

J.F. Roddick et al. (Eds.): ER Workshops 2006, LNCS 4231, pp. 301 – 311, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ontologizing EDI Semantics

Doug Foxvog1 and Christoph Bussler2

1 Digital Enterprise Research Institute, Galway, Ireland
2 Cisco Systems, Inc., San Jose, CA, USA

1 doug.foxvog@deri.org, 2 cbussler@cisco.com

Abstract. Electronic Data Interchange systems are used to transmit business
messages in a compact form, with the meaning of message components
positionally determined. We propose translating EDI messages into “semantic”
forms in which the statements encoded in the compact forms are explicitly
expressed, allowing reasoning based on such messages by any program using
the semantic language, allowing their generation and use by Semantic Web
services through the use of mediators. We present a system for semantically
encoding EDI messages through the use of semantic templates.

Keywords: Ontology, EDI, semantic encoding, semantic mediator, semantic
template, WSML, Semantic Web Services.

1 Introduction

From the point where communication between two or more computer systems was
required, there was a need to establish precise definitions of the communication. This
included not only precisely defining message exchange patterns, but message content,
so that the sender and receiver both understand the information content of the
message in the same way.

The traditional approach was for the sender and receiver to agree on message
syntax so that each could parse the message successfully. Soon it became clear that
agreement on message content definitions is as important as agreement on syntax.

A sender of business messages populates them with business content which the
receiver must interpret. The burden of interpretation lies on the receiver; and if it has
many partners, there can be quite an effort to interpret the many incoming messages.
Misinterpretation with resultant negative economic impact is a likely consequence.

A more accurate approach is to describe message structure and content independent
from application context. Once an Electronic Data Interchange (EDI) system is
semantically defined, senders and receivers can construct and interpret messages
uniformly so that misinterpretation does not occur [1]. Communication should then
work flawlessly for their mutual benefit.

This approach is followed in this work. The ANSI X12 EDI standard is used since
it has been used world-wide for over 30 years. There is significant experience with the
use of X12 and the meaning of its messages. The recent surge in works on semantics
makes EDI a perfect area for combining these worlds to make communication precise.

302 D. Foxvog and C. Bussler

1.1 Ontologizing EDI

Ontologizing EDI semantics involves the creation of a system that, given an EDI
message, enables the meanings of each encoded statement to be generated in a
semantic language. This can be done using templates for expressing the meanings of
each of the subcomponents of a message and the relationships among them.

The meanings of the simplest data elements may be simple data values,
individuals, classes, or relations that may hold among such values. This meaning may
either be looked up in a code set or be a known or new instance of the type specified
in the template. If the meaning does not come from a code set, the relationship
between the message text and the represented thing needs to be defined, e.g. the name
of a ship, or a number of grams. The main referent of a more complex message
component is taken to be its basic “meaning”.

Templates for complex message components would normally specify the meanings
for their slots and the relations that interrelate the meanings of various components.
Either the relations which define the templates must take relations and classes (as well
as individuals and simple data values) as arguments or such templates must be
expressed as rules. The use of standard forms instead of rules to define templates
limits the choice of ontology language since many ontology languages do not permit
classes or relations to be used as arguments to relations. The desire to use ternary
relation further restricts the choice of language for expressing the templates.

Approach. EDI systems have message and subcomponent types. ANSI X12 [2] has
over 300 message types (called “transaction sets”), while EDIFACT [3] has around
200. Message subcomponent types number in the thousands. Because of the large
size of these EDI systems, ontologizing their semantics is a massive task, but can
show benefits long before being completed.

Since few companies need to transmit student records, US Customs documents,
and voter registration documents – all X12 message types – the semantics for these
would reasonably be defined in different ontologies. On this basis, templates for
the most common messages can be created first, with sets of semantically-related
messages added in turn. The same data elements and data segments recur in
unrelated message types. The semantics of such components should be defined in
separate ontologies referenced by the message type ontologies. Knowledge bases
which define named terms (e.g. airports) mentioned in messages should be imported
along with the ontologies for the associated message type whenever the template is
used.

1.2 Sample EDI Message

The Terminal Information transaction set (#319) is one of the simplest defined in the
X12 standard. It contains only four data segments (including mandatory transaction
set header and trailer), 32 data elements, and no inner loops.

A sample message instantiating this transaction set is shown in Figure 1. The first
segment is a header segment. The second is a Beginning Segment for Cargo Terminal
Information. The third is a Cargo Detail segment. The fourth segment (fifth line) is a
trailer segment. This message will be explained and used as an example below.

 Ontologizing EDI Semantics 303

Fig. 1. Sample Instantiation of X12 Terminal Information Transaction Set

1.3 Document Layout

The rest of this document lays out what is necessary so that a semantic system could
take in an EDI message and produce a set of statements expressing the encoded
information in a logical language. Section 2 describes a design and ontology for
semantic templates for information structures. Section 3 presents illustrative template
encodings of the message type illustrated in Figure 1. Section 4 describes the tasks of
the mediator in producing the semantic translation given an input EDI message and
knowledge bases of semantic templates and presents logical statements generated for
the above message using these templates. Section 5 presents related work. Section 6
summarizes the work that has already been done and outlines the work to follow.

2 Templates

A template for an information structure provides all the information needed to generate
a sentence in the logical language which is implicit in an instantiation of that structure.
A complex structure will have several templates for different implicit sentences. Each
template specifies the predicate and arguments for a sentence. Each value may be
derived from the instantiated information structure or be explicitly fixed in the template.

We have created a set of relations and classes for expressing such templates as
described below and encoded them in WSML-Flight and CycL. Their definitions can
be found at http://www.wsmo.org/TR/d27/v0.2/ontologies .

CycL allows for consistency checking and other reasoning during the creation of
the ontologies. WSML was selected because it is a Semantic Web language which
permits ternary relations and allows for classes and relations as arguments. An OWL
encoding is not provided – that would require decomposing ternary relations into
multiple binary properties, making template encoding more complex.

2.1 Template Classes

The classes to be defined for encoding the meaning of EDI messages are templates,
code sets, formats, and positions in formatted structures. Terminology used for
specifying EDI syntax described in [4] is used. Classes defined for templates include:

CodeSet: A mapping between short text strings and a set of things.
ComponentTemplate: A structure for determining a statement encoded in an

instantiation of an Information Structure.

ST*319*000123>
BA2*LYKL*7*7A*Dubai Ports LTD*FedEx*01*Pier 1*T*New Orleans>
CD1*BXGL*012345**BOLNUM123456*LT****TerminalLoc4321*1*BBL94*6
9***T*BR*1.02*********A*LYKL*SO*Shipment02345*YD*doug foxvog>
SE*4*000123>

304 D. Foxvog and C. Bussler

ComponentTemplate-Matching: A ComponentTemplate in which the
generated statement must already exist in the data base. This can be
used to bind a term being generated to an existing element. If all terms
are already bound, it is a request to verify that the statement is known.

FormulaArgPosition: A position in a formula or formatted structure.

2.2 Template Relations and Function

The basic template relations are:

componentOf[Sub]Type indicates that an instantiation of the specified info
structure means an instance/subclass of the specified class.
subcomponentOf[Sub]Type indicates that the filler for the Nth position of an
instantiation of the specified info structure means an instance/subclass of the specified
class. This may be a sub-concept of the class to which the filler structure is restricted.
hasSameMeaningAs indicates that the filler for the first specified position in the
structure has the same “meaning” as the filler for the second. The same term will be
used for each in the derived sentences. This is a ternary relation.
functionalPredicateEncodes indicates that the “meaning” of a filler for an
instantiation of the specified structure is the unique thing related to the filler by the
specified predicate, e.g., passportNumber. This is a ternary functional predicate.
directlyEncoded indicates that the “meaning” of an instantiation of the Nth slot
in an info structure is the same as that of whatever fills it. This is the normal case.
[subcomponent]usesCodeSet indicates that the specified code set maps the
filler for a specified [slot of an] info structure to its “meaning”. This is not a
functional predicate – sometimes codes may come from any one of several code sets.
templateForComponent indicates one of possibly several templates for a logical
sentence encoded by instantiations of a given information structure.
templateRelation[-Encoded] indicates the relation for a given template.
The relation may either be specified or encoded at a specified position of the info
structure. These are functional predicates.
templateArg<N>[-Encoded/Value] (for N 1, 2, or 3) indicates that the Nth
argument for a given template is the specified value (or encoded or present but not
encoded) at the specified position of the referenced info. Functional predicates.

One function is necessary to denote positions in a formatted structure, whether in the
referenced structure, or nested in subcomponents or supercomponents of the structure.

FormulaArgPositionFn. The arguments are numbers which indicate the
subcomponent number within the indicated structure. A zero indicates the next higher
level. Thus, FormulaArgPositionFn(3,2) is the second component of the third
component, and FormulaArg-PositionFn(0) is the structure itself, not a
subcomponent. The enclosing structure is FormulaArg-PositionFn(0,0) and
its third component is FormulaArgPositionFn(0,0,3).

 Ontologizing EDI Semantics 305

Fig. 2. Format of Transaction Set 319

3 Example Encoding of EDI Message Template

Example encodings of templates for an X12 transaction set are presented below,
including representative templates for the transaction set and some of its
subcomponents. The use of the templates is explained in Section 4. Statements
generated by the templates from a sample message of Figure 1 are presented in
Chapter 5. The complete templates (in WSML) of all subcomponents of this message
type can be found at http://www.wsmo.org/TR/d27/v0.2/ontologies .

Fig. 3. Sample Templates for Transaction Set 319

Figure 2 shows the format of the Terminal Information transaction set (#319). ST
is the Transaction Set Header data segment; BA2 is the Beginning Segment for
Cargo Terminal Information; CD1 is the Cargo Detail data segment; and SE is the
Transaction Set Trailer data segment. All data segments are mandatory, but the CD1
segment may occur multiple times, while each other segment appears only once. The
ST and SE segments are members of every transaction set, providing only meta-
information about the message. A few relations implicit in the message are shown.

ST Segment
BA2 Segment
CD1 Segments
SE Segment

BA2 Segment – Shipment Arrival
140 Element – Shipping Organization

597 Element – Vessel
55 Element – Flight/Voyage

127 Element – ReferenceID
Broker

Port Operator

Dock 113 Element – Pier Number

Dock 112 Element – Pier Name
115 Element – Port Function

114 Element – Port Facility

373 Element – Calendar Day

897 Element – Vessel Code Set

319 Message

controls

providerOfService

Voyage

controls

subRegions

Ship

127 Element – ReferenceID

instance X12-TS-319 componentOfType ShipmentArrival
instance X12-BA2-DS componentOfType ShipmentArrival
instance X12-CD1-DS componentOfType Shipment
relationInstance hasSameMeaningAs(X12-TS-319,
 FormulaArgPositionFn(0),FormulaArgPositionFn(2))
instance X12-TST-319-2 memberOf ComponentTemplate
 templateForComponent hasValue X12-TS-319
 templateRelation hasValue transportees
 templateArg1-Encoded hasValue FormulaArgPositionFn(0)
 templateArg2-Encoded hasValue FormulaArgPositionFn(3)

306 D. Foxvog and C. Bussler

A 319 message is about a shipment arrival. The BA2 segment is about the same
shipment arrival. CD1 segments are about different shipments which arrive in the
same ship. Figure 3 shows how this is encoded using the classes and relations
described above. For clarity, namespace references are removed. The mediator
generates a transportees statement using this template. This is the most common
template pattern – relating one attribute with its two arguments. Additional templates
relate items specified in the BA2 segment to items specified in the CD1 segments.

Fig. 4. Types of Subcomponents of BA2 Data Segment

A BA2 segment starts with seven mandatory data elements followed by four
optional ones. It starts with codes for the shipping organization and for identifying
the ship itself. Each component enters into at least one template for a sentence
explaining its meaning within a 319 transaction set.

Although the data elements may store codes or names, their “meaning” is taken to
be the thing that the code or the name represents. For example, data element 140 is
called “Standard Carrier Alpha Code”, but its “meaning” is the cargo carrier, not the
four-character SCAC assigned to that carrier. The BA2 segment gives two identifiers
for the pier at which the ship docks: a number and a name. The hasSame-
MeaningAs relation ensures the same term will be generated from the templates by
the mediator for the two slots. Types associated with message components are
encoded as in Figure 4; component formats as described in [4].

Fig. 5. Example Template for Data Element

The meaning of the instantiations of data elements may either be determined from
code sets or obtained through templates. For example, the first data element (140) of
the BA2 data segment (597) is encoded using the Standard Carrier Alpha Code, while
the second data element may be identified by name or other ID. Figure 5 shows the
representations for these two cases. Note that Data Element 597 represents a transport

relationInstance subcomponentOfType (X12-BA2-DS, 2, Ship)
 " subcomponentOfType (X12-BA2-DS, 1, ShippingOrganization)
 " subcomponentOfType (X12-BA2-DS, 6, Dock)
 " subcomponentOfType (X12-BA2-DS, 7, Dock) . . .
 " hasSameMeaningAs (X12-BA2-DS, FormulaArgPositionFn(6),
 FormulaArgPositionFn(7))

instance X12-DE-140
 usesCodeSet hasValue SCACCodeSet
 componentOfType hasValue ShippingOrganization
instance X12-DE-597
 componentOfType hasValue TransportationDevice
relationInstance subcomponentOfType (X12-BA2-DS, 2, Ship)
instance X12-DET-597 memberOf ComponentTemplate
 templateForComponent hasValue X12-DE-597
 templateRelation hasValue identificationStrings

 Ontologizing EDI Semantics 307

Fig. 6. Adaptor Data Sources

device, but is restricted to a ship in the context of BA2. The templates for the rest of
Transaction Set 319 are presented at http://www.wsmo.org/TR/d27/v0.2/ontologies .

4 Generation of Logical Statements from EDI Messages

The task of a Semantic Mediator is to convert a message between two formats or
ontologies, at least one of the forms being semantic [5]. Such a mediator uses a pre-
established mapping between terms and structures in the two systems and may
convert between languages if necessary. To generate logical statements from EDI
messages, a mediator is needed that uses the template rules and the formats to convert
individual messages into a set of logical statements (in WSML in our case).

The task of the X12 to WSML mediator is to separate the components of the X12
message programmatically; using the syntax defined in WSML for EDI components
to determine which semantic templates to use. The mediator matches the templates
against the extracted message components to generate the WSML statements which
express the meaning of the X12 message. See Figure 6.

The mediator in the other direction, given a WSML message, uses the same
templates to generate an X12 message, using the syntax described for the message
type and its subcomponents. This mediator may have to add information required by
mandatory message elements from data existing in the knowledge base (e.g., a party’s
contact information) or which it calculates (e.g. the number of data segments being
transmitted) if that information had not been included in the input WSML message.

Variations of these mediators could handle other EDI formats such as EDIFACT or
different semantic languages such as OWL. Features needed by the mediator for
expressing the templates (ternary relations, functions, and relations and classes as
arguments) are not needed in either the input or output languages.

5 Generation of Logical Statements from X12 Messages

A portion of the intended output of the conversion of the sample X12 message shown
in Figure 1 using the WSML templates is presented below. Although semantic output

Semantic
Template
KB

Semantic
Language
Ontologies

EDI
Message

Semantic
Message

EDI
System
Ontologies

EDI
System
Format
KB

EDI to Semantic
Language Adaptor

308 D. Foxvog and C. Bussler

is far less compact than the X12 format, it allows for reasoning about the message
content. The mediator creates new terms from the names of the instantiated concepts.

The BA2 segment of Figure 1 encodes the following: the shipper for this shipment
arrival has SCAC code LYKL (which turns out to be Lykes Lines Ltd). Ship no. 7 is
the carrier on voyage no. 7A, which ends with this arrival. Dubai Ports Ltd. is the
port operator and FedEx is the broker for the shipment. Ship no. 7’s arrival occurs at
Import Pier 1 (numbered “01”) at the port of New Orleans. The arrival of this ship is
part of transshipment – the port is not the final destination of its shipment lots.

Fig. 7. Encoded Meaning of BA2 Segment

Figure 7 presents the encoding of part of this information, which the mediator
should generate from the templates. The memberOf statements are generated based
on the subcomponentOfType assertions of Figure 4. A template relating the zeroth
and first argument of the BA2 segment generates the providerOfService
statement. Similar templates are responsible for the other statements. Statements are
similarly generated from the CD1 segment.

Fig. 8. Encoded Meaning of ST Segment

The Transaction Set Header of Figure 1 indicates that the message is an
instantiation of a 319 transaction set with ID string “000123”. The trailer templates
generate two statements that should be verified by the system: the number of
segments included in the message and its control number. No new information is
provided by the trailer. Figure 8 shows the WSML code produced by the templates
for these data segments.

Fig. 9. Encoded Meanings at the Message Level

instance ShipmentArrival_1 memberOf ShipmentArrival
 providerOfService hasValue LykesLinesLimited
 transshipmentPort hasValue PortOfNewOrleans
instance Dock_1 memberOf Dock
 identificationStrings hasValue "01"
 placeName-ShortForm hasValue "Import Pier 1"

instance X12TS_1 memberOf X12TransactionSetInstantiation
 instantiationOfAIS hasValue X12_TS_319
 identificationStrings hasValue "000123"
relationInstance verify(segmentCount, X12TS_1, 4)
 " verify(identificationStrings, X12TS_1, "000123")

instance ShipmentArrival_1 memberOf ShipmentArrival
 transportees hasValue Shipment_1
instance FedEx controls hasValue Shipment_1

 Ontologizing EDI Semantics 309

Figure 9 lists the meaning of several statements generated at the message level.
The shipment defined in the CD1 segment is transported in the arrival defined in the
BA2 segment and the broker specified in the BA2 segment controls the shipment
defined in the CD1 segment. With multiple CD1 segments, similar statements would
be generated using the same BA2 data. If OWL-like blank nodes were used to
generate the terms referred to in each segment, the generation of such statements
linking terms defined in different segments would be more difficult.

6 Related Work

Beginning in the 1990s, problems with EDI led to the development of systems
intended as state-of-the-art replacements for the apparently antiquated X12 and
EDIFACT systems. The new systems were not designed to be backward compatible
with X12 or EDIFACT to allow translation of such messages into the new forms.

Few of the newer systems are semantically described. They mainly introduce a
more open syntax (XML) and transmission medium (the Internet) and thus maintain
those disadvantages of traditional EDI which result from semantic opacity. For an
overview of some of the major systems, see [4].

Some private companies market proprietary software that produce and accept
business messages in both traditional EDI and more recent XML-based formats [6, 7,
8]. However, these systems appear not to be based on ontologies.

The ASC X12 Committee saw a problem with a proliferation of redundant XML-
defined message systems and wanted to ground the new systems as much as
possible on a standard industry-neutral set of XML concepts. They created a
Context Inspired Component Architecture (CICA) [9, 10] as a syntax-neutral
architecture for XML-based business messaging. They have started converting
traditional X12 message types into the new architecture, releasing their first five
X12 XML message schemas in December 2005. This is an important development
as the major US EDI standards organization starts providing EDI semantics and
moves away from syntactically rigid message requirements. However, the
semantics is only at the broadest level of major message types and most common
message components (such as person and address). A semantic description of most
of the content of business messages is not provided.

The Universal Business Language (UBL) is an effort started in 2003 to unify the
plethora of XML standards for business documents [11]. UBL 1.0 was officially
declared an OASIS Standard in November of 2004 with eight message types. UBL
has XML definitions for many information components (such as addresses and
product codes) that are present in a variety of common business messages (such as
invoices and shipping manifests). Use of UBL for messages between industries
was envisioned in conjunction with industry-specific messages being used within
an industry. However, mappings of message types and their components to
definitions of equivalent terms used in XML-based EDI (RosettaNet, HL7, CDIX,
etc.) are not provided. No translator is provided to map X12 or any other standard
into UBL. Nor is a method provided for specifying the mapping between different
languages.

310 D. Foxvog and C. Bussler

In the 1990s, Cycorp took two large medical term taxonomies, SNOMED1 and
MeSH2, and mapped them to an anatomical sub-ontology which it was developing
[12]. Use of the taxonomies aided in the production of the ontology; however, it
was highly enriched from the bare taxonomic forms of the sources and the majority
of terms in the taxonomies was omitted as the scope of the target ontology was
narrower. This project was not intended to create a semantic encoding of an
existing system, but to extract a specific subset of information encoded in two
systems to aid in developing an ontology for a field and to establish a mapping
between the semantically defined terms and the pre-existing terms in the
taxonomies.

7 Summary and Future Work

We have demonstrated that semantic templates can be manually created for traditional
EDI systems that would enable a data mediator to produce a semantic description of a
message encoded in that system. Such a mediator would use these templates and a
semantic description of the EDI message format in the translation.

We plan to use these techniques to ontologize standard subsets of EDIFACT for
the Sixth Framework Programme specific targeted research project TripCom3 as a
basis for business to business process integration. TripCom will allow business data to
be represented as RDF triples for inter-business interactions.

Acknowledgments. This work is funded by the EU projects the DIP (FP6 - 507483)
and TripCom (FP6 - 027324) and by Science Foundation Ireland under the DERI
Líon project.

References

1. Bussler, C: B2B Integration, Springer-Verlag, Heidelberg (2003)
2. X12/DISA Information Manual, ASC X12S/92-707, Data Interchange Standards

Association (DISA), Alexandria, VA (1992)
3. Berge, J.,: The EDIFACT Standards. NCC Blackwell: Manchester, England (1991)
4. Foxvog, D., Bussler, C.: "Ontologizing EDI: First Steps and Experiences"; Proceedings of

the International Workshop on Data Engineering Issues in E-Commerce (DEEC 2005),
Tokyo, Japan, 9 April 2005, 49-58

5. Mocan, A. and Cimpian, E.: Web Service Modeling Execution Environment - Conceptual
Model (WSMX_O), DERI Technical Report D13.3 v0.3

6. Meehan, M.: Aerospace Group Backs New EDI-to-XML Bridge, Computer World, 12
October 2001

7. Extreme Translator, http://www.xtranslator.com
8. Mercator Is First Integration Solution Provider to Offer ACORD, XML, EDI, HIPAA,

and SWIFT, Business Wire, 21 May 2002

1 http://www.snomed.org/snomedct/
2 http://www.nlm.nih.gov/mesh/meshhome.html
3 http://tripcom.org/

 Ontologizing EDI Semantics 311

9. Accredited Standards Committee X12 (2004). The Future of Standards Development:
Context Inspired Component Architecture – Using CICA Architecture for Building XML
Messages. Available from http://www.disa.org/x12org/MEETINGS/x12trimt/cica.cfm .

10. ASC X12 Releases First Set of W3C-Compliant XML Schemas Based on CICA, Insurance
News Net, 15 December 2005. Available at http://www.insurancenewsnet.com/
print.asp?a=featured_pr&id=55171

11. Crawford, M.: UBL, 2001. Available from http://www.oasis-open.org/committees/
download.php/4610/xml2003.pdf

12. Lehmann, F. & Foxvog, D.: Putting Flesh on the Bones: Issues that Arise in Creating
Anatomical Knowledge Bases with Rich Relational Structures, Knowledge Sharing across
Biological and Medical Knowledge Based Systems, Papers from the 1998 Workshop:
Technical Report WS-98-04, Fifteenth National Conference on Artificial Intelligence,
Madison, WI, 26 July 1998, 41-50

	Introduction
	Ontologizing EDI
	Sample EDI Message
	Document Layout

	Templates
	Template Classes
	Template Relations and Function

	Example Encoding of EDI Message Template
	Generation of Logical Statements from EDI Messages
	Generation of Logical Statements from X12 Messages
	Related Work
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

