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Abstract. We propose a short traceable signature scheme based on bi-
linear pairings. Traceable signatures, introduced by Kiayias, Tsiounis and
Yung (KTY), support an extended set of fairness mechanisms (mecha-
nisms for anonymity management and revocation) when compared with
the traditional group signatures. Designing short signatures based on the
power of pairing has been a current activity of cryptographic research,
and is especially needed for long constructions like that of traceable sig-
natures. The size of a signature in our scheme is less than one third of the
size in the KTY scheme and about 40% of the size of the pairing based
traceable signature (which has been the shortest till today). The security
of our scheme is based on the Strong Diffie-Hellman assumption and the
Decision Linear Diffie-Hellman assumption. We prove the security of our
system in random oracle model using the security model given by KTY.

Keywords: traceable signatures, group signatures, anonymity, crypto-
graphic protocols, bilinear pairings.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], provide anonymity
for signers. Any member of the group can sign messages, but the resulting sig-
nature keeps the identity of the signer secret. Because unconditional anonymity
may be a very dangerous tool against public safety, in case of dispute about the
signed message group signatures allow the group manager to open the signa-
ture and identify its originator. In this respect, group signatures can be said to
incorporate a fairness mechanism.

Traceable signatures, introduced by Kiayias, Tsiounis and Yung [13], support
an extended set of fairness mechanisms (mechanisms for anonymity management
and revocation) when compared with the traditional group signature schemes.
Consider the following scenario: a certain member of the group is suspected
of illegal activity. Its identity was revealed by opening a signature value. It is
then necessary to detect the signatures issued by this member so that his/her
transactions are traced. The only solution with existing group signature schemes
is to have the group manager open all signatures. However, this solution have two
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problems. First, since all signatures are opened the solution violates the privacy
of all group members. Second, since only the group manager can open signatures
it impairs scalability. We need some parallel mechanism for scalability. Traceable
signatures support three different types of traceability :

1. signature opening : as in group signature, reveal the signer of a given signa-
ture

2. user tracing : check whether a signature was issued by a given user; it can
be applied to all signatures by designated tracing agents running in parallel

3. signature claiming : the signer of a signature provably claims a given signa-
ture that he/she has signed.

Therefore, the above scenario can be solved with user tracing if we use traceable
signatures.

Kiayias, Tsiounis and Yung (hereafter KTY) gave a formal security model
through three security requirements: misidentification, anonymity, framing. If the
adversary is able to generate a signature whose originator is not traced by the
group manager, the scheme is not secure against misidentification. Given a signa-
ture and two members of which one is its originator, if the adversary can identify
its originator no better than randomly, the scheme has anonymity. The adversary
succeeds in framing an honest user, if he generates a signature that is wrongly
traced to an innocent user. The KTY scheme [13] is secure under the Strong RSA
and Decisional Diffie-Hellman assumptions. We note that in concurrent indepen-
dent work, Bellare et al. [7,8] gave a formal security model for group signatures
with a security model which is nearly the same as that of KTY [13].

Traceable signature with the above scalable anonymity is suitable for various
applications and extends the reach of e-commerce while allowing users extended
anonymity. In a typical web based commerce, it may be desired that the service
provider does not know the user, yet that there is a mechanism that a tracing
authority (either as a law enforcement mechanisms for illegal activity or as a
routine mechanisms like billing by a bank) will be able at a different layer to
expose users selectively. The notion of “anonymous non-repudiation” that indeed
combines both anonymity at the service provider level, but identification at
another layer has high potential in many application domains.

Recent pairing based signatures: Boneh et al. [6] noticed that bilinear maps
can shorten signature schemes; this started a line of research of employing pair-
ings in order to shorten signatures. Boneh et al. [5] devised a short group signature
scheme using bilinear pairings. The size of a signature is under 200 bytes that offer
approximately the same level of security as a regular RSA signature of the same
length. The scheme used the Strong Diffie-Hellman (SDH) and Decision Linear
Diffie-Hellman (DLDH) assumptions. Nguyen and Safavi-Naini. [16] also intro-
duced a group signature scheme using bilinear pairings. The size of its signature
is slightly bigger than that of [5], but the scheme has stronger anonymity. They
also introduced a traceable signature scheme using El Gamal public key encryp-
tion under the assumptions above. Boyen and Waters [9] gave the group signature
scheme without random oracles but the scheme is not practical in that the size
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of a signature grows logarithmically in the number of group members. Ateniese
et al. [2] devised practical group signature scheme without random oracles. Their
scheme is based on the Strong LRSW, q-EDH, and Strong SXDH assumptions.

Our Result: We extend the result of [5] to construct a traceable signature
scheme with the length of signatures 362 byte long (just about the size of three
RSA signatures), which is shorter than those of [13] and [16], which are 1200
byte and 900 byte long, respectively. In contrast to the previous schemes that
need two separate parts for tracing and claiming [13,16], we use one part for the
two procedures, which is possible with the help of bilinear pairing, and therefore
we get shorter signature size. In spite of its shorter length, the security level of
our scheme is the same as of the schemes using bilinear pairings. We used the
SDH and DLDH assumptions given by [5].

2 Preliminaries

2.1 Bilinear Pairings

We first review a few concepts related to bilinear pairings. Let G1, G2 be cyclic
additive groups generated by P1 and P2, respectively, both with prime order
p, and GT be a cyclic multiplicative group of order p. Suppose there is an iso-
morphism ψ : G2 → G1 such that ψ(P2) = P1. A bilinear pairing is a function
e : G1 × G2 → GT with the following properties.

– Non-degeneracy : e(P1, P2) �= 1
– Bilinearity : For all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Zp, e(aQ1, bQ2) =

e(Q1, Q2)ab.
– Computability : For all Q1 ∈ G1, Q2 ∈ G2, there is an efficient algorithm to

compute e(Q1, Q2).

We assume that p is about 2170. G1 and G2 are assumed to be subgroups with
order p of an elliptic curve group where possibly G1 = G2. GT is a subgroup
with order p of a finite field of size about 21024. We note that the bilinear groups
of Rubin and Siverberg [18] or Miyagi et al. [15] can be used. We denote the
generation algorithm of bilinear pairings by GBP throughout this paper.

2.2 SDH Representation

Let G1, G2 be cyclic additive groups of prime order p where possibly G1 = G2.
Let P1 be a generator of G1 and P2 a generator of G2. The q-Strong Diffie
Hellman (q-SDH) problem in (G1, G2) is defined as follows [5]: Given (q + 2)-
tuple (P1, P2, γP2, . . . , γ

qP2) as input, output a pair ( 1
γ+xP1, x) where x ∈ Z∗

p.
The advantage of an algorithm A for the q-SDH problem is defined as follows:

Advq−SDH
A (k) = Pr

⎡
⎢⎣

A(G, γP2, . . . , γ
qP2) =

(
1

γ+xP1, x
)

∧ x ∈ Z∗
p where

G = (p, G1, G2, GT , P1, P2, e) ← GBP (1k)
γ

R←− Z∗
p

⎤
⎥⎦
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We define the q-Strong Diffie-Hellman assumption. This assumption was used
by Boneh and Boyen [4] to construct short signatures.

Definition 1. q-Strong Diffie-Hellman (q-SDH) Assumption. For every
PPT algorithm A, Advq−SDH

A (k) is negligible in k.

We next define an SDH representation. The representation is similar to a
discrete-log representation of an arbitrary power in the KTY scheme [13].

Definition 2. SDH representation. For G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) where Q ∈ G1, R = γP2 ∈ G2 with unknown γ, an SDH representation is
a tuple (A, x, t) with A ∈ G1 and x, t ∈ Z

∗
p such that A = 1

γ+t (xP1 + Q) . Note
that the tuple satisfies e(A, tP2 + R) = e(xP1 + Q, P2).

In this work we will be interested in the following computational problem.

Definition 3. One more SDH representation problem. Given K SDH
representations for G = (p, G1, G2, GT , P1, P2, e) and (Q, R), one more SDH
representation problem is to find another SDH representation.

Lemma 1. Under the q-SDH assumption, it is infeasible for a PPT algorithm
to solve one more SDH representation problem with K = q.

2.3 Linear Encryption

Let G1 be a cyclic additive group of prime order p, and let X, Y, Z be generators
of G1. The Decision Linear Diffie-Hellman problem in G1 is defined as follows [5]:
Given X, Y, Z, aX, bY, cZ ∈ G1 as input, output yes if a+b = c and no otherwise.
The advantage of an algorithm A for the Decision Linear Diffie-Hellman problem
is defined as follows:

AdvDLDH
A (k) =

∣∣∣p(0)
k − p

(1)
k

∣∣∣
where

p
(i)
k = Pr

⎡
⎢⎢⎢⎢⎢⎣

A(H, aX, bY, cZ) = yes where
H = (p, G1, X, Y, Z) ← GDL(1k)
a, b

R←− Z∗
p

c ← a + b if i = 0
c

R←− Z∗
p otherwise

⎤
⎥⎥⎥⎥⎥⎦

.

We define the Decision Linear Diffie-Hellman assumption. This assumption
was used by Boneh et al. [5] to construct short group signatures.

Definition 4. Decision Linear Diffie-Hellman (DLDH) assumption. For
every PPT algorithm A, AdvDLDH

A (k) is negligible in k.

The DLDH assumption gives rise to the Linear encryption (LE) scheme [5].
This scheme is semantically secure against chosen-plaintext attacks, assuming
the DLDH assumption holds.
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Definition 5. Linear encryption. With M ∈ G1, along with arbitrary gener-
ators X, Y and Z of G1, linear encryption LE with public key X, Y and Z is as
follows:

LE(M) = (r1X, r2Y, M + (r1 + r2)Z)

where r1, r2 ∈ Zp is randomly chosen.

Lemma 2. [5] Under the DLDH assumption, linear encryption is secure against
chosen-plaintext attacks.

3 Zero-Knowledge Protocol for an SDH Representation

We assume that G = (p, G1, G2, GT , P1, P2, e), Q ∈ G1, R = γP2 ∈ G2 with
unknown γ are given as specified in Section 2. Let X, Y, Z be generators of G1,
and W a generator of G2. A zero-knowledge protocol for an SDH representation
(A, x, t) is as follows.
Protocol 1. The prover chooses exponents r1, r2, r3

R←− Zp, d1 ← tr1, d2 ← tr2,
and then computes the following values:

T1 ← r1X, T2 ← r2Y, T3 ← A + (r1 + r2)Z,

T4 ← r3W, T5 ← e(P1, T4)x .

Note that T1, T2 and T3 constitute a Linear encryption of the value A. Note also
that if we precalculate the value e(P1, W ), we can compute T5 = e(P1, W )r3x

with just one exponentiation on GT avoiding the expensive pairing calculation
of e(P1, T4)x. Now, the prover and the verifier execute a proof of knowledge of
values (r1, r2, d1, d2, t, x) which satisfy the following equations:

r1X = T1, r2Y = T2,

tT1 − d1X = O, tT2 − d2Y = O,

e(P1, T4)x = T5,

e(T3, P2)t · e(Z, P2)−d1−d2 · e(Z, R)−r1−r2 · e(P1, P2)−x = e(Q, P2)/e(T3, R) .

This proof is a typical 3-move honest verifier zero-knowledge proof for dis-
crete logarithm relation set. For the first move, the prover randomly chooses
br1 , br2 , bd1, bd2 , bt, bx from Zp, and then computes the following values:

B1 ← br1X, B2 ← br2Y,

B3 ← btT1 − bd1X, B4 ← btT2 − bd2Y,

B5 ← e(P1, T4)bx ,

B6 ← e(T3, P2)bt · e(Z, P2)−bd1−bd2 · e(Z, R)−br1−br2 · e(P1, P2)−bx ,

He sends (T1, . . . , T5, B1, . . . , B6) to the verifier, who sends a random challenge
value c

R←− Zp to the prover as a second move. The prover computes and sends
back the values in response to the verifier as the last move:

sr1 ← br1 + cr1, sr2 ← br2 + cr2, sd1 ← bd1 + cd1,

sd2 ← bd2 + cd2, sx ← bx + cx, st ← bt + ct .
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The verifier checks if the following equations hold; if they hold the verifier ac-
cepts, otherwise he rejects.

sr1X
?= cT1 + B1 (1)

sr2Y
?= cT2 + B2 (2)

stT1 − sd1X
?= B3 (3)

stT2 − sd2Y
?= B4 (4)

e(P1, T4)sx
?= T c

5 · B5 (5)
e(T3, P2)st · e(Z, P2)−sd1−sd2 · e(Z, R)−sr1−sr2 · e(P1, P2)−sx

?= (e(Q, P2)/e(T3, R))c · B6 . (6)

Lemma 3. Protocol 1 is complete.

Lemma 4. There exists a simulator for the transcripts of Protocol 1 for an
honest verifier under the DLDH assumption.

Lemma 5. There exists an extractor for Protocol 1.

Proof. We allow an extractor to rewind a prover in the protocol to the point
just before the prover is given a challenge c. Then, the extractor can obtain two
protocol transcripts :

(T1, . . . , T5, B1, . . . , B6, c, sr1 , sr2 , sd1 , sd2 , sx, st)
(T1, . . . , T5, B1, . . . , B6, c

∗, s∗r1
, s∗r2

, s∗d1
, s∗d2

, s∗x, s∗t ) .

First observe that, from (1), B1 = sr1X − cT1 = s∗r1
X − c∗T1 from which

we obtain (c − c∗)T1 = (sr1 − s∗r1
)X and it follows that r̃1 = (sr1 − s∗r1

)(c −
c∗)−1(mod p) satisfies r̃1X = T1. In a similar fashion we obtain from (2) r̃2 =
(sr2 − s∗r2

)(c − c∗)−1(mod p) which satisfies r̃2Y = T2.
Next we have, from (5), B5 = e(P1, T 4)sx/T c

5 = e(P1, T4)s∗
x/T c∗

5 from which
we obtain e(P1, T4)sx−s∗

x = T c−c∗

5 and it follows that x̃ = (sx − s∗x)(c −
c∗)−1(mod p) satisfies e(P1, T4)x̃ = T5 .

Next we have, from (3), B3 = stT1 − sd1X = s∗t T1 − s∗d1
X from which we

obtain (st − s∗t )T1 = (sd1 − s∗d1
)X . Since r̃1X = T1, we have (sd1 − s∗d1

) =
r̃1(st − s∗t )(mod p). Similarly, we have from (4) (sd2 − s∗d2

) = r̃2(st − s∗t )(mod p).
Finally, dividing two instances of (6), we obtain

(e(Q, P2)/e(T3, R))(c−c∗)

= e(T3, P2)(st−s∗
t ) · e(Z, P2)−(sd1−s∗

d1
)−(sd2−s∗

d2
) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x)

= e(T3, P2)(st−s∗
t ) · e(Z, P2)−r̃1(st−s∗

t )−r̃2(st−s∗
t ) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x) .
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Taking (c − c∗)-th roots, we have

e(Q, P2)/e(T3, R)

= e(T3, P2)t̃ · e(Z, P2)t̃(−r̃1−r̃2) · e(Z, R)−r̃1−r̃2 · e(P1, P2)−x̃

= e(T3, t̃P2) · e(−(r̃1 + r̃2)Z, t̃P2) · e(−(r̃1 + r̃2)Z, R) · e(x̃P1, P2)−1,

where t̃ = (st − s∗t )(c − c∗)−1(mod p). This can be rearranged as

e(x̃P1 + Q, P2) = e(T3 − (r̃1 + r̃2)Z, t̃P2 + R) .

Thus the extractor obtains an SDH representation (T3 − (r̃1 + r̃2)Z, x̃, t̃). ��

By the three lemmas above, the following holds.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
for an SDH representation under the DLDH assumption.

4 The Traceable Signature Scheme

This section describes our traceable signature scheme. With Theorem 1, we
obtain from Protocol 1 a signature scheme secure in the random oracle model by
applying the Fiat-Shamir heuristic [1,12]. In our construction, in order to reduce
the length of a signature we use a variant of the Fiat-Shamir heuristic used by
Ateniese et al. [3], where the challenge c is included in the signature instead
of B1, . . . , B6. We verify the validity of the signature by checking whether the
output of the random oracle is equal to the challenge c.

A traceable signature scheme consists of nine operations Setup, Join/Iss, Sign,
Verify, Open, Reveal, Trace, Claim, Claim Verify. The operations are executed by
the active participants of the system, which are identified by the group manager,
tracing agents, and a set of users.

Setup(1k). For a given security parameter 1k, the system is setup as follows:

G = (p, G1, G2, GT , P1, P2, e) ← GBP (1k),

γ
R←− Z

∗
p, Q

R←− G1, R ← γP2, W
R←− G2 \ {1G2},

Z
R←− G1 \ {1G1}, ξ1, ξ2

R←− Z
∗
p, X ← ξ−1

1 Z, Y ← ξ−1
2 Z .

The system public key Y is (G, Q, R, W, X, Y, Z). The group manager’s private
key S is (γ, ξ1, ξ2). The scheme also selects an hash function H : {0, 1}∗ → Zp,
which is to be considered as a random oracle here.

Join(Y)/Iss(Y, S). By executing Join operation, a user joins this system. On the
other part, when received a join request, the group manager gives a certificate
to the requester by executing Iss operation. The Join/Iss operation is performed
in a secure channel. The details are as follows.
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1. A user i generates non-adaptive random xi (see 4.2 in [16]) and sends xiP1
to the group manager. We will denote the i-th user’s membership secret by
seci = xi.

2. The group manager selects ti
R←− Z∗

p, computes Ai = 1
ti+γ (xiP1 + Q), and

then sends (i, Ai, ti) to the user i. We will denote the i-th user’s membership
certificate by certi = (Ai, ti).

3. The user i checks if (Ai, ti) satisfies e(Ai, tiP2 + R) = e(xiP1 + Q, P2), and
then stores (i, certi, seci).

4. We will denote the join transcript between the the group manager and i-th
user by transcripti = (Ci = xiP1, Ai, ti). The group manager stores transcripti
in the join transcript table transcripts.

Sign(m, Y, certi, seci). A member i of the group can sign a message m using this
operation with his certificate certi = (Ai, ti) and his secret seci = xi.

1. Compute the values T1, . . . , T5, B1, . . . , B6 using (Ai, xi, ti) according to Pro-
tocol 1.

2. Compute c using the hash function :

c ← H(m, T1, . . . , T5, B1, . . . , B6) .

3. Compute the values sr1 , sr2 , sd1 , sd2 , sx, st using c according to Protocol 1.
4. The signature is σ=(T1, . . . , T5, c, sr1 , sr2 , sd1, sd2 , sx, st). If each of T1, . . . , T4

is 170 bits, T5 is 1024 bits, and c, sr1 , . . . , st are 170 bits each, the signature size
is about (170 × 11 + 1024)/8 = 362 bytes.

Verify(m, σ, Y). The signature σ of message m can be verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Reconstruct B̃1, . . . , B̃6 using equations (1)-(6).
3. Check if the following equation holds:

c
?= H(m, T1, . . . , T5, B̃1, . . . , B̃6) .

Return 1 if it holds and return 0 otherwise.

Open(σ, Y, S). The group manager can find who signed the signature σ of m
with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Compute Ã = T3 − (ξ1T1 + ξ2T2) using (ξ1, ξ2) from S.
3. Look up i in the join transcript table transcripts such that Ai = Ã and return

i.

Reveal(i, transcripts). The group manager can obtain the tracing information of
user i with this operation. User i is a suspicious user (e.g., detected by an Open
operation).

1. Return Ci of transcripti = (Ci = xiP1, Ai, ti) in the join transcript table
transcripts. Note that only the group manager can access the join transcript
table transcripts.
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Trace(σ, C, Y). Tracing agents trace the signature generated by a suspicious user.
The input C is a tracing information of the suspicious user given by the group
manager. By executing this operation, tracing agents check whether σ is gener-
ated by the suspicious user. Note that all the signatures can be checked efficiently
when many tracing agents execute this operation in parallel.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Check if the following equation holds: e(C, T4)

?= T5.
Return 1 if it holds and return 0 otherwise.

Since C = xjP1 where j is the suspicious user e(C, T4) can be rewritten as
e(P1, T4)xj . If the originator of σ is i, we have T5 = e(P1, T4)xi . Therefore, if
i = j this procedure will return 1.

Claim(σ, Y, seci). The originator i of the signature σ can claim that he is its
originator with this protocol.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Generate a proof of knowledge of the value x which satisfies e(P1, T4)x = T5,

and return the proof τ . This is possible because if the prover is the real
originator of σ, seci will be xi such that e(P1, T4)xi = T5.

Claim Verify(σ, τ, Y). The output of Claim τ is verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Verify the proof τ .

5 Correctness of the Traceable Signature Scheme

In this section we will prove the correctness of our scheme in the model of KTY
[13].

Definition 6. Correctness of a Traceable Scheme. A traceable signature
scheme with security parameter k is correct if the following four conditions are
satisfied (with overwhelming probability in k). Let SignU be the signing mecha-
nism of user U and ClaimU its corresponding claim mechanism and S the group
manager’s private key.

1. Sign-Correctness: For all m, Verify(m, SignU (m)) = 1.
2. Open-Correctness: For any m, Open(SignU (m), S) = U .
3. Trace-Correctness: For any m, Trace(SignU(m), Reveal(U)) = 1; on the

other hand Trace(σ, Reveal(U)) = 0 for any σ ← SignU ′(m) with U ′ �= U .
4. Claim-Correctness: Claim Verify(m, σ, ClaimU (σ)) = 1 for all m, σ ←

SignU (m).

Theorem 2. The traceable signature scheme of Section 4 is correct.

6 Security Model of the Traceable Signature Scheme

We introduce in this section the security model of KTY [13].
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6.1 Oracles

The security definitions will be formulated via experiments in which an adver-
sary’s attack capabilities are modelled by providing it with access to certain
oracles. Oracles shares the following variables with each other.

– state: It contains the join transcript, certificates and secrets of users which
are obtainable in the system’s perspective.

– n : It is a counter that stores the number of users joining the system.
– Sigs : It contains signatures generated by Qsig oracle.
– Revs : It contains the members revealed by Qreveal oracle.
– Up : It is a set of private users which are not corrupted.
– Ua : It is a set of users in corruption type A. We say that the user i falls in

corruption type A if the adversary controls the user i. In this case (i, certi,
seci) is leaked to the adversary.

– U b : It is a set of users in corruption type B. We say that the user i falls in
corruption type B if the transcript during the join procedure is exposed to
the adversary. In this case (i, certi) is leaked to the adversary.

The various oracle specifications are listed below.

– QY(). This oracle returns (n, Y). It allows the adversary to learn the public-
information of the system.

– QS(). This oracle returns S. It allows the adversary to corrupt the group
manager.

– Qp−join(). This oracle simulates Join/Iss protocol in private, increases the user
count n by 1, and sets state ← state||(n, transcriptn, certn, secn). It also adds
n into Up and transcripts ← transcripts || (n, transcriptn).

– Qa−join(). This oracle allows the adversary to introduce an adversarially con-
trolled user to the system. The introduced user falls in corruption type A.
Firstly, the oracle initiates Join/Iss protocol with the adversary. In the pro-
tocol, the oracles takes the role of the group manager and the adversary
the prospective user. When the protocol terminates successfully, the oracle
increases n by 1 and sets state ← state||(n, transcriptn, certn, ⊥). It also adds
n into Ua and transcripts ← transcripts || (n, transcriptn).

– Qt−join(). This oracle is identical to the Qp−join() oracle except that at the
end it transmits (certn, secn) to the adversary and adds n to Ua (not Up).
As explained in [13], the statistical difference between Qa−join and Qt−join is
negligible. Therefore, we can always replace Qa−join with Qt−join when it is
hard to simulate the behavior of Qa−join.

– Qb−join(). This oracle allows the adversary as the group manager to introduce
users. Users introduced with this oracle falls in corruption type B. Firstly,
the oracle initiates Join/Iss protocol with the adversary. In the protocol, the
oracles takes the role of the prospective user and the adversary the group
manager. When the protocol terminates successfully, the oracle increases
n by 1 and sets state ← state||(n, ⊥, certn, secn). It also adds n into U b. It
does not modify the join transcript table transcripts since this oracle behaves
as a user.
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– Qsig(i, m). This oracle returns a signature of message m by the i-th user.
It parses state and if it discovers an entry of the form (i, ·, certi, seci) it
produces a traceable signature σ using certi and seci. If no such entry is
found or i ∈ Ua, it returns ⊥. When it successfully produces σ, it sets
Sigs ← Sigs||(i, σ).

– Qreveal(i). This oracle returns the output of Reveal(i, transcripts). Note that
it returns ⊥ when user i does not exist or i ∈ U b. It also adds i into Revs.

6.2 Security Definitions of Traceable Signatures

Definition 7. A traceable signature scheme is said to be secure if it satisfies
security against misidentification, anonymity, and framing attacks.

Misidentification Attacks. In a misidentification attack the adversary is al-
lowed to control a number of users of the system (Qa−join, Qp−join). The adversary
is also allowed to observe the operation of the system while users are added and
they produce signatures (Qp−join, Qsig, Qreveal). Finally, the adversary is required
to produce a signature that does not open to any of the users controlled by the
adversary or that does not trace to any of the users controlled by the adversary.

Experiment Expmis
A (k)

(Y, S) ← Setup(1k);
(m, σ) ← A(QY , Qp−join, Qa−join, Qsig, Qreveal);
If Verify(m, σ, Y) = 0 then return 0;
If Open(σ, Y, S) �∈ Ua or

∧
i∈Ua Trace(σ, Reveal(i)) = 0 then return 1;

return 0;

Definition 8. A traceable signature scheme is secure against misidentification
attacks if for any PPT algorithm A Pr[Expmis

A (k) = 1] is negligible in k.

Framing Attacks. In a framing attack, the adversary is allowed to act as a
group manager. The adversary is also allowed to observe the operation of the
system while users are added and they produce signatures. There are two types
of successful framing attacks. First, the adversary may construct a signature
that opens or traces to an innocent user. Second, it may claim a signature that
was generated by another user as its own. Note that in this attack the adversary
observes the operations as a group manager which are simulated through QS ,
Qb−join, and Qsig oracles.

Experiment Expfra
A (k)

(Y, S) ← Setup(1k);
(m, σ, τ) ← A(QY , QS , Qb−join, Qsig);
If Verify(m, σ, Y) = 0 then return 0;
If Open(σ, Y, S) ∈ U b or

∨
i∈Ub Trace(σ, Reveal(i)) = 1 then return 1;

If
(∨

i∈Ub(i, σ) ∈ Sigs
)

∧ (Claim Verify(σ, τ) = 1) then return 1;
return 0;
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Definition 9. A traceable signature scheme is secure against framing attacks if
for any PPT algorithm A Pr[Expfra

A (k) = 1] is negligible in k.

Anonymity Attacks. In an anonymity attack, the adversary operates in two
stages called play and guess. In the play stage, the adversary is allowed to join
the system through Qa−join oracles. The adversary is also allowed to observe
the operation of the system while users are added and they produce signatures
through Qp−join, Qsig, and Qreveal oracles. At end of the play stage, the adversary
returns a message and two target users he does not control, and then receives a
signature of the message he returned. In the guess stage, the adversary tries to
guess which of the two produced the signature.

Experiment Expanon
A (k)

(Y, S) ← Setup(1k);
(aux, m, i0, i1) ← A(play : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 �∈ Up) ∨ (i1 �∈ Up) ∨ (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
b

R←− {0, 1}, σ ← Sign(m, Y, certib
, secib

);
b∗ ← A(guess, σ, aux : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
If b = b∗ then return 1;
return 0;

Definition 10. A traceable signature scheme is secure against anonymity at-
tacks if for any PPT algorithm A

∣∣Pr[Expanon
A (k)] − 1

2

∣∣ is negligible in k.

6.3 Security of Our Scheme

These lemmas show the security properties.

Lemma 6. Under the q-SDH assumption, our scheme is secure against misiden-
tification attacks provided that the number of joined users is less than or equal to
q (an adaptable “assumption parameter” that does not influence the complexity).

Proof. Let A be an adversary that violates security against misidentification,
We construct an algorithm B which solves one more representation problem
using the attacker A. SDH representations for G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) are given as Refs = {(Al, tl, xl)}q

l=1. B chooses W
R←− G2, Z

R← G1 and

ξ1, ξ2
R← Z∗

p. It then sets X ← ξ−1
1 Z, Y ← ξ−1

2 Z. B simulates oracles allowed to
A as follows.

– QY(). It returns n and (G, Q, R, W, X, Y, Z).
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n, ⊥, certn, secn) and
transcripts ← transcripts||(n, ⊥). Also, B adds n into Up.
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– Qt−join. B increments j which is a counter representing how many SDH rep-
resentations have been consumed and then gets Refsj = (Aj , xj , tj) from
Refs. It gives (certn = (Aj , tj), secn = xj) to A. It then sets state ← state
||(n, ⊥, certn, secn) and transcripts ← transcripts||(n, ⊥). Also, B adds n into
Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, it simulates Protocol
1 with certi from state and get a signature σ, which is is possible because
Protocol 1 has a simulator. Also, B sets Sig ← Sig||(i, σ). Note that the
value c which is selected by the simulator during simulation must be stored
in the hash oracle such that the hash oracle should keep the random oracle
property.

– Qreveal(i). B searches from state an entry of the form (i, ·, ·, seci = xi), and
returns Ci = xiP1. It also adds i into Revs.

Let (m, σ∗
1) be a successful output of algorithm A. Using the general forking

lemma [14], B can get another pair (m, σ∗
2) which is also valid. Because Protocol

1 has a knowledge extractor, an SDH representation (Ã, x̃, t̃) used in signing m
can be extracted.

Now we have two alternative cases: (i) Open(σ, Y, S) �∈ Ua. It means that Ã is
not equal to any Ai for those i ∈ Ua. As a result, we solved one more SDH repre-
sentation problem. In the second case we have: (ii)

∧
i∈Ua Trace(σ, Reveal(i)) = 0.

It means that x̃ is not equal to any xi for those i ∈ Ua. Again we solved one
more SDH representation problem. ��
Lemma 7. Under the assumption of infeasibility of discrete logarithm in G1,
our scheme is secure against framing attacks.

Proof. Let A be an adversary that violates security against framing attacks. We
construct an algorithm B which solves a problem of discrete logarithm in G1
using the attacker A. B is given P1 and S = ρP1 ∈ G1 as input, and B wants to
find ρ. We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R←− G1, R ← γP2 with γ
R←− Z∗

p, and W
R←− G2. It also

chooses ξ1, ξ2, y
R← Z∗

p and Y ←yP1 and then set Z ← ξ2Y, X ← ξ−1
1 Z. Then,

Y becomes (G, Q, R, W, X, Y, Z) and S becomes (γ, ξ1, ξ2). B simulates oracles
allowed to A as follows.

– QY(). B returns n and Y.
– QS(). B returns S.
– Qb−join(). B increments n by one. In the 1st step of Join/Iss procedure, B

chooses x′
n

R← Z∗
p, and supplies x′

nP1 + S as the xnP1 value. It receives
the tuple (An, tn) from A, in the 2nd step. When the procedure is finished
successfully, it sets certn ← (An, tn), secn ← x′

n +ρ = xn where ρ is unknown.
It then appends (n, ⊥, certn, secn) to state. Finally, it adds i into U b.

– Qsig(i, m). If i ∈ U b, B extracts certi = (Ai, ti) and seci = x′
i + ρ from state.

Then it chooses r1, r2, r3
R← Z∗

p, and sets T1, . . . , T5 as follows :

T1 ← r1X, T2 ← r2Y, T3 ← Ai + (r1 + r2)Z,

T4 ← r3W, T5 ← e(x′
iP1 + S, T4) = e((x′

i + ρ)P1, T4) = e(P1, T4)xi .
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And then it simulates Protocol 1 and get a signatureσ. This is possible because
Protocol 1 has a simulator. Also, it sets Sigs ← Sigs||(i, σ). Note that the value
c which is selected by the simulator during simulation must be stored in the
hash oracle such that the hash oracle should keep the random oracle property.

Let (m, σ∗
1 , τ∗

1 ) be a successful output of algorithm A. Now we have three cases:
(i) Open(σ∗

1 , Y, S) ∈ U b. Using the general forking lemma [14], B can get another
pair (m, σ∗

2) which is also valid. Moreover with the knowledge extractor in Proto-
col 1, an SDH representation (Ã, x̃, t̃) used in signing m can be extracted. Let i ∈
U b be the result of Open. Then, x̃ is equal to seci, which means x̃ = x′

i+ρ. There-
fore B can find ρ. In the second case we have: (ii)

∨
i∈Ub Trace(σ∗

1 , Reveal(i)) = 1.
It can also extract an SDH representation (Ã, x̃, t̃) using a similar method to the
case (i). We get also here x̃ = seci = x′

i + ρ. Therefore B can find ρ. In the
final case we have: (iii)

(∨
i∈Ub(i, σ∗

1) ∈ Sigs
)

∧ (Claim Verify(σ∗
1 , τ∗

1 ) = 1) Using
the general forking lemma [14], B can get another proof τ∗

2 for σ∗
1 . Then with a

knowledge extractor (actually it is a subpart of the extractor in Protocol 1), a
secret x̃ used for claim can be extracted. Let i be such that (i, σ∗

1) ∈ Sigs. Then,
we have x̃ = seci = x′

i + ρ. Therefore B can find ρ. ��

Lemma 8. Under the assumption of semantic security of Linear encryption,
our scheme is secure against anonymity attacks.

Proof. Let A be an adversary that violates security against anonymity. We con-
struct an algorithm B which breaks the semantic security of Linear encryption
using the attacker A. B is given X, Y, Z ∈ G1 as input which are a public key
for Linear encryption, and tries to break the semantic security of this encryption
scheme.

We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R← G1 and R ← γP2 where γ
R← Z

∗
p. It also selects W

R←−
G2, and set Y to (G, Q, R, W, X, Y, Z). B simulates oracles allowed to A as follows.

– QY(). B returns n and Y.
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n, ⊥, certn, secn) and
transcripts ← transcripts||(n, ⊥). Also, B adds n into Up.

– Qt−join(). B generates an SDH representation (Aj , xj , tj) for (G, Q, R) which is
possible because it knows γ, and then gives (certn = (Aj , tj), secn = xj) to A.
It sets state ← state ||(n, ⊥, certn, secn) and transcripts ← transcripts||(n, ⊥).
Also, B adds n into Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, B finds certi =
(Ai, ti) and seci = xi from state, and encrypts Ai using the given public
key (X, Y, Z). The resulting cipher-text will be T1, T2, T3, and then it sets
T4 ← r3W, T5 ← e(P1, T4)xi where r3

R←− Z∗
p. It simulates Protocol 1 to

generate a signature. This is possible because Protocol 1 has a simulator.
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Table 1. Comparison of number of operations and signature length (in bytes)

KTY Nguyen et al. Ours

sign
exponentiations 19 11 6

scalar multiplications 0 19 10
pairing computations 0 1 1

verify
exponentiations 17 6 7

scalar multiplications 0 14 8
pairing computations 0 3 3
signature length 1206 917 362

Also, it sets Sigs ← Sigs||(i, σ). Note that the value c which is selected by
the simulator during simulation must be stored in the hash oracle such that
the hash oracle should keep the random oracle property.

– Qreveal(i). B searches seci = xi from state, and returns xiP1. It also adds i
into Revs.

When A returns i0 and i1 to B as a challenge after play stage, B returns Ai0

and Ai1 as a challenge. B will be given the cipher-text (T ′
1, T

′
2, T

′
3) of Aib

, where b
is unknown. It generates a signature σ′ containing (T ′

1, T
′
2, T

′
3) using a simulator

for Protocol 1, and the value c must also be stored in a hash oracle. It returns σ′

to A. Let b∗ be the output of A after the guess stage. B returns b∗. If A breaks
anonymity, then it is obvious that B also breaks semantic security. ��
As a result of the lemmas we conclude the following:

Theorem 3. Under the q-SDH assumption, infeasibility of discrete logarithm
in G1, and the semantic security of Linear encryption, our traceable signature
scheme is secure provided that the number of joined users is less than or equal
to q .

7 Efficiency

In this section we compare our scheme with previous schemes in terms of the
signature length and the number of important operations such as exponentia-
tions, scalar multiplications and pairing computations. We summarize the result
in Table 1. we did not include pre-computable operations such as e(P1, P2) in
the number of pairing computations. While the numbers of operations are com-
parable in the three schemes, the signature length of our scheme is much shorter
than those of the previous schemes.

8 Conclusion

We presented a traceable signature scheme based on Strong Diffie-Hellman and
Decision Linear Diffie-Hellman assumptions. The scheme uses bilinear pairings,
and we get a signature under 400 bytes when any of the curves in [6] are used.
We have proved the correctness and security of our scheme.
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