tology R. We have chosen the conceptual graph model in order to represent and
to compare objects. In order to compare objects of ontology O with objects of
ontology R, we would like to use the projection operation. But the objects of
ontology O are not defined with the same vocabulary as the objects of ontology
R. So, according to the results of the previous section, we propose to define each
object of ontology O with characteristics and values of ontology R, such that
all the objects are expressed with the same vocabulary, that of the reference
ontology R.

Since the support of the conceptual graph model contains the ground vocab-
ulary, we first present how the support is built from ontologies O and R. The
concept type set is composed of the set of objects of ontology O, the set of ob-
jects of ontology R, the set of characteristics of ontology R and the hierarchized1

set of values of ontology R . The relation type set is composed of the two rela-
tion types HasForValue and HasForCharac. The set of markers is limited to the
generic marker. Each object of ontology R can be represented by a conceptual
graph as defined below.

1 According to the a kind of relation.



Using Fuzzy Conceptual Graphs to Map Ontologies 897

Definition 5. Each object X of ontology R can be represented by the concep-
tual graph, noted GX , where the concept vertices of types Charac1, . . ., Characn

represent the characteristics of the object X and the concept vertices of types
Value1

1, . . ., Value1
p1

, . . ., Valuen
1 , . . ., Valuen

pn
their corresponding values, one

characteristic being able of having several values.

Example 4. Figure 5 presents an example of conceptual graph GX . It is asso-
ciated with the object “cod, raw” of ontology R presented in example 2.

PHYSCAL STATE, SHAPE :*

X:* PART OF PLANT OR ANIMAL :*

ORIGIN OF MAIN INGREDIENT :*

PRODUCT TYPE :*

PRESERVATION MEHOD :*

1 2HasForValue

HasForCharac
1 2

HasForCharac
1 2

HasForCharac
1 2

HasForCharac
1 2

HasForCharac
1 2

SEAFOOD OR SEAFOOD PRODUCT :*

COD OR CODFISH :*

SKELETAL MEAT PART, WITHOUT BONE OR SHELL :*

WHOLE, SHAPE: SOLID :*

PRESERVED BY REFRIGERATION OR FREEZING :*

1 2HasForValue

1 2HasForValue

1 2HasForValue

1 2HasForValue

Fig. 5. The conceptual graph GX associated with the object Cod, raw of ontology R

Each object Y of ontology O can be represented by a translated conceptual
graph which corresponds to the description of the object Y in ontology R. More
precisely, for a given object Y , each characteristic and its associated values,
belonging respectively to the sets LCO and LVO (see definition 4) of O are
translated in their corresponding characteristic and values in R.

Definition 6. Let f be the fuzzy value function which associates each value of
LVO with its corresponding values in R associated with their relevance score.
Let g be the value function which associates each characteristic of LCO with
its corresponding characteristic in R. Let Charac1, . . ., Characm be the list of
characteristics of the object Y of ontology O belonging to LCO . Let Value1

1,
. . ., Value1

p1
, . . ., Valuem

1 , . . ., Valuem
pm

be the list of values associated with the
characteristics Charac1, . . ., Characm of the object Y and belonging to LVO.
Each object Y of ontology O can be represented by the translated conceptual
graph, noted GT

Y , where the concept vertices of types g(Charac1), . . ., g(Characm)
represent the characteristics associated with the object Y in ontology R and the
concept vertices of types f(Value1

1), . . ., f(Value1
p1

), . . ., f(Valuem
1 ), . . ., f(Valuem

pm
)

their corresponding fuzzy values in R. Each fuzzy value is represented by means
of a concept vertex with a fuzzy type as presented in section 2.2.

Example 5. Figure 6 presents an example of translated conceptual graph GT
Y .

It is associated with the object “fresh fish” of ontology O presented in example 2
using the mappings of characteristics given in example 3.

Since the objects of ontologies O and R are represented by comparable conceptual
graphs using the same vocabulary, we can now study their correspondences. The
identification of correspondences between an object of ontology O with objects



898 D. Doussot et al.

HasForCharac
1 2

HasForCharac
1 2 1 2HasForValueY:*

1 2HasForValue

   SkimmedMilk

1 :*

1
1

:   *0

1

Codfish or cod

:   *0

1

Whole Whole
pieces

Whole 
shape: solid

Whole
forming

Whole
forming: thick

ORIGIN OF MAIN INGREDIENT :*

PHYSICAL STATE, SHAPE :*

HasForCharac HasForValue

1 :*

1
1

:   *0

1

Fish: raw fillet

PRODUCT TYPE :* HasForValue

Fish

1 2 1 2

0.66

Fig. 6. The translated conceptual graph GT
Y associated with the object fresh fish of

ontology O

of ontology R rests on the δ-projection the definition of which has been given
in definition 2. It is a flexible operation of mapping between a fuzzy conceptual
graph representing a fuzzy knowledge and a crisp conceptual graph representing
a precise knowledge. The fuzzy knowledge is the translated conceptual graph GT

Y

corresponding to the description of an object Y of ontology O in the vocabulary
of ontology R. The crisp conceptual graph is GX , the conceptual graph associ-
ated with an object X of ontology R which has to be compared with Y . In order
to avoid empty answers, we do not project the entire translated conceptual graph
GT

Y into GX . Subgraphs corresponding to each couple (characteristic, value) of
GT

Y are extracted. We say that an object X of ontology R is a candidate for
an object Y of ontology O if there exists δ-projections from subgraphs of GT

Y

into GX . Two parameters characterize the relation between the objects X and
Y : an adequation degree, which reflects the similarity between values character-
izing the objects, and a cover score which indicates the proportion of common
characteristics of both objects.

Definition 7. Let GT
Y be the translated conceptual graph associated with an

object Y of ontology O as defined in definition 6. Let GT
Y (i, j), i ∈ [1, m], j ∈

[1, qi], be a subgraph of GT
Y composed of the concept vertices of types Characi and

Valuei
qi

linked by the relation vertex HasForValue. Let KB be the knowledge base
composed of the conceptual graphs associated with all the objects of ontology
R as defined in definition 5. An object X of ontology R is a candidate for the
object Y iff there exists a δ-projection from at least one subgraph GT

Y (i, j) of GT
Y

into GX of KB. The adequation degree, noted AD, of the object X to the object
Y is AD=mini∈[1,l],j∈[1,ri](δij), where GT

Y (i, j), i ∈ [1, l], l ≤ m, j ∈ [1, ri],
ri ≤ qi, are the subgraphs of GT

Y such that there exists a δ-projection from each
of them into GX with a satisfaction degree δij . The cover score, noted CS, of
the object X to the object Y is: CS = 2n3

n1+n2
, n1 (resp. n2) being the number of

characteristics of GT
Y (resp. GX), n3 being the number of subgraphs of GT

Y such
that there exists a δ-projection from each of them into GX .



Using Fuzzy Conceptual Graphs to Map Ontologies 899

Example 6. According to definition 7, the object “Cod, raw” of ontology R,
presented as a conceptual graph in figure 5, is a candidate for the object “fresh
fish” of ontology O, presented as a translated conceptual graph in figure 6, with
the adequation degree AD = 0.5 and the cover score CS = 0.44.

5 Preliminary Experimentations

We have used the exposed method to map two ontologies used to index databases
concerning food products. On the one hand, an ontology called CONTA is used
as a reference ontology R. Its objects represent food products. They are de-
scribed using Langual, an international food description system [6] composed of
fourteen predefined characteristics and predefined associated values organized
as a taxonomy using the a kind of relationship. The food product cod, raw pre-
sented in example 2 belongs to the CONTA ontology. The CONTA ontology is
used in a chemical contamination database to store levels of contamination of
a given instance of a food product by a given contaminant. On the other hand,
an ontology called CONSO, provided by a private firm, is used as an ontology
O. Its objects also represent food products. They are described with a varying
number of characteristics depending on the food product. A predefined set of
“flat” predefined values is associated with each characteristic. The food product
fresh fish presented in example 2 belongs to the CONSO ontology. The CONSO
ontology is used in a set of data providing household purchases of food prod-
ucts. The CONSO ontology contains 420 product names whereas the CONTA
ontology contains about 2500 product names. Upon the 420 product names be-
longing to the CONSO ontology, only 250 have been associated with product
names belonging to the CONTA ontology by an expert manual mapping.

We consider that an object belonging to the CONSO ontology is correctly
mapped if more than 50% of the associated mappings in the CONTA ontology,
ordered by best scores, are correct. Each object belonging to the CONSO on-
tology is mapped in average with 30 objects belonging to the CONTA ontology.
Our first experimentation gives 203 mappings including 78 errors. In the classical
meaning of information retrieval, we can then conclude that our experimentation
has a recall of 50% and a precision of 61%. 20% of good results have been ob-
tained thanks to the projection operation of the conceptual graph model which
takes into account specializations of concepts.

6 Conclusion

In this paper, we have proposed a new method to map objects belonging to
two different ontologies. The main originality of this method is to compute an
approximate comparison between the descriptions of objects using fuzzy concep-
tual graphs. Consequently, it provides, for a given object of a source ontology
O, a list of ranked objects of a target ontology R, candidates for the mapping.
This approximate comparison is based on the description of objects available in
the form of triplets (object, characteristic, value). This format conforms to the



900 D. Doussot et al.

representation of ontologies in the standards of the semantic web. A preliminary
experimentation has been done and permits a first encouraging evaluation of the
method. Several perspectives of enhancement will be studied in the near future.
For instance, the relevance of the matching score can be enhanced if we take into
account the fact that all the characteristics do not have the same importance to
describe an object.

References

1. D. Aumueller, H. Do, S. Massmann, and E. Rahm, Schema and ontology matching
with coma++., SIGMOD Conference, 2005, pp. 906–908.

2. A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy, Learning to map between
ontologies on the semantic web., WWW, 2002, pp. 662–673.

3. E. Dragut and R. Lawrence, Domain independent learning of ontology mappings,
International Conference on Ontologies, 2004, pp. 783–800.

4. D. Dubois and H. Prade, The three semantics of fuzzy sets, Fuzzy Sets and Systems
90 (1997), 141–150.

5. L. Egghe and C. Michel, Strong similarity measures for ordered sets of documents
in information retrieval, Information Processing and Management 38 (2002), 823–
848.

6. J. D. Ireland and A. Moller, Review of international food classification and descrip-
tion, Journal of food composition and analysis 13 (2000), 529–538.

7. Y. Kalfoglou and W. M. Schorlemmer, Ontology mapping: The state of the art.,
Semantic Interoperability and Integration, 2005.

8. J.F. Sowa, Conceptual structures: information processing in mind and machine,
Addison Wesley Publishing Company, 1984.

9. R. Thomopoulos, P. Buche, and O. Haemmerlé, Different kinds of comparisons be-
tween fuzzy conceptual graphs, Proceedings of the 11th ICCS, LNAI #2746 (Dres-
den, Germany), Springer, July 2003, pp. 54–68.

10. F. Wiesman and N. Roos, Domain independent learning of ontology mappings,
AAMAS, 2004, pp. 844–849.

11. G. Ming Y. Yang, L. Shanping and H. Sailong, A comparative study on three on-
tology mapping methods in the integration of product knowledge, WCICA, 2004,
pp. 3093–3097.

12. L. Zadeh, Fuzzy sets, Information and control 8 (1965), 338–353.
13. , Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1

(1978), 3–28.



Formalism-Independent Specification of

Ontology Mappings – A Metamodeling
Approach

Saartje Brockmans1, Peter Haase1, and Heiner Stuckenschmidt2

1 AIFB, Universität Karlsruhe (TH), Germany
2 University of Mannheim, Germany

Abstract. Recently, the advantages of metamodeling for the graphical
specification of ontologies have been recognized by the semantic web
community. This has lead to a number of activities concerned with the
development of graphical modeling approaches for the Web Ontology
Language based on the Meta Object Facility (MOF) and the Unified
Modeling Language (UML). An aspect that has not been addressed so
far is the need to specify mappings between heterogenous ontologies.
With an increasing number of ontologies being available, the problem of
specifying mappings is becoming more important and the rationales for
providing model based graphical modeling support for mappings is the
same as for the ontologies themselves. In this paper, we therefore propose
a MOF-based metamodel for mappings between OWL DL ontologies.

1 Motivation

Initially, ontologies have been introduced as a solution for the problem of seman-
tic heterogeneity and as a facilitator of semantic integration. With the increasing
use of ontologies, however, it has turned out that the problem of semantic inte-
gration has only been lifted to a different level of abstraction at which different
ontologies describing the same domain have to be aligned. There are two main
lines of research addressing the problem of ontology alignment. The first line is
concerned with the development of methods for identifying semantic relations
between elements in different ontologies. The second line of research is concerned
with formalisms for encoding and using semantic relations (mappings) between
ontologies. These formalisms are often based on non-standard extensions of the
logics used to encode the ontologies. Examples of such mapping formalisms are
[1,3,4,5]. In a recent comparison of these approaches, it has been shown that these
approaches are mostly orthogonal in terms of assumptions made about the right
interpretation of mapping relations [6]. This means that the approaches cover a
large variety of possible interpretations of semantic relations, but it also means
that they are incompatible with each other and that the choice of a particu-
lar formalism is an important decision with significant influence on remaining
options for interpreting and using mappings. Further, making the right deci-
sion with respect to a mapping formalism requires in depth knowledge of the
corresponding logics and the hidden assumptions made as well as the specific

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 901–908, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



902 S. Brockmans, P. Haase, and H. Stuckenschmidt

needs of the application. In order to make an informed decision about which
mapping formalism to use, this decision should be made as late as possible in
the modeling process because it is often not possible to decide whether a given
mapping formalism is suitable for specifying all relevant connections. Therefore,
mappings should first be specified on a purely informal level by just marking
parts of the ontologies that are somehow semantically related. In a next step,
the kind of semantic relation that exists between the elements should be speci-
fied. In order to support this process, we need a formalism-independent format
for specifying mappings. On the other hand, we have to make sure that concrete
mapping representations can be derived automatically from this model in order
to support the implementation and use of the mappings. In order to meet these
requirements, we propose a metamodel based approach to specifying ontology
mappings independent on the concrete mapping formalism. In particular, we pro-
pose a Meta Object Facility-based metamodel for describing mappings between
OWL DL ontologies as well as a UML profile that defines a graphical format
for mapping modeling. When building the metamodel there is a natural trade-
off between coverage and precision of the metamodel: In this paper, we focus
on approaches that connect description logic based ontologies where mappings
are specified in terms of logical axioms. This allows us to be more precise with
respect to the nature and properties of mappings. At the same time, we cover a
number of relevant mapping approaches that have been developed that satisfy
these requirements, including the approaches mentioned in [6].

2 Ontology Mapping Formalisms

In a recent discussion on the nature of ontology mappings, some general aspects
of mapping approaches have been identified [7]. We briefly discuss these aspects
in the following and clarify our view on mappings that is reflected in the proposed
metamodel with respect to these aspects.

What do mappings define ? In this paper, we restrict our attention to declarative
mapping specifications. In particular, we see mappings as axioms that define a
semantic relation between elements in different ontologies. Most common are the
following kinds of semantic relations:

Equivalence (≡). Equivalence states that the connected elements represent
the same aspect of the real world according to some equivalence criteria.
A very strong form of equivalence is equality, if the connected elements
represent exactly the same object.

Containment (�, �). Containment states that the element in one ontology
represents a more specific aspect of the world than the element in the other
ontology. Depending on which of the elements is more specific, the contain-
ment relation is defined in the one or in the other direction.

Overlap (o). Overlap states that the connected elements represent different
aspects of the world, but have an overlap in some respect. In particular, it



Formalism-Independent Specification of Ontology Mappings 903

states that some objects described by the element in the one ontology may
also be described by the connected element in the other ontology.

In some approaches, these relations are supplemented by their negative counter-
parts. The corresponding relations can be used to describe that two elements are
not equivalent (�≡), not contained in each other (��) or not overlapping or disjoint
respectively (ø). Adding these negative versions of the relations leaves us with
eight semantic relations to cover all existing proposals for mapping languages.

In addition to the type of semantic relation, an important distinction is
whether the mappings are to be interpreted as extensional or as intensional
relationships: In extensional mapping definitions, the semantic relations are in-
terpreted as set-relations between the sets of objects represented by elements in
the ontologies. In the case of intensional mappings, the semantic relations relate
the elements directly, i.e. considering the properties of the element itself.

What are the formal properties of mappings ? There are a number of verifiable
formal properties that mappings can be required to satisfy. Examples of such
formal properties are the satisfiability of the overall model, the preservation of
possible inferences or the preservation of answers to queries. The question of
what is preserved by a mapping is tightly connected to the hidden assumptions
made by different mapping formalisms. A number of important assumptions that
influence this aspect have been identified and formalized in [6]. The assumptions
identified in the referred paper are:

– The naming of instances (are instances with the same name assumed to
denote the same object)

– The way inconsistency affects the overall system (does an inconsistency in
one ontology also cause the mapped ones to become inconsistent)

– The assumptions about the relationships between the mapped domains
(where with the global domain assumption both ontologies describe exactly
the same set of objects, while with the local domain assumption the sets of
objects may also be completely disjoint or overlap each other)

In [6] it has been shown that the differences between existing proposals of map-
ping languages for description logics can completely be described in terms of the
kinds of semantic relations than can be defined and the assumptions mentioned
above. This means that including these aspects in the metamodel ensures that
we can model all currently existing mapping approaches and that we are able to
distinguish them based on specifications that instantiate the metamodel.

What do mappings connect ?. In the context of this work, we decided to focus on
mappings between ontologies represented in OWL DL. This restriction makes it
much easier to deal with this aspect of ontology mappings as we can refer to the
corresponding metamodel for OWL DL specified in [2]. In particular, the meta-
model contains the class OntologyElement, that represents an arbitrary part of
an ontology specification. While this already covers many of the existing mapping
approaches, there are a number of proposals for mapping languages that rely on



904 S. Brockmans, P. Haase, and H. Stuckenschmidt

the idea of view-based mappings and use semantic relations between queries to
connect models, which leads to a considerably increased expressiveness.

How are mappings organized ? The final question is how mappings are organized.
They can either be part of a given model or be specified independently. Mappings
can be uni- or bidirectional. In this work, we use a mapping architecture that
has the greatest level of generality in the sense that other architectures can be
simulated. In particular, a mapping is a set of mapping assertions that consist of a
semantic relation between elements in different ontologies. Further mappings are
first-class objects that exist independent of the ontologies. Mappings are directed
and there can be more than one mapping between two ontologies. These choices
leave us with a lot of freedom for defining and using mappings.

3 A Metamodel for Ontology Mappings

We propose a formalism-independent metamodel covering OWL ontology map-
pings as described in Section 2. The metamodel is a consistent extension of our
earlier work on metamodels for OWL DL ontologies and SWRL rules [2]. It has
constraints defined in OCL [9] as well, which we omit here due to lack of space
and instead refer to [2] for a complete reference. Figure 1 shows the metamodel
for mappings. In the figures, darker grey classes denote classes from the meta-
models of OWL DL and rule extensions. The central class in the metamodel is

Mapping

−uri:URI

−uniqueNameAssumption :Boolean

−inconsistencyPropagation :Boolean
−domainAssumption :String ={overlap, soundContainment, 

completeContainment, equivalence}

Ontology

MappingAssertion

SemanticRelation

−interpretation:String ={intensional, extensional}

−negated :Boolean

Equivalence Containment

−direction:String ={sound. complete}

Overlap

MappableElement

OntologyElement

* sourceOntology

* targetOntology

* targetElement

* sourceElement

Query

hasSemanticRelation

1

1

1

1

1

Fig. 1. Metamodel for ontology mappings

the class Mapping with four attributes. The URI, defined by the attribute uri,
allows to uniquely identify a mapping and refer to it as a first-class object. A
mapping is always defined between two ontologies. An ontology is represented by



Formalism-Independent Specification of Ontology Mappings 905

the class Ontology in the OWL DL metamodel. Two associations from Mapping
to Ontology, sourceOntology and targetOntology, specify the source respec-
tively the target ontology of the mapping. Cardinalities on both associations de-
note that to each Mapping instantiation, there is exactly one Ontology connected
as source and one as target. A mapping consists of a set of mapping assertions,
denoted by the MOF aggregation relationship between the two classes Mapping
and MappingAssertion. The elements that are mapped in a MappingAssertion
are defined by the class MappableElement. A MappingAssertion is defined
through exactly one SemanticRelation, one source MappableElement and one
target MappableElement. This is defined through the three associations start-
ing from MappingAssertion and their cardinalities. We defined four semantic
relations along with their logical negation to be defined in the metamodel. Two
of these relationship types are directly contained in the metamodel through
the subclasses Equivalence and Overlap of the class SemanticRelation. The
other two, containment in either direction, are defined through the subclass
Containment and its additional attribute direction, which can be sound (�)
or complete (�). The negated versions of all semantic relations are specified
through the boolean attribute negated of the class SemanticRelation. For ex-
ample, a negated Overlaps relation specifies the disjointness of two elements.
The other attribute of SemanticRelation, interpretation, defines whether
the mapping assertion is assumed to be interpreted intensionally or extension-
ally. Please note that the metamodel in principle supports all semantic relations
for all mappable elements, including individuals.

A mapping assertion can connect two mappable elements, which may be ontol-
ogy elements or queries. To support this, MappableElement has two subclasses
OntologyElement and Query. The former is previously defined in the OWL DL
metamodel. The class Query reuses constructs from the SWRL metamodel. The
reason for reusing large parts of the rule metamodel lies in the fact that concep-
tually, rules and queries are of very similar nature [8]: A rule consists of a rule
body (antecedent) and rule head (consequent), both of which are conjunctions
of logical atoms. A query can be considered as a special kind of rule with an
empty head. The distinguished variables specify the variables that are returned
by the query. Informally, the answer to a query consists of all variable bindings
for which the grounded rule body is logically implied by the ontology.

4 A UML Profile for Ontology Mappings

The UML profile mechanism is an extension mechanism to tailor UML to spe-
cific application areas. Our proposed UML profile defines a visual notation for
optimally supporting the specification of OWL ontology mappings. This visual
syntax is based on the metamodel and is independent of a concrete mapping
formalism. Mappings in both directions between the metamodel and the profile
have to be established. The profile is a consistent extension of our earlier work
on a profile for OWL DL ontologies and SWRL rules [2]. Figures 2 and 3 show
two ontologies of a domain, depicted using the UML profile for OWL DL.



906 S. Brockmans, P. Haase, and H. Stuckenschmidt

<< owl::Ontology >>

OntologyA

Publication Person

Researcher

authorOf

FowlerUML: Book Fowler: Researcher
authorOf

Book

<< owl::ObjectProperty >>
authorOf

Article

<< owl::disjointWith >>

<< rdfs::range>> << rdfs::domain>>

Topic
isAbout

Thesis

name

Fig. 2. A First Sample Ontology De-
picted using the UML Profile for the
Ontology Metamodel

<< owl::Ontology >>

OntologyB

Entry Author
creatorOf

MartinFowler: Author

Article

<< owl::ObjectProperty>>
creatorOf

<< rdfs::domain>><< rdfs::range>>

subject

PhDThesisMasterThesis

Fig. 3. A Second Sample Ontology De-
picted using the UML Profile for the
Ontology Metamodel

Publication Entry

<<target>><<source>>

Fig. 4. Sample containment relation between two concepts

Our goal is to allow the user to specify mappings without having decided yet
on a specific mapping language or even on a specific semantic relation. This is
reflected in the proposed visual syntax which is, like the metamodel, independent
from a concrete mapping formalism. In Figure 4, a source concept Publication
is defined to be more specific than the target concept Entry. Both source and
target elements of mapping assertions are represented in a box, connected to each
other via a dependency with the corresponding symbol of the semantic relation.
In the first step of the process, when users just mark elements being semantically
related without specifying the type of semantic relation, the dependency does
not carry any relation symbol. Stereotypes in the two boxes denote source- and
target ontology. Like defined in the metamodel, these mapped elements can be
any element of an ontology (metaclass OntologyElement) or a query (metaclass
Query). They are represented like defined in the UML profile for OWL and rules.
The parts of the mappable elements which are effectively being mapped to each
other, are denoted via a double-lined box, which becomes relevant if the mapped
elements are more complex constructs, as explained in the following.

A more complex example mapping assertion is pictured in Figure 5. The
example defines that the union of the classes PhDThesis and MasterThesis, is
equivalent to the class Thesis.

PhDThesis MasterThesis

Thesis

<<source>>

<<target>>

Fig. 5. Sample equivalence relation between complex class descriptions



Formalism-Independent Specification of Ontology Mappings 907

<< variable >>

X:Publication

isAbout

<< variable >>

Y:Topic

<< variable >>

X:Entry

<< variable >>

Z

subject

<< variable >>

Z

name

<<source>>

<<target>>

Fig. 6. Sample equivalence relation between two queries

Figure 6 shows an example of an equivalence relation between two queries.
The first query is about a Publication X with a Topic Y named Z. The target
query is about an Entry X with subject Z. The mapping assertion defines the two
queries to be equivalent. The effective correspondences are established between
the two distinguished variables X and Z, again denoted with a double-lined box.

5 Discussion

We have presented a MOF based metamodel as well as a UML profile to support
formalism independent graphical modeling of mappings between OWL ontolo-
gies. The metamodel ties in with previous work on similar metamodels for OWL
DL and rule extensions. We considered an abstract metamodel that was de-
signed to cover a range of existing formalisms for specifying mappings, however,
the modular approach allows to extend the metamodel for additional constructs
or characteristics, or for additional formalisms in a straight-forward manner.
While the work presented addresses an important gap in the existing modeling
infrastructure, it has to be seen as the basis for a more complete framework for
mapping modeling based on MOF and UML. In order to be able to provide sup-
port not only for the acquisition of mappings but also for their implementation
in one of the existing formalisms, three additional steps have to be taken. In a
first step, we have to link the abstract metamodel presented in this paper to con-
crete mapping formalisms. This can best be done by creating specializations of
the generic metamodel that correspond to individual mapping formalisms. This
normally means that restrictions are added to the metamodel in terms of OCL
constraints that formalize the specific properties of the respective formalism.
In a second step, we have to develop a method for checking the compatibility
of a given graphical model with a particular specialization of the metamodel.
This is necessary for being able to determine whether a given model can be
implemented with a particular formalism. Provided that specializations are en-
tirely described using OCL constraints, this can be done using an OCL model
checker. Finally, we have to develop methods for translating a given graphical
model into an appropriate mapping formalism. This task can be seen as a special
case of code generation where instead of executable code, we generate a formal
mapping model that can be operationalized using a suitable inference engine.



908 S. Brockmans, P. Haase, and H. Stuckenschmidt

In summary, the work presented here is the first step towards a comprehensive,
model based approach for modeling and implementing ontology mappings. In
contrast to many existing proposals, this approach takes a knowledge-level per-
spective on mapping modeling and supports an iterative development process
where the mapping model is refined in a stepwise manner and the decision for a
specific implementation formalism is only taken later in the process.

Acknowledgements. Research for this paper has been partially funded by the EU
in the project NeOn (IST-2005-027595) and by the German Research Foundation
(DFG) under the Graduate School IME – Universität Karlsruhe (TH).

References

1. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference ISWC’03, volume 2870 of LNCS, pages 164–179. Springer, 2003.

2. S. Brockmans and P. Haase. A Metamodel and UML Profile for Networked On-
tologies – A Complete Reference. Technical report, Universität Karlsruhe, April
2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/ontology-

metamodeling.pdf.
3. D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework for ontology inte-

gration. In Proceedings of the Semantic Web Working Symposium, pages 303–316,
Stanford, CA, 2001.

4. D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics for information
integration. In A. Kakas and F. Sadri, editors, Computational Logic: Logic Pro-
gramming and Beyond, volume 2408 of Lecture Notes in Computer Science, pages
41–60. Springer, 2002.

5. P. Haase and B. Motik. A mapping system for the integration of owl-dl ontologies. In
In Proceedings of the ACM-Workshop: Interoperability of Heterogeneous Information
Systems (IHIS05), November 2005.

6. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping
languages for terminological knowledge. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence - IJCAI05, Edinburgh, UK, August 2005.

7. H. Stuckenschmidt and M. Uschold. Representation of semantic mappings. In Yannis
Kalfoglou, Marco Schorlemmer, Amit Sheth, Steffen Staab, and Michael Uschold,
editors, Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings,
volume 04391, Germany, 2005. IBFI, Schloss Dagstuhl.

8. S. Tessaris and E. Franconi. Rules and queries with ontologies: a unifying logical
framework. In Ian Horrocks, Ulrike Sattler, and Frank Wolter, editors, Description
Logics, volume 147 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

9. J. Warmer and A. Kleppe. Object Constraint Language 2.0. MITP Verlag, 2004.

http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/ontology-metamodeling.pdf
http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/ontology-metamodeling.pdf


Virtual Integration of Existing Web Databases

for the Genotypic Selection of Cereal Cultivars�

Sonia Bergamaschi and Antonio Sala

Dipartimento di Ingegneria dell’Informazione
Universitá di Modena e Reggio Emilia

bergamaschi.sonia@unimore.it, sala.antonio@unimore.it

Abstract. The paper presents the development of a virtual database
for the genotypic selection of cereal cultivars starting from phenotypic
traits.

The database is realized by integrating two existing web databases,
Gramene 1 and Graingenes 2, and a pre-existing data source developed
by the Agrarian Faculty of the University of Modena and Reggio Emilia.
The integration process gives rise to a virtual integrated view of the un-
derlying sources. This integration is obtained using the MOMIS system
(Mediator envirOnment for Multiple Information Sources), a framework
developed by the Database Group of the University of Modena and Reg-
gio Emilia (www.dbgroup.unimo.it). MOMIS performs information ex-
traction and integration from both structured and semistructured data
sources. Information integration is performed in a semi-automatic way,
by exploiting the knowledge in a Common Thesaurus (defined by the
framework) and the descriptions of source schemas with a combination
of clustering and Description Logics techniques. Momis allows querying
information in a transparent mode for the user regardless of the specific
languages of the sources. The result obtained by applying MOMIS to
Gramene and Graingenes web databases is a queriable virtual view that
integrates the two sources and allow performing genotypic selection of
cultivars of barley, wheat and rice based on phenotypic traits, regardless
of the specific languages of the web databases. The project is conducted
in collaboration with the Agrarian Faculty of the University of Modena
and Reggio Emilia and funded by the Regional Government of Emilia
Romagna.

1 Introduction

In the last few years the progress in the field of the molecular biology gave rise
to an exponential growth of data available to researchers. The great problem
they are now facing is how to have access to this great amount of data in order
to exploit them for their research activity. Many resources are available on Web
� This work is supported by the Italian Ministry of Research and University through

the PRIN2004 “WISDOM” project.
1 http://www.gramene.org/
2 http://wheat.pw.usda.gov/

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 909–926, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.gramene.org/
http://wheat.pw.usda.gov/


910 S. Bergamaschi and A. Sala

databases, but usually these informations reside in different, heterogeneous and
sometimes numerous sources. Another problem is that these databases usually
present different interfaces and structure of the information and are thus difficult
to be queried by biology researchers. For these reasons a maybe simple infor-
mation search can take long time and eventually fails because of the number of
different data sources to be accessed.

What is needed to solve these problems is the definition of methods for:

1. Extracting and fusing the information coming from different (and heteroge-
neous) information sources (e.g. web sites and web databases)

2. Presenting the information according to a unique interface.

The paper presents the MOMIS system (Mediator envirOnment for Multiple In-
formation Sources) [2], a mediator framework to perform information extraction
and integration from heterogeneous distributed data sources and query man-
agement facilities to transparently support query posed to the integrated data
sources. The framework consists of a language and two main components:

– The ODLI 3 language is an object-oriented language, with an underlying
Description Logic; it is derived from the standard ODL-ODMG [9].

– The Ontology Builder: sources integration is performed in a semi-automatic
way, by exploiting the knowledge in a Common Thesaurus (defined by the
framework) and ODLI 3 descriptions of source schemas with a combination
of clustering techniques and Description Logics. This integration process
gives rise to a virtual integrated view of the underlying sources (the Global
Schema, GVV) for which mapping rules and integrity constraints are speci-
fied to handle heterogeneity.

– The MOMIS Query Manager is the coordinated set of functions which take
an incoming query, decompose the query according to the mapping of the
GVV onto the local data sources relevant for the query, send the subqueries
to these data sources, collect their answers, perform any residual filtering as
necessary, and finally deliver the answer to the requesting user.

The MOMIS system is based on a conventional wrapper/mediator architec-
ture, and provides methods and open tools for data management in Internet-
based information systems (Fig.1). The MOMIS development begun as a joint
collaboration between the University of Modena and Reggio Emilia and Univer-
sity of Milano and Brescia, within the INTERDATA national research project.
The research activities continued within the SEWASIE European research project
(IST-2001-34825) (www.sewasie.org).

MOMIS can analyze the contents of the source web databases and build a
Global View. This Global View (GVV) is “Virtual” i.e. it is not materialized:
data reside on the “local” sources and the View is an entry point for data re-
trieving. Consequently, only the changes in the information source structures
have a side effect on a built GVV. Data changes do not have any influence on
it. Moreover the existence of semantic tags in the sources, or the semantic anno-
tations with respect to a lexical ontology (e.g. WordNet) are exploited to build



Virtual Integration of Existing Web Databases for the Genotypic Selection 911

Fig. 1. The Momis Architecture

the GVV which can be seen as a domain ontology of the involved sources. The
GVV, can be exported in RDFS and OWL thus guaranteeing interoperability
with other external applications/ontologies or external users.

In this paper we present the use of the MOMIS system to perform intelligent
data integration of existing databases to create a Virtual View for the genotypic
selection of cereal cultivars based on their phenotype. This GVV has been real-
ized as a part of the CEREALAB project conducted by the Agrarian faculty of
the University of Modena and Reggio Emilia in collaboration with the Database
Group of the University of Modena and Reggio Emilia and funded by the Re-
gional Government of Emilia Romagna. The aim of the CEREALAB project
is to make available to the cereal breeders of the Emilia Romagna region the
knowledge learnt in the research activity by the Universities, in particular to
provide them with a tool to perform genotypic selection of cereal cultivars from
phenotypic traits. Thus, the idea was to create the CEREALAB database as an
integration of two existing web databases, Gramene (concerning maize and rice)
and Graingenes (concerning wheat and barley), with another data source storing
the information achieved by the research group of the project. In this way the
CEREALAB database performs both the tasks of (1)providing a valid support
for the research activity, suppling information from the existing databases, and
(2)being a knowledge base to store the data obtained by researchers.

The outline of the paper is the following: the first section describes the use
of MOMIS to create the CEREALAB GVV: in particular Sect.2 describes the
sources integration approach, Sect.3 sketches out the querying process presenting
some examples. Finally Sect.4 compares MOMIS with other system and gives
conclusions.

1.1 The CEREALAB Domain

The main entities of the CEREALAB domain are:

– Cultivar, which identify an assemblage of plants that has been selected for
a particular attribute or combination of attributes and is clearly distinct,
uniform and stable in its characteristics.



912 S. Bergamaschi and A. Sala

– Trait, an inherited feature of a plant.
– Gene, the unit of heredity in living organisms, which controls the physical

development of the organism. An allele is any one of a number of viable DNA
codings of the same gene occupying a given locus (position) on a chromo-
some.

– QTL, quantitative trait locus, a region of DNA that is associated with a
particular trait. Though not necessarily genes themselves, QTLs are stretches
of DNA that are closely linked to the genes that underlie the trait in question.

– Marker, a known DNA sequence (e. g. a gene or part of gene) that can be
identified by a simple assay, associated with a certain phenotype. A genetic
marker may be a short DNA sequence, such as a sequence surrounding a
single base-pair change, or long one, like microsatellites.

Bearing in mind these main entities, we developed a kernel GVV (i.e. a boot-
strap ontology) of the CEREALAB database to be used as a reference for the
integration process of the available data sources. This ontology was created with
MOMIS as a relational data source (see Fig.2), re-engineering the set of files
used by the CEREALAB research group.

Fig. 2. The bootstrap Ontology for the CEREALAB database

2 The MOMIS Integration Methodology

In this section, we describe the information integration process for building the
GVV. The process, shown in Fig.3, gives rise to Global Virtual View of several



Virtual Integration of Existing Web Databases for the Genotypic Selection 913

specific data sources. The GVV-generation process in our case has been mod-
ified compared with the usual MOMIS approach [5] as we have a pre-existing
bootstrap ontology which has to be enriched with other data source:

1. Insertion of a pre-existing ontology as local source. This data source stores
the information achieved research group of the CEREALAB project.

2. Local source schemata extraction. Wrapper generates schemas for the in-
volved sources and translates them into the common language ODLI3 [2]

3. Local source annotation with WordNet. The integration designer chooses
a meaning for each element of a local source schema, according to the
WordNet lexical ontology (http://www.cogsci.princeton.edu/∼wn). This
phase may be executed semi-automatically: a tool supports the integration
designer in the choice by proposing a WordNet concept for each source ele-
ment.

4. Common thesaurus generation. Starting from the annotated local schema,
MOMIS constructs a set of relationships describing inter and intraschema
knowledge about classes and attributes of the source schemata.

5. GVV generation. The MOMIS methodology, applied to the common the-
saurus and the local schemata descriptions, generates a global schema and
sets of mappings with local schemata

6. Mapping refinement. The system automatically generates a Mapping Table
for each global class of the GVV which can be extended by the designer.

The above methodology is described in the following sections. The Ontology
Builder Tool supports the integration designer in all the GVV generation process
phases to realize our virtual view for the genotypic selection of cereal cultivars.

2.1 The ODLI3 Language

As a common data model for integrating a given set of local information sources,
MOMIS uses an object-oriented language called ODLI3 . ODLI3 extends ODL
with the following relationships expressing intra- and inter-schema knowledge
for the source schemas: SYN (synonym of), BT (broader terms), NT (narrower
terms) and RT (related terms). By means of ODLI3 , only one language is ex-
ploited to describe both the sources (the input of the synthesis process) and the
GVV (the result of the process). The translation of ODLI3 descriptions into one
of the Semantic Web standards such as RDF, DAML+OIL, OWL is a straightfor-
ward process. In fact, from a general perspective an ODLI3 concept corresponds
to a Class of the Semantic Web standard, and ODLI3 relationships are trans-
lated into properties. Figure 3 shows the global schema generation, where local
schemas are annotated according to the lexical ontology WordNet, the Common
Thesaurus generation, and finally the GVV global classes. In particular, these
ones are connected by means of mapping tables to the local schemas and are
(semi-automatically) annotated according to WordNet. The designer can refine
the mappings supported by the Ontology Builder.

http://www.cogsci.princeton.edu/~wn


914 S. Bergamaschi and A. Sala

Fig. 3. Integration Process Overview

2.2 Insertion of Pre-existing Ontology / Wrapping: Extracting
Data Structure for Sources

The first phase of the integration process is the choice of the data sources and
their translation into ODLI3 format. In our case a pre-defined ontology, that
we call bootstrap ontology, existed and could be enriched by other data sources.
Gramene and Graingenes have been chosen as further local sources, as they are
the most significant for the domain. The translation process is performed by
the MOMIS wrappers, which logically converts the source data structure into
the ODLI3 model. The wrapper architecture and interfaces are crucial, because
wrappers are the focal point for managing the diversity of data sources. For con-
ventional structured information sources (e.g. relational databases), schema de-
scription is always available and can be directly translated. In our case wrapping
was easy as it is possible to download the two underlying relational databases of
Gramene and Graingenes, creating two local sources. In this way we were able
to use the MOMIS SqlServer Wrapper to manage both the sources.

After this step we have three local sources: the bootstrap ontology (CERE-
ALAB), and the Gramene and Graingenes sources.

2.3 Semi-automatic Annotation of a Local Source with WordNet

The goal of the annotation phase is to assign a name and a set of meanings
belonging to the WordNet [14] lexical system to each local class and attribute of
the local schemata. For each element of a local schema the system automatically
suggests a word form corresponding to the given term (if it exists): thus the
designer may confirm or change the word form or meaning of each element.



Virtual Integration of Existing Web Databases for the Genotypic Selection 915

Fig. 4. The manual/automatic annotation for marker-for-gene/gene

As in our case the annotation is related to a very specific domain, WordNet
lacks many of the terms involved. MOMIS provides the user with a WordNet
Editor [3] to extend WordNet by adding new terms and synsets to the native
elements of WordNet. Guided by the CEREALAB research group, we widely
extended WordNet to face this new domain according to an existing technical
glossary provided by the Gramene website. As an example, Fig.4 shows the
automatic annotation for the “gene” attribute and the manual annotation, i.e.
the definition we provided, for the “marker-for-gene” attribute. The annotation
phase of the bootstrap ontology took quite a long time, but it resulted easier for
the other two sources thanks to the extension provided to WordNet (as many of
the terms involved in these two sources appear also in the bootstrap ontology)
and to the capability of the WordNet Editor to cache the annoted terms and
synsets. The advantage is that this extension step has to be performed just the
first time a domain is handled.

2.4 Common Thesaurus Generation

Starting from the annotated local schemata, MOMIS constructs a Common The-
saurusdescribing intra and inter-schemaknowledge in the formofSYN(synonyms),
BT/NT(broader terms/narrower terms), and RT(meronymy/holonymy) relation-
ships.



916 S. Bergamaschi and A. Sala

The Common Thesaurus is constructed through an incremental process in
which the following relationships are added:

– schema-derived relationships: relationships holding at intra-schema level are
automatically extracted by analyzing each schema separately. For example,
MOMIS extracts intraschema RT relationships from foreign keys in relational
source schemas. When a foreign key is also a primary key, in both the original
and referenced relation, MOMIS extracts BT and NT relationships, which
are derived from inheritance relationships in object-oriented schemas.

– lexicon-derived relationships: we exploit the annotation phase in order to
translate relationships holding at the lexical level into relationships to be
added to the Common Thesaurus.

– designer-supplied relationships: new relationships can be supplied directly
by the designer, to capture specific domain knowledge.

– inferred relationships: Description Logics (DL) techniques of ODB-Tools
[4],[6] are exploited to infer new relationships, by means of subsumption
computation applied to a “virtual schema” obtained by interpreting BT/NT
as subclass relationships and RT as domain attributes.

A detailed presentation of the methodology can be found in [2], [7].
Figure 5 shows some relationships automatically extracted by MOMIS for the

gene classes and attributes. In our case, the relationships holding at lexical level
are widely exploited to discover semantic relationships between local classes.
For example, MOMIS sematically promotes the RT relationship between gene
and allele (see Fig.4) into a BT relationship (see Fig.5, line 6). For the class
marker-for-gene there is no evident schema relationship, but sematically it is
identified as a NT of gene (see Fig.5, last line).

2.5 Global Virtual View (GVV) Generation

The MOMIS methodology allows us to identify similar ODLI3 classes, that
is, classes that describe the same or semantically related concepts in different
sources, and mappings to connect the global attributes of each global class with
the local sources’ attributes. To this end, affinity coefficients are evaluated for
all possible pairs of ODLI3 classes, based on the relationships in the Common
Thesaurus properly strengthened. Affinity coefficients determine the degree of
matching of two classes based on their names (Name Affinity coefficient) and
their attributes (Structural Affinity coefficient) and are fused into the Global
Affinity coefficient, calculated by means of the linear combination of the two
coefficients. Global affinity coefficients are then used by a hierarchical clustering
algorithm, to include ODLI3 classes in clusters according to their degree of affin-
ity. The designer may interactively refine and complete the proposed integration
results; in particular, the mappings which has been automatically created by the
system can be fine tuned as discussed in Sect.2.6.

Being so specific the domain we are facing, the annotation phase gave rise
to a large number of BT/NT relationships. This, together with a very differ-
ent structure of the two sources, Gramene and Graingenes, from our bootstrap



Virtual Integration of Existing Web Databases for the Genotypic Selection 917

Fig. 5. The Common Thesaurus for the gene and marker-for-gene classes

Ontology, forced us to give less weight than usual to the BT/NT relationship
when calculating the Name Affinity and the Structural Affinity coefficients. In
particular, instead of the default weight to calculate the coefficients, SYN=1,
BT/NT=0.8, we tuned the weights in order to consider SYN relationships as
the most relevant. In this way the system gave rise to a set of significant Global
Classes that reflected the entities we defined in Sect.1.1. No particular issues
have been encountered during the generation of the GVV as all the data types
appearing in the different sources are homogeneous for the same real world ob-
jects. These Global Classes have then been verified by the agrarian researchers to
validate the Global Virtual View obtained and to indicate possible refinements.
The main issues are identifying the Join Conditions and in few cases defining
the Resolution Functions, which will be presented in Sect.2.6.

2.6 Mapping Refinement

The system automatically generates a Mapping Table (MT) for each global class
C of a GVV , whose columns represent the local classes L(C) belonging to C
and whose rows represent the global attributes of C. An element MT [GA][LC]
represents the set of local attributes of LC which are mapped onto the global
attribute GA. Figure 6 shows the MT of the gene Global Class.



918 S. Bergamaschi and A. Sala

Fig. 6. The Mapping Table for the gene Global Class

More formally, we define an Integration System IS = (GVV, N, M) as consti-
tuted by:

– A GVV, which is a schema expressed in ODLI3 .
– A set N of local sources; each local source has a schema also expressed in

ODLI3 .
– A set M of GAV mapping assertions between the GVV and N , where each

assertion associates to an element g in GVV a query QN over the schemas
of a set of local sources in N .

More precisely, for each global class C of the GVV we define:

– a (possibly empty) set of local classes, denoted by L(C), belonging to the
local sources in N

– a conjunctive query QN over L(C).

Intuitively, the GVV is the intensional representation of the information provided
by the Integration System, whereas the mapping assertions specify how such an
intensional representation relates to the local sources managed by the Integration
System. The query QN associated to a global class C is implicitly defined by
the designer starting from the MT of C. The designer can extend the MT by
adding:

– Data Conversion Functions from local to global attributes
– Join Conditions among pairs of local classes belonging to C
– Resolution Functions for global attributes to solve data conflicts of local

attribute values.

On the basis of the resulting MT the system automatically generates a query
QN associated to C, by extending the Full Disjunction operator [11], which is
explained in the following.

Data Conversion Functions. The Ontology Designer can define, for each not
null element MT [GA][L], a Data Conversion Function, denoted by MTF [GA][L],
which represents the mapping of local attributes of L into the global attribute



Virtual Integration of Existing Web Databases for the Genotypic Selection 919

GA. MTF [GA][L] is a function that must be executable/supported by the class
L local source. For example, for relational sources, MTF [GA][L] is an SQL value
expression. T (L) denotes L transformed by the Data Conversion Functions.

Join Conditions. Merging data from different sources requires different in-
stantiations of the same real world object to be identified; this process is called
object identification [16], [18], [1], [10].

To identify instances of the same object and fuse them we introduce Join
Conditions among pairs of local classes belonging to the same global class. Given
two local classes L1 and L2 belonging to C, a Join Condition between L1 and
L2, denoted with JC(L1, L2), is an expression over L1.Ai and L2.Aj where Ai

(Aj) are global attributes with a not null mapping in L1 (L2). As an example,
the join condition for the gene Global Class is defined as follow:

((graingenes.gene.name) = (bootstrapOnto.gene.name)) AND
(((gramene.gene.name) = (bootstrapOnto.gene.name))
OR ((gramene.gene.name) = (graingenes.gene.name)))

Resolution Functions. In MOMIS the approach proposed in [16] has been
adopted: a Resolution Function for solving data conflicts may be defined for
each global attribute mapping onto local attributes coming from more than one
local source; in this way we can define what value shall appear in the result. Our
system provides some standard kinds of resolution functions (Random, Aggre-
gation, Coalescence and others). In our domain we used the followings:

1. Precedence function: experimental results obtained by the CEREALAB re-
search group regard mainly italian cultivars. These data could be different
from data from the two existing sources, especially referring to phenotypic
information since the Gramene and Graingenes are american databases. For
this reason a precedence function has been used, to give priority to the CE-
REALAB informations as they are related to italian cultivars.

2. All Values : considering the integration viewpoint, the aim is to preserve all
the information coming from the sources. For example, a “reference” at-
tribute is often present for many entities to provide bibliographic references.
Sometimes each source can cite different relevant references for the instance
in exam. To let the user get all the data provided by the local sources as a
result, we used the All Values function provided by MOMIS to return all the
references present in the different sources.

Full Disjunction. QN is defined in such a way that it contains a unique tuple
resulting from the merge of all the different tuples representing the same real
world object. This problem is related to that of computing the natural outer-join
of many relations in a way that preserves all possible connections among facts
[17]. Such a computation has been termed as Full Disjunction (FD) by Galindo
Legaria [11]. In our context: given a global class C composed of L1,L2, . . . , Ln,
we consider

FD(T (L1), T (L2), . . . , T (Ln))



920 S. Bergamaschi and A. Sala

computed on the basis of the Join Conditions. With more than 2 local classes,
the computation of FD is performed as follows. We assume that: (1) each L
contains a key, (2) all the join conditions are on key attributes, and (3) all the
join attributes are mapped into the same set of global attribute, say K. Then, it
can be proved that: (1) K is a key of C, and (2) FD can be computed by means
of the following expression:

(T (L1) full join T (L2) on JC(L1, L2)) full join T (L3)

on (JC(L1, L3) OR JC(L2, L3)) . . . full join T (Ln) on (JC(L1, Ln)

OR JC(L2, Ln) OR . . . OR JC(Ln−1, Ln))

Finally, QN is obtained by applying Resolution Functions to the attributes re-
sulting from the above expression: for a global attribute GA we apply the related
Resolution Function to T (L1).GA, T (L2).GA, . . . , T (Lk).GA. As an example,
QN for the gene Global Class is:

bootstrapOnto.gene full outer join graingenes.gene
on (((graingenes.gene.name) = (bootstrapOnto.gene.name)))
full outer join gramene.gene
on (((gramene.gene.name) = (bootstrapOnto.gene.name))
OR ((gramene.gene.name) = (graingenes.gene.name)))

3 The MOMIS Query Manager

The MOMIS Query Manager is the coordinated set of functions which takes an
incoming query (say global query), defines a decomposition of the query accord-
ing to the mapping of the GVV onto the local data sources, sends the subqueries
to these data sources, collects their answers, fuse them (performing any residual
filtering as necessary), and finally delivers the answer. Query processing consists
of the following steps:

1. Query rewriting: to rewrite a global query as an equivalent set of queries
expressed on the local sources (local queries)

2. Local queries execution: the local queries are sent and executed at local
sources

3. Fusion and Reconciliation: the local answers are fused into the global answer.

Let us introduce a simple query in order to show the query processing steps:

select * from gene where name like ’\%resistance\%’

The query retrieves all the genes that contain the word “resistance” in their
name, i.e. the genes that express a kind of resistance. With Momis, this query
allows the user to transparently retrieve information from Gramene and Grain-
genes with a single query (see Fig.7).



Virtual Integration of Existing Web Databases for the Genotypic Selection 921

Fig. 7. A query on the CEREALAB GVV

3.1 Query Rewriting

MOMIS uses a global-as-view (GAV) approach [12] to model the mapping among
the GVV and the local schemata. Then the global query is rewritten by means
of unfolding, that is, by expanding each atom of the global query according to
its definition in the mapping. A detailed description can be found in [8].

We consider a Global Query Q over a Global Class G:

Q = select < Qselect−list > from G where < Qcondition >

where Qcondition is a Boolean expression of positive atomic constraints:

(GA op value)or(GA1 op GA2)

where GA1 and GA2 are attributes of the Global Class G.
The query rewriting process is composed of the following steps:

1. Atomic constraint mapping
In this step, each atomic constraint of a query Q is rewritten into one that can
be supported by the local class. The atomic constraint mapping is performed
on the basis of mapping functions defined in the Mapping Table.

2. Residual Constraints computation: Intuitively, residual constraints are the
constraints of the global query that are not mapped in all local queries.

3. Local select-list computation: The select-list of a local query is a set of at-
tributes, including the global query attributes, the join attributes, the resid-
ual constraints attributes, translated into the correspondent set of local at-
tributes on the basis of the mapping table.

The output of the Query Rewriting process is a set of local queries; each local
query QL over a local class L is in a form supported by the local source of the
class L. For relational sources, a local query QL over L will be in the form:

QL = select < QLselect−list
> from L where < QLcondition >



922 S. Bergamaschi and A. Sala

In our example, the local queries QL over L are:

Source ‘‘bootstrapOnto’’
Query on Local Interface ‘‘bootstrapOnto.gene’’:
SELECT gene.name, gene.map, gene.symbol
FROM gene
WHERE (name) like (’\%resistance\%’)

Source ‘‘gramene’’
Query on Local Interface ‘‘gramene.gene’’:
SELECT gene.name, gene.species
FROM gene
WHERE (name) like (’\%resistance\%’)

Source ‘‘graingenes’’
Query on Local Interface ‘‘graingenes.gene’’:
SELECT gene.type, gene.locus, gene.name, gene.chromosome,
gene.fullname, gene.synonym, gene.reference-title
FROM gene
WHERE (name) like (’\%resistance\%’)

3.2 Local Queries Execution / Fusion and Reconciliation

A local query LQ is sent to the source including the local class L; its answer
is transformed by applying the mapping functions related to L: in this way, we
perform the conversion of the local class instances into the GVV instances. The
result of this conversion is materialized in a temporary table. No data conversion
function is necessary for our domain.

Temporary tables are fused and reconciliated into the global answer. In our
example, QN is:

select "Join_Eng_gene_graingenes_gene".type AS type_1,
"Join_Eng_gene_gramene_gene".genus AS genus_1,
"Join_Eng_gene_bootstrapOnto_gene".name AS name_1,
"Join_Eng_gene_graingenes_gene".name AS name_2,
"Join_Eng_gene_gramene_gene".name AS name_3,
"Join_Eng_gene_bootstrapOnto_gene".specie AS species_1,
"Join_Eng_gene_gramene_gene".species AS species_2,
"Join_Eng_gene_bootstrapOnto_gene".map AS map_1,
"Join_Eng_gene_gramene_gene".description AS description_1,
"Join_Eng_gene_graingenes_gene".locus AS locus_1,
"Join_Eng_gene_gramene_gene".location_name AS location_name_1,
"Join_Eng_gene_bootstrapOnto_gene".chromosome AS chromosome_1,
"Join_Eng_gene_graingenes_gene".chromosome AS chromosome_2,
"Join_Eng_gene_gramene_gene".chromosome AS chromosome_3,



Virtual Integration of Existing Web Databases for the Genotypic Selection 923

"Join_Eng_gene_gramene_gene".allele_symbol AS allele_symbol_1,
"Join_Eng_gene_bootstrapOnto_gene".allele AS allele_1,
"Join_Eng_gene_gramene_gene".allele_name AS allele_2,
"Join_Eng_gene_bootstrapOnto_gene".synonym AS synonym_1,
"Join_Eng_gene_graingenes_gene".synonym AS synonym_2,
"Join_Eng_gene_gramene_gene".synonym_name AS synonym_3,
"Join_Eng_gene_bootstrapOnto_gene".symbol AS symbol_1,
"Join_Eng_gene_gramene_gene".symbol AS symbol_2,
"Join_Eng_gene_bootstrapOnto_gene".gene_references AS references_1,
"Join_Eng_gene_graingenes_gene".reference_title AS references_2
from "Join_Eng_gene_graingenes_gene" full outer join
"Join_Eng_gene_bootstrapOnto_gene"
on ((("Join_Eng_gene_bootstrapOnto_gene".name) =
("Join_Eng_gene_graingenes_gene".name)))
full outer join "Join_Eng_gene_gramene_gene"
on ((("Join_Eng_gene_gramene_gene".name) =
("Join_Eng_gene_graingenes_gene".name))
OR (("Join_Eng_gene_gramene_gene".name) =
("Join_Eng_gene_bootstrapOnto_gene".name)))

3.3 Query on Multiple Global Classes

Another example of query can be seen in Fig.8. The picture shows a query on
multiple Global Classes. In particular this query retrieves all the genes, chro-
mosome, position of the gene and the marker for that particular gene for the
Triticum species. This query is performed on two Global Classes, gene and
marker-for-gene.

Fig. 8. A query on multiple Global Classes of the CEREALAB Global Virtual View



924 S. Bergamaschi and A. Sala

First, the query is decomposed into two queries on the single Global Classes:

Single Class Query_1 (JoinEngine JE001) :
select g.name , g.chromosome , g.position from gene as g
where (name like ’%triticum%’ )

Single Class Query_2 (JoinEngine JE002) :
select m.gene_name from marker_for_gene as m

Each query is then further decomposed and rewritten as an equivalent set of
queries expressed on the local sources.

Source "bootstrapOnto"
Query on Local Interface "bootstrapOnto.gene":
SELECT gene.name
FROM gene
WHERE (name) like (’%triticum%’)

Source "gramene"
Query on Local Interface "gramene.gene":
SELECT gene.name
FROM gene
WHERE (name) like (’%triticum%’)

Source "graingenes"
Query on Local Interface "graingenes.gene":
SELECT gene.locus, gene.name, gene.chromosome
FROM gene WHERE (name) like (’%triticum%’)

Source "bootstrapOnto"
Query on Local Interface "bootstrapOnto.marker_for_gene":
SELECT marker_for_gene.gene_name
FROM marker_for_gene

Finally, the results of the Local Queries execution are then fused together
according to the residual clause:

select g.name , g.chromosome , g.position ,
m.gene_name from gene as g , marker_for_gene as m
where (g.name = m.gene_name )

4 Summary and Discussions

We described the design and realization of the CEREALAB database, a support
for the research activity about cereal cultivars. This database has been developed
as a Virtual View of two existing web databases, Gramene and Graingenes, in-
tegrated with another relation source designed to store the information achieved



Virtual Integration of Existing Web Databases for the Genotypic Selection 925

by the research group of the CEREALAB project. The CEREALAB database
integrates information from existing databases according to a common ontology
providing a unique interface to query different sources.

A possible improvement of the usage of the MOMIS system in this domain
would be the use of existing biological ontologies, for example the Open Biologi-
cal Ontologies (OBO) (www.obo.org), as an ontological support to perform the
integration process. The primary area related to our work is the area of hetero-
geneous information integration. Many projects based on mediator architectures
have been developed [19], [15], [13] . In this paper we described the application of
the MOMIS system for both integrating data sources concerning the molecular
biology domain and giving the possibility to querying them. The result of this
work is the creation of a virtual database for the genotypic selection of cereal
cultivars.

A completely different approach that can be promising in the biology domain
is presented in [20], where the dynamic query translation task is addressed. The
idea is to develop a light-weight domain based form assistant which can handle
alternative sources in the same domain to help the user query across dinamically
selected web sources. This approach is completely different from our system as
it just suggests a possible translation of the user’s query for different web data
source, while MOMIS performs information integration and provides a unique
interface to query multiple sources.

References

1. Ananthakrishna, R., Chaudhuri, S., & Ganti, V. , “Eliminating fuzzy duplicates in
data warehouses”, In VLDB Conference, (pp. 586597) (2002).

2. S. Bergamaschi, S. Castano, D. Beneventano, M. Vincini: “Semantic Integration of
Heterogeneous Information Sources”, Special Issue on Intelligent Information Inte-
gration, Data & Knowledge Engineering, Vol. 36, Num. 1, Pages 215-249, Elsevier
Science B.V. 2001.

3. R. Benassi, S. Bergamaschi, A. Fergnani, D. Miselli: “Extending a Lexicon On-
tology for Intelligent Information Integration”, European Conference on Artificial
Intelligence (ECAI2004). Valencia, Spain, 22-27 August 2004.

4. D. Beneventano, S. Bergamaschi, C. Sartori, M. Vincini “ODB-QOptimizer: a tool
for semantic query optimization in OODB”. ICDE’97, UK, April 1997.

5. D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini: “The MOMIS approach to
Information Integration”, IEEE and AAAI International Conference on Enterprise
Information Systems (ICEIS01), Setbal, Portugal, 7-10 July, 2001.

6. D. Beneventano, S. Bergamaschi, F. Guerra, M. Vincini: “Synthesizing an Inte-
grated Ontology”. IEEE Internet Computing 7(5): 42-51 (2003).

7. D. Beneventano, S. Bergamaschi, C. Sartori: “Description Logics for Semantic
Query Optimization in Object-Oriented Database Systems”, ACM Transaction
on Database Systems, Volume 28: 1-50 (2003).

8. D.Beneventano, S.Bergamaschi:“Semantic Search Engines based on Data Integra-
tion Systems”. In Semantic Web: Theory, Tools and Applicantions (Ed. Jorge Car-
doso), Idea Group Publishing, May 2006

9. R. G. G. Cattell, Douglas K. Barry: “The Object Data Standard: ODMG 3.0”
Morgan Kaufmann 2000.

(www.obo.org)


926 S. Bergamaschi and A. Sala

10. Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. . “Robust and efficient
fuzzy match for online data cleaning”. In ACM SIGMOD Conference (pp. 313324)
(2003).

11. C. A. Galindo-Legaria, “Outerjoins as Disjunctions”. SIGMOD Conference 1994,
348-358.

12. A. Halevy, A. Y. Halevy. “Answering queries using views: A survey”. Very Large
Database J., 10(4):270-294, 2001.

13. C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. Ullman,
M. Valiveti. “Capability Based Mediation in TSIMMIS”, SIGMOD 98, Seattle,
June 1998.

14. A.G. Miller. “A lexical database for English”. Communications of the ACM,
38(11):39:41,1995.

15. R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan, C. T. H. Ho, L. Popa, and R.
Fagin, “The Clio project: managing heterogeneity”, ACM SIGMOD Record 30, 1
(March 2001), pp. 78-83.

16. F. Naumann, M. Haussler: “Declarative Data Merging with Conflict Resolution”.
International Conference on Information Quality (IQ 2002). 2002, pages 212-224.

17. A. Rajaraman , J. D. Ullman: “Integrating Information by Outerjoins and Full
Disjunctions”. PODS 1996, pages 238-248.

18. Tejada, S., Knoblock, C. A., & Minton, S. , “Learning object identification rules
for information integration”, Inf. Syst., 26 (8), 607633 (2001).

19. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, “Data-driven understanding and
refinement of schema mappings”, Proc. 2001 ACM SIGMOD Conference (SIGMOD
’01), pp. 485-496.

20. Zhen Zhang, Bin He, Kevin Chen-Chuan Chang: Light-weight Domain-based Form
Assistant: Querying Web Databases On the Fly. VLDB 2005: 97-108



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 927 – 940, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SMOP: A Semantic Web and Service Driven Information 
Gathering Environment for Mobile Platforms 

Özgür Gümüs1, Geylani Kardas2, Oguz Dikenelli1, Riza Cenk Erdur1, and Ata Önal1 

1 Ege University, Department of Computer Engineering, Bornova, 35100 Izmir, Turkey 
{ozgur.gumus, oguz.dikenelli, cenk.erdur, ata.onal}@ege.edu.tr 

2 Ege University, International Computer Institute, Bornova, 35100 Izmir, Turkey 
geylani.kardas@ege.edu.tr 

Abstract. In this paper, we introduce a mobile services environment, namely 
SMOP, in which semantic web based service capability matching and location-
aware information gathering are both used to develop mobile applications. 
Domain independency and support on semantic matching in mobile service 
capabilities are the innovative features of the proposed environment. Built-in 
semantic matching engine of the environment provides the addition of new 
service domain ontologies which is critical in terms of system extensibility. 
Therefore the environment is generic in terms of developing various mobile 
applications and provides most relevant services for mobile users by applying 
semantic capability matching in service lookups. GPS (Global Positioning 
System) and map service utilization cause to find near services in addition to 
capability relevancy. The software architecture and system extensibility support 
of the environment are discussed in the paper. The real life implementation of 
the environment for the estate domain is also given as a case study in the 
evaluation section of the paper. 

1   Introduction 

Location aware and personal interest based information gathering from mobile 
devices is very active application and research area. Different experimental 
applications with such capabilities have been introduced in the literature [1] [2] [3]. 
From our perspective, one of the most critical problems of such applications is the 
extensibility of the software architecture. In our context, extensibility of the 
architecture describes domain independency: the addition of the new service domains 
to the running mobile application. 

In this paper, we will introduce a software environment to develop location aware 
and semantic web based mobile information gathering applications. From now on, we 
will call this environment as SMOP (A Semantic Web and Service Driven 
Information Gathering Environment for Mobile Platforms). The innovative feature of 
SMOP is the use of a semantic matching engine which can identify semantically 
related knowledge, based on user queries. This semantic matching engine supports the 
addition of new service domain ontologies and this capability is critical in terms of 
domain independency. Moreover, service oriented infrastructure of SMOP further 



928 Ö. Gümüs et al. 

contributes to the extensibility, since it is possible to introduce new services without 
affecting the core of the architecture. 

The paper is organized as follows: Section 2 introduces the system overview and 
architecture of the environment. System extensibility from domain independency 
perspective is discussed in section 3. Section 4 gives an example case study and 
evaluates the environment while a new domain is added to the system. Section 5 gives 
an overview of related works in the literature and compares SMOP with those works. 
Conclusion and future work are given in section 6. 

2   System Overview 

2.1   General Architecture 

SMOP has a three tiered architecture. Mobile client, the server side and platform web 
services exist in the corresponding tiers. The components of each tier and interactions 
between those components are shown in Fig. 1. Each tier will be discussed in more 
detail in the following subsections. 

2.2   Mobile Client 

The client side is responsible for getting the GPS data, providing the interface for 
specifying the user requests and displaying the results, sending the requests to the 
server in XML format and parsing the results received in XML format. 

The “GPS Data Parser” component is responsible for parsing the location data 
retrieved from the internal or external GPS receiver. To get the most current position 
of the client/user, it reads periodically raw GPS data, parses it and gets the Latitude 
and Longitude coordinates of the client/user. 

Dynamic creation of visual interfaces at run-time is the responsibility of the “User 
Interface Generator” component. User screens are usually limited in mobile devices; 
hence, the user interfaces created are not so complex. The primary user interface 
window provides view of all data received along with user-selectable menu choices 
for controlling the application. When the mobile client connects to the server at first 
time, the domain names which are added to the platform up to that time are retrieved 
and shown to the user by the “User Interface Generator”. Then, user selects a domain 
and the XML files containing the concepts belonging to selected domain’s ontology 
are transferred from the server. After that, the transferred XML files are parsed and a 
visual interface is created to let the user specify his/her choices. Hence, a user 
interface where users can specify their choices is created independently at run-time 
for each different domain by the “User Interface Generator”. In fact, the ontologies 
are represented in Web Ontology Language (OWL) in the knowledgebase of the 
Semantic Matching Service (SMS). However, since mobile devices are resource 
limited, we simplified and represented these ontologies in simple XML format to 
make the parsing process efficient in the mobile device. Otherwise, the mobile device 
should execute the code necessary to parse OWL documents. When the results of 
semantic match query are returned, the “User Interface Generator” lists the found 
domain instances and shows detailed information about these instances. User may 
 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 929 

Mobile Client

Server

SMS Interface

Servlet Container

Semantic Matching Service Servlet Map Service Servlet

MS Interface

Platform Web Services

Semantic Matching Service Map Service

XML Message
Generator XML Parser

GPS Data
Parser

User Interface
Generator

Semantic Match Query / D
omain Query Map Query

Se
ria

liz
ed

 M
ap

 F
ile

Raw GPS Data

Location Info
Selected Domain /

User Choices /
Map Request

Domain Concepts /
Match Results /

Map

SOAP Message Handler SOAP Message Handler

Matching Engine

Reasoner
Domain
Instances

Knowledgebase Domain
Ontologies

M
at

ch
 Q

ue
ry

M
ap

 R
eq

ue
st

M
at

ch
 R

es
po

ns
e

M
ap

 R
es

po
ns

e
Map Finder

Geographic Information System

Match Response / XML Encoded Domain Concepts

GPS Receiver

 

Fig. 1. SMOP’s three tiered architecture 

want to see one of those instances on the map. In this case, the “User Interface 
Generator” shows the map which is provided by the Map Service (MS) on the screen. 

We preferred the requests and results to be transmitted in XML format, since it is a 
well-known web standard. So, the “XML Message Generator” component of the 
mobile client converts the (1) request of selected domain concepts, (2) request of 
semantic match according to user choices and (3) request of a map into the XML 
format. It also inserts the GPS location data of the client/user into last two requests. 
Then, it sends the requests in XML format to the server using a GPRS Http network 
connection. 

The “XML Parser” component parses the XML response document received from 
the server. So, depending on the given request, this XML document may include (1) 
concepts of a selected domain or (2) domain instances satisfying user choices in the 
form of a collection or (3) a serialized map showing one of found instances. Mobile 
devices have a limited memory. For this reason, the “XML Parser” component has 
been designed to be small and light. The pull parser technique, in which the software 
drives the parsing, has been used. In this technique, only some part of a XML 



930 Ö. Gümüs et al. 

document is read at once; hence, it does not need a large memory size. The 
application drives the parser through the document by repeatedly requesting the next 
piece. Our mobile client can process and display information as it is parsed after being 
downloaded from the server. In this case the “XML Parser” component basically 
iterates over the XML tree and finds the items. The parsed data is then passed to the 
“User Interface Generator” component to be printed on the screen of the mobile 
device. 

2.3   The Server 

The server side has the components that are responsible for meeting the client 
requests, fulfilling these requests via web services and returning the results to the 
client: servlet components interact with the client, interface components interact with 
web services and corresponding servlet and interface components interact with each 
other.  

The “SMS Servlet” component takes the XML encoded match request, 
decomposes it and prepares the inputs of the SMS. These inputs are the domain 
concept (including its some properties that are chosen by the user) to be discovered 
and the required “degree of match” value. They are sent to the “SMS Interface” 
component. This component invokes the SMS and sends the outputs to the 
corresponding servlet. These outputs are the discovered domain instances that are 
matched with request sorted by the “degree of match” values. The “SMS Servlet” 
takes these instances, re-sorts the ones which have equivalent “degree of match” value 
according to distance to the client/user using the GPS location data and finally it 
inserts them into a collection. It then converts this collection into an XML message 
and sends the formed XML message to the client as an Http response. 

The “MS Servlet” and “MS Interface” components work similar to the 
corresponding SMS components explained above. But, the inputs of the MS are the 
GPS location data of the mobile client/user and the instance that will be shown on the 
map. The “MS Servlet” takes the returned map from the “MS Interface” and serializes 
it into an XML message and sends it to the client. 

2.4   Platform Services 

2.4.1   Semantic Matching Service 
The basic idea behind the matching process is to find the advertised concepts that are 
identical to the requested one. However, the advertised and requested concepts can be 
semantically related with each other but are not directly identical. In this case, a 
semantic matching process is required. Semantic matching process is a matching 
process that can identify the semantic relationships between the advertised and 
requested concepts. SMS executes this process. It has a registry to keep records of 
knowledge about advertised domain instances. It can be searched for the semantically 
most suitable instances using specific domain concepts. 

The “Domain Instances Knowledgebase” component stores the instances of all 
domains. In this study, we have defined an abstract concept named as Domain. To add 
a new domain to the platform, a new concept that is specific type of Domain is 
defined. This new domain concept has its own data type properties and object type 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 931 

properties. Instances of this concept are created using different predefined domain 
ontologies for the object type properties and stored in the knowledgebase. 

The “Matching Engine” component realizes matching of requested domain concept 
with advertised domain instances and produces the list of suitable instances sorted by 
“degree of match” values. It uses the “Reasoner” component to determine 
subsumption relation between ontological concepts. It uses an algorithm similar to 
one that is especially for discovery of semantic web services proposed in Paolucci et 
al’s study [6] and it has explained in detail in our previous work [7]. 

2.4.2   Map Service 
MS provides a satellite map enclosing specified locations in an area. The “Geographic 
Information System” (GIS) component is a software package named as Mapxtreme 
Java Edition of Mapinfo Corporation. It stores the information about geographic 
objects on the earth including their attributes, positions and shapes. It provides an API 
named MapJ to form a map image and make some operations and analysis on this 
image. The “Map Finder” component interacts with the GIS using this API. It sends 
the position of objects that must be enclosed in the map. GIS forms a map image on 
which the given objects (in this case the client and selected domain instance) are 
marked, and returns it to the “Map Finder” in binary format. 

3   System Extensibility from Domain Independency Perspective 

SMOP provides a mobile services environment in which capabilities of both semantic 
web and location-aware information gathering are utilized to develop mobile 
applications for various business domains. Considering system extensibility aspect, 
domain independency support is an important feature and should be provided within 
the platform via software reusability. In this section, domain independency support in 
SMOP is discussed. 

When service capability matching is required for a new domain, it is enough to 
initialize knowledgebase of the internal semantic service matching engine of the 
platform with this new domain ontology without any need of software architecture 
modification. Only domain concept and related semantic service capability 
advertisement ontologies are needed to be added into the knowledgebase of the 
engine. Communication between the engine and the outer environment is realized 
over standard OWL messages: Match requests and responses are composed of RDF 
(Resource Description Framework) triples. Hence, change in domain only effects the 
communication content, neither structure nor software architecture. More about the 
internal execution and capability matching algorithm of our matching engine are 
beyond the scope of this paper. However, they have been discussed in [7] and [8]. 

Taking into consideration of Model-View-Controller system pattern [9] 
decomposition of the SMOP’s architecture; it can be said that domain ontology and 
related knowledgebase represent model, mobile GUI components residing on cell 
phones represent view and finally servlet container and related web services stand for 
the controller layer within the system. We applied an abstract domain model into the 
controller layer of the SMOP to support various business domains without any code 
modification (Fig. 2). 



932 Ö. Gümüs et al. 

Estate

type : String
agentName : String
area : Double
telephone : String
forSale : Boolean
forRent : Boolean
salePrice : Currency
rentPrice : Currency

Estate()

EatingPlace

name : String
telephone : String
openingHours : String
smoking : Boolean
parkingArea : Boolean
gameArea : Boolean

EatingPlace()

ServletListener

domain : Domain
docBuilder : DocumentBuilder
matcher : SemanticMatcher

init()
doGet()
doPost()

DomainFactory

createDomain()

Domain

address : String
gpsLatitude : Double
gpsLongitude : Double
distance : Double
matchDegree : Integer

createDomainInstance()
createSemanticMatchRequest()
sendResult()
getOWLFileName()

usescreates

 

Fig. 2. Domain model of the SMOP to support extensibility in domain perspective 

Domain is an abstract class which is extended by domain dependent wrapper 
classes to utilize the SMOP for new domains. For example, in Fig. 2, two subclasses 
of the Domain are given: Estate and EatingPlace. Estate is used for a “Real Estate 
Discovery System” in which mobile clients may search for geographically near real 
estates those match with clients’ preferences – semantically appropriate with client’s 
needs. On the other hand, EatingPlace instances represent eating places (like 
restaurants, cafes, patisseries, etc.) within an “Eating Place Discovery and 
Reservation” system in which semantic matching of eating place services with mobile 
clients’ eating preferences is realized. 

Apparently, it is enough to write such domain-dependent wrapper classes 
(subclasses of Domain) when a new domain is needed to be added into SMOP-based 
environment. Three abstract methods of Domain, called 
createSemanticMatchRequest, createDomainInstance and sendResult should be 
implemented within wrappers to handle domain knowledge. 

createSemanticMatchRequest method receives related domain instance and domain 
type as input and returns its semantic match request counterpart which is processed by 
the engine during semantic match process. For example, eating place preferences of a 
mobile client are encapsulated within an EatingPlace object in a system. By calling 
this object’s createSemanticMatchRequest method, controller servlet retrieves those 
preferences in RDF triples to form service match request and hence, they are 
compared with the advertised service capabilities by the built-in semantic matching 
engine. 

Implementation of the createDomainInstance provides reverse information flow 
inside the system. As it is discussed in the architecture section, SMOP’s semantic 
service capability matching engine –called Semantic Matching Engine- returns 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 933 

semantic match results in a collection of SemanticMatchResult objects. Those objects 
store matched service advertisements as OWL individuals with their match degrees 
and GPS data. Those ontological result properties should be converted into the 
domain-specific attributes of the wrapper class. So, they can be processed by 
controller servlets and transferred into the mobile clients. This match result – domain 
class conversion is realized by calling createDomainInstance method of the related 
domain object. 

sendResult method implementation provides transmission of domain instance 
content into mobile clients in XML format. Controller servlet sends those XML 
representations of the semantic query results to the view components of SMOP 
residing on the mobile phone. Those software components also don’t need to be re-
written in case of a domain change. Because, as it is mentioned in the previous 
section, “User Interface Generator” module of the mobile software initially retrieves 
concepts belonging to a specific domain’s ontology from controller servlet also as 
XML data –they are not hard coded in GUI components- and it dynamically creates 
the visual interface. During semantic query communication, SMOP’s mobile GUI 
components only need to parse received XML data and print out the content into the 
phone’s screen in appropriate to the domain’s desired format. 

On the other hand, the constructor method of the wrapper class should be 
implemented in a way that attributes are set with the values which are retrieved from 
request XML document. This request document is received from the mobile client. 

Runtime employment of wrapper classes is realized by applying Factory creational 
design pattern [10]. Initially, DomainFactory processes a document in which various 
domain definitions are specified and it creates desired domain-related class instance to 
be used within the controller servlet during system interactions. Notice that 
application of the Factory pattern and Domain class abstraction in software design 
provide the representation and use of the above mentioned domain-related wrapper 
classes in the system in a completely domain independent way; because wrappers are 
always referenced over their superclass (Domain) inside the software. 

4   Case Study and Evaluation 

As a case study, a mobile services application for the real estate domain has been 
designed and deployed on SMOP. In order to realize such an application environment, 
we have first defined a concept named as “Estate” to advertise the places for sale 
and/or rent to the internal matching engine of the SMS. One of the properties of this 
concept is the “type” which takes value from an OWL ontology shown in Fig. 3. This 
property is used during semantic matching process to find out semantically related 
real estates with user’s request. The other critical properties are “for sale” and “for 
rent” to define a real estate is for sale, for rent or both. These properties are the 
additional options that users can specify in addition to real estate type. “GPS latitude” 
and “GPS longitude” properties define the geographic position of the advertised real 
estate. The other properties are address, area, sale price, rent price, agent name and 
telephone. 



934 Ö. Gümüs et al. 

 

Fig. 3. An example Real Estate Type ontology to show the taxonomy of instances in a domain 

We mapped a simplified version of Real Estate Type ontology to XML format and 
stored in the server. We also prepare an XML document representing of “for sale” and 
“for rent” properties of “Estate” concept and possible values of these properties. So, 
whenever the real estate domain is selected, these XML files are transferred to the 
mobile device for the creation of the visual interfaces at run-time. The XML 
document corresponding to the Real Estate Type ontology given in Fig. 3, is shown 
below: 

<level1 type="Real Estate"> 
   <level2 type="Residence"> 
      <level3 type="House"> 
         <level4 type="Winter House"/> 
         <level4 type="Summer House"/> 
      </level3> 
      <level3 type="Apartment"/> 
   </level2> 
   <level2 type="Building Land"/> 
   <level2 type="Building"/> 
   <level2 type="Office"> 
      <level3 type="Bureau"/> 
      <level3 type="Shop"/> 
   </level2> 
</level1> 

For a test scenario, we have created six instances of real estate concept and 
advertised to the SMS. Some important properties of these instances are shown in 
Table 1. Notice that, “type” property takes value from predefined Real Estate Type 
ontology. 

Table 1. Instances of “Estate” concept that are advertised to SMS 

No Agent Name Type For Sale For Rent 
1 Green House Building Yes Yes 
2 Homecity SummerHouse No Yes 
3 House&House House Yes No 
4 RE/MAXX WinterHouse No Yes 
5 RE/MAXX Office No Yes 
6 RE/MAXX House Yes Yes 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 935 

Mobile client components of the application software have been deployed on a 
Siemens SXG75 cell phone with built-in GPS receiver and Java 2 Micro Edition 
(J2ME) 1.1, Mobile Information Device Profile (MIDP) 2.0 and Connected Limited 
Device Configuration (CLDC) 1.1 support. 

When the client application on mobile phone is started by the user, first of all, it 
connects to the server and gets the available service domains. Let us assume that the 
user selected the real estate domain, then following the taxonomy of real estate types 
within this domain, he/she selected House concept to find instances of this concept. 
And he/she also specifies that he/she seeks real estates for rent. Screen snapshots 
showing user’s selection of his/her request are given in Fig. 4. 

 

Fig. 4. Screen snapshots showing user’s selection of his/her request 

After user completes his/her request, the House concept, additional choices about 
the requested real estate and the position of the user are sent to the server. So, 
corresponding request XML document is shown below: 

<request> 
   <type>House</type> 
   <forRent>Yes</forRent> 
   <forSale>Unspecified</forSale> 
   <gpsData> 
      <latitude>22.333E</latitude> 
      <longitude>52.444N</longitude> 
   </gpsData> 
</request> 

Default value of “degree of match” parameter is given as subsumes. So, the server 
invokes the SMS with the given request. The SMS performs semantic matching in the 
following way: it excludes the first and fifth instances because their “degree of 
match” values are fail. It also excludes the third one because it isn’t for rent. The sixth 
one has the exact “degree of match” value and second and fourth instances have the 
subsumes “degree of match” values. So, the SMS returns the matched real estate 
instances with their “degree of match” values in the following order: sixth, second, 
and fourth. 

After the server receives match results from the SMS, it performs another sort 
operation on semantically equal match results regarding their distances to the user. 



936 Ö. Gümüs et al. 

Although the second and fourth ones have the same “degree of match” values, the 
fourth one is closer than the second to the user. Hence, final list contains match results 
in the following order: sixth, fourth, second. Finally, the server creates an XML 
document that includes resultant domain instances and sends it to the mobile client. 
As an example, a part of the result XML document is shown below: 

<matchResults> 
   <result> 
      <type>House</type> 
      <degreeOfMatch>EXACT</degreeOfMatch> 
      <distanceToClient>0,724km</distanceToClient> 
      <agentName>RE/MAXX</agentName> 
      <address>Bornova Street 1</address> 
      <tel>2154585</tel> 
      <forRent>Yes</forRent> 
      <forSale>Yes</forSale> 
      <area>200</area> 
      <rentPrice>350€€ </rentPrice> 
      <salePrice>25000€€ </salePrice> 
      <gpsData> 
         <latitude>27.229E</latitude> 
         <longitude>38.455N</longitude> 
      </gpsData> 
   </result> 
   <result> 
      ... 
   </result> 
   ... 
</matchResults> 

The mobile device parses result XML document and creates a visual interface to 
show returned real estates to the user. The user can select one of the real estates from 
the list of match results to see detailed information about it. Snapshots showing list of 
match results and details of first two matched real estates are given in Fig. 5. 

 

Fig. 5. Snapshots showing list of match results and details of first two matched real estates 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 937 

The user may choose to see a satellite map which shows one of these locations’ 
and his/her geographic position. In this case, the GPS data of both user and the real 
estate are sent to the server in XML format. As an example, corresponding XML 
document for the first result is shown below: 

<locations> 
   <user> 
      <gpsData> 
         <latitude>22.333E</latitude> 
         <longitude>52.444N</longitude> 
      </gpsData> 
   </user> 
   <domain instance> 
      <gpsData> 
         <latitude>27.229E</latitude> 
         <longitude>38.455N</longitude> 
      </gpsData> 
   </domain instance> 
</locations> 

The server takes this XML document and invokes the MS. The MS marks the user 
and the real estate with different colors (blue for the user and red for the real estate) 
on a satellite map using its GIS. Then, this map is received by the mobile client 
through the server in binary format. Screen snapshot showing a satellite map 
enclosing first one of the matched real estates and the user is given in Fig. 6. 

 

Fig. 6. Screen snapshot showing a satellite map enclosing first one of the matched real estates 
and the user. The blue point on the map marks current position of the mobile user while red 
point represents position of the real estate. 

To demonstrate domain independency feature of SMOP, we have added a new 
domain, called eating place, to the above application environment. We didn’t need to 



938 Ö. Gümüs et al. 

change mobile client and platform web services tiers as we expected. On the other 
hand, we have naturally designed concept ontology of this new domain, added 
corresponding domain individuals into the SMS knowledgebase and prepared XML 
documents representing concepts of the domain ontology. Notice that, the wrapper 
class stands for this new domain has also been implemented by extending Domain 
abstract class as discussed in section 3. Hence the mobile client could interact with the 
SMS by means of this wrapper. Upon completion of above preparations, we examined 
that the environment successfully provides semantic web based information gathering 
on both domains for mobile clients. 

5   Related Work 

In the pervasive computing literature there are studies to develop software 
environments for location aware and context aware application development. Below, 
we will summarize some of these studies by comparing them with our system so that 
we can show in what ways SMOP is different from them. 

Hessling et al. [1] devised an application, where the semantic user profiles which 
are stored in the mobile devices are matched against the semantic services 
broadcasted by stations. When the users with their mobile devices enter the range of a 
station, the station’s services are matched against the semantic user profiles. Although 
the algorithm of how the user profiles are matched semantically is not given in detail 
in their paper, from the semantic matching point of view, the work of Hessling et al. 
[1] can be considered as the nearest one to our study. As we mentioned above, our 
aim is not to discover services, but to search the predefined semantic knowledge using 
semantic matching techniques so that mobile users can get the most relevant results 
for their queries. In addition, we focus on the extensibility of the architecture which is 
not considered in work of Hessling et al. 

The Agents2Go [2] is an agent based distributed system that allows the creation of 
location dependent and service-based information systems. Although the proposed 
agent based architecture may allow the generation of new location dependent 
information systems, the extensibility perspective is not clear and not discussed in the 
paper. Also, a semantic matching engine, which makes it possible to extend the 
architecture by adding new service ontologies at run time, is not considered in 
Agents2Go. 

Intelligent Computing group in University College Dublin developed some 
location dependent and context aware mobile applications like Gulliver’s Genie [3] 
based on their Agent Factory framework. Their focus is in application development in 
space limited mobile devices and they have proposed an approach called as 
collaborative agent tuning [4] to incrementally develop such applications. Although 
Agent Factory framework and ACCESS context aware infrastructure [5] provide the 
necessary software architecture to implement agent based location dependent 
applications, extensibility in terms of adding new service domains at run time is not 
the focus of their works. 

On the other hand, there are many classical location-based information search 
services in mobile environments commercialized by GSM operators. For example, 



 SMOP: A Semantic Web and Service Driven Information Gathering Environment 939 

there are systems where users with mobile phones can be directed to the nearest local 
restaurants, shops, etc. These systems can be considered as standard information 
search services for mobile users. There are two features, which make SMOP different 
from them. The first feature is being domain independent based on an extensible 
software architecture. Supporting semantic matching is the second feature where the 
system that we have developed differs from them. Using semantic matching, a result 
list ranked by the degree of semantic match can be presented to the user in response to 
his/her request so that he/she can have the option of accessing to the most 
semantically related information. So, we take the previous works one step further by 
integrating semantic matching capability into the information gathering process in 
pervasive environments and by modeling the system in a way that it supports domain 
independency. 

6   Conclusion and Future Work 

We have introduced a mobile services environment in which semantic web based 
service capability matching and location-aware information gathering are used to 
develop mobile applications. The proposed architecture has been fully implemented 
and tested for different service domains. 

The environment is adaptive for various mobile applications due to its domain 
independency and provides most relevant services for mobile users by applying 
semantic capability matching in service lookups. GPS and map service utilization 
cause to find near services in addition to capability relevancy and hence we believe 
this increases quality of the mobile services. 

We currently work on to integrate mobile service execution into the environment. 
The system in use provides an enhanced service information gathering. However, 
invocation of remote services - except semantic service discovery and map services - 
by the mobile clients is not currently supported. Our aim is to provide an ultimate 
mobile services system in which semantic service discovery and execution are both 
fulfilled. In such a system, for example, a mobile client may first choose a relevant 
restaurant service and then reserve a table at this restaurant by only using his/her cell 
phone; or considering the real estate system given in this paper, the user may also 
arrange a meeting with the related estate agent after determination of the semantically 
most suitable and nearby estate. 

Acknowledgements 

We would like to thank members of Mobile Software Development Group in Ege 
University Computer Engineering Department (Seymen Ersen Diraman, Mehmet 
Niziplioglu, Oguz Karakus, Serkan Kaba, Murat Colak and Salim Asan) for their 
great effort in this study. 

This study is partially funded by Ege University Scientific Research Projects 
Directorate with the project number 2003MUH039. 



940 Ö. Gümüs et al. 

References 

1. Hessling, A., Kleemann, T., Sinner, A.: Semantic User Profiles and their Applications in a 
Mobile Environment, In the Proc. of Artificial Intelligence in Mobile Systems 2004 
(AIMS’04) In conjunction with UbiComp 2004, Nottingham, UK (2004) 

2. Ratsiomor, O., Korolev, V., Joshi, A., Finin, T.: Agents2Go: An Infrastructure for 
Location-Dependent Service Discovery in the Mobile Electronic Commerce Environment, 
In ACM Mobile Commerce Workshop 2001, available at: 
http://research.ebiquity.org/v2.1/papers. 

3. O'Grady, M. J., O'Hare, G. M. P., Sas, C.: Mobile agents for mobile tourists: a user 
evaluation of Gulliver's Genie, Interacting with Computers 17(4): 343-366 (2005) 

4. Muldoon, C., O'Hare, G. M. P., O'Grady, M. J.: Collaborative Agent Tuning, ESAW’05, 
Kusadasi, Turkey (2005) 

5. Muldoon, C., O'Hare, G. M. P., Phelan, D., Strahan, R., Collier, R. W.: ACCESS: An 
Agent Architecture for Ubiquitous Service Delivery, CIA 2003, pp. 1-15 (2003) 

6. Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Semantic Matching of Web 
Services Capabilities, In the proc. of the first international semantic web conference 
(ISWC), Sardinia, Italy (2002) 

7. Erdur, R. C., Dikeneli, O., Önal, A., Gümüs, Ö., Kardas, G., Bayrak, Ö., Tetik, Y. E.: "A 
Pervasive Environment for Location-Aware and Semantic Matching Based Information 
Gathering", Computer and Information Sciences - ISCIS 2005, Lecture Notes in Computer 
Science, Springer-Verlag, Vol. 3733, pp. 352-361 (2005) 

8. Kardas, G., Gümüs, Ö., Dikeneli, O.: "Applying Semantic Capability Matching into 
Directory Service Structures of Multi Agent Systems", Computer and Information 
Sciences - ISCIS 2005, Lecture Notes in Computer Science, Springer-Verlag, Vol. 3733, 
pp. 452-461 (2005) 

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad P., Stal, M.: “Pattern-Oriented 
Software Architecture, Volume 1: A System of Patterns”, John Wiley & Son Ltd, New 
York USA (1996) 

10. Gamma, E., Helm, R., Johnson R., Vlissides, J.: “Design Patterns - Elements of Reusable 
Object-Oriented Software”, Addison-Wesley, Massachusetts USA (1994) 



Integrating Data from the Web by Machine-Learning
Tree-Pattern Queries

Benjamin Habegger1 and Denis Debarbieux2

1 Dipartimento di Informatica e Sistemistica
Università di Roma 1 – “La Sapienza” – 00198 Roma, Italy

habegger@dis.uniroma1.it
2 LIFL, UMR 8022 CNRS, Lille University (France)

Mostrare project, RU INRIA Futurs
denis.debarbieux@lifl.fr

Abstract. Effienct and reliable integration of web data requires building pro-
grams called wrappers. Hand writting wrappers is tedious and error prone. Con-
stant changes in the web, also implies that wrappers need to be constantly refac-
tored. Machine learning has proven to be useful, but current techniques are either
limited in expressivity, require non-intuitive user interaction or do not allow for n-
ary extraction. We study using tree-patterns as an n-ary extraction language and
propose an algorithm learning such queries. It calculates the most information-
conservative tree-pattern which is a generalization of two input trees. A notable
aspect is that the approach allows to learn queries containing both child and de-
scendant relationships between nodes. More importantly, the proposed approach
does not require any labeling other than the data which the user effectively wants
to extract. The experiments reported show the effectiveness of the approach.

1 Introduction

Providing an automated access to web data requires building wrappers. This is know to
be both tedious and error prone. Past research on semi-automated wrapper construction
[5,8,2,11,6]) has mostly used string representations for both documents and learned
patterns [7,9,5]. Other work (eg. Stalker), only learn unary patterns. Composing unary
pattern can lead to n-ary extraction, but by requiring non evident extra user input. Our
goal is to limit user input to examples of his target relation. In this context, existing
work have only proven to be efficient in extracting tabular data. Much data on the web
does not follow a tabular format. The natural tree structure of web documents can be
used. This work is among the first using machine learning for information extraction
explicitly using a tree-based document representation [2,8].

Tree patterns allow to directly express n-ary queries and, being closely related to
the widely used XPath [12] language, are more easily readable by human users than
other formalisms (eg. tree transducers). How tree patterns are defined has important
consequences on matching and learning efficiency as well as expressivity. We propose
a weight-based algorithm capable of generating a tree pattern in different settings. We
particularly study ordered and unordered injective tree patterns in which child and de-
scendant relationships can be expressed and propose an algorithm capable of learning

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 941–948, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



942 B. Habegger and D. Debarbieux

such patterns. Given two ordered tree representations of documents, we propose an al-
gorithm computing a tree pattern which is maximal w.r.t. our weighting. Learning an
ordered or unordered pattern is left to the user. Both cases are handled similarly and
only require local adaptations. Here, we only consider patterns with injective.

Computer

Information

Price

300

Address

New York

Computer

Information

Total

288

Location

Paris

Computer

Information

Details

Address

Shanghai

Price

170

t1 t2 t3

11

12

13 14

21

22

23 24

31

32

33

34 35

Computer

Information

∗ ∗
P A

Computer

∗

Address Price
A P

Computer

Information

Address Price
P A

41

42

43

51

52

53 54

61

62

63 6444

p>
1

>

p2 p3

Fig. 1. Example trees and patterns

In figure 1, t1, t2 and t3
represent a set of XML doc-
uments from which we wish
to extract (price, address)
pairs ((P,A) for short). The
ordered tree pattern p>

1 ex-
tracts a couple (P,A) if P
and A are two children of
the same node and such that
P is found before A in-
dependently of their labels.
The relative positions allow
to determine to which at-
tribute the extracted values
belong. However, p>

1 is not
adapted to extract informa-
tion from tree t3 address
and price are inversed. Un-
ordered tree patterns, such

as p1 and p2 (a double line represents a descendant edge) allow to correctly extract
from t1 and t3. To distinguish them we define a weighting over tree patterns based on
three parameters : the number of labels, descendant edges and child edges in the pat-
tern. Injectivity can also be used. The embedding from p3 to t3 is not injective since
the least common ancestor (lca) of node 63 and 64 is 62 and 32 (the node where 62 is
mapped to) is not the lca of 34 and 35 (where resp. 63 and 64 are mapped to). However,
the embedding from p2 to t2 and from p2 to t3 are injective.

In this paper, we introduce (1) a flexible notion of weighted patterns and (2) an algo-
rithm allowing to generalize n-ary extraction patterns adaptable to different settings. (3)
We study learning tree patterns with our algorithm in different settings and evaluate it on
different datasets. No preprocessing and no intermediate labelling is required. Also
tree-patterns, since they allow for query rewriting, are more adapted to data integration
than other wrapper languages.

This paper is organized as follows. Section 2 presents the tree pattern background.
Section 3 details our generalization and its implementation. Its evaluation is presented
in section 4. Section 5 presents related work and, finally we conclude in section 6.

2 Background

Definition 1 (Tree Pattern). A tree pattern p (resp. p>) is an unordered (resp. or-
dered) unranked tree over alphabetΣ∪{∗} with a distinguished subset of edges called
descendant edges, and a k-tuple of nodes called result tuple, for some k ≥ 0.



Integrating Data from the Web by Machine-Learning Tree-Pattern Queries 943

Note that a document is an ordered tree pattern in which the set of descendant edges
and the result tuple are empty. For an (unordered or ordered) pattern p, we denote
by d-edge an edge of the set descendant edges and by c-edge (child-edge) the
other edges. CEDGES(p), DEGEDES(p) and NODES(p) resp. denote the sets
of c-edges, d-edges and nodes of p. ROOT (p) denotes the root of p. For a given node
n, LABEL(n), PARENT (n) and CHILDREN(n) resp. denote the label, parents
and children of n. Furthermore, we will denote by < the ordering obtained by walking
thru the nodes of p in a depth-first manner. For any two nodes n and m, n ≺ m denotes
that n is a strict ancestor of m. Finally, for a pattern p, each node of the result tuple is
marked by a variable. V ARIABLES(p) denotes the set of variable nodes contained
in p, and for a node n, V AR(n) is the name of the attached variable, if any. A c-edge
is drawn with a single line and a d-edge is drawn with a double line.

Consider the pattern p2 of figure 1. Given that the numbers on the top left corner
identify each node uniquely we have the following : NODES(p2) = {51, 52, 53, 54},
ROOT (p1) = 51, CHILDREN(52) = {53, 54}, DEDGES(p2) = {(51, 52)},
CEDGES(p2) = {(52, 53), (52, 54)}, PARENT (54) = 52, LABEL(52) = ∗,
LABEL(51) = Computer, V ARIABLES(p2) = {53, 54}, V AR(53) = A.

Definition 2 (Embedding). An function e from an unordered tree pattern p to a (or-
dered or unordered) tree pattern p′ is an unordered embedding iff :

(1) e is root preserving (ie. ROOT (p′) = e(ROOT (p)))
(2) for all n ∈ NODES(p), LABEL(n) = ∗ or LABEL(n) = LABEL(e(n))
(3) for each n,m ∈ NODES(p) :

• if (n,m) is a c-edge in p then (e(n), e(m)) is an c-edge in p′

• if (n,m) is a d-edge in p then e(m) is a proper descendant of e(n) in p′
(4) for each n ∈ V ARIABLES(p), V AR(h(n)) is defined and V AR(h(n)) =

V AR(n)

Definition 3 (Ordered Embedding). An function e from an ordered tree pattern p> to
an ordered tree pattern p′> is an ordered embedding iff :

(5) e is an unordered embedding
(6) for each n,m ∈ NODES(p>): if n < m then e(n) < e(m)

Definition 4 (Extracted tuples). Given an unordered (ordered) tree pattern p and a
tree t. Let (v1, . . . , vn) denote the variables of p. The extracted relation from t given p
is the set Rp(t) = {(e(vi), . . . , e(vn)) where e is an (ordered) embedding from p to t }
Definition 5 (Injective embedding). An embedding e from a pattern p to a tree t is
injective iff it also satisfies the following requirements :

(7) ∀n,m ∈ NODES(p), n �= m⇒ e(n) �= e(m)
(8) ∀n,m ∈ NODES(p), e(lca(n,m)) = lca(e(n), e(m))

where lca(x, y) is the lowest common ancestor of x and y.

Proposition 1. Let p and p′ be two patterns such that there exists an injective (or-
dered or unordered) embedding e from p to p′. Then |CHILDREN(ROOT (p))| ≤
|CHILDREN(ROOT (p′))|.



944 B. Habegger and D. Debarbieux

Definition 6 (Least general generalization). Given two patterns p1 and p2, a least
general generalization (lgg) of p1 and p2 is a pattern p for which there exists an em-
bedding from p to p1 and another from p to p2. Moreover, there exists no other pattern
p′ respecting the previous condition and such that an embedding from p to p′ exists.

3 Maximal Weight Generalization

As we will see here two tree patterns may have many different generalizations. We in-
troduce a notion of weighted pattern to distinguish between them allowing to partly
handle the non uniqueness of an lgg in the case of injective embeddings. It also allows
for some preference on the type information to be used when characterizing the infor-
mation to be extracted. The measure we propose will help our algorithm to distinguish
between patterns but is not total since two different patterns can have the same weight.

Definition 7 (Weighting function). LetΔ be the set of patterns. A weighting is a func-
tionW : Δ→ R

+ which associates a positive real number to each pattern in Δ.

The weight w(n) of a node n of a pattern p is the weight of the subtree rooted at this
node. In this article, we work with a specificW defined asW(p) =wch.|CEDGES(p)|
+ wdc.|DEDGES
(p)| + wex.|var(p)| + Σ

a∈Σ
wlbla .|nodes(p)|a. wch, wdc, {wlbla , a ∈ Σ} and wex are

parameters of the problem. These are parameters to our algorithm which can be set
by using predefined default settings or changed by the user. V AR(p), CEDGES(p),
DEDGES(p) have already been defined (see page 943) and |NODES(p)|a denotes
the number of nodes of p labelled by a. In our examples, all the labels have the same
weight wlabel. Formally, tree pattern generalization can be defined as follows :

Definition 8 (Tree pattern generalization (TPG) problem)

Input W a weighting function , p1 and p2 two tree patterns and an integer k.

Ordered matching (label and
child weightings)

r

b c

>

p

r

d b

>

p′

r

* *

>

wch > wlbl

r

b

>

wch < wlbl

Ordered matching (child and
descendant weightings)

r

a a c

>

p

r

c a a

>

p′

r

c

>

wch > 2wdc

r

a a

>

wch < 2wdc

Unordered matching (label and
child weightings)

r

a

e d

b
e

p

r

a

e
b

e d

p′

r

*
e

*
e d

wch > wlbl

r

a

e
b
e

wch < wlbl

Fig. 2. Examples of the influence of the weights



Integrating Data from the Web by Machine-Learning Tree-Pattern Queries 945

Input: A parent candidate s(x, y) and a candidate slot (x′, y′)
Output: A candidate child s(x′′, y′′) which maximizes the score of s(x, y) for slot (x, y)

Let X and Y be resp. the indexes of the non-child descendants of x and y
Let (x′′, y′′) ← (x, y)
Let bs ← weight(s(x, y)) % bs as best score
if (x, x′) and (y, y′) are both child edges in their respective patterns then

bs ← bs + w(child)
else

bs ← bs + w(descendant)
end if
for all k ∈ X do

if weight(k, y′) + w(descendant) > bs then
Let (x′′, l′′) ← (k, y′) and bs ← weight(k, y′) + wd

end if
end for
for all l ∈ Y do

if weight(x′, l) + w(descendant) > bs then
Let (x′′, y′′) ← (x′, l) and bs ← weight(x′, l) + w(descendant)

end if
end for
return s(x′′, y′′)

Algorithm 1. Calculate the best child candidate candidate for a slot

Output true iff there exists an unordered tree pattern p s.t. there exists an injective
embedding from p1 to p, an injective embedding from p2 to p andW(p) ≥ k.

As shown by the following examples, this problem is not trivial. Let us consider, on one
hand trees t1, t2 and t3, and on the other, patterns p1, p2 and p3 from figure 2. First,
(a) shows that, depending on the respective weights associated with child edges and to
labels, the generalization of p and p′ is either a pattern with two unlabeled children or a
pattern with a child labeled by b. Similarly, (b) shows the influence of the relationship
between weight of child edges and those of descendant edges. Finally, (c) extends ex-
ample (a) to illustrate similar difficulties in unordered pattern. Not very surprisingly, we
show that this problem is NP-hard by reduction from the maximum common embed-
ded sub-tree problem. However, we propose an algorithm which solves the tree pattern
generalization problem, and in a restricted case, does so in polynomial time.

x

x′
y

y′

child/child

x

x′
y

y′

l

descendant/child

x

x′

k

y

y′

child/descendant

Fig. 3. Choosing the best candidate s(x′′, y′′) as a child of s(x, y) for slot (x′, y′).

Our generalization algorithm, can be split into two steps recursively referring to each
other : (i) calculate the maximal weight generalizations of the sub-patterns and (ii) find



946 B. Habegger and D. Debarbieux

the best combination of sub-patterns respecting injectivity constraints (as well as or-
der constraints when required). Given x a node of p1 and y a node of p2 the problem
is to compute a new pattern p(x, y) rooted at a node called s(x, y) s.t. p(x, y) is the
maximal weight generalization of pattern p1 rooted at x and pattern p2 rooted at y.
Of course, the maximal weight generalization p of two patterns p1 and p2 is the pat-
tern p(root(p1), root(p2)). If x and y are leaves, the problem is quite easy. If x or
y is an internal, we have to use weight of its subtrees. As shown by fig 3, only tree
configurations are possible. Many cases have to be study (in particular for the case
’child/descendant’ and for the case ’descendant/child’). So we use algorithm 1 to cal-
culate the best choice by using dynamic programming. As proposition 1 holds, for each
couple of nodes (x, y) we know the number of children of s(x, y). However, for ef-
ficiency reasons, a maximal number of children c may have been set as a parameter.
If it happens to be lower, than the number of children the pattern would effectively
have, then the number of kept children is limited to c. By classic method of dynamic
programming, it is easy to build the maximal weight pattern from the dynamic pro-
gramming table. When LABEL(x) = LABEL(y) = a, s(x, y) is labeled with a, or
else it is labeled ∗. Similarly, when V AR(x) = V AR(y) = X then s(x, y) is attached
X as variable and has no variable otherwise. Remember that one of the important con-
tributions of our approach, is that descendant edges may appear in the learned patterns.
This happens when the sub-pattern conserved by introducing a descendant edge is more
interesting than keeping a child edge which generates many miss-matches in the under-
lying subtrees.

4 Evaluation

We have implemented our algorithm in Ocaml and evaluated it on different datasets.
We proceeded to an evaluation under both unordered injective embeddings and ordered
injective embeddings. In each evaluation, we did a 5-fold cross validation taking one
set of documents as example set and the remaining for testing.

Table 1. Experimental results with unordered and ordered embeddings

Unordered Ordered
Source Good Wrong Miss. Rec. Prec. Good Wrong Miss. Rec. Prec.

bigbook 3468 0 0 1. 1. 3444 0 0 1. 1.
okra 2598 0 0 1. 1. 2691 0 0 1. 1.
s20 253 9052 0 1. 0.03 247 4307 0 1. 0.05

L0-0 147 0 0 1. 1. 149 0 0 1. 1.
L3-0 139 0 0 1. 1. 150 0 0 1. 1.
L8-0 142 1232 0 1. 0.10 144 641 0 1. 0.18
L9-0 142 0 0 1. 1. 0 137 137 0. 0.

pagesjaunes.fr 101 0 9 0.92 1. 101 0 9 0.92 1.
amazon.com 79 0 0 1. 1. 79 0 0 1. 1.

The first three datasets Bigbook, Okra and S20 come from the RISE information ex-
traction repository. These two datasets are the most referenced sets in the information



Integrating Data from the Web by Machine-Learning Tree-Pattern Queries 947

extraction community. They are however, known to be easy. The target relations we have
used for our experiments were bigbook(name, address), okra(name,mail, score)
and s20(file, score, size, type). The L0-0, L3-0, L8-0, and L9-0 datasets, are artificial
datasets made available by Marty1. All these datasets are constructed over the same data
(a 13-ary relation) but with varying layouts trying to cover multiple complex presenta-
tions. We only present results for the datasets for which tree patterns over the relations
considered in this paper have sufficient expressivity. While we plan in future work to
add other relations, the expressivity required to cover all those case will likely require
an unreasonable number of examples. Finally we evaluated our approach on two real
world dataset : Amazon DVD listings and Pagesjaunes address entries where the target
relations are pagesjaunes(name, address, city) and amazon(title, price). .

Table 1 presents the results obtained in both unordered and ordered injective set-
tings. In all cases we have a very high if not perfect recall. The results for Amazon
and Pagesjaunes are particularly encouraging, since these datasets come from existing
web sites. The bad precision shows that in some cases erroneous extractions occurred.
In all these cases it appears that the data have a linear format (ie. all the tuples follow
each other under a single node). In such cases, no suitable pattern can be defined over
child and descendant relations alone. Working with such relations alone is therefore not
sufficient or that disjunctions of tree patterns (and therefore negative examples) might
be required. Many approaches to learning disjunctions of conjunctions exist and we are
looking into adapting our algorithm to add other relations (eg. next-sibling). The simi-
larity between the results considering order or not suggest that respecting ordering does
not provide much information on these sources. It should be noted that the ordering
considered is similar to linking siblings together with a following-sibling relation. We
believe that this ordering may not be strong enough to be informative and that a next-
sibling relation might be an interesting replacement. In all our experiments we used the
same fixed set of weights for the patterns and the same child limit number. The quality
of the results suggest that defaults could easily be set and therefore the user would not
require setting the parameters. The results given in this section show the effectiveness
of our approach. It also shows that the extra labelling required by other approaches is
not necessary to obtain similar performance.

5 Related Work

Much research on wrapper learning has been lead in the past years and many systems
[7,5,8,4,10,3] have been proposed. Few systems allow to build n-ary extraction patterns
by requiring only to label the target values. In Lixto[1], Stalker[7] or Squirrel, where
patterns are monadic, the user is required to label intermediate nodes and building a
pattern for them.

To our knowledge, only IERel [5] and WIEN [9] are capable of directly learning
n-ary extraction patterns. They are string-based and rely on the strong hypothesis that
the data to be extracted is tabular (ie. the tuples to be extracted do not overlap). How-
ever, the currently mostly referenced datasets (RISE) are either two simple for web

1 http://www.grappa.univ-lille3.fr/ marty/



948 B. Habegger and D. Debarbieux

information extraction or require natural language information extraction techniques.
Therefore there is no real basis for comparison.

6 Conclusion

We presented a tree-based approach to n-ary wrapper generation using tree patterns as
the extraction language. Both the theoretical and practical aspect of our approach have
been presented. An implementation allowed us to evaluate the approach and show that
it is useful in many cases. In particular taking a tree view has allowed to overcome some
limits of string-based approaches. Only examples are required as user input with similar
performance as existing approaches.

We plan to extend the algorithm to include other types of relational constraints (eg.
next-sibling and following-sibling) allowing to improve expressivity. We also plan to in-
troduce negative examples to limit over-generalizations. Also less restrictive heuristics,
but keeping the problem tractable, will be studied.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Declarative Information Extraction, Web Crawl-
ing, and Recursive Wrapping with Lixto. In Proc. of the 6th Int. Conf. on Logic Programming
and Nonmonotonic Reasoning, LNCS/LNAI, pages 21–40, 2001. Springer Verlag.

2. J. Carme, A. Lemay, and J. Niehren. Learning Node Selecting Tree Transducer from Com-
pletely Annotated Examples. In Int. Conf. on Grammar Induction, pages 29–102, 2004.

3. R. Gilleron, P. Marty, M. Tommasi, and F. Torre. Adaptive Relation Extraction from Semi-
Structured Data. In 6èmes Journées Francophones "Extraction et Gestion des Connais-
sances", 2006.

4. S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. DOM-based Content Extraction of HTML
Documents. In Proc. of the 12th WWW Conference, 2003. Elsevier Science.

5. Benjamin Habegger and Mohamed Quafafou. Context generalization for information extrac-
tion from the web. In Proc. of the ACM/IEEE Web Intelligence Conference, 2004.

6. C. Hsu and M. Dung. Generating Finite-State Transducers for Semi-Structured Data Extrac-
tion from the Web. Information Systems, 23(8), 1998.

7. C. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and Reliably Extracting Data
from the Web : A Machine Learning Approach. Data Engineering Bulletin, 23(4), 2003.

8. R. Kosala, M. Bruynooghe, J. V. den Bussche, and H. Blockeel. Information Extraction from
web documents based on local unranked tree automaton inference. In Proc. of the 18th Int.
Joint Conf. on Artificial Intelligence (IJCAI-2003), pages 403–408, 2003.

9. Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelli-
gence, 2000.

10. K. Lerman, C. Knoblock, and S. Minton. Automatic Data Extraction from Lists and Tables
in Web Sources. In IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Seattle,
Washington, August 2001.

11. I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical Wrapper Induction for Semistruc-
tured Information Sources. Autonomous Agents and Multi-Agent System, 4(1-2), March
2001.

12. XML Path Language (XPath), 1999. Available at http://www.w3.org/TR/xpath.



HISENE2: A Reputation-Based Protocol for

Supporting Semantic Negotiation

Salvatore Garruzzo and Domenico Rosaci

DIMET, Università Mediterranea di Reggio Calabria
Via Graziella, Località Feo di Vito

89060 Reggio Calabria, Italy
{salvatore.garruzzo, domenico.rosaci}@unirc.it

Abstract. A key issue in open multiagent systems is that of solving the
difficulty of an agent to understand messages coming from other agents
having different ontologies. Semantic negotiation is a new way of fac-
ing this issue, by exploiting techniques that allow the agents of a MAS
to reach mutually acceptable agreements on the exchanged terms. The
produced scenario is similar to that of human discussions, where human
beings try to solve those situations in which the involved terms are not
mutually understandable, by negotiating the semantics of these terms.
The HISENE approach is a recent JADE-based protocol effectively sup-
porting semantic negotiation. It is based on the idea that an agent that
does not understand a term can automatically require the help of other
agents that it considers particularly reliable. However, HISENE does not
take in account either the possibility of wrong answers coming from the
requested agents or the fact that a term can have different meanings.
In order to cover these two important issues, in this paper we present
an extension of HISENE, called HISENE2, and we show experimentally
that it performs better than HISENE with respect both to the quality
and the efficiency of the semantic negotiation.

1 Introduction

The widespread diffusion of information agent technology and the exponential
growth of different approaches in the field of open multiagent systems have pro-
duced a particular interest towards those communication problems caused by the
heterogeneity of the different agent’s knowledge models. These models, usually
called ontologies, are often advocate as a complete solution for knowledge shar-
ing between agents, giving the possibility to assign a meaning to terms contained
in the exchanged messages. However, such a possibility exists only in the case
each agent of the system knows the ontology of other agents; on the contrary, an
agent that receives a message from another agent having a different ontology is
not able to understand the content of the message, therefore the communication
fails. A straightforward solution to such a problem is represented by the use of a
unique common ontology, shared by all the agents of the system; however, this
is a solution that appears unlikely in open multiagent systems, since it would
imply that all the agents agree to adopt a standard ontology about which it is

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 949–966, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



950 S. Garruzzo and D. Rosaci

necessary to reach consensus. Heterogeneity is due to the fact that each agent has
its particular viewpoint of the world in which it performs its activity, and it does
not necessarily desire to adopt a standard viewpoint that is not specifically de-
signed for it. Another solution could be that of ontology alignment, that consists
in providing each agent with a mapping between the other different ontologies.
Unfortunately, in an open multiagent system, ontologies change continuously
and it is not possible to define the mapping a priori, before the beginning of the
agent interactions.

A possible way of facing the difficulties of an agent in understanding the
messages coming from other agents having different ontologies is offered by the
semantic negotiation. This is a process by which the agents of a MAS try to reach
acceptable definitions mutually (i.e., mutual acceptable agreements on terms).
The produced scenario is similar to that of human discussions, where human
beings try to solve those situations in which the involved terms are not mutually
understandable, by negotiating the semantics of these terms. Such a negotiation
implies several operations performed by the two interlocutors as, for instance,
a query that one of them could pose to have a description of a not understood
term, a response provided by the other interlocutor containing the requested
description, etc.

In [6] we introduced the idea that two agents involved in a communication
process can require the help of other agents in order to solve possible under-
standing problems. In this context, the notion of expertise of an agent represents
a measure of the capability of the agent to explain not understood terms to every
other agent. Moreover, we also defined the notion of understanding capability of
an agent a with respect to another agent b, that measures the capability of a to
explain terms that b does not understand. Therefore, the expertise of an agent a
is the capability of a to explain not understood terms to the whole community
effectively, while the understanding capability with respect to b is relative only
to the agent b. These two notions allow the possibility to introduce the synthetic
measure of negotiation degree, defining the potential capability of a to negotiate
the semantic of terms belonging to b. Therefore, in that framework, an agent can
ask help to other agents to understand a term on the basis of their negotiation
degree; for this purpose, it groups the agents in different partitions p1, p2, . . . , pn,
ordered by a decreasing level of negotiation degree. On the basis of this idea, we
proposed a semantic negotiation protocol, called HIerarchical SEmantic NEgoti-
ation (HISENE), that is suitable to be applied for implementing such a semantic
negotiation in the standard Java Agent DEvelopment Framework (JADE) [8].
An important advantage that this protocol introduces is that each agent can
contact the other agents in different stages, by following the rational criteria of
first negotiating with the agents belonging to the partition p1, contacting the
agents of the partition p2 only if none of the agents in p1 is able to answer posi-
tively, then contacting agents of the partition p3 only if none of the agents in p2

succeeds, and so on. Moreover, in order to understand unknown terms, each con-
tacted agent can start another semantic negotiation in its turn; however, in order



HISENE2: A Reputation-Based Protocol 951

to avoid the presence of a loop, each term is processed only once by each agent.
This leads to the use of network communication resources in an efficient way.

It is worth to point out that in HISENE, both the expertise and the under-
standing coefficient of an agent, representing a sort of agent’s reputation, are
built on the basis only of the capability of the agent to explain unknown terms
to other agents. The approach does not take in account the possibility that the
explanation of a term provided by an agent a to another agent b could be unef-
fective, in the sense that, when b uses that explanation later in interacting with
another agent, say c, it could be misunderstood. This possibility can arise for
two different reasons, namely: (i) the explanation provided by a can be wrong,
since a’s ontology can contain mistakes; (ii) the explanation can be relative to a
meaning of the involved term that is commonly used by a but that is unknown to
c. The HISENE approach previously described does not deal with the issue (i),
since it assumes that each explanation provided is intrinsically correct; therefore
HISENE is limited to cope only with this scenario and it is less effective in the
more general case of possible incorrectness in the ontologies. Moreover, HISENE
does not even consider the issue (ii), and this is a very important limitation
since a term can generally have different meanings in a multiagent system.

In this paper, we propose HISENE2, an evolution of the protocol HISENE.
This new protocol presents a new mechanism to determine the reputation of
an agent, based on the following idea. Suppose that an agent a explains the
meaning of the term “volume” to another agent b, stating that a “volume” is
a “book”. Suppose that b understands the term “book” and therefore it is now
able to understand “volume”. Consequently, b includes the explanation of the
term, that we here denote simply as volumea = book, in its own ontology, by
labelling the term with the identifier of the agent that provides the explanation,
i.e. a. Moreover, b assigns a context to volumea = book, defined as the set of
agents that agree on this explanation; initially this context is, naturally, {a,b}.
Finally, b assigns a confidence coefficient (belonging to the interval [0,1]) to
volumea = book, initially set to 1, meaning that b believes this explanation
completely. Now, suppose that later b interacts with another agent c by using
the explanation volumea = book provided by a. It is possible that c has the same
explanation in its ontology, therefore it understands the meaning of the term
and, consequently, b adds c to the context of the explanation. It is also possible
that c does not understand the explanation volumea = book, since it has, for
instance, only another explanation for volume, that is volumea = quantity. In
this case, c can run a semantic negotiation with the other agents that it knows to
acquire, if possible, the explanation volumea = book. If the semantic negotiation
succeeds, c understands volumea = book and communicates this fact to b that
adds c to the context of the explanation. But it is also possible that the semantic
negotiation performed by c fails. In the latter case, c is not able to understand
the explanation c, in spite of its effort to find it in other agent ontologies, and it
communicates this fact to b. As a consequence, b does not add c to the context of
volumea = book, and also decreases the confidence coefficient of the explanation,
since it believes less in its reliability.



952 S. Garruzzo and D. Rosaci

This simple situation shows that the confidence assigned to an explanation is
dynamically determined in HISENE2 by observing the success of the explanation
in different interactions. The reputation of an agent is computed on the basis
of the quality of all the explanations it provided in the past. With respect to
HISENE, HISENE2 improves the capability of an agent to determine good par-
titions of reliable agents to perform an effective semantic negotiation. Moreover,
the introduction of the notion of context for an explanation allows an agent to
register different meanings of the same term and also to remember what other
agents agree with each meaning. This leads the agent interacting with another
agent to use the more suitable meaning of a term.

We tested experimentally the effectiveness of HISENE2 by comparing it with
HISENE in the scenario of a wide multiagent environment implemented by the
JADE framework. These experiments show that the understanding degree of the
whole agent community improves drastically by using HISENE2. Instead another
experiment shows that the heterogeneity of the agent ontologies of the commu-
nity decreases in time with the increase of the exchanged messages. Finally, by
a third experiment, we show that the number of semantic negotiation messages
is significantly smaller with respect to the case of HISENE, as a consequence of
the more appropriate agent partitions built by using HISENE2.

The plan of the paper is the following: Section 2 describes some related work;
Section 3 gives some preliminary notions on the JADE framework, while Sect. 4
describes the reputation-based partitioning; Section 5 deals in detail with the
HISENE2 protocol, while Sect. 6 describes a simple example of how HISENE2
works; Section 7 shows the evaluation experiments, and finally, Sect. 8 draws
some final conclusions.

2 Related Work

Semantic negotiation is a relatively recent research field. It involves some ap-
proaches known as ontology negotiation [11,13,14], a term coined in [1], and
several other models and protocols dealing with the problem of negotiating the
semantics of the terms contained in agents’ messages [2,4,7,12,14]. However, most
of these approaches are not able to support semantic negotiation without requir-
ing agents either to share knowledge or to use a global common ontology, and
none of them provides a semantic negotiation protocol that allows the whole
agent community to contribute to the semantic understanding process between
each agent pair. For example, the common shared ontologyapproach described in
[12] provides the agents with a set of shared concepts, in which they can express
their private knowledge. The communication vocabulary is formalized as an on-
tology, shared by the entire MAS, and in which every private concept of each
individual agent can eventually be defined. Concept names used in an agent’s pri-
vate ontology, are not understandable to other agents. However, their definitions
in terms of ground concepts are understandable. The use of definition terms,
instead of concepts, enables optimal communications between agents. Moreover,



HISENE2: A Reputation-Based Protocol 953

the approach presented in [2] introduces a computational framework for the de-
tection of ontological discrepancies between two agents in multiagent systems. In
this method, presuppositions expressed in a common vocabulary are extracted
from the sender’s messages, and compared with the recipient’s ontology, which is
expressed in type theory. Discrepancies are detected by the receiving agent if it
notices type conflicts, particular inconsistencies or ontological gaps. Depending
on the kind of discrepancy, the agent generates a feedback message in order to
establish alignment of its private ontology with the ontology of the sender. The
dialogue framework is based on a simple model of interaction. Another approach
using a common knowledge is that presented in [14], where authors introduce a
machine learning methodology and algorithms for multiagent knowledge sharing
and learning in a peer-to-peer setting. Agents can use a set of shared concepts
in which they can express their private knowledge. The work [7] proposes to
consider the use of shared keys to solve the problem of using different names for
the same object; in particular, a probabilistic matching approach is introduced.
Semantic negotiation is described as a process by which a client and a service can
negotiate mutually shared references. There are some other approaches that do
not require the use of a shared ontology. As an example, in [4], to allow agents to
interoperate, authors have developed a matchmaking system that, rather than
requiring agents to share ontologies, exploits an agent-independent, domain-
specific ontology, called a global ontology. When an agent joins the platform, the
proposed system applies an information-extraction engine to the agent’s code
to extract useful information, that includes recognized names of concepts the
agent uses (e.g. class names, parameter names, etc.). Instead of having a shared
ontology, the proposed system maintains a mapping of the local ontologies of
all agents to the independent global ontology. The main difference between this
approach and a shared ontology approach is that an agent’s programmer does
not need to know anything about any other agent’s local ontology, nor does he
need to know about the global ontology, but it is the system that does the nec-
essary mapping. In [6], agents do not need to share either a common ontology
or to maintain a global ontology, in order to understand each other, but they
try to solve their understanding problems availing the help of other agents that
are considered experts in the involved domain and that have similar ontologies.
Obviously, by using this approach, the understanding can be obtained only by
waiting that the agent community evolves in time, allowing the formation of
expert agents and understanding relationships among agents, due to the contin-
uous interaction. The main advantage that this method presents is that mutual
understanding among agents is not statically related to a global ontology, but it
can dynamically improve by following agent interactions and monitoring agent
communications. An alternative approach exploiting semantic negotiation is pre-
sented in [3], where the problems brought by the schema heterogeneity in Digital
Libraries are discussed. The proposed architecture integrates the ontology, agent
and P2P technologies together to support the schema mapping. The goal is to
allow agents embedded in different libraries to communicate semantically. An-
other proposal is that contained in [10]. In this work, agents in an open agent



954 S. Garruzzo and D. Rosaci

system jointly agree on an axiomatic semantics for the agent communications
language utterances they will use to communicate. This work assumes that all
the agents involved start with a common semantic space, and then together as-
sign particular locutions to specific points in this space. Such a structure would
not appear to permit an incremental construction of the semantic space itself.

3 Preliminaries

3.1 JADE (Java Agent DEvelopment Framework)

JADE is a software framework fully implemented in Java language to realize dis-
tributed multiagent systems complied with the FIPA [5] specifications. JADE
offers a number of advantages such as: (i) each agent “lives” in a runtime en-
vironment on a given host; (ii) communications are held by means of ACL
messages; (iii) information can be represented as an instance of an application-
specific class (a Java object). Moreover, the support for content languages and
ontologies provided by JADE is designed to perform automatically all the above
conversion operations, thus allowing developers manipulating information within
their agents as Java objects. In order for JADE to perform the proper seman-
tic checks on a given content expression it is necessary to classify all possible
elements in the domain of discourse (i.e. elements that can appear within the
content of an ACL message) according to their generic semantic characteristics.
This classification is derived from the ACL language defined in FIPA which
requires that the content of each ACLMessage must have a proper semantics
according to the performative of the ACLMessage. The JADE content reference
model considers only four types of elements which can be used as meaningful
content of an ACL message, namely:

Predicates, are boolean expressions saying something about the status of the
world, e.g. (studies − in (Student : name Jim) (University : name MIT ))
states that “the student Jim studies in the University MIT”. Generally, there
are some expressions referenced inside predicates, called Concepts, that indi-
cate entities with a complex structure e.g. (Student : name Jim : age 21).
Agent Actions, indicating actions that can be performed by some agents, e.g.
(sell (Book : title AnnaKarenina) (Person : name Jim)) states that the per-
son Jim sells the book “Anna Karenina”.
Identifying Relational Expressions (IRE), are expressions that identify
the entities for which a given predicate is true, e.g. (all ?x (studies − in ?x
(University : nameMIT ) identifies all the students for which the predicate
(studies − in (Student : name x)(University : name MIT )) is true.
ContentElement Lists, are lists of elements of the above three types.

3.2 Extended Ontology

In JADE, an ontology is a set of schemas defining the structure of concepts,
predicates and agent actions that are pertinent to the domain of interest. In the



HISENE2: A Reputation-Based Protocol 955

following, we refer to the JADE ontology to define our extended ontology, that
is formed by a set of elements, where each element can be either a concept, a
predicate, an agent action (as in the JADE ontology) or an explained element,
where an explained element is a set of explanations. In particular, the new no-
tion of explanation that we introduce can be considered as a description of an
element based on other elements. In other words, we introduce a different way of
representing the reality of an agent with respect to a classical JADE ontology.
In fact, a JADE ontology contains only unexplained elements (classes, object
schemas), where each element has a single meaning expressed both by its class
name (the lexical component) and its class structure (the structural component)
and thus does not need any further explanation. Differently, an extended ontol-
ogy contains also explained elements, that can have several meanings. Moreover,
we consider that in the ontology of an agent i, each explanation is associated
with a set of agents, that we call context, for which this explanation is under-
standable. Furthermore, we associate with each explanation the explainer agent
that has provided it to i and the confidence that i assigns to the explanation.

Definition 1 (Explanation). Let MAS be a multiagent system and O an
extended ontology. An explanation e is a tuple 〈E, C, ea, c〉 where E ⊆ O is
the set of extended ontology elements constituting e, C ⊆ MAS is the context,
ea ∈ MAS is the explainer agent that provided e, and c ∈ [0, 1] is the explanation
confidence.

Definition 2 (Extended Ontology Element). An extended ontology element
can be a concept, a predicate, an agent action or an explained element.

Definition 3 (Explained Element). An explained element is a set of expla-
nations.

Example 1. Consider the portion of an agent ontology represented in Table 1.
The elements Book and Quantity are JADE concepts having respectively (title,
author, price) and (unit, value) as class members. The element V olume is an
explained element composed of three explanations, meaning that it has three
possible meanings: (i) {Book, Seller(Bookshop)}, with a confidence 0.9, pro-
vided by the agent b and understandable by agents a and b, (ii) {Book, Editor},
with a confidence of 0.8, provided by the agent a and understandable by the
agents a and d, and (iii) {Quantity, Amount}, with a confidence of 0.5, pro-
vided by the agent e and understandable by the agents d and e. ��

4 Reputation-Based Partitioning

Communications between agents in JADE are held by means of messages having
a format specified by the ACL language, defined by the FIPA international
standard [5]. This format includes a certain number of fields such as: (i) the
name of the sender agent; (ii) the performative indicating the aim of the
message (e.g. INFORM, REQUEST); (iii) the content that is the actual information
included in the message and is composed of a list of content elements; (iv) the
language and the ontology used to express the content.



956 S. Garruzzo and D. Rosaci

Table 1. Excerpt of an agent extended ontology

Element type Element name Class members

Concept Book (title, author, price)

Concept Quantity (unit, value)

Explained element Volume ({Book, Seller(Bookshop)}, {a, b}, b, 0.9)
({Book, Editor}, {a, d}, a, 0.8)
({Quantity, Amount}, {d, e}, e, 0.5)

4.1 Semantic Message

In our framework, agents performing semantic negotiation activities need to
(i) express the content of the message using the extended ontology, and (ii) ex-
change more information (e.g. the list of the unknown elements, the timeout
determined for the understanding process).

In order to satisfy the issue (i), we introduce the concept of semantic ordi-
nary message that extends the message format described below, by using only
explained elements in its content. This is due to the fact that in our framework it
is necessary to express the semantics of an element, while the traditional JADE
concepts, predicates and agent actions are only structural elements. Moreover,
to satisfy also the issue (ii), we define the semantic negotiation message that
further extends the semantic ordinary message.

Definition 4 (Semantic negotiation message). Let MAS be a multiagent
system. A semantic negotiation message is a tuple 〈i, j, ia, p, T, C〉 where i, j ∈
MAS are the sender and receiver agents respectively, ia ∈ MAS is the agent
interested in the understanding process, p is the performative, T is the under-
standing timeout determined by ia, and C is the content of the message.

The performative p indicates what the agent i wants to obtain from the agent
j; as a consequence, for each performative there corresponds a different content.
Our protocol is composed of six performatives, namely:

1. SN QUERY : the agent i requires the help of the agent j to understand some
unknown elements. For this purpose i specifies in the content C a list unun-
derstood of explained elements (el1, el2, . . .).

2. SN RESPONSE : after receiving an SN QUERY message from the agent j, the
agent i replies giving some explanations. In this performative, the content C
is a list of explained elements containing their explanations.

3. SN ACCEPT : after receiving an SN RESPONSE message from the agent j, the
agent i indicates the understood explanations. In this performative, the con-
tent C is a list of explained elements containing the accepted explanations.

4. SN UNKNOWN : the agent i is unable to give an answer to a previous SN QUERY
message sent by the agent j. The message’s content is void.

5. SN ALREADY ANSWERED : as previously described in Sect. 1, an agent receiving
an SN QUERY message can start, in its turn, another semantic negotiation;
as a consequence, an agent can receive the same SN QUERY message from



HISENE2: A Reputation-Based Protocol 957

different agents. In this scenario, after receiving an SN QUERY message from
the agent j, the agent i replies that it has already answered to the same
request previously received. The message’s content is void.

6. SN FEEDBACK : the agent i is unable to understand a semantic ordinary mes-
sage even after a semantic negotiation. In this scenario, i replies indicating
the not understood explanations specified in the content C.

4.2 Agent Reputation

During the evolution of the community, agents have continuous interactions be-
tween them giving rise to different semantic negotiations; as a consequence, each
agent can learn both new unknown explained elements and new explanations
of already known explained elements. Unfortunately, in a scenario of uncertain
trustworthiness of the agents, it is possible that an agent might learn something
wrong. To avoid this problem, an agent can learn to identify “unreliable” agents
marking each one with a reputation coefficient, belonging to the interval [0, 1],
where 1 means complete reliability. As previously described, an agent can re-
ceive a negative feedback in relation to a not understood explained element el.
In particular suppose that, during a semantic negotiation, i understands the ex-
planation eel provided by the agent j for the explained element el. Suppose also
that eel is a wrong explanation for el. Probably, several times that i will use eel,
it will receive a negative feedback. An agent can assign to each explanation a
confidence value, considering the frequency with which it is used in a profitable
way. However, until the explanation is unused, the agent can arbitrarily fix a
confidence value representing the reliability the agent has for this explanation.

Definition 5 (Explanation confidence). Let e be an explanation for an el-
ement learnt via semantic negotiation by the agent i from the agent j. Given
sije be the number of times that i uses the explanation e in a semantic ordinary
message, fije be the number of feedbacks received by i, containing the explana-
tion e, and Ri be the reliability value the agent i assigns to new agents. The
explanation confidence the agent i assigns to the explanation e is defined as

cije =

{
1 − fije

sije
, if sije �= 0

Ri , if sije = 0

Notice that, even though the explanation confidence is a characteristic of the
explanation, it is strictly related to the agent that has explained it. As a conse-
quence, an agent i can consider all the explanation confidences cije (if they exist)
of the explanations learnt from the agent j to assign it a reputation coefficient.

Definition 6 (Reputation coefficient). Let Eij = {e1, e2, . . . , ek} be the set
of all the explanations learnt by the agent i from the agent j, cije be the expla-
nation confidence of e ∈ Eij , and Ri be the reliability value the agent i assigns
to new agents. The reputation coefficient of j with respect to i is defined as



958 S. Garruzzo and D. Rosaci

rij =
{ 1
|Eij|

∑
e∈Eij

cije , if Eij �= ∅
Ri , if Eij = ∅

Each agent in a MAS can contribute to the community giving the information
about the reputation of agents. As a consequence, the MAS is able to create an
expertise coefficient on the base of all the reputation information collected by
the single agents. However, when a new agent joins with the MAS, it does not
have any reputation; therefore, the community can fix a value R depending on
the reliability policy of the MAS.

Definition 7 (Expertise coefficient). Let sij be the number of times that i
uses an explanation learnt from the agent j in a semantic ordinary message, rij

be the agent reputation of j with respect to i, and R be the reliability value the
community assigns to new agents. The expertise coefficient of j is defined as:

xj =

⎧
⎨

⎩

∑
i�=j rij · sij
∑

i�=j sij
, if

∑
i�=j sij �= 0

R , if
∑

i�=j sij = 0

All the expertise coefficients are stored, by means of a yellow pages service,
into a global database centralized on the server machine where the JADE man-
agement system runs.

Both the agent reputation and expertise coefficients are used by each agent i
of the MAS to determine a partitioning in the set of the agents belonging to
the MAS. We call ASi the set of all the agents belonging to the MAS, except
the agent i, and ASk

i , k = 1, 2, .., pi, the k-th partition determined by the agent
i in the agent set ASi. The agent i decides how many partitions pi have to be
considered; moreover, the criterium for assigning each agent j, belonging to ASi,
to a partition ASk

i , is represented by a function p(j) that receives the agent j as
input and yields as output the number of the partition which j has to be assigned
to, on the basis both of reputation and expertise of j. More in particular, the
agent i assigns a weight wi

r ∈ [0, 1] to the reputation coefficient, representing
the importance the agent i gives to the reputation; thus, it is also easy to assign
a weight to the expertise coefficient as wi

x = 1 − wi
r. Finally, i computes the

negotiation degree of j as nij = wi
x · xj + wi

r · rij , and then, the function p(j) is
calculated as: p(j) = z if tz+1 ≤ nij < tz.

5 The HISENE2 Protocol

The HISENE2 protocol is composed of the semantic negotiation protocol using
reputation-based partitioning (see Fig. 1). An agent supporting the semantic
negotiation can perform three different behaviours: (i) requiring the help of
other agents to understand unknown elements, (ii) answering to a request, and
(iii) sending a feedback indicating not understood explanations.



HISENE2: A Reputation-Based Protocol 959

[else][alreadyAnswered]

Reply
SN_ALREADY_ANSWERED

Try to Understand
the Message

Reply
SN_RESPONSE

Start a new
Request

[message not
understood] [else]

Try to Understand
the Message

[message
understood][else]

Reply
SN_UNKNOWN

SN_QUERY
received

Create
Partitions

Send
SN_QUERY

timeout

Receive
SN_RESPONSE

solveSemantic
Ununderstanding

[message understood][else]

list of partitions

Receive
message

SRequest

SReceive

(A) (B)

Fig. 1. The (A) Request and (B) Answer behaviours

5.1 Request Behaviour

A request behaviour is started when an agent i needs to understand unknown
explained elements. This happens when i receives:

– a semantic ordinary message that i does not understand. The agent i creates
the message 〈i, j, i, SN QUERY, T, C〉, where j is the generic receiver agent,
i itself is the interested agent and C is the list ununderstood of unknown
explained elements (see Sect. 4.1).

– an SN QUERY message having in its content C some explained elements that i
is unable to explain. Thus, i creates the message 〈i, j, ia, SN QUERY, T, C∗〉
where j is the generic receiver agent, the interested agent is the same of the
received message, and C∗ ⊆ C is the list ununderstood.

A function createPartitions reads the expertise and reputation coefficients
and, on the basis of the partition weights set by the agent owner, determines
the agent partitions. Then, SRequest and SReceive behaviours are executed.
SRequest is a OneShotBehaviour that, for each partition level k, sends an
SN QUERY message to each agent contained in the k-th partition, until either the
list ununderstood becomes empty or the message timeout is reached. SReceive
is a CyclicBehaviour in which i waits for answers from the contacted agents.

Each received SN RESPONSE message has as content a list of explained ele-
ments (el1, el2, . . . , elh) where elm contains the explanations {e1

m, e2
m, . . . , el

m}.



960 S. Garruzzo and D. Rosaci

Therefore, the function solveSemanticUnunderstanding(eg
m), g = 1, 2, . . . , l is

called for each received explanation eg
m. This function performs a schema match-

ing between the i’s ontology and the set of elements contained in eg
m, and can be

implemented by using aone of the several schema matching methods existing in
literature, such as [9]. For each accepted explanation e relative to an explanation
element el, the agent i stores e inside the element el in its ontology and replies
an SN ACCEPT message indicating the understood explanation.

5.2 Answer Behaviour

An answer behaviour starts when an agent i receives a request (SN QUERY). There
are three possibilities:

– i has previously answered to the same message. In this case, i replies with
an SN ALREADY ANSWERED message.

– i understands the message. In this case i replies with an SN RESPONSE mes-
sage containing the list of explained elements as described above.

– i does not understand the whole message. In this case, i starts in its turn a
request behaviour (i.e. a new semantic negotiation). After that, if the mes-
sage is partially or completely understood (resp. not understood), i replies
with an SN RESPONSE (resp. SN UNKNOWN) message.

5.3 Feedback Behaviour

A feedback behaviour starts when an agent k receives a semantic ordinary mes-
sage containing some unknown explained elements from an agent i. The agent
k begins a semantic negotiation in order to understand all the unknown ex-
planations. After having concluded this negotiation, k sends an SN FEEDBACK
message to i, containing the list of all the explanations that remained already
unknown. For each explanation e learnt from the agent j that is contained in an
SN FEEDBACK message, the agent i updates the explanation confidence as follows:

ĉije = 1 − (fije + 1)
sije

= cije − 1
sije

The decrease of the explanation confidence is reflected on both reputation and
expertise coefficients of j, in the following way:

r̂ij = rij − 1
|Eij | · sije

x̂j = xj −
∑

i�=j
sij

|Eij |·sije∑
i�=j sij

5.4 Exploitation of the Context

Thanks to semantic negotiation, an agent can learn both new unknown explained
elements and new explanations of already known explained elements, but this is
not the only benefit. As previously described in Sect. 3.2, each explanation is a
different meaning of the relative element and is also associated with a context (i.e.



HISENE2: A Reputation-Based Protocol 961

a set of agents for which this explanation is understandable). As a consequence,
an agent can learn both to understand incoming messages and how to make its
own messages understandable.

Example 2. Consider the agent i whose ontology is represented in Table 1. Sup-
pose that i wants to make an offer to the agent d for the V olume: (Book
:title “Les Fleurs du Mal” :author “Beaudelaire”) and can use two different
meanings for V olume, namely e1 = ({Book, Editor}, {a, d}, a, 0.8) and e2 =
({Book, Seller(Bookshop)}, {a, b}, b, 0.9). The agent i chooses to use e1 in its
message, since the receiver agent d is in the context of e1. ��

6 Example

In this section, we present an application of semantic negotiation in order to
compare the HISENE2 protocol with the previous version of HISENE. Consider
a small e-commerce agent community composed of a client agent, denoted by
a1, operating on behalf of a human owner, and three server agents, denoted by
a2, a3 and a4, these latter providing e-commerce web services.

Now we describe the two different evolutions of the agent community in pres-
ence of HISENE and HISENE2 separately.

6.1 HISENE

Initially, both the understanding and expertise coefficients are set to 0. Suppose
that the agent a2 assigns the values wu = 0.6 and we = 0.4.

In Fig. 2.A, we see that the agent a1 sends a PROPOSEmessage to a2, containing
a predicate that says it desires to buy by auction a book having the title “Anna
Karenina”, under the condition that the item is located in Italy and that it can
pay by a money order. The agent a2 receives the message, but it is unable to
understand the elements country and payment, since they are not present in
his ontology. Then, it decides to exploit the semantic negotiation protocol and,
since both the understanding and expertise coefficients are equal to 0, then all
the negotiation degrees are 0. As a consequence, the only agent partition that a2
can build is AS0

a2 = {a1, a3, a4}. Suppose that a3 proposes the element music as
a synonym of country and the element sum as a synonym of payment, and that
a4 provides the element payment method to explain the element payment. Now,
suppose the ontology of a2 contains both music, sum and payment method: in
this case, it is now able to understand the message of a1 completely. Moreover,
both the understanding and expertise coefficients are increased of one unit for
each provided synonym.

Notice that the element music is not a synonym of country, and that the
element sum can be considered as a synonym of payment, but not in the meaning
of the agent a1. As a consequence, they are wrong explanations.

In Fig. 2.B, the agent a2 desires to sell a camera to the agent a4 at a price
of 150, under the condition that it wants to receive the payment by cash. It
bears in mind that sum is a synonym of payment and decides to use it in this



962 S. Garruzzo and D. Rosaci

PROPOSE message. Now, suppose the ontology of a4 contains all the terms used
in the message; nevertheless, it does not understand the use of the element sum
in the message. As a consequence, the agent a4 replies negatively. In this case,
both the understanding and expertise coefficients will remain unchanged.

In Fig. 2.C is depicted the following situation, in which the agent a1 sends a
PROPOSE message to a2, saying that he desires to buy a book with the title “Les
Fleurs du Mal”, with author “Beaudelaire” and edition 1914. Since a2 does not
understand the element edition, he decides to exploit the semantic negotiation
protocol first by computing the negotiation degrees. As a result, while the agent
a4 has the value na2,a4 = 1, the agent a3 has the highest negotiation degree
na2,a3 = 2. This is due to the fact that the agent a3 has explained more elements
than other agents, independently from the quality of the descriptions.

a1 a2 a3 a4

PROPOSE
(Buy

(Book :title “Anna Karenina”
:country “Italy”
:payment “money order”) ) SN_QUERY

(country, payment)

SN_QUERY
( )country, payment

SN_RESPONSE
( )payment, payment_method

SN_RESPONSE
(country, music),
(payment, sum)

PROPOSE
(Sell

(Camera :price “150”
:sum “cash”) )

REFUSE / NOT-UNDERSTOOD / FAILURE

PROPOSE
(Buy

(Book :author “Beaudelaire”
:title “Les Fleurs du Mal”
:edition “1914”) ) SN_QUERY

(edition)

The first partition
is the unreliable
agent

Wrong descriptions

(A)

(B)

(C)

u = 2 e = 2
u = 1 e = 1

a2,a3 a3

a2,a4 a4

u = 0 e = 0
a2,a1 a1

u = 0 e = 0
u = 0 e = 0

a2,a3 a3

a2,a4 a4

w = 0.6
w = 0.4

u

e

u = 2 e = 2
u = 1 e = 1

a2,a3 a3

a2,a4 a4

n = 0.6 0 + 0.4 0 = 0
a2,a1

· ·
n = 0.6 0 + 0.4 0 = 0
n = 0

a2,a3

a2,a4
.6 0 + 0.4 0 = 0

· ·
· ·

n = 0.6 + 0.4 = 0
a2,a1

·0 ·0
n = 0.6 + 0.4 = 2
n = 0

a2,a3

a2,a4
.6 + 0.4 = 1

·2 ·2
·1 ·1

SN_QUERY
( )country, payment

Fig. 2. Example of a community evolution supported by HISENE

6.2 HISENE2

Consider that the agent a2 assigns the values wr = 0.6, wx = 0.4, and Ra2 = 0.7,
and that the community gives the reliability value R = 0.2 to new agents.

In Fig. 3.A, the agent a2 computes the negotiation degrees, by using the coef-
ficients R and Ra2. Initially, none of the agents ever explained any element; as a
consequence, the only agent partition that a2 can build is AS0

a2 = {a1, a3, a4}.
The agents a3 and a4 provide their explanations for country and payment. The
agent a2 accepts these explanations and assigns them the value Ra2 = 0.7.



HISENE2: A Reputation-Based Protocol 963

In Fig. 3.B, the agent a2 uses the explained element sum for the first time
as an explanation of payment. As a consequence, the explanation confidence of
sum become ca2,a3,“sum” = 1 − 0

1 = 1. Suppose that the receiver agent does not
understand the meaning of sum in the message, and thus it performs a semantic
negotiation; suppose also that the semantic negotiation is not able to make sum
understandable. As a consequence, the agent a4 replies with an SN FEEDBACK
message. In this case, the first time sum has been used it received a negative
feedback, thus the confidence of sum becomes ca2,a3,“sum” = 1 − 1

1 = 0. Note
that the fact that the confidence of sum has been decreased is not caused only by
the unability of a4 to explain it; in fact, a4 has performed a semantic negotiation
that did not give any result, therefore we can affirm that the community in its
whole was unable to explain the element.

In Fig. 3.C a third situation is depicted, in which we can appreciate the
HISENE2 reputation-based partitioning. The agent a2 does not understand
edition and decides to exploit the semantic negotiation protocol; thus it com-
putes the negotiation degrees: na2,a4 = 0.50 and na2,a3 = 0.35. This is due to
the fact that a2 realized that sum is a wrong explanation for the term payment.

In conclusion, we observe that the reputation of an agent decreases in time
with the number of wrong explanations.

7 Evaluation of the Approach

In order to assess the effectiveness of our protocol, we compared the evolution of
a community composed of JADE agents having heterogeneous ontologies, both
in presence and in absence of the HISENE2 protocol. We have performed our
experiments on different communities of agents, having different degrees of het-
erogeneity. In order to compute the heterogeneity of an agent community, we
note that the semantic difference between two ontology elements can be mea-
sured by using a fixed schema matching algorithm. In this experiment we have
used the well-known SDR algorithm [9], that performs a schema matching both
textual and structural and computes a semantic distance coefficient between
two elements. The SDR algorithm can be applied directly if the two elements
are concepts, predicates or agent actions. In the case of a pair of explained el-
ements A and B, we compute the semantic distance between A and B as the
average of the semantic distances between all the possible pairs (Ai, Bj), where
Ai ∈ A (resp. Bj ∈ B) is an explanation for the element A (resp. B). Instead,
the semantic distance between two explanations Ai and Bj is computed as the
average of all the pairs (Ah

i , Bk
j ), where Ah

i (resp. Bk
j ) is an element belonging

to the extended ontology element set of Ai (resp. Bj). We call Semantic Hetero-
geneity Degree SHDO1,O2 between two ontologies O1 and O2 the average of all
the semantic distances between each pair (O1

i , O2
j ), where O1

i (resp. O2
j ) is an

element of O1 (resp. O2). Finally, we call Semantic Heterogeneity Degree SHD
of the whole community of agents the average of all the SHDO1,O2 . Moreover,



964 S. Garruzzo and D. Rosaci

a1 a2 a3 a4

PROPOSE
(Buy

(Book :title “Anna Karenina”
:country “Italy”
:payment “money order”) ) SN_QUERY

(country, payment)

SN_QUERY
( )country, payment

SN_RESPONSE
( )payment, payment_method

SN_RESPONSE
(country, music),
(payment, sum)

PROPOSE
(Sell

(Camera :price “150”
:sum “cash”) )

SN_FEEDBACK
(sum)

Wrong descriptions

(A)

(B)

c = 1 - 1/1 = 0
a2,a3,“sum”

w

w
r a2

x

= 0.6 = 0.7

= 0.4 = 0.2

R

R

n = 0.6 0.7 + 0.4 0.2 = 0.5
a2,a1

· ·
n = 0.6 0.7 + 0.4 0.2 = 0.5
n = 0

a2,a3

a2,a4
.6 0.7 + 0.4 0.2 = 0.5

· ·
· ·

c = 0.7
a2,a3,“sum”

c = 0.7
c = 0.7

a2,a3,“music”

a2,a4,“payment_method”

c = 1 - 0/1 = 1
a2,a3,“sum”

n = 0.60 0.70 + 0.40 0.20 = 0.50
a2,a1

· ·
n = 0.60 0.35 + 0.40 0.35 = 0.35
n = 0

a2,a3

a2,a4
.60 0.70 + 0.40 0.20 = 0.50

· ·
· ·

PROPOSE
(Buy

(Book :author “Beaudelaire”
:title “Les Fleurs du Mal”
:edition “1914”) ) SN_QUERY

(edition)(C)

SN_QUERY
( )country, payment

SN_QUERY
(edition)

Fig. 3. Example of a community evolution supported by HISENE2

we call Understanding Rate UR the fraction of semantic ordinary messages that
do not give rise to SN FEEDBACK messages.

In order to obtain an estimation of our approach, we built six collections of on-
tologies having SHD equal to {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The understanding rate
obtained in presence and in absence of the HISENE protocol, for the different
SHD, is shown in Fig. 4.a. We can observe that high values of SHD imply low
UR and vice versa; this is due to the high probability of exchanging messages
between agents with different ontologies. The community takes advantage on
the use of HISENE that improves the UR; in particular, the higher SHD is, the
higher the improvement of UR is. In fact, high level of SHD means high proba-
bility for a message to give rise to a semantic negotiation; the higher the number
of semantic negotiations is, the higher the number of explanations learnt is, and
the smaller the number of SN FEEDBACK messages will be. In other words, se-
mantic negotiations modify the original ontologies decreasing the SHD in time.
This is well shown in Fig. 4.b, where we considered the set of ontologies having
SHD = 0.7; this value does not change without the presence of HISENE. Oth-
erwise, agents performing semantic negotiations learn new explained elements
and explanations from other agents, adding them to their ontologies; thus, the
SHD decreases in time. In Fig. 4.c we plotted the number of semantic negotia-
tions generated by the HISENE2 protocol with respect to the previous version
HISENE. We note that HISENE2 needs a smaller number of negotiations than
HISENE, thus showing a better efficiency.



HISENE2: A Reputation-Based Protocol 965

(a) (b)

(c)

0

0,2

0,4

0,6

0,8

1

0,3 0,4 0,5 0,6 0,7 0,8
SHD

U
R

without HISENE

with HISENE

with HISENE2

0

0,2

0,4

0,6

0,8

1

20 40 60 80 100 120 140 160
# of messages

S
H

D

without HISENE

with HISENE

with HISENE2

0

500

1000

1500

2000

2500

20 40 60 80 100 120 140 160
# of messages

#
o

f
s

e
m

a
n

ti
c

n
e

g
o

ti
a

ti
o

n
s

with HISENE

with HISENE2

Fig. 4. Experimental results

8 Conclusions

A key issue in developing multiagent systems to support users in their Web
activities is that of solving understanding problems between agents having per-
sonal ontologies that are not completely homogeneous. Semantic negotiation is
a promising framework for facing this issue, and HISENE is a new semantic ne-
gotiation protocol recently introduced, that makes the process of selecting the
most suitable negotiation partners effective. However, an important limitation
of HISENE is that the reputation of an agent is built only on the basis of the
capability to explain unknown terms to other agents, without considering the
possibility that the explanation of a term cannot be effective. Moreover, HISENE
does not admit the possibility that a term can have different meanings in differ-
ent contexts. In this paper, we propose an extension of the protocol HISENE,
called HISENE2, that exploits a new mechanism to determine the reputation
of an agent. First of all, the ontology elements of HISENE can have different
meanings, and can be used to form explanations of other elements. Moreover,
the effectiveness of an explanation provided by an agent is evaluated when the
explanation itself is used in agent discussions. The reputation of an agent is
therefore determined on the basis of the effectiveness of the explanations that it



966 S. Garruzzo and D. Rosaci

provided in the past to the other agents of the community. We performed some
experiments to evaluate the advantages introduced by HISENE2 with respect to
HISENE, and we show that the new protocol improves both the quality and the
efficiency of the semantic negotiation process.

References

1. S.C. Bailin and W. Truszkowski. Ontology negotiation between intelligent infor-
mation agents. Knowl. Eng. Rev., 17(1):7–19, 2002.

2. R.-J. Beun, R.M. van Eijk, and H. Prust. Ontological Feedback in Multiagent
Systems. In AAMAS ’04: Proc. of the Third Int. Conf. on Autonomous Agents
and Multiagent Systems, pages 110–117. IEEE, 2004.

3. H. Ding and I. Sølvberg. Towards the schema heterogeneity in distributed digital
libraries. In ICEIS (5), pages 307–312, 2004.

4. D.W. Embley. Toward Semantic Understanding: An Approach Based on Infor-
mation Extraction Ontologies. In CRPIT ’04: Proc. of the Conf. on Australasian
Database, pages 3–12. Australian Computer Society, 2004.

5. http://www.fipa.org, 2005.
6. S. Garruzzo and D. Rosaci. Information agents that learn to understand each

other via semantic negotiation. In 6th Int. Conf. on Distributed Applications and
Interoperable Systems (DAIS 2006), pages 199–212. Springer, 2006.

7. R.V. Guha. Semantic Negotiation: Co-identifying objects across data sources. In
Proc. of the Semantic Web Services Conf., March 2004.

8. http://jade.tilab.com, 2005.
9. L. Palopoli, D. Rosaci, G. Terracina, and D. Ursino. A graph-based approach for

extracting terminological properties from information sources with heterogeneous
formats. KAIS, 8(4), 2005.

10. C. Reed, T.J. Norman, and N.R. Jennings. Negotiating the Semantics of Agent
Communication Languages. Computational Intelligence, 18(2):229–25, 2002.

11. L. Soh and C. Chen. Balancing ontological and operational factors in refining
multiagent neighborhoods. In AAMAS ’05: Proc. of the Int. Conf. on Autonomous
agents and multiagent systems, pages 745–752. ACM Press, 2005.

12. J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk, and J.-J.Ch. Meyer. Op-
timal communication vocabularies and heterogeneous ontologies. In Developments
in Agent Communication, LNAI 3396. Springer, 2004.

13. J. van Diggelen, R.-J. Beun, F. Dignum, R.M. van Eijk, and J.-J.Ch. Meyer. An
effective minimal ontology negotiation environment. In AAMAS ’06: Proc. of the
5th Int. Conf. on Autonomous Agents and Multiagent Systems. ACM Press, 2006.

14. A.B. Williams. Learning to Share Meaning in a Multi-Agent System. Autonomous
Agents and Multi-Agent Systems, 8(2):165–193, 2004.



An HL7-Aware Multi-agent System for
Efficiently Handling Query Answering in an

e-Health Context

Pasquale De Meo, Gabriele Di Quarto, Giovanni Quattrone,
and Domenico Ursino

DIMET, Università Mediterranea di Reggio Calabria,
Via Graziella, Località Feo di Vito, 89060 Reggio Calabria, Italy

demeo@unirc.it, dqlele@iol.it, quattrone@unirc.it, ursino@unirc.it

Abstract. In this paper we present a multi-agent system aiming at
supporting patients to search health care services of their interest in an
e-health scenario. The proposed system is HL7-aware in that it represents
both patient and service information according to the directives of HL7,
the information management standard adopted in medical context. In
this paper we illustrate the technical characteristics of our system and
we present a comparison between it and other related systems already
proposed in the literature.

1 Introduction

Most industrialized countries are shifting toward a knowledge-based economy in
which knowledge and technology play a key role for supporting both productivity
and economic growth. This transition is characterized by deep changes affecting
the individual quality of life and requires that economic development keeps pace
with social progress. In this scenario, it is possible to foresee a rising demand of
ad-hoc social services shaped around citizen needs [6].

The application of Information and Communication Technologies on the whole
range of health sector activities (also known as e-health) can simplify the access
to health care services and can boost both their quality and their effective-
ness. E-Health tools allow the construction of patient-centric Health Care Service
Providers (hereafter, HCSP s), aiming at supporting patients to access health-
related information, to prevent their possible diseases and to monitor their health
status.

These considerations justify the large amount of health-related information
disseminated over the Web; as an example, European Commission has recently
activated the EU-health portal that supplies information on 47 health topics and
allows the access to more than 40000 trustworthy data sources [7].

At the same time, individuals are showing a growing interest to health-related
Web sites; as an example, a European Commission study observed that, in 2005,
at least 33% of European adult population browsed the Web to search health-
related information [7].

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 967–974, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



968 P. De Meo et al.

Despite the abundance of available proposals, the retrieve of interesting ser-
vices is not always easy. In fact, existing HCSP s often use proprietary formats
for representing data and services; as a consequence, their interoperability and
comparison are generally difficult. In addition, the vocabulary exploited by a
patient for composing his queries is often limited and consists of quite generic
terms; on the contrary, medical resources and services are often described by
means of specialistic terms. As a consequence, terms composing patient queries
usually fail to match with documents describing medical resources and services.
This might cause two, generally co-occurring, consequences. The former is that a
query answer might contain a large number of useless proposals that fail to fulfill
patient needs (false positives). The latter is that a query answer could ignore a
large number of proposals that might be useful to the patient (false negatives).

This paper focuses on these research issues and aims at providing a contri-
bution in this setting; in fact, it proposes a multi-agent system for effectively
supporting patients to detect health care services of their interest; the proposed
system aims at coping with HCSP s interoperability and comparison problems,
as well as at returning precise and complete results.

Our system is HL7 aware; in fact, it uses the HL7 (Health Level Seven) stan-
dard [1] for effectively handling both service and patient information. HL7 pro-
vides several functionalities for the exchange, the management and the integra-
tion of data regarding both patients and health care services. It is strictly related
with XML, since HL7-based documents can be easily coded in this language.
Moreover, it is a widely accepted standard in the marketplace [8]; specifically,
(i) a large number of commercial products implement and support it; (ii) several
research projects adopt it as the reference format for representing clinical doc-
uments; (iii) various industrial and academical efforts have been performed for
harmonizing it with other standards for the electronic representation of health-
related data. HL7 plays a key role in our system since it allows interoperability
and comparison problems to be successfully faced.

Our system consists of five main components, namely: (i) a Patient Agent -
PA, allowing a patient to submit queries for detecting services of his interest;
(ii) a Health Care Service Provider Agent - SPA, supporting a HCSP manager
to maintain the corresponding service database up-to-date; (iii) a Coordinator
Agent - CA, cooperating with PAs and SPAs to detect those services appearing to
be the closest to patients’ queries and profiles; (iv) a Health Care Service Provider
Database - SD, that is associated with a HCSP and manage information about
services delivered by it; (v) a Patient Profile Database - PD, storing and handling
patient profiles.

Each time a patient submits a query, our system “intelligently” forwards it
only to the most promising HCSP s, i.e., to those HCSP s providing services that
are likely to best match both the submitted query and the patient profile. In
order to guarantee this important feature, it implements three ad-hoc strategies,
tailored to the peculiarities of our reference context. As it will be clear in the
following, these strategies avoid a patient to manually contact and query a large
number of HCSP s for retrieving services of his interest (this last activity is



An HL7-Aware Multi-agent System 969

Patient Profile

Database

(PD)

Pa
tie

n
t
Pro

file

U
p
d
a
te

Query,
Pa

tie
nt Pro

file

ServiceInfo

Service

Info

Service

Info

Q
uery, Patient Profile

Servic
e

Info

Health Care

Service Provider

Database

(SD)

Health Care

Service Provider

Database

(SD)

Health Care

Service Provider

Manager

Health Care

Service Provider

Manager

Service

Info

Se
rv

ic
e

In
fo

Se
rv

ic
e

In
se

rtio
n
/

R
e

m
o

v
a

l/

U
p

d
a

te

Q
ue

ry

Pro
file

U
p
d
a
te

Patient

Patient

Query

Service
Info

Pa
tie

nt Pr
ofil

e

Update

Pa
tie

nt Pr
ofil

e

Ext
ra

ctio
n

Pa
tie

n
t
Pro

file

Extra
c
tio

n

Query

Q
uery

Pro
file

Update

Se
rv

ic
e

In
se

rt
io

n
/

R
e
m

o
va

l/

U
p
d
a
te Se

rv
ic

e
In

se
rt
io

n
/

R
e
m

o
va

l/

U
p
d
a
te

Se
rvic

e

In
fo

Se
rvic

e

In
se

rtio
n
/

R
e
m

o
va

l/

U
p
d
a
te

Health Care Service

Provider Agent

(SPA)

Health Care Service

Provider Agent

(SPA)

Patient Agent

(PA) Patient Agent

(PA)

Coordinator

Agent

(CA)

Fig. 1. General architecture of our system

usually called Brute Force search in the literature) and allows those HCSP s
that will more likely provide useful results to be preventively identified. As a
consequence, patient queries are evaluated against a small number of HCSP s.
This allows more precise and sound results to be achieved, as well as query
execution time to be reduced, HCSP resource management to be improved
and, finally, network performance to be increased.

2 Description of the Proposed System

The general architecture of our system is shown in Figure 1. From this figure it is
possible to observe that our system is characterized by three typologies of agents,
namely: (i) a Patient Agent (hereafter, PA), that supports a patient to search
services of his interest; (ii) a Health Care Service Provider Agent (hereafter,
SPA), that supports a HCSP manager to maintain the corresponding database
up-to-date; (iii) a Coordinator Agent (hereafter, CA), that cooperates with PAs
and SPAs to detect those services appearing to be the closest to patients’ exi-
gencies and queries. In our system a HCSP is provided with a suitable database
(hereafter, SD), storing and managing information about services delivered by
it. Our system is also provided with a Patient Profile Database (hereafter, PD),
storing and handling patient profiles. In the following we call SDSet (resp.,
SPASet) the set of SDs (resp., SPAs) associated with all involved HCSP s.

2.1 Health Care Service Provider Database (SD)

A HCSP Database is associated with a HCSP and stores information about
the health care services delivered by it. The profile SPj of a health care service
Sj consists of a tuple 〈SIdj , SNamej, SDescrj , SURLj, SFSj , SCSj〉, where:



970 P. De Meo et al.

– SIdj , SNamej, SDescrj , SURLj represent the code, the name, the descrip-
tion and the URL of Sj.

– SFSj =
{
F 1

j , F 2
j , . . . , F p

j

}
represents a set of features associated with Sj ;

each feature is a keyword describing a peculiarity of Sj (e.g., an illness faced
by it). As an example, consider the service “chest radiography”; a possible
set of features describing it is {“pneumonia”, “heart failure”, “emphysema”,
“lung cancer”, “check”, “radiography”}.

– SCSj =
{
SC1

j , SC2
j , . . . , SCt

j

}
is a set of constraints associated with Sj . A

constraint SCl
j consists of a pair 〈SCNamel

j , SCV aluesl
j〉, where SCNamel

j

represents its name and SCV aluesl
j indicates the corresponding admissible

values. A constraint could represent the requisites a patient must have for
accessing a certain service; another constraint could define the activation
or the expiration date of a service, and so on. For instance, the constraint
〈“free”, “Heart Problems”〉, associated with the service “Holter Monitoring”,
might specify that if a patient has heart problems, then he is eligible for
receiving Holter Monitoring service for free.

SFSj and SCSj are coded according to the rules specified for representing the
component “entry” of the various sections of the Body of the Clinical Document
Architecture (CDA), release 2. CDA is the HL7-based standard for represent-
ing clinical documents. These rules specify that section entries are represented
with the support of specific dictionaries. CDA sections of interest for SFSj are
“Problem list”, “History of past illness”, “History of medication use”, “History of
present illness”, “Family history”, “Social history”, “Immunization”, “Past sur-
gical history”. CDA sections of interest for SCSj are: “Problem list”, “History
of allergies”, “Past surgical history”, “Family history”, “Social history”, “Im-
munization”, “History of past illness”, “History of medication use”, “History of
present illness”. All these sections refer to the LOINC [2] dictionary for their
definition and to the SNOMED CT [3] dictionary for their content; however, if
necessary, HL7 allows other dictionaries to be exploited. According to HL7 sug-
gestions, for those features and/or constraints that cannot be coded by means
of the already defined sections and the already existing dictionaries, we have
defined new specific sections and a new specific dictionary. SD is constructed
and handled by means of the XML technology.

2.2 Patient Profile Database (PD)

PD stores the profiles of the patients involved in our system. A Patient Profile
PPi, associated with a patient Pi, consists of a triplet 〈DSi, MPi, PCSi〉, where:

– DSi stores both the demographic and the social data of Pi.
– MPi =

{
K1

i , K2
i , . . . , Km

i

}
represents the Medical Profile of Pi; it consists

of a set of keywords capable of representing both his pathologies and his
possible needs in the health care domain.

It is worth pointing out that MPi is much more than a simple clinical
document recording patient diseases. In fact, due to its mission, our system



An HL7-Aware Multi-agent System 971

should not restrict itself to record patient diseases but it should offer tools for
providing patients and health care professionals with a profile-guided access
to a large variety of health care related services, as well as for raising both the
quality and the efficacy of the Public Health Care System. These goals can
be achieved by managing patient information at a broader level than that
guaranteed by a simple patient’s pathologies list. This choice agrees with
the ideas outlined in [9,13], where it is pointed out that, besides medical
information, the profile of a patient in e-health systems should include his
tasks and goals, his cognitive and psychological peculiarities, and so on.

– PCSi =
{
PC1

i , PC2
i , . . . , PCl

i

}
is a set of constraints associated with Pi.

A constraint PCh
i is a pair 〈PCNameh

i , PCV aluesh
i 〉, where PCNameh

i

represents its name and PCV aluesh
i indicates the corresponding admissible

values. The exploitation of constraints allows a wide range of health-related
episodes to be correctly managed. As an example, the constraint 〈“allergen”,
“penicillin”〉, associated with Pi, specifies that penicillin is an allergen for
him. The relevance of this constraint is clear: it might prevent Pi from un-
dergoing a clinical treatment involving penicillin.

DSi is coded according to the rules specified for representing the component
“Record Target” of the Header of the CDA, release 2. The fields of “Record Tar-
get” taken into account in DSi are: “Id”, “Name”, “Addr”, “Telecom”, “Admin-
istrative Gender Code”, “Birth Time”, “Marital Status” and “Living Arrange-
ment”. According to HL7 philosophy, whenever necessary, we have defined and
exploited other fields not already defined in HL7 standard (think, for example,
to the field “patient yearly income”). MPi and PCSi representations conform
to the rules specified for representing the component “entry” of the various sec-
tions of the Body of the CDA, release 2. Reference sections and dictionaries
are the same as those considered for SFSj and SCSj . For those features and
constraints that cannot be coded by means of the sections and the dictionaries
already proposed for CDA and HL7 we have adopted the same sections and the
same dictionary defined for SFSj and SCSj . Analogously to SD, also PD is
constructed and managed by means of the XML technology.

2.3 Patient Agent (PA)

A Patient Agent PAi is associated with a patient Pi. Its support data struc-
ture stores the profile of Pi. PAi is activated by Pi when he wants to know
if there exist new services of interest for him and, in the affirmative case, for
accessing them. First PAi retrieves PPi from PD and stores it in its sup-
port data structure. Then, it allows Pi to submit a query Qik

specifying the
service typology he presently desires. Qik

consists of both a set of keywords
QKSik

= {Q1
ik

, Q2
ik

, . . . , Qr
ik

} and a stop condition, stating when it can be con-
sidered satisfied (for instance, a stop condition might state that Qik

can be
considered satisfied if at least 10 services have been retrieved). After this, PAi

forwards the pair 〈Qik
, PPi〉 to CA which is in charge of processing it. When

CA returns the corresponding results, PAi presents them to Pi.



972 P. De Meo et al.

PAi can be activated by Pi also when he wants to update his profile PPi.
In this case it retrieves the current PPi from PD and shows it to Pi by means
of a graphical interface. At this point Pi can modify it in a friendly and guided
fashion. At the end of this activity PAi stores the updated PPi into PD.

2.4 Health Care Service Provider Agent (SPA)

SPA is an Interface Agent, analogous to that described in [5]. A SPA is associ-
ated with a HCSP that uses it for adding, modifying or removing information
about the services it provides. SPA allows our system to uniformly manage
possibly highly heterogeneous services. It is also in charge of processing queries
submitted by CA; in this case, it retrieves the necessary information from its
SD and processes it in such a way to construct the corresponding answers.

2.5 Coordinator Agent (CA)

CA receives a pair 〈Qik
, PPi〉 from a Patient Agent PAi and processes Qik

taking also into account information stored in PPi. First it determines those
SPAs appearing to be the most adequate for answering Qik

; then, it requires
each of them to process Qik

; after this, it merges provided results for constructing
the final answer; finally, it sends this answer to PAi that presents it to Pi. For
selecting the most adequate SPAs for a query, we have implemented three ad-hoc
algorithms, called Patient Profile Based (PPB), Database Similarity & Patient
Profile Based (DS-PPB) and A∗-Based (AB).

PPB relies on the general observation that combining query processing tech-
niques with user profile information into a single framework allows the most
adequate answers to user queries to be found [10].

DS-PPB considers not only information stored in patient profiles but also
semantic similarities possibly existing among SDs. In our opinion, the knowledge
of these similarities allows the enhancement of query processing activities and,
consequently, the increase of the number of relevant services that the system can
propose to a patient.

The philosophy underlying AB is quite different from that underlying PPB
and DS-PPB. In fact, these last can be considered “query-centric”, since they
process a query at a time and determine the SPAs best satisfying it. On the
contrary, AB can be considered “provider-centric”, since it considers a set of
queries QSet at a time and partitions it into disjoint subsets, each associated
with a SPA of SPASet; this enhances the overall “quality” of answers.

3 Related Works

In this section we compare our system with other ones aiming at supporting a
user in his access to health care services.

In [11] a system supporting a user to retrieve information of his interest in a
medical context is proposed. It is possible to detect some similarities between
our system and that described in [11]. Specifically, both of them: (i) provide a



An HL7-Aware Multi-agent System 973

suitable formalism for representing medical resources; (ii) provide a technique for
determining the importance of each keyword composing a query. As for the main
differences between them we observe that: (i) our system has been conceived to
support mainly patients; on the contrary, the approach of [11] aims at supporting
a wider range of users (e.g., patients, health professionals, etc.); (ii) the system
of [11] does not take patient profiles into account; (iii) for performing its tasks,
the system of [11] exploits a semantic network of medical terms whereas our
system uses patient and service profiles.

In [4] a multi-agent system aiming at supporting physicians to retrieve med-
ical information is described. As for the main similarities between the system
of [4] and ours, we observe that both of them: (i) are provided with a suitable
data structure for modelling patient needs; (ii) are multi-agent; (iii) consider
an intermediate agent capable of gathering results coming from different medi-
cal databases; (iv) manage a scenario in which autonomous and heterogeneous
medical databases coexist. As for the main differences between them, we observe
that: (i) the system of [4] has been conceived for supporting mainly physicians;
(ii) the system of [4] requires a medical ontology for processing queries; on the
contrary, our system exploits both patient and service profiles.

In [12] PERSIVAL, a system for supporting physicians to search documents
about patient care, is presented. PERSIVAL and our system are similar in that:
(i) both of them use keywords for representing patient and service profiles; (ii) in
both of them retrieval activity is driven by patient profiles. The main differences
between them are the following: (i) the end users of PERSIVAL are physicians
whereas the end users of our system are patients; (ii) PERSIVAL is provided
with a summarization functionality; this is not present in our system; (iii) in
PERSIVAL no notion someway analogous to our “Affinity” concept has been
defined.

In [9] MMA, a system for delivering medical information to an heterogeneous
audience of users, is proposed. Our system and MMA share some similarities;
specifically, both of them: (i) associate a suitable profile with each user; (ii)
consider not only strictly medical data but also other information, such as de-
mographic and social data. As for the main differences between them, we observe
that: (i) in MMA user profiles are based on stereotypes whereas, in our system,
each profile is specific for a patient; (ii) MMA takes a great care to the graph-
ical interface characteristics desired by a user; this aspect is not considered by
our system; (iii) MMA has been conceived for handling various user typologies
whereas our system is specifically devoted to support patients.

4 Conclusions

In this paper we have presented an HL7-aware multi-agent system supporting
patients in their access to services delivered by HCSP s. The proposed system
combines submitted queries with the corresponding patient profiles for identify-
ing those services that are likely to satisfy patient needs and desires.

Various extensions and improvements might be thought for our system in
the future. Among them we consider particularly challenging to investigate the



974 P. De Meo et al.

possibility to integrate our system with a Decision Support one; in this way,
patient behaviour could be analyzed (for instance, by means of a Data Mining
tool) for determining the key features of the most appreciated services. This
information might be particularly useful for HCSP s managers when they must
decide the new services to propose.

References

1. Health Level Seven (HL7). http://www.hl7.org.
2. Logical Observation Identifiers Names and Codes (LOINC).

http://www.regenstrief.org/loinc/.
3. Systematized NOmenclature of MEDicine Clinical Terms (SNOMED CT).

http://www.snomed.org.
4. L. Braun, F. Wiesman, J. van den Herik, and A. Hasman. Agent support in

medical information retrieval. In Proc. of the IJCAI International Workshop on
Agents Applied in Health Care, pages 16–25, Edinburgh, UK, 2005.

5. A. Cesta and D. D’Aloisi. Building interfaces as personal agents: a case study.
ACM SIGCHI Bullettin, 28(3):108–113, 1996.

6. European Commission. e-Health - making healthcare better for European citizens:
An action plan for a European e-Health Area. Technical report, Available at
http://europa.eu.int/information society/doc/qualif/health/, 2004.

7. European Commission. Reliable health information at the click of a mouse Eu-
ropean Commission launches new Health Portal. Technical report, Available at
http://ec.europa.eu/health-eu/index en.htm, 2006.

8. M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G.B. Laleci. A survey
and analysis of electronic healthcare record standards. ACM Computing Surveys,
37(4):277–315, 2005.

9. L. Francisco-Revilla and F.M. Shipman III. Adaptive medical information delivery
combining user, task and situation models. In Proc. of the ACM International
Conference on Intelligent User Interfaces (IUI’00), pages 94–97, New Orleans,
Louisiana, USA, 2000. ACM Press.

10. G. Koutrika and Y. Ioannidis. Personalized queries under a generalized preference
model. In Proc. of the IEEE International Conference on Data Engineering (ICDE
2005), pages 841–852, Tokyo, Japan, 2005. IEEE Computer Society Press.

11. Z. Liu and W.W. Chu. Knowledge-based query expansion to support scenario-
specific retrieval of medical free text. In Proc. of the ACM Symposium on Applied
Computing (SAC ’05), pages 1076–1083, Santa Fe, New Mexico, USA, 2005. ACM
Press.

12. K.R. McKeown, N. Elhadad, and V. Hatzivassiloglou. Leveraging a common repre-
sentation for personalized search and summarization in a medical digital library. In
Proc. of the ACM/IEEE Joint Conference on Digital Libraries (JCDL ’03), pages
159–170, Houston, Texas, U.S.A., 2003. IEEE Computer Society.

13. E. Vasilyeva, M. Pechenizkiy, and S. Puuronen. Towards the framework of adaptive
user interfaces for eHealth. In Proc. of the IEEE Symposium on Computer-Based
Medical Systems (CBMS’05), pages 139–144, Dublin, Ireland, 2005. IEEE Com-
puter Society.



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 975 – 982, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

PersoNews: A Personalized News Reader Enhanced by 
Machine Learning and Semantic Filtering 

E. Banos, I. Katakis, N. Bassiliades, G. Tsoumakas, and I. Vlahavas 

Department of Informatics, Aristotle University of Thessaloniki,  
54124, Thessaloniki, Greece 

{vmpanos, katak, nbassili, greg, vlahavas}@csd.auth.gr 

Abstract. In this paper, we present a web-based, machine-learning enhanced 
news reader (PersoNews). The main advantages of PersoNews are the aggrega-
tion of many different news sources, machine learning filtering offering person-
alization not only per user but also for every feed a user is subscribed to, and fi-
nally the ability for every user to watch a more abstracted topic of interest by 
employing a simple form of semantic filtering through a taxonomy of topics. 

1   Introduction 

The explosive growth of the WWW has brought essential changes in everyday life. 
Maybe the most determining contribution was the boundless, instantaneous and cost-
less offering of information. Recently, the rate of available information became gigan-
tic, making the discrimination of useful information out of tons of worthless data a 
tedious task. This phenomenon is commonly named “Information Overload” and 
comprises a main issue impeding the user finding the needed information in time.  

Machine Learning (ML) and especially Text Classification (TC) is a promising field 
that has the potential to contribute to the solution of the problem. In TC, a classifier is 
trained to separate interesting messages on behalf of the user. Much work has been 
done to this direction [8], but, unfortunately, not many applications were widely used. 

We have implemented a system  (PersoNews) in order to fill this gap. PersoNews 
is a web-based machine learning enhanced RSS reader. It utilizes an incremental 
Naïve Bayes classifier in order to filter uninteresting news for the user. The web ap-
plication PersoNews has a twofold functionality. Firstly, it operates as a typical RSS 
reader, and secondly, the user can choose from a thematic ontology a topic of interest. 
The distinctiveness of PersoNews is that both the above functionalities are enhanced 
by the Machine Learning Framework described in [5].  

In the rest of the paper, we cover related work on News Classification, in section 2; 
section 3 describes the ML framework chosen for the application and section 4 presents 
the PersoNews system. Our paper concludes with discussion and plans for future work. 

2   Related Work 

The problem of News Filtering is to effectively separate interesting news articles for 
the user from a large amount of documents. A typical application of this task would 



976 E. Banos et al. 

be to create a personalized on-line newspaper for each user. The role of machine 
learning in such problems was early recognized. 

In [1], for example, a personalized on-line newspaper is created for every user, 
based on user feedback. The approach in that paper was to convert each article into a  
word/feature vector. Having the user profile also as a feature vector, all articles could 
be ranked according to their similarity with this vector.  

In [3] a special purpose news browser for PalmOS-based PDAs is implemented. 
The authors use a Bayesian Classifier in order to calculate the probability that a spe-
cific article would be interesting for the user. An interesting part of this paper is the 
fact that the system does not take direct feedback by making the user evaluate every 
article. Instead, the news browser takes advantage of some other characteristics like 
total reading time, total number of lines, number of lines read by the user, and a con-
stant denoting the user’s average line reading time. All those metrics are utilized in 
order to automatically infer how interesting a particular user found a news article. 

Billsus and Pazzani [2] implemented a Java Applet that uses Microsoft’s Agent li-
brary to display an animated character, named News Dude, which reads news stories 
to the user. The system supports various feedback options like “interesting”, “not 
interesting”, “I already know this” and “tell me more about this”. After an initial 
training phase, the user can ask the agent to compile a personalized news program.  

Finally in [4] the user specifies his/her own categories of interest by entering key-
words manually. These keywords are used in order to search for relevant articles in 
the world wide web. A classifier is used in order to filter uninteresting news. The 
classifier accepts feedback from the user who rates each article’s relevancy. 

Unfortunately, the aforementioned systems haven’t been widely used, mainly be-
cause the problem was confronted as a personalization problem and not as an infor-
mation overload problem, which appeared more recently. Moreover, most of these 
systems are constrained on specific sources of news articles. With the appearance of 
the RSS and OPML standards, it is far more straightforward to aggregate many dif-
ferent news sources. In addition, the user has his own personalized classifier per feed. 
That feature is crucial in dealing with information overload because an RSS feed can 
have many articles per day and the user will probably be interest for a small portion of 
those. Finally, in all the above systems, the user cannot declare general topics of in-
terests like “databases” or “text classification”.  

In PersoNews, the user chooses a topic of interest from a thematic hierarchy. That 
functionality is of vital importance because a topic of interest can be covered more 
effectively by multiple news sources. Take as an example a user interested in a topic 
like “ComputerScience/DataBases”. Interesting articles for this user could appear in 
many sources. For example, some articles may appear in a general Computer Science 
Journal, more relevant documents are going to be found in a more specialized source, 
like the proceedings of a database conference. At the same time, the user might be 
interested in commercial database management system like ORACLE. Therefore 
some interesting articles can be found in ORACLE’s web site RSS feeds. In Per-
soNews all those sources are monitored under the same topic of interest, and addi-
tionally a classifier personalizes this monitoring for each user.  

Contemporary popular Web RSS Readers like NewsGator (www.newsgator.com) 
and Google Reader (www.google.com/reader) can indeed aggregate and manage 



 PersoNews: A Personalized News Reader Enhanced by Machine Learning 977 

many RSS feeds but they luck of an abstracted thematic ontology and there is no 
machine learning filtering which will abate information overload. 

3   Machine Learning Framework 

In order to strengthen our system with an adaptive filter that will utilize user feedback 
a proper Machine Learning Classification system has to be chosen. Our problem 
(News Classification) can be classified as a Text Stream Classification problem with 
the (probable) occurrence of concept drift. Concept drift is the potential change of the 
target-class’ concept in a classification problem. Therefore, we have the following 
requirements for our classifier: 

1. An evidently good classifier for text categorization tasks. 
2. An incremental classifier is required in order to constantly update knowledge when 

user sends feedback. 
3. Because we intend to have a personal classifier for every user and for every feed or 

topic of interest the user subscribes, we needed a classifier with the minimum 
computational cost. 

4. In a Text Streaming application there is no prior knowledge of the features/words 
that might appear and the use of a global vocabulary of hundreds of thousands of 
words is simply inefficient. Therefore, we need a classifier that has the ability to 
build dynamically the feature space as more documents/articles arrive. We call this 
space a “dynamic feature space”. 

Feature selection is of vital importance for text classification. Our two additional 
requirements for feature selection are: 

1. It should be incremental and able to execute in a dynamic feature space. 
2. An evidently good feature evaluation metric for text classification. 

Classifiers that fulfil the first and third requirement are the Naïve Bayes (NB) clas-
sifier and Support Vector Machines (SVMs). We had to reject the use of SVM classi-
fier due to complexity reasons and the fact that up to our knowledge there is no re-
lated work that describes how to execute SVMs in a dynamic feature space. Therefore 
SVMs  do not meet requirements 3 and 4. The Naïve Bayes classifier on the other 
hand has shown good performance in text classification tasks [6] and is widely used 
in similar problems because of its simplicity and flexibility. Moreover, it can be easily 
incremental and as we discuss in previous work of ours [5] it can be straightforwardly 
converted into a feature based classifier, meaning that it can execute in a dynamic 
feature space. For the above reasons, the framework proposed in [5] is selected for 
use in PersoNews. 

4   System Implementation 

PersoNews is a web application which provides users with the ability to monitor a 
large set of web sites (RSS feeds) and receive notifications about new publications 
regarding topics of their interest. The system consists of three modules which function  
 



978 E. Banos et al. 

 

Fig. 1. PersoNews system architecture 

in parallel using a common database to store information. PersoNews system architec-
ture is shown in Fig. 1. 

The main modules of PersoNews are:  

Web site (PersoNews.portal). PersoNews.portal is responsible for the user interac-
tion. Essentially, it is an open web application (news.csd.auth.gr) where everyone can 
register and have full access to PersoNews services using a web browser. 
System update service (PersoNews.aggregator). PersoNews.aggregator is a server-
side process which monitors RSS feeds in order to detect new publications and update 
PersoNews database. PersoNews.aggregator performs periodical polling of the news 
feed’s URL in order to retrieve new publications which in turn are processed and 
stored in the database. Additionally, relevant topics are also updated. 
Email notification service (PersoNews.email). PersoNews.email is responsible for 
notifying users by email about updates on feeds and topics they monitor. Per-
soNews.email is executed on a daily basis in order to check if there are any new pub-
lications in the feeds and topics monitored by each user. In that case, users are noti-
fied via email. PersoNews.email is fully customizable giving users the option to have 
email notifications for specific feeds and topics, change the email format or modify 
their email address. 

4.1   Automatic News Classification 

The most distinctive feature that adds up to the value of PersoNews is the integration 
of the Machine Learning framework discussed in the previous section We used In-
formation Gain as a feature evaluation measure and Naive Bayes as a classifier. For 
the preprocessing step an implementation of Porter Stemmer [7] is used. Fig. 2 shows 
the preprocessing procedure for each publication. 

While reading a publication from a feed or a topic, the user can perform some ac-
tions such as visit the publication’s URL by clicking on its hyperlink. This action 
triggers a procedure that forces the PersoNews filter to update the classifier taking the  
 



 PersoNews: A Personalized News Reader Enhanced by Machine Learning 979 

 

Fig. 2. PersoNews preprocessing steps 

 

Fig. 3. PersoNews filter performs automatic classification of a new publication 

specific document as an extra positive training example. Alternatively, the user can 
mark a publication as not interesting, forcing the PersoNews filter to utilize the spe-
cific publication as a negative training example and update the classifier. Users can 
also ignore new publications. In that case, the knowledge base is not updated at all.  

PersoNews filter training is performed incrementally, resulting in the creation of a 
knowledge base which includes various publication features as well as how much do 
they interest each user. As a result, when PersoNews.aggregator retrieves a new pub-
lication and extracts its features, it can decide in which extend it interests the user or 
not based on previous user feedback. Publications classified as interesting are dis-
played to users and are also sent to them via email while uninteresting publications 
are suppressed, thus reducing information overload. Fig. 3 shows the automatic classi-
fication of a new publication. It must be noted that each user has his own classifier for 
each subscribed feed and topic.  

4.2   Feed Manipulation and Monitoring 

Users can start monitoring feeds by selecting them from the list provided by the sys-
tem or by entering their own feed URL. PersoNews also supports the OPML Protocol 
in order to batch import any number of feeds. It must be noted that due to the large 
number of feeds, they are organized into abstract categories according to their topics 
to enable better selection and browsing for users. 

Clicking on a feed title allows the user to view its publications. Fig. 4 shows a list 
of publications in a feed. On the top right of each publication there are four icons 
which correspond to the available user actions (mark as junk, forward to a friend and 
visit URL).  

In case an article is marked by the user as not interesting, the document is for-
warded to the classifier as a negative example in order to update its knowledge. When 
the user follows a URL, the system assumes that the user was interested in this publi-
cation and forwards the document to the classifier as an extra positive example. If the 
user follows the link and finds out that the article was not interesting, he/she can still 
mark the article as junk. In that case, the document is forwarded to the classifier as  
 



980 E. Banos et al. 

 

Fig. 4. Sample feed view 

junk and we retrieve the previous positive example from the database. The user has 
also the ability to go into the “junk” folder and mark something as “not-junk” if he 
finds a misclassified article.  

4.3   Semantic Filtering Through Topic Manipulation and Monitoring 

Except from monitoring specific feeds, users are able to monitor publications regard-
ing a special topic of interest, such as “Database Management”, that belongs to the 
system's domain specific topic hierarchy, regardless the source feed of the publica-
tions. PersoNews has the ability to check all the feeds it is monitoring and locate new 
publications relevant to the topic. Currently, the topic selection list is a variant of the 
ACM Computing Classification System and it is organized in a tree structure featur-
ing multiple levels of topic abstraction (Fig. 5). The topic hierarchy is implemented 
using an XML file to store topic descriptions as well as the associations between 
them. Notice that PersoNews is domain-independent, which means that it can operate 
under any topic hierarchy. 

For each topic, the user can define one or more related keywords, which are essen-
tially a set of words that act as an extra filter for new publications. If a publication 
from any feed contains any of these words then it is considered relevant to the topic. 
Initially, topic keywords derive from subtopics in the ACM topic hierarchy but users 
can also add their own custom keywords if they consider it appropriate (Fig. 6). 

Under this operation, PersoNews employs a primitive form of semantic filtering, 
since each topic is accompanied by a number of user-defined keywords that suppos-
edly describe the topic and can be considered as topic synonyms. Furthermore, the 
hierarchy of topics is also taken into account, since the keywords of all sub-topics are 
also considered to describe all their super-topics. 

As soon as PersoNews.aggregator retrieves new publications from feeds, it per-
forms filtering in two steps in order to detect if there are any relevant items for each 
topic. Initially, it scans each new publication to check if it matches any of the   
 



 PersoNews: A Personalized News Reader Enhanced by Machine Learning 981 

 

Fig. 5. Form used to start monitoring a topic by selecting it from the ACM topic hierarchy 

 

Fig. 6. Topic keywords 

keywords of every user’s topics and in that case the classifier of that topic examines if 
the publication is interesting or not for the user. It is obvious that keywords act as an 
additional filter which performs a selection among all new publications. The ones 
which are selected from the keywords filter will have to transcend the PersoNews 
classifier as well. 

When the user starts monitoring a topic, PersoNews searches for subtopics and in-
cludes them in the keywords of the selected topic. For example, when choosing to 
monitor the topic “Database Systems”, PersoNews automatically aggregates every 
subtopic keywords such as “Database Concurrency”, “Distributed databases”, “Mul-
timedia databases”, “Object oriented databases”. 

MyTopics publications are displayed like MyFeed publications but, in addition, us-
ers can visit the source feed or start monitoring the source feed of the publication, or 
they can add the source feed to the topic blacklist (and therefore not receive publica-
tions from these sources anymore). 

5   Conclusions and Future Work 

Observing the concurrent growth of the World Wide Web and Information Overload 
we hope that systems like PersoNews will be widely used. Unfortunately the system 
was up until currently in beta version and thus, we did not encourage users to register 
until recently. Although an exhaustive evaluation is in our immediate plans, we had a 
crude estimation of the system’s performance taken from a small amount of registered 



982 E. Banos et al. 

users. We had statistics showing that we had an average of 2.6% false negative rate 
(percentage of messages that the classifier marked as interesting but the users moved 
to the junk folder) and 5% false positive rate (percentage of messages that the classi-
fier marked as junk but the users moved to the interesting folder), after a month of 
training. Although we do not claim statistical adequacy of this evaluation, we believe 
that these numbers are indeed encouraging. 

Aside from an extensive evaluation of PersoNews, it is in our future plans to make 
the hierarchy offered by the system fully customizable, meaning that the user could 
add certain concepts in any level of the hierarchy. We also plan to investigate alterna-
tive machine learning frameworks which combine good scalability and performance. 
An essential important element we plan to add to our system is the aggregation of 
news sources that have no RSS feed available. For this purpose we investigate the 
potential of using Content Extraction techniques in order to extract text from simple 
html pages and create a corresponding RSS feed. 

References 

[1] Bharat, K., Kamba, T., and Albers, M., Personalized, interactive news on the web. Multi-
media Systems, 1998. 6(5): p. 349-358. 

[2] Billsus, D. and Pazzani, M. A Hybrid User Model for News Story Classification. in Seventh 
International Conference on User Modeling. 1999. Banff, Canada: Springer-Verlag. 

[3] Carreira, R., et al. Evaluating adaptive user profiles for news classification. in 9th Interna-
tional Conference on Intelligent user Interface. 2004. Funchal. Madeira, Portugal: ACM 
Press. 

[4] Chan, C.-H., Sun, A., and Lim, E.-P. Automated Online News Classification with Person-
alization. in 4th International Conference of Asian Digital Library (ICADL2001). 2001. 
Bangalore, India. 

[5] Katakis, I., Tsoumakas, G., and Vlahavas, I. On the Utility of Incremental Feature Selec-
tion for the Classification of Textual Data Streams. in 10th Panhellenic Conference on In-
formatics (PCI 2005). 2005. Volos, Greece.: Springer-Verlag. 

[6] McCallum, A. and Nigam, K., A Comparison of Event Models for Naive Bayes Text Clas-
sification, in AAAI-98 Workshop on Learning for Text Categorization. 1998. 

[7] Porter, M.F., An algorithm for suffix stripping. Program, 1980. 14(3): p. 130-137. 
[8] Sebastiani, F., Machine Learning in Automated Text Categorization. ACM Computing 

Surveys, 2002. 34(1): p. 1-47. 



An Ontology-Based Approach for Managing and

Maintaining Privacy in Information Systems

Dhiah el Diehn I. Abou-Tair and Stefan Berlik

Databases and Software Engineering Group
University of Siegen

{aboutair, berlik}@informatik.uni-siegen.de

Abstract. The use of ontologies in the fields of information retrieval
and semantic web is well-known. Since long time researcher are trying
to find ontological representations of the diverse laws to have a mecha-
nism to retrieve fine granular legal information about diverse legal cases.
However, one of the common problems software systems are faced with
in constitutional states is the adapting of the diverse privacy directives.
This is a very complex task due to lacks in current software solutions –
especially from the architectural point of view. In fact, we miss software
solutions that manage privacy directives in a central instance in a struc-
tured manner. Even more, such a solution should provide a fine granular
access control mechanism on the data entities to ensure that every as-
pect of the privacy directives can be reflected. Moreover, the whole sys-
tem should be transparent, comprehensible, and modifiable at runtime.
This paper provides a novel solution for this by means of ontologies. The
usage of ontologies in our approach differs from the conventional form
in focusing on generating access control policies which are adapted from
our software framework to provide fine granular access on the diverse
data sources.

1 Introduction

In constitutional states, software applications in nearly every domain have to
provide and to ensure security issues. In fact, security issues usually are derived
from laws, e.g. data protection acts or general security rules stemming from the
domain itself. In Article 8 of the 1950 European Convention of Human Rights
and Fundamental Freedoms, privacy is declared as a fundamental human right.
The EU Directive 95/46/EC of the European Parliament and of the Council
of 24 October 1995 deal with the protection of individuals with regard to the
processing and on the free movement of their personal data [1]. However, usually
laws and rules are given as plain texts and lack a common formalism. During the
last years ontologies have been used as a formalism to describe laws and rules
on a common basis, where mainly their task is to retrieve fine granular legal
information about diverse legal cases, i.e. as inference mechanism.

Actually, it is a big challenge to adapt such laws and regulation in a software
system. On the one hand, it is a challenging task to include the formalized laws
and rules in software applications and especially in distributed applications. In

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 983–994, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



984 D. el Diehn I. Abou-Tair and S. Berlik

general, more than one regulation affect the terms of privacy concerning one
organization. In the case of German universities, the Federal Data Protection
Act (Bundesdatenschutzgesetz), the Sate Data Protection Act (Landesdaten-
schutzgesetz) as well as university internal acts must be considered when access-
ing personal information [2]. This complexity may make it impossible to predict
a clear defined rule type of privacy regulation and privacy guidelines. Therefore,
in Germany every organization which belongs to the public bodies must have
a data protection officer. One of his main tasks is to assure that used software
systems conform to the diverse privacy regulations, see Figure 1. In fact, he
instructs the programmer developing the systems and in the end controlls the
developing process.

Instructions

Database

Business logic

Information System

Data protection officerProgrammer

Coding

Fig. 1. Actual process to ensure privacy

On the other hand, we missed solutions that handle the problem from the ar-
chitectural point of view by providing enterprise architectures and concepts that
support fine granular access on the diverse data sources in software applications.
In general, software developers and designers adapt the privacy regulations by
coding them into the software, sometimes over access control policies and some-
times by creating functions in the application’s business logic. By doing so, it is
hard to trace whether a system is considering the privacy regulation as well as
to modify the privacy policies. Moreover, implementing complex policies such as
health care or government cannot be applied using these methods.

This paper provides a novel solution for this by means of ontologies. The usage
of ontologies in our approach differs from the conventional form in focusing on
generating access control policies which are adapted from our software framework
to provide fine granular access on the diverse data sources.

2 Related Works

Privacy Enhancing Technologies (PETs) refer to a variety of technologies that
protect personal data by minimizing or eliminating the collection of personal



An Ontology-Based Approach for Managing and Maintaining Privacy 985

data as well as the technologies to protect the confidentiality, integrity and
availability of personal data [3]. The central target of PETs is to provide the
technological infrastructure, implementation, and concept to protect the inti-
mate right of individual’s self determination of their personal data. Moreover,
PETs provide an interface to the various privacy regulations to be adapted in
the digital landscape. In other words, PETs ensure that these regulations will
be considered when accessing personal data. In addition, PETs aim at making
the adaption process of privacy regulation transparent so that it can be easily
understood by the average user.

The researchers of the META GROUP [4] classify PETs in two main cate-
gories; privacy protection and privacy management. The first category comprises
tools and technologies that are actively involved in protecting the privacy as-
signed. Such tools and technologies enable electronic transactions to take place
without any need for private information; providing anonymous web services
like browsing and email capability, i.e. without exposing the user’s address and
identity. Moreover, encryption, filtering, and tracking tools belong to this cat-
egory. These tools protect emails, documents and transactions from being read
by other parties; protect the user against unwanted email and web content by
blocking them; and obliterate electronic traces of the user’s activity. In contrast,
the privacy management category includes tools and technologies that support
the administration of privacy rules, such as tools for managing user identity and
permissions as well as tools for creating and checking privacy policies [4].

Besides the concept of PETs a different effort can be identified in the work of
the Transparent Accountable Datamining Initiative. The TAMI Project aims at
creating technical, legal, and policy foundations for transparency and account-
ability in large-scale aggregation and inferencing across heterogeneous informa-
tion systems [5].

In the following subsections an overview about a variety of technologies which
can be used to ensure an information system’s conformity with data protection
regulations will be given.

2.1 Platform for Privacy Preferences

Platform for Privacy Preferences (P3P) is a specification developed by the World
Wide Web Consortium (W3C) [6]. It enables Web sites to express their privacy
practices in a standard XML-based format to be automatically retrieved and
interpreted by user agents. In fact the implementation of P3P does not provide
privacy protection, but it can greatly advance transparency and can thus be used
to support efforts to improve privacy protection.

2.2 Resource Access Decision

Resource Access Decision (RAD) [7] constitutes an access right retrieval frame-
work. Individual resources can be bound to names, and have policies and rules
assigned to them. Based on the identity of the user and the applicable policies,
a decision about the user’s access rights is derived and returned to the business
logic which subsequently handles this decision. In fact this approach can handle



986 D. el Diehn I. Abou-Tair and S. Berlik

all eventualities, but so far there is no commercial implementation. Moreover,
one of the critical points is the administration process, which can become in-
creasingly complicated unless a clear structure of privileges is created early on
[8].

2.3 Access Control List

Access Control Lists (ACL) provide a general mechanism for assigning rights to
individual users or roles. In the context of PET this is insufficient, as ACLs offer
no means to fulfill certain aspects such as limitations to the duration for which
private data may be stored. Furthermore, to grant a user access to his/her own
private data but not to that of other users of the same class, each user would
require an own role. This would render the entire role concept useless and cause
an inflation of rights.

2.4 Digital/Private Rights Management

Digital Rights Management (DRM) and the derived Private Rights Manage-
ment (PRM) are powerful frameworks for controlling various dimensions of con-
tent usage and distribution. DRM were originally developed for the purpose of
controlling the usage of digital media such as video or music, but due to its
nature the concept can be used to ensure the protection of other private data
from unauthorized access and usage as well. PRM constitutes a variant of the
DRM concept which is geared toward this purpose. They however require com-
paratively large architectural considerations in their host application, as these
approaches basically are applications on their own. Moreover, there are consider-
able problems with scalability. The general concept was designed to control the
infrequent access of a few users to lots of data from few sources, such as no more
than a couple of accesses to media files of several megabytes each per minute.
This is opposed to frequent access of many different users to comparatively little
data from many sources [9].

2.5 Rights Management Languages

Rights Management Languages (RML) such as XrML [10] or ODRL [11] are a
standardized format for storing access right information in external resources.
Such standards are used e.g. in DRM. One major benefit is the separation of the
individual access rights from the content to which they relate, which increases
flexibility and transparency.

2.6 Web Service Policies in OWL-DL

Kolovski et al. proposed a mapping of WS-Policy to the description logic frag-
ment species of the Web Ontology Language (OWL-DL) [12] and claim that
OWL reasoners are ready to be used as policy processing tools. They describe
how standard OWL-DL reasoners can be used to check policy conformance and
perform several policy analysis tasks. Since OWL-DL is much more expressive



An Ontology-Based Approach for Managing and Maintaining Privacy 987

than WS-Policy it provides a framework for exploring richer policy languages.
However, the focus of WS-Policy is on the aspects of a service required to estab-
lish a connection between endpoints. Thus it does not require a great expressive-
ness and its scope is limited with respect to other approaches as e.g. provided
by the XACML model.

3 Our Approach

Figure 2 illustrates our conceptual architecture to adapt privacy directives. Gen-
erally the design consists of the application, the XACML Framework, the Privacy
Manager, and the data protection officer. The application is a classical multi
tier architecture. A change is made by the addition of the privacy layer, which
is located between the business logic and the data model. The privacy layer’s

Funktional Structure
DomainInstance of

BDSG Ontology

Privacy Software

Data protection officer

The Privacy Layer
Access Request

Business logic

Database

Information System

XACML Framework

XACML Policies

PEP
Access Response

mapping

Ontology Ontology
BDSGDomain

generate

The Privacy Manager Managing

Fig. 2. A conceptual architecture to adapt privacy directives

behavior is controlled by the XACML Framework, which constitutes the inter-
face between the Privacy Manager and the application. The Privacy Manager
generates the XACML policies to be used by the XACML Framework and is
managed by the data protection officer. In the following subsections we describe
the components in detail.

3.1 Privacy Manager

The main task of the Privacy Manager, see Figure 2, is to generate the XACML
policies to be used by the XACML Framework. It comprises two components.
The first component consist of a ontological representation of the German Fed-
eral Data Protection Act (Bundesdatenschutzgesetz, BDSG) and the second one
includes domain internal security restrictions and the domain ontology itself.

BDSG. It consists of an ontology that represents the German Federal Data
Protection Act (Bundesdatenschutzgesetz). The decision to use an ontological



988 D. el Diehn I. Abou-Tair and S. Berlik

Fig. 3. BDSG Ontology in OntoStudio

technology was made because we have through this a mechanism to map law
statements to a machine interpretable language without losing any aspect of
its meaning. In fact, we apply the subject, predicate and object principle. As
subjects we declared persons/individuals who are affected from the BDSG, the
BDSG paragraphs are represented as predicates and objects as entities. By con-
structing the BDSG-Ontology we profit from well-known experience in the field
of AI and law, like FOLaw’s [13] and CAUSATIONT [14] ontologies.

We use OntoStudio1 to model the concepts, relations, attributes, and rules
of the BDSG-ontology. Figure 3 illustrates a screen shot of the BDSG-ontology
in Ontostudio. The rules of the ontology which represent the diverse regulations
rules are represented in F-Logic. Below is a clause from BDSG – paragraph 2 of
section 1:

1 A research license of OntoStudio which is a product of the Ontoprise GmbH –
http://www.ontoprise.de



An Ontology-Based Approach for Managing and Maintaining Privacy 989

This Act shall apply to the collection, processing and use of personal data
by
1. public bodies of the Federation,
2. public bodies of the Länder in so far as data protection is not governed

by Land legislation and in so far as they
(a) execute federal law or
(b) act as bodies of the judicature and are not dealing

3. private bodies in so far as they process or use data in or from data
files in the normal course of business or for professional or commercial
purposes.

Fig. 4. BDSG: paragraph 2 of section 1

For a representation of this paragraph in a predicate language, here it is F-
Logic, see Figure 5.

FORALL X(type_of_use), Y(user), Z(data)

X,Y,Z : BDSG_applies

<-

(X: collection OR X: processing OR X: use) AND

Z: personal_data AND

(Y: public_bodies_of_the_Federation OR

(Y: public_bodies_of_the_Länder AND NOT

X,Y,Z: Länder_Act_applies AND (Y: execute_federal_law OR

(Y: act_as_bodies_of_the_judicature AND NOT Y,X :

dealing_with_administration))

OR

Y: private_bodies AND

(X: course_of_business OR X:professional_or_commercial_purposes))

Fig. 5. BDSG: paragraph 2 of section 1 in F-Logic

Domain Ontology and internal security restrictions. The domain ontol-
ogy represents the diverse entities in the domain, one could say it is derived
from the database scheme. The purpose of this is to map the diverse entities of
a special domain to the abstract entities of the BDSG ontology. By doing this
we instantiate a valid BDSG according to the domain of use. In most cases not
only the BDSG determines the privacy regulation in a domain, but also a set
of domain specific guidelines. For example, in the case of a university, students
have not the right to overwrite some of their data. Therefore, we generate the
domain security restrictions as a set of F-Logic terms, see Figure 5.



990 D. el Diehn I. Abou-Tair and S. Berlik

3.2 Data Protection Officer

As shown in [15], the normative knowledge of the law alone is of limited worth.
Since legal sources contain and assume non-legal, common-sense domain knowl-
edge, these also have to be supplied to the system. In our approach we have
implemented the normative knowledge of the privacy law in a form of an ontol-
ogy, see subsection 3.1. The missing meta and world knowledge is given by the
data protection officer running the system. He also is responsible to incorporate
special individual rights. In contrast to conventional systems, he thus always
has the overview on the implemented privacy rules. Moreover, if the legal situ-
ation changes he can himself modify the affected entities. Another advantage is
that the implemented rules are represented in a transparent and comprehensible
form. This way, third persons have the opportunity to comprehend the system.

3.3 XACML

XACML is an initiative to provide a standard for access control and authoriza-
tion systems which is generic, distributed, and powerful [16]. In contrast, most of
the current systems implement access control and authorization in a proprietary
manner.

XACML provides an XML based access control policy language together with
an access control decision request/response language. Applications and systems
can use these to fulfill their access control needs. The XACML specification just
deals with the framework and leaves the exact implementation details of the
access control engine for the actual implementation [17,18]. Besides the objective
to create a portable and standard way of describing access control entities and
their attributes, XACML aims at providing a mechanism that offers much finer
granular access control than simply denying or granting access.

XACML is composed of the components depicted in Figure 6. The model
operates by the following steps.

0. Policy Access Points (PAPs) write policies or policy sets and provide them
to the Policy Decision Point. These policies consist of one or more rules and
represent the complete policy for a specified target.

1. The access requester sends a request for access to the Policy Enforcement
Point.

2. The Policy Enforcement Point (PEP) sends the request for access to the
context handler in its native request format, which might optionally include
attributes of the subjects, resource, action, and environment.

3. The context handler initiates an XACML request context and sends it to
the Policy Decision Point.

4. The Policy Decision Point (PDP) requests any requisite subject, resource,
action, and environment attributes from the context handler.

5. The context handler requests the attributes from a Policy Information Point.
6. The Policy Information Point (PIP) obtains the requested attributes.
7. The PIP returns the requested attributes to the context handler.
8. Optionally, the context handler includes the resource in the context.



An Ontology-Based Approach for Managing and Maintaining Privacy 991

Access

Requester

1. Access Request
PEP

Policy Enforcement Point

12. Obligations Obligations

Service

2. Request 11. Response

PDP

Policy Decision Point

PIP

Policy Information Point

Subjects Environment

Resource
Context

Handler

0. Policy

6a. Subject Attributes

5.Attribute Query 7. Attribute

8. Resource Content

6c. Resource Attributes

6b. Environment Attributes

3. Request Notification

4. Attribute Queries

9. Attributes

10. Response Context

PAP

Policy Access Point

13. Permit / Deny Access

Fig. 6. XACML data-flow diagram

9. The context handler sends the requested attributes and – if given – the
resource to the PDP which in turn evaluates the policy.

10. The PDP returns the response context including the authorization decision
to the context handler.

11. The context handler translates the response context to the native response
format of the PEP and returns it then to the PEP.

12. The PEP fulfills the obligations.
13. If access is permitted, then the PEP grants the requester access to the re-

source; otherwise, it denies access.

The policies provided by the Policy Access Point may in the simplest case
just be coded by hand. However, even simple policies can result in some bulky
XML documents hard to read and analyze directly again. As this method is
cumbersome and error-prone the policies containing XML documents are usu-
ally generated from some database or software systems, see e.g. [19]. Neverthe-
less, also this approach does not solve the maintenance problem in an adequate



992 D. el Diehn I. Abou-Tair and S. Berlik

manner since the policy representing facts molder into unrelated trifles. There-
fore policies in our approach originate from the Privacy Manager by means of
an ontology which is used to maintain the access regulations. The ontology rep-
resents the collectivity of the policies to be derived as a central instance in a
structured manner; in the example at hand privacy directives of different laws.
The whole system is transparent, comprehensible, modifiable at runtime and
even allows to do inference. The transformation from the ontology’s native for-
mat into XACML conform policies can be done e.g. by the OntoBroker tool.

4 Implementation

The whole BDSG has been implemented in form of an ontology using OntoStu-
dio, where the laws’ clauses are modeled in F-Logic, c.f. Section 3.1. The main
motivation to use OntoStudio was the fact that together with OntoBroker we
have a software solution at hand that can easily be integrated with our implemen-
tation. Even if OntoBroker supports inferencing on the ontology we just use it to
judge concrete access control requests. For demonstration purposes we generated
a static case study. In this example we illustrated the case of a professor try-
ing to read a student’s address. The principally query ‘ActionAllowed(professor,
read, address, student)’ is subsequently unfolded in the BDSG ontology till all
clauses concerning the actor, access type, access target, and affected subject are
evaluated and can be determined. The result of the query is then transformed
into an XACML policy. The example (available in german only) can be called
from our web site2.

Through this example we demonstrated the proof-of-concept. By use of an
ontology and XACML it is possible to provide fine granular access control on
several data entities. At the moment we are working on the automatization of
this process.

5 Conclusions

In this paper we have proposed an innovative framework that:

1. ensures privacy according to the diverse data privacy directives, and
2. shows how transparent and comprehensible this can be.

We presented a solution that manages privacy directives in a central instance
in a structured manner. This solution provides a fine granular access control
mechanism on the data entities using XACML to ensure that every aspect of
the privacy directives can be reflected. Moreover, the whole system is transpar-
ent, comprehensible, and modifiable at runtime. This is achieved by means of
ontologies, where the usage of ontologies in our case differs from the conventional
form in focusing on generating access control policies which are adapted from our
software framework to provide fine granular access on the diverse data sources.
2 See http://pi.informatik.uni-siegen.de/whois/BDSG Ontology Demo/

http://pi.informatik.uni-siegen.de/whois/BDSG_Ontology_Demo/


An Ontology-Based Approach for Managing and Maintaining Privacy 993

Further we redefined the role of the data protection officer. He now always has
the overview on the implemented privacy rules. Moreover, if the legal situation
changes, he can himself modify the affected entities. Another advantage is that
the implemented rules are represented in a transparent and comprehensible form.
This way, third persons have the opportunity to comprehend the system. First
results are obtained by a completely elaborated example which demonstrated
the proof-of-concept.

Acknowledgement

The authors would like to thank M. Niemczyk for implementing the BDSG
ontology.

References

1. European Parliament and Council, “Official journal l 281, 23/11/1995 p. 0031 -
0050.”

2. M. Wettern and J. Von Knop, “Datenschutz im hochschulbereich,” in Jahrbuch
der Heinrich-Heine-Universität Düsseldorf 2004, 2005, pp. 575–589.

3. S. Fischer-Hübner, IT-Security and Privacy - Design and Use of Privacy-
Enhancing Security Mechanisms, ser. Lecture Notes in Computer Science.
Springer, 2001, vol. 1958.

4. META Group, “Privacy enhancing technologies,” Danish Ministry of Science, Tech-
nology and Innovation, Tech. Rep., 2005.

5. Decentralized Information Group, “Transparent accountable datamining initia-
tive,” 2006. [Online]. Available: http://dig.csail.mit.edu/TAMI/

6. W3C, “Platform for privacy preferences (p3p) project.” [Online]. Available:
http://www.w3.org/P3P/

7. The Object Management Group (OMG), “Re-
source access decision.” [Online]. Available:
http://www.omg.org/technology/documents/formal/resource access decision.htm

8. W. Eberling, “Resource access decision - ein framework zur realisierung eines daten-
basierten zugriffsschutzes,” MATHEMA Software GmbH, Tech. Rep., 2003.

9. L. Korba and S. Kenny, “Towards meeting the privacy challenge: Adapting drm.”
in Digital Rights Management Workshop, 2002, pp. 118–136.

10. XrML, “Xrml - the digital rights language for trusted content and services.”
[Online]. Available: http://www.xrml.org/

11. ODRL, “ODRL - Open Digital Rights Language.” [Online]. Available:
http://odrl.net/

12. V. Kolovski, B. Parsia, Y. Katz, and J. A. Hendler, “Representing web service
policies in owl-dl,” in International Semantic Web Conference, 2005, pp. 461–475.

13. J. Breuker and R. Hoekstra, “Epistemology and ontology in core ontologies:
FOLaw and LRI-Core, two core ontologies for law,” in Proceedings of
EKAW Workshop on Core ontologies. CEUR, 2004. [Online]. Available:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

14. J. Lehmann, J. Breuker, and B. Brouwer, “Causationt: Modeling causation in
ai&law.” in Law and the Semantic Web, 2003, pp. 77–96.

http://dig.csail.mit.edu/TAMI/
http://www.w3.org/P3P/
http://www.omg.org/technology/documents/formal/resource_access_decision.htm
http://www.xrml.org/
http://odrl.net/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/


994 D. el Diehn I. Abou-Tair and S. Berlik

15. J. Breuker, A. Valente, and R. Winkels, “Use and reuse of legal ontologies in
knowledge engineering and information management.” in Law and the Semantic
Web, ser. Lecture Notes in Computer Science, vol. 3369. Springer, 2003, pp.
36–64.

16. OASIS, eXtensible Access Control Markup Language (XACML), Feb 2005.
[Online]. Available: http://www.oasis-open.org/committees

17. S. Microsystems, “Sun’s XACML Implementation,” 2006. [Online]. Available:
http://sunxacml.sourceforge.net/

18. M. Verma, “XML Security: Control information access with XACML,” 2004.
[Online]. Available: http://www-128.ibm.com/developerworks/library/x-xacml/

19. L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo, “Policy ad-
ministration control and delegation using xacml and delegent,” in 6th IEEE/ACM
International Workshop on Grid Computing, Seattle, USA. IEEE Press, 2005.

http://www.oasis-open.org/committees
http://sunxacml.sourceforge.net/
http://www-128.ibm.com/developerworks/library/x-xacml/


Ontology-Based User Context Management:
The Challenges of Imperfection and Time-Dependence

Andreas Schmidt

FZI Research Center for Information Technologies
Information Process Engineering

Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany
Andreas.Schmidt@fzi.de

Abstract. Robust and scalable user context management is the key enabler for
the emerging context- and situation-aware applications, and ontology-based ap-
proaches have shown their usefulness for capturing especially context informa-
tion on a high level of abstraction. But so far the problem has not been approached
as a data management problem, which is key to scalability and robustness. The
specific challenges lie in the imperfection of high-level context information, its
time-dependence and the variability in the dynamics between its different ele-
ments. The approach presented in this paper presents a layered data model which
structures the problems and is geared towards flexible and efficient query pro-
cessing in combination of relational database and logic-based techniques. The
techniques have been successfully applied for context-aware corporate learning
support.

1 Introduction

Situation (or context awareness) has become a major topic in a wide range of research
areas – among them mobile information systems, ambient intelligence, adaptive e-
learning and knowledge management systems. Especially in information systems re-
search, this expresses the insight that after the quest for making available vast amounts
of information and for doing that efficiently, it is now the user who is the bottleneck.
In order to find relevant information, the user needs to specify more precisely what she
actually needs. But in many cases, the user is either not capable of doing that, or it
drastically reduces the usability of the system – or both. This usage efficiency dilemma
between selectivity on the one side and ease of use on the other side can be overcome
by the system’s awareness of the situation of the user. The system can then add trans-
parently implicit assumptions of the user to her explicit queries or actions.

This idea sounds compelling, but closer inspection reveals that it faces fundamental
challenges. Most of them can be traced back to the problem that the system cannot
sense the usage situation (as the subset of the state of the real world relevant to the
interaction with the system) directly, but has to rely on the usage context as a model
for that situation (see fig. 1). This model is the result of a mapping which is highly
imperfect in its nature (see also [1]):

– The mapping is incomplete as the system will never be able to capture all of the
different aspects of the situation.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 995–1011, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



996 A. Schmidt

System

Explicit
interaction

Situation

Usage
situation User or Usage

Context

Real World

Mapping

Context Information

Fig. 1. Situation and Context: The origin of the problems

– The mapping is uncertain as the system has to rely on indirect methods and heuris-
tics for eliciting context information from observable data.

– The mapping is imprecise as these methods yield only results with limited preci-
sion

– The mapping is inconsistent as a consequence of contradictions, resulting from
different methods and their uncertainty and imprecision.

Especially for high-level context information [2], i.e. context information on a high
level of abstraction as opposed to sensor-level information, this is aggravated by the
problem of dynamics [3]. On the one side, it is often not possible to determine context
on demand, but rather the system has to collect its pieces in advance (asynchronicity of
acquisition and usage). But on the other side, some parts of the context change often
quite quickly, others are rather stable (variability in the rate of change). Furthermore,
efficient user context management requires a fairly deep understanding of the context
semantics, especially when augmenting the collected context information, which is in-
evitable for high-quality context. This makes the provision of context information to
applications a complex task that should be realized by a specialized user context man-
agement service – in analogy to other data management systems.

The requirement for understanding the context semantics calls for ontology-based
approaches, which have proven their usefulness for incorporating a shared semantics
in applications, but ontology management systems currently in use are not geared to-
wards the pecularities of user context data, which is characterized by various forms of
imperfection and a strong time-dependency both in terms of validity and reliability [4]
combined with a high update frequency. In this paper, an approach is presented that is
capable of representing and efficiently dealing with these challenges. The organization
of the paper is as follows: in section 2, the requirements for user context data manage-
ment will be analyzed and presented. In section 3 the layered data model is presented
that is used to represent user context data. Section 4 will cover the issue of integrating
ontologies into the data model. In section 5, some implementation issues will be dis-
cussed in the frame of a case study. The paper will close with a review of related work
in section 6 and conclusions and outlook in section 7.



Ontology-Based User Context Management 997

2 Usage Scenario

2.1 Scenario

The main guiding scenario for the user context management approach presented here
was context-steered workplace learning [5]. In order to achieve the integration of work
and learning processes, the learning support system does not rely on the user search-
ing actively for appropriate learning material, but observes what the user is currently
doing. Based on these observations and background knowledge on the competency re-
quirements of elements of the user’s situation like task, process, or role, the system
then suggests appropriate learning programs which are compiled on demand from fine-
grained learning objects. Additionally, the system can also suggest co-workers who are
experts in a certain area, or who were in a similar situation recently. This approach of
awareness of the work and learning situation can help to reduce the cognitive load of
self-steered learning drastically. In this scenario, situation awareness has many different
aspects which have been systematically analyzed in [6]) and can be divided along the
different phases of the e-learning process: authoring, delivery (what, when, how), and
execution.

2.2 Use Cases

In order to support the scenario sketched above on a technical level, a service-oriented
architecture of learning support services has been conceived within the project Learning
in Process. The need of these services has formed the basis of the following use cases
from which the requirements for the user context management approach have been
derived:

– Retrieve feature values for the current context. The standard use case for
context-aware application is the retrieval of certain context feature values which are
considered relevant for adapting the system behaviour. A learning system can adapt
the presentation to the technical context (broadband access, loudspeakers available)
or the selection based on the current project context or mid-term interests and goals.

– Check for certain feature values. In the presence of incompleteness, this use case
is slightly different from the previous one as the query can have different modalities.
It can take the form of: does the user have the value X for feature Y ? This makes
sense if we have an application that offers support only under special conditions.
But it could also take the form of: Is it possible (with a certain error probability)
that a user has the value X for feature Y . This is useful for strategies where some
features are highly critical (e.g. emotional state, but also social relationships), but
evidence is usually rather scarce.

– Query for other users in a certain context. Especially in the area of corporate
learning where the social dimension plays an important role, it is highly desirable
to establish contacts between employees with a similar context. The system can
recommend others who are now or have been in a similar situation within a certain
time frame in the past. This is a very different use case from the first one as it does
not only cover the current context, but also previous contexts.



998 A. Schmidt

– Trigger actions based on context changes. Especially for proactive system be-
haviour, it is important that context-aware applications get a timely notification that
the context has changed. One example are process or task changes that can initiate
learning processes [7].

Typical context sources in this scenario either determine higher-level abstraction of
the user’s situation by analyzing user interface events (e.g. via Bayesian Networks[8]
or rule-based formalisms), or by applying heuristics to data in existing sources like
personal information managers (e.g. Microsoft Outlook) or documents.

2.3 Requirements

A closer inspection of the application scenario has revealed the following requirements:

– Aging. It should be obvious that collected context is not valid indefinitely. If the
system gets to know about the current ”task” of the user, this information will only
be valid for a limited amount of time. As a consequence, the user context manage-
ment system needs to have some aging mechanism.

– Variability in dynamic behavior. The closer inspection of the ”aging” problem
reveals that aging is not uniform across the different aspects of user context infor-
mation. While information like name, birthdate changes infrequently to never, other
aspects like personal skills, interests goals evolve over time, and tasks or location
are highly volatile. So the aging support has to be specific for the different parts of
the context.

– Scalability. If we want to materialize user context information, we have to select
methods that are scalable with respect to large numbers of users and long time
frames.

– Push and pull interaction paradigm. The system must support both the push and
the pull paradigm, i.e. it must be able to answer interactive queries and allows for
trigger-style notifications.

– Open-world assumption. As we have seen, the mapping between the situation is
incomplete, and application may require to be able to query also for the possibil-
ity of facts or may exploit negative facts directly. The most trivial case is explicit
negative user feedback on user context information, but there are many techniques
that can generate negative facts in order to increase the quality of the context. So
the context data model must build on the open world assumption.

3 Layered Context Model

3.1 General Considerations

For traditional database management systems, it has proven effective to divide the man-
agement functionality into different layers which are basically independent of the inter-
nal logic of the lower layers. In that spirit, we have grounded our work on a three layer
model (an initial version of which has been presented in [9]) that allows for structuring
the problem in a better way (see figure 1).



Ontology-Based User Context Management 999

Logical Layer

application-specific
context schemas

resolve inconsistencies

map to application-specific schema 

context fact base
aging semantics & 
confidence cut-offs

consistent view

Internal Layer

RDBMS

External Layer

Fig. 2. Layers of the Context Data Model

– Internal Layer. The internal layer as the lowermost layer stores all collected infor-
mation about users in a time-dependent way as so-called context facts. The context
facts can be queried according to their timestamp or by using value-level operators
(on different data types).

– Logical Layer. This layer provides a consistent view on the collected data, con-
forming to a (single) specified schema. For an specific instant in time, the service
on this layer can provide a consistent and semantically enriched view (based on
schema-level information or background knowledge) on the context facts that ad-
heres to certain quality criteria.

– External Layer. The top-most layer represents the usage context of a particular
application at a certain instant of time. The context information is in the schema
the application understands, which could be different from the logical schema.

These layers must not be confused with an aggregation hierarchy. How to achieve
aggregation and abstraction from lower level information to higher level information is
presented in section 3.7.

3.2 Internal Layer

The internal layer represents the lowest level of abstraction. It provides the basic func-
tionality required for storing and accessing collected context information together with
meta information about time, validity and confidence of the collected data. More for-
mally, a context fact is defined as follows:



1000 A. Schmidt

Definition 1 (context fact). A context fact is a tupel (U, f, o, v, t, valid, α) where

– U is a user
– f is context feature
– o ∈ {=, �=} signals a positive or negative fact
– v is a value
– valid is the validity interval for the value
– t is the point in time at which the factum was added to the fact base.
– α is the probability that at point of time t the feature f has the value v for user U .

The set of all context facts is called context fact base and denoted with C

The support for negative context facts directly results from the requirement for an open-
world assumption. In practice, this can be used, e.g., for explicit user feedback on cer-
tain infered facts about her context.

Definition 2 (Context feature). A context feature is a tuple f = (uri, T ) where (uri)
is a unique identifier, V = (T,O) a data type consisting of a value space V and oper-
ators O

The data type can represent traditional atomic data types like integers, strings etc., but
also ontological data (the supported operators will be discussed in section 4), as the
following examples show: (Andreas, performs-task, =, literature-search, [2005-04-15
10:00,∞), 2005-04-15 10:00, 0.8), and an entry (Andreas, performs-task, =, examine-
students, [2005-04-14 14:00,∞), 2005-04-15 13:00, 0.9).

As additional schema-level information, the internal layer has aging functions at-
tached to each context feature, which allow for describing how the confidence in a
certain value decreases over time. An aging function basically is a monotonically
decreasing function a : TIME → [0, 1], which is multiplied with the initial confi-
dence value in order to obtain the current confidence value. These aging functions can
be assigned heuristically or – preferably – based on empirical results. Queries from
the logical layer can use the current confidence, which is calculated for each fact: If
c = (U, f, v, o, t, valid, α) is a context fact, t∗ the instant in time of interest. Then the
confidence for c at t∗ can be calculated as:

confidence(c, t∗) := [A(f)](t∗ − t) · α
with A(f) denoting the aging function associated with the context feature f .

3.3 Logical Model

The internal layer is rather ugly to use for context-aware applications. This has mainly
to do with the fact that you can have almost arbitrarily inconsistent data. In analogy to
traditional databases, we need the notion of a schema guarantee. A context schema is
comprised of (1) a definition of context features (as above), (2) cardinality constraints
and (3) a feature hierarchy.

Cardinality constraints are a very effective instrument for checking for an elementary
check of consistency. For many features, it is clear from the application semantics that



Ontology-Based User Context Management 1001

there can be only one value at a time so that any application also expects only a single
value.

In order to allow for better reusing context information in different applications, the
model also offers the possibility to define a feature hierarchy via feature inheritance,
which directly corresponds to property hierarchies in RDF(S). This adds a basic infer-
encing capability to the model: if an applications requests the value(s) for a specific
feature, the values of sub-features can be also returned. This can be formalized as fol-
lows:

Definition 3 (Feature hierarchy). A feature hierarchy is an acyclical relation H ⊆
(F × F ) on the set of context features F . Additionally, the following properties must
hold for a feature hierarchy to be compatible with the feature set F:

– ∀(f1, f2) ∈ H: the value space of f2 is a subset of the value space of f1
– ∀(f1, f2) ∈ H: if f2 is multi-valued then f1 must also be multi-valued

H∗ is the transitive closure of H .

Based on this, the context feature schema C can be defined as C = (F, card,H),
where F is a set of context features, card : F → {1,∞} is the cardinality assignment
and H is a compatible feature hierarchy.

Definition 4 (Schema conformity). A set K = {c1, ..., cn} of context facts with ci =
(Ui, fi, vi, αi) is conforming to a schema C = (F, card,H) iff

a) ∀i ∈ {1, ..., n} : fi ∈ F and vi is in the value space of fi.
b) With values(f, U) := {v|k = (U, f∗,′=′, v, α) ∈ K, (f, f∗) ∈ H∗} the following

must hold: ∀f ∈ F : |values(f)| ≤ card(f)
c) With values¬(f, U) := {v|k = (U, f∗,′ �=′, v, α) ∈ K, (f, f∗) ∈ H∗} the follow-

ing must hold: values(f, U) ∩ values¬(f, U) = ∅
This notion of schema conformity is essential for imposing a well-defined semantics
ontop of imperfect data. It basically states that (a) we have only well-defined context
features with associated data type definitions and that the facts conform to these data
type constraints, (b) only multivalued features have multiple values, and (c) we have no
contradictions resulting from positive and negative facts.

3.4 Mapping the Internal Layer to the Logical Layer

The main mapping task is the resolution of inconsistencies. Inconsistency occurs in our
model if there are multiple values for a feature for which the cardinality constraints
enforce a single value, or if we have positive and negative facts on the same feature.
Conflict resolution strategies are responsible for transforming a set of context facts on
the internal layer into a set of context facts conforming to the context schema. There
can be different strategies to resolve these inconsistencies. The most obvious is to take
the value with the highest confidence, but usually the strategy also needs to take into
account that facts can be reinforced by other facts (e.g. two independent methods deter-
mine the same feature value within a limited time window).



1002 A. Schmidt

If we apply this procedure to the example, it is clear that the restriction to a specific
instant in time (e.g. 2005-04-14 11:00) still provides two possible tasks. After apply-
ing the aging function, let’s suppose that the literature-search has confidence 0.7 and
examine-students has confidence 0.1. This would lead to a simple resolution strategy
taking the literature-search as the current feature value, because we have specified that
the performs-task feature is only single-valued.

As conflict resolution strategies, the maximum confidence strategy with some heuris-
tic refinements has turned out to be quite effective for single-valued features. For mul-
tivalued context features, we are experimenting with strategies based on the Dempster-
Shafer theory, which allows for aggregating probabilities from different sources [10].

Apart from conflict resolution, the mapping involves exploiting the feature hierarchy.
This is done by rewriting a query for fact f∗ to queries for the set of features Sf∗ =
{f ∈ F |(f, f∗) ∈ H∗}, i.e., all subfeatures.

3.5 The Problem of Asynchronous Notification

The most typical interaction pattern for context-awareness are publisher-subscriber pat-
terns where the user context management service provides notifications about changes
to the user context. Although we have apparently an append-only semantics on the inter-
nal layer (as typical for continuous query scenarios, [11]), there are two critical points
resulting from the fact that the actual context is a time-dependent view:

– Aging makes the queries non-monotonous ([12]), i.e., it is not enough to provide
additional results, but rather previous results have to be retracted. As a consequence,
the notification protocol needs to incoporate both additions and removal of parts of
the user context.

– Confidence-based filtering and conflict resolution are aggregation operators on the
temporal data stream. These operators have to implemented in a way that they are
– in most cases – self-maintainable so that with new arriving data, the changes to
the view can be calculated without querying.

3.6 External Layer and Mapping from the Logical Layer

The external layer is intended to be interface for application, providing an application-
specific view. In this step, the global context schema used on the logical layer is trans-
lated into an application-specific schema. This problem can be dealt with similar to
schema mapping techniques in classical information integration approaches. In case of
simple projections and renamings, this can be done within the user context manage-
ment system, but for more powerful mapping features, external mapping services are
the method of choice (in spirit of [13]).

A far more challenging problem is when we consider mappings not only on the
level of user context schemas, but rather also on the value level, especially in case of
ontology-based data types (see below).

3.7 Resulting System Architecture

From the model presented in this section, a high-level system architecture can be di-
rectly derived (see fig. 3.7). It shows the different layers at which the context



Ontology-Based User Context Management 1003

management service can be accessed and sketches also typical added-value services
and other components.

Below the internal level, two different types of context sources are supported: push
and pull context sources. Push context sources notify the context management service
of changes; their context information is materialized inside the system. Pull context
sources can be queries on demand as soon as queries for covered features arrive. The
reasoning service provides access to ontological data.

Added-value services are useful to improve the context quality or to facilitate the
management task. Currently, we have two types of services: agents that use the user
context management system as a blackboard and services that are used by the manage-
ment system. The most important agents are Augmentation Agents (inferring additional
facts from already collected ones) and Subcontext Agents (trying to exploit dependen-
cies in the context to improve context switching and thus the time needed to adapt
to changes). Augmentation agents can either work on the raw context facts, or on the
consolidated view, depending on the inferencing methods: the logical layer will be pre-
ferred by logic-based approaches, whereas imperfection-aware methods will prefer the
internal layer.

Many user modeling systems concentrate on the problem of abstracting and aggre-
gating lower-level context information to information on a higher level of abstraction.
Although this is not the focus of this architecture (which is on imperfection handling),
this can be easily realized using a hierarchy of user context management services.
Lower level services are plugged in as pull context sources into higher level services.

4 Integrating Ontologies

4.1 Motivation

Approaches to context modelling like [14] or [15] and to applying context awareness to
the e-learning and similar domains like [16], [17], [18] emphasize the potential of ap-
plying Semantic Web technologies to user context management. It enables the creation
of more semantically aware processing methods, especially by introducing a shared
vocabulary, which can be used across different tools and systems, and by applying rea-
soning techniques based on domain knowledge.

On the other side, Semantic Web technologies have still quite a way to go for solu-
tions that are comparable in terms of scalability with traditional data management solu-
tions. This is especially true for traditional types of queries like datatype specific range
queries (e.g. for temporal data), although the description logics community tries to ap-
proach this problem with concrete domains (see e.g. [19]) and datalog-based reasoning
(e.g. [20]). Also these techniques are not well-suited for highly dynamic scenarios with
a high volume of changes as they so far do not consider update operations at all.

4.2 Approach

If we analyze our problem domain, it turns out that the benefits of ontologies are (be-
yond the ontology-like constructs like the feature hierarchy introduced in the last sec-
tion) basically on the value level. We want to reference instances from the ontology in as



1004 A. Schmidt

Internal Layer

Logical Layer

Reasoning
Service

Mapping
Service

Augmentation
Agent

Subcontext
Agent

Push
Context Source

Pull
Context Source

External Layer

Context-Aware Application

Mapping to the external schema

Conflict resolution

Application of aging functions

Temporal filtering

Storage

Onto-
logie

Fig. 3. High-level architecture of the user context management service

feature values (e.g. the task in the examples above or a competency from a competency
catalog). Also the inferencing capabilities (i.e. mainly classification) of descriptions
logics are mainly needed for queries like (a) is the user in a task of the type X or (b)
retrieve all users with expert-level competency in a certain subject area.

So the idea is to treat ontologies as a datatype that has certain predicates that can
be used in a query to the user context management system, just like operators on dates
(≤, between ... and etc.) or numbers or strings. As there is currently no notion of op-
erators for description logics in spirit of the operators of a data model and especially
no standardized query language for (although there are some proposals like OWL-QL
[21] or SPARQL [22]), we started with the most obvious operator instance-of, which
already covers a large portions of practical cases encountered in our application domain.



Ontology-Based User Context Management 1005

A sample query for users in myDepartment who were involved in a accounting process
activity in August 2006 would be:

SELECT USERS
WHERE process-activity instance-of AccountingActivity

AND department = myDepartment
VALID [2006-08-01,2006-08-31]

In the user context management service, this is handled by splitting the query into a
query to the ontology service and a query to context fact base. Similar to join optimiza-
tion, the processing order is determined based on result set estimations. In this case, a
query to the ontology reasoner would give all instances of AccountingActitivity. These
query would be rewritten as follows:

SELECT USERS
WHERE (process-activity = a1

OR process-activity = a2 ...)
AND department = myDepartment

VALID [2006-08-01,2006-08-31]

Alternatively, the query results of the user context fact base could be filtered with the
help of the ontology, which is the preferred way if we have large sets of instances.

We are currently extending the approach with SPARQL subqueries to support more
powerful navigation.

5 Implementation Case Study

The user context management infrastructure has been successfully used in the project
Learning in Process, which was committed to implementing a learning support for
context-steered learning, and further developments based on that system.

5.1 How the User Context Management Infrastructure Was Implemented

The user context management service was implemented ontop of a relational database
management system. The first prototype was based on PostgreSQL, but in subsequent
versions we have also used Oracle 10g XE. For the internal layer, the most challeng-
ing issue was the efficient implementation of the calculation of the current confidence.
The main problem is that we cannot rewrite queries involving the calculated attribute
current-confidence to range queries on the fact attributes. In order to avoid dynamic
calculation on each query, we used a combination of techniques to speed it up, among
them (a) using a subsuming query to prefilter the facts to calculate the confidence on
by using approximations of the initial confidence, (b) historizing old facts and (c) using
Oracle function-based indexes.

The implementation of the integration of ontologies is somewhat similar to
approaches like [23] where ontologies are used for query rewriting, although the ac-
cess of ontologies cannot be considered a preprocessing step. The query condition is



1006 A. Schmidt

split into parts that can be shipped to the underlying database system and parts that are
shipped to the reasoner. Furthermore, this approach is basically a join between con-
text facts and ontology results. As a consequence, we tried to optimize the execution
order by making use of result size estimates, e.g. by using statistics on the number of
instances (for the instance-of operator). As an ontology management system, KAON
[24] was used in the first prototype of the system, using Java-API access. Currently we
are moving towards KAON2 [25] for OWL-DL and SPARQL support.

5.2 How User Context Was Used

As context features, a fairly broad range was used, which was divided into four cat-
egories: personal, social, organizational and technical. As personal context features,
mainly learner preferences (semantic density, interactivity level) and competencies and
interests were used. For characterizing the social context, we relied on a basic social re-
lationship ontology. On the organizational level, we relied on organizational unit, role,
business process activity and task. Technical features were user agent (browser, operat-
ing system, plugins), bandwidth, and availability of audio (input and output). Whereas
the relationship between personal and technical context features and the available learn-
ing material was fairly straightforward, we needed additional background knowledge to
relation organizational entities. This was mainly done by attaching competency require-
ments to organizational entities, which was encoded in an organizational ontology.

This context information was exploited by the so-called Matching Service which
computes based on the background knowledge and the current user’s context a compe-
tency gap and can compile personalized learning programs based on that gap that take
into account the various aspects of of the user’s context [5]. The Matching Service only
operates on-demand. In order to be able to realize proactive behaviour (i.e., recommend-
ing learning material to users based on context changes), the architecture additionally
consisted of a Learning Assistant, which subscribes to the user context management
service for context changes. Whereas the Matching Service decides on what to deliver,
the Learning Assistant decides on when to deliver and displays the recommendations in
an unobtrusive manner.

5.3 How User Context Was Acquired

In contrast to prior work in the area of business-process-oriented knowledge manage-
ment [26], we could not rely on a workflow management infrastructure to capture the or-
ganizational part of context. Rather, we experimented with a variety of heuristic sensors
for application events, e.g., a plugin for Microsoft Office (relying on template informa-
tion), a Browser Helper Object for Internet Explorer (for URL-based heuristics) and a
plugin for Mozilla-based browsers. Additionally, we built interfaces to HR applications
to extract the more static part of the organizational context.

For personal part of the context, we relied on static information from the user, but
we are currently investigating the possibility of inferring the learner characteristics from
application sensor data, e.g., by considering time of day, previous and upcoming meet-
ings or other appointments etc.



Ontology-Based User Context Management 1007

For social relationships, we used mainly annotated address books as a (pull) con-
text source, but similar to the personal level, we are currently investigating egocentric
network analysis methods [27] to discover these relationships, e.g., from email conver-
sations.

5.4 Results

After integrating the user context management service into the system, we conducted
an evaluation with around 20 users at two companies. It has turned out that the system
behaviour was perceived as useful by the evaluation participants.

On a more technical level, our tests have shown that the user context management
service improves the robustness of the whole system in comparison to a naive approach
in which we do not handle imperfection. Furthermore, the architecture has proven useful
for plugging in and out different very loosely coupled context sources.

We are currently setting up a simulation environment for measuring the increase in
quality and completeness with different assumptions about the context sources.

6 Related Work

6.1 Context Modeling

There are plenty of models for dealing with user context information, both from the
traditional community of user modeling and the recently emerged communities for
context-awareness. A good overview of recent context modeling approaches gives [28].
In general, it can be stated that the data management problem is a neglected area of re-
search. Most approaches either ignore the problems of imperfection and dynamics (e.g.
[29], [14], [15]), or assume that context can be accessed via the pull paradigm, which
is certainly valid in sensor-based areas, but not appropriate for context information on
a high level of abstraction. This can also be traced back to the fact that especially ap-
proaches to high-level context information rely on ontology-based techniques where
imperfection is hard to integrate (although approaches exist, e.g. [30]).

6.2 Imperfection Handling in Context Modeling

The consideration of the imperfection and dynamics of user context information is also
a relatively neglected area of research, especially for the case of high-level context infor-
mation. [31] investigate quality criteria for context information complementing quality
of service concepts. They define the following criteria: precision, confidence, trust level
(for context sources), granularity and up-to-dateness. [32] introduce meta attributes like
precision, certainty, last update and update rate, the approach of [33] is similar. Only
[34] has investigated the role of imperfection in a more systematic way and identi-
fied the following types of imperfection: unknown values, contradictory values, impre-
cise values, and incorrect values. Feature values are further classified according to their
source and persistence into sensed, static, profiled and derived. The causes of imperfec-
tion are analyzed along this classification. But all of these approaches do not consider



1008 A. Schmidt

the implication on a management infrastructure, especially in terms of scalability when
combined with ontology-based reasoning techniques.

6.3 Imperfection Handling in Data Management in General

The major part of research on handling imperfection in data management seems to be
almost a decade ago (see e.g. [35], [36] and [37] for an overview). Apart from fuzzy
logic, the major part of research in data management concentrated on probalistic exten-
sions of the relational and other data models. Two main approaches can be identified:
probabilistic attributes ([38], [39], [40]) and probabilistic relations (i.e. probabilities on
tupel level) [41], [42]. Current approaches are mainly concerned with semistructured
XML data (e.g. [43], [44]). However, these approaches did not consider the time di-
mension (i.e. the problem of aging).

There are some combinations of temporal and imperfection problems, but these ap-
proaches concentrate on the imperfection of the temporal perspective itself (e.g. [45],
[46]), not on the impact of time distance on the quality.

7 Conclusions and Outlook

The approach of this paper views robust and scalable user context management as a
key enabler for rolling out context-aware application in the large. In order to retain
robustness in the presence of imperfection, the system needs to consciously manage
the imperfect properties of the data ([47]). This approach covers the uncertainty (via
attached probabilities), the incompleteness (via open-world semantics), and contradic-
tions (via storing contradictory facts and conflict resolution strategies). Additionally,
the approachs also accounts for the dynamics of change of context information by in-
troducing aging functions that decrease the certainty over time. These aging functions
are specific for context feature in order to deal with the variability in the rate of change
between different aspects of the context. A layered approach helps to keep the complex-
ity manageable and the architecture of the system extensible. Scalability is achieved
through relying on traditional data management techniques and providing appropriate
indexing structures for imperfection handling. Still it is possible to reference semanti-
cally rich ontologies as data types and accessing limited reasoning functionality within
queries. The system has been successfully applied to a corporate learning scenario.

Central storage of user context data always raises (justified) privacy concerns. The
presented architecture can be easily extended to support a distributed approach where
context data is stored for each user separately, e.g., on her machine. There will be one
single user context management service without any local storage that simply distributes
(after checking the permission) the query to the individual context management sys-
tems, which are registered as pull context sources.

Future work will incorporate the research in a data type that captures imprecision
via a probability distribution of that value, which is important for location information.
A lot of previous research exists on that topic that can be integrated into the approach.
Different conflict resolution strategies will also be evaluated with their effect on the
context quality. For that purpose, agent-based simulation techniques will be used.



Ontology-Based User Context Management 1009

Acknowledgements

This work was partially supported by the European Commission under the Fifth Frame-
work Programme of IST within the project Learning in Process (contract IST-2001-
32518) and under the Sixth Framework Programme of IST within the project AGENT-
DYSL.

References

1. Henricksen, K., Indulska, J.: Modeling and using imperfect context information. In: Second
IEEE International Conference on Pervasive Computing and Communications. Workshop on
Context Modelling and Reasoning (CoMoRea 04), IEEE Computer Society (2004) 33–37

2. Winograd, T.: Architectures for context. Human-Computer Interaction 16 (2001)
3. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive

computing systems. In Mattern, F., Naghshineh, M., eds.: Pervasive 2002, Berlin, Springer
(2002) 167–180

4. Schmidt, A.: Bridging the gap between knowledge management and e-learning with context-
aware corporate learning solutions. In Althoff, K.D., Dengel, A., Bergmann, R., Nick, M.,
Roth-Berghofer, T., eds.: Professional Knowledge Management. Third Biennial Conference,
WM 2005, Kaiserlautern, Germany, April 2005. Revised Selected Papers. Volume 3782 of
Lecture Notes in Artificial Intelligence., Springer (2005) 203–213

5. Schmidt, A.: Context-steered learning: The Learning in Process approach. In: IEEE Inter-
national Conference on Advanced Learning Technologies (ICALT ’04), Joensuu, Finland,
IEEE Computer Society (2004) 684–686

6. Schmidt, A.: Potentials and challenges of context awareness for learning solutions. In: LWA
2005: Lernen–Wissensentdeckung–Adaptivität, 13th Annual Workshop of the SIG Adaptiv-
ity and User Modeling in Interactive Systems (ABIS 2005), Saarbrücken. (2005)

7. Schmidt, A., Winterhalter, C.: User context aware delivery of e-learning material: Approach
and architecture. Journal of Universal Computer Science (JUCS) 10 (2004) 28–36

8. Horvitz, E., Breese, J., Heckermann, D., Hovel, D., Rommelse, K.: The lumière project:
Bayesian user modeling for inferring the goals and needs of software users. In: 14th In-
ternational Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin (1998)
256–265

9. Schmidt, A.: A layered model for user context management with controlled aging and im-
perfection handling. In Roth-Berghofer, T.R., Schulz, S., Leake, D.B., eds.: Modeling and
Retrieval of Context. Proceedings of the 2nd International Workshop on Modeling and Re-
trieval of Context MRC 2005, Edinburgh, Scotland, July 31 - August 1, 2005. Number 3946
in Lecture Notes in Artificial Intelligence (2006)

10. Ruthven, I., Lalmas, M.: Using dempster-shafer’s theory of evidence to combine aspects of
information use. Journal of Intelligent Systems 19 (2002) 267–302

11. Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec. 30 (2001) 109–
120

12. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only
databases. In: SIGMOD ’92: Proceedings of the 1992 ACM SIGMOD international con-
ference on Management of data, New York, NY, USA, ACM Press (1992) 321–330

13. Kazakos, W., Nagypal, G., Schmidt, A., Tomczyk, P.: Xi3 - towards an integration web.
In: 12th Workshop on Information Technology and Systems (WITS ’02), Barcelona, Spain
(2002)



1010 A. Schmidt

14. Wang, X., Gu, T., Zhang, D., Pung, H.: Ontology based context modeling and reasoning
using owl. In: IEEE International Conference on Pervasive Computing and Communication
(PerCom’04), Orlando, Florida. (2004)

15. Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language to enable
Contextual Interoperability. In Stefani, J.B., Dameure, I., Hagimont, D., eds.: LNCS 2893:
Proceedings of 4th IFIP WG 6.1 International Conference on Distributed Applications and
Interoperable Systems (DAIS2003). Volume 2893 of Lecture Notes in Computer Science
(LNCS)., Paris/France, Springer Verlag (2003) 236–247

16. Nebel, I., Smith, B., Paschke, R.: A user profiling component with the aid of user ontologies.
In: Workshop Learning - Teaching - Knowledge - Adaptivity (LLWA 03), Karlsruhe. (2003)

17. Heckmann, D.: A specialized representation for ubiquitous computing and user modeling.
In: First Workshop on User Modeling for Ubiquitous Computing, UM 2003. (2003)

18. Dolog, P., Nejdl, W.: Challenges and benefits of the semantic web for user modelling. In:
AH2003 Workshop at WWW2003. (2003)

19. Lutz, C.: Description logics with concrete domains - a survey. In Balbiani, P., Suzuki, N.Y.,
Wolter, F., Zakharyaschev, M., eds.: Advances in Modal Logics Volume 4. King’s College
Publications (2003)

20. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain
in the framework of resolution. In: Proc. of the 16th European Conference on Artificial
Intelligence (ECAI 2004), August, 2004, Valencia, Spain. (2004) 353–357

21. Fikes, R., Hayes, P., Horrocks, I.: Owl-ql: A language for deductive query answering on the
semantic web. Journal on Web Semantics 2 (2005)

22. Prud’hommeaux, E., Seaborne, A.: Sparql query language for rdf. W3C Working Draft 20.
February 2006, W3C (2006)

23. Necib, C.B., Freytag, J.C.: Query processing using ontologies. In: Proceedings of the 17th
Conference on Advanced Information Systems Engineering (CAISE’05), Porto, Portugal.
(2005)

24. Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed ontologies in the
semantic web. VLDB Journal 12 (2003) 286–302

25. Hustadt, U., Motik, B., Sattler, U.: Reducing shiq-description logic to disjunctive datalog
programs. In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR2004), Whistler, Canada, June 2-5, 2004. (2004) 152–
162

26. Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., Sintek, M.: Context-aware, proactive
delivery of task-specific information: The knowmore project. DFKI GmbH International
Journal on Information Systems Frontiers (ISF) 2 (2000) 139–162

27. Fisher, D.: Using egocentric networks to understand communication. IEEE Internet Com-
puting 2005 (2005) 20–28

28. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing, Nottingham/England. (2004)

29. Meissen, U., Pfennigschmidt, S., Voisard, A., Wahnfried, T.: Context- and situation-
awareness in information logistics. In Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y.,
Vakali, A., eds.: Current Trends in Database Technology - EDBT 2004 Workshops, EDBT
2004 Workshops PhD, DataX, PIM, P2P&DB, and ClustWeb,Heraklion, Crete, Greece,
March 14-18, 2004, Revised Selected Papers. Volume 3268 of Lecture Notes in Computer
Science., Springer (2004) 335–344

30. Nottelmann, H., Fuhr, N.: pdaml+oil: A probabilistic extension to daml+oil based on proba-
bilistic datalog. In: Information Processing and Management of Uncertainty in Knowledge-
Based Systems, Perugia, Italy (2004)



Ontology-Based User Context Management 1011

31. Buchholz, T., Küpper, A., Schiffers, M.: Quality of context: What it is and why we need
it. In: 10th International Workshop of the HP OpenView University Association (HPOVUA
2003), Geneva, Switzerland. (2003)

32. Judd, G., Steenkiste, P.: Providing contextual information to ubiquitous computing applica-
tions. In: 1st IEEE Conference on Pervasive Computing and Communication (PerCom 03),
Fort Worth. (2003) 133–142

33. Heckmann, D.: Ubiquitous User Modeling. PhD thesis, Universität des Saarlandes (2005)
34. Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive

computing. In: PerCom, IEEE Computer Society (2004) 77–86
35. Motro, A.: Management of uncertainty in database systems. In Kim, W., ed.: Modern

Database Systems: the Object Model, Interoperability and Beyond. Addison-Wesley/ACM
Press (1994) 457–476

36. Motro, A.: Sources of uncertainty, imprecision and inconsistency in information systems. In
Motro, A., Smets, P., eds.: Uncertainty Management in Information Systems: From Needs to
Solutions. Kluwer Academic Publishers (1996) 9–34

37. Parsons, S.: Current approaches to handling imperfect information in data and knowledge
bases. IEEE Transactions on Knowledge and Data Engineering 8 (1996) 353–372

38. Barbará, D., Garcı́a-Molina, H., Porter, D.: The Management of Probabilistic Data. ACM
Transactions on Knowledge and Data Engineering 4 (1992) 487–502

39. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Transactions on
Database Systems 21 (1996) 339–369

40. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.: Probview: A flexible proba-
bilistic database system. ACM Transactions on Database Systems 22 (1997) 419–469

41. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: VLDB ’87: Proceedings
of the 13th International Conference on Very Large Data Bases, San Francisco, CA, USA,
Morgan Kaufmann Publishers Inc. (1987) 71–81

42. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information
retrieval and database systems. ACM Transactions on Information Systems 15 (1997) 32–66

43. Nierman, A., Jagadish, H.V.: Protdb: Probabilistic data in xml. In: Proceedings of the 28th
VLDB Conference, Hong Kong, China, 2002. (2002)

44. Hung, E., Getoor, L., Subrahmanian, V.S.: Pxml: A probabilistic semistructured data model
and algebra. In: Proceedings of the 19th International Conference on Data Engineering,
March 5-8, 2003, Bangalore, India, IEEE Computer Society (2003) 467–

45. Dyreson, C., Snodgrass, R.: Supporting valid-time indeterminacy. ACM Transactions on
Database Systems 23 (1998) 1–57

46. Dekhtyar, A., Ross, R., Subrahmanian, V.: Probabilistic temporal databases i: Algebra. ACM
Transactions on Database Systems 26 (2001) 41–95

47. Lockemann, P.C., Lukacs, G.: Imperfection and the human component: Adding robustness
to global information systems. In Brinkkemper, S., Lindencrona, E., Slvberg, A., eds.: In-
formation Systems Engineering: State of the Art and Research Themes. Springer (2000)
3–14



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1012 – 1019, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Moving Towards Automatic Generation of Information 
Demand Contexts: An Approach Based on Enterprise 

Models and Ontology Slicing 

Tatiana Levashova1, Magnus Lundqvist2, and Michael Pashkin1 

1 St.Petersburg Institute for Informatics and Automation of the Russian Academy of  
Sciences, 39, 14th line, St.Petersburg, 199178, Russia 
{oleg, michael}@mail.iias.spb.su 
2 School of Engineering, Jönköping University, 
Gjuterigatan 5, SE-551 11 Jönköping, Sweden 

magnus.lundqvist@ing.hj.se 

Abstract. This paper outlines the first experiences of an approach for 
automatically deriving information demands in order to provide users with 
demand-driven information supply and decision support. The presented 
approach is based on the idea that information demands with respect to work 
activities can be identified by examining the contexts in which they exist and 
that a suitable source for such contexts are Enterprise Models. However, 
deriving contexts manually from large and complex models is very time 
consuming and it is therefore proposed that a better approach is to, based on an 
Enterprise Model, produce a domain ontology and from this then automatically 
derive the information demand contexts that exist in the model.  

Keywords: information demand; enterprise model; ontology engineering; 
ontology management; context; context derivation. 

1   Introduction 

As an attempt to solve many of the problems related to the identification, distribution, 
and management of information necessary for the daily operation of most knowledge 
intensive organizations today [1], Fraunhofer ISST and the Technical University of 
Berlin in Germany established the area of Information Logistics (ILOG) in 1997. 
Since then a lot of effort has been put into the development of the area as such as well 
as different systems, techniques, and methods for improving information flow as well 
as reducing information overflow related problems within organizations by providing 
the right user with the right information at the right time and place [2]. In recent year 
the Information Engineering Group at Jönköping School of Engineering in Sweden 
has joined in the effort to provide organizations with such demand-driven approaches 
to information supply. While ILOG certainly has proven to be a valid attempt at 
solving these problems as illustrated by several successful applications [3], it is only 
recently any deeper consideration has been given to the information demand aspects 
of ILOG. This paper builds upon the ideas and results from the work on establishing a 
context-based approach to information demand analysis and modeling intended to 



 Moving Towards Automatic Generation of Information Demand Contexts 1013 

facilitate the design and implementation of ILOG-solutions. Section 2 of this paper 
will give a short overview of the area of context-based information demand modeling 
while section 3 focuses on how Enterprise Models can be used as a source for 
deriving such contexts. However, as it will be shown in section 3.1, some aspects of 
information demand context derivation are rather difficult and time consuming and 
are therefore from a practical perspective not very suitable to perform manually. Due 
to this it has been suggested that the commonalities between context-based demand 
modeling and context- and ontology-based decision support as discussed in section 4, 
can be utilized in the development of a technique for deriving such contexts 
automatically [4, 5]. 

The paper ends with a short discussion and some conclusions in section 5 based on 
the experiences from the first steps taken towards automatic derivation of information 
demand context by combing the two above described approaches in order to provide 
users with demand-driven information supply and decision support. 

2   Context-Based Information Demand Modeling 

The initial steps towards demand modeling taken within the area of ILOG, while 
definitely suitable for its purposes were quite simplistic. Furthermore, they were taken 
without any clear definition of the concept of information demand. Profile-based 
demand modeling, successfully used when developing the WIND application, an 
German early warning system for severe storms, where the users information 
demands are capture and represented in user profiles [3] works fairly well for systems 
that tend to have users with small and relatively static demands but for more complex 
situations like ERP-applications and cross- or inter-organizational systems it is simply 
not flexible enough. Furthermore, such an approach also tends to be application 
specific, something that makes it unsuitable for larger systems spanning complete 
application domains. Yet another attempt to solve the problem of representing 
information demands is the situation-based approach [6]. By dividing a user’s daily 
schedule into several situations that comprises a duration of time, topics of interests, 
and if relevant, location, as well as technical resources available for receiving or 
retrieving information it is possible to decide under which circumstances a user can 
manage information needed to perform specific tasks. While this approach indeed is 
suitable for deciding on when to send information to a user it does not really deal with 
the issue of how to initially decide on what information that is considered relevant in 
relation to what task. 

To remedy these shortcomings as well as facilitate the analysis and representation 
of information demand a context-based approach has been suggested together with a 
definition of the Information Demand concept [7]. It has also been suggested that a 
suitable source from which such information demand contexts can be derived are 
Enterprise Models [8].  

2.1   Information Demand Context 

While this paper will not cover all aspects of information demand context relevant to 
context-based analysis and modeling of information demand the basic idea is that it, 



1014 T. Levashova, M. Lundqvist, and M. Pashkin 

in order to be able to support business activities by providing integrated information, 
which is the intended purpose of demand-driven information supply [7], is essential to 
understand those activities and the setting in which they exist, i.e. their context. That 
is to say that providing the “right information at the right time and place” entails that 
it should be right given the demanding party’s context. Context can be, and has been, 
defined in many different ways but for the purpose of information demand analysis, 
context is here simply defined as [8]: 

An Information Demand Context is the formalized representation of information 
about the setting in which information demands exist and comprises the 
organizational role of the party having the demand, work activities related, and any 
resources and informal information exchange channels available, to that role. 

As stated by this definition it is clearly role that is considered to be the central 
concept when analyzing and modeling information demands. Information demand 
context allows for all activities performed by a specific role to be grouped together 
with any relevant resources for doing so.  

3   Deriving Information Demand Context from Enterprise Models 

Enterprise Modeling has been described as the art of externalizing enterprise 
knowledge. This is usually done with the intention to either add some value to an 
enterprise or share some need by making models of the structure, behavior and 
organization of that enterprise [9]. The motivation often given to why enterprises 
should be analyzed and modeled is that it facilitates, and to some degree is a 
prerequisite for, better management, coordination and integration of such diverse 
aspects of an enterprise as markets, processes, different development and 
manufacturing sites, components, applications/systems as well as contributes to an 
increased flexibility, cleaner and more efficient manufacturing etc. Enterprise models 
usually include such diverse aspects like business processes, technical resources, 
information flow, organizational structures, and human resources. Additional aspects 
might also be included but those listed above are considered to be the essential ones. 
Deriving contextual information can of course be done in many different ways and 
from many different sources it is however here claimed that one such particular 
suitable source for deriving the contextual information necessary for information 
demand analysis and modeling is Enterprise Models. If business processes are 
considered to be sequences of activities, technical resources and information to be 
resources, organization to be the structure in which roles can be identified it 
corresponds well to the different aspects of context listed in section 2.1 and thus, such 
models cover all aspects of an organization relevant when producing information 
demand contexts. 

3.1   Example Model Used for Automatic Context Derivation 

To exemplify how information demand contexts can be derived from Enterprise 
Models a model describing many different aspects of a fictitious bike producing 



 Moving Towards Automatic Generation of Information Demand Contexts 1015 

enterprise has been used. Fig. 1 provides an overview of this model with the intention 
of illustrating the complexity of such models. Even though fairly extensive it still 
incorporates relatively few roles, processes, and resources and hardly any of the 
relationships between different elements in the model are shown. With this in mind it 
should not come as a surprise that real-life models tend to be considerably larger than 
the model shown here. Extraction of information demand context is basically a 
question of analyzing the model and single out all activities within the process 
descriptions connected to a specific role and then determining what resources that is 
required to perform those activities. Once all relevant aspects of the context are 
identified they can be represented as a sub-model. 

 

Fig. 1. Example of an Enterprise Model from a fictitious enterprise 

Up to this point research done by the authors has focused mainly on understanding 
the knowledge relevant to demand modeling contained in Enterprise Models rather 
than the development of more sophisticated methods and techniques for extracting it. 
As a consequence the manual approach used so far is insufficient with respect to time 
consumption even though it works fairly well from demand identification perspective. 
However, producing a context on the needed level of detail for each task performed 
by each role within a larger organization would clearly be unpractical. As an attempt 
to automate the process an evaluation of the similarities between the context-based 
approach to information demand modeling, just presented, and theories from  



1016 T. Levashova, M. Lundqvist, and M. Pashkin 

context-based decision support has been performed. As it became clear that the two 
approached shared most of the concepts central to the problem at hand [4] it also 
became clear that an automated approach, as will be shown in the following sections, 
would not only be possible but also make sense.  

4   An Ontology-Based Approach to Context Derivation 

The research made on ontology-driven context derivation was originally intended 
create a way to represent problems formulated by a user as requests to a decision 
support system (DSS). Since context often is defined as any information that can be 
used to characterize the situation of an entity [10] and is employed as a way to 
organize such information [11, 12] in combination with the fact that DSS has to 
take into account current and relevant information provided by the environment in 
which it exists the choice of representing problems in terms of context seemed 
reasonable. 

The problem or the current situation in DSS is modeled in terms of context. Two 
types of context are used: abstract and operational. Abstract context is an ontology-
driven model integrating information and knowledge relevant to the problem. 
Operational context is an instantiation of the abstract context with relevant data 
provided by information sources [13].  

The context is created through extraction of knowledge relevant to the problem 
from a domain ontology. It is a rather large ontology describing a macro-situation 
(e.g., e-business, disaster relief, tourism, etc.) and integrates knowledge from various 
knowledge sources. The problem or the current situation in which decision-making 
takes place is considered to be a subtype of the macro-situation. 

A generalized scenario of DSS functioning follows the steps of 1) identification of 
the knowledge relevant to the problem formulated in the request to DSS; 2) creation 
of ontology-based problem model (abstract context); 3) instantiation the problem 
model with data values (operational context); 4) generation of object-oriented 
constraint network (OOCN) formalizing the problem by a set of constraints; and 
5) solving the problem as a Constraint Satisfaction Problem (CSP). 

For the purposes of the research presented here only items 1 and 2 above are of 
interest. The identification of relevant knowledge is carried out using a set of 
algorithms that implement ontology slicing operation. The intention of this operation is 
to extract pieces of knowledge from the domain ontology, which is believed to be 
relevant to the request. For this purpose, the request vocabulary is first matched against 
the domain ontology vocabulary. The words from the domain ontology vocabulary 
matching to words from the user request serves as “seeds” for the slicing operation. 
The algorithms capture knowledge surrounding “seeds” so as the captured knowledge 
would be relevant to the user request and to the inference supported by OOCN. 

Generally, the result of the slicing operation is more than one ontology slice. This 
is explained by the fact that ontology concepts to be captured can belong to a different 
taxonomy branch. If such concepts are not related with any other relationships but 
 



 Moving Towards Automatic Generation of Information Demand Contexts 1017 

taxonomical ones they are considered to belong to different slices. Several slices 
integrated into a single piece of knowledge constitute abstract context. 

In order to formalize the problem via a set of constraints and to interpret it as a 
CSP formalism OOCN is used as a mean for representing the ontology [14]. The set 
of constraints supported by the formalism is (1) taxonomical (“is-a”) relationships, 
(2) hierarchical (“part-of”) relationships, (3) class cardinality restriction, (4) class 
compatibilities, (5) associative relationships, and (6) functional relations. 

To create an ontology-driven context and apply the DSS approach an ontology was 
derived from the Enterprise Model presented in Fig. 1. This ontology serves as the 
domain ontology described above. Roles will be used as “seeds” (the input) for the 
slicing operation. The purpose of this operation is to extract and combine knowledge 
considered relevant for specific roles. In terms of the above-presented approach the 
context is an ontology-driven model that characterizes the situation of a role.  

4.1   Ontology Based on Enterprise Model 

The tool used for modeling the EM (Fig. 1) uses XML as an internal representation 
for storing the information it contains. A file containing such an XML-representation 
was used as the source from which the ontology has been derived. Table 1 shows 
correspondences between the EM, its representations in XML, and OOCN formalism. 
The table also shows that not all types of constraints that OOCN supports are 
necessary. Constraints on class compatibility, class cardinality, and functional 
constrains are omitted.  

Table 1. Correspondence between Enterprise Model, XML, and OOCN representations 

EM XML representation OOCN 
Object Object Class 
Instance Valueset A set of attributes 
Range1 Data type Domain 

Parent-children relationship 
Type-of; Child-link; 
Part-link 

“Is-a” constraint 

Named relationships but “Type-of”/“Of-type” Relationship Associative constraint 

4.2   Resulting Information Demand Context  

In the model (Fig. 1) four types of roles are defined: “Production Planner”, “Assem-
bler”, “Purchaser”, and “Distributor”. Fig. 2 illustrates parts of the abstract contexts 
for “Assembler”, “Purchaser”, and “Distributor” roles. The parts are distinguished by 
the presence of a class representing a particular role and corresponding business proc-
esses. E.g., for class “Assembler” class “Assembly” is given, whereas classes “Pur-
chaser”, “Distributor”, “Purchasing”, and “Distribution” are omitted. It should be 
noted that even though the classes represented in Fig. 2 are interrelated by many asso-
ciative relationships in the EM, only the hierarchical relationships are shown here. 
                                                           
1 Ranges of string, integer, float, time, and date data types are used in EM. 



1018 T. Levashova, M. Lundqvist, and M. Pashkin 

Business  
Operation 

Organization 1 

Processes 
Organization 2Role 

Purchaser

Assembler 

Distributor 

Supply 

Production Business 
Processes 

Supply chain 

Bike 
production 

Purchasing Assembly Distribution

Part-of 

Is-a Root 

High-level 
processes 

                                                 
1 A hierarchically organized Organization with a number of formal positions and a

number of roles that can be performed by individuals or Organization Units, as
well as some key people for the kind development that the model is covering. 

2 Organization units that constitute the business and some of its high-level positions. 
Positions are formal elements of an Organization.  

 

Fig. 2. Part of abstract contexts for roles of Assembler”, “Purchaser”, and “Distributor” 

5   Conclusions and Outlook 

While the ideas presented in this paper have been both tested and used separately 
and proven to be suitable for its intents and purposes respectively the work on 
combining the two approaches described here should only be viewed as the first 
stumbling steps towards automatic creation of ontology-based information demand 
contexts. It is undoubtedly so that several problems remain to be solved but 
nevertheless the result indicates that further work might prove to be both interesting 
and valuable for both research areas. If a working method for automatic context 
derivation could be developed it would greatly influence the applicability of 
information demand analysis on large and complex organizations. Furthermore, 
automatic ontology-based context creation not only provides DSS with a more 
convenient way to understand the setting of the problems such systems aim at 
solving but also increase the likelihood of such systems focusing on issues relevant  
to their users. From an Information Logistical perspective having users information 
demands represented in terms of ontology also make sense since this facilitates the 
possibilities to match demands against information managed by such systems. A 
way to express knowledge about organizations as an ontology without having to 
produce it manually could potentially prove to be very valuable from many 
perspectives.  



 Moving Towards Automatic Generation of Information Demand Contexts 1019 

References 

1. Delphi Group: Perspectives on Information Retrieval, Boston, Mass., Delphi Group (2002) 
2. Deiters, W., Löffeler, T., and Pfenningschmidt, S.: The Information Logistical Approach 

Toward a User Demand-driven Information Supply. In Spinellis, D. (ed.): Cross-Media 
Service Delivery Boston, Mass./Dordrecht/London: Kluwer Academic Publisher (2003) 

3. Jaksch, S., Pfenningschmidt, S,, Sandkuhl, K., Thiel, C.: Information Logistic Applications 
for Information-on-Demand Scenarios: Concepts and Experiences from WIND project. In 
Proceedings of the 29th Euromicro Conference (2003) 

4. Lundqvist, M., Sandkuhl, K., Levashova, T., Smirnov, A.: Context-Driven Information 
Demand Analysis in Information Logistics. In Proceedings of the first International 
Workshop on Context and Ontologies: Theory, Practice and Applications. Pittsburgh, 
Pennsylvania, USA: AAAI Press (2005) 124-127 

5. Levashova, T., Lundqvist, M., Sandkuhl, K., Smirnov, A.: Context-based Modelling of 
Information Demand: Approaches from Information Logistics and Decision Support. To 
be published in Proceedings of the 14th European Conference on Information Systems. 
Gothenburg, Sweden (2006) 

6. Meissen, U., Pfennigschmidt, S., Sandkuhl K., Wahnfried, T.: Situation-based Message 
Rating in Information Logistics and its Applicability in Collaboration Scenarios. In 
Euromicro 2004 Special Session on "Advances in Web Computing". IEEE Computer 
Society Press (2004) 

7. Lundqvist, M. and Sandkuhl, K.: Modeling Information Demand for Collaborative 
Engineering. In Proceedings of 2nd Intl. Workshop on Challenges in Collaborative 
Engineering. VEDA. Stara Lesna, Slovakia (2004) 111-120 

8. Lundqvist, M.: Context as a Key Concept in Information Demand Analysis. In 
Proceedings of the Doctoral Consortium associated with the 5th Intl. and Interdisciplinary 
Conference on Modelling and Using Context (CONTEXT-05). Paris, France (2005) 63-73 

9. Vernadat, F., B.: Enterprise Modeling and Integration (EMI): Current Status and Research 
Perspectives. Annual Reviews in Control 26. (2002) 15–25 

10. Dey, A. K., Salber, D., Abowd, G. D.: A Conceptual Framework and a Toolkit for 
Supporting the Rapid Prototyping of Context-Aware Applications. In: Moran, T. P., 
Dourish, P. (eds): Context-Aware Computing, A Special Triple Issue of Human-Computer 
Interaction, Vol. 16. Lawrence-Erlbaum (2001) http://www.cc.gatech.edu/fce/ctk/pubs/-
HCIJ16.pdf 

11. Brézillon, P.: Context in Artificial Intelligence: I. A Survey of the Literature. In: Computer 
& Artificial Intelligence. Vol. 18, no. 4 (1999) 321—340 

12. Brézillon P. Context in Artificial Intelligence: II. Key Elements of Contexts. In: Computer 
& Artificial Intelligence. Vol. 18, no. 5 (1999) 425—446 

13. Smirnov, A., Pashkin, M., Chilov, N., Levashova, T.: Constraint-driven methodology for 
context-based decision support. In: Journal of Decision Systems. Vol. 14, no. 3, Special 
Issue on Design, Building and Evaluation of Intelligent DMSS. Lavoisier (2005) 279—301 

14. Smirnov, A., Pashkin, M., Chilov, N., Levashova, T., Haritatos F.: Knowledge Source 
Network Configuration Approach to Knowledge Logistics. In International Journal of 
General Systems. Taylor & Francis Group, Vol. 32, no. 3. (2003) 251-269 



R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1020 – 1038, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Semantic Similarity of Ontology Instances Tailored on 
the Application Context 

Riccardo Albertoni and Monica De Martino 

CNR-IMATI,  
Via De Marini, 6 – Torre di Francia - 16149 Genova, Italy 
{albertoni, demartino}@ge.imati.cnr.it 

Abstract. The paper proposes a framework to assess the semantic similarity 
among instances within an ontology. It aims to define a sensitive measurement 
of semantic similarity, which takes into account different hints hidden in the 
ontology definition and explicitly considers the application context. The 
similarity measurement is computed by combining and extending existing 
similarity measures and tailoring them according to the criteria induced by the 
context. Experiments and evaluation of the similarity assessment are provided. 

1   Introduction 

In this decade, the ontologies have been imposing in the computer science as artefact 
to represent explicitly shared conceptualisations. A remarkable research effort has 
been spent to develop new ontology languages, proper reasoning mechanisms and 
correlated management tools. Less attention has been posed instead on the similarity 
among the ontology instances. Methods to assess similarity among instances are 
needed to exploit the knowledge modelled in the ontology in different research fields 
pertaining the Knowledge Management such as Data Mining and Information 
Visualization. They should consider as much as possible the implicit information 
encoded in the ontology as they provide useful hints to define the similarity. 
Moreover, they should be sensible to specific contexts inasmuch as different contexts 
induce different criteria of similarity. 

So far, the most of research activity pertaining to similarity and ontologies has 
been carried out within the field of ontology alignment or to assess the similarity 
among concepts. Unfortunately, all these methods result inappropriate for the 
similarity among instances. On the one hand the similarities for the ontology 
alignment strongly focus on the comparison of the structural parts of distinct 
ontologies and their application to assess the similarity among instances might result 
misleading. On the other hand, the concepts’ similarities mainly deal with 
lexicographic database ignoring the comparison of the instances values. Apart from 
them, few methods to assess similarities among instances have been proposed. 
Unfortunately these methods rarely take into account the different hints hidden in the 
ontology and they do not consider that the ontology entities differently concur in the 
similarity assessment according to the application contexts.  

To overcome the limitations mentioned above the paper proposes a framework to 
assess the semantic similarity among instances. Its contribution is twofold. Firstly, the 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1021 

framework provides a measurement of semantic similarity more sensitive to the hints 
hidden in the ontology. It is defined by an amalgamation function, which combines 
and extends different similarities already defined in literature: it takes into account 
both the structural comparison between two instances in terms of the classes that the 
instances belong to, and the instances comparison in term of their attributes and 
relations. Secondly, the framework provides the parametric evaluation of the 
similarity with respect to different applications. The application induces the criteria of 
similarity which are explicitly formalized in the application context. An application 
context models the importance of the entities, which concur in the assessment of 
similarity, and the operation used to compare the instances. The parametric evaluation 
allows to tailor the similarity assessment to specific application contexts, but also to 
obtain different similarity assessments employing the same ontology. 

The paper is organised as follows. In the first section, we illustrate the main 
principle of the approach. Then a formalization of the similarity criteria induced by 
the context is proposed. The remaining sections are devoted to the definition of the 
similarity functions which characterise our method followed by two experiments and 
an evaluation of the results. At the end, we evaluate the related works underlining our 
contributions. 

2   Semantic Similarity Method  

The paper proposes a semantic similarity among instances within an ontology taking 
into account the different hints hidden in the ontology and the application context. As 
the hints that can be considered largely depend on the level of formality of the 
ontology model adopted, it is important to state clearly to which ontology model a 
similarity method is referring. In the paper, the ontology model with data type defined 
by Ehrig et al.[1] is considered.    

Definition 1: Ontology with Data Type. An Ontology with data type is a structure 
),,,,,,,,,,,,,,(: ARTCARARc llllVIARTCO ≤≤≤= σσ where C,T,R,A,I,V are disjointed sets 

respectively of classes, data types, binary relations, attributes, instances and data 
values, and the relations and functions are defined  as follows:  

 
Two kinds of similarity exist with symmetric or with asymmetric properties. A 

symmetric normalized similarity ]1,0[: →IxIS  is a function that maps a pair of 

instances to a real number in the range [0,1] such that:  



1022 R. Albertoni and M. De Martino 

SymmetryxySyxSIyx

MaximalityzySxxSIzyIx

ssPositiveneyxSIyx

),(),(,

),(),(,,,

0),(,

=∈∀
≥∈∀∈∀

≥∈∀
 

An asymmetric normalized similarity is a function ]1,0[: →IxIS  that does not 

satisfy the symmetric axiom. The preference between symmetric and asymmetric 
similarity mainly depends on the application scenario, there is no a-priori reason to 
formulate this choice. A complete framework to assess the semantic similarity should 
provide both of them. In the paper only the asymmetric similarity is described due to 
lack of space.   

The proposed model adopts the schematisation of the similarity framework defined 
by Ehrig et.al. [1]: they structure the similarity in terms of data, ontology and context 
layers plus the domain knowledge layer which spans all the other. The data layer 
measures the similarity of entities by considering the data values of simple or 
complex data types such as integer and string. The ontology layer considers the 
similarities induced by the ontology entities and the way they are related each other. 
The context layer assesses the similarity according to how the entities of the ontology 
are used in some external contexts. The framework defined by Ehrig et al. is suitable 
to support the ontology similarity as well as instances similarity.  

Our contribution with respect to the framework defined by Ehrig et al. is mainly in 
the definition of a context layer including an accurate formalization of the criteria to 
tailor the similarity with respect to a context and in the definition of an ontology layer 
explicitly parameterised according to these criteria. Concerning the data and domain 
knowledge layers the paper adopts a replica of what is illustrated in [1].   

The formalization of the criteria of similarity induced by the context is employed 
to parameterise the computation of the similarity in the ontology layer, forcing it to 
adhere to the application criteria. 

The overall similarity is defined by the following amalgamation function ( Sim ) 
which aggregates two similarity functions defined in the ontology layer named 
external similarity ( ExternSim ) and extensional similarity ( ExtensSim ). The external 
similarity performs a structural comparison between two instances i1∈lc(c1), i2∈lc(c2) 
in terms of the classes c1, c2 the instances belong to, whereas  the extensional 
similarity performs the  instances comparison in term of their attributes and relations. 

ExtensSimExternSim

ExtensSimExternSim

ww

iiExtensSimwiiExternSimw
iiSim

+
+

=
),(*),(*

),( 2121
21  (1) 

wExternSim and wExtensSim are the weights to balance the functions importance. By default 
they are equal to 1\2. In the below sections the Context Layer is described as well as 
the two similarities ExternSim  and ExtensSim . 

3   Context Layer  

The context layer, according to Ehrig at al. [1], describes how the ontology entities 
concur in different contexts. The paper adopts this point of view. However it aims to 
formalize the application context in the sense of modelling the criteria of similarity 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1023 

induced by the context. This design choice does not hamper to define eventually a 
generic description of context and then to determine automatically which criteria 
would have been suitable for a given context. Rather, it allows to calculate directly 
the similarity acting on the criteria especially when it is necessary to refine them. In 
the following we underlay the importance of this formalization and we provide it. 

3.1   Motivation Behind the Application Context Formalization 

The application context provides the knowledge to formalise the criteria of similarity 
induced by the application. Criteria are context-dependent as the context influences 
both the choice of classes, attributes and relations to be considered in the similarity 
assessment and the operations to compare them. 

We describe the motivation behind the proposed formalization through an 
example. Let consider a simplified version of the ontology KA1 that defines concepts 
from academic research (Fig 1) and focus on the two applications: “comparison of the 
members of the research staff according to their working experience” and 
“comparison of the members of the research staff with respect to their research 
interest”. Two distinct application contexts can be induced according the applications: 

•  “Exp” induced by the comparison of the members of the research staff according 
to their working experience. The similarity among the members of the research 
staff (instances of the class ResearchStaff2) is roughly assessed considering the 
member’s age (the attribute age inherited by the class Person), the number of 
projects and publications a researcher has worked on (the number of instances 
reachable through the relation publication and relation workAtProject inherited by 
Staff).  

•  “Int” induced by the comparison of the members of the research staff with respect 
to their research interest.  The researchers can be compared with respect to their 
interest (instances reachable through the relation interest), and again the 
publications (instances reachable through the relation publications), the projects 
(instances reachable through the relation workAtProject).  

Analysing these examples the follows considerations can be pointed out: 

1. the similarity between two instances can depend on the comparison of their related 
instances: the researchers are compared with respect to the instances of the class 
Publication connected through the relation publications; 
2. the attributes and relations of the instances can differently contribute in the 
evaluation according to the context: the attribute age of the researchers is functional 
in the first application but it might not be interesting in the second;  the relations 
publication and workAtProject are included in both the application contexts but using 
different operator of comparison: in the first case just the number of instances is 
important whereas in the latter the related instances have to be compared;  
3. the ontology entities can be considered recursively in the similarity evaluation: in 
the context “Int” the members’ research topic (instances of ResearchTopic reachable 

                                                           
1 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl 
2 The italics is used to explicit the reference to the entities (attributes, relations, classes) of the 

ontology in Fig 1.  



1024 R. Albertoni and M. De Martino 

navigating through the relation ResearchStaff->interest3) are considered and their 
related topics (instances of ResearchTopic reachable via ResearchStaff->interest-
>relatedTopic) are recursively compared to assess the similarity of distinct topics; 
4. the classes’ attributes and relations can differently contribute in the evaluation 
according to the recursion level of the assessment: in the second application the 
attribute topicName and the relation relatedTopic can be considered at the first level 
of recursion  to assess the similarity between researchTopic. By navigating the 
relation relatedTopic it is possible to apply another step of recursion, and here the 
similarity criteria can be different from the previous ones, for example in order to 
limit the computational cost and stop the recursion, only the topicName or the 
instances identifier could be adopted to compare the relatedTopic. 

 

Fig. 1. Ontology defining concepts related to the academic research 

As pointed out in the second remark, there are different operations that can be used to 
compare the ontology entities:  

• operation based on the “cardinality” of the attributes or relations: the similarity is 
assessed according to the number of instances the relations have, or the number of 
values that an attribute assumes. For example in the first context “Exp” two 
researchers are similar if they have a similar “number” of publications;  

• operation based on the “intersection” between sets of attributes or relations: the 
similarity is assessed according to the number of elements they have in common. 
For example in the context “Int” the more papers two researchers share, the more 
their interests  are similar;  

                                                           
3 The arrow is used to indicate the navigation through a relation, for example A->B->C  means 

that starting from the class A we navigate through the relations B and C. 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1025 

• operation based on the “similarity” of attributes and relations: the similarity is 
assessed in terms of similarity of the attributes values and related instances. For 
example, in the context “Int” two researchers are similar if they have “similar” 
research topics.  

The example evidences that an accurate formalism is needed to properly express the 
criteria which might arise from different application contexts. The formalization has 
to model the attributes and relations as well as the operation to compare their values. 
Moreover, as noticed in the fourth remark also the level of recursion of the similarity 
assessment has to be considered.  

3.2   Application Context Formalization 

The formalization provided in the sequel represents the restrictions that the 
application context must adhere to. An ontology engineer is expected to provide the 
application context according to specific application needs. The formalization relies 
on the concepts of “sequence of elements belonging to a set X” which formalizes  
generic sequences of elements and “path of recursion of length i” to track the 
recursion during the similarity assessment. In particular, a “path of recursion” 
represents the recursion in terms of sequence of relations used to navigate the 
ontology.  

The application context function (AC) is defined inductively on the length of the 
path of recursion. It returns the set of attributes and relations as well as the operations 
to be used in the similarity assessment. The considered operations are those illustrated 
in the previous paragraph and named respectively Count to evaluate the cardinality, 
Inter to evaluate the intersection, Simil to evaluate the similarity. 

Definition 2: Sequences of a Set X. Given a set X, a sequence s of elements of X with 
length n is defined by the function [ ] +∈→ NnXns ,,..,1: and represented in simple way 
by the list [s(1),..,s(n)].  

Let mark }],1[:|{ XnssS n
X →=  the set of sequences on X having length n and 

mn
YX

m
Y

n
X SxSS +

∪→⋅ :   the operator “concat” between two sequences. 

Let define in Table 1 the polymorphic functions which identify specific sets of 
entities in the ontology model.  

Table 1. List of functions defining specific sets of elements in the ontology model 

 
 



1026 R. Albertoni and M. De Martino 

Definition 3: Path of Recursion. A path of recursion p with length i is a sequence 
whose first element is a class and the other are relations recursively reachable from 
the class: ))1(()()(],2[)1(| −∈∧∈∈∀∧∈∈ ∪ jpjpRjpijCpSp r

i
RC δ . 

For example of path of recursion with length longer than three is a path which starts 
from a class (p(1)) and continues in one of its relations as second element p(2), in one 
of the relations of the class reachable from p(2) as third element p(3) and so on. In 
general, a path of recursion p represents a path to be followed to assess the similarity 
recursively. The recursion expressed in the previous paragraph in the context “Int” as 
ResearchStaff->interest->relatedTopic is formalised with the path of recursion 
[ResearchStaff, interest, relatedTopic].  

Let name Pi the set of all paths of recursion with length i and P the set of all paths 
of recursion P=  ∪ i∈N Pi. 

Definition 4: Application Context AC. Given the set P of paths of recursion, 
},,{ SimilInterCountL =  the set of operations adopted, an application context is 

defined by a partial function AC having signature )2()2(: LRLAPAC ×× ×→  returning  the 
attributes and relations as well as the operations  to perform their comparison.    

In particular, each application context AC is characterised by two operators 
LA

A PAC ×→ 2:  and  2: LR
R PAC ×→ which return respectively the part of context AC 

related to the attributes and the relations. Formally ),(()( pACpACPp A=∈∀ ))( pACR  

and ACA(p) and ACR(p) are set of pairs {(e1,o1), (e2,o2),…, (ei,oi),…,(en,on)} n ∈N 
where ei is respectively the attribute or the relation relevant to define the similarity 
criteria and oi∈L is the operation to be used in the comparison. 

We provide two examples of AC formalization referring to the two application 
contexts “Exp”, “Int” mentioned in the previous paragraph.  

Example 1. Let formalise the application context “Exp” with ACExp to assess the 
similarity among the members of a research staff according to their experience. We 
consider the set of paths of recursion {[ReasearchStaff], [Reasearch], [Fellow]} and 
we compare them according to the age similarity, the number of publications and 
projects. Thus ACExp is defined by: 

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Fellow[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]Researcher[

Count)}}ject,(workAtProCount),ions,{(publicatSimil)},{{(age,]affResearchSt[

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

ExpAC

ExpAC

ExpAC

 (2) 

An example of ACR is {(publication,Count),(workAtProject,Count)} while an 
example of ACA is {(age,Simil)}. 

Let note that [Researcher] and [Fellow] belong to the set of path of recursion 
considered in ACExp because their instances are also instance of ResearchStaff. The 
application context can be expressed in a more compact way assuming that whenever 
a context is not defined for a class but is defined for its super class, the comparison 
criteria defined for a super class are by default inherited by the subclasses. According 
to this assumption ACExp can be expressed through,  



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1027 

Count)}}ject,(workAtProCount),ions,{(publicatSimil},{{age,]affResearchSt[ ⎯⎯⎯ →⎯ ExpAC  (3) 

Example 2. Let formalise the application context “Int” to assess the similarity among 
the members of a research staff according to their research interest. The similarity is 
computed considering the set of path of recursion {[ResearchStaff],[ResearchStaff, 
interest]}. The researchers are compared considering common publications, common 
projects or similar interests. A compact formalization for “Int” is defined by ACInt:  

Inter)}}opics,{(relatedTInter},e,{{topicNam]interestaff,ResearchSt[

Simil)}}(interest,Inter),ject,(workAtProInter),ions,{(publicat},{{]affResearchSt[

⎯⎯ →⎯

⎯⎯ →⎯
IntAC

IntAC φ  (4) 

Let note that the researchers are compared recursively: [ReseachStaff,interest] is the 
path of recursion to navigating the ontology from ResearchStaff to ResearchTopic via 
the relation interest. The interests are compared with respect to both their topicName 
and their relatedTopic, thus two ResearchTopic(s) having distinct topicName but 
some relatedTopic in common are not considered completely dissimilar.  

The image of an AC function can be further characterized: 

1. For a path of recursion p, AC has to return only the attributes and relations 
belonging to the classes reached through p. For example, considering the ontology 
in fig 1 and the path of recursion [ReseachStaff,interest] it is expected that only 
the attributes and relations belonging to the class ResearchTopic reachable via 
[ReseachStaff,interest], can be identified by AC([ReseachStaff,interest]). 
Attributes or relations (as age, publications, etc) which do not belong to 
ResearchTopic define an incorrect application context.  

2. Given a path of recursion p, an attribute or a relation can appear in the context 
image at most one time. In other words, given a path of recursion it is not possible 
to associate two distinct operations to the same relation or attribute. For example 
the following application context definition is not correct as interest is specified 
twice 

Inter)}(interest, Simil),(interest,Inter),ions,{(publicat},{{]affResearchSt[ φ⎯→⎯  (5) 

4   Ontology Layer 

The ontology layer defines the asymmetric similarity functions ExternSim  and 

ExtensSim  which compose the amalgamation function (formula 1). The “external 

similarity” ExternSim  measures the similarity at the level of the ontology schema 
computing a structural comparison of the instances: given two instances, it compares 
the classes they belong to considering the attributes and relations shared by the classes 
and their position within the class hierarchy. The “extensional similarity” ExtensSim  
compares the extension of the ontology entities: the similarity is assessed by 
computing the comparison of the attributes and relations of the instances.  

 



1028 R. Albertoni and M. De Martino 

At the ontology layer additional hypotheses are assumed: 

• All classes defined in the ontology have the fake class Thing as super-class. 
• Given i1∈lc(c1), i2∈lc(c2), if c1, c2 do not have any common super-class different 

from Thing, their similarity is equal to 0.  
• The least upper bound (lub) between c1 and c2, is unique and it is c2 if c1 IS-A c2, or 

c1 if c2 IS-A c1, otherwise the immediate super-class of c1 and c2 that subsumes 
both classes.   

The aim is to force the lub to be a sort of “template class” which can be adopted to 
perform the comparison of the instances whenever the instances belong to distinct 
classes. Referring to the ontology in Fig 1, it can be appropriate to compare two 
instances belonging respectively to AdministratorStaff and ResearchStaff as they are 
both a kind of staff and Staff is their lub. However, it does not make sense to evaluate 
the similarity between two instances belonging to Publication and to Staff, because 
they are intimately different: actually there is not any lub available for them. 

Whenever a lub x between the two classes exists, the path of recursion [x] is the 
starting path in the recursive evaluation of the similarity.  

4.1   External Similarity  

The external similarity ( ExternSim ) performs the structural comparison between two 
instances i1, i2 in terms of the classes c1, c2 the instances belong to: more formally 

),(),( 2121 ccExternSimiiExternSim =  where )(),( 2211 clicli cc ∈∈ .  

In the paper the external similarity function is defined starting from the similarities 
proposed by Maedche and Zacharias [2] and Rodriguez and Egenhofer [3]. The 
structural comparison is performed by two similarity evaluations:  

• Class Matching. which is based on the distance between the classes c1, c2 and 
their depth respect to the hierarchy induced by C≤ .   

• Slot Matching. which is based on the number of attributes and relations shared by 
the classes c1, c2 and the overall number of their attributes and relations. Then two 
classes having a plenty of attributes/relations, some of whose are in common, are 
less similar than two classes having less attributes but the same number of 
common  attributes/relations.  

Both similarities are needed to evaluate the similarity with respect to the ontology 
structure with success. For example, let us consider the ontology schema in Fig. 2 and 
let compare an instance of the class D with an instance of the class E.  

They are quite similar with respect to the class matching but less similar with 
respect to the slot matching. At the fact, the sets of IS-A relations joining the 
classes D and E to Thing are largely shared. However, from the point of view of the 
slots, D and E share only the attribute A1 and relation C1 and they differ with 
respect to the others. Likewise it would be easy to show an example of two classes 
similar with respect to the slots matching and dissimilar according to the class 
matching.  

 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1029 

 

Fig. 2.  Class hierarchy example: A, B, C, D, E, F are classes, A1,B1, E2, E3, F1, F2 are 
attributes, C1, D1, E1 are relations, ID1, ID2, IE1, IF1, IF2, IF3  are instances 

Definition 5: ExternSim similarity. The similarity between two classes according to 
the external comparison is defined by: 

⎪⎩

⎪
⎨

⎧

+
+

=
=

Otherwise
ww

ccCMwccSMw

ccif

ccExternSim

CMSM

CMSM ),(*),(*

1

),( 2121

21

21  (6) 

where ( SM ) is the Slots Matching, ( CM ) is the Classes Matching and wSM , wCM  the 
respectively weights in the range [0,1].  
wSM and wCM   are defined for the purpose of this paper equal to 1\2.  

4.1.1   Class Matching 
Classes Matching is evaluated in terms of distance of the classes with respect to the 
IS-A hierarchy. The distance is based on the concept of Upwards Cotopy (UC)[2]. We 
define an asymmetric similarity adapting the symmetric definition of CM in [2] . 

Definition 6: Upward Cotopy (UC). The Upward Cotopy of a set of classes C with 
the associated partial order C≤ is:  

})(|{:)( jijCijiC
ccccCccUC =∨≤∈=≤  (7) 

It is the set of classes composing the path to reach from ci the furthest super-class 
(Thing) of the IS-A hierarchy: for example considering the class D in Fig. 2    

Thing}. A, C,{D,)( =≤ DUC
C

 

Definition 7: Asymmetric Class Matching. Given two classes c1, c2, the Upward 
Cotopy )( iC

cUC≤ , the asymmetric Class Matching is defined by: 

)(

)()(
:),(

1

21

21
cUC

cUCcUC
ccCM

C

CC

≤

≤≤ ∩
=  (8) 



1030 R. Albertoni and M. De Martino 

CM between two classes depends on the number of their common classes in the 
hierarchy.  Let note that the class matching is asymmetric, for example referring to 
Fig. 2, 3/2),( =DBCM  but 4/2),( =BDCM . Moreover, it is important to note that 

1),( =DACM , the rationale behind this choice of design is that the instances of D are 
suitable as instances of A. 

4.1.2   Slot Matching  
Slot Matching is defined by the slots (attributes and relations) shared by the two 
classes. We refer to the similarity proposed by Rodriguez and Egenhofer [3] based on 
the concept of distinguishing features employed to differentiate subclasses from their 
super-class. In their proposal, different kinds of distinguishing features are considered 
(i.e. functionalities, and parts) but no one coincides immediately with the native 
entities in our ontology model. Of course it would be possible to manually annotate 
the classes adding the distinguishing features but we prefer to focus on what is 
already available in the adopted ontology model. Therefore only attributes and 
relations are mapped as two kinds of distinguishing features.  

Definition 8: Slot Matching. Given two classes c1,c2, two kinds of distinguishing 
features (attributes and relations), wa, wr, the weights of the features, the similarity 

function SM between c1 and c2 is defined in terms of the weighted sum of the 

similarities aS  and rS , where aS   is the slot matching according to the attributes and 

rS  in the slot matching according to the relations. 

),(),(),( 212121 ccSccSccSM rraa ⋅+⋅= ωω  (9) 

The sum of weights is expected to be equal to 1, and by default we assume to be 

wa=wr=1/2. The two slot matching aS  and rS  rely on the definitions of slot 
importance as defined in the following. 

Definition 9: Function of “Slot Importance” α. Let c1, c2, be two distinct classes, d 
the class distance d(c1,c2) in term of the number of edges in a IS-A hierarchy, α is the 
function that evaluates the importance of the difference between the two classes.  

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−

≤
=

)),lub(,()),lub(,(
),(

)),lub(,(
1

)),lub(,()),lub(,(
),(

)),lub(,(

),(

212211
21

211

212211
21

211

21

cccdcccd
ccd

cccd

cccdcccd
ccd

cccd

ccα  (10) 

Where )),lub(,()),lub(,(),( 21221121 cccdcccdccd += .  

α(c1, c2) is a value in the ranges [0,0.5]. Referring to the image Fig. 2, α(D,C) is equal 
to zero because the lub between D and C is C itself, d(C,D)=1 and d(C,C)=0. Whereas 
α(D,E) is equal to 0.5 because the lub is still C, and d(D,E)=2. 

Definition 10: Slot Matching according to the kind of distinguishing feature t. 
Given two classes c1 (target) and c2, (base), t a kind of distinguishing feature (t=a for 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1031 

attributes or t=r for relations), let be tC1  and tC2  the sets of distinguishing features of 

type t respectively of c1 and c2; the Slot Matching ),( 21 ccS t  is defined by: 

tttttt

tt

t
CCccCCccCC

CC
ccS

1221212121

21

21
\)),(1(\),(

),(
αα −++∩

∩
=  (11) 

According to the ontology in Fig. 2, considering the classes D and E their sets of 
distinguishing features of type relation are Dr ={C1, D1} and Er={C1, E1} and 
α(D,E)=0.5;  then ),( EDS r = 0.5.  

In general, whenever α=0.5 the difference of the features of both classes are 
equally important for the matching: for example it happens when the classes are 
sisters as in the case of D and E.  In the case α=0 only the features that are in c2 and 
not in c1 are important for the matching. In particular it happens, whenever c2 is the 
subclass of c1, in this case the matching is inversely proportional to the higher number 
of features of  c2  compared to those of c1 . 

4.2   Extensional Similarity   

The extension of entities plays a fundamental role in the assessment of the similarity 
among the instances, it is needed to perform a comparison of the attribute and relation 
values. For example, in the ontology in Fig. 2 relying only on the structural 
comparison it is not possible to assess that ID1 is more similar to IE1 than to ID2. The 
main principle of the proposed extensional similarity between two instances is to 
consider the lub x of their classes as the common base to compare them when the 
instances belong to different classes: it is adopted to define the path of recursion [x] 
from which starts the recursive assessment induced by an application context. 

For example, considering the instances ID1 and IE1 in Fig. 2, the class C is their lub. 
Then the initial path of recursion from which to start the similarity assessment is [C]. 
Let us suppose to have already defined an application context as the follow 
[C] {{(A1,Iter)},{(C1, Simil)}};  [C,C1] {{(F1,Simil)},{}}. The computation starts 
from the values of attribute A1 for the instances ID1 and IE1, then through the relation 
C1 the new path of recursion [C,C1] is considered to compare the instances related to 
IE1  and  ID1 with respect to the values of the attribute  F1.  

The extensional comparison is characterised by two similarities functions: a 
function based on the comparison of the attributes of the instances and a function 
based on the comparison of the relations of the instances. 

Definition 11: Extensional Asymmetric Similarity. Given two instances i1∈lc(c1), 

i2∈lc(c2), c=lub(c1,c2), p=[c] a path of recursion. Let ),( 21 iiSim
p
a  and ),( 21 iiSim

p
r  be 

the similarity measurements between instances considering respectively their 
attributes and their relations. The extensional similarity with asymmetric property is 
defined: 

⎪⎩

⎪
⎨
⎧ =

=
OtherwiseiiSim

ii
iiExtensSim p

I ),(

1
),(

21

21
21  (12) 



1032 R. Albertoni and M. De Martino 

Where ),( 21 iiSim
p
I  is defined by: 

|)(||)(|

),(),(

),(
)(

21
)(

21

21 cc

iiSimiiSim

iiSim
ra

crr

p
r

caa

p
a

p
I

δδ
δδ

+

+
=

∑∑
∈∈  

(13) 

Let note that the index p is a kind of stack of recursion adopted to track the navigation 
of relations whenever the similarity among instances is recursively defined in terms of 

the related instances. ),( 21 iiSim
p
a  and ),( 21 iiSim

p
r are defined by a unique equation as 

following. 

Definition 12: Similarity on Attributes and Relations. Given two instances 
i1∈lc(c1), i2∈lc(c2), c=lub(c1,c2), p=[c] a path of recursion, X a placeholder for the 
“A” or “R”, RA ∪∈x    let be: 

• }2)(),()( .. ),(lv)(i, |V{)( A
V

TAA TlTyatsCyavii =∧=∈∃∈∈= σ the set of values 

assumed by the instance i for the attribute a, 
• )}(),(),()( .. )(|)({)( rliiccrtsccliccliii RRccR ∈′∧′∈′∃∈∃′∈′= σ the set of instances 

related to the instance i by the relation r, 
• AC the application context defined according to the restrictions defined in 

paragraph  0 
• }|)2()1(:{ bijectiveandpartialisgiXiiXigFX →=  

The similarity between instances according to their attributes or relations is defined: 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=∈⋅=

∈∧=−−

∈∧=−−

∈∩

∈

∈∈∃¬

∨
∧∈

=

∑

∑

∈∈

∈∈

rsSssppNew

pACSimilrrxif

ii

iiii

iiii

ifiSim

pACSimilaaxif
ii

iiii

iiii

vfvSim

pACInterxif
ii

iiii

pACCountxif
iiii

ii
pACtsLlIf

iiii

pACSimilxif

ii

R

R

R

RR

RR

iRii

pNew
I

Ff

A
A

AA

AA

iAiv

a
T

Ff

X
X

XX

X
XX

X

R

XX

X

p
x

)1(,,

)(),()(
)

|)(|

|)(||)(|
,0max(1(*

|))(||,)((|min

))(,(max

)(),()()
|)(|

|)(||)(|
,0max(1(*

|))(||,)((|min

))(,(max

)(),(
|)(|

|)()(|

)(),(
|))(||,)(max(|

|)(|
))(l)r,(.. (0

sets)empty   are )()((

)(),((

0

),(Sim

1
1

21

21

);1(

1

21

21

)1(

1

21

21

2

21

21

 

The above formulas are designed to be asymmetric. Asymmetry is used to ensure that 
considering the relations and attributes selected by the application context, if an 
instance i1 has at least the same attribute and relation values of i2 then the extensional 
similarity between i2 and i1 is equal to one.  

The method compute 
p
xSim selecting one of the above formulas according to the 

definition of AC: if AC returns  a relation or attribute having as operation Count the 
third formula is adopted, as operation Inter the fourth is considered, and so on.  The 
fifth formula is adopted whenever the AC returns an attribute whose operation is 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1033 

Simil. In this case, the comparison of attribute values rely on 
a
TSim  which defines the 

similarity for  values of the attribute a  having data type T. 
a
TSim is provided by the 

data layer as suggested by [1]. The set of partial functions in F are employed to 
represent the possible matching among set of values when instances have relations or 
attributes with multiple values. For example, the instance IE1 has IF3 and IF2 related 
via C1, ID1 has IF3, when IE1 and ID1 are compared two possible partial and bijective 
functions f1 and f2 can be considered between the instances related to IE1 and ID1: 
f1:IF2 IF3 and f2:IF3 IF3.   

It is important to note that each time the similarity is assessed in terms of related 
instances (whenever (r,Simil) ∈  ACR(p)) the relation r that is followed to reach the 
related instances is added to the path of recursion. Thus during the recursive 
assessment the AC is always worked out on the most updated path of recursion.   

5   Experiment and Evaluation 

The similarity assessment among the research staff working at the Institute (CNR-
IMATI-GE) is considered as application case to evaluate the proposed method. Two 
experiments are performed considering the contexts “Exp”, “Int” mentioned in 
paragraph 4.1. Eighteen members of the research staff are considered; the information 
related to their projects, journal publications and research interests are inserted as 
instances in the ontology depicted in Fig. 1 according to what is published at the 
IMATI web site4. The ontology is expressed in OWL paying attention to adopt only 
the language constructs that allow to remain within the ontology model considered in 
definition 1. The resulting ontology is available at the web site [4]. Our method is 
implemented in JAVA and is tested on this ontology. 

 

 
(a) 

 
(b) 

Fig. 3. (a) Similarity matrix for context “Exp”; (b) Similarity matrix for context “Int” 

Using the formalization of the two application contexts ACInt e ACExp previously 
defined (formulas (3), (4)) we have computed the similarity through the proposed 
framework. The results are represented by the similarity matrices in Fig. 3: (a) is the 

                                                           
4 http://www.ge.imati.cnr.it 



1034 R. Albertoni and M. De Martino 

result related the context “Exp” and (b) is the result related to the context “Int”. Each 
column j and each row i of the matrix represent a member of the research staff 
(identified by the first three letter of his name). The grey level of the pixel (i,j) 
represents the similarity value (Sim(i,j)) between the two members located at the row 
i and columns j: the darker is the colour the more similar are the two researchers. 

Analysing the similarity matrices it is easy to realize that they are asymmetric; this 
confirms that the proposed model assesses an asymmetric similarity. Comparing the 
two matrices, it stands out how they are different: it is evident that the two contexts 
induce completely different similarity values. For example, “Dag” results very similar 
to “Bia” with respect to their experience (black pixel in Fig. 3.a), but they are no 
similar with respect to their research interest (white pixel in Fig. 3.b). Moreover 
sim(Dag,Bia)>sim(Bia, Dag) in Fig. 3.a means that Bia has at least the experience of  
Dag and she/he can be considered similar to Dag (if somebody with the Dag 
experience is searched), but the inverse is not true.  

Two kind of evaluations of the result concerning the similarity obtained with 
respect to the research interest (Fig. 3.b) are performed.  

The first evaluation is based on the concept of recall and precision calculated 
considering the same adaptation of recall and precision made by [5]. More precisely, 
considering an entity x the recall and precision are defined respectively as B)/AA( ∩ ,  

B)/BA( ∩   where A is the set of entities expected to be similar to x, and B is the set of 
similar entity calculated by a model. A critical issue in the similarity evaluation is to 
have a ground truth with respect to comparing the results obtained. We face this 
problem referring to the research staff of our institute and considering “similar” two 
members of the same research group. At the fact at IMATI researchers and fellows 
are grouped in three main research groups and one of those is composed by further 
three sub-groups. Then we consider the research staff as split in five groups. For each 
member i, A is the set of members of his research group while B is composed by the 
first n members retrieved by the model. For each group we have calculated recall and 
precision considering as “n” the smaller number of member needed to obtain a recall 
of 100%, and then we have evaluated the precision. The average recall is estimated 
equal to 100% with a precision of 95%. These results are quite encouraging: the recall 
equal to 100% demonstrates that for each research group the similarity is able to rank 
all the expected members while the precision equal to 95% means that the average 
number of outsiders to be considered to rank all group members is equal to 5%.  

 

Fig. 4. The dendrogram obtained through the hierarchical gene clustering 



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1035 

We have performed a second evaluation according to the context “Int” using a data 
mining application. For each researcher and fellow we have computed his similarity 
with respect to the other members applying our method. In this way, we associate to 
each research staff member a string of values which correspond to his relative 
distance from the other members. The strings correspond to the rows of the similarity 
matrix (Fig. 3.b). Then we have applied a tool to perform the hierarchical clustering 
among genetic microarray [6] to the set of strings,  considering each string as a kind 
of researcher genetic code. The dendrogram obtained is shown in Fig. 4, it recognizes 
the five clusters which resemble the research group structure of our institute.  

6   Related Work 

Semantic similarity is intended differently according to the application domain where 
it is adopted. Currently it is relevant in the ontology alignment [7,8], conceptual 
retrieval [9] as well as semantic web service discovery and matching [10,11] and it is 
expected to increase its relevance in framework as for the metadata analysis [12].  

We discuss related works grouping them in different tracks according to their 
purpose and the ontology model they adopt. 

Similarities in the Ontology alignment. There are plenty of methods to align ontology, 
as pointed out by Euzenat et al. [8]. The semantic similarity is adopted in this context 
to figure out relations among the entities in the ontology schemas. It is employed to 
compare the name of classes, attributes and relations, determining reasonable 
mapping between two distinct ontologies. On the contrary, the method proposed in 
this paper is specifically designed to assess similarity among instances belonging to 
the same ontology. Some similarities adopted for the ontology alignment consider 
quite expressive ontology language, (e.g., [7] focus on a subset of OWL Lite) but they 
mainly focus on the comparison of the structural aspects of ontology. Due to the 
different purpose of these methods, they result to be unsuitable to properly solve the 
similarity among instances. 

Concepts similarity in lexicographic databases. Different approaches to assess 
semantics similarity among concepts represented by words within lexicographic 
databases are available. They mainly rely on edge counting-base [13] or information 
theory-based methods [14]. The edge counting-base method assumes terms which are 
subjects of the similarity assessment as edges of a tree-like taxonomy and defines the 
similarity in terms of the distance between edges [13]. The information theory-based 
method defines the similarity of two concepts in terms of the maximum information 
content of the concept which subsumes them [15,16]. Recently new hybrid 
approaches have been proposed: Rodriguez and Egenhofer [3] takes advantage from 
the above methods and adds the idea of features matching introduced by Tversky 
[17]. Schwering [9] proposes a hybrid approach to assess similarity among concepts 
belonging to a semantic net. The similarity in this case is assessed comparing 
properties of concept as feature [17] or as geometric space [18]. With respect to the 
method presented in this paper Rada et al. [13], Resnik [15], Lin [16] work on 
lexicographic databases where the instances are not considered. If they are adopted as 
they were originally defined to evaluate the instances similarity they are doomed to 
fail since they ignore important information provided by instances, attributes and 



1036 R. Albertoni and M. De Martino 

relations. Moreover, Rodriguez and Egenhofer [3] and Schwering [9] use the features 
or even conceptual spaces, information that are not native in the ontology design and 
should be manually added. Instead the method proposed here aims at addressing as 
much as possible the similarity taking advantage from the information that have been 
already spread in the ontology. Additional information are considered only to perform 
a tuning of the similarity with respect to different application context.  

Similarities which rely on ontology models having instances. Other works define 
similarity relying on ontology models closer to those adopted in the semantic web 
standards. On the one hand, Hau et al. [11] identifies similar services measuring the 
similarity between their descriptions. To define a similarity measure on semantic 
services it explicitly refers to the ontology model of OWL Lite and defines the 
similarity among OWL objects (classes as well as instances) in terms of the number 
of common RDF statements that characterize the objects. On the other hand,  
Maedche and Zacharias [2] adopts a semantic similarity measure to cluster ontology 
based metadata. The ontology model adopted in this similarity refers also to IS-A 
hierarchy, attributes, relations and instances. Even if these methods consider ontology 
models which are more evolved than the taxonomy or terminological ontology, their 
design ignores the need to tailor the semantic similarity according to specific 
application contexts. Thus to assess the similarity experimented in this paper, two 
distinct ontologies need to be defined instead of simply defining two contexts as we do.  

Contextual dependent similarity. Some papers combine the context and the similarity. 
Kashyap and Sheth [19] use the concept of semantic proximity and context to achieve 
the interoperability among different databases. The context represents the information 
useful to determine the semantic relationships between entities belonging to different 
databases. However they do not define a semantic similarity in the sense we are 
addressing and the similarity is classified in some discrete value (Semantic 
Equivalence, Semantic Relevance, Semantic Resemblance, etc). Rodriguez and 
Egenhofer [3] integrate the contextual information into the similarity model. They 
define as application domain the set of classes that are subject to the user’s interest. 
As in our proposal, they aim to make the similarity assessment parametric with 
respect to the considered context. Moreover, differently from our methods they 
formalise the context rather then the similarity criteria induced by the context.  

The discussion of the related works shows that beside semantic similarity is 
defined from different parties, these definition are far from provide a complete 
framework as intended in our work: they often have different purposes, they consider 
simpler ontology model, or they completely ignore the need of tailoring the similarity 
assessment with respect to specific application context. Of course, some of the 
mentioned works have been particularly precious in the definition of our proposal. As 
already mentioned during the presentation of the paper both Maedche and Zacharias 
[2] and  Rodriguez and Egenhofer [3] have strongly inspired the part related to the 
structural similarity. However, to successfully support our purposes the class slots 
have been considered as distinguishing features. Furthermore, the methods  proposed 
by Maedche and Zacharias [2] for the class matching defines a similarity which is 
symmetric, thus we have adapted the original in order to make it asymmetric.   



 Semantic Similarity of Ontology Instances Tailored on the Application Context 1037 

7   Conclusions and Future Work 

The paper proposes a framework to assess the semantic similarity among instances 
within an ontology. It combines and extends different existing similarity methods 
taking into account as much as possible the hints encoded in the ontology and 
considering the application context. A formalization of the criteria induced by the 
application is provided as a mean to parameterise the similarity assessment and to 
formulate a measurement more sensible to the specific application needs.  

The framework is expected to bring a great benefit in the analysis of the ontology 
driven metadata repository. It provides a flexible solution to tailor the similarity 
assessments according with the different applications: the same ontology can be 
employed in different similarity assessments simply defining distinct criteria, and 
there is no more need of building a different ontology for each similarity assessment.  

Nevertheless some research and development issues are still open. For example in 
the proposed approach the formalization of application context affects only the 
similarity defined by the extensional comparison. It could be interesting to deepen if 
the context results also in the external comparison similarity. Moreover, it would be 
worth to extend the similarity to ontology model towards OWL and to test it in more 
complex use cases. 

Acknowledgements 

This research started within the EU founded INVISIP project and then has been 
partially performed within the Network of Excellence AIM@SHAPE. 

References 

1. Ehrig, M., Haase, P., Stojanovic, N., and Hefke, M.: Similarity for Ontologies - A 
Comprehensive Framework. ECIS 2005. Regensburg, Germany (2005) 

2. Maedche, A. and Zacharias, V.: Clustering Ontology Based Metadata in the Semantic 
Web. PKDD 2002 LNAI  Springer-Verlag (2002) 348-360 

3. Rodriguez, M. A. and Egenhofer, M. J.: Comparing geospatial entity classes: an 
asymmetric and context-dependent similarity measure. IJGIS. Vol. 18[3]. (2004) 229-256 

4. Test Ontology,  http://www.ge.imati.cnr.it/ima/personal/albertoni/odbase06p.owl. 
5. Rodriguez, M. A. and Egenhofer, M. J.: Determining semantic similarity among entity 

classes from different ontologies. IEEE Trans.Knowl.Data Eng.  Vol. 15[2]. (2003) 442-456 
6. Hierarchical Clustering Explorer, 3.0, http://www.cs.umd.edu/hcil/multi-cluster/. 
7. Euzenat, J. and Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. ECAI. 

Valencia, Spain  IOS Press (2004) 333-337 
8. Euzenat, J., Le Bach, T., and et al.: State of the Art on Ontology Alignment. (2004) 

http://www.starlab.vub.ac.be/research/projects/knowledgeweb/kweb-223.pdf 
9. Schwering, A.: Hybrid Model for Semantic Similarity Measurement. OTM Conferences. 

LNCS  Vol. 3761 Springer-Verlag (2005) 1449-1465 
10. Usanavasin, S., Takada, S., and Doi, N.: Semantic Web Services Discovery in Multi-

ontology Environment. OTM Workshop 2005 LNCS  Vol. 3762 Springer-Verlag (2005) 
59-68 



1038 R. Albertoni and M. De Martino 

11. Hau, J., Lee, W., and Darlington, J.: A Semantic Similarity Measure for Semantic Web 
Services. Web Service Semantics:Towards Dynamic Business Integration, workshop at 
WWW 05. (2005) 

12. Albertoni, R., Bertone, A., and De Martino, M.: Semantic Analysis of Categorical 
Metadata to Search for Geographic Information. Proceedings 16th International Workshop 
on Database and Expert Systems Applications, 2005.  IEEE (2005) 453-457 

13. Rada, R., Mili, H., Bicknell, E., and Blettner, M.: Development and application of a metric 
on semantic nets. IEEE Trans.Syst.Man Cybern.  Vol. 19[1]. (1989) 17-30 

14. Li, Yuhua, Bandar, Zuhair, and McLean, David: An Approach for Measuring Semantic 
Similarity between Words Using Multiple Information Sources. IEEE Trans.Knowl.Data 
Eng.  Vol. 15(2003) 871-882 

15. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. 
Proc. of the Fourteenth Int. Joint Conference on Artificial Intelligence (1995) 448-453 

16. Lin, D.: An Information-Theoretic Definition of Similarity, Proc. of the Fifteenth Int. 
Conference on Machine Learning.  Morgan Kaufmann (1998) 296-304 

17. Tversky, Amos: Features of similarity. Psychological Review.  Vol. 84[4]. (1977) 327-352 
18. Gädenfors, P.: How to make the semantic web more semantic.FOIS.IOS Press (2004) 17-34 
19. Kashyap, Vipul and Sheth, Amit: Semantic and schematic similarities between database 

objects: a context-based approach. VLDB J. Vol. 5[4]. (1996) 276-304  



Finding Similar Objects Using a Taxonomy:
A Pragmatic Approach

Peter Schwarz1, Yu Deng2, and Julia E. Rice1

1 IBM Almaden Research Center
San Jose, CA 95120

{schwarz, julia}@almaden.ibm.com
2 IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
dengy@us.ibm.com

Abstract. Several authors have suggested similarity measures for objects labeled
with terms from a hierarchical taxonomy. We generalize this idea with a definition
of information-theoretic similarity for taxonomies that are structured as directed
acyclic graphs from which multiple terms may be used to describe an object. We
discuss how our definition should be adapted in the presence of ambiguity, and
introduce new similarity measures based on our definitions.

We present an implementation of our measures that is integrated with a re-
lational database and scales to large taxonomies and datasets. We evaluate our
measures by applying them to an object-matching problem from bioinformatics,
and show that, for this task, our new measures outperform those reported in the
literature. We also verified the scalability of our approach by applying it to patent
similarity search, using patents classified with terms from the taxonomy defined
by the United States Patent and Trademark Office.

Keywords: Semantic similarity measures, Object matching, Taxonomy, Informa-
tion theoretic similarity.

1 Introduction

Taxonomies have long been recognized as a useful tool for classification. In addition to
providing a precise way to name classes of individuals that share certain properties or
behavior, they also provide a means of determining how similar one such individual is to
another. In its simplest form, a taxonomy defines a hierarchical grouping of individuals
into ever more specific classes. Two individuals share the properties of the most specific
grouping that includes both of them, and the degree to which the two individuals are
similar depends on the location of this class in the hierarchy. The lower in the hierarchy,
the more similar the individuals are. Various authors[8], [10], [5] have defined ways of
turning this intuitive idea of similarity into a numeric value that can be used to rank the
similarity of objects.

The ability to find similar objects given a description of a target is useful in many
domains. For example, one may wish to find patents similar to a given patent, or subjects
similar to a hypothetical “ideal” subject for a clinical trial. In bioinformatics, one may

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1039–1057, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



1040 P. Schwarz, Y. Deng, and J.E. Rice

wish to find gene products (e.g. proteins) similar to a given gene product. In each of
these domains, and others, comprehensive taxonomies have been defined and used by
various organizations to classify sets of objects. Examples include the Gene Ontology
(GO)[1], Medical Subject Headings (MESH) 1 and the patent classification taxonomies
of the United States Patent and Trademark Office (USPTO)2 and the World Intellectual
Property Organization (WIPO) 3.

Classification using such taxonomies is more complex than the simple example de-
scribed above. Firstly, it is frequently the case that a class of individuals may specialize
the properties of more than one parent class. Furthermore, taxonomies often evolve, as
new specialized groupings are formed and older ones are reorganized. Even with an
unchanging taxonomy, the classification of a particular object may evolve as more is
learned about it, or users of the taxonomy may disagree as to how it should be classi-
fied. Lastly, real taxonomies tend to be quite large, and the sets of objects they are used
to classify are often very large. Thus, any approach to finding similar objects must scale
well in both these dimensions.

In this paper, we present a pragmatic approach to the use of taxonomies to find sim-
ilar objects. Given a set of objects, we assume that each object has been labeled with
one or more terms from a taxonomy structured as a directed acyclic graph. A simi-
larity measure allows one to select any specific object from the set (the target object)
and order the remaining objects (the candidate objects) by how similar they are to the
one selected. We define two such similarity measures in this paper. The first, holistic
similarity, is a new information-theoretic similarity measure that is more general and
well-founded than prior art. The second, generic holistic similarity, adapts our holistic
similarity measure to cope with ambiguity, as introduced by an evolving taxonomy or
classifiers with imperfect knowledge. To our knowledge, this is the first attempt to con-
sider this latter problem. We also describe a scalable implementation of our measures
that is tightly integrated with an object-relational database, and we evaluate our ap-
proach by applying it to an object-matching problem from bioinformatics for which the
correct answers are known a priori. The results show that our new measures are more
successful than those previously reported, and that our implementation scales well for
large taxonomies and object sets. We further evaluated the implementation by testing its
ability to search a large set of patents classified with the USPTO’s classification taxon-
omy for patents similar to a designated target. The results demonstrate the scalability of
our implementation, and the importance of finding good candidate-selection heuristics
when the search space is large.

The remainder of this paper is organized as follows. To open Section 2, we review the
information-theoretic definition of similarity. Next, in Section 2.1, we define our holistic
similarity measure. In Section 2.2, we consider how classifiers that have incomplete
knowledge of the objects being classified introduce ambiguity, and define the generic
holistic similarity measure for such situations. Section 3 summarizes related work. In
Section 4 we describe our implementation, and Section 5 compares the efficacy of our

1 http://www.nlm.nih.gov/pubs/factsheets/mesh.html
2 http://www.uspto.gov/web/patents/classification/
3 http://www.wipo.int/classifications



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1041

new similarity measures to a variety of others. Section 6 summarizes our contributions,
and suggests some areas for future work.

2 Information-Theoretic Similarity

The idea of using an information-theoretic definition of similarity to compare objects
labeled using a taxonomy was introduced by Resnik[8]. Given a taxonomy defined
over a set of terms T , Resnik defined the similarity of two terms t1 ∈ T and t2 ∈ T
with respect to a corpus of objects O as simResnik = maxt̂∈S(t1,t2)

[− log p(t̂)],
where S(t1, t2) is the set of terms in T that subsume t1 and t2 and p(t) is the prob-
ability that an object randomly chosen from O represents an occurrence of term t.
An object represents an occurrence of a term t if it is labeled with t or a descendant
of t.

The quantity I(t) = − log p(t) is known as the information content of term t. If the
taxonomy is a hierarchy (i.e a tree), the term t̂ satisfying Resnik’s definition will be the
least common ancestor of t1 and t2.

Lin[5] derives an axiomatic definition for similarity based on a limited set of as-
sumptions that can be summarized as follows:

1. The maximum similarity between two (identical) objects is 1 and the minimum
similarity is 0.

2. The similarity between two objects is a function of their commonality and their
differences.

3. If each object can be described from several perspectives, the overall similarity of
two objects is a weighted average of their similarities as seen from the individual
perspectives.4

Under these assumptions, and additionally assuming that the target and candidate ob-
jects are selected independently, the similarity between a target object T and a candidate
object C is[5]:

sim(T, C) =
I(common(T, C))

I(descr(T )) + I(descr(C))
(1)

where common(T, C) represents a description of what the two objects have in com-
mon, and descr(T ) and descr(C) represent descriptions of the two objects individ-
ually.

If T and C are each labeled by a single term from a hierarchical taxonomy, their
commonality is represented by the term that is the least common ancestor a of the terms
t and c that were used to describe T and C, respectively. With respect to a particular
corpus of objectsO, the similarity becomes[5]:

simLin(T, C) =
2I(a)

I(t) + I(c)
=

−2 log p(a)
− log p(t)− log p(c)

(2)

4 While not strictly necessary, this assumption is intuitive and makes the similarity function that
satisfies the assumptions unique. We follow Lin’s lead and adopt it.



1042 P. Schwarz, Y. Deng, and J.E. Rice

2.1 Holistic Similarity

Equation 2 intuitively captures the idea of similarity in the most straightforward case, in
which the taxonomy is structured as a tree and each object is labeled by a single term.
As noted in Section 1, however, in practice many taxonomies are not trees, but allow a
new term to be derived from multiple parents. Furthermore, classification systems often
allow an object to be labeled using multiple terms. In this section, we examine how to
define similarity under these more general conditions. We begin by defining a taxonomy
as a directed acyclic graph.

Definition 1 (Taxonomy). A taxonomy T is a directed acyclic graph (N, E, r), where
N is a set of nodes, E ⊆ N ×N is a set of directed edges and r ∈ N is a unique root
node of T from which every other node is reachable.

Each node n ∈ N represents a term of T , and each directed edge e ∈ E connects
a more general parent term to a more specific child term. Typically, the relationship
between parent and child terms can be described as an is-a or kind-of relationship, but
our measures can also be used with other transitive relationships, such as part-of, works-
for, belongs-to, etc., as long as one wishes to treat objects closely related in these ways
as similar.

In accordance with standard graph terminology, the in-neighbor region of a given
node refers to all nodes from which the given node is reachable. We will use the term
in-neighbor graph to refer to both the nodes of the in-neighbor region and the edges
that connect them. For convenience, we will refer to nodes in the in-neighbor region
of a given node (i.e all nodes from which the given node is reachable) as “ancestors”
of the given node, and similarly use the term “descendants” to refer to nodes in the
given node’s out-neighbor region. We will also find it useful to describe portions of the
taxonomy as subgraphs of T . We will use the notation Terms(g) to refer to the set of
nodes in a subgraph g.

A label is a subset of the terms in the taxonomy. A label can be used to represent
the classification of a specific object, but it can also be used to represent more general
concepts, like what two objects have in common.

Definition 2 (Label). Given a taxonomy T = (N, E, r), a label is a nonempty set of
terms L ⊆ N .

If a term in a taxonomy applies to an object, so do the terms that correspond to each of its
ancestors. Therefore, some of the terms in a label may be redundant. Although, as will
be seen, such redundant terms do not affect similarity as calculated by our measures,
their presence complicates the descriptions of objects, and obscures the equivalence of
labels. We therefore define the concept of a minimal label to eliminate such terms.

Definition 3 (Minimal Label). A label L is a minimal label if for every term l ∈ L, no
ancestor of l is also in L.

Given a label L, one can derive a unique minimal label L′ by removing from L every
term that is an ancestor of another term in L. Let Lmin(L) denote the minimal label
derived from L.

A labeling assigns a label to each object in some corpus.



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1043

Definition 4 (Labeling). Given a taxonomy T and a corpus O, a labeling is a total
function L : O �→ 2N . If o is an object in O, let L(o) denote the label for object o.

A label can also be associated with any subgraph of the taxonomy. The label for a sub-
graph g is the set of nodes contained in the subgraph, i.e Terms(g). For convenience,
however, we will generally refer to labels with the notation LX , where X may be either
an object or a graph.

A labeling is a minimal labeling if for all o ∈ O, L(o) is a minimal label. For the
remainder of this paper we will assume that all labelings are minimal labelings unless
otherwise noted.

We interpret the labeling of an object with one or more terms to imply only that at
least those terms (and their ancestors) apply to the object. We adopt this open-world
model because we believe it more accurately reflects how taxonomies are used in many
domains. Frequently, both the label of an object and the structure of the taxonomy itself
change as knowledge accumulates concerning the domain and the objects of interest.
At any point in time, the label of an object only reflects what has been discovered
about it so far. Furthermore, when the taxonomy is structured as a DAG, the closed-
world assumption is incompatible with the use of interior terms in labels. We defer a
discussion of this latter point to Section 2.2.

It is also useful to be able to enumerate all the terms associated with a label, either
directly or indirectly. We therfore formalize the concept of an ancestor graph.

Definition 5 (Ancestor Graph). Let L be a label. For each term l ∈ L, let in(l) be the
in-neighbor graph of l in T . The ancestor graph of L is the union of the in-neighbor
graphs of the terms contained in L. That is: Anc(L) = ∪l∈Lin(l).

Given an object o with label Lo, we will use the notation Anc(o) to refer to the ancestor
graph of Lo. The set of nodes Terms(Anc(o)) represent an exhaustive list of the terms
associated with o.

We now associate a probability with an arbitrary label. Its value is the probability of
finding an object to which at least those terms in the label L apply. We refer to this as
the inclusion probability, pi(L).

Definition 6 (Inclusion Probability). Let L be a label. Then pi(L) is the probability
that the ancestor graph of the label of an object chosen at random from O contains L.
That is, given a randomly chosen object o: pi(L) = p(L ⊆ Terms(Anc(o))).

If the ancestor graph of an object’s label contains L, it also contains Lmin(L) and vice
versa. Hence, if L is not minimal, the extra terms do not affect its inclusion probability.

Inclusion probability gives us the tool we need to apply Lin’s general definition of
similarity from Equation 1 to a taxonomy. To quantify the individual information con-
tent of the objects being compared (the denominator of Equation 1), we use the inclu-
sion probability of their labels. To quantify the information content of the commonality
between the two objects (the numerator of Equation 1), we find a label LA to represent
that commonality, and use the corresponding inclusion probability. The label LA is con-
structed by intersecting the ancestor graphs of the labels of the objects being compared.
We refer to the resulting measure as holistic similarity because it treats all the terms in



1044 P. Schwarz, Y. Deng, and J.E. Rice

a label as a group. As we will see in Section 3, other measures that have been suggested
for use when objects are labeled with multiple terms treat each term individually.

Definition 7 (Holistic Similarity). Let LT and LC be the labels of objects T and C,
respectively, and let LA = Lmin( Terms(Anc(LT ) ∩Anc(LC))). Then:

simH(T, C) =
−2 log pi(LA)

− log pi(LT )− log pi(LC)
=

2I(LA)
I(LT ) + I(LC)

When the taxonomy is a tree and each object is labeled with a single term, Definition 7
reduces to Equation 2.

As defined by Equation 2, Lin’s formulation cannot be used when the taxonomy is
a DAG, because the terms describing the objects do not necessarily have a unique least
common ancestor. Nor is it applicable when objects are labeled with multiple terms.
Resnik’s similarity measure, which is defined in terms of the ancestor with the maxi-
mal information content, could be used with a DAG taxonomy, but not when multiple
terms are used as labels. However, because it is specified over labels, not terms, holistic
similarity is well-defined in both of these cases.

2.2 Generic Similarity

In this section, we consider more carefully the use of the interior terms of a taxonomy
in labels. We begin by examining the meaning of using such a term in a label.

When an interior term is used in a label, there are two possible interpretations. The
term may have been selected because no more specific term in the taxonomy applies to
the object in question. On the other hand, the individual doing the labeling may choose
an interior term because he or she does not know which (if any) more specific term
applies. We refer to the first type of labeling as careful and to the second as generic.
Both often occur in practice, in particular as a taxonomy evolves. Initially, a single
term may be applied to what later turns out to be a whole group of distinct subclasses of
objects. Over time, as these subclasses are recognized, new more-specific terms are cre-
ated. However, objects classified under one version of the taxonomy are not necessarily
reclassified whenever the taxonomy evolves.

To accommodate the careful use of interior terms as labels, we augment the taxon-
omy by adding a new descendant term, X∗, for every interior term X used as a label.
We refer to X∗ as an anonymous term, because it describes an unnamed subset of the
objects to which the term X applies. If an object can be labeled with multiple terms, it
may also be necessary to introduce an anonymous term for combinations of terms that
are used carefully. As far as our definition of similarity is concerned, anonymous terms
behave exactly like real terms in T and we will not consider them further in this paper.

Unlike careful labeling with interior terms, generic labeling forces us to rethink our
basic understanding of similarity by introducing uncertainty into the labeling of objects.
If a target object is labeled “fruit”, and we are uncertain as to which specific kind of fruit
it is, candidate objects labeled “apple”, “pear”, or ‘fruit” all fulfill the only specific re-
quirement posed by the labeling of the target object, that of being a fruit. However, if
we apply Definition 7, only the candidate labeled “fruit” will receive a similarity score



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1045

of 1 with respect to the target. In effect, simH penalizes objects labeled “apple” or
“pear” for being “too specific” when the target object is generic. Note that the situation
changes when the roles of target and candidate are reversed.

To reflect the asymmetry introduced by generic labeling, we define a revised similar-
ity measure, simG, such that simG(T, C) = 1 if and only if object C is substitutable
for object T .

Definition 8 (Generic Holistic Similarity). Let LT and LC be the labels of objects T
and C, respectively, and let LA = Lmin(Terms(Anc(LT ) ∩Anc(LC))). Then:

simG(T, C) =
−2 log pi(LA)

− log pi(LT )− log pi(LA)
=

2I(LA)
I(LT ) + I(LA)

The generic similarity measure views the candidate object, C, as an instance of the most
specific class of objects that includes both the target and the candidate.

Meat VegetableDairy

Cheese Milk TomatoChicken Beef

Food

Steak Cheeseburger Lasagna Casserole

Broccoli

Fig. 1. Labeling With Generic Terms

Generic labeling reinforces our choice of an open-world model, because when the
taxonomy is structured as a DAG, the closed-world model is incompatible with the use
of generic terms as labels. To see why, consider the taxonomy of Figure 1. If an object
is labeled with the generic term {Beef}, under generic labeleing we interpret that to
mean the labeler is uncertain as to which of the terms describing a more specific type of
beef applies. The object could be a steak, which is “just” beef, or it could be a cheese-
burger. Because a cheeseburger contains additional ingredients, the ancestor graph of
the label {Cheeseburger} contains terms like {Cheese} that are neither descendants
nor ancestors of the term {Beef}, and these terms may also apply to the object in ques-
tion. Thus, labeling a cheeseburger {Beef}would violate the closed-world assumption,
which states that terms not in the ancestor graph of {Beef} do not apply to the object.

We conclude this section with a set of examples that demonstrates how simG orders
candidate objects with respect to a fixed target. The examples are based on the taxonomy
of Figure 1, and are intended to be illustrative rather than to provide an exhaustive case
analysis.

Table 1 shows the similarity of five candidate objects to a common target object T
labeled {Beef, Cheese}. The first candidate, labeled {Cheeseburger}, is a special-
ization of the target object and therefore substitutable for it. It receives a similarity
score of 1 because its ancestor graph includes the complete ancestor graph of the target.
The same is true of c2, the candidate labeled {Beef, Cheese, T omato}. The ancestor
graph of c3, labeled {Steak}, includes the term “Beef” and all its ancestors, but only



1046 P. Schwarz, Y. Deng, and J.E. Rice

Table 1. Similarity to Target Labeled {Beef, Cheese}

C LC LA simG(T, C)

c1 {Cheeseburger} {Beef, Cheese} 2I(Beef,Cheese)
I(Beef,Cheese)+I(Beef,Cheese)

= 1

c2 {Beef,Cheese, T omato} {Beef, Cheese} 2I(Beef,Cheese)
I(Beef,Cheese)+I(Beef,Cheese)

= 1

c3 {Steak} {Beef} 2I(Beef)
I(Beef,Cheese)+I(Beef)

c4 {Steak, Milk} {Beef, Dairy} 2I(Beef,Dairy)
I(Beef,Cheese)+I(Beef,Dairy)

c5 {Casserole} {Meat, Dairy} 2I(Meat,Dairy)
I(Beef,Cheese)+I(Meat,Dairy)

intersects with the ancestors of “Cheese” at the root of the taxonomy (“Food”). LA is
therefore {Beef}, the minimal label of the intersection of the target and candidate an-
cestor graphs. Since I(Beef) is calculated using inclusion probability, it reflects not
only the number of objects labeled {Beef}, but also the populations of objects whose
labels are descendants of {Beef} (e.g. {Steak}, {Lasagna}) and those that include
the term “Beef” among others in their label (e.g. {Beef, Broccoli}). c4, the candidate
labeled {Steak, Milk}, is similar to c3, but in this case LA = {Beef, Dairy}. The
size of the population associated with this label is smaller than the one associated with
{Beef}, since it includes only those objects whose label includes the term “Dairy” (or
one of its descendants) as well as the term “Beef” (or one of its descendants). Hence
the information content of this label is higher, and c4 will receive a higher similarity
score than c3. For c5, labeled {Casserole}, LA = {Meat, Dairy}. Because inclusion
probability associates more objects with this label than with the label {Beef, Dairy},
c5 will receive a lower similarity score than c4.

3 Related Work

The literature describes three distinct groups of similarity measures that can be applied
to taxonomies. The first group of measures, which we will refer to as term-similarity
measures, can be used to compute the similarity of two individual terms. The other two
groups of measures can be used when an object is labeled with multiple terms.

Wu and Palmer[10] defined a term-similarity measure based on the depth in the tax-
onomy of the least common ancestor of two terms relative to the depths of the terms
individually. The “closer” the common ancestor is to the terms themselves, the greater
the similarity. Wu and Palmer did not describe how to use their approach when the
taxonomy is a DAG. Another problem with this approach is that some portions of the
taxonomy may have been extensively developed and contain many terms, whereas other
areas are sparse. Such variations in the “density” of terms make this and other measures
that rely on edge counts a poor estimate of similarity.

As noted in Section 2, the idea of using information content to measure similarity is
due to Resnik[8]. Using the WordNet taxonomy and frequency estimates derived from



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1047

a large body of English text, Resnik calculated the semantic similarity of word pairs by
selecting the common ancestor with the greatest information content. For words with
multiple senses, Resnik used the sense that produced the maximum similarity. Using
judgments made by human subjects as the standard, Resnik found that his measure
worked better than earlier ones based on edge-counting. Although Resnik’s measure
can be used when the taxonomy is structured as a DAG, it cannot be used directly when
objects are labeled with multiple terms, and it has a number of other disadvantages. Its
range is not normalized to [0, 1], but more importantly, by selecting the ancestor with
the greatest information content it understates the similarity of objects by focusing on
the single most significant aspect of their commonality, at the expense of all others.

Lin[5] provided an axiomatic definition of similarity, and showed how Resnik’s ap-
proach could be adapted to fit this framework. Whereas Resnik’s measure was based
solely on the commonality between word meanings, Lin’s also takes into account the
differences in meaning to determine a normalized similarity score (see Equation 2). Lin
compared his measure to Resnik’s and to Wu and Palmer’s, and found that it produced
scores that were better correlated with human judgments than those produced by the
other two measures. However, Lin does not describe how to use his measure when the
taxonomy is a DAG, or when multiple terms are used to describe an object.

Maguitman et al.[7] generalize Lin’s measure for taxonomies that are structured as
a DAG, and even for certain more general graphs that contain cycles. They also al-
low different classes of edges to carry different weights for the purposes of determin-
ing similarity. However, unlike our holistic measures, their measure chooses the single
common ancestor that maximizes similarity in order to compute the relative informa-
tion content of the ancestor with respect to the candidate and target objects (i.e. their
similarity). This is not the same as applying our formulation in Definition 7 to a pair of
single terms, and does not follow directly from Lin’s axiomatic definition of similarity
in Equation 1 because, like Resnik’s measure, it considers only a portion of the com-
monality between the terms. Maguitman et al. also do not generalize their approach to
classification systems that use multi-term labels.

The similarity measures in the second group described in the literature measure the
similarity of objects based on the number or frequency of terms that are common to
the descriptions of both objects. Measures in this group include Jaccard, Dice and Set
Cosine, which are used frequently in information retrieval systems and differ in how the
count of common terms is normalized, as well as the FMS measure of Keller at al[4].
These measures do not take the structure of the taxonomy into account. Any candidate
object that does not share terms with the target will receive a score of zero, even though
it may be quite similar.

The third set of proposed similarity measures relies on an underlying term-similarity
measure to determine the similarity between individual pairs of terms, and then com-
bines these to yield an overall similarity score. Halkidi et al.[3] defined a similarity
measure of this type for use in clustering web documents. Using the Wu and Palmer
term similarity measure, they consider each term in the target and candidate sets indi-
vidually, and find the most similar term from the other set. Then, over each term set
(the target set and the candidate set), they average the similarity of these best matches.
Finally, they combine the average similarity from the two sets with equal weight. Since



1048 P. Schwarz, Y. Deng, and J.E. Rice

they use Wu and Palmer as the underlying term similarity measure, it is not clear how
to apply this measure when the taxonomy is a DAG.

Wang et al.[9] developed a similarity measure that avoids this problem by using
a generalized form of Lin’s information-theoretic similarity measure to determine the
similarity of each term-pair. If t and c are the target and candidate terms:

simLin∗(t, c) =
2 ∗maxta∈Terms(Anc(c)∩Anc(t))(I(ta))

I(t) + I(c)

Note that Wang et al. generalize Lin’s formula from Equation 2 for use in a DAG tax-
onomy by selecting the least common ancestor with the maximum information content,
and therefore their measure, like Resnik’s and Maguitman et al’s, is not holistic. Wang
et al. also use a different function than Halkidi et al. for combining term-pair scores.
Instead of averaging the scores of the best match from the other set for each term, they
average the term similarity scores across all term pairs.

All measures in this third group draw an arbitrary distinction between combinations
of terms for which a new term has been coined and those for which one has not. Fur-
thermore, although the term similarities can be combined in various ways, none of these
follows directly from Lin’s axiomatic assumptions.

Keller et al[4] present several ways of quantifying similarity using fuzzy measures
based on the depth or information content of terms. However, their measures either
require subjectively-specified weights, or the solution of a high-order polynomial equa-
tion for each pair of target and candidate objects. We believe this to be prohibitively
expensive for large problems.

Our holistic measures simH and simG do not belong to any of these groups. Unlike
the term similarity measures, they can be used when labels contain multiple terms.
Unlike the common term measures, they take distinct but similar terms into account.
Unlike the pairwise measures, they do not consider individual terms, but rather take all
the terms in each label into account simultaneously.

4 Implementation

In implementing the similarity measures described in Section 2, one of our key goals
was to accommodate both large taxonomies and large corpora of objects. We therefore
built our implementation in the context of an object-relational database management
system, specifically IBM DB2 Universal Database V8.2.5 We believe this approach of-
fers a number of advantages. In the first place, storing the corpus in a database allows the
full power of SQL to be used to select those objects of interest in a particular situation.
For example, a user searching for similar objects in a large database of gene products
may wish to restrict the search to human gene products. Secondly, the ability to ex-
tend the database management system with user-defined types and functions allowed
us to implement certain critical operations very efficiently within the database, without
requiring large amounts of data to be retrieved for manipulation by an application.

In our implementation, each similarity measure is implemented as an SQL query
against a set of relations with a fixed schema. The taxonomy is represented as a table

5 http://www.ibm.com/software/data/db2/udb/



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1049

of (parent term id, child term id) pairs and the associations between terms and objects
are represented as (term id, object id) pairs. Since the associations for the target and
candidate objects may in general come from different sources, we use separate relations
to represent them. These relations may be base tables, but are more likely views created
over the native representation of the associations.

Additional tables are defined to store information that can be precomputed once and
used repeatedly in subsequent evaluations of the similarity measure. We will provide
more information on this auxiliary data in Section 4.2.

4.1 User-Defined Types

Within each query, certain critical operations are implemented as User Defined Func-
tions (UDF’s) that operate on User Defined Types (UDTs) represented in the database
as Binary Large Objects (BLOBs). Two types of operations warranted such special
treatment.

Firstly, the taxonomy is naturally represented as a directed graph, and key steps in
the evaluation of simH , simG, and various other measures involve graph-theoretic op-
erations, e.g. the determination of common ancestors between the labels of target and
candidate objects. In principle, such operations could be coded in ordinary SQL, but
such implementations are cumbersome and not as efficient as state-of-the-art procedu-
ral algorithms. Therefore, we made extensive use of a general-purpose graph library for
DB2. The library allows graphs to be constructed efficiently from database data using
a user-defined aggregate function. Once constructed, they can be stored in the database
as BLOBs and manipulated by UDFs that implement a wide range of graph-theoretic
operations. A full discussion of the graph library, which scales to very large graphs, is
beyond the scope of this paper.

A second critical step is the determination of the inclusion probabilities of particular
labels. To determine the inclusion probability of a label L, one must know its frequency,
that is, the number of objects in the corpus to which all of the terms in L apply. Recall
that a term t applies to an object o if and only if the ancestor graph of the object’s label
includes the term in question, i.e. if t ∈ Terms(Anc(o)).

In principle, one could precompute frequencies for each of the 2|N | combinations
of terms that can be used as a label. For taxonomies of realistic size, however, this
approach is impractical. Instead, we build an inverted list for each term, identifying the
objects to which the term applies, i.e. those objects whose labels contain the term or
any of its descendants. Let O(t) denote the list of objects for term t. The frequency of a
label can then be determined by finding the size of the intersection of the inverted lists
of its individual terms. The inclusion probability is therefore:

pi(L) =
| ∩t∈L O(t)|
|O|

Like the taxonomy graph, the inverted lists are implemented as a User Defined Type
optimized to support the operations needed to compute label frequency: intersection
and length. The inverted list UDT stores a list of object identifiers as a simple vector.
Identifiers can be inserted in any order as the list is built (using a user-defined aggregate
function), and the list is sorted once when insertion is complete. The intersection of two



1050 P. Schwarz, Y. Deng, and J.E. Rice

lists can be computed with a single pass through both lists, and a user-defined aggregate
function is provided to find the intersection of a set of lists.

4.2 Precomputation

Certain information used to find and rank candidate objects can be used repeatedly for
different target objects, as long as neither the taxonomy nor the corpus changes. In this
section we consider several situations in which we opted to precompute such values.

Whenever a target and candidate object are compared, we need to find the intersec-
tion of their respective ancestor graphs. Furthermore, at least in our experiments, the
same candidates are evaluated for many different targets. We therefore precompute the
ancestor graph for the label of each object in the corpus of candidate objects. The graph
library can generate ancestor graphs quite quickly, so precomputation is practical even
for corpora of large size. The space requirement is modest, because the ancestor graph
for an object is typically a small fraction of the entire taxonomy. Details for our ex-
perimental scenario can be found in Section 5. Updates to the candidate corpus can be
handled incrementally, but updates to the taxonomy may require a complete recompu-
tation of these graphs.

Note that we only precompute the ancestor graphs for candidate object labels, not
target object labels, since each target object is generally only referenced once. However,
we also precompute the ancestor graph for each individual term in the taxonomy. These
graphs make the dynamic computation of ancestor graphs for target object labels more
efficient, and are reused many times since many targets refer to the same terms. They
consume much less space than the candidate label ancestor graphs, because there are
far fewer terms than labels, and each graph is smaller. The term ancestor graphs are
not affected by updates to the corpus, but may need recomputation when the taxonomy
changes.

The final set of precomputed objects is the inverted lists. For each term in the taxon-
omy, we build a list containing the identifiers of all objects in the corpus that contain the
term, or a descendant of the term, in their label. As noted above, this allows us to find
the inclusion probability of an arbitrary label by intersecting the lists corresponding to
its terms. The size of these lists is proportional to the size of the corpus. See Section 5
for details for our experimental scenario. The lists can be updated incrementally as ob-
jects are added to the corpus, but may need to be recomputed if objects are deleted or
the taxonomy changes.

5 Experimental Evaluation

Similarity measures are difficult to evaluate, because similarity of objects is ultimately
subjective in nature and individuals may differ in how they rank candidate objects with
respect to a particular target. Other authors have tried to work around this problem
by comparing their rankings to those of a panel of human subjects [8], [5] or to an
independent measure of similarity appropriate to their domain[6,9,4].

We took a different approach. In search of a result that could be more objectively
quantified, we applied our similarity measures to the more difficult problem of match-
ing. Suppose that two sources of associations are using the same taxonomy to assign



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1051

labels to objects. Given the label of a target object as supplied by one source of labels,
the task is to find the same object in a corpus of labels supplied by another source. In
our experimental framework, the two sources of associations use a common identifier
for objects, so it is easy to verify that a match has been found.

Specifically, we use the taxonomy associated with the Gene Ontology (GO)[1]. This
taxonomy contains about 17000 terms, and can be represented by a graph with as many
nodes and about 22000 edges. The terms are divided into three independent facets, rep-
resenting a gene product’s cellular location(s), molecular function(s) and the biological
process(es) in which it participates. Each facet is a directed acyclic graph, and in our
experiments, we ignored the facets and considered all terms as a single label. The re-
lationships between terms are characterized as either is-a or part-of. We also ignored
this distinction, since both relationships possess the transitive behavior that underlies
our understanding of classification. Finally, a small number of terms in the taxonomy
are considered obsolete, and have been gathered together as children of a special node.
We removed these nodes from the taxonomy, since their location in the taxonomy does
not reflect their semantics.

Numerous organizations have used the GO taxonomy to annotate a large number
of gene products. We restrict our attention to human gene products registered in the
SwissProt databank, which number about 28000. Almost all of these gene products
have annotations supplied by the UniProt Knowledgebase[2], and these gene products
constitute our candidate objects. We use the approximately 110000 annotations for these
objects as our corpus of term associations. We removed only those annotations that
associate a gene product with an obsolete term.

Of the 28000 gene products in the corpus, 5789 also have annotations supplied by
Proteome, Inc.6 These gene products constitute our set of targets, and the corresponding
set of about 20000 annotations constitute our target associations. The matching task is
therefore: given the annotations for a gene product supplied by Proteome Inc., find the
same gene product using the annotations supplied by UniProt.

We note that this is inherently a very difficult problem. The two organizations that
generated the annotations we use for matching are completely independent. They did
not necessarily have the same goals or use the same guidelines in assigning terms to
gene products, nor did they necessarily work from the same source information. Fur-
thermore, the space to search is large (28000 objects), and often contains many objects
similar to the desired target.

To apply a similarity measure to this problem, we rank the candidate objects using
the similarity measure, and then determine whether the matching object is found in the
top K objects as ranked by the measure. We also keep track of the depth in the candidate
list at which the matching object was found.

In practice, it is too expensive to compute the similarity score of a target with respect
to all 28000 objects in the corpus. We therefore considered as candidates only those
objects whose labels have at least one term in common with the label of the target
object. We chose this heuristic because it could be applied to all the measures we wished
to evaluate, some of which are based entirely on common terms and their properties.
However, it should be noted that for many target objects, the labels supplied by the

6 http://www.proteome.com



1052 P. Schwarz, Y. Deng, and J.E. Rice

two organizations have no terms in common. Thus, regardless of the measure used, this
heuristic limits the number of targets that can be successfully matched to a maximum of
3660 of 5789, or 63.2%. We considered other heuristics for determining the candidate
set; see Section 5.4 for discussion.

5.1 Measures Evaluated

In addition to the holistic measures simH and simG, we applied various other similarity
measures to the matching problem described above. In this section, we briefly describe
each of these measures.

The simplest measure we studied was Common Term Count, which ranks candi-
dates based solely on the number of terms they have in common with the target. Next,
we evaluated the Jaccard measure, a normalized form of Common Term Count that
is commonly used to measure similarity in IR tasks.7

We also considered two analogous measures that are based on common terms, but
weight each common term by its information content. In the first measure, Common
Term IC, we sum the information content of the common terms to determine similarity.
In a normalized form of this measure, the common information content is compared to
the total information content of all the terms in the two labels.

Next, we studied two measures that are not based solely on common terms, but also
recognize that pairs of terms that are close in the taxonomy represent similar concepts.
These measures calculate the pairwise similarity of individual terms from the target and
candidate labels, and combine these to produce an overall score.

The first such measure we studied was proposed by Wang et al.[9]. As noted in Sec-
tion 3, their measure uses a generalized form of Lin’s similarity measure to determine
the similarity of each term-pair. Given this definition of term similarity, their measure
combines the pairwise similarities by averaging them across all pairs of terms in the
two labels.

The second pair-set measure is a variant of one proposed by Halkidi et al.[3]. Halkidi
et al. used the similarity measure defined by Wu and Palmer[10] to compute the simi-
larity of term pairs, but it is unclear how to generalize this to a taxonomy structured as a
DAG. Hence we instead used the same generalized form of Lin’s measure as Wang et al.

As noted in Section 3, Halkidi et al.’s measure considers each term individually, and
finds the most similar term from the other set. Then, the similarity of these best matches
is averaged over the terms in each set. Finally, the average similarity from the two sets
is combined with equal weight.

5.2 Results

We tested simH , simG and the six measures described above on targets from the set of
5789 gene products annotated by both UniProt and Proteome, Inc. Using the candidate-
generation heuristic described above, we calculated the similarity score for each can-
didate with respect to the target. If the measure ranked the object corresponding to the
target among the top 100 candidates, we considered it to have found a match. While this

7 In addition, we tested the Dice and Set Cosine measures. Results were very close to those for
the Jaccard measure.



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1053

may seem like a generous definition of success, we note again the inherent difficulty of
our matching problem.

We calculated the success rate for each measure, along with the depth at which the
matching object was found, averaged over the successful matches. The results are pre-
sented in Table 2.8 Recall that the maximum possible success rate using the common-
term heuristic for candidate selection is 63.2%.

Table 2. Comparison of Similarity Measures

Average
Method Success Rate (%) Depth

simH 39.3 23.9
Common Term IC 39.1 22.2
simG 37.5 25.2
Normalized CT IC 36.9 25.4
Halkidi IC 36.1 26.2
Common Term Cnt. 35.2 28.4
Jaccard 30.9 28.7
Wang 24.5 (± 2.42@95%) 35.9

We do not compare the measures on the basis of speed, since we made a concerted
effort to reduce costs only for simH and simG. However, we note that our strategy
of precomputation enabled us to test a single candidate in about 4.4ms using simG

and about 6.4ms using simH . These values are for a 2.4GHz Pentium 4 with 1Gb of
memory, running Windows XP and DB2 UDB v.8.2. The space requirements for the
precomputed object ancestor graphs, term ancestor graphs and term inverted lists were
modest: 122Mb, 40Mb and .5Mb, respectively.

5.3 Discussion

Although the differences in the success rates are not striking, some observations can be
made. Firstly, the measures based solely on common terms did not adequately take into
account pairs of terms that were closely related, but not identical. Because such pairs
do not contribute at all to the similarity score, common-term measures that penalize
candidates for terms that are not shared with the target understate similarity to a greater
extent than those which do not. Thus, both Common Term Count and Common Term
IC, which ignore unmatched terms, outperformed their normalized counterparts, Jac-
card and Normalized Common Term IC, which incur a penalty for unmatched terms.
For the holistic measures, all terms contribute to the similarity score, and indeed simH

outperforms the other measures. However, our candidate-selection heuristic requires
each candidate to have at least one term in common with the target. While this heuristic
provides a level playing field for comparing the various measures, it limits the benefi-
cial effect of taking related terms into account. We explore the effects of relaxing this
restriction in Section 5.4.

8 For one measure where we did not test the entire set of targets, a confidence interval is provided
for the success rate.



1054 P. Schwarz, Y. Deng, and J.E. Rice

Table 3. Patent Similarity Search

KNN Patent ID Score Title

0 14019 1.0 ‘Apparatus and method for collecting flue gas particulate
with high permeability filter bags’

0 47255 0.9673537 ‘Advanced hybrid particulate collector and method of
operation’

0 195208 0.9673537 ‘Volatile materials treatment system’
0 265087 0.9673537 ‘Char for contaminant removal in resource recovery unit’
2 304641 0.9673537 ‘System and method for removing gas from a stream of

a mixture of gas and particulate solids’
0 344644 0.9673537 ‘Electric dust collector and incinerator’
1 21467 0.9441908 ‘Thief process for the removal of mercury from flue gas’
0 25179 0.9441908 ‘Multi-stage particulate matter collector’
1 473644 0.9441908 ‘Method of regulating the flue gas temperature and

voltage supply in an electrostatic precipitator...’

We also observe that measures that weight the importance of pairs of common terms
based on their information content performed better than the analogous measures based
on counting common terms. In particular, Common Term IC outperformed Common
Term Count, and Normalized Common Term IC outperformed Jaccard.

The differences among the measures based on information content stem from differ-
ences in how similarity is derived from information content in each case. Both Wang
and Halkidi IC normalize the common information content of each term-pair indepen-
dently, and then combine these normalized values to reach an overall similarity value.
As a result, term-pairs with relatively low common information content are given the
same weight as pairs with much greater common information content. This is partic-
ularly so in the case of Wang, which pairs each term with every other, as opposed to
Halkidi IC, which just pairs each term with its best match. However both measures suf-
fer in comparison to those based on common term information content, which weight
each common term in accordance with its information content. Another source of er-
ror in these measures is correlation. If a label contains two terms whose occurrence
is correlated, these measures overestimate their information content when they occur
together.

The holistic measures simH and simG avoid both these problems by calculating
the combined information content of all the terms in each relevant set. This allows
the similarity to be calculated exactly in accordance with the axiomatic definition from
Equation 1, modified only as necessary to handle generic labeling (in the case of simG).

Lastly, although we believe that generic labeling with interior terms occurs perva-
sively in our corpus, we note that simH outperformed simG in our experiments. We
believe this reflects our choice of a matching problem rather than one based strictly
on similarity. The difference between the measures is that simG does not penalize a
candidate for being labeled with terms that are more specific than those used to label
the target. This may elevate the score of the matching candidate enough to make it
competitive with others labeled with more general terms. However, it also elevates the



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1055

scores of candidates that use more specific terms than the matching candidate and its
competitors, which has the opposite effect. If one views the terms associated with the
target as requirements, these additional candidates satisfy the requirements as well as
the matching candidate does, and are therefore equivalently similar. But in a matching
problem, we are looking for a particular object, and the presence of the others makes
finding it more difficult.

5.4 Candidate Selection

As we noted previously, all the measures we evaluated were limited by our candidate-
selection heuristic. For the measures based on common terms, this limitation is absolute,
since objects that have no terms in common with the target have a similarity score of
zero. However, the other measures we evaluated have the potential to find additional
matches if we consider additional candidates.

We tested this hypothesis with an alternative candidate-selection heuristic. For each
association between a target object and a term, we augmented the set of terms associated
with the target by adding associations between the target object and the original term’s
immediate neighbors. We then used as candidates all objects that have at least one term
in common with this expanded set. We refer to this heuristic as KNN-1, because the
candidate set comprises those objects that are described by at least one of the original
terms or a neighboring term one hop away. The original common term heuristic could
be described as KNN-0; KNN-2 and other values could be considered as well.

When we tested simH with KNN-1 on the matching problem, we found that it raised
the success rate from 39.3% to 40.5%. While not a dramatic increase, this suggests that
our measures can find similar objects even when they have no terms in common with
the target. The downside is that the time required to match a target is proportional to the
number of candidates considered, and increasing the value of N increased the number
of candidates to test significantly. For KNN-0 on our dataset, the average number of
candidates per target was 1429. For KNN-1 this rose to 3705, causing a greater than
twofold increase in the average time required to match a target. For KNN-2, the average
number of candidates rose to 6824.

We also tested the KNN candidate-selection heuristic on a second dataset. The
United States Patent and Trademark Office (USPTO) maintains a classification scheme
for patents based on a tree-structured taxonomy of about 160000 terms, referred to as
classes and subclasses.9 Individual patents are labeled with one or more terms from
the taxonomy. We tested the holistic similarity measures on a corpus of approximately
500000 patents filed between 2001 and 2003, as classified by about 1.9 million associ-
ations between patents and terms.

While we could not perform an objective matching experiment with this dataset, it
nevertheless provided a number of interesting opportunities for evaluating our
measures and their implementation. Firstly, we were able to verify that our implemen-
tation could scale to a much larger corpus and a much larger taxonomy with satisfac-
tory performance. The USPTO taxonomy also has a different structure than the GO
taxonomy; it is broader and flatter, and does not have facets or multiple inheritance.

9 http://www.uspto.gov/web/patents/classification/



1056 P. Schwarz, Y. Deng, and J.E. Rice

Lastly, our candidate-selection heuristics generated fewer candidates per target than in
the matching experiment. We were thus able to more easily observe the value of the
KNN candidate-selection heuristic, coupled with our measures’ ability to detect simi-
larity without the presence of common terms between the candidate and target objects.

Table 3 shows the combined result of three similarity searches for a typical target,
with KNN values of 0, 1 and 2. The first patent listed, ID 14019, is the target, and
thus had an ideal similarity score of 1.0. Below, similar patents are listed with their
similarity scores, as well as the KNN value of the search in which they were initially
found. For example, patent 304641 was found by the search that used KNN-2 to select
candidates, and scored as highly as any of the patents found with smaller KNN values.
Similarly, two other highly-scored patents were found with KNN-1 that would not have
been found with KNN-0, nor by any of the measures that rely solely on common terms.

6 Conclusions and Future Work

Similarity ranking of objects labeled using a taxonomy is an interesting problem with a
variety of useful applications. This work has made several contributions to the state of
the art. We developed new similarity measures that are applicable to real classification
systems, in which the taxonomy can be structured as a DAG, objects can be labeled
with multiple terms, internal terms can be used in labels, and different users may label
the same object in different ways.

We implemented our measures using SQL and a pair of libraries for specialized data
structures, realized as user-defined types. The result is a flexible, scalable implemen-
tation that is tightly integrated with a database management system and achieves good
performance through strategic precomputation of key data structures.

We evaluated our measures on an object-matching task using the Gene Ontology, a
taxonomy with all the properties noted above. Our measures were more successful at
matching objects than those reported in the literature. We also tested our measures on a
search task, using the patent classification taxonomy of the USPTO to find patents sim-
ilar to a specified target. We evaluated two heuristics for candidate selection, a critical
issue for large data sets.

A number of areas suggest themselves for future study. Most important is to apply
these measures to more datasets and domains, to determine whether the results are com-
parable to those reported here. In addition, one could adapt the definition of similarity
to more general scenarios. For example, there may be a confidence level associated with
each term in a label, or a value representing a level of conformance with the term.

Some more specific issues should also be addressed. Since the expense of ranking is
proportional to the number of candidates tested, an adaptive candidate-selection heuris-
tic might be beneficial. The number of candidates generated by the KNN heuristic for a
given value of N varies widely, so it could be applied for increasing values of N until
a threshold number of candidates is exceeded.

Lastly, while the speed of our implementation was adequate for the task we stud-
ied, further improvements are possible. When calculating the inclusion probabilities for
labels, terms from upper levels of the taxonomy occur often, since they represent the
common ancestors of more specific terms that are only distantly related. These terms



Finding Similar Objects Using a Taxonomy: A Pragmatic Approach 1057

tend to have lengthy inverted lists, making it expensive to compute their mutual in-
tersection. Significant performance improvements might result from recognizing such
term clusters and precomputing the intersections of their inverted lists.

References

1. M. Ashburner et al. Gene ontology: Tool for the unification of biology. Nat. Genet., 25(1):25–
29, May 2000.

2. R. Apweiler et al. Uniprot: the universal protein knowledgebase. Nucleic Acids Res.,
32(1):D115–119, Jan. 2004.

3. M. Halkidi, B. Nguyen, I. Varlamis, and M. Vazirgiannis. Thesus: Organizing web document
collections based on semantics and clustering. Technical Report 230, INRIA Project Gemo,
2003.

4. J.M. Keller, M. Popescu, and J. Mitchell. Taxonomy-based soft similarity measures in bioin-
formatics. In Proc. of the 2004 IEEE Int’l. Conf. on Fuzzy Systems, 2004.

5. D. Lin. An information-theoretic definition of similarity. In Proc. 15th Int’l. Conf. on Ma-
chine Learning, pages 296–304. Morgan Kaufmann, San Francisco, CA, 1998.

6. P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble. Investigating semantic similarity mea-
sures across the gene ontology: The relationship between sequence and annotation. Bioin-
formatics, 19(10):1275–1283, 2003.

7. A. G. Maguitman, F. Menczer, H. Roinestad, and A. Vespignani. Algorithmic detection of
semantic similarity. In Proc. of the 14th Int’l World Wide Web Conf., pages 107–116, 2005.

8. P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In IJCAI,
pages 448–453, 1995.

9. H. Wang, F. Azuaje, O. Bodenreider, and J. Dopazo. Gene expression correlation and gene
ontology-based similarity: An assessment of quantitative relationships. In The 2004 IEEE
Symp. on Comp. Intelligence in Bioinformatics and Comp. Biology (CIBCB-2004), 2004.

10. Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd. Annual Mtg. of the
Assoc. for Comp. Linguistics, pages 133 –138, New Mexico State Univ., Las Cruces, NM,
1994.



Towards an Inductive Methodology for Ontology
Alignment Through Instance Negotiation

Ignazio Palmisano1, Luigi Iannone2, Domenico Redavid1, and Giovanni Semeraro1

1 Dipartimento di Informatica, Università degli Studi di Bari
Campus Universitario, Via Orabona 4, 70125 Bari, Italy

{palmisano, redavid, semeraro}@di.uniba.it
2 Computer Science Department, Liverpool University

Ashton Building
Ashton Street

L69 BX Liverpool, UK
luigi@csc.liv.ac.uk

Abstract. The Semantic Web needs methodologies to accomplish actual com-
mitment on shared ontologies among different actors in play. In this paper, we
propose a machine learning approach to solve this issue relying on classified in-
stance exchange and inductive reasoning. This approach is based on the idea that,
whenever two (or more) software entities need to align their ontologies (which
amounts, from the point of view of each entity, to add one or more new concept
definitions to its own ontology), it is possible to learn the new concept defini-
tions starting from shared individuals (i.e. individuals already described in terms
of both ontologies, for which the entities have statements about classes and re-
lated properties); these individuals, arranged in two sets of positive and negative
examples for the target definition, are used to solve a learning problem which as
solution gives the definition of the target concept in terms of the ontology used
for the learning process. The method has been applied in a preliminary prototype
for a small multi-agent scenario (where the two entities cited before are instanti-
ated as two software agents). Following the prototype presentation, we report on
the experimental results we obtained and then draw some conclusions.

1 Motivation

The Semantic Web (SW), being an evolution of the World Wide Web, will inherit Web
decentralized architecture. Decentralization, in its turn, was one of the success factors
of the Internet, granting its structure with scalability, no single point of failures, and
so on. However, in order to implement the SW scenario envisioned in [1], semantic
convergence is crucial. This point has been always identified in the employment of
ontologies that, even before the rise of SW, were considered as ”shared formalizations
of conceptualizations” [2].

In the SW vision, different actors that want to take advantage from interoperating
should be able to converge onto shared ontologies in order to communicate. Such a
problem turned out to be crucial and very difficult to work out. Indeed, each party
involved has its peculiar view of the domain it shares with other parties. Very often, dif-
ferent applications are interested in different aspects of the same world state, e.g. in a

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1058–1074, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards an Inductive Methodology for Ontology Alignment 1059

typical B2B scenario in which suppliers and final customers usually are interested into
different aspects of the goods that are dealt with. Both quantitative and, more likely,
qualitative concepts often turn out to be fuzzy depending on those actors interested
in assessing them to interoperate. Suppliers may likely consider features like materi-
als, provenance, standard processes, whereas customer satisfaction may depend also on
other factors, e.g. warranties, comfort, support, which may turn out to be only marginal
for the suppliers, unexpressed or simply difficult to acquire.

In such cases, partially overlapping visions of the same world should be integrated
in value chains in order to provide goods. However, The wide range of possible B2B
scenarios hinders a centralized approach to ontology sharing for semantic convergence,
which contrasts with the architectural paradigm of the SW. Indeed, such a scenario re-
quires flexibility, since it basically builds up open situations where the interacting actors
cannot be precisely individuated in advance. Hence, a central ontology should foresee
a high number of particular situations, and therefore it would be detailed enough, and
therefore useful, only for restricted cases and toy domains. Moreover, single applica-
tion ontologies are supposed to vary in time, an issue that is not easily manageable in
centralized approaches.

We agree on the fact that semantic convergence has to be addressed at the ontology
level, but we argue that the approaches for solving such issues should fulfil the following
properties to be effectively applied in the mentioned scenarios:

– they have to be automatizable, so that applications could integrate among each other
without human intervention (or with as little human intervention as possible);

– they have to be flexible. It should be possible to apply the same convergence schema
to any domain on which the actors have to communicate their own (partially over-
lapping) conceptualizations;

– they have to be on-demand and limited in scope. The aim is not to fully map the ac-
tors conceptualization, which is often impossible or even useless, but to reconciliate
only those parts that are necessary for the dialogue.

Developing platforms enabling SW systems to communicate with each other, without
committing to a superimposed ontology, ensures a very loose coupling among them
which allows for independent evolution and maintaining of the applications. In our
opinion, other SW technologies spanning from Web Service discovery, orchestration,
and choreography, up to software agents immersed in the SW, could profit from the
solutions that research will find to these issues.

In this paper, we suggest a Machine Learning approach to accomplish semantic inte-
gration, taking into account the requirements listed above. The remainder of the paper
is organized as follows: the next section will briefly summarize the state of the art
(to our knowledge) on these problems. Sect. 3 illustrates our approach to Ontology
Alignment together with a proposed algorithm. Sect. 4 explains in detail the Machine
Learning techniques used to implement the algorithm, while Sect. 5 presents the im-
plemented prototype employed to carry out a preliminary empirical evaluation reported
in this section. Finally, in Sect. 6, some conclusions are drawn outlining future work
directions.



1060 I. Palmisano et al.

2 Related Work

In this section, we present a short discussion of some recent relevant research describing
different approaches to ontology alignment. Ontology Alignment is a broad umbrella
for a variety of subtask that try to solve some of the issues pointed out in the previous
section. In order to keep the subject simple and general, we might define alignment as:
any process that enables communication among two or more systems, adopting two or
more different ontologies. Following Noy [3], there are (at least) two types of alignment
processes, classified according to their output:

– Ontology Merging: in which the outcome of the alignment of n ontologies is a
single new one, embedding the knowledge coming from the n sources

– Ontology Mapping: in which the results of the alignment among n different ontolo-
gies consists of the starting ones plus the mapping between similar entities of the
input sources.

In the following, we briefly discuss a non-exhaustive list of some remarkable re-
search approaches pursuing such alignment strategies.

2.1 GLUE

GLUE [4, 5] exploits Machine Learning techniques to find semantic mappings between
concepts stored in distinct and autonomous ontologies. Basically, its strategy falls into
the Ontology Merging category as its output is a mediator ontology (or database schema
in its earlier version). The process relies on a initial manual bootstrapping phase, in
which user provides some sample mappings between some entities within the ontolo-
gies to be merged. GLUE then, tries to infer a set of rules (or classifiers) that can
synthesize the mapping strategy followed by the users for the initial mappings. GLUE
then, applies what it learnt to find other semantic mappings. One of its strong points is
the possibility of using any kind of probabilistic similarity measure (measure neutral-
ity) and, furthermore, also the weighting of the single similarity assessments is learnt
by the system. In [4] the authors underline that there are many kinds of mappings that
can be found, comparing entities from different ontologies, however GLUE focuses on
finding 1-1 mappings between concepts belonging to two taxonomies.

2.2 PROMPT Suite

The PROMPT Suite by Stanford Medical Informatics [6, 3] provides two tools for align-
ment: iPROMPT and ANCHORPROMPT. iPROMPT is an interactive tool performing on-
tology merging. It starts from initial mappings among two entities (provided either by
users or by a automatic process based on linguistic similarity) and generates sugges-
tions for further mappings between other entities. After the user triggers one among the
suggestions proposed (or performs some changes on the resulting ontology), iPROMPT

applies the required changes, computes the possible cases of inconsistency trying to
suggest fixes for those, and produces new suggestions for further mappings.

ANCHORPROMPT, on the contrary, is an ontology mapping tool. It can be used for
supporting iPROMPT in order to individuate new related concepts during the iterations.



Towards an Inductive Methodology for Ontology Alignment 1061

Unlike iPROMPT, it exploits also non-local contexts for the concept pairs whose similar-
ity has to be assessed. Indeed, it represents ontologies as graphs and compares the paths
in which concepts are involved, both within the taxonomy and in slot dependencies and
domain/range constraints.

2.3 APFEL

APFEL is really a whole framework rather than a single alignment technique. In [7],
Ehrig et al. propose a very interesting classification of alignment strategies dividing
them into manually predefined automatic methods and learning from instance represen-
tations methods. The former are very complex to design, since all the possible peculiar-
ities of the domains they will be applied must be considered; the latter, on the contrary,
can be used only in presence of instances (and sometimes this is not the case) though
they show more flexibility as the underlying ontology domain changes. The proposed
framework (PAM - Parameterizable Alignment Methodology) is fully parameterizable
to the extent of being able to reproduce the strategy used in other methodologies by just
adjusting some parameters. APFEL tries to learn from pre-validated example mappings
the right parameters that would instantiate the fittest PAM for the particular learning
problem. Such parameters are:

– Features, i.e. the smallest set of features on which to compute similarity among
entities

– Selection criteria for the next pair of entities to compare
– Similarity measures, aggregation, and interpretation strategies
– Iteration, that is the extent to which neighbor entity pairs are influenced by the

current pair (whose similarity has been evaluated).

3 Ontology Alignment Algorithm

According to Noy’s classification cited in the previous section, the approach described
in this work falls into the ontology mapping methodology. Indeed, without loss of gen-
erality, we assume to work on two ontologies dealing with the same domain. Besides,
we also assume that some of the concepts within the input ontologies may partially
overlap in their semantics. We intentionally will not define formally what this semantic
overlap means, due to the large variety of practical situations in which this may hap-
pen in real-world applications. We might have concepts defined with different names,
structures, etc. that share exactly the same meaning. On the other hand, we can have
concepts that, though sharing their name, might be different in their actual meaning,
and it could be necessary that an application understands what its peer exactly means
for such a concept, possibly in terms of its own ontological primitives.

A couple of examples can better explain these situations. The former case can be
exemplified as follows. Suppose that there are two applications dealing with two on-
tologies about cars, differing just for the language: one uses Italian names and the other
English names. The concept of, say, Wheel is equivalent to the concept Ruota in the
Italian version of the car ontology. The latter case, instead, may happen when you have



1062 I. Palmisano et al.

two ontologies describing a domain from two different perspectives. Suppose that the
ontology FoodRestaurant deals with food from the typical point of view of a restau-
rant and that the ontology FoodNutritionist deals with the same subject from the side
of a dietician. The concept of HighQualityFood depends on different aspects of food
according to the adopted viewpoint. Indeed, when defining this concept, a dietician,
would care of nutritional values of the ingredients, whereas a chef would take into ac-
count the provenance of the ingredients, their rarity and so on. In such case, we have
two legal HighQualityFood concepts; an agent for dinner arrangements dealing with
restaurants and people could be more effective if it knows both senses.

The intuition behind our approach is that a useful mapping is the one in which at least
one of the two parties can understand what the other means in terms of its own ontology.
Indeed, if an application is to use information coming from another system, it should
be able to frame this information in its own knowledge model, hence, in our opinion, it
has to grasp some meaning using primitive concepts and properties from its own ontol-
ogy. Though this may seem straightforward, many approaches limit themselves to find
a correspondence between equivalent (or very similar) entities, provided that such an
equivalence exists. Yet such approaches disregard the importance of maintaining differ-
ent definitions for the same entity (the viewpoints discussed in the previous example)
and of having one’s own definitions, in order to communicate with different parties.

Therefore, a way is needed for allowing a system to build a representation of a con-
cept belonging to another ontology using its own terminology. We argue that the induc-
tive reasoning techniques of Machine Learning are a suitable way to accomplish this
objective. In particular, we employ the Concept Learning paradigm [8] for treating this
problem. Indeed, with Concept Learning aims at inducing an intensional descriptions
of concepts starting from its examples and (possibly) counterexamples.

In particular, we intend to implement the following scenario. Suppose there are two
applications A and B with their respective ontologies OA and OB and suppose that
application A wants to communicate about some concept, say a : C, with B (we sup-
pose to indicate concepts with the usual URIs, i.e. namespace:conceptLocalName)
regarding a concept that does not appear inOB . Then, in our scenarioB could ask A to
provide some instances (examples) of a : C and, possibly, also some counterexamples
(i.e.: instances of the complement class of a : C). If such examples occur as instances
within OB , then B, by means of a Concept Learning algorithm, can infer a definition
of a : C in terms of the descriptions of those instances contained in OB . In this way
B obtains a definition of a : C using its own terminology, that is, in other words, B
understands a : C according to what it knows (its ontology). In the following section
(Sect. 4) the particular Concept Learning algorithm employed is described; however,
for the purposes of this section the particular algorithm is irrelevant since the only re-
quirement is that it solves a generic Concept Learning problem, described formally in
the following definition:

Definition 3.1 (Concept Learning problem)
Given a knowledge base K and a set of instances divided into examples and counterex-
amples E = E+ ∪ E− and described in K
Learn the definition of a concept C such that all elements of E+ none of E− are in-
stances of C.



Towards an Inductive Methodology for Ontology Alignment 1063

The result of the learning problem can be further revised in the following way.B identi-
fies a suitable subset of instances (different from those provided by A as a training set),
classifies them as belonging or not to the learnt concept and passes them toA asking the
peer to do the same. IfA andB disagree on the classification of some individuals, it will
be the case that B refines properly the learnt definition in order to fix the discrepancy
with the classification provided by A.

After learning a definition of a : C, let us call it b : C supposing there are no clashes
with pre-existing names,B has to compare it with the concepts in itsOB , evaluating the
similarity of b : C to pre-existing concepts. This can accomplished using suitable simi-
larity measures such as the one proposed in [9] that score the semantic affinity/diversity
of a pair of concepts within an ontology. If the similarity between b : C and another
concept in OB exceeds a given threshold or, better, if the equivalence can be proved by
a reasoner, then an equivalence axiom can be added, otherwise the definition of b : C is
left unchanged within OB .

Careful readers should have already found out that there is an assumption on which
the whole process relies on. The assumption is that there exists a subset of individ-
ual URIs in common between OA and OB . This corresponds to the initial knowl-
edge that is provided in other systems during the bootstrapping phase. To cite only
the related work, GLUE needs a complete example of mapping to start the learning
phase, whereas iPROMPT relies on initial suggestions on linguistic similarity, assum-
ing that concept names are expressed in their natural language form (or very close to
it). ANCHORPROMPT, on the contrary, exploits the graph structure assuming that, for
ontologies partially overlapping on the same domain, their graph structure should be
similar. Our assumption seems at least as reasonable as these, also because it can be
relaxed thinking that, instead of having some identical individual URIs across ontolo-
gies, we have mechanisms to map some URIs into some others (either manually or
automatically).

Consider, for instance, the ontologies about paper indexing systems, e.g. DBLP and
the ACM Digital Library, and suppose there exist their OWL (or RDF) 1 versions. Each
system has automatic strategies for generating identifiers and there is a large subset of
research works that are indexed by both of them. It could be easy then to provide URIs
translator for the two systems. Actually, ACM and DBLP bibliographic information are
used in one of the test cases we devised for our system; more details in Sect. 5.3.

4 Machine Learning in Description Logic

In this section, we describe in more details the learning algorithm we developed for
solving a Concept Learning Problem in Description Logic. In particular, we focus on
concept descriptions in the ALC[10] Description Logic as it is the least expressive
subset of OWL-DL allowing for disjunction and ensuring a reasonable expressiveness
without features (like role hierarchies) that would make learning intractable.

First we cast the generic Concept Learning Problem reported in Def. 3.1 to the De-
scription Logic setting.

1 http://www.w3.org/2004/OWL/, http://www.w3.org/RDF/



1064 I. Palmisano et al.

Definition 4.1 (learning/tuning problem). In a search space of concept definitions
(S,�) ordered by subsumption
Given a knowledge base K = 〈T ,A〉 and a set of positive and negative assertions
AC = A+

C ∪ A−C regarding the membership (or non-membership) of some individuals
to a concept C such that: A �|=T AC

Find a new T-box2 T ′ = (T \ {C ≡ D}) ∪ {C ≡ D′} such that:A |=T ′ AC

A Concept Tuning (or Revision) Problem is similar but for the fact that learner already
knows an incorrect definition for C which has to be revised. This means that there are
some assertions withinAC that are not logical consequences of the knowledge base and
the current definition of C. Such incorrect definition can be incomplete, i.e.: there are
some individuals that are said to belong to C in AC but this cannot be entailed, and/or
it can be incorrect, meaning that there are individuals that are deduced to belong to C
from the definition of C, while they actually don’t belong to it.

In general, Concept Learning relies on the intuition that the solution of any problem
can be found traversing a proper search space.

A learning algorithm, then, is cast as a search that moves across such a space with
two kinds of possible movements, called refinements:

– Specific towards general (generalization)
– General towards specific (specialization)

We provide here the formal (though generic) definitions for both kinds of refinement.

Definition 4.2 (downward refinement operator - ρ). Let (S,�) be a search space of
concept descriptions C ordered by subsumption �. We define the function ρ : S → 2S

such that ρ(C) ⊆ {E ∈ 2S | E � C}.
Definition 4.3 (upward refinement operator - δ). Let (S,�) be a search space of
concept descriptions C ordered by subsumption relation � we define the function δ :
S → 2S such that δ(C) ⊆ {E | E ∈ 2S ∧C � E}.
Notice that it does not hold in general that:

E � C → E ∈ ρ(C) or C � E → E ∈ δ(C)

Refinement has been thoroughly studied in literature (see [11, 12]) also specifically
for Description Logic knowledge representations [13]. For the sake of brevity we will
not expose here all the theoretical framework for refinement. It suffices to saying that,
unlike many other approaches, we try to use examples and counterexamples of the con-
cept to be learnt to bias the search and, hence, the refinement strategies, rather than
using them just for testing intermediate candidate refinements. Indeed, during learning,
as the algorithm searches for a solution of the problem, it may find various intermediate
hypotheses that satisfy the required constraints3 but not all of them. Hence refinement

2 T-box (terminological box), is the portion of the knowledge base containing the theory (T ),
while A-box (assertional box) is the portion containing the ground statements.

3 It should covers a subset of examples and does not cover a part of counterexamples, but there
would remain some uncovered examples and/or some covered counterexamples.



Towards an Inductive Methodology for Ontology Alignment 1065

operators must be applied to fulfil such constraints. The problem is that at each refine-
ment step there are many alternative directions that can be chosen. Examples come into
play in this choice, guiding the refinement process towards selecting the most promis-
ing candidates, thus pruning the search space and avoiding the learner to backtrack for
the sake of efficiency.

Our solution to the learning problem is the procedure reported as Algorithm 1 and
4 that are implemented in the learning system named YINYANG that is an evolution of
the system described in [14]. In YINYANG examples are not processed at the individual
description level but, for each of them, a concept level representative is computed. This
is very frequent in Machine Learning when the example and hypothesis languages do
not coincide, and is called Single Representation Trick. Concept level representatives
should be as much adherent as possible to the examples they stand for. In Description
Logic there exist a non standard inference called Most Specific Concept (denoted msc)
that fulfills such a requirement but, unfortunately, it needs not exist for many Descrip-
tion Logics (such as ALC). Hence it will be approximated provided that it has to be
possible to distinguish among concept level representative of positive and negative ex-
amples. In other words it cannot exist a unique concept level representative for a positive
and a negative example.

The algorithm starts choosing a seed that is a concept level representative of an ex-
ample. Then, it keeps generalizing it until there are residual positive to be covered or
until the generalization covers some negative example (overgeneralization). In the for-
mer case, the algorithm exits returning a complete and correct generalization. In the
latter, specialization is necessary in order to correct the overly general hypothesis (con-
cept definition).

Specialization can take place in two different ways. The first one is based on the
notion of counterfactuals [15]. The idea behind is that if we have a concept that cov-
ers some negative examples one can single out the parts of such definitions that are
responsible for the coverage and rule them out by means of negation. There is a well
known non-standard inference in DLs called concept difference or residual [16] used
for the aforementioned identifications of part of definitions which are responsible for
the incorrect coverage (also known as blame assignment). For eliminating in one single
negation all the different parts that are responsible for the coverage of each negative, a
generalization of the blamed parts is needed in order to obtain a single description to
be negated (i.e. a counterfactual). Thus, again generalization is needed, for the negative
residuals with respect to the overly general hypothesis. Such negative residuals, will
now become positive examples in a new nested learning problem and the solution of
such problem will be our counterfactual. Since its negation has to be conjoined to the
starting incorrect hypothesis in order to specialize, one do not want to incur in the dual
error, i.e. overspecialization. Indeed, the refined resulting concept definition must keep
covering the positive examples it covered before specialization. Hence the counterfac-
tual should not cover the residual of covered positive example representatives w.r.t. the
covering hypothesis to specialize. This means that they represent negative examples for
the new nested learning problem solved by the recursive call.

Specialization by means of counterfactuals can be proved not to be complete in the
sense that it sometimes fails in finding a correct counterfactual for properly specializing



1066 I. Palmisano et al.

Algorithm 1. YINYANG algorithm
Generalize(Positives,Negatives)
input: Positives, Negatives: positive and negative msc approximations
output: Generalization: generalized concept definition
ResPositives ← Positives
Generalization ← ⊥
while ResPositives �= ∅ do
ParGen ← select seedM (ResPositives)
CoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
CoveredNeg ← {Neg ∈ Negatives | ParGen � Neg}
while CoveredPos �= ResPositives ∧ δ returns a proper refinement ∧
CoveredNeg = ∅ do
ParGen ← select(δ(ParGen),ResPositives,Negatives)
CoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
CoveredNeg ← {Neg ∈ Negatives | ParGen � Neg}

end while
if CoveredNeg �= ∅ then
K ← Counterfactual(ParGen,CoveredPos,CoveredNeg)
ParGen ← ParGen 	 ¬K
CurrentCoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
LeftOutPositives ← CoveredPos \ CurrentCoveredPos
if |LeftOutPositives| > 0 then

LeftInPositives ← CurrentCoveredPos \ CoveredPos
if LeftInPositives = ∅ then

ParGen ← Add conjunctρE
� (ParGen, LeftOutPositives, coveredNegatives)

if Add conjunctρE
� failed then

ParGen ← lcs(coveredPositives)
end if

else
CoveredPos ← LeftInPositives

end if
end if

end if
Generalization ← Generalization 
 ParGen
ResPositives ← ResPositives \ CoveredPos

end while
return Generalization

Counterfactual(ParGen,CoveredPos,CoveredNeg,K)
Input ParGen: inconsistent concept definition
Input CoveredPos, CoveredNeg: covered positive and negative msc approx.
OutputK: counterfactual
NewPositives ← ∅
NewNegatives ← ∅
for Ni ∈ CoveredNeg do

NewPi ← residual(Ni,ParGen)
NewPositives ← NewPositives ∪ {NewPi}

end for
for Pj ∈ CoveredPos do

NewNj ← residual(Pj ,ParGen)
NewNegatives ← NewNegatives ∪ {NewNj}

end for
K ← generalize(NewPositives,NewNegatives)
return K



Towards an Inductive Methodology for Ontology Alignment 1067

Algorithm 2. Add Conjunct ρ Implementation

rhoE
� (c, coveredPositives, negatives)

Input: c is a Concept
Input: coveredPositives is a set of positive examples concept level representatives
Input: negatives is a set of negative examples concept level representatives
Output: A specialization covering all elements within input when possible or c itself
toReturnConcept ← c
noPossibleRefinementKeepingAllPositives ← false
moreChanches ← true
cs ← ∅
alreadyChosenConjuncts ← new empty map that associates positive examples with already
used conjuncts
coveredNegatives ← negatives
while |coveredNegatives| > 0 ∧ (¬noPossibleRefinementKeepingAllPositives ∨
moreChanches) do

moreChanches ← false
for each p ∈ coveredPositives do

possiblyLeftOut ← ∅
if p �

⊔
C∈cs C then

availableConjuncts ← chooseConjunct
(p, toReturnConcept, coveredNegatives, alreadyChosenConjuncts)

aSelectedConjunct ← selectConjunct(availableConjuncts)
if lV ertavailableConjuncts| > 1 then

moreChanches ← true
end if
if aSelectedConjunct � ⊥ then

cs ← cs ∪ {aSelectedConjunct}
Add aSelectedConjunct to alreadyChosenConjuncts for p

end if
end if

end for
if |cs| > 0 then

toReturnConcept ← c 	 lcs(cs)
noPossibleRefinementKeepingAllPositives

← ¬(∀p ∈ coveredPositives : p  lcs(cs))
if noPossibleRefinementKeepingAllPositives then

cs ← ∅
end if

else
noPossibleRefinementKeepingAllPositives ← true

end if
coveredNegatives ← {n ∈ negatives, n  toReturnConcept}

end while
return toReturnConcept

overly general hypotheses. That is why another specialization strategy was introduced,
named Add Conjunct, which is applied whenever the Counterfactual routine fails.
Such a strategy aims at finding a conjunct per positive example that does not appear
yet in the hypothesis to be specialized nor in none of the negatives that are currently



1068 I. Palmisano et al.

covered. In order to minimize the number of conjuncts, each positive provides such a
conjunct only if there are no conjuncts (already provided by some other positives) that
cover it. After having computed such conjuncts, they are generalized into their least
common subsumer (lcs) [10] and such lcs is conjoined to the overly general hypothesis.
Since the requirements for a conjunct to be chosen for each positive are very tight, it
may sometimes happen that such specialization strategy fails as well as counterfactual
before it. In such cases, the overly general hypothesis is simply replaced by the lcs of
its covered positive example representatives, such lcs is added as a disjunct to the main
generalization and the algorithm chooses another seed starting again the inner loop.

5 Prototype Description and Preliminary Evaluation

We developed a preliminary prototype that implements the methodology in Sect. 3. We
thought that one of the most suitable settings could be a Multi-Agent System. Indeed,
it seems natural to think of communicating actors as autonomous agents that have their
own knowledge bases and wish to dialogue with each other. In such environments, it
is very likely that there is no common ontology to commit to; this can offer plenty of
possible scenarios in which ontology alignment can be evaluated.

Here we present the prototype in terms of its architecture and we propose an eval-
uation on some simple alignment problems that are characteristic (in our opinion) of
typical situations that can happen in such settings. We conducted such simple tests in
order to single out the direction towards which a mature system should move as well as
the practical issues that arise. Therefore, these tests are not to be considered a thorough
empirical evaluation, which will follow once robust solutions for the issues described
in the following have been devised.

Our prototype is called SELA (Self Explaining and Learning Agents) and consists
of a software agent (namely SELAAgent) that has two main tasks: it can either ex-
plain concepts, providing examples and validating classifications, or it can learn con-
cepts from examples acquired by some other SELAAgent and ask for validations of
what it learned. The agent has been developed within the framework provided by the
Java Agent Development Environment (JADE http://jade.tilab.com) and the alignment
methodology has been designed as a protocol as sketched in Fig. 1.

We can describe it briefly as follows. A SELAAgent A (the teacher) initiates a con-
versation with another SELAAgent B (the learner) asking whether B knows the con-
cept a : C which is what A wants to speak about. B can confirm it knows a : C or
disconfirm, stating it does not. In case of disconfirmation A provides some individual
names that are instances of a : C and some names of counterexamples of a : C (indi-
viduals in the extension of the complement of a : C). After receiving the names of the
instances (both examples and counterexamples)B takes into account only the subset of
individuals it owns in its ontology. Then B starts learning as described in the previous
Section. Notice that instance descriptions are not to be provided by A, but they are built
on the assertions that B has about such individuals. When learning terminates, B has a
definition of a : C in terms of its ontology vocabulary. As we shall see in the following,



Towards an Inductive Methodology for Ontology Alignment 1069

Fig. 1. SELA Alignment Protocol

this needs not to be exactly corresponding to the definition of a : C that is actually
stored into the ontology of A. B then, has somehow to be sure that its idea of a : C
corresponds to the one of A. This can be accomplished to some extent by means of
the cyclic remainder of the protocol. B chooses some individuals and classifies them
employing the definition of a : C it has learned. Then, it sends the classification results
to A that validates them. A answers with validation results and then B can fine-tune
(see Def. 4.1) its definition a : C. The loop stops when the number of discordances
between B classifications and A validations is below a given threshold.

5.1 Artificial Ontologies

We prepared two sample pairs of ontologies. The first pair is made of two ontologies that
are structurally identical but for concept and property names. In fact, we prepared an
ontology in the academic domain with an English nomenclature and then its translation
in Italian (see Fig. 2 for its layout in Protégé).

The second pair presents a different situation. We started from a common ontology
in a fancy restaurants domain that deals with food, meals, and courses. Actually, it is
a simplified version of the famous food ontology sample on the W3C website.4 Then
we derived two ontologies containing both the concept called HighQuality defined,
however, in two different namespaces (in order to represent two different points of views
for it). One deals with HighQuality from the perspective of a particular restaurants
defining it as:

HighQuality ≡ Meal  ((∃hasCourse.Starter  ∃hasCourse.MainCourse
∃hasCourse.Dessert) � ∃hasCourse.(∃hasDrink.Alcoholic))

4 http://www.w3.org/TR/2002/WD-owl-guide-20021104/food.owl



1070 I. Palmisano et al.

Fig. 2. English and Italian Academy ontologies

The other one defines its notion of HighQuality from the hypothetical perspective of
a dietician as:

HighQuality ≡ Meal  (∀hasCourse.(∀hasDrink.(¬Alcoholic)  ∃hasFood(
LowCaloric � NegligibleCaloric �ModerateCaloric)))

It is obvious that there are two different alignment purposes and situation. Indeed, in
the former, the process should detect that there is a complete correspondence among the
entities of the two ontologies. In the latter, there is not a 1-1 mapping between the two
conceptualizations of HighQuality but it could be interesting if each party (restaurant
owner and dietician) could build up, in their respective knowledge base, the point of
view of their counterpart during the dialogue.

As concerns the mapping between the two academic ontologies, we report briefly
that for each concept the learning SELAAgent was able to build up a definition that
was equivalent to the corresponding translated concept in its own ontology, even when a
few instances where exchanged. Such a good result depends obviously on the structural
similarity of the ontologies: the individuals in common between the two ontologies have
the same structure but for the names of the relations; moreover, the A-box contains all
the relevant information for the individuals, which in general may not be the case (see
Sect. 5.3 for further details).

In the restaurant domain the results were not as satisfactory as the previous case.
Consider the more likely scenario in which the agent with the restaurant owner version
of HighQuality tries to learn the dietician’s concept of HighQuality. It learns a defini-
tion that is more specific than the desired one though it never required tuning in all the
iterations we ran through. This is likely due to the limitedness of the number and espe-
cially of the variety of examples. It is indeed well known in inductive learning that too
few examples not so different among each other may yield a phenomenon called over-
fitting. Overfitting occurs when the learned definition is too adherent to the training set
used for building it up and hence suffers for poor predictive accuracy on future unseen



Towards an Inductive Methodology for Ontology Alignment 1071

examples classification. Future experiments will aim to devise also suitable strategies
for choosing examples and, above all, counterexamples. As a matter of fact, a care-
ful selection of counterexamples could improve the effectiveness of learning. Winston
[17] claimed the usefulness of near-misses counterexamples that are instances that very
close to the concept to be learnt but not belonging to its extension. In our case, we could
exploit the taxonomy for individuating the most likely near-misses: e.g. the instances of
the superconcepts of the concept to be learned (or those of its sibling concepts) that do
not belong to it.

5.2 Ontology Alignment Evaluation Initiative Ontologies

Our second test is based on two ontologies taken from the Ontology Alignment
Evaluation Initiative test set for 2005, namely onto101 and onto2065; onto101 is
the reference ontology for the contest, which consists on a set of ontologies that are
modifications of onto101 (e.g., hierarchy flattening, deletion of concepts, translation of
names, URIs, comments, or deletion of comments). In particular, onto206 is the French
translation of onto101, where all local names of the defined classes and properties have
been translated from English to French. These ontologies consist of 39 named classes,
24 properties and over 70 individuals, of which about 50 are identified by an URI; these
individuals have the same URI in both onto101 and onto206, and this enables us to ap-
ply our algorithm to them; in particular we assigned onto101 to one of our agents (the
teacher) and onto206 to the other agent, then we made the teacher agent try to teach
the definition of the http://oaei.inrialpes.fr/2005/benchmarks/101/onto.rdf#Institution6

concept; however, the resulting definition:

∃adresse.Adresse  Éditeur

Fig. 3. inria206:Institution Definition

5 Full test set at http://oaei.ontologymatching.org/2005/; as a side note, it is necessary to operate
some corrections on the ontologies, since there are some small errors: the literals for year, month
and day should be typed with the corresponding XSD types, but they are plain literals in both
ontologies, and the DIG reasoner we use (Pellet, http://www.mindswap.org/2003/pellet/) finds
the ontology inconsistent.

6 Namespaces will be shortened in the following.



1072 I. Palmisano et al.

is poor w.r.t. the original definition (Fig. 3) and moreover it is overfitting (being Éditeur
is not necessary to be Institution); while the second issue only depends on the available
individuals (only two individuals of class Éditeur were available in the ontology), the
first issue depends on the targeted DL, since the expressivity of the ontologies we use
here is greater than that of the language our learner uses (specifically, cardinality restric-
tions are not handled). This example clearly shows that at least cardinality restrictions
should be added to the representation language of the algorithm in order for it to be
useful in real world scenarios.

5.3 ACM and DBLP Test Case

Our last test case has been built from ACM SIGMOD dataset7 and from DBLP RDF
dump8; the ACM dataset is an XML file with associated DTD; in order to translate it
into OWL, we designed a very small ontology reflecting the DTD, and then produced
the OWL ontology we needed.

In order to find common individuals, we analyzed the available data and found that
a good way to identify matching individuals for this setting is to look at the paper
titles; this enabled us to choose a subset of the DBLP individuals (amounting to roughly
700 individuals) that were described both in terms of the DBLP ontology and of our
homemade ACM SIGMOD ontology (both sketched in Fig. 49; the learning problem
here consisted in finding the definition for the concept Article in the ACM SIGMOD
ontology; the definition we obtain for Article in the original ACM SIGMOD ontology
is:

sigmod:Article  ∃sigmod:author.�
while the definition w.r.t. the DBLP ontology is:

dblp:Article  ∃dblp:url.�  ∃dblp:ee.�
The definitions appear to be very short; in fact, this depends on the two chosen on-

tologies being very small, and having mainly datatype properties, which are not useful
in the learning algorithm.

At the time of writing, no quantitative tests have been run on this dataset; the reason
is that, being all the individuals in DBLP and ACM SIGMOD almost equal from the
structural point of view, a very small amount of examples is enough to converge on the
presented definitions. These definitions score 100% precision on the presented datasets,
but the reason for this high performance lies in the regularity of the dataset (the actual
number of examples used in the tests is 10 positive examples and 5 negative examples
out of 700 available individuals). Also, the fact that so many properties in real ontolo-
gies are defined as datatype, even when they in fact represent entities (e.g. dblp:author

7 Available at http://www.cs.washington.edu/research/xmldatasets/www/repository.html
8 Available at http://www.semanticweb.org/library/
9 It is worth noting that the DBLP RDF dump needed a little data cleaning, since it was not

completely conformant RDF; in particular, many URIs in the data contained spaces, that needed
handling before being submitted to the reasoner.



Towards an Inductive Methodology for Ontology Alignment 1073

Fig. 4. ACM SIGMOD and DBLP Ontologies

is a datatype property, while usually an author of a paper is a person, and so is typi-
cally modeled as an individual) raises the idea that building more structured datasets is
necessary before attempting a complete empirical evaluation of the system.

¿From the computational complexity point of view, it is well known that OWL DL
reasoning algorithms have exponential worst-case complexity10; however, most real
world ontologies do not exploit all DL constructors, and therefore reasoning with these
ontologies can be done in reasonable time. We conducted a very preliminary test on
the DBLP dataset presented, where we sliced the available examples in 10 disjoint sets
and ran the learning algorithm separately; each learning problem was made up of 50
positive examples (randomly chosen) and 5 negative examples, and the elapsed time
for building the definition is around one minute for each one of the ten trials. The last
trial was made using all individuals at once, so that there were 500 positive examples
and 50 negative examples; in this case, the required time is 80 seconds. So far, then, the
number of examples seems not to hamper the practical use of the algorithm.11

6 Conclusions and Future Work

Giving solutions to the ontology alignment problem is one of the most compelling is-
sues in the roadmap to realize the Semantic Web as a real-world infrastructure. We
recalled the motivations for the investigation on this subject and underlined our own
viewpoint on alignment. In such a vision, we prefer to slightly stray from the most
widespread idea of a rigid centralized (top level) ontology and to adopt on-demand
partial mappings among ontologies owned by the parties in play. We have proposed
a concept learning algorithm to accomplish this that works under assumptions justi-
fied throughout the paper. We have illustrated the prototype implemented these ideas
together with some preliminary results using limited datasets.

10 http://www.cs.man.ac.uk/ ezolin/logic/complexity.html
11 Note that this last test was designed as a ten-fold cross validation experiment, however the results

of the test seem too influenced by the specific dataset to be taken into account to measure the
performance of the algorithm in terms of precision and recall, and that’s the reason they’re not
presented here in detail.



1074 I. Palmisano et al.

We plan to improve our work along the following directions. First, we should evalu-
ate suitable concept similarity measures for assessing the closeness of learned concept
definitions to the pre-existing conceptualizations in the ontologies to be aligned. We will
also investigate on methodologies for aligning properties and not only concepts, using
techniques that are very similar to those employed in tools like GLUE (see Sect. 2).
Last, but not least, we will evaluate the impact of different strategies for example selec-
tion in terms of the quality (effectiveness and/or efficiency) of the induced definitions
and, therefore, of the computed alignment themselves.

References

[1] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
[2] Gruber, T.R.: A translation approach to portable ontology specifications (1993)
[3] Noy, N.F.: Tools for mapping and merging ontologies. In Staab, S., Studer, R., eds.: Hand-

book on Ontologies. International Handbooks on Information Systems. Springer (2004)
365–384

[4] Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to map between ontologies
on the semantic web. In: WWW. (2002) 662–673

[5] Doan, A., Domingos, P., Halevy, A.Y.: Learning to match the schemas of data sources: A
multistrategy approach. Machine Learning 50 (2003) 279–301

[6] Natalya F. Noy, M.A.M.: The prompt suite: interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies 59 (2003) 983–1024

[7] Ehrig, M., Staab, S., Sure, Y.: Bootstrapping ontology alignment methods with apfel. In
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: International Semantic Web Con-
ference. Volume 3729 of Lecture Notes in Computer Science., Springer (2005) 186–200

[8] Mitchell, T.M.: Concept Learning and General to Specific Ordering. In: Machine Learning.
McGraw-Hill, New York (1997) 20–51

[9] dAmato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive de-
scription logics. In: Proceedings of CILC 2005. (2005)

[10] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The De-
scription Logic Handbook. Cambridge University Press (2003)

[11] van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Existence and nonexistence of complete re-
finement operators. In Bergadano, F., Raedt, L.D., eds.: ECML. Volume 784 of Lecture
Notes in Computer Science., Springer (1994) 307–322

[12] Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. Volume
1228 of LNAI. Springer (1997)

[13] Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics. In Cussens,
J., Frisch, A., eds.: Proceedings of the 10th International Conference on Inductive Logic
Programming. Volume 1866 of LNAI., Springer (2000) 40–59

[14] Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive
induction of terminologies from metadata. In McIlraith, S.A., Plexousakis, D., van Harme-
len, F., eds.: Proceedings of the 3rd International Semantic Web Conference, ISWC2004.
Volume 3298 of LNCS., Springer (2004) 411–426

[15] Vere, S.: Multilevel counterfactuals for generalizations of relational concepts and produc-
tions. Artificial Intelligence 14 (1980) 139–164

[16] Teege, G.: A subtraction operation for description logics. In Torasso, P., Doyle, J., Sande-
wall, E., eds.: Proceedings of the 4th International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann (1994) 540–550

[17] Winston, P.: Learning Structural Descriptions from Examples. MIT (1970) Ph.D.
dissertation.



Combining Web-Based Searching with Latent Semantic
Analysis to Discover Similarity Between Phrases

Sean M. Falconer1, Dmitri Maslov2, and Margaret-Anne Storey1

1 University of Victoria, Victoria BC V8W 2Y2, Canada
{seanf, mstorey}@uvic.ca

2 University of Waterloo, Waterloo ON N2L 3G1, Canada
dmitri.maslov@gmail.com

Abstract. Determining semantic similarity between words, concepts and phrases
is important in many areas within Artificial Intelligence. This includes the gen-
eral areas of information retrieval, data mining, and natural language processing.
Existing approaches have primarily focused on noun to noun synonym compari-
son. We propose a new technique for the comparison of general expressions that
combines web searching with Latent Semantic Analysis. This technique is more
general than previous approaches, as it is able to match similarities between
multi-word expressions, abbreviations, and alpha-numeric phrases. Consequently,
it can be applied to more complex comparison problems such as ontology
alignment.

1 The Problem

In many domains and applications, understanding semantic similarity, or the seman-
tic relationships between expressions is an important problem. With some applications,
one may be interested in direct synonymy, and often thesauri like Roget’s thesaurus or
WordNet [9] are used to try to solve this problem. However, there are different types
of semantic relationships one may be interested in. For example, besides direct syn-
onymy, one may be interested in correlations between a term and an instance of that
term (e.g. “Human” to “Albert Einstein”), or possibly in an association (e.g. “Cooking”
and “Food”). Previous work has largely been task or domain specific, such as limited to
English synonym matching or restricted to a domain such as medical terms. In contrast,
we are interested in the general problem of calculating expression similarity and we
were led to this problem through our interest in ontology alignment.

An ontology is a conceptualization of a domain [7]. This conceptualization consists
of a set of terms with certain semantics and relationships [18]. Generally, the terms
are related by the is_a relationship, however, other relationships such as has_a often
exist. In ontology alignment, one wants to map one ontology to another by matching like
terms between the two ontologies so that the ontologies can be merged or compared.

Often, ontology alignment tools combine various heuristics to determine similarity
between terms. With domain specific ontologies, synonym matching is sometimes per-
formed using databases like UMLS (Unified Medical Language System) [12]. However,
it is difficult to apply synonym matching in general, as most existing techniques either
depend on a specific domain of knowledge or are restricted to a particular language.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1075–1091, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



1076 S.M. Falconer, D. Maslov, and M.-A. Storey

Moreover, other semantic relationships exist within the ontologies that are equally im-
portant to map and understand. For example, by understanding the has_a relationship,
the internal structure of terms can be mapped. We are interested in human guided ontol-
ogy alignment, where the alignment algorithm attempts to propose likely matches to the
user. We feel that existing techniques can benefit by considering expression similarity
along with their other similarity calculations when proposing possible like or related
terms.

We propose a data driven approach to solving this problem, which uses the novel
idea of web searching to capture relevant instances or data for the terms of interest.
To compare two expressions, our algorithm first performs a search using two queries
corresponding to the expressions. The results returned represent highly compact and
highly relevant instances of the expression. Generally speaking, if two expressions are
not related, their corresponding search results have very little in common. Alternatively,
if the items are associated with each other, the texts must have certain commonality.
This is based on the idea that if the two ontologies in question were used to annotate
web search results, then the annotations between matching terms should have a high
probability of overlapping.

The results of the web searches get processed by the SVD (Singular Value Decom-
position) matrix technique [13]. This is done to change the actual number of each single
word occurrence in a single document to its expected number of occurrences based on
the relative importance of this word in the given document. The numeric result for se-
mantic similarity is returned using the cosine measure between the vectors of expected
word occurrences. For multiple word terms we perform a linear combination of the
terms to generate a single vector representing the entire expression.

The advantage of using web search, specifically the Google search engine, is that
Google has access to billions of indexed pages in various languages and on various
topics. This means that the algorithm is not restricted to a single domain, a single lan-
guage, and to static information that cannot be easily extended. All of these are vitally
important for general ontology alignment. Also, by using only the title of search results
along with the page description for a small number of results, we are able to use far
less data than traditional Latent Semantic Analysis (LSA), as the data is highly relevant
to the given expression. Moreover, by processing smaller amounts of information, our
algorithm is able to perform these comparisons quickly, which is important for large
ontologies. Finally, searches can also be guided to provide clues as to the relationship
between the expressions being compared, such as synonymy versus antonymity.

1.1 Organization of the Paper

The remainder of the paper is organized as follows. In the next section we discuss the set
of requirements for a good semantic matcher, which is based on the analysis of common
types of term matching divergences. It is followed by a summary of the related work,
considered in the following two directions: synonym matchers and ontology alignment
algorithms. Afterwards, we formulate our algorithm, LSA-IR, and discuss particulars
of its implementation. Next, we introduce the test data sets and follow this with the
section describing the experimental results. In the latter, we show our tool’s performance
in comparison to other techniques, discuss the results, and examine the limitations of



Combining Web-Based Searching with Latent Semantic Analysis 1077

our approach. We conclude with a short summary and a discussion of future research
directions.

2 Developing Requirements

2.1 What Causes Alignment Problems?

There are many causes to alignment problems, and in general, it is a very difficult prob-
lem to solve. Ontologies can be developed by different groups of individuals and later
those groups may want to consolidate their separately built ontologies. Separately built
ontologies will most likely have terminology divergences as well as structural ones.
For example, in [12] the authors attempt to align two anatomy ontologies, FMA and
CRM. FMA contains approximately 59,000 concepts while CRM contains approxi-
mately 24,000. Even after the authors performed some basic normalization on the con-
cept names (e.g. remove camel case and split concatenated words), there were only
1834 string matches.

Problems also develop between different versions of an ontology and these versions
may later need to be compared or merged. Terminologies may have been enhanced or
replaced between versions, making the merge or comparison difficult to perform.

In Table 1 we characterize some of the types of divergences or problems that may
occur. This characterization was partly inspired by the divergences discussed in [22],
which dealt with data divergences between different data sources where objects are rep-
resented by terse English phrases. These problems help drive our requirements which
we discuss next.

Table 1. Characterization of term matching divergences

Type Example/Explanation
Structural differences Differences in hierarchy or internal structure
Missing information Information contained in ontology not available in other.
Misspellings

Dropped, transposed MICROSOFT vs MICOSOFT, MICROSOFT vs MICORSOFT,
substitutions MICROSOFT vs MIKROSOFT
Common mispellings APPARENT vs APPARANT
Variant spellings MODELLING vs MODELING
Phonetic spelling THEIR vs THERE

Synonyms DOG vs CANINE
Abbreviations FEMALE vs FML
Acronyms HTML vs HYPERTEXT MARKUP LANGUAGE
Spelling, punctuation, spacing and casing COLOR vs COLOUR

ISSN vs I.S.S.N
PUBLISHED BY vs PUBLISHED BY vs “Published by”

Prefixes xyzHUMAN vs HUMAN
Root forms VALVES vs VALVE, RECEIVE vs RECEPTION
Alpha/Numeric PI vs 3.141592
Technical/Common DOG vs CANIS FAMILIARIS
Word order THESIS PHD vs PHD THESIS



1078 S.M. Falconer, D. Maslov, and M.-A. Storey

2.2 Requirements

In Table 1 we characterize different types of data divergences that can occur between
two related ontologies. We use these characterizations to help build a set of require-
ments that any expression comparison technique for terminology alignment must
satisfy.

– Multi-lingual. Any expression comparison technique cannot be restricted to a sin-
gle language.

– Multi-domain. Expression comparison cannot be restricted to a single domain,
as this is far too limiting for general approaches. The technique must be able to
potentially support any domain.

– Multi-word expressions. Must be able to support comparison between multiple
word expressions.

– Dynamic. Must be dynamic, in that we do not allow it to be restricted to static data
that cannot be easily extended.

– Multiple-relation comparison. Cannot restrict similarity comparison to simply
synonyms, other relationships are also important.

– Misspellings: Must be able to handle the various types of misspellings described
in the ontology divergence table.

– General expressions. Must be able to compare similarities between various types
of expressions, e.g. alpha/numeric, non-noun phrases, abbreviations, acronyms, etc.

3 Related Work

In this section we briefly discuss related work. This discussion is partitioned into several
topics that appear in separate subsections. In the first, we discuss work that has been
conducted on the comparison of synonyms. In the second, we discuss existing ontology
alignment techniques and discuss how our technique relates to existing approaches.
Finally, we compare the set of existing synonym matching techniques to our list of
requirements.

3.1 Synonym Matching Approaches

There have been various approaches applied to the problem of matching synonyms. La-
tent Semantic Analysis (LSA) [10], Roget Thesaurus [9], statistical techniques such as
PMI-IR [23], product rule [24], and WordNet similarity measurements [9], [16] have all
been applied to this problem. The LSA technique attempts to collect statistics about the
relative frequency of a word and its neighboring words. It is based on the assumption
that two words are similar if they have similar neighboring content words. One of the
limitations of LSA is that it depends on preprocessing a large set of text to build a static
representation of words and their relative frequencies. Extending this representation re-
quires re-running the preprocessing. Thus, terms that do not appear in the preprocessed
text cannot be later compared. We discuss this method in more detail in the description
of our algorithm.



Combining Web-Based Searching with Latent Semantic Analysis 1079

Similar to LSA, PMI-IR is based on co-occurrence of words, however, it computes
this in a completely different manner. Rather than preprocessing documents and com-
puting relative frequencies, it applies proximity based web searching and Pointwise
Mutual Information (PMI). PMI comes from Information Theory, and it is a technique
for calculating the similarity between two words or possibly a word and a document.
In PMI-IR, web searching is applied to calculate statistics about the words in ques-
tion. Two searches are carried out on the Altavista search engine and the number of
hits(query1) for the query is used in the calculation. For example, if we wanted to
compare term1 to term2, PMI-IR would perform the following searches and calcula-
tion.

sim(term1, term2) =
hits(term1 NEAR term2 AND NOT ((term1 OR term2) NEAR “not”))

hits(term2 AND NOT (term2 NEAR “not”))

The term NEAR is a keyword in the Altavista search engine that only reports sites
where the two words separated by the NEAR keyword appear within 10 words of each
other.

Similar to PMI-IR, another approach called LC-IR (local context-information re-
trieval) [8], makes use of the Altavista search engine. While PMI-IR measures simi-
larity based on the proximity of the two words in question, LC-IR restricts searches to
results where the two words are exactly adjacent to each other. By adding this restric-
tion, the calculation and search queries are simplified and LC-IR slightly outperforms
PMI-IR on the standard synonym data sets.

The product rule is a hybrid approach that uses several individual similarity modules
and combines their results into a single calculation. For individual modules, it makes use
of LSA, PMI-IR, synonym lists, and a Connector that uses Google summary pages to
estimate stem-choice similarity. Each module is trained on a training set and a weight
for that module is calculated based on the results from the training set. The weight
represents the likelihood that the answer given by the module is correct and is used by
the product rule when combining the individual calculations. On the TOEFL synonym
test, the product rule has the best known result.

Thesauri are sometimes used for calculating semantic similarity. In the Roget The-
saurus work, paths between individual words are used to calculate similarity. The fur-
ther apart the words, the smaller the similarity. Similar approaches have been applied
to WordNet. These techniques are both limited to calculating synonymy, and WordNet
primarily supports only noun to noun comparison. Also, with thesauri, many concepts
that could appear in an ontology may not be present due to the thesauri language or
domain. Moreover, alpha/numeric comparisons such as PI to 3.14159, are generally not
supported.

3.2 Ontology Alignment

As in synonym comparison, there has been a variety of approaches used to automati-
cally or semi-automatically perform ontology alignments. For example, Euzenat et al.
discuss over 20 different algorithms/tools in [6]. Some of the most widely used methods
are based on heuristic techniques.



1080 S.M. Falconer, D. Maslov, and M.-A. Storey

Heuristics are generally applied at two different levels, the first being to compute
syntactic similarity and the second is to measure structural similarity. Both Chimera [1]
and PROMPT [14] use syntactic similarities to make suggestions to the user. They first
run an ontology alignment algorithm that attempts to find exact matches on concept
names, prefixes, suffixes, or word roots. They then use the user’s feedback about the
suggestions to make further suggestions based on structural similarities.

Structural similarity can be partitioned into two classes: internal and external struc-
ture [6]. Internal structural comparisons measure similarity between concept properties,
such as cardinality, range, and symmetry. On the other hand, external structural com-
parisons attempt to find similarities in the is_a relationship structure between the two
ontologies. Many hybrid approaches exist, such as QOM [5], which employ a large
number of heuristics and use a weighted sum to normalize all similarity measurements
into a single metric.

Another, less widely used approach is the so called instance-based or instance-level
approach [2]. Here, concepts are compared based on their instances rather than their
representation. An instance is an actual value of a concept, for example, an instance of
a concept “Professor”, would be an actual Professor, such as Dr. Donald Knuth. Con-
cept similarity can then be measured by comparing shared instances. Another way to
measure the similarity for an instance-based approach is to apply machine learning tech-
niques to build classifiers for concepts. The Glue system is an example of this, it builds
learning classifiers for concepts and then evaluates the joint probability distribution of
the assigned instances [6].

The semantic similarity technique that we are proposing is more closely related to
the instance-based approach to ontology alignment. However, as mentioned, ontology
alignment is a very difficult problem and it is unlikely that a single approach is general
enough to capture all possible matching scenarios. Tools like PROMPT could be com-
bined or extended to use our proposed technique in order to improve the suggestions
made to the user.

3.3 Requirements Table

In Table 2, we compare the previously discussed synonym matchers to our list of
term matching requirements. Although each approach partially fulfills the requirements,
none of the approaches completely satisfy every criteria that we established as impor-
tant for semantic comparison in term alignment problem. Of course, this is not terribly
surprising as none of these approaches were designed with these requirements in mind,
they were designed to solve synonym tests. PMI-IR is the closest to satisfying our re-
quirements, and could possibly be extended to meet the requirements, however the au-
thors did not discuss multiple word or multiple types of comparison as this was not
the focus of their work. Also, PMI-IR is not publically available so we could not ver-
ify whether this extension is possible. Altavista has also changed considerably over the
last few years and PMI-IR may not work with the latest Altavista. Finally, on standard
synonym tests, the method we developed (LSA-IR) significantly outperforms PMI-IR.
LSA-IR is described in the next section.



Combining Web-Based Searching with Latent Semantic Analysis 1081

Table 2. Requirement satisfaction for existing work

Technique Multi-lingual Multi-domain Multi-word Dynamic Multi-comparison Misspellings General
LSA

√ √ √ × √ × √

Roget × √ × × × × ×
PMI-IR

√ √
*

√
*

√ √

LC-IR
√ √ × √ × √ √

WordNet Sim × √ × × × × ×
Product rule

√ × √ √ × √ √

LSA-IR
√ √ √ √ √ √ √

√
- satisfied, × - not satisfied, * - could possibly be extended, but not discussed

4 The Algorithm

Our algorithm combines web searching and LSA, so following the tradition of PMI-IR
and LC-IR, we refer to our technique as LSA-IR. By adapting LSA to use web search
results rather than a static collection of text, the method is dynamic and not limited
to preprocessed data. Also, since the number of results is kept small, and therefore
the corresponding text to process is relatively small, LSA can be performed quickly
and immediately. Moreover, limiting LSA to processing smaller portions of text helps
improve LSA accuracy for certain applications. The authors of [15] introduced a two
stage LSA algorithm for finding word aliases. The authors found that when LSA is
applied to a general text collection, the most similar words to any given word often do
not correspond to proper aliases. In the two stage approach, the authors perform LSA a
second time, this time instead of using the general text documents, the documents are
constructed by extracting small windows of text that surround the words of interest. That
is, the second stage only considers the local context around occurrences of words rather
than the global context with respect to the entire document. This extension to traditional
LSA greatly improved the performance for extracting word aliases. Similarly, in our
tool, since we only process link titles and Google’s content summary, we are essentially
considering the local context of the word.

The input for our algorithm is a pair of ASCII character stringsString1 and String2
along with optional information that indicates the type of comparison to be made. An
example of the type of comparison may be to find the similarity between strings inter-
preting them as synonyms, antonyms, or homonyms. Such a comparison is guided by
a user who points the search in a specific direction. For instance, when one looks for
a synonym dependence between two expressions, the query entries are “String1 syn-
onym” and “String2 synonym”. Similarly, with antonym dependence, the query entries
are “String1 antonym” and “String2 antonym”. Both the “synonym” and “antonym”
context help guide the search when the type of comparison is known.

As a more concrete example, consider the situation where we want to compare “dog”
to “canine” as synonyms. We can guide the type of search results by adding “synonym”
to the search queries, thus searching for pages containing “dog synonym” and “canine
synonym”. This context acts as a heuristic which restricts the search results to certain
types of websites. Our technique is based on the assumption that similar expressions
should yield similar search results, and we calculate this similarity by inspecting the
local context as generated by the results.



1082 S.M. Falconer, D. Maslov, and M.-A. Storey

Moreover, other restrictions are possible, such as restricting the search to a specific
web site, ignoring web pages with certain words, or forcing exact phrase matches. While
we did not experiment with the other guidelines for the search, it is in our future plans
to do so. If no comparison type is specified we assume a general association compari-
son must be made and prepare the search queries as pure input strings “String1” and
“String2”.

The next step is using a web search engine to search for the texts related to the
prepared search strings. Search engines have access to billions of indexed web pages,
and this provides a very rich data set to work with. Moreover, almost any concept can
be found in a variety of different contexts and possible meanings. Our choice of the
search engine is Google, which is based partly on the free availability of their search
API and also due to Google currently being the most widely used search engine [20].
The result of the search is truncated at the first K hits with all being treated as equal.
As discussed in the next section, in our experiments we use K = 75. From our initial
experiments, this number of search results provides enough generality to find how the
terms are being used, and yet is small enough to allow for fast data analysis.

Each of theK search results is treated as a separate document and the total number of
documents in both searches equals 2K . We next stem the words in all 2K documents
using Porter’s Java implementation [17] and delete the most popular words carrying
minimal information (stop words). Our list of stop words consists of around 400 words
and includes such words as “the”, “a”, “of”, “in”, etc. The remaining words are used to
form a matrix in which there are 2K columns that correspond to each of the returned
documents and N strings with each corresponding to a single stemmed word that ap-
pears at least once in the set of documents. The column vectors are then normalized,
meaning we treat all the documents as equal.

The matrix element mi,j , where 1 ≤ i ≤ N and 1 ≤ j ≤ 2K is the number of
occurrences of the i-th word in the j-th document of the first web search if j ≤ K and
in the (j − K)-th document of the second web search when j > K . We weight each
element, mi,j , as log (mi,j + 1). This is a common practice in information processing
applications [3]. We next process this matrix using the Singular Value Decomposition
(SVD).

SVD [10], [13] is a popular and efficient technique for text analysis. Its input is a
matrix M of word occurrences in the documents constructed as discussed above. This
matrix gets decomposed into the product of three matrices M = U D V T , where
matrices U and V have orthogonal columns such that UT U = V V T = I and D is
a diagonal matrix. Keeping a percentage of the largest diagonal elements in matrix D
transforms it to D′. Next, we construct the matrix M ′ as a product M ′ := U D′ V T .
MatrixM ′ differs from the original matrixM . A nice property ofM ′ is that an element
m′i,j estimates the number of occurrences of the i-th word in the j-th document. The
optimal number of dimensions that must be kept for the best performance is unknown
and must be determined through experiments. In our evaluations we chose to keep 70%
of the largest coefficients in the diagonal matrix. The details of how we arrived at this
percentage are explained in the next section.

Once the SVD transformation is completed, we measure the similarity between the
two input strings String1 and String2. In the case of single word items we compare



Combining Web-Based Searching with Latent Semantic Analysis 1083

the vector of the expected word occurrences of String1 with the vector of the expected
occurrences of String2. The vectors are constructed using matrix M ′ by considering
the strings corresponding to the words String1 and String2. We use the cosine mea-
sure defined as follows

cos(a, b) :=
(a · b)

‖a‖ ∗ ‖b‖
.

The cosine measurement defines if the two vectors point in the same direction (meaning
if the items are equally used in the similar contexts) without caring which of the two
vectors is longer (meaning which of the two search strings is a more commonly used
expression/concept/term). When the cosine is close to zero this means that the two items
are rarely used in the same contexts and thus we consider such items unrelated.

In the case when the strings String1 and String2 are composed with multiple words
we first stem each word and delete common words from both strings. This results in the
construction of strings String1′ and String2′. If a word appears in both String1′ and
String2′, we apply a weight to this word in order to reduce its importance. For exam-
ple, if we are interested in the similarity between “computer network” and “computer
monitor”, we care more about the words “network” and “monitor”, than “computer”
since this term appears in both strings. Then, we add the vectors corresponding to the
expected occurrences of all words in String1′, and do the same with the words from
String2′. Finally, the result is returned as a cosine between these summary vectors.

5 Data Sets

In this section we describe the data sets used in our experiments. The first data set
consists of two biomedical ontologies, the NCI (National Cancer Institute) thesaurus
and SNOMED-CT (The Systematized Nomenclature of Medicine). The second data set
consists of three popular synonym tests that have been used by previous researchers.

5.1 Ontology Data

As mentioned, the ontology data comes from the NCI thesaurus and SNOMED-CT. The
authors of [19] used an automated heuristical approach to map ontological terms from
the NCI thesaurus and SNOMED-CT to unstructured keyword data within the Stanford
Tissue Microarray Database (TMAD). The authors were interested in being able to
represent the TMAD data in a structured way, such as in an ontology. They were able
to successfully map 80% of the TMAD unstructured annotations. The authors mention
that the mapping from the NCI thesaurus to TMAD and SNOMED-CT to TMAD could
be used to align terms from the NCI thesaurus to SNOMED-CT.

Using the data generated in [19], we manually extracted 60 expression pairs. Each
pair consists of one expression from the NCI thesaurus and its corresponding equivalent
expression from SNOMED-CT. The expression pairs were classified based on the types
of divergence discussed in Table 1. The primary type of divergence is “Missing Infor-
mation”, that is, one ontology used a more descriptive expression for the term but the
two expressions had some overlap in the terms used. The data set also contains abbre-
viation matches, such as “Malignant Peripheral Nerve Sheath Tumor” to “MPNST”,



1084 S.M. Falconer, D. Maslov, and M.-A. Storey

synonym matches, such as “Neoplasm” to “Tumor”, spelling variations, punctuation
changes, and changes in the word order. There are no exact string matches.

In the test, we first normalize the expressions by downcasting all characters, replace
underscores with a space, and trim whitespace. We then compute similarities between
all pairs of expressions, that is, we compute all 60×60 (= 3600) expression similarities.
Afterwards, we greedily select matches by pairing off the two expressions with the
highest similarity, then we eliminate these two expressions from further consideration,
and continue until all expressions have a match.

5.2 Synonym Data Sets

Although we did not develop LSA-IR with the specific purpose of synonym mining, we
chose to evaluate it against some standard synonym data sets in order to compare with
existing methods. The data sets used were 80 questions from TOEFL (Test of English
as a Foreign Language) [10], 50 questions from ESL (English as a Second Language)
[21], and 300 questions from RDWP (Reader’s Digest Word Power Game) [4].

The TOEFL and RDWP tests have the same structure. For each question they consist
of a single word and four possible matches. One of the four possibilities is a synonym of
the given word. The ESL test is slightly different, each question consists of a sentence
where the word of interest is used in some context, and there are also four possible
matches.

For both the TOEFL and RDWP questions, we compare the given word to all four
possibilities and choose the word that yields the highest similarity value. The Google
search was guided by using a context of “synonym”, that is, to compare “String1”
to “String2”, we perform the following two Google searches, “String1 synonym” and
“String2 synonym”. The similarity is returned as the median score between this search
and searches “String1” and “String2”.

With the ESL data set, we first preprocess the questions to extract a single word
context. We do this by first removing stop words from the questions, and then for each
word wi near the word of interest w, we compute sim(w,wi). Here near is any word
within three words of w. The context becomes the word wi with the highest similarity
value tow. As an example, consider the ESL question “Don’t forget to vacuum the [rug]
before they come home.” The word of interest, w = “rug”, and the term “vacuum” has
the highest degree of similarity to “rug” according to LSA-IR, thus this becomes the
context. For each of the four possible synonyms, we compute the similarity between the
word of interest and the possible answer using the “synonym” context added together
the similarity between the extracted context with the word of interest and the possible
answer. The answer with the highest similarity is chosen as the correct synonym.

6 Algorithm Parameters

In the discussion of the algorithm we introduced two constants, the number of search
queries K , and the percentage of the diagonal elements of the matrix D that we keep.
We must now choose these parameters for optimal performance. Our intention is to keep
the number of search results as small as possible such that the amount of processing is
kept small, yet yields a good performance. The smallerK is, the less the interaction with



Combining Web-Based Searching with Latent Semantic Analysis 1085

the web, and the less data that needs to be processed afterwards. Secondly, we adjust
the number of diagonal elements to be kept. In adjusting the number of dimensions, we
are primarily concerned with the quality of the results. This is because the percentage
of diagonal elements kept does not greatly affect the speed of our algorithm.

6.1 Setting the Parameters

We conducted an experiment using half of the TOEFL synonym data to find the best
values for K and P . Using 10 ≤ K ≤ 120 with an increment of 10 and 0.4 ≤ P ≤
0.8 with an increment of 0.05, we evaluated the TOEFL results for every {K, P}
combination. The results are shown in Figure 1. The height map represents the accuracy
or percentage evaluated to be correct. Results fluctuate from a low of 0.7 to a high of
0.85. The high of 0.85 was achieved 3 times, with K = 70, P = 0.7 and with K = 80,
P = 0.7 and P = 0.75. Based on this result, for all further experiments, we fixed
K = 75 and P = 0.7.

Fig. 1. 3D surface diagram of parameter setting experiment

7 Experiment Results

In the following two sub-sections we illustrate the results of the application of our tool
to the data sets discussed previously. When applicable, we compare the results of these
experiments with that of other techniques.

7.1 Ontology Test

Table 3 describes the results from our experiment of matching terms from the NCI
thesaurus to SNOMED-CT. The “Baseline” represents the results one would expect
from random guessing. We included results computed using standard syntactical match-
ing techniques, Levenstein distance [11] and substring distance [6]. We used the same
normalization and greedy approach for both syntactical measurements. As previously



1086 S.M. Falconer, D. Maslov, and M.-A. Storey

mentioned, a large portion of the aligned terms were classified as type “Missing in-
formation”. Thus, a large number of the expressions contains overlapping substrings,
which is most likely why the substring distance measurement achieved greater than
50% accuracy. However, both syntactical measurements were unable to match more
complex (semantic) equivalences such as synonymity, so unsurprisingly LSA-IR signif-
icantly outperformed syntactical measurements. Moreover, even the incorrect matches
computed by LSA-IR made semantic sense, that is, the matched terms were related, but
they were not the most related as determined by our data set.

Table 3. Ontology matching experiment results

Technique NCI to SNOMED-CT
Baseline < 2.00%

Levenstein distance 29
60

= 48.33%

Substring distance 32
60

= 53.33%

LSA-IR 53
60

= 88.33%

7.2 Synonym Tests

In this experiment we test our technique on some standard synonym data sets. The
results are shown in Table 4. Again, the “Baseline” represents the results one would
expect from random guessing.

LSA-IR has an overall result of 85.10%, which is the highest overall accuracy. Un-
fortunately the Product rule, which essentially solved TOEFL, does not have published
results for ESL and RDWP. The Product rule would most likely outperform LSA-IR on
these two data sets as it is a hybrid approach as opposed to a single technique like LSA-
IR. However, we suspect that LSA-IR more efficently computes similarities than the
Product rule since the Product rule combines four different computational approaches.

Table 4. Synonym experiment results

Technique TOEFL ESL RDWP Total
Baseline 20

80
= 25.00% 12.5

50
= 25.00% 75

300
= 25.00% 25.00%

LSA 51.5
80

= 64.40% - - -
Product rule 78

80
= 97.50% - - -

PMI-IR 59
80

= 73.75% 37
50

= 74.00% 216.83
300

= 72.30% 72.80%

Roget’s Thesaurus 63
80

= 78.75% 41
50

= 82.00% 223
300

= 74.30% 76.00%

LC-IR 65
80

= 81.30% 39
50

= 78.00% 224.33
300

= 74.80% 76.40%

LSA-IR 71
80

= 88.75% 39
50

= 78.00% 256
300

= 85.33% 85.10%

7.3 Recommendation Test

In our final test, we used the RDWP synonym data set again, but we randomly removed
50 of the correct answers and replaced them with a random incorrect answer. Moreover,
this time, LSA-IR only made a match recommendation if the similarity between the



Combining Web-Based Searching with Latent Semantic Analysis 1087

question word and its most similar answer was above a threshold value of ω. In our test,
we experimented with a variety of ω values.

This test becomes a more complicated version of the original, as now LSA-IR must
not only determine the correct synonym, but it must also determine if a synonym for
the word exists at all. This is an important test because in many matching problems,
like ontology alignment, it is very likely that not every term has an appropriate match.
We do not wish to make bad suggestions just because it is the only suggestion we can
make.

We used the standard Information Retrieval evaluation metrics, precision and recall,
as defined in [5] for ontology alignment.

Precision is the measurement of correctly retrieved mappings in proportion to the
total number of found mappings.

p =
#correct found mappings

#found mappings

Recall is the measurement of correctly retrieved mappings in proportion to existing
mappings in the data set.

r =
#correct found mappings

#existing mappings

Finally, as is typically done in Information Retrieval, we combine the two metrics into
an f -measure.

f =
2pr
p+ r

The results are shown in Table 5. We varied ω from 0.1 to 0.4 and recorded the pre-
cision and recall for each of these values. As a baseline, we used ω = 0.0. With this
threshold, LSA-IR always chooses the term with the highest similarity as the synonym
regardless of the value of this measurement. In this case, the recall should be maximized
while the precision should be minimized, which the experimental results confirm. The
best overall performance, based on the f -measure, occurred with ω = 0.2. With this
value, we achieved a very high precision and still correctly found 165 results, which is
83.76% of our original 197 correctly found results. With higher ω values, as expected,
our precision continues to climb, however our recall value is much too low.

Table 5. Recommendation test results

ω Precision Recall f -measure
Baseline (0.0) 197

300
= 65.67% 197

250
= 78.80% 0.7164

0.1 197
299

= 65.89% 197
250

= 78.8% 0.7177

0.2 165
183

= 90.16% 165
250

= 66.00% 0.7621

0.3 73
76

= 96.05% 73
250

= 29.20% 0.4478

0.4 27
28

= 96.43% 27
250

= 10.80% 0.1942

Figure 2 displays the plot of the f -measure versus the different ω values.



1088 S.M. Falconer, D. Maslov, and M.-A. Storey

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

f-
m

ea
su

re

threshold

Fig. 2. Plot of the f -measure versus threshold value (0.0 ≤ ω ≤ 0.4)

7.4 Discussion of Results

We are primarily interested in user-guided ontology alignment, and the results of se-
mantic comparison of the terms from the NCI thesaurus to SNOMED-CT ontologies
indicate that LSA-IR is potentially beneficial for computing suggestions during the on-
tology alignment process. In particular, for ontology alignment it would be extremely
helpful to users to be able to suggest matches such as “Olfactory Neuroblastoma” to
“Esthesioneuroblastoma”, which many syntactical matchers are not able to recommend.

Although synonym matching is not the primary purpose of our tool, the results of
the synonym comparison experiment helped verify the usefulness of the tool for mining
strictly synonyms. As discussed, in comparison to previous approaches, LSA-IR had
the best overall performance.

In the final experiment, we wanted to test the precision and recall of LSA-IR. To our
knowledge, this is the first time this kind of test has been used to evaluate a seman-
tic comparator. Previous research has not reported precision results. However, we feel
this is a critical test if our tool is to be used in applications like user-guided ontology
alignment. We do not want to make inappropriate suggestions to the user simply be-
cause it is the only suggestion we can make. There must be a balance between precision
and recall, as we do not want to suggest too many incorrect matches and we also do
not want to exclude too many possibly correct matches. Our results indicate that our
method is able to correctly identify matches with high precision, and still produce a
large number of suggested matches. The results from each of these preliminary experi-
ments are very encouraging and indicate to that we should continue experimenting with
this approach.



Combining Web-Based Searching with Latent Semantic Analysis 1089

7.5 Limitations

LSA-IR suffers from several potential limitations. Firstly, since the method depends on
the Google search index, it inherits certain limitations that are intrinsic with Google.
For example, although Google has billions of pages indexed, it cannot possibly index
everything, thus, certain word contexts may be missing or not present within the first
75 Google results. Moreover, we are also limited by the quality of the search results
returned by Google. Ideally, we would like to be able to extract the local context of
the words of interest from each search result, but performing this extraction from each
page would be too costly. In order to bypass this computational cost, we rely on the
Google summary and page title, but the proper context of the words of interest may not
be present in this result information.

8 Conclusions and Future Work

In this paper we presented an automated, data-driven tool for semantic comparison of
phrases. Our tool extends traditional LSA by adapting it to work with web-based search
results. By using web search results, we are able to perform comparisons between many
types of expressions that previously has been difficult to perform using a single tool.
Previous web-based comparison tools have concentrated on computing statistics based
on the number of search results returned, whereas with LSA-IR, we concentrated on
actually analyzing the text of these returned results.

We demonstrated the usefulness of our approach by conducting experiments on sev-
eral different data sets. Specifically, we showed how LSA-IR was useful for matching
equivalent expressions in two biomedical ontologies, the NCI thesaurus and SNOMED-
CT. We also tested the tool on standard synonym benchmarks that had been used by pre-
vious researchers and although synonym matching was not our primary goal, LSA-IR
outperformed earlier tools that were built specifically to discover synonymity. Finally,
we conducted an experiment to test how well LSA-IR can not only choose a correct
synonym from a list, but also how well it can determine whether a synonym exists at
all.

In the future, we plan to incorporate our semantic comparator into a user-guided
ontology alignment tool. Further research is required on how to distinguish between
is_a and has_a relationships, as simply guiding the search via a “is a” or “has a”
context will most likely not be enough to distinguish the two concepts.

We also believe LSA-IR could be useful for automated data annotation between on-
tologies and unstructured data, similar to how it is done in [19]. We are interested in
extending our tool to help automated keyword extraction for scientific papers. Many
existing approaches to this problem use word frequency counts, however, authors of
research papers often use semantically equivalent expressions when discussing a single
topic or idea, thus the frequency counts may not be accurate.

Acknowledgements

Firstly, we would like to thank Nigam Shah, Daniel L. Rubin, Kaustubh S. Supekar
and Mark A. Musen for use of their ontology matching data. We would also like to



1090 S.M. Falconer, D. Maslov, and M.-A. Storey

thank Thomas Landauer and the LSA group at the University of Colorado at Boulder
for providing us with the TOEFL test questions.

This work was supported in part by the National Center for Biomedical Ontology,
under roadmap-initiative grant U54 HG004028 from the National Institutes of Health,
and by a PDF grant from the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. McGuinness D., Rice J. Fikes R., and Wilder S. An environment for merging and testing
large ontologies. 2000.

2. AnHai Doan, Pedro Domingos, and Alon Halevy. Learning to match the schemas of data
sources: A multistrategy approach. Machine Learning, 50(3).

3. S. Dumais. Enhancing performance in latent semantic indexing. Technical report, 1990.
4. M. Lewis (ed.). Readers digest. 158(932, 934, 935, 936, 937, 938, 939, 940), 159(944, 948),

2000-2001.
5. M. Ehrig and S. Staab. Qom - quick ontology mapping. In Proc. of the Third International

Semantic Web Conference (ISWC2004), 2004.
6. Jérôme Euzenat, Thanh Le Bach, Paolo Bouquet Jesús Barrasa, Jan De Bo, Rose Dieng-

Kuntz, Marc Ehrig, Manfred Hauswirth, Mustafa Jarrar, Rubén Lara, Diana Maynard,
Amedeo Napoli, Giorgos Stamou, Heiner Stuckenschmidt, Pavel Shvaiko, Sergio Tessaris,
Sven Van Acker, and Ilya Zaihrayeu. State of the art on ontology. deliverable d2.2.3, 2004.

7. T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):23–28, 1993.

8. Derrik Higgins. Which statistics reflect semantics? rethinking synonymy and word similarity.
In International Conference on Linguistic Evidence, 2004.

9. M. Jarmasz and S. Szpakowicz. Roget’s thesaurus and semantic similarity. In Proceedings
of Conference on Recent Advances in Natural Language Processing (RANLP 2003), pages
212–219, September 2003.

10. T.K. Landauer and S.T. Dumais. A solution to plato’s problem: The latent semantic anal-
ysis: Theory of the acquisition, induction, and representation of knowledge. Psychological
Review, 104:211–240, 1997.

11. I. Levenstein. Binary codes capable of correction deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, 1966.

12. Peter Mork and Philip A. Bernstein. Adapting a generic match algorithm to align ontologies
of human anatomy. In 20th International Conference on Data Engineering. IEEE, 2004.

13. J. C. Nash. Compact Numerical Methods for Computers: Linear Algebra and Function
Minimization. Adam Hilger, Bristol, England, 2nd edition, 1990.

14. N. Noy and M. Musen. The prompt suite: Interactive tools for ontology merging and map-
ping. Technical report.

15. Tim Oates, Vinay Bhat, Vishal Shanbhag, and Charles Nicholas. Using latent semantic anal-
ysis to find different names for the same entity in free text. In Proceedings of the 4th inter-
national workshop on Web information and data management, 2002.

16. T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet::similarity - measuring the related-
ness of concepts, 2004.

17. M. F. Porter. Java implementation of porter’s algorithm, 2000.
18. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, Upper

Saddle River, New Jersey, 1995.



Combining Web-Based Searching with Latent Semantic Analysis 1091

19. Nigam H. Shah, Daniel L. Rubin, Kaustubh S. Supekar, and Mark A. Musen. Ontology-based
annotation and query of tissue microarray data. In AMIA 2006 (under review), 2006.

20. Danny Sullivan. Nielsen netratings search engine ratings.
http://searchenginewatch.com/showPage.html?page=2156451, 2006. Last visited: 08-
15-2006.

21. D. Tatsuki. Basic 2000 words - synonym match 1, 1998.
22. David R. Throop. Reconciler: Matching terse english phrases, 2004.
23. P. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Proceedings of the

Twelfth European Conference on Machine Learning (ECML-2001), pages 491–502, Septem-
ber 2001.

24. P. Turney, M.L. Littman, J. Bigham, and V. Shnayder. Combining independent modules
to solve multiple-choice synonym and analogy problems. In Proceedings of International
Conference on Recent Advances in Natural Language Processing (RANLP-03), September
2003.



A Web-Based Novel Term Similarity Framework

for Ontology Learning

Seokkyung Chung1,�, Jongeun Jun2,��, and Dennis McLeod2

1 Yahoo! Inc., 2821 Mission College Blvd, Santa Clara, CA 95054, USA
2 Department of Computer Science, University of Southern California,

Los Angeles, CA 90089, USA
schung@yahoo-inc.com, {jongeunj, mcleod}@pollux.usc.edu

Abstract. Given that pairwise similarity computations are essential in
ontology learning and data mining, we propose a similarity framework
that is based on a conventional Web search engine. There are two main
aspects that we can benefit from utilizing a Web search engine. First,
we can obtain the freshest content for each term that represents the up-
to-date knowledge on the term. This is particularly useful for dynamic
ontology management in that ontologies must evolve with time as new
concepts or terms appear. Second, in comparison with the approaches
that use the certain amount of crawled Web documents as corpus, our
method is less sensitive to the problem of data sparseness because we ac-
cess as much content as possible using a search engine. At the core of our
proposed methodology, we present two different measures for similarity
computation, a mutual information based and a feature-based metric.
Moreover, we show how the proposed metrics can be utilized for mod-
ifying existing ontologies. Finally, we compare the extracted similarity
relations with semantic similarity using WordNet. Experimental results
show that our method can extract topical relations between terms that
are not present in conventional concept-based ontologies.

1 Introduction

With the rapid growth of the World Wide Web, Internet users are now experi-
encing overwhelming quantities of online information. Since manually analyzing
data becomes nearly impossible, the analysis would be performed by intelligent
information management techniques to fulfill users’ information requests quickly.

Representation and extraction of semantic meanings from information con-
tents is essential in intelligent information management. This issue has been
investigated in diverse research disciplines including artificial intelligence, data
mining, information retrieval, natural language processing, etc. One of the widely
used approaches to addressing this problem is to exploit ontologies. For exam-
ple, when users use irrelevant keywords (due to their vague information needs or

� This research was conducted when the author was at University of Southern Cali-
fornia.

�� To whom correspondence should be addressed.

R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 1092–1109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Web-Based Novel Term Similarity Framework for Ontology Learning 1093

unfamiliarity with the domain of interests), query expansion based on ontologies
can improve retrieval accuracy by providing an intelligent information selection.

A knowledge acquisition problem (i.e., how to build ontologies) is one of
the main bottlenecks in ontology-based approaches. Although there exist hand-
crafted ontologies such as WordNet [15] or CYC [11], significant amounts of
domain-specific terms (e.g., scientific or engineering terms) or neology are not
present in general-purpose ontologies. Thus, it is essential to build ontologies
that can characterize given applications.

However, although ontology-authoring tools have been developed in the past
decades [19,27], constructing ontologies by hand whenever new domains are en-
countered needs significant amount of time and efforts. Additionally, since on-
tologies must evolve with time as new concepts or terms appear, it is essential
to maintain existing ontologies up-to-date. Therefore, ontology learning, which
is a process of integrating knowledge acquisition with data mining, becomes a
must. Consequently, a knowledge expert can efficiently build and maintain do-
main ontologies with the support of ontology learning. Given that computation
of the similarity between terms is at the core of ontology learning, we focus our
attentions on computing similarity between terms.

As the Web continues to grow as a vehicle for the distribution of information,
the massive amounts of useful information can be found on the Web. Given this
wide availability of knowledge on the Web, we present WebSim (Web-based Sim-
ilarity framework), whose feature extraction and similarity model is based on a
conventional Web search engine. The proposed approach takes advantage of two
main aspects of the Web search engine technology. First, as many thousands of
Web pages are published daily on the Web, the Web reflects and characterizes
current trend of knowledge. Thus, for each term, we can obtain the freshest con-
tent that represents the up-to-date knowledge on the term. This is particularly
useful for dynamic ontology management in that ontologies must evolve with
time as new concepts or terms appear. Second, because we access as much con-
tent as possible using search engines, our method is less sensitive to the problem
of data sparseness. Although previous text mining crawls large amounts of Web
pages for feature extraction, since crawled one is a small subset of the entire
Web contents, it still suffers from a data sparseness problem.

At the core of WebSim, we present two similarity metrics, an information-
theoretic metric and a feature-based metric. The former one is a mutual infor-
mation based measure that utilizes the number of Web pages associating with
each term. In contrast, the latter one extracts relevant features for each term,
and performs similarity computation based on the extracted features. With the
feature-based metric, we present how to deal with ambiguous terms for the simi-
larity computation. We also show how ontologies can be modified with WebSim.

One of the main problems in concept-based ontologies is that topically related
concepts and terms are not explicitly linked. For example, consider the Sports
domain ontology that we developed in our previous work [9]. In this ontology,
“Kobe Bryant”, who is an NBA basketball player, is related with terms/concepts
in Sports domain. However, for the purpose of query expansion, “Kobe Bryant”



1094 S. Chung, J. Jun, and D. McLeod

also needs to be connected with a “court trial” concept if a user keeps “Kobe
Bryant court trial” in mind. Therefore, it is essential to provide explicit links
between topically related concepts/terms. Thus, conventional ontologies have
a limitation in supporting a topical search. To address this problem, we also
demonstrate how topical relations are generated using WebSim, and compare
WebSim with semantic similarity in WordNet. In sum, the purpose of this re-
search is to move one step forward to achieving the development of a novel
similarity model that can be utilized for any ontology learning framework.

The remainder of this paper is organized as follows. In Section 2, we briefly
review the related work, and highlight the strengths and weaknesses of previ-
ous work in comparison with ours. In Section 3, we present an information-
theoretic similarity measure. In Section 4, we explain our feature extraction
algorithm and explore how to compute similarity between terms based on the
extracted features. Section 5 explains how WebSim can be utilized for ontology
modification. In Section 6, we discuss the characteristics of WebSim by relating
general-purpose ontologies. In Section 7, we present applications to which Web-
Sim is applicable. Finally, we conclude the paper and provide our future plan in
Section 8.

2 Related Work

The computation of the similarity between terms is at the core of ontology
learning. There have been many attempts to determine similar term pairs from
text corpora. One of the widely used approaches in similarity computation is
based on distributional hypothesis [6,21]. That is, if terms occur in a similar
context, then they tend to have similar meanings. The context for a term ti can
be defined in diverse ways. For example, it can be represented by co-occurrence
of words within grammatical relationships (e.g., verbs that take ti as a subject
or object, adjectives that modifies ti, etc), or co-occurring words with ti in a
certain length of a window. Each context is referred to as features of a term.

Recently, there have been research efforts for building ontologies automati-
cally [16,14,26,1,18,7,25]. In order to obtain context, they usually utilizes certain
amount of crawled Web documents as corpus. Our approach is different from the
previous work in that a Web search engine is employed to exploit the full con-
tent of the Web. Consequently, rather than relying on a small subset of the Web,
we can access as much content as possible (depending on how many documents
a search engine crawler can index). Thus, our method is less sensitive to the
problem of data sparseness. In addition, our feature extraction methodology is
different from other approaches in that the context of terms are defined by a
set of highly relevant documents returned by a search engine. Note that our
research is complementary to the previous ontology learning efforts because the
extracted features or term similarity can be utilized for any ontology learning
framework. Therefore, WebSim is expected to be a key enabling technique for
the tasks where pairwise similarity computations play a central role.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1095

Table 1. Notations used in this paper

Symbol Definition
ti An i-th term

df(ti) A total number of Web pages that are matched with a query ti

N A total number of Web pages that a search engine indexes
Di A set of top Web pages (returned by a search engine) for ti

fij A j-th feature of a term ti

dk A k-th document returned by a search engine
lk The document length of dk

freqijk Term frequency of a feature fij in dk

tfijk Normalized term frequency of a feature fij in dk

vi A vector for i-th term
Ni The size of Di

nij The number of documents in Di where fij occurs at least once
wij The weight of fij

IC(ti) The information content of ti

prob(ti) The concept probability of ti

count(ti) The term frequency of ti on corpus
concept freq(ti) The concept frequency of ti on corpus

C The size of corpus

3 WebSim: A Simple Mutual Information Approach

In this Section, we present a simple, yet powerful similarity metric. The measure
is referred to as an MI-based (Mutual Information) WebSim. Table 1 illustrates
the notations that will be used throughout this paper.

The underlying assumption behind the MI-based WebSim is that two terms
co-occur frequently if they are similar to each other. Mutual information is an
information-theoretic metric that quantifies relatedness between two words. The
mutual information between ti and tj is defined as follows:

MI(ti, tj) = log
p(ti, tj)

p(ti) × p(tj)
(1)

The higher value in MI(ti, tj) implies the stronger association between ti and
tj .

Mutual information has been widely used in previous text mining research
as a criteria for measuring term association. The probability is usually defined
by term frequency divided by the total number of terms observed in corpus.
However, this probability is restricted by the size of corpus. In particular, if
a term is a new coined one, then it suffers from a data sparseness problem. To
address this problem, WebSim utilizes a search engine to estimate the probability
approximately. Figure 1 illustrates the idea. A FE (Front-end) scraper sends a
query to a Web search engine, and extracts the number of documents that a



1096 S. Chung, J. Jun, and D. McLeod

Fig. 1. Overview of an MI-based WebSim

query is matched with 1. In order to estimate the total number of documents
a search engine indexes, based on the fact that most search engines supports
a boolean query, the number of documents for two different queries (“ti” and
“NOT ti”) are summed up. Thus, p(ti) is defined as the number of documents
returned by a search engine for a query ti (df(ti)) divided by total number of
document indexed by a search engine (N).

p(ti) =
df(ti)
N

(2)

Consequently, in contrast to previous text mining approaches, WebSim uses the
different notion of p(ti).

Most Web search engines provide advanced search features in that a user can
specify how a query is matched with the page. That is, a user can retrieve the
Web pages where a query is matched with title of the page (M1), text of the page
(M2), URL of the page (M3), links to the page (M4), or anywhere in the page
(M5). Although it is worthwhile to investigate how different matching affects the
accuracy of WebSim, this is beyond the scope of this paper. However, we briefly
compare M1 and M5 in Table 2.

Table 2 presents sample results. As shown, in most cases (Type 1), WebSim
captures similarity between related term pairs fairly well using both M1 and
M5. WebSim with M1 is better than WebSim with M5 in some cases (Type
2) such as DAML-OIL, or notebook-computer. Moreover, M1 is able to adjust

1 Although Google is used in this paper, because most search engines display the total
number of documents that are matched with a query, WebSim can use other search
engines as well. It is also worthwhile to investigate how different search engines affect
WebSim, but out of scope in this paper.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1097

Table 2. Mutual information for sample term pairs

Type ti tj M5 M1

1 Natural Language Processing NLP 7.71 7.31
Self Organizing Maps SOM 6.32 3.59
Artificial Intelligence AI 5.35 8.04
Genetic Algorithm Evolutionary Computation 8.60 8.47
Data Mining Clustering 4.18 4.06
Data Mining Knowledge Discovery 6.85 12.5
Text Mining Ontology 4.40 3.62
Text Mining ODBASE 5.33 7.12
Text Mining ODBASE 5.33 7.12
Text Mining Bioinformatics 4.87 4.19
Computer Security Firewalls 3.41 3.31
Clustering Classification 4.49 5.34

Classification Neural Networks 3.92 6.49
Machine Learning Text Mining 6.57 3.77
Semantic Web Ontology 5.39 7.33
Semantic Web DAML 5.86 4.87
Bioinformatics Computational Biology 5.47 9.96
OWL DAML 6.17 5.30

ODBASE Coopis 15.4 22.7
ODBASE DOA 10.0 14.6

Neural Networks Perceptron 8.35 6.84
Neural Networks Multi Layer Perceptron 8.92 10.4

2 DAML OIL 2.89 7.28
Notebook Computer 0.05 4.38
Operating System Unix 1.54 5.28
Text Mining Computational Biology 3.70 -2.18

3 OWL metadata 0.71 -3.23
OWL OIL -0.16 -3.98
Apple Computer -0.90 0.28
Data Mining Classification 1.75 1.27

the similarity values that M5 overestimates (text mining-computational biology).
This is expected in that M1 provides more accurate context for a term than M5

does. In some cases (Type 3), WebSim fails to capture similarity between terms.
This is primarily because mutual information prefers high-frequency terms to
low-frequency ones (i.e., gives higher similarity values for low-frequency terms).
For example, in case of DAML-OIL and OWL-OIL, because of relatively low
frequency of “DAML” in comparison with “OWL”, WebSim captures associa-
tion for DAML-OIL while it cannot for OWL-OIL. This also holds for apple-
computer. Thus, although mutual information can detect pairwise similarity
fairly well, there is a need to incorporate content (associated with the term)
into WebSim, which motivates the necessity of a feature-based similarity
metric.



1098 S. Chung, J. Jun, and D. McLeod

4 WebSim: A Similarity Model Based on Feature
Extraction

This section presents another similarity model based on feature extraction, which
is referred to as a feature-based WebSim. Section 4.1 discusses feature extraction
methodology. Section 4.2 explores similarity computation based on the extracted
features.

4.1 Feature Extraction

In this section, we explain how to extract features for each term. The notions
of “term” and “word” are firsts defined. Although “term” and “word” gener-
ally have same meanings, for the convention, “term” will be used to refer to
the entity of similarity computation (i.e., similarity is measured between terms)
while “word” will be used to refer to a feature of “term”. Extracting meaningful
features for WebSim consists of the following three phases:

– Retrieval of Web documents for each term.
– Preprocessing of the retrieved Web documents.
– Construction of a vector space model using a relevant feature extraction

method.

A Web search engine is necessary to obtain the initial set of relevant documents
for each term. Toward this end, we use the open source software, Google Web
API [30] 2. Consequently, for each ti, a set of the top most relevant documents
(Di) is obtained by a search engine.

Next, meaningful information are extracted from Web pages in Di using stan-
dard IR tools. This process includes HTML preprocessing (e.g., removing irrele-
vant HTML tags or Javascript code, etc), tokenization, stemming [22], stopwords
removal, etc.

Finally, a term (ti) is represented as a vector (vi) in a vector space [24].
Toward this end, we employ a bag-of -words approach. That is, we treat each
word as a feature of ti, and represent each term as a vector of certain weighted
word frequencies in this feature space. The weight of a word for each term is
determined based on the following two heuristics.

– Important words occur more frequently within a document than unimportant
words do.

– The more times a words occurs throughout the documents within Di, the
stronger its predicting power becomes.

The term frequency (TF) is based on the first heuristic. In WebSim, term
frequency of ti is counted in a document inDi. In addition, TF can be normalized
to reflect different document length. Let fij be the j-th feature of ti, and freqijk

2 Alternatively, we can use the front-end scraper that is presented in Section 3.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1099

be the number of fij ’s occurrences in a document dk where dk ∈ Di. Then, term
frequency (tfijk) of fij in dk is defined as follows:

tfijk =
freqijk

lk
(3)

where lk is the length of dk.
The second heuristics is related with the document frequency (DF) of the word

(the percentage of the documents that contains this word). In WebSim, since only
relevant documents with respect to a term are retrieved, if appropriate stopwords
are removed in the preprocessing step, then a word with high document frequency
within Di is considered to be of a particular relevant feature for a term.

A combination of TF and DF introduces a new ranking scheme, which is
defined as follows:

wij =
nij

Ni
× Σdk∈Ditfijk

Ni
(4)

where wij is an weight of fij , Ni is the total number of documents in Di, and
nij is the number of documents in Di where fij occurs at least once.

By exploiting the fact that top (high-weighted) few features contribute sub-
stantially to the norm of a vector, only high-weighted features (that make up
most of the norm) are retained. This approach reduces the significant number
of features while this minimizes the loss of information.

Table 3 shows sample features. Note that all features are stemmed (e.g., “in-
form” refers to “information”). As shown, top features for each term character-
ize descriptive concepts of terms. For example, consider “knowledge discovery”
and “association rules”. As expected, key concepts that describe both terms
are extracted as features. Note that the extracted features sometimes do not
always correspond to definitions of terms. For example, for a term “knowledge
discovery”, “sigkdd” is not a feature for defining the term. However, this is an
important feature in that it is one of the largest organizations in data mining.
Similarly, “agraw” (Rakesh Agrawal) , who is an inventor of association rule
mining, is extracted as a feature for “association rules”. Therefore, extracted
features by WebSim reflect the current trend on the term besides definition for
the term.

4.2 A Similarity Model Based on Extracted Features

Once each term is represented as a vector, the next step is to measure closeness
between vectors. Toward this end, we employ a Cosine metric that measures
similarity of two vectors according to the angle between them [24]. The cosine
of the angle between two vectors ti and tj is defined by

Sim1(ti, tj) = Cosine(vi, vj) =
∑n

k=1 wik · wjk

||vi|| · ||vj ||
(5)

where vi and vj correspond to the vectors of ti and tj , respectively. Cosine(vi, vj)
ranges from 0 (dissimilar) to 1 (similar).



1100 S. Chung, J. Jun, and D. McLeod

Table 3. Sample features for terms

Term Features
Knowledge discovery data mine knowledg discoveri kdd number confer

sigkdd acm research inform volum web search scienc
Association rules rule associ data item mine transact databas inform agraw

algorithm confid analysi stream discoveri knowledg itemset
Sequential patterns pattern mine sequenti data time sequenc databas stream

algorithm associ agraw rule transact srikant frequent tempor
Decision trees tree decis data inform node learn classif algorithm test split

predict gain class train text machin model classifi attribut
Data warehouses data warehous inform wareh busi manag softwar databas

integr enterpris solut intellig servic server view decis
Object recognition object recognit imag model vision base featur comput match

visual scene view research geometr invari data shape recogn
Multi layer layer perceptron multi network output function input neural
perceptron weight learn hidden unit model neuron error linear mlp
Self organizing map organ data som neural kohonen network learn
maps vector wsom model visual cluster text similar inform
Parallel computer comput parallel architectur softwar hardwar design program
architecture memori multiprocessor perform morgan kaufmann network
Firewalls firewal internet secur network comput connect protect

softwar servic window filter packet inform server host port
Cryptography cryptographi secur crypto inform kei privaci encrypt rsa

archiv research cryptolog softwar algorithm pgp code
Machine translation translat machin english languag french onlin text mt

spanish comput german public chines associ research
Multimedia multimedia inform video time grolieronlin photo media

histori nation web archiv imag stori real flash audio view
Virtual reality virtual realiti 3d world vr research model list time comput

simul vrml applic interact commun environ motion view
Push down automata push state context languag stack free pda formal
automata grammar program correct inform input finit regular theori
Finite Automata finit automata state algorithm determinist languag regular

machin string dfa comput transit express nfa
Turing machines machin ture comput state tape program number symbol

halt run problem instruct left alan cell blank function

The underlying assumption of the proposed approach is simple yet effective:
if ti (e.g., data mining) and tj (e.g., knowledge discovery) are similar, then
the Web pages returned by ti and tj would be somewhat similar, consequently,
Cosine value between vi and vj becomes high. Table 4 illustrates this. However,
Sim1 sometimes fails to capture similarity relations in case a term is ambiguous.

One of the challenging problems in the feature-based WebSim is how to deal
with ambiguity of terms. That is, if a term has multiple meanings, then the
returned Web pages are not coherent to a single sense of a term. For example,
“clustering” has two meanings in top 10 ranked pages returned by Google (data



A Web-Based Novel Term Similarity Framework for Ontology Learning 1101

Table 4. Sample term pairs that have relatively high Sim1(ti, tj)

ti tj Sim1(ti, tj)
Semantic Web XML 0.405
Genetic algorithms Evolutionary computation 0.433
Encryption Computer security 0.535
Information warfare Computer security 0.444
Parallel computing Computer architecture 0.623
Parallel programming MPI 0.383
Data warehouses Knowledge discovery 0.510
Data mining Knowledge discovery 0.778
Natural language processing Computational linguistics 0.439
Natural language processing NLP 0.583

mining and computer architecture context). Consequently, due to the ambiguity
of “clustering”, actual similarity between “clustering” and “data mining” be-
comes low even though clustering is one of the subfields in data mining. This
problem is also inherent in Web search. Because user queries usually tend to
be short, the queries can be ambiguous, which often leads to irrelevant search
results.

Table 5 shows top high-weighted features for three ambiguous terms. For
example, consider “classification”. Due to the generality of this term, none of
the top 10 ranked pages returned by Google is related with classification in data
mining context. Additionally, with regard to the top 50 pages for a query“oil”
in Google, only 2 pages are about Ontology Inference Layer, and remaining
pages are pointers to information on gas oil. Consequently, all extracted features
for “oil” are related with gasoline. This is because Web search engines tend to
rank a page based on popularity of a page using the notion of authorities and
hubs [10,2] as well as how a query is matched with the page (i.e., whether the
query is matched with title, etc).

The extracted features for “oil” are useful ones if domain experts intend to add
“oil” (in terms of energy context) into ontologies. However, if they consider OIL
(Ontology Inference Layer) in Semantic Web context, then the extracted features
are problematic. Assuming “oil” in an energy context is already in ontologies
(because it was coined a long time ago), OIL in a Semantic Web context is of
particular interest in terms of enriching ontologies (because it is neology).

In previous information retrieval research, query expansion has been widely
studied in order to provide more useful search results. That is, a query can
be refined by adding additional relevant search terms. The key point here is
that the added terms should be somewhat related with the original query term.
Otherwise, query expansion leads to a degradation of precision [9].

Suppose ti and tj are in consideration of similarity computation. If the simi-
larity between ti and tj is not high enough, then combined queries (i.e., titj and
tjti) are issued as queries to a Web search engine, and top k documents for both
terms are retrieved. As discussed, if ti and tj are not related with each other,



1102 S. Chung, J. Jun, and D. McLeod

Table 5. Features for ambiguous terms
Term Features
Clustering cluster server softwar data technolog linux base inform window

high applic search servic product load analysi releas featur group
Classification classif link search onlin inform extern econom literatur number org

list north web bookmark journal
OIL oil energi industri shell locat ga chang product price servic bp

drill origin compani petroleum

then adding an additional term will not be helpful, consequently, similarity be-
tween ti and tjti (and between tj and titj) will be still not high. However, if ti
and tj are related with each other, then expanding ti with tj will result in high
similarity (i.e., similarity between ti and tjti is expected to be high) 3. Thus, if
the similarity between ti and tj is not high enough, then the similarity will be
refined as follows:

Sim2(ti, tj) = Average(Cosine(vi, vji), Cosine(vj , vij)) (6)

where vij is a vector representation for the documents that are retrieved by
issuing a query, titj .

Table 6 shows how term expansion successfully refines the sense of a term.
Since “classification” and “clustering” are related in data mining context, adding
“clustering” to “classification” will refine the meaning of “classification”. This is
because there exists a sense that both terms share even though they have multi-
ple meanings. As a result, extracted features on “classification clustering” are on
data mining subject. However, expanding “linux” with “automata” destroys the
true characteristics of the term rather than refines the meaning. Consequently,
resulted features are distorted (distorted features are shown in italic). Therefore,
term expansion is helpful only when a relevant term is added.

5 Ontology Modification with WebSim

Ontology modification is composed of two parts: ontology enrichment, and on-
tology restructuring. In this Section, we explore how to modify ontology with
WebSim. Figure 2 provides an overview of the proposed method.

One of the key issues in ontology enrichment is how to identify candidate terms
that should be added into an ontology. In our previous work, we presented topic
mining, which effectively identifies useful patterns (e.g., news topics or events,
key terms at multiple levels of abstraction) from news streams [5,4]. Topic mining
is a key enabling technology in ontology enrichment. The idea of coupling topic
mining and ontology enrichment is as follows:

Topic mining sends a Web crawler to a collection of key sites that are related
with the domain of interest (or a collection of popular Web sites like CNN if
3 In this step, both titj and tjti are submitted as queries to the Web search engine

because the order of query terms affects the search results.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1103

Table 6. Sample features for terms with context

Term Features
Oil odbase ontolog oil web semant confer inform logic descript system

odbase knowle languag gobl base proceed databas model
Agent coopis agent system inform confer cooper univers comput coopi

base paper web distribut knowledg data model servic
Agent insurance insur agent life compani agenc state servic term licens

inform financi busi brok onlin quot health nationwid auto
Classification clustering cluster classif data class analysi method algorithm text

inform distanc group list network imag fuzzi vector type
similar variabl model hierarch program point document

Clustering architecture cluster architectur manag server applic network databas
servic group avail softwar replic microsoft

Linux automata linux automata program softwar version cellular simul
org game life file comput window java state model 3d

we want to enrich general-purpose ontologies), and retrieves a set of domain
specific documents. One of the main capabilities of topic mining is that the
key topical terms are dynamically generated based on incremental hierarchical
document clustering. Thus, the topic mining framework can be effectively uti-
lized for ontology enrichment in that it can automatically identify key candidate
terms/concepts from Web document streams. The identified candidates can be
given to a domain expert.

Moreover, the feature extraction methodology (in Section 4.1) can be effec-
tively used for candidate term generation. That is, as shown in Table 3, since
features for each term can be key concepts that describe the main characteristics
of the term, WebSim can use a term in the ontology to derive the features for
the term 4. If the obtained features do not exist in the ontology, then domain ex-
perts can add the features for the purpose of ontology enrichment. Alternatively,
terms identified by topic mining can be given as input to WebSim to populate
features, which will be candidate terms for ontology enrichment.

Besides adding a new term into an existing ontology, the ontology should be
restructured as time evolves. That is, existing term relationships in ontologies
need to be changed. Since it is extremely difficult to update ontology manually,
it is necessary to suggest which parts of ontology have possibilities of changes.
Toward this end, we present an WebSim-based approach to select candidate term
pairs whose relationships should be modified. Due to the large number of terms
in ontologies, it is computationally expensive to compute pairwise similarity be-
tween all terms in the ontology. Because we cannot predict which part of the
ontology should be modified (consider OIL and XML that are far from each
other in conventional conceptual ontologies), we need O(m2) pairwise similarity

4 Since Porter stemmer is used in WebSim, it is difficult to perform reverse mapping
from a stemmed word to original one. To address this problem, rather than relying
on Porter stemmer, we can simply remove trailing “s” if the word is not in exception
list (i.e., exception list contains words such as news).



1104 S. Chung, J. Jun, and D. McLeod

Fig. 2. Overview of the process for ontology modification with WebSim

computations if the size of the ontology is m. However, the number of computa-
tions can be significantly reduced if the WebSim is employed. As discussed, for
each term, extracted features by WebSim represent the up-to-date knowledge on
the term. Thus, rather than examining all term pairs in the ontology, for each
term (ti), we only need to compute similarity between ti and the features of ti
that are in the ontology. Assuming that the number of the features for each term
is constant (because only top weighted features are considered), the complexity
can be reduced to O(m) from O(m2), which is a significant improvement.

It is worthwhile to compare the MI-based and the feature-based WebSim, so
domain experts can choose the metrics for their own purpose. In terms of compu-
tational cost, the MI-based WebSim is cheaper than the feature-based WebSim.
In our simulation, the average difference between the number of documents of titj
and that of tjti is 912.70. This number is negligible considering that the average
number of returned documents for the terms in our test is 8,267,363.81. Thus,
for the MI-based WebSim, only 3 queries need to be submitted (i.e., ti, tj and
titj). In contrast, for the feature-based WebSim, both titj and tjti (as well as ti
and tj) need to be submitted to a Web search engine. In sum, the MI-based Web-
Sim needs 3 query submissions while the feature-based WebSim needs 4 query
submissions. Moreover, the feature-based WebSim needs the feature extraction
step, and cosine similarity computations. However, the feature-based WebSim
produces more reliable similarity values than the MI-based WebSim does because
mutual information is strongly influenced by the marginal probabilities of terms.

6 Semantic Similarity Versus WebSim

In this section, we present a methodology on how to investigate relatedness
between WebSim and existing ontologies like WordNet.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1105

Given a pair of terms, ti and tj , a simple similarity measure in ontologies
is to use an edge counting method. That is, the distance corresponds to the
number of edges between terms in the ontology. The shorter the path from one
term to another, the more similar they are. However, this approach relies on the
assumption that links in the taxonomy represent uniform distances, which does
not hold in many existing ontologies. Consequently, it cannot provide correct
similarity estimation.

Recently, semantic similarity metrics have been proposed to evaluate simi-
larity between two terms in a taxonomy based on information content [12,23].
These approaches rely on the incorporation of empirical probability estimates
into a taxonomic structure. Previous studies have shown that these types of ap-
proaches are significantly less sensitive to link density variability. The notions of
concept frequency and concept probability are first defined as follows:

concept freq(ti) =
∑

tj∈Cti

count(tj) (7)

where Cti is the set of terms subsumed by a term ti. Each term that occurs in
the corpus is counted as an occurrence of each concept containing it.

prob(ti) =
concept freq(ti)

C
(8)

where C is the size of corpus, which is the total number of terms observed in
corpus.

The information content of a term ti (IC(ti)) can be quantified based on
Equation (8).

IC(ti) = −log(prob(ti)) (9)

Equation (9) states that informativeness decreases as concept probability in-
creases. Thus, the more abstract a concept, the lower its information content.
This quantization of information provides a new approach to measure similarity
between terms in ontology. The more information two terms share, the more
similar they are. Resnik [23] defines the information shared by two terms as
the maximum information content of the common parents of the terms in the
ontology (Equation (10)).

Resnik(ti, tj) = maxt∈CP (ti,tj)[−log(prob(t))] (10)

where CP (ti, tj) represents the set of parents terms shared by ti and tj .
Because the value of Equation (10) can vary between 0 to infinity, we use

Lin’s metric instead [12], which varies between 0 (maximum dissimilarity) and
1 (maximum similarity).

Lin(ti, tj) =
2 ×maxt∈CP (ti,tj)[−log(prob(t))]

(IC(ti) + IC(tj))
(11)

Table 7 shows semantic similarity and WebSim of selected terms. Semantic
similarity is computed by using WordNet::Similarity [20]. As expected, due to



1106 S. Chung, J. Jun, and D. McLeod

Table 7. WebSim versus semantic similarity. Undef denotes that the term does not
exist in WordNet.

ti tj Lin MI Sim1 Sim2

Semantics Metadata 0 2.222 0.171 0.653
Firewall Encryption 0 4.566 0.218 0.699
Automata Turing machine 0 6.640 0.078 0.500
Apple Computer 0.121 0.909 0.153 0.556
Yahoo Messenger 0.230 3.795 0.102 0.666
Doctor Nurse 0.797 3.093 0.091 0.637
Microsoft Windows Undef 3.559 0.541 0.783
Apple Ipod Undef 2.408 0.644 0.876

the lack of ability to express topical relations in WordNet, we observed low se-
mantic similarity for the first five term pairs. In contrast, our WebSim model
successfully captured the similarity relations. Even though Sim1(ti, tj) was low
for “automata” and “Turing machine”, this is because of the ambiguity of “au-
tomata”, which has two meanings (in theory of computation and computational
learning context). For the term pair that was detected as highly similar by seman-
tic similarity (e.g., “nurse” vs “doctor”), our WebSim could also identify high
similarity using refinement. Finally, for the terms that do not exist in Word-
Net (e.g., Ipod or Microsoft), WebSim could capture high similarity. In sum,
WebSim performs well on high semantic similarity term pairs using either the
MI-based approach or refinement while uncovers topical relations that do not
exist in WordNet.

7 Potential Applications of WebSim

In this Section, we explore sample applications to which WebSim is applicable.

– Ontology matching. Ontology matching, which aims at identifying mappings
between related entities of multiple ontologies, has been widely studied re-
cently [13,3,28]. Many different matching solutions proposed so far exploit
the various properties of data such as structures of ontologies, data instances,
and string similarity using edit distance. WebSim is expected to reinforce pre-
vious matching technologies in that it presents similarity metrics that are
orthogonal to existing ones.

– Recommendation Systems. With the popularity of online sellers’ product
recommendation to their customers based on purchasing patterns, ontologies
can be utilized to customizing a system to a user’s preferences in
e-commerce [29]. That is, ontologies can be effectively used for modelling
customers’ behavior and users’ profiles. WebSim is particularly useful in this
type of application in that it can extend existing taxonomy maintained by
online shopping malls (e.g., amazon.com).



A Web-Based Novel Term Similarity Framework for Ontology Learning 1107

– Term subspace clustering. Subspace clustering aims at identifying clusters
in subspaces of the original feature space. We recently developed an effi-
cient subspace clustering algorithm that is scalable to the number of dimen-
sions [8]. By coupling with the feature extraction methodology of WebSim,
we can perform subspace clustering on terms such that each term can be
assigned to different subspace clusters depending on the nature of the term
(e.g., “clustering” can be assigned to both “data mining” and “computer
architecture” clusters). Given that WebSim produces relevant features for a
term with multiple meanings, WebSim can play a key role in term subspace
clustering.

8 Conclusion and Future Work

In order to accommodate dynamically changing knowledge, we presented a Web
search engine based similarity framework that is referred to as WebSim. WebSim
is equipped with two similarity metrics, an MI-based one and a feature-based one.
The former is computationally cheap while the latter can produce more reliable
similarity values. In addition, we suggested diverse ways on how WebSim can be
utilized for ontology modification. Finally, coupling with semantic similarity, we
demonstrated how WebSim is able to identify unknown relations in WordNet.

We will extend this work into the following four directions. First, although
we demonstrated the usefulness of our feature extraction methodology, not all
features of a term represent distinctive characteristics for the term. To address
this problem, we will study the methodology on employing different search en-
gines (i.e., a different feature set can be generated by each search engine), and
taking intersection on feature sets obtained by multiple search engines. Conse-
quently, the resulting feature set is expected to be more robust than the one
with a single search engine. Second, we plan to study a sophisticated feature
weighting scheme. Based on the observation that the Web page with higher rank
is generally more informative than the ones with lower rank, each Web page can
be weighted by order when features are extracted. That is, the features in the
first page should be weighted higher than the features in the 20-th page, and so
on. Third, given that the MI-based and the feature-based similarity metrics may
produce different similarity values for a same term pair, we plan to develop a
new similarity measure to combine both metrics. Finally, we plan to investigate
the applicability of WebSim to diverse applications such as ontology matching
or term subspace clustering.

Acknowledgement

This research has been funded in part by the Integrated Media Systems Center, a
National Science Foundation Engineering Research Center, Cooperative Agree-
ment No. EEC-9529152. We also would like to thank the anonymous reviewers
for their valuable comments.



1108 S. Chung, J. Jun, and D. McLeod

References

1. E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching very large ontologies
using the WWW. In Proceedings of the ECAI Workshop on Ontology Learning,
2000.

2. S. Brin, and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proceedings of the 7th International World Wide Web Conference, 1998.

3. S. Castano, A. Ferrara, and S. Montanelli. H-MATCH: an algorithm for dynami-
cally matching ontologies in peer-based systems. In Proceedings of the 1st VLDB
International Workshop on Semantic Web and Databases, 2003.

4. S. Chung, and D. McLeod. Dynamic topic mining from news stream data. In
Proceedings of the 2nd International Conference on Ontologies, Databases, and
Application of Semantics for Large Scale Information Systems, 2003.

5. S. Chung, and D. McLeod. Dynamic pattern mining: an incremental data clustering
approach. Journal on Data Semantics, 2:85-112, 2005.

6. I. Dagan, F. Pereira, and L. Lee. Similarity-based estimation of word cooccurrence
probabilities. In Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, 1994.

7. E.J. Glover, D.M. Pennock, S. Lawrence, and R. Krovetz. Inferring hierarchical
descriptions. In Proceedings of the ACM International Conference on Information
and Knowledge Management, 2002.

8. J. Jun, S. Chung, and D. McLeod. Subspace clustering of microarray data based
on domain transformation. To appear in Proceedings of VLDB Workshop on Data
Mining on Bioinformatics, 2006.

9. L. Khan, D. McLeod, and E.H. Hovy. Retrieval effectiveness of an ontology-based
model for information selection. The VLDB Journal, 13(1):71-85, 2004.

10. J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings
of ACM-SIAM Symposium on Discrete Algorithms, 1998.

11. D. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd. Cyc: Toward
programs with common sense. Communications of the ACM, 33(8):30-49, 1990.

12. D. Lin. An information-theoretic definition of similarity. In Proceedings of the 15th
International Conference on Machine Learning, 1998.

13. J. Madhavan, P.A. Bernstein, A. Doan, and A.Y. Halevy. Corpus-based schema
matching. In Proceedings of the 21st International Conference on Data Engineer-
ing, 2005.

14. A. Maedche, and S. Staab. Ontology learning for the Semantic Web. IEEE Intel-
ligent Systems, 16(2), 2001.

15. G. Miller. Wordnet: An on-line lexical database. International Journal of Lexicog-
raphy, 3(4):235-312, 1990.

16. M. Missikoff, P. Velardi, and P. Fabriani. Text mining techniques to automatically
enrich a domain ontology. Applied Intelligence, 18(3):323-340, 2003.

17. M. Reinberger, P. Spyns, W. Daelemans, and R. Meersman. Mining for lexons:
applying unsupervised learning methods to create ontology bases. In Proceedings of
International Conference on Ontologies, Databases and Applications of SEmantics,
2003.

18. J. Nemrava, and V. Svátek. Text mining tool for ontology engineering based on
use of product taxonomy and web directory. In Proceedings of the Dateso Annual
International Workshop on DAtabases, TExts, Specifications and Objects, 2005.

19. N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, and M.A. Musen.
Creating and acquiring Semantic Web contents with Protégé-2000. IEEE Intelli-
gent Systems, 16(2):60-71, 2001.



A Web-Based Novel Term Similarity Framework for Ontology Learning 1109

20. T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::Similarity - measuring
the relatedness of concepts In Proceedings of the 5th Annual Meeting of the North
American Chapter of the Association for Computational Linguistics, 2004.

21. F. Pereira, N.Z. Tishby, and L. Lee. Distributional clustering of english words.
In Proceedings of the 30th Annual Meeting of the Association for Computational
Linguistics, 1993.

22. M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.
23. P. Resnik. Semantic similarity in a taxonomy: an information-based measure and

its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research, 1999.

24. G. Salton and M.J. McGill. Introduction to modern information retrieval. McGraw-
Hill, 1983.

25. M. Sanderson, and W.B. Croft. Deriving concept hierarchies from text. In Pro-
ceedings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1999.

26. P. Spyns, and M. Reinberger. Lexically evaluating ontology triples generated au-
tomatically from texts. In Proceedings of the 2nd European Semantic Web Con-
ference, 2005.

27. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
collaborative ontology development for the Semantic Web. In Proceedings of In-
ternational Semantic Web Conference, 2002.

28. M. Ehrig, and Y. Sure. Ontology mapping - an integrated approach. In Proceedings
of the 1st European Semantic Web Symposium, 2004.

29. C. Ziegler, G. Lausen, and L. Schmidt-Thieme. Taxonomy-driven computation of
product recommendations. In Proceedings of the ACM International Conference
on Information and Knowledge Management, 2004.

30. Google Web APIs. http://www.google.com/apis/.



Erratum

LNCS 4275 Editorial

In an earlier version by mistake the volume editors have been stated instead of the
authors of each paper. The current version is the correct source for any reference
made to a paper included in the OTM 2006 Proceedings LNCS 4275-4278.

E1



Erratum: Web Service Mining and Verification of 
Properties: An Approach Based on Event 

Calculus 

Mohsen Rouached, Walid Gaaloul, Wil M.P. van der Aalst, Sami Bhiri, 
and Claude Godart 

 
 

LORIA-INRIA-UMR 7503 
BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France 

{rouached, gaaloul, bhiri, godart}@loria.fr 
Department of Technology Management, Eindhoven University of Technology 

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands 
w.m.p.v.d.aalst@tm.tue.nl 

 
 
R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4275, pp. 408–425, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 
DOI 10.1007/11914853_72 
 
The paper entitled “Web Service Mining and Verification of Properties: An Approach 
Based on Event Calculus”, starting on page 408 of this publication, has been 
retracted. A significant part of the paper was copied from four pieces of work by the 
authors K. Mahbub and G. Spanoudakis. The pieces of work in question are: 
  
A Framework for Requirements Monitoring of Service Based Systems 
http://dx.doi.org/10.1145/1035167.1035181 
  
Requirements Monitoring for Service-Based Systems: Towards a Framework Based 
on Event Calculus http://dx.doi.org/10.1109/ASE.2004.1342769 
  
Run-time Monitoring of Requirements for Systems Composed of Web-Services: 
Initial Implementation and Evaluation Experience 
http://dx.doi.org/10.1109/ICWS.2005.100 
  
A Scheme for Requirements Monitoring of Web Service Based Systems 
http://www.soi.city.ac.uk/project/DOC_TechReport/TR_2004_DOC_02.pdf 
  
Plagiarism was committed by the first author, Mohsen Rouached. The other authors 
were not aware of this. Moreover, the contribution of the third author, Wil M. P. van 
der Aalst, had nothing to do with the part of the work that was plagiarized. 
_______________________________________________ 
The original online version for this chapter can be found at 
http://dx.doi.org/10.1007/11914853_25 
_______________________________________________ 

E2



Author Index

Aberer, Karl I-516
Abou-Tair, Dhiah el Diehn I. I-983
Adams, Michael I-291
Adamus, Radoslaw II-1290
Adjiman, P. I-698
Afsarmanesh, Hamideh I-91
Aı̈t-Ameur, Yamine I-704
Albertoni, Riccardo I-1020
Alcaide, C. II-1181
Ali, Nour II-1633
Alia, Mourad II-1686
Allen, Gabrielle II-1119
Alvarez, Francisco I-855
Amann, Bernd I-327
Ardagna, Danilo I-807, II-1273

Balasubramanya, Magesh II-1576
Balis, Bartosz II-1305
Baloian, Nelson I-679
Banos, Evangelos I-975
Barros, Alistair I-145
Bassiliades, Nick I-975
Baude, Françoise II-1191
Baytelman, Felipe I-679
Behnel, Stefan II-1522
Ben Lakhal, Neila I-163
Benatallah, Boualem I-109
Benavides Navarro, Luis Daniel II-1449
Bergamaschi, Sonia I-909
Berlik, Stefan I-983
Bernard, Guy II-1668
Bertolo, Stefano II-1125
Bézivin, Jean I-863
Bhiri, Sami I-408, E1
Bittner, Sven II-1503
Boboila, Marcela S. II-1234
Böhm, Klemens I-444, I-498
Borz, Luca II-1336
Bosque, José Luis II-1412
Bot́ıa Blaya, Juan A. II-1325
Boucelma, Omar I-377
Bouroche, Mélanie II-1722
Bouzeghoub, Mokrane I-237
Bræk, Rolv II-1613

Brandão, José Eduardo M.S. I-462
Brasileiro, Francisco II-1705
Brockmans, Saartje I-901
Bryl, Volha I-533
Bubak, Marian II-1305
Buche, Patrice I-891
Buchmann, Alejandro II-1522
Buchmann, Erik I-498

Cahill, Vinny II-1722
Campos, Maria Luiza M. I-551
Cappiello, Cinzia I-807
Caromel, Denis II-1191
Carvalho, Nuno II-1485
Casanova, Marco A. I-756
Cattaneo, Gianpiero II-1152
Chabridon, Sophie II-1668
Chao, Yi II-1119
Charfi, Anis I-183
Chatalic, P. I-698
Chateigner, Lydialle II-1668
Chung, Seokkyung I-1092
Cirne, Walfredo II-1705
Clematis, A. II-1132
Cluet, Sophie I-72
Collet, Christine I-391
Colonna, François-Marie I-377
Combi, Carlo I-201
Conforti, Eugenio I-219
Constantin, Camelia I-327
Corana, A. II-1132
Corona, Grégory I-72
Corrales, Juan Carlos I-237
Coulson, Geoff II-1522
Creel, James I-605
Cristea, Valentin II-1234
Cunningham, Raymond II-1722

D’Agostino, D. II-1132
Dagdeviren, Orhan II-1422
Daniel, Florian I-201
de Buenaga, Manuel I-855
De Martino, Monica I-1020
De Meo, Pasquale I-967



1112 Author Index

de Moor, Aldo I-738
Debarbieux, Denis I-941
Delicato, Flávia C. I-551
Deng, Yu I-1039
Dennunzio, Alberto II-1152
Di Quarto, Gabriele I-967
Dı́az, Manuel II-1181, II-1351
Dibie-Barthélemy, Juliette I-891
Didonet Del Fabro, Marcos I-863
Dikenelli, Oguz I-927
Doussot, David I-891
Dragut, Eduard I-882
Dumas, Marlon I-145
Dworaczyk, Blake I-605

Edmond, David I-291
Eliassen, Frank II-1686, II-1825
Erciyes, Kayhan II-1422
Erdur, Riza Cenk I-927
Evans, Reuben I-661

Fahringer, Thomas II-1305
Falconer, Sean M. I-1075
Farina, Fabio II-1152
Felber, Pascal II-1541
Ferscha, Alois II-1434
Feschet, Fabien II-1213
Fincke, Tonio II-1388
Fireman, Daniel II-1705
Flissi, Areski II-1402
Folliot, Bertil II-1790
Fraga, Joni da Silva I-462
Francalanci, Chiara I-807
Fricke, Rolf II-1686
Friedman, Roy II-1435

Gaaloul, Walid I-408, E1
Gal, Avigdor I-360
Garćıa Clemente, Félix J. II-1325
Garruzzo, Salvatore I-949
Geoffray, Nicolas II-1790
Gianuzzi, V. II-1132
Giorgini, Paolo I-533
Giunta, Gabriele II-1273
Goasdoué, F. I-698
Godart, Claude I-408, E1
Gómez Skarmeta, Antonio F. II-1325
Grace, Paul II-1522
Grigori, Daniela I-237
Groppi, Annalisa I-807

Gross-Amblard, David I-327
Gruber, Olivier II-1772
Gueant, Pierre II-1203
Gümüs, Özgür I-927
Günther, Christian W. I-309
Guzy, Krzysztof II-1305

Haase, Peter I-901
Habegger, Benjamin I-941
Hacid, Mohand-Säıd I-109
Hadad, Erez II-1435
Haemmerlé, Ollivier I-891
Hakkarainen, Sari I-625
Halashek-Wiener, Christian I-722
Hall, Richard S. II-1772
Han, Xiao II-1263
Hassan, Mahbub I-109
Hauck, Franz J. II-1739
Herrero, Pilar II-1203
Herrmann, Peter II-1613
Higgins, Michael I-569, II-1576
Hinze, Annika I-643, I-661, II-1503
Holloway, Seth I-587
Holstius, David II-1576
Horn, Geir II-1686
Huang, Jin II-1376
Huedo, E. II-1143

Iannone, Luigi I-1058
Ibrahim, Noha II-1467
Ingraffia, Nunzio II-1273
Iordache, George V. II-1234

Jacob, Joseph C. II-1119
Jaeger, Michael A. II-1807
Jakob, Wilfried II-1252
Jang, Julian I-426
Jean, Stéphane I-704
Jin, Hai II-1376
Julien, Christine I-587
Jun, Jongeun I-1092
Junmanee, Saijai I-643

Kaczmarski, Krzysztof II-1290
Kantere, Verena I-17
Kapitza, Rüdiger II-1739
Kardas, Geylani I-927
Katakis, Ioannis I-975
Katz, Daniel S. II-1119
Khan, Mohammad Ullah II-1686



Author Index 1113

Kiringa, Iluju I-17
Kobayashi, Takashi I-163
Koshutanski, Hristo II-1336
Kowalski, Tomasz II-1290
Kraemer, Frank Alexander II-1613
Kropf, Peter II-1541
Kuliberda, Kamil II-1290
Kummer, Raphaël II-1541

Lamarre, Philippe I-36
Larson, Nathan I-360
Lassen, Kristian Bisgaard I-127
Lau, Lydia I-772
Lawrence, Ramon I-882
Le, Duc Minh I-772
Le Mouël, Frédéric II-1467
Leal, Luciana N. I-551
Levashova, Tatiana I-1012
Leymann, Frank I-2
Leyton, Mario II-1191
Li, Du I-605
Li, Kenli II-1263, II-1315
Li, Peggy P. II-1119
Lima, Aliandro II-1705
Liu, Min II-1315
Llopis, L. II-1181
Llorente, I.M. II-1143
Lucas, Peter I-569, II-1576
Lundqvist, Magnus I-1012

Mafra, Paulo Manoel I-462
Malgouyres, Rémy II-1213
Manaskasemsak, Bundit II-1223
Maŕın, Mauricio II-1388
Márquez, A. II-1181
Martinelli, Fabio II-1336
Mart́ınez Pérez, Gregorio II-1325
Maslov, Dmitri I-1075
McArthur, Greg I-17
McLeod, Dennis I-1092
Meersman, Robert I-738
Merle, Philippe II-1402
Merlo, A. II-1132
Mezini, Mira I-183
Migliavacca, Matteo II-1594
Millán, Carlos II-1633
Mirandola, Raffaela II-1273
Modafferi, Stefano I-219
Montero, R.S. II-1143
Montes, Jesús II-1203

Morales, Mario I-679
Mori, Paolo II-1336
Mühl, Gero II-1807
Mulugeta, Mesfin II-1650
Muñoz Ortega, Andrés II-1325
Murphy, Amy L. II-1594
Musunoori, Sharath Babu II-1825
Mylopoulos, John I-17, I-533

Nagypál, Gábor I-791
Nepal, Surya I-426
Ng, Kam-Wing II-1361

O’Connor, Neil II-1722
O’Riain, Sean I-818
Obelheiro, Rafael R. I-462
Önal, Ata I-927
Ooi, Beng Chin I-54

Palmisano, Ignazio I-1058
Parsia, Bijan I-722
Parzyjegla, Helge II-1807
Pashkin, Michael I-1012
Pastor, Luis II-1412
Payli, Reşat Ümit II-1422
Pereira, José II-1485
Pérez, Maŕıa S. II-1203
Pernici, Barbara II-1273
Picco, Gian Pietro II-1594
Pierra, Guy I-704
Pires, Paulo F. I-551
Pop, Florin II-1234
Porter, Barry II-1522
Pozzi, Giuseppe I-201
Proper, H.A. (Erik) I-345

Qi, Xuesheng II-1263
Qin, Yunchuan II-1315
Quattrone, Giovanni I-967
Quiané-Ruiz, Jorge-Arnulfo I-36
Quilici, Romain II-1191
Quinte, Alexander II-1252

Rafaelsen, Hans Ole II-1825
Ramos, Isidro II-1633
Redavid, Domenico I-1058
Reichert, Manfred I-273, I-309
Reichle, Roland II-1686
Reynolds, Vinny II-1722



1114 Author Index

Rice, Julia E. I-1039
Rinderle, Stefanie I-273, I-309
Robles, Oscar D. II-1412
Rodrigues, Lúıs II-1485
Rodŕıguez, Andrea II-1388
Rodŕıguez, Ángel II-1412
Román, Carlos II-1388
Roman, Gruia-Catalin II-1594
Romero, Sergio II-1351
Rosaci, Domenico I-949
Roth, Stuart I-569
Rouached, Mohsen I-408, E1
Rousset, M.-C. I-698
Roussopoulos, Nick I-480
Roy, Nilabja II-1843
Rozkwitalski, Kuba II-1305
Rubio, Bartolomé II-1351
Rungsawang, Arnon II-1223

Sadaoui, Samira II-1757
Sáenz, Fernando I-855
Sala, Antonio I-909
Sam, Yacine I-377
Sánchez, Alberto II-1203
Satoh, Ichiro II-1555
Schill, Alexander II-1650
Schmidt, Andreas I-995
Schmidt, Douglas C. II-1843
Schmidt, Holger II-1739
Schmidt, Roman I-516
Schwarz, Peter I-1039
Sebei, Imen I-72
Semeraro, Giovanni I-1058
Senart, Aline II-1722
Senn, Jeff I-569
Shankaran, Nishanth II-1843
Sharifimehr, Nima II-1757
Simon, L. I-698
Simperl, Elena Paslaru Bontas I-836
Sirin, Evren I-722
Söldner, Guido II-1739
Soler, Enrique II-1181, II-1351
Spyns, Peter I-738, I-818
Storey, Margaret-Anne I-1075
Strasunskas, Darijus I-625
Stratan, Corina II-1234
Stuckenschmidt, Heiner I-901
Stucky, Karl-Uwe II-1252
Subieta, Kazimierz II-1290
Sun, Aixin I-109

Süß, Wolfgang II-1252
Südholt, Mario II-1449

Tan, Kian-Lee I-54
Tang, Xiaoyong II-1263, II-1315
Tempich, Christoph I-836
ter Hofstede, Arthur H.M. I-145, I-291
Thomas, Gaël II-1790
Troya, José M. II-1351
Truong, Hong-Linh II-1305
Tsoumakas, Grigorios I-975
Tsoumakos, Dimitrios I-480

Unal, Ozgul I-91
Ursino, Domenico I-967
Uthayopas, Putchong II-1223

Vaccarelli, Anna II-1336
Valduriez, Patrick I-36, I-863
van Bommel, P. I-345
van der Aalst, Wil M.P. I-127, I-291,

I-309, I-408, E1
van der Weide, Th.P. I-345
van Gils, B. I-345
Vandenbussche, Jan I-738
Vanderperren, Wim II-1449
Vaquero, Antonio I-855
Vargas-Solar, Genoveva I-391
Vázquez-Poletti, J.L. II-1143
Verheecke, Bart II-1449
Vieira, Tatiana A.S.C. I-756
Vlahavas, Ioannis I-975
Vodislav, Dan I-72
von der Weth, Christian I-444, I-498
Vu, Thi-Huong-Giang I-391

Weis, Torben II-1807
Widdows, Dominic I-569, II-1576
Wierzbicki, Adam II-1163
Wislicki, Jacek II-1290
Wombacher, Andreas I-255, I-273
Wong, Sze-Wing II-1361
Wu, Ji I-54

Xiao, Degui II-1315
Xie, Xia II-1376

Yahav, Inbal I-360
Yang, Jing II-1315
Yang, Yi I-605



Author Index 1115

Yokota, Haruo I-163
Yoldas, Ümit I-791

Zaha, Johannes Maria I-145
Zhang, Qin II-1376
Zhou, Qingqing I-17

Zhou, Yongluan I-54
Zhu, Chunling II-1263
Zhu, Xilu II-1263
Zic, John I-426
Zrour, Rita II-1213
Zurita, Gustavo I-679


	Title
	Organization
	Table of Contents
	Cooperative Information Systems (CoopIS) 2006 International Conference
	CoopIS 2006 International Conference (International Conference on Cooperative Information Systems) PC Co-chairs’ Message

	Keynote
	Workflow-Based Coordination and Cooperation in a Service World
	Introduction
	Service Composition Models
	The Notion of Services and Composition
	Composition Taxonomy

	Orchestration
	Workflow-Based Composition
	BPEL and Its Extensibility
	Orchestration vs. Choreography

	Coordination
	Abstract Coordination Model
	Use of Coordination

	Subprocesses
	Process Lifecycle as Coordination Type
	Calling a Subprocess

	Splitting Processes
	Outsourcing Process Fragments
	Resulting Coordination Needs

	Human Tasks in Orchestrations
	People Links
	Tasks

	Semantic Processes
	Semantic Web Services
	Semantics in Orchestrations

	Conclusion
	Summary
	Future Work

	References


	Distributed Information Systems I
	Distributed Triggers for Peer Data Management
	Introduction
	Motivating Example
	Distributed Triggers

	Models
	Local Update Model
	Remote Update Model

	Distributed Trigger Language
	Processing Distributed Triggers
	Execution Semantics
	Detached AFTER Triggers
	Termination Protocol

	Acquaintance Protocols
	Acquaintance Tracking and Peer Markers

	Preliminary Implementation Results
	Related Work
	Conclusions
	References

	Satisfaction-Based Query Load Balancing
	Introduction
	Motivating Scenario
	Satisfactory Query Load Balancing Problem
	Satisfaction-Based Query Allocation
	Providers Characterization
	Satisfaction-Based Query Load Balancing

	Metrics
	Satisfaction Balance Metrics
	Query Balance Metrics

	Experimental Validation
	Baseline QLB Approaches
	Setup
	Performance Results
	Providers’ Utilization Results
	Providers’ Satisfaction Results

	Related Work
	Conclusion
	References

	Efficient Dynamic Operator Placement in a Locally Distributed Continuous Query System
	Introduction
	Problem Formulation and Analysis
	Problem Formulation
	Problem Analysis
	Related Work

	System Design
	Initial Placement of Operators
	Partner Selection Strategy
	Information Collection Strategy
	Load Balance Decision Strategy
	Load Selection Strategy

	A Performance Study
	Partner Selections
	Load Selection Heuristics

	Conclusion
	References


	Distributed Information Systems II
	Views for Simplifying Accessto Heterogeneous XML Data
	Introduction
	Example Application Scenario and Motivation
	The XyView Model
	From Physical to Logical Data Views
	From Logical to User Data Views
	Translating User Queries

	Deeper Inside XyView
	Duplicates and Data Loss
	View Customization

	The XyView System
	Related Work and Conclusion
	References

	SASMINT System for Database Interoperability in Collaborative Networks
	Introduction
	Related Work
	Examples of Structural and Linguistic Conflicts
	The Proposed Approach of SASMINT
	Schema Matching
	Schema Integration

	Conclusion
	References

	Querying E-Catalogs Using Content Summaries�
	Introduction
	Related Work
	Multi-Attribute Content Summary
	Catalog Selection Using MAC Summary
	Query Relationships
	E-Catalog Selection

	Building and Updating MAC Summary
	MAC Summary Update
	Building Catalog Summary

	Experiments
	Building of MAC Summary
	Evaluation of E-Catalog Selection

	Conclusion and Future Work
	References


	Workflow Modelling
	WorkflowNet2BPEL4WS: A Tool for Translating Unstructured Workflow Processes to Readable BPEL
	Introduction
	BPEL
	WF-Nets
	WorkflowNet2BPEL4WS
	Evaluation Using 100 ProtosModels
	Outline

	Related Work
	Mapping WF-Nets to BPEL
	Implementation
	Evaluation
	Conclusion and Future Work
	References

	Let’s Dance: A Language for Service Behavior Modeling
	Introduction
	Requirements and Related Work
	Language Overview
	Interaction Patterns in Let’s Dance
	Meta-model and Informal Semantics
	Conclusion and Future Research Directions
	References

	Dependability and Flexibility Centered Approach for CompositeWeb Services Modeling
	Introduction
	Motivating Example and Key Requirements
	Illustrative Example Description
	Limitations of aWorkflow-Like Composition
	Motivating Scenarios

	CompositeWeb Service Specification Model
	Model Salient Features Description
	Definition Rules (DR) Determination
	Composability Rules (CR) Determination
	Ordering Rules(OR) Determination
	Aggregation Patterns

	Illustrative Example
	Rules Determination
	Formalization
	Scenarios Feasibility Verification

	Discussion
	Related Work
	Conclusion
	References

	Aspect-Oriented Workflow Languages
	Introduction
	Workflow Languages
	The WFMC Workflow Meta-model
	A Basic Workflow Language

	Crosscutting Concerns in Workflows
	Data Validation
	Security
	Crosscutting Changes and Change Modularity

	Aspect-Oriented Workflow Languages
	Aspect-Oriented Programming
	Concern-Based Decomposition of Workflow Specifications
	Examples of Workflow Aspects

	Related Work
	Conclusion
	References


	Workflow Management and Discovery
	A Portable Approach to Exception Handling in Workflow Management Systems
	Introduction
	Related Work
	Business Process Modelling and XPDL
	Handling Workflow Exceptions
	The Chimera-Exception Language

	Modelling ECA Rules in XPDL
	The Rationale for Macros
	ECA Macro Elements
	Basic Connector Macros

	Supporting Chimera-Exception Expressions
	Basic Sub-processes for Expression Evaluation
	Expression Patterns

	Mapping Exceptions to XPDL
	Mapping Events
	Mapping Conditions
	Mapping Actions

	Compiling Chimera-Exception into XPDL
	XPDL Process Modelling and Rule Compilation

	Conclusions and Future Work
	References

	Methods for Enabling Recovery Actions in Ws-BPEL
	Introduction
	Ws-BPELRecoveryMechanisms
	Enhancing Design Capability
	Proposed Mechanisms
	External Variable Setting
	Timeout
	Redo Mechanism
	Future Alternative Behavior
	Rollback and Conditional Re-execution of the Flow
	Harmonizations of Proposed Mechanisms

	Related Work
	Conclusion and Future Work
	References

	BPEL Processes Matchmaking for Service Discovery
	Introduction
	Motivating Scenarios
	Related Work
	A Graph-Based Approach to Behavior Matchmaking
	Background and Basic Definitions
	Extension of the Sub-graph Edit Distance
	Similarity Measure for Behavioral Matching
	Composing Fragments to Match the Input Graph

	BPEL Processes Matchmaking
	Transforming BPEL to Graph
	Graph Matchmaking
	Comparison Rules
	Linguistic Comparison
	Decomposing Vertices
	Example

	Implementation and Experiments
	Conclusion
	References

	Evaluation of Technical Measures for WorkflowSimilarity Based on a Pilot Study
	Introduction
	Related Work
	Pilot Study
	FormalWorkflow Model
	Questionnaire
	Results

	Mining Conformance Based Similarity Measures
	Overview Approach
	Evaluation

	Workflow State Set Based Similarity Measure
	Approach
	Evaluation

	Workflow State List Based Similarity Measure
	Approach
	Evaluation

	Conclusion and Future Work
	References


	Dynamic and Adaptable Workflows
	Evolution of Process Choreographies in DYCHOR
	Introduction
	Practical Scenario
	Process Choreographies
	Overview
	Formal Model
	Public Process Generation
	View Generation

	Process Choreography Evolution
	Change Framework
	Propagation Criterion and Invariant Changes

	Selected Evolution Scenarios
	Invariant Additive Change
	Variant Additive Changes

	Implementation Issues
	Related Work
	Conclusion and Future Work
	References

	Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows
	Introduction
	Achieving Flexibility Through Worklets
	The Worklet Custom Service for YAWL
	Worklet Service Architecture
	Process Definition
	Context and Worklet Selection
	Related Work
	Conclusion and Future Work
	References

	Change Mining in Adaptive Process Management Systems
	Introduction
	Process Optimization by Integrating Process Mining and Adaptive Process Management
	Process Mining
	Integration Framework

	Change Logs
	General Change Framework
	The MXML Format for Process Event Logs
	Mapping Change Log Information to MXML

	Mining Compact Change Processes
	A Characterization of Change Logs
	Commutative and Dependent Change Operations
	Mining Change Processes

	Implementation and Tool Support
	Related Work
	Summary and Outlook
	References


	Services Metrics and Pricing
	A Link-Based Ranking Model for Services
	Introduction
	Related Work
	A Link-Based Service Importance Model
	Service Quality Contribution Scores
	Service Usage
	Effective Contribution and Importance

	Computing Importance
	Synchronous Distributed Computation
	Asynchronous Distributed Computation

	Experimental Evaluation
	Service Graph Generation
	Experimental Results

	Conclusion
	References

	Quality Makes the Information Market
	Introduction
	Background
	A Model of Quality
	Quality as Excellence
	Quality and Desirability

	Operationalizing Quality
	Uncertainty in Quality Assessment
	Linguistic Variables
	Quality Measurement
	Accuracy of Measurements
	Interpretation of Measurements

	Example Quality Assessment System
	Conclusions and Future Research
	References

	Bid-Based Approach for Pricing Web Service
	Introduction
	Related Work 

	Model and Problem Definition
	Upper Bounds
	Studying the Offline Problem
	Studying the Online Problem
	Upper Bounds Summary

	Online Scheduling with Private Information
	Bid-Based Algorithm HBF
	Early Strategic Deadline First Algorithm (EsDF)

	Experiments and Results
	Simulation Setting
	Results

	Conclusion
	References


	Formal Approaches to Services
	Customizable-Resources Description, Selection, and Composition: A Feature Logic Based Approach
	Introduction
	Motivation
	Notion of Set
	Notion of Feature
	Notion of Feature Unification

	Framework Description
	Feature Logic: Syntax and Semantics
	Customizable-Resources Description
	Customizable-Resources Selection
	Customizable-Resources Composition

	Related Work
	Conclusion and Future Work
	References

	Defining and Modelling Service-Based Coordinated Systems
	Introduction
	The Main Concepts of MEO
	Coordination Activity
	Coordination Scenario
	Constraint

	Coordination Strategy
	Ordering
	Firing
	Data Dependency

	Security Strategy
	Integrity
	Authentication
	Authorisation
	Non Repudiation
	Safety

	Execution Policies
	Related Work
	Conclusion
	References

	Web Service Mining and Verification of Properties: An Approach Based on Event Calculus
	Introduction
	Running Example
	Log-Based Verification
	Formal Specification of Composition Properties
	Formulating Properties: The EC Language

	Web Service Logging
	Web Service Collecting Solutions and Web Mining Log Structure
	Existing Logging Solutions
	Advanced Logging Solutions

	Verifying Properties
	The EC Checking
	Implementation Issues

	Related Work
	Conclusion and Future Directions
	References


	Trust and Security in Cooperative IS
	Establishing a Trust Relationship in Cooperative Information Systems
	Introduction
	Context and Motivation
	Message-Based Mutual Attestation Protocol
	Review of Message-Based Mutual Attestation Protocol
	Performance Analysis
	Security Analysis

	Session-Based Mutual Attestation Protocol
	First Phase: Establishing a Trusted Session
	Second Phase: Session Maintenance and Termination
	Security Analysis
	Performance Analysis

	Related Work
	Conclusions
	References

	A Unifying Framework for Behavior-Based Trust Models
	Introduction
	Our Approach Towards a Unifying Framework
	Representation of Behavior-Specific Knowledge
	Overview of Behavior-Specific Knowledge
	Aspects of Behavior-Specific Knowledge
	Defining the Representation of Notions Behind Behavior-Specific Knowledge

	Defining a Query Algebra for Trust
	Conventional Extensions to the Relational Algebra
	Centrality

	Preliminary Experimental Results
	Conclusions and Future Work
	References

	A WS-Based Infrastructure for IntegratingIntrusion Detection Systems in Large-Scale Environments
	Introduction
	Related Work
	Web Services Composition
	Intrusion Detection in Large-Scale Environments

	Infrastructure for IDS Composition
	Support Services for IDS Composition
	Registry and Search Service
	Security Service

	Service Orchestration
	Experiments
	Implemented Composition
	A Generic Procedure for Composition
	Tests with the Prototype

	Concluding Remarks
	References


	P2P Systems
	An Adaptive Probabilistic Replication Method for Unstructured P2P Networks
	Introduction
	Our Framework and Overview of APRE

	Probabilistic Resource Location
	Probabilistic Search
	Utilizing Search Indices

	Our “Expand-Contract” Technique
	Protocol Implementation

	Results
	Basic Performance Comparison
	Flash Crowds
	Other Experiments

	Related Work
	Conclusions
	References

	Towards Truthful Feedback in P2P Data Structures
	Introduction
	Background
	Measures Against Spoof Feedback
	Analysis
	Evaluation
	Related Work
	Discussion
	Conclusions
	References

	Efficient Peer-to-Peer Belief Propagation
	Introduction
	Belief Propagation
	The Message Passing Algorithm

	The P-Grid Overlay
	Peer-to-Peer Belief Propagation
	Distributed Knowledge Base Scenario
	The Inference Architecture
	The Relaxation Algorithm

	Evaluation
	Network Topologies
	Message Reduction
	Load-Balancing
	Discussion

	Related Work
	Belief Propagation
	Spring Relaxation

	Future Work
	Conclusions
	References


	Collaborative Systems Design and Development
	Designing Cooperative IS: Exploring and Evaluating Alternatives
	Introduction
	SDS System Example
	Exploring and Evaluating Alternatives
	Formalization of the Planning Problem
	Evaluation Procedure

	P-Tool and Experiments
	Choosing the Planner
	P-Tool

	Related Work
	Conclusions
	References

	Natural MDA: Controlled Natural Language for Action Specifications on Model Driven Development
	Introduction
	Model Driven Architecture
	Action Specification Languages
	Controlled Natural Languages

	Natural MDA: An Action Specification Language
	Action Specification Language Grammar

	Language Supporting Tools
	Syntactic and Semantic Analyzer and Synthesis
	Language Editor

	Development Process
	Application Example
	Evaluation

	Conclusion
	References

	Managing Distributed Collaboration in a Peer-to-Peer Network
	Introduction
	U-Forms and the Visage Collaboration Model
	A Brief History of the U-Form Style
	Some General Observations About U-Form Usages

	Design and Engineering Issues and Background
	Shepherd Agents, Version Vectors, and Conflict Recognition
	Shepherdable Indexes
	Digital Signatures, Security, and Trust

	Collaborative Structures
	The Carrier Pigeon Protocol
	Collections and Recursive Collections
	The Publication and Annotation Mechanism

	A Comprehensive Application: Collaborative, Distributed GIS
	Conclusion
	References


	Collaborative Systems Development
	Developing Collaborative Applications Using Sliverware
	Introduction
	Motivation and Problem Definition
	Sliverware: A Constructive Programming Model
	Collaborative Services
	Group Membership
	Network Communication for Collaboration
	Programming with Sliverware

	An Example Sliver: The Distributed Keyboard
	Related Work
	Conclusions
	References

	A Framework for Building Collaboration Tools by Leveraging Industrial Components
	Introduction
	Related Work
	A Model of Groupware Components
	Modeling Shared Data
	Java Embodiment
	Runtime System of EXEC

	Transforming Industrial Components
	Experience and Framework Evaluation
	Automatic and Manual Adaptation
	Building and Adapting Components
	An Integrated Evaluation Environment
	Discussions of Work and Benefits

	Conclusions
	References

	Evaluation of a Conceptual Model-Based Method for Discovery of Dependency Links
	Introduction
	Conceptual Model-Centric Cooperative IS Development
	Overall Method
	Conceptual Model-Based Dependency Discovery

	Evaluation Model and Experimental Settings
	Experimental Settings
	Dependent Variables

	Results of Experiment
	Analysis and Discussion
	Cause Analysis
	Related Work
	Threats to Validity

	Conclusions and Future Work
	References


	Cooperative IS Applications
	Advanced Recommendation Models for Mobile Tourist Information
	Introduction
	Background
	Recommendation Paradigms
	TIP Background

	Concepts of Advanced Recommendation Models
	Design of Recommendation Algorithms
	Terms and Definitions
	Design of Algorithms Using Collaborative Filtering
	Design of Algorithms Using Content-Based Paradigm
	Design of Algorithms Using Knowledge-Based Paradigm
	Design Summary

	Evaluation and Analysis
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion
	References

	Keeping Track of the Semantic Web: Personalized Event Notification
	Introduction
	Background and Project Focus
	Brief Introduction to Semantic Web and RDF/S
	Problem Description
	Principles of Event Notification

	Conceptual Design
	Repository
	Observer
	Profile Store/Index
	Filter
	Notifier

	Implementation of $ENS-SW$
	Evaluation
	Observer (DeltaAdapter) Testing
	Filter Testing

	Conclusions and Future Work
	References

	A Gestures and Freehand Writing Interaction Based Electronic Meeting Support System with Handhelds
	Introduction
	Related Work
	Design Principles
	Meeting System Structure
	System Description
	Annotations and Sketching
	Conceptual Map Building and Navigation
	Collaborative Process
	System Achitecture

	First Usability Testing and Analysis
	Conclusions
	References


	Ontologies, Databases and Applications of Semantics (ODBASE) 2006 International Conference
	ODBASE 2006 International Conference(Ontologies, Data Bases, and Applications of Semantics) PC Co-chairs’ Message

	Keynote
	SomeWhere: A Scalable Peer-to-Peer Infrastructure for Querying Distributed Ontologies
	Overviewof SomeWhere
	Illustrative Example
	Query Rewriting in SomeWhere Through Propositional Encoding
	Ongoing Work
	Extending the Data Model to RDFS
	Dealing with Inconsistencies

	References


	Foundations
	Querying Ontology Based Database Using OntoQL (An Ontology Query Language)
	Introduction
	The OBDB Data Model
	Ontology
	Content
	Relationship Between Each Part
	Related Work

	Query Algebra for OBDB
	Optimizations of OntoAlgebra’s Operators
	The OntoQL Language
	The Data Definition (DDL) and Manipulation (DML) Parts of OntoQL
	The Query Language Part of OntoQL

	Processing of OntoQL
	Example
	Related Work
	Database Exploitation Languages
	Semantic Web Exploitation Languages

	Conclusion
	References

	Description Logic Reasoning with Syntactic Updates
	Introduction
	Preliminaries
	SHOIQDescription Logic
	Tableau Algorithms

	Syntactic ABox Updates
	Update Approach
	ABox Additions
	ABox Deletions
	Update Algorithm

	Implementation and Evaluation
	Discussion and Future Work
	Related Work
	Conclusion
	References

	From Folksologies to Ontologies: How the Twain Meet
	Introduction
	Bridging the Gap
	Structure of the Paper

	Emerging Semantics: From Theory to Systems
	Characteristics of Emergent Semantics Systems
	Natural LanguageWords vs. Language Independent Concept Labels
	Informal vs. Formal Semantics
	A Bag of Loose Words vs. a Well Structured Semantic Network
	Effort at Creation Time vs. Effort at Usage Time
	Individual Creation Decision vs. Group-Wise Creation Agreement
	The (Unbearable?) Lightness of Being a Tag Creator vs. the Authoritative Weight of a Relevant Stakeholder

	Implementing an Emergent Semantics System
	Del.icio.us
	Piggy Bank
	DOGMA
	DogmaBank

	Related and Future Work
	Conclusion
	References

	Transactional Behavior of a Workflow Instance
	Introduction
	Related Work
	Preliminaries
	Basic Concepts
	A Brief Description of the Flexibilization Mechanism

	Processes, Resources and Application Ontologies
	Transactional Model for Flexible Workflow Execution
	Abstract Machine Without the Flexibilization Mechanism
	Abstract Machine Extended with the Flexibilization Mechanism

	Conclusions
	References


	Metadata
	An Open Architecture for Ontology-Enabled Content Management Systems: A Case Study in Managing Learning Objects
	Introduction
	Related Work
	Requirements and Design Criteria of an Ontology-Enabled CMS
	Requirements
	Design Criteria

	An Open Architecture for Ontology-Enabled CMS
	The Web Interface Layer
	The Semantic Content Management Layer
	The Core Layer
	The Data Management Layer

	A Reference Implementation in Java
	The Java-Based Implementation Platform
	The WOICMS Implementation
	Developing the Learning Object Ontology
	Ontology-Assisted Navigation
	Ontology-Integrated Search

	Summary and Future Work
	References

	Ontology Supported Automatic Generation of High-Quality Semantic Metadata
	Introduction
	Approach
	Ontology Formalism
	Semantic Metadata Model
	Semantic Annotation Steps
	Information Extraction
	Initial Semantic Metadata Generation
	Metadata Extension Using Heuristic Rules
	Metadata Extension Algorithm

	Evaluation
	Document Collection
	Domain Ontology
	Heuristic Rules
	Evaluation Methodology
	Results

	Related Work
	Conclusion and Outlook
	References

	Brokering Multisource Data with Quality Constraints
	Introduction
	2 A Quality-Oriented Architecture to Query Multi-source Data
	The DTA: The Broker Cannot View Data Values
	The DVA: The Broker Can View Data Values

	The Data Quality Brokering Methodology
	Experimental Results
	Data Accuracy Heterogeneity vs. Data Cleaning Analysis
	Data Accuracy Heterogeneity and Merging
	Fraction of Records and Merging

	Related Work
	Conclusions and Future Work
	References


	Design
	Enhancing the Business Analysis Function with Semantics
	Introduction
	Background
	Business Case

	Requirements
	General
	Scenario Development

	Methods
	Linguistic Analysis
	The GATE Linguistic Engineering Framework
	Ontology Modelling
	The DOGMA Ontology Engineering Framework

	Proposed Solution
	Prototype Development

	Preliminary Evaluation
	Related Work
	Conclusion
	References

	Ontology Engineering: A Reality Check
	Introduction
	Related Work
	Analytical Surveys
	Empirical Studies

	Ontology Engineering in a Nutshell
	Our Survey
	Survey Overview
	Survey Design
	Survey Results

	Discussions of the Results
	Summary and Outlook
	References

	Conceptual Design for Domain and Task Specific Ontology-Based Linguistic Resources
	Introduction
	Conceptual Design of LR Using RDB
	Some Common Problems in LR
	Application-Oriented LR

	Methodological Gaps in the Development of LR Using RDB
	Refining the Semantics of Concepts and Relations
	Properties of Concepts
	Relations
	Algebraic Properties of Relations
	Intrinsic Properties of Relations

	Designing the Conceptual-Semantic Level for a LR
	Conclusions
	References


	Ontology Mappings
	Model-Driven Tool Interoperability: An Application in Bug Tracking
	Introduction
	Motivating Example
	Tool Heterogeneity
	Models
	Tool Heterogeneity
	Metamodel Extensions for Tool Interoperability

	Interpreting Tool Heterogeneity
	Match Operation
	Generic Transformation Pattern

	Experimental Validation
	Correspondence Model
	Interpreting the Correspondence Model
	Discussion

	Related Work
	Conclusions
	References

	Reducing the Cost of Validating Mapping Compositions by Exploiting Semantic Relationships
	Introduction
	Background
	Mapping Representation
	Invert and Compose Operators
	Experimental Evaluation
	Future Work and Conclusions
	References

	Using Fuzzy Conceptual Graphs to Map Ontologies
	Introduction
	Backgrounds
	Fuzzy Set Theory
	Fuzzy Conceptual Graphs

	A Syntactic Relevance Score for Fuzzy Matching of Values
	Using Conceptual Graphs for Fuzzy Matching of Objects
	Preliminary Experimentations
	Conclusion
	References

	Formalism-Independent Specification of Ontology Mappings – A Metamodeling Approach
	Motivation
	Ontology Mapping Formalisms
	A Metamodel for Ontology Mappings
	A UML Profile for Ontology Mappings
	Discussion
	References


	Information Integration
	Virtual Integration of Existing Web Databases for the Genotypic Selection of Cereal Cultivars
	Introduction
	The CEREALAB Domain

	The MOMIS Integration Methodology
	The ODLI3 Language
	Insertion of Pre-existing Ontology / Wrapping: Extracting Data Structure for Sources
	Semi-automatic Annotation of a Local Source with WordNet
	Common Thesaurus Generation
	Global Virtual View (GVV) Generation
	Mapping Refinement

	The MOMIS Query Manager
	Query Rewriting
	Local Queries Execution / Fusion and Reconciliation
	Query on Multiple Global Classes

	Summary and Discussions
	References

	SMOP: A Semantic Web and Service Driven Information Gathering Environment for Mobile Platforms
	Introduction
	System Overview
	General Architecture
	Mobile Client
	The Server
	Platform Services

	System Extensibility from Domain Independency Perspective
	Case Study and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Integrating Data from the Web by Machine-Learning Tree-Pattern Queries
	Introduction
	Background
	MaximalWeight Generalization
	Evaluation
	Related Work
	Conclusion
	References


	Agents
	HISENE2: A Reputation-Based Protocol for Supporting Semantic Negotiation
	Introduction
	Related Work
	Preliminaries
	JADE (Java Agent DEvelopment Framework)
	Extended Ontology

	Reputation-Based Partitioning
	Semantic Message
	Agent Reputation

	The HISENE2 Protocol
	Request Behaviour
	Answer Behaviour
	Feedback Behaviour
	Exploitation of the Context

	Example
	HISENE
	HISENE2

	Evaluation of the Approach
	Conclusions
	References

	An HL7-Aware Multi-agent System for Efficiently Handling Query Answering in an e-Health Context
	Introduction
	Description of the Proposed System
	Health Care Service Provider Database (SD)
	Patient Profile Database (PD)
	Patient Agent (PA)
	Health Care Service Provider Agent (SPA)
	Coordinator Agent (CA)

	Related Works
	Conclusions
	References

	PersoNews: A Personalized News Reader Enhanced by Machine Learning and Semantic Filtering
	Introduction
	Related Work
	Machine Learning Framework
	System Implementation
	Automatic News Classification
	Feed Manipulation and Monitoring
	Semantic Filtering Through Topic Manipulation and Monitoring

	Conclusions and Future Work
	References


	Contexts
	An Ontology-Based Approach for Managing and Maintaining Privacy in Information Systems
	Introduction
	Related Works
	Platform for Privacy Preferences
	Resource Access Decision
	Access Control List
	Digital/Private Rights Management
	Rights Management Languages
	Web Service Policies in OWL-DL

	Our Approach
	Privacy Manager
	Data Protection Officer
	XACML

	Implementation
	Conclusions
	References

	Ontology-Based User Context Management: The Challenges of Imperfection and Time-Dependence
	Introduction
	Usage Scenario
	Scenario
	Use Cases
	Requirements

	Layered Context Model
	General Considerations
	Internal Layer
	Logical Model
	Mapping the Internal Layer to the Logical Layer
	The Problem of Asynchronous Notification
	External Layer and Mapping from the Logical Layer
	Resulting System Architecture

	Integrating Ontologies
	Motivation
	Approach

	Implementation Case Study
	How the User Context Management Infrastructure Was Implemented
	How User ContextWas Used
	How User ContextWas Acquired
	Results

	Related Work
	Context Modeling
	Imperfection Handling in Context Modeling
	Imperfection Handling in Data Management in General

	Conclusions and Outlook
	References

	Moving Towards Automatic Generation of Information Demand Contexts: An Approach Based on Enterprise Models and Ontology Slicing
	Introduction
	Context-Based Information Demand Modeling
	Information Demand Context

	Deriving Information Demand Context from Enterprise Models
	Example Model Used for Automatic Context Derivation

	An Ontology-Based Approach to Context Derivation
	Ontology Based on Enterprise Model
	Resulting Information Demand Context

	Conclusions and Outlook
	References


	Similarity and Matching
	Semantic Similarity of Ontology Instances Tailored on the Application Context
	Introduction
	Semantic Similarity Method
	Context Layer
	Motivation Behind the Application Context Formalization
	Application Context Formalization

	Ontology Layer
	External Similarity
	Extensional Similarity

	Experiment and Evaluation
	Related Work
	Conclusions and Future Work
	References

	Finding Similar Objects Using a Taxonomy: A Pragmatic Approach
	Introduction
	Information-Theoretic Similarity
	Holistic Similarity
	Generic Similarity

	Related Work
	Implementation
	User-Defined Types
	Precomputation

	Experimental Evaluation
	Measures Evaluated
	Results
	Discussion
	Candidate Selection

	Conclusions and Future Work
	References

	Towards an Inductive Methodology for Ontology Alignment Through Instance Negotiation
	Motivation
	Related Work
	GLUE
	PROMPT Suite
	APFEL

	Ontology Alignment Algorithm
	Machine Learning in Description Logic
	Prototype Description and Preliminary Evaluation
	Artificial Ontologies
	Ontology Alignment Evaluation Initiative Ontologies
	ACM and DBLP Test Case

	Conclusions and Future Work
	References

	Combining Web-Based Searching with Latent Semantic Analysis to Discover Similarity Between Phrases
	The Problem
	Organization of the Paper

	Developing Requirements
	What Causes Alignment Problems?
	Requirements

	Related Work
	Synonym Matching Approaches
	Ontology Alignment
	Requirements Table

	The Algorithm
	Data Sets
	Ontology Data
	Synonym Data Sets

	Algorithm Parameters
	Setting the Parameters

	Experiment Results
	Ontology Test
	Synonym Tests
	Recommendation Test
	Discussion of Results
	Limitations

	Conclusions and Future Work
	References

	A Web-Based Novel Term Similarity Framework for Ontology Learning
	Introduction
	Related Work
	WebSim: A Simple Mutual Information Approach
	WebSim: A Similarity Model Based on Feature Extraction
	Feature Extraction
	A Similarity Model Based on Extracted Features

	Ontology Modification with WebSim
	Semantic Similarity Versus WebSim
	Potential Applications of WebSim
	Conclusion and Future Work
	References


	Author Index



