

J.F. Roddick et al. (Eds.): ER Workshops 2006, LNCS 4231, pp. 63 – 72, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Model to Text Transformation in Practice: Generating
Code from Rich Associations Specifications

Manoli Albert, Javier Muñoz, Vicente Pelechano, and Óscar Pastor

Department of Information Systems and Computation
Technical University of Valencia

Camino de Vera s/n
46022 Valencia (Spain)

{malbert, jmunoz, pele, opastor}@dsic.upv.es

Abstract. This work presents a model to code transformation where extended
UML association specifications are transformed into C# code. In order to define
this transformation the work uses a conceptual framework for specifying
association relationships that extends the UML proposal. We define a set of
transformation rules for generating the C# code. The generated code extends an
implementation framework that defines a design structure to implement the
association abstraction. The transformation takes as input models those which
are specified using the conceptual framework. Transformations have been
implemented in the Eclipse environment using the EMF and MOFScript tools.

1 Introduction

Model to text transformations play a key role in MDA based methods for the
development of software systems. The assets that are produced by this kind of
methods usually are source code files in some programming language. Therefore,
model to text transformation are used in most of the projects that apply the MDA.
Currently, there is a lack of specific and widely used techniques for specifying and
applying this kind of transformations. The OMG “MOF Model to Text Transforma-
tion Language RFP” aims to achieve a standard technique for this task. Anyway,
guidelines and examples of model to text transformations are needed in order to
improve the way this step is performed in MDA based methods. In this work, we
introduce a model to text transformation for a specific case: the generation of code to
implement in OO programming languages (C# in our example) extended UML
association relationships specified at the PIM level.

In order to do this, we use a conceptual framework that was introduced in [8] for
precisely specifying association relationships in Platform Independent Models. This
conceptual framework defines a set of properties that provide to the analyst
mechanisms for characterising the association relationships. Then, we propose a
software framework for implementing them. The framework, which has been
implemented using the C# programming language, applies several design patterns in
order to improve the quality of the final application. Using these two items, we define
transformations for automatically converting the PIMs that are defined using the

64 M. Albert et al.

conceptual framework, into code that extends the implementation framework. We
implement this model to text transformation using Eclipse plug-ins for model
management. Concretely, we use EMF to persist and edit the models and MOFScript
to specify and apply the model to text transformations.

In short, the main contribution of this paper is a practical application of model to
text transformations for automatically generating code from PIMs. In addition, we
provide knowledge (a conceptual framework, an implementation framework and a
transformation mapping) for specifying and implementing association relationships.
This proposal has been developed in the context of a commercial CASE tool
(ONME1), but the knowledge can be integrated in other MDA based methods, since
association relationships are widely used in OO approaches.

The paper is structured as follows: Section 2 briefly presents the conceptual
framework that is used in the paper for specifying association relationships. In Section
3 we show our proposal to implement association relationships in OO languages.
Section 4 describes the model to text mapping and Section 5 introduces the
implementation using Eclipse and MOFScript. Finally, Section 6 contains the
conclusions and our future works.

2 A Conceptual Framework for Association Relationships

The meaning of the association construct, central to and widely used in the OO paradigm,
is problematic. The definitions provided in the literature for this construct are often
imprecise and incomplete. Conceptual modelling languages and methods, such as
Syntropy[1], UML[2], OML[3] or Catalysis[4], include partial association definitions
that do not solve some relevant questions. Several works have appeared highlighting these
drawbacks and answering many important questions regarding associations [5, 6, 7].

To define a precise semantics for the association abstraction, we present a
Conceptual Framework [8] that identifies a set of properties that have been extracted
and adapted from different OO modelling methods. These properties allow us to
characterize association relationships in a conceptual model.

Fig. 1 shows the metamodel for specifying associations using our approach. The
three basic elements that constitute an association (the participating classes, the
association ends and the association) are represented by metaclasses. The attributes
of the metaclasses represent the properties of the conceptual framework that is
introduced in the next section.

2.1 Properties of the Conceptual Framework

In this section we briefly present the properties. We introduce the intended semantics
of each property in a descriptive way, and its possible values.

Dynamicity: Specifies whether an instance of a class can be dynamically connected or
disconnected (creating or destroying a link) with one or more instances of a related class
(through an association relationship) throughout its life-time. The property is applied to
the associated ends. The values are: Dynamic (the connection and disconnection is

1 http://www.care-t.com

 Model to Text Transformation in Practice 65

possible), Static (the connection and disconnection are no possible), AddOnly (only the
connection is possible) and RemoveOnly (only the disconnection is possible).

Association

name : String
reflexivity : ReflexivityKind
symmetry : SymmetryKind
transitivity : Boolean
partOf : Boolean

DynamicityKind

Dynamic
Static
AddOnly
RemoveOnly

<<enumeration>>
PropagationKind

Cascade
Link
Restrictive

<<enumeration>>
AggregationKind

Association
Aggregation
Composition

<<enumeration>>
SymmetryKind

Symmetric
NotSymmetric
Asymmetric

<<enumeration>> ReflexivityKind

Reflexive
NotReflexive
Irreflexive

<<enumeration>>

AssociationEnd

name : String
minMultiplicity : Integer
maxMultiplicity : Integer
dynamicity : DynamicityKind
navigability : Boolean
identityProjection : Boolean
deletePropagation : PropagationKind
aggregation : AggregationKind

2..2

1..1+connection

2..2

+association
1..1

ClassDiagram

name : String

0..n

1

0..n

1

Attribute

name : String
type : String
isIdentifier : Boolean

ParticipantClass

name : String

1..1

0..n

+participant

1..1

0..n

0..n 10..n 1

0..n

1

0..n

1

Fig. 1. Metamodel for specifying association following our conceptual framework

Multiplicity (maximum and minimum): Specifies the maximum/minimum number
of objects of a class that must/can be connected to one object of its associated class.
The property is applied to the associated ends.

Delete Propagation: Indicates which actions must be performed when an object is
destroyed. The property is applied to the associated ends. The possible values are:
Restrictive (the object cannot be destroyed if it has links), Cascade (the links and the
associated objects must also be deleted) and Link (the links must be deleted).

Navigability: Specifies whether an object can be accessed by its associated object/s.
The property is applied to the associated ends. The property value is true if the objects
of the opposite end can access the objects of the class; otherwise the value is false.

Identity Projection: Specifies whether the objects of a participating class project
their identity onto their associated objects. These objects are identified by their
attributes and by the attributes of their associated objects. The property is applied to
the associated ends. The property value is true if the class of the opposite end projects
its identity; otherwise the value is false.

Reflexivity: Specifies whether an object can be connected to itself. The property is
applied to the association. The possible values are: Reflexive (the connection is
mandatory), Irreflexive (the connection is not possible) and Not Reflexive (the
connection is possible but not mandatory).

Symmetry: Specifies whether a b object can be connected to an a object, when the a
object is already connected to the b object. The property is applied to the association.

66 M. Albert et al.

The possible values are: Symmetric (the connection is mandatory), Antisymmetric (the
connection is not possible) and Not Symmetric (the connection is possible but not
mandatory).

Transitivity: Specifies whether when an a object is connected to a b object, and the
b object is connected to a c object, it implies that the a object is connected to the c
object. The property is applied to the association. The property value is true if the
implicit transition exists; otherwise the value is false.

Using this conceptual framework we can specify associations in a very expressive
way. Furthermore, these properties have been used in [8] for characterizing the
association, aggregation and composition concepts in the context of a commercial tool
that follows the MDA proposal (the ONME Tool).

In the next section, we present the software representation of an association
relationship that is characterized by the framework properties.

3 Implementing Association Relationships

Most object oriented programming languages do not provide a specific construct to
deal with associations as first level citizens. Users of these languages (like C# and
Java) should use reference attributes to implement associations between objects.
Following this approach, an association is relegated to a second-class status. In order
to solve this situation, several approaches have been proposed to implement
association relationships (as it has been presented in [9]). Nevertheless, in these
approaches some expressivity is missed in order to support those properties which are
widely used for specifying association relationships.

3.1 Design Patterns

Our proposal for implementing associations provides a software framework that
combines a set of design patterns [10]. The goal of our framework is to provide
quality factors like loose coupling (since most of the implementation proposals
introduce explicit dependencies which make difficult the maintainability of the
application), separation of concerns (since the objects of the participating classes
could have additional behaviour and structure to those specified in the domain class)
and reusability and genericity (since most of the association behaviour and structure
can be generalized for all associations.).

In order to achieve these goals, we present a solution that combines three design
patterns: the Mediator, the Decorator and the Template Method. The next section
shows how these patterns are applied to implement associations.

3.2 Framework Structure

We combine the design patterns selected to obtain a composite structure of design
classes that implements an association relationship. Taking into account the
association relationship and the participating classes, in this section, we present the
design classes that constitute the framework.

 Model to Text Transformation in Practice 67

Fig. 2 shows the generic structure of design classes that represents an archetype
association (two participant classes connected through an association). Next, we
describe the elements of the figure.

Fig. 2. Design Classes of the Implementation Framework

Participant classes (ParticipantClass in the figure), implement the
participant classes of the conceptual model according to their specifications. The
application of the Decorator Pattern implies the definition of decorated classes
(DecoratorConcreteParticipantClass) that wrap the participant classes
and represent the association end in which they participate. These classes implement the
structure and behaviour that is added to the participant classes as a consequence of their
participation in associations. Moreover, the application of this pattern results in the
definition of an abstract decorator class (DecoratorAbstractParticipantClass)
that generalizes every decorators (association ends) of a participant class. Finally, the
pattern entails the definition of an abstract participant class (Abstract
ParticipantClass), from which the participant and the decorator abstract
classes inherit. The decorator abstract classes keep a reference to an object of the
abstract participant class, representing the decorated object. This class structure
allows to use in the same way a decorated object (an object of a participant class) and
a decorator object (an object of a decorator class).

The Mediator Pattern is applied in order to encapsulate the interaction of the
participant objects. The application of this pattern results in the definition of a
mediator class (ConcreteMediator) that implements the structure and behaviour
of an association (independently of the participant classes). This class connects the
concrete decorator classes that represent the association ends (since the participant
classes are implemented in an isolated way from the association in which they
participate).

68 M. Albert et al.

The Template Pattern is applied in the context of the mediator class. We define
an abstract class (AbstractMediator) for the concrete mediator class to
implement the common structure and behaviour of the associations, describing
common execution strategies. This class defines the template methods for the link
creation and destruction and includes a reference to each participant object.

Finally, we define an interface for the decorator classes in order to specify those
methods that must be implemented in the decorator classes. The abstract decorator
classes implement this interface.

3.3 Functionality Implementation

In this section we present the part of the framework that regards to the functionality.
The definition of an association between two classes implies the implementation of
new functionality. This functionality is the following:

• Link Creation: allows the creation of links between objects of the
participating classes. The implementation of this functionality requires
checking the reflexivity, symmetry, transitivity and maximum
multiplicity properties.

• Link Destruction: allows the destruction of links between objects of the
participating classes. The implementation of this functionality requires
checking the reflexivity, symmetry, transitivity, minimum multiplicity
and delete propagation properties.

• Participant Object Creation: allows the creation of decorator objects
independently of the creation of their decorated objects. The implementation
of this functionality requires checking the minimum multiplicity and
reflexivity properties.

• Participant Object Destruction: allows the destruction of decorator objects
independently of the creation of their decorated objects. The implementation
of this functionality requires the checking the delete propagation property.

The next section introduces the mappings between the association specification and
its implementation. We also present how the properties affect the implementation of
the methods that have been introduced in this section.

4 Mapping Association Specifications into Code

This section describes the transformation from models that are specified using our
conceptual framework into C# source code files. First of all, we are going to
intuitively describe the mapping. Then, we show the implementation of this model to
text transformation.

4.1 Metaclasses Mapping

In order to describe the mapping, we introduce the implementation classes that are
generated from the metaclasses of the PIM metamodel.

 Model to Text Transformation in Practice 69

• ParticipantClass: Every ParticipantClass element in the model generates
three classes:
1. AbstractDomainClass: this class defines the attributes and

operations specified in the ParticipantClass. Note that all the information
in this class is independent of the class associations.

2. DomainClass: this class implements the operations specified in the
AbstractDomainClass.

3. AbstractDecorator: this class implements the methods which are
used for the management of the links (create and delete a link).

• AssociationEnd: Every AssociationEnd element in the model generates one
class:
1. ConcreteDecorator: this class extends the AbstractDecorator

class, which has been generated from the ParticipantClass element.
• Association: Every Association element in the model generates one class:

1. Mediator: this class extends the AbstractMediator class from the
implementation framework.

The contents of these implementation classes and their methods depend on the values
of properties specified in the PIM level. Next, we present briefly (due to space
limitations) the representation of the properties in the framework.

4.2 Properties Mapping

Identity Projection. The value of this property determines how are implemented the
identifier attributes in the AbstractDomain C# classes.

Dynamicity. Depending on the value of this property, methods for adding and
deleting links are included in the opposite concrete decorator C# class.

Navigability. The value of this property determines if it is necessary to limit the
access to the objects of the end by their associated objects.

Reflexivity, Symmetry, Transitivity, Multiplicity and Delete Propagation. The
constraints that are imposed by these properties are checked by specific methods. The
implementation of these methods depends on the values assigned to the properties. In
section 3.3 we have described when these properties must be checked.

5 Transforming Models to Code. The Tools

We have implemented the transformation that has been introduced in this paper using
the Eclipse environment. Eclipse is a flexible and extensible platform with many
plug-ins which add functionality for specific purposes. In this work we have used the
Eclipse Modelling Framework (EMF)2 for the automatic implementation of the
metamodel shown in Fig. 1. This metamodel provides the primitives for specifying
association relationships using the properties that are defined in our conceptual
framework. The EMF plug-in automatically generates the Java classes which

2 http://www.eclipse.org/emf

70 M. Albert et al.

implement functionality for creating, deleting and modifying the metamodel elements,
and for the models serialization.

In order to implement the model to text transformation, we have used the
MOFScript tool that is included in the Generative Model Transformer (GMT)3
Eclipse project. The MOFScript tool is an implementation of the MOFScript model to
text transformation language. This language was submitted to the OMG as response to
the “MOF Model to Text Transformation Language RFP”.

In this work, we have selected the MOFScript language/tool for several
reasons: (1) MOFScript is a language specifically designed for the transformation of
models into text files, (2) MOFScript deals directly with metamodel descriptions
(Ecore files) as input, (3) MOFScript transformations can be directly executed from
the Eclipse environment and (4) MOFScript provides a “file” constructor for the
creation of the target text files.

MOFScript provides the “texttransformation” constructor as the main language
primitive for organizing the transformation process. A transformation takes as input a
metamodel, and it is composed of one or several rules. Every rule is defined over a
context type (a metamodel element). Rules can have arguments and/or return a value.
The special rule called “main” is the entry point to the transformation.

5.1 Implementing the Transformation Using the MOFScript Tool

We have structured our transformation in several modules:

• We define a specific transformation for each kind of class (file)
(ConcreteDecorator, Mediator, etc.).

• The root transformation is in charge of navigating the model and invoking
the specific transformations.

Next we show the root transformation, which takes as input a model that is
specified using our metamodel. The main rule iterates (using the forEach MOFScript
constructor) over ParticipantClass and Association elements. Moreover, the rule
iterates over the AssociationEnd elements of every ParticipantClass. The files are
generated following the mapping described in Section 4.

import "ParticipantAbstract.m2t"
import "Participant.m2t"
import "DecoratorAbstract.m2t"
import "DecoratorConcrete.m2t"
import "MediatorConcrete.m2t"
import "Mediator.m2t"

texttransformation Association2CSharp (in asso:"http:///associationmodel.ecore"
) {

asso.ClassDiagram::main(){

 self.ParticipantClass->forEach(c:asso.ParticipantClass) {
 file (c.name+"Abstract.cs")
 c.generateParticipantAbstractClass()
 file (c.name+".cs")
 c.generateParticipantClass()
 file ("Decorator"+c.name+"Abstract.cs")
 c.generateDecoratorAbstractClass()
 c.AssociationEnd->forEach(end:asso.AssociationEnd){
 file ("Decorator" + c.name + end.association.name +".cs")
 end.generateDecoratorConcreteClass()

3 http://www.eclipse.org/gmt/

 Model to Text Transformation in Practice 71

 }
 }
 self.Association->forEach(a:asso.Association){
 file("Mediator"+ a.name +".cs")
 a.generateMediatorConcreteClass()
 }
 file("Mediator.cs")
 self.generateMediatorClass()
 }
}

The description of the transformations that generate every file can not be included in
this paper due to space constraints. An Eclipse project with the transformation can be
downloaded from http://www.dsic.upv.es/~jmunoz/software/. Next, we (partially)
show the transformation that is in charge of generating the decorator concrete classes.

01 texttransformation DecoratorConcrete (in asso:"http:///associationmodel.ecore")
02 {
03 asso.AssociationEnd::generateDecoratorConcreteClass(){
04 <%using System;
05 using System.Collections;
06 using System.Text;
07 namespace org.oomethod.publications {
08 public class Decorator%> self.participant.name + self.association.name
09 <%:Decorator%>self.participant.name<%Abstract {
10
11 %>
12 //Definition of the collection reference
13 self.association.conexion->forEach(con:asso.AssociationEnd | con <> self) {
14 <% ArrayList %> con.participant.name <%sCollection;
15
16 %>
17 }
18 //Constructor
19 //...
20 //Insert Link Method
21 self.association.conexion->forEach(con:asso.AssociationEnd | con<>self){
22 if (con.dynamicity=="Dynamic" or con.dynamicity=="AddOnly"){
23 <% public Mediador insert%>
24 print(con.participant.name)<%(Decorador%> con.participant.name +
25 self.association.name
26 <% object) {
27 return (new Mediadora%> self.association.name <%(object, this));
28 }
29
30%>
31 }}
32 //...
33 }

This transformation creates a decorator concrete class for each association end
associated to a class. Next, we describe the most relevant issues of the transformation:

• Lines 08-09: The class inherits from its corresponding abstract decorator class.
• Lines 12-17: A collection is defined to maintain a reference to the links. The

name of this collection is based on the name of the class at the opposite end.
• Lines 20-31: An insert link method is created depending on the value of the

dynamicity property of the opposite end. If the value is Dynamic or AddOnly
the method is defined. Otherwise the method is not defined. The name of the
method is based on the name of the class at the opposite end.

72 M. Albert et al.

6 Conclusions

In this work we have introduced a practical case study of model to text transforma-
tion. This transformation takes as input models that are specified using the primitives
of a conceptual framework for precisely specifying association relationships. The
results of the transformation are C# classes which implement the association
relationships using design patterns.

In the context of MDA, the transformation introduced in this paper is a PIM to
Code transformation. We do not explicitly use intermediate PSMs for representing the
C# classes. Currently, we are working on the development of the PIM-PSM-Code
implementation of the transformation that has been introduced in this paper. This
work will provide a precise scenario for the comparison of both approaches.

Another line of research includes the implementation of the association-to-C#
transformation for the persistence and presentation layers. These layers are currently
implemented by hand, but we have defined the correspondence mappings. Our goal is
to automate these mappings using a similar approach to the one that has been
introduced in this paper.

References

1. S. Cook and J. Daniels. Designing Objects Systems. Object-Oriented Modelling with
Syntropy. Prentice Hall, 1994.

2. Object Management Group. Unified Modeling Language Superstructure, Version 2.0. 2005
3. Firesmith, D.G., Henderson-Sellers, B. and Graham, I. OPEN Modeling Language (OML)

Reference Manual, SIGS Books, 1997, New York, USA.
4. D.F. D'Souza and A.C. Wills. Objects, Components and Frameworks with UML. Addison-

Wesley, 1998.
5. Gonzalo Genova. “Entrelazamiento de los aspectos estático y dinámico en las asociaciones

UML” PhD thesis, Dept. Informática. Universidad Carlos III de Madrid. 2003.
6. Monika Saksena, Robert B. France, María M. Larrondo-Petrie. “A characterization of

aggregation.”, In Proceedings of OOIS’98, Springer editor, pp 11-19. C. Rolland, G.
Grosz, 1998

7. Brian Henderson-Sellers and Frank Barbier. “Black and White Diamonds”. In Proceedings
of UML'99. The Unified Modeling Language Beyond the Standandard, 1999, Springer-
Verlag, R.France and B.Rumpe editors, pp 550-565.

8. Manoli Albert, Vicente Pelechano, Joan Fons, Marta Ruiz, Oscar Pastor. “Implementing
UML Association, Aggregation and Composition. A Particular Interpretation Based on a
Multidimensional Framework”. In Proceedings of CAISE 2003, LNCS 2681 pp 143-158.

9. M. Dahchour. “Integrating Generic Relationships into Object Models Using Metaclasses”,
PhD thesis, Dept. Computing Science and Eng., Université Catholique de Louvain,
Belgium, Mar. 2001.

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1994.

	Introduction
	A Conceptual Framework for Association Relationships
	Properties of the Conceptual Framework

	Implementing Association Relationships
	Design Patterns
	Framework Structure
	Functionality Implementation

	Mapping Association Specifications into Code
	Metaclasses Mapping
	Properties Mapping

	Transforming Models to Code. The Tools
	Implementing the Transformation Using the MOFScript Tool

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

