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Preface

It was our pleasure to hold the International Workshop on Security 2006 (IWSEC
2006) this year in Kyoto and to publish the proceedings as a volume of the
Lecture Notes in Computer Science series.

The workshop was our first trial in that two major academic society groups
on security in Japan, viz. ISEC and CSEC, jointly organized it; ISEC is a tech-
nical group on information security of the Institute of Electronics, Information
and Communication Engineers (IEICE), and CSEC is a special interest group
on computer security of the Information Processing Society of Japan (IPSJ).
It was Ryoichi Sasaki, the former head of CSEC, who proposed holding such
an international workshop in Japan for the first time, two years ago. The two
groups supported his idea and started organizing the workshop. CSEC has its
annual domestic symposium, the Computer Security Symposium (CSS), in Oc-
tober for three days, and we decided to organize the workshop prior to CSS this
year.

The initial aim of the workshop was primarily to provide young researchers
with the opportunity to present their work in English. However, due to more
submissions than we had anticipated, the quality of the accepted papers became
far better than we had expected.

The conference received 147 submissions, out of which the program committee
selected 30 for presentation. These proceedings contain the final versions of the
accepted papers, which the authors finalized on the basis of comments from the
reviewers. Since these revisions were not subject to editorial review, the authors
bear full responsibility for the contents of their papers.

The reviewing process was a challenging task. Each submitted paper was
reviewed by at least three members of the program committee. The individual
reviewing phase was followed by a Web-based discussion. Papers over which the
reviewers significantly disagreed were further reviewed by external experts. On
the basis of the comments and scores given by the reviewers, the final decisions
on acceptance were made at a one-day meeting of the program committee at the
University of Electro-Communications.

We appreciate the hard work of the organizing committee members. In par-
ticular, the workshop would not have been possible without the members of the
Advisory Committee. The members of the program committee also made impor-
tant contributions through their sincere reviews and discussions. We thank them
for their intellectual contributions as well as their hard work. The expertise of
the external reviewers improved the quality of the selection process. The review-
ing and discussion processes were greatly facilitated by the Web-based system,
which was developed by Wim Moreau and Joris Claessens, under the guidance
of Bart Preneel. We are sincerely grateful to them.
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Finally, we would like to thank the authors who submitted papers. We hope
that you find the book interesting and informative.

October 2006 Yuko Murayama and Shinichi Kawamura
Hiroshi Yoshiura, Kouichi Sakurai, and Kai Rannenberg
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ID-Based Ring Signature Scheme Secure in the
Standard Model

Man Ho Au1, Joseph K. Liu2, Tsz Hon Yuen3, and Duncan S. Wong4
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Abstract. The only known construction of ID-based ring signature
schemes which maybe secure in the standard model is to attach certifi-
cates to non-ID-based ring signatures. This method leads to schemes that
are somewhat inefficient and it is an open problem to find more efficient
and direct constructions. In this paper, we propose two such construc-
tions. Our first scheme, with signature size linear in the cardinality of
the ring, is secure in the standard model under the computational Diffie-
Hellman assumption. The second scheme, achieving constant signature
size, is secure in a weaker attack model (the selective ID and selective
chosen message model), under the Diffie-Hellman Inversion assumption.

1 Introduction

Identity-based (ID-based) cryptosystem, introduced by Shamir [16], eliminated
the need for checking the validity of the certificates. In an ID-based cryptosystem,
public key of each user is easily computable from a string corresponding to this
user’s identity (e.g. an email address, a telephone number, etc.). A private key
generator (PKG) then computes the private keys from a master secret for the
users. This property avoids the necessity of certificates and associates an implicit
public key (user identity) to each user within the system.

Ring signature is a group-oriented signature with privacy concerns. A user can
sign anonymously on behalf of a group on his own choice, while group members
can be totally unaware of being conscripted in the group. Any verifier can be

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M.H. Au et al.

convinced that a message has been signed by one of the members in this group,
but the actual identity of the signer is hidden.

ID-based ring signature combines the property of ring signature and ID-based
signature. The first construction is in [20]. Since then, several construction have
been proposed [11,3,21,12,9]. The above scheme are all based on pairings with
signature size linear in the cardinality of the ring. Non-pairing-based approach
can be found in [2]. The first constant-size construction appears in [10]. Inde-
pendent work was given in [14]. Both of them use accumulator. Later [19] point
out a flaw in [14] and outline a patch. All existing constructions are only secure
in the random oracle model.

There are only a few number of ring signature scheme secure in the standard
model. One is a generic scheme based on standard signature, public-key encryp-
tion and ZAP proof system; and a second, more efficient ring signature scheme
but supporting only 2 users[4]. Another one is an independent work by Chow
et. al. without utilizing encryption and ZAP but rely on a new assumption [8].
Recently, independent of our work, Wei and Yuen have proposed a Hierarchical
Identity-Based Threshold Ring Signature scheme in the standard model [18].

Our Contribution. We give two direction construction for ID-Based ring signa-
ture scheme. Signature size of the first scheme is linear with the cardinality of
the ring. We prove that it is secure under the computational Diffie-Hellman as-
sumption. Signature size of the second scheme is constant. We prove that the
second scheme is secure under the Diffie-Hellman Inversion assumption in the
selective-ID, selective chosen message attack model. In terms of signature size
and computational cost, our schemes outperform schemes constructed indirectly
following the generic approach described above.

2 Preliminaries

2.1 Security Models

An ID-Based (1, n) Ring Signature scheme is a tuple of probabilistic polynomial-
time (PPT) algorithms below:

– Setup. On input an unary string 1λ where λ is a security parameter, the
algorithm outputs a master secret key s and a list of system parameters
param that includes λ and the descriptions of a user secret key space D, a
message space M as well as a signature space Ψ .

– Extract. On input a list param of system parameters, an identity IDi ∈
{0, 1}∗ for a user and the master secret key s, the algorithm outputs the
user’s secret key di ∈ D. When we say identity IDi corresponds to user
secret key di or vice versa, we mean the pair (IDi, di) is an input-output
pair of Extract with respect to param and s.

– Sign. On input a list param of system parameters, a group size n of length
polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a
message m ∈ M, and a secret key {dj ∈ D|j ∈ [1, n]}, the algorithm outputs
an ID-based (1, n) ring signature σ ∈ Ψ .
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– Verify. On input a list param of system parameters, a group size n of
length polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities,
a message m ∈ M, a signature σ ∈ Ψ , it outputs either valid or invalid.

Correctness. An ID-Based (1, n) Ring Signature scheme should satisfy the
verification correctness – signatures signed by honest signers are verified to be
invalid with negligible probability.

2.2 Security Requirement

A secure ID-Based (1, n) Ring Signature scheme should be unforgeable and
anonymous which will be defined in a similar way to that of a traditional ring
signature scheme.

Unforgeability. It should not be possible for an adversary to forge any signature
just from the identities of the group members. We specify a security model which
mainly captures the following two attacks:

1. Adaptive chosen message attack
2. Adaptive chosen identity attack

Adaptive chosen message attack allows an adversary to obtain message-signature
pairs on demand during the forging attack. Adaptive chosen identity attack
allows the adversary to forge a signature with respect to a group chosen by the
adversary. To support adaptive chosen message attack, we provide the adversary
the following oracle queries.

– Extraction oracle (EO): On input IDi, di ← Extract(param, IDi) is
returned . The oracle is stateful, meaning that if IDi = IDj , then di = dj .

– Signing oracle (SO): A chooses a group of n identities {IDi}i∈[1,n] and a
message m, the oracle outputs a valid ID-based (1, n) ring signature denoted
by σ ← Sign(param, n, {IDi|i ∈ [1, n]}, m). The signing oracle may query
the extraction oracle during its operation.

Let U = {ID1, · · · , IDN} be a set of identities. An adversary A with oracles
EO and SO succeeds if it outputs (L, m, σ)← ASO,EO(U), such that it satisfies
Verify(param, L, m, σ) = valid, where L ⊆ U and |L| = n with restriction that
(L, m) should not be in the set of oracle queries and replies between A and SO,
and A is not allowed to make an Extraction query on any identity ID ∈ L.

The advantage of an adversary A is defined to be

AdvA = Pr[A succeeds ]

Definition 1 (Unforgeability). An adversary A is said to be an (ε, t, qe, qs)-
forger of an ID-based (1, n) ring signature scheme if A has advantage at least
ε, runs in time at most t, and makes at most qe and qs extraction and signing
oracles queries respectively. A scheme is said to be (ε, t, qe, qs)-unforgeable if no
(ε, t, qe, qs)-forger exists.
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Note that it cannot achieve the unforgeability in the stronger sense that the
adversary produces a different signature on the same message and the same list
of identities, as described in [1,13] since our proposed scheme does not enjoy this
level of stronger security.

Anonymity. It should not be possible for an adversary to tell the identity of
the signer with a probability larger than 1/n, where n is the cardinality of the
ring, even assuming that the adversary has unlimited computing resources.

Definition 2 (Anonymity). An ID-based (1, n) ring signature scheme is un-
conditional anonymous if for any group of n users with identity {ID1, · · · , IDn},
any message m and signature σ ← Sign(param, n, {IDi|i ∈ [1, n]}, m), any ad-
versary A, even with unbounded computational power, cannot identify the actual
signer with probability better than random guessing. That is, A can only output
the identity of the actual signer with probability no better than 1/n.

2.3 Bilinear Pairing

We briefly review bilinear pairing. We use the following notation [?]. Let G1 and
G2 be two (multiplicative) cyclic groups of prime order p. Let g be a generator
of G1, and ê be a bilinear map such that ê : G1 × G1 → G2 with the following
properties:

1. Bilinearity: For all u, v ∈ G1, and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) �= 1.
3. Computability: It is efficient to compute ê(u, v) for all u, v ∈ G1.

2.4 Intractability Assumptions

We review some intractability assumptions in bilinear groups.

Definition 3 (Computational Diffie-Hellman (CDH) Problem). Given a
group G of prime order p with generator g and elements ga, gb ∈ G where a, b are
selected uniformly at random from Z∗

p, the CDH problem in G is to compute gab.

We say that the (ε, t)-CDH assumption holds in a group G if no algorithm
running in time at most t can solve the CDH problem in G with probability at
least ε.

Definition 4. (n-DHI problem) The n-Diffie-Hellman Inversion problem is
that, given g, gα, gα2

, . . ., gαn ∈ G, for unknown α ∈ Z∗
p, to compute g1/α.

Definition 5. (n-DHI* problem) The n-Diffie-Hellman Inversion* problem is
that, given g, gα, gα2

, . . ., gαn ∈ G, for unknown α ∈ Z∗
p, to compute gαn+1

.

The n-DHI problem and n-DHI* problem are proven equivalent in [22]. We say
that the (ε, t, n)-DHI* assumption holds if no algorithm running in polynomial
time t can solve a random instance of the n-DHI* problem with non-negligible
probability ε.
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3 The Proposed Scheme

Our proposed ID-based ring signature scheme is motivated from the signature
scheme in [15,6] and the encryption scheme in [17].

3.1 Construction

Let Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm be two collision-
resistant hash functions for some nu, nm ∈ Z. They are used to create identities
and messages of the desired length respectively. The proposed scheme is defined
by the following algorithms.

Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be
a generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα.
Also select randomly the following elements:

– u′, m′ ∈R G1
– ûi ∈R G1 for i = 1, . . . , nu. Let Û = {ûi}.
– m̂i ∈R G1 for i = 1, . . . , nm. Let M̂ = {m̂i}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, Û , m′, M̂) and the mas-

ter secret key is gα
2 .

Extract. Let uj = Hu(IDj) for user j with identity IDj , where j ∈ Z. Let uj [i]
be the i-th bit of uj . Define Uj ⊂ {1, . . . , nu} to be the set of indicies such that
uj [i] = 1.

To construct the private key, dj , of identity IDj , randomly selects ruj ∈R Zp

and compute dj =
(

gα
2
(
Uj

)ruj , gruj

)
= (D(1)

j , D
(2)
j ) where Uj = u′∏

i∈U j
ûi.

Sign. Let L = {ID1, . . . , IDn} be the list of n identities to be included in the ring
signature, including the one of the actual signer. To sign a message m ∈ {0, 1}∗,
compute m = Hm(m, L). Let m[i] be the i-th bit of m and M⊂ {1, . . . , nm} be
the set of indicies i such that m[i] = 1.

Let the signer be indexed π, where π∈ [1, n], with private key dπ =(D(1)
π , D

(2)
π ).

Randomly select r1, . . . , rn, rm ∈R Zp, compute Uj = u′∏
i∈U j

ûi for j = 1, . . . , n

and

σ =

(
D(1)

π

( n∏
j=1

(
Uj

)rj
)(

m′ ∏
i∈M

m̂i

)rm

, gr1 , . . . , grπ−1 , D(2)
π grπ , grπ+1 ,

. . . , grn , grm

)

= (V, R1, . . . , Rn, Rm)

Verify.Given a signatureσ=(V, R1, . . . , Rn, Rm) for a list of identities L on ames-
sage m, a verifier first computes m=Hm(m, L), Uj =u′∏

i∈U j
ûi for j =1, . . . , n
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and checks whether e(V, g) ?= e(g2, g1)
(∏n

j=1 e(Uj, Rj)
)

e(m′∏
i∈M m̂i, Rm)

Output valid if the equality holds. Otherwise output invalid.

Correctness. It is easy to see that the signature scheme is correct, as shown in
following:

e(V, g) = e

(
gα
2
(
Uπ

)ruπ
(
U1
)r1

. . .
(
Un

)rn
(
m′ ∏

i∈M
m̂i

)rm
, g

)

e(V, g) = e

(
gα
2
(
U1
)r1

. . .
(
Uπ

)ruπ +rπ
. . .
(
Un

)rn
(
m′ ∏

i∈M
m̂i

)rm
, g

)

= e(g2, g)αe
(
U1, g

)r1
. . . e

(
Uπ, g

)ruπ +rπ
. . . e

(
Un, g

)rn
e
(
m′ ∏

i∈M
m̂i, g

)rm

= e(g2, g1)e
(
U1, R1

)
. . . e

(
Un, Rn

)
e
(
m′ ∏

i∈M
m̂i, Rm

)

3.2 Security Analysis

We will prove that our proposed scheme is unconditional anonymous and exis-
tentially unforgeable under a chosen message and identity attack, in the standard
model.

Theorem 1 (Anonymity). The scheme proposed in Section 3 is unconditional
anonymous.

Proof. In the signature σ = (V, R1, . . . , Rn, Rm), {Ri}, i ∈ [1, n] \ π and Rm are
randomly generated which provide no information on the actual signer. Rπ =
gruπ grπ . rπ is randomly generated by the actual signer. ruπ is randomly gener-
ated by the master which is independent to any user. Thus Rπ is also randomly dis-
tributed. V is in the form of gα

2
(
U1
)r1

. . .
(
Uπ

)ruπ +rπ
. . .
(
Un

)rn
(
m′∏

i∈M m̂i

)rm .
Using the same argument, r1, . . . , ruπ +rπ, . . . , rn, rm are random numbers while α
is the master’s secret key. All of them provide no information on the actual signer.
It is no better for the adversary to do a wild guess. Our proposed scheme is un-
conditional anonymous. �	

For unforgeability, our scheme relies on the hardness of CDH problem, which is
stated as below:

Definition 6 (Computational Diffie-Hellman (CDH) Problem). Given a
group G of prime order p with generator g and elements ga, gb ∈ G where a, b are
selected uniformly at random from Z∗

p, the CDH problem in G is to compute gab.

We say that the (ε, t)-CDH assumption holds in a group G if no algorithm running
in time at most t can solve the CDH problem in G with probability at least ε.

Theorem 2 (Existential Unforgeability). The 1-out-of-n ID-based ring sig-
nature scheme proposed in Section 3 is (ε, t, qe, qs)-unforgeable, assuming that



ID-Based Ring Signature Scheme Secure in the Standard Model 7

the (ε′, t′)-CDH assumption holds in G1, where ε′≥ ε
2n+3(qe+qs)n(nu+1)nqs(nm+1) ,

t′ = t + O
((

qenu + qs(nnu + nm)
)
ρ + (qe + nqs)τ

)
and ρ and τ are the time for

a multiplication and an exponentiation in G1 respectively.

Proof. Assume there is a (ε, t, qe, qs)-adversary A exists. We are going to con-
struct another PPT B that makes use of A to solve the CDH problem with
probability at least ε′ and in time at most t′.
B is given a problem instance as follow: Given a group G1, a generator g ∈ G1,

two elements ga, gb ∈ G1. It is asked to output another element gab ∈ G1. In
order to use A to solve for the problem, B needs to simulates a challenger and
the oracles (the extraction oracle and the signing oracle) for A. B does it in the
following way.

Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and
km such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p
and lm(nm +1) < p for the given values of qe, qs, nu and nm. It randomly selects
the following integers:

– x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp

– x̂i ∈R Zlu , for i = 1, . . . , nu. Let X̂ = {x̂i}.
– ẑi ∈R Zlm , for i = 1, . . . , nm. Let Ẑ = {ẑi}.
– ŷi ∈R Zp, for i = 1, . . . , nu. Let Ŷ = {ŷi}.
– ŵi ∈R Zp, for i = 1, . . . , nm. Let Ŵ = {ŵi}.

We further define the following functions for binary strings uj and m where
uj = Hu(IDj) for an identity IDj , j ∈ Z and m = Hm(m, L) for a message m
and a list of identities L, as follow:

F (uj) = x′ +
∑

i∈U j

x̂i − luku and J(uj) = y′ +
∑

i∈U j

ŷi

K(m) = z′ +
∑

i∈M
ẑi − lmkm and L(m) = w′ +

∑
i∈M

ŵi

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb

u′ = g−luku+x′
2 gy′

, ûi = gx̂i
2 gŷi for 1 ≤ i ≤ nu

m′ = g−lmkm+z′
2 gw′

, m̂i = gẑi
2 gŵi for 1 ≤ i ≤ nm

Note that the master secret will be gα
2 = ga

2 = gab and we have the following
equations: Uj = u′∏

i∈U j
ûi = g

F (uj)
2 gJ(uj) and m′∏

i∈M m̂i = g
K(m)
2 gL(m). All

public parameters are passed to A.
Oracles Simulation. B simulates the extraction and signing oracles as follow:

(Extraction oracle.) Upon receiving a query for a private key of an identity
IDj , B compute u = Hu(IDj). Although B does not know the master secret,
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it can still construct the private key by assuming F (uj) �= 0 mod p. It ran-
domly chooses ruj ∈R Zp and computes the private key as duj = (D(1)

j , D
(2)
j ) =(

g
− J(uj)

F (uj)

1

(
Uj

)ruj , g
− 1

F (uj)

1 gruj

)
By letting r̃uj = ruj − a

F (uj)
, it can be verifier that duj is a valid private key,

shown as follow:

D
(1)
j = g

− J(uj )
F (uj)

1

(
Uj

)ruj

= g
− J(uj )

F (uj)

1 (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj ) (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj ) (gF (uj)
2 gJ(uj))

a
F (uj) (gF (uj)

2 gJ(uj))
− a

F (uj) (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj ) gabg
aJ(uj)
F (uj) (gF (uj)

2 gJ(uj))r̃uj

= gab(gF (uj)
2 gJ(uj))r̃uj = ga

2 (gF (uj)
2 gJ(uj))r̃uj = ga

2
(
Uj

)r̃uj

and D
(2)
j = g

− 1
F (uj)

1 gruj = g
ruj

− a
F (uj) = gr̃uj To the adversary, all private keys

given by B are indistinguishable from the keys generated by the true challenger.
If F (uj) = 0 mod p, since the above computation cannot be performed (di-

vision by 0), the simulator aborts. To make it simple, the simulator will abort
if F (uj) = 0 mod lu. The equivalency can be observed as follow. From the as-
sumption lu(nu + 1) < p, it implies 0 ≤ luku < p and 0 ≤ x′ +

∑
i∈U j

x̂i < p

(∵ x′ < lu, x̂i < lu, |Uj | ≤ nu). We have −p < F (uj) < p which implies if
F (uj) = 0 mod p then F (uj) mod lu. Hence, F (uj) �= 0 mod lu implies F (uj) �=
0 mod p. Thus the former condition will be sufficient to ensure that a private
key can be computed without aborting.

(Signing oracle.) For a given query of a signature on the list of identities L =
{ID1, . . . , IDn} and a message m 1, B first computes uj = Hu(IDj) and m =
Hm(m, L).

If F (uj) �= 0 mod lu for some j ∈ [1, n], B randomly selects π ∈R J where J is
the set of integers j such that F (uj) �= 0 mod lu. B just constructs a private key
for π as in the extraction oracle query, then use the Sign algorithm described
in the proposed scheme to create a signature on L and m.

If F (uj) = 0 mod lu for all j ∈ [1, n], B tries to construct the signature
in a similar way to the construction of private key in an extraction oracle
query. Assume K(m) �= 0 mod lm. Using the aforementioned argument, it im-
plies K(m) �= 0 mod p provided that lm(nm + 1) < p. The signature can be
constructed by first randomly selecting r1, . . . , rn, rm ∈R Zp and computing

1 Note that A is not allowed to make any extraction oracle query on any IDj , where
IDj ∈ L.
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σ =

(( n∏
j=1

(
Uj

)rj

)
g
− L(m)

K(m)
1

(
m′ ∏

i∈M
m̂i

)rm

, gr1 , . . . , grn , g
− 1

K(m)
1 grm

)

=

(
ga
2

( n∏
j=1

(
Uj

)rj

)(
m′ ∏

i∈M
m̂i

)r̃m

, gr1 , . . . , grn , gr̃m

)

where r̃m = rm − a
K(m) . If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return a list of identities L∗ =
{ID∗

1,. . . ,ID∗
n} and a message m∗ with a forged signature σ∗=(V,R1,. . . ,Rn, Rm)

on L∗ and m∗ with probability at least ε. B checks whether the following condi-
tions are fulfilled:

1. F (u∗j ) = 0 mod p for all j ∈ [1, n], where u∗j = Hu(ID∗
j ).

2. K(m∗) = 0 mod p , where m∗ = Hm(m∗, L∗).

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗

1)
1 . . . R

J(u∗
n)

n R
L(m∗)
m

=
ga
2
(
U1
)r1

. . .
(
Un

)rn
(
m′∏

i∈M m̂i

)rm

gJ(u∗
1)r1 . . . gJ(u∗

n)rngL(m∗)rm

=
ga
2

(
g

F (u∗
1)

2 gJ(u∗
1)
)r1

. . .
(
g

F (u∗
n)

2 gJ(u∗
n)
)rn
(
g

K(m∗)
2 gL(m∗)

)rm

gJ(u∗
1)r1 . . . gJ(u∗

n)rngL(m∗)rm

= ga
2 = gab

which is the solution to the CDH problem instance.
Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Extraction queries on an identity ID have F (u) �= 0 mod lu, where u =
Hu(ID).

2. Sign queries (L, m) will either have F (uj) �= 0 mod lu, for some j ∈ [1, n]
where IDj ∈ L, or K(m) �= 0 mod lm where m = Hm(m, L).

3. F (u∗j ) = 0 mod lu for all j ∈ [1, n] where ID∗
j ∈ L∗ and K(m∗) = 0 mod lm.

For ease of analysis, we will bound the probability of a subcase of this event.
Let u1, . . . , uqI be the output of the hash function Hu appearing in either

extract queries or in sign queries not involving any of the challenge identity
included in L∗, and let m1, . . . ,mqM be the output of the hash function Hm in
the sign queries involving the challenge list of identities L∗. We have qI ≤ qe +qs

and qM ≤ qs. We also define the events Ai, A
∗, B�, B

∗ as follow:

Ai : F (ui) �= 0 mod lu where i = 1, . . . , qI

A∗ : F (u∗j ) = 0 mod p for all j ∈ [1, n] where ID∗
j ∈ L∗

B� : K(m�) �= 0 mod lm where 
 = 1, . . . , qM

B∗ : K(m∗) = 0 mod p
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The probability of B not aborting is

Pr[not abort] ≥ Pr
[( qI∧

i=1

Ai ∧A∗
)
∧
( qM∧

�=1

B� ∧B∗
)]

Note that the events
(∧qI

i=1 Ai ∧A∗
)

and
(∧qM

�=1 B� ∧B∗
)

are independent.
The assumption lu(nu + 1) < p implies if F (u) = 0 mod p then F (u) =

0 mod lu. Since ku, x′ and X̂ are randomly chosen,

Pr[A∗] =
n∏

j=1

Pr[F (u∗j ) = 0 mod p ∧ F (u∗j ) = 0 mod lu]

=
n∏

j=1

Pr[F (u∗j ) = 0 mod lu] Pr[F (u∗j ) = 0 mod p | F (u∗j ) = 0 mod lu]

=
( 1

lu

1
nu + 1

)n

On the other hand, we have Pr
[∧qI

i=1 Ai|A∗
]

= 1 − Pr
[∨qI

i=1 Ai | A∗
]
≥

1−
∑qI

i=1 Pr[Ai | A∗]where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are

independent, where i1 �= i2, since the outputs of F (ui1) and F (ui2) will differ
in at least one randomly chosen value. Also since the events Ai and A∗ are
independent for any i, we have Pr[Ai|A∗] = 1/lu and

Pr
[ qI∧

i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[ qI∧

i=1

Ai|A∗
]

=
(

1
lu(nu + 1)

)n(
1− qI

lu

)

≥
(

1
lu(nu + 1)

)n(
1− qe + qs

lu

)

=
(

1
2(qe + qs)(nu + 1)

)n(
1− 1

2

)

( by setting lu = 2(qe + qs) ) =
1

2n+1(qe + qS)n(nu + 1)

Using similar analysis technique for signing queries we can have

Pr
[ qM∧

�=1

B� ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[( qI∧

i=1

Ai ∧A∗
)
∧
( qM∧

�=1

B� ∧B∗
)]
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≥ 1
2n+3(qe + qs)n(nu + 1)nqs(nm + 1)

If the simulation does not abort, A will produce a forged signature with proba-
bility at least ε. Thus B can solve for the CDH problem instance with probability
ε′ ≥ ε

2n+3(qe+qs)n(nu+1)nqs(nm+1)

Remark: We note that since n is included as the exponent of the denominator,
we suggest that n may not be too large in order to claim its security.

Time Complexity Analysis. The time complexity of B is dominated by the expo-
nentiation and multiplication operations for large values of nu and nm performed
in the extraction and signing queries.

There are O(nu) and O(nnu + nm) multiplications and O(1) and O(n) expo-
nentiations in the extraction and singing stage respectively. The time complexity
of B is t + O

((
qenu + qs(nnu + nm)

)
ρ + (qe + nqs)τ

)
�	

4 Constant-Size Identity Based Ring Signature

We propose a constant-size identity based ring signature without random oracles.
The size of the signature is independent of the size of the ring. However, this
scheme has a restriction on the maximum number of signers of the ring when the
private key is extracted from the identity. Furthermore, the scheme is provably
secure in a weak model for unforgeability, namely selective-identity, selective
chosen message attack. The security model of selective-identity can be found
in [7]. This model is used in some identity based schemes. The difference from
the standard model is that the adversary gives the challenge identity at the
beginning of the security game, and the query of the challenge identity (or its
prefix) to the extraction oracle is forbidden.

In this section, we use a security model in unforgeability which extends the
selective-identity model. We introduce the selective-identity, selective chosen mes-
sage attack model. The difference from the adaptive identity and adaptive chosen
message attack model is that the adversary gives the challenge identity and chal-
lenge message at the beginning of the unforgeability game, the query of the chal-
lenge identity to the extraction oracle is forbidden, and the query of the challenge
identity and the challenge message together to the signing oracle is forbidden.

4.1 Construction

Our scheme is motivated from the encryption scheme in [5]. Let Hu : {0, 1}∗ →
Z∗

p and Hm : {0, 1}∗ → Z∗
p be two collision-resistant hash functions. They are

used to create identities and messages of the desired length respectively. The
proposed scheme is defined by the following algorithms.

Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be
a generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα.
Also select randomly the following elements:
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– u′, m′ ∈R G1
– ûi ∈R G1 for i = 1, . . . , n + 1. Let Û = {ûi}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, Û) and the master secret

key is gα
2 .

Extract. To generate a private key for ID, let id= Hu(ID). For 1 ≤ i ≤ n + 1,
the algorithm picks a random ri ∈ Z∗

p and computes:

SKID,i =
(
gα
2 (u′ûid

i )ri , gri , ûri
1 , . . . , ûri

i−1, ûri

i+1, . . . , ûri
n+1

)
= (ai, bi, ci,1, . . . , ci,i−1, ci,i+1, . . . , ci,n+1)

Sign. Let L = {ID1, . . . , IDn′} be the list of n′ < n identities to be in-
cluded in the ring signature, including the one of the actual signer at index
π. Let idi = Hu(IDi) for i = 1, . . . , n′. To sign a message M ∈ {0, 1}∗, let
m= Hm(M, L). The signer picks random t ∈ Zp, and uses SKID,π to compute:
V = aπ · (

∏n′

j=1,j �=π c
idj

π,j) · cm
π,n′+1 · (û

id1
1 · · · ûidn′

n′ · ûm
n′+1 · u′)t , R = bπ · gt The

signature σ is (V, R).
Verify. Given a signature σ = (V, R) for a list of identities L = {ID1, . . . , IDn′}
on a message M , a verifier first computes m= Hm(M, L) and idi = Hu(IDi)
for i = 1, . . . , n′ and then checks whether ê(g, V ) ?= ê(g1, g2) · ê(R, ûid1

1 · · · ûidn′
n′ ·

ûm
n′+1 · u′) Output valid if the equality holds. Otherwise output invalid.

Correctness. The scheme is correct as shown in the following:

ê(g, V ) = ê(g, aπ · (
n′∏

j=1,j �=π

c
idj

π,j) · cm
π,n′+1 · (ûid1

1 · · · ûidn′
n′ · ûm

n′+1 · u′)t)

= ê(g, gα
2 · (ûid1

1 · · · ûidn′
n′ · ûm

n′+1 · u′)rπ+t)

= ê(g1, g2) · ê(R, ûid1
1 · · · ûidn′

n′ · ûm
n′+1 · u′)

4.2 Security Analysis

Theorem 3 (Anonymity). The scheme proposed in Section 4 is unconditional
anonymous.

Proof. In the signature σ = (V, R), R = grπgt. t is randomly generated by the
actual signer. rπ is randomly generated by the master which is independent to
any user. Thus R is a random number. V is in the form of gα

2
(
ûid1

1 · · · ûidn′
n′
)rπ+t.

Using the same argument, rπ + t is a random number while α is the master’s
secret key. All of them provide no information on the actual signer. It is no better
for the adversary to do a wild guess. Our proposed scheme is unconditional
anonymous. �	

Theorem 4. The 1-out-of-(n − 1) ID-based ring signature scheme proposed in
section 4 is (ε, t, qe, qs)-unforgeable under the selective-ID attack model, assum-
ing that the (ε′, t′, n)-DHI∗ assumption holds in G1 and Hu, Hm are collision
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resistant hash functions, where ε′ ≥ ε
(
1 − 1

p

)qe
(
1 − 1

p2

)qs

, t′ = t + O
(
(qe +

qs)nρ
)

+ O
(
(qe + qs)nτ

)
and ρ and τ are the time for a multiplication and an

exponentiation in G1 respectively.

Proof. Assume there is a (ε, t, qe, qs)-adversary A exists. We are going to con-
struct another PPT B that makes use of A to solve the n-DHI* problem with
probability at least ε′ and in time at most t′.

Setup. B is given the n-DHI* tuple (g, gx, . . . , gxn

). The game begins with A
sends the challenge identity L∗ = {ID∗

1, . . . , ID∗
n−1} and the challenge message

M∗ to B. Denote id∗j = Hu(ID∗
j ) for 1 ≤ j ≤ n − 1 and id∗n = Hm(M∗, L∗).

B picks a random γ ∈ Zp and assigns g1 = gx, g2 = gxn · gγ . B picks random
γ1, . . . γn+1 ∈ Zp and sets ûj = gγj g−xn−j+1

, for 1 ≤ j ≤ n. It also picks a random
δ ∈ Zp and computes u′ = gδ+ n

j=1 xn−j+1id∗
j . B gives A the public parameters

param = (g, g1, g2, u
′, û1, . . . , ûn). The corresponding (unknown) master secret

key is gx
2 = gx(xn+γ).

Oracle Simulation. B simulates the extraction and signing oracles as follow:

(Extraction oracle.) Upon receiving a query for a private key of an identity ID,
if Hu(ID) = Hu(ID∗

1), B declares failure and exits. Otherwise the simulator
chooses a random r̃1 ∈ Zp. Denote id = Hu(ID) and r1 = x

(id−id∗
1) + r̃1 and

compute:

a1 = gxγ · Z · gxnr̃1(id∗
1−id) where Z =

(
gδ+idγ1 ·

n∏
i=2

gxn−i+1id∗
i

)r1

b1 = gr1 = gx/(id−id∗
1)gr̃1

c1,2 = ûr1
2 = g

(γ2−xn−1)( x
(id−id∗

1) +r̃1)

...

c1,n = ûr1
2 = g

(γn−x)( x
(id−id∗

1)+r̃1)

Refer to [5] for the well-formedness of the secret key. The computation for
(ai, bi, ci,j) where 1 ≤ i ≤ n− 1 are similar and hence are omitted.
(Signing oracle.) For input identities L = (ID1, . . . , IDn′) and message M , de-
note idj = Hu(IDj) for 1 ≤ j ≤ n′ and idn′+1 = Hm(M, L). If {id1, . . . , idn′+1}
is the same as {id∗1, . . . , id∗n} or is a prefix of it, B declares failure and exits.
Otherwise there exists a k ≤ n such that idk �= id∗k. We set k be the smallest
such index. To answer the query, B derives for the secret key of identity idk as
in the extraction oracle, and then computes the signature using the secret key.

Output Calculation. Finally, A returns a signature σ∗ for message M∗ and sign-
ers L∗. Notice that L∗ and M∗ is given at the beginning of the selective-ID game
and the total length of id∗i is n. We denote σ∗ = (V ∗, R∗). Therefore we can set
R∗ = gr̄ for some r̄ ∈ Zp. Then:
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V ∗ = gα
2 (u′

n∏
i=1

û
id∗

i

i )r̄

= gα
2 (gδ

n∏
j=1

gxn−j+1id∗
j

n∏
i=1

(
gγi

gxn−i+1 )id
∗
i )r̄

= gα
2 (gδ

n∏
i=1

gγiid∗
i )r̄ = gα

2 (gδ+ n
i=1(γiid∗

i ))r̄

Therefore B returns gx�+1
= gα

2 /gxγ = V ∗/(R∗δ+ �
i=1(γiI

∗
i )gxγ) as the solution.

Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Extraction queries on an identity ID have Hu(ID) = Hu(ID∗
1).

2. Sign queries for {id1, . . . , idn′+1} is not the same as {id∗1, . . . , id∗n} or is a
prefix of it.

We define the events Ai, B� as follow:

Ai : Hu(IDi) �= Hu(ID∗
1) where i = 1, . . . , qe

B� : {id�,1, . . . , id�,n′
�
+1} �= {id∗1, . . . , id∗n̄} where 
 = 1, . . . , qs, 2 ≤ n̄ ≤ n

The probability of B not aborting is Pr[not abort]≥Pr
[(∧qe

i=1 Ai

)
∧
(∧qs

�=1 B�

)]
Note that the events

(∧qe

i=1 Ai

)
and

(∧qs

�=1 B�

)
are independent.

The assumption that Hu and Hm are collision resistant hash functions implies:
Pr[Ai] = 1− 1

p and Pr[Bi] = 1− ( 1
p )n′

i+1

By combining the above result, we have

Pr[not abort] ≥ Pr
[( qe∧

i=1

Ai

)
∧
( qs∧

�=1

B�

)]

=
(
1− 1

p

)qe
qs∏

i=1

(
1− (

1
p
)n′

i+1
)
≥
(
1− 1

p

)qe
(
1− 1

p2

)qs

If the simulation does not abort, A will produce a forged signature with proba-
bility at least ε. Thus B can solve for the DHI∗ problem instance with probability
ε′ ≥ ε

(
1− 1

p

)qe
(
1− 1

p2

)qs

Time Complexity Analysis. The time complexity of B is dominated by the expo-
nentiation and multiplication operations for large values of nu and nm performed
in the extraction and signing queries.

There are O(n) multiplications and O(n) exponentiations in the both extrac-
tion and singing stage. The time complexity of B is t+O

(
(qe +qs)nρ

)
+O
(
(qe +

qs)nτ
)

�	
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Full Unforgeability. As shown in many identity-based schemes in the literature
with selective-ID security model, we can always turns a proof in selective-ID se-
curity model into a proof of adaptive-ID model by hashing the identity prior to
using it. However the reduction introduces a 2d multiplicative security loss factor
in the standard model, where d is the length of the output of the hash function.
The same result can be applied to our scheme. For the selective chosen message
attack, the case is similar to the selective-ID model. We can turn the proof into a
proof of adaptive chosen message attack model by hashing the message. However
the reduction introduces a 2d′

multiplicative security loss factor in the standard
model, where d′ is the length of the output of the hash function for message.

5 Conclusion

In this paper, we have proposed two new ID-based ring signature schemes which
are secure in the standard model. Our first scheme, with signature size linear
in the cardinality of the ring, is secure in the standard model under the com-
putational Diffie-Hellman assumption. The second scheme, achieving constant
signature size, is secure in a weaker attack model (the selective ID and selective
chosen message model), under the Diffie-Hellman Inversion assumption. It also
applies certain limitation on the size of the ring in the signature.

It remains an open problem to construct a scheme that is secure in the
strongest model with constant size signature while removing all limitations on
the size of ring.
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Abstract. Previously Verifier-Local Revocation (VLR) group signature
schemes from bilinear maps were proposed. In VLR schemes, only ver-
ifiers are involved in the revocation of a member, while signers are not
involved in the revocation. Thus, the schemes are suitable for mobile
environments. Furthermore, the previously proposed schemes satisfy an
important property, the backward unlinkability. It means that even af-
ter a member is revoked, signatures produced by the member before
the revocation remain anonymous. This property is needed in case a
member leaves voluntarily or in case of a stolen key. In this paper an
improved scheme is proposed, where the group signatures are shorter.
This is achieved using a different assumption, DLDH assumption, and
improving zero-knowledge proofs in the group signatures. The length of
the proposed group signatures is about 53% of that of the previous ones.

Keywords: group signature, revocation, backward unlinkability, bilinear
maps, DLDH assumption.

1 Introduction

A group signature scheme [8,1,14,2,7,16,5,6,13,12] allows a group member to
anonymously sign a message on behalf of a group, where a group manager con-
trols the membership of members. Then, often a third party can cancel the
anonymity of signatures to trace the signers (This topic is out of scope in this
paper). Another important topic in the group signature scheme is membership
revocation [14,2,7,16,5,6,12]. Namely, the membership of a member can be dis-
abled without influencing the other members.

The simplest revocation method is that the manager changes the group public
key and secret keys of all members except the revoked member to re-distribute
the keys [2]. However, the other members’ loads are large. A better solution is
to broadcast a small public membership message to all signers and verifiers, as
in [7,16,5]. Although the costs of signers are better, the signer still has to obtain
some data depending on the size of the group (or the number of revoked mem-
bers) whenever signing. On the other hand, there is another approach [14,2,6,12],
where some revocation messages are only sent to verifiers, although the verifiers
need the computational cost depending the number of revoked members. Since
the signers’ costs are lower, this type is suitable for mobile environments where

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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mobile hosts anonymously communicate with the servers. We refer to this type
as Verifier-Local Revocation (VLR) group signature scheme, as in [6,12].

In [14,2], VLR group signature schemes based on the strong RSA assumption
are proposed. However, the schemes have some drawbacks on efficiency. The first
scheme of [14] and the scheme of [2] suffer from the inefficiency of signing, due
to the used inefficient zero-knowledge proofs. The second scheme of [14] forces a
signer to compute O(T ) exponentiations at every time interval, where T is the
total number of time intervals.

In [6], a VLR group signature scheme from bilinear maps is proposed, where
the traceability (i.e., unforgeability) is based on the q-SDH (Strong DH) assump-
tion and the anonymity is based on the Decision Linear DH (DLDH) assumption.
The advantage of this scheme is that signatures are short, since the elliptic curves
can be adopted. However, unfortunately, this scheme [6] does not satisfy back-
ward unlinkability. This property means that even after a member is revoked,
signatures produced by the member before the revocation remain anonymous.
Namely, in the scheme [6], the anonymity of signatures produced before the re-
vocation is compromised. In case a member leaves voluntarily or in case of a
stolen key, the anonymity of signatures before leaving should be ensured.

In [12], improved schemes with the backward unlinkability are proposed. The
schemes introduce time intervals like [14]. Then, by obtaining a revocation to-
ken of a revoked member at a time interval from the manager, verifiers can
check whether a group signature at the corresponding interval was made by the
revoked member. Thus, by releasing only tokens after the revocation, the signa-
ture after the revocation can be detected, while the previous signatures can still
be anonymous. The anonymity with the backward unlinkability is proved under
the Decision BDH (DBDH) assumption.

In this paper, we propose a short VLR group signature scheme with the
backward unlinkability. Let e : G1 × G2 → GT be a bilinear map on groups
G1, G2, GT with the same prime order. Then, the previous group signature [12]
includes a GT element. Using MNT curves [11], GT elements are represented
as 1020 bit strings, while G1 elements are represented as 171 bit strings. On
the other hand, the proposed group signature excludes GT elements, and thus
the signature is shorter. This is achieved by utilizing the DLDH assumption,
on which the scheme [6] is also based. In addition to excluding GT elements,
we improve the efficiency of the signature, using the efficient zero-knowledge
proof technique, which is derived from the technique in [9]. In the above set-
ting, our group signature needs only 1533 bits, while the previous one needs
2893 bits. Therefore, the length of our signature is about 53% of that of the
previous one.

Remark 1. Recently, a short VLR group signature scheme is independently pro-
posed [15], which is based on another assumption, Decisional Tripartite DH
(DTDH) assumption [10]. However, since the signature includes a G2 element,
it becomes longer than the case where the signature includes only G1 elements,
which is our signature. In addition, the zero-knowledge proof in our signature
is improved, compared with the signature in [15] whose zero-knowledge proof is
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Table 1. Comparisons among VLR schemes from bilinear maps

Scheme Sig. len. Comp. cost of revocation check Assumptions Backward
(bits) (# of bilinear map comp.) unlinkability

[6] 1192 2 q-SDH, DLDH No
[12] 2893 1 q-SDH, DBDH Yes
[15] 2557 2 q-SDH, DTDH Yes

Proposed 1533 2 q-SDH, DLDH Yes

similar to [12]. Using MNT curves, the signature in [15] is 2557 bits, though our
signature is only 1533 bits.

Among VLR schemes from bilinear maps including [15], we show the comparisons
w.r.t. important factors (i.e, signature length, computational cost of revocation
check, assumptions, and backward unlinkability) in Table 1. Since the domi-
nant computational cost in VLR schemes is caused in the revocation check in
the signature verification, we compare the cost of revocation check per revoked
member, based on the number of the bilinear map computations.

2 Model and Security Definitions

We show a model of VLR group signature scheme with backward unlinkability
in [12], which is extended from [6].

Definition 1. A VLR group signature scheme with backward unlinkability con-
sists of the following algorithms:

KeyGen(n, T ): It is a probabilistic algorithm on inputs n, which is the number
of members, and T , which is the number of time intervals. It outputs a
group public key gpk, an n-element vector of members’ secret keys gsk =
(gsk[1], . . . , gsk[n]), and an n×T -element vector of revocation tokens grt =
(grt[1][1], . . . , grt[n][T ]), where grt[i][j] indicates the token of member i at
time interval j.

Sign(gpk, j, gsk[i], M): This takes as inputs the group public key gpk, the cur-
rent time interval j, a secret key gsk[i], and a message M ∈ {0, 1}∗, and
outputs the signature σ.

Verify(gpk, j, RLj, σ, M): This takes as inputs gpk, j, a set of the revocation
tokens RLj at the time interval j, a signature σ, and the message M . Then,
it outputs either valid or invalid. The validity means that σ is a correct
signature on M at interval j w.r.t. gpk, and that the signer is not revoked
at the interval j.

Remark 2. In this model, when member i is revoked at interval j, the manager
has to publish the revocation tokens grt[i][j], . . . , grt[i][T ].

Then, the security requirements, Correctness, Traceability, and BU-anonymity,
are defined as follows [12].
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Definition 2 (Correctness). Correctness requires that for all (gpk, gsk, grt) =
KeyGen(n, T ), all j ∈ [1, T ], all RLj, all i ∈ [1, n], and all M ∈ {0, 1}∗,

Verify(gpk, j, RLj,Sign(gpk, j, gsk[i], M), M) = valid ⇐⇒ grt[i][j] /∈ RLj.

As well as [6,12], we introduce implicit tracing algorithm: For any interval j, using
the revocation token grt[i][j] of all members, the implicit tracing algorithm can
trace the signer from a valid signature-message pair (σ, M).

The following traceability requirement captures the unforgeability of group
signatures, introduced first by [3]. Consider the following traceability game be-
tween an adversary A and a challenger, where A tries to forge a signature that
cannot be traced to one of members corrupted by A.

Setup: The challenger runs KeyGen(n, T ), and obtains gpk, gsk, and grt. He
provides A with gpk and grt, and sets U with empty.

Queries: A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at an arbitrary interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i. The chal-
lenger adds i to U , and responds the key.

Output: Finally, A outputs a message M∗, an interval j∗, a set RL∗
j∗ of revo-

cation tokens, and a signature σ∗.

Then, A wins if (1) Verify(gpk, j∗, RL∗
j∗ , σ∗, M∗) = valid, and (2) σ∗ traces to

a member outside of the coalition, i.e, U \ RL∗
j∗ or the trace is failure, and (3)

A did not obtain σ∗ by making a signing query at M∗.

Definition 3 (Traceability). Traceability requires that for all PPT A, the
probability that A wins the traceability game is negligible.

The following BU-anonymity requirement captures the anonymity with the back-
ward unlinkability. Consider the following BU-anonymity game.

Setup: The challenger runs KeyGen(n, T ), and obtains gpk, gsk, and grt. He
provides A with gpk.

Queries: At the beginning of every interval j ∈ [1, T ], the challenger announces
the beginning of j to A, where j is incremented. At the current interval j,
A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at the current interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i.
Revocation: A requests the revocation of an arbitrary member i at the

current interval j. The challenger responds grt[i][j].
Challenge: A outputs a message M and two members i0 and i1. The corruption

of i0 and i1 must not be requested. Furthermore, the revocations of i0 and
i1 must not be requested before the current interval j0 (including j0). The
challenger chooses φ ∈R {0, 1}, and responds the signature on M of member
iφ at the current interval j0.
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Restricted Queries: Similarly, A can make the signing queries, corruption
queries, and revocation queries, while the time interval is incremented. How-
ever, A cannot query the corruptions of i0 and i1, and the revocations of i0
and i1 at the interval j0 (Note that the revocations of i0 and i1 after j0 is
permitted).

Output: Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ]− 1/2|.

Definition 4 (BU-Anonymity). BU-anonymity requires that for all PPT A,
the advantage of A on the BU-anonymity game is negligible.

3 Preliminaries

3.1 Bilinear Groups

Our scheme utilizes bilinear groups and bilinear maps as follows:

1. G1, G2 and GT are multiplicative cyclic groups of prime order p,
2. g1 is a generator of G1, and g2 is a generator of G2,
3. ψ is an efficiently computed isomorphism from G2 to G1, with ψ(g2) = g1,
4. e is an efficiently computed bilinear map: G1 × G2 → GT , i.e., (1) for

all u, u′ ∈ G1, all v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′), and (2) e(g1, g2) �= 1.

Such an e can be constructed by Weil or Tate parings on the elliptic curves.
As mentioned in [5,6], the Tate paring on MNT curves [11] gives us the efficient
implementation, where G1 �= G2 and ψ can be implemented by the trace map.

3.2 Assumptions

Our scheme is based on the q-SDH assumption [5,6,12] and the DLDH assump-
tion [5,6].

Definition 5 (q-SDH Assumption). For all PPT algorithm A, the probability

Pr[A(g1, g2, g
γ
2 , . . . , g

(γq)
2 ) = (g(1/γ+x)

1 , x) ∧ x ∈ Z∗
p ]

is negligible, where g2 ∈R G2 (g1 = ψ(g2)) and γ ∈R Z∗
p .

Definition 6 (Decision Linear DH (DLDH) Assumption on G2). For all
PPT algorithm A, the probability

|Pr[A(u, v, h, ua, vb, ha+b) = 0]− Pr[A(u, v, h, ua, vb, hc) = 0|

is negligible, where u, v, h ∈R G2 and a, b, c ∈R Z∗
p .
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Based on the q-SDH assumption, the DL (Discrete Logarithm) assumption on
G2 also holds.

Definition 7 (DL Assumption on G2). For all PPT algorithm A, the prob-
ability

Pr[A(g2, g
γ
2 ) = γ]

is negligible, where g2 ∈R G2 and γ ∈R Z∗
p .

3.3 Proving Relations on Representations

As well as [6,12], we adopt signatures converted by Fiat-Shamir heuristic (using
a hash function) from zero-knowledge proofs of knowledge (PK), where a signer
can convince a verifier of knowledge with relations on representations. We call
the signatures SPKs. The SPKs we adopt are the generalization of the Schnorr
signature. We introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who knows secret values
x1, . . . , xt satisfying a relation R(x1, . . . , xt). In this paper, the following SPKs
on G1, GT are utilized.

SPK of Representation: An SPK proving the knowledge of a representation
of C ∈ G1 to the bases f1, f2, . . . , ft ∈ G1 on message M is denoted as

SPK{(x1, . . . , xt) : C = fx1
1 · · · fxt

t }(M).

This can be also constructed on group GT .
SPK of Representations with Equal Parts: An SPK proving the knowl-

edge of representations of C, C′ ∈ G1 to the bases f1, . . . , ft ∈ G1 on message
M , where the representations include equal values as parts, is denoted as

SPK{(x1, . . . , xu) : C = f
xj1
i1
· · · fxjv

iv
∧ C′ = f

xj′
1

i′
1
· · · f

xj′
v′

i′
v′
}(M),

where indices i1, . . . iv, i
′
1, . . . i

′
v′ ∈ {1, . . . , t} refer to the bases f1, . . . , ft, and

indices j1, . . . jv, j′1, . . . , j
′
v′ ∈ {1, . . . , u} refer to the secrets x1, . . . , xu. This

SPK can be extended for different groups G1 and GT with the same order
p, as follows.

SPK{(x1, . . . , xu) : C = f
xj1
i1
· · · fxjv

iv
∧C′ = f ′xj1

i′
1
· · · f ′xj′

v′
i′
v′
}(M),

where C, f1, . . . , ft ∈ G1, and C′, f ′
1, . . . , f

′
t ∈ GT .

In the random oracle model, the SPK can be simulated without the knowledge
using a simulator in the zero-knowledge-ness of the underlying PK. Moreover,
the SPK has an extractor of the proved secret knowledge given two accept-
ing protocol views whose commitments are the same and whose challenges are
different.



A Short Verifier-Local Revocation Group Signature Scheme 23

4 Proposed Scheme

4.1 Idea

The previous scheme [12] is informally as follows. In [12], the case of G1 = G2
is described, which can be easily extended to the case of G1 �= G2. Here, we
describe the case of G1 �= G2. The group public key is gpk = (g1, g2, g

γ
2 , hj),

where hj ∈ G2 for all 1 ≤ j ≤ T , and secret key gsk[i] of member i is an
SDH pair (Ai, xi) s.t. Ai = g

1/(γ+xi)
1 . Then, the group signature consists of

T3 = e(gxi
1 , hj)β , T4 = gβ

1 for β ∈R Z∗
p and the SPK proving the correctness

and the ownership of Ai corresponding to xi. The revocation token at interval
j is Bij = hxi

j . Then, by checking T3 = e(T4, B) for all revocation tokens B at
interval j, it can be checked whether T3 includes a token of a revoked member.
On the other hand, the revocation tokens at different interval j′ do not satisfy the
above checking. However, the signature includes a GT element, T3 = e(gxi

1 , hj)β .
When MNT curves are used, T3 is 6 times longer than the values from G1, and
thus the signature is long.

Here, we construct a VLR group signature scheme, where a signature in-
cludes only G1 elements and Z∗

p elements. In the previous scheme, since the
BU-anonymity is based on the DBDH assumption including the bilinear map e,
the signature includes e(gxi

1 , hj)β . On the other hand, the proposed scheme is
based on a different assumption, the DLDH assumption that does not include
e. The proposed scheme is informally as follows. The group public key gpk and
secret key gsk[i] are the same as the previous scheme. Then, the group signature
of i consists of T2 = ψ(f)β+xi and T3 = ψ(hj)β together with the SPK, where f
is a hashed value on G2. The revocation token at interval j is Bij = ψ(hj)xi . By
e(T2, hj) �= e(BT3, f) for all B ∈ RLj, it can be checked whether the signature
is not revoked. In the construction, it is desired to exclude longer G2 elements
from the signature. This is why f ∈ G2 is computed by both signer and verifier
via a hush function from the public information and a short random nonce. Only
the nonce is included in the signature.

In the proof of the BU-anonymity, regard u, v, h, ua, vb and ha+b in the DLDH
assumption as u = g2, v = hj, h = f, ux = gxi

2 , vb = hβ
j and ha+b = fβ+xi. Then,

informally the DLDH assumption means that ha+b = fβ+xi and a random hc

are indistinguishable, namely T3 = ψ(f)β+xi does not reveal any information on
xi. The formal proof is described later.

In addition, we improve the efficiency on the SPK proving the ownership of
Ai. The construction is derived from [9]. Let T1 be the commitment of Ai. T1 is
computed by T1 = Aig̃

α, where g̃ is a public element from G1 and α is a random
factor chosen by the signer. In the previous scheme [12], for the commitment
of Ai, the signer proves the knowledge of Ai s.t. Ai = g

1/(γ+xi)
1 directly, using

another commitment. Thus, forging a group signature implies forging an SDH
pair, which breaks the q-SDH assumption. The SPK is for the secrets xi, α,
and for more 3 secrets. On the other hand, in the proposed group signature, the
knowledge of T1 s.t. T1 = (g1g̃

αγ+ζ)1/(γ+xi) is proved in the SPK (If ζ = αxi,
it implies T1 = Aig̃

α). This proof can be achieved by only T1 and the SPK for
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secrets xi, α and another secret ζ. Thus, the signature size and computational
cost are improved. For a forged group signature proving the knowledge of T1, the
corresponding Ai can be computed using a discrete logarithm of g̃ to g1 without
the knowledge of γ, which leads to the security proof of the traceability. This
proof is described later.

Remark 3. Although this improvement of SPK is derived from [9], our SPK is
simpler, since the forms of Ai and T1 are simpler. This is why the security proof
is different from that in [9].

4.2 Proposed Algorithms

In addition to bilinear groups (G1, G2) with isomorphism ψ and bilinear map e,
we employ hash function H0 and H with respective ranges G2 and Zp, which
are treated as random oracles.

KeyGen(n, T ): This key generation algorithm is given the number of members
and the number of time intervals, and computes keys as follows.

1. Select a generator g2 ∈ G2 and set g1 = ψ(g2). Additionally, select g̃ ∈R G1

and hj ∈R G2, and set ĥj = ψ(hj) for all j ∈ [1, T ].
2. Select γ ∈R Z∗

p and compute w = gγ
2 .

3. Select xi ∈R Z∗
p and compute Ai = g

1/(γ+xi)
1 for all i ∈ [1, n].

4. Compute Bij = ĥxi

j for all i and j.

The group public key gpk is (g1, g2, g̃, h1, . . . hT , w). Each member’s secret
key gsk[i] is (Ai, xi). The revocation token at interval j of member with secret
(Ai, xi) is grt[i][j] = Bij . Output (gpk, gsk, grt).

Sign(gpk, j, gsk[i], M): The inputs of this signing algorithm are gpk = (g1, g2, g̃,
h1, . . . hT , w), the current time interval j, the signer’s secret gsk[i] = (Ai, xi) and
a signed message M ∈ {0, 1}∗. We assume that M includes the time interval j
in order to bind the signature to the interval. The algorithm is as follows:

1. Pick a random nonce r ∈R Zp. Compute f = H0(gpk, M, r) ∈ G2. Then,
compute f̂ = ψ(f), and ĥj = ψ(hj).

2. Select randoms α, β ∈R Z∗
p .

3. Compute T1 = Aig̃
α, T2 = f̂β+xi, T3 = ĥβ

j .
4. Set ζ = αxi. Then, compute

V = SPK{(α, β, xi, ζ) :
∧ e(T1, w)/e(g1, g2) = e(g̃, g2)ζe(g̃, w)α/e(T1, g2)xi

∧ T2 = f̂β+xi ∧ T3 = ĥβ
j }(M).

This SPK proves the knowledge α, β, xi, ζ s.t. T1 = (gg̃αγ+ζ)1/(γ+xi), T2 =
f̂β+xi, and T3 = ĥβ

j . The proof is described in Lemma 2.
Concretely, compute SPK V as follows.
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(a) Pick blinding factors rα, rβ , rxi , rζ ∈R Zp.
(b) Compute

R1 = e(g̃, g2)rζe(g̃, w)rα/e(T1, g2)rxi

R2 = f̂ rβ+rxi

R3 = ĥ
rβ

j

(c) Compute a challenge c ∈ Zp as

c = H(gpk, j, M, T1, T2, T3, R1, R2, R3).

(d) Compute responses sα = rα + cα, sβ = rβ + cβ, sxi = rxi + cxi, and
sζ = rζ + cζ in Zp.

Output the group signature σ = (r, T1, T2, T3, c, sα, sβ , sxi , sζ).

Verify(gpk, j, RLj, σ, M): The inputs are gpk = (g1, g2, g̃, h1, . . . hT , w), the
current time interval j, the revocation list RLj that consists of grt[i][j] for all
revoked i at the interval j, a target signature σ = (r, T1, T2, T3, c, sα, sβ , sxi , sζ)
and the message M ∈ {0, 1}∗.

1. Signature Check. Check that σ is valid, by checking the SPK V , as follows.
(a) Compute ĥj = ψ(hj), f = H0(gpk, M, r), and f̂ = ψ(f).
(b) Retrieve

R̃1 = (e(g̃, g2)sζ e(g̃, w)sα/e(T1, g2)sxi )(e(g1, g2)/e(T1, w))c

R̃2 = f̂sβ+sxi (1/T2)c

R̃3 = ĥ
sβ

j (1/T3)c

(c) Check the challenge c as

c = H(gpk, j, M, T1, T2, T3, R̃1, R̃2, R̃3).

2. Revocation Check. Check that the signer is not revoked at the interval j,
by checking e(T2, hj) �= e(BijT3, f) for all Bij ∈ RLj.
Consider the case of T2 = f̂β+xi , T3 = ĥβ

j and Bij = ĥxi

j . Then, e(T2, hj) =
e(f̂β+xi, hj) = e(f̂ , hj)β+xi . On the other hand, e(BijT3, f) = e(ĥxi

j ĥβ
j , f) =

e(ĥj , f)β+xi. Let f = hζ
j for some ζ ∈ Z∗

p . Then, e(f̂ , hj) = e(ψ(hj), hj)ζ =
e(ĥj , f). Thus, in this case, e(T2, hj) = e(BijT3, f). Namely, the revoked
signature can be detected.

5 Security

Since the correctness is straightforward, only BU-anonymity and traceability are
shown.
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5.1 BU-Anonymity

Theorem 1. The proposed scheme satisfies the BU-anonymity in the random
oracle model under the DLDH assumption.

The following lemma implies the above theorem.

Lemma 1. Suppose adversary A breaks the BU-anonymity of the proposed
scheme with the advantage ε and qH hash queries and qS signature queries.
Then, we can construct B that breaks the DLDH assumption on G2 with the
advantage (1/nT − qSqH/p)ε.

Proof. The input of B is (u, v, h, ua, vb, Z) ∈ G2
6, where a, b ∈R Z∗

p and either
Z = ha+b or Z = hc for c ∈R Z∗

p . B decides which Z it is given by communicating
with A, as follows.

Setup. B simulates KeyGen(n, T ) as follows.
1. B picks i∗ ∈R [1, n] and j∗ ∈R [1, T ].
B sets g2 = u, and g1 = ψ(g2). Furthermore, B selects g̃ ∈R G1. Ad-
ditionally, B selects rj ∈R Z∗

p and computes hj = g
rj

2 for all j ∈ [1, T ]
except j∗. For j∗, B sets hj∗ = v. For all j, B sets ĥj = ψ(hj).

2. As usual, B selects γ ∈R Z∗
p and computes w = gγ

2 .

3. As usual, B selects xi ∈R Z∗
p and computes Ai = g

1/(γ+xi)
1 for all i ∈ [1, n]

except i∗. For i∗, define xi∗ = a and Ai∗ = g
1/(γ+a)
1 , which are unknown

for B.
4. As usual, B computes Bij = ĥxi

j for all i except i∗ and all j. For i∗, B
sets Bi∗j = ψ((ua)rj ) = ψ(garj

2 ) = ĥa
j except for j∗. For i∗ and j∗, define

Bi∗j∗ = ψ(va) = ĥxi∗
j∗ , which is also unknown.

Note that simulated hj and Bij have the same distributions as the real, due
to a, xi, rj ∈R Z∗

p .
Hash Queries. At any time, A can query the hash functions H0 and H . B

responds with random values with consistency.
Phase 1. A can request signing queries, corruption queries, and revocation

queries at any time interval j. If i �= i∗, then B uses the secret key of i
to respond to the query as usual. If i = i∗, B responds as follows.

Signing Queries: B computes a simulated group signature of i∗, depending
on j as follows.
Case of j �= j∗:

1. B selects r ∈R Zp and β, δ ∈R Z∗
p . In addition, B sets f = hδ

j ,
f̂ = ψ(f), and ĥj = ψ(hj).

2. B selects T1 ∈R G1. Furthermore, B computes T2 = f̂βBδ
i∗j =

f̂β ĥ
x∗

i δ
j = f̂β+x∗

i , and T3 = ĥβ
j .
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3. B computes the simulated SPK V by using the simulator of
the perfect zero-knowledge-ness, which includes the backpatch
of the hash function. If the backpatch is failure, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Furthermore, B defines
f = H0(gpk, M, r). If this backpatch is failure, B also outputs a
random guess and aborts.

Case of j = j∗:

1. B selects r ∈R Zp and selects β, δ ∈R Z∗
p . In addition, B sets

f = uδ, f̂ = ψ(f), and ĥj = ψ(hj).
2. B selects T1 ∈R G1. Furthermore, B computes T2 = ψ(uβ(ua))δ=

ψ(fβ+x∗
i ) = f̂β+x∗

i , and T3 = ĥβ
j .

3. This is the same as in Case of j �= j∗.

Then, B responds signature σ = (r, T1, T2, T3, V ) to A. Note that each
value in σ has the same distribution as the real, due to α ∈R Z∗

p in
the real and T1 ∈R G1 in the simulation, and due to the perfect zero-
knowledge-ness of SPK.

Revocation Queries: If j �= j∗, B responds Bi∗j . Otherwise (i.e., j = j∗),
B outputs a random guess ω′ ∈R {0, 1} and aborts.

Corruption Queries: B outputs a random guess ω′ ∈R {0, 1} and aborts.

Challenge. A outputs a message M , the current time interval j and two mem-
bers i0, i1 to be challenged. If j �= j∗, B outputs a random guess ω′ ∈R {0, 1}
and aborts. Otherwise, B picks φ ∈R {0, 1}. Then, if iφ �= i∗, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Otherwise, B responds the following
simulated group signature of i∗ and j∗.

1. B selects r ∈R Zp, regards b as β which is unknown, and sets f = h,
f̂ = ψ(f), and ĥj∗ = ψ(hj∗).

2. B selects T1 ∈R G1. Furthermore, B sets T2 = ψ(Z) and T3 = ψ(vb) =
ĥβ

j∗ . Note that if Z = ha+b, T2 = ψ(ha+b) = f̂β+xi∗ .
3. B computes the simulated SPK V by using the simulator of the perfect

zero-knowledge-ness. Furthermore, B defines f = H0(gpk, M, r).

Phase 2. This is the same as Phase 1.
Output. A outputs its guess φ′ ∈ {0, 1}. If φ = φ′, B outputs ω′ = 1 (implying

Z = ha+b), and otherwise outputs ω′ = 0 (implying Z = hc).

Now, we evaluate the advantage of the guess of B. Let ω ∈ {0, 1} denote
whether the input Z is hc (ω = 0) or ha+b (ω = 1). Let abort be the event that
B aborts. Then, we have Pr[ω = ω′|abort] = 1/2. On the other hand, assume
that B does not abort. If ω = 0, i.e., Z = hc, then the challenged signature has
no information on xi∗ . Thus, Pr[ω′ = 0|abort ∧ ω = 0] = 1/2. If ω = 1, i.e.,
Z = ha+b, then B perfectly simulates the real and thus A guesses correctly with
the advantage ε. Therefore, we obtain Pr[ω′ = 1|abort ∧ ω = 1] = 1/2 + ε.
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Putting everything together, we obtain the advantage of B’s guess, as follows.

|Pr[B(u, v, h, ua, vb, ha+b) = 0]− Pr[B(u, v, h, ua, vb, hc) = 0|
= |Pr[ω′ = 0|ω = 1]− Pr[ω′ = 0|ω = 0]|
= |(1 − Pr[ω′ = 1|ω = 1])− Pr[ω′ = 0|ω = 0]|
= |1− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]

− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]|

= |1− Pr[abort](
1
2

+
1
2
)− Pr[abort]((

1
2

+ ε) +
1
2
)|

= Pr[abort]ε.

In the rest, we evaluate Pr[abort]. If the guesses of i∗ and j∗ are correct, B
aborts only when the backpatch is failure in the signing query. The probability
that a specific signature causes the failure is at most qH/p, as well as [6]. Thus,
for all signature queries, the probability that B aborts due to the failure of the
backpatch is at most qSqH/p. On the other hand, since A has no information on
i∗ and j∗ and φ ∈R {0, 1}, the probability that B correctly guesses i∗ and j∗ is
at least 1/nT . Thus, Pr[abort] ≥ 1/nT − qSqH/p.

Therefore, the advantage that B’ guesses ω is at least (1/nT − qSqH/p)ε. �	

5.2 Traceability

Before proving the traceability, we show that the SPK V proves T1 =
(g1g̃

αγ+ζ)1/(γ+xi), T2 = f̂β+xi , and T3 = ĥβ
j .

Lemma 2. SPK V proves the knowledge α, β, xi, ζ s.t. T1 = (g1g̃
αγ+ζ)1/(γ+xi),

T2 = f̂β+xi , and T3 = ĥβ
j .

Proof. By the knowledge extractor for V , we can obtain α, β, xi, ζ s.t.

e(T1, w)/e(g1, g2) = e(g̃, g2)ζe(g̃, w)α/e(T1, g2)xi , (1)

T2 = f̂β+xi , (2)

T3 = ĥβ
j . (3)

From (1), the equation e(T1, w)e(T1, g2)xi = e(g̃, g2)ζe(g̃, w)αe(g1, g2) holds. The
left hand is equal to e(T1, wgxi

2 ). The right hand is equal to e(g̃, gζ
2wα)e(g1, g2).

Thus, the equation e(T1, wgxi
2 ) = e(g̃, gζ

2wα)e(g1, g2) holds. Define g̃ = gη
1 and

T1 = gθ
1 . Then, since w = gγ

2 , we obtain the following equations.

e(gθ
1 , gγ

2 gxi
2 ) = e(gη

1 , gζ
2g

αγ
2 )e(g1, g2)

e(g1, g2)θ(γ+xi) = e(g1, g2)η(ζ+αγ)+1
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Thus, θ(γ+xi) = η(ζ+αγ)+1 (mod p), which means T1 = g
(η(ζ+αγ)+1)/(γ+xi)
1 =

(g1g̃
αγ+ζ)1/(γ+xi). Furthermore, from (2) and (3), the extracted xi satisfies T2 =

f̂β+xi and T3 = ĥβ
j for the extracted β. �	

Now, we show the traceability.

Theorem 2. The proposed scheme satisfies the traceability in the random oracle
model under the q-SDH assumption.

The following lemma implies the above theorem.

Lemma 3. Suppose adversary A breaks the traceability of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the (n + 1)-SDH assumption with the advantage
(ε/n−1/p)/(4qH) or B′ that breaks the DL assumption on G2 with the advantage
(ε/n− 1/p)/(4qH).

Proof Sketch. Consider the following framework with A, which is derived from
the proof in [6,12].

Setup. It is given g1, g2, w = gγ
2 , and n pairs (Ai, xi). For each i ∈ [1, n], either

si = 1 indicating that an SDH pair (Ai, xi) is known, or si = 0 indicating
that xi is known but Ai is unknown. Pick η ∈R Z∗

p , and compute g̃ = gη
1 .

Furthermore, as usual, choose hj ∈R G2 for all j ∈ [1, T ] and compute
Bij = ψ(hxi

j ) for all i, j. Then, run A on gpk = (g1, g2, g̃, h1, . . . , hT , w) and
grt = (B11, . . . , BnT ) .

Hash Queries. At any time, A can query the hash functions H0 and H . Re-
spond with random values with consistency.

Signing Queries. A queries a signature on message M at member i and inter-
val j. If si = 1, respond a signature using the secret key (Ai, xi). If si = 0,
pick r ∈R Zp, T1 ∈R G1, and β ∈R Z∗

p . Then, compute f = H0(gpk, M, r),
T2 = ψ(f)β+xi and T3 = ψ(hj)β . Furthermore, obtain a simulated SPK V
using the simulator of the SPK, which includes the backpatch of the hash
function. Respond (r, T1, T2, T3, V ).

Corruption Queries. A requests the secret key at member i. If si = 0, then
abort. Otherwise, respond requested key (Ai, xi).

Output. Finally, A outputs a forged signature σ∗ = (r∗, T ∗
1 , T ∗

2 , T ∗
3 , V ∗) in-

cluding a secret key A∗. Using all Bij , we can identify the member. If the
identification fails (i.e., the member is outside of all i), output σ∗. Otherwise,
some i is identified. If si = 0, then output σ∗. Otherwise (i.e., si = 1), abort.

Then, there are two types of forger on the above framework. Type 1 forger
forges a signature of the member who is different from all i. Type 2 forger forges
a signature of the member i whose corruption is not requested.

For q-SDH instance (g1, g2, g
γ
2 , . . . , gγq

2 ), we can obtain g1, g2, w = gγ
2 and q−1

SDH pairs (Ai, xi), using the technique of [4]. On the other hand, any SDH pair
besides these q − 1 pairs can be transformed a solution of the q-SDH instance,
which means that the q-SDH assumption is broken, using the same technique.
As well as [6,12], we treat two types of forger differently.
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Type 1. Given (n+1)-SDH instance, obtain n SDH pairs (Ai, xi) with (g1, g2, w).
Then, perform the framework with Type 1 forger A (i.e., all si = 1). A finally
outputs a signature with secret key A∗ s.t. A∗ �= Ai for all i. In this case, the
simulation is perfect, and thus A succeeds with advantage ε.

Type 2. Given n-SDH instance, obtain n−1 SDH pairs (Ai, xi), which distributes
n pairs, and set si = 1. For the unfilled entry at random index i∗, select xi∗ ∈R Z∗

p

(Ai∗ is unknown), and set si∗ = 0. Then, perform the framework with type 2
forger A. In this case, it succeeds only if A never requests the corruption of i∗,
but forges the signature including Ai∗ . As discussed in [6], the value of i∗ is
independent A’s view. Thus, the probability that A outputs the signature of i∗

is at least ε/n.
Now we show how to obtain another SDH pair beyond the given q − 1 SDH

pairs, using the framework with Type 1 or Type 2. We can rewind the framework
to obtain two forged signatures on the same message M and the same interval
j, where the commitments in the SPK V are the same but the challenges and
responses are different. As shown in [6], by the forking lemma, the successful
probability is at least (ε′ − 1/p)2/(16qH), where ε′ is the probability that the
framework on each forger succeeds. Thus, using the extractor of the SPK V in
Lemma 2, we can obtain a tuple (α∗, x∗, ζ∗, T ∗

1 ) s.t. T ∗
1 = (g1g̃

α∗γ+ζ∗
)1/(γ+x∗),

e(T ∗
2 , hj) = e(ψ(hj)x∗

T ∗
3 , f) and x∗ �= xi for all i with the probability (ε′ −

1/p)2/(16qH).
After the extraction, check −ηα∗x∗ +1+ηζ∗ = 0 (mod p). If it is true, abort.

Otherwise (i.e., −ηα∗x∗+1+ηζ∗ �= 0 (mod p)), consider the following equations,
using g̃ = gη

1 .

T ∗
1 = (g1g̃

α∗γ+ζ∗
)1/(γ+x∗)

= (g1+η(α∗γ+ζ∗)
1 )1/(γ+x∗)

= (gηα∗(γ+x∗)−ηα∗x∗+1+ηζ∗

1 )1/(γ+x∗)

= gηα∗
1 g

(−ηα∗x∗+1+ηζ∗)/(γ+x∗)
1

Thus, the equation T ∗
1 g−ηα∗

1 = g
(−ηα∗x∗+1+ηζ∗)/(γ+x∗)
1 holds. Since −ηα∗x∗ +

1 + ηζ∗ �= 0 (mod p), this implies T ∗
1 g

−ηα∗/(−ηα∗x∗+1+ηζ∗)
1 = g

1/(γ+x∗)
1 . Thus,

we obtain another SDH pair (A∗, x∗), where A∗ = T ∗
1 g

−ηα∗/(−ηα∗x∗+1+ηζ∗)
1 .

Let ε′′ be the probability thatA outputs the group signature for (α∗, x∗, ζ∗, T ∗
1 )

s.t. −ηα∗x∗ +1+ηζ∗ �= 0 (mod p). Putting everything together, we have shown
the following. Using Type 1 forger, we can solve the (n + 1)-SDH instance with
(ε′′− 1/p)2(16/qH). Using Type 2 forger, we can solve the n-SDH instance with
(ε′′/n− 1/p)2(16/qH). We can guess the type of forger with the probability 1/2.
Therefore, the pessimistic Type 2 forger implies the latter.

Finally, we consider the different game for the case of −ηα∗x∗ + 1 + ηζ∗ =
0 (mod p). Then, given g2, ḡ = gη

2 for an unknown η, we can break the DL
assumption on G2, using A, as follows. Set g̃ = ψ(ḡ) = gη

1 . For (g1, g2, g̃),
conduct the above framework with A. In the framework, choose γ and compute
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all SDH pairs, as usual. Then, A outputs the group signature for (α∗, x∗, ζ∗, T ∗
1 )

s.t. −ηα∗x∗ + 1 + ηζ∗ = 0 (mod p) (Otherwise, abort). Thus, η(α∗x∗ − ζ∗) = 1
(mod p). Since η �= 0, we obtain η−1 = α∗x∗ − ζ∗ (mod p). This is the discrete
logarithm of g2 to the base ḡ. By the similar discussion to the above case, the
advantage of this game is ((ε − ε′′)/n − 1/p)2(16/qH). Note that A can guess
which game is given with just probability 1/2.

If ε′′ ≥ ε/2, we can break the (n + 1)-SDH assumption with the advantage of
at least (ε/n−1/p)2(4/qH). Otherwise (i.e., ε′′ < ε/2), since ε−ε′′ > ε/2, we can
break the DL assumption with the advantage of at least (ε/n−1/p)2(4/qH). �	

6 Efficiency

We compare the efficiency of the proposed scheme to the previous scheme [12].

Signature Length. For the bilinear groups G1, G2 with bilinear map e and isomor-
phism ψ, we can adopt the elliptic curves proposed in [11] called MNT curves.
The use of MNT curves can make the representations of elements in G1 short.
Then, one can take the order p to be 170-bit prime, and the representations of
G1, GT can be expressed in 171 and 1020 bits, respectively [6].

The proposed group signature includes 3 elements from G1 and 6 elements
from Zp. In the above setting, this group signature is 1533 bits or 192 bytes.
Although the previous group signature is described in case of G1 = G2, it can be
extended in case of G1 �= G2. In the extended case, the previous group signature
includes 3 elements from G1, 1 element from GT and 8 elements from Zp. In
the above setting, this group signature is 2893 bits or 362 bytes. Therefore, the
length of our signature is about 53% of that of the previous one.

Performance. The signature generation requires 6 multi-exponentiations, 1 iso-
morphism computation and 1 bilinear map computation (plus 1 isomorphism
computation and 2 bilinear map computations that can be pre-computed). The
verification requires 3 multi-exponentiations, 1 isomorphism computation and
2 + 2|RLj| bilinear map computations (plus 3 bilinear map computations that
can be pre-computed). In the previous scheme, the signature generation re-
quires 10 multi-exponentiations and 1 bilinear map computation (plus 3 bilinear
map computations that can be pre-computed). The verification requires 6 multi-
exponentiations and 2 + |RLj| bilinear map computations (plus 4 bilinear map
computations that can be pre-computed).

Therefore, in the signature generation cost, our signature is better. However,
in the verification, although the multi-exponentiation costs in our scheme is
better, the dominant bilinear map computation cost depending on the size of
the revocation list is worse (almost double), which is overhead of our scheme.

7 Conclusion

We have been proposed a short VLR group signature scheme with the backward
unlinkability. Although the verification cost is worse (almost double), the length
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of the proposed group signature is about 53% of that of the previous one [12].
In addition, the signature generation cost is also reduced.

Our future works are to implement the proposed scheme, and to apply it to
the anonymous authentication in mobile environments.
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Abstract. This paper provides one more step towards bridging the gap
between the formal and computational approaches to the verification of
cryptographic protocols. We extend the well-known Abadi-Rogaway logic
with probabilistic hashes and we give a precise semantic interpretation
to it using Canetti’s oracle hashes. These are probabilistic polynomial-
time hashes that hide all partial information. Finally, we show that this
interpretation is computationally sound.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two
different techniques. On the one hand, from a logical perspective, messages are
seen as algebraic objects, generated by some grammar from elementary objects
such as keys, nonces, and constants. Cryptographic operations are seen as al-
gebraic operations which are unbreakable. Attackers are typically modelled as
so-called Dolev-Yao attackers [DY83], having total control over the network,
having no computational limitations, and being only (but absolutely) incapable
of breaking cryptographic operations. These logical methods are appealing, be-
cause they are relatively easy to use and capture most mistakes commonly made
in security protocols.

On the other hand, from a complexity-theory perspective, messages are seen
as bit strings and cryptographic operations as functions on bit strings satisfy-
ing certain security properties [Gol01]. An attacker here is a resource bounded
probabilistic algorithm, limited by running time and/or memory, but capable
of breaking cryptographic operations, if that is computationally feasible. The
complexity based methods are more general and more realistic, but also more
complex.

In the last few years much research has been done to relate these two perspec-
tives [AR02, AJ01, MW04, Her05]. Such a relation takes the form of a function
mapping algebraic messages m to (distributions over) bit strings [[m]]. This map
should relate messages that are observationally equivalent in the algebraic world
(meaning that a Dolev-Yao attacker can see no difference between them) to in-
distinguishable distributions over bit strings (meaning that a computationally
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bounded adversary can only with negligible probability distinguish the distribu-
tions). Such a map allows one to use algebraic methods, possibly even automated,
to reason about security properties of protocols and have those reasonings be
valid also in the computational world.

The work carried out in the literature on relating these two perspectives
mainly deals with symmetric encryption [AR02, MW04] and public key encryp-
tion [Her05]. Micciancio and Warinschi [MW04] briefly but explicitly question if
this logical approach can be extended to, among other things, collision resistant
hashes. Backes, Pfitzmann, and Waidner [BPW06] show that in their simulata-
bility framework [PW00] a sound interpretation of hashes cannot exist, but that
it is possible to give a sound interpretation of formal hashes in the simulatability
framework using random oracles.

The problem with hashes is that in the algebraic world h(m) and h(m′) are
indistinguishable for a Dolev-Yao attacker if the attacker does not know m and
m′. In the computational world, however, the normal security definition — it
must be computationally infeasible to compute any pre-image of a hash value
or a hash collision [RS04] — does not guarantee that the hash function hides all
partial information about the message; hence there is no guarantee that [[h(m)]]
and [[h(m′)]] are computationally indistinguishable. A possible solution to this
can be found in the work of Canetti and others [Can97a, CMR98] on perfectly
one-way functions (a.k.a. oracle hashing). These are computable probabilistic
hash functions that hide all partial information of their input (see Section 3.3
for a definition and an example).

Our Contribution. We propose an extension to the commonly used Abadi-
Rogaway logic of algebraic messages introducing a probabilistic hash operator
hr(m) in the logic, next to the probabilistic symmetric encryption operator {|m|}r

k.
Just as the original logic introduces a �-operator to put in place of undecryptable
ciphertext (for us �r, since we also deal with repetitions of ciphertexts), we
introduce a �r-operator to put in place of the hash of an unknown message.
In the computational world, we interpret h as a perfectly one-way function and
prove that the resulting interpretation is sound.

It is relatively easy to see that the interpretation of messages like 〈m, hr(n, 0)〉
and 〈m, hr(n, 1)〉 are computationally indistinguishable whenever the adversary
can not learn n from m. If, however, the adversary can learn n from m, then the
messages are not observationally equivalent. The main technical difficulty that
has to be overcome is that the adversary can learn part of the argument of the
hash from the context, as for example in the message 〈k, hr(n, k)〉.

Overview. Section 2 introduces the message algebra, including the probabilistic
encryption and probabilistic hash operators. It also defines the observational
equivalence relation on messages. Section 3 then introduces the computational
world, giving the security definitions for encryption and hashes. In Section 4 the
semantic interpretation [[−]] is defined and Section 5 proves the soundness of this
interpretation. Finally, Section 6 discusses further research directions.
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2 The Algebraic Setting

This section describes the message space and the observational equivalence ex-
tending the well-known Abadi-Rogaway logic [AR02] of algebraic messages with
hashes. These messages are used to describe cryptographic protocols and the ob-
servational equivalence tells whether or not two protocol runs are indistinguish-
able for a global eavesdropper. Here a protocol run is simply the concatenation
of all the messages exchanged in the run.

Definition 2.1. Key is an infinite set of key symbols, Nonce an infinite set of
nonce symbols, Const a finite set of constant symbols, and Random an infinite
set of randomness labels. Keys are denoted by k, k′, . . . , nonces by n, n′, . . . ,
constants by c, c′, . . . , and randomness labels by r, r′, . . . . There is one special
key called k� and for every randomness label r there is a special nonce called nr

�.
Using these building blocks, messages are constructed using algebraic encryption,
hashing, and pairing operations:

Msg � m := c | k | n | {|m|}r
k | hr(m) | 〈m, m〉 | �r | �r .

Here k and n do not range over all keys/nonces, but only over the non-special
ones. Special symbols ( �r and �r) are used to indicate undecryptable cipher-
texts or hash values of unknown messages. When interpreting messages as (en-
sembles of distributions over) bit strings, we will treat �r as if it were {|0|}r

k�
and �r as if it were hr(nr

�).
A message of the form {|m|}r

k is called an encryption and the set of all such
messages is denoted by Enc. Similarly, messages of the form hr(m) are called hash
values and the set of all these messages is denoted by Hash. Finally Box denotes
the set of all messages of the form �r or �r. The set of all messages that involve
a “random choice” at their “top level”, i.e., Key∪Nonce∪Enc∪Hash∪Box, is
denoted by RanMsg.

The closure of a set U of messages is the set of all messages that can be con-
structed from U using tupling, detupling, and decryption. It represents the in-
formation an adversary could deduce knowing U .

Definition 2.2 (Closure). Let U be a set of messages. The closure of U , de-
noted by U , is the smallest set of messages satisfying:

1. Const ⊆ U ;
2. U ⊆ U ;
3. m, m′ ∈ U =⇒ 〈m, m′〉 ∈ U ;
4. {|m|}r

k, k ∈ U =⇒ m ∈ U ;
5. 〈m, m′〉 ∈ U =⇒ m, m′ ∈ U .

For the singleton set {m}, we write m instead of {m}.

We define the function encpat : Msg → Msg as in Abadi-Rogaway [AR02] which
takes a message m and reduces it to a pattern. Intuitively, this is the pattern
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that an attacker sees in a message given that he knows the messages in U . This
function does not replace hashes. Formally, it is defined as follows:

encpat(m) = encpat(m, m)
where

encpat(〈m1, m2〉, U) = 〈encpat(m1, U), encpat(m2, U)〉

encpat({|m|}r
k, U) =

{
{|encpat(m, U)|}r

k, if k ∈ U ;
�R({|m|}r

k), otherwise.

encpat(hr(m), U) = hr(encpat(m, U))
encpat(m, U) = m in any other case.

HereR : Enc∪Hash ↪→ Random is an injective function that takes an encryption
or a hash value and outputs a tag that identifies its randomness. We need this
tagging function to make sure that the function encpat is injective. That is, we
need to make sure that distinct undecryptable messages get replaced by distinct
boxes and similarly for hashpat below.

Now we define the function hashpat : Msg → Msg which takes a message m
and reduces all hashes of unknown (not in U) sub-messages, to �. This function
does not replace encryptions. Formally:

hashpat(m) = hashpat(m, m)
where

hashpat(〈m1, m2〉, U) = 〈hashpat(m1, U), hashpat(m2, U)〉
hashpat({|m|}r

k, U) = {|hashpat(m, U)|}r
k

hashpat(hr(m), U) =
{

hr(hashpat(m, U)), if m ∈ U ;
�R(hr(m)), otherwise.

hashpat(m, U) = m in any other case.

Naturally, we now define pattern as pattern = encpat ◦ hashpat.

Example 2.3. Consider the message

m = 〈{|{|1|}r′
k′, hr̃(n)|}r

k, hr̂(k), k〉.
hashpat(m) = 〈{|{|1|}r′

k′, �t |}r
k, hr̂(k), k〉, because n is not in m,Then

pattern(m) = 〈{| �s , �t |}r
k, hr̂(k), k〉, because k′ is not in m,and

where t = R(hr̃(n)) and s = R({|1|}r′
k′).

Definition 2.4 (Observational Equivalence). Two messages m and m′ are
said to be observationally equivalent, notation m ∼= m′, if there is a type preserv-
ing permutation σ of Key ∪Nonce ∪ Box such that pattern(m) = pattern(m′)σ.
Here pattern(m′)σ denotes simultaneous substitution of x by σ(x) in pattern(m′),
for all x ∈ Key ∪Nonce ∪ Box.

From the original setting in [AR02] we inherit the requirement that messages
must be acyclic for the soundness result to hold.
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Definition 2.5 (Acyclicity). Let m be a message and k, k′ two keys. The key
k is said to encrypt k′ in m if m has a sub-message of the form {|m′|}r

k with
k′ being a sub-message of m′. A message is said to be acyclic if there is no
sequence k1, k2, . . . , kn, kn+1 = k1 of keys such that ki encrypts ki+1 in m for all
i ∈ {1, . . . , n}.

3 The Computational Setting

This section gives a brief overview of the concepts used in the complexity the-
oretic approach to security protocols. Much of this is standard; the reader is
referred to [GB01, BDJR97] for a thorough treatment of the basic concepts, to
[AR02] for the notion of type-0 security for cryptographic schemes (see Section 3.2
below), and to [Can97a] for the notion of oracle hashing (see Section 3.3 below).

In the computational world, messages are elements of Str := {0, 1}∗. Crypto-
graphic algorithms and adversaries are probabilistic polynomial-time algorithms.
When analyzing cryptographic primitives, it is customary to consider proba-
bilistic algorithms that take an element in Param := {1}∗ as input, whose
length scales with the security parameter. By making the security parameter
large enough, the system should become arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probability
ensembles over Str. Here a probability ensemble over Str is a sequence {Aη}η∈N

of probability distributions over Str indexed by the security parameter.

Definition 3.1 (Computational Indistinguishability). Two probability
ensembles {Aη}η and {Bη}η are computationally indistinguishable if for every
probabilistic polynomial-time algorithm A, for all polynomials p, and for large
enough η,

P[x $← Aη; A(1η, x) = 1]− P[x $← Bη; A(1η, x) = 1] <
1

p(η)
.

After a brief interlude on probabilistic polynomial-time algorithms in Section 3.1,
we give the formal definition of an encryption scheme and its security notion in
Section 3.2 and of oracle hashing in Section 3.3.

3.1 Probabilistic Algorithms

In Definition 3.1, the notion of probabilistic polynomial-time algorithm was al-
ready used. Because we explicitly use two different views of these algorithms and
in order to fix notation, we give a more precise definition.

Definition 3.2. Coins is the set {0, 1}ω, the set of all infinite sequences of 0’s
and 1’s. We equip Coins with the probability distribution obtained by flipping
a fair coin for each element in the sequence.
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Definition 3.3. The result of running a probabilistic algorithm A on an input
x ∈ Str is a probability distribution A(x) over Str. When we need to explicitly
write the randomness used while running A, we write A(x, ρ) with ρ ∈ Coins.
Using this notation, A(x) and [ρ $← Coins;A(x, ρ)] are the same probability
distribution. When confusion is unlikely, we will also denote the support of this
probability distribution, {y ∈ Str|P[ρ $← Coins; A(x, ρ = y)] > 0}, by A(x).

Now suppose that A runs in polynomial time p. Then running A on x cannot
use more than p(|x|) coin flips. Letting Coinsp(|x|) denote the uniform probability
distribution on {0, 1}p(|x|), we get that the probability distribution A(x) can also
be written as [ρ $← Coinsp(|x|); A(x, ρ)].

3.2 Encryption Scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a non-empty set of
plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆ Plaintextη+1 as in Gold-
wasser and Bellare [GB01]. Let us define Plaintext =

⋃
η Plaintextη. There is a

set Keys ⊆ Str of keys and also a set Ciphertext ⊆ Str of ciphertexts. Further-
more, there is a special bit string ⊥ not appearing in Plaintext or Ciphertext.
An encryption scheme Π consists of three algorithms:

1. a (probabilistic) key generation algorithm K : Param→ Keys that outputs,
given a unary sequence of length η, a randomly chosen element of Keys;

2. a (probabilistic) encryption algorithm E : Keys×Str → Ciphertext∪{⊥} that
outputs, given a key and a bit string, a possibly randomly chosen element
from Ciphertext or ⊥;

3. a (deterministic) decryption algorithm D : Keys × Str → Plaintext ∪ {⊥}
that outputs, given a key and a ciphertext, an element from Plaintext or ⊥.

These algorithms must satisfy that the decryption (with the correct key) of a
ciphertext returns the original plaintext. The element ⊥ is used to indicate failure
of en- or decryption, although there is no requirement that decrypting with the
wrong keys yields ⊥.

Now we define type-0 security of an encryption scheme as in [AR02], which
is a variant of the standard semantic security definition, enhanced with some
extra properties. In particular a type-0 secure encryption scheme is which-key
concealing, repetition concealing and length hiding. We refer to the original
paper for motivation and explanations on how to achieve such an encryption
scheme. The notion of type-0 security makes slightly unrealistic assumptions
on the encryption scheme. However our result on hashes does not significantly
depend on the specific security notion for the encryption scheme. As in [MP05,
Her05], it is possible to replace type-0 security by the standard notion of ind-cpa
or ind-cca by adapting the definition of encpat. For simplicity of the exposition,
throughout this paper we adopt the former security notion.

Definition 3.4. An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm AF(−),G(−) : Param → {0, 1} having access to two prob-
abilistic oracles F ,G : Str → Str. The advantage of such an adversary is the
function AdvA : N → R defined by
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AdvA(η) = P[κ, κ′ $← K(1η); AE(κ,−),E(κ′,−)(1η) = 1]−

P[κ $← K(1η); AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key generation
algorithm, over the choices of the oracles, and over the internal choices of A. An
encryption scheme 〈K, E ,D〉 is called type-0 secure if for all polynomial-time
adversaries A as above, the advantage AdvA is a negligible function of η. This
means that for all positive polynomials p and for large enough η, AdvA(η) ≤ 1

p(η) .

In the sequel we need an extra assumption on the encryption scheme, namely
that the ciphertexts are well-spread as a function of the coins tosses of E . It means
that for all plaintexts μ and all keys κ, no ciphertext is exceptionally likely to
occur as the encryption of μ under κ. Note that this does not follow from, nor
implies type-0 security. Also note that every encryption scheme running in cipher
block chaining mode automatically has this property: the initial vector provides
the required randomness.

Definition 3.5 (Well-spread). An encryption scheme 〈K, E ,D〉 is said to be
well-spread if for every polynomial p,

∀η � 1.∀x ∈ Ciphertext.∀κ ∈ K(1η).∀μ ∈ Plaintextη : P[E(κ, μ) = x] <
1

p(η)
.

3.3 Oracle Hashing

The underlying secrecy assumptions behind formal or Dolev-Yao hashes [DY83]
are very strong. It is assumed that given a hash value f(x), it is not possible
for an adversary to learn any information about the pre-image x. In the litera-
ture this idealization is often modelled with the random oracle [BR93]. Such a
primitive is not computable and therefore it is also an idealization. Practical hash
functions like SHA or MD5 are very useful cryptographic primitives even though
this functions might leak partial information about their input. Moreover, un-
der the traditional security notions (one-wayness), a function that reveals half
of its input is considered secure. In addition, any deterministic hash function f
leaks partial information about x, namely f(x). Through this paper we consider
a new primitive introduced by Canetti [Can97a] called oracle hashing, that mim-
ics what semantic security is for encryption schemes. This hash function is proba-
bilistic and therefore it needs a verification function, just as in a signature scheme.
A hash scheme consists of two algorithms H and V . The probabilistic algorithm
H : Param×Str→ Str takes a unary sequence and a message and outputs a hash
value; the verification algorithm V : Str × Str → {0, 1} that given two messages
x and c correctly decides whether c is a hash of x or not. As an example we re-
produce here a hash scheme proposed in the original paper. Let p be a large (i.e.,
scaling with η) safe prime. Take H(x) = 〈r2, r2·h(x) mod p〉, where r is a ran-
domly chosen element in Z∗

p and h is any collision resistant hash function. The
verification algorithm V(x, 〈a, b〉) just checks whether b = ah(x) mod p.
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Canetti gives essentially two security notions for such a hash scheme. The
first one, oracle indistinguishability, guarantees that an adversary can gain no
information at all about a bit string, given its hash value (or rather, with suf-
ficiently small probability). The second one is an appropriate form of collision
resistance. It guarantees that an adversary cannot (or rather, again, with suffi-
ciently small probability) compute two distinct messages that successfully pass
the verification test with the same hash value.

Definition 3.6. A hash scheme 〈H,V〉 is said to be oracle indistinguishable if for
every family of probabilistic polynomial-time predicates {Dη : Str → {0, 1}}η∈N

and every positive polynomial p there is a polynomial size family {Lη}η∈N of
subsets of Str such that for all large enough η and all x, y ∈ Str \ Lη:

P[Dη(H(1η, x)) = 1]− P[Dη(H(1η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices
made by Dη. This definition is the non-uniform [Gol01] version of oracle indis-
tinguishability proposed by Canetti [Can97a] as it is finally used throughout the
proof (See the full version [Can97b], Appendix B).

Definition 3.7 (Collision Resistance). A hash scheme 〈H,V〉 is said to be
collision resistant if for every probabilistic polynomial time adversary A, the
probability

P[〈c, x, y〉 $← A(1η); x �= y ∧ V(x, c) = V(y, c) = 1]

is a negligible function of η.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by
some grammar. In Section 3 messages are bit strings and operations are given by
probabilistic algorithms operating on bit strings. This section shows how to map
algebraic messages to (distributions over) bit strings. This interpretation is very
much standard. We refer to [AR02, AJ01, MW04] for a thorough explanation. In
particular this section introduces notation that allows us to assign, beforehand,
some of the random coin flips used for the computation of the interpretation of
a message. This notation becomes useful throughout the soundness proof.

Definition 4.1. For every message m and set of messages V we define the set
R(m, V ) ⊆ RanMsg of random messages in m relative to V as follows: if m ∈ V ,
then R(m, V ) = ∅, otherwise

R(c, V ) = ∅ R({|m|}r
k, V ) = R(m, V ) ∪ {k, {|m|}r

k}
R(n, V ) = {n} R(hr(m), V ) = R(m, V ) ∪ {hr(m)}
R(k, V ) = {k} R(〈m1, m2〉, V ) = R(m1, V ) ∪R(m2, V )

R(�r, V ) = {k�, �r} R(�r, V ) = {nr
�, �r}.
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The set of random messages in m is defined as R(m) := R(m, ∅) and the set of
random messages in m relative to m′ as R(m, m′) := R(m, {m′}).

Note that R(m) is nearly equal to the set of all sub-messages of m that are in
RanMsg; the only difference is that R(m) also may contain the special key k� or
special nonces nr

�. When interpreting a message m as (ensembles of distributions
over) bit strings (Definition 4.4 below), we will first choose a sequence of coin
flips for all elements of R(m) and use these sequences as source of randomness
for the appropriate interpretation algorithms.

Also note that R(m, m′) is the set of all random messages in m except those
that only occur as a sub-message of m′ (see Definition 4.5 below).

Example 4.2. Let m be the message 〈k, {|0|}r
k, hr′

({|0|}r
k, n), n′〉 and let m̃ be

the message inside the hash: 〈{|0|}r
k, n〉. Then the randomness in m is R(m) =

{k, {|0|}r
k, h

r′
({|0|}r

k, n), n′, n}, the randomness inside the hash is R(m̃) = {{|0|}r
k,

k, n}, and the randomness that occurs only outside the hash is R(m, hr′
(m̃)) =

R(m) \ {hr′
(m̃), n}. The randomness that is shared between the inside of the

hash and the outside of the hash is R(m, hr′
(m̃)) ∩ R(m̃) = {{|0|}r

k}.

Definition 4.3. For every finite set X we define Coins(X) as {τ : X → Coins}.
We equip Coins(X) with the induced product probability distribution. Further-
more, for every message m we write Coins(m) instead of Coins(R(m)).

An element of τ of Coins(m) gives, for every sub-message m′ of m that requires
random choices when interpreting this sub-message as a bit string, an infinite
sequence τ(m′) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to
interpret encryptions, K to interpret key symbols, and H to interpret for hashes.
We let C : Const→ Str be a function that (deterministically) assigns a constant
bit string to each constant identifier. We let N : Param → Str be the nonce
generation function that, given a unary sequence of length η, chooses uniformly
and randomly a bit string from {0, 1}η.

Definition 4.4. For a message m, a value of the security parameter η ∈ N, a
finite set U of messages containing R(m), and for a choice τ ∈ Coins(U) of (at
least) all the randomness in m, we can (deterministically) create a bit string
[[m]]τη ∈ Str as follows:

[[c]]τη = C(c) [[{|m|}r
k]]τη = E([[k]]τη , [[m]]τη, τ({|m|}r

k))

[[k]]τη = K(1η, τ(k)) [[hr(m)]]τη = H(1η, [[m]]τη, τ(hr(m)))

[[n]]τη = N (1η, τ(n)) [[�r]]τη = E([[k�]]τη , C(0), τ(�r))

[[〈m1, m2〉]]τη = [[m1]]
τ
η [[m2]]

τ
η [[�r]]τη = H(1η, [[nr

�]]τη, τ(�r)).

Note that [[m]]τη = [[m]]τ |R(m)
η . For a fixed message m and η ∈ N, choosing τ from

the probability distribution Coins(R(m)) creates a probability distribution [[m]]η
over Str:

[[m]]η := [τ $← Coins(m); [[m]]τη ].
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Note that although the codomain of τ ∈ Coins(m) is Coins, the set of infinite
bit strings, when interpreting a fixed message m at a fixed value of the security
parameter η, only a predetermined finite initial segment of each sequence of coin
flips will be used by K, N , E , and H (cf. Definition 3.3). Denoting by Coinsη(m)
the probability distribution (on {τ : R(m) → Str}) that is actually being used
when computing [[m]]η, we could also write

[[m]]η = [τ $← Coinsη(m); [[m]]τη].

Furthermore, letting η range over N creates an ensemble of probability distribu-
tions [[m]] over Str, namely [[m]] := {[[m]]η}η∈N.

Definition 4.5. We will also need a way of interpreting a message as a bit
string when the interpretation of certain sub-messages has already been chosen
in some other way. For this, let e be a function from some set Dom(e) ⊆ Pat
to Str and let τ ∈ Coins(U, Dom(e)) with U a finite set of messages containing
R(m). We interpret a message m using e whenever possible and τ otherwise: if
m ∈ Dom(e), then [[m]]e,τ

η = e(m), otherwise

[[c]]e,τ
η = C(c) [[{|m|}r

k]]
e,τ
η = E([[k]]τη , [[m]]e,τ

η , τ({|m|}r
k))

[[k]]e,τ
η = K(1η, τ(k)) [[hr(m)]]e,τ

η = H(1η, [[m]]e,τ
η , τ(hr(m)))

[[n]]e,τ
η = N (1η, τ(n)) [[�r]]e,τ

η = E([[k�]]e,τ
η , C(0), τ(�r))

[[〈m1, m2〉]]e,τ
η = [[m1]]

e,τ
η [[m2]]

e,τ
η [[�r]]e,τ

η = H(1η, [[nr
�]]e,τ

η , τ(�r)).

Definition 4.6. We also need a way of pre-specifying some of the random
choices to be made when interpreting a message. For this, let τ ∈ Coins(U)
for some finite set of messages U . Then for every η ∈ N and every message m,
the distribution [[m]]τη is obtained by randomly choosing coins for the remaining
randomness labels in m. Formally,

[[m]]τη := [τ ′ $← Coins(R(m) \ U); [[m]]τ∪τ ′

η ],

where τ ∪ τ ′ ∈ Coins(m) denotes the function which agrees with τ on U ∩R(m)
and with τ ′ on R(m) \ U .

This can also be combined with the previous way of preselecting a part of the
interpretation. For a function e from a set Dom(e) ⊆ Pat to Str and τ ∈ Coins(U)
as above, we define [[m]]e,τ

η := [τ ′ $← Coins(R(m) \ U); [[m]]e,τ∪τ ′

η ].

5 Soundness

This section shows that the interpretation proposed in the previous section is
computationally sound. Throughout this section we assume that the encryption



Sound Computational Interpretation of Symbolic Hashes 43

scheme 〈K, E ,D〉 is type-0 secure (or ind-cca with encpat modified as in [Her05,
MP05]) and well-spread, and that the probabilistic hash scheme 〈H,V〉 is oracle
indistinguishable and collision resistant.

The following lemma uses all these assumptions. It claims that if you pre-
specify some, but not all, of the sequences of coins to be chosen when interpreting
a message m, then no single bit string x is exceptionally likely to occur as the
interpretation of m.

Lemma 5.1 Let m be a message, U � R(m). Let p be a positive polynomial.
Then

∀η � 1.∀τ ∈ Coins(U).∀x ∈ Str : P[α $← [[m]]τη; α = x] <
1

p(η)
.

Proof. The proof follows by induction on the structure of m. See the full version
of this paper [GR06].

Theorem 5.2 Let m be a message with a sub-message of the form hr(m̃). As-
sume that m̃ �∈ m. Take m′ := m[hr(m̃) := �s], where s = R(hr(m̃)). Then
[[m]] ≡ [[m′]].

Proof. Assume that [[m]] �≡ [[m′]], say A : Param× Str → {0, 1} is a probabilistic
polynomial-time adversary and p a positive polynomial such that

1
p(η)

≤ P[μ $← [[m]]η; A(1η, μ) = 1]− P[μ $← [[m′]]η; A(1η, μ) = 1] (1)

for infinitely many η ∈ N. We will use this to build a distinguisher as in Defini-
tion 3.6 that breaks oracle indistinguishability of 〈H,V〉.

Let η ∈ N, abbreviate R(m, m̃) ∩ R(m̃) to U and let τ ∈ Coins(U). Note that
τ chooses coin flips for the randomness that occurs both inside and outside
the hash. Then define a probabilistic polynomial-time algorithm Dτ

η : {0, 1}∗ →
{0, 1} as follows.

algorithm Dτ
η (α) :

μ
$← [[m]]{h

r(m̃) �→α},τ
η

β
$← A(η, μ)

return β

This algorithm tries to guess if a given bit string α was drawn from [[hr(m̃)]]τη
or from [[�s]]τη = [[hs(ns

�)]]τ
η
. It does so by computing an interpretation for m

as follows. The sub-message hr(m̃) is interpreted as α; the randomness that is
shared between the inside of the hash (m̃) and the rest of the message is resolved
using hard-coded sequences of coin flips τ . It then uses the adversary A to guess
if the resulting interpretation was drawn from [[m]]η (in which case it guesses
that α was drawn from [[hr(m̃)]]η) or from [[m′]]η (in which case it guesses that
α was drawn from [[�s]]η).
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Even though τ has values in Coins, i.e., infinite strings, this is still a well-
defined probabilistic polynomial-time algorithm, as it uses only a finite, prede-
termined amount of bits from τ (cf. Definitions 3.3 and 4.4). However, (1η, α) �→
Dτ

η(α) would not be a well-defined probabilistic polynomial-time algorithm.
Now consider one of the infinitely many values of η for which (1) holds. Using

Dτ
η we can rephrase (1) as follows:

1
p(η)

≤ P[τ $← Coinsη(U), α $← [[hr(m̃)]]τη ; Dτ
η(α) = 1]−

P[τ $← Coinsη(U), α $← [[�s]]τη; Dτ
η (α) = 1]

=
∑

τ∈Coinsη(U)

(
P[α $← [[hr(m̃)]]τη; Dτ

η (α) = 1]−

P[α $← [[�s]]τη; Dτ
η (α) = 1]

)
· P[T $← Coinsη(U); T = τ ]

=
∑

τ∈Coinsη(U)

(
P[α $← [[m̃]]τη; Dτ

η (H(1η, α)) = 1]−

P[α $← [[ns
�]]τη; Dτ

η(H(1η, α)) = 1]
)
· P[T $← Coinsη(U); T = τ ].

Note that τ selects the randomness that is shared between the inside of the hash
and the outside of the hash; when α is drawn from [[m̃]]τη the randomness that
appears only inside the hash is chosen (and the assumption on m̃ means that
there is really something to choose); H chooses the randomness for taking the
hash; and Dτ

η itself resolves the randomness that appears only outside the hash.
This means that there must be a particular value of τ , say τ̄η, such that

1
p(η)

≤ P[α $← [[m̃]]τ̄η
η ; Dτ̄η

η (H(1η, α)) = 1] − P[α $← [[ns
� ]]τ̄η

η ; Dτ̄η
η (H(1η, α)) = 1]. (2)

Gathering all D
τ̄η
η together for the various values of η, let D be the non-

uniform adversary {Dτ̄η
η }η∈N. Note that we have not actually defined D

τ̄η
η for

all η, but only for those (infinitely many) for which (1) actually holds. What D
does for the other values of η is irrelevant.

We will now show that D breaks the oracle indistinguishability of 〈H,V〉. For
this, let L = {Lη}η∈N be a polynomial size family of subsets of Str. We have to
show that for infinitely many values of η, there are x, y ∈ Str \ Lη such that D
meaningfully distinguishes between H(1η, x) and H(1η, y).

Once again, take one of the infinitely many values of η for which (1) holds.
Continuing from (2), a short computation (see the full version of this paper
[GR06]) gives

1
p(η)

≤ 1
2p(η)

+
α∈[[m̃]]

τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

P[Dτ̄η
η (H(1η , α)) = 1] − P[Dτ̄η

η (H(1η , β)) = 1]

· P[[[m̃]]τ̄η
η = α] · P[[[ns

� ]]τ̄η

η = β] . (3)
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Now suppose that for all α ∈ [[m̃]]τ̄η

η \ Lη and all β ∈ [[ns
�]]τ̄η

η
\ Lη we have

P[Dτ̄η
η (H(1η, α)) = 1]− P[Dτ̄η

η (H(1η, β)) = 1] <
1

2p(η)
.

Then, continuing from (3), we get a contradiction:
1

p(η)
<

1
2p(η)

+
α∈[[m̃]]

τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

1
2p(η)

· P[[[m̃]]τ̄η
η = α] · P[[[ns

� ]]τ̄η

η = β]

=
1

2p(η)
+

1
2p(η)

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

P[[[m̃]]τ̄η
η = α] · P[[[ns

� ]]τ̄η
η = β]

≤ 1
2p(η)

+
1

2p(η)
.

Therefore, there must be an x ∈ [[m̃]]τ̄η

η \ Lη and a y ∈ [[ns
�]]τ̄η

η
\ Lη such that

1
2p(η)

≤ P[Dτ̄η
η (H(1η, x)) = 1]− P[Dτ̄η

η (H(1η, y)) = 1].

Hence D breaks oracle indistinguishability, contradicting the assumption on
〈H,V〉. �	

Theorem 5.3 (Abadi-Rogaway) Let m be an acyclic message. Suppose that
for every sub-message hr(m̃) of m, m̃ ∈ m.Then [[m]] ≡ [[encpat(m)]].

Proof. The proof follows just like in Abadi-Rogaway [AR02]. Interpreting hashes
here is straightforward because their argument is always known, by assumption.
We refer the reader to the original paper for a full proof. �	

Theorem 5.4 (Soundness) Let m and m′ be acyclic messages. Then m ∼=
m′ =⇒ [[m]] ≡ [[m′]].

Proof. The assumption that m ∼= m′ means that there is a permutation σ of
Key ∪ Nonce ∪ Box such that pattern(m) = pattern(m′)σ. Therefore we get
[[pattern(m)]] ≡ [[pattern(m′)]]. By definition of pattern, [[encpat ◦ hashpat(m)]] ≡
[[encpat ◦ hashpat(m′)]]. Now, by applying Theorem 5.3 two times, we obtain
[[hashpat(m)]] ≡ [[hashpat(m′)]]. Finally, by repeatedly applying Theorem 5.2 on
both sides we get [[m]] ≡ [[m′]]. �	

6 Conclusions and Future Work

We have proposed an interpretation for formal hashes that is computationally
sound. For the proof we considered non-uniform adversaries and the assumption
that the encryption scheme is type-0 secure and well-spread and that the hash
scheme is oracle indistinguishable and collision resistant. This paper considers
passive adversaries. It would be interesting to study whether this result can be
extended to active adversaries. Another interesting research direction would be
proving completeness for this extended logic.
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Abstract. Information security evaluation of software-intensive systems 
typically relies heavily on the experience of the security professionals. 
Obviously, automated approaches are needed in this field. Unfortunately, there 
is no practical approach to carrying out security evaluation in a systematic way. 
We introduce a general-level holistic framework for security evaluation based 
on security behaviour modelling and security evidence collection, and discuss 
its applicability to the design of security evaluation experimentation set-ups in 
real-world systems. 

Keywords: Information security evaluation, security metrics, security modeling, 
security testing. 

1   Introduction 

Products and services, and the technical infrastructures that enable them are showing 
a strong trend towards convergence and networking. At the same time, industrial 
companies and other organizations are creating very complex value nets to design and 
manufacture products and to maintain them. These trends, together with pressure from 
information security and privacy legislation, are increasing the need for adequately 
tested and managed information security solutions in software intensive systems and 
networks. The lack of appropriate information security solutions might have serious 
consequences for business and the stakeholders. 

Security evaluation, testing and assessment techniques are needed to be able find 
adequate solutions. Seeking evidence of the actual information security level or 
performance of systems still remains an ambiguous and undeveloped field. To make 
progress in the field there is a need to focus on the development of better experimental 
techniques, better security metrics and models with practical predictive power [4]. 

Security evidence can be used both for quantitative and qualitative analysis 
methods. Evidence is more useful when they are meaningful for most of the systems 
lifecycle: 

• During research and development, security evidence helps researchers to 
develop more secure solutions and to find design vulnerabilities. Research-oriented 
security evidence can be constructed using analytical models that take account of 
factors contributing to security and the cross-relationships of components. 
Research-oriented metrics can concentrate on the critical parts, especially the 
technical challenges. 
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• During system implementation, security evidence can be used to find design and 
implementation vulnerabilities as a part of security engineering. These are also 
based on analytical models. If security metrics are part of a security engineering 
process, they are more valuable.  

• During the system maintenance phase, security evidence can be used for 
preservation of the achieved security level during possible updates, integration or 
modifications, and to find implementation vulnerabilities. From the point of view 
of the security engineering process, a technical system can be constantly in the 
system maintenance phase. In addition to preservation of the security level, this 
level can be improved using feedback obtained from the application of security 
evidence information. 

The main contribution of this study is to introduce a holistic approach to security 
evaluation based on evidence collection and to discuss the evidence collection process 
in practice. The rest of this paper is organized as follows. Section 2 discusses security 
metrics and their relationships in general, Section 3 presents our theoretical security 
modelling and evaluation framework, Section 4 analyses how evidence collection can 
be done in practice with the help of the framework, and, finally, Section 5 discusses 
future work and Section 6 gives conclusions. 

2   Background 

The wide majority of the available security metrics approaches offering evidence 
information have been developed for evaluating security policies and the maturity of 
security engineering processes. The most widely used of these maturity models is the 
Systems Security Engineering Capability Maturity Model SSE-CMM (ISO/IEC 
21827) [8]. Other well-known models are Trusted Computer Security Evaluation 
Criteria (TCSEC, The Orange Book) (TCSEC 1985) [17] and Common Criteria (CC) 
[7]. In connection with policy and process metrics, it is extremely important to 
evaluate the security functionality of products at the technical level, without 
forgetting their life cycle management. The goal of the whole process of seeking of 
security evidence should be targeted at understanding information security threats and 
vulnerabilities of the product and its usage environment holistically. 

Jonsson [9] sorts the methods of security measurement into the following 
techniques: risk analysis, certification and measures of the intrusion process: 

• Risk analysis is an estimation of the probability of specific intrusions and their 
consequences and costs, and it can be thought of as a trade-off to the corresponding 
costs for protection,  

• Certification is the classification of the system in classes based on design 
characteristics and security mechanisms. “The ‘better’ the design is, the more 
secure the system.” 

• Measures of the intrusion process means statistical measurement of a system based 
on the effort it takes to make an intrusion. “The harder it is to make an intrusion, 
the more secure the system.” 
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In addition to these methods, it is justifiable to consider auditing and security 
evaluation as measurement techniques for information security. Most technical 
security analysis is currently performed using penetrate-and-patch or “tiger team” 
tactics. The security level is evaluated by attempting to break into a system under 
evaluation, exploiting previously known vulnerabilities. If a break-in attempt is 
successful, the vulnerability is patched. Penetrate-and-patch tactics have been used by 
special security testing professionals whose methods and tools have not been made 
public knowledge. There are several problems with penetrate-and-patch: it requires 
experienced professionals, the actual testing is carried out too late, and the patches are 
often ignored and even sometimes introduce new vulnerabilities. Most of the 
technical testing metrics are meant for the unit or source code level. Various methods 
for system security evaluation and assessment have been proposed in the literature, 
see e.g. [2, 12, 13, 19]. These frameworks are conceptual and help in understanding 
the problem area. However, these frameworks do not offer aggregated means for 
practical security evaluation or the testing process. 

3   Framework for Seeking Evidence of Security 

In the following we introduce our holistic framework for model-based information 
security evaluation or testing of software-intensive systems. This collection of 
constructs and abstractions forms the basis of our approach to seeking evidence of 
security in a system. Please note that the framework could be expressed in a formal 
way using various types of representations, such as Labelled Transition Systems 
(LTSs). However, in this paper we discuss the implications of the framework for 
practical security testing and evaluation rather than intending to formalize the 
framework. 

3.1   Role of Threat Analysis 

The most important task in the whole process of security evaluation is to identify 
security risks and threats, taking enough assumptions of the attackers’ capabilities 
into account. A subtask in threat analysis is to identify valuable assets that may be 
subject to security risks. An asset is something in the context of the system that is to 
be protected. A threat description can be represented, e.g., by threat / asset 
combinations. A holistic and cross-disciplinary threat picture of the system controls 
the development of security solutions. Threats that are possible during the whole life 
cycle of the system under evaluation must be considered. 

It must be noted that the collection of security threats to a system is not static. 
Security algorithms and other solutions are cracked and new vulnerabilities are found 
every now and then. Even complete platforms or communication protocol structures 
can be compromised. As a consequence, a system’s threat landscape is constantly 
changing, possibly reflecting different kinds of trends. A weak signal is a factor for 
change hardly perceptible at present but which will constitute a strong trend in the 
future. Some weak signals can represent on-going or anticipated changes in the threat 
landscape. The actual change in time can happen in small steps or in one leap. In the 
former case, the trend could be exposed, if weak signals presenting the steps could be 
detected [11]. 
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Example 1. We denote the original set of identified threats in a system by T, 
consisting of the threat factors T0, T1, T2,…Tn. Later, the effect of discipline Dx is 
introduced into the system. This effect manifests itself as a weak signal type of threat 

x, which can or cannot be identified. In the former case, T is updated to T := T ∪ x. 
In the latter case, the effect of Dx remains a hidden threat represented by the 
undetected weak signal x.                                                                                              

3.2   Role of Security Requirements 

The goal of defining security requirements for a system is to map the results of risk 
and threat analysis to practical security requirement statements that manage (cancel, 
mitigate or maintain) the security risks of the system under investigation. Security 
requirements are constraints on functional requirements intended to reduce 
vulnerabilities. Security mechanisms are then developed to fulfil the requirements. 
Haley et al. [6] represent an interesting method for deriving security requirements 
from threat descriptions. They derive the security requirements using an iterative 
process where each iteration recomposes the threat descriptions with the functional 
requirements. Iterations are required because identifying and eliminating 
vulnerabilities will often create new vulnerabilities. 

The security requirements play a crucial role in the security evaluation. The 
requirements guide the whole process of security evidence collection. For example, 
security metrics can be developed based on requirements: If we want to measure 
security behaviour of an entity in the system, we can compare it with the explicit 
security requirements, which act as a “measuring rod”.  

All applicable dimensions (or quality attributes) of security should be addressed in 
the security requirements definition. See e.g. [1] for a presentation of quality attribute 
taxonomy. Well-known general dimensions include confidentiality, integrity, 
availability, non-repudiation and authenticity. Quality attributes like usability, 
robustness, interoperability, etc., are important requirements too. In fact, an unusable 
security construct can even turn out to be a security threat.  

The safety community has developed a standard approach to solving the problem 
of requirements relevance, and the similarity between safety and security implies that 
it would be well worth considering if something similar could be done for security 
[3]. For example, Security Importance Levels (SILs) could be used for categorizing 
non-security requirements in terms of their security relevance and Security Evidence 
Assurance Levels (SEALs) could be used to enforce the additional measures needed 
to develop the more security-critical parts of systems. 

It must be noted that one cannot easily define a general-level security requirement 
list that could be used for different kinds of systems. The actual requirements and role 
of the security dimensions heavily depends on the system itself, and its context and 
use scenarios. 

3.3   Modelling Entities and Their Cross Relationships 

It is obvious that in order to be able to evaluate security systematically, a model of the 
security behaviour of a system is needed. To make a decision about whether a system 
is secure, we need evidence that (i) each software or hardware component and 
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subcomponent and (ii) the composition formed from them, taking account of cross-
relationships, are secure. Essentially, the process of security evaluation takes use 
scenarios and the context of the system into account. In addition to this structural 
classification of entities, it is important to find the behavioural entities in the system.. 
In order to help investigate the security behaviour of a system, we define security 
action, atomic security action and security behaviour:  

Definition 1. (security action) A security action, ar, is a behavioural entity of a 
system that has some effect, either incremental or decremental, on the security 
defined by a certain security requirement, r, of a system.                                              

Definition 2. (atomic security action) An atomic security action, , is a security 
action that cannot be split into other security actions. It is the lowest level of 
observable security behaviour.                                                                                       

Definition 3. (security behaviour of a system) The security behaviour, A, of a system 
consists of a composition of atomic security actions of all the security requirements of 
the system that take their cross-relationships into account.                                            

The security behaviour of the system, expressed using suitable modelling language, is 
the basis model of the system under security evaluation. For example, a pattern 
language could be used to describe the security actions and security behaviour. 

Security actions can represent one or several dimensions or quality attributes of 
security. We define the dimensions of a security action in the following: 

Definition 4. (dimensions of security action) A security action, ar,, having effect on 
security requirement r, has an impact, i(ar,u), and a probability, p(ar,v).                       

Definition 5. (impact of security action) The impact i(ar,u) of security action ar is the 
estimate of its impact in scale [-1,1] to security requirement r. If the impact increases 
security, it is positive; u is the uncertainty of the impact estimate, between [0,1], 
where 1 presents complete certainty.                                                                              

Definition 6. (probability of security action) The probability p(ar,v) of security action ar 
is the estimated probability of the security action to be realized with uncertainty, v.        

It is important to notice that impact analysis of security actions is within the focus of 
our approach. After all, we are interested what the impact of a system’s security 
behaviour is on the whole – i.e. the overall impact. 

Definition of the actual security actions in the system under investigation is a 
challenging task. In practice, this task may turn out to be impossible due to the 
amount of functionality and use scenarios in practical systems. Real-world 
implementations are far too complex for this kind of analysis. There is a need for 
automated and easily applicable and standardized technical methods for software 
implementation to ensure and measure security, e.g. standard secure memory 
management support and component-level life cycle management support.  

Modelling the security behaviour is an iterative process. Voas [18] states that we 
do not know a priori whether the security of a system composed of two components, 
A and B, can be determined merely from knowledge of the security of A and B. 
Rather, the security of the composite is based on more than just the security of the 
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individual components – it hinges on the cross-relationships. Both the atomic 
behaviour and cross-relationships have to be known and analysed in an iterative way. 

Security behaviour of a system could be modelled using tree representations, such 
as Attack Trees [15], evaluation criteria, such as Common Criteria [7], several formal 
approaches and semi-formal approaches, such as UML and its security extension 
UMLSec [10]. Perhaps the most interesting method is to develop security patterns 
[16]. A security pattern describes a particular recurring security problem that arises in 
specific contexts and presents a well-proven generic scheme for its solution. In 
practice, a chosen set of security patterns could guide the process of defining security 
requirements. Security behaviour with adequate set of security actions could be 
associated to these patterns. The key elements of security patterns include the 
following: 

• Name: a label representing the structure, 
• Context: general conditions, 
• Problem: a statement that defines the problem that will be solved by the security 

pattern, and 
• Solution: solution of the problem. 

3.4   Evidence Information 

Security evidence is gathered from various sources as input to the decision process of 
security evaluation. The evidence collection should be arranged in a way that supports 
evaluation of security behaviour and security actions. We classify the types of 
security evidence information into three categories: 

• Measured Evidence. The process of gathering measured or assessed information 
uses security metrics as its basis. Table 1 lists some examples of measured security 
evidence. Measured evidence can be collected during security testing or in a 
security audit based on pre-defined metrics. 

• Reputation Evidence. Reputation of software or hardware constructs, or their 
origin, is an important class of evidence. A software company in charge of 
implementing a product might have some confidential knowledge of the security of 
different software components. Table 2 lists some examples of reputation evidence. 
Reputation evidence can be collected from experience of R&D departments and be 
based on general-level knowledge. 

• Tacit Evidence. In addition to the measured and reputation evidence, there might 
be some “silent” or “weak” signals of security behaviour. The subjectivity level of 
tacit evidence might be higher than in the case of measured and reputation 
evidence. Collection of tacit evidence is typically an ad hoc process. Senior 
security experts and “tiger teams” play an important role in this kind of evidence. 

The objectivity level of the evidence varies a lot. In many cases, even the 
measurements are arranged in a highly subjective manner. Typically, no single 
measured value is able to capture the security value of a system. Thus, several pieces 
of security evidence have to be combined. 
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Table 1. Examples of measured evidence 

Dimension Metric types  
Confidentiality Use of compartmentalization in memory use 
Confidentiality Encryption strength 
Integrity Result of one-way hash function 
Integrity Robustness of data synchronization algorithm 
Availability Validation result of access control rules 
Usability Amount of user interaction needed 

Table 2. Examples of reputation evidence 

Metric types  
Reputation of practices of subcontractor  
Reputation of implementation results of subcontractor 
Reputation of a software version 
Reputation of a software component provider 
Reputation of a standard used in the implementation 
Reputation of an integrator 

3.5   Trust Assumptions 

A trust assumption is a decision to trust the given properties of some domain and to 
go no further in the analysis [5]. Trust assumptions set the boundaries for the need for 
evidence. Trust assumptions can be made e.g. based on reputation evidence: if we 
trust a software version fully, there is no need to investigate it at more detailed level.  

Trust assumptions can make the security evaluation process feasible by taking a 
certain risk to assume that the object left out of more detailed investigation is trusted. 

3.6   Decision Process 

The most final phase of security evaluation is the decision process. The overall goal 
of the decision process is to make an assessment and form conclusions on the 
information security level or performance of the system under investigation. The 
decision process can be split into sub-decisions based on the security action model. 

The decision process can be carried out in the following way: 

1. For each security requirement and security action composition, seek evidence and 
estimate the probability and impact of that action, taking cross-relationships and 
trust assumptions into account. 

2. Estimate the overall impact of the gathered evidence on each security requirement 
3. Make a decision whether the security of the system with regard to the requirements 

is at a sufficient level. 

In a high abstraction level, the overall impact of all security actions on a security 
requirement can be defined as follows: 

Definition 7. (overall impact) The overall impact of all security actions on a security 
requirement is  
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where I is the overall impact, T the number of all security actions of a security 
requirement, and wt is a weighting factor, pt a probability and it the impact of security 
action t on the requirement under investigation. The weighting factor depends on time 
and context. 

4   Modelling Example 

We discuss the constructs presented in the previous section with help of a highly 
simplified authorization example based on [14] representing the most usual 
authorization rule, on which most other (more complex) access control models are 
based, see. Fig. 1. 

In authorization we are interested who is authorized to access specific resources in 
a system. Granted permissions (authorizations) for security subjects accessing 
protected objects need to be indicated explicitly. Otherwise, any subject could access 
any resource. In the class diagram of Fig. 1., the class Subject describes an active 
entity, which attempts to access a resource in some way. The class Object represents 
the resource to be protected. The association between the subject and the object is 
authorization (“isAuthorizedFor”). The association class Right describes the access 
type (e.g. read or write) the subject is allowed to perform on the corresponding object. 

In the following, we give examples of how our framework can be related to this 
example. However, we do not aim at a complete analysis. Let us assume that only the 
confidentiality requirements of the system specification are concerned. In reality, 
other security dimensions are affected by authorization too.  

Subject Object

Right

accessType 

isAuthorizedFor * *

 

Fig. 1. A simplified authorization pattern 

4.1   Subject 

A security action associated with the class Subject can be, e.g., a request from a 
process asking to read from a protected file. Let us assume that the system allows this 
kind of request from both authenticated and unauthenticated sources. In the latter case 
the assumption is that the request can come from a local process. The following types 
of request security actions might be possible, depending in the design, e.g.: 
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• (req1) request from an authenticated process authorized to access the file, 
• (req2) request from an authenticated process not authorized to access the file, 
• (req3) request from an impersonating process that has been able to go through the 

authentication,  
• (req4) request from an unauthenticated process authorized to access the file, and 
• (req5) request from an unauthenticated process not authorized to access the file. 

Obviously, req1 is an atomic security action within req3. Note that req3 contains 
other atomic security actions too. In this case req1 is dependent on them. If there are 
no mechanisms to detect the impersonating process at this stage (e.g. additional 
authentication), an attacker might be able to access a protected file. 

The impact of req3 can be estimated based on evidence of the criticality of the 
information contained in the protected file. The probability evidence of req3 can be 
based on, e.g., interface descriptions and authentication mechanism evaluation. 
Usually, the impact of req3 is negative on the security. 

4.2   Object 

The object of our example, a protected file, might have, e.g., directly critical 
information or indirectly critical key or certificate information, enabling the 
impersonator to continue his or her attack and cause more harm. Related security 
actions include: 

• (f_access1) access to a file with no directly or indirectly confidential information, 
• (f_access2) access to a file with indirectly confidential but no directly 

confidential, 
• (f_access3) access to a file with directly confidential but no indirectly 

confidential information, and 
• (f_access4) access to a file with directly and indirectly confidential information. 

“Confidential information” here means information that is confidential to the 
subject. Recognizably, all the listed security actions, except f_access1, have varying 
degrees of negative impact on the security. 

If the system has some additional protection mechanisms for file access, the 
security actions associated with this protection, e.g., encrypt_file and 
ask_decrypt_key, have a positive impact on the confidentiality requirements.  

4.3   Authorizer 

The association “isAuthorizedFor” can be validated by an authorizer. As an input, the 
authorizer receives access requests from a process and decides whether a process has 
the right to access the protected file. The following security actions, e.g., are needed: 

• (check_read_right) check the read right of the process requesting a read access, 
• (authorize_req) authorize the process to read from the file, 
• (not_authorize_req) forbid the process to read from the file, 
• (upd_rd_r) update read rights, and 
• (authenticate_right_change) authenticate the party asking for right change. 
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The functionality of authentication and errors enabled by poor design might lead to, 
e.g. upd_rd_r_wrong_unintent, upd_rd_r_wrong_intent, and update_rd_r_correctly – 
all of which are atomic security actions of upd_rd_r. 

4.4   Design and Implementation 

The actual design and implementation generates more security actions; e.g., failure to 
compartmentalize critical parts of the system, such as the authorizer, or programming 
errors generate more negative security actions. In practice, the security actions 
discussed above include several atomic security actions. 

5   Practical Considerations 

In the previous section we presented an approach to security modelling and 
evaluation. Unfortunately, in practice, a thorough modelling of security behaviour is 
only possible in a few ideal cases. Typically, today’s software-intensive products are 
very complex, their functionality is not well documented and often has unknown 
dependencies. Development of an ambiguous security behaviour model at an atomic 
security action level is a very challenging and time-consuming task. 

The practical needs for security evaluation are often limited too. This results to a 
situation in which we should be able to try to find the security actions that are most 
critical and most typical. To reach the desired security level it is not important to try 
and measure every part and component that affects security. Instead, we need enough 
evidence to make trade-off decisions. 

We propose the following process to carry out practical-level security evaluation: 

• Risk and threat analysis. Carry out risk and threat analysis of the system and its 
use environment if not carried out before. In real-world engineering, risk and threat 
analysis are not carried out adequately. Consequently, the set of security 
requirements might not be sufficient.  

• Define security requirements in a way that they can be compared with the 
security actions of the system. Based on the threat analysis, define the security 
requirements for the system, if not yet defined. These are lacking in many practical 
systems. 

• Prioritize security and other requirements. The most critical and most often 
needed security requirements should be paid the most attention. 

• Model the security behaviour. Based on the prioritized security requirements, 
identify the functionality of the system that forms the security actions and their 
dependencies in a priority order. 

• Gather evidence from measured, reputation and tacit security information. 
• Estimate the probabilities and impacts of security actions based on the 

evidence. 
• Aggregate the results from the probability and impact estimation to form a 

clear picture of whether or not the system fulfils the security requirements. 
and context. 
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6   Discussion and Future Work 

A practical security evaluation framework based on the ideas discussed in this paper 
requires a lot of future development. In the following we list some goals for the future 
work. 

A suitable language needs to be developed to formalize and express security 
actions and their cross-dependencies, as well as security requirements. Both the 
system security behaviour and requirements need to be expressed in a way that it is 
possible to compare them. A language able to express behavioural patterns is a good 
candidate for this purpose. Security patterns are currently under development in the 
pattern community. Security patterns augmented with semantics representing security 
properties could offer a feasible means to model security requirements and security 
behaviour of systems. Possibly, the use of fuzzy logic might be connected to that kind 
of language. A mechanism to describe the interactions and cross-dependencies of 
security actions is needed. 

A knowledge base of typical security constructs should be established to offer 
pattern information on their security behaviour. The security actions of a system can 
be expressed using patterns. Typical constructs include encryption elements, 
firewalls, proxies, compartmentalization, inter-process communication, access control 
mechanisms and authentication mechanisms. The information needs to be collected 
experimentally to enable development of the knowledge base. 

Security evaluation or testing can be done in practice if this kind of knowledge 
base support could be used for security behaviour modelling and suitable security 
requirement documentation of the system is available. Furthermore, the process of 
evidence collection from different sources, and aggregation of it, should be developed 
using experimental information from real-world systems. 

7   Conclusions 

We have discussed the problem of information security evaluation in the context of 
software-intensive systems. There are no systematic means of carrying out security 
evaluation. In this paper we have presented a conceptual holistic framework for 
security modelling and evaluation with some practical considerations. The framework 
is based on evidence collection and security requirement centred impact analysis.  

This is not a rigorous solution and future work needs to be done on developing a 
suitable language for expressing security requirements and security behaviour in an 
unambiguous way. A collection of security patterns would be very helpful in 
modelling the security behaviour when carrying out security testing or 
experimentation. 

In practical security evaluation, requirements should be prioritized and the system 
modelled only to the extent needed to conform to the trust assumptions. Full 
modelling of practical systems is not feasible without automated approaches that  
are might be very challenging to develop. 
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Abstract. Various kinds of access control mechanisms have been employed in 
today’s computer systems to protect confidential information. Since high exper-
tise is required for the system configuration maintenance, detecting vulnerabili-
ties due to configuration errors is a difficult task. In this paper, we propose a 
model-based configuration verification method that can find complex errors of 
two major access control mechanisms, network packet filtering and file access 
control. This method constructs an information flow model using the configura-
tions of the two mechanisms and verifies whether the system is configured to 
suffice access policies defined by system administrators. Through the develop-
ment of a prototype system and its experimental use, we confirmed that the pro-
posed method could discover configuration errors of Web servers that might 
cause information leakage. 

1   Introduction 

Various kinds of access control mechanisms are employed in today’s computer sys-
tems to protect confidential information. Administrators should maintain configura-
tions of these mechanisms properly. But the configurations are often described in 
different formats and maintained by different administrators. Also the access control 
mechanisms often work collaboratively, so that one small configuration change can 
affect many other ones. Still, the whole configurations must be subject to the same 
security policies to keep information secret. The administrators must take proper 
action in all such situations. Therefore verifying whether the configurations satisfy 
given security policies is a quite difficult task, requiring high expertise both on secu-
rity and network management. 

For example, suppose we have to verify the configurations of a simple server client 
system as shown in Fig. 1. The system employs only two major access control 
mechanisms, packet filtering and file access control, but they are implemented in 
several different ways such as: 

• Packet filtering rules in the Firewall 
• A File access control list of operating system on the Web Server 
• IP-based access control rules of Apache on the Web Server 
• A File access control list of Apache on the Web Server 
• Packet filtering rules of a Personal Firewall on the Client 
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We need to read the configuration files, usually written in different formats, to see 
if any erroneous configurations exist. We also need to compare them according to the 
network topology, because a configuration mismatch of two different access control 
mechanisms can be a security hole and should be regarded as a configuration error. 

 

Fig. 1. Example of simple server client system 

We also should consider the layered structure of applications. The software 
implementation usually has a layered structure and access control mechanisms are 
usually implemented with the middleware or the platform software. For example the 
access control mechanism of Apache depends on the OS as shown in Fig. 2. In  
this case we say that the Apache is an upper access control mechanism, and the OS 
is a lower one. In Web Server (A) in the figure, the user id “sakaki” on the Apache 
is identified as “nobody” by the OS, and a file “/data/” is identified as 
“/var/www/htdocs/data/” by the OS. When administrators verify whether “sakaki” 
can read “/var/www/htdocs/”, they have to take account of these dependencies and 
check not only whether the user “sakaki” has a read access right but also whether 
“nobody” has a read access right. 

In addition, administrators have to consider that the layered structure varies accord-
ing to system configurations. For example, they should take into account whether a 
super server such as Xinetd is installed (Web Server (B)). If Xinetd is installed and it 
is configured to execute Apache, administrators have to consider the IP-based access 
control on Xinetd as shown in the Web Server (B).  

Thus, the verification requirements are summarized as follows: 

(1). Configurations of a packet filtering mechanisms and a file access control 
mechanism should be verified. 

(2). The combination based on network topology should be verified. 
(3). The combination based on layered structure of access control mechanisms 

should be verified. 

For these requirements, we propose a model-based verification method for detect-
ing erroneous configurations, called the Information Leakage Path AnalysiS (LPAS) 
Method. It verifies whether a system is configured to suffice access policies defined 
by system administrators. 
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Fig. 2. Layered structure of applications 

In this paper, we describe details of the LPAS Method, and show an experimen-
tal implementation of a prototype to verify a DMZ network. Through the develop-
ment of a prototype system and its experimental use, we confirmed that the  
proposed method could discover configuration errors of Web servers that might 
cause information leakage.  

This paper is structured as follows. In Section 2 we define the LPAS Method. In 
Section 3 we define access policies used in the verification. In Section 4 we explain 
the verification algorithm. In Section 5 we describe an implementation prototype of 
the LPAS Method. In Section 6 we describe a verification experiment. In Section 7 
we describe related work. 

2   LPAS Method 

2.1   Overview 

The LPAS Method is a model-based verification method using an information flow 
model. The method collects configurations such as file access control mechanisms of 
OS and packet filtering rules of firewalls. It makes a model that describes an informa-
tion flow, and detects unauthorized access paths throughout an entire system. It there-
fore enables us to detect vulnerabilities due to configuration errors or misplacement of 
documents, and fix these configuration errors. 

The LPAS Method is composed of three modules: Model Generator, Translator, 
and Verifier (Fig.3). The Model Generator collects packet filtering rules and access 
control lists to generate the LPAS Model. The Translator generates policy matching 
rules from Access Policies and Category Specifications. The Verifier verifies the 
LPAS Model with the rules. 
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Fig. 3. Overview of LPAS Method 

2.2   Definition 

The LPAS Model, which is constructed from the configuration parameters of a target 
system, describes all possible access paths from users to files. In order to meet the 
requirements given in Section 1, the model is fundamentally built over the four ele-
ments shown in Definition 1. 

Definition 1. LPAS Model is a tuple ( TLSCC FP ,,, ), where: 

(A) A packet filtering PC  is a set of authorized network accesses such that 

SSCP ×⊆ , where S  is a set of sockets in the target system. 

(B) A file access control FC  is a set of authorized file accesses such that 

FUCF ×⊆ , where U  is a set of user or group identities, and F  is a set of file 

identities. 
(C) A Network topology T  is a graph G  over physical network nodes such 

that ),( ENG = , where E  ( NN ×⊆ ) is a set of pairs of physically adjacent net-

work nodes, where N a set of network nodes identified by specific IP addresses.. 
(D) A Layered Structure LS is a relation among elements ( NCSFU P ∪∪∪∪⊆ ) 

on different access control mechanisms. 

This definition is designed to ensure that we can generate the four elements inde-
pendently. By analyzing configurations of each access control mechanism, we can 
generate CP and CF without regard to configurations of other access control mecha-
nisms. T can be taken from a network management system such as OpenView[5]. LS 
can be generated from the system configuration and specifications of each access 
control mechanism. 

Since we can generate an entire system model by combining independently gener-
ated models, our method is more scalable and feasible than previously proposed 
method such as [10]. 
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In order to impose actual security configurations on the remaining components, we 
make the components more detailed as follows. 

A detailed model of PC : 
An actual rule of packet filtering is specified with the following elements: 

• A source end point identified with a pair of an IP address and a port number. 
• A destination end point identified with a pair of an IP address and a port  

number. 

In order to impose these elements on PC , we define Ss ∈  as a pair of an IP ad-

dress and a port number such that ),( portips = , where ip is an IP address of s , and 

port is a port number that s  may use in communication time.  

A detailed model of FC : 

In real systems, file access control is performed to access control lists (ACLs) on 
individual network nodes. Generally, an ACL can be viewed as a set of file permis-
sions, each of which specifies a triple of a user identity, a file identity, and an author-
ized action such as “read” and “write.” Such file permissions are modeled as “can-
Read” and “canWrite” relations which are defined as follows. 

Definition 2. “canRead” relation RF  is a set of pairs of a user identity Uu ∈ and a 

file identity Ff ∈  such that RFuf ∈),(  if and only if there is a file permission that 

allows a user identified with u  to read a file identified with f  . Similarly, “canWrite” 

relation WF  is a set of pairs such that WFfu ∈),(  if and only if there is a file permis-

sion that allows a user identified with u  to write a file identified with f  . 

Definition 3. A user network node relation UN  is a set of pairs of a user u  and a 
socket s  such that UNsu ∈),( . RN and WN  are subsets of UN , which mean “can-

Read” and “canWrite” relations from u  to s , respectively. 

A detailed model of LS : 
A layered structure is described in Section 1. For example, a user with the identity 
“sakaki” on the access control mechanism such as an Apache may be identified as a 
user with the identity “nobody” on the lower access control mechanisms such as an 
OS. In another case, he may be identified as “root” when using setuid applications. 
Regarding file identities, we can find similar cases in file aliases. For example, if the 
Apache is configured with “alias /test/ = /var/www/test/”, the file identity 
“/var/www/test/” on the OS is treated as the file identity “/test/” on the Apache. To 
identify such ambiguity, we introduce the following identity relationships. 

Definition 4. UR  is a user identity relation such that URuuuu ∈∀ ),(;, 2121  if and only 

if both 1u  and 2u  identify an identical user. Also, FR  is a file identity relation such 

that FRffff ∈∀ ),(;, 2121  if and only if that both 1f  and 2f  identify an identical file. 
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In addition to the layered structure between files and users, we also consider the lay-
ered structure among network elements. 

For example, if the access control mechanism of the Xinetd is configured as Web 
Server (B) in Fig. 2, packets coming from the network node n on the OS are firstly 
sent to the packet filtering cP on the Xinetd, and then sent to the socket s on the 
Apache. On the other hand, if the access control mechanism of Apache is configured 
as Web Server (A), packets coming from the node n on the OS are directly sent to the 
socket s on the Apache. 

To identify such ambiguity, we introduce relations among sockets, network nodes, 
and packet filtering rules. The relations stand when elements )( PCSN ∪∪∈  on the 

lower access control mechanism communicate with other elements )( PCS ∪∈  on the 

upper access control mechanism.  

Definition 5. )( PNI CNR ×⊆  is a binary relation such that NIP Rcn ∈),(  if and only if 

an incoming packet through the network node n is evaluated by the packet filter cP. 
)( NCR PNO ×⊆  is reverse of RNI, where  NOP Rnc ∈),(  if and only if an outgoing 

packet from packet filter cP is sent to the network node n. To be concise, we denote 

NONI RR ∪  by RN.  

Similarly )( SCCSR PPS ×∪×⊆  and )( NSSNRNS ×∪×⊆  are defined for rela-

tion between sockets and a packet filtering rules, and sockets and network nodes, 
respectively. 

The following subsection shows an example of the LPAS Model generation from 
actual system configurations. 

2.3   Example LPAS Model 

Fig. 4 shows a graphical example of an LPAS Model. It represents a server client 
system such as that in Fig. 1, and the Web Server is configured as Web Server (B) in 
Fig.2. To save space, we describe only details of the Web Server. 
Apache is configured as follows:  

(1) Basic authentication is enabled, and a user named sakaki is defined. 
(2) Only authenticated users can read /secret/sec.html. 
(3) Files in the /w directory are served as Web contents. 
(4) The server accepts connection on port 80. 
(5) Apache process runs as the user nobody.  

Linux OS is configured as follows: 
(6) IP address of the Web Server is 192.168.2.3. 
(7) The user nobody can read files in /w directory. 

Xinetd is configured as follows: 
(8) Only the hosts with IP address 192.168.1.2 can connect Apache via port 80. 

The Model Generator reads and analyzes the above configurations, and generates the 
nodes and the arcs in Fig.4. For example, it generates RF arcs for (3), RU  arcs for (5), 
FR arcs on Linux for (7), and FR arcs on Apache for (2). 
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Fig. 4. Graphical example of an LPAS Model 

3   Access Policy 

In general, an access policy is modeled as an access matrix such as (S, O, A), where S 
is a set of subjects (e.g., users), O is a set of objects (e.g., files), and A is a set of  
actions (e.g., read and write). We take an access matrix model enhanced with service-
based conditions C so that it becomes (S, O, C, A). This enhanced model allows us to 
specify unauthorized access paths including an untrusted service such as a Web appli-
cation with no SSL functionality or authentication process. 

Furthermore, as a practical policy specification, we introduce category specifica-
tions for users, files and services (e.g., user roles, confidential level for documents 
and service functionalities, respectively) as well as domain specifications that corre-
spond to network domains. 

An Access Policy used in an LPAS based verification method is formalized as  
follows. 

Definition 6. An Access Policy is a set of tuples (cS, ds, cO, do, sC, a). Each component 
is defined as follows: 

• )( SS Cc ∈ is a subject category, where SC is a predefined set of subject catego-

ries. A user-category relation )( SUCS CUR ×⊆ is defined such that 

UCSS Rcu ∈),( , if u is a member of cS. 

• )( SS Dd ∈ is a subject domain, where SD  is a predefined set of subject do-

mains. A user-domain relation )( SUDS DUR ×⊆ is defined such that 

UDSS Rdu ∈),( , if u is located on Sd . 
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• )( OO Cc ∈  is an object category.  A file-category relation )( OFCO CFR ×⊆ is 

defined such that FCOO Rcf ∈),( .  

• )( OO Dd ∈  is a object domain. A file-domain relation )( OFDO DFR ×⊆ is de-

fined such that FDOO Rdf ∈),( , if f is located on Od . 

• )( CC Ss ∈ is a service category that specifies a condition with respect to access 

paths from S to O. CS is a predefined set of service categories. A network-

category relation )( CSSC SSR ×⊆ is defined such that SSCC Rss ∈),( , if s is 

specified by Cs . 

• a is an action such as read and write. 

Note that most of the category specifications (i.e., RUCS, RUDS, RFCO, RFDO and 
RSSC) can be constructed automatically, so that the administrator can specify access 
policies easily. RUCS and RUDS can usually be retrieved from directory services, and 
RFDO is constructed by scanning files on the computer. RSSC is small enough for the 
administrator to define it, and RFCO may be constructed by analyzing the contents of 
the files [1]. 

Usually an Access Policy has two types, one to permit policies, and the other to 
deny policies. In this paper, we use only the latter to detect information leakage. 
Therefore, we describe Access Polices as follows: 

(1). deny(“any user”, “Inlab”, “any file”, “DMZ”, “unencrypted password”, read) 
This means that no users on Inlab may read any file on servers in DMZ segment via 
services that use unencrypted passwords. 
(2). deny(“temporary personnel”, “any domain”, “personal”, “internal server”, “any 

service”, write) 
This means that temporary personnel must not write personal files on internal  
servers in any service. 

4   Verification Algorithm 

The Verification Algorithm validates an LPAS Model in three steps as follows: 

(1). Generate policy matching rules from access policies. 
(2). Enumerate possible information flows, which describe permissive information 

flows on file access mechanisms, without regard to packet filtering mechanisms. 
(3). Check that no possible information flows violate the matching rules, with regard 

to packet filtering mechanisms. 
(4). Report access paths that may cause information leakage. 

These steps are described below. 
In the first step, the Translator translates access policies into policy matching rules. 

Policy matching rules }),{( writereadSFUPM ×××⊆  is a set of unauthorized ac-

cess paths such that PMreadsfusfu ∈∀ ),,,(;,,  if and only if the Access Policy 

prohibits the user u from reading the file f via the service s. 
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An Access Policy ),,,,,( asdcdcdeny CFOUS  is translated to PM, such that 

PMasfusfu ∈∀ ),,,(;,, if and only if ∧∈∧∈ UDSSUCSS RduRcu ),(),(  

SSCCFDOOFCOO RssRdfRcf ∈∧∈∧∈ ),(),(),(  holds.  

In the second step, the Verifier constructs a directed graph ),( ENM ′′=′ , 

where NNESCNFUN P ′×′=∪∪∪∪= ',' , and every Ee ′∈  satisfies all of the 

following conditions: 

(1). EFFNNRRRRe WRWRSNSNP ∪∪∪∪∪∪∪∪∈ (refer again to Section 3). 

(2). if RFe∈ ,  for every e= (f, u), the following conditions must be satisfied: 

(a) RUF FufRuuRffuf ∈′′∈∧∈′′∀ ),())',(())',((;,  , and 

(b) for any such )','( uf , )','( uf  also satisfies condition (2). 

(3). if WFe∈ ,  for every e= (u, f), the following conditions must be satisfied: 

(a) WUF FfuRuuRffuf ∈′′∈∧∈′′∀ ),())',(())',((;, , and 

(b) for any such ),'( fu ′ , ),'( fu ′  also satisfies condition (3). 

Conditions (2) and (3) imply that the upper file access is permitted only if the 
lower access control mechanism allows users access between corresponding files and 
users. 

Each path in M' represents a possible information flow, which describes a permitted 
information flow on file access mechanisms, without regard to packet filtering 
mechanisms. 

In the third step, the Verifier detects paths (called unauthorized paths) in the directed 
graph M' that violate given policy matching rules. For a policy matching rule m = 
(f,u,s,a), the procedure identifies the unauthorized paths with respect to m as follows: 

(1) Iterate the following steps for each directed path ES =(e1,e2, ...,en), where ES is 
a directed path from f to u in M ′  (if a=read), or  from u to f in M ′  
(if a=write).  

(2) If ES does not include s, then there is no unauthorized path with respect to m. 
(3) Let ej be the first occurrence of an element of NW  in ES, and let ek be the first 

occurrence of an element of NR  in ES. If neither ej nor ek exist, output ES as an 
unauthorized path with respect to m. Note that if ES includes at least two socket 
nodes, then both of ej and ek exist. Since for any socket node s, s is adjacent to a 
user node according to Definitions 2 and 6. 

(4) Let ESjk = (ej, ..., ek) be a substring of ES. Note that j < k always holds and 
every edge in ESjk is a member of ERRRRNN NSSNPWR ∪∪∪∪∪∪ (by 

definition of the LPAS Model).  
(5) Let (i1, p1) be the source pair of an IP address and a port number, which corre-

sponds to the socket node sk connected with ek. Similarly, let (i2, p2) be the des-
tination pair, which corresponds to the socket node sj connected with ej. If there 
exists a packet filter ( PC∈ ) that blocks a packet from (i1, p1) to (i2, p2), then ES 

is not an unauthorized path.   
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(6) If there are other elements of NW in the rest of ES(=(ek+1, ..., en)), repeat (3) to 
(6). Otherwise, output ES as an unauthorized path with respect to m. 

Step (2) ensures that any possible information flow that does not include s is not an 
unauthorized path. Steps (3)-(5) ensure that any possible information flow that in-
cludes packet filtering that prohibits communication between ej and ek is not an unau-
thorized path. 

5   Implementation 

In this section, we describe the implementation of a prototype of the LPAS Method 
(Fig. 5) which is composed of the Agents, the Manager, and the Policy Editor.  

Each agent corresponds to an access control mechanism, and is deployed on the 
target system. The Manager and the Policy Editor are deployed on the LPAS Server.  
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Fig. 5. Implementation of LPAS Method 

The Agents implement the Model Generator method, which collects configurations 
of a target system and generates LPAS Models. Policy Editor implements the Transla-
tor method, which translates the Access Policies given by the administrator into pol-
icy matching rules. The Manager implements the Verifier method, which integrates 
models generated by the Agents and verifies whether the LPAS Model satisfies the 
policy matching rules. 

5.1   Agents 

In Fig. 5, when the Manager sends a request for creating a local LPAS Model of the 
Target Computer, the OS Agent is invoked to collect configurations of the OS such as 
file paths, user IDs and file permissions. After creating a model for the OS, the OS 
Agent invokes another agent for the upper access control mechanisms according to 
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the layered structure. In this way, each invoked agent generates a model for each 
application and merges it into the local LPAS model that reflects the layered  
structure.  

As for network peripherals such as routers and firewalls, we employ a common 
agent, SCCML Agent, instead of implementing different agents for each peripheral. 
The agent adopts a common file format, SCCML, for describing packet filtering rules 
written in different formats [2]. We also employ SCCML Scanners which collect the 
configurations of major routers and firewalls and translate them into rules in SCCML 
format. With the translated rules SCCML Agent can generate a local LPAS Model of 
various kinds of network peripherals. 

5.2   Policy Editor and Manager 

Policy Editor implements Policy Input UI and the Translator. The Policy Input UI 
displays domains and categories of users, files and service in menu format. The ad-
ministrator can define policies merely by selecting category and domain from the 
menu with the Policy Input UI (Fig. 6). 

 

Fig. 6. View of editing Access Policy 

After input is completed, the Translator translates the Access Policy into the policy 
matching rules based on category specifications. 

The Manager collects local LPAS Models generated by the Agent and generates an 
integrated LPAS Model from these models with network topology information. The 
Manager then verifies whether the integrated model satisfies the given access policies. 

6   Verification Experiment 

 6.1   Verification Target 

To evaluate the LPAS Method, we select a verification target whose configurations 
are shown in Fig. 7. The target system has a WWW Server, a CISCO Router, a num-
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ber of clients in an external network (CEN) and other clients in an internal network 
(CIN). The router is a gateway between the CIN and the CEN. The WWW  
Server provides documents for R&D division members with the domain  
“www-i.example.co.jp”, and also provides documents for other divisions with  
“www-e.example.co.jp”. These two domains are implemented by the virtual host 
mechanism of Apache. The WWW Server also has the secret document “secret.html”, 
and it provides this document with “http://www-i.example.co.jp/p/secret/secret.html”. 
Users in CEN cannot access with this URL because the IP-based access control 
mechanism of the Apache is enabled.  

There are three configuration files related to the Apache, one for the global con-
figuration for the Apache, one for the internal virtual host, and one for the external 
virtual host. The WWW Server has about 5300 files, and the SCCML Scanner has 10 
compiled rules of the router in SCCML format. 

 

Fig. 7. Block diagram of experimental system 

Two agents are installed on the WWW Server, one for the OS, and the other for the 
Apache. The former collects file permissions of the OS, and the latter reads and ana-
lyzes configuration files of the Apache. The SCCML Agent and the SCCML Scanner 
are located on the LPAS Server. The SCCML Scanner reads the configuration of the 
router via tftp, and translates it into the SCCML format. And then the SCCML Agent 
generates a local LPAS Model of the router by analyzing the packet filtering rules 
written in the SCCML format. 

Instead of describing the whole information flow of all clients, we employ typical 
client models of common client behavior and configurations such as Internet Ex-
plorer. The Manager combines these typical models and models generated by Agents 
into an integrated LPAS Model, and verifies whether the integrated model satisfies 
the following policy. 

 



72 H. Sakaki, K. Yanoo, and R. Ogawa 

 

deny(“any user”, “CEN”, “secret”, “WWW”, “any service”, “read” ) 

This policy means that CEN users must not read secret files on the WWW Server. 

6.2   Experimental Results 

Fig. 8 shows experimental results we obtained. The top of the figure shows a list of 
files that may leak, and the bottom shows a list of configuration files that may cause 
information leakage. It takes 18 minutes for the Manager to verify whether the LPAS 
Model satisfies the Access Policies. 

Configurations that may 
cause information leakage

Files that may leak

 

Fig. 8. Verification results from the experimental system 

An information leakage path is detected as shown in Fig. 9. The path means that 
the user “user” in the CEN can access the file “/home/usr/public_html/s/secret.html” 
via port 80. The configuration vulnerability that causes this information leakage path 
is the lack of configurations of IP-based access control rules of the Apache. This is 
because the directory “/public_html/” is selected as the UserDir of the Apache, so that 
it can be read via both virtual hosts. 

Therefore, the administrator must have configured IP-based access control on both 
virtual hosts to prevent information leakage. However, he or she overlooked the fact 
that the Apache configuration is divided into three files, and did not configure IP-
based access control on the virtual host with “www.e-example.co.jp”. 
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Fig. 9. Detected information leakage path 

7   Related Work 

Several vulnerability assessment tools have been proposed and used for detecting 
system configuration errors. They can be classified into two categories: signature-
based and model-based. 

Most practical vulnerability assessment tools [3, 4] are signature-based. They scan 
for weak passwords to assess the security of password files, check whether any files 
can be modified, and find potentially vulnerable services such as anonymous ftp. 
Signature-based tools detect vulnerabilities based on signatures defined in advance. 
Therefore, even though they can detect obvious configuration errors such as world-
readable password files, they cannot detect configuration errors caused by inconsis-
tent configurations. 

Attack Graph[6,7,8] is a model-based method that employs model checking for 
vulnerability analysis. An attack graph represents relations of vulnerabilities and ex-
ploits. The method verifies whether an attack graph may reach an undesired condition 
when several vulnerabilities exist. Although Attack Graph can detect potential con-
figuration vulnerabilities, developing an attack graph requires a high level of exper-
tise. The method also requires high computational power for reasoning, and thus we 
consider Attack Graph to be too complex for detecting misconfigurations of access 
control mechanisms.  

MulVAL[10] employs Datalog for expressing vulnerabilities and system configu-
rations. When a policy such as allow(Everyone, read, webPages) is given, the  
Datalog engine decides whether it holds or not. Although MulVAL focuses on 
vulnerability assessment, it can be used for configuration verification. Being based on 
Datalog, it has more expressive power than the LPAS method. On the other hand, 
MulVAL does not provide mechanisms for collecting network configurations. Ad-
ministrators thus have to provide host access control lists that express all accesses 
between hosts allowed by the network. Thus MulVAL is rather difficult to use and too 
error-prone for ordinary users.  

ISM [9] is another model-based configuration verification method that employs 
Datalog. Its target objective is very similar to that of the LPAS method: detecting policy 
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violations caused by inconsistent configurations of access control mechanisms. How-
ever, the paper does not address how to construct models from network configurations. 

8   Conclusion and Future Work 

This paper described a model-based analysis method, which we call the Information 
Leakage Path Analysis (LPAS) Method, for detecting configuration vulnerabilities. 
The method collects the parameters of two major access control mechanisms: access 
control and packet filtering. Its Model Generator constructs an LPAS Model that 
represents information flows. Its Translator translates access policies defined by the 
administrator into policy matching rules. Its Verifier then verifies whether the LPAS 
Model satisfies access policies. 

To evaluate the method's feasibility, we implemented a prototype system. Experi-
ments with it show that the LPAS System can find configuration vulnerabilities of a 
live Web server. 

While the LPAS Method promises to reduce system configuration maintenance 
costs and time, a few problems remain to be resolved when we apply it to large prac-
tical systems. One known problem is that long computation time is required for model 
generation. This is because the file element generation method is straightforward; 
creating a new file element for every file used in applications, so that searching iden-
tity relations among the elements is time-consuming. To resolve this issue, we are 
going to reduce the number of file elements by mapping files which have the same 
ACLs onto one file element. In general, most files in the same directory have the 
same ACLs, therefore this method will reduce the size of the model substantially. 

Another known problem is that the LPAS Model is not expressive enough to de-
scribe network systems that deploy NAT and VPN. To resolve this issue we are going 
to extend the LPAS Model by introducing NAT relation between a global IP address 
and a set of local IP addresses and improve the verification algorithm so that it can 
handle NAT relations. 

As for the implementation, development cost of the agents might be a serious prob-
lem. Because we need to develop agents for each application that has access control 
mechanisms with a programming language such as Java, it requires a large amount of 
effort and expertise to develop them. One possible way to resolve this issue is to de-
sign a declarative scripting language for describing information flows in an applica-
tion. Because non-experts can develop agents easily by using this language, it can 
reduce the development cost of the agents. 
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Abstract. In this paper, we introduce our own two-year experiments to
acquire sensitive personal information from discarded hard disks which
we had obtained with no ease in Korean second-hand PC markets. With
careful scanning, we found that most of hard disks were not adequately
cleaned, and had a plenty of confidential and sensitive personal data,
which could be utilized in crimes like identity theft. Collected private
data, analyzed based on the concept of identifiable individual, amounted
to 4,526 persons worth of data, including 3,584 resident registration num-
bers. The result also indicated that discovered data items of each person
were revealed to display a wide spectrum of sensitivity level.

Keywords: privacy, data forensics.

1 Introduction

Data in hard disks from discarded personal computers could be a substantial
privacy threat. Although hard disks must be disposed after permanent erasure,
many companies retire corporate PCs without concern for their data[8]. Nowa-
days, safe disposal of old computers becomes quite difficult in terms of overwrit-
ing time overhead. It is time-consuming to completely erase disks of enormous
capacity, e.g. hundreds or thousands gigabytes, as the time required for over-
writing a whole drive increases roughly in proportion to its size. Moreover, to
comply the environmental regulations for disposing electronic equipments, enter-
prises choose to leave retired drives reusable rather than to destroy or degauss
them. Since most of used hard drives are usually placed on sale to public or
donated to charity, potential criminals could find no difficulty in acquiring them
in a legitimate manner.

Actually, recent researches revealed that a considerable amount of personal
information has been found in hard drives purchased from second-hand markets.
For instance, in the analysis of used disks from U.K.’s PC markets[6], more
than half of disks contained customers’ and stakeholders’ private information.
They had identifiable names, contact details, and credit card numbers, which are
enough to be cloned in crimes such as identity theft. From a recent survey[5], the
majority of reported cases of identity theft seem to originate offline rather than
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online. As well as traditional methods such as stolen wallet or theft of paper
mail, used hard disk could be a good offline source for identity thieves.

However, preventing leakage of used PC’s data has paid less attention to
individuals at privacy risk. Conventional study focused on the protection of con-
fidential information merely in perspective of corporations. Note that previous
researches mainly discussed what would be the number of overwrites[4][10] for
safe sanitization. We will at this time instead attempt to answer more profound
questions like ”What part of data is potentially privacy-critical?” and ”What
kind of data is particularly vulnerable to identity-related crimes?” Our discus-
sion on these questions will help corporations and governments to establish PC
retirement policy based on customers’ privacy sensitivity.

Chapter 2 presents an overview of previous study on second-hand PC markets.
In chapter 3 we propose a standard procedure to evaluate experiments on PC
privacy from the viewpoint of individuals. We also introduce assumptions on
personal identifier and sensitivity criterion of private information. Chapter 4 is
dedicated to the two-year experiments based on hard drives that we had obtained
with no ease from Korean second-hand PC markets. The analysis results are
shown and then classified into our taxonomy for privacy sensitivity. In chapter
5 we conclude with new research ideas.

2 Related Works

A number of recent researches on second-hand PC market reported the possi-
bility of data leakage. They generally addressed canonical sanitization methods
like three-time overwriting strategy adopted in U.S. Department of Defense[10],
which could also be a guidance for corporates. They, however, have been limited
to revelation of simple-minded list of recovered data elements or document files.
Inattention has been paid to inspections like whether recovered data items would
violate personal privacy.

One of the attempts, Garfinkel et al.[3] of MIT, purchased 158 hard drives
mostly from eBay online auction service in 2002. Careful scanning has revealed
more than 5,000 credit card numbers, medical reports, detailed financial infor-
mation, several gigabytes of personal e-mails and pornography. Jones[6] in U.K.
discovered that from the 92 hard disks from internet auctions, computer fairs,
and a computer recycler, 49 of them(53 percent) had identifiable names and
47(51 percent) had details of personal information. We see from Table 1 that
the ratio of properly sanitized disks ranged from 9 to 17 percent of each sample.
Most of drives were not completely wiped and therefore contained recoverable
files.

We were able to note that there is no standard procedure to conduct analy-
sis of used hard disks that takes privacy impact on individuals seriously. Data
items of each person from drives were revealed to display a wide spectrum of
privacy threat levels, as for the instance the social security number of a person
is considered to possess a heavier privacy weight than the name of the person.
Once a SSN has been counterfeited, criminals could access not only person name
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but other crucial personal information in major public or private databases that
use SSN as search key. Studies like [2] have revealed how SSN is vulnerable to
various privacy intrusions. In this sense, the name and the SSN might be treated
separately for privacy sensitivity designation. Although summary results of pre-
vious studies, as in Table 1, could contribute to address security awareness levels
of a certain community like countries, the major metrics used in them, for ex-
ample number of hard drives or recovered files, merely do not convey anything
meaningful for the real privacy threat on individuals.

Table 1. Analysis by Number of Drives Examined

��������������Degree of erase
No. of drives

Garfinkel et al. [3] Jones [6]

(All functional) 129 92
Completely overwritten

12 (9 percent) 161(17 percent)
(No file structures contained)
Data removal attempted2 79 (61 percent) 44 (48 percent)
Recoverable data remained 81 (63 percent) 74 (80 percent)
Personal information remained N/A3 49 (53 percent)

1 12 of the 16 were procured from a computer recycling company.
2 Simple-minded efforts like simple deletion of files as well as disk format-

ting other than complete overwriting had been applied.
3 List of personal data items like credit card numbers had been merely been

reported.

3 Experiment Design

3.1 Analysis Process

Fig. 1 shows the experiment process of analyzing hard disks. We follow the
process that computer-literate people recover data by use of a general-purpose
PC and software. Our analysis focuses on functional hard disks, which can be
accessed with the tools and techniques available to computer literate users. Win-
nowing functional hard disks is to check whether they are connected to PC or
not. General recovery software and office tools extract files from target disks and
check sensitive personal information from the files. Extracted personal informa-
tion is used in statistics and summarization with the privacy sensitivity criteria
that is introduced in Section 3.3.

3.2 Assumptions on Personal Identifier

Because our data analysis counts each identifiable person, we need to choose ap-
propriate attributes for personal identifier. We mainly use resident registration
numbers and full names as the key attributes representing each individual. Resi-
dent registration number is a representative number that identifies each Korean
citizen. It is made up of 13 digits and has the meaning of birth date (year, month,
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Fig. 1. Analysis Process for Used Hard Disks

and day) and birth place code in itself. In that RRN is an individual identifier
which is endowed by government, it is similar to social security number (SSN)
in U.S. However, SSN is subject to restriction for use, and if one declines to offer
his or her SSN, it does not make against his or her advantage for services. On
the other hand, RRN is widely used for recognizing a person’s identity in the
private sectors as well as the public ones. RRN should be essentially offered for
most services in Korea. Therefore, RRN has more impact on individuals’ privacy
in Korea than SSN do in U.S. We treat each RRN found in hard disks on the
Assumption 1 and 2.

Assumption 1. (Uniqueness of Resident Registration Numbers): A discovered
RRN is used as a unique key attribute.

Assumption 2. (Validity of Resident Registration Numbers): All the RRN dis-
covered are valid. That is, because they indicate actual persons, criminals could
misuse them for identity theft.

A full name is utilized instead if discovered personal data does not have RRN.
Our usage of full names is based on the Assumption 3.

Assumption 3. (Using Full Names as Personal Identifier): A full name with
family or given name is enough to be used as an individual identifier. In one
disk, a different person with the same name is handled as a same individual.



80 Y.C. Kwon, S.W. Lee, and S. Moon

3.3 Privacy Sensitivity Matrix for Used Personal Computers

To describe data found on recovered disk drives based on the privacy impact on
each PC user, we created privacy sensitivity matrix(see Fig. 2).

Privacy sensitivity level on the y-axis is the level of users’ perception of sensi-
tive data. Users’ perception of high sensitivity level means that users are hardly
willing to provide their private information in return for personalized service.
Ackerman’s privacy classification survey[1] reported that only 1 percent of their
sample felt comfortable with revealing their social security numbers, and 3 per-
cent with their credit card numbers respectively. Less than 20 percent of the
respondents were comfortable about disclosure of phone numbers, income, and
medical information. To the contrary, more than half of the sample would give
away their full names, age, email addresses, and preferences for TV show. In brief,
there is enormous difference of privacy sensitivity among personal attributes.

Type of data on the x-axis is divided into profile-related information and
identity-related information. This classification is originated from Spiekermann
et al.[9] regarding users’ privacy preferences in electronic commerce environment.
Identity-related information means data items with which one can surely infer
a specific person. Profile-related information is usually appended to identity-
related data and describes users’ profile(See Fig. 2 for examples). The risk of
private information owned by third-party incorporates privacy risk and imper-
sonation leading to fraud(= identity theft)[7]. Our sensitivity matrix embraces
these two types of risk – profile-related information is related to privacy risk and
identity-related information to identity theft.

4 Our Experiment

4.1 Acquisition of Used Hard Disks

How to obtain a sufficiently large number of used hard disk drives was the major
concern for this study. We have spent almost a half year to collect them only
through customer-to-customer online auction markets. We had tried other ways
to see if by any chance there is any possibility to get some of recycled PCs that
are regularly, most of cases in three years basis, disposed to second-hand PC
markets or to charity organization.

In the early four months of the experiment, we made a round of the recy-
cling centers administrated by the Seoul Metropolitan Government and exam-
ined whether we were able to obtain used PCs for analysis. However, we appre-
hended that used PCs of the recycling centers were not suited to our experiment
for the following reasons. Firstly, most of used PCs have no hard disk needed
for analysis. A hard disk is longer lived than other computer components and is
compatible with other computers with various function and performance. So as
soon as a PC was put into a recycling center, the hard disk in it is extracted by
used computer dealers and is resold at a used computer market like an online
auction. Secondly, although we obtain a used PC with a hard disk, there are
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Fig. 2. Privacy Sensitivity Matrix

many cases when we could not analyze further because careless recycling pro-
cess makes a hard disk damaged or disabled. That is to say, almost all PCs of
the recycling centers were nothing but ferrous scraps destined for abolition or
decomposition. Finally, we were obliged to give up collecting disks through the
recycling centers.

As another trial, we promoted to obtain disks through used computer whole
sellers. We tried to analyze data after purchasing 30 used hard disks at a time
at a store in Yongsan Electronic Market, the largest computer market in Korea.
However, we could not use these disks for analysis because of the uniformity of
samples. From the information on disk labels, we checked out that all the 30
hard disks were used at a bankrupt internet cafe. We were not able to find out
meaningful data because the outward appearances, capacities, manufacturers,
and options of all the hard disks were one and the same, and then all the hard
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disks were initialized as a condition of factory shipment through professional
complete deletion of disk sellers. We decided that to obtain a large amount
of disks through used computer whole sellers were not inconsistent with our
experimental goal, which intended to explore the possibility to find out personal
information from discarded PCs in Korea.

To increase the possibility of detecting personal information, we brought to a
conclusion that we should purchase only through customer-to-customer purchas-
ing, which of course requires tedious works. For one purchasing, we bought one to
three disks and avoided more than four disks from sellers who sold in large quan-
tities. The purchasing was carried out two times, 30 disks in August to December
2003 and the rest 25 in January to April 2005, mostly through internet auction ser-
vice (http://www.auction.co.kr). The total purchasing cost for 55 used hard
disks amounts to 400,000 Korean Won(� 400 U.S. Dollar). Before carrying out
data analysis, we numbered each hard disk and wrote its outward appearance and
physical specification for each. We also put down sellers’ information with referring
to sales for each hard disk. In case of buying hard disks by use of internet auctions,
minimal personal information (name, telephone number, address) should be mu-
tually exchanged between sellers and buyers. So, under favor of personal informa-
tion of second-hand sellers within hard disks through internet auctions, malicious
buyers are prone to make easy valuable information of sellers.

4.2 Initial Examination

As the first phase of analyzing disks, we first connected each drive to a computer
running Windows XP operating system and conducted recognition operations.
And then we wrote whether each disk is recognized or not and whether each is
formatted or not. After recognition process on 55 disks, we discovered that 17
disks were out of physical order and so we extracted files from the rest 38 disks.
Of the functional 38 disks, only two (5 percent) were found to be gone through
a complete erasure. 16 (42 percent) had one or more identifiable names. Table 2
shows the initial analysis results by the number of drives.

Table 2. Initial Analysis by Number of Drives Examined

��������������Degree of erase
No. of drives

Our experiment

(All functional) 38
Completely overwritten

2 (5 percent)(No file structures contained)
Data removal attempted1 17 (45 percent)
Recoverable data remained 30 (80 percent)
Personal information remained 16 (42 percent)

1 Simple-minded efforts like simple deletion of files as well as
disk formatting other than complete overwriting had been
applied.
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4.3 Data Extraction and Recovery

Data extraction process for each hard disk is composed of three following stages:

1. Extracting regular files: Seeking all files that are visible and have names,
attributes, and contents in file systems (temporary files in folders like ’recycle
bin’ and internet cache files are included.)

2. Recovering deleted files and remained data blocks: Separating some recover-
able files by use of data recovery programs.

3. Storing files: Securing files from above two stages for further analysis.

Through the above stages, we extracted 3.2 gigabytes worth of data from 30
hard disks. For separating files that have the high possibility of including personal
information among data, we explore each file system of disks in search of file exten-
sion. The target file extensions are as follows; HWP as a Korean word processor
file of Hangul and Computer Co. Ltd., DOC, XLS, PPT, MDB as MS Office tool
files of Microsoft Corp., PDF as a universally used document file, and DBF as a
database file. Beyond these files, we found out some files with the following exten-
sion like PST as a MS Outlook file and MBX as a MS Outlook Express email file.
We so added them to the target data for detailed examination.

We examined some files among target files with the exception of damaged
files and default example files provided by application programs. And we sepa-
rated personal information of special concern and made a database with their
contents, the number of target persons, and field names. As a result, we dis-
covered variously sensitive personal information from personal profiles to secret
documents. Collected personal information amounted to 4,526 identifiable indi-
viduals. Among them, the number of private information data including resident
registration number is 3,584.

4.4 Results of Data Analysis

Data recovery produced the result that the majority of detected personal in-
formation is concentrated on several disks that would be used in enterprises.
We were able to infer the name of some organizations in which 12 hard disks
of totally 38 functional ones were used. All the distinguished organizations are
enterprises that cover a construction company, a national heath insurance com-
pany, an insurance company, and an IT solution company. We grasped that the
rest 26 disks would be used by individuals or unidentified organizations.

To make a more detailed study, we classified all personal information with
regard to the privacy sensitivity matrix(in Fig. 2 of Section 3.3). After we
understood identifiable name in each personal data, we grouped and counted
individual-related information of both profile-related and identity-related infor-
mation from low to high level of sensitivity. We found personal information of
more than low level in 16 hard disks, and show the detection record of personal
information for each disk. From seven disks originated from enterprises, there
was 4,478 people worth of personal information, which includes 3,566 RRNs and
other sensitive identity-related and profile-related data. 9 disks from individuals
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Table 3. Detailed Analysis Result for disks (from enterprises)

had 48 people worth of personal information with 18 RRNs. (See Table 3 and 4
for detailed list of number of exposed people and private data with only high
sensitivity level found in each disk.)
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Table 4. Detailed Analysis Result for disks (from individuals)

Most of sensitive personal information is discovered in the hard disks used
in enterprises. A number of Excel files including laborers’ records of industrial
disaster victims or medical checkups were discovered in only one hard disk used
in a construction company. These files also have medical information including
personal history of disasters and disorder grades. In three disks used at a branch
of national health insurance, extremely sensitive information for more than 300
insurance defaulters was found with economic poverty, facility accommodation,
and physical disorder. In another three disks used at certain insurance company
in Korea, we detected customers’ names and resident registration numbers of
approximately 2,650 persons in one Excel file and then did approximately 250
WAV files recorded for training employees for canvassing insurance products. By
thorough examination of these files recording conversation between employees
and customers, we had additional finds with resident registration numbers from
insurance contract histories of 11 persons.

Even though an examination of personally-used disks did not find more per-
sonal information than we expected, it found many private emails or diaries,
resumes with resident registration numbers, and guidance records for student’s
life. One of disks contained membership applicant information for an amateur
anglers’ club, which included resident registration number, address, and so forth
for each member. For catching personal propensity for information retrieval on
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the internet, we researchers specially explored web site addresses and caches in
cookies. And as a result, we were able to get traces exploring pornography sites
in 6 disks.

5 Conclusion

We demonstrated the possibility to acquire much personal information easily
from hard disks in Korean second-hand PC markets. We also made clear that
a part of hard disks was used in enterprises although all of disks were bought
from individuals. As the analysis results, hard disks from enterprises have much
more abundant and sensitive personal information than those from individuals.
This could be a proof that disks including sensitive personal information was
hidden away by internal employees and distributed in the markets without any
complete-erasure procedure for inside files.

Penalties may be imposed when violation of data-privacy and computer-
disposal regulations is occurred. For instance, Health Insurance Portability and
Accountability Act[11] in U. S. addresses the security and privacy of health in-
formation. According to this Act, if violation is committed with the intent to
sell, transfer, or use identifiable health information for commercial advantage,
personal gain, or malicious harm individually, the fine or imprisonment will be
levied. Hence, the enterprises of today should manage and supervise the life cy-
cle from obtainment to abolition of personal information in making direct use of
personal information systematically. The taxonomy of data analysis we proposed
will make a contribution to assess the protection degree of personal information
especially in enterprises.

This paper has a limitation that the sensitivity taxonomy of personal informa-
tion is not detailed sufficiently and is dependent on subjective judgment. To set
up more correct policy for securing personal information, classification standards
according to the sensitivity of personal information should be clearer. Our pro-
posed taxonomy, in addition, has another limitation that does not consider the
cultural relativity although it complies with a common idea of society. A further
study on positive analysis of the importance of private information according to
demographic differences is needed.
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Abstract. We propose a short traceable signature scheme based on bi-
linear pairings. Traceable signatures, introduced by Kiayias, Tsiounis and
Yung (KTY), support an extended set of fairness mechanisms (mecha-
nisms for anonymity management and revocation) when compared with
the traditional group signatures. Designing short signatures based on the
power of pairing has been a current activity of cryptographic research,
and is especially needed for long constructions like that of traceable sig-
natures. The size of a signature in our scheme is less than one third of the
size in the KTY scheme and about 40% of the size of the pairing based
traceable signature (which has been the shortest till today). The security
of our scheme is based on the Strong Diffie-Hellman assumption and the
Decision Linear Diffie-Hellman assumption. We prove the security of our
system in random oracle model using the security model given by KTY.

Keywords: traceable signatures, group signatures, anonymity, crypto-
graphic protocols, bilinear pairings.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], provide anonymity
for signers. Any member of the group can sign messages, but the resulting sig-
nature keeps the identity of the signer secret. Because unconditional anonymity
may be a very dangerous tool against public safety, in case of dispute about the
signed message group signatures allow the group manager to open the signa-
ture and identify its originator. In this respect, group signatures can be said to
incorporate a fairness mechanism.

Traceable signatures, introduced by Kiayias, Tsiounis and Yung [13], support
an extended set of fairness mechanisms (mechanisms for anonymity management
and revocation) when compared with the traditional group signature schemes.
Consider the following scenario: a certain member of the group is suspected
of illegal activity. Its identity was revealed by opening a signature value. It is
then necessary to detect the signatures issued by this member so that his/her
transactions are traced. The only solution with existing group signature schemes
is to have the group manager open all signatures. However, this solution have two
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problems. First, since all signatures are opened the solution violates the privacy
of all group members. Second, since only the group manager can open signatures
it impairs scalability. We need some parallel mechanism for scalability. Traceable
signatures support three different types of traceability :

1. signature opening : as in group signature, reveal the signer of a given signa-
ture

2. user tracing : check whether a signature was issued by a given user; it can
be applied to all signatures by designated tracing agents running in parallel

3. signature claiming : the signer of a signature provably claims a given signa-
ture that he/she has signed.

Therefore, the above scenario can be solved with user tracing if we use traceable
signatures.

Kiayias, Tsiounis and Yung (hereafter KTY) gave a formal security model
through three security requirements: misidentification, anonymity, framing. If the
adversary is able to generate a signature whose originator is not traced by the
group manager, the scheme is not secure against misidentification. Given a signa-
ture and two members of which one is its originator, if the adversary can identify
its originator no better than randomly, the scheme has anonymity. The adversary
succeeds in framing an honest user, if he generates a signature that is wrongly
traced to an innocent user. The KTY scheme [13] is secure under the Strong RSA
and Decisional Diffie-Hellman assumptions. We note that in concurrent indepen-
dent work, Bellare et al. [7,8] gave a formal security model for group signatures
with a security model which is nearly the same as that of KTY [13].

Traceable signature with the above scalable anonymity is suitable for various
applications and extends the reach of e-commerce while allowing users extended
anonymity. In a typical web based commerce, it may be desired that the service
provider does not know the user, yet that there is a mechanism that a tracing
authority (either as a law enforcement mechanisms for illegal activity or as a
routine mechanisms like billing by a bank) will be able at a different layer to
expose users selectively. The notion of “anonymous non-repudiation” that indeed
combines both anonymity at the service provider level, but identification at
another layer has high potential in many application domains.

Recent pairing based signatures: Boneh et al. [6] noticed that bilinear maps
can shorten signature schemes; this started a line of research of employing pair-
ings in order to shorten signatures. Boneh et al. [5] devised a short group signature
scheme using bilinear pairings. The size of a signature is under 200 bytes that offer
approximately the same level of security as a regular RSA signature of the same
length. The scheme used the Strong Diffie-Hellman (SDH) and Decision Linear
Diffie-Hellman (DLDH) assumptions. Nguyen and Safavi-Naini. [16] also intro-
duced a group signature scheme using bilinear pairings. The size of its signature
is slightly bigger than that of [5], but the scheme has stronger anonymity. They
also introduced a traceable signature scheme using El Gamal public key encryp-
tion under the assumptions above. Boyen and Waters [9] gave the group signature
scheme without random oracles but the scheme is not practical in that the size
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of a signature grows logarithmically in the number of group members. Ateniese
et al. [2] devised practical group signature scheme without random oracles. Their
scheme is based on the Strong LRSW, q-EDH, and Strong SXDH assumptions.

Our Result: We extend the result of [5] to construct a traceable signature
scheme with the length of signatures 362 byte long (just about the size of three
RSA signatures), which is shorter than those of [13] and [16], which are 1200
byte and 900 byte long, respectively. In contrast to the previous schemes that
need two separate parts for tracing and claiming [13,16], we use one part for the
two procedures, which is possible with the help of bilinear pairing, and therefore
we get shorter signature size. In spite of its shorter length, the security level of
our scheme is the same as of the schemes using bilinear pairings. We used the
SDH and DLDH assumptions given by [5].

2 Preliminaries

2.1 Bilinear Pairings

We first review a few concepts related to bilinear pairings. Let G1, G2 be cyclic
additive groups generated by P1 and P2, respectively, both with prime order
p, and GT be a cyclic multiplicative group of order p. Suppose there is an iso-
morphism ψ : G2 → G1 such that ψ(P2) = P1. A bilinear pairing is a function
e : G1 ×G2 → GT with the following properties.

– Non-degeneracy : e(P1, P2) �= 1
– Bilinearity : For all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Zp, e(aQ1, bQ2) =

e(Q1, Q2)ab.
– Computability : For all Q1 ∈ G1, Q2 ∈ G2, there is an efficient algorithm to

compute e(Q1, Q2).

We assume that p is about 2170. G1 and G2 are assumed to be subgroups with
order p of an elliptic curve group where possibly G1 = G2. GT is a subgroup
with order p of a finite field of size about 21024. We note that the bilinear groups
of Rubin and Siverberg [18] or Miyagi et al. [15] can be used. We denote the
generation algorithm of bilinear pairings by GBP throughout this paper.

2.2 SDH Representation

Let G1, G2 be cyclic additive groups of prime order p where possibly G1 = G2.
Let P1 be a generator of G1 and P2 a generator of G2. The q-Strong Diffie
Hellman (q-SDH) problem in (G1, G2) is defined as follows [5]: Given (q + 2)-
tuple (P1, P2, γP2, . . . , γ

qP2) as input, output a pair ( 1
γ+xP1, x) where x ∈ Z∗

p.
The advantage of an algorithm A for the q-SDH problem is defined as follows:

Advq−SDH
A (k) = Pr

⎡
⎢⎣A(G, γP2, . . . , γ

qP2) =
(

1
γ+xP1, x

)
∧ x ∈ Z∗

p where
G = (p, G1, G2, GT , P1, P2, e)← GBP (1k)
γ

R←− Z∗
p

⎤
⎥⎦
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We define the q-Strong Diffie-Hellman assumption. This assumption was used
by Boneh and Boyen [4] to construct short signatures.

Definition 1. q-Strong Diffie-Hellman (q-SDH) Assumption. For every
PPT algorithm A, Advq−SDH

A (k) is negligible in k.

We next define an SDH representation. The representation is similar to a
discrete-log representation of an arbitrary power in the KTY scheme [13].

Definition 2. SDH representation. For G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) where Q ∈ G1, R = γP2 ∈ G2 with unknown γ, an SDH representation is
a tuple (A, x, t) with A ∈ G1 and x, t ∈ Z∗

p such that A = 1
γ+t (xP1 + Q) . Note

that the tuple satisfies e(A, tP2 + R) = e(xP1 + Q, P2).

In this work we will be interested in the following computational problem.

Definition 3. One more SDH representation problem. Given K SDH
representations for G = (p, G1, G2, GT , P1, P2, e) and (Q, R), one more SDH
representation problem is to find another SDH representation.

Lemma 1. Under the q-SDH assumption, it is infeasible for a PPT algorithm
to solve one more SDH representation problem with K = q.

2.3 Linear Encryption

Let G1 be a cyclic additive group of prime order p, and let X, Y, Z be generators
of G1. The Decision Linear Diffie-Hellman problem in G1 is defined as follows [5]:
Given X, Y, Z, aX, bY, cZ ∈ G1 as input, output yes if a+b = c and no otherwise.
The advantage of an algorithmA for the Decision Linear Diffie-Hellman problem
is defined as follows:

AdvDLDH
A (k) =

∣∣∣p(0)
k − p

(1)
k

∣∣∣
where

p
(i)
k = Pr

⎡
⎢⎢⎢⎢⎢⎣

A(H, aX, bY, cZ) = yes where
H = (p, G1, X, Y, Z)← GDL(1k)
a, b

R←− Z∗
p

c ← a + b if i = 0
c

R←− Z∗
p otherwise

⎤
⎥⎥⎥⎥⎥⎦ .

We define the Decision Linear Diffie-Hellman assumption. This assumption
was used by Boneh et al. [5] to construct short group signatures.

Definition 4. Decision Linear Diffie-Hellman (DLDH) assumption. For
every PPT algorithm A, AdvDLDH

A (k) is negligible in k.

The DLDH assumption gives rise to the Linear encryption (LE) scheme [5].
This scheme is semantically secure against chosen-plaintext attacks, assuming
the DLDH assumption holds.
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Definition 5. Linear encryption. With M ∈ G1, along with arbitrary gener-
ators X, Y and Z of G1, linear encryption LE with public key X, Y and Z is as
follows:

LE(M) = (r1X, r2Y, M + (r1 + r2)Z)

where r1, r2 ∈ Zp is randomly chosen.

Lemma 2. [5] Under the DLDH assumption, linear encryption is secure against
chosen-plaintext attacks.

3 Zero-Knowledge Protocol for an SDH Representation

We assume that G = (p, G1, G2, GT , P1, P2, e), Q ∈ G1, R = γP2 ∈ G2 with
unknown γ are given as specified in Section 2. Let X, Y, Z be generators of G1,
and W a generator of G2. A zero-knowledge protocol for an SDH representation
(A, x, t) is as follows.
Protocol 1. The prover chooses exponents r1, r2, r3

R←− Zp, d1 ← tr1, d2 ← tr2,
and then computes the following values:

T1 ← r1X, T2 ← r2Y, T3 ← A + (r1 + r2)Z,

T4 ← r3W, T5 ← e(P1, T4)x .

Note that T1, T2 and T3 constitute a Linear encryption of the value A. Note also
that if we precalculate the value e(P1, W ), we can compute T5 = e(P1, W )r3x

with just one exponentiation on GT avoiding the expensive pairing calculation
of e(P1, T4)x. Now, the prover and the verifier execute a proof of knowledge of
values (r1, r2, d1, d2, t, x) which satisfy the following equations:

r1X = T1, r2Y = T2,

tT1 − d1X = O, tT2 − d2Y = O,

e(P1, T4)x = T5,

e(T3, P2)t · e(Z, P2)−d1−d2 · e(Z, R)−r1−r2 · e(P1, P2)−x = e(Q, P2)/e(T3, R) .

This proof is a typical 3-move honest verifier zero-knowledge proof for dis-
crete logarithm relation set. For the first move, the prover randomly chooses
br1 , br2 , bd1, bd2 , bt, bx from Zp, and then computes the following values:

B1 ← br1X, B2 ← br2Y,

B3 ← btT1 − bd1X, B4 ← btT2 − bd2Y,

B5 ← e(P1, T4)bx ,

B6 ← e(T3, P2)bt · e(Z, P2)−bd1−bd2 · e(Z, R)−br1−br2 · e(P1, P2)−bx ,

He sends (T1, . . . , T5, B1, . . . , B6) to the verifier, who sends a random challenge
value c

R←− Zp to the prover as a second move. The prover computes and sends
back the values in response to the verifier as the last move:

sr1 ← br1 + cr1, sr2 ← br2 + cr2, sd1 ← bd1 + cd1,

sd2 ← bd2 + cd2, sx ← bx + cx, st ← bt + ct .
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The verifier checks if the following equations hold; if they hold the verifier ac-
cepts, otherwise he rejects.

sr1X
?= cT1 + B1 (1)

sr2Y
?= cT2 + B2 (2)

stT1 − sd1X
?= B3 (3)

stT2 − sd2Y
?= B4 (4)

e(P1, T4)sx
?= T c

5 ·B5 (5)
e(T3, P2)st · e(Z, P2)−sd1−sd2 · e(Z, R)−sr1−sr2 · e(P1, P2)−sx

?= (e(Q, P2)/e(T3, R))c ·B6 . (6)

Lemma 3. Protocol 1 is complete.

Lemma 4. There exists a simulator for the transcripts of Protocol 1 for an
honest verifier under the DLDH assumption.

Lemma 5. There exists an extractor for Protocol 1.

Proof. We allow an extractor to rewind a prover in the protocol to the point
just before the prover is given a challenge c. Then, the extractor can obtain two
protocol transcripts :

(T1, . . . , T5, B1, . . . , B6, c, sr1 , sr2 , sd1 , sd2 , sx, st)
(T1, . . . , T5, B1, . . . , B6, c

∗, s∗r1
, s∗r2

, s∗d1
, s∗d2

, s∗x, s∗t ) .

First observe that, from (1), B1 = sr1X − cT1 = s∗r1
X − c∗T1 from which

we obtain (c − c∗)T1 = (sr1 − s∗r1
)X and it follows that r̃1 = (sr1 − s∗r1

)(c −
c∗)−1(mod p) satisfies r̃1X = T1. In a similar fashion we obtain from (2) r̃2 =
(sr2 − s∗r2

)(c− c∗)−1(mod p) which satisfies r̃2Y = T2.
Next we have, from (5), B5 = e(P1, T 4)sx/T c

5 = e(P1, T4)s∗
x/T c∗

5 from which
we obtain e(P1, T4)sx−s∗

x = T c−c∗
5 and it follows that x̃ = (sx − s∗x)(c −

c∗)−1(mod p) satisfies e(P1, T4)x̃ = T5 .
Next we have, from (3), B3 = stT1 − sd1X = s∗t T1 − s∗d1

X from which we
obtain (st − s∗t )T1 = (sd1 − s∗d1

)X . Since r̃1X = T1, we have (sd1 − s∗d1
) =

r̃1(st− s∗t )(mod p). Similarly, we have from (4) (sd2 − s∗d2
) = r̃2(st− s∗t )(mod p).

Finally, dividing two instances of (6), we obtain

(e(Q, P2)/e(T3, R))(c−c∗)

= e(T3, P2)(st−s∗
t ) · e(Z, P2)−(sd1−s∗

d1
)−(sd2−s∗

d2
) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x)

= e(T3, P2)(st−s∗
t ) · e(Z, P2)−r̃1(st−s∗

t )−r̃2(st−s∗
t ) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x) .
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Taking (c− c∗)-th roots, we have

e(Q, P2)/e(T3, R)

= e(T3, P2)t̃ · e(Z, P2)t̃(−r̃1−r̃2) · e(Z, R)−r̃1−r̃2 · e(P1, P2)−x̃

= e(T3, t̃P2) · e(−(r̃1 + r̃2)Z, t̃P2) · e(−(r̃1 + r̃2)Z, R) · e(x̃P1, P2)−1,

where t̃ = (st − s∗t )(c− c∗)−1(mod p). This can be rearranged as

e(x̃P1 + Q, P2) = e(T3 − (r̃1 + r̃2)Z, t̃P2 + R) .

Thus the extractor obtains an SDH representation (T3 − (r̃1 + r̃2)Z, x̃, t̃). �	

By the three lemmas above, the following holds.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
for an SDH representation under the DLDH assumption.

4 The Traceable Signature Scheme

This section describes our traceable signature scheme. With Theorem 1, we
obtain from Protocol 1 a signature scheme secure in the random oracle model by
applying the Fiat-Shamir heuristic [1,12]. In our construction, in order to reduce
the length of a signature we use a variant of the Fiat-Shamir heuristic used by
Ateniese et al. [3], where the challenge c is included in the signature instead
of B1, . . . , B6. We verify the validity of the signature by checking whether the
output of the random oracle is equal to the challenge c.

A traceable signature scheme consists of nine operations Setup, Join/Iss, Sign,
Verify, Open, Reveal, Trace, Claim, Claim Verify. The operations are executed by
the active participants of the system, which are identified by the group manager,
tracing agents, and a set of users.

Setup(1k). For a given security parameter 1k, the system is setup as follows:

G = (p, G1, G2, GT , P1, P2, e)← GBP (1k),

γ
R←− Z∗

p, Q
R←− G1, R ← γP2, W

R←− G2 \ {1G2},

Z
R←− G1 \ {1G1}, ξ1, ξ2

R←− Z∗
p, X ← ξ−1

1 Z, Y ← ξ−1
2 Z .

The system public key Y is (G, Q, R, W, X, Y, Z). The group manager’s private
key S is (γ, ξ1, ξ2). The scheme also selects an hash function H : {0, 1}∗ → Zp,
which is to be considered as a random oracle here.

Join(Y)/Iss(Y,S). By executing Join operation, a user joins this system. On the
other part, when received a join request, the group manager gives a certificate
to the requester by executing Iss operation. The Join/Iss operation is performed
in a secure channel. The details are as follows.
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1. A user i generates non-adaptive random xi (see 4.2 in [16]) and sends xiP1
to the group manager. We will denote the i-th user’s membership secret by
seci = xi.

2. The group manager selects ti
R←− Z∗

p, computes Ai = 1
ti+γ (xiP1 + Q), and

then sends (i, Ai, ti) to the user i. We will denote the i-th user’s membership
certificate by certi = (Ai, ti).

3. The user i checks if (Ai, ti) satisfies e(Ai, tiP2 + R) = e(xiP1 + Q, P2), and
then stores (i, certi, seci).

4. We will denote the join transcript between the the group manager and i-th
user by transcripti = (Ci = xiP1, Ai, ti). The group manager stores transcripti
in the join transcript table transcripts.

Sign(m,Y, certi, seci). A member i of the group can sign a message m using this
operation with his certificate certi = (Ai, ti) and his secret seci = xi.

1. Compute the values T1, . . . , T5, B1, . . . , B6 using (Ai, xi, ti) according to Pro-
tocol 1.

2. Compute c using the hash function :

c ← H(m, T1, . . . , T5, B1, . . . , B6) .

3. Compute the values sr1 , sr2 , sd1 , sd2 , sx, st using c according to Protocol 1.
4. The signature is σ=(T1, . . . , T5, c, sr1 , sr2 , sd1, sd2 , sx, st). If each of T1, . . . , T4

is 170 bits, T5 is 1024 bits, and c, sr1 , . . . , st are 170 bits each, the signature size
is about (170× 11 + 1024)/8 = 362 bytes.

Verify(m, σ,Y). The signature σ of message m can be verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Reconstruct B̃1, . . . , B̃6 using equations (1)-(6).
3. Check if the following equation holds:

c
?= H(m, T1, . . . , T5, B̃1, . . . , B̃6) .

Return 1 if it holds and return 0 otherwise.

Open(σ,Y,S). The group manager can find who signed the signature σ of m
with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Compute Ã = T3 − (ξ1T1 + ξ2T2) using (ξ1, ξ2) from S.
3. Look up i in the join transcript table transcripts such that Ai = Ã and return

i.

Reveal(i, transcripts). The group manager can obtain the tracing information of
user i with this operation. User i is a suspicious user (e.g., detected by an Open
operation).

1. Return Ci of transcripti = (Ci = xiP1, Ai, ti) in the join transcript table
transcripts. Note that only the group manager can access the join transcript
table transcripts.
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Trace(σ, C,Y). Tracing agents trace the signature generated by a suspicious user.
The input C is a tracing information of the suspicious user given by the group
manager. By executing this operation, tracing agents check whether σ is gener-
ated by the suspicious user. Note that all the signatures can be checked efficiently
when many tracing agents execute this operation in parallel.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Check if the following equation holds: e(C, T4)

?= T5.
Return 1 if it holds and return 0 otherwise.

Since C = xjP1 where j is the suspicious user e(C, T4) can be rewritten as
e(P1, T4)xj . If the originator of σ is i, we have T5 = e(P1, T4)xi . Therefore, if
i = j this procedure will return 1.

Claim(σ,Y, seci). The originator i of the signature σ can claim that he is its
originator with this protocol.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Generate a proof of knowledge of the value x which satisfies e(P1, T4)x = T5,

and return the proof τ . This is possible because if the prover is the real
originator of σ, seci will be xi such that e(P1, T4)xi = T5.

Claim Verify(σ, τ,Y). The output of Claim τ is verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Verify the proof τ .

5 Correctness of the Traceable Signature Scheme

In this section we will prove the correctness of our scheme in the model of KTY
[13].

Definition 6. Correctness of a Traceable Scheme. A traceable signature
scheme with security parameter k is correct if the following four conditions are
satisfied (with overwhelming probability in k). Let SignU be the signing mecha-
nism of user U and ClaimU its corresponding claim mechanism and S the group
manager’s private key.

1. Sign-Correctness: For all m, Verify(m, SignU (m)) = 1.
2. Open-Correctness: For any m, Open(SignU (m),S) = U .
3. Trace-Correctness: For any m, Trace(SignU(m), Reveal(U)) = 1; on the

other hand Trace(σ, Reveal(U)) = 0 for any σ ← SignU ′(m) with U ′ �= U .
4. Claim-Correctness: Claim Verify(m, σ, ClaimU (σ)) = 1 for all m, σ ←

SignU (m).

Theorem 2. The traceable signature scheme of Section 4 is correct.

6 Security Model of the Traceable Signature Scheme

We introduce in this section the security model of KTY [13].
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6.1 Oracles

The security definitions will be formulated via experiments in which an adver-
sary’s attack capabilities are modelled by providing it with access to certain
oracles. Oracles shares the following variables with each other.

– state: It contains the join transcript, certificates and secrets of users which
are obtainable in the system’s perspective.

– n : It is a counter that stores the number of users joining the system.
– Sigs : It contains signatures generated by Qsig oracle.
– Revs : It contains the members revealed by Qreveal oracle.
– Up : It is a set of private users which are not corrupted.
– Ua : It is a set of users in corruption type A. We say that the user i falls in

corruption type A if the adversary controls the user i. In this case (i, certi,
seci) is leaked to the adversary.

– U b : It is a set of users in corruption type B. We say that the user i falls in
corruption type B if the transcript during the join procedure is exposed to
the adversary. In this case (i, certi) is leaked to the adversary.

The various oracle specifications are listed below.

– QY(). This oracle returns (n,Y). It allows the adversary to learn the public-
information of the system.

– QS(). This oracle returns S. It allows the adversary to corrupt the group
manager.

– Qp−join(). This oracle simulates Join/Iss protocol in private, increases the user
count n by 1, and sets state ← state||(n, transcriptn, certn, secn). It also adds
n into Up and transcripts ← transcripts || (n, transcriptn).

– Qa−join(). This oracle allows the adversary to introduce an adversarially con-
trolled user to the system. The introduced user falls in corruption type A.
Firstly, the oracle initiates Join/Iss protocol with the adversary. In the pro-
tocol, the oracles takes the role of the group manager and the adversary
the prospective user. When the protocol terminates successfully, the oracle
increases n by 1 and sets state ← state||(n, transcriptn, certn,⊥). It also adds
n into Ua and transcripts ← transcripts || (n, transcriptn).

– Qt−join(). This oracle is identical to the Qp−join() oracle except that at the
end it transmits (certn, secn) to the adversary and adds n to Ua (not Up).
As explained in [13], the statistical difference between Qa−join and Qt−join is
negligible. Therefore, we can always replace Qa−join with Qt−join when it is
hard to simulate the behavior of Qa−join.

– Qb−join(). This oracle allows the adversary as the group manager to introduce
users. Users introduced with this oracle falls in corruption type B. Firstly,
the oracle initiates Join/Iss protocol with the adversary. In the protocol, the
oracles takes the role of the prospective user and the adversary the group
manager. When the protocol terminates successfully, the oracle increases
n by 1 and sets state ← state||(n,⊥, certn, secn). It also adds n into U b. It
does not modify the join transcript table transcripts since this oracle behaves
as a user.
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– Qsig(i, m). This oracle returns a signature of message m by the i-th user.
It parses state and if it discovers an entry of the form (i, ·, certi, seci) it
produces a traceable signature σ using certi and seci. If no such entry is
found or i ∈ Ua, it returns ⊥. When it successfully produces σ, it sets
Sigs← Sigs||(i, σ).

– Qreveal(i). This oracle returns the output of Reveal(i, transcripts). Note that
it returns ⊥ when user i does not exist or i ∈ U b. It also adds i into Revs.

6.2 Security Definitions of Traceable Signatures

Definition 7. A traceable signature scheme is said to be secure if it satisfies
security against misidentification, anonymity, and framing attacks.

Misidentification Attacks. In a misidentification attack the adversary is al-
lowed to control a number of users of the system (Qa−join, Qp−join). The adversary
is also allowed to observe the operation of the system while users are added and
they produce signatures (Qp−join, Qsig, Qreveal). Finally, the adversary is required
to produce a signature that does not open to any of the users controlled by the
adversary or that does not trace to any of the users controlled by the adversary.

Experiment Expmis
A (k)

(Y,S)← Setup(1k);
(m, σ) ← A(QY , Qp−join, Qa−join, Qsig, Qreveal);
If Verify(m, σ,Y) = 0 then return 0;
If Open(σ,Y,S) �∈ Ua or

∧
i∈Ua Trace(σ, Reveal(i)) = 0 then return 1;

return 0;

Definition 8. A traceable signature scheme is secure against misidentification
attacks if for any PPT algorithm A Pr[Expmis

A (k) = 1] is negligible in k.

Framing Attacks. In a framing attack, the adversary is allowed to act as a
group manager. The adversary is also allowed to observe the operation of the
system while users are added and they produce signatures. There are two types
of successful framing attacks. First, the adversary may construct a signature
that opens or traces to an innocent user. Second, it may claim a signature that
was generated by another user as its own. Note that in this attack the adversary
observes the operations as a group manager which are simulated through QS ,
Qb−join, and Qsig oracles.

Experiment Expfra
A (k)

(Y,S)← Setup(1k);
(m, σ, τ) ← A(QY , QS , Qb−join, Qsig);
If Verify(m, σ,Y) = 0 then return 0;
If Open(σ,Y,S) ∈ U b or

∨
i∈Ub Trace(σ, Reveal(i)) = 1 then return 1;

If
(∨

i∈Ub(i, σ) ∈ Sigs
)
∧ (Claim Verify(σ, τ) = 1) then return 1;

return 0;
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Definition 9. A traceable signature scheme is secure against framing attacks if
for any PPT algorithm A Pr[Expfra

A (k) = 1] is negligible in k.

Anonymity Attacks. In an anonymity attack, the adversary operates in two
stages called play and guess. In the play stage, the adversary is allowed to join
the system through Qa−join oracles. The adversary is also allowed to observe
the operation of the system while users are added and they produce signatures
through Qp−join, Qsig, and Qreveal oracles. At end of the play stage, the adversary
returns a message and two target users he does not control, and then receives a
signature of the message he returned. In the guess stage, the adversary tries to
guess which of the two produced the signature.

Experiment Expanon
A (k)

(Y,S)← Setup(1k);
(aux, m, i0, i1) ← A(play : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 �∈ Up) ∨ (i1 �∈ Up) ∨ (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
b

R←− {0, 1}, σ ← Sign(m,Y, certib
, secib

);
b∗ ← A(guess, σ, aux : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
If b = b∗ then return 1;
return 0;

Definition 10. A traceable signature scheme is secure against anonymity at-
tacks if for any PPT algorithm A

∣∣Pr[Expanon
A (k)]− 1

2

∣∣ is negligible in k.

6.3 Security of Our Scheme

These lemmas show the security properties.

Lemma 6. Under the q-SDH assumption, our scheme is secure against misiden-
tification attacks provided that the number of joined users is less than or equal to
q (an adaptable “assumption parameter” that does not influence the complexity).

Proof. Let A be an adversary that violates security against misidentification,
We construct an algorithm B which solves one more representation problem
using the attacker A. SDH representations for G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) are given as Refs = {(Al, tl, xl)}q

l=1. B chooses W
R←− G2, Z

R← G1 and

ξ1, ξ2
R← Z∗

p. It then sets X ← ξ−1
1 Z, Y ← ξ−1

2 Z. B simulates oracles allowed to
A as follows.

– QY(). It returns n and (G, Q, R, W, X, Y, Z).
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n,⊥, certn, secn) and
transcripts ← transcripts||(n,⊥). Also, B adds n into Up.
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– Qt−join. B increments j which is a counter representing how many SDH rep-
resentations have been consumed and then gets Refsj = (Aj , xj , tj) from
Refs. It gives (certn = (Aj , tj), secn = xj) to A. It then sets state ← state
||(n,⊥, certn, secn) and transcripts ← transcripts||(n,⊥). Also, B adds n into
Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, it simulates Protocol
1 with certi from state and get a signature σ, which is is possible because
Protocol 1 has a simulator. Also, B sets Sig ← Sig||(i, σ). Note that the
value c which is selected by the simulator during simulation must be stored
in the hash oracle such that the hash oracle should keep the random oracle
property.

– Qreveal(i). B searches from state an entry of the form (i, ·, ·, seci = xi), and
returns Ci = xiP1. It also adds i into Revs.

Let (m, σ∗
1) be a successful output of algorithm A. Using the general forking

lemma [14], B can get another pair (m, σ∗
2) which is also valid. Because Protocol

1 has a knowledge extractor, an SDH representation (Ã, x̃, t̃) used in signing m
can be extracted.

Now we have two alternative cases: (i) Open(σ,Y,S) �∈ Ua. It means that Ã is
not equal to any Ai for those i ∈ Ua. As a result, we solved one more SDH repre-
sentation problem. In the second case we have: (ii)

∧
i∈Ua Trace(σ, Reveal(i)) = 0.

It means that x̃ is not equal to any xi for those i ∈ Ua. Again we solved one
more SDH representation problem. �	
Lemma 7. Under the assumption of infeasibility of discrete logarithm in G1,
our scheme is secure against framing attacks.

Proof. Let A be an adversary that violates security against framing attacks. We
construct an algorithm B which solves a problem of discrete logarithm in G1
using the attacker A. B is given P1 and S = ρP1 ∈ G1 as input, and B wants to
find ρ. We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R←− G1, R ← γP2 with γ
R←− Z∗

p, and W
R←− G2. It also

chooses ξ1, ξ2, y
R← Z∗

p and Y←yP1 and then set Z ← ξ2Y, X ← ξ−1
1 Z. Then,

Y becomes (G, Q, R, W, X, Y, Z) and S becomes (γ, ξ1, ξ2). B simulates oracles
allowed to A as follows.

– QY(). B returns n and Y.
– QS(). B returns S.
– Qb−join(). B increments n by one. In the 1st step of Join/Iss procedure, B

chooses x′
n

R← Z∗
p, and supplies x′

nP1 + S as the xnP1 value. It receives
the tuple (An, tn) from A, in the 2nd step. When the procedure is finished
successfully, it sets certn ← (An, tn), secn ← x′

n +ρ = xn where ρ is unknown.
It then appends (n,⊥, certn, secn) to state. Finally, it adds i into U b.

– Qsig(i, m). If i ∈ U b, B extracts certi = (Ai, ti) and seci = x′
i + ρ from state.

Then it chooses r1, r2, r3
R← Z∗

p, and sets T1, . . . , T5 as follows :

T1 ← r1X, T2 ← r2Y, T3 ← Ai + (r1 + r2)Z,

T4 ← r3W, T5 ← e(x′
iP1 + S, T4) = e((x′

i + ρ)P1, T4) = e(P1, T4)xi .
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And then it simulates Protocol 1 and get a signatureσ. This is possible because
Protocol 1 has a simulator. Also, it sets Sigs ← Sigs||(i, σ). Note that the value
c which is selected by the simulator during simulation must be stored in the
hash oracle such that the hash oracle should keep the random oracle property.

Let (m, σ∗
1 , τ∗

1 ) be a successful output of algorithmA. Now we have three cases:
(i) Open(σ∗

1 ,Y,S) ∈ U b. Using the general forking lemma [14], B can get another
pair (m, σ∗

2) which is also valid. Moreover with the knowledge extractor in Proto-
col 1, an SDH representation (Ã, x̃, t̃) used in signing m can be extracted. Let i ∈
U b be the result of Open. Then, x̃ is equal to seci, which means x̃ = x′

i+ρ. There-
fore B can find ρ. In the second case we have: (ii)

∨
i∈Ub Trace(σ∗

1 , Reveal(i)) = 1.
It can also extract an SDH representation (Ã, x̃, t̃) using a similar method to the
case (i). We get also here x̃ = seci = x′

i + ρ. Therefore B can find ρ. In the
final case we have: (iii)

(∨
i∈Ub(i, σ∗

1) ∈ Sigs
)
∧ (Claim Verify(σ∗

1 , τ∗
1 ) = 1) Using

the general forking lemma [14], B can get another proof τ∗
2 for σ∗

1 . Then with a
knowledge extractor (actually it is a subpart of the extractor in Protocol 1), a
secret x̃ used for claim can be extracted. Let i be such that (i, σ∗

1) ∈ Sigs. Then,
we have x̃ = seci = x′

i + ρ. Therefore B can find ρ. �	

Lemma 8. Under the assumption of semantic security of Linear encryption,
our scheme is secure against anonymity attacks.

Proof. Let A be an adversary that violates security against anonymity. We con-
struct an algorithm B which breaks the semantic security of Linear encryption
using the attacker A. B is given X, Y, Z ∈ G1 as input which are a public key
for Linear encryption, and tries to break the semantic security of this encryption
scheme.

We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R← G1 and R ← γP2 where γ
R← Z∗

p. It also selects W
R←−

G2, and set Y to (G, Q, R, W, X, Y, Z). B simulates oracles allowed toA as follows.

– QY(). B returns n and Y.
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n,⊥, certn, secn) and
transcripts ← transcripts||(n,⊥). Also, B adds n into Up.

– Qt−join(). B generates an SDH representation (Aj , xj , tj) for (G, Q, R) which is
possible because it knows γ, and then gives (certn = (Aj , tj), secn = xj) to A.
It sets state ← state ||(n,⊥, certn, secn) and transcripts ← transcripts||(n,⊥).
Also, B adds n into Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, B finds certi =
(Ai, ti) and seci = xi from state, and encrypts Ai using the given public
key (X, Y, Z). The resulting cipher-text will be T1, T2, T3, and then it sets
T4 ← r3W, T5 ← e(P1, T4)xi where r3

R←− Z∗
p. It simulates Protocol 1 to

generate a signature. This is possible because Protocol 1 has a simulator.
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Table 1. Comparison of number of operations and signature length (in bytes)

KTY Nguyen et al. Ours

sign
exponentiations 19 11 6

scalar multiplications 0 19 10
pairing computations 0 1 1

verify
exponentiations 17 6 7

scalar multiplications 0 14 8
pairing computations 0 3 3
signature length 1206 917 362

Also, it sets Sigs ← Sigs||(i, σ). Note that the value c which is selected by
the simulator during simulation must be stored in the hash oracle such that
the hash oracle should keep the random oracle property.

– Qreveal(i). B searches seci = xi from state, and returns xiP1. It also adds i
into Revs.

When A returns i0 and i1 to B as a challenge after play stage, B returns Ai0

and Ai1 as a challenge. B will be given the cipher-text (T ′
1, T

′
2, T

′
3) of Aib

, where b
is unknown. It generates a signature σ′ containing (T ′

1, T
′
2, T

′
3) using a simulator

for Protocol 1, and the value c must also be stored in a hash oracle. It returns σ′

to A. Let b∗ be the output of A after the guess stage. B returns b∗. If A breaks
anonymity, then it is obvious that B also breaks semantic security. �	
As a result of the lemmas we conclude the following:

Theorem 3. Under the q-SDH assumption, infeasibility of discrete logarithm
in G1, and the semantic security of Linear encryption, our traceable signature
scheme is secure provided that the number of joined users is less than or equal
to q .

7 Efficiency

In this section we compare our scheme with previous schemes in terms of the
signature length and the number of important operations such as exponentia-
tions, scalar multiplications and pairing computations. We summarize the result
in Table 1. we did not include pre-computable operations such as e(P1, P2) in
the number of pairing computations. While the numbers of operations are com-
parable in the three schemes, the signature length of our scheme is much shorter
than those of the previous schemes.

8 Conclusion

We presented a traceable signature scheme based on Strong Diffie-Hellman and
Decision Linear Diffie-Hellman assumptions. The scheme uses bilinear pairings,
and we get a signature under 400 bytes when any of the curves in [6] are used.
We have proved the correctness and security of our scheme.
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Abstract. Ring signatures enable a user to sign a message so that a ring
of possible signers is identified, without revealing exactly which member
of that ring actually generated the signature. This concept has been used
to construct new cryptographic applications, such as designated signa-
tures, concurrent signatures, etc. To avoid being abused, the concept of
linkable ring signatures was introduced. In this concept, when two ring
signatures are produced by the same signer, then anyone can link the
signatures. In this paper, we introduce a new concept called linkable ring
signature with designated linkability that lies between the two. In this
new concept, the ring signatures remain anonymous from the public’s
point of view. However, they can only be linked by a designated party,
whenever necessary. This notion allows the privacy of the signer, but
additionally, it also limits the receiver from being abused. We present a
generic construction for such schemes, and proceed with an instantiation
of our generic construction that is built from the existing linkable ring
signature scheme due to Liu et al.

Keywords: ring signature, linkable ring signature, spontaneous group
signature.

1 Introduction

The ability to communicate anonymously is requisite for any privacy preserving
interactions, in particular in the applications on the Internet era. The are many
cryptographic primitives proposed in the literature for supporting anonymity.
Among these protocols, ring signature [19] is one of the fundamental primitives
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that is promising to solve this problem. Ring signature schemes allow a signer to
generate a signature on behalf of the group of users in such a way that everyone
can be sure that the signature is generated by one of the group members, but
no one can identify who the signer is. Unlike group signature [8], there is no
group manager. Thus the group formation of ring signature is spontaneous, or
setup-free. Moreover, no one is able to revoke anonymity. The privacy is even
stronger than group signature.

However, sometimes too strong anonymity is not suitable for some applica-
tions. For example, ring signatures can be abused as explained in [16]. Liu et al.
addressed this issue by proposing a new notion of linkable ring signature. In this
notion, the identity of the signer in a ring signature remains anonymous, but two
ring signatures can be linked if they are signed by the same signer. Linkable ring
signatures are suitable in many different practical applications, such as e-voting
and e-cash [20]. Original ring signatures cannot be used for e-voting because
any double votes cannot be detected as they are unlinkable. No one is able to
find out whether any two signatures (with two votes) are generated by the same
voter or not. Linkable ring signatures solve this problem by allowing the public
to detect for any signer producing two or more signatures (votes).

Note that linkability is compulsorily embedded into the signature instead
of voluntarily added in linkable ring signatures. If the signer refuses to add
the correct linking information, the whole signature is invalid. In other words,
linkability is enforced by the verifier. The signer cannot decline to do so. This
is different from voluntarily added linkability. In this case, whether allowing the
signature to be linked or not can be decided by the signer. This issue is also
explained in [16].

Since the introduction of linkable ring signature, it remains unknown if the
signers can actually control on who can determine linkability. Conventional link-
able ring signature allows the public to do so and the signers have no control
on it. In some situations, we require the linkability feature to be controllable.
By “controllable”, we mean that the linkability can only be performed by a
designated party, and not by everyone. Consider the following example for this
situation.

We re-consider the scenario of leaking a secret as suggested in [19]. A member
of CIA agents solicits information to the press. To ensure that the information is
valid, the information must satisfy the following conditions: 1) it is signed by a
CIA member (without any necessity to know who the signer is), 2) it is verified
that the signature has been constructed correctly by one of the group member,
and 3) to avoid being abused, the signature can be linked by a designated party
only. In this example, the signature produced by the CIA member must be
verifiable by anyone, but the signature can be linked only by the press media,
to convince the media that the secret is leaked by the same person since the
movement maybe continue from time to time. In this situation, we cannot employ
a group signature, since they require a group manager to do the setup stage and
key distribution. A standard ring signature is also not suitable, since the media
is not able to determine whether a serial of secret information is leaked by the
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same person or not. Unfortunately, we cannot directly employ the notion of
linkable ring signature either, since the linking ability should not be conducted
by anyone, except a designated party (the press media). Otherwise, it gives CIA
more information in finding out the member who leaks the secret many times.
(They may use some non-cryptographic method to do so, if they know that
different secret information is in fact leaked by the same person.)

1.1 Our Contribution

In this paper, we answer the above question affirmatively by proposing the notion
of ring signature with designated linkability. In the new notion, the linkability
feature can only be conducted by a designated party, and we generalize this
by having t-out-of-n users who are designated to link signatures. We present a
generic construction for such schemes, and we proceed with a specific instan-
tiation of the generic construction based on Liu et al.’s linkable ring signature
scheme.

1.2 Related Work

Ring signature was formalized by Rivest et al. [19] in 2001 although the concept
was first suggested by Cramer et al. [13] in 1994. A number of variants were pro-
posed later, including threshold [5,22,17,10], identity-based [23,10,11], constant
size [14], blind ring signature [7] and improved security [4,12].

The notion of linkable ring signature was first proposed by Liu et al. [16] in
2004. Their construction is based on the ring signature scheme by Abe et al. [1].
A separable and threshold linkable ring signature scheme was proposed later on
by Tsang et al. [21]. Separability allows different users to choose their own type
of keys. It also provides a threshold option. Tsang and Wei [20] proposed an-
other scheme on linkable ring signature which achieves a constant size signature
length independent of the number of users involved in the ring. Liu and Wong
[18] proposed an enhanced security model on linkable ring signature scheme.
They also provided two instantiations. Recently, an identity-based linkable ring
signature scheme [2] is proposed, which is based on the strong RSA assumption.

1.3 Paper Organization

The rest of the paper is organized as follows. We specify the security models of
a linkable ring signature scheme with designated linkability in Sec. 2. A generic
construction is then given in Sec. 3. It is followed by a specific instantiation of
the generic scheme in Sec. 4. Finally we conclude the paper in Sec. 5.

2 Security Models

In this section, we give a formal definition of a ring signature scheme with des-
ignated linkability and then specify the security requirements of such a scheme.



Ring Signature with Designated Linkability 107

2.1 Syntax

A (1, n)-linkable ring signature scheme with (t′, n′)-designated linkability is a
quadruple (Gen, Sig, V er, Link) of polynomial-time algorithms. The first two
algorithms are randomized.

Key Generation (x, y) ← Gen(1k) takes a security parameter k ∈ N and
outputs a private key x and a public key y.

Signature Generation σ ← Sig(1k, n, t′, n′, x, L, L′, m) takes security param-
eter k, integers n, t′, n′ ∈ N such that t′ ≤ n′, private key x, an n-element
set L of public keys including the one corresponding to x, an n′-element set
L′ of public keys, and a message m, and outputs a signature σ. Each of n
and n′ are considered to be some polynomial in k.

Signature Verification 1/0 ← V er(1k, n, t′, n′, L, L′, m, σ) is a Boolean algo-
rithm which takes k, n, t′, n′, L, L′, m, (as in Sig) and signature σ, returns
1 or 0 for accept or reject, respectively.

Signature Linking 1/0← Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2) takes se-
curity parameter k, integers n, t′, n′, n-element set L of public keys, n′-
element set L′ of public keys, t′-element set Dt′ of private keys, messages
m1, m2, and signatures σ1, σ2, such that V er(1k, n, t′, n′, L, L′, m1, σ1) = 1
and V er(1k, n, t′, n′, L, L′, m2, σ2) = 1, returns 1 or 0 for linked or unlinked,
respectively.

Signature Correctness. We require that for any message m ∈ {0, 1}∗, any n-
element public key set L that includes the public key corresponding to x, and
any n′-element public key set L′, provided that all keys in L and L′ are generated
by Gen,

V er(1k, n, t′, n′, L, L′, m, Sig(1k, n, t′, n′, x, L, L′, m)) = 1

where 1 ≤ t′ ≤ n′.
Linking Correctness. We require that for any messages m1, m2 ∈ {0, 1}∗, any
n-element public key set L, and any n′-element public key set L′, provided that
all keys are generated by Gen, and any σ1 ← Sig(1k, n, t′, n′, x1, L, L′, m1),
σ2 ← Sig(1k, n, t′, n′, x2, L, L′, m2) such that the corresponding public keys of
x1 and x2 are in L respectively, any t′-element private key set Dt′ such that the
corresponding public keys are in L′,

Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2) =
{

1 if x1 = x2
0 otherwise.

Discussions. In the specification above, n represents the ‘ring’ size of the
ring signature. It corresponds to the set L which contains the signers who can
generate a signature on behalf of the signers in L. n′ is the number of users
in L′ who can determine the linkability of any two signatures generated by
some signer in L. Intuitively, we require that at least t′ users in L′ have to work
jointly in order to determine the linkability. We emphasize on the requirement of
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having a threshold number of users collaborate before being able to determine
the linkability because this feature affects significantly on the privacy of the
signer. This is one of the major differences between the original linkable ring
signature and our notion (with designated linkability). In the original linkable
ring signature, anyone (the public) can determine linkability.

Also note that L and L′ can be chosen independently. The ‘ring’ L can be
entirely different from the group L′ of users who are responsible for determining
linkability. It can also be the case that L and L′ are coupled together. The
relationship between L and L′ should be determined by the target applications.
In our definition above and construction in the later part of this paper, we
consider the general setting of them. This is another major difference between
the original linkable ring signature and ours.

2.2 Security Requirements

The security of a (1, n)-linkable ring signature with (t′, n′)-designated linkability
has three aspects: unforgeability, signer anonymity and linkability.

Unforgeability. Consider a universal set of public keys denoted by U =
{y1, · · · , yN}. Assume that each public key in U is generated by Gen and N
is some polynomial in security parameter k. To capture adaptive chosen mes-
sage attack, we provide the adversary a signing oracle SO. SO(L̂, L̂

′
, t′, m̂)

takes an n-element subset L̂ and an n′-element subset L̂
′

of U , an integer t′

such that 1 ≤ t′ ≤ n′, and message m̂, produces a signature σ̂ such that
V er(1k, n̂, t̂′, n̂′, L̂, L̂

′
, m′, σ′) = 1.

Definition 1 (Existential Unforgeability against Chosen Message and
Public Key Attacks). A (1, n)-linkable ring signature scheme with (t′, n′)-
designated linkability is unforgeable if, for any probabilistic polynomial-time al-
gorithm A with signing oracle SO, it is negligible in k that (L, L′, t′, m, σ) ←
ASO(1k,U) such that V er(1k, n, t′, n′, L, L′, m, σ) = 1, where L, L′ ⊆ U , |L| = n,
|L′| = n′, 1 ≤ t′ ≤ n′, and m ∈ {0, 1}∗. Restriction is that (L, m) should not be
in the set of oracle queries between A and SO.

Signer Anonymity. Our definition is based on an enhanced model for the
original linkable ring signature due to Liu and Wong [18]. When compared with
the original model in [16], their enhanced model allows the adversary to corrupt
ring members (i.e. obtaining their private keys), adaptively obtain signatures
from SO and choose a ring of possible signers to challenge. Below are the details.

Consider an experiment with two stages: choose and guess. In the choose stage,
an adversary A with signing oracle SO chooses two subsets L and L′ of U and a
message m ∈ {0, 1}∗, where L is to define the ring members and L′ is to define
the designated parties for determining linkability. This is denoted by

(L, L′, n, n′, t′, m, State)← ASO(1k,U , choose)

where State is some state information which can be passed to the guess stage,
L, L′ ⊆ U , |L| = n, |L′| = n′, and 1 ≤ t′ ≤ n′. Let L = {yi1 , · · · , yin}. In
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the guess stage, A is given access to not only the signing oracle SO, but also a
corruption oracle CO. CO(π′) takes as input any π′ ∈ {i1, · · · , in} and returns
the private key xπ′ corresponding to the public key yπ′ ∈ L. The objective of A
in the guess stage is to determine the public key in L whose private key is used
to generate a given signature σ which is properly generated with respect to m,
L and L′. This is denoted by

ξ ← ASO,CO(1k, n, t′, n′, L, L′, m, σ, State,U , P rivN−n, guess)

where ξ ∈ {i1, · · · , in} and PrivN−n is the set of private keys corresponding to
the public keys in U \ L. Below is the complete description of the experiment.

Experiment Expanon
A (k, N)

For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips
Set U = {y1, · · · , yN}
(L, L′, n, n′, t′, m, State)← ASO(1k,U , choose)
π

R← {i1, · · · , in}, σ ← Sig(1k, n, t′, n′, xπ, L, L′, m).
ξ ← ASO,CO(1k, n, t′, n′, L, L′, m, σ, State,U , P rivN−n, guess)
If A failed, the experiment halts with failure
If A did not query CO with π then

return 1 if ξ = π, otherwise return 0
Else the experiment halts with failure

An experiment succeeds if it halts with no failure. We denote by

Advanon
A (k, N) = Pr[Expanon

A (k, N) = 1 | Experiment succeeds] − 1
n − t

the advantage of the adversary A in breaking the anonymity of a linkable ring
signature scheme with designated linkability where t is the number of private
keys that A has corrupted using CO.

Definition 2 (Signer Anonymity). A linkable ring signature scheme with
designated linkability is signer anonymous if for any integer N , for any proba-
bilistic polynomial-time adversary A, the function Advanon

A (·, N) is negligible.

Note thatA can obtain signatures for any messages and subgroups of U by query-
ing SO. This also captures an attacking scenario where an adversary may try
to find out the authorship of a signature instance through collecting signatures
generated for different subgroups of U [18].

Designated Linkability. Usually similar approach as above, we specify three
experiments for capturing the following attacks concerning designated linkability:

1. A group member generates two signatures such that Link returns 0.
2. (Framing) After learning some signature and the identity of the group mem-

ber who generates that signature, a different group member generates an-
other signature such that Link returns 1 on these two signatures.

3. A group of parties wants to determine the linkability of two signatures even
when the group does not have enough private keys (i.e. smaller than t′) with
respect to L′.
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The last item above is the only additional requirement when compared with the
security requirements of a conventional linkable ring signature scheme.

Experiment Explink1
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. π ← ASO(1k,U , choose) where π ∈ {1, · · · , N};
4. (L, L′, n, t′, n′, m1, m2, σ1, σ2) ← ASO(1k, xπ ,U , sign)

where L, L′ ⊆ U , |L| = n, |L′| = n′, 1 ≤ t′ ≤ n′, yπ ∈ L, and
V er(1k, n, t′, n′, L, L′, mi, σi) = 1, for i = 1, 2;

5. if (L, L′, t′, mi, σi), i = 1, 2, are not in the set of oracle queries and replies
between A and SO then
return 1− Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2)

where Dt′ is the set of t′ private keys such that the corresponding
public keys are in L′;

6. else the experiment halts with failure.

The experiment above captures Attack 1. The adversary is only given one private
key while it tries to produce two signatures which are determined to be unlinked
by the algorithm Signature Linking.

Experiment Explink2
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. (L, L′, n, t′, n′, π1, m1)← ASO(1k,U , choose1)

where L, L′ ⊆ U , |L| = n, |L′| = n′, yπ1 ∈ L, 1 ≤ t′ ≤ n′;
4. σ1 ← Sig(1k, n, t′, n′, xπ1 , L, L′, m1);
5. π2 ← ASO(1k,U , L, L′, t′, π1, m1, σ1, choose2)

where π2 ∈ L \ {π1};
6. (m2, σ2)← ASO(1k,U , xπ2 , L, L′, π1, m1, σ1, sign)

such that V er(1k, n, t′, n′, L, L′, m2, σ2) = 1;
7. if (L, L′, t′, mi, σi), i = 1, 2, are not in the set of oracle queries and replies

between A and SO then
return Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2)

where Dt′ is the set of t′ private keys such that the corresponding
public keys are in L′;

8. else the experiment halts with failure.

This experiment captures Attack 2. The adversary tries to generate a signature
with a different signer from another one, while the two different signatures are
linked.

Experiment Explink3
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. (L, L′, n, t′, n′, π0, π1, m0, m1)← ASO(1k,U , choose1)

where L, L′ ⊆ U , |L| = n, |L′| = n′, yπ0 , yπ1 ∈ L, 1 ≤ t′ ≤ n′;
4. σ0 ← Sig(1k, n, t′, n′, xπ0 , L, L′, m0);
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5. b
R← {0, 1};

6. σ1 ← Sig(1k, n, t′, n′, xπb
, L, L′, m1);

7. T ← ASO(1k,U , n, t′, n′, L, L′, π0, π1, m0, m1, σ0, σ1, choose2)
where T ⊆ L′ and |T | < t′;

8. b′ ← ASO(1k,U , n, t′, n′, L, L′, π0, π1, m0, m1, σ0, σ1, T,DT )
where b′ ∈ {0, 1} and DT = {xi}i∈T ;

9. if any of (L, L′, t′, mi, σi), i = 0, 1, is in the set of oracle queries and replies
between A and SO, the experiment halts with failure;

10. if b′ = b, return 1; otherwise return 0.

The experiment above captures Attack 3. The adversary is only given strictly
less than t′ private keys of the designated parties. Two signatures are given to
the adversary, with only 1/2 probability that they are linked. The adversary is
to tell whether these two signatures are linked or not.

We denote by

Advlink
A (k, N) = Pr[Explink1

A (k, N) = 1 | Experiment succeeds] +

Pr[Explink2
A (k, N) = 1 | Experiment succeeds] +

(Pr[Explink3
A (k, N) = 1 | Experiment succeeds] − 1/2)

the advantage of the adversary A in breaking the linkability of a linkable ring
signature scheme with designated linkability.

Definition 3 (Designated Linkability). A linkable ring signature scheme has
designated linkability if for any integer N , for any probabilistic polynomial-time
adversary A, the function Advlink

A (·, N) is negligible.

Remark: In the security models of unforgeability and designated linkability
above, the adversaries are not given any access to the corruption oracle. This
essentially follows the original model of unforgeability given by Abe et al. [1] and
the comparable model for linkability of linkable ring signature given by [16,18].
We adopt this weaker model because in our schemes described in the subsequent
sections, we assume the existence of linkable ring signature schemes that are
secure in the sense of those previously proposed models. We leave the security
analysis of our schemes under the stronger model, that is, corruption oracle is
also provided to adversaries in both unforgeability model and the designated
linkability model, as our future work.

3 The Generic Construction

We now propose the generic construction of a (1, n)-ring signature scheme with
(t′, n′)-designated linkability.

3.1 Basic Idea

A conventional linkable ring signature scheme [16,21,20,18] uses an event-based
linking tag in such a way that a signer cannot generate two different tags for
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two different signatures in any particular event. The linking tag is attached to a
signature so that the public can link a signer’s signature with another signature
generated by the same signer by simply examining the value of the associated
tags.

The idea of our generic construction is to adopt the concept of event-based
linking tag but change the method of tag examination so that at least t′ out of
n′ designated users have to work together for doing so.

One obvious approach is to encrypt the linking tag using a threshold encryp-
tion algorithm. However, if we solely use threshold encryption, the signer can
cheat by generating a fake linking tag since no one, except those designated
users can decrypt and verify the validity of the linking tag. The public, however,
cannot do the checking. Note that we still require the validity of the signature
(including the validity of the linkability) to be publicly verifiable. For solving
this problem, we need to do the threshold encryption while at the same time
allowing the public to verify the following:

– the encrypted linking tag can only be decrypted by any t′-subset of a desig-
nated group of n′ users; and

– the actual signer cannot generate fake linking tag.

These requirements can be satisfied by a combined use of some well-studied
techniques in some special way.

3.2 Details

Let θ : E × G1 → G2 be a one-way homomorphic mapping family indexed by
event e ∈ E , where E is the event space and G1, G2 are some groups of the same
order. For any e ∈ E , define θe(s) by θ(e, s). Also define θ−1

e (S) to be s such that
θ(e, s) = S. Assume that it is hard to determine θ−1

e (S) ?= θ−1
e′ (S′), if e and e′

are uniformly chosen at random from E , and for some S, S′ ∈ G2.
For any integers t′, n′ ∈ N such that 1 ≤ t′ ≤ n′, let Λθe

t′,n′ be the share genera-
tion function of a verifiable secret sharing (VSS) scheme [9,15] that takes a secret
s ∈ G1 and produces n′ shares s1, · · · , sn′ (each of them is in G1), S = θe(s),
Ci = θe(si), 1 ≤ i ≤ n′, and some auxiliary information aux1. The VSS scheme
ensures that any t′ of the shares are enough to recover s, but it is computa-
tionally infeasible to recover s if only t′−1 shares or less are known. Let Φθe

t′,n′

be the share verification function of the VSS scheme that takes S, C1, · · · , Cn

and aux, and outputs 1 or 0. If the output is 1, it implies that θ−1
e (S) = s,

and θ−1
e (Ci) = si for i = 1, · · · , n. In other words, this is the verification of

the n shares. Let Constructe be the secret commitment reconstruction function
which takes inputs of any t′ values of Ci’s and aux to reconstruct S. Readers
can consider the underlying VSS scheme to be the one described in [15].

We now start describing the scheme.

1 If the scheme of [15] is used, the auxiliary information aux will be some t′−1 elements
in G2.
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Key Generation. On input a security parameter k ∈ N, the algorithm ran-
domly picks x ∈R G1, and then sets private key to x and public key y := θg(x)
where g ∈ E is a public parameter chosen randomly but fixed throughout the
generation of all the public key pairs used in the system.

Signature Generation. We use Enci(m) to denote the public key encryption
function of a designated user (indexed by) i in L′ on a plaintext m, and use
LRingxπ,L,e′(m) to denote a linkable ring signature signing function which takes
a private key xπ and a set L of public keys with an event identity e′ ∈ E on
message m, and generates a linkable ring signature with a linking tag θe′(xπ)
(to be precise, it takes the first component of xπ only). Let LRingVerL,e′(m, σ′)
be the corresponding linkable ring signature verification function which outputs
1 if the signature σ′ is a valid with respect to m and L.

Let H : {0, 1}∗ → E be a hash function. For security analysis, we consider H
to behave as a random oracle [3]. The signature generation algorithm on message
m is described as follows:

1. Set e ← H(L) and call it the real event identity.
2. Randomly choose a virtual event identity e′ ∈R E such that e′ �= e, and

compute a virtual linking tag ỹ′ ← θe′(xπ).
3. Compute shares and associated information using the VSS scheme

(xπ(1), · · · , xπ(n′), S, C1, · · · , Cn′ , aux)← Λ
θe′
t′,n′(xπ),

where S = θe′(xπ) and Ci = θe′(xπ(i)), 1 ≤ i ≤ n′. Since S = ỹ′, we replace
the occurrence of S with ỹ′ in the rest of the scheme.

4. Compute ciphertext Ei = Enci(θe(xπ(i))), for 1 ≤ i ≤ n′. Note that we use
the real event identity e here.

5. Construct a non-interactive Proof-of-Knowledge (PoK) to show that all Ei

and Ci are formed correctly, for 1 ≤ i ≤ n′, that is,

PK{αi : Ei = Enci(θe(αi)) ∧ Ci = θe′(αi)}(m)

(For the notation of the proof-of-knowledge protocol, we refer readers to [6]).
6. Compute a linkable ring signature σ′ ← LRingxπ,L,e′(m‖Trans) where

Trans is the non-interactive PoK in Step (5). Note that we use the virtual
event identity e′ here and therefore the linking tag of σ′ is ỹ′.

The signature is σ(m) = (e′, σ′, ỹ′, E1, C1, · · · , En′ , Cn′ , aux, T rans).

Signature Verification. Given a list of public keys L and a signature σ(m)
for message m in the format above, one can verify the signature as follows:

1. Verify if LRingVerL,e′(m‖Trans, σ′) = 1.
2. Verify if Trans is valid with respect to the non-interactive PoK as con-

structed in Step 5 of the signature generation above.
3. Verify if Φ

θe′
t′,n′(ỹ′, C1, · · · , Cn′ , aux) = 1.

4. Output accept if all verifications above are passed. Otherwise, output reject.
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Signature Linking. To link two signatures, for each of the signatures, any
t′ of the n′ verifiers corresponding to the public keys in L′ first decrypt their
corresponding ciphertexts Ei to obtain θe(xπ(i)) and work together to reconstruct
the linking tag θe(xπ) by applying Constructe on θe(xπ(i))’s. If the linkable
tags of the two signatures are the same, these verifiers will conclude that these
signatures are generated by the same signer.

3.3 Security Analysis

Theorem 1. The scheme proposed above satisfies the security requirements
specified in Sec. 2.2 under the random oracle model [3] if the underlying linkable
ring signature scheme LRing is unforgeable under the model of [1] and signer
anonymous under the corresponding model of [18].

Proof. (Sketch) We show its security in three aspects, namely Unforgeability,
Signer Anonymity and Designated Linkability.

Unforgeability. It follows directly from the unforgeability of the underlying
linkable ring signature scheme LRing under the model of [1]. The reason is that in
Def. 1, the adversary is at most as powerful as the adversary in the unforgeability
model defined by Abe et al. in [1]. The designated linkable ring signature scheme
proposed above is therefore also unforgeable as it contains the linkable ring
signature σ′ generated by LRing as part of the signature.

Signer Anonymity. We argue signer anonymity part by part. The signature is
σ(m) = (e′, σ′, ỹ′, E1, C1, · · · , En′ , Cn′ , aux, T rans). e′ is uniformly distributed
over E . σ′ is the signature generated by LRing which is signer anonymous under
the model of [18], and the adversary in experiment Expanon

A is at most as
powerful as that in the corresponding model of [18]. We remain to analyze the
remaining parts.

According to the configuration of experiment Expanon
A , without loss of gener-

ality, the adversary can obtain all the t′ (or even n′) private keys corresponding
to the designated parties for determining linkability, as long as the actual signer’s
private key xπ is not corrupted. In other words, the adversary is able to obtain
θe(x′) from {Ei}1≤i≤n′ , and θe′ (x′′) from {Ci}1≤i≤n′ , where e = H(L) while e′ is
uniformly chosen at random from E by the actual signer. Under the assumptions
that H behaves as a random function [3] and it is hard to determine if x′ ?= x′′

from θe(x′) and θe′(x′′) (Sec. 3.2). Thus the signature is signer anonymous.
Note that A is able to tell whether user i is the actual signer, by testing

whether ỹ′ ?= θe′(xi) if it has the private key xi. That is why we need to exclude
those t possibility in our definition of signer anonymity.

Designated Linkability. According to the definition in Sec. 2.2, we investigate
the security of our scheme in three experiments: Explink1

A , Explink2
A and Explink3

A .
In Explink1

A , the adversary A is given only one private key xπ . It tries to
produce two valid signatures such that they are unlinked.
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Let σ(i)(m(i)) = (e′(i), σ
′
(i), ỹ

′
(i), E(i), C(i), ·) for i = 1, 2 be two valid signatures

generated by A such that they are unlinked. Let t(i) be the reconstructed linking
tag after decrypting the ciphertext components E(i)’s from σ(i), for i = 1, 2.
Since both signatures are unlinked, it implies that

t(1) �= t(2) (1)

According to the non-interactive PoK in Step (5) of the signature generation
algorithm and the correctness of the underlying VSS, we have

t(i) = θe(xπi), i = 1, 2. (2)

and
ỹ′
(i) = θe′

(i)
(xπi), i = 1, 2. (3)

for some private keys xπ1 and xπ2 whose public keys are included in L. Since θ
is a deterministic function, from equation (1) and (2), we have

xπ1 �= xπ2 (4)

From equation (3) and (4), we have

θ−1
e′
(1)

(ỹ′
(1)) �= θ−1

e′
(2)

(ỹ′
(2)). (5)

ỹ′
(1) and ỹ′

(2) are the linking tag of the underlying linkable ring signature σ′
(1) and

σ′
(2) respectively. From equation (5), it implies that the linkability security of the

underlying linkable ring signature scheme is broken, since the adversary is only
given one private key. Note that it is obvious that ỹ′(1) �= ỹ′

(2) since e′(1) �= e′(2).
However, a secure linkable ring signature scheme requires that the inverse of
linking tag ỹ′(i), that is, θ−1

e′
(i)

(ỹ′
(i)) should be the same as that for signature σ′

(i),

i ∈ Z, generated by a single private key.

In Explink2
A , the adversary A is given a signature σ(1) generated by a private

key xπ1 and then a private key xπ2 such that xπ1 �= xπ2 . It tries to produce a
valid signature σ(2) such that the two signatures are linked.

Assume it succeeds with non-negligible probability. We try to derive a contra-
diction to the fact that the adversary knows only one private key xπ2 which is
equal to xπ1 . Let t(i) be the reconstructed linking tag by decrypting the cipher-
text from σ(i), for i = 1, 2. Since σ(1) is generated according to the algorithm,
we have

t(1) = θe(xπ1) (6)

Since both signatures are linked,

t(1) = t(2) (7)

As σ(2) is a valid signature, using the above argument,

θ−1
e (t(2)) = x (8)
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for some private key x whose public key is included in L. On the other side, we
have

θe(x1) �= . . . θe(xπ1−1) �= θe(xπ1+1) �= . . . �= θe(xn) �= t(1) (9)

From equation (8) and (9), we have

x = xπ1 (10)

That is, xπ1 = xπ2 .

In Explink3
A , A is given two signatures and strictly less than t′ private keys

of the designated parties. It tries to tell whether two signatures are generated
by the same signer or not, given that exactly half of the chance that the two
signatures are linked.

Assume the underlying encryption scheme is secure. A cannot decrypt t′ or
more ciphertext and reconstruct θe(xπ) in both signatures. Obviously, ỹ′

(1) �= ỹ′
(2)

since e′(1) �= e′(2). In addition, A cannot tell whether θ−1
e′
(1)

(ỹ′
(1))

?= θ−1
e′
(2)

(ỹ′
(2)). ỹ′

(1)

and ỹ′
(2) are indistinguishable to A. The underlying linkable ring signatures σ′

(1)
and σ′

(2) do not help either, since they are generated using different virtual
events e′(1) and e′(2). Thus A needs to do a wild guess. The successful probability
is negligibly greater than 1/2. �	

4 A Specific Instantiation of Our Proposed Scheme

In this section, we give a concrete instantiation of the generic construction pro-
posed above. The underlying linkable ring signature scheme is due to Liu et al.
[16].

Let G = 〈g〉 be a group of prime order q such that the underlying discrete
logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G be
some statistically independent cryptographic hash functions. We require that for
any α ∈ {0, 1}∗, the discrete logarithm of H2(α) to the base g in G is intractable.
For i = 1, · · · , n, each user i has a distinct public key yi and a private key xi

such that yi = gxi. Let L = {y1, · · · , yn} be the set of the n public keys of the
ring included in the signature. For j = 1, · · · , n′, each user j has a distinct public
key y′

i and a private key x′
i such that y′

i = gx′
i . All the private keys in the system

are assumed to be chosen uniformly at random over Zq. Let L′ = {y′
1, · · · , y′

n′}
be the set of the n′ public keys of the designated linkers (that is, any t′ of them
can determine the linkability of signatures with respect to L′.)

Signature Generation. For some message m ∈ {0, 1}∗, a user (signer) indexed
by π, where 1 ≤ π ≤ n, uses his private key xπ and generates a (1, n)-ring
signature with (t′, n′)-designated linkability, with respect to L as follows.

1. Compute the real event identity e = H2(L) and ỹ = exπ .
2. Pick uniformly at random a virtual event identity e′ ∈R G and compute a

virtual linking tag ỹ′ = (e′)xπ .
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3. Randomly generate a polynomial f(x) =
∑t′−1

�=0 a�x
� of degree (t′ − 1) over

Zq such that f(0) = xπ (that is, a0 = xπ). Compute xπ(j) = f(j), for
j = 1, . . . , n′.

4. For j = 1, . . . , n′, generate an ElGamal Encryption on plaintext exπ(j) . That
is, compute the ciphertext (Aj , Bj) = (grj , y

rj

i exπ(j)) for some random rj ∈R

Zq.
5. For j = 1, . . . , n′, compute Cj = (e′)xπ(j) . For 
 = 1, · · · , t′ − 1, compute

α� = (e′)a� where a� is the coefficient of the polynomial f . Let aux =
α1‖ · · · ‖αt′−1.

6. For j = 1, . . . , n′, construct a non-interactive proof-of-knowledge (PoK) on
message m as follows:

PK{(λj , βj)1≤j≤n′ : Aj = gλj ∧Bj = (yj)λj eβj ∧ Cj = (e′)βj}(m)

Let T be the concatenation of this non-interactive PoK and (L′, A1, B1, C1,
. . . , An′ , Bn′ , Cn′ , aux).

7. (Generate the signature) Pick uniformly at random u ∈R Zq, and compute

cπ+1 = H1(L, T , ỹ′, m, gu, (e′)u).

8. For i = π+1, · · · , n, 1, · · · , π−1, pick si ∈R Zq and compute

ci+1 = H1(L, T , ỹ′, m, gsiyci

i , (e′)si(ỹ′)ci).

9. Compute sπ = u− xπcπ mod q.

The signature is σL(m) = (e′, c1, s1, s2, · · · , sn, ỹ′, T ).

Signature Verification. On input a set of public keys L, a message m and a
signature σL(m) = (e′, c1, s1, s2, · · · , sn, ỹ′, T ), the algorithm proceeds as follows.

1. For i = 1, · · · , n, compute z′i = gsiyci

i , z′′i = (e′)si(ỹ′)ci and then ci+1 =
H1(L, T , ỹ′, m, z′i, z

′′
i ) if i �= n.

2. Check whether c1
?= H1(L, T , ỹ′, m, z′n, z′′n). If not, reject.

3. (Verify the encryption) Compute e = H2(L) and verify the non-interactive
PoK on T . If it is not valid, reject.

4. (Verify the secret-sharing) For j = 1, . . . , n′, check whether

Cj
?= ỹ′

t′−1∏
�=1

(α�)j�

If all pass, output accept. Otherwise, output reject.

Signatures Linking. In order to link two signatures (corresponding to the
same L), any t′ out of n′ users decrypt their corresponding ciphertext (Aj , Bj),
for j = 1, . . . , t′, to obtain hxπ(j) and work together to reconstruct hxπ , which is
the linking tag. If the linkable tag of any two signatures are the same, they are
considered to be linked.
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5 Conclusion

In this paper, we proposed a new concept called ring signature with designated
linkability. The term “designated linkability” refers to a designated party who
can link the ring signatures whenever required. In this paper, we generalize this
concept by allowing the designated party to be a t-out-of-n recipients of the ring
signatures. We presented a generic construction of such schemes, and proceed
with an instantiation of our generic construction based on Liu et al. linkable ring
signature scheme.
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Abstract. The main advantage of ring signatures is to ensure anonymity
in ad hoc groups. However, since a group manager is not present in ad hoc
groups, there is no existing way to identify the signer who is responsible
for or benefit from a disputed ring signature. In this paper, we address this
issue by formalizing the notion of ad hoc group signature. This new notion
bridges the gap between the ring signature and group signature schemes. It
enjoys the same advantage of ring signatures to provide anonymity whilst
not requiring any group manager. Furthermore, it allows a member in an
ad hoc group to provably claim that it has (not) issued the anonymous sig-
nature on behalf of the group. We propose the first construction of ad hoc
group signatures that is provably secure in the random oracle model under
the Strong RSA assumption. Our proposal is very simple and additionally,
it produces a constant size signature length and requires constant modular
exponentiations. This is to ensure that our scheme is very practical for ad
hoc applications where a centralized group manager is not present.

1 Introduction

Anonymity has been a main concern in cryptography for years. Group signatures
and ring signatures are the most popular notions for providing anonymity.

1.1 Group Signatures

In a group signature, any group member is allowed to anonymously generate
signatures on behalf of the group. In case of dispute, a trusted group manager
can open the group signature to trace the true signer. Group signatures were first
introduced and implemented by Chaum and van Heyst [8]. The state-of-the-art
group signature is the notion of traceable signature [16] which enjoys better
traceability: (1) Tracing a given user can be applied to all signatures by agents
running in parallel; (2) The signer can provably claim a given group signature
that it has signed. Currently, the most efficient group signatures are due to [5]
in the random oracle model and [1, 6] in the standard model.
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Ateniese and Medeiros proposed an efficient group signature scheme [2] that
is without trapdoor in the sense that, the system trapdoor is only used during
the initialization to generate system parameters. The advantage of this property
is that the same trapdoor information can be used to initiate different groups.
In [20], Tsudik and Xu proposed a group signature initiated with an RSA integer
N whose factorization is unknown for none of parties. In [11], Dodis et al. also
exploited such an RSA integer to setup their system. In this paper, we use the
similar idea to make the system available for more applications.

1.2 Ring Signatures

A ring signature is an alternative mean to achieve anonymity for ad hoc groups
without any trusted manager. It is used to convince any third party that at
least one member in an ad hoc group has indeed issued the signature on behalf
of the group. Since its introduction in [19], the notion of ring signatures has
attracted a lot of attention [11, 17, 21, 22]. There are some natural extensions
such as threshold ring signatures and linkable/unlinkable ring signatures. In
(t, n)-threshold ring signatures, the generation of a ring signature requires the
involvement of at least t of n members, and yet the signature reveals nothing
about the identities of the signers [22]. Linkable ring signatures [17] allow anyone
to determine whether two signatures are signed by the same member. If a user
signs only once on behalf of a group, the user still enjoys anonymity similar to
that in conventional ring signatures.

The notion of ring signatures is attractive due to the following properties:
(1) Set-up free. Ring signatures require no managers to initialize the system.
All signers publish their public keys to form a public-key list and, any player
wishing to generate a ring signature later appends its own public key to the list
and can generate a valid ring signature. (2) Cooperation-free. It refers to the
capability of having a ring member to produce a ring signature for any message
independently. Hence, a ring signature requires no interactions or cooperations
among ring members provided that all the members’ public keys are known.

While having a simple group formation set up as an advantage, the size of
ring signatures linearly depends on the group size, as the verifier needs to know
at least the group description. However, as remarked in [11], in many scenarios,
the group does not change for a long time. Hence, an appropriate measurement
of ring signature complexity does not need to include the cost to describe the
group. All the early constructions of ring signatures suffer from linearly increas-
ing complexity related to the number of group members. Subsequent results
incorporating techniques from cryptographic accumulators have successfully re-
duced the size of a ring signature. The state-of-the-art ring signatures enjoying
a constant cost independent of group size have been proposed in [11, 21].

1.3 Motivations

While achieving privacy without any group manager is an advantage, in case
of dispute, the originator of ring signatures cannot be identified due to the ab-
sence of a group manager for revoking anonymity. Furthermore, for most existing
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schemes, the anonymity is unconditional in the sense that, given the secret keys
of all the possible signers, one can not determine the true signer of a ring signa-
ture. Such perfect privacy comes at a price. Consider the following scenarios.

(1) Untraceable criminal.A policeman detects a ring signature involving a se-
rious crime and submits the signature to a judge as a witness. However, even if
the judge forces all the ring members to show their secret key, it cannot determine
who the criminal is. Then, what decision should the judge make and who will be
responsible for the crime? Indeed, perfect privacy implies perfect crime.

(2) Dilemma of lottery players. Lottery players tend to require anonymity
protection for fear of blackmail in case of winning the giant prize, while trust
no third party for fear that the party may leak their identities. Hence, it seems
that ring signatures enjoying unconditional anonymity is very applicable to such
applications by signing the lottery numbers. However, when the winning lottery
number is selected, the unlucky winner who luckily chose the winning number
cannot prove that it is the true winner even if it exposes its private signing key!

The two scenarios show that unconditional privacy seems to be an attractive
notion from the user’s view point, nevertheless it can potentially be a very trou-
blesome tool against public safety and can even be abused against the user itself.
In the first case, we need the security property that any innocent group member
can prove that it did not generate a given anonymous signature without the
help of a group manager or leaking its private key. If a ring signature scheme is
deniable in the sense that a non-signer group member can disavow a given ring
signature, then it can prevent criminals maliciously from abusing anonymity of
ring signatures. Due to the ad hoc property of ring signatures, such a denying
functionality is indeed essential to make ring signature practical for some appli-
cations. In the second case, we need the security that the true signer can prove
that it did generate a given anonymous signature without the help of a group
manger or leaking its private key.

Theoretically, the second property is implied by the first property since all the
group members except the true signer can deny the signature and the true signer is
identified. However, from the viewpoint of applications, such a traceability derived
from denying functionality is useless as it requires all the other group members to
cooperate to trace the true signer. On the one hand, the ad hoc group may be too
large to enable all the group members to deny one by one. On the other hand, the
group members may refuse to deny the signature if they are not the true signer,
for example the losers in the lotteries system. Hence, it is useful to integrate such
self-traceability into ring signatures in practice and bridge the gap between ring
signatures and group signatures, so that it can enjoy the advantages of both ad
hoc property of ring signatures and traceability of group signatures.

1.4 Contributions

The main contributions in this paper include a more general mathematical
model, a new functional notion of ad hoc group signatures, practical imple-
mentations, and their applications.
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Collision quasi-resistant accumulator. In previous models (e.g., [11, 20]),
only primes and RSA integers are allowed to be accumulated. The extension al-
lows to accumulate any integers. We also notice that in several previous
accumulator-based group/ring signatures, random values were obliviously ac-
cumulated but not covered in their models. The extension captures and fixes
this discordance between the general model and its concrete implementations.

Ad hoc group signatures. The new notion has the same advantages of ring sig-
natures, i.e, setup free and cooperation free, except the unconditional anonymity
(else it contradicts to the traceability of group signatures). Furthermore, it en-
ables a group member to provably claim that a given signature was generated
by it or not. It addresses the ownership dispute in case of emergency and pro-
vides a general fair mechanism of privacy for self-organized groups. By dic-
ing the anonymity-revoking functionality of group signatures to the distributed
members, rather than a centralized manager, the new notion provides a generic
technique to remove the trusted third party such as a group manager from the
privacy systems. It enjoys more flexibility and practicality.

Practical instantiations of ad hoc group signatures. Efficient implemen-
tations are proposed with provable security in the random oracle model under
the standard Strong RSA assumption and the Decisional Factorization Diffie-
Hellman assumption. After the group key is pre-computed, only several (less
than 10) modular exponentiations are required to generate or verify the signa-
ture and the tracing arguments. The signature and the tracing argument are
both about 4 standard RSA signatures in length. It outperforms the state-of-
the-art ring signatures due to Dodis et al. [11]. We show efficient applications of
the proposed schemes to electronic lotteries, where a player can prove that it is
the winner without a third party. The schemes are simple and practical.

Organization of the Paper. The remaining of the paper is organized as fol-
lows. The new notion of ad hoc signatures and its security are formalized in
Section 2. In Section 3, we provide some preliminaries, including the complexity
assumption and the underlying mathematical model. Section 4 proposes practical
ad hoc signature schemes and details their security and performance. We show
some potential applications of self-traceable signatures to electronic lotteries in
Section 5, followed by the conclusion in the last section.

2 Definition of Ad Hoc Group Signatures

An ad hoc group signature scheme is a tuple of nine procedures AHGS=(PG,
MG, GG, Sig, SV, Own, OV, Dny, DV).

– Y ← PG(1λ) is a probabilistic polynomial-time (PPT) algorithm which, on
input a security parameter λ, outputs a public description of the system
including system-wide parameters such as collision-resistant hash functions.

– (ski, pki)← MG(1λ) is a PPT algorithm which, on input a security parameter
λ, outputs a secret/public key pair (ski, pki). We denote by SK and PK the
list of possible secret keys and public keys, respectively.
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– y ← GG(Y, PK) is a PPT algorithm which, on input the output Y ← PG(1λ)
and all the possible public keys PK of ad hoc group members, outputs y as
the public key of the ad hoc group.

– σ ← SigAHGS
ski

(m) is a PPT algorithm which, on input a secret key ski and
message m, produces a signature σ on m.

– 1/0← SVAHGS(σ, m, y) is a deterministic polynomial-time algorithm which,
on input the ad hoc group public key y and a message-signature pair (m, σ),
returns 1 or 0 for Valid or Invalid, respectively.

– σ̇ ← OwnAHGS
ski

(σ, m) is a PPT algorithm which, on input a secret key ski

and a message-signature pair (m, σ), produces an ownership witness σ̇.
– 1/0 ← OVAHGS(σ, m, σ̇, y) is a polynomial-time algorithm which, on input

y, a message-signature pair (m, σ) and an ownership witness σ̇, returns 1 or
0 for Yes or Failure, respectively representing that member i is the author
of (m, σ) and there is a failure.

– σ̈ ← DnyAHGS
ski

(σ, m) is a PPT algorithm which, on input a secret key ski

and a message-signature pair (m, σ), outputs a denying witness σ̈.
– 1/0 ← DVAHGS(σ, m, σ̈, y) is a polynomial-time algorithm which, on input

the ad hoc group public key y, a message-signature pair (m, σ) and an deny-
ing witness σ̈, returns 1 or 0 for Not or Failure, respectively representing
that member i is not the author of (m, σ) and there is a failure.

Remark 1. Generally speaking, the ability of an ad hoc group member to prov-
ably claim the ownership of an ad hoc group signature does not imply it can
provably claim an ad hoc group signature was not generated by a particular
group member even if it really did not produce the signature. On the contrary,
the ability to provide the disavowal witness may imply the ability to provide
ownership witness. However, such a signer tracing procedure is impractical since
the non-signers may refuse to deny the ownership of signatures or the group is
too large to enable the non-signers to deny one by one. So we capture these
different functionalities by respective definitions.

2.1 Model of Adversaries

We model the behaviors of adversary Ad with a series of queries to a challenger
CH, who controls all the communication channels of Ad and will validly answer
all the necessary queries from Ad.

– Qran. Ad queries with its chosen string and CH returns a random string. It
is the standard random oracle query.

– Qpub. Ad queries for the public parameters of the system and CH returns
the string < λ,Y, PK, y >. This allows Ad to learn the public information
of the system, i.e., the number of users and the public-key information.

– Qjoin. Ad runs (skj , pkj) ← MG(1λ) and queries with (skj , pkj). CH checks
whether (skj , pkj) is a valid key pair. If not, it returns null. Else, it adds pkj

to the public key list. Then, it returns the updated < λ,Y, PK, y > to Ad
and update the corresponding local records of the system. This query action
allows Ad to introduce a new user to the system.
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– Qskey . Ad queries with pki ∈ PK. CH checks whether pki ∈ PK. If not,
it returns null. Else, it returns ski corresponding to pki ∈ PK. This query
action allows Ad to corrupt the group members.

– Qsign. Ad queries with its chosen message m. CH returns an ad hoc group
signature σ on m such that SVAHGS(σ, m, y) = 1, where σ ← SigAHGS

ski
(m)

with ski corresponding to a random pki ∈ PK. This query action allows Ad
to get valid ad hoc group signatures.

– Qlink. Ad queries with two message-signature pairs (m, σ) and (m′, σ′), where
SVAHGS(σ, m, y) = 1 and SVAHGS(σ′, m′, y) = 1. CH returns 1/0 represent-
ing the fact that σ and σ′ were generated with the same secret key or not.
This query action allows Ad to learn the relation between signatures.

– Qtrace. Ad queries with a message-signature pair (m, σ) and an integer j
satisfying pkj ∈ PK. CH returns σ̇ ← OwnAHGS

skj
(σ, m) if σ ← SigAHGS

ski
(m)

and i = j, or σ̈ ← DnyAHGS
skj

(σ, m) if i �= j. This query action allows Ad to
learn the relation between signatures and signers.

2.2 Security Properties of Ad Hoc Group Signatures

We proceed to characterize the various security properties that an ad hoc group
signature scheme should satisfy. These properties except the correctness are de-
fined via a series of two-stage experiments Exp.

Definition 1. (Correctness.) An AHGS is correct if, for any λ, I = poly(λ) ∈
N, i �= j ∈ {1, · · · , I}, Y ← PG(1λ), (ski, pki) ← MG(1λ), PK = {pk1, · · · , pkI},
y ← GG(Y, PK), m ← {0, 1}∗, σ ← SigAHGS

ski
(m), σ̇ ← OwnRS

ski
(σ, m), σ̈ ←

DnyAHGS
skj

(σ, m), it holds that SVAHGS(σ, m, y) = 1, OVAHGS(σ, m, σ̇, y) = 1, and
DVAHGS(σ, m, σ̈, y) = 1 except a negligible probability in λ.

Definition 2. (Unforgeability.) In the first stage, CH initializes the game by
running Y ← PG(1λ), (ski, pki) ← MG(1λ) and y ← GG(Y, PK). Then, Ad is
allowed to ask all the above queries (in an adaptive fashion). At the end of the
first stage, Ad is required to choose a public list PK and a message m, where
Qskey(pk) for any pk ∈ PK has never been queried. In the second stage, Ad is
also allowed to ask all the above queries (in an adaptive fashion) except Qskey.
At the end of the second stage, Ad is required to forge a string σ̃ satisfying: (1)
Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. If Ad completes the
experiment, Exp = 1. Else, Exp = 0. An AHGS scheme is unforgeable if for any
PPT Ad, Pr[ExpAd

Unf (λ) = 1] < ε(λ), where ε(λ) is a negligible function in λ.

Definition 3. (Anonymity.) The first stage is the same as that of the Un-
forgeability game. At the end of the first stage, CH sends Ad two public keys
pki0 , pki1 ∈ PK and Ad is required to choose a message m, where Qskey(pk) for
any pk ∈ PK has never been queried. Then CH tosses a fair coin b ← {0, 1}
and sends σib

← SigAHGS
skib

(m) to Ad. In the second stage, Ad is also allowed to
ask all the above queries (in an adaptive fashion) except Qtrace(σib

), Qskey(pki0),
Qskey(pki1) and Qlink(σib

, σ′) for any valid signature σ′. At the end of the second
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stage, Ad is required to output a bit b̂. If b̂ = b, Exp = 1. Else, Exp = 0. An AHGS
scheme is anonymous if for any PPT Ad, |Pr[ExpAd

Anon(λ) = 1]− 1/2| < ε(λ).

Definition 4. (Self-traceability.) It is defined by the following three two-stage
experiments Exp.

Experiment 1. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m and a public
key list PK = PKi ∪ PKj, where Qskey(pk) for any pk ∈ PKi has never been
queried while Qskey(pk) for any pk ∈ PKj has been queried. Then, CH sends
σ ← SigAHGS

ski
(m) to Ad, where ski corresponds to pki ∈ PKi. In the second

stage, Ad is also allowed to ask all the above queries except Qskey(pk) for any
pk ∈ PKi, Qtrace(σ, m) and Qlink(σ, m; σ′, m′), where SVAHGS(σ′, m′, y) = 1.
At the end of the second stage, Ad is required to output a string ˙̃σ such that
OVAHGS(σ, m, ˙̃σ, y) = 1. If Ad completes the experiment, Exp = 1. Else, Exp = 0.

Experiment 2. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m, a public key
list PK = PKi∪PKj, where Qskey(pk) for any pk ∈ PKi has never been queried
while Qskey(pk) for any pk ∈ PKj has been queried, and a string σ̃ satisfying:
(1) Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. In the second
stage, Ad is also allowed to ask all the above queries except Qskey(pk) for any
pk ∈ PKi, Qtrace(σ̃, m) and Qlink(σ̃, m; σ′, m′), where SVAHGS(σ′, m′, y) = 1.
At the end of the second stage, Ad is required to output a string ¨̃σ such that
DVAHGS(σ, m, ¨̃σ, y) = 1. If Ad completes the experiment, Exp = 1. Else, Exp = 0.

Experiment 3. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m, a public
key list PK = PKi ∪ PKj, where Qskey(pk) for any pk ∈ PKi has never been
queried while Qskey(pk) for any pk ∈ PKj has been queried, and a string σ̃
satisfying: (1)Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. In
the second stage, Ad is also allowed to ask all the above queries (in an adaptive
fashion). At the end of the second stage, Ad is required to output a secret key
ski corresponding to a public key pki ∈ PKi, and a string ¨̃σ ← DnyAHGS

ski
(σ̃, m)

it holds that DVAHGS(σ̃, m, ¨̃σ, y) = 0. If Ad completes the experiment, Exp = 1.
Else, Exp = 0.

An AHGS is self-traceable if for any PPT Ad, Pr[ExpAd
Trace(λ) = 1] < ε(λ).

Definition 5. (Unlinkability.) The first stage is the same as that of the Un-
forgeability game. At the end of the first stage, Ad is required to choose two
messages m, m′ and two public keys pki0 , pki1 ∈ PK, where Qskey(pki0) and
Qskey(pki1) have never been queried. Then CH tosses two fair coins b, b̃← {0, 1}.
CH sends σib

← SigAHGS
skib

(m) and σib̃
← SigAHGS

ski
b̃

(m) to Ad. In the second

stage, Ad is also allowed to ask all the above queries except Qlink(σib
, m; σib̃

, m′),
Qtrace(σib

, m), Qtrace(σib̃
, m′), Qskey(pki0), Qskey(pki1). At the end of the sec-

ond stage, Ad is required to output a bit b̂. If b̂ = b⊕ b̃, Exp = 1. Else, Exp = 0.
An AHGS is unlinkable if for any PPT Ad, |Pr[ExpAd

Unl(λ) = 1]− 1/2| < ε(λ).
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3 Mathematical Aspects

3.1 Complexity Assumptions

In this section we review the strong RSA assumption [3, 12] and suggest some
useful related extensions. A number N is an RSA integer if N=PQ where P and
Q are safe primes: P=2P ′+1, Q=2Q′+1, where both P ′ and Q′ are prime. Let
RSAλ be the set of RSA integers of size λ, QRN the set of quadratic residues.

Strong RSA Assumption [3, 12]. Given λ, a proper group G with unknown
order, for any PPT attacker A:

Pr[z ← G; (u, x)← A(1λ, G, z) : x �= ±1 ∧ ux = z] ≤ ε(λ).

Strong RSA-DLP Assumption. Given λ, an order-unknown group G where
Strong RSA holds, for any PPT attacker A:

Pr[g ← G; (u, x, y)← A(1λ, G, g) : ux = gy ∧ x �= 0 ∧ x � y] ≤ ε(λ).

Lemma 1. The Strong RSA and the Strong RSA-DLP are equivalent.

Proof. Clearly, any algorithm to solve the Strong RSA assumption can be trans-
formed to solve the Strong RSA-DLP Assumption. We prove that an algorithm
Ad can also be transformed to solve the Strong RSA assumption.

Given any Strong RSA challenge (z, G), one runs Ad and obtains (u, x, y) such
that x �= 0, 1,−1, ux = zy. Note that x � y. Let δ = gcd(x, y). Then 1 < δ < x
and x/δ > 1. From the extended Euclid algorithm, one finds α, β such that
δ = xα + yβ. It follows that z = zxα/δ+yβ/δ = (zα)x/δuxβ/δ = (zαuβ)x/δ. Notice
x/δ > 1. One finds a solution (zαuβ, x/δ) to the Strong RSA challenge (z, G).
The transformation is clearly polynomial in λ.

In our security proofs, we will use the following candidate (weak) Decisional Fac-
torization Diffie-Hellman (DFDH) assumption. Coarsely speaking, given g, h in
a proper group G with unknown order and two RSA integers n0, n1, it is difficult
to decide logg h is a non-trivial factor of n0 or n1. Intuitively, as the factorization
problem of RSA integers and the discrete logarithm problem in proper groups
are widely believed difficult, it will be difficult to determine whether the two
problems have the same solution. This assumption is not completely new. It
was implicitly used before without specification [8]. However, to the best of our
knowledge, there is no known efficient algorithm to reduce the DFDH problem
to other widely-believed difficult problems to date. So we will specify it as a new
candidate assumption and use it in our proofs.

DFDH Assumption. Given secure parameters λ, a proper group G with un-
known order, for any PPT attacker A:

Pr
[

n0 = p0q0 ← RSAλ, p1 ← Z2|p0|

g ← G, b← {0, 1}, h = gpb

∣∣∣∣ b′ ← A(1λ, G, n0, g, h)
∧b′ = b

]
≤ ε(λ).
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Note that p1 is a random integer in the same size |p0| of prime p0. To make the
DFDH assumption hold, G must be chosen properly with unknown order to the
attacker, for instance, the additive group of the points of elliptic curves over ring
ZN , where N ← RSAλ [14]. However, we stress that one cannot directly use Z∗

N

as G with unknown order since in this case, the Jacobi symbols of ggp0 = gp0+1

ggp1 = gp1+1 are distinguishable for prime p0 and random integer p1. To cover
such groups G, we slightly weaken the DFDH as follows.

Weak DFDH Assumption. Given secure parameters λ, a proper group G
with unknown order, for any PPT attacker A:

Pr
[

n0 = p0q0, n1 = p1q1 ← RSAλ

g ← G, b← {0, 1}, h = gpb

∣∣∣∣ b′ ← A(1λ, G, n0, n1, g, h)
∧b′ = b

]
≤ ε(λ).

3.2 Accumulators

An accumulator scheme, introduced in [4] and further developed in [3,11], allows
aggregation of a large set of inputs into one constant-size value while keeping
some useful property of the inputs. It has been shown as a powerful tool for
efficiently constructing group signatures and ring signatures. We extend the no-
tations to accumulate random strings.

An accumulator family is a pair ({Fλ∈N}, {Xλ∈N}) where Fλ is a sequences
of families of functions such that each f ∈ Fλ is defined as f : Uf × Xext

f → Uf

for some Xext
f ⊇ Xλ, and additionally the following properties are satisfied:

– (Efficient generation) There exists an efficient algorithm G(·) that on input a
security parameter 1λ, outputs a random element f of Fλ, possibly together
with some auxiliary information Auxf .

– (Efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.
– (Quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ, f(f(u, x1),

x2) = f(f(u, x2), x1).

Definition 6. An accumulator is said to be collision quasi-resistant if for any
λ ∈ N and any PPT attacker A:

Pr
[

(f, Auxf )← G(1λ)
u ← Uf

∣∣∣∣ (x′, w, X)← A(f, u, Uf ) ∧ w ∈ Uf

∧X ⊆ Xλ ∧ x′ /∈ Xwell ∧ f(w, x′) = f(u, X)

]
≤ ε(λ).

where Xwell is a well-determined set by X.

Definition 7. Let π be a map (maybe not efficient) π : Xλ × {0, 1}k → X′
well,

where k is a security parameter. Let X ⊆ Xλ. The set Xwell = π(X ×{0, 1}k) is
well-determined by X if there exists an efficient distinguisher, for any element
β ∈ X′

well, to determine whether β ∈ Xwell. Else, the set Xwell is not well-
determined by X.

Examples of a well-determined set. Let X = {x1, · · · , xk} where xi ←
Z∗

p for i = 1, · · · , n, and p is a sufficient large strong prime and n a security
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parameter. Then Xwell = {β : β|
∏I⊆{1,··· ,k}

i∈I xi} is well-determined by X due
to the efficient Euclid algorithm. However, if n is sufficiently large, X̃well = {β :
β =

∏I⊆{1,··· ,k}
i∈I xi mod p } is not a well-determined set due to the difficulty of

the well-known subset product problem and discrete logarithm problem.

Examples of a collision quasi-resistant accumulator. For a security pa-
rameter λ, the family Fλ consists of the following functions: f : G × Z∗

p �→
G, f(u, x) = ux, where G is the corresponding group defined in the Strong
RSA and DFDH assumptions. The well-determined set Xwell by X is {β :
β|
∏

i∈{1,··· ,k} xi}. Directly from lemma 1, we have the following corollary.

Corollary 1. Under the Strong RSA assumption, the function family f(u, x) =
ux defined above is a collision quasi-resistant accumulator.

Remark 2. In [3], Baric and Pfitzman proposed an RSA-based accumulator to
accumulate random strings m. They use an underlying RSA-based accumulator
for primes and a conversion algorithm. Assume security parameters κ, 
 and a
collision resistant hash function H(·) : {0, 1}∗ → {0, 1, · · · , 2� − 1}. Given m,
search for the smallest prime p = 2κH(m) + γ by improving γ ∈ N. Finally, ac-
cumulate the prime using an underlying RSA-based accumulator for primes. Our
extension is much more efficient than Baric-Pfitzman approach, which requires
a lot of primality tests. The cost is the DFDH assumption.

4 Proposed Ad Hoc Group Signature Schemes

In the ring signature schemes in the literature, there are a number of users and an
associated PKI. Ad hoc subsets of the user population can be formed without the
help of a group manager–but it is assumed that each user has a registered public
key correctly generated following the specifications of the system. In our schemes,
we also follow this pre-condition in the context of ad hoc group signatures.

4.1 Ad Hoc Group Signature with Linkability

In some applications, linkable anonymous signatures can be used to determine
whether some players voted multiple times. In this section, we detail a simple
yet efficient linkable ad hoc group signature scheme.

– (System parameter generation.) Let G be an order-unknown group in
which the Strong RSA and the DFDH hold. 1 < ε, κ, 
, 
1, λ1 < poly(λ) are
security parameters, where 
1 = (
−2)/ε−κ. 1 < I < poly(λ) is the number
of group members. H(·) : {0, 1}∗ → G is a cryptographic hash function.

– (Member key generation.) ni ← RSAλ, where ni = piqi, pi ∈ S(0, 2�1) =
{2�1 + 1, · · · , 2�1 − 1}, 2� < qi. ni is player i’s (i ∈ {1, · · · , I}) public key
and pi, qi its private keys. PK = {ni}I

i=1 is the public key list. Note that
the member’s public key is RSA integers but the two factors are assumed in
different length, for instance, pi is in size of 510 bits while qi in 737 bits.
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– (Group key generation.) Choose a generator g of G depending on PK, for
instance, the hash value of PK. Then, any one can compute y = gn1n2···nI .
The ad hoc group public key is {λ, ε, 
, 
1, κ, G, g, y, H(·), PK}.

– (Signature generation.) Compute u = gn1n2···nI/pi in advance. For a mes-
sage m, compute the following knowledge signature [9, 12, 7]:

� = KS{pi : y = upi ∧ pi ∈ S(0, 2�)}(m).

Output the signature σ = (u, �) on m.
– (Signature verification.) Check that u �= ±y±1 and the validity of the

knowledge signature �. Output 1 if all the checks hold. Otherwise, output 0.
– (Tracing arguments generation.) In case of dispute, member j can prove

to the judge that it has (not) produced a given linkable ad hoc group signa-
ture σ by computing ẏj = upj , h = H(PK||m||g||y||u||σ||ẏj), w = hnj , ḣ =
hqj , and knowledge signature [9, 12, 7]:

�̇ = KS{pj : ẏj = upj ∧ w = ḣpj ∧ pj ∈ S(0, 2�)}(m, σ).

Output self-tracing arguments σ̈ = σ̇ = (j, ẏj , ḣ, �̇).
– (Tracing witness verification.)Compute h, w as the member j and check

that yj �= ±u±1, w �= ±ḣ±1 and the validity of the knowledge signature �̇. If

any check does not hold, output Failure. Else, further check ẏ
?= ẏj . If the

equality holds, member j produced the given ad hoc group signature. Else,
member j did not produce it.

A straightforward verification shows that any legal ad hoc group member can
generate ad hoc group signatures on any message accepted by the verification
algorithm. For an ad hoc group signature, a group member can always provide
a valid knowledge signature so that a judge can determine whether or not the
given signature is generated by the member. Under the strong RSA assumption,
the knowledge signature � implies that signer knows p̂ such that gn1···nI = up̂.
From lemma 1, p̂|n1 · · ·nI . Note that p̂ �= ±1 ∈ S(0, 2�). So p̂ must be the unique
smallest non-trivial factor of some ni ∈ PK and u is uniquely determined by
p̂. The knowledge signature �̇ convinces one that the prover’s secret factor is
equal to the factor involved in � or not. So it can be used to determine whether
member j generated the plain ring signature �. Hence, the scheme is unforgeable,
traceable and linkable. An algorithm to break the anonymity can be used to
break the (weak) DFDH assumption.

Theorem 1. The above ad hoc group signature scheme is correct. In the ran-
dom oracle model, if the Strong RSA assumption holds, the above ad hoc group
signature scheme is unforgeable, self-traceable and linkable. If the (weak) DFDH
assumption holds, the above ad hoc group signature scheme is anonymous.

Proof. Omitted due to page limitation. We refer the readers to the full version
of this paper.
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4.2 Ad Hoc Group Signature with Unlinkability

There are approaches to improve the basic linkable ad hoc group signature to an
unlinkable one. The first approach is to let the generator g not be a component
of the ad hoc group public keys. The generator g is now generated independently
before producing different ring signatures, for instance, generated with a hash
function as we suggested in the self-tracing procedure in the previous section.
The other procedures of the above scheme keep unchanged. In this case, g is a
part of the resulting anonymous signature. Following this approach, one indeed
obtains the same scheme in [8]. Clearly, now the new anonymous signature is
unlinkable and it is efficient in term of bandwidth consumption. However, the
online computation is heavy and linear to the number of possible group members.

In the following, we suggest an alternative to achieve unlinkability. Every time,
during the signing procedure, the group member will accumulate a random in-
teger that is co-prime to all the public keys to blind the witness of accumulating
the smaller prime factor of some RSA integer. The extended notion of accumu-
lators allows accumulating random integers. This feature critically contributes
efficiency improvements for our unlinkable ad hoc group signature. In the fol-
lowing, we will only specify the signing, verifying and tracing procedures, as the
other parts remain unchanged as discussed earlier.

– (Signing procedure.) Randomly select a �= 0 ← S(0, 2�1) co-prime with
pi, and compute z = ya, v = ua, α, β satisfying aα + piβ = 1, y1 = yβ and
the knowledge signature [9, 12, 7]:

�=KS{a, pi, α : z = ya∧z = vpi∧y = zαypi

1 ∧a ∈ S(0, 2�)∧pi ∈ S(0, 2�)}(m).

The resulting ad hoc group signature is σ = (z, v, β, �).
– (Verification procedure.) Compute y1 = yβ and verify z �= ±y±1, v �=
±z±1 and the validity of the knowledge signature �. Output 1 if and only if
all the checks hold.

– (Tracing arguments generation.) In case of dispute, a group member
j can prove to the judge that a given ad hoc group signature σ was (not)
generated by it without leaking its private key. As the above ad hoc group
signature is not linkable, tracing the given signature will leak no information
about the relation between of member j and other signatures.

żj = vpj , h = H(PK||m||g||y||σ||żj)2, w = hnj , ḣ = hqj

�̇ = KS{pj : żj = vpj ∧ w = ḣpj ∧ pj ∈ S(0, 2�)}(m, σ).

Output self-tracing arguments σ̈ = σ̇ = (j, ẏj , ḣ, �̇).
– (Tracing arguments verification.) The judge computes h, w as the prover

and checks that żj �= ±v±1, w �= ±ḣ±1 and the validity of the knowledge
signature �̇. If any check does not hold, the judge outputs Failure. Else, it
further checks z

?= żj. If the equality holds, the judge declares that member
j produced the given ad hoc group signature. Else, the judge declares that
member j did not produce it.
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Similar to the basic linkable ad hoc group signature, under the strong RSA
assumption, the knowledge signature � implies that signer knows co-prime in-
tegers â, p̂ such that gan1···nI = up̂. From lemma 1, p̂|an1 · · ·nI . since â, p̂ are
proven co-prime, it follows that p̂|n1 · · ·nI . Note that p̂ �= ±1 ∈ S(0, 2�). So p̂
must be the unique smallest non-trivial factor of some ni ∈ PK. The unique u
determined by p̂ is masked by one-time random integer â in the form v = uâ for
each signature. The knowledge signature �̇ convinces one that the prover’s secret
factor is equal to the factor involved in � or not. So it can be used to determine
whether member j generated the ad hoc group signature �. Hence, the scheme
is unforgeable, traceable. An algorithm to break the anonymity or unlinkability
can be used to break the (weak) DFDH assumption.

Theorem 2. The above ad hoc group signature scheme is correct. In the random
oracle model, if the Strong RSA assumption holds, the above ad hoc group sig-
nature scheme is unforgeable and self-traceable. If the (weak) DFDH assumption
holds, the ad hoc group signature scheme is anonymous and unlinkable.

Proof. Omitted due to page limitation. We refer the readers to the full version
of this paper.

Remark 3. Note that given a valid ad hoc group signature σ = (z, v, β, �) from
member i, if the order of G is exposed to group member i, then group member
i can deny that the ownership of σ. In this case, member i choose a random
integers p′ �= pi, q

′ in the corresponding space such that ni = p′q′ mod ϕ(N) and
compute ż′i = vp′

i , h = H(PK||m||g||y||σ||ż′i)2, w = hni , ḣ = hq′
, �̇ = KS{p′i :

ż′i = vp′
i ∧ w = ḣp′

i ∧ p′i ∈ S(0, 2�)}(m, σ). Since the knowledge signature is valid
and z �= z′i, this forged denying arguments is valid. However, a group member
j �= i cannot provably claim the ownership of σ even if member j knows the
order of G, due to the fact that pi is uniquely determined by z and v and it
is impossible for member j to compute ḣ such that ḣpi = hnj if the discrete
logarithm is difficult in G as assumed. The above discussion also shows the
difference between ability to deny a signature and that to claim a signature.

4.3 Efficiency

In this section we summarize the performance of our schemes and compare them
with the state-of-the-art ring signatures. The most efficient secure existing ring
signatures are proposed by Dodis et al. in [11] which provides no self-traceability.
We denote it by DKNS scheme and our ad hoc group signature scheme with
linkability/unlinkability by LAHGS/ULAHGS scheme, respectively. Exp denotes
the single-base exponentiation modulo a λ-bit RSA integer. For fairness, we
compare it with our ad hoc group signatures enjoying the same functionalities
without considering the tracing arguments. As suggested in [11], we will measure
the complexity of signatures by the actual complexity without the description of
the group and the calculation of group public keys.

In the above tables, we consider G = QRN where N is an RSA integer with
unknown factorization. Accordingly, the security relies on the weak DFDH as-
sumption. But note that the schemes can be realized with more general case of
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Table 1. Comparison of ring signatures with our ad hoc group signatures

Length (bits) Typical size Generation Verification
DKNS [11] 5λ+κ+ ε(7.5�1 +5κ)−5 10363 22 Exp 18 Exp
Our LAHGS λ + κ + � − 1 1920 1 Exp 2 Exp
Our ULAHGS 2λ + 2� + �1 + κ − 2 4196 7 Exp 6 Exp

Table 2. Complexity of the tracing arguments

Length (bits) Typical size Generation Verification
Our LAHGS 2λ + κ + � − 1 + log I 2944 + log I 5 Exp 5 Exp
Our ULAHGS 2λ + κ + � − 1 + log I 2944 + log I 5 Exp 5 Exp

G. We suggest typical security parameters as previous papers [16]: λ = 1024, κ =
160, ε = 1.1, 
1 = 510. The computation complexity is in terms of modular ex-
ponentiations without any optimization, that is, a two-base exponentiation is
calculated as two single-base exponentiations. Clearly, without considering the
tracing arguments, our ad hoc group signatures dramatically improve the effi-
ciency of the DKNS scheme. The tracing procedures are also efficient and inde-
pendent of the group size. Moreover, a group member can judge whether it is
the owner of a given signature with its private key only. It does not require the
member’s previous inner random coins.

We also noted that there are some independent works to bridge the gap be-
tween ring signatures and group signatures. In [15], Komano et al. presented
the notion of deniable ring signatures which allowing a group member to deny
a ring signature. Their notion is weaker and indeed covered in our ad hoc group
signatures (see Remarks 1,3 ). In [18], Manulis proposed the notion of democratic
group signatures which provides outsider anonymity while any group member
can trace the signer. The democratic group signature requires interactive group
key agreement, and additional leave and join sub-protocols. Moreover, the im-
plementations in both [15] and [18] suffers from linear complexity regarding to
the group scale while ours are independent of the group size.

5 Applications

There are many potential applications of ad hoc group signatures. In the fol-
lowing, we show direct applications to electronic lotteries. In a typical lottery
one or more winners are chosen during a trusted process so that each purchased
ticket has an equal chance to be chosen. This process is usually monitored by
an outsider auditor which ensures the fairness of the protocol. As the process is
random it cannot be repeated and the ticket purchasers must trust the process.

We use the same framework as [19]. Assume there is a bulletin and some
necessary public information has been published on the bulletin including the
order-hiding group G. As previous schemes our lottery uses random numbers
chosen by the players in order to output a number whose randomness is granted
provided that at least one player chooses its number at random.
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There are a few papers discussed how to implement the process to compute
the result of winning number [19, 13]. In the following, we focus on the privacy
of the lottery players. As we remarked in the introduction of the report, lottery
players tend to require anonymity protection for fear of blackmail when winning
the giant prize, while trust no third party for fear that the party may leak their
identities. The unlinkable ad hoc group signatures can provide the players with
the expected privacy. First, all lottery players register to the bulletin with their
RSA public keys. Then the group public key can be computed. Second, the
lottery players decide their lottery number and sign them using the unlinkable
ad hoc group signature scheme in Section 4.2. They cast their lottery number
(maybe, in the ciphertext form) and the signature to the bulletin. Finally, after
the winning numbers are calculated out, the winners can prove that they are
really the winners using the tracing arguments. In our scheme, a lottery has size
about 0.53K bytes. The lottery scheme is very simple and efficient. It enjoys
perfect privacy in the sense that no third party except that the lotteries issuer
can determine the true identity of the winner and additionally, no other player’s
identity will be exposed. Moreover, the system initialization can be speeded up
by letting the lotteries issuer generate G without affecting security of the lotteries
applications (see Remark 3).

6 Conclusion

We outlined the usefulness of adding the self-traceability to ring signatures in
practice, by proposing the notion of ad hoc group signatures. It provides a general
fair mechanism of privacy protection for self-organized groups. It also provides a
generic technique to remove the trusted third party such as a group manager from
the privacy protection systems. Meanwhile, it dices the anonymity-revoking func-
tionality of a conventional group signature to the distributed members, rather
than a centralized manager. It is flexible and practical.

We implemented the notion using a slightly extended model of cryptographic
accumulators with provable security in the random oracle model. The implemen-
tations are very efficient and elegant. After the group members are determined
and the group key is computed, the space, time, and communication complexities
of the relevant parameters and operations are constant. It outperforms the state-
of-the-art ring signatures. Furthermore, a group member can judge whether or
not it generated a given ad hoc group signature with its private key only. Hence,
the notion of ad hoc group signatures is useful, and the proposed implementa-
tions are very efficient and practical.
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Abstract. We study the multicast authentication problem when an opponent can
drop, reorder and introduce data packets into the communication channel. We
first study the packet authentication probability of a scheme proposed by Lysyan-
skaya, Tamassia and Triandopoulos in 2003 since our opponent model is based on
theirs. Using a family of rateless codes called Luby Transform codes (LT codes)
we design a protocol which allows any packet to be authenticated at the receiver
with probability arbitrary close to 1. We also compare LT codes to other families
of rateless codes which could be used in that context in order to minimize the
packet overhead as well as the time complexity of encoding and decoding data.

Keywords: stream authentication, polynomial reconstruction, rateless codes.

1 Introduction

Multicast protocols enable data to be transmitted from one sender to many receivers via
a communication network such as the Internet. The applications are as various as pay-
TV, online games and military defense systems for instance. Nevertheless large-scale
broadcasts prevent lost content from being retransmitted since the loss of any piece of
data could generate an overwhelming number of redistribution requests at the sender. In
addition the network can be under the influence of malicious users performing harmful
actions on the data stream. Thus the security of broadcast transmission schemes depends
on both network properties and opponents’ computational power. Unconditionally se-
cure schemes have been designed in [1, 4, 25] but either they can only be used for a
single authentication or they require too large storage capacities. In this paper we will
consider that opponents have bounded computational abilities.

In recent years several protocols were designed to deal with the multicast authenti-
cation problem [3]. Applications like stock quotes and pay-TV involve that the stream
size can be large and eventually infinite. On the other hand the receivers must be able to
authenticate data within a short period of delay upon reception. Since many protocols
will transfer private or sensitive information, non-repudiation of the sender is required
for most of them. Signing each packet1 via digital signatures is impractical since they
are generally time expensive to generate and verify. Using one-time or k-time signa-
tures [6, 24] overcomes this drawback but their size is, in general, too large to be used

1 Since the stream size is large, it is divided into small fixed-size entities called packets.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 136–151, 2006.
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for broadcasting due to bandwidth limitations. Thus to provide non-repudiation, most
techniques rely on signature amortization. One signature is created and its overhead and
time generation/verification are amortized over several packets using hash functions.

In order to deal with packet loss Perrig et al. designed EMSS [21] and MESS [21]
where the hash of each packet is appended to several followers according to a spe-
cific pattern. One signature is generated from time to time and is always assumed to
be received providing non-repudiation and allowing new users to join the communi-
cation group at any time. Using k-state Markov chains [20, 30] to model packet loss
they computed bounds on packet authentication probability. Using augmented chains to
distribute hashes, Golle and Modadugu [7] and Miner and Staddon [17] obtained other
bounds. Unfortunately all these schemes rely on the reception of signed packets.

Wong and Lam [29] used Merkle-hash trees [16] to distribute hashes and solve the
problem of reliable signature transmission. Their scheme can tolerate any packet loss
and data injections but the size of the tag2 is logarithmic in the number of packets per
block3. As said earlier, bandwidth limitations prevent us from using such an approach.

To deal with packet loss without relying on reception of the signature packets one
can split the signature into k parts where only l of them (l < k) are enough for recovery.
Using error-correcting codes, Lysyanskaya et al. [14] developed a protocol which also
tolerates data injections. Their approach was recently extended by Tartary and Wang
[28]. Nevertheless none of these schemes provided bounds on packet authentication
probability. In addition the rate of their linear code depends on some network parame-
ters. If one of them changes then the whole structure of the code must be updated.

Our approach is motivated by the following observation. A necessary condition for
all these schemes to authenticate a packet P (at the receiver) is to get an element P̃
containing P along with some hashes [7, 17, 21, 29] or code symbols [14, 19, 28]. If
P̃ is dropped then P is definitely lost since such a P̃ is unique for each scheme. As
these previous techniques we will process data stream packet per block of n elements:
P1, . . . , Pn. Our technique can be seen as an extension of Lysyanskaya et al.’s approach
which enables any receiver to recover all data packets P1, . . . , Pn despite loss incurred
during transmission. This constitutes a major improvement from existing techniques
in the way that receivers not only authenticate what they received but also reconstruct
what was lost. This is particularly beneficial when P1, . . . , Pn represent audio or video
information where our technique prevents frozen images and audio gaps to happen.

We propose to use Luby Transform (LT) codes to encode blocks of n data packets
P1, . . . , Pn into N symbols E1, . . . , EN (the value of N is specified in Sect.3). LT
codes were introduced by Luby [12] as the first practical realization of rateless codes
to illustrate the Digital Fountain concept [2]. These codes are constructed in such a
way that there exists a threshold value m (depending on n) such that any subset of
{E1, . . . , EN } having at least m distinct elements can be used to recover all n original
packets P1, . . . , Pn with good probability. By representing E1, . . . , EN as coefficients
of a particular polynomial and carefully choosing N , the receiver will be able to run a
reconstruction algorithm due to Guruswami and Sudan [8] and will recover that poly-
nomial despite potential data injections performed by malicious users.

2 We call authentication tag the extra information appended to a packet to prove its authenticity.
3 In order to be processed, packets are gathered into fixed-size sets called blocks.
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In [14], Reed-Solomon codes were used to design a multicast authentication scheme
dealing with both packet loss and data injection. We will prove that its packet authenti-
cation probability (which has not been studied in [14]) does not exhibit an easy lower
bound. In addition when a packet was dropped during transmission its content was def-
initely lost for the receivers. Combining a LT code with the polynomial reconstruction
technique we design a broadcast protocol having two main advantages. First it allows
the receivers to reconstruct erased data which is, to our knowledge, a new feature in
the multicast authentication problem. Second it exhibits a minimal lower bound on the
packet authentication probability which can be chosen arbitrary close to 1.

Since we will use the same opponent model as Lysyanskaya et al., we will prove that
our scheme is as secure as theirs. Since its security depends on the consistency of the
LT decoding (while Lysyanskaya et al.’s relies on Reed-Solomon codes’ one), we will
compare LT codes to other families of rateless codes including Online and Raptor codes
[15, 26]. We will show that it is possible to achieve reasonable and constant packet over-
head by using a modified version of LT codes. We will also enlighten that Raptor codes
can provide good practical implementations for our scheme if they are used instead of
LT codes. A digital signature will be used to ensure non-repudiation and to enable new
members to join the communication group at any block boundary.

The paper is organized as follows. We will describe the scheme developed in [14]
and analyze its packet authentication probability in the next section. In Sect. 3 we will
develop our authentication protocol using LT codes. In Sect. 4 we will compare differ-
ent families of rateless codes that could be used instead of LT codes. The last section
will summarize our contribution to the multicast authentication problem.

2 Analysis of Lysyanskaya et al.’s Protocol

In this section we will shortly describe the scheme designed in [14]. We will first intro-
duce the network model used in that paper. Then we will recall the tasks performed at
the sender and the receiver to authenticate data and analyze the packet authentication
probability of that approach since it has not been studied in the original paper [14]. Fi-
nally we will illustrate our result when the network exhibit a bursty loss pattern [20].

Network Model. The network is assumed to be under partial control of an opponentO
who can drop and rearrange packets of his choice. He can also inject data into the chan-
nel. Since our main concern is the multicast authentication problem, we assume that a
reasonable number of packets reaches the different receivers and not too many packets
are injected by O. Indeed if too many packets are dropped then data transmission be-
comes the main problem to solve since the small number of received elements would
be useless even authenticated. On the other hand if O can introduce a large quantity of
packets then O can potentially overflow the network and the major problem becomes
strengthening the channel against denial-of-service attacks.

The stream is split into blocks of n packets and we introduce two parameters: α(0 <
α ≤ 1) (the survival rate) and β (β ≥ 1) (the flood rate). It is assumed that at least αn
original packets and a total of no more than βn packets reach each receiver.
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Description of the Scheme. We need a collision-resistant hash function h [22] and a
secure signature scheme (SignSK,VerifyPK) [27] the couple of keys of which (SK,PK)
is created by a generator KeyGen. Denote {P1, . . . , Pn} the block of n packets to be
sent. The number BID denotes the block position within the whole stream. Each Pi is
hashed into hi by h. A signature σ is generated as: σ := signSK(BID‖h1‖ · · · ‖hn). The
concatenation C := h1‖ · · · ‖hn‖σ is encoded into [c1, . . . , cn] using the [n, ρn]q binary
systematic Reed-Solomon (SRS) code over IFq where q is a power of 2. Both ρ and q de-
pend on α and β. The sender builds the set of n authenticated packets {AP1, . . . , APn}
to be emitted to the receivers via the network as: ∀i ∈ {1, . . . , n}APi = BID‖i‖Pi‖ci.

When a receiver gets m elements {AP′
1, . . . , AP′

m} he first decomposes each of them
as: BIDi‖ji‖P ′

ji
‖c′ji

. He verifies that BIDi = BID and builds the family
{(j1, c′j1), . . . , (jm, c′jm

)} . He checks that m is consistent with the values of the rates α
and β. In order to deal with packet loss and data injections he uses an algorithm devel-
oped by Guruswami and Sudan [8] (GS-Decoder) to list-decode the SRS code. He gets
a list of candidates for the signature verification. If one of them verifies the signature
then this element must be C since the signature scheme is secure. Thus the receiver re-
covers the hashes of the original packets. What remains to achieve is to authenticate the
original packets amongst the received ones. The receiver computes the hashes of the m
packets P ′

j1 , . . . , P
′
jm

and look for matchings with the hi’s. Since h is collision resistant
if h′

jk
= hi then P ′

jk
= Pi. In this case Pi is said to have been authenticated by the

receiver. Using this process he can find the original packets amongst data he received.
This authentication scheme deals with both packets loss and data injections and the

communication group is joinable by new users at any block boundary. In addition no
reliable transmission of the block signature is assumed. Nevertheless no study of its
packet authentication probability was performed in [14]. We will now address this point.

Analysis of the Packet Authentication Probability. We call the actionO performs on
the stream a modification pattern. We first introduce the following definition:

Definition 1. We say that a couple (α, β) of survival and flood rates is accurate for a
network flow of n symbols if when data is sent per block of n elements, the receiver gets
at least α n of them and receives no more than βn pieces of data (including opponent’s
injections). In addition (α, β) is unique (and called the accuracy of the network) if:
(1) O can use a modification pattern M′ allowing to receive (at least) one set of αn
original packets with positive probability as well as a modification patternM′′ allow-
ing to receive (at least) one set of βn packets with positive probability and:
(2)O cannot use either a modification pattern allowing to receive less than αn original
packets with a non-zero probability or a modification pattern allowing to receive more
than βn packets with a non-zero probability

The previous definition means that the accuracy (α, β) is optimal in the sense that no
receiver can get less than α n original elements but O can drop packets in such a way
that at least one of the receivers can gets exactly αn of them (patternM′). It also means
that no receiver can get more than β n elements but O can inject packets in such a way
that at least one of the receivers can gets exactly βn elements (patternM′′).

From now on, we consider that (α, β) is the accuracy of the network. The set of n el-
ements of Definition 1 will be {AP1, . . . , APn}. Denote F the set of families having at
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least αn elements of {AP1, . . . , APn}. For any λ ∈ {αn, . . . , n} we also define Fλ the
subset of F consisting of families having exactly λ elements. Denote M the modifica-
tion pattern used by O. It induces a probabilistic distribution over F and therefore over
{P1, . . . , Pn}. Our aim is to compute PM(Pi is authenticated) for any i ∈ {1, . . . , n}.
Assume that we received a family of packets F for the block number BID. We denote
F̂ the subfamily of F consisting of the original packets. Since (α, β) is the accuracy of
the network we have: αn ≤ |F̂ | ≤ |F | ≤ βn. We have the following theorem:

Theorem 1 ([28]). If (α, β) is the accuracy of the network (for a flow n) then any
received family F verifies the signature.

Therefore we get for any i in {1, . . . , n}:
PM(Pi is authenticated) = PM(Pi is authenticated | F verifies the signature)

According to [14] once F verifies the signature, Pi is authenticated if and only if there
exists a received element BID‖k‖P ′

k‖c′k such that h(P ′
k) = hi. Given that h is collision

resistant this happens if and only if P ′
k = Pi. We have three cases. First, we have

APi = BID‖k‖P ′
k‖c′k . Second, we have APi �= BID‖k‖P ′

k‖c′k but there is another
original element APj(j �= i) such that APj = BID‖k‖P ′

k‖c′k (this corresponds to the
fact that a piece of data Pi has to be sent several times). Third, BID‖k‖P ′

k‖c′k does
come from the sender and therefore has been introduced by O. Since O can eavesdrop
the network, he knows all the APj’s. Since he has no interest in helping the receivers to
get original data, he will only introduce incorrect content. Thus we can claim the last
two cases have a very small probability to happen and approximate the right hand side
of the inequality by PM(APi is received):

PM(Pi is authenticated) � PM(APi is received) (1)

Since APi is an original packet, we have: PM(APi is received) = PM(APi ∈ F̂ ). Fur-
thermore the cardinality of F̂ belongs to {αn, . . . , n}. So we can write:

PM(APi ∈ F̂ ) = PM

(
n⋃

λ=αn

{
F̂ ∈ Fλ and APi ∈ F̂

})

=
n∑

λ=αn

PM(F̂ ∈ Fλ and APi ∈ F̂ )

The last equality comes from the fact that {Fαn, . . . ,Fn} is a partition of F . The dis-
tribution induced by M may involve PM(F̂ ∈ Fλ) = 0 for some values of λ. In
this case PM(APi ∈ F̂ |F̂ ∈ Fλ) may not be uniquely defined [23] but the product
PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) is still equal to 0. Thus we get a unique value for
PM(APi ∈ F̂ ) as:

PM(APi ∈ F̂ ) =
n∑

λ=αn

PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) (2)

By combining (1) and (2), we get an approximation of the packet authentication proba-
bility of Lysyanskaya et al.’s scheme as:

PM(Pi is authenticated) �
n∑

λ=αn

PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) (3)
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Definition 1 tells us that there exists a pattern M′ such that PM(F̂ ∈ Fαn) �= 0 so
that the starting index value αn cannot be increased in the general setting.

Resistance against Bursty Loss. In [20], Paxson outlined that the Internet experienced
bursty packet loss. Golle and Modadugu [7] and Miner and Staddon [17] designed
schemes based on graph theory to resist multiple bursts of fixed lengths. We will illus-
trate an application of (3) when M is a multiple-burst pattern in order to approximate
PM(Pi is authenticated). In this case there are no packet injections so β = 1. Due to
space limitations we only give milestones to follow and we refer the reader seeking
more details to the extended version of this paper.

Definition 2. A burst is a sequence a consecutive deletions. Two bursts are separated
by at least one non-erased element.

We must determine how many bursts can occur over {AP1, . . . , APn} providing that at
least αn of these elements are received.

Definition 3. Let (t1, . . . , tn) be a n-tuple. We say that a burst of length b (≤ n) starts
(respectively ends) at ti if the elements erased by the burst are ti, . . . , ti+b−1 (respec-
tively ti−b+1, . . . , ti).

Definition 4. A tuple of positive integers (B1, p1, . . . ,Bδ, pδ) is called a δ-burst if for
all i ∈ {1, . . . , δ}, Bi is the length of the ith burst occurring over a tuple (t1, . . . , tn)
and starts at position pi. (B1, . . . ,Bδ) is called the δ-length of the δ-burst.

It can be shown that in order to have a δ-burst over a set of n elements we must have:
n ≥ B1 + · · · + Bδ + (δ − 1). Since at least αn original elements have to be received
δ must not exceed min(!n+1

2 ", (1− α)n) either. Once δ and the δ-length (B1, . . . ,Bδ)
are chosen, it can be proved that there are:

N =
ξ+1∑
iδ=1

iδ∑
iδ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

possibilities to choose the starting positions (p1, . . . , pδ) where ξ is the unique natural
integer such that: n = B1 + · · ·+Bδ +(δ−1)+ ξ. This value N represents the number
of ways one can build a δ-burst (B1, p1, . . . ,Bδ, pδ) over {AP1, . . . , APn}. Since we
want APi to be received, we must determine the number Ni of such δ-bursts which do
not erase APi. We can assume that O chooses any δ-burst with equal likelihood. Thus:

PM(APi is received) =
Ni

N

If we denote ki (respectively k′
i) the maximal number of bursts which can occur over

{AP1, . . . , APi−1} (respectively {APi+1, . . . , APn}) then we have to compute how
many Δ-bursts (B1, p1, . . . ,BΔ, pΔ) can occur over {AP1, . . . , APi−1} and how many
(δ−Δ)-bursts (BΔ+1, pΔ+1, . . . ,Bδ, pδ) can occur over {APi+1, . . . , APn}. The value
Δ describes the set I(i) := {0, . . . , ki} ∩ {δ − k′

i, . . . , δ}. As before, we can prove:

NΔ
i =

⎛
⎝ b1∑

iΔ=1

iΔ∑
iΔ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠+

⎛
⎝ b2∑

iδ−Δ=1

iδ−Δ∑
iδ−Δ=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠
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where b1 = i− (B1 + · · ·+ BΔ + (Δ− 1)) and b2 = B1 + · · ·+BΔ + Δ + ξ− i +1.
So we can approximate PM(Pi is authenticated) to:

∑
Δ∈I(i)

⎛
⎝ b1∑

iΔ=1

iΔ∑
iΔ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1 +
b2∑

iδ−Δ=1

iδ−Δ∑
iδ−Δ=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠

ξ+1∑
iδ=1

iδ∑
iδ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

(4)

We previously mentioned that Miner and Staddon [17] used p-random graphs to
resist multiple bursts. Namely they considered that the bursts occurring in the network
can only have a finite number 
 of pairwise different length B1, . . . ,B�. They assumed
that each burst of length Bi can occur up to λi times. Their scheme was able to deal with
any distribution of these δ := λ1 + · · · + λ� bursts. Here we consider that each burst
of length Bi exactly occurs λi times. We denote Lδ the set of δ-length we can generate
with this duplicating process. The cardinality of Lδ is the multinomial coefficient:(

δ

B1 · · · B�

)

Once again we assume that any δ-length has the same probability to be chosen
by the opponent O. We denote IP(Lδ) the set of permutations of Lδ.
B := (B1, . . . ,B1, . . . ,B�, . . . ,B�) is an element of Lδ (eachBi is iterated λi times). We
deduce the packet authentication probability provided by Lysyanskaya et al.’s scheme.

PM(Pi is authenticated) =
(

δ

B1 · · · B�

)−1 ∑
τ∈IP(Lδ)

Pτ(B)(Pi is authenticated) (5)

where PM(Pi is authenticated) is approximated by (4) when M is the loss pattern cor-
responding to the δ-length τ(B).

The efficiency of an authentication scheme can be defined as the smallest value of
the packet authentication probability it provides. In other words, we are interested in

min
i∈{1,...,n}

PM(Pi is authenticated). Formulae (4) and (5) do not provide a clear lower

bound on this minimal probability and therefore practical efficiency of the scheme is
hard to guess. This motivates a search for a new authentication scheme exhibiting a
clear authentication probability. This can be achieved by using LT codes as we will
describe in the next session of this paper.

3 LT Codes for Multicast Stream Authentication

In this section, we will give a multicast authentication protocol using LT codes which is
robust against packet loss and data injection. As in Sect. 2 we allowO to use any pattern
M (not only the multiple-burst one) respecting the accuracy of (α, β). Our technique
also allows any new user to join the communication group at any block boundary and
exhibits a lower bound for the packet authentication probability. We will first review
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the construction of LT codes. Then we will develop our authentication scheme, prove
its security and exhibit a minimal bound for the packet authentication probability.

Construction of LT Codes. We briefly describe how to generate outputs for LT codes
and how to decode data. A complete description of both processes can be found in [12].

Encoding. We have a fixed number of input symbols denoted by I1, . . . , In. In order to
generate a new encoding symbol E, we use a probabilistic distribution called the Ro-
bust Soliton distribution to choose the degree4 d of the symbol E. We randomly pick
d elements amongst the input symbols: Ii1 , . . . , Iid

5. We generate E as the XOR of
Ii1 , . . . , Iid

. Using this process we can generate as many encoding symbols as we want
since we only need to run the Robust Soliton distribution to get a new one.

Decoding. When the receiver gets m encoding symbols E1, . . . , Em he first builds the
bipartite graph used to compute E1, . . . , Em

6. We would like to point out that it can
happen that not every Ii is on the left hand side. This is true in particular if m is small
and the encoding symbols have small degrees. At the beginning of the decoding process
no Ij’s have been covered7. They are initialized with 0’s. We first release8 all Ek’s with a
single adjacent vertex to cover their unique neighbor. The set of covered input symbols
not yet processed is called the ripple and denoted R. All previous covered symbols
belong to R. At each step one element Ij is processed as follows:
1. Each neighbor Nk

j of Ij has its value XOR-ed with Ij’s.
2. Ij is removed as a neighbor of these elements Nk

j . That is, the corresponding edges
are removed from the graph.
3. For each Nk

j having one remaining neighbor in the new graph, Nk
j is released from

the graph and covers its remaining neighbors which are added to R (for those which
were not already in).
4. Ij is released from R (because it has no neighbors any longer).
Step 3 and 4 make the size of R vary. The decoding process ends when R is empty.
It is successful when I1, . . . , In have been released from R. We will use the following
theorem to deal with packet loss occurring during data transfer.

Theorem 2 ([12]). For δ ∈ (0, 1), the decoding process fails with probability at most δ
from any set of m := n + (R + R

2 + · · ·+ 1
n−R ) ln

(
R
δ

)
encoding symbols where R :=

c ln
(

n
δ

)√
n for a positive constant c determined within the Robust Soliton distribution.

4 Any LT code can be represented as a bipartite graph with I1, . . . , In as the left hand side
vertices and all encoding symbols as right hand side vertices. An edge is drawn between Ij

and the encoding symbol E if Ij has been used to compute E. Ij is said to be a neighbor of
E (and conversely). We use the term degree to denote the number of neighbors a symbol has.

5 This is how we build the bipartite graph representing the LT code.
6 The positions of the input symbols XOR-ed to build an encoding symbol Ei are sent along

with Ei [9].
7 An input symbol Ij is said to be covered when it is the only adjacent vertex of an encoding

symbol Ek. The covering operation is a XOR of the current value of Ij with Ek.
8 A symbol is said to be released when we remove its representing vertex from the graph.
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Our Authentication Protocol. We will consider the same opponent model as in Sect. 2
and the same definitions for (α, β), h and the signature scheme (KeyGen,Sign,Verify).
As said before data is processed per block of n packets: P1, . . . , Pn. We assume that the
sender published a list of irreducible polynomials over F2 (remember that for any posi-
tive integer r, we can always build a irreducible polynomial of degree r over F2 [11]).
On this public list he also puts δ, n, α, β, PK as well as h and the verification algorithm
Verify. We denote τpar the tag representing the communication parameters, namely:
τpar = n‖α‖β‖δ. We assume that this tag is represented with a fixed number of bits
bpar. We denote H the size of a hash produced by h and S the size of a signature. We
first introduce the algorithm used by the sender.

Authenticator
Input: The private key SK, the network rates α, β, a block {P1, . . . , Pn}, its BID and
the parameter δ.

1. Compute N =
{

max($m
α %, $

β
α2 %) if β

α2 /∈ N

max($m
α %,

β
α2 + 1) otherwise

where m is defined in Theorem 2.

Consider the n packets as input symbols for the LT code and build N encoding sym-
bols: E1, . . . , EN . Each symbol Ei is along with the positions of its di neighbors
N1

i , . . . , Ndi

i . Compute the hashes: ∀i ∈ {1, . . .N} hi = h(Ei‖N1
i ‖ · · · ‖Ndi

i ).
2. Compute the block signature: σ = SignSK(h(BID‖τpar‖h1‖ · · · ‖hN )) and form the

authentication tag τ = τpar‖h1‖ · · · ‖hN ‖σ. Compute k =

{
!α2N

β " if α2N
β /∈ N

α2N
β − 1 otherwise

.

Denote 
 = k − [NH + S + bpar] + 1 and pad τ with 
 zeros: τ ′ = τ‖0�.
3. Write τ ′ as the concatenation of (k + 1) elements of IF2r : p0‖ · · · ‖pk. Compute

r = max
(
$log2(N )%,

⌈HN+S+bpar
k+1

⌉)
. Form the polynomial P (X) =

k∑
i=0

piX
i and

evaluate it in the firstN points9 of IF2r : ∀i ∈ {1, . . . ,N} yi = P (i).
4. Form the authenticated packets:∀i ∈ {1, . . . ,N}APi = BID‖i‖Ei‖N1

i ‖ · · · ‖Ndi

i ‖yi

Output: {AP1, . . . , APN }: set of authenticated packets

We first notice that even when the channel rates α, β change the structure of the
LT code does not need to be modified since we keep working with the same inputs
P1, . . . , Pn and the same value c for the Robust Soliton distribution. Only the number
N of encoding symbols to be generated increases. This is an advantage over Lysyan-
skaya et al.’s technique since the size of their field as well as the rate of their code have
to be updated in case of modification of network rates. In addition it can be shown that
the ratio N

n (as a function of n) is asymptotically bounded by a constant.
We now justify our choices for N , k, r and P (X). In order to recover P1, . . . , Pn

with probability at least 1 − δ despite loss, the integer N must verify αN ≥ m. In
addition we want to represent the hashes of these N encoding symbols as coefficients
of a polynomial P (X) of degree k over an extension of degree r of F2. We want k to be

9 Since any element of F2r can be represented as λ0Y
0 + λ1Y1 + . . . + λr−1Y

r−1 where each
λi belongs to F2. We define the first N elements as (0, . . . , 0) , (1, 0, . . . , 0), (0, 1, 0, . . . , 0),
(1, 1, 0, . . . , 0) and so on until the binary decomposition of (N − 1).
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as large as possible to minimize the extension degree r. The polynomial P (X) will be
evaluated in N different positions. The receiver must solve the polynomial reconstruc-
tion problem to recover P (X). In order to run GS-Decoder, the sufficient condition
exhibited by Guruswami and Sudan [8] is to have T >

√
kN where N is the num-

ber of points used for the reconstruction, T the number of these points (x, y) such that
y = P (x). Due to the definition of (α, β) we have T ≥ αN and αN ≤ N ≤ βN .
Thus (T >

√
kN) is verified as soon as 0 ≤ k < α2N

β . Since we want to split τ ′ into

several elements we have k ≥ 1. Thus α2N
β > 1 which justifies the value of N at step

1. The optimality of k at step 2 follows.
Since P (X) will be evaluated into N points we must have: 2r ≥ N . We want to

represent τ as the concatenation p0‖ · · · ‖pk the size of which is (k + 1)r since each
pi is an element of F2r . On the other hand the size of τ is NH + S + bpar. Thus r

must verify (k + 1)r ≥ NH+ S + bpar. Therefore r ≥ HN+S+bpar
k+1 . This justifies both

choices of 
 and r at steps 2 and 3.
Now we describe a variant of the GS-Decoder called Modified GS-Decoder (MGS-

Decoder) which will be used as a subroutine of our decoding algorithm.

MGS-Decoder
Input: The number of packets per block n, the network rates α, β, the degree of the
polynomial k and N elements {(xi, yi), 1 ≤ i ≤ N}.
1. If N > βn or we have less than αn distinct values (xi, yi) then the algorithm stops.
2. Run GS-Decoder on the N points to get the list L of all polynomials of degree at
most k over IF2r passing through at least αn of the N points.
3. Write the list L as: L = {L1(X), . . . , Lμ(X)}. Write each element of L as: Li(X) =

k∑
j=0

LijX
j where ∀i ∈ {0, . . . , k}Lij ∈ IFq. Form the elements: Li = Li0‖ · · · ‖Lik.

Output: {L1, . . . ,Lμ}: list of candidates

When the receiver gets data he first runs MGS-Decoder to build a list of elements
(which are polynomial coefficients) and tests each of them until the signature is verified
or the list exhausted. When the signature is recovered the receiver knows the hashes of
the original encoding symbols of the LT code. Then he browses amongst the received
packets to find as many original encoding symbols as he can. Due to the definition of
α, there are at least αN of them. Using the first αN ones he attempts to decode the
LT code to recover all the original packets P1, . . . , Pn. According to Theorem 2, this
succeeds with probability at least 1− δ. Here is the formal description of the algorithm.

Decoder
Input: The public key PK, the number of packets per block n, the network rates α, β,
the block number BID, the parameter δ, the sender’s list of irreducible polynomials and
the set of received packets RP.

1. Compute N . Write the packets as BIDi‖ji‖Eji‖N1
ji
‖ · · · ‖Ndji

ji
‖yji and discard

those having BIDi �= BID or ji /∈ {1, . . . ,N}. Denote N the number of remaining
packets. If (N < α n or N > β n) then the algorithm stops.
2. Rename the set of received packets {AP′

1, . . . , AP′
N} and write each element as:
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AP′
i = BID‖ji‖Eji‖N1

ji
‖ · · · ‖Ndji

ji
‖yji where ji ∈ {1, . . . ,N}. Compute k and r.

Get the irreducible polynomial of degree r from the sender’s public list and run MGS-
Decoder on the set {(ji, yji), 1 ≤ i ≤ N} to get a list {c1, . . . , cμ} of candidates for
signature verification. If MGS-Decoder rejects that set then the algorithm stops.
3. Compute 
. Initialize hi = ∅ for i ∈ {1, . . . ,N}. Initialize i = 1. While the list has
not been exhausted (and the signature not verified yet), we pick ci. We first check if the 

last bits are zeros (we verify the length of the pad). If so,
we write ci as: τ i

par‖hi
1‖ · · · ‖hi

N ‖σi. If τ i
par = τpar then check whether

VerifyPK(h(BID‖τ i
par‖hi

1‖ · · · ‖hi
N ), σi) = true . In this case we set hj = hi

j for
j ∈ {1, . . . ,N} and break out the loop. In any other cases we increment i by 1 and
start again the while loop.
4. If (h1, . . . , hN ) = (∅, . . . , ∅) then the algorithm stops. Otherwise set E′

λ = ∅ for

λ ∈ {1, . . . ,N}. For each AP′
i written as at step 2, if h(Eji‖N1

ji
‖ · · · ‖Ndji

ji
) = hλ

then Eλ = Eji , dλ = dji and ∀ξ ∈ {1, . . . , dji}N
ξ
λ = N ξ

ji
.

5. Pick the first αN non-empty elements Eμ and decode the LT code using the Eμ’s as

encoding symbols with degree dμ and adjacent vertices positions E1
μ, . . . , E

dμ
μ . Get n

input symbols {P ′
1, . . . , P

′
n} (where some of them can be empty).

Output: {P ′
1, . . . , P

′
n}: set of identified packets

Security of the Scheme. We will now analyze the security of our authentication scheme.
We want the receivers to authenticate data despite malicious actions performed by O.
Similar to [14], we give the following definition:

Definition 5. (KeyGen,Authenticator,Decoder) is a secure and (α, β)-correct proba-
bilistic multicast authentication scheme if no probabilistic polynomial-time opponent
O can win with a non-negligible probability to the following game:

i) A key pair (SK, PK) is generated by KeyGen
ii) O is given: (a) The public key PK and (b) Oracle access to Authenticator (butO

can only issue at most one query with the same block identification tag BID)
iii) O outputs (BID, n, α, β, δ, RP)

O wins if one of the following happens:
a) (violation of the correctness property)O succeeds to output RP such that even if it

contains αN packets of some authenticated packet set APi for block identification tag
BID, decoding failure probability δ and parameters n, α, β, the decoder authenticates
some incorrect packets.

b) (violation of the security property)O succeeds to output RP such that the decoder
outputs {P ′

1, . . . , P
′
n} which is non-empty and was never authenticated by Authentica-

tor for the value BID, the probability δ and parameters n, α, β.

The difference from the definition given in [14] is that the packets are authenticated
by the receiver with certain probability. In short, even if the receiver gets a set RP
having at least αN original elements, the whole original set {P1, . . . , Pn} is recov-
ered with some probability. Nevertheless Definition 5 involves that no incorrect packets
can be authenticated. That is: ∀i ∈ {1, . . . , n}P ′

i ∈ {∅, Pi} where P ′
i denotes the ith
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packet output by Decoder. Lysyanskaya et al. showed that their scheme is secure and
(α, β)-correct. Following their arguments, we obtain the following result for ours.

Theorem 3. Our scheme (KeyGen,Authenticator,Decoder) is secure and (α, β)-correct.

Proof (Sketch). If the scheme is neither secure nor (α, β)-correct thenO is able to cre-
ate data packets which will be authenticated by the receiver after LT decoding at step
5. Nevertheless the LT decoding process is consistent. That is, if only correct encoding
symbols are given to the decoder then it only outputs the corresponding input symbols
(along with some empty symbols when the decoding process is not successful). There-

fore O is able to create (at least) one fake symbol Ẽi‖Ñ1
i ‖ . . . ‖Ñ d̃i

i such that its hash
h̃i is a part of the element c̃ which successfully verified the signature at step 3. Since h
is collision resistant, we have: ∀j ∈ {1, . . . ,N} h̃i �= hj . Thus c̃ was never signed by
the sender andO is able to break the signature scheme. Due to space limitations we did
not include the complete proof here. It can still be found in the extended version of this
paper. It exhibits the necessity of using τpar as a part of the authentication tag. �	

Thus our authentication scheme is as secure and correct as the technique developed in
[14]. We will now study the packet authentication probability of our protocol.

Analysis of the Packet Authentication Probability. We now justify our use of LT
codes to enable the receivers to recover all the n data packets P1, . . . , Pn despite loss
with probability close to 1 as claimed in Sect. 1. We assume that the receiver gets a
set RP of packets. Since (α, β) is the network accuracy we have |RP| ≤ βN and at
least αN original authenticated packets are amongst RP. As before we denote M the
modification pattern used by O. We fix i in {1, . . . , n}. To be more concise we denote
VRP the probabilistic event {RP verifies the signature}. Using Bayes’ theorem we get:

pM(Pi is authenticated|VRP) pM(VRP)
=

pM(VRP|Pi is authenticated) pM(Pi is authenticated)

Again, even if one of the events {Pi is authenticated} or VRP is pM-negligible the
previous equality is still true since both products would be 0. Due to the design of
Decoder, a necessary condition to output packets is to verify the signature. So: pM
(VRP|Pi is authenticated) = 1. On the other hand, since (α, β) is accurate RP always
verifies the signature since MGS-Decoder outputs the list of all polynomials passing
through at least αN of the elements of RP. Thus the polynomial used by the sender
belongs to that list and therefore the signature is verified. So: pM(VRP) = 1. Thus we
get: pM(Pi is authenticated) = pM(Pi is authenticated|VRP) which can be written as:

pM(Pi is authenticated) = pM(All packets are authenticated|VRP)
+

pM({Pi is authenticated} ∩ {At least one Pj is not authenticated}|VRP)

Since pM(VRP) = 1, we deduce:

pM(All packets are authenticated|VRP) = pM(The LT code is successfully decoded)
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In addition we have:

pM({Pi is authenticated} ∩ {At least one Pj is not authenticated}|VRP)
=

pM({Pi is authenticated} ∩ {The LT code is not successfully decoded})

The last event is not pM-negligible in general since any symbol released from the ripple
during the LT decoding process is consistent with the original input symbols [12]. Thus:

pM(Pi is authenticated) ≥ pM(The LT code is successfully decoded) ≥ 1− δ

Since this is true for any value i, we deduce that:

min
i∈{1,...,n}

pM(Pi is authenticated) ≥ 1− δ

We also notice that this lower bound does not depends on the modification patternM.

4 Other Families of Rateless Codes

In this section we will compare the complexity in encoding/decoding of LT, Online and
Raptor codes. Indeed the security, correctness and computation of the lower bound on
the packet authentication probability only depend on the fact that the LT decoding al-
gorithm is consistent which is also the case for Online and Raptor codes. In addition
we will also compare these families to the modified LT codes introduced by Harrelson
et al. [9]. In their work, they changed the construction of LT codes given by Luby [12]
to fit them to their practical implementations without altering their optimality (i.e. if we
generate enough symbols then we can have δ � 0). Their technique consists of modify-
ing the way the neighbors of each encoding symbol E are chosen. As in [12], the degree
d is chosen using the Robust Soliton distribution. Instead of uniformly choosing the d
neighbors, Harrelson et al. proposed to uniformly choose two integers a and b and to
generate the positions of the d neighbors as a i + b for i ∈ {1, . . . , d}. Thus it is useless
to append the neighbors to the encoding symbol for transmission since only E‖a‖b‖d
needs to be sent. This means that the overhead per encoding symbol has a fixed and
much smaller size than in [12]. This is of particular interest in our case (step 4 of Au-
thenticator) since our overhead per packet is particularly limited and such a fixed size
helps to avoid data congestion due to irregular flow of information within the network.

Contrary to block codes which use finite field operations to encode and decode data,
these families of rateless codes rely on XOR operations over packets. Based on the
work done in [9, 12, 15, 26] we built Table 1. Both Raptor and Online codes require
preprocessing of data before encoding. In [15], Maymounkov proposed two differ-
ent ways to do so for Online codes. The complexities shown in Table 1 correspond
to the second method since the first technique involves a dependence between the
packet authentication probability and the number of packets per block. The notation εδ

means that the element depends on the decoding failure probability δ but is independent
from n.
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Table 1. Complexity comparison for different classes of rateless codes

Average number Number of encoding Decoding Encoding
XOR operations symbols generated failure symbol

for decoding probability overhead
LT codes O(n log(n/δ)) n + O(

√
n log2(n/δ)) δ variable

LT codes O(n log(n/δ)) n + O(n5/6 polylog(n, 1/δ)) δ constant
(modified)

Online O(n log(1/εδ)) (1 + εδ)n O(δη) variable
codes (fixed εδ > 0) (fixed η > 0)
Raptor O(n log(1/εδ)) (1 + εδ)n δ variable
codes (fixed εδ > 0)

According to Table 1, Online and Raptor codes seem to have better encoding and
decoding complexities than LT codes. Nevertheless Raptor codes were designed for the
Binary Erasure channel (BEC) since the efficiency of its preprocessing part relies on
the existence on good pre-codes to achieve linear time for both encoding and decoding
process. That is the property which is achieved by Tornado codes on BEC [13, 26].
Given our opponent model it is unlikely that BEC can be the modification pattern
used by O. Nevertheless a recent work by Palanki and Yedidia [18] suggests that Rap-
tor codes can still be practically more efficient than LT codes for our authentication
scheme. Indeed they implemented both classes of codes on Additive White Gaussian
Noise Channel and Binary Symmetric Channel and noticed that, even on these chan-
nels, Raptor codes outperformed LT codes for decoding. Etesami et al. [5] performed
analoguous implementations and their results exhibited the same behavior. They also
showed that Raptor codes could perform quite well on any arbitrary symmetric channel.

As suggested by Harrelson at al. [9], it is possible to reduce the size of information to
be transmitted and achieve a constant packet overhead at the cost of extra symbols for
decoding (see Table 1). Since achieving a regular throughput within the communication
channel avoids data congestion, substituting original LT codes by their modifications
in our authentication protocol is recommended (the value of m in Theorem 2 has to be
updated consequently). Since Raptor codes are the concatenation of an erasure code (as
Tornado codes for instance) and a LT code, these modifications can also be applied to
these codes. Therefore we believe that practical implementations of the authentication
scheme described in Sect. 3 will be even more efficient when substituting LT codes by
Raptor codes (exhibiting the same modifications for their internal LT coding).

Nevertheless these threshold values enabling recovery of the n data packets can still
be too important for some applications. Karp et al. [10] gave a formula expressing the
probability of non-decoding u packets amongst n after receiving a fixed value of encod-
ing symbols which can be chosen by the sender. This can be useful if the application
which will run the received packets has a tolerance rate for loss of content. The sender
computes the number of packets he has to transmit in order to achieve at most this rate
of non-recovered packets. In this case the lower bound computed on Sect. 3 is not valid
any longer but the security and correctness of the scheme are still preserved.
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5 Conclusion

In 2003, Lysyanskaya et al. [14] designed a multicast authentication scheme dealing
with both packet loss and data injection. Unfortunately its packet authentication proba-
bility does not exhibit an easy lower bound and when a packet is dropped during trans-
mission its content is definitely lost for the receivers. Our technique, which can be con-
sidered as an extension of theirs, has two main advantages. First it allows the receivers
to reconstruct erased data which, to our knowledge, had never been achieved yet by any
existing multicast stream authentication protocol using signature dispersion. Second it
exhibits a minimal lower bound on the packet authentication probability which can be
chosen arbitrary close to 1. Our reconstruction property relies on the fact that (α, β) is
the network accuracy which can be hard to determine when the communication group
size is large. Hopefully any couple (α̃, β̃) such that α̃ ≤ α and β ≤ β̃ will also be
fine for our scheme. This is at the cost of creating more encoding symbols to run GS-
Decoder. Thus this couple of parameters has to be chosen carefully in order to respect
the heterogeneity of the receivers without generating unnecessary data. Our scheme
also allows new users to join the communication group at any time since each block of
n packets contains its own signature. We also proposed to use a modified version of LT
codes to achieve reasonable and fixed overhead per packet preventing the network from
having too irregular variations of data flow. Given [5, 18], we also stress that Raptor
codes could provide good implementations of our scheme if used instead of LT codes.
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Abstract. The first generation of European e-passports will be issued
in 2006. We discuss how borders are crossed regarding the security and
privacy erosion of the proposed schemes, and show which borders need
to be crossed to improve the security and the privacy protection of the
next generation of e-passports. In particular we discuss attacks on Basic
Access Control due to the low entropy of the data from which the access
keys are derived, we sketch the European proposals for Extended Access
Control and the weaknesses in that scheme, and show how fundamentally
different design decisions can make e-passports more secure.

1 Introduction

After several years of preparation, many countries start issuing e-passports with
an embedded chip holding biometric data of the passport holder in 2006. This is
a major ICT-operation, involving many countries, most of them providing their
own implementation, using biometrics at an unprecedented scale. Passport secu-
rity must conform to international (public) standards, issued by the International
Civil Aviation Organization (ICAO) [11, 10]. The standards cover confidential-
ity, integrity and authenticity of the passport data, including the facial image.
Additionally, the European Union (EU) has developed its own standards (called
“Extended Access Control”).

The present paper reviews these developments (like in [14, 15]) especially from
a European perspective, with corresponding emphasis on fingerprint protection.
Also it tries to put these developments within a wider perspective of identity
management (IM) by governments, following [8]. This leads to a “revision” plan
for e-passports.

From an academic background we, the authors, closely follow the introduc-
tion of the e-passport in the Netherlands. We have advised the government on
several matters, and are involved in public debates on related issues. We have
received an early test version of the e-passport, and developed our own reader-
side software, based on the ICAO protocols. We have had access to confidential
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material regarding the EU-protocols. However, the present paper is based solely
on publicly available material, and is organised as follows.

We first discuss the main security requirements the new e-passport should
satisfy. After a brief discussion of biometry in Sect. 3, we describe the standard
security measures of the ICAO standard and the weaknesses associated with
them in Sect. 4. Future European e-passports will be equipped with Extended
Access Control, which we outline in Sect. 5, and whose shortcomings we also
study. e-Passports enable new applications. Sect. 6 discusses the danger of such
function creep but also investigates the new possibilities created by such ap-
plications. We study identity management issues of the e-passport in Sect. 7,
and evaluate the realisation of the original goals in Sect. 8. We finish the pa-
per with some proposals for more fundamental changes to the architecture of a
second generation of e-passports that will increase both their security and their
flexibility of use in new applications.

2 Aims and Security Goals

It is a fact that modern passports are hard to forge. Thus, many criminal organ-
isations do not even try such fraud, but instead collect large numbers of genuine
passports, and pick one that shows a reasonable resemblance to a member that
needs a new identity. Similarly, passports are sometimes borrowed for illegal
border crossing, and later returned to the rightful owner.

The original aim of the use of biometrics in travel documents is thus to combat
“look-alike” fraud. Hence the emphasis is on biometric verification (instead of
identification), involving a 1:1 check to make sure that a particular passport
really belongs to a particular person.

The biometrics of the passport holder will be included in a chip that is embed-
ded in the passport. Communication with the chip will be wireless, and not via
contact points, because wireless communication allows higher data rates, does
not involve wear, and does not require a change of the standard format of the
passport to for instance credit-card size1.

The wireless character does introduce new security risks (with respect to tra-
ditional passports), for the holder, the issuing state, and for the accepting state.
At a high level of abstraction, the following three security goals seem reason-
able. The first two focus on confidentiality for the passport holder. The last one
mainly concerns the accepting (and also issuing) state.

1. A passport reader should identify itself first, so that only “trusted” parties
get to read the information stored in the chip.

2. No identifying information should be released without consent of the pass-
port holder.

3. The receiver of the information should be able to establish the integrity and
authenticity of the data.

1 A change of format for other official documents, like a drivers licence, is seen as less
problematic, because such a document is not stamped.
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The first goal relates to the situation where for instance a police officer wishes
to check your identity. In most countries you have the right to ask the police
officer in question to identify himself first, so that you can be sure that you are
dealing with a genuine representative of the state. The second goal is relevant
to prevent “RFID-bombs” [14] for instance, that are activated by the immedi-
ate presence of (the passport of) a particular person, or citizen of a particular
country. Such information is also useful for a terrorist who is trying to decide
whether to blow himself up in a particular bus. We shall evaluate the realisation
of these goals later on, in Sect. 8

3 Biometry

This paper does not focus on the biometry involved, but a few words are in
order. ICAO has opted for the use of facial images and fingerprints as primary
biometrics because they are reasonably familiar, easy to use, and non-intrusive.
A controversial issue—from a privacy perspective—is that the passport chip will
not contain templates but pictures (actual JPEGs). The reason is that there is
no well-established digital standard for such templates, and early commitment
to a closed proprietary format is not desirable. This means that if a passport
chip (or data base, or reader) is compromised, original biometric data leaks out,
which may lead to reconstruction and additional (identity) fraud.

The effectiveness of biometry is highly overrated, especially by politicians
and policy makers. Despite rapid growth in applications, the large-scale use of
biometry is untested. The difficulty is that it is not only unproven in a huge single
application (such as e-passports), but also not with many different applications in
parallel (including “biometry for fun”). The interference caused by the diversity
of applications—each with its own security policy, if any—may lead to unforeseen
forms of fraud.

A basic issue that is often overlooked is fallback. What if my biometric identity
has been compromised, and I am held responsible for something I really did not
do, how can I still prove “it wasn’t me”?

The Netherlands has recently conducted a field test for the enrolment proce-
dures of the biometric passport, see [19], involving almost 15.000 participants.
The precise interpretation of the outcome is unclear, but failure-to-acquire turns
out to be a significant problem, especially for young and elderly people. Substan-
tial numbers of people will thus not have appropriate biometric travel documents,
so that fully automatic border crossing is not an option.

4 Standard Security Measures (ICAO)

The various ICAO standards for machine readable travel documents, notably [11]
and [10], specify precise requirements for accessing and interpreting the contents
of the embedded chip. Different security controls are described to ensure that
different security goals are met. We discuss these in the order in which the
mechanisms are used in a typical session between reader (or: inspection system,
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Fig. 1. Example of a Dutch passport. The two bottom lines of text are the MRZ.

the computer that is attempting to read information from the document) and
the European passport chip.

BAC: Basic Access Control. Before any information can be read from a passport,
the reader needs to go through basic access control (BAC). This is a challenge-
response protocol in which the reader proves to the passport that it has knowl-
edge of the contents of the machine readable zone (MRZ). The MRZ consists
of two lines of optically readable text containing among others the name of the
holder, and the passport number. It is printed on the first page of the physical
document (See Fig. 1).

The procedure is as follows. The reader optically reads the contents of the
MRZ, and derives the access key seed kIFD/ICC from the data it reads. After
that, the reader proves to the chip that it has optically read the MRZ by signing
a random challenge from the chip using a key derived from the access key seed.
Subsequently, passport and inspection system exchange some extra random data,
which is then used to generate session keys and an initial counter for secure
messaging. The session keys are fresh for each session.

BAC prevents so-called skimming of passports, i.e., reading the contents with-
out the cardholder’s knowledge. Note that BAC does not authenticate the reader:
anyone who knows the MRZ can successfully complete BAC and continue read-
ing other information on the chip.

SM: Secure Messaging. Confidentiality and integrity of all communication be-
tween reader and passport is provided by so-called secure messaging. Commands
sent to the passport as well as responses sent back to the reader are encrypted
and augmented with a message authentication code (MAC), using the keys estab-
lished during BAC. A sequence counter is included to prevent replay of messages.

PA: Passive Authentication. The data stored on the passport is organised in
a logical data structure (LDS), which consists of a number of files (called data
groups). Typical examples of data groups are: a file containing the information
in the MRZ, a file containing a JPEG image of the cardholder’s face, and files
containing other biometric features such as the cardholder’s fingerprints.

Each data group in the LDS is hashed. All these hashes together form the
(document) security object SOLDS. The security object is signed by the issuing
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country and the result, SOD, is stored on the passport as well. This means
that the inspection system can check that the contents of the LDS have not
been altered during communication, thus ensuring the integrity of the LDS. The
standards refer to this integrity protection mechanism as passive authentication.

AA: Active Authentication. To prevent cloning of the chip, an integrity mecha-
nism called active authentication is used, in which the passport proves possession
of a private key kAA using a challenge-response protocol. The corresponding pub-
lic key, needed by the inspection system to check the response of the passport, is
part of the LDS and can be read by the inspection system. A hash of this public
key is signed through the SOD, to ensure authenticity.

4.1 Guessing the Access Key

To access the passport without having its MRZ, one needs to guess the access
key seed kIFD/ICC , which is 128 bits long. The National Institute of Standards
and Technology (NIST) [18] and the ECRYPT EU Network of Excellence on
cryptology [3] recommend 80 bits for a minimal level of general purpose protec-
tion in 2005, and 112 bits ten years from now. In other words, the access key
seed is long enough to provide adequate security.

But the fact that the access key seed is derived from information in the MRZ
can be used to the attackers’ advantage. The ‘MRZ-information’ consists of the
concatenation of the passport number, date of birth and date of expiry, including
their respective check digits, as described in [9]. Given a guess for the MRZ-
information, the corresponding access key seed kIFD/ICC is easily calculated,
and from that all other session keys can be derived as well. These keys can then
be tried against a transcript of an eavesdropped communication session between
this passport and the reader, to see if they deliver meaningful data.

To estimate the amount of work the attacker needs to perform for such an off-
line attack, we estimate the amount of Shannon entropy of each of these fields.
We should stress this is a very crude approach (unless we assume the underlying
probability distributions are uniform). For lower bounds, we should in fact use
the Guessing entropy [17] (

∑
i ipi) or even the min-entropy (mini− log pi). The

Shannon entropy only gives us an upper bound, but if that bound is small the
security of the system is most certainly weak.

The entropy of the date of birth field is log(100× 365.25) = 15.16 bits, as it
can contain only the last two digits of the year of birth. If one can see the holder
of the passport and guess his age correct within a margin of 5 years, the entropy
of this field decreases to 10.83.

The date of expiry is determined by the date of issuing and the validity period
of a passport. In the Netherlands, passports are valid for 5 years, and are issued
only on working days (barring exceptional circumstances). For a valid passport,
the entropy of this field becomes log(5× 365.25× 5/7) = 10.34.

The MRZ field for the passport number can contain 9 characters. If the pass-
port number is longer, the excess characters are stored in the MRZ optional
data field (which is not used to derive the access key seed). The entropy of
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Fig. 2. Known dates of issuing reduce the search space

the passport number field, assuming digits and upper-case letters only, becomes
log((26 + 10)9) = 46.53. Many countries have further restrictions on the format
of their passport numbers. Passport numbers may contain check digits, or start
with a common prefix to distinguish passport types (e.g., military passports).

At best, the total entropy of date of birth, date of expiry and passport number
becomes 15.16+10.34+46.53 = 72.03, which is less than 80 bits recommended by
both NIST and ECRYPT [3, 18] to protect against eavesdropping and other off-
line attacks. It is sufficient to protect against skimming attacks (where possible
keys are tried on-line) because the passport is slow to respond to each individual
key tried.

In certain countries the situation is even worse. Often, passport numbers are
issued sequentially. This implies there is a correlation between the date of issue
(and therefore date of expiry) and the passport number. Moreover, all currently
valid passports numbers (ignoring stolen or otherwise invalidated ones) form a
consecutive range, which is no longer than the total number of people of that
nationality. For the Dutch passport for instance, bounding the population from
above by 20 million, the passport number entropy drops to log(20×106) = 24.25.

With sequentially issued passports, the entropy drops even further with ev-
ery known combination of a passport number and the expiry date. Suppose we
know k such combinations. This gives rise to k + 1 intervals of possible passport
numbers for a given date range Let us take the rather pessimistic approach that
we do not assume anything about the distribution of passports over dates within
those intervals (although it is very likely that passports are issued at a reasonably
constant rate). On the optimistic side, let us assume the k known passports are
issued evenly distributed over the validity period length. This reduces the search
space by a factor k + 1 as illustrated in Fig. 2. Hence the entropy of expiry date
plus passport number drops with log(k+1). For the Dutch passport, using k = 15
and the figures above, the entropy of the passport number becomes as small as
20.25, and the total entropy could be as small as 10.83 + 10.34 + 20.25 = 41.42
(when we assume we can guess the age of the passport holder).

One obvious idea is to include the MRZ optional data field in the list of
MRZ items that is used to derive the MRZ access key seed. This would increase
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the entropy of the MRZ access key seed, especially if this optional data field
is filled with random data. Unfortunately some countries already use this field
for other purposes. In the Netherlands, for instance, this field stores the social-
fiscal number, which is uniquely linked to an individual and not very secret
information. In fact, this idea was recently rejected for inclusion in the ICAO
standards.

4.2 Traceability

To avoid collisions, contactless smart cards and RFID systems use unique low-
level tag identifiers in the radio communication protocol. This is also true for the
e-passports. If this identifier is fixed (which is usually the case in RFID tags and
contactless smart cards), passports are clearly easily traceable. Note that because
this identifier is used in the very first stages of setting up a connection between
the passport and the reader, no form of access control or reader authentication
can be performed.

Luckily, this anti-collision identifier does not have to be fixed. The number
can also be randomly generated each time the passport comes within range of a
reader. If the random generator is of sufficient quality (and this is certainly an
issue in low-end RFID systems), the passport can no longer be traced through
the anti-collision identifier.

However, the anti-collision identifier creates a possible subliminal channel. For
instance, instead of simply generating a random number r, the passport could
be instructed to generate an anti collision identifier like

id = EkNSA(r, passportnumber ) .

The resulting string looks random, because of the randomness of r and the
properties of the encryption function. But clearly it can be decrypted by the
owner of kNSA to reveal the passport number. Unless the passport chip is reverse
engineered, the existence of such a subliminal channel cannot be detected.

Another subliminal channel exists when Active Authentication is used [5]. Re-
call that active authentication requires the passport to sign a challenge from a
reader using its unique private key. Because the challenge is totally determined
by the reader, the reader can embed information into this string, which is un-
knowingly signed by the passport. For instance, the challenge could contain the
border crossing location, and the current date and time. A signature adds an
extra layer of non-repudiability to the border crossing logs, and can be used to
prove this fact to others. The challenge could also contain the passport number
of the person verified ahead of you at border inspection, possibly linking you to
the person you were travelling with.

Even if all the above issues are addressed, discriminating features of pass-
ports remain. Different countries may use different chip suppliers. Later batches
of passports will use more advanced technology, or may contain different or ad-
ditional information2. In the future, newer versions of chip operating systems
2 Indeed, the first passports will be issued without fingerprints.
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may be used. All these differences may be noticeable by looking carefully at
the behaviour of the chip on the radio channel, at the chip’s Answer To Reset
(ATR), which is sent in reaction to a reset command by the reader, or at the
responses the chip gives (or doesn’t give) to specific card commands sent to it.
We expect to see large differences in behaviour especially on unintended, unex-
pected or even unspecified input sent to the card. All these things are possible
before BAC has been performed.

Other applications may be put on the passports (see Sect. 6) as well. These
applications may even be accessible before BAC has been performed. The set of
available applications may actually constitute a narrow profile that identifies a
specific set of possible passport holders, and may reveal the place of work, or
the banks the passport holder has accounts with.

We conclude that even without access to the MRZ, i.e., in the classic skimming
scenario on streets, public transport, etc., passports still leak information that
can be traced back to individuals, or groups of individuals.

5 Extended Access Control

Standardisation of the security features and biometrics to be used in European
passports has been taken up independently (but of course in accordance with
the ICAO standards) by the European Union [7]. In recognition of the fact that
biometric information is quite sensitive, the European Union has mandated that
such data should be protected by a so-called “Extended Access Control” mech-
anism. The technical specifications of the European e-passport are drafted by a
special EU Committee, founded as a result of Article 6 of Regulation 1683/95
laying down a uniform format for visas [6].

Public information about the details of Extended Access Control has recently
become available [5, 16]. This allows us to discuss certain shortcomings in the
schemes under consideration, although we wish to stress that these schemes are
a huge improvement over the extremely minimal security features imposed by
the ICAO standards.

Extended Access Control consists of two phases, Chip Authentication followed
by Terminal Authentication. Chip Authentication performs the same function
as Active Authentication in the ICAO standards, i.e., proving the chip is gen-
uine and thus protecting the passport against cloning. It avoids the problems
associated with active authentication, like the challenge semantics discussed in
the previous section. Chip authentication achieves its task by first exchanging a
session key using a Diffie-Hellman key exchange. The chip uses a static key pair
for this, the public part of which is part of the logical data structure (LDS) on
the chip and thus signed through the security objects SOD. The terminal uses
a fresh key pair for each session. Authenticity of the chip is established once the
chip proves that it knows the session key, which happens implicitly when the
session key is used successfully to communicate with the chip.

Terminal Authentication aims to prove to the chip that the terminal is allowed
to access the data on the chip. This access is granted through a chain of certifi-
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Fig. 3. Extended Access Control certificates

cates, the root of which is the issuer of the passport at hand (see Fig. 3). In other
words, the issuer of the passport controls who can access the data on the pass-
port. This root issues Document Verifier (DV) Certificates, one for each country
that is granted access to the data on the passport. These DV certificates are
used to generate Inspection System (IS) certificates, which can be distributed to
inspection systems (e.g., readers/terminals) at border crossings. Each passport
issued by a particular country can verify the authenticity of these DV certifi-
cates, and hence of the IS certificates issued through these DV certificates. A
valid IS certificate grants access to certain data on the chip. All certificates have
a limited validity period.

Terminal authentication, as proposed, does have a few weaknesses. First of all,
the chip cannot keep time itself, and does not have access to a reliable source of
time either. This makes it hard to check whether a certificate has expired or not.
This, in turn, makes it practically impossible to revoke a certificate. The problem
is the following. A terminal with a valid IS certificate and a valid DV certificate
can access the sensitive data on many passports. When such a terminal is stolen,
these access rights remain, even when the validity period of these certificates has
expired: the chip does not know the correct time, and the terminal does not have
to tell it the correct time. This is the case even if certificates have extremely short
validity periods, like a single day. We see that one stolen terminal breaks the
intended security goal of terminal authentication. Of course, stolen terminals do
not make skimming attacks possible: a terminal still needs access to the MRZ
in order to perform basic access control. To mitigate the problem somewhat,
the standards propose that the chip keeps the most recent date seen on a valid
certificate. In other words, the chip advances its idea of the current time each
time it passes a border inspection system. This only saves the frequent travellers;
people that barely use their passports stay vulnerable for a long time.

Secondly, the certificate hierarchy itself poses a problem. The hierarchy is
quite shallow. It does not make it easy to allow access to the biometric data
for other applications beyond border inspection, even though such applications
are already being discussed today (see also Sect. 6 below). To acquire access,
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one has to apply for IS certificates at the country DV, or for a DV certificate
at each issuing country. The latter would create a huge management overhead,
as it would require each country to reliably verify the identity and trustwor-
thiness of the requesting applicant and issue certificates in response. The first
makes it impossible for countries to differentiate access rights among different
applications, and would make the country DV responsible for the issuing of IS
certificates for each and every terminal involved in the new application. This
is clearly impractical, if we consider the use of passports for home banking or
single sign-on systems that require terminals at each and every PC.

Making the certificate hierarchy larger and more flexible may not be an option.
It means the chip has to verify even more certificates before it can grant access.
This does put quite a burden on the processing capabilities of the chip, which
should guarantee reasonably short transaction times. No one is willing to stand
in the queue at border inspection for an even longer amount of time, simply
because the new passports contain new, but slow, technology. A different, more
flexible, approach is discussed in Sect. 9.

6 New Applications

The new e-passport requires an international infrastructure for biometric verifi-
cation. This is a huge project, of which the effectiveness and risks are uncertain.
The main driving force is political pressure: the logic of politics simply requires
high profile action in the face of international terrorism. Once implemented, it
inevitably leads to function creep: new possible applications emerge, either spon-
taneously or via new policy initiatives. We shall discuss two such applications,
and speculate about the future.

Once we obtain a new passport with a high-end chip embedded with which we
can communicate ourselves (via open standards), we can ask ourselves whether
we can also use it for our own purposes. We briefly discuss two options: logon,
and digital signatures.

The e-passport can be used to log on to your computer account. For instance,
if you give your MRZ (or the associated keys) to your computer or local network,
the logon procedure can set up a challenge-response session with your passport:
activation of the chip happens via the MRZ, and checking of a signature written
by the passport-chip on a challenge generated by your computer can proceed
via the public key of the document signer. It allows your computer to check
the integrity of the passports security object, which contains the public key
corresponding to the private signature-key of your passport.

This authentication procedure only involves “something you have”: anyone
holding your passport can log in to your machine. You can strengthen the pro-
cedure by requiring a usual password, or even a biometric check based on a
comparison of facial images (a freshly taken one, and the one on the chip).

You may also wish to use your e-passport to sign documents and emails using
the embedded private key for Active Authentication. This is not such a good idea,
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for two reasons. First of all, the signature is obtained by exploiting the challenge-
response mechanism for another purpose. Such interference should be avoided,
because a challenge-response at a border inspection could then be misused to
trick you into signing a certain document. Secondly, proving your identity after
signing requires publication of your MRZ, together with the security object of
your passport-chip (which is integrity-protected by a signature of the document
signer): this object couples the public key (for your signature) to identifying
information such as your name. But releasing the MRZ allows everyone to access
your passport, through Basic Access Control.

The underlying problem is that the e-passport was not designed with an em-
bedded useful certificate (such as X.509) for the holder.

Once there is an infrastructure for biometric verification, it becomes natural
to ask: why not use it for identification as well? People may loose (willingly
or unwillingly) their passport, or may apply for multiple copies, possibly un-
der different names. Indeed, the government of the Netherlands is preparing
legislation [1, 2] to set up a central database with biometric information, in or-
der to “increase the effectiveness of national identification laws”. Such a central
database goes beyond what is required by European directives.

The possibility of biometric identification of the entire (passport-holding) pop-
ulation involves a change of power balance between states and their citizens.
Consent or cooperation is then no longer needed for identification. Tracing and
tracking of individuals becomes possible on a scale that we have not seen before.

Assuming the biometric passport leads to a reliable infrastructure for verifica-
tion and identification of individuals, the societal pressure will certainly increase
to use it in various other sectors than just border inspection. Such applications
are not foreseen—or covered by—European regulations. Interested parties are
police and intelligence forces, banks and credit card companies, social security
organisations, car rental firms, casinos, etc. Where do we draw the line, if any?

We see that the introduction of the new e-passport is not only a large technical
and organisational challenge, but also a societal one. Governments are implic-
itly asking for acceptance of this new technology. This acceptance question is
not so explicit, but is certainly there. If some political action group makes a
strong public case against the e-passport, and manages to convince a large part
of the population to immediately destroy the embedded chip after issuance—for
instance by putting the passport in a microwave—the whole enterprise will fail.
The interesting point is that individuals do have decisive power over the use of
the chip in their e-passport. Even stronger, such a political action group may
decide to build disruptive equipment that can destroy the RFID-chips from some
distance, so that passports are destroyed without the holder knowing (immedi-
ately). To counter such movements, governments may try to make it sufficiently
unattractive or even impossible to cross borders for travellers without a func-
tioning passport. This is only possible, however, if the numbers of broken chips
is relatively low. And in any case, it will not improve popularity of the scheme
to begin with.
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7 Identity Management Issues

Identity management (IM) is about “rules-4-roles”: regulation of identification,
authentication and authorisation in and between organisations. The new e-
passport is part of IM by states. It forms an identification and authentication
mechanism that is forced upon citizens, primarily for international movement,
but also for internal purposes.

Identification and authentication in everyday life is a negotiation process.
When a stranger in the street asks for your biometric data, you will refuse. But
you may engage in a conversation, discover mutual interests, and exchange busi-
ness cards or phone numbers. Upon a next contact more identifying information
may be released, possibly leading to a gradual buildup of trust.

The e-passport, in contrast, provides a rigid format. In certain situations it
forms an overkill, for instance when you just need to prove that you are over
eighteen. When IM goes digital and becomes formalised one would like to have
more flexible mechanisms, with individual control via personal policies. In the
future we may expect to be carrying identity tokens that flexibly react to the
environment. Three basic rules for such systems are:

– The environment should authenticate itself first. For instance, when the en-
vironment can prove to be my home, my policy allows my token to release
much personal information, for instance about my music preference or health.

– Authentication should be possible in small portions, for instance via certifi-
cates or credentials saying “this person is over eighteen”, with a signature
provided by a relevant authority.

– Automatic recognition of individuals, for instance via an implanted RFID
chip that broadcasts your personal (social security) number, is excluded.
Privacy is important for personal security—and not, as too often stated,
only an impediment to public security.

8 Evaluation of Security Goals

In Sect. 2 we have formulated three security goals that we consider reasonable.
In this section we evaluate whether the current system meets these goals.

Readers should identify themselves first. In the usual sense of “authenticated”
or “trusted” readers, this goal is not reached. For instance, we managed to write
our own terminal application that retrieves the public information like the facial
image from the chip. And our reader is not considered trusted. The implemented
BAC protocol only assures that the reader has knowledge of the MRZ on the
passport. In the European implementation of EAC the reader must authenticate
itself and hence this goal is more or less met for the information marked as
sensitive, but weaknesses exist (see Sect. 5).

Consent by the passport holders. Theoretically this goal is reached. By use of
BAC any terminal that tries to read information first needs to read the MRZ
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information printed on the inside of the passport. Hence the holder must give his
consent for the transaction by opening his passport. However, as we have seen
in Sect. 4.2 some subliminal channels exist that may leak information about the
card even before BAC has been applied or in other words even before the holder
has given his consent.

Proof of integrity and authenticity. The integrity part of this goal is reached
by the secure messaging system, which is applied for all communication after
BAC. As we have seen in Sect. 4 both commands and responses are encrypted
and augmented with a message authentication code to provide integrity and
confidentiality. Authenticity of the information is guaranteed through Passive
Authentication (see Sect. 4)

9 e-Passport v2

Until now we have discussed several issues with the security and privacy protec-
tion of the current proposed standards for biometric passports, from both ICAO
and, in particular, the EU. We have argued that protection mechanisms should
be improved. However, improvements to such standards are at best incremental,
and do not usually challenge the primary design decisions. In fact, such funda-
mental changes would certainly be backwards incompatible, and require a totally
new standard. In our opinion, more fundamental changes are required to really
provide strong security and proper privacy protection to the new generation of
e-passports.

9.1 Avoiding Contactless Cards

The most fundamental change is to reconsider the choice for a wireless commu-
nication interface between the chip in the passport and the terminal at border
inspection. Using a wireless interface makes skimming attacks possible. It is ex-
actly the fear of this possibility that has sparked a huge controversy over the
current e-passport proposals. Initially, the US passports would not even imple-
ment Basic Access Control. Now they are even considering to include metal
shields in the cover pages of the passport to function as a Faraday cage, to
physically disable the wireless communication link.

But all Basic Access Control really is, is a very elaborate way to achieve
exactly the same as what is achieved when inserting a smart card with contacts
into the slot of a reader: namely that the holder of the passport allows the
owner of the terminal to read the data on the chip. Then, why not simply use
smart cards with contacts for the new e-passport? The main arguments against
this have been the form-factor of the passport, and the need for a sufficient
bandwidth to quickly transmit the biometric data from the card to the terminal.
However, identity cards and drivers licenses with dimensions similar to credit
cards (ID-1) are already under consideration. And bandwidth concerns are no
longer an issue either. Many smart card suppliers already sell smart cards with
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integrated USB 1.1 interfaces that allow for a much higher throughput, using
the original [12] ISO contact module found on the card, and standardisation
for this approach is underway [13]. Such a solution would take away all worries
associated with using a wireless chip, and would keep the e-passport clear of all
discussions surrounding the (perceived) privacy issues with RFID.

9.2 On-Line Terminal Authentication

Once a connection between passport and terminal is established, a decision has to
be made regarding the access rights of the terminal and to determine which data
on the passport it is allowed to read. Current EU proposals for extended access
control are found wanting: stolen terminals cannot be revoked, and the shallow,
rigid certificate hierarchy proposed to regulate access does not allow for flexible
and/or dynamic access control policies (see Sect. 5). The EU approach was
chosen to allow for off-line, mobile terminals, like those that are used by mobile
border inspection units. But clearly such mobile terminals can be connected to
the network over a wireless link, if only through GPRS, which is the standard
on cell phones these days.

If we assume that terminals are always connected to the network, we can use
on-line terminal authentication. The general idea is then the following.

Each terminal owns a private/public key pair. Each terminal is used for a par-
ticular application. This application is encoded in a certificate CAA that contains
the public key KTA of the terminal, and which is signed by the application au-
thority AA. Access rights are associated with application. Each country stores,
for each application authority that it wishes to recognise, the access rights for
that application. These access rights are stored in the back office. The back office
also stores the public keys of all terminals that have been revoked.

On-line terminal authentication then proceeds as follows. First, the terminal
sends the certificate CAA (containing its public key KTA) to the chip. The chip
and the terminal perform a challenge-response protocol in which the terminal
proves to the chip that it owns the private key corresponding to KTA. This
establishes the identity of the terminal. Next, the chip sets up an authenticated
channel between itself and the back office of the issuing country. It can do so
using a country certificate that is stored in the chip during personalisation. The
channel should not be vulnerable to replay attacks. It sends CAA (and KTA) to
the back-office. There, CAA is verified against the known application authorities
(this validates that KTA was certified by such an authority) and KTA is checked
against the list of all revoked terminals. If these checks pass, the access rights for
AA are sent back to the chip. If not, then the empty set (i.e., no access rights) is
sent back to the chip. The chip interprets the access rights it receives and grants
access to the terminal accordingly. Because the channel is authentic and does
not allow replay attacks, the access rights received by the chip correspond to the
certificate it sent to the back office.

With on-line terminal authentication, terminals can be revoked in real-time:
as soon as they are marked as revoked in the back offices of the issuing country,
no passport of that country will allow that terminal access to its data. Also,



166 J.-H. Hoepman et al.

the access permissions can be changed dynamically, and can even be based on
the exact time the request was made, or on the specific usage pattern of the
passport. The general idea can be refined to also allow revocation of terminals
by the countries that manage them, instead of requiring them to inform all
other countries that a particular terminal should be revoked (because it was
stolen, for instance). Also, more levels of certificates can be introduced, to make
management of access rights easier.

9.3 Other Improvements

In Sect. 3 we have seen that real pictures are stored on the chip. With an
immediate consequence that whoever is able to retrieve these images from the
chip, has access to good biometric data, which he can use for identity theft. Using
templates that work like a one-way function, it will be possible to check whether
the template on the chip matches the template derived from the person who is
claiming to be the holder of the passport. This leaking of real biometric data
may not seem such a big deal in a time where many pictures are published on the
Internet. The point here is that these pictures for the passports are taken under
good conditions and hence provides highly accurate biometric information.

The entropy-related off-line attacks discussed in Sect. 4.1 are possible because
a guess of MRZ-information directly leads to all keys used in a communication
session. These keys can be checked against a transcript of that session to ver-
ify the guess. The situation is similar to many password-based authentication
and session-setup protocols. Encrypted key exchange protocols, discovered by
Bellovin and Merritt [4], do not suffer from this problem. There a low entropy
password is used to exchange a high entropy secret that cannot efficiently be
guessed using an off-line attack3. Using encrypted key exchange protocols for
basic access control would strengthen the security of the passport considerably.

In Sect. 6 we have seen that it will be inevitable that other applications want
to use the infrastructure available on the chip for other purposes than the original
ones. In the current system it is already possible to sign things with a private
key, but this causes some unwanted side effects as already described in Sect. 6.
In order to prevent this the standards should be rewritten in such a way that at
least these additional functions can be used and preferably in a disjoint setting
from the border inspection functions. A possible implementation for this could
be to have an X.509 certificate included with a public key that has nothing to
do with the MRZ or other information needed for the border inspection tasks.
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Abstract. Automated trust negotiation (ATN) is an important approach to 
establish trust between strangers through the exchange of credentials and access 
control policies. In practice, access control policy may contain sensitive 
information. The negotiation process becomes complicated when the access 
control policy is designed complex in order to avoid information leakage. 
Furthermore, if the access control policy has conflicts or cycles, normal 
negotiation strategies often fail. In this paper, a new approach to hide access 
control policy is proposed based on the study on the existing problems. In the 
approach, the policy consistency is checked so as to detect policy conflicts. 0-1 
table is used to implement it as well as discover minimal credential-set. 
Meanwhile, a practical example shows that the approach is suitable and can 
effectively protect sensitive information in access control policy. 

1   Introduction 

As computer systems become more and more interconnected, many situations arise 
where different systems need to share data or resources [1][2][3]. For example, a 
provider who wants to supply online service over the web must decide how much a 
remote user with a certain set of credentials is to be trusted. Usually, in capability-
based/identity-based/attribute-based access control systems, the access control 
decisions are decided by capabilities/identities/attributes of requesters. 

Exchange of attribute credentials is a means to establish mutual trust relationship 
between strangers, who wish to share resources or conduct business transactions. 
ATN is invented as an effective method to regulate the exchange of sensitive 
information during such process [1][2][4][5][6][7]. In ATN, access control policy 
plays a key role in protecting resources from unauthorized access. Unlike in 
traditional trust management systems, the policy for a resource is usually unknown to 
the party, who requests access to the resource when trust negotiation starts. The 
approach of ATN differs from traditional identity-based access control systems 
mainly in the following aspects [2]: 
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• Trust between two strangers is established based on parties’ properties, which 
are proven through disclosure of digital credentials. A digital credential is a 
verifiable, non-forgeable digitally signed assertion by a credential issuer about 
the properties of the parties; 

• Each party can define access control policy to control outsiders’ access to their 
sensitive resources; 

• In the approaches to trust negotiation developed so far, two parties establish trust 
directly without involving trust third parties, other than credential issuers. 

However, an access control policy itself may also contain sensitive information. 
Disclosing policies’ contents unconditionally may leak valuable business information 
or jeopardize individual’s privacy [4][6][7][8]. So the disclosure strategy of access 
control policy should take information protection into consideration. Meanwhile, the 
following situations pose a new challenge to ATN. 

Problem 1. Conflicts in access control policy. In order to prevent sensitive 
information from leaking, the service/resource providers often place many constraints 
on the access such as requiring more credentials as possible, which sometimes lead to 
the policy conflicts. A simple case is that, Policy=P1∧P2, where P1=p and P2= p’, then 
Policy=False. It means that the policy itself is of no effect. However, the negotiation 
strategies cannot detect it and still occupy a lot of computational power (including 
network overhead and computing cost). As a result, the negotiation process fails. 

Problem 2. Policy cycles in access control policy. The service’s disclosure depends 
on user’s credentials. The negotiator releases his credentials according to the access 
control policy. If the disclosure of credentials and policies relies on each other, then 
the deadlock generates. Surely, it results in the failed negotiation. 

To take the above problems and privacy protection into consideration, a new approach 
to hide access control policy for ATN is proposed in this paper. In the approach, 0-1 
table is adopted to check the policy consistency before the negotiation so as to detect 
whether access control policies are valid. During the checking process, it will produce 
basic minimal credential-set, which forms the credential disclosure sequence to meet 
the access requirements. Then, the negotiation process just matches the disclosed 
credentials with minimal credential-set to find whether any credential-set is in the 
credential disclosure sequence. Generally, the contributions of our work are as 
follows: 

1) We present a new negotiation strategy to compute the credential disclosure 
sequence, which has the properties such as little overhead and loose-coupling 
computing. The example below shows that the approach can hide access 
control policy and effectively prevent sensitive information from omitting. 

2) It is the first time for us to treat consistency of access control policy as an 
important issue. Previous work takes an assumption that the access control 
policy has no conflict and ignores the research on the policy consistency. 

3) The approach offered can effectively deal with problems of policy cycle. 
Normal negotiation strategies fail if the policy cycle exists, because the 
existing strategies closely disclose the credentials and policies one by one, 
while the policy cycle makes it deadlocked. 
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The rest of this paper is organized as the following. Section 2 discusses the related 
work, which shows the recent and relevant research in this area. Section 3 is the main 
part of this paper. It gives a detailed description of the approach as well as how to 
implement it. Section 4 provides a practical example to illustrate how the approach 
works. Section 5 discusses the features of the approach. Section 6 concludes the 
paper. 

2   Related Work 

Our work is originally motivated from the existing automated trust negotiation 
research [1][2][4][5][6][7], whose goal is to enable trust establishment between 
strangers in a decentralized or open environment, such as Internet or grid. In ATN, 
each relying party publishes access control policies to regulate not only the granting 
of resources, but also the disclosure of credentials. We focus on privacy protection via 
hiding policies. Furthermore, we concentrate on handling the existing problems. So 
we mainly investigate two aspects in ATN: information protection and negotiation 
strategies. 

Winsborough et al [1] presented ACK policy to control the disclosure of 
credentials and policies, and developed TTG protocol to construct policy tree so that 
it was easy to detect whether the credentials matched the policies or not. ACK policy 
is useful in protecting sensitive information, and TTG protocol enables two parties to 
do joint chain discovery in an interactive manner as well as the parties to use policies 
to protect sensitive credentials and the attribute information contained in the 
credentials. However, ACK policy and TTG are application-limited because of 
difficulty in constructing them in practical use. 

Li et al [9] proposed OSBE protocol to prevent important information from leaking 
and being attacked. OSBE bases its idea on digital signature and examines the 
message’s integrity so as to find whether the negotiator has the right signature. OSBE 
protects message from unauthorized access, but it is heavyweight to build and the 
signature computing has a great cost. 

In [10], Bertino et al proposed a set of privacy preserving features to be included in 
any trust negotiation system, such as the support for the P3P standards, as well as 
different formats to encode credentials. Although they based their work on P3P 
standards, the methods could be adopted to handle similar questions and differed from 
our work. 

Holt et al introduced hidden credentials in [11]. They gave a formal description for 
hidden credentials, including the concepts of credential and policy indistinguishability, 
and showed how to build them using IBE [12]. Their work also gave compelling 
examples of the utility of hidden credentials. In short, they provided a good model for 
trust negotiation to implement hidden credentials. Based on this, Robert et al [13] 
utilized hidden credentials to conceal complex policies, and Keith et al [14] made use 
of them to hide access control policies. Since hidden credential system cannot prevent 
from invalid inference, its implementation is restricted to some extend. 
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Li et al proposed the notions of OACerts and OCBE in [15]. OCBE protocol 
adopts the idea of zero-knowledge and ensures that if and only if the recipient is 
specified, he can get the resource, otherwise he gets nothing from the trust 
negotiation. However, the method did not discuss how to guarantee the security of 
messages during the transmission over the insecure Internet. 

A negotiation strategy determines characteristics of a negotiation such as which 
credentials are requested and disclosed, and when the negotiation is halted. As far as 
the negotiation strategies were concerned, Winsborough et al [4] proposed two 
different categories of negotiation strategies: eager strategy and parsimonious 
strategy. The eager strategy allows flooding-style negotiation, where each party 
discloses a credential to the other party as soon as the policy of that credential is 
satisfied, therefore ensuring a successful negation can be found in the minimum 
possible number of rounds. Its disadvantage is that it usually results in disclosure of 
irrelevant credentials. 

At the other extreme, parsimonious strategy does not allow credential disclosures 
until both parties know there exists a successful negotiation. When an incoming 
request for a credential is received and this credential has not been unlocked, an 
outgoing counter request is prepared according to the credential’s access control 
policy and sent out in response. 

Yu et al [16] proposed a brute-force backtracking strategy. The strategy backtracks 
whenever a circular dependency is detected. Given the sets of credentials and policies 
are finite at both parties, the search it conducts always terminates. 

The existing negotiation strategies still base on the disclosure of credentials and 
policies, which will inevitably release some information and cannot handle policy 
cycles. In our approach, we hide the access control policy from revealing and match 
credentials with minimal credential-set, which can effectively protect the access 
control policy. 

3   Hiding Policy 

In this section, we depict our approach in detail. First, we review the concepts of ATN 
and describe the above problems. Then, we use 0-1 table to check policy consistency. 
This process examines conflicts in access control policy as well as generates minimal 
credential-set. Finally, we explain the importance and the meaning of minimal 
credential-set in hiding policy. 

3.1   Basic Definitions 

In ATN, the disclosure of service s is controlled by an access control policy ps, which 
specifies the prerequisite conditions that must be satisfied in order for s to be 
disclosed. Generally, an ATN system includes the following elements: 

• Client: the relying party who initiates the request to service s. Accordingly, 
server is the counterpart who possesses the service s. Note that the client and the 
server are not the traditional C/S model, on the contrary, they are peer-to-peer, 
they are just two different entities, and they are always treated as a negotiator 
and an opponent. 
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• C: credential set. Usually, Cc denotes client’s credential set, while Cs stands for 
server’s credential set. Cred contains all the credentials in negotiation process, 
i.e., Cred=Cc∪Cs. 

• P: policy set. Pc is used as the policy to protect client’s credentials, and Ps denotes 
server’s policy. Often, each policy Ps takes the form of Ps :s fs(c1,…,ck), 
(c1,…,ck∈Cred), where fs(c1,…,ck) is a normal formula consisting of literals ci, the 
Boolean operators ∧ and ∨, and parentheses. fs has the result in {True, False}. To 
better understand fs, here gives an instance. Given a set of credentials C∈Cred 
and a policy function fs(c1,…,ck). If fs=c1∨(c2∧c3), then fs({c1,c2})=True while 
fs({c2,c4})=False. Policy Ps is satisfied by the credential set C∈Cred if and only if 
fs(C)=True. During the trust negotiation, the client discloses its credentials till 
fs(C’)=True (C’⊆C), then the negotiation succeeds; otherwise, the negotiation 
fails and the process terminates. 

In ATN, a trust negotiation protocol is initiated by a client requesting a 
resource/service from the server. The server discloses some policies with the form of 
si True. Here are the basic definitions of ATN for policy conflict and policy cycle. 

Definition 1 (Automated Trust Negotiation). Let Cc and Cs denote the credential 
sets of client and server. Pc and Ps are the policy sets of client and server. The 
negotiation is initiated by a request for s∈Cs from the client. Before negotiation, the 
server discloses all the policies that have the form of si True. The goal of the trust 
negotiation is to find a credential disclosure sequence (c1, c2, …, cn=s), where ci∈ 
Cc∪Cs, and such that for each ci (1≤i≤n), the policy for ci is satisfied by the 
credentials disclosed. In other words, fci(∪j<icj)=True. If the client and the server find 
a credential disclosure sequence, the negotiation succeeds, otherwise, it fails. 

The sequence of the disclosed credentials depends on the decisions of each party. 
The decisions are decided by a negotiation strategy, which controls the credentials to 
be disclosed, when to disclose them, and when to terminate a negotiation. 

Definition 2 (Policy Conflict). Let Cs and Ps denote the credential set and policy set 
of server. The negotiation is initiated by a request for s∈Cs from the client. In order to 
protect important information of the access control policy, Ps has a complicated 
expression requiring client to disclose more credentials. Ps: s fs(c1, c2,…, cn). If fs(c1, 
c2,…, cn) False exists no matter ci=True or ci=False, the policy is called conflicted, 
i.e., there exists a conflict in the access control policy. 

Usually, fs(c1, c2,…, cn) should be True or False when {ci} sequence has different 
values. Surely, when fs(c1, c2,…, cn) True, the policy is still unacceptable, since it 
means the access control policy is always met no matter what credentials the client 
provides. In the next part, we classify the states of Ps into three types: incompatible, 
acceptable and non-recommended. Only the acceptable policy is valid, others are of 
no effect. 

Definition 3 (Policy Cycle). Let Cc and Cs (Pc and Ps) denote the credential (policy) 
sets of client and server, respectively. The negotiation is initiated by a request for 
s∈Cs from the client. If Pci:ci gci(sj) and Psj:sj hsj(ci) appear in a trust negotiation, 
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then the negotiation phase is deadlocked, in other words, there exists a policy cycle in 
the access control policy. 

Policy cycle leads the trust negotiation deadlock and ends up with a result of 
failure. Normal negotiation strategies are unable to handle policy cycle, but still waste 
much network, computing and communication overhead. In the next part, we will 
illustrate how to minimize credential-set deals with policy cycle easily. 

3.2   Checking Policy Consistency 

Generally, the access control policy is consistent and can be satisfied by client’s 
credentials. What will happen if the policy is self-contradictory or inconsistent? The 
result is obvious. In order to avoid undesirable unsuccessful negotiation, we adopt 0-1 
table to detect policy conflict before negotiation. 0-1 table works as two steps: 

• Decompose the original policies into many meta-policies. 0-1 table is used to list 
all possible results. In 0-1 table, 0 represents False, while 1 stands for True. 

• Analyses the 0-1 results and classify them into three types: 1) Incompatible 
policy, i.e., the access control policy has conflicts, and the results are all False. 
For example, suppose a policy P can be expressed as P=p1∧p2, where p1=p, 
p2=p’, then P False and is incompatible. 2) Acceptable policy, i.e., the result 
includes some True and some False. Only the disclosure of right credentials can 
meet the requirements of acceptable policy. 3) Non-recommended policy, i.e., 
there exists no conflict in the policy, but all the results are True. Non-
recommended policy means that the policy cannot control anything and deserves 
not being recommended. 

0-1 table is an effective method to list all the possible results of a policy 
expression. To better understand 0-1 table, here gives an example to illustrate it. 

Example 1. There exists a policy “The high performance computers of CGCL lab 
provide open cluster computing. Everyone who is a professor, a teacher or a PhD can 
use it directly. Otherwise, if a user is a graduate (Ms) and also a team-leader, he can 
use it too.” This policy can be expressed as: Policy=p1∨p2∨p3∨(p4∧p5), where 
psi:si ci (i=1,…,5) and c1:user.role=Professor, c2:user.role=Teacher, 
c3:user.role=PhD, c4:user.role=Ms, c5:user.role=Teamleader. The corresponding 0-1 
table can be expressed as Table 1, which shows that CGCL’s policy is an acceptable 
one since the result contains 29 times of True and 3 times of False. 

Table 1. 0-1 Table for Example 1 (0 represents False, 1 represents True, X represents 0 or 1) 

p1 p2 p3 p4 p5 Policy 
1 X X X X 1 
X 1 X X X 1 
X X 1 X X 1 
X X X 1 1 1 
0 0 0 0 X 0 
0 0 0 X 0 0 
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3.3   Minimal Credential-Set 

The goal of various negotiation strategies is to find credential disclosure sequence 
containing the requested service s. However, during the negotiation process, the 
credentials, including Cc and Cs, are required to be disclosed iteratively, which will 
inevitably bring information leakage problem. In this part, we use minimal credential-
set to compute credential disclosure sequence. 

Definition 4 (Minimal Credential-Set). Let Ps denote the policy set of server. 
Ps= Psi=Ps1∧…∧Psn and Psi:si fsi(ci). During the consistency detection process, 0-1 
table lists all the possible results. Every credential sequence which makes Ps True is 
added into an effective credential set CE. Minimal credential-set CM is the 
simplification of CE. 

Definition 4 tells us that minimal credential-set CM can be enough to meet the 
requirements of access control policy. In the above example, P1=True can make Ps 
True, then Seq1={c1}⊆CE. With the same, there exist Seq2={c1, c2}⊆CE, Seq3={c1, 
c3}⊆CE etc. After a simplification towards CE, the CM will be {{c1}, {c2}, {c3}, 
{c4,c5}}. The goal of simplification is to make CE into the form of CE 
=Seq1∨…∨Seqn. The principal the simplification must follow lies in that if Seqi⊆Seqj 
(i j), then remove Seqj from CE. The remainder items of CE are the final minimal 
credential-set. 

Minimal credential-set helps to find the credential disclosure sequence that the 
client should release. Now the trust negotiation process checks whether the client’s 
credential set includes some items of minimal credential-set CM. During the 
negotiation, the server does not need to disclose its access control policy any more; it 
only publishes the minimal credential-set. 

3.4   Credential-Policy Matching 

Minimal credential-set aims at checking whether the client has the satisfied 
credentials. It can also deal with policy cycle problem. The credential-policy 
matching process complies with Theorem 1 described as the following. 

Theorem 1. Let Cc and Cs denote the credential sets of client and server respectively. 
The negotiation is initiated by a request for s∈Cs from the client. Let CM be the 
minimal credential-set of Ps. if ∃Seq⊆CM, and Seq⊆Cc, then the negotiation succeeds 
and the trust can be established, otherwise, the negotiation fails. 

It is easy to prove Theorem 1. Note that s∈Cs, Ps:s fs(C). Since ∀Seq∈CM, 
fs(Seq)=True, then fs(CM)=True. ∃Seq⊆CM and Seq⊆Cc fs(Cc)=True, which equals to 
that negotiation succeeds. The algorithm is described as Fig.1. The function 
MatchCreToPolicy(Cc, CM) is to check whether credential set Cc belongs to minimal 
credential-set CM. If ∃Seq⊆CM and Seq⊆Cc, then MatchCreToPolicy(Cc, CM) returns 
True. isBelongTo(Seq, Cc) is a Boolean function to judge whether the sequence Seq of 
some credential set belongs to Cc. 
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Algorithm: MatchCreToPolicy(Cc, CM) 
Input: 

Cc: the credential set of the client 
CM:the minimal credential-set 

Output: 
True or False 

Procedure: 
For i=1, 2,…, sizeof(CM) 

Seqi∈CM; 
If (isBelongTo(Seqi, Cc)==True) 

return True; 
return False 

Function: isBelongTo(Seq, Cc) 
Input: 

Seq: the disclosure sequence 
Cc: the credential set of the 

client 
Output: 

True or False 
Procedure: 

For each c∈Seq 
If (c∉Cc) 

return False; 
return True 

Fig. 1. Credential-Policy Matching Algorithm 

Now, we give an example to illustrate how minimal credential-set handles policy 
cycle. 

Example 2. Suppose the following access control policies exist between the client 
and server. 

Client                                       Server 
pc1: c1 s2∧s3                         ps: s (c1∧c4)∨c5 

pc2: c2 s2                              ps1: s1 c6 

pc3: c3 s6                              ps2; s2 c2 

pc4: c4 True                         pc3: c3 c4 

In the example, Cc={c1, c2, c3, c4} and Cs={s, s1, s2, s3}. Since c2 and s2 depend on 
each other so that the negotiation has policy cycle. Normal negotiation strategies 
cannot work well and will lead the negotiation failure. When minimal credential-set 
approach is taken, the process can go on. Since s (c1∧c4)∨c5, then {c1, c4}⊆CE, 
{c5}⊆CE. Meanwhile, Ps=ps=((ps2∧ps3)∧True)∨False=ps2∧ps3, then {c2, c4}⊆CE, so 
the minimal credential-set CM={{c2, c4},{c1, c4},{c5}}. Now {c1, c4}⊆Cc, the 
negotiation succeeds. 

4   Use Case Study 

In this section, we apply 0-1 table and minimal credential-set to handle a practical 
trust negotiation case. 

4.1   Scenario Description 

CGCL lab provides open high speed printing service. The printer is at the meeting 
room. During the meeting, no one except the meeting chair can use it. When there is 
no meeting at the working hours, teaching assistant can use it directly. Others can use 
it when the lab assistant is at present. 
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4.2   Policy Decomposition 

Let Policy denote the access control policy. Policy can be described as Policy= (p1∧p2) 
∨(p’1∧p3∧p4)∨(p’1∧p3∧p5). The corresponding credentials are: c1:Context.activity= 
meeting, c2:user.role=meetingChair, c’1:Context.Activity≠meeting, c3:Context. 
workinghours=True, c4:user.role=teacherAssistant, c5: labAssistant.atPresent=True. 

4.3   0-1 Table 

The 0-1 table shows in Table 2 based on policy description. 

Table 2. 0-1 Table for the Case 

p1 P’1 p2 p3 p4 p5 Policy 
1 0 1 X X X 1 
1 0 0 X X X 0 
0 1 X 1 1 X 1 
0 1 X 1 X 1 1 
0 1 X 0 X X 0 

As far as the results are concerned, the access control policy is acceptable since 
there are 14 times of True and 18 times of False. 

4.4   Minimal Credential-Sets 

From Table 2 we can see that CE=Seq1∨Seq2∨…∨Seq14, where Seq1={c1, c2}, 
Seq2={c1, c2, c3}, Seq3={c1, c2, c4},…, Seq14={c3, c4, c5}. After the simplification 
process, the final form is CE={c1, c2}∨{c’1, c3, c4}∨{c’1, c3, c5}. Then, the minimal 
credential-set CM={{c1, c2}, {c’1, c3, c4}, {c’1, c3, c5}}. 

4.5   Negotiation Process 

The negotiation process computes whether any credential sequence of CM appears in 
Cc. The MatchCreToPolicy(Cc, CM) algorithm is revoked to match the credentials to 
the access control policy. If MatchCreToPolicy(Cc, CM)=True satisfies, the 
negotiation succeeds. Otherwise, the client’s access will be denied. 

5   Analysis 

Based on the above description of 0-1 table and minimal credential-set, our approach 
has the following features: 

1) Policy consistency detection. We adopt 0-1 table to check consistency of 
access control policy before the trust negotiation. We classify the access 
control policy into three types. Only the acceptable policy is meaningful while 
the others are not suitable. 
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2) Policy cycle disposal. Minimal credential-set can well handle the problem of 
policy cycle. Unlike other negotiation strategies, minimal credential-set treats 
client’s credentials as a total integrity and compares them with credential 
sequence instead of disclosing the credentials and policies one by one. 

3) Policy hiding as to protect sensitive information. After the policy consistency 
checking at the side of server, the access control policy is never disclosed to 
the client, which hides the policy from revealing and can greatly prevent 
sensitive information in policy from leaking. 

4) Little cost. Since the approach does not need the gradual disclosure of 
credentials and policies, the overhead of network, communication and 
computing will reduce greatly. Meanwhile, if the access control policy has 
conflicts, our approach can prevent the negotiation from continuing, which can 
improve the rate of successful negotiation and enhance negotiation efficiency. 

6   Conclusion 

In this paper, we present a new approach to hide access control policy. In the 
approach, we adopt 0-1 table to check policy consistency and examine whether the 
access control policy is consistent or not. We classify the access control policy into 
three types according to its state. If the policy is an acceptable one, the trust 
negotiation can continue. Minimal credential-set is used to list all the possible 
credential disclosure sequences. If the client has the right credentials to include one of 
the items in minimal credential-set, the trust can be established and the access is 
allowed. In the paper, we describe the approach in detail and illustrate how it works 
through practical example. 
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Abstract. We present an approach to protect mobile code and agents at runtime
using Trusted Computing (TC) technologies. For this purpose, a “mobile policy”
is defined by the mobile code originator, and is enforced by the runtime environ-
ment in a remote host to control which users can run the mobile code and what
kind of results a user can observe, depending on the security properties of the user.
The separation of policy specification and implementation mechanism in existing
mobile computing platform such as Java Runtime Environment (JRE) enables the
implementation of our approach by leveraging current security technologies. The
main difference between our approach and existing runtime security models is
that the policies enforced in our model are intended to protect the resources of
the mobile applications instead of the local system resources. This requires the
remote runtime environment to be trusted by the application originator to authen-
ticate the remote user and enforce the policy. Emerging TC technologies such
as specified by the Trusted Computing Group (TCG) provide assurance of the
runtime environment of a remote host.

1 Introduction

Mobile code refers to programs and processes that migrate and execute at remote hosts,
so that the execution environments are different for different instances. There is a wide
range of mobile applications encompassing autonomous mobile agents which actively
travel to remote hosts, Java applets, ActiveX, component software (e.g., COM/DCOM/
COM+ and Servlet/EJB), distributed ad hoc and sensor network applications,etcetera
[16].

Runtime environments provide mechanisms to protect the user’s and the system’s
sensitive information by enforcing security policies in a local host. The policies are
based on the attributes of the code and of the user who is running it. Possible attributes
include code sources, URLs, digital signatures, user groups, roles, and credentials. The
two mainstream runtime environments currently adopted in industry are Common Lan-
guage Runtime (CLR) in .Net and Java Runtime Environment (JRE) in Java. In Java,
the security in JDK1.0 and JDK1.1 uses a sandbox model to restrict the access of Java
Applets based on code source and digital signature, while in JDK1.2, a user-based ac-
cess control model is introduced [10,15]. Similar to Java, .Net enforces a code access
security model based on code source and location, as well as a role-based security
model [16].

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 179–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



180 X. Zhang, F. Parisi-Presicce, and R. Sandhu

The protection of mobile applications against malicious hosts and users is a more
difficult problem. Current security models in runtime environments are used mainly to
enforce the local host’s security policy to protect the local system resources. However,
there are cases in mobile applications where the originator may have some security
requirements to protect the sensitive information brought or accessible by the mobile
code. For example, a shopping application may carry a user’s sensitive information
while running in a remote site. The code originator may require that the code can only
run in a specific protected domain, and the user who runs this code must have a specific
role in an organization, or some other credentials. In this kind of situation, existing
access control models for mobile code are not adequate.

In this paper we propose an approach to enforce the policy of the mobile applica-
tion originator in remote host runtime environments to control accesses from users,
by leveraging emerging client-platform-based Trusted Computing (TC) technologies.
We call this kind of policy a “mobile policy” in our model, as compared with the re-
mote host’s local policy. A mobile policy is the security requirement provided by the
originator to specify what kind of subject in a remote host can run this code, execute
particular methods/components, or access some sensitive information included with the
mobile application. We use the mechanisms in current runtime environments to enforce
a mobile policy.

Since the subject of a mobile policy is a user or program that executes or accesses
the mobile code in a remote site, the authentication of the subject is a key point to
enforce the policy. Java authentication and authorization Service (JAAS) provides a
general layer of user-based authentication and access control mechanism, beyond the
sandbox model, which can be applied in our approach. One important advantage of our
approach is that we try to reuse the runtime security technologies employed in current
systems. A prerequisite for it is the basic assumption that all machines on which the
code is intended to run guarantee a minimum of security regarding the correct behavior
of the runtime environment. For an enterprise-wide environment, this is viable with
on-site configuration of each host by the administrator. For multidomain distributed
systems, a trusted runtime environment (TRE) is essential for our model. A TRE can
be built on a Trusted Computing Base (TCB) and can be considered an extension of
TCB. Emerging Trusted Computing (TC) technologies such as TCG’s Trusted Platform
Module (TPM) which provide hardware-based root of trust and extended trust to upper
levels with verifiable platform characteristics, thus enabling remote policy enforcement
in our architecture.

Our approach does not exclude ways other than mobile policies to distribute and
enforce security requirements in different hosts within an organization. For example,
a network administrator could install in each host, at the operating system level, the
policy to be used to determine the specific users who can run a specific application.
The use of mobile policies with mobile code has many advantages over this approach:
(1) as the deployment and management of mobile code and agents is highly automated,
the security management should also be automated and flexible, while administrator-
involved configuration for individual platforms is burdensome for an organization; (2)
extensibility and scalability of access control policy for a mobile application originator
since a mobile policy can be updated/revoked easily with our approach; (3) specification
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of fine-grained access control for different users with different security properties in the
same remote host, by allowing different users in the remote host to obtain different
results from this application (beyond the simple “allowed/not allowed to execute); and
(4) simplification of the specification and enforcement of global security policies in an
organization.

The remainder of this paper is organized as follows: Section 2 shows some examples
which can benefit from our approach but are difficult to implement with current runtime
security technologies. Section 3 presents an overview of the security model in JRE. Sec-
tion 4 proposes our trusted platform architecture to support remote policy enforcement
in a distributed environment. Section 5 formulates our policy model specification and
enforcement in JRE. Section 6 mentions some related work in the mobile code security
area, and the differences between these and our approach. Section 7 summarizes this
paper and presents our future work.

2 Motivating Examples

Example 1. In a mobile application intended to perform E-shopping services, the mo-
bile code is transferred to a remote E-commerce server which collects related informa-
tion, such as price, location, shipping fee, etc., and then returns it to the customer. The
code carries the customer’s information, such as credit card number, address, telephone
number, etc., and some functions to perform specific work, such as data collecting and
transporting, order transaction, etc. If the customer makes the decision to order, the
mobile code places the order using the customer’s information. In this example, the
customer has access control requirements that his personal information can only be
read by a clerk in a specific organization without modification, and the functions can
only be executed in a particular domain. This objective cannot be achieved with current
runtime security models based on code attributes and local host’s policies to protect the
host’s resources. Also, the type safety and data encapsulation features of programming
languages such as Java cannot solve this problem. With type safe language, a protected
variable or class can be declared as a private element in object-oriented programming,
but, with this mechanism, the resulting access control is “black or white” to all users,
which is not suitable for fine-grained protection.

Example 2. Component-based software has been developed and applied in industry
so widely that it has become the mainstream for enterprise computing during the last
decade. A component is a software element that conforms to a component model and
can be independently deployed and composed without modification according to a com-
position standard. Regarded as building blocks, components can be reused in many
applications and deployed in different places. Consider a credit card company that has
implemented a credit service component. The component, with the customer’s informa-
tion as input, will check the database in the credit card server and return some billing
information. As a third party software, this component is deployed at an enterprise’s
application server and applied to build customized applications. As this component ac-
cesses the database, the owner of this component (e.g., the credit card company) has
to make sure that only an authenticated and properly authorized application developer,
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deployer, or user can instantiate it and call it. With current technology, a component de-
ployer or system administrator has some access control mechanisms to do this to some
extent. For example, in Enterprise Java Bean (EJB), the deployment descriptor along
with the component in the enterprise’s application server controls what kind of roles
can access the component and can activate its methods. But this XML-based descriptor
is not generated by the component owner and cannot reflect his/her fine-grained access
control policies, since the component owner normally is not aware of the security con-
text of local roles in the enterprise. In this case, a mobile policy is a better solution, so
that whenever the component is initialized and instantiated in the component container,
the access control policy from the component owner can be enforced.

3 Java Runtime Security

This section presents an overview of the security mechanism in Java Virtual Machine
(JVM) for Java mobile code, which is an example that we use to support runtime en-
forcement of mobile policy in our framework.

3.1 Overview

JVM uses the sandbox model to enforce security policies at runtime. The sandbox
model in JDK1.0 and JDK1.1 is based on code attributes such as the code’s source,
the URL, the signature, etc. While JDK1.0 simply prohibits any Java Applet from ac-
cessing any of the local system’s resources, JDK1.1 assigns to a Java Applet the same
permissions as those of a local program if the host can trust the digital signature associ-
ated with this applet (reverts to JDK1.0 otherwise). Starting with JDK1.2, the concept
of protection domain based on code attributes is introduced with a complex sandbox
model, and the Java Authentication and Authorization Service (JAAS) introduces user-
based access control, and allows the local system’s access control models and policies
to be enforced in the runtime environment. Furthermore, a Java policy is augmented by
the security policies of the local operating system, for example, to prevent mobile code
executed by a user from accessing a file on the hard disk if the same user cannot read
the file at the operating system level.

Fig. 1. JDK1.2 security model [10]
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Figure 1 shows the semantic sandbox model in JDK1.2 [10]. In this model, the code
is located in a protection domain which is defined by the code attributes and by the
local access control policies. The protection domain represents the permissions that the
code can hold during execution. The general process to run Java mobile code can be
described schematically as follows: a Java binary code is loaded by a class loader and
classes are defined with the defineClass method of the class loader. Each class is asso-
ciated with a protection domain according to policy information. The code is ready to
run or be called by other classes after being loaded; whenever it tries to access a local
system’s resource, it calls a Java API, which then calls the security manager (the access
controller since JDK1.2) to check if this operation is allowable. If the security man-
ager permits the operation, the Java API completes the call and returns to the original
code, otherwise, the security manger throws an exception to the Java API, which in turn
throws it to the user. Starting with JDK1.2, the operation permissions are determined
by the access controller, which supplements the security manager.

The access controller in JRE can enforce fine-grained policies based on the attributes
of the running code and of the user. Figure 2 illustrates an actual policy file in Java. The
permission definition in Java includes two parts: the object and the access right. The ob-
jects are the local system’s resources, such as the files and directories, sockets, registry
keys and values, and so on. Access rights are defined based on object properties, such
as “read” to file and directory (“*” means any operation). In Figure 2, the policy allows
any code downloaded from “http://www.myuniversity.edu” to “read” files in “/tmp”,
and to accept connections on, to connect to, or to listen on any port between 1024 and
65535 on any host within “myuniversity.edu”. The user has to be authenticated before
being defined as “principal” in a policy file and the JAAS provides a mechanism to ob-
tain the authentication context from the local platform. For example, the third item in
Figure 2 specifies that “Alice”, who is authenticated by Solaris, can access all files and
directories within “/usr/home/Alice”; the last item states that an authenticated subject
with Kerberos principal name “bob” with realm foo.org can call the System.getProperty
method to access the user environment information. A customized permission class

grant codeBase "http://www.myuniversity.edu/"{
permission java.io.FilePermission "/tmp", "read";

};
grant signedBy "myuniversity" {

permission java.net.socketPermission
"*.myuniversity.edu:1024-",‘‘accept,connect,listen";

};
grant Principal com.sun.security.auth.SolarisPrincipal

"Alice" {
permission java.io.FilePermission

"/usr/home/Alice", "*";
}

grant Principal
javax.security.auth.kerberos.KerberosPrincipal
"bob@foo.org" {
permission java.util.PropertyPermission

"user.home", "read";
permission java.io.FilePermission "bar.txt", "read";

};

Fig. 2. Java policy example
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can be defined for an application, thus greatly increasing the flexibility and expressive
power of Java security policies.

Example 3. Consider the method shown below.

Public void sensitiveCall() {
Permission permission = new
java.net.SocketPermission("localhost:8080", "connect");
AccessController.checkPermission(permission);
// sensitive call
Socket s = new Socket("localhost", 8080); }

In this example, a permission object (permission) is defined as a socket connection to
local host port 8080. The single-instance class AccessController first checks the appli-
cation’s policy file. If this permission is granted in the policy or implied by any per-
mission granted in the policy, the AccessController’s checkPermission1 method keeps
silent; otherwise, an access control exception is thrown to the caller method. Whether
a permission is implied by another permission is defined in the implies method of the
latter’s Permission or PermissionCollection class. The details of defining a customized
permission and implied permissions can be found in [9,21]. By default, the Access-
Controller’s checkPermission method implements the checkPermission method imple-
mented in SecurityManager.

3.2 JAAS

JAAS has been integrated into Java Standard Edition since J2SDK v 1.4. The two pur-
poses of JAAS are to provide user-based authentication and authorization in Java. The
original sandbox model in Java is code source-based, so that, a permission is deter-
mined by the location where the code comes from and a digital signature generated by
the owner. In JAAS, security attributes of the user running the code are considered in
access control.

Authentication. JAAS implements the Pluggable Authentication Module (PAM) stan-
dard with Java. Whenever a mobile application is loaded, the Configuration class stores
all available LoginModules for this application, a LoginContext class is instantiated, and
its login method invokes all LoginModules and attempts to authenticate the user. If suc-
cessful, the user is authenticated as a Subject object with a set of Principals objects and
credentials which represent the user’s security attributes. Principals are names of iden-
tities with particular types, such as a SSN number, a group or domain name, a role, or a
tickets. Credentials can be general security related attributes, such as password, public
key certificates (X.509 or PGP), Kerberos tickets, etc. For example a successful authen-
tication with com.sun.security.auth.module.NTLoginModule imports principals userID,
domainID, and several groupIDs for a user.

Authorization. Starting with Java 2, the SecurityManager delegates security checks to
AccesssController. After a user is authenticated, the method Subject.doAs dynamically
associates this user with the AccessControlContext, which is retrieved by the Access-
Controller to check if it has sufficient permissions for a sensitive operation based on the

1 Actually this explicit permission check is redundant since any call to open a socket connection
is checked by the SecurityManager by default.
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principals and credentials associated with the subject. A Subject class interface has the
form

Public final class Subject {
...
public static Object doAs (Subject s,
java.security.PrivilegedAction action) {}

}

4 Trusted Runtime Environment

As mentioned in Section 1, to correctly enforce a mobile policy, the application orig-
inator needs to trust the runtime environment of the remote host. A trusted runtime
environment (TRE) should not only detect any malicious modification of the policy,
but also detect any change of the security components in the virtual machine, such as
authentication and authorization modules. Specifically, a trusted runtime environment
(TRE) should provide:

– Integrity of mobile policy and code. Before being loaded, a mobile policy’s in-
tegrity should be attested and verified by the originator (the user who deploys the
code) to ensure that the correct policy is used. This requires that the JVM correctly
measures the integrity (e.g., with a hash function) and reports to the originator, upon
a request to run the code. On the other side, a remote host may also need to verify
the integrity and signature of the mobile policy, according to its local policies. For
example, the digital signature of a mobile policy/code enables it to be launched in a
JVM as a third party policy provider by means of code source-based authorization.

– Trusted authentication of remote subjects. The authentication modules in the re-
mote site must authenticate the user in the expected manner. While a uniform ap-
proach to authentication may be viable in an organization-wide system, more gen-
erally a trust mechanism is needed for multi-domain distributed systems.

– Trusted authorization enforcement. After a mobile policy is loaded, the enforce-
ment depends on the expected behavior of the remote JVM’s authorization module,
which is the policy enforcement point of the security system.

Therefore, a TRE is a prerequisite for our security model. It has been recognized
for some time that software alone does not provide an adequate foundation for building
a high-assurance trusted platform. The emergence of industry-standard Trusted Com-
puting (TC) technologies promises a revolution in this respect by providing roots of
trust upon which secure applications can be developed. These technologies offer a
particularly attractive platform for security policy enforcement in general distributed
systems. Many current efforts, especially the industry-led Trusted Computing Group
(TCG), have focused on building trust rooted in hardware [5].

TCG has defined a set of specifications aimed at providing a hardware-based root of
trust and a set of primitive functions that allow trust to propagate to application soft-
ware, in addition to crossing over platforms. The root of trust in TCG is a hardware
component on the platform called the Trusted Platform Module (TPM). Application-
level trust requires strong integrity checks of binary code for running processes and a
mechanism that allows other entities (applications or platforms) to verify that integrity
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as well. A TPM has the capabilities to measure and report runtime configurations of
the platform, from BIOS to OS. TPM and TC-enhanced hardware technologies, such as
Intel’s LaGrande Technology (LT) [2] and AMD’s Secure Execution Mode (SEM) [1],
generally allocate isolated memory partitions to different application processes to pre-
vent software-based attacks at runtime.

In our work, we abstract the underlying trusted computing technology, and focus on a
high-level trusted runtime environment built beyond that. Since a runtime environment
such as Java Virtual Machine is normally loaded after the OS is loaded, we consider the
TRE as an application or service level trusted domain, which is built beyond the trusted
hardware and OS of the remote host with the attestation mechanism of trusted comput-
ing technology, as shown in Figure 3. In this platform, the hardware layer (comprising a
TCG compliant TPM and some other necessary hardware such as LT-enabled CPU and
chipset) provides the root of trust for TC. The secure kernel (SK) provides the protected
runtime environment for the JVM. This can be done through controlling DMA-enabled
device drivers and memory management unit (MMU).

TPM Device Device Hardware

Secure Kernel

Operating System

Class Loader

Code

Java Virtual Machine

JAAS

AccessController
SecurityManager

XACML PDP

Mobile
Policy

Fig. 3. Platform architecture to support trusted runtime environment for mobile code

4.1 The Trust Model

The integrity of SK is measured by the TPM when the system boots. Also, SK is pro-
tected in memory space by hardware so that its integrity is guaranteed at runtime. Before
the JVM is started, SK measures the integrity of JVM and stores its hash value locally.
In turn, when mobile code is loaded, the JVM measures the integrity of the program
(Java bytecode) and the mobile policy, e.g., implemented by the class loader of JVM.
Note that SK enhances the language-based security of the JVM by means of trusted
hardware.

The measured integrity can be verified by the code originator with remote attesta-
tions, which is enabled by the TC hardware. A hash chain is constructed corresponding
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to an attestation challenge to establish the trust of JVM, the mobile code, and the mobile
policy based on the root of trust provided by the hardware. Specifically, SK has a public-
private key pair generated by the TPM when the platform is initialized, where the public
key is certified by the attestation identity key (AIK) of TPM. SK also generates a public-
private key pair for the JVM, where the public key is certified by the SK (by signing with
its private key) and the private key is protected by JVM, e.g., with the sealed storage
function of TPM. The key pair for JVM is generated for the first time when it is installed
in the platform. When the platform receives an attestation challenge from a remote side
to check a running code’s environment state, TPM signs a set of platform configuration
register (PCR) values with its AIK key2, and SK signs the integrity value of JVM with
its private key, while JVM signs the integrity value of the code. These three signatures
are then sent to the attestation challenger. The challenger verifies all the signatures and
the public key certificates of AIK, SK, and JVM, respectively. If all are valid and the
integrity values match, the JVM is trusted, and the code and mobile policy’s authenticity
is verified. Thus, the code originator can trust the security enforcement of the remote
JVM and the result generated by the code.

5 Mobile Policy Specification and Enforcement

The primary goal of our framework is to enforce the code originator’s mobile policy
in remote runtime environments. Policy management in our framework includes three
phases: (1) policy specification by a mobile code originator, (2) policy distribution by
the originator or a trusted third party (such as a central server), and (3) policy enforce-
ment in the remote host. We mainly describe phases (1) and (3) in this paper. For phase
(2), a mobile policy could be attached to the code and distributed along the network,
in which the policy can be bound to the code itself, or the policy could be downloaded
from a central repository only to sites where the code is actually run. In both cases the
integrity of the mobile policy is critically important, as mentioned earlier.

5.1 Mobile Policy Specification

We have two levels of policy specification. The high-level phase is a logic specification
with an authorization specification language (ASL) [14]. This provides a clear defini-
tion and analysis, as well as confliction resolution, which is needed when the policies
are derived or composed from different resources. For example, a policy can be de-
rived from a policy in a group and another policy of an individual user, or a policy
can be combined from several policies from different departments in an organization.
The low-level phase is a concrete specification of the mobile policy with the extensible
access control markup language (XACML) [3] format, enforced in a runtime environ-
ment as an input. The separation of these two levels provides flexible deployment and
decentralized policy specification and composition. Because of space limitations we
only explain the XACML policy specification in this paper.

2 We do not explicitly specify what PCR values are included in an attestation, since the re-
quired properties of a platform (including hardware, BIOS, and OS configurations) are very
application-specific.
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XACML is an open-standard format to specify access control policies, and expected
to be widely used thanks to the properties of interoperability and extensibility. A mobile
policy can be described in XACML format as the following shows:

<Policy PolicyId="(policy-name)"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>(predicates over subject attributes)</Subjects>
<Resources>(predicates over object attributes)</Resources>
<Actions>(predicates over access rights such as read and write)</Actions>

</Target>
<Rule effect="permit"/> (Specification that this policy is positive)
<Obligations>(Specification of attribute-update actions)</Obligations>

</Policy>

where the <Subjects> and <Resources> elements specify the attributes of the
subjects and the objects, the rights are in <Actions> element, and the update actions
are defined in <Obligations> element. Update of attributes result from granting the
access thereby possibly changing the state of the subject or the object.

Subjects. A subject is a process running on behalf of a user or role that actually exe-
cutes the code. In a mobile policy, subject attributes can be a username, or a role name,
group name, certificate signed by a particular certificate authority, etc. Each subject or
user attribute has to be authenticated by the runtime platform before running the code.
JAAS, entrusted with enforcing the user-based access control, can be used within an
enterprise or organization. For general distributed environment, a trusted third party
subject attribute service may be needed for authentication.

Permissions. A pair (object, right) is regarded as a permission. The objects3 in a mo-
bile policy may be classes or methods of a mobile code, or information accessed or
stored by a mobile code. Specifically, since a mobile policy is to protect a mobile ap-
plication, possible objects include information on the state of the mobile code, results
accumulated at other hosts by a mobile agent, sensitive information of the code orig-
inator, and functions to access other sensitive information, implemented as variables,
classes, methods or components of a mobile application. Normally, the right associated
with a function or component is to “execute”, the right for any sensitive information,
partial result, and individual variables may include “read” and “write”, and the right
to a class may be “instantiate” and “inherit”. We assume that all the sensitive accesses
of (object, right) are encapsulated in a method implemented in the classes, while the
sensitive variables are private members of the classes. For example, to “read” a credit
card number, a call to getCredit method is invoked, while “write” a credit number with
setCredit. Thus, a permission must be granted to call a method to obtain sensitive infor-
mation. So generally a permission is checked when a sensitive method is invoked and
executed, or a protected object is instantiated or constructed.

5.2 Mobile Policy Enforcement

In a typical access control system, a policy decision point (PDP) evaluates access re-
quests with subject and object attributes and sends results to a policy enforcement point

3 Note that an object in a mobile policy is a different concept from the object (an instance of a
class) in Java language.
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(PEP). Using Sun’s XACML library [4], the PDP module interprets XACML policies
in the mobile policy file and makes access decisions, while the PEP can be just a simple
interface of the enforcement mechanisms implemented in current JVM (refer to Fig-
ure 3). To re-use these functions, each mobile code needs to implement the permission
classes for the protected access rights, which are application-specific.

Define Permission Classes. Although Java API provides some basic permission
classes, most of them are used in local policy enforcement. Normally a mobile code
originator has to define his/her own permissions according to the particular applica-
tions. For instance, in Example 1, a creditPermission class is needed with rights such as
“read”. Figure 4 is the skeleton to define a CreditPermission class for the E-Shopping
example. In Java, an application-defined permission class inherits from the system class
Permission and implements the Serializable interface. Each permission object has a
type, name and action (access type). For CreditPermission, we only define “read” ac-
cess type. Note that a permission instance does not imply that this permission is granted,
but states that accessing this instance is checked by the access controller.

public final class CreditPermission extends Permission
implements Serializable {
public CreditPermission(string name, string actions){
//Creates new CreditPermission object with the
//specified actions. name is the method name that
//represents the method to read credit card number,
//such as "getCreditNo". actions is a list of the
//desired actions granted to the object. In this example,
//only "read" action to credit information.

...
}
public boolean implies(Permission permission){...}
...

}

Fig. 4. Sample permission class

The implies method specifies complex permission semantics, such as a prerequisite
permission. For example, an “update” permission of an online account requires a “read”
permission to that account object. Permission constraints such as separation of duty can
also be specified in this method.

Import XACML Mobile Policy. From the XACML policy file, each subject in the
mobile policy is mapped to principals defined in JAAS, such as role, group-name, etc,
while the subject attributes and security related credentials such as password, ticket,
public key certificate, etc., are associated with these principals after authentication. One
of the advantages of using XACML for mobile policy is that XML provides flexible
data specifications and semantics, and it is easy to extend it in future work if other
information is needed to specify policies. Also, graph tools can be easily developed for
policy composition and analysis.

Since the default policy implementation in Java is in a text file, we need to replace
this with our alternative implementation. For this, an XMLPolicy class is defined which
is a subclass of the abstract class Policy in Java, and is part of the PDP module to retrieve
policy information from the XML file.
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A mobile policy is defined by the code originator who is, in general, not the
rightholder of the local host system. Therefore the JVM needs the permission from
the local host system to load the mobile policy. In implementation, a mobile policy is
loaded into a JVM dynamically as the code is loaded. Specifically, a third-party policy
implementation can be inserted into a runtime environment by invoking the setPolicy
method of the Policy class. A mobile policy file can be attached with a mobile code in
a single Java Archive (JAR) file and captured by JVM, or it can be stored in a central
server and a URL argument as the location is provided to load the application code in
JVM. If a mobile policy is outside the remote side’s domain, dynamically loading the
policy requires runtimePermission checked by the AccessController. This requires that
the remote host’s default policy be configured to support a third-party policy provider.
Code signature for authentication and integrity of the mobile policy is needed according
to the host’s local policy.

5.3 Policy Enforcement

After the permission and policy classes are loaded, and the user is authenticated with
JAAS, a sensitive operation can be authorized to a particular subject at runtime. With
JAAS, after a user is authenticated with a set of principals, the method Subject.doAs
dynamically associates all the principals with the local AccessController (actually, it is
AccessControlContext by calling AccessController.getContext()). Then, when a sensi-
tive call is requested, the AccessController can make a decision based on the pre-defined
policy. As shown in Section 3, a Subject.doAs method combines an authenticated sub-
ject and a PriviledgedAction object. Therefore to enforce a mobile policy, all sensitive
operations should be encapsulated in PriviledgedAction classes. The following example
shows a simple implementation.

Example 4. Consider an eshop mobile application where creditPermission is defined
by the code originator and policy is specified as the following XACML format.

<Policy PolicyId="makeorder-policy"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>

<Subject>
<!-- The subject identity must include "OU=Org1". -->
<SubjectMatch MatchId="function:x500Name-match">

<AttributeValue DataType="string">OU=Org1</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-id" DataType="x500Name"/>

</SubjectMatch>
<!-- The subject’s rolename is PurchaseManager -->
<SubjectMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">PurchaseManager</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-rolename" DataType="string"/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">creditPermission</AttributeValue>
<ResourceAttributeDesignator AttributeId="permission-name" DataType="string"/>

</ResourceMatch>
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<Resource>
</Resources>
<Actions>

<!-- "GET" represents the read privilege. -->
<Action>GET</Action>

</Actions>
</Target>
<Rule effect="permit"/>

</Policy>

A subject is authenticated as a Org1.PurchaseManager role and trying to call the
sensitive method getCredit. The following code shows the outline of the class.

public class EShop {
public static void main(String[] args) {
...
Subject.doAs(aPurchaseManager, new MakeOrder());
// where aPurchaseManager is an authenticated Subject
// with a principal of Org1.role named PurchaseManager.
...

}
}
public class MakeOrder implements PrivilegedAction {

public Object run() {
...
//sensitive call
String creditCardNo=CreditInfo.getCreditNo();
...

}
}

In this example the sensitive code is encapsulated in the MakeOrder class, which im-
plements PriviledgedAction class. The CreditInfo is a static class that stores a credit card
information, which can be obtained by some methods. The getCredit method is a sen-
sitive operation since as defined in the XML policy file. The MakeOrder will trigger an
access control check when getCredit is called. According to the policy, the permission
is granted. The general authorization in a mobile policy is similar to that in enforcing a
local policy.

5.4 Access Control Algorithm

Java uses a stack-inspection mechanism to enforce the security policy in the runtime
environment. In our model, the same stack-inspection mechanism is used, but the ac-
cess controller checks the permissions based on the mobile policy file. Specifically, for
each call in the stack frame, when there is a call to access protected objects in a mobile
code, the call is forwarded to the access controller. The access controller determines
if the operation is permitted according to the XML mobile policy: if the operation is
not permitted, the access controller throws an exception back to the call, which in turn
throws it back to the user running the code, otherwise the call completes the operation.
Figure 5 shows the access control algorithm. For each call in the stack, the access con-
trol algorithm first checks its protection domain. If the target permission is not in the
domain, an AccessControlException is thrown; otherwise, the algorithm in turn checks
if this calling method is declared as a privileged action. If so, and an AccessControlCon-
text is provided in the doPrivileged method, then the permission is checked with this
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AccessControlContext, if not, this permission is granted. If a thread is created by a par-
ent thread, the AccessControlContext of the parent is associated with the created thread.
The permission is checked with the local thread’s inherited context if it has not been
granted or denied after the first two steps. More details on stack-inspection mechanism
can be found in [9,27].

Access Control Algorithm:
checkPermission (permission) {

//loop, from newest to oldest stack frame
foreach (stackFrame in the stack of current thread) {

if (stackFrame caller’s protection domain does not
have permission defined in the mobile policy)

throw AccessControlException;
else if (stackFrame calling method has been marked

as privileged action with permission){
if (an AccessControllerContext context is

specified in the call to doPrivildged)
context.checkPermission(permission);

return; // allow access
}
else if(an AccessControlContext inheritedContext

is inherited when this thread is created)
inheritedContext.checkPermission(permission);

return;
}

}
Fig. 5. Access control with mobile policy

6 Related Work

Security is a basic problem in mobile computing. Generally, there are two distinct areas
in mobile code security: (1) protection of the host from malicious mobile code and (2)
protection of the mobile code from malicious hosts or users. Researchers have presented
several models and mechanisms to deal with malicious code [20,29], such as Sand-
box [19,10,15], code signing/code access [16], proof carrying code [17], etc. Protection
of mobile code, however, is still an open problem. Vigna [26] proposes an execution
tracing technology for mobile agents using cryptographic hash. Yee [28] presents mech-
anisms to detect tempering by malicious hosts with partial result authentication codes
(PARCs) and forward-integrity security policy. Sander and Tschudin [22] formalize a
theoretical result aimed at allowing an agent to preserve some secrecy from a malicious
host by using encrypted forms of functions in mobile code. Algesheimer et al [6] intro-
duce an approach for securely executing mobile code that relies on a minimally trusted
third party. This third party cannot learn anything about the computing with guaran-
tee of privacy and integrity to the code originator. The main difference between our
approach and previous work is that we enforce the security policy in the runtime envi-
ronment of the mobile code. Compatible with existing mechanism, fine-grained access
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control policies can be easily implemented in our approach, at the cost of a minimum
of trust in the remote runtime environment.

Another line of work is reported in [12], where a Java Secure Execution Framework
(JSEF) is proposed to support local user specific security policies and a global security
policy defined by the administrator. The objective in JSEF is still to protect users from
erroneous or malicious mobile code, and not to prevent malicious users from improperly
accessing or using mobile code. An isolated program execution approach is presented
in [18]. The isolation is achieved by delaying a sensitive operation such as file access to
a “modification cache” that is invisible to others in the system. While this is practical
in isolated applications to protect local system resources, it is not applicable in our
approach since we aim at protecting resources brought in by mobile code, which can
be not only an object in the virtual machine, but also a remote resource which can be
accessed by the mobile code.

Venkatakrishnan et al [25] present a permission “empowering” mechanism to mobile
code in the runtime environment instead of restricting the behavior. The scope of this
work is still in the range of protecting resources in the local host from mobile code.
Cubaleska et al [8] propose a method to build a trusted policy for a mobile agent owner.
The policy indicates which host is malicious or not trusted anymore, so that the owner
does not deploy mobile agents to these hosts. Since the trusted policy is a posteriori, the
solution is useful only for some mobile applications which re-visit previous hosts. In
our approach, the mobile policy is enforced in a trusted runtime environment, with no
such limitation. Hohl [13] introduces a blackbox model to protect mobile agents from
malicious hosts. In this idea, a parallel executable blackbox agent is generated from the
original agent, which has a different structure. As declared by the author, this idea only
partially solves the malicious host problem. However, our solution can be applied to
any mobile code.

A trusted Java Virtual Macine (TrustedVM) is proposed in [11] to capture the behav-
iors of a remote computing entity. Similar to our approach, the virtual machine itself is
attested by signed-hash mechanism. The main difference between this and our approach
is that in TrustedVM, policies are used to confine the behavior of the Java program ac-
cording pre-defined protocols in distributed environments, while the mobile policy in
our framework is to protect the execution of mobile code at runtime, that is, the ob-
jects in mobile policy are the components of the code itself. Also, our architecture uses
hardware-based TC technologies to enhance the security of the language-based JVM in
a platform.

7 Conclusions

This paper presents a mobile policy framework to protect the information and resources
imported by mobile code and agents in runtime environments with trusted computing
technologies. This framework includes policy specification and definition, as well as
a high-level implementation architecture in Java environment. For the implementation,
the access control mechanism in the Java Runtime Environment is used with the ex-
isting stack-inspection mechanism. The benefit of this enforcement architecture is that
we can define and implement the permission class in a mobile policy, maintaining the
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flexibility and compatibility with current runtime technologies. The extensibility of the
Java authorization model, as well as the separation of policy specification and enforce-
ment mechanism, makes our approach practical. A trusted computing architecture is
proposed in our framework, to provide verifiable trusted behaviors of a remote host’s
runtime environment.

In future work we can consider development of a runtime policy analysis engine to
dynamically answer permission checks. With this, permission derivation and inference,
as well as policy analysis can be achieved in runtime. This benefits from scalability
and development efficiency beyond the static policy specification and definition. For
example, a policy for a code may be combined from several sources, and a real time
check and analysis of these sources will improve the system performance by avoiding
the redefinition of the static policy files and the restarting of the program.
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Abstract. Address proxying is a process by which one IP node acts as an 
endpoint intermediary for an IP address that actually belongs to another IP 
node. Address proxying serves many useful functions in IP networks. In IPv6, 
the Secure Neighbor Discovery Protocol (SEND) provides powerful tools for 
securing the mapping between the IP address and the link address which is the 
basis of local link address proxying; however, these tools don’t work for 
address proxies. In this paper, we present an extension to SEND for secure 
proxying. As an example of how secure address proxying can be used, we 
propose a minor extension of the Mobile IPv6 protocol to allow secure 
proxying by the home agent. We then present measurements comparing SEND 
with and without the address proxying extensions.  

Keywords: secure address proxy, ring signature, SEND, Mobile IPv6, multi-
key cryptographically generated address. 

1   Introduction 

Address proxying is a process whereby one IP node acts as an endpoint intermediary 
for an IP address that is in some sense “owned” by another node.  IP address proxies 
are used in a variety of ways. The original link layer protocol for converting IPv4 
addresses to 48 bit Ethernet addresses, Address Resolution Protocol (ARP) [15], 
allowed network devices to proxy-resolve (Proxy ARP) addresses for hosts in order to 
support bridging and other functions. In IPv6, ARP was replaced by an IPv6 layer 
protocol called the Neighbor Discovery Protocol [9] which similarly allows routers 
and other network agents to perform proxy address resolution but at the IPv6 level.  

As an example of the usefulness of address proxying, proxy IPv6 address 
resolution is used in the Mobile IPv6 protocol [6] to make it look like a mobile node 
is on its home link when it is not. The Mobile IPv6 home agent – a router in the home 
network of a mobile host – proxies the address of a mobile host on the home link – 
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the home address – when the mobile host is not currently on the home link. This 
allows the home agent to intercept packets sent to the mobile host’s home address and 
forward them to the mobile host's current address on the foreign link - the care-of 
address. Additionally, proxying prevents any other node on the home link from 
claiming the home address. 

Despite its usefulness, address proxying is fraught with security problems. The 
underlying ARP protocol for translating between an IPv4 address and an Ethernet 
address never included any security measures. The sender of an ARP query therefore 
cannot tell whether a response comes from the legitimate owner of the IPv4 address, 
from a legitimate proxy (such as a router on the link), or from an attacker attempting 
to disrupt traffic to the legitimate owner. Such an attack is called "ARP spoofing"1. In 
IPv6, the Secure Neighbor Discovery Protocol (SEND) [1] allows a node to prove its 
authorization to claim ownership of an IPv6 address, but, as currently defined, the 
SEND protocol does not support address proxying either. Secure proxying, in effect, 
requires two nodes - the node claiming the address as its source address and the proxy 
- to be able to securely perform control signaling involving the address. 

If a single IPv6 host is claiming ownership of the address, the requirements for IP 
address authorization in IPv6 are met fairly nicely with Cryptographically Generated 
Addresses (CGAs) [2] (sometimes called Statistically Unique and Cryptographically 
Verifiable (SUCV) addresses [8]). CGAs are used in the SEND protocol to secure the 
IPv6 to link address mapping on the local link [2]. CGAs are constructed by hashing 
the host's public key and some additional parameters into the bottom 64 bits of the 
IPv6 address, to form a cryptographically generated interface identifier. When a 
control protocol message is sent involving the address, the message is signed with the 
public key. The signature provides data origin authentication, while the 
cryptographically generated interface identifier in the address proves that the message 
was signed by the owner of the address. 

While CGAs provide a fine solution for address ownership in IPv6 when one node 
can claim ownership of the address, they are less useful when multiple nodes might 
legitimately be viewed as owners since only the node generating the public key can 
claim the address. An example of multiple nodes being viewed as owners is address 
proxying. "Ownership" in this case means some kind of proof that the node in 
question is authorized to perform control signaling operations, such as routing 
updates, on the address. In order for the proxy node to be able to securely proxy the 
address, it must be able to present the same kind of cryptographic proof of ownership 
as the node that generated the address. CGAs only allow the node owning the public 
key and generating that address to present such proof.  

1.1   Contribution 

Our contribution in this paper is threefold: 

1) We describe a technique that extends CGAs to addresses generated by keys 
from multiple hosts, called multi-key CGAs, in order to support address 
proxying and other functions where more than one node needs to claim 

                                                           
1 The threat here is not hypothetical. One of the authors experienced an ARP spoofing attack at 

a prestigious international networking conference in 2003.  
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authorization for ownership. The technique uses a kind of group signature 
called a ring signature [5] [16] to secure the signaling.  

2) We develop an extension of the SEND protocol using multi-key CGAs and a 
ring signature algorithm called Rivest-Shamir-Tauman (RST) [16] that allows 
a node autoconfiguring an IPv6 address to designate a router on the local 
subnet as a secure address proxy.  

3) We compare the performance of IPv6 Neighbor Discovery without SEND, 
with SEND, and with SEND using multi-key CGAs and ring signatures 
instead of the standard RSA signature. We also present some performance 
figures comparing RST with RSA signatures, and characterize the scalability 
of the RST algorithm as the number of group members increases. To our 
knowledge, this is the first realistic application and first implementation of the 
RST ring signature algorithm. 

2   Secure Neighbor Discovery and Proxy Address Resolution 

In the basic Neighbor Discovery protocol, a node resolves an IPv6 address on the 
local link to a link layer address by multicasting a Neighbor Solicitation (NS) 
message. The node owning the IPv6 address replies with a Neighbor Advertisement 
(NA) containing the link layer address. This allows the soliciting node to forward 
packets using link layer routing on the last hop. Neighbor Discovery also allows a 
node to discover a router, by multicasting a Router Solicitation (RS). Routers on the 
link respond with Router Advertisements (RSs) containing their link layer addresses 
and other information about the link. This allows the soliciting node to find a router 
that can forward packets off the local link. 

There are two basic attacks on Neighbor Discovery [13]. An attacker can respond 
to a NS message in lieu of the actual owner of the IPv6 address causing the sender to 
set up a mapping between the attacker’s link address and the victim’s IPv6 address, 
thereby allowing the attacker to siphon off the victim’s traffic. An attacker can set up 
a fake router, advertise it on the link with a RA, and dupe victim nodes on the link to 
send traffic through the fake router, thereby allowing the attacker to control the 
victim’s traffic. SEND [1][2] was designed to counter these threats to Neighbor 
Discovery.  

Figure 1 illustrates the SEND protocol. In Step 1, a node coming on the link 
solicits a RA message by multicasting a RS message on the All Routers Multicast 
Address. A SEND router responds with an RA signed with the router's certified public 
key in Step 2, and containing IPv6 subnet prefixes for the link. If the node does not 
have the certificate for the router in its cache, in Step 3 the node sends out a 
Certificate Path Solicitation (CPS) to obtain the router’s certificate path. The node 
includes in the CPS the names of trust anchors for certificate authorities for which the 
node has certificates in its cache. The router returns one Certificate Path 
Advertisement (CPA) per certificate for the entire chain, rooted in one of the trust 
anchors, and culminating with the CPA containing the router's own certificate. When 
the certificate path has been validated, the node can use the router’s certified public 
key to validate the signature on the RA.  
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Fig. 1. Basic SEND prototcol 

Once the RA has been certified, in Step 4 the node generates an RSA public  
key /private key pair for the CGA, and then generates the address using the public key 
and one of the subnet prefixes from the RA. In Step 5, the node uses Duplicate 
Address Detection (DAD) [17] to determine if the address is unique on the link. DAD 
requires the node to multicast a NS to the Solicited Node Multicast Address. Any 
node that also has the prospective address hears the NS and responds with a NA. The 
NS and NA must be signed with the respective RSA keys. The soliciting node then 
must use a different address. SEND allows three address conflicts to be reported 
before considering the node to be under attack. If DAD succeeds, the node is free to 
use the address. 

In Step 6, a packet incoming from off link to the SEND router triggers the router in 
Step 7 to solicit for the link address so the packet can be delivered on the last hop. In 
Step 8, the node replies with a NA signed with the RSA key and using the CGA. The 
router checks these and establishes a Neighbor Cache entry for the CGA if the 
signature and CGA validate. In Step 9, the router finally delivers the packet to the 
node. 

For proxy address resolution, the node replying with the NA to claim the IPv6 
address in response to the DAD in Step 5 or the node replying with the NA for link 
address resolution in Step 8 is not the same the node that generated the address, it is 
the proxy. The proxy does not have access to the owning node's RSA private key and 
therefore the receiver cannot be sure that the proxy is authorized to claim the address. 
With no signature, an attacker could easily pose as an address proxy and steal the 
node's traffic. As a consequence, SEND cannot be used to secure proxy address 
resolution, and address proxying is therefore prohibited in the base SEND protocol. 
This is the basic address proxy security problem. 
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3   Previous Work 

Two previous solutions have been proposed to solve the problem of proxy address 
resolution security. The simplest solution, proposed by Daley [4], is to allow a 
certified last hop router to sign the NA message on behalf of the owning node if the 
router is proxying. The router's public key certificate could be augmented with a 
property indicating permission from the certificate authority to proxy. Nikander and 
Arkko [12] propose having the owning node construct a signed attribute certificate 
delegating address proxying rights, and sending the attribute certificate to the proxy. 
The proxy then includes the attribute certificate in any signaling messages involving 
the proxyed address, such as the NA, and signs the messages with its own private key.  

Both these solutions have a problem with location privacy, which is important for 
applications such as the Mobile IPv6 example cited in Section 1. If the signature and 
security parameters on the message are not the same regardless of whether the proxy 
or the owning node are defending the address, the NA message has some indication 
that the message was signed by the proxy, and not by the owning node. A node 
receiving the NA can infer whether or not the owning node is on the local link. The 
location privacy of the owning node is thereby compromised. In contrast, by using the 
technique described in this paper, the receiving node cannot infer anything about the 
whether the owning node is on the local link or not, because the message looks the 
same regardless of whether the proxy or the owning node originated it. The ring 
signature itself does not reveal anything about which group member actually 
generated it, and the cryptographic parameters are the same in both cases.  

The attribute certificate technique has an additional problem in that it requires a 
certain amount of preconfiguration between the proxy and the owning node before the 
address can be proxied. The owning node must send an attribute certificate to the 
proxy. With the technique described in this paper, the proxy must know the public 
key of the owning node, but it can learn that as part of the standard SEND protocol 
(for example, during DAD) if proxying is to be done without any additional signaling. 
The proxy group can be formed opportunistically because ring signatures allow the 
hosts in the ring to sign without any preconfiguration of cryptographic material or 
interaction with network infrastructure; although the hosts do need to agree on the 
membership of the group before the address is configured. Note, however, that the 
question of whether another node can actually be trusted to correctly proxy the 
address is not handled directly, and must be dealt with using certificates or another 
secure identity-determining technique. 

4   Multi-key CGAs and Ring Signatures 

In order to allow CGAs to be proxied securely, generation of the interface identifier 
portion of the address needs to be modified to include the public keys from more than 
one host. In addition, the signature algorithm must allow more than one signer. A 
group signature algorithm [3] is a good candidate, since group signatures typically 
allow multiple signers. For the address proxying application, we use a kind of group 
signature called a ring signature, because ring signature algorithms do not require a 
group manager or any preconfiguration on the members of the group (except that they 
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must possess the public keys of all group members) and ring signatures are 
anonymous, protecting the location privacy of the node that originated the address.  

4.1   Generating and Validating Multi-key CGAs 

SEND [1] specifies an algorithm for constructing and verifying single key CGAs. The 
same algorithm can be used to generate and verify multi-key CGAs for unicast by 
simply replacing the single public key in the algorithm for SEND by the SHA-1 hash 
of the public keys in the group. A modification of the CGA algorithm in [2], 
appropriate for address proxying, is given below. 

Generating a Multi-key CGA. The input parameters for constructing a multi-key 
CGA are the following: 

• pk1 through pkn, the public keys of the n nodes in the group, 
• The Sec parameter, which can have a value from 0 to 7. Increasing the value 

of the Sec parameter increases the cost of constructing a CGA, and therefore 
the cost of a dictionary attack [2]. 

In the following, | is the bit-wise concatenation function, and SHA1() is the SHA-1 
cryptographic hash function [10]. A multi-key CGA is constructed as follows: 

1) Compute the hash of the public keys for the nodes in the group: 
 

ConcatVal =  SHA1 ( pk1 | pk2 | ... | pkn ) 
 

2) Set the 128 bit value modifier to a random value. 
3) Form the following difficulty test value: 

 
Hash2 = SHA1112 ( modifier | B9(0) | ConcatVal ) 

 
where SHA1n() indicates the left-most n bits of the SHA1 hash and B9(0) 
indicates nine bytes set to zero. 
4) Check the leftmost Sec times 16 bits of Hash2. If all bits are zero (or Sec 

itself is zero), go to the next step. Otherwise, increment modifier by one 
and redo Step 3. 

5) Set collision-count to zero. 
6) Using the final value of modifier, form the following CGA interface 

identifier: 
 

Hash1 =  SHA164 ( modifier | subnet-prefix | collision-count | ConcatVal ) 
 

where subnet-prefix is the 64 bit IPv6 subnet prefix for the address. 
7) Replace the leftmost 3 bits of Hash1 with Sec and set bits 6 and 7 (i.e. the 

"g" and "u" bits) in Hash1 to zero. 
8) Form the multi-key CGA as follows: 

 
mCGA = subnet-prefix | Hash1 
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9) Perform DAD [17] on the address. If a collision is detected, increment 
collision-count and return to Step 6 if collision-count < 3. If collision-
count  3, stop and report, since an attack or serious network 
misconfiguration is likely. 

Validating a Multi-key CGA. The validation algorithm for multi-key CGAs is a 
modification of the SEND algorithm for single key CGAs, and follows from the 
generation algorithm above. 
The input parameters for validating a multi-key CGA are the following: 

• pk1 through pkn, the public keys of the n nodes in the group, 
• The modifier random value and collision-count value used to generate the 

multi-key CGA,  
• A multi-key CGA.  

Note that nothing in an IPv6 address identifies it as a multi-key CGA, so this will 
have to be deduced from the context. In addition, the modifier and collision-count 
parameters need to be included in the control message in some fashion. 
A multi-key CGA is validated as follows: 

1) Check that collision-count ≤   3. If not, the multi-key CGA verification 
fails. Exit. 

2) Compute the hash of the public keys for the nodes in the group: 
 

TestVal =  SHA1 ( pk1 | pk2 | ... | pkn ) 
 

3) Form the following value: 
 

Hash1 = SHA164 (modifier | subnet-prefix | collision-count | TestVal ) 
 

4) Compare Hash1 with the rightmost 64 bits of the address (the interface 
identifier bits), ignoring bits 6 and 7 and the leftmost 3 bits (i.e. the "g" 
and "u" bits and the Sec bits). If the comparison fails, the address does not 
match and the multi-key CGA verification fails. Exit. 

5) Extract the security parameter from the three rightmost bits of the 64 bit 
interface identifier, treating the result as an unsigned integer Sec.  

6) Form the following difficulty check value: 
 

Hash2 = SHA1112 ( modifier | B9(0) | TestVal ) 
 

7) Compare the leftmost Sec x 16 bits of Hash2 to zero. If any are not zero, 
then the verification fails. Otherwise, the address is verified. Note that the 
verification never fails at this step if Sec is zero. 

4.2   Ring Signature Background 

Group signatures have been an object of investigation in the cryptographic 
community for some time [3]. Until recently, most group signature algorithms 
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required one member of the group to be designated as the group manager, and 
additionally allowed the group manager to break anonymity on the signature. Rivest, 
Shamir, and Tauman [16] formalized the notion of a fully anonymous, ad-hoc group 
signature, called a ring signature. A ring signature does not require the intermediation 
of a group manager, allowing the group to form opportunistically. In fact, a group 
member can form a group and sign even without the active co-operation of other 
group members. The only requirement is that a signer possesses the individual public 
keys of the group members, and that the public keys are also available to the verifier.  
The signature is completely anonymous, so it is not possible to determine who the 
actual signer is. Verification of the signature requires the public keys of all members 
in the group. These properties make ring signatures an attractive approach for multi-
host address authorization as applied to address proxying.  

A theoretical disadvantage of the RST ring signature algorithm is that the size of 
the signature grows linearly as the number of members in the ring grows. Recently, 
work by Dodis, et. al. [5] describes a technique for generating constant sized ring 
signatures, based on the Strong RSA Assumption. The algorithm is not completely ad 
hoc because a group manager is needed and verification still requires possession of 
the public keys for all the group members, but the size of the signature itself is 
bounded. For address proxying, the requirement for a group manager makes the Dodis 
algorithm less practical than the RST algorithm, since it would require some amount 
of prior co-ordination between the proxy and the originating node. It is for this reason 
that the RST algorithm was selected for use in the secure address proxying extension 
to SEND. 

4.3   Overview of How RST Signatures Work 

This section gives a high-level overview of how RST ring signatures work [16], 
referencing the steps of the detailed procedure described below.  Suppose that node i 
is wants to sign message m.  Node i actually computes a standard RSA signature on a 
sequence of values y1, …, yn which will be related to m by means of a combining 
function (signing Step 4 below).   The signature on each yj will be valid with respect 
to the public key (Nj, ej).    

Since node i knows the i-th signing key corresponding to public key (Ni, ei) it can 
easily compute the signature corresponding to yi.  The main question is how it can 
sign the remaining yj values without knowing the private key corresponding to (Nj, 
ej)?  To accomplish this, the RST algorithm uses an interesting feature of RSA 
signatures: it is possible to come up with a valid message/signature pair by first 
generating the signature (e.g., at random) and then computing a message for which 
this signature is valid.  This feature is relatively harmless in practice, since in practical 
applications of the RSA signature itself, one has to start with a meaningful message 
first and compute the resulting signature, not the other way around. In addition, hash 
functions like SHA-1 are applied to a message to create a digest which is signed, 
thereby making it harder for an attacker to generate a random forgery for which the 
pre-image of the digest is known.  However, in the present case we can actually 
benefit from this feature.   

Node i first generates random values xj for all j ≠ i (signing Step3i). Node i 
essentially computes messages yj for which xj is a valid signature by exponentiating xj 
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using the public exponent ej (signing Step 3iii).  Since we are dealing with different 
RSA moduli Nj, we have to exercise some care to make sure that the resulting values are 
in the right range (this issue is handled in Steps 3ii and 3iv of the signing algorithm).  
Next, node i calculates the value yi for which y1, …, yn satisfies the combining function 
(Step 4).  Finally, node i uses knowledge of the private key corresponding to (Ni, ei) to 
compute a standard textbook RSA signature on yi (step 6), again taking care of range 
issues associated with using different moduli (Steps 5 and 7).   

At this point, the pairs (x1, y1), …, (xn, yn) are each valid RSA message/signature 
pairs under the respective RSA public keys (e1, N1), …, (en, Nn), so these pairs would 
constitute a legitimate ring signature on the message m.  The verifier simply verifies 
each pair separately, taking care of range issues (verification, Step 2). 

However, we can perform an optimization by noting that given x1, …, xn, anyone 
can compute the corresponding y1, …, yn by exponentiating (respectively) by e1, …, en, 
modulo N1, …, Nn.  So, the signer need not transmit y1, …, yn.  Instead, only the single 
value v in addition to the xj values need to be transmitted, thereby allowing the 
verifier to construct y1, …, yn, and to check that these values together with v satisfy the 
combining equation (verification, Step 3).    

Note that the privacy property of ring signing is achieved because by looking at the 
signature, it is not possible to tell which value yi the signer actually signed in Step 6 
and which signatures were generated at random in Step 3. 

4.4   Generating and Validating RST Signatures 

The RST ring signature algorithm is based on the Rabin signature algorithm, which 
the authors describe as being preferable to a version based on RSA since signature 
verification for Rabin signatures is faster.  However, we use a version of the RST 
algorithm based on RSA because RSA is more widely deployed.   

This RSA-based ring signature algorithm is as secure as regular RSA-based 
signatures.  Specifically, if an attacker is able to forge a ring signature which is valid 
for a group of signers that the forger does not belong to, with public keys pk1 through 
pkn, then such an attacker could break a regular RSA signature.  The security proof of 
the ring signature algorithm is in the random oracle model and ideal cipher model.  
See [16] for the details. 

In the following, let E() be an encryption algorithm that uses d-bit keys and has b-
bit input and output (we impose an additional condition on b below). Let t be a 
parameter – e.g., t may equal 80.  Let ⊕ denote the XOR function. 

Generating the Public Keys. The public keys in the RST ring signature algorithm 
are the same as public keys in RSA.  Specifically pki = ( Ni , ei ), where Ni is a large 
(e.g., 1024-bit) composite integer that is the product of two large prime numbers pi 

and qi and where ei is an integer that is relatively prime to ( pi - 1 )( qi - 1 ).  Let b be 
an integer such that 2b > 2t Ni for all i. 

Generating a RST Signature. Let pki be the public key of the node constructing the 
signature.  Form the ring signature as follows: 
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1) Set the symmetric encryption key k to be SHA1(m), where m is the 
message to be signed. 

2) Pick a random b-bit string v. 
3) For j from 1 to n ( except j ≠ i ) do: 

a) Pick random b-bit string xj. 
b) Compute ( qj,  rj ) such that xj = qjNj + rj for rj ∈  [ 0, Nj ]. 

c) Compute yj’ = je
jx ( mod Nj ) for yj’ ∈  [ 0,  Nj ]. 

d) Set yj = qjNj + yj’. 
e) Go back to Step a if yj ≥  2b, otherwise exit loop. 

4) Compute yi such that: 
Ek ( yn ⊕  Ek ( yn-1 ⊕  Ek (… ⊕  Ek ( y1 ⊕   v)…) ) ) = v. 

5) Compute (qi, ri) such that yi = qiNi + ri for ri ∈  [ 0,  Ni ]. 

6) Compute xi’ = ie
iy /1

( mod Ni ) for xi’ ∈  [ 0,  Ni ]. 

7) Set xi = qiNi + xi’. 
8) Go to Step 3 if xi ≥ 2b. 
9) Output the ring signature ( x1, …,  xn , v ). 

If t is large enough, there will be only a negligibly small probability that the signature 
generation algorithm will abort in Step 3e or Step 8 because yj or xi spills out of the 
permitted range [ 0, 2b ). Regarding Step 4, notice that: 
yi = Ek

-1 ( yi+1 ⊕  Ek
-1 (… yn ⊕  Ek

-1  (v) ) ) ⊕  Ek (yi-1 ⊕  Ek (… ⊕  Ek (y1 ⊕  v ) ) ). 

Validating a RST Signature. Given the message m and public keys keys pk1 through 
pkn , the ring signature ( x1, …, xn , v) can be verified as follows: 

1) Set the symmetric encryption key k to be SHA1(m), where m is the 
contents of the signed message. 

2) For j from 1 to n do: 
i) Compute ( qj,  rj ) such that xj = qjNj + rj for rj ∈  [ 0,  N) ]; 

ii) Compute yj’ = je
jx ( mod Nj ) for yj’ ∈  [ 0,  Nj ]. 

iii) Set yj = qjNj + yj’. 
3) Calculate v' = Ek( yn ⊕  Ek ( yn-1 ⊕  Ek (… ⊕  Ek ( y1 ⊕  v)…) ) ). 
4) If v' = v, the signature is verified. 

5   Applying Multi-key CGAs and Ring Signatures to Secure 
Address Proxying 

In this section, an extension of the SEND protocol to provide secure, location 
privacy-preserving address proxying on the last hop link [7] is described. An 
application of secure address proxying to mobility management, involving secure 
proxying of a mobile node home address by a Mobile IPv6 home agent is also 
presented. 
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5.1   Proxy SEND 

Prior to forming a multi-key CGA, the host uses the SEND CPS/CPA exchange or 
some other means to obtain a certificate for its chosen default router, Step 3 in Figure 
1 (for Mobile IPv6, the default router is the home agent). The host then uses the 
router's public key and its own RSA public key to generate the multi-key CGA, as 
described above, Step 4 in Figure 1. Use of the router certificate ensures that the node 
selected for proxying can, in fact, be trusted. In Steps 5 and 8 of Figure 1 - where 
SEND requires the host to use an RSA signature in the NA or NS message - proxy 
SEND uses an RST signature. No new protocol messages are required. The use of a 
RST requires a new Ring Signature Option to hold the new signature instead of the 
standard RSA Signature Option in SEND. In addition, the host sends the public key 
for the router along with its own public key in the CGA Parameters Option, since both 
keys are needed to validate the signature. The router uses the CGA when proxying; 
otherwise, a receiving node can detect if the owning node is on link or not. For 
backward compatibility, the host needs some indication that the router supports secure 
proxying, so that it knows whether to use SEND or proxy SEND. An extension to the 
router's certificate can provide this information. 

The security of this extension is the same as SEND. Validation of the RST 
signature indicates that a node owning one of the public keys in the CGA signed the 
message with its private key, and the multi-key CGA indicates that the message was 
sent from a source address that can claim authorization to send control signaling 
affecting the source address (i.e. that the address is not being spoofed). An attacker 
can't construct an RST signature for the same CGA because the attacker doesn't 
possess the private key for the owning node or the proxy. The attacker could forge a 
CGA, but failure to validate the signature would tip off the receiver.  

5.2   Mobile IPv6 Secure Proxying 

As mentioned, Mobile IPv6 [6] requires the home agent to act as a proxy for all home 
addresses when their owners are off link. The home agent discovers that a mobile host 
is off link when it receives a Binding Update (BU) message containing an off-link 
care-of address. The BU requests that the home agent establish a binding between the 
home address and care-of address, and that any traffic arriving on the link for the 
home address should be forwarded through a tunnel to the care-of address. The 
mobile host also sends traffic back to its correspondents by reverse tunneling through 
the home agent. The BU is secured by an IPsec security association to prevent an 
unauthorized node from changing the binding. 

Again, no change is required in the basic Mobile IPv6 binding update protocol for 
secure proxying. Figure 2 illustrates the protocol. If the home agent is capable of 
doing proxy SEND, in Step 1 of the figure, the mobile host sends its public key ("MN 
Key") and the home agent's public key ("HA Key") along with the BU in a new 
Binding Update Option, the Secure Proxy Mobility Option, through an IPsec ESP 
tunnel to the home agent. The two public keys are used to calculate the multi-key 
CGA. The home agent uses this information to check that it is the owner of the public 
key and therefore capable of proxying.  
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Fig. 2. IPv6 Binding Update with secure proxying 

In Step 2 of the figure, the home agent replies with a Binding Acknowledgement 
(BAk), again through an IPsec ESP tunnel, indicating that the routing to the care-of 
address has been established. At this point, the home agent is prepared to securely 
proxy the mobile node's home address. A packet from a correspondent host directed 
to the home address of the mobile host arrives at a last hop router on the link, in Step 
3. The last hop router solicits the mobile host's link address in Step 4 using the NS. In 
Step 5, the home agent securely proxies the home address by replying with a signed 
NA including the link address, the multi-key CGA, the two public keys, and the RST 
signature. Note that the NA contains exactly the same information and is formatted 
exactly the same as if it had been sent by the mobile node itself, so the router can't tell 
from the NA contents whether the mobile node is off the link or not. The router then 
delivers the packet to the home agent in Step 6, and in Step 7 the home agent tunnels 
the packet to the mobile host at its care-of address, using either an IP-IP tunnel or an 
IPsec ESP tunnel. 

6   Implementation Results 

We implemented the proxy SEND algorithm described above and ran performance 
tests comparing it with insecure Neighbor Discovery and with SEND which uses a 
standard RSA signature. The RST implementation was done on OpenSSL version 
0.9.8 running on Linux version 2.6.14.3. In order to make the comparison fair, we 
used our own custom implementation of RSA that was very basic rather than the 
version of RSA provided with OpenSSL, because the OpenSSL implementation 
contains many features to increase the security and performance of RSA. Such 
features could ultimately be included in a release version of RST too. Tests were run 
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on 2 GHz Pentium M laptops with 1 GB of RAM and a 1 Gbit Ethernet connection. 
For the tests, 1024 bit keys were used and the block cipher was AES128 [11]. The 
reported measurements are the average of twenty runs. 

 

Fig. 3. Performance of IPv6 Neighbor Solicitation with and without security 

Figure 3 compares the performance of the three cases. Note that in this figure and 
Table 1, SEND with RST signatures uses two keys, the mobile node key and the 
router key. The performance test was done by running ping to discover the link 
address of the neighbor node when the IPv6 to link address map was not in the 
Neighbor Cache. Note that the performance of SEND with RST is not substantially 
worse than SEND with RSA. The big difference in performance occurs when security 
is enabled for Neighbor Discover. Since Neighbor Discovery is only performed if the 
IPv6 address to link address map is not in the Neighbor Cache, however, the hit taken 
by adding security is not critical. After the Neighbor Cache entry is available, the 
address is resolved from the cache entry until it either times out or is invalidated by 
the owning node, and therefore no network traffic is required. 

Table 1. Comparison of SEND RSA and SEND RST Cryptographic Operations Performance 

 

 SEND RSA SEND RST 
Signature Calculation 7.973 ms 8.331 ms 

Verification Calculation 0.174 ms 0.350 ms 
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Table 1 contains a more detailed comparison between SEND with standard RSA 
and with the RST ring signature algorithm. As can be seen from the table, signing and 
verification performance are all slightly slower than RSA performance. 

Figures 4 and 5 illustrate the time required to generate and verify (respectively) an 
RST signature for between 1 and 10 hosts (1 host corresponds to a standard RSA 
signature). As expected, signature generation and verification times increase linearly 
as the number of group members increases However, the rate of increase is not 
particularly large, and for the purposes of address proxy security – where the group 
size is most likely to be exactly 2 – the signing and verification performance appear to 
be acceptable.  
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Fig. 4. RST signature generation time as a function of ring size 
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Fig. 5. RST signature verification time as a function of ring size 
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Fig. 6. RST signature size as a function of the number of signers 

Figure 6 illustrates the size of the RST signature for between 1 and 10 hosts. As 
expected, the signature size also increases linearly with the number of signers. As 
mentioned above, the Dodis [5] ring signature algorithm maintains a constant 
signature size as the number of members increases and could be used in an 
application where group sizes are considerably larger. The disadvantage of the Dodis 
algorithm is that it requires a group manager and therefore preconfiguration on the 
nodes in the group, resulting in more protocol support to set up.  

7   Conclusions 

In this paper, we have described a scheme by which cryptographically generated 
addresses (CGAs) can be extended to support multiple hosts. We utilize the resulting 
multi-key CGAs and ring signatures to extend the SEND protocol to support secure 
address proxying. The SEND extension allows a router on the link to proxy a CGA 
when the host owning the address is off link. We also described how proxy SEND can 
be used to provide address proxy security on the home link for home addresses in 
Mobile IPv6. Both applications require no additional protocol messages. Finally, we 
presented some measurements from a Linux/OpenSSL implementation of multi-key 
CGA SEND and the RST ring signature algorithm. The measurements suggest that 
the RST algorithm could be a practical solution for proxy SEND security, since the 
group size is usually 2. The results of this work promise to firmly ground the security 
of address proxying; a function that today is basically insecure, and may be applicable 
to other IPv6 protocols where multiple hosts can claim a single address. 
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Abstract. The digital watermark is used for detection of digital image
alteration. However, most of digital images are printed on the paper
document for submitting. Once digital images are printed on the paper,
it is hard to detect alteration of it. In this paper, the detection method
of printed image alteration by using digital watermark is proposed.

1 Introduction

Today’s digital imaging systems provide sophisticated processing capabilities,
flexibility, and reliability at lower costs and competitive quality when compared
with the analog systems of yester-year. As a result, digital image acquisition,
processing, storage and reproduction systems have been steadily replacing their
analog counterparts. Nevertheless, the lack of built-in integrity and quality veri-
fication mechanisms often raises doubts about the use of digital imaging systems.

Traditionally, due to the limited processing abilities in analog media, mali-
cious manipulation of images has been a tedious task with only inferior results
being realized without prohibitively expensive professional equipment. However,
digital images, unlike their analog counterparts can be easily manipulated using
a variety of sophisticated signal processing tools that are readily available as
commercial packages. Photo-realistic manipulations can be created by virtually
everyone using low cost hardware and software components. (Fig. 1 shows a ex-
ample of such manipulations, which is created by the author using a personal
computer system.) The ease and extent of such manipulations raise serious ques-
tions about the integrity and authenticity of digital images. Potential security
loopholes of shared information networks, e.g. Internet, on which digital images
are commonly posted and distributed further exacerbates the problem. As a re-
sult, there is a need for secure image authentication techniques in applications
where verification of integrity and authenticity of the image content is essential.

Digital watermarking[1] offers a promising alternative to digital signatures
in image authentication applications. The use of watermarks instead of digi-
tal signatures typically affords additional functionality by exploiting inherent
properties of image content. One such advantage is the direct embedding of au-
thentication information into the image data. As a result, the authentication
information survives even when the host image goes under format conversions.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 212–226, 2006.
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Insecure
Channel

Integrity questionable!Original
Image

Fig. 1. Integrity and authenticity of digital image are questionable without additional
security mechanisms

In contrast, a digital signature appended in the header of an image file maybe
easily stripped off, when the file is opened and saved in a different format. This
functionality is known as the tamper localization property.

In the development of integrity verification for digital image, two approaches
have been proposed. One solution is to use digital signatures which is a data
string which associates a message with some originating entity. Image authenti-
cation in this manner, however, requires an auxiliary channel for the storage and
transmission of a digital signature for each image. This increases the bandwidth
requirements and imposes restrictions on implementation. In practical implemen-
tations, the signatures and other helper information are kept either as a separate
file/bit-stream or as a part of the image header[2]. A second solution is to use
digital watermarks which are designed to be easily destroyed if the watermarked
image is manipulated in the slightest manner. Many fragile watermarks are also
capable of localization, where the areas of the watermarked image that have been
tampered with can be determined and distinguished from areas where the wa-
termarked image has not been modified. Early fragile watermarking[3] systems
embedded checksums[4] or pseudo-random sequences[5] in the least significant
bit (LSB) plane of an image while more recent systems apply more sophisticated
embedding mechanisms including the use of cryptographic hash functions[6] to
detect changes to a watermarked image.

On the other hand, digital images can be used for printing to a photo paper.
Digital photographs look like traditional photographs when printed, displayed
on a monitor or projected on a television. Most of people react with the same
trust to digital photographs as they do to traditional photographs. In most of
case, it is impossible to detect alteration of printed image without comparison
to the original digital image, if a source digital image has been altered before
printing. Unfortunately, most of recent works for detecting the alteration image
is target to the digital image data. They will not be available for printed image
such as analog data. Oki Electric Industry Co., Ltd. has developed the integrity
verification system for paper documents under printing[7]. However, their system
is not available for photo printing, because their system can distort the image
under printing process.

Our goal is to detect printed image alteration. In this paper, we propose the
detection method for printed image alteration by using digital watermark which



214 J. Onishi and T. Ono

is based on extending a simple spread-spectrum watermarking technique[8] with
a modified detector in the spatial domain. The detection process is performed
on each block of the image so regions of alterations can be identified.

2 Definition of Image Alteration

Generally, digital images can be manipulated using a variety of sophisticated
signal processing tools by owner. These manipulation can be considered as al-
teration. Thus, let us define the our target of image alteration clearly. In this
paper, our target of image is described the below.

– Original image is a color image taken by the digital camera without manip-
ulating.

– Original image has been embedded the signal for detecting image alteration
by using our proposed method.

The definition of image alteration is described the below.

– Replacement of some objects in the source image by using another photo
data.

– Overwriting a part of image in order to remove or add some objects on the
original source image from another image which is taken the same scene.

Our method do not consider as image alteration in cases described the below.

– Cropping the apart of image from original.
– Image manipulate processing without image alteration described the above.

3 Overview of Technique Relationship with Watermark

In this paper, digital watermark is applied for detecting of printed image alter-
ation. The watermark embedded into the original image is required the robust-
ness under printing process. Therefore, a digital watermark based on a spread-
spectrum technique is used in order to embed the signal for detecting the image
alteration. The signal for detecting the image alteration is attached into the
middle frequency domain of the source digital image which is divided by several
blocks. To extract the signal, the signal is extracted from each blocks of the
source image. The image alteration can be detected to verify the signal on each
blocks of the source image. Then, the block of image alteration can be detected.
On the other hand, to use the property of Fourier Transform, the embedded sig-
nal can have the property of translation invariant, which is useful for detecting
the detail domain of image alteration. On the other hand, it is higher possible to
have error detection under extracting the signal from printed image, even if the
target image is not altered. Our goal is to detect printed image alteration cor-
rectly. Thus, in order to avoid the error detection, our method creates the gray
scale mask image which shows the domain of image alteration under extracting
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Fig. 2. An example of a spread spectrum signal used as an alteration detection signal

the signal. To observe the mask image, we can understand which domain on
the target image has lots of error detection under extracting process. Therefore,
the mask image will help us to find out the domain of image alteration more
correctly.

3.1 Spread Spectrum of the Alteration Detection Signal

A method for encoding the signal for detecting image alteration which can later
be recovered given knowledge of the key used is described here. A sequence of
N randomly generated real numbers X = x1, x2, . . . , xn is a random number
defined as

xn ←− a ·mn (0 ≤ n < N) (1)

where mn is a pseudo random noise and a(> 0) is a real number. The alteration
detection signal is written in the form of a sequence of symbols S1, S2, . . . , SK ,
most generally by a change in a number base with L. The next stage is to encode
each symbol Sk in the form of a zero mean pseudo random vector of length N .
The alteration detection signal is defined as

xn ←− xn + mL·k+Sk+n+1 (0 ≤ n < N) (2)

Fig. 2 shows a spread spectrum signal of the alteration detection signal as given
by equation 2. Let us decode the alteration detect signal from yn which extracted
mark. A sequence of N randomly generated real numbers mn as same as encoding
steps with the same key is a random number. qn is the sequence of detection
symbol defined as

qn ←− mL·k+l+n+1 (0 ≤ n < N) (3)

where, l = 0, . . . , L− 1 is a range value of symbol. The next stage is to calculate
each qn in the form of a zero mean pseudo random vector of length N . We
measure the similarity of yn and qn by

Zl ←−
(

N−1∑
n=0

qn · yn

)
/

⎛
⎝
√√√√N−1∑

n=0

y2
n

⎞
⎠ (4)
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Fig. 3. An example of detection alteration detect signal

The symbol of alternation detect signal is l where Zl is the maximum value
among each Zl calculated by the equation 4. Fig. 3 shows the detection of alter-
ation detect signal as given by equation 4.

3.2 FFT: Translation

Let the image be a real valued continuous function f(x, y) defined on an integer-
valued. F (u, v) is the Discrete Fourier Transform coefficient value of f(x, y).
Shifts in the spatial domain cause a linear shift in the phase component.

F (u, v)exp[−j(au + bv)] ←→ f(x + a, y + b) (5)

Note that both F (u, v) and its dual f(x, y) are periodic functions so it is im-
plicitly assumed that translations cause the image to be ”wrapped around”. We
shall refer to this as a circular translation or a cyclic shift. From property 5 of
the Fourier transform it is clear that spatial shifts affect only the phase represen-
tation of an image. This leads to the well known result that the magnitude of the
Fourier transform is a circular translation invariant. This property allow to ex-
tend for the detection of alteration domain of printed image by using watermark.
Fig. 4 illustrates the property of translation invariant of Fourier Transform.

4 Algorithm

4.1 Embed the Signal for Detecting Image Alteration

Let the image be a function f(x, y). A function b(n1, n2) is a block image divided
by M ×M from the image f(x, y). A function F (u, v) is the Discrete Fourier
Transform of b(n1, n2) given by

F (u, v) =
M−1∑
n1=0

M−1∑
n2=0

b(n1, n2)e−j2πn1u/M−j2πn2v/M (6)

The DFT of a real image is generally complex valued. This leads to magnitude
and phase representaton for the image:

Amp(u, v) = [F (u, v)] (7)



A Study of Detection Method of Printed Image Alteration 217

Fig. 4. The property of translation invariant of Fourier Transform

Φ(u, v) = � F (u, v) (8)

The next stage, the integer number group (un, vn)(0 ≤ n < N) is defined by
the pseudo-random sequence with the key value key2, where a point (un, vn)
is contained in the middle frequency domain of DFT. The spread signal for
alteration detect xn is embedded into Amp(u, v) by

Amp(un, vn)←− Amp(un, vn) + p · xn (9)

Amp(M − un, M − vn)←− Amp(M − un, M − vn) + p · xn (10)

where, p is real number. The reconstruction of the image b′(n1, n2) is given by
Inverse Discrete Fourier Transform. To apply the above process for all block
images on the original image, The image which is embedded the alteration de-
tect signal f ′(x, y) is created. Fig. 5 illustrates this processing of embedding of
alteration detect signal.

4.2 Extraction of the Signal for Detecting Image Alteration

Let the image which is target for detecting image alteration be a function f ′(x, y).
b′(n1, n2) is a block image divided by M ×M from the image f ′(x, y). Let the
function F ′(x, y) denote the Discrete Fourier Transform of b′(n1, n2). The integer
sequence group (un, vn) is generated by the key value key2 which is the same key
as embedding process. The magnitude elements Amp′(x, y) is computed from the
target image f ′(x, y) by DFT. The sequence of yn which includes the signal of
alteration detect is given by

yn ←− Amp(un, vn) (0 ≤ n < N) (11)

The sequence of qn for detecting symbol code is generated by

qn ←− mL·k+l+n+1 (0 ≤ n < N) (12)



218 J. Onishi and T. Ono

Fig. 5. Outline of embedding process of alteration detect signal

The sequence of qn is adjusted to be zero-meaning. To extract the embedded
symbol data, the symbol response function Zl is computed with following the
equation 4, where l = 0, 1, . . . , L−1. The symbol data is l, when Zl becomes the
maximum value among each Zl values. The embedded signal Sk is determined the
value which transformed l by base L. Fig. 6 illustrates the outline of extracting
the signal.

4.3 Detect the Domain of Image Alteration

Let the mask image which shows the domain of alteration be a function D(x, y)
which is determined by

D(x, y) ←− 0 (13)

The symbol of alteration detect signal Sk is extracted by the process described
in the previous section at the offset position (ox, oy) on the image f ′(x, y). If Sk

cannot be extracted correctly, the process defined the below is carried out.

D(ox + t, oy + t)←− D(ox + t, oy + t) + δ (14)

where δ is real number and t consists of the integer number which range is
(0 ≤ t < M). To carry out these process described the above with shifting

Fig. 6. Outline of extracting the signal
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the offset position by α, where α is the integer number, the function D(x, y)
shows the measurement of the domain which the alteration detect signal is not
extracted. If D(x, y) is satisfied with the inequality:

D(x, y) ≥ δ (15)

then, it stands for possibility of image alteration domain at position (x, y) of the
image. As the result, to investigate D(x, y), the domain of image alteration can
be detected. Then, the accuracy of the detection depends on the value of α.

5 Experimental Results

To evaluate the proposed technique, let two nature images be used shown in
Fig. 7 which image size is 512× 512 pixels. The parameters for this evaluation
are M = 128,N = 512,a = 0.12,L = 256, p = 1000.0Cδ = 5.0Cα = 8, and (un, vn)
which is given by 32 ≤

√
u2

n + v2
n ≤ 64. Some of these parameters except of

the parameters which stands for image size and block size for DFT are defined
manually by the performance of image quality and its robustness based on our
pre-evaluation. Note that the automatic definition of parameters system has not
been proposed in our method. The number of bits of the signal for detecting
image alteration is 8 bits. The images embedded the signal by our method fol-
lowing these parameters are shown in Fig. 8. In this evaluate, the devices for
printing and capturing which used in this evaluate are described the below

– Canon BJ-F850 for photo printing.
– EPSON LP-7000C for color or gray scale printing.
– EPSON GT-X800 for capturing the image from printed image.

(a) Test image No.1 (b) Test image No.2

Fig. 7. Original image. (512 × 512 pixels).
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(a) Test image No.1 (b) Test image No.2

Fig. 8. The images embedded the signal for detectiong image alteration

5.1 Evaluation of the Influences of Adjusting Gamma Factor

The purpose of the evaluation in this section is to know robustness of watermark
which we use under manipulating the digital image for printing. One of favorite
manipulation is to adjust gamma factors for fine printing. This manipulation
does not mean image alteration under our definition of image alteration. How-
ever, it is possible to fail to extract the embedded signal correctly. The signal for
detecting image alteration has to be robustness against the adjust of gamma fac-
tors and so on which do not stand for image alteration. Thus, let us evaluate the
robustness of the signal for detecting image alteration. In most of case, gamma
adjustment is used for perceptually fine veiw. Then, gamma factor takes from

(a) Test image No.1 (b) Test image No.2

Fig. 9. The image of adjustment of gammer factor
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(a) Test image No.1 (b) Test image No.2

Fig. 10. Extraction of the area of image alteration

0.8 to 1.2 which depends on the target image. In this evaluation, we choose 1.2
for adjusting gamma factor. Fig. 9 are the images that adjusted gamma factor
which value is 1.2 from the images shown in Fig. 8 by using Adobe Photoshop.
These images are not altered. Fig. 10 shows the result of the detection of im-
age alteration which stands for the function D(x, y). The domain of black color
stands for the domain which is not altered. To observe Fig. 10(a), we consider
that Fig. 9(a) is not altered. On the other hand, Fig. 10(b) shows the domain
which is detected as alteration on the image shown in Fig. 9(b). That domain
corresponds to the region of cloudy on the original image. This domain is almost
composed by white color only, and which includes low frequency component on
DFT. Therefore, it is possible that the signal has been lost under the embedding
processing because this signal is embedded into the elements of middle frequency
components on the original image. Therefore, we understand that most of de-
tection errors may occure on the simple color pattern domain of the image. We
are under studying in order to solve this issue. In this paper, we suppose that
the region of cloudy of test image No.2. will not be altered in this evaluation.

5.2 The Alteration Detect of Photo Printed Images

Let the image alteration be created from Fig. 8 by using Adobe Photoshop
which are shown in Fig. 11. These images are printed to photo papers by printer
device. Fig. 12 shows the images captured by the scanner device from printed
photo papers. To detect the alteration, the function D(x, y) are computed, and
which result is shown in Fig. 13. Fig. 14 shows the object or region which is
altered on the images by using both Fig. 11 and Fig. 13. As this result, our
proposed method is available for detecting image alteration.
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(a) Test image No.1 (b) Test image No.2

Fig. 11. Altered image

5.3 The Alteration Detect for Printed Images

Let us to evaluate the performance of our method against printed image on the
non-photo paper. Printed images is created from the images shown in Fig. 11
by the printer device. Fig. 15 is the result of alteration detect. This evaluation
shows our method works against the target of paper printed image.

5.4 The Alteration Detect for Paper Printed Gray Scale Images

Let us consider the case of gray scale printed image. In order to evaluate the
capability of our method, gray scale image shown in Fig. 11 is printed by the same

(a) Test image No.1 (b) Test image No.2

Fig. 12. Printed image captured by scanner
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(a) Test image No.1 (b) Test image No.2

Fig. 13. Result of detection image alteration

printer device as section 5.3. To carry out our method, the detector performance
is shown in Fig. 16. This result is almost the same as section 5.3, because the
alteration detect signal is embedded into the intensity of the original image.
Therefore, detector performance shows the same as the case of color printed
image.

(a) Test image No.1 (b) Test image No.2

Fig. 14. Extraction of altered object or region

5.5 Compensating for Rotation Capturing

In this section, we described the steps required to locate the template given the
following scenario: When the target printed image is captured, it is then rotated
shown in Fig. 17. In this case, we evaluate to detect image alteration. Fig. 18
shows the result of detection. To observe it, our method even works good.
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(a) Test image No.1 (b) Test image No.2

Fig. 15. Result of detection of the area of alteration

(a) sample image No.1 (b) sample image No.2

Fig. 16. Result of detection of the area of alteration

6 Conclusions

Unlike robust watermarks, fragile watermarks are designed to be easily destroyed
if the watermarked image is manipulated in the slightest manner. This property
is ideal for image authentication applications, where the objective is to determine
if watermarked image has been tampered with or modified. In this paper, the
alteration detect algorithm for printed natural images based on the watermark
techniques are proposed. As the experimental result, our proposed method can
detect the object or domain on the printed image alteration. To apply our method
to the digital camera devices, the source of digital image can be included the
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(a) sample image No.1 (b) sample image No.2

Fig. 17. Rotated image captured by scanner

(a) Test image No.1 (b) Test image No.2

Fig. 18. Result of detection of alteration domain

signal for detecting image alteration automatically. It also supports to detect the
fake image created by an owner. Our method helps to reduce the fake images on
the public official documents.

On the other hand, as the experimental result shows, our method has some
issues that cannot support white or black color flat pattern domain. The image
alteration detected by our method stands for integrity questionable. To make a
reliable detection system for printed image alteration, the key certificate system
and so on based on cryptograph theory are needed for watermark encoder and
detector of our method. Future work will focus on the construction of trust
detector system against printed image alteration.
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Abstract. This paper addresses implementation issues for real-time wa-
termark embedding scheme of High Definition(HD) resolution videos on
personal computers. In most watermark applications, an embedding pro-
cedure should be built at low costs and at the same time the embedded
watermarks should have robustness against signal and image process-
ing as well as malicious attacks. This paper provides some performance
optimization guidelines and a simplified Human Visual System (HVS)
method for fast and robust watermark embedding. This work demon-
strates a real-time watermark embedding process including HD MPEG-
2 video decoding, watermark embedding and displaying on Intel archi-
tecture personal computers. Experimental results show optimized em-
bedding performances and robustness against several malicious attacks
commonly happened to videos.

1 Introduction

In proportion to developments of digital infrastructures and industries, digital
watermarking technologies are also advanced to protect the copyright of those
contents from illegal distributions and reproductions. In these days, people can
easily access digital contents from various sources, furthermore, their requests for
high quality contents are rising rapidly. In watermark applications, watermark-
ing schemes should be implemented at low cost, especially real-time embedding
systems are required for authentication, fingerprinting, copy protection systems.
Real-time watermarking systems for high quality contents are not an exception
any more.

In this work, we implemented a real-time watermark embedding system for
1920×1080high resolution MPEG-2 video contents on an Intel Pentium� system.
We will present some general tips for system optimization in section 2. In the next
section, we will define our watermark embedding scope and specify implementa-
tion details and optimization issues for a real-time embedding scheme. In section
4, experimental results are presented to verify our embedding scheme is suitable
for real-time processing and robust against video attacks.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 227–238, 2006.
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Fig. 1. SIMD structure : A SIMD structure includes several processors and those
processors are controlled by one control unit. Even if all processors are assigned one
instruction from one control unit, they use different data from different memories.(In
some cases, processors share memories.)

2 General Optimization Guidelines

Many multimedia applications in these days are implemented for a real-time
processing according to their purposes. However, due to intensive computing vol-
umes for multimedia data, applications are used to be implemented with appli-
cation specific integrated circuits(ASICs) or digital signal processors. Things are
changed owing to the introduction of Single-Instruction-Multiple-Data(SIMD)
extensions to general-purpose processors. With this, the following optimizations
are possible [5]:

1. Use a current generation compiler that will produce an optimized applica-
tion. This will help you generate good codes from the start.

2. Maximize memory access performance:
– Minimize memory references,
– Maximize register usages,
– Prefetch data,
– Arrange code to minimize instruction cache misses and optimize prefetch,
– Align frequently executed branch targets on 16-byte boundaries,
– Make sure all data are aligned

3. Minimize branching penalties:
– Minimize branch instructions, for instance, unroll small loops,
– Arrange code to minimize the misprediction in the branch prediction

algorithm, for example, forward conditional branches are usually not
taken and backward conditional branches are usually taken.

4. Use software pipelining to schedule latencies and functional units. Unroll
small loops to schedule more instructions.

With multimedia instruction set extensions such as Intel’s MMX(Multi-Media
eXtension) technology, we can speed up the computing time up to eight times
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faster[1][4]. The SIMD technique is the reason to make it possible. Earlier ver-
sion of CPUs which do not use the SIMD technique process one data using
one instruction, where as in SIMD one instruction can handle several data con-
currently. That is to say, MMX technology offers much greater capabilities of
speed up to multimedia data owing to eight data, each of eight-bits, concurrency
processing power using 64-bits data buffers. Nevertheless, advantages of MMX
technique, this technique cannot be adopted to all of implementation areas be-
cause the MMX technique is best-suitable to simple and steady data structures
or iterative data processing like multimedia data. This method, for that reason,
is regarded as a second majority technique to improve system performances, not
main methodology for data process enhancements. Under this circumstances,
it is an important work to recognize possible areas of MMX optimization for
performance improvements. The followings are three basic steps [5]:

1. Understand where the application spends most of its execution time: The
benefit of optimizing computationally-intensive parts is larger than that
of optimizing non-intensive parts. We should start optimizations from the
most computationally-intensive components.In our watermarking system, we
found the most time-spending part that bothers the real-time embedding
processing and modified it.

2. Understand which algorithm is the best for MMX technology in this ap-
plication: Matching the algorithms to MMX instruction capabilities is the
key to extracting the best performance. Once the computationally-intensive
sections of code are identified, an evaluation should be done to determine
whether the current algorithm or a modified one will give the best perfor-
mance. There could be many algorithms for a same application. In some
cases, it is possible to improve performance by changing the types of opera-
tions in the algorithm.

3. Understand where data values in the application can be converted to integer
(fixed-point) while maintaining the required range and precision if the data
values are not originally of an integer type: The MMX instructions offer the
best support for 8-bit and 16-bit integer data types. While some DSP can be
done in the integer domain, some must be done in the floating-point domain.
MMX can provide significant speedup in certain DSP and multimedia appli-
cation, even over hand-optimized floating-point assembly code. MMX seems
well-suited for image processing applications because of the large amount
of contiguous, 8-bit data to process and precision requirements that rarely
extend beyond 8 bits.

3 Optimization Issues for Real-Time Embedding

In this section, first we will define real-time scope of our watermarking sys-
tem and describe optimization issues and our solutions for those problems. For
an optimum system, we analyzed time complexities of a watermarking system
implemented using pure C code. Then, we decided which parts of the system
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should be rebuilt to reduce the execution time suitable for real-time processing
and modified those modules.

3.1 Real-Time Performance Scope

First in this session, we would like to define the term “real-time” in our work.
The term “real-time” is cited in many applications in slightly different meanings.
The word in our work defines that a watermark embedding process should not
be recognizable during video playing time. That means watermark embedding
time should be shorter than a frame processing time. In case of 30 fps(frames
per second) framerates videos, a frame is decoded and displayed on a screen
in around 0.03 second. It is obvious that watermark embedding time should be
more shorter than 0.03 second. Furthermore, we manipulate 1920×1080 size HD
contents to embed watermarks.

Our real-time watermarking system consists of three major parts as shown in
figure 2: a decoding unit of HD MPEG-2 video bitstreams into raw frames, a wa-
termark embedding unit and a video display unit on a screen. More specifically,
our watermarking unit includes subunits such as a HVS masking function, wa-
termark multiplication to HVS masked frames and addition of the watermarks
to raw frames on a spatial domain, etc. In our real-time scheme, these three
units are scope of real-time processing.

We included a video display unit to our scope for two reasons. One is that our
real-time solution could be used in other applications. For example, in digital
fingerprinting systems, the unique fingerprint code assigned to each different
customer is embedded to contents at the end-users’ computers, not on suppliers’
servers. In this case, the fingerprint codes should be embedded while videos are
being displayed on a screen. The other is our solution could be adopted to real-
time watermark detection systems. In most of watermarking systems, watermark
detection complexities are lower than embedding complexities. That means if a
embedding scheme can be executed in real-time, a detection routine can be also
executed in real-time.

Encodings of watermarked raw frames to MPEG-2 video streams are beyond
of our scope. A real-time encoding to HD MPEG-2 bitstreams on personal com-
puters is too heavy work and it cannot be implemented by software approaches,
without any MPEG-2 encoding specific hardware. It, however, should be noted
that our embedding scheme including decodings of HD MPEG-2 stream, HVS
masking function and watermark addition to decoded frames have merits in
watermark applications. Because all these steps should be performed within
theoretically 0.03 second in case of 30 fps videos and software approaches of
watermarking systems are more efficient over hardware approaches when modi-
fications or updates are needed.

3.2 Use of the MMX Technique to Reduce Computing Time

The MMX instructions offer the best support for 8-bit and 16-bit integer data
types. MMX can provide significant speedup in certain DSP and multimedia
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Fig. 2. High-level view of real-time watermarking system. Our real-time scope consist
of a HD MPEG-2 decoding, a watermark embedding and displaying of video. In the
watermark embedder, routines that need fast processing are implemented with MMX
instructions.

applications. MMX seems well-suited for image processing applications because
of the large amount of contiguous, 8-bit data to process and precision require-
ments that rarely extend beyond 8 bits. With the MMX technique, the following
optimization guideline will be applicable for real-time programming [4][5][6][7]:

1. Do not intermix MMX instructions and floating-point instructions. MMX
instructions do not mix well with floating-point instructions. MMX registers
and states are aliased onto the floating-point registers and state, so no new
registers or states are introduced by MMX.

2. MMX code sections should end with “emms” instructions if floating-point
operations are to be used later in the program.

3. MMX shift/pack/unpack instructions do not mix well with each other. In
general, two MMX instructions can be executed at the same clock. However,
only one MMX shift/pack/unpack instruction can be executed at one clock
because there is only one shifter unit.

4. MMX multiplication instructions “pmull/pmulb/pmadd” do not mix well
with each other. Currently, there is only one multiplication unit.

5. MMX instructions, which reference memory or integer registers, do not mix
well with integer instructions referencing same memory or registers.

6. It is important to arrange data in the best way for MMX processing, e.g.,
structure of array, array of structure, row-wise, or column-wise arrangements.
Column-wise processing in general is better than sequential row-wise process-
ing.

We applied the MMX technology to several embedding modules that spend
much time and need to be rebuilt for speedup as shown in figure 2. This includes
watermark tiling, a HVS masking, watermark addition to source frames and
other miscellaneous operations such as multiplications or additions as depicted in
grayed rectangles. These modules have some common features which are suitable
to be manipulated by the MMX instructions: they are frequently and regularly
used, conduct simple and repeatable operations and need fast processing time.
The MMX implementation of such heavy modules produced great performance
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improvements especially at HVS (Human Visual System) masking function as
described in Table 1.

3.3 Use of Simplified HVS Function

A HVS function plays an important role in watermarking systems. Watermarks
embedded in flat areas can be notified easily, so we have to embed watermarks
into those areas weakly. On the other hand, watermarks in edge or textured
areas are not noticeable compared to flat areas, so we can embed watermarks
more strongly into those areas. That says a HVS function adjusts watermark
strength according to local features of source images. While the HVS function
is the most important part for robust and invisible watermarking methods, it is
the heaviest processing step over the rest of other embedding steps.

In many literatures, a NVF (Noise Visibility Function) is a commonly used
HVS function [2]. The NVF function measures flat areas and edge(textured)
areas of source images by calculating local variance and mean values. Despite
of its popularity for the purpose of a HVS mask, this function takes bunch of
processing time than that of other embedding modules due to heavy calcula-
tions for local mean, local variance values and division operations as shown in
equation 1, where σ2

x is a local variance of source images, σ2
x max is the max-

imum local variance for a given image and D ∈ [50, 100] is an experimentally
determined parameter. Even if sophisticated computations of local measures in
NVF provide more exact estimation of source images, a number of computations
prevent watermark embedding from real-time processing. We confirm this effect
in a table 1. In the pure C code implementation of watermarking system, the
HVS function took the most longest time in the embedding processes and its
processing time(0.05sec.) is already over the 0.03 second, upper bound frame
processing time in our application.

NV F (i, j) =
1

1 + θσ2
x(i, j)

, where θ =
D

σ2
x max

. (1)

For a real-time embedding, the HVS function should be lightened. To reduce
the time complexity, we would rather use an edge detector than NVF function
in our system for following reasons:

– As described above, the NVF function is too heavy in real-time video process-
ing.

– The NVF function results in floating point values between 0 and 1, i.e.
0 ≤ NV F ≤ 1. That means the NVF function cannot be implemented by the
MMX instructions, because the MMX code can process floating point value
data. Furthermore, floating point data operations decrease the processing
time.

– Edge detectors can be also used as a HVS function, because edge detectors
also extract highly textured area of source images and watermarks can be
strongly embedded in those area.
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Fig. 3. Edge Detectors of our HVS module(compass operators): With a “separable”
feature and MMX instructions, we implemented the HVS function at a low complexity.
(a) shows four different edge detectors and (b) depicts eight compassed kernels of the
second kernel of (a).

– Furthermore, we also consider flat regions of source images as well as edge
or highly textured area using equation 2 like that used in a NVF function.

– Some edge detectors have a “separable” property which makes its computa-
tion more faster and are also more suitable for a MMX instructions.

In our system, we adopted a compass operator as an edge detector. Compass
operators measure gradients in as selected number of directions. Figure 3 (a)
shows four different compass gradients for north-going edges. An anti-clockwise
circular shift of the eight boundary elements of these masks gives a 45 degree
rotation of the gradient direction. For example, the eight compass gradients
corresponding to the second operator of figure 3 (a) are shown in figure 3 (b).

This compass operator can be transformed to be separable. A 2D filter is
“separable” if the kernel [h2D] can be decomposed into two 1D kernels which are
applied successively. The filtering is performed in one dimension (rows), followed
by filtering in another dimension (columns) : [h2D] = [h(V )

1D ] ⊗ [h(H)
1D ], where ⊗

stands for a convolution operator. The rows and the columns in the original
image are thus separately filtered. Whatever the first 1D filtering performed,
the output image IS(m, n) is still the same. To be separable, a 2D filter must
have proportional elements on the rows and the columns: mathematically that is
seldom true, however, several usual 2D filters are separable. In figure 4, properties
of separable filters and some examples are presented.

The complexity is low for 2D separable filters because the number of oper-
ations (multiplications and additions) is reduced, thus the computation time
is faster. Typically if the kernel size is M × N , we need only (M + N) multi-
plications and (M + N − 2) additions instead of (M × N) multiplications and
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Fig. 4. Separable filter properties and examples. Ie(M, N) is a original image, hH(n)
and hV (m) are 1D horizontal and vertical filters, respectively. IS(m, n) is a 2D filtered
image of Ie(M, N).

(M + N − 1) additions for a non-separable 2D filter. Often the term “MAP”
is preferred (multiplications and accumulations per pixel): there are (M + N)
MAP for a separable filter instead of (M ×N) MAP for a non-separable filter.

When applying edge detectors to get a HVS masked image, the result shows
only edged areas or highly textured areas are strongly highlighted. On the other
hand, pixel values of flat areas approach zero. That means watermarks embedded
in only textured areas are emphasized and easily visible, but the watermark
information is nearly lost in flat areas. We should concern both textured areas
and flat areas for robust and invisible watermarks. As a consequence of this
consideration, we adopted the contents-adaptive embedding rule in the NVF
method and slightly modified it suitable for our HVS [2]:

Λ = (C −HV S) · α + HV S · β, (2)

where C is a constant value that limits the upper bound of HVS energies, α is a
strength parameter for edged areas(textured areas) and β is a strength parameter
for flat regions. As a result of this embedding rule, watermarks have a strength
range between α and β. So watermarks could be embedded with a at least β
strength in the very flat areas and the watermark strength could be controlled
by adjusting the parameters α and β according to a tradeoff of a watermark
visibility and robustness.

4 Experiments

We experimented our embedding scheme on an Intel Pentium IV processor
3.6GHz and with a 1 GB RAM. The decoding time of HD bitstreams and the dis-
play time after watermark embedding is constant as shown in table 1 and these
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values are beyond of our analysis scope because they are already optimized
for the best performance. We embedded watermarks into 1920×1080 size HD
MPEG-2 videos using the same watermarks and embedding ways as the method
described in [3]. We adjusted the Λ value in equation 2 between 1 to 7, that
says watermarks were embedded in strength 7 on textured areas and strength 1
on flat areas. An average PSNR after watermark embedding was around 45dB,
so image visual degradations due to watermark embedding were not perceptual.
We tested five MPEG-2 HD videos in the fields of movies, entertainment shows,
documentaries, etc. which contain more than 20 different scenes and features as
shown in figure 5.

Fig. 5. Snapshot examples of test videos: All test videos have 1920×1080 resolu-
tions(HD). This test set contains a number of scenes and different features.

First, we measured time complexities of subfunctions for a embedding process.
As mentioned earlier, the decoding process and the display process took a con-
stant time during all experiments and time complexities for embedding steps
such as a HVS masking function, multiplication and addition operations are
varied according to the implementation methods and programming languages as
shown below:

All the three experiment systems consist of three subfunctions: decoding of
bitstreams to raw frames, watermark embedding and a display of watermarked
frame to a screen. The watermark embedding unit includes taking a HVS mask-
ing function to decoded raw frames, multiplication and addition operations for
watermark manipulations and other miscellaneous operations which do not take
serious time for an analysis. The first experiment was designed to measure
processing time taken for units, each of which is implemented using pure C
programming language. In this test, the NVF masking function was used as
a HVS method. As we mentioned earlier, the NVF masking method with C
code implementation is inappropriate for a HD real-time video watermarking
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Table 1. Time complexity comparisons between experiment systems that implemented
with pure C code and MMX code. Execution time taken for each subfunction is shown
in the table. The total time is the time complexity taken for watermark processing per
frame.
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application: the NVF process time is 0.050 second and the total processing time
is 0.077 second, beyond of the time limit per frame.

A MMX code implementation considerably drops processing time compared
with C code implementation. In the second experiment, all units were imple-
mented with MMX code but a HVS function. We observe that the MMX coding
considerably reduced the time complexity of a whole embedding process and
the real-time watermark embedding is feasible. However, watermarks that were
simply added to source frames without any HVS processing were not robust to
various well-known watermark attacks.

Our proposed HVS method conducted its job fast under MMX implemen-
tation. In the third experiment, we applied an edge detector as a HVS mask,
the second one in figure 3 (a) and its compassed ones like (b) with a “sep-
arable” feature. Our masking function took only 0.006 second to get masked
images and the total processing time is 0.028 second, still under the processing
limit time per frame. That means our implementation can decode HD-resolution
bitstreams, embed robust watermarks with HVS masking and display the wa-
termarked frames on a screen within 0.03 second. From the results, the total
processing time of system 1, 0.077 sec., was decreased to 0.028 sec. of system 3,
thus we achieved about 63% performance enhancement.

We tested robustness of our watermarks against several common attacks to
videos. Various video processing attacks in the table 2 are expected to occur to
HD videos owing to its high resolution and excellent visual qualities. People may
scale down HD contents to VGA files for efficient playing on personal computers,
convert the MPEG-2 format to various MPEG-4 formats to reduce file sizes
for easy manipulations or network transference. Watermarks embedded in our
method survived against various kinds of attacks as shown in below table.

It should be noted that we selected attack items by focusing on video ma-
nipulations which could be happened frequently to HD videos, so we did not
consider common image(signal) processing attacks or geometric attacks of
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Table 2. Summarization of performance of our watermark robustness in the real-time
system. After various attacks, watermarks were survived with the following normalized
correlation values.

0.730.300.60Slow Motion

0.700.500.60MPEG-4 Conversion

0.720.100.48MPEG-1 Conversion

0.310.100.18White-noise Addition

0.700.250.58Color Conversion (RGB to Gray)

0.740.250.62Framerate Conversion (30 24 fps)

0.690.200.56Cropping

0.450.140.35Resize to VGA (640x480)

0.450.150.28Resize to VGA with padding (640x360)

0.730.370.63Original (1920x1080)

MaximumMinimumAverage

0.730.300.60Slow Motion

0.700.500.60MPEG-4 Conversion

0.720.100.48MPEG-1 Conversion

0.310.100.18White-noise Addition

0.700.250.58Color Conversion (RGB to Gray)

0.740.250.62Framerate Conversion (30 24 fps)

0.690.200.56Cropping

0.450.140.35Resize to VGA (640x480)

0.450.150.28Resize to VGA with padding (640x360)

0.730.370.63Original (1920x1080)

MaximumMinimumAverage

[ Normalized Correlation]

to

image watermarking. However, we applied robust watermarking methods such
as spread-spectrum method in [3] or human visual masking method in [2], thus
we expect our watermarks would be robust against those kind of attacks.

5 Conclusion

As digital content markets and infrastructures are emerging, high quality con-
tents are becoming the center of market shares. Digital watermarking techniques
should come up with the market currencies. In this paper, we proposed real-
time video watermarking implementation guidelines for HD videos. We sug-
gested a system implementation using the MMX technique to decrease processing
time and increase multimedia manipulation efficiency, a simplified HVS method
for robust watermark embedding. The MMX implementation offers significant
speedup in multimedia data processing and certain DSP instructions because
MMX instructions are well-suited for manipulating large amount of contiguous
8-bit data that are common forms of multimedia data.

Our HVS method provides low time complexities and high performance ca-
pabilities. By using an edge detector for the purpose of HVS mask, we achieved
the real-time embedding requirement as well as robustness. The “separable” fea-
ture of edge detectors reduces multiplication and addition complexities and its
structure is well-suited for the MMX implementation.

We measured the processing time of our embedding units and experimented
the robustness of our watermarks against various video dedicated attacks. The
watermarking system that was implemented with MMX instructions and ap-
plied with the simplified HVS function presented the best performances in both
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real-time processing and robustness. With our implementation, watermarks are
embedded into HD-resolution high quality videos in real-time, 0.03 second per
frame, and robust against video manipulation attacks. All these techniques could
be applied to other video watermarking schemes and other video signal process-
ing applications.
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Abstract. The satellite TV industry relies heavily on the use of smart
card technology at the very heart of broadcasted services that are pro-
tected by legacy conditional access systems. The process of Satellite TV
signal protection is distributed amongst a number of system compo-
nents, e.g. smart cards, receivers, Conditional Access Modules (CAM)
and the content provider. However, the introduction of “Open” Satellite
Receivers, providing a highly configurable environment with software
emulation of conditional access systems, enabled the implementation of
whole range of new attacks. A widely deployed attack is often referred
to as the “card sharing” attack, by which one legitimate user colludes
to provide protected content to a larger group of unauthorised users.
This paper proposes a countermeasure that increases the bandwidth re-
quirements of this attack to the point where it is no longer practical
with a standard internet connection, with a minimal impact on existing
protocols and architectures.

1 Introduction

During the early development of the satellite TV industry it became evident
that in order to protect its investment and revenue streams it was necessary to
encrypt digital content. Protection of the digital content traditionally relied on
a number of system components including Set-Top-Boxes (STB), smart cards
and content encryption boxes at the service provider level. Encryption, in the
context of the satellite TV industry, is often defined as “the process of protecting
the secret keys that have to be transmitted with the scrambled signal in order
for the descrambler to work”. The above procedure requires the existence of a
conditional access system [19,13] that combines a signal encryption algorithm
and key protection algorithm in order to prevent unauthorised signal reception.
Many providers follow the DVB-S standard [9] and tailor the necessary configu-
ration parameters [11] to their own particular needs.

The recent technological advances of the computer industry, along with the
continued requirements for more advanced and powerful set of services means
that satellite TV providers are all trying to differentiate their offerings, each with
their own STB software and hardware. Conversely, consumers are constantly
looking for ways that will allow them to use more flexible and powerful equipment
that will simplify or even enhance their viewing experience.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 239–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The natural market response was the introduction of open satellite receivers
[30] that allowed consumers to purchase the STB that met their viewing and
personal requirements. These STBs are highly configurable environments based
on open operating systems such as Linux. Basically, they can be considered as
traditional computer workstations enhanced with satellite TV signal process-
ing capabilities. However, the fact that they are powerful and open devices has
introduced a number of new threats. At the very least, it has enabled a more
efficient realisation of a number of already identified and well-documented at-
tacks [20,22,16]. The market trend towards open receivers along with current
hardware restrictions (e.g. at the card level) has forced the satellite TV con-
tent providers to mitigate their protection mechanisms away from the underly-
ing STB hardware and bring it closer to the smart card and Conditional Access
Module (CAM). The latter two are often seen as a single component.

The purpose of this paper is to briefly introduce how these recent techno-
logical advances are affecting the satellite TV industry and then to propose
a relevant countermeasure for a specific type of attack i.e. the card sharing
attack [22].

The aforementioned open satellite receivers can be used to share one sub-
scriber’s rights with numerous people. A subscriber can start a server on a STB
that will accept connections from other open STBs. These client STBs belong
to people that are not subscribers and therefore have no rights to view a given
broadcast. Every time the client STB receives an encrypted key from the broad-
caster, it is sent to the server STB that deciphers it and returns the key neces-
sary to decipher the broadcast. As the maximum frequency that this key can be
changed is once every two seconds, the amount of bandwidth required for this is
negligible (a maximum of 5 bytes of information per second in each direction).
With the bandwidth requirement being so small synchronisation issues can be
minimised.

Furthermore, it implies that one receiver can act as a server and provide
numerous clients with the sequence of keys necessary to watch a given broad-
cast. As an open receiver can simulate a CAM it is difficult to base a solution
at this level as any behaviour can be simulated. The CAM should therefore
be regarded as an untrustworthy entity within the protocol. This paper will
propose a smart card based solution to this sharing attack that will mean that
all users watching a given broadcast will need to have a smart card issued by
the broadcaster.

The remainder of the paper is structured as follows: Section 2 provides all
the necessary background information that will enable the reader to understand
how content encryption works in the satellite TV industry along with the recent
smart card attacks in the light of the introduction of open STBs. In Section 3
we provide an overview of the proposed countermeasures and how different com-
munication protocols change the countermeasure. Section 4 discusses how the
proposed countermeasure affects users with various different types of counter-
measure. This is followed by the conclusion in Section 5.
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2 Issues Around Content Provision for the Satellite TV
Industry

In the following sections we provide an overview of how the situation is changing
in the light of the recent technological advances in the smart card, STB and
satellite TV industries. Subsequently, the main characteristics of two widely
used satellite TV attacks are highlighted in order to provide a reference point
for the proposed countermeasure.

2.1 A Changing World – New Requirements for Open Receivers

An Open Receiver (OR) or Open Set-top-Box (OSTB) is a highly reconfigurable
computer system that offers the capability to receive and decrypt the scrambled
TV signals. These receivers often come with a number of pre-installed Condi-
tional Access Module (CAMs) along with a Linux operating system. Further-
more, they also come pre-installed with a number of “images” containing all the
necessary software to watch subscribed TV channels, along with various other
tools for recording and organising channels using a variety of graphical interfaces.

However, the hacking communities are taking advantage of these open re-
ceivers by developing their own “images” containing all the necessary hacking
tools that will enable them to circumvent the security around a protected TV
signal. These images reside in the EEPROM or flash memory of the OSTB and
can be easily upgraded, deleted and modified by connecting the receiver to an-
other computer through a network or serial cable. A variety of the plug-in images
enable the receivers to access USB tokens, hard disks, connected cameras or key-
boards and to use the network or modem cards. All this functionality along with
the plethora of freeware hacking tools makes the open receiver a very powerful
tool in the hands of illegitimate users.

2.2 Recent Satellite TV Attacks

Over the last decade a number of satellite TV attacks have emerged. Some of
them are based on cards being cloned, communication being logged and on-
card elements being emulated by software residing in the STB. In the following
paragraphs we provide a very brief overview of the main type of attack that has
particular significance in the light of the proposed countermeasure.

The Card Sharing attack [20], see Figure 1, belongs in a set of simple, powerful
and effective satellite TV attacks. This attack requires an OSTB with a legiti-
mate card (i.e. the Server CAM), sharing its secrets with a number of illegitimate
receivers (i.e. Client CAM) in order to provide them with access to unauthorised
content. The user with the legitimate card runs a Card Server image on their
OSTB.

The server image enables the OSTB server to accept connections from a num-
ber of OSTB clients (Client CAM) across a number of communication mecha-
nisms including the Internet. As soon as an Electronic Management Message
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Fig. 1. Overview of the card sharing attack

(EMM) or an Electronic Code word Message (ECM) is received by an OSTB
client it is forwarded to the corresponding OSTB server and in turn to the cor-
responding smart card in order to be processed. The server subsequently carries
out the message decryption and forwards back to each client the decrypted CW
or other relevant messages. This type of attack is often referred to as the jugular
attack [22].

2.3 The Concept of Secure Content Provision for the Satellite TV
Industry

Satellite communication is considered a very expedient vehicle for broadcasting a
large amount of valuable information over wide geographical areas. The satellite
TV industry needs to rigorously safeguard its revenue streams, i.e. the content
or “Services”. Various sources [18,7] estimate that in Australia, for example,
approximately 4-5% of all satellite TV subscriptions were illegal resulting in a
direct loss in the realm of 50 million Australian dollars. Broadcasters wanting to
protect their revenue streams will therefore have to employ some effective and
robust means to control access to the transmitted services.

The process of satellite TV signal transmission is often divided into two dis-
tinct phases: The first begins with the service provider encrypting or “scram-
bling” the signal and the second when the subscriber uses the necessary equip-
ment, i.e. STB, in order to decrypt the signal. There are several systems that can
provide access control for satellite TV; the most widely used ones are presented
in [15,21].

Digital Video Broadcast (DVB) is a broadcasting standard developed by the
major European satellite TV producers. The DVB standard is based on the
MPEG-2 standard [1] that organises broadcasts into packets separating multi-
plexed information from program streams. The most commonly deployed satel-
lite TV broadcasting methods involves a STB, a satellite dish responsible for re-
ceiving the encrypted signal, a Conditional Access System (CAS) [6] which often
includes a CAM and a smart card that is responsible for the service decryption.
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Fig. 2. Summarised process of DVB signal de-scrambling and cryptographic key
hierarchy

The process is simplified in Figure 2 and summarised as follows. The service
signal is encrypted/scrambled (by using the DVB Common Scrambling Algo-
rithm) using a cryptographic key, called a Code Word (CW), that is generated
by a Control Word Generator.

In turn, the CW is encrypted and encapsulated within an ECM, in order to
protect the CW during transmission to all legitimate recipients. The encryption
of the CW is often defined as “the process of protecting the keys that will be
transmitted with the scrambled signal in order for the descrambler to work”.
A CAS offers all the necessary flexibility to satellite TV operators to operate
proprietary conditional access systems that better fit their security and oper-
ational requirements. Some of the most commonly used CAS systems include
VIAaccess [29], Irdeto [17], Cryptoworks [8], and Seca [26]. In principle, the
CAS prohibits brute force attacks from taking place as the signal encryption key
is changing every 2–10 seconds [5], i.e. the crypto period. The details of the CAS
remain confidential but the basic idea that a chain of encryptions is taking place
on the CW to guarantee protection of keys and avoid brute force attacks.

The role of the STB is to receive the satellite TV signal through the satellite
dish and return the descrambled stream. This actually involves the utilisation
of both the smart card and the CAM. The multiplexed/scrambled services and
ECM are forwarded to the CAM residing within the STB. The actual ECM is
forwarded from the CAM to the smart card. A Service Key (K0) is stored in the
smart card and it is used in order to decrypt the CW. An Electronic Management
Message (EMM) updates these keys, and their validity period is usually one
month but varies from one broadcaster to another. The newly obtained CW is
also used within the CAM in order to decrypt the signal and return it back to
the STB. The ECM and EMM can be used in order to send commands and new
keys to the smart cards. In the above architecture the STB can host multiple
CAMs in order to match the individual broadcaster requirements.
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In terms of the DVB data broadcast the following process is incorporated: the
DVB transmission is an encrypted signal that has a bandwidth of 1 to 4 Mbits
per second in packets of 188 bytes. The encrypted signal is accompanied by series
of control words (CW) that can be deciphered by receivers to provide a key (CK)
that can be used to decipher the broadcast. The CW can be updated during a
broadcast so that more than one key is needed to decipher the broadcast. The
maximum frequency this can occur is once every two seconds [5]. The keys for
transforming CW to CK from a set of 292 keys that are distributed and updated
by the broadcaster. This key is then used to decipher the payload of the DVB
packets being delivered to each STB.

Fig. 3. Deciphering the contents of DVB packets using key CK

Figure 3 shows the deciphering process that comprises of two layers. The
payload (PL(i) for i ∈ [0, 23]) of the packet is first deciphered by a stream
cipher (SC) and then deciphered by a block cipher (BD) using the CBC chaining
method. This produces the plaintext of the signal (PT(i) for i ∈ [0, 23]). The
value for i can take values in the interval [0, 23] as the stream cipher and block
cipher treat the data in blocks of eight bytes. Further information on this process
is available at [2], although the authors admit that in an actual implementation
the details may vary.

In most cases this process takes place in a controlled environment where the
STB and CAM are provided by the broadcaster. If an OSTB is used the whole
process can be simulated and each incoming CW is sent to a server OSTB that
will return CK, that can then be used to decipher a given broadcast. Every time
CW is changed the client OSTB is required to send and receive a message of 10
bytes. If CW is changed every 2 seconds (the maximum frequency) this gives a
bandwidth of 40 bits per second in each direction.
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3 Increasing the Bandwidth Requirements

A way of raising the difficulty of this attack would be to use the fact that a
smart card contains all the keys necessary for deciphering the arriving CWs. It
is assumed that these keys can be delivered securely and are not at risk once
stored within the smart card.

The smart card could be used to create a stream of values for CK rather than
one value that is valid for 2–10 seconds. As the deciphering key changes much
more frequently a server OSTB would have to provide much more information to
enable a client OSTB to decipher a broadcast. This would have two effects, the
amount of bandwidth necessary to share viewing rights becomes prohibitively
large, and as the smart card is constantly communicating (i.e. it’s bandwidth is
saturated) it can no longer be asked to decipher arbitrary CWs as it can only
create one stream at a time.

Fig. 4. Generating a series of values for CK

For a given CW a smart card can deliver a series of CKs, as shown in Figure 4,
that are used to decipher the signal until the delivery of another CW. The
arriving CW is deciphered with a block cipher (BD) using the key (K0) to
produce a CK, this is again deciphered to produced the next CK etc. The value
for K is chosen from the 292 available by the header delivered with CW. This
means that an attacker would be obliged to share each CK as it is generated to
enable someone else to decipher the same signal. New values can be generated by
continuing to decipher the delivered CW to produce other values of CK. When
a new CW is delivered the process restarts with the new CK.

Two different possibilities for implementing this idea are discussed below:
using a standard smart card and using a card with a fast protocol to provide the
sequence of CK values.

3.1 Using a Standard Smart Card

In order to ask a smart card for a new value for CK the CAM will need to send
an APDU and then receive the procedure byte, the data, and status word [23].
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This gives an overhead of 8 bytes for each request to the card for a new value
for CK. In order to minimise the effect of this, numerous values of CK can be
delivered by the same APDU to minimise the amount of protocol bytes sent.
These keys will be stored on the CAM and used as necessary. Table 1 gives the
set of keys that can be generated per second for every amount of keys that can
be delivered in 1 APDU. The bandwidth requirement is shown as a function of
the number of CKs provided per APDU.

Each CK value is assumed to be 8 bytes long as this is the key length
required by the block ciphers if DES or the proprietary CSA algorithm is used.
The maximum number of CK values that can be delivered by one APDU is

Table 1. The bandwidth requirements for different length commands

CKs per APDU Clock cycles CKs per Bandwidth
per command per second required (Kbits/s)

1 3072 1627.6 104.2
2 4608 2170.1 138.9
3 6144 2441.4 156.2
4 7680 2604.1 166.7
5 9216 2712.6 173.6
6 10752 2790.1 178.6
7 12288 2848.3 182.3
8 13824 2893.5 185.2
9 15360 2929.6 187.5
10 16896 2959.2 189.4
11 18432 2983.9 191.0
12 19968 3004.8 192.3
13 21504 3022.6 193.5
14 23040 3038.1 194.4
15 24576 3051.7 195.3
16 26112 3063.7 196.1
17 27648 3074.3 196.8
18 29184 3083.8 197.4
19 30720 3092.4 197.9
20 32256 3100.1 198.4
21 33792 3107.2 198.9
22 35328 3113.6 199.3
23 36864 3119.5 199.7
24 38400 3125 200
25 39936 3130.0 200.3
26 41472 3134.6 200.6
27 43008 3138.9 200.9
28 44544 3142.9 201.1
29 46080 3146.7 201.4
30 47616 3150.2 201.6
31 49152 3153.4 201.8
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!255/8" = 31 (i.e. the maximum data size possible in one APDU divided by
8). If this algorithm is replaced with an AES the same table can be used. In
this case the number of CKs per APDU will be divided by 2, so only the rows
corresponding to an even number of CKs per APDU need be considered. This
is because an AES key will require twice the number of bytes as a DES key.

These calculations are based on a smart card with an external clock of 5 MHz
and an ETU1 of 16 clock cycles, which is the fastest speed provided for in the ISO
standards [23]. A faster clock speed can sometimes be used but the behaviour
of a smart card cannot be predicted (some smart cards will refuse to function),
this case is therefore not taken into account.

The values given in Table 1 also assume that data is constantly being sent
or received across the I/O between the CAM and the smart card i.e. process-
ing time is not taken into account. This requires that the I/O is being con-
ducted by an UART2 in the smart card and the block cipher is being done
with a crypto-coprocessor i.e. the I/O and algorithm calculation are not de-
pendent on the CPU. The CPU is therefore just required to send data from
the UART to the crypto-coprocessor and vice versa, as the UART and crypto-
coprocessor will be separate blocks on the chip. In the case of proprietary
algorithms a hardware implementation is unlikely to be available, which will
significantly lower the amount of keys that can be delivered per second, as
CPU cycles will need to be used to calculate the block cipher. It will still
be possible to calculate values of CK while the UART is communicating but
the performance will be significantly slower than a hardware implementation.
As the performance of the proprietary CSA algorithm on a smart card is not
known it is not possible to predict the effect this will have on the proposed
countermeasure.

To use a smart card in this manner will require a special mode, where the
smart card will only respond to commands asking for more keys or to exit this
mode. Otherwise the command dispatcher will take too much time and the
performance will drop.

As can be seen the bandwidth required to share the CKs is greatly increased
from 40 bits per second. It may still be feasible for an attacker to share the series
of CKs with one other person if they have a fast enough internet connection,
but will be unable to act as a server for numerous people. The client OSTB
will also be obliged to decipher the same broadcast as the server OSTB. Even
if an attacker is sharing this data with one other person there are likely to be
synchronisation difficulties streaming this data from one receiver to another,
which will lower the quality of the signal that can be produced by the client
receiver.

1 An ETU is an Elementary Time Unit in the T = 0 protocol [23] and is the amount
of clock cycles required to send one byte. 12 ETU’s are required to send 1 byte.

2 A Universal Asynchronous Receiver-Transmitter (UART) is an autonomous block
on the chip that will receive and and send signals on the I/O pin based on in-
structions from the CPU. This greatly simplifies I/O routines as the CPU does
not need to concern itself with the state of the I/O pin at any given time.
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3.2 Using Fast Protocols

The countermeasure proposed above is based on a standard smart card using the
T = 0 protocol. The smart card industry is currently working on several solutions
to the bandwidth problems posed by this protocol. With a fast protocol it should
be possible to have a card that deciphers the broadcast on-the-fly. These are
summarised below, with a brief description on how this would change or replace
the proposed countermeasure:

Proprietary Protocols: A method of using a standard smart card with a pro-
prietary protocol, and therefore a proprietary reader, was presented by Gem-
plus at Cartes 2003 [12]. This protocol allowed music from a CD player to be
deciphered on-the-fly. Using this technology to implement the above counter-
measure a smart card would be able to produce 11000 keys per second [12],
given the bandwidth required to decipher a CD on-the-fly, which gives a re-
quired bandwidth to share the series of CKs of 680.8 Kbits per second. This is
potentially too fast as the CK will change 3 times for each DVB packet treated
by the CAM, assuming that the broadcast is arriving at its maximum band-
width of 4 Mbits/s. It may not be possible to re-key the CAM this often. The
major draw back is the use of a proprietary protocol means that substantial
changes will be required in the CAM to be able to communicate with this card.

USB Smart Cards: Some chip manufacturers propose smart cards with a
USB interface that will allow for a larger bandwidth between a smart card
and reader [28]. These chips include a USB interface conforming to USB
1.1 that will provide a bandwidth of 10 Mbits/s. This is more than enough
to handle a DVB broadcast, although problems may arise with deciphering
the signal. The specification of an example smart card chip can be found
at [27] based on ST Microelectronic’s ST19 chip family. The internal clock
frequency can be raised to 10 MHz, which will not be enough to decipher a
broadcast at 4 Mbits/s on-the-fly. If we assume that a hardware DES takes
16 clock cycles (i.e. 1 clock cycle per round) the deciphering will take about
a tenth of the CPU time, leaving enough time for data transfer etc. In the
case of proprietary protocols this chip is unlikely to be able to provide de-
ciphering on-the-fly due to the amount of CPU time that will be required.
In practice industry has found these cards inadequate to increase the band-
width between a smart card and reader due to the complexity of the host
interface [25], although this view may no longer be valid.

Secure MultiMediaCards: A more recent initiative is the Secure MultiMedi-
aCards (Secure-MMC) [10] that aims to blend smart card technology with
MultiMediaCards [3]. These chips aim to provide secure storage in devices,
such as mobile phones, principally for digital rights management. The advan-
tage of this technology in the context of this paper is that MultiMediaCards
generally have a bus rather than a serial interface. The MMC standard al-
lows for a bandwidth of up to 416 Mbits/s depending on the clock frequency
and the size of the bus used. It is assumed that a Secure-MMC will be able
to decipher several megabytes per second on-the-fly [24]. The Secure-MMC
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is a relatively new technology so no specifications are currently available. It
is assumed that such cards will be able to decipher broadcasts on-the-fly as
the new generation of MultiMediaCards are designed to accept clock speeds
up to 52 MHz [4].

The use of any of these fast protocols is going to be a difficult choice for a
broadcaster. The use of feature rich chips increases the price of each smart card,
as each extra block will require more silicon and development time. This extra
cost will have to be included in the subscription fees, which may drive customers
away. However, it is anticipated that revenue would increase over time if such a
solution was chosen as only subscribers would be able to view broadcasts. The
proposed countermeasure will provide the most cost effective solution until USB
cards or Secure-MMCs become more affordable.

4 Connection Speeds

There are several different connection speeds offered by internet providers. A
summary of these connections is shown in Table 2, where the majority of the
information is taken from [14].

Table 2. The bandwidth available with different connection types

Type of Internet Download Bandwidth Upload Bandwidth
Connection Kbits/s Kbits/s
ADSL 256 256 128
ADSL 512 512 128
ADSL 1024 1024 256

T1 1500 1500
T3 45000 45000

The proposed countermeasure should be effective in stopping the card sharing
attack for ADSL users. A smart card with over 2 keys per APDU will easily be a
able to saturate the upload bandwidth of a “slow” speed ADSL connection. An
ADSL connection with an upload bandwidth of 256 Kbits/s is more problematic.
In theory this would make it possible to share one channel with one other person.
However, in practice it is unlikely to to be practical as ADSL internet connections
will not consistently attain their theoretical maximums. The headers and footers
of all the protocol layers will also add to the bandwidth requirements.

This countermeasure will not stop a the card sharing attack where an attacker
has access to a T1/T3 connection. These connections provide enough bandwidth
that the stream of keys could be shared with another user. It is assumed that
each extra client will add the same bandwidth requirements as the same data
needs to be sent to each client. A T3 connection would therefore be able to supply
key information to a small group of clients. The proposed countermeasure will
not prevent the card sharing attack in this case.
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This does not mean that the countermeasure is worthless, as T1/T3 connec-
tions are generally only used by businesses. There is also no way of preventing
a user with a T3 connection from sharing the broadcast they are watching with
at least one other user. Broadcasts are delivered to a user with a bandwidth of
between 1 and 4 Mbits/s. An attacker could potentially decipher the broadcast
and deliver it in clear to a third party.

5 Conclusion

A method of inhibiting the card sharing attack is described that functions by
increasing the bandwidth required to the point where it is less practical to share
the information required to conduct the attack. The communication with the
card is saturated so the only information that an attacker is able to share is the
broadcast being watched rather than an arbitrary channel. It has been shown
that sharing the information required to continue conducting the attack is pro-
hibitive unless the attacker uses a T1/T3 connection, which are normally only
used by businesses and are not affordable by everybody.

The proposed countermeasure provides a way of inhibiting the card sharing
attack until USB and Secure-MMC devices become readily available and afford-
able. For this reason the countermeasure has been designed to minimise the
impact on the existing protocol as major changes to the protocol will be expen-
sive, and may be unnecessary if more powerful secure devices are going to be
used in the near future.

The principle problem of using this countermeasure is that one smart card
is required per screen. It will not be possible to view one broadcast and video
another, or have two televisions viewing different broadcasts, etc. In order to
record a second broadcast a viewer would be required to store the data and
CWs and have this deciphered on-the-fly at viewing time. This is a possible
advantage for broadcasters as they are sure that only legitimate users can view
their emissions, as a smart card needs to be present.

References

1. ETR 154:. Digital video broadcasting (DVB): Implementation guidelines for the use
of MPEG-2 systems; video and audio in satellite, cable and terrestrial broadcasting
applications.

2. Anonymous. CSA – known facts and speculations. http://CSA.irde.to.
3. MultiMediaCard Association. http://www.mmca.org.
4. MultiMediaCard Association. Application note, an0501-1.00, April 2005. http://

www.mmca.org/compliance/buy spec/AN MMCA050419.pdf.
5. EBU Project Group B/CA. Functional model of a conditional access system. EBU

technical Review, Winter 1995.
6. CENELEC. Common interface specification for conditional access and other digital

video broadcasting decoder applications. Technical Report CENELEC Standard
50221, European Committee for Electrotechnical Standardization (CENELEC),
Brussels, Belgium, February 1997.



Inhibiting Card Sharing Attacks 251

7. V. Chachiere. Man ordered to pay $180m restitution for TV signal piracy. Naples
Daily News. http://www.naplesnews.com.

8. Cryptoworks. http://www.digitalnetworks.philips.com.
9. D. J. Cutts. DVB conditional access. IEE Electronics and Communications Engi-

neering Journal, 9(1):21–27, February 1997.
10. Giesecke & Devrient. Secure and mobile storage media – the memory card with

smart card technology. http://www.gi-de.com/, 2005.
11. ETSI. Digital video broadcasting (DVB); support for use of scrambling and condi-

tional access (CA) within digital broadcasting systems. Technical Report ETSI
Technical Report ETR 289, European Telecommunications Standards Institute
(ETSI), Sophia Antipolis, France, October 1996.

12. Gemplus. Cryptomotion. presented at Cartes 2003, 2003. review available at
http://www.prnewswire.co.uk/cgi/news/release?id=112260 .

13. L. C. Guillou. Smart cards and conditional access. In T. Beth, N. Cot, and
I. Ingemarsson, editors, Advances in Cryptology - EUROCRYPT ’84, volume 209
of Lecture Notes in Computer Science, pages 480–485. Springer-Verlag, 1984.

14. helpwithpcs.com. Internet connections explained, a guide to dial-up, adsl and cable
connections. http://www.helpwithpcs.com/internet/internet-connections.
htm#adsl-connections.

15. R. Hewitt. North american MPEG-2 information, July 2003. http://www.
coolstf.com/mpeg.

16. D. Holankar and M. Stamp. Secure streaming media and digital rights manage-
ment. In Proceedings of the 2004 Hawaii International Conference on Computer
Science, pages 85–96. ACM Press, 2004.

17. Irdeto. http://www.irdetoaccess.com.
18. P. Kalina. No-pay TV costs industry $50m. The Age Journal. http://www.theage.

com.um.
19. D. W. Kravitz and D. M. Goldschlag. Conditional access concepts and principles.

In M. K. Franklin, editor, Financial Cryptography – FC ’99, volume 1648 of Lecture
Notes in Computer Science, pages 158–172. Springer-Verlag, 1999.

20. M. Kuhn. Attack on pay-tv access control systems. Security Seminar talk. Uni-
versity of Cambridge, London, UK., 1997.

21. G. C. Langelaar. Overview of protection methods in existing TV and storage
devices. Technical University of Delft, July 1996.

22. J. McCormac. European scrambling system. Waterford University Press, 1996.
23. International Standards Organisation. ISO7816–3 smart card standard: Part 3:

Electronic signals and transmission protocols.
24. D. Praca. Next generation smart card: New features, new architecture and system

integration. 6th e-Smart Conference, Sophia Antipolis, France, September 2005.
25. D. Praca and C. Barral. From smart cards to smart objects: The road to new

smart card technologies. Computer networks, 36(4):381–389, July 2001.
26. Seca. http://www.securityit.com.
27. STmicroelectronics. Smartcard solutions ST19 multi-application smartcard ICs.

http://www.st.com.
28. STmicroelectronics. STmicroelectronics delivers world’s first USB-certified smart

card chips. http://www.st.com, 2002.
29. VIAccess. http://www.viaccess.com.
30. Dream Multimedia Worldwide. Dreambox DM7000s user manual.

http://www.dream-multimedia-tv.de/manual/manual eng.zip.



 

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 252 – 267, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Flooding-Based DoS/DDoS Detecting Algorithm  
Based on Traffic Measurement and Prediction* 

Shi Yi, Yang Xinyu, and Zhu Huijun  

Dept. Computer Science & Technology, Xi’an Jiaotong University, 
Xianning West Road 28#, Xi’an, P.R.C. 
yxyphd@mail.xjtu.edu.cn  

Abstract. This paper analyzed the features of the flooding-based DoS/DDoS at-
tack traffic, and proposed a novel real-time algorithm for detecting such 
DoS/DDoS attacks. In order to shorten the delay of detection, short-term traffic 
prediction was introduced, and prediction values were used in the detecting 
process. Though we use real-time traffic data to calculate the mean and vari-
ance, few periods of data need to be stored because the algorithm is a recurring 
process, therefore the occupied storage space is less. Moreover, the complex 
and cost of the recurring process is less than calculating the whole sequence, so 
the load of the server would not increase much. Although we focus our research 
on detecting flooding-based DoS/DDoS attacks, the simulation shows that the 
approach also can deal with DDoS attacks that zombies start without simulta-
neousness.  

1   Introduction 

Flooding-based DoS/DDoS attacks, such as SYN-flooding, ICMP-flooding, UDP 
flooding, DNS flooding, and so on, have already become a major threat to the stability 
of the Internet [1]. In these attacks, attackers send a large stream of packets to a vic-
tim to consume its key resources, and then the victim fails to provide services to  
legitimate clients [2]. 

It is found by our experiments that the flooding-based DoS/DDoS attacks behaves 
such features --- traffic burst and remaining of comparative smooth for some time, 
and this can be described by calculating the global average value and the variance of 
the traffic. In this paper, we simplify the variance calculating by just calculating the 
variance of difference sequence of the traffic, and propose a novel method to detect 
the flooding-based DoS/DDoS attacks. Furthermore, to accelerate the attack detect-
ing, we also give an adjusted detecting algorithm with short-term traffic prediction. 

The rest of this paper is organized as follows. Section 2 describes the traffic fea-
tures during flooding-based DoS/DDoS attacks. Section 3 proposes the basic 
                                                           
* This work is supported by the NSFC (National Natural Science Foundation of China -- under 

Grant 60403028), NSFS (Natural Science Foundation of Shaanxi -- under Grant 2004F43), 
and Natural Science Foundation of Electronic and Information Engineering School, Xi’an 
Jiaotong University. 
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DoS/DDoS detection algorithm based on the traffic features presented in Section 2. 
Section 4 introduces the short-term traffic prediction into the basic detecting algo-
rithm and gives an adjusted method. Experiment results are shown in section 5 to 
testify the feasibility of the algorithm and to analyze the sensitivity of the algorithm 
by different parameter values. Section 6 expresses related works. Finally, conclusions 
are drawn in Section 7. 

2   Traffic Features During Flooding-Based Dos/DDos Attacks  

Under flooding-based DoS/DDoS attacks, the traffic arrived at a victim behaves 
differently from normal traffic. The normal traffic fluctuates violently, and the av-
erage value of it is far from the bandwidth capacity. Whereas the flooding-based 
DoS/DDoS attack traffic behaves two distinct features: the burst of traffic and the 
trends to be smooth, i.e., it behaves flat-burst. Described by statistical values, it 
means the traffic volume measured at the traffic burst is much greater than its 
global average value before the burst; and the variance presents a decreasing trend 
in a small range after the traffic burst. These features can be clarified by a set of 
data as follows.  

Fig. 1 shows the measured network traffic data of an FTP server opened to the pub-
lic in our lab. The data set is a time series with the unit packets/s. The length of the 
sequence is 4000 seconds. During some periods, DoS attacks were launched by using 
a program launching syn-flooding attacks to the server. The start moment and attack-
ing duration of each attack are listed in Table 1. 
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Fig. 1. Original observed traffic 

Table 1. The start moment and attacking duration of each attack  

Attack Start Moment (s) Attacking Duration (s) 
Attack A 341 3 
Attack B 1428 3 
Attack C 2009 5 
Attack D 2508 5 
Attack E 3855 145 

Local features around the periods under attacks are demonstrated from Fig. 2 to 
Fig. 4: 
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Fig. 2. The real traffic and mean traffic around Attack E(3855s~4000s ) 

 

Fig. 3. The difference variance traffic around Attack E(3855s~4000s ) 
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Fig. 4. (left) The real traffic and mean traffic around Attack D(2508s~2512s) (right) The differ-
ence variance traffic around Attack D(2508s~2512s ) 

In Fig. 2 and the left of Fig. 4, the blue solid lines and red dotted lines represent 
original data and average data respectively, and during attacks original data are much 
higher than average data compared with normal situations. In Fig. 3 and the right of 
Fig. 4, the red dotted lines represent the difference variance (defined in Equation 3) of 
the data set, and they decrease during the attacks. 

In Probability Theory, the formula to calculate the variance of a sequence X with 
the length t is 
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In Equation 1, X(i) means the observed value at the moment i, and X  means the 
expectation of the sequence X. In practical calculations, the expectation of the traffic 
is substituted by the mean of X, which is computed after acquiring every traffic da-
tum, thus it is not stable. However, what is worth concerned about is the relative and 



 A Flooding-Based DoS/DDoS Detecting Algorithm 255 

 

local fluctuation of the data, rather than concrete values. On the other hand, the mean 
of the difference of a large sequence can be considered as 0, the proof is as follows. 

Let d_X be the difference sequence of X, namely for every i>1, d_X(i)=X(i)-X(i-1). 
Let d_mean be the mean of d_X, then 
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At least, d_mean is much closer to 0 than X  is, and when t ∞ , d_mean 0. So 
we regard it as 0 to simplify the calculation. 

Therefore, the variance of difference sequence of the traffic (called “difference 
variance” in this paper, and represented by d_var) can reflect the fluctuation as well. 
And the function to calculate d_var is  
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Calculating the variance of the difference sequence in Equation 3 is simpler than 
calculating the variance of the original traffic sequence in Equation 1. 

3   The Basic Attack Detecting Algorithm 

According to the features of flooding-based DoS/DDoS attack traffic given above, a 
recursive algorithm to detect such attacks is proposed in the following subsections. 

3.1   The Calculation of Statistical Values  

In order to satisfy the real-time demands of the algorithm, statistical values are calcu-
lated by a recursive way. 

Suppose at the moment t, the original traffic is C(t), the global average value (the 
mean of all C(i),i<=t) is c_mean(t), the difference of the traffic is z(t), and the differ-
ence variance (the variance of all z(i),i<=t) is d_var(t). The mean of z(t) is d_mean(t), 
which can be considered as 0 according to Equation 2. The calculations of these  
statistical values are: 
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1) c_mean(t)=1/t*((t-1)*c-mean(t-1)+C(t)), considering the traffic under at-
tacks may cause the global traffic mean to be greater, the calculation 
should be stopped when an attack is detected, and be resumed after it ends. 
Such measures can mitigate t gdhe impacts of attacking traffic to the global 
mean, so make it much closer to the natural scenario of the network. 

2)  z(t)=C(t)-C(t-1),  (t>1) 
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4) In order to weigh the volume of the traffic at the moment t, a function (t) 
is defined as: 
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This definition borrows the concept of “membership function” in Fuzzy Arithme-
tic, but much simpler. In the definition, lt*c_mean(t) means the lower limit of “great” 
traffic; if the traffic volume is less than lt*c_mean(t), it can be considered to be “not 
great”, namely the weight of “great” is 0. If C(t) [lt*c_mean(t), ht*c_mean(t)], its 
weight of “great” is defined by the function (t)=C(t)/((ht-lt)*c_mean(t))-lt/(ht-lt). 
And ht*c_mean(t) means the upper limit of ”great” traffic; if the traffic volume ex-
ceeds the global mean by ht times, it can be considered to be “very great”, namely its 
weight of “great” is 1. In real applications, the parameters lt and ht should be assigned 
according to the performance of networks. For example, according to long-term  
measured data of the network, and the definition of lt may have more significant. 

3.2   Judging Process  

According to the definition of (t), if (t)=0, it is regarded that no attacks occur; if at 
the moment t, (t)>0, it is a hint of the beginning of an attack, and the judging proc-
ess is triggered immediately to verify its occurrence. 

The following is the description of judging process. There are two predefined two 
variables: one is interval, representing the detecting period; another is accumu-
late_volume, representing a volume threshold for a host to tolerate, for example, the 
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size of buffer1. For each time slot t during detection, A(t) represents the attack inten-
sity at that slot. And let accumulate_steps be the largest integer less than (accumu-
late_volume*interval)/C(t). The variables attack_count cooperates with accumu-
late_steps to decide when to alarm. Once the judging process starts up, if the attack 
intensity enhances (A(t)>=A(t-1), attack_count increases by 1, otherwise it decreases 
by 1. If attack_count accumulates to or surpasses accumulate_steps, the process 
alarms. The calculation of attack intensity at the moment t is shown in the following 
pseudo code. The influences on detecting results by the value of accumulate_volume 
discussed in Section 5. 

for each t-th time slot of detection do 
accumulate_steps = floor((interval*accumulate_volume) 

/C(t)) ;  /*(1)* 
if(accumulate_steps == 0) 

alarm( );  /*(2)*/ 
else{ 

if(μG(t) > 0){  
attack_count++;  /*(3)*/ 
if(d_var(t) >= d_var(t-1)) 

A(t) = μG(t);  /*(4)*/ 
else A(t) = max(μG(t-1), μG(t));  /*(5)*/ 

}else attack_count = 0;  /*(6)*/ 
if (attack_count > =accumulate_steps){  

if (A(t) >= A(t-1))  /*(7)*/ 
     alarm(); 
         else attack_count=accumulate_steps-1;  /*(8)*/ 
  } 
} 

Explanations to the algorithm: 
 (1) This sentence calculates the largest integer that is less than or equal to (accu-

mulate_volume*interval)/C(t) and assign to accumulate_steps; 
(2) If large pulsing attacks or flash-crowd-type attacks happen, C(t) would be ex-

tremely huge (larger than accumulate_volume*interval),  causing accumulate_steps to 
equal to 0, and the process alarms immediately; 

(3) If the traffic is “great”, it means an occurrence of a traffic burst, probably a be-
ginning of an attack, increase attack_count  by 1; 

(4) If the difference variance increases or remains at the moment t compared with 
that at t-1, it means that the fluctuation of the traffic is not weakened. There are two 
possibilities causing the fluctuation: a) the traffic increases, so (t)> (t-1), and the 
probability of attacks enhances as well, then A(t) should be assigned the larger , 

                                                           
1 The unit of buffer size should be the same as the unit to measure the traffic in the algorithm. 

For example, if the measuring unit is the number of packets per time slot, buffer size can be 
the number of packets with average size to replete the buffer; if the measuring unit is moni-
tored bytes per time slot, buffer size can be the whole byte number of the buffer. In this paper, 
we use the number of packets in both trace experiments and simulation. 
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namely (t) b) the traffic decreases, so (t)< (t-1), and the probability of attacks 
reduces, then A(t) is assigned the smaller , which is also (t);  

(5) If the difference variance decreases at the moment t compared with that at t-1, it 
means that the traffic changes little, therefore the probability of attack enhances, thus 
the larger  is assigned to A(t); 

(6) If the traffic is “not great”, reassign 0 to attack_count, and the process enters 
the next time slot of detection; 

(7) The coincidence of attack_count>=accumulate_steps and  A(t)>=A(t-1) indi-
cates that the attack possibility has already increased or at least remained for no less 
than accumulate_steps time slots, and the possibility continues to enhance, so the 
process alarms; 

(8) While attack_count>=accumulate_steps, but A(t)<A(t-1), it indicates that al-
though the attack possibility has increased or remained for a while, it reduces at the 
moment t, the process continues to observe and waits for verification. 

According to the recurring of statistical values and the judging process, the only 
data needed at a time slot t are C(t-1), c_mean(t-1), d_var(t-1), (t-1), and A(t-1). 
The data C(t), c_mean(t), d_var(t), (t), and A(t) are stored for the next time slot. 

4   The Ajusted Detecting Algorithm with Short-Term Traffic 
Prediction  

4.1   The Feasibility of Introducing Short-Term Traffic Prediction into  
Flooding-Based DoS/DDoS Attacks Detection  

Treating the traffic as a time series, we can establish an adaptive AR model on it and 
predict its values based on the model. The predicting approach is Error-adjusted LMS 
(EaLMS), which has shorter predicting delay and less prediction error for the short-
term real-time prediction to smoother traffic than to violent fluctuating traffic [3]. The 
main intent of introducing short-term traffic prediction into DoS/DDoS detection is to 
obtain some data in advance, thus to accelerate detecting. Under flooding-based 
DoS/DDoS, the arriving traffic of a victim is smoother than normal. Therefore, if  
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Fig. 5. Relative prediction errors (a) around Attack B(1428s~1430s) (b) around Attack 
D(2508s~2512s) (c) around Attack E(3855s~4000s) 
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EaLMS is applied to predict traffic values, the prediction under attacks is more  
accurate than that under normal situations, namely the prediction error is less. Dem-
onstrated in Fig. 5, the relative prediction error during an attack is smaller than nor-
mal cases (to show clearly, the values more than 2 or less than -2 are cut to 2 or -2). 

For each C(t), suppose its prediction value is C_p(t), then r_p_err(t) ( the relative 
prediction error at moment t) is defined as r_p_err(t)=(C-p(t)-C(t))/C(t). From the 
Table 2 showing the average |r_p_err(t)|, it is clear that prediction errors during at-
tacks are much smaller than global prediction errors.  

Table 2. The comparison of relative prediction error among global traffic and attacking cases 

 Average |r_p_err(t)| 
Global 2.49 

Attack A 0.23 
Attack B 0.64 
Attack C 0.32 
Attack D 0.51 

4.2   Adjustments to the Algorithm 

After obtained the difference of current traffic (presented by z(t)), the single step 
prediction z_predict(t+1) for z(t+1) is calculated. Then let C_p(t+1) be the prediction 
value for the traffic at t+1. The z_predict(t+1) is regarded as z(t+1) and be used for 
calculating d_var(t+1) and (t+1). 
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For the algorithm in Section 3.2, replace d_var(t) and (t) by d_var(t+1) and 
(t+1) respectively. Without short-term prediction, if at the moment t+1 an attack is 

detected, it could be detected at the moment t with short-term prediction, because the  
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relevant data at t+1 is obtained by prediction at t, consequently the attack is detected 
in advance. If multi-step prediction is applied, the time of detecting the attack will be 
ahead more. However, such advance could not be unlimited. For one thing, the more 
steps to predict, the more errors to occur. For another thing, only if attacks do occur, 
the prediction value are worthy in detection algorithm. Thus multi-step prediction 
should be carefully deployed in practice. It is important to point that d_var(t) and (t) 
are calculated at the moment t-1 according to the data at that time, so they should be 
recomputed based on the real datum at the moment t. 

5   Experiment Results and Discussion 

5.1   The Basic Algorithm Without Short-Term Prediction 

Without the loss of generality, set the parameters accumulate_volume=1200, lt=2.5 
and ht=3.5, and the algorithm shows perfect detection performances on the data set of 
Fig. 1. The effects are demonstrated in Fig. 6 and Table 3, in which the rate of suc-
cessful detection (the times of correct detections/the total times of attack) is 100%, 
and the rate of false detection (rate of considering normal traffic as attack) is 0. 
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Fig. 6. The detection effects when accumulate_volume=1200, lt=2.5  and ht=3.5 

Table 3. The detection effects when accumulate_volume=1200, lt=2.5  and ht=3.5  

Attack Start Moment (s) Detected Moment (s) Detected Delay(s) 
Attack A 341 344 3 
Attack B 1428 1431 3 
Attack C 2009 2012 3 
Attack D 2508 2510 2 
Attack E 3855 3859 4 

1) The detection results of different values of accumulate_volume 
According to the definition in Section 3.2, accumulate_volume is a parameter 

to evaluate the protected host’s tolerable capacity. In real application, it can be 
set the buffer size of the host, or any value that the administrator considered as a 
threshold for the host to tolerate. 

a) accumulate_volume=1100, lt=2.5 and ht=3.5, see Table 4. 
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Table 4. The detection effects when accumulate_volume=1100, lt=2.5 and ht=3.5 

Attack   Start Moment (s) Detected Moment (s) Detection Delay (s) 
Attack A 341 343 2 
Attack B 1428 1431 3 
Attack C 2009 2011 2 
Attack D 2508 2510 2 
Attack E 3855 3858 3 

- - 2074 - 
- - 3588 - 

The rate of successful detection is 100%, and the delays of detection are 
shorter in Attack A, C and E than those in Table 3, but there are two false detec-
tions. Because reducing accumulate_volume means a smaller tolerable threshold 
for traffic of a host, although there are no attacks at 2073s and 3587s, the large 
volumes at those moments make the algorithm generate alarms. So if the value 
of accumulate_volume is assigned smaller, it is possible to detect an attack 
faster, but enhance the probabilities of false alarms. 

b) accumulate_volume=1500, lt=2.5 and ht=3.5, see Table 5. 

Table 5. The detection effects when accumulate_volume=1500, lt=2.5 and ht=3.5 

Attack Start Moment (s) Detected Moment (s) Detection Delay (s) 
Attack A 341 344 3 
Attack B 1428 Undetected - 
Attack C 2009 2014 5 
Attack D 2508 2511 3 
Attack E 3855 3859 4 

Augmenting accumulate_volume has two impacts to the results. Firstly, At-
tack B is undetected in this experiment, because it is the weakest attack (with the 
least average intensity) among the five, and the algorithm believes that such in-
tensity fails to reach the tolerable threshold. Secondly, the delay of Attack C is 
prolonged. So, larger accumulate_volume would reduce the sensitivity of the  
algorithm. 
The analysis in a) and b) indicates that the value of accumulate_volume can in-

fluence the response speed of alarms and the probability of false alarms. Small ac-
cumulate_volume value helps to shorten the delays of alarms, but enhances the 
chances of false alarm. Large accumulate_volume value increases the delays of 
alarms to some extent, and may omit attacks. However, because accumu-
late_volume is assigned due to the process capacity, the ignorant attacks would not 
impact the host’s performance seriously. So it is important to assign a proper value 
to accumulate_volume to protect the host efficiently by this algorithm. 

2) The detection results of different values of lt 
a) lt=2, accumulate_volume=1200, and ht=3.5, see Table 6 
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Table 6. The detection effects when lt=2, accumulate_volume=1200, and ht=3.5 

Attack Start Moment (s) Detected Moment (s) Detection Delay (s) 
Attack A 341 343 2 
Attack B 1428 1431 3 
Attack C 2009 2012 3 
Attack D 2508 2510 2 
Attack E 3855 3859 4 

- - 900 - 
- - 2074 - 
- - 2419 - 
- - 2654 - 
- -- 2757 - 
-  2900 - 

b) lt=3, accumulate_volume=1200, and ht=3.5, see Table 7. 

Table 7. The detection effects when lt=3, accumulate_volume=1200, and ht=3.5 

Attack Start Moment (s) Detected Moment (s) Detection Delay (s) 
Attack A 341 344 3 
Attack B 1428 Undetected - 
Attack C 2009 2012 3 
Attack D 2508 2510 2 
Attack E 3855 3859 4 

According to the results of a) and b), the assignment of lt also determines the 
sensibility of the detection. Small value of lt means lower tolerance to traffic 
bursts of the network, thus attacks can be detected correctly, but less intensity 
bursts would be considered as attacks by the process. Contrarily, large value of lt 
means higher scale of traffic bursts to bear, thus false alarms would be avoided 
to some extent, whereas some attacks would be omitted. 
3) The detection results of different values of ht 

a) ht=3, lt=2.5 and accumulate_volume=1200 
    The results are the same to Fig. 7 and Table 3. 

b) ht=4, lt=2.5 and accumulate_volume=1200 
  The results are the same to Fig. 7 and Table 3. 

According to the experiments in a) and b), the value of ht has few influences 
on the results while lt and accumulate_volume remain. 
4) Sum up 

The algorithm refers to three parameters: accumulate_volume, lt and ht. 
Among them accumulate_volume and lt have important influences on the ex-
periment results, determines the sensitivity of the algorithm. And the value of ht 
only need to satisfy the condition to make (t) resoluble when 
C(t)>=lt*c_mean(t).  
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5.2   The Algorithm with Short-Term Traffic Prediction 

5.2.1   The Experiment Results of the Data in Fig. 1 
The results of applying the adjusted algorithm with short-term prediction on the data 
in Fig. 1 are shown in Fig. 7 and Table 8. The parameters here are still accumu-
late_volume=1200, lt=2.5 and ht=3.5. 

 

Fig. 7. The detection effects of Fig. 1 with single-step prediction when accumulate_volume=1200, 
lt=2.5 and ht=3.5 

Table 8. The detection effects of Fig. 1 with single-step prediction when accumulate_volume= 
1200, lt=2.5 and ht=3.5 

Attack Start Moment (s) Detected Moment (s) Detection Delay (s) 
Attack A 341 343 2 
Attack B 1428 1430 2 
Attack C 2009 2011 2 
Attack D 2508 2510 2 
Attack E 3855 3858 3 

- - 588 - 
- - 2074 - 
- - 2673 - 
- - 2876 - 
- - 3046 - 
- - 3588 - 

Compared with the algorithm without prediction, the adjusted algorithm can detect 
attacks in advance in most situations if the detections are correct, and the detection 
delays are shortened(see Attacks A,B,C and E). But on account of inevitable predic-
tion errors, false detections occurred sometimes. 

The two algorithms have advantages respectively. The one that completely relies 
on current and former data without any prediction has a higher accuracy, while the 
one with predictions has a faster response if the attacks are detected correctly. Accu-
racy and high velocity in detection are conflicting, but we believe that the speed of 
detecting is more important in DoS/DDoS attacks detecting. In order to obtain a high 
response speed and avoid additional cost for false alarm as more as possible, we apply 
both algorithms in every detecting period. An alarm should be generated when either 
algorithm detects an attack at first, then corresponding processes (such as source ori-
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entation [4]) start immediately. If an alarm is from the algorithm without prediction, it 
is regarded correct, and running corresponding processes continue without any inter-
ruption in the following time. On contrast, there are two possibilities if the algorithm 
with prediction alarms at first. For one thing, the algorithm without prediction alarms 
in the next period, it is testified that the alarm in the previous period is correct, so 
corresponding processes continues. For another thing, if there is not any alarm from 
the algorithm without prediction in the following period, it is testified that the alarm 
of the previous period is wrong, and corresponding processes should stop. 

The detection effects with the combination of the two algorithms are demonstrated 
in Table 9. It is shown that the delay situations are the same as those in Table 8, but 
the false alarms are amended. 

Table 9. The detection effects of Fig. 1 using the basic algorithm and the combined algorithms 
when accumulate_volume=1200, lt=2.5 and ht=3.5 

Basic Algorithm  Combined Approach 
Attack 

Start 
Moment 

(s) 
Detected 

Moment (s) 
Detection 

Delay (s) 
Detected 

Moment (s) 
Detection 

Delay (s) 
A 341 344 3 343 2 
B 1428 1431 3 1430 2 
C 2009 2012 2 2011 2 
D 2508 2510 2 2510 2 
E 3855 3859 4 3858 3 

5.2.2   The Analysis on the Traffic Sequence of LLS_DDOS_1.0 
LLS_DDOS_1.0 is a data set provided by Lincoln Laboratory, MIT to evaluate DDoS 
detection [5]. In the final phase of the scenario, the attacker manually launches the 
“mstream DDOS” to 131.84.1.31 from three servers simultaneously. The “mstream 
DDOS” consists of many, many connection requests to a variety of ports on the  
victim. All packets have a spoofed, random source IP address. The traffic is shown  
in Fig. 8. 

 

Fig. 8. The traffic data of LLS_DDOS_1.0 phase 5 

In this data set, the normal traffic is much less than attack traffic. Table 10 shows 
the detection results with 0.1s as its detection period. 
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Table 10. The detection results of Fig. 8 when accumulate_volume=15000, lt=2.5 and ht=3.5 

Start Moment  95.8s 
Detected Moment  95.9s 
Detection Delay 0.10s 

5.3   Simulating Experiments in NS-2 

5.3.1   Simulation Framework  
The experiments in this section are simulations in NS-2 [6]. With the architecture 
concerning syn-flooding attack detecting, source orientating and defense proposed in 
[4]. The algorithm proposed in this paper works as detecting component in this  
system. Its topology is shown in Fig. 9: 

The nodes in Fig. 9 are classified into two groups, end-host nodes and router nodes. 
Nodes 5, 15, 16, 17, 18, 19, 21, 22, 23 and 24 are end-host nodes, among which nodes 15 
and 17 are attacking nodes, with node 16 as their fake source address during attacking, 
and nodes 18 and 23 are normal nodes. Node 5 is a protected node (a victim). For other 
purposes in this simulation, node 5 forwards all the packets it receives to node 20 which 
is deployed the detection algorithm, so node 20 is the same node as node 5 logically. 

 

Fig. 9. The topology of NS-2 simulating experiments 

5.3.2   Simulation Results  
The steps of the experiments are: 

 At the 0th second, nodes 15, 17, 18 and 23 start to request normal TCP con-
nections, and the detecting algorithm starts. 

 At the 4th second, nodes 15 and 17 launch syn-flooding attacks to node 20 
(node 5) by requesting TCP connections with node 16 as their fake source 
thus to destruct normal TCP connections. 

 At the 30th second, the simulation stops. 
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Table 11 shows detection results with different attack intensity. The average rate of 
normal connection is 20 packets/s each node and the average rate of attacking is 
changing. Detection parameters are accumulate_volume=400, lt=2.5 and ht=3.5. 

Table 11. The two attacking nodes start at 4.0s simultaneously 

Average Attacking Rate per Node Detected Moment Detection Delay 
200 packets/s 4.1s 0.1s 
160 packets/s 4.2s 0.2s 
100 packets/s 4.2s 0.2s 
60 packets/s 4.3s 0.3s 

Table 11 shows the sensitivity of the detecting algorithm to different attack intensi-
ties, the larger the attacking rate is, the faster the detecting algorithm responses. In 
Table 12, the two attacking nodes start at different moments, causing the traffic to 
reach a high level in several time slots rather than at once, and the algorithm can also 
detect the attacks. So the algorithm shows a valuable performance in DoS/DDoS 
attack detecting. 

Table 12. The two attacking nodes start at different time with the rate 100 packets/s each 

Node 15 Start 
Moment 

Node 17 Start 
Moment 

Detected 
Moment 

Detection 
Delay 

4.0s 4.1s 4.3s 0.3s 
4.0s 4.2s 4.3s 0.3s 
4.0s 4.3s 4.3s 0.3s 

6   Conclusion 

Through analyzing the time series of the traffic arriving at a host, it is clarified in this 
paper that the flooding-based DoS/DDoS attacks behaves such features --- traffic 
burst and remaining of comparative smooth for some time. According to these fea-
tures, a novel real-time approach to detect such attacks is proposed. The approach 
contains a membership function to express the degree of how great a current traffic 
value is. It calculates the global average value and the difference variance based on 
data obtained in real time, and then judges the occurrence of attacks according to the 
following ideas: when the traffic is “great”, the judging process is triggered; then if 
the difference variance decreases, or the volume remains “great”, an attack alert is 
generated. In order to shorten the delay of detection, short-term traffic prediction was 
introduced, and prediction values were used in the detecting process. The feasibility 
of the algorithms and their sensitivity to parameter values are analyzed experimen-
tally. Although we focus our research on detecting flooding-based DoS/DDoS attacks, 
the simulation shows that the approach also can deal with DDoS attacks that zombies 
start without simultaneousness. We will research this in depth in future. 
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Abstract. Currently, a buffer overflow attack is one of the most seri-
ous and widely utilized assaults in computer systems. Defense methods
against this attack can be classified as three: compiler modification, sys-
tem software modification, and hardware modification. Among them,
most of the cases, hardware modification methods aim at detecting or
tolerating alternation of return addresses in the memory stack. How-
ever, to the best of our knowledge, the previous methods cannot defend
against frame pointer overwrite attacks, where an adversary can control
the execution at his/her will by modifying the saved frame pointers in
the stack. In this paper, we present a new reliable hardware stack to de-
tect alternation of saved frame pointers as well as return addresses. We
show that the proposed method can defend against both frame pointer
overwrite attacks and stack smashing attacks.

Keywords: computer security, buffer overflow attack, computer archi-
tecture.

1 Introduction

Buffer overflow occurs when a process tries to store more data in a buffer than
its maximum capacity, by which an adversary can execute a malicious code
or make the process operate in an unintended way [4]. In spite of countless
methods designed to cope with buffer overflow vulnerabilities, new attacks are
continuously appeared such as format string attacks [8], heap overflow attacks,
or multiple free errors. Up till now, buffer overflows are still major cause of
exploited vulnerability.

To cope with this problem, numerous researches have been conducted, which
can be classified as three ways: compiler modification, system software modifi-
cation, and hardware modification.

Among them, we focus on modifying the hardware to enhance security and
to defend against some types of buffer overflow attacks. Up till now, hardware
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modification schemes have focused on protecting mainly memory stack contents.
Currently, commercial CPUs such as Pentium-4 or Athlon 64 have the NX (No-
eXecute) bit [3] (Intel calls it the Execute Disable Bit), by which we can prohibit
execution of instructions in the stack. While this helps to defend against some
of buffer overflow attacks where the attack code is injected and executed in the
stack, it cannot defend against various indirect attacks where most of the cases
execution is redirected to system() library function with argment “/bin/sh”.

In addition to the NX-bit, recently several hardware modification methods
have been devised and developed. They use a specially designed RAS (Return
Address Stack) in the CPU to detect modification of the return address in the
memory stack [12,7] or they rely on an additional hardware stack in the CPU
to detect/evade the modification [10,12].

To the best of our knowledge, all the hardware modification methods (ex-
cept for the NX bit) focus on protecting only the return address in the stack
from alternation. Hence, they are vulnerable to the frame pointer overwrite at-
tack, where an adversary modifies only the saved frame pointer to control the
execution (including running a shell).

In this paper, we present a new reliable hardware stack that is located in
the CPU to defend against the frame pointer overwrite attack as well as the
stack smashing attack. In our scheme the hardware stack stores 3-tuples: (saved
frame pointer, return address, stack pointer), by which we can detect the frame
pointer overwrite attack and deal with several exceptional cases such as the
context switch, setjmp/longjmp problem [10], etc.

To examine feasibility of our method, first a stack smashing attack is given and
we show that the proposed scheme can detect it. Then, by slight modification,
we change it into the frame pointer overwrite attack. After that, we show that
the proposed method can also detect the modified attack.

Our scheme can be viewed as an approach to increase trustworthiness as well
as to enhance security of the systems to be protected. The rest of this paper is
organized as follows. In Section 2 we describe the stack smashing attack and the
frame pointer overwrite attack. In Section 3 we describe the proposed method
and in Sections 4 we examine feasibility of our scheme. Finally, we offer some
conclusions in Section 5.

2 Stack Smashing Attack and Frame Pointer Overwrite
Attack

In this section we briefly explain the stack smashing attack and the frame pointer
overwrite attack. Furthermore, we show the relation between them, i.e., with
slight modification the stack smashing attack can be easily changed into the
frame pointer overwrite attack.

2.1 Brief Description of Stack Smashing Attacks [9]

First, we explain the stack smashing attack [9]. Let us consider the vulnerable
code below, which is written in the ANSI C language.
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#include <stdio.h>
func(char *sm) {

char buffer[256];
int i;
strcpy(buffer, sm);

}

main (int argc, char *argv[]) {
func(argv[1]);

}

Code 1. An example of vulnerable code

Fig. 1 shows the activation record (a. k. a. stack frame) when the function
func() is called in the above code. Note that in Fig. 1 the activation record of
func() is below that of main() and that the stack grows downward (by successive
function calls). On the contrary, the buffer is filled upward (from buffer[0] to
buffer[255] by memory copy operations such as strcpy() or memcpy()).
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Fig. 1. Activation records when func() is called in Code 1

We briefly explain how the stack frame of func() is constructed as follows.
Initially, the stack pointer register %esp points out the top of the stack and the
frame pointer register %ebp indicates the base of the main() stack frame.

First, when the func() is called in the main() function, the parameter (=argv[1])
is pushed in the stack and then the return address is pushed on the stack. After
that, at the beginning of func() execution, the frame pointer register %ebp is
pushed into the stack (we call this value the saved frame pointer hereafter) and
the %ebp is changed to point out the address of the saved frame pointer. After
the all the local variables (buffer[256] and i) are allocated in the stack, finally,
the body code of the func() is executed.
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When the execution of func() is finished, immediately before the exit of func(),
the %ebp is copied to the %esp and then the saved frame pointer is popped into
the %ebp (i.e., %ebp is restored to point out the base of the main() stack frame).
Finally, the instruction pointer register %eip has the return address value to
resume the execution of the main().

Now assume that the local buffer buffer[] is overflowed during executing str-
cpy() in the func() and the return address is modified as the value x. Then at
the exit of function func(), the instruction pointer register %eip is changed into
x, which means that the code in the address x is executed. By this way, the
adversary can control the execution, e.g., he can execute the shell code by in-
serting it into buffer[] and redirecting into it [6]. Up till now, there have been
devised countless variants of stack smashing attacks and all of them have the
one common objective, overwriting the return address at their will.

To cope with these attacks several defense methods have been devised
[5,4,11,2,1,12,7,10] and most of them focus on protecting the return address
or detecting alternation of the return address. For example, they use specially
designed RAS (Return Address Stack) in the CPU to detect modification of the
return address in the memory stack [12,7] or they rely on an additional hardware
stack in the CPU to detect/evade the modification [10,12].

2.2 Frame Pointer Overwrite Attack [6]

In the previous subsection, we showed how the stack smashing attack can be
done. With slight modification of that attack scenario, an adversary can evade
the defense against the stack smashing attack (such as checking the modification
of the return addresses in the stack [12,7,10]). The modification attack overwrites
the frame pointer while leaving the return address untouched, from which we
call this a frame pointer overwrite attack [6].

Let us consider the vulnerable code, Code 1 in Section 2.1. Recall that Fig. 1
shows the activation record when the function func() is called in Code 1. Recall
that in Fig. 1 the activation record of func() is below that of main(). At this time,
we explain how this structure is constructed by using the following disassembled
code of the above program. In the main() function, command ‘pushl %edx’ puts
the parameter (=argv[1]) in the stack and ‘call 0x8048134 <func>’ pushes the
return address. At the beginning of func(), ‘pushl %ebp’ saves the frame pointer
into the stack. Immediately before the exit of func(), commands ‘popl %ebp’
restores the frame pointer and command ‘ret’ returns the execution to the main
function. Then, in main(), the commands ‘addl $0x04, %esp; movel %ebp, %esp;
popl %ebp; ret’ are sequentially executed.

Assume that the local buffer buffer[] is overflowed during executing strcpy() in
the func() and the saved frame pointer is modified as the value x. Then at the
exit of function func(), the frame pointer register %ebp has the value x. After the
return to the main function, the commands ‘addl $0x04, %esp; movel %ebp, %esp;
popl %ebp’ increase the value of %esp by 4, move the value of %ebp to %esp,
change the value of %ebp. Finally, the command ‘ret’ changes the instruction
pointer %eip into the value that is pointed by the stack pointer %esp (= x + 4).
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0x8048180 <main>: pushl %ebp <- beginning of the function main()
0x8048181 <main+1>: movel %esp, %ebp
...
0x80481a8 <main+40>: pushl %edx
0x80481a9 <main+41>: call 0x8048134 <func>
0x80481ae <main+46>: addl $0x4, %esp
0x80481b1 <main+49>: movl %ebp, %esp
0x80481b3 <main+51>: popl %ebp
0x80481b4 <main+52>: ret <- end of the function main()
...
0x8048134 <func>: pushl %ebp <- beginning of the function func()
0x8048135 <func+1>: movel %esp, %ebp
0x8048137 <func+3>: subl %0x104, %esp
...
0x804817c <func+72>: movl %ebp, %esp
0x804817e <func+74>: popl %ebp
0x804817f <func+75>: ret <- end of the function func()

Code 2. Disassembled instructions of Code 1

If an attacker wants to execute the code having the address y, then he care-
fully overflows the local buffer buffer[] such that the frame pointer register %ebp
has the value x = y − 4. Then, at the exit of the function ‘main()’, the in-
struction having address y is executed. By using this abnormal behaviour, the
attacker can execute the shell code by inserting and redirecting into it [6] or
can perform the return-into-libc() attack or the GOT (Global Offset Table)
attack, etc.

3 Proposed Method

As mentioned in the abstract, defense methods against buffer overflow attacks
can be classified as three: compiler modification, system software modification,
and hardware modification. Among them, we believe that hardware modification
is more effective than the others because we need not recompile the user pro-
gram and only slight modification of system softwares is required, i.e., if we use
the enhanced CPU that contains the proposed scheme and then slightly patch
the system softwares, security of the entire system can be strengthened. (This
approach is identical to that of the NX-bit (No-eXecute) bit [3] in Pentium-4 or
Athlon 64, which is the most practically and widely used defense method against
buffer overflow attacks.)

Unlike hardware modification methods, compiler modification techniques such
as StackGuard [5] or PointGuard [4] need recompilation of each application.
System software modification methods such as ASLR (Address Space Layout
Randomization) provided by the PAX project [11] or Bhatker et al.’s scheme
[2] require complex modification of system softwares (operating system kernel,
application loader, etc).
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Note that our method is the way to extend the facility in the existing CPU
architecture while preserving compatibility, not to modify the ISA (Instruction
Set Architecture) to break compatibility.

Moreover, we suggest that this hardware enhancement technique can be used
to only the privileged processes to minimize the security risk and to reduce
the performance degradation. (e.g., for the NX bit major operating systems
such as Windows Server 2003 can selectively use it to the privileged/important
processes).

In this section we describe the proposed hardware stack. This stack resides
in the CPU, has the fixed size, and supports overflow/underflow detection fa-
cilities. The stored value is 3-tuple: <saved frame pointer, stack pointer, return
address>. Fig. 2 shows the structure of the hardware stack.
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Fig. 2. Hardware stack in the proposed scheme

When the call instruction is executed, a 3-tuple is pushed into the hardware
stack and when the ret instruction is executed, the 3-tuple is popped. Detailed
description is as follows.

1. Call Instruction Execution: First, the return address and the value of
stack pointer %esp are stored into the hardware stack. Then, the original call
operation is performed: the return address is stored in the memory stack and
the instruction pointer %eip is set to the starting address of the callee func-
tion. After the call instruction is executed, the CPU observes the fetched
instructions until ‘pushl %ebp’ appears. If so, after this instruction is ex-
ecuted, the hardware stack stores the value of %ebp (= the saved frame
pointer) and completes the 3-tuple.
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2. Ret Instruction Execution: When the CPU fetches ‘popl %ebp’, it trig-
gers a certain internal status bit, called check ebp. This status bit is turned
off when the value of the register %ebp is changed (by instructions addl/movl/
incl, etc). In the case of the execution of ‘ret’, if the check ebp bit is on, the
CPU compares the value of %ebp and the saved frame pointer in the hard-
ware stack. If two values are identical, then the CPU performs the following
2 comparisons: the saved stack pointer in the hardware stack and the value
of the register %esp, the return address in the hardware stack and the return
address in the memory stack. If they are identical to each other, the CPU ex-
ecutes the ret instruction. Otherwise, it terminates the execution and raises
an exception.

3.1 Handling Overflow/Underflow in the Hardware Stack

Since the size of the hardware stack is finite, it can be overflowed if deeply-nested
functions are called. If an exception is raised due to overflow, the CPU raises
an exception and the operating system should swap the entire content of the
hardware stack into the main memory.

Because the swapped memory should be protected under alternation by ad-
versaries, we suggest that it is saved in the PCB (Process Control Block), which
cannot be directly accessed by the user process. The swapping procedure can be
done by the special CPU instruction or regular load/store instructions by using
the memory mapped I/O, just as in [10].

If underflow occurs, the operating system catches the exception and restores
the swapped context in the PCB into the hardware stack.

3.2 Handling the Context Switch

When a context switch occurs in the operating system, all status including regis-
ter values should be saved and restored. In addition to this, the operating system
should save the content of the hardware stack for the saved process/thread and
restore the saved content for the resumed process/thread. The saving or restoring
procedure is already mentioned in Subsection 3.1.

3.3 Setjmp()/Longjmp() Problem

When a C-language source code contains setjmp() or longjmp(), multiple activa-
tion records should be popped together, which causes inconsistency between the
hardware stack and the memory stack (for further explanation, refer to [10]). We
choose [10]’s solution, where longjmp() should be modified to use indirect jump
(i.e., we should modify the shared library, libc.so) and in the case of execution
of call instruction, the value of the stack pointer is stored in the hardware stack.
We omit the detailed the procedure to handle the setjmp()/longjmp(). Refer
to [10].
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4 Security Analysis

In this section, we show that the proposed scheme can defend against both the
stack smashing attack and the frame pointer overwrite attack. Fig. 3 shows the
structure of the execution parameter by which an adversary can invoke the stack
smashing attack in the code described in Section 2.

NOP NOP … shell code                any       X 

256 bytes
4 bytes 4 bytes

address X

Fig. 3. Parameter for the stack smashing attack

If the execution is done by using the above parameter, during the strcpy()
execution in func(), the return address in Fig. 1 is changed to the value X .
Hence, at the return of func(), shell code is executed.

However, in the proposed scheme, at the func() call, both the return address
and the value of the stack pointer (=%esp) are stored in the hardware stack.
After that, the return address in the memory stack is overwritten to X . Finally,
at the return of func(), an exception is raised due to inconsistency between the
return address in the hardware stack and that in the memory stack.

From now on, consider the frame pointer overwrite attack that was described
in Section 2. Fig. 4 shows the structure of the execution parameter by which an
adversary can invoke the frame pointer overwrite attack in the code described
in Section 2.

NOP NOP … shell code        Y- 4

256 bytes
4 bytes

address Y

Fig. 4. Parameter for the frame pointer overwrite attack

As explained in Section 2, by using the above parameter, an adversary can
overwrite the saved frame pointer as Y − 4 and eventually the shell code is
executed.

If the above attack is done in the proposed scheme, at the function call of
func(), the return address and the value of stack pointer %esp are stored in
the hardware stack. Then, call operation is performed (the return address is
stored in the memory stack and the instruction pointer is set to the starting
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address of func()). After the call instruction is executed, the CPU fetches ‘pushl
%ebp’ instruction and the hardware stack stores the value of %ebp. Then, during
execution of strcpy(), the saved frame pointer in the memory stack is overwritten
to Y − 4. At the return of func(), the CPU fetches ‘popl %ebp’ and sets the
check ebp bit on. Then, CPU fetches ‘ret’ and the CPU compares the value of
%ebp and the saved frame pointer in the hardware stack. Since the two values
are different, execution is terminated and an exception is raised.

5 Conclusion

In this paper we have designed a new hardware stack to defend against both the
stack smashing attack and the frame pointer overwrite attack by storing 3-tuples:
(return address, stack pointer, frame pointer). Moreover, we have dealt with how
to handle the problems due to the context switch, stack underflow/overflow,
and setjmp()/longjmp(). To examine the feasibility of our method, first a stack
smashing attack is given and we show that the proposed scheme can detect
it. Then, by slight modification, we change it into the frame pointer overwrite
attack and show that the proposed method can also detect the modified attack.
Our scheme can be viewed as an approach to increase trustworthiness as well as
to enhance security of the systems to be protected.
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Abstract. In the TCP network environment, all unit transmissions are con-
structed using sessions. In the session, packets are transmitted sequentially. In 
this case, the previous and next packets contain causality mutually. Thus, we 
propose a method that models network transmission information based on tran-
sitions of packet states. In addition to the transition model, a probability matrix 
for the multiple state-transition models of all sessions is represented. The 
matching of the models is achieved using the maximum log-likelihood ratio. 
Evaluation of the proposed method for intrusion modeling is conducted by us-
ing 1999 DARPA data sets. The method is also compared with Snort-2 which is 
misuse-based intrusion detection system. In addition, the techniques for advanc-
ing proposed method are discussed. 

Keywords: Network-based intrusion detection, multiple transition probability, 
Ergodic model, probability-based modeling, likelihood measure. 

1   Introduction 

The set of TCP network packets transmitted depending on one activity is called a 
session, which is the sequential transmission group of a series of packets from 
connection opening to closing. In the session, all packets include sequential 
characters. This means that there is causality between a previous packet and the next 
packet, and this causality is represented as state-transition information. The states of 
TCP packets are composed of field values of several pieces of header information. In 
a session, statistical transition information of all packet states can be shown as a 
frequency matrix. 
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To combine such frequency matrices for multiple sessions, we propose a 
probability matrix for multiple state-transition information. In this case, we use the 
ergodic model [1] are applied using Markov chains of Markov models for multiple 
(independent) observation sequences. Each state can reach any other state of the 
model in a single step. We also detect on the model matching method using the 
maximum log-likelihood ratio [2]. 

In this paper, experiment of the proposed model is achieved using 1999 DARPA 
Intrusion Detection Evaluation Data Sets (DARPA99) [7]. We show the possibility of 
our modeling technique through analysis of detection results. And the effectiveness of 
our intrusion detection system is compared with Snort-2, which is a packet-based 
misuse detection system. Moreover, ideas for advancing the effectiveness of the 
proposed model are introduced. 

This paper is structured as follows: In Sect. 2, characteristics of intrusion detection 
using Markov models are represented. In Sect. 3, the frequency model of state-
transition of each packet in a TCP session is proposed. In Sect. 3.1, selected features 
are introduced. In Sect. 3.2, state information of packets is shown. In Sect. 3.3, state-
transition information using a frequency matrix is presented. In Sect. 4, the modeling 
method of multiple state-transition information is represented. In Sect. 4.1, a model 
for multiple transition probability is proposed. In Sect. 4.2, the method of model 
matching is represented. In Sect. 5, the effectiveness of the proposed method is 
analyzed using several experimental results. Finally, this paper is concluded and 
future ideas for improvements are discussed in Sect. 6. 

2   Related Works 

The two main Markov models are the left-to-right model and the ergodic model. In 
the left-to-right model, the probability of going back to the previous state is set to 
zero, and therefore the model will always start from a certain state and end in an 
exiting state. In the ergodic model of every state can be reached from any other state 
in a finite number of time steps [1]. 

In [4], Otsuka and Ohya used left-to-right models with three states to model each 
type of facial expression. The advantage of using this model lies in the fact that it 
appears natural to model a sequential event with a model that also starts from a fixed 
starting state and always reaches an end state. It also involves fewer parameters, and 
therefore is easier to train. However, it reduces the degrees of freedom the model in 
an attempt to account for the observation sequence. There has been no study to 
indicate that the facial expression sequence is indeed modeled well by the left-to-right 
model. On the other hand, using the ergodic model allows more freedom for the 
model to account for the observation sequences, and in fact, for an infinite amount of 
training data it can be shown that the ergodic model will reduce to the left-to-right 
model, if that is indeed the true model. In this work both types of models were tested 
with various numbers of states in an attempt to study the best structure for modeling 
facial expressions. 
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[5] has proposed an anomaly-based IDS using the privilege transition flows data 
and combining multiple hidden Markov models. This method can open a new way of 
utilizing the computation-intensive anomaly detection technique in the real world, 
based on behavioral constraints imposed by security policies and on models of typical 
behavior of users. However, this method is not suitable for network data. 

Estevez-Tapiador, et al. [8] proposed anomaly detection methodology applied to 
TCP and disposed in two steps. First, a quantization of the TCP header space is 
accomplished, so that a unique symbol is associated with each TCP segment, and 
then represented by a sequence of symbols. The second step is the modeling of 
these sequences by means of a Markov chain. The model is built using the normal 
usage of the protocol, so that deviations from the behavior provided by the model 
are detected. However, this approach simply models using the flags of TCP header 
without information about transmission directions of the packets and so on. It is 
difficult to clearly define the characteristics of a mutual communication. Moreover, 
the model is not complete because the probabilities of all transitions are not 
computed. 

3   State-Transition Information of Packets in a TCP Session 

A session in the TCP network environment is formed by packets of the same socket 
pair1, and these packets which are included in the session, have correlated sequences 
such as the stream of network traffic. It is assumed that previous packet and next 
packet (in other words, current packet or observed packet), are closely connected in a 
session. 

3.1   Feature Selection 

To indicate the property of each TCP packet, we extract important features from the 
packet header fields. [6] described the causality of protocol measures for network-
based intrusion detection, using DARPA99. The causality analysis system has some 
fault to extract specific measures depending on a change of a network environment; 
nevertheless, we could have gained hints about general characteristic measures in a 
TCP/IP network. 

IP-flag offers the fragmentation information of packets. TCP-flag also can reveal 
the role information of packets. In this case, Direction of the transmission is 
important. 

3.2   State of a Packet 

We select the state of each packet from the protocol header fields. The state 
information is presented in Table 1. 

                                                           
1 The socket pair is a way to uniquely specify a connection in a TCP/IP network, i.e., source IP 

address, source port, destination IP address, and destination port. 
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Table 1. Bits-based state information for each network packet. The state has a value of 9-bits 
composed of IP-flag, TCP-flag, and Direction. Thus, it can represent 512 (29) kinds of states. 

 State Information by 9-bits 

Composition
Direc- 

tion 
TCP-flag IP-flag 

sub-States DIR URG ACK PSH RST SYN FIN DF MF 

sub-Values 256 128 64 32 16 8 4 2 1 

IP-flag (flag field of IP protocol header) consists of a total of 3-bits, i.e., R 
(Reserved), DF (Don’t Fragment), and MF (More Fragments). Only a space of 2-bits 
is allocated to IP-flag sub-state information, because the R bit is not used. TCP-flag 
(flag field of TCP protocol header) consists of a total of 6-bits, i.e., URG (Urgent 
Pointer field significant), ACK (Acknowledgment field significant), PSH (Push 
Function), RST (Reset the connection), SYN (Synchronize sequence numbers), and 
FIN (No more data from sender). If it is the packet transmitted from client to server, 
the Direction bit is set, otherwise the bit is zero. 

 

Fig. 1. Operation example for the state of a network packet. A packet transmitted from client to 
server has TCP-flag of ACK|PSH and IP-flag of MF. And the state value is 353. 

The state of a packet transmitted from client to server, has TCP-flag of ACK|PSH 
and IP-flag of MF is gained as shown in Fig. 1. The bits-based state of the packet is 
101100001(2), and thus the state value becomes 353(10). These states can be 
represented as 512 (29) kinds of states in 0  state  511. 

3.3   State-Transition Information 

A state-transition matrix is generated based on state information. We save the 
transition information of an observed state that is changed from a previous state in a 
session. The matrix is composed of previous-states row and observed-states column. 
The matrix has information of the statistical frequencies of each state-transition. Fig. 2 
represents a frequency matrix for the state-transition information of the following: 

( 264  72  322  354  66  354  66  324  66  68  322 ) 

which is transition information of states the packets have in a session. In this way, a 
session has a frequency matrix for its state-transition information. We can attempt 
statistical learning based on state-transition information of all the training sessions. 
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Fig. 2. Frequency matrix for state-transition. The matrix represents the statistical frequency 
numbers of state-transition information of all packets in a session. 

4   Modeling for the Multiple State-Transition Information 

The method of using a frequency matrix has the defect that it must maintain the 
matrix for all sessions. We thus describe a technique that generates only a single state-
transition matrix for all training sessions, and is based on Markov models theory. 

Markov models contain each state and the associated transition probability. We 
propose a specific model for state-transition on the basis of the ergodic model shown 
in Fig. 3. The model contains statistical causalities between states of sequential 
packets in a session. 
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Fig. 3. Ergodic model of Markov chains 

4.1   Multiple State-Transition Probability Model 

The transition probability from previous state p to observed state o is defined as the 
following equation: 
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where N  
J=1Fr(Sj|Si-1) is total frequency of all observed states about the previous state. 

This is proposed in order to indicate the relationship with the previous states. If it is 
divided by total frequency of all previous states, it will have a relationship with the 
observed state, of all previous states. However, the operation leads to results of Pr(Si-

1|Si) against transition probability of equation (1). 
The probability of sequence S = {S1,S2,...,ST} can be defined by Markov properties 

as the follows: 
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The probability defined in equation (5) is the likelihood it can be used as the 
criterion for recognizing models. Here, the probability of initial state  is ignored, 
because the start of TCP connections is almost a transmission of SYN packet that is 
the first step for 3-way handshake. The first step is not important. However, we must 
take precautions because thereafter repeated transmissions of the SYN packet might 
be a DoS attack, such as SYN flooding. 

Therefore, the likelihood (L) can be defined by the following equation: 

∏
=

−
=

T

i
SS ii

aL
2

1
 (6) 

However, the likelihood may result in an underflow by multiplications of the 
probabilities. Thus, ultimately, log-likelihood (LL) is specified as: 
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The log-likelihood is the sum of the transition log-probabilities of states. This is 
our method for model matching, and the model is built for multiple state-transition 
information as the probability matrix. Fig. 4 presents an example for building the 
probability matrix. In the example, the three training sessions have four sub-states, 
i.e., 0, 1, 2, and 3. The trained sessions are as follows: 

- Session #1 = {2,2,2,3,3,1}    :   2  2  2  3  3  1 
- Session #2 = {2,2,2,3,3,0,1} :   2  2  2  3  3  0  1 
- Session #3 = {3,3,2,0,1}       :   3  3  2  0  1 

If a frequency is zero, we give a minimum value for including all cases of the state-
transition among the proposed model. The minimum frequency (Frmin) value must be 
a low number such as 0.001. 

As an additional example, the log-likelihood between an arbitrary session 
{2,2,3,0,1} with the probability matrix of Fig. 4, is calculated by the following: 
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This demonstrates that the greater the log-likelihood, the greater the similarity.  
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Multiple Frequency Matrix of all the Sessions 

 

 Minimum Frequency (0.001) 

S 0 1 2 3  Sum 

0 0.001 2 0.001 0.001 ( 2.003 ) 

1 0.001 0.001 0.001 0.001 ( 0.004 ) 

2 1 0.001 4 2 ( 7.001 ) 

3 1 1 1 3 ( 6 ) 
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Probability Matrix for Multiple State-Transition 

 

Fig. 4. Example of probability matrix for multiple state-transition of sessions #1, #2, and #3 
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4.2   Matching for the Detection 

We represent a method for detecting intrusions using model matching. We ultimately 
calculate a ratio with normal model, for determining the attacks. The log-likelihood 
ratio (LLR) is defined as: 

)()()
)(

)(
log( NLLMLL

NL

ML
LLR −== ,   },,,...,,{ 21 NAAAAM K∈  (8) 

where will also be referred to as “normalized scaled log-likelihood”. The usual 
normalized likelihood is typically used to obtain posterior estimates from likelihoods 
(as often used, e.g., to estimate confidence measures) [3]. The log-likelihood ratio is 
defined as the ratio of log-likelihood with the trained models M, LL(M), and log-
likelihood with normal model N, LL(N). A is an integrated model of all trained attacks 
{A1,A2,...,AK}. 

In this paper, we propose the intrusion detection system (Fig. 5) based on the 
method of the maximum log-likelihood ratio (MLLR). The multiple state-transition 
probability models (i.e., matrices) of the three kind of learning sets are built, these 
are: each attack, all attacks, and normal sessions. And then we detect trough the 
model matching. The input data are matched by the model with the greatest 
likelihood. In this case, data matched by model of all attacks can be classified as 
unknown attacks, because these are not included in each of the trained attacks or 
normal data. 

 

Fig. 5. The overview of the proposed intrusion detection system 
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The decision process of the detection module is shown above. It is detected when 
MLLR is bigger than zero. This is achieved as follows. 

)max(LLRMLLR = ,   0≥MLLR  (9) 

If MLLR is zero, the matched target is a normal session, because LLR computed by 
matching with the trained normal model is zero always. The model matching process 
is described in Fig. 6. 

 

Fig. 6. The process of model matching. Normalized scaled MLLR has range bigger than or 
equal to zero. 

In other words, the input data are determined as normal if MLLR = 0, otherwise, 
these can be detected in the case of MLLR > 0. In order to apply the threshold 
concept, it is detected when MLLR is bigger than or equal to  (  > 0). 

5   Experimental Results 

We have used the DARPA99 data sets for evaluation of the proposed model. This 
includes old data sets, but the trust of this data for intrusion detection can still be 
beneficial. It is sufficient to guess the possibility of the proposed modeling technique. 

Attacks from week2 data sets (Table 2) and normal data sets of week1 were used for 
training in the preprocessing stage of the learning module. Attacks of week4 data sets 
(Table 3) were also used for testing in the detection module. The data consists of three 
attack classes, which are Denial-of-Service (DoS), Probes, and Remote-to-Local 
(R2L). And sessions of TCP protocol were extracted from traffic of the data sets. In the 
training data sets, attack sessions are not sufficient except for mailbomb and neptune 
attacks. To gain more correct models of attacks, more training data is required. 

The testing data sets include unknown attacks. Generally, the propensities of 
attacks of the DoS class are similar with one other, and Probes is also the same. We 
can see the possibility of worm detection from their unknown detection ability,  
 



288 S.-K. Noh et al. 

 

Table 2. Training data sets of week2 attacks 

Attack Class Attack Name Number of Sessions 
back 80 

crashiis 4 
land 2 

mailbomb 1000 
DoS 

neptune 20480 
NTinfoscan 14 
portsweep 33 Probes 

satan 55 
ftpwrite 6 

httptunnel 4 R2L 
phf 2 

Table 3. Testing data sets of week4 attacks. These sets also include unknown attacks. 

Attack Class Attack Name Number of Sessions 
crashiis 2 
dosnuke 1 

land 1 
mailbomb 1366 

DoS 

sshprocesstable 501 
NTinfoscan 15 
portsweep 26 Probes 

satan 16 
ftpwrite 3 

guest 18 
httptunnel 10 

imap 1 
named 6 
ncftp 27 
phf 2 

xlock 4 

R2L 

xsnoop 2 

because the behaviors of worm attacks are similar to them. In addition, the DSI (deep 
stream inspection) method will be useful in detecting such spread attacks. 

We have compared the detection rates and the false-positive error rates for 
verifying the trained models in the Receiver Operating Characteristic (ROC) curve as 
shown in Fig. 7. The results of the several attacks (mainly, mailbomb and satan) were 
not available. They are attacks of the DoS and the Probes class. We can assume that 
the reason for this is due to training data sets not containing sufficient data. 
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Fig. 7. ROC for each of all training data sets 

For the probability matrix, in all experiments, the minimum frequency of (Frmin = 
0.001), is used. 

Three modeling modes for all the trained attacks were used in the experiment. First, 
we have built models for each attack. Second, we have built three attack models for 
each class (DoS, Probes, R2L). Third, we have built one integrated model for all attacks. 

Such as Table 4, the first modeling method reveals the best results, and the detector 
is more efficient than Snort-2. The false-positive rate was given equally. It is possible 
to make improvements by analyzing differences in the attacks and the normal models. 
Details of the detection results are described in Table 5. The proposed detection 
system shows better effectiveness in DoS and Probes attacks. These attacks are 
difficult to be detected in Snort-2, the typical packet-based IDS. 

Table 4. The result of detections in the testing data sets. These include both known and 
unknown attacks. 

Multiple Transition Probability Model 
 Snort-2 

for each Attack for each Class for all Attacks 

Detection rate 65 % 84 % 61 % 30 % 

False-Positive rate 0.5 % 0.5 % 0.5 % 0.5 % 
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Table 5. Details of the detection results 

Multiple Transition Probability Model 
Attack Snort-2 

for each Attack for each Class for all Attacks 

crashiis 100 % 100 % 100 % 0 % 

dosnuke 0 % 100 % 100 % 100 % 

land 100 % 100 % 100 % 0 % 

mailbomb 0 % 62 % 48 % 48 % 

D
oS

 

sshprocesstable 0 % 100 % 100 % 0 % 

NTinfoscan 100 % 100 % 100 % 26 % 

portsweep 33 % 100 % 100 % 100 % 

Pr
ob

es
 

satan 100 % 81 % 31 % 31 % 

ftpwrite 100 % 100 % 33 % 0 % 

guest 0 % 100 % 100 % 77 % 

httptunnel 0 % 80 % 80 % 0 % 

imap 100 % 100 % 0 % 0 % 

named 67 % 50 % 17 % 17 % 

ncftp 100 % 33 % 25 % 11 % 

phf 100 % 100 % 0 % 0 % 

xlock 100 % 20 % 0 % 0 % 

R
2L

 

xsnoop 100 % 100 % 100 % 100 % 

experimental Threshold 2.0 4.5 2.5 

6   Conclusions and Future Works 

In this paper, we proposed a modeling technique of network intrusions based on the 
probability matrix for multiple state-transition information. The states of TCP packets 
are composed of field values of protocol header information, and in a session, 
statistical transition information of all packet states can be shown as a frequency 
matrix. To combine such frequency matrices for multiple sessions, the ergodic model 
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was used for Markov chains. We also detected to be based on the model matching 
method using the maximum log-likelihood ratio. 

We demonstrated the possibility of our modeling technique through analysis of 
detection results of DARPA99 data sets. The model had better effectiveness in the 
detection of DoS and Probes attacks. It is assumed that the proposed technique is also 
useful in detection of worm spread. On the other hand, the detection rate still 
remained as a task that must be improved. 

In order to gain better effectiveness, it is necessary to extract features containing a 
lot of differences in attack and normal models. In this case, the distance between 
distributed features is computed. Moreover, in order to advance the performance of 
model matching, methods that detect data before the complete session is constructed 
are required. It can be implemented by detecting the beginning of sequential 
transition. 
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Abstract. Recently, Canetti et al [11] gave a generic construction
(called CHK construction) of public key encryption (PKE) from a selec-
tive identity-based encryption scheme combined with a strong one-time
signature scheme. Later, few schemes were proposed to improve the ef-
ficiency of CHK construction [11], for example, Boneh-Katz scheme [8]
replaced a strong one-time signature with a message authentication code
and Boyen-Mei-Waters scheme [9] was constructed directly from Wa-
ters’ IBE scheme. But, both constructions have either trade-off the pub-
licly verifiable property or security against adaptive chosen-ciphertext
attack. We ask a question whether it is possible to construct an effi-
cient and publicly verifiable PKE scheme from a selective IBE scheme
with a weak one-time signature scheme. In this paper, we provide an
affirmative answer and construct a public key encryption scheme which
preserves the publicly verifiable property and is secure against adaptive
chosen-ciphertext attack. The construction of the proposed scheme is
based on Boneh-Boyen identity-based encryption (IBE) scheme [5] and
a weak one-time signature scheme (using Waters’ signature scheme [24])
built within Boneh-Boyen IBE scheme. In this construction, one-time
signature scheme is not required to be strongly existential unforgeable
as Waters’ signature scheme is not a strongly existential unforgeability.
We also show that the proposed scheme is ”almost” as efficient as the
original Boneh-Boyen IBE scheme.

Keywords: Cryptography, public key encryption, bilinear map.

1 Introduction

After Rackoff and Simon [22] introduced the security notion for encryption
scheme against adaptive chosen ciphertext attack (CCA2) in 1991, this security
notion was widely accepted to provide the right level of security for public key
encryption (PKE) scheme, which is also referred to IND-CCA2 secure scheme.
The first provably secure public key encryption schemes against adaptive chosen
ciphertext attack under the standard assumptions in the standard model was
proposed by Rackoff and Simon [22]. But the scheme was impractical. The first
practical and provably secure PKE scheme against CCA2 under the standard
assumption in the standard model was proposed by Cramer and Shoup [12] in

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 292–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1998. Their scheme is based on the hardness of decisional Diffie-Hellman prob-
lem. Cramer and Shoup [13] further generalized and extended [12] to obtain a
new and practical encryption schemes that are secure against CCA2 under two
different standard assumptions, that is, Paillier’s decision composite residuosity
assumption and the classical quadratic residuosity assumption. These schemes
[13] are provably secure against CCA2 in the standard model. Since then, many
attempts were made to construct new public key encryption scheme based on
different assumptions in the standard model.

Related Works and Our Contributions

Recently, Canetti, Halevi and Katz [11] gave a generic construction of an IND-
CCA2 secure public key encryption scheme (PKE) from a secure selective iden-
tity based encryption scheme (IND-sID-CPA IBE) against chosen-plaintext at-
tack. In their construction, they used a strong one-time signature scheme to con-
vert a CPA secure scheme into a IND-CCA2 secure scheme. As mentioned in [21],
Canetti-Halevi-Katz construction is relatively efficient as Cramer-Shoup scheme
[14] if the underlining one-time signature scheme is efficient and Boneh-Boyen
identity-based encryption scheme (BB-IBE) [5]1 is used in the construction. The
main advantage of Canetti-Halevi-Katz PKE construction over Cramer-Shoup
scheme [12] is that the validity of a ciphertext can be verified publicly; while
Cramer-Shoup scheme could only be verified with a private key. Since then, few
attempts were made to construct an efficient PKE scheme based on a selective
IBE scheme. In 2005, Boneh and Katz [8] improved the Canetti-Halevi-Katz
construction by replacing a one-time signature with a message authentication
code; however Boneh-Katz construction is no longer publicly verifiable. Later,
Boyen, Mei and Waters [9] constructed a secure PKE which is only secure against
direct chosen ciphertext in the standard model and not adaptive chosen cipher-
text attack. Their construction is based on Waters’ IBE scheme [24]. Hence,
both constructions have either trade-off the publicly verifiable property or se-
curity against adaptive chosen-ciphertext attack. We ask a question whether it
is possible to construct an efficient and publicly verifiable PKE scheme from
a selective IBE scheme with a weak one-time signature scheme. In this pa-
per, we provide an affirmative answer and construct a public key encryption
scheme which preserves the publicly verifiable property and is secure against
adaptive chosen-ciphertext attack. The construction of the proposed scheme is
based on Boneh-Boyen identity-based encryption (IBE) scheme [5] and a weak
one-time signature scheme (using Waters’ signature scheme [24]) built within
Boneh-Boyen IBE scheme. In this construction, one-time signature scheme is
not required to be strongly existential unforgeable as Waters’ signature scheme
is not a strongly existential unforgeability. We also showed that the proposed
scheme is secure against adaptive chosen ciphertext attack and it is ”almost” as
efficient as original Boneh-Boyen IBE scheme.

1 The identity-based encryption scheme defined in [5] is a simplified version of [2]
without admissible hash function and is different from [3] which is based on decision
q-BDHI assumption.



294 C.H. Tan

Organization of Paper

The paper is organised as follows: In Section 2, we briefly describe bilinear maps
and its properties; and bilinear Diffie-Hellman assumptions. A definition of a
strong/weak one-time signature scheme and a secure PKE against adaptive cho-
sen ciphertext attacks are also given in Section 2. In Section 3, we construct a
public key encryption scheme with a weak one-time signature scheme; the con-
struction is based on the Boneh-Boyen identity-based encryption (IBE) scheme
and Waters’ signature scheme. Section 4 gives a detailed proof of the proposed
scheme which is secure against CCA2 under the hardness of decisional bilin-
ear Diffie-Hellman assumption (DBDH) in the standard model. In Section 5,
the computational complexity of the proposed scheme is compared with other
schemes which are based on Canetti-Halevi-Katz construction. We showed that
the proposed scheme is ”almost” as efficient as Boneh-Boyen IBE scheme.

2 Preliminaries

2.1 Bilinear Maps and Assumptions

Let G1 and G2 be cyclic groups of prime order p and g be a generator of G1. Let
e be an admissible bilinear map from G1 ×G1 to G2 satisfying the following:

a. Bilinear: for all u, v ∈ G1 and integers a, b, then e(ua, vb) = e(u, v)ab.

b. Non-degenerate: e(g, g) �= 1.

c. Computability: ∀u, v ∈ G1, e(u, v) is efficiently computable.

Definition 1. (Bilinear Diffie-Hellman Problem (BDH)). Given a quadruple
(g, ga, gb, gc) ∈ G4

1 where a, b, c ∈ Zp, output e(g, g)abc.

Definition 2. (Decisional Bilinear Diffie-Hellman Problem (DBDH)). Given a 5-
tuple (g, ga, gb, gc, T ) ∈ G4

1 × G2 where a, b, c ∈ Zp, decide T = e(g, g)abc.
We say that an algorithm has an advantage ε in solving DBDH if

∣∣Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]
∣∣ ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, the random
choice of Z ∈ G2.

Definition 3. (DBDH Assumption). We say that (t, ε)-DBDH assumption holds
if no t-polynomial time algorithm has an advantage of at least ε in solving the
DBDH problem.

Now, we give a definition of a collision resistant hash function and a target
collision resistant hash function as follows.
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Definition 4. (Collision Resistance). Let w̄ and n̄ be two positive integers. We
say that a family of hash function H = {Hk : {0, 1}w̄ → {0, 1}n̄}k∈K is (t, εH)-
collision resistance hash function if the probability of any t-polynomial time al-
gorithm A is

Pr[ Hk(x) = Hk(y) and y �= x : k ← K; x, y ← A(Hk) ] < εH .

Definition 5. (Target Collision Resistance). Let w̄ and n̄ be two positive inte-
gers. We say that a family of hash function H = {Hk : {0, 1}w̄ → {0, 1}n̄}k∈K

is (t, εH)-target collision resistance hash function if the probability of any t-
polynomial time algorithm A is

Pr[ Hk(x) = Hk(y) and y �= x : given x ∈ {0, 1}w̄, k ← K; y ← A(k) ] < εH .

2.2 Signatures

A digital signature scheme (K,S,V) involves three algorithms, that is, key gener-
ation K, signature generation S and signature verification V . A digital signature
scheme is said to be secure if it is existentially unforgeable under a chosen mes-
sage attack, and was first defined in [16]. This definition normally refers to a
weak existential unforgeable. In some applications, such as, encrypt-then-sign
scheme [1] and CHK construction [11], a strong notion of signature scheme is
required, which is called strong existential unforgeability. Strong existential un-
forgeability means that an adversary is unable to produce a new signature of
an old message which was signed before. The formal definition of a weak and a
strong existential unforgeability are given below:

Definition 6. A digital signature scheme (K,S,V) is (t, qs, ε)-weak existentially
unforgeable secure against adaptive chosen-message attacks if no forger F out-
puts a valid forgery with probability of at least ε after at most qs signatures
queries and t processing time, where a forger F ’s probability is defined as

Pr

⎡
⎢⎢⎢⎢⎣

(pk, sk)← K(1l);
for i = 1, · · · , qs;
mi ← F(pk, m1, σ1, · · · , mi−1, σi−1), σi ← S(sk, mi);
(m, σ) ← F(pk, m1, σ1, · · · , mqs , σqs),
m �= mi for all i ∈ {1, · · · , qs} and V(pk, m, σ) = accept.

⎤
⎥⎥⎥⎥⎦ .

Definition 7. A digital signature scheme (K,S,V) is (t, qs, ε)-strong existen-
tially unforgeable secure against adaptive chosen-message attacks if no forger F
outputs a valid forgery with probability of at least ε after at most qs signatures
queries and t processing time, where a forger F ’s probability is defined as

Pr

⎡
⎢⎢⎢⎢⎣

(pk, sk)← K(1l);
for i = 1, · · · , qs;
mi ← F(pk, m1, σ1, · · · , mi−1, σi−1), σi ← S(sk, mi);
(m, σ) ← F(pk, m1, σ1, · · · , mqs , σqs),
(m, σ) �= (mi, σi) for all i ∈ {1, · · · , qs} and V(pk, m, σ) = accept.

⎤
⎥⎥⎥⎥⎦ .
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It is noted that (m, σ) �= (mi, σi) means that it can be m = mj and σ �= σj for
some j.

One-time signature is referred to the signing key which is only used once. This
means that a signature produced each time uses a different signing key. We
say that a one-time signature scheme is weak/strong existential unforgeability
secure is same as above definitions except that it is only allow to query once in
the above definitions.

2.3 Secure Encryption

A public key encryption scheme PE= (K, E ,D) consists of three algorithms. The
key generation algorithm K generates a pair (pk, sk)← K, where pk is a public
key and sk is a private key. The encryption algorithm E takes a public key pk and
a plaintext m, then returns a ciphertext c ← E(pk, m). The decryption algorithm
D takes a private key sk and a ciphertext c, then returns m = D(sk, c) or reject.

Definition 8. (Adaptive Chosen Ciphertext Attack (CCA2)) Let PE =
(K, E ,D) be a public key encryption. Let A be an attacker modeled as a proba-
bilistic Turning machine. Consider the following game played by a challenger C
and an adversary A.

Set Up. C takes a security parameter and runs the key generation algorithm to
obtain a public key pk and private key sk. It gives pk to A and keeps sk secret.

Phase 1. In this phase, A adaptively makes a decryption queries on a ciphertext
C. The challenger C responds with D(sk, C) or reject.

Challenge. A outputs two equal length plaintexts (m0, m1). The challenger C
picks a random b ∈ {0, 1}, computes a target ciphertext C∗ = E(pk, mb) and
gives it to A.

Phase 2. The adversary A continues to make decryption queries on a ciphertext
C as in Phase 1 except C �= C∗. The challenger C responds with D(sk, C) or
reject.

Guess. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

The advantage of an adversary A of the above game is defined as

AdvIND−CCA2
PE (A) = |Pr[b′ = b]− 1/2|.

An encryption scheme is said to be secure against adaptive chosen ciphertext
attack, if no polynomial time bounded adversary has non-negligible advantage
in the game described above.

Definition 9. A public key encryption scheme PE = (K, E ,D) is said to be
(t, qd, ε)-IND-CCA2 secure if the advantage of any t-polynomial time adversary
A is

AdvIND−CCA2
PE (t, qd) = maxA{AdvIND−CCA2

PE (A)} < ε,

where the maximum is over all A which runs in time t and makes at most qd

queries to the decryption oracle.
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3 Propose Encryption Scheme

In this section, we construct a public key encryption scheme which is called EO.
The proposed scheme is constructed from Boneh-Boyen IBE scheme [5] with a
one-time signature scheme (using Waters’ signature scheme [24]) built within the
Boneh-Boyen IBE scheme. In this construction, the one-time signature scheme
is not required to be strongly existential unforgeable. We also show that the
proposed scheme is almost as efficient as Boneh-Boyen IBE scheme with only an
increase of two exponentiations and one multi-exponentiation in encryption and
decryption respectively.

Let G1 and G2 be groups of prime order p, let g be a generator of G1 and e be
an admissible bilinear map from G1 ×G1 into G2. Let a family of hash function
H1 = {Hk̄1

: {0, 1}w̄1 → {0, 1}n̄1}k̄1∈K1
be a target collision resistant hash

function and a family of hash function H2 = {Hk̄2
: {0, 1}w̄2 → {0, 1}n̄2}k̄2∈K2

be a collision resistant hash function, where w̄1, w̄2, n̄1 and n̄2 are integers such
that n̄1 < log2 p and K1 and K2 are key spaces.

Keygen: Choose random integers x, y, z ∈ Zp and compute g1 = gx, g2 =
gy, h1 = gz and Z = e(g1, g2). Choose a random u′ ∈ G1 and a random n-
dimensional vector U = (u1, · · · , un) where element ui is randomly chosen from
G1 for i ∈ {1, · · · , n}. Select Hk̄1

∈ H1 and Hk̄2
∈ H2 for fixed k̄1 ∈ K1 and k̄2 ∈

K2 respectively such that n̄2 = n. For simplicity, denote Hk̄1
and Hk̄2

as H1 and
H2 respectively. Then the public key is PK = (g1, g2, h1, Z, u′, U, H1, H2)
and the private key is SK = (x, y, z).

Encryption: To encrypt a message m, first choose random integers s, α ∈ Zp such
that gα �= g1. Then, compute the following:

c0 = gα, c1 = Zsm, c2 = gs, c3 = (gv
1 h1)s, c4 = gα

2 (u′
n∏

i=1

uwi

i )s,

where v = H1(c0, c2), w = H2(c1, c3) and w = (w1, · · · , wn) ∈ {0, 1}n. Then,
the ciphertext is C = (c0, c1, c2, c3, c4).

Decryption: Upon receipt of ciphertext C = (c0, c1, c2, c3, c4), the receiver first
computes v = H1(c0, c2), w = H2(c1, c3). Let the binary representation of w be
(w1, · · · , wn). The receiver first checks e(c4, g) = e(u′∏n

i=1 uwi

i , c2) · e(g2, c0)
and e(c3, g) = e(gv

1 h1, c2) (or c3 = cxv+z
2 ). If one of them is not equal, output

reject symbol ⊥, otherwise decrypt the ciphertext as either

A. Choose a random r ∈ Zp and compute a decryption key DK = (d1, d2)
as d1 = gx

2 · (gv
1h1)r and d2 = gr and compute the plaintext as m = c1 · e(c3, d2)

e(c2, d1)
.

B. Compute the plaintext as m = c1
e(c2, gxy) .

It is noted that (c1, c2, c3) is a ciphertext of Boneh-Boyen identity-based
encryption scheme if v is an identity. (c2, c4) is a signature of Waters’ sig-
nature scheme with the public key (c0, g2). It is worth to mention that c2 is
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commonly shared by both Boneh-Boyen IBE encryption scheme and Waters’
signature scheme.

From the above two decryptions, method B is more efficient than method
A, which requires two exponentiations and four pairing. Method A is basi-
cally followed from Boneh-Boyen identity-based encryption scheme [5]. In fact,
the computational complexity of decryption can be further optimized if one
chooses ℵ = (μ′, μ1, · · · , μn) ∈ Zp such that u′ = gμ′

and ui = gμi for
i ∈ {1, · · · , n} and store ℵ as a part of private key. Then, Waters’ signature
scheme can be verified by c4 = cy

0c
μ′+ n

i=1 wiμi

2 instead of using three pairings.
Therefore, the decryption of the proposed scheme requires only one pairing,
two exponentiations and one multi-exponentiation. Hence, the proposed scheme
only increases two exponentiations (one of these is multi-exponentiation) and one
multi-exponentiation in encryption and decryption respectively as compared to
Boneh-Boyen IBE encryption scheme.

4 Security Proof

Before we state the main theorem, we first list the following useful lemma which
was called ”Difference Lemma” and was defined by Cramer and Shoup in [23].

Lemma 1. ([23], Difference Lemma) Let S1, S2 and F be events defined on
some probability space. Suppose that the event S1 ∧ ¬F occurs if and only if
S2 ∧ ¬F occurs. Then ∣∣Pr[S1]− Pr[S2]

∣∣ ≤ Pr[F ].

Theorem 1. The proposed encryption scheme EO is (t, qd, ε)-IND-CCA2 se-
cure, assuming that the (t′, ε′)-DBDH assumption, the (t′′, ε′′)-weak existen-
tially unforgeable one-time Waters’ signature scheme, and the (t1, ε1)-target
collision resistant hash function H1 and the (t2, ε2)-collision resistant hash func-
tion H2 holds, such that

ε ≤ ε′ + 2ε′′ + ε1 + ε2 +
2qd

p
,

where t′, t′′, t1 and t2 are essentially the same as t and qd < p.

Proof. The proof of the theorem is by reductionist proof. Suppose there exists a
t-polynomial time adversaryA who breaks the proposed encryption scheme EO in
the sense of IND-CCA2, then we build an algorithm B that solves the decisional
bilinear Diffie-Hellman (DBDH) assumption in a random instance with advan-
tage ε′. First, algorithm B is given an input of 7-tuple (G1, G2, g, gx, gy, gs∗

,
T ), where T is either e(g, g)xys∗

or a random element from G2. The algorithm
B’s goal is to output 1 if T = e(g, g)xys∗

and 0 otherwise. The algorithm B
interacts with A in the IND-CCA2 game as follows:
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Set Up: First, B sets g1 = gx, g2 = gy, g3 = gs∗
and Z = e(g1, g2). Then, B

chooses random integers α∗, γ, μ′, μ1, · · · , μn ∈ Zp such that gα∗ �= g1
2 and

computes v∗ = H1(gα∗
, g3), u′ = gμ′

and ui = gμi for i ∈ {1, · · · , n}. Let
H1 be a target collision hash function chosen from H1 and H2 be a collision
hash function chosen from H2. The algorithm B gives A the public key PK =
(g1, g2, h1, Z, u′, U, H1, H2) where U = (u1, · · · , un). The private key of
B is (x, y, γ − xv∗) which are unknown to B. The algorithm B also keeps the
secret elements (μ′, μ1, · · · , μn) for decryption in this simulation.

Phase 1: The adversary A makes a number of decryption queries on C = (c0, c1,
c2, c3, c4). If c2 = g3 (g3 will be defined as c∗2 in the challenge ciphertext later),
then the simulation aborts, otherwise B computes v = H1(c0, c2) and w =
H2(c1, c3) and checks e(c2, gv

1h1) = e(g, c3) and e(c4, g) = e(u′∏n
i=1 uwi

i , c2) ·
e(c0, g2) where w = (w1, · · · , wn) ∈ {0, 1}n. If one of them is not equal, return
reject symbol ⊥, otherwise chooses a random r ∈ Zp and generates a decryption
key DK = (d1, d2) for decryption as follows:

d1 = g
− γ

v−v∗
2 · (gv−v∗

1 · gγ)r = gx
2 · g

−y
1 · g−

γ
v−v∗

2 · (gv−v∗
1 · gγ)r

= gx
2 · (gv−v∗

1 · gγ)r− y
v−v∗ = gx

2 · (gv
1 · h1)r̄

d2 = g
− 1

v−v∗
2 · gr = gr̄,

where r̄ = r − y
v−v∗ . Then, B returns the plaintext m as follows:

m = c1 ·
e(c3, d2)
e(c2, d1)

.

Challenge: After the number of queries in phase 1, A outputs two equal length
messages m0 and m1 on which it wishes to be challenged. B flips a fair coin
b ∈ {0, 1}, and responds with the challenge ciphertext C∗ = (c∗0, c∗1, c∗2, c∗3, c∗4)
as follows:

c∗0 = gα∗
, c∗1 = T ·mb, c∗2 = g3, c∗3 = gγ

3 , c∗4 = gα∗
2 · gμ′+ n

i=1 w∗
i μi

3 ,

where w∗ = H2(c∗1, c∗3) and w∗ = (w∗
1 , · · · , w∗

n) ∈ {0, 1}n. It is noted that
c∗3 = gv∗s∗

1 · hs∗
1 and c∗4 = gα∗

2 · (u′∏n
i=1 u

w∗
i

i )s∗
.

Phase 2: The adversary A continues to make its decryption queries on ciphertext
C except C �= C∗.

Guess: After the number of decryption queries, the adversary A returns a bit
b′ ∈ {0, 1}. If b = b′, the simulator return β′ = 1, else it returns β′ = 0. This
completes the description of the simulator. Note that the simulator behaves
exactly as in the original public key encryption except the abort in Phase 1, we
will discuss this in detail below.
2 If gα∗

= g1, then x = α∗ and it is easy to check whether T = e(gy, gs∗
)x. In this

case, B will output the correct result and stop.



300 C.H. Tan

In order to analyse the success probability of B, we consider a sequence of the
”indistinguishable” modified games, from game G0 to game G6, where G0 is the
original game and the last game G6 clearly gives no advantage to the adversary
A. Let b′ ∈ {0, 1} be the output of A and Ti be the event that b′ = b in the
game Gi for 0 ≤ i ≤ 6. Then, we have

AdvIND−CCA2
EO (A) =

∣∣Pr[T0]− 1/2
∣∣

and the sequence of games are described as follows:

Game G1: First, game G0 is modified to a new game G1 such that the decryption
oracle in Phase 1 is modified with the rejection rule R1 as follows : If the
adversary submits a ciphertext C = (c0, c1, c2, c3, c4) with c0 = c∗0 or c2 = c∗2,
the decryption oracle immediately outputs reject and halt. In Phase 1, since
the adversary has no information (in a statistical sense) about c∗0 or c∗2 from
the challenge ciphertext C∗, and if the adversary makes at most qd decryption
queries in Phase 1, then the probability of having c0 = c∗0 or c2 = c∗2 is 2qd

p .
Therefore, by Lemma 1, we have

∣∣Pr[T1]− Pr[T0]
∣∣ ≤ 2qd

p
.

Game G2: To turn game G1 to a new game G2, the decryption oracle in Phase 2
is modified such that the rejection rule R2 is applied as follows: If the adversary
A submits a ciphertext C = (c0, c1, c2, c3, c4) with (c0, c2) �= (c∗0, c∗2) and
v = v∗ where v = H1(c0, c2), then the decryption oracle immediately outputs
reject and halt. Let R2 be the event that the decryption oracle in game G2 rejects
a ciphertext using the rule R2. As games G2 and G1 proceed identically until
the event R2 occurs, therefore the event T2 ∧ ¬R2 and T1 ∧ ¬R2 are identical.
Hence, by Lemma 1, we have

∣∣Pr[T2]− Pr[T1]
∣∣ ≤ Pr[R2].

Lemma 2. Pr[R2] ≤ ε1.

Game G3: In this game, the decryption oracle in Phase 2 is further modified
such that the ciphertext is not rejected by the rule R2 before and the rejection
rule R3 of this game is applied as follows : If the adversary submits a ciphertext
C = (c0, c1, c2, c3, c4) with either c1 �= c∗1 or c3 �= c∗3; and w = w∗ where
w = H2(c1, c3), the decryption oracle immediately outputs reject and halt. Let
R3 be the event that the decryption oracle in game G3 rejects a ciphertext using
the rule R3. So, by Lemma 1, we have

∣∣Pr[T3]− Pr[T2]
∣∣ ≤ Pr[R3].

Lemma 3. Pr[R3] ≤ ε2.

Game G4: The decryption oracle in Phase 2 is further modified from game G3
to obtain a new game G4 with the rejection rule R4. It rejects those ciphertexts
that are not be rejected by rules R2 and R3 before and is as follows : If the
adversary submits a ciphertext C = (c∗0, c1, c2, c3, c4) with C �= C∗ and
v �= v∗, the decryption oracle immediately outputs reject and halt. Let R4 be
the event that the decryption oracle in game G4 rejects a ciphertext using the
rule R4. So, by Lemma 1, we have

∣∣Pr[T4]− Pr[T3]
∣∣ ≤ Pr[R4].
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Lemma 4. Pr[R4] ≤ ε′′.

Game G5: In game G5, the decryption oracle is further modified so that it
rejects all the invalid ciphertext C = (c0, c1, c2, c3, c4) in Phase 2 with
v �= v∗, where v = H1(c0, c2). This rejection rule rejects those ciphertext which
are not rejected under game G2, G3 and G4 before. Let R5 be the event that
the decryption oracle in game G5 rejects a ciphertext using the rule R5. So, by
Lemma 1, we have

∣∣Pr[T5]− Pr[T4]
∣∣ ≤ Pr[R5].

Lemma 5. Pr[T5] ≤ ε′′.

Game G6: In this game, the encryption oracle is modified so that c∗1 is replaced
by random c′1 in G2. Due to this change, c′1 is independent of the challenge bit
b, and does not provide any information in the adversary’s view. Therefore, we
have Pr[T6] = 1/2. As game G6 does not depend on T , therefore, we have

∣∣Pr[T6]− Pr[T5]
∣∣ ≤ ε′.

Combine the results from the above games, we immediately obtain the fol-
lowing:

ε ≤ ε′ + 2ε′′ + ε1 + ε2 +
2qd

p
.

5 Performance Comparisons

In this section, we compare the performance of the proposed PKE scheme to
those PKE schemes using Canetti-Halevi-Katz’s construction [11] with a strong
one-time signature scheme. As Canetti-Halevi-Katz’s construction is generic on
any selective-identity IBE scheme, in order to have better understanding of the
comparison, we give a brief description of Canetti-Halevi-Katz’s construction on
Boneh-Boyen IBE encryption scheme [5] as follows:

Canetti-Halevi-Katz’s construction on Boneh-Boyen IBE scheme

Keygen: The key generation is similar to Section 3 except PK2 = (u′, U, H2),
which is only particular to Waters’ signature scheme. Therefore, the public key
is PK1 = (g1, g2, h1, Z, H1) and the private key is SK = (x, y, z).

Encryption: To encrypt a message m, one chooses a random integer s ∈ Zp and
random one-time private key sko and compute its public key pko. Then, one
computes the following:

c0 = pko, c1 = Zsm, c2 = gs, c3 = (gv
1 h1)s, c4 = Sgo(sko, c1, c2, c3),

where v = H1(c0) and c4 is a signature of (c1, c2, c3) with the signing key sko.
Then, the ciphertext is C = (c0, c1, c2, c3, c4).
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Decryption: Upon receipt of ciphertext C = (c0, c1, c2, c3, c4), the receiver first
computes v = H1(c0) and checks the validity of the signature c4 with the public
key c0 and e(c3, g) = e(gv

1 h1, c2) (or c3 = cxv+z
2 ). If the signature is not valid or

the equality does not hold, then output reject symbol ⊥, otherwise the plaintext
is computed as m = c1

e(c2, gxy) .
As a one-time signature scheme requires to be strong existential unforgeable,

we consider two such signature schemes for comparisons, that is, the strong
Waters’ signature scheme (BSW) [10] (By Boneh-Shen-Waters’ transformation
from a weak existential unforgeability to a strong existential unforgeability) and
Boneh-Boyen signature scheme (BB) [4]. Up to now (up to my knowledge),
these two signature schemes based on bilinear maps are provable to be strongly
existential unforgeable in the standard model. We first briefly described the
strong Waters’ signature scheme [10] as follows:

Strong Waters’ Signature Scheme

Keygen: The basic parameter setting is same as that in Section 3, that means
g, G1, G2 are same as that of Section 3. Choose random α ∈ Zp and ḡ2, h ∈ G1.
Set ḡ1 = gα and choose random u′ ∈ G1 and random n-dimensional vector U =
(u1, · · · , un) where element ui is randomly chosen from G1 for i ∈ {1, · · · , n}.
Let Hk̄ ∈ H be a collision hash function for fixed k̄ ∈ K and denote Hk̄ as H .
Then, the public key is pko = (ḡ1, ḡ2, h, u′, U, H) and the private key is
sko = (ḡα

2 ).

Sign: To sign a message M , choose random integers r, d ∈ Zp and compute the
following sequentially

σ2 = gr, t = H(M, σ2), m = H(gthd), σ1 = ḡα
2 (u′

n∏
i=1

umi

i )r,

where m is written as (m1, · · · , mn)∈{0, 1}n. Then, the signature is (σ1, σ2, d).

Verify: Upon receipt of signature (σ1, σ2, d) on message M , the receiver first
computes t̄ = H(M, σ2) and m̄ = H(gt̄hd). Write m̄ as (m̄1, · · · , m̄n). The
receiver checks e(σ1, g) = e(u′∏n

i=1 um̄i

i , σ2) ·e(ḡ1, ḡ2). If they are equal, accept
the signature, otherwise reject.

As all the compared encryption schemes are based on Boneh-Boyen IBE en-
cryption scheme, we only need to compare the additional computation cost in-
curred by the one time signatures, that is, c0 and c4 in all the schemes under
comparison. As PK2 is only for Waters’ signature scheme and is not generated
during the encryption phase, therefore it can be included as part of the public key
of PKE scheme. Hence, the public key of PKE scheme based on Waters’ signa-
ture scheme and the proposed scheme will be longer than the CHK construction
with one-time BB signature scheme [4].

Let l1 be the length of the representation of an element in G1 and lp = log2 p.
The efficiency comparisons are listed below:
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Table 1. Efficiency Comparisons

pko length sko Signature length Signature Signature
c0 length c4 Generation1 Verification

Strong 2l1 l1 2l1 + lp 3 exp2, 2 pairings,
Waters3 [10] 2 m-exp 1 exp, 1 m-exp

BB4 2l1 2lp l1 + lp 3 exp 1 pairings,
[4] 1 m-exp

Prop Scheme l1 lp l1 1 exp, 1 m-exp
1 m-exp

Note :
1. The signature generation also includes public/private key generation.
2. exp is the usual exponentiation and m-exp denotes the multi-exponentiation.
3. In a strong Waters’ scheme [10], (u′, U) is part of public key of the encryption

scheme. Therefore, the signature verification is e(σ1σ
−(μ′+ n

i=1 wiμi)
2 , g) = e(ḡ1, ḡ2)

which reduces the original 3 pairings to 2 pairings.
4. In BB scheme, e(g, g) is part of the public key, therefore, the number of pairings

in signature verification is reduced to one instead of two.

From Table 1 above, the proposed scheme required an addition of two expo-
nentiations and one multi-exponentiation in encryption and decryption respec-
tively; and there is no additional pairing. While two pairings and one pairings are
required in strong Waters’ signature scheme and BB signature scheme respec-
tively. Therefore, the proposed scheme is more efficient than CHK construction
with Waters’ signature scheme and BB signature scheme respectively. Below we
list the timings of the respective schemes which run on MIRACL software [18]
on 3.0GHz Pentium IV computer. The elliptic curve and size of finite fields are
same as that of [7].

Table 2. Timing of PKE Schemes

CHK with CHK with Proposed Scheme CS Scheme
Waters Scheme [10] BB Scheme [5] [12]

Encryption 32.66ms 17.17ms 21.07ms 3.12ms

Decryption 84.42ms 57.86ms 35.04ms 2.73ms

From Table 2, the encryption of CHK construction with BB signature scheme
is slightly faster than the proposed scheme. This is because that computing
c4 = gα

2 (u′∏n
i=1 uwi

i )s takes more time and we did not optimize this. But the
decryption of the proposed scheme is faster than the CHK construction with
BB signature scheme. From Table 2, Cramer-Shoup scheme [12] is still faster
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than other schemes as there is no pairing in decryption and the length of prime
number is 1024-bit, while the finite field in the proposed scheme is 512-bit.

6 Conclusion

In this paper, we constructed an efficient public key encryption with a weak
one-time signature scheme and publicly verifiable. The security depends on the
hardness of decisional bilinear Diffie-Hellman problem, secure one-time Waters’
signature scheme, the collision resistance hash function and the target collision
resistance hash function. Furthermore, the computational complexity is almost
as efficient as Boneh-Boyen IBE encryption scheme with only an increase of
two exponentiations and one multi-exponentiation in encryption and decryption
respectively.
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Appendix A

Proof of Lemma 2

We construct an algorithm A′ which acts as a simulator and interacts with A
as follows. First, algorithm A′ takes (G1, G2, g, gx, gy, gs∗

, T ) as input,
it constructs a public and private key-pair for the encryption scheme which is
similar to the key generation algorithm as before. The construction of encryption
and decryption is same as before. Assume that the challenge ciphertext is C∗ =
(c∗0, c∗1, c∗2, c∗3, c∗4), if A submits a decryption query on C = (c0, c1, c2, c3, c4)
with v = v∗ where v = H1(c0, c2), then A′ applies the rejection rule R2 in the
game G2. A′ will reject C and halt. In this case, A′ has obtained a collision of
H1. Therefore, the lemma is proved.

Proof of Lemma 3

The proof of this lemma is similar to Lemma 2 and we omit the proof here.

Proof of Lemma 4

Let w = H2(c1, c3), we consider the following two cases.

Case i: w �= w∗. In this case, we show that there is a forgery of Waters’ signature
scheme. We construct an algorithm A′′ which provides an environment for A and
interacts with A as follows. Algorithm A′′ takes (G1, G2, g, gx, gy, gs∗

, T ) as
input, it first constructs a public and private key-pair for the encryption scheme
which is similar to the key generation algorithm as before. The construction of
encryption and decryption is same as before. Assume that the challenge cipher-
text is C∗ = (c∗0, c∗1, c∗2, c∗3, c∗4), if A submits a decryption query on C =
(c∗0, c1, c2, c3, c4) with C �= C∗ and e(c4, g) = e(u′∏n

i=1 uwi

i , c2) · e(c0, g2),
then A′′ applies the rejection rule R4 in the game G4. A′′ will reject C and
halt. In this case, A′′ has obtained a valid signature (c2, c4) of the message
M = (c1, c3). Therefore, we have Pr[R4] ≤ ε′′ in this case.

Case ii: w = w∗. As this case is not the same as game G3, therefore, c1 = c∗1 and
c3 = c∗3. Now, we consider the following two sub-cases:
Subcase a: c2 = gs such that the adversary A controls s. If the adversary A is
able to produce a valid signature, then the adversary could obtain the secret key
gα∗
2 = c4 · (u′∏n

i=1 uwi

i )−s. This means that the adversary could compute the
secret key gα∗

2 or Diffie-Hellman problem for given (c0, g2). This contradicts to
the hardness of Diffie-Hellman problem, so, the adversary is not able to submit
a correct c4. Hence, we have Pr[T4] = Pr[T3] in this sub-case.
Subcase b: c2 = gs such that the adversaryA does not fully know s (s depends on
s∗). Assume that the adversaryA knows k = s−s∗ where c2 = gs, otherwise, the
adversary A is still not able to gain any information about T as the decryption
oracle returns a message as c1 · e(g1, g2)−s. Since c3 = c∗3 and c3 = (gv

1h1)s, we
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have (gv∗
1 h1)s∗

= (gv
1h1)s. Let a = v(v∗)−1 mod p, then, we have gv∗s∗−vs

1 = hk
1

and

g
(1−a)v∗s∗
1 = (h1g

av∗
1 )k,

gs∗
1 = (h1g

av∗
1 )

k
v∗(1−a) .

This shows that given g1 and c∗2, the adversary A can compute gs∗
1 which

is a Diffie-Hellman problem. Consequently, the adversary can easily compute
e(g1, g2)s∗

which is a Bilinear Diffie-Hellman problem. Hence, we conclude that
the adversary is not able to produce a valid c2 and c3 = (gv

1h1)s such that
c3 = c∗3. Therefore, we have Pr[T4] = Pr[T3] in this sub-case.

From the above two cases, we have Pr[T4] ≤ ε′′.

Proof of Lemma 5

In this proof, we consider the following two cases:
Case i: The adversary A has full control of c0. Here, we consider two sub-cases.
Subcase a: c2 = gs such that the adversary A controls s. As the adversary also
controls c0, the adversary A is able to produce a valid signature (c2, c4). Then
the actual decryption oracle will returns a message as c1 · e(g1, g2)−s. If c1 is
related to T , the adversary A will not gain any useful information about T from
this query as he/she can only get back to c1. Therefore, we have Pr[T5] = Pr[T4]
in this sub-case.
Subcase b: c2 = gs such that the adversary A does not fully know s (s depends
on s∗). If the adversary A is able to produce c3 = (gv

1h1)s for v �= v∗ with either
s = k+s∗ or s = ks∗, where A knows k. If A does not know k, A will not gain any
information about T even if c1 is related to T as the decryption oracle returns
a message as c1 · e(g1, g2)−s. Now, consider s = k + s∗, let a = v(v∗)−1 mod p

and we have c∗3c
−1
3 = gv∗s∗−vs

1 h−k
1 and

c∗3c
−1
3 hk

1 = g
(1−a)v∗s∗
1 g−av∗k

1 ,

gs∗
1 = (c∗3c

−1
3 hk

1gav∗k
1 )

1
v∗(1−a) .

If s = ks∗, we obtain gs∗
1 = (c∗3c

k−1

3 )1/(v∗−v). This shows that given g1 and c∗2,
the adversary A can compute gs∗

1 which is a Diffie-Hellman problem. Hence, we
conclude that the adversary is not able to produce a valid c2 and c3 = (gv

1h1)s.
Therefore, we have Pr[T5] = Pr[T4] in this sub-case.

Case ii: The adversary A has no full control of c0. That means that A does not
know the exponent of c0 and so does not know the private key of the one-time
signature. Then, we consider two sub-cases: w = w∗ and w �= w∗. The proof of
these two cases is similar to the two cases in Lemma 4, we omit the proof here.
Therefore, we have Pr[T5] ≤ ε′′ in this case.

Combine the above two cases, we have Pr[T5] ≤ ε′′.
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Abstract. Loss of backup tapes containing personal information (PI) is
a potential breach of privacy and encryption is the typical way to prevent
the breach. This paper considers an attack scenario where an adversary
who encrypts the PI for backup purpose tries to hide the plain PI in a
valid-looking ciphertext without being detected. We show that the stan-
dard security notion IND-CCA2 does not capture such a scenario. For ex-
ample, the Cramer-Shoup scheme is vulnerable to such an attack. To cap-
ture such a scenario, we define a new notion of “ciphertext-auditability”
as a new property of public key encryption schemes (PKESs). It requires
that, given a public key and a ciphertext, anyone should be able to ver-
ify whether the ciphertext was actually generated using the public key.
Also, it requires that, given a public key and a plaintext, no adversary
should be able to generate a valid-looking ciphertext so that the verifi-
cation passes, but nevertheless the plaintext can be recovered from the
ciphertext without the corresponding secret key. We propose a general
construction of such PKESs based on standard cryptographic primitives
in the random oracle model.

1 Introduction

1.1 Motivating Scenario

Recently, the number of enterprises that collect personal information (PI) from
their customers and that use it for various purposes, including advertising and
marketing, has been increasing. At the same time, the number of cases where
the collected PI is leaked by malicious employees is also increasing. To prevent
such leakages by insiders, network security such as firewalls is widely used. For
example, it prohibits employees from sending the PI out by email. In addition
to network security, physical security also needs to be addressed to prohibit
employees from taking storage devices such as CDs, DVDs, and backup tapes
out of the building.

One of the typical data leakage scenarios is as follows: An enterprise copies
the PI to a backup tape and asks a transport service (TS) to transport it to a
secure warehouse. There are a lot of cases where backup tapes get lost in transit1

1 For example, a major American bank announced that backup tapes containing fed-
eral workers’ customer and account information were somehow lost during shipment
to a backup data center (February 25, 2005).

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 308–321, 2006.
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and are potentially leaked to outsiders. In order to prevent this kind of potential
leakages, the PI needs to be encrypted. Does encryption really help here? We
consider an attack scenario, where traditional encryption does not help. In our
scenario, the backup operation is performed by the following three entities in an
enterprise:

1. Backup manager BM who provides the enterprise-wide backup management
service. According to a corporate backup policy, BM periodically (e.g., every
three months) sends to every department a request that it must backup its
PI database and transport it to a secure warehouse. Also, BM is responsible
for managing encryption keys.

2. An operator O who maintains the PI database in a department. O is respon-
sible for encrypting the PI using a right encryption key before copying it to
a backup tape.

3. An auditor A in the same department. A is responsible for auditing the
backup tape to ensure that it is encrypted under a right encryption key.
Note that, when BM and O are in different locations, BM has no physical
access to the backup tape and cannot play the role of A.

Our basic assumption is that the PI database is protected by both network and
physical security so that it is difficult for O to take the PI and related information
out of the building. An exception is the case where O needs to backup the PI
and transport it to a warehouse. In our scenario, a public key encryption scheme
(PKES) is used to encrypt it in the following steps:

Step 1: BM sends a backup request with a public key to both O and A in an
authenticated way (e.g., over SSL).

Step 2: O uses the public key to encrypt the PI and copies the encrypted PI to
a backup tape.

Step 3: A audits the backup tape to check whether O used the right public key
to encrypt the PI (and of course to check that it contains only the encrypted
PI). The purpose of this audit is to ensure that the PI cannot be recovered from
the backup tape without the corresponding secret key (even if O is malicious).

Step 4: If it passes the audit, then O is authorized to ask the TS to transport
the backup tape to a warehouse.

We assume that BM is always trusted and that O could be malicious and collude
with the TS for the PI theft. In this scenario, we need to satisfy the following
two requirements:

1. Since no one checks whether A audits the backup tape appropriately, A
should have no chance to leak the PI to outsiders. That is, A should have
no access to the PI database and corresponding secret key. Therefore, the
first requirement is that A should be able to check whether O used the right
public key to encrypt the PI without having access to the secret key and
PI database. In other words, given the public key and backup tape, anyone
should be able to play the role of A.
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2. Consider the following attack by malicious O. It tries to forge a valid-looking
encryption of the PI (a valid-looking ciphertext) such that it passes the audit
by A, but nevertheless it is easy for the malicious TS to recover the PI from
the forged ciphertext without the corresponding secret key. Intuitively, O
tries to hide the PI in a ciphertext without being detected by A (as in
steganography [15]). Therefore, the second requirement is that O should not
be able to succeed in this attack.

In general, traditional public key encryption schemes do not satisfy these two
requirements. Actually, as we will see in Section 3.2, the IND-CCA2 scheme
suggested by Bellare and Rogaway [4] and the Cramer-Shoup scheme [7] are
vulnerable to a forgery attack by malicious O.

Remark 1. We can consider a similar scenario using symmetric encryption in-
stead of public key encryption. In this case, BM generates a secret key and
sends it to both O and A in a secure manner. Since our basic assumption does
not allow malicious O to leak the secret key to TS, such a scenario would make
sense. However, it is still true that malicious O has a chance to leak it. This
is why we focus on the public key encryption scenario, where O does not have
such a chance at all unless O breaks the encryption scheme. We believe that the
notion of ciphertext-auditability would be useful in the symmetric encryption
setting, too.

1.2 Our Contribution

In order to address the two requirements, this paper proposes a new notion
of ciphertext-auditable public key encryption. In ciphertext-auditable PKESs,
encryption algorithms output not only a ciphertext but also an associated proof
string for the validity of the ciphertext. Ciphertext-auditability is defined as the
following two properties corresponding to the two requirements:

Verifiability: Given a public key and a ciphertext, anyone having the associ-
ated proof string should be able to verify whether the ciphertext was actually
generated using the public key.

Unforgeability: No adversary should be able to forge a valid-looking pair of a
ciphertext and a proof string such that the verification passes, but nevertheless
the plaintext can be recovered from the ciphertext without the corresponding
secret key.

Ciphertext-auditability ensures that as long as a ciphertext is verified to be a
valid one the plaintext cannot be recovered from the ciphertext without the
corresponding secret key. We give a formal definition of such a PKES in Section
3. Also, as mentioned above, we will show that IND-CCA2 security does not
imply ciphertext-auditability.

In Section 4, we propose a general construction in the random oracle model
[4], where we use as building blocks a non-interactive zero-knowledge (NIZK)
proof of knowledge for NP and a trapdoor one-way permutation. We give a brief
overview of our construction. Consider an encryption algorithm E(pk, M ; r) and
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a forgery strategy called the semi-honest strategy where, given a plaintext M , an
adversary somehow selects a dummy pair of a plaintext M ′ and a set of random
coins r′ and outputs the ciphertext E(pk, M ′; r′) as a valid-looking ciphertext.
We will construct an encryption scheme such that, no matter how an adversary
selects such a dummy pair (M ′, r′), the original plaintext M cannot be recovered
from the ciphertext without the secret key (as long as the adversary follows the
semi-honest strategy). Given any trapdoor permutation, we will construct such
an encryption scheme in the random oracle model. The encryption algorithm
behaves close to a random oracle on a pair of a plaintext and a set of random
coins. That is, no matter how an adversary selects such a dummy pair (M ′, r′),
the resulting ciphertext becomes close to a random string. As a result, the origi-
nal plaintext M cannot be recovered from the ciphertext without the secret key.
Intuitively, this implements unforgeability. Given such an encryption scheme,
what remains is to force adversaries to follow the semi-honest strategy. For this
purpose, we can use an NIZK proof of knowledge to append to each ciphertext
a proof of its “well-formedness” as in [18,19,10,17]. Such a proof string is used
to implement verifiability.

Remark 2. Under our basic assumption, the backup tape (encrypted PI) is the
only thing that O is allowed to take out of the building. Otherwise, malicious O
can take the plain PI out and there is nothing to solve. Our formal definition of
ciphertext-auditability captures this basic assumption (See Remark 6).

1.3 Related Work

Refer to [1] for the standard security notions of public key encryption such
as IND-CPA, IND-CCA1, IND-CCA2. There is a sequence of works that pro-
vide plausibility results for IND-CCA1 and IND-CCA2 schemes based on NIZK
proofs [18,19,10,17]. Since our focus is not on such notions, we don’t review the
definitions in this paper.

Bellare et al. investigated the notion of key-privacy, which requires that ci-
phertexts should reveal no information on the public key used [2,13]. Ciphertext-
auditability is a property contradicting key-privacy.

Bellare et al. defined a similar notion called ciphertext-verifiability in a differ-
ent context [3]. Ciphertext-verifiability contradicts IND-CPA security (See Re-
mark 4), but ciphertext-auditability does not contradict any standard security
notions. Indeed, as shown in Section 4, ciphertext-auditability and IND-CCA2
can be satisfied simultaneously.

A notion of unforgeability of encryption is implicit in the design of IND-CCA2
schemes [18,19,10,17], where the purpose is to make the decryption oracle useless.
Also, Katz and Yung explicitly defined such a notion in the context of symmetric
key encryption [14]. Their purpose is different from ours. Our unforgeability im-
plies some ability to prevent steganography (although it is impossible to prevent
it perfectly [15]).

Desmedt investigated how to prevent steganography in many cryptographic
protocols including encryption, but the proposed solution requires that the
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auditor must be involved in the encryption process and so the auditor must
be trusted [8]. On the other hand, the auditor in our proposed scheme needs not
be trusted. Also, there are recent works on how to prevent it perfectly in the
context of zero-knowledge and mix networks [16,6].

2 Preliminaries

We say that a function ν(·) : IN → IR is negligible in n if for every polynomial
p(·) and all sufficiently large n’s, it holds that ν(n) < 1/p(n).

We let the string ATK be instantiated by any of CPA, CCA1, and CCA2.
PPTM stands for “probabilistic polynomial time machine” and PSCF stands
for “polynomial-size circuit family”.

Given a probability distribution S, we denote by x← S the operation of select-
ing an element according to S. If A is a probabilistic machine then
A(x1, x2, . . . , xk) denotes the output distribution of A on inputs (x1, x2, . . . , xk).
Let Pr[x ← S1; x2 ← S2; . . . ; xk ← Sk : E] denote the probability of the event
E after the processes x1 ← S1, x2 ← S2, . . . , xk ← Sk are performed in order.
Similarly, let E[x← S1; x2 ← S2; . . . ; xk ← Sk : f(x1, x2, · · · , xk)] denote the ex-
pectation of f(x1, x2, · · · , xk) when the processes x1 ← S1, x2 ← S2, . . . , xk ← Sk

are performed in order. We say that a probability distribution ensemble {Dn} is
well-spread if the largest probability of an element, i.e., maxv Pr[x ← Dn : x = v],
is negligible in n [5].

We review the definition of trapdoor one-way permutations. A permutation
generator is a PPTM G such that G(1n) outputs (the descriptions of) a pair of
deterministic polynomial-time algorithms (f, f−1) specifying a permutation and
its inverse on {0, 1}n.

Definition 1. We say that a permutation generator G is a trapdoor one-way
permutation generator if, for every non-uniform PSCF M , Pr[(f, f−1)← G(1n);
x← {0, 1}n : M(f(x)) = x] is negligible in n.

Finally, we recall the definition of efficient adaptive NIZK proofs of knowledge
[19,11,10].

Definition 2. We say that π = (f,P ,V , S = (S1,S2), EXT = (EXT 1, EXT 2))
is an efficient adaptive NIZK proof of knowledge for a language L ∈ NP with
witness relation R if f is a polynomial and (P ,V ,S, EXT ) are PPTMs such that:

Efficient Completeness: For all x ∈ L and all w such that R(x, w) is true, for
all strings σ of length f(|x|), we have that V(x,P(x, w, σ), σ) = Acc.

Witness Extractability: {EXT 1(1n)} and the uniform distribution on
{0, 1}f(n) are statistically indistinguishable. For all adversaries A, we have
that

Pr

⎡
⎣σ ← {0, 1}f(n);

(x, p) ← A(σ) :
V(x, p, σ) = Acc

⎤
⎦− Pr

⎡
⎢⎢⎣

(σ, aux) ← EXT 1(1n);
p ← A(x, σ);
w ← EXT 2(σ, aux, x, p) :
(x, w) ∈ R

⎤
⎥⎥⎦

is negligible in n, where x is any string in L of length n.
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Adaptive ZK: For all non-uniform PSCFs A = (A1, A2), we have that∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

σ ← {0, 1}f(n);
(x, w, τ) = A1(σ);
p ← P(x, w, σ) :
A2(p, τ) = true

⎤
⎥⎥⎦ − Pr

⎡
⎢⎢⎣

(σ, aux) ← S1(1n);
(x, w, τ) = A1(σ);
p← S2(x, aux) :
A2(p, τ) = true

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

is negligible in n, where x is any string in L of length n.

3 Ciphertext-Auditability

In this section, we present a formal definition of ciphertext-auditable PKESs and
show that some IND-CCA2 schemes do not satisfy ciphertext-auditability.

3.1 A Formal Definition

Let AE = (K, E ,D) be a PKES, which consists of three algorithms (K, E ,D).
The key generation algorithm K is a randomized algorithm that takes as input
the security parameter 1n and returns a pair of public and secret keys (pk, sk).
The encryption algorithm E is a randomized algorithm that takes a public key
pk and a plaintext M ∈ {0, 1}∗ to return a ciphertext C, and the encryption
process is denoted by C ← E(pk, M). When we need to make explicit the random
coins r used by E , we write C = E(pk, M ; r). The decryption algorithm D is a
deterministic algorithm that takes a secret key sk and a ciphertext C to return
the plaintext M , and the decryption process is denoted by M = D(sk, C). It
is required that, for every key pair (pk, sk) generated by K and every plaintext
M ∈ {0, 1}∗, it holds that D(sk, E(pk, M)) = M with probability 1.

We syntactically extend the encryption algorithm so that it outputs not only
the ciphertext but also a proof string for its validity, that is, we write (C, p) ←
E(pk, M), where p denotes the proof string. The idea is that knowledge of p
enables anyone to verify whether C was actually generated using pk. We assume
that p is not required for decryption and so we make no syntactic change to the
decryption algorithm. Since we can view p as part of the generated ciphertext, we
can apply the standard security notions such as IND-CPA to this syntactically
extended formulation. Basically, this requires that the pair of C and p should
not reveal any information about M . We say that a PKES is “standard” when
the encryption algorithm does not output any proof string, i.e., when the proof
string is empty.

Let X (1n) denote a well-spread distribution over {0, 1}m(n), where m(n) is
a polynomial. We use it as a source of plaintexts. We consider an adversary
who consists of two algorithms, which we call an encryption adversary Ae and
a decryption adversary Ad. Given a pair of a public key pk and a plaintext M
generated by X (1n), Ae tries to forge a valid-looking pair of a ciphertext C
and a proof string p such that the verification passes, but nevertheless Ad can
recover M from C without the corresponding secret key. Ciphertext-auditable
public-key encryption is formally defined as follows:
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Definition 3. We say that a PKES AE is ciphertext-auditable if it has the
following two properties:

Verifiability: There exists a PPTM CV (verification algorithm) such that, for
every M ∈ {0, 1}∗, Pr[(pk, sk) ← K(1n); (C, p) ← E(pk, M) : CV(pk, C, p) =
Acc] = 1.

Unforgeability: For every pair of non-uniform PSCFs Ae = {Ae
n} and Ad =

{Ad
n} and every well-spread distribution X (1n), Pr[(pk, sk) ← K(1n); M ←

X (1n); (C, p) = Ae
n(pk, M) : CV(pk, C, p) = Acc and Ad

n(pk, C) = M ] is negli-
gible in n.

Note that adversaries Ae and Ad correspond to the malicious operator and trans-
port service in our motivating scenario, respectively. Also, the auditor can be
implemented using the verification algorithm.

Several remarks are as follows:

Remark 3. Like key-privacy [2], verifiability is a property orthogonal to the stan-
dard security notions such as the semantic security and indistinguishability of
encryptions. On the other hand, unforgeability seems to imply some kind of
one-wayness of encryption. It is an open issue to investigate relations between
unforgeability and known security notions.

Remark 4. The verification algorithm is not allowed to take as input the plain-
text M . If we allow it then the definition contradicts IND-CPA security. Such
a property is defined in a different context in [3], where it is called “ciphertext-
verifiability”.

Remark 5. The decryption adversary Ad is not allowed to take as input the proof
string p for the reason that we will describe in Remark 10. This is the reason
why we made explicit the existence of p in our formulation. This means that, in
our motivating scenario, p is not copied to the backup tape by the operator, but
the auditor must be able to access it. Also, see Remark 10.

Remark 6. There is no information flow allowed from Ae to Ad except for the
public key pk and ciphertext C. If arbitrary information flow is allowed, the
definition makes no sense at all. This is because Ae can pass the plaintext M
to Ad and Ad can output it as it is. This restriction corresponds to our basic
assumption (See Remark 2). Also, due to this restriction, Ad has no access to
any data generated internally in the encryption process, e.g., a hash value of the
plaintext. Remark 11 will discuss this issue from the perspective of our proposed
general construction.

Remark 7. We need to assume that X (1n) is well-spread in the definition of
unforgeability. Otherwise, the definition makes no sense. For example, if a se-
quence of messages {Mn} is generated by X (1n) with probability at least 1

2 (for
infinitely many n’s), then Ad that always outputs such a message breaks the
unforgeability.
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Remark 8. The current definition captures a minimalistic requirement. It is a
future research issue to investigate how we can strengthen the definition. For
example, the definition is very weak in the sense that it only requires that de-
cryption adversaries should not be able to recover the whole plaintext. Ideally,
we want to require that no decryption adversary should be able to recover even
a single bit of the plaintext. However, such a stronger definition could make no
sense. For example, it could be easy for Ae to hide the last bit of plaintexts in
a valid ciphertext. That is, Ae can repeat the (randomized) encryption using
the right public key until the ciphertext becomes an odd value if and only if
the last bit is 1, and Ad outputs 1 if and only if the ciphertext is odd. From
the perspective of steganography [15], it is impossible to prevent such an attack
perfectly since encryption must be randomized.

Remark 9. Unlike the standard security notions such as the semantic security
and indistinguishability of encryptions [12, Section 5.2.4], ciphertext auditabil-
ity is not robust in the sense that it cannot be extended to the setting where
multiple messages are encrypted. For example, consider a situation where an
adversary has an opportunity to encrypt multiple messages (M1, M2, · · · , Mn),
each of length n. The adversary could hide M1 in the ciphertexts by hiding the
i-th bit of M1 in Mi in the way described in the previous remark.

3.2 IND-CCA2 Does Not Imply Ciphertext-Auditability

We show that some IND-CCA2 schemes do not satisfy ciphertext-auditability.
Take for example, the IND-CCA2 scheme suggested by Bellare and Rogaway [4],
where pk is a trapdoor permutation f and C = (C1, C2, C3) = E(pk, M ; r) =
(f(r),H1(r)⊕M,H2(M, r)), where H1 and H2 are random oracles. If an encryp-
tion adversary uses a fixed string R as the random coins r to forge a valid-looking
ciphertext, i.e., C = (f(R),H1(R)⊕M,H2(M, R)), then a decryption adversary
having the fixed R can always recover M from C, i.e., M = C2 ⊕H1(R) (Note
that Definition 3 allows Ae and Ad to share a priori information). In this case,
the forged ciphertext would be considered as valid no matter how we implement
a verification algorithm. It is easy to see that the same attack can be applied
to some encryption schemes in the standard model, too. Examples include the
ElGamal and Cramer-Shoup schemes [9,7].

4 A General Construction

In this section, we propose a general construction of ciphertext-auditable PKESs
in the random oracle model [4]. We will do so in two steps. Intuitively, verifiability
and unforgeability are implemented in the first and second steps, respectively.
The first step works in the standard model while the second step works in the
random oracle model. Before describing it, we would like to point out that,
given an arbitrary secure PKES, verifiability is easy to implement, i.e., we can
just append the used public key to each ciphertext as the proof string. So the
non-trivial task is to satisfy unforgeability at the same time.
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4.1 Step 1: Implementation of Verifiability

Let AE = (K, E ,D) be a standard PKES. We consider a specific strategy for
encryption adversaries to forge valid-looking ciphertexts, which we call the semi-
honest strategy. It is a generalization of the attack described in Section 3.2. In
this strategy, given a pair of a public key pk and a plaintext M , an encryption
adversary Ae somehow selects a plaintext M ′ and a set of random coins r′ and
then outputs C = E(pk, M ′; r′), where M ′ may not be equal to M . In the case
of the attack described in Section 3.2, M ′ = M and r′ is a fixed string R.

We consider a standard PKES for which the semi-honest strategy does not
work, that is, no matter how an encryption adversary selects (M ′, r′), it is diffi-
cult for any decryption adversary to recover M . We define it formally as follows:

Definition 4. We say that a standard PKES AE = (K, E ,D) is secure against
the semi-honest strategy if, for every pair of non-uniform PSCFs F = {Fn}
and DA = {DAn} and every well-spread distribution X (1n), Pr[(pk, sk) ←
K(1n); M ← X (1n); (M ′, r′) = Fn(pk, M); C = E(pk, M ′; r′) : DAn(pk, C) =
M ] is negligible in n.

Basically, F and DA play the roles of Ae and Ad in Definition 3, respectively. A
general construction of such a scheme is presented at Step 2 (in the random oracle
model) and Theorem 1 says that we can use such a scheme as a building block to
construct a ciphertext-auditable PKES. Specifically, we can convert a standard
PKES that is secure against the semi-honest strategy into a ciphertext-auditable
PKES by appending to each ciphertext an NIZK proof of its “well-formedness”
as in [18,19,10,17] in order to force F to follow the semi-honest strategy.

Theorem 1. Let AE be a standard PKES that is secure against the semi-honest
strategy. If there exist efficient adaptive NIZK proofs of knowledge for NP, then
we can transform AE into a ciphertext-auditable PKES AE ′ while preserving the
IND-ATK security.

Proof: Let AE = (K, E ,D) be a standard PKES that is secure against the
semi-honest strategy. Given a public key pk for AE , define an NP language
L = {(pk, C) : ∃(M, r) such that C = E(pk, M ; r)}. L is the set of “well-formed”
ciphertexts in the sense that they are an encryption of a plaintext under a public
key. Let π = (f,P ,V , S = (S1,S2), EXT = (EXT 1, EXT 2)) be an efficient
adaptive NIZK proof of knowledge for L.

We apply a well-known technique to AE , that is, we use π to append to each
ciphertext an NIZK proof of its “well-formedness” as in [18,19,10,17]. This will
force encryption adversaries to follow the semi-honest strategy. Formally, AE is
converted into AE ′ = (K′, E ′,D′) as follows:

– K′(1n) generates ((pk, σ), sk), where (pk, sk) ← K′(1n) and σ ← {0, 1}f(n)

(σ is the common reference string for π and is part of the public key).
– E ′(pk, M) generates (C, p), where C ← E(pk, M) (C = E(pk, M ; r)) and

p ← P((pk, C), (M, r), σ).
– D′(sk, C) = D(sk, C).
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Note that K and E are modified for appending the proof, but D is not.
It is easy to see that AE ′ preserves the IND-ATK security (Recall that the con-

version is based on the standard technique for security enhancement
[18,19,10,17]). Also, it is easy to see that AE ′ satisfies verifiability, that is, we
can use CV((pk, σ), C, p) = V((pk, C), p, σ) as the verification algorithm.

It remains to show that AE ′ satisfies unforgeability. For contradiction, as-
sume that there exists a pair of non-uniform PSCFs Ae = {Ae

n} and Ad = {Ad
n}

and a well-spread distribution X (1n) such that Pr[((pk, σ), sk) ← K′(1n); M ←
X (1n); (C, p) = Ae

n((pk, σ), M) : Ad
n((pk, σ), C) = M and V((pk, C), p, σ) =

Acc] is not negligible in n. We construct from (Ae, Ad) a pair of non-uniform
PSCFs F = {Fn} and DA = {DAn}, which contradicts the assumption that
AE is secure against the semi-honest strategy. For simplicity, we describe F as a
probabilistic non-uniform PSCF. The idea is that F uses the knowledge extractor
of π to extract the pair of plaintext and random coins that Ae used and DA just
simulates Ad.

Circuit: Fn

Input: pk, M

Step1: Generate (σ, aux) ← EXT 1(1n).
Step2: Generate (C, p) = Ae

n((pk, σ), M).
Step3: Generate (M ′, r′) ← EXT 2(σ, aux, (pk, C), p).
Step4: Output (M ′, r′).

Circuit: DAn

Input: pk, C

Advice: σn (this is the σ generated by Fn)
Step1: Output Ad

n((pk, σn), C)

Note that we can derandomize F so that all random coins including (σ, aux)
are fixed. It is easy to see that Pr[(pk, sk) ← K(1n); M ← X (1n); (M ′, r′) =
Fn(pk, M); C = E(pk, M ′; r′) : DAn(pk, C) = M ] is not negligible in n. This
contradicts the assumption that AE is secure against the semi-honest strategy.

�	
Remark 10. The proof of Theorem 1 depends on the fact that Ad is not allowed
to have access to the proof string p. Note that our construction rules out the
possibility that an adversary can hide the plaintext in the ciphertext, but does
not necessarily rule out the possibility that an adversary can somehow hide the
plaintext in the proof string p. It is an interesting open problem whether we can
construct a ciphertext-auditable scheme such that Ad is allowed to have access
to p, in other words, p is always empty. See Remark 5.

4.2 Step 2: Implementation of Unforgeability

We show how to construct a standard PKES that is secure against the semi-
honest strategy. Unfortunately, we don’t know if we can construct such a scheme
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in the standard model. Alternatively, we will construct it in the random oracle
model, where we allow encryption/decryption algorithms and the two PSCFs
(F, DA) in Definition 4 to have oracle access to random oracles.

Our proposed scheme AE = (K, E ,D) is a modification of the IND-CCA2
scheme suggested by Bellare and Rogaway [4]. Let H1 : {0, 1}∗ → {0, 1}n, H2 :
{0, 1}n → {0, 1}∞, and H3 : {0, 1}∗ → {0, 1}n be random oracles. Let G be the
generator for a trapdoor one-way permutation, denoted by (f, f−1) ← G(1n).
AE is defined as follows:

– K(1n) is the same as G(1n), where pk = f and sk = f−1.
– E(pk,M ; r)=(C1, C2, C3)=(f(H1(M, r)),H2(H1(M, r)) ⊕ M, H3((H1(M, r), M))),

where r is chosen uniformly at random from {0, 1}n.
– D(sk, (C1, C2, C3)) = C2 ⊕H2(f−1(C1)) if C3 = H3((f−1(C1), C2 ⊕H2(f−1(C1))),

decryption fails otherwise.

If we omit the hashing by H1, i.e., if we replace H1(M, r) by r, then AE is the
same as the IND-CCA2 scheme suggested by Bellare and Rogaway. Therefore, it
is easy to see that the IND-ATK security ofAE is reducible to the security of their
IND-CCA2 scheme. Also, it is important to note that E(pk, ·; ·) : {0, 1}m(n)+n →
{0, 1}m(n)+2n behaves close to a random oracle unless F can find an H1-collision,
where m(n) is the length of plaintexts. Therefore, no matter how F selects
(M ′, r′), the probability that the ciphertext C = E(pk, M ′; r′) is contained in
the set of ciphertexts from which DA can recover M is negligible in n. This
means that AE is secure against the semi-honest strategy.

Theorem 2. Assume that G is a trapdoor one-way permutation generator. Then
AE is a standard IND-CCA2 PKES that is secure against the semi-honest strat-
egy in the random oracle model.

Proof: If we omit the hashing by H1, i.e., if we replace H1(M, r) by r, then
AE is the same as the IND-CCA2 scheme suggested by Bellare and Rogaway.
Given a plaintext M , the distributions of its ciphertexts generated by the two
schemes are statistically close as long as r is chosen uniformly at random. This
implies that the IND-ATK security of AE is reducible to the security of Bellare
and Rogaway’s scheme. Therefore, AE is IND-CCA2.

It remains to show that AE is secure against the semi-honest strategy. Given
a PSCF DA = {DAn}, a public key pk, a plaintext M , and three random oracles
(H1,H2,H3), let S

DA
H1,H2,H3
n

(pk, M) be the set of the ciphertexts from which
DAn can recover M , i.e., S

DA
H1,H2,H3
n

(pk, M) = {C |M = DAH1,H2,H3
n (pk, C)}.

When X (1n) is well-spread, its expected size is negligibly small. That is, for every
non-uniform PSCF DA, every well-spread distribution X (1n), every public key
pk, and every three oracles (H1,H2,H3),

Size
DA

H1,H2,H3
n

(X , pk) = E

[
M ← X (1n) :

|S
DA

H1,H2,H3
n

(pk, M)|
2m(n)+2n

]

is negligible in n, where m(n) is a polynomial that represents the output length
of X (1n).
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Note that, given a public key pk and a plaintext M , Fn tries to find a pair
(M ′, r′) such that E(pk, M ′; r′) is contained in the S

DA
H1,H2,H3
n

(pk, M). We need
to prove that it succeeds only with negligible probability. That is, we will show
that, for every pair of non-uniform PSCFs (F, DA) and every well-spread distri-
bution X (1n), the probability

SuccessFn,DAn(X ) = Pr

⎡
⎢⎢⎢⎢⎣

(H1,H2,H3)← 2∞;
(pk, sk)← K(1n);
M ← X (1n);
(M ′, r′) = FH1,H2,H3

n (pk, M) :
E(pk, M ′; r′) ∈ S

DA
H1,H2,H3
n

(pk, M)

⎤
⎥⎥⎥⎥⎦

is negligible in n, where 2∞ denotes the set of all random oracles from which
(H1,H2,H3) is chosen.

Without loss of generality, we can assume that

– Fn outputs one of the queries that it made to H1 and the number of queries
is at most q1(n). The q1(n) queries may be adaptively chosen.

– The number of queries to H2 andH3 is at most q2(n) and q3(n), respectively.
Again, the queries may be adaptively chosen.

– When Fn makes the i’th query (Mi, ri), if at least one of the following con-
ditions holds, then Fn runs a special program.

1. A pair of (Mi, ri) and (Mj , rj)(j < i) is a collision under H1, i.e.,
H1(Mi, ri) = H1(Mj , rj).

2. Fn has already made the query H1(Mi, ri) to H2.
3. Fn has already made the query (H1(Mi, ri), Mi) to H3.

Let SP
F

H1,H2,H3
n

(pk, M) denote the event that Fn, given a pair of a public key
pk and a plaintext M , runs the special program. It is easy to see that, for every
pair of pk and M , the probability of the event occurring, i.e., Pr[(H1,H2,H3) ←
2∞ : SP

F
H1,H2,H3
n

(pk, M)], is negligible in n. We denote by ν(n) the negligible
probability, which does not depend on any pair of pk and M .

When Fn makes the i’th query (Mi, ri) to H1, the conditional probability that
the corresponding ciphertext is contained in S

DA
H1,H2,H3
n

(pk, M) assuming that
SPFn(pk, M) has not occurred is at most

PDAn(pk, M) = E

[
(H1,H2,H3) ← 2∞ :

|S
DA

H1,H2,H3
n

(pk,M)|
(2n−q1(n)−q2(n)−q3(n))2m(n)+n

]
.

Therefore, for every pair of non-uniform PSCFs (F, DA) and every well-spread
distribution X (1n), SuccessFn,DAn(X ) is bounded from above as follows:

SuccessFn,DAn(X ) ≤ E

⎡
⎣ (pk, sk)← K(1n);

M ← X (1n) :
1− (1− PDAn(pk, M))q1(n)

⎤
⎦ (1− ν(n)) + ν(n).
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≤ E

⎡
⎣ (pk, sk)← K(1n);

M ← X (1n) :
q1(n)PDAn(pk, M)

⎤
⎦+ ν(n).

= q1(n)E

⎡
⎢⎢⎢⎣

(pk, sk)← K(1n);
M ← X (1n);
(H1,H2,H3) ← 2∞ :

|S
DA

H1,H2,H3
n

(pk,M)|
(2n−q1(n)−q2(n)−q3(n))2m(n)+n

⎤
⎥⎥⎥⎦+ ν(n).

=
q1(n)2n

2n−q1(n)−q2(n)−q3(n)
E

⎡
⎣(pk, sk)← K(1n);
(H1,H2,H3)← 2∞ :
Size

DA
H1,H2,H3
n

(X , pk)

⎤
⎦+ν(n).

Since q1(n), q2(n), and q3(n) are polynomials, the value is negligible in n. �	

Remark 11. What if an encryption adversary uses a fixed string R as in the
attack described in Section 3.2? If the encryption adversary is allowed to pass the
value of H1(M, R) to the decryption adversary, M can be easily recovered from
C. However, Definition 3 does not allow it (See Remark 6). From the perspective
of our motivating scenario, passing the value ofH1(M, R) is as difficult as passing
the plaintext M itself under our basic assumption.

5 Concluding Remarks

Motivated by a privacy breach scenario, we have proposed a new notion of
ciphertext-auditable PKESs, which is not captured by the standard security
notion IND-CCA2. We have shown a plausibility result for the new notion, that
is, it can be realized using as building blocks an NIZK proof of knowledge for
NP and a trapdoor one-way permutation in the random oracle model. We have
the following research issues: (1) construct practical schemes based on number-
theoretic assumptions such as discrete logarithm and factoring problems, and (2)
investigate general construction in the standard model rather than in the random
oracle model. Also, we have already mentioned some open issues in Remarks 1,
3, 5, 8, and 10.

Also, as we have already mentioned, it would be interesting to investigate:

– ciphertext-auditability in the symmetric encryption setting (See Remark 1).
– relations between ciphertext-auditability and standard security notions such

as IND-CPA (See Remark 3).
– whether it is possible to construct a ciphertext-auditable PKES with empty

proof string (See Remarks 5 and 10).
– how to strengthen the definition of ciphertext-auditable PKESs (See Re-

mark 8).
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Abstract. Password-authenticated group key exchange (PAGKE) al-
lows group users to share a session key using a human-memorable pass-
word only. The fundamental security goal of PAGKE is security against
dictionary attacks. Several solutions have been proposed to solve this
problem while most ones require rounds linearly increasing in the num-
ber of group users, so they are neither scalable nor practical. Recently a
provably-secure constant-round PAGKE protocol overcoming this short-
coming is proposed at PKC ’06. However current PAGKE protocols have
been proven secure in the ideal model. The ideal model assumes that
some functions are “ideal” functions (or random functions). In the ideal
cipher model, we assume a block cipher is an ideal cipher and in the ideal
hash model (also the so-called the random oracle model), we assume a
hash function is an ideal hash function. However it is well-known that a
provably-secure scheme in the ideal model may be insecure if the ideal
functions are implemented by the real functions. In this paper we pro-
pose the first provably-secure PAGKE protocol in the standard model.
Our protocol is a two-round protocol and the security of the protocol is
reduced to the Decisional Diffie-Hellman (DDH) problem.

1 Introduction

To communicate securely over an insecure public network it is essential that
secret keys are exchanged securely. The shared secret key may be subsequently
used to achieve some cryptographic goals such as confidentiality or data integrity.
Password-authenticated key exchange (PAKE) protocols are used to share a
secret key between two or more specified users using only a human-memorable
password. PAKE has many merits in views of convenience, mobility, and less
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hardware requirement. Because in PAKE protocols, each party remembers only
an easily memorable password and the parties do not need any additional devices
like smart cards or hardware tokens, and any additional trusted third party.

Protocols for password-authenticated group key exchange (PAGKE) can be
used in several environments, especially in mobile networks. In mobile networks
session key exchange for the secure group communication services, such as elec-
tronic conferences [4,39], personal networking [13,27], military operations, and
emergency rescue [38,39,40], has to be done efficiently using relatively small re-
sources. Since protocols for PAGKE provide a way to authenticate users of a
group and derive cryptographically secure keys for users from low-entropy pass-
words in environments where a security infrastructure like the PKI (Public-Key
Infrastructure) is not deployed, PAGKE protocols can be more easily imple-
mented and efficiently used for the applications. The main efficiency issues in
real applications over mobile networks is how to reduce the number of rounds, the
computing time, and the size of the transmitted message since wireless clusters
have memory and processing constraints, and the networks have limited band-
width. Especially the number of rounds is very important factor in case that the
size of group users is large or group keys have to be exchanged frequently.

Compared to other security models, the most distinguishable characteristic of
the PAKE security model is that the model must incorporate dictionary attacks.
The dictionary attacks are possible due to the low entropy of the password space.
In practice, a password consists of 4 or 8 characters such as natural language
phrase to be easily memorized. The set of these probable passwords is small, so
there exists a relatively small dictionary. Usually dictionary attacks are classified
into two classes: on-line and off-line dictionary attacks. In on-line dictionary
attacks, an adversary attempts to use a guessed password by participating in a
key exchange protocol. If the protocol run is failed, the adversary initiates a new
protocol run using another guessed password. These on-line attacks require the
participation of an adversary. In off-line dictionary attacks, an adversary selects
a password from a dictionary and verifies his guess in the off-line manner, i.e., the
adversary uses only recorded transcripts from a successful run of the protocol. So
such off-line attacks are undetectable. The on-line dictionary attacks are always
possible, but these attacks can not become a serious threat because the on-line
attacks can be easily detected and thwarted by counting access failures. However,
off-line dictionary attacks are more difficult to prevent. Even if there exist tiny
amounts of redundancy information in flows of the scheme, then adversaries
may mount an off-line dictionary attack by using the redundancy as a verifier
for checking whether a guessed password is correct or not. The main security goal
of schemes for PAKE is to restrict the adversary to on-line dictionary attacks
only. If a PAKE scheme is secure, an adversary can not obtain any advantage
in guessing the passwords and the session keys of users through the off-line
dictionary attacks.

One of the most basic security requirements of PAKE protocols is key secrecy,
which guarantees that no computationally bounded adversary should learn any-
thing about the session keys shared between honest users by eavesdropping or
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sending messages of its choice to parties in the protocol. Other desirable security
goals are as follows (formal definitions are given in Section 4). The importance of
the following attributes depends on the real applications. Forward Secrecy means
that even with the password of the users any adversary does not learn any in-
formation about session keys which are successfully established between honest
parties without any interruption. A PAKE protocol is secure against known-key
attacks if compromise of multiple session keys for sessions other than the one does
not affect its key secrecy. This notion of security means that session keys are com-
putationally independent from each other. A bit more formally, this security pro-
tects against “Denning-Sacco” attacks [23] involving compromise of multiple ses-
sion keys (for sessions other than the one whose secrecy must be guaranteed). Se-
curity against known-key attacks also implies that an adversary cannot gain the
ability to perform the off-line dictionary attacks on the passwords from the com-
promised session keys which are successfully established between honest parties.

2 Our Work in Relation to Prior Work

Related Work. There are several works about how to make the PAGKE pro-
tocol [4,16,34,24,2]. In [4], Asokan et al. have proposed a PAGKE protocol based
on the group key exchange protocol of Becker and Wille [11] without a formal
proof. A forward-secure key exchange guarantees that the expose of a password
does not compromise the previous session keys. Bresson et al. have suggested
the first provably forward-secure PAGKE protocol in both the ideal hash/cipher
model under the TG-CDH and M-DDH assumptions [16]. The protocols in [4]
and [16] requires O(n) rounds and O(n) exponentiations per each user, where
n is the number of group users, and the protocols are asymmetric. Asymmet-
ric group key exchange protocol places an unfair computational burden to any
specific user of the key exchange. [24] proposed a password-based variant of the
Kim-Lee-Lee group key exchange protocol [31]. The PAGKE protocol requires
constant-round and uses an ideal cipher. However, in [2] Abdalla et al. show that
the protocol is vulnerable to an off-line dictionary attack since the encryption
key used by each user is unique. Very recently, Abdalla et al. [2] have provided
a symmetric PAGKE protocol with consant-round and a security proof without
forward secrecy in both the ideal hash/cipher model under the DDH assumption.
The protocol is built on the protocol of Burmester and Desmedt.

Motivation. All previous PAGKE protocols have been constructed in the ideal
model. The ideal model is a security model, where we assume that a certain
function is an “ideal” function. In the ideal cipher model, a block cipher ideally
behaviors through encryption/decryption oracles as follows: Let G and C to be
finite sets of strings where |G| = |C| and fix K ∈ {0, 1}∗. The encryption oracle
E produces a truly random value c ∈ C for each new query (m ∈ G, k ∈ K)
and identical answers if the same query is asked twice. The decryption oracle D
produces a truly random value m ∈ G for each new query (c ∈ {0, 1}∗, k ∈ K)
and identical answers if the same query is asked twice. In the ideal hash model
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(also called the random oracle model [6]) a hash function is a true random
function. The hash function produces a truly random value for each new query
and identical answer if the same query is asked twice.

The security proof of a protocol in the ideal model gives an insight in analyzing
the protocol, but does not guarantee that the protocol is secure in the real world.
In fact, many results [20,37,26,21,10] on the ideal hash methodology show that
a scheme secure using ideal hash oracles may be not secure if the oracles are
replaced by real functions; Canetti, Goldreich and Halevi [20] point out that
although the ideal hash methodology formulated by Bellare and Rogaway [6]
seems to be useful in practice, it is unclear how to put the methodology on the
real world. They showed that there exist a signature scheme and an encryption
scheme, which are secure in the ideal hash model but result in insecure schemes
for any implementation of the ideal hash in the real world. A secure PAGKE
scheme in the ideal cipher model only guarantees that the PAGKE protocol is
secure against general attacks that do not exploit a particular implementation
of the block cipher. Added to that, in practice current block ciphers are far from
being random permutations. Thus a protocol seems to be more reliable, if we
do not use ideal functions such as an ideal hash and an ideal cipher. Thus, a
protocol is more reliable, if we do not use ideal functions such as an ideal hash
and an ideal cipher. This is the motivation of our work.

Table 1. Comparisons of complexity and security with the related PAGKE protocols

Scheme Asokan et al. [4] Bresson et al. [16] Abdalla et al. [2] Our Protocol
Round n + 1 n 3 2

Exponentiation O(n) O(n) 4 4
Communication O(n · |p|) O(n · |p|) 2 · |p| + |N | 2 · |p|

Security − KK and FS KK KK and FS
Assumption − IH and IC IH and IC Standard

We use a group Z∗
p where p is a prime. n is the number of users in a group and |N | is the

length of a random number. An FS protocol is a forward-secure key exchange protocol
and a KK protocol is a secure key exchange protocol against known-key attacks. IH
denotes the ideal hash model and IC denotes the ideal cipher model.

Our Result. Our main contribution is the first provably-secure constant-round
PAGKE protocol in the standard model under the DDH assumption. The pro-
tocol also provides forward secrecy and is symmetric. The suggested protocol
is based on the protocol of Burmester and Desmedt [19]. The Burmester and
Desmedt protocol is not a password-authenticated key exchange protocol, and
the security of the protocol in the passive adversarial model was proved by Katz
and Yung [30]. In [30], Katz and Yung also proposed a forward-secure constant-
round group key exchange protocol against active adversaries in the standard
model, which is based on the group key exchange protocol of Burmester and
Desmedt. They use signatures to authenticate the messages of the protocol
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of [19]. To use a signature scheme, all group users have an associated public-
/private-key pair known to all other users in the network. Due to the critical
assumption for possessing of public-/private-key pair, the approach in [30] can
not be applied to PAGKE.

We note that converting a group key exchange protocol secure against passive
adversaries into a PAGKE protocol secure against dictionary attacks is not easy
at all. Because PAGKE must provide authentication using only a password,
redundancy information in the flows of the PAGKE protocols can provide a clue
to mount an off-line dictionary attack. To solve this problem, instead of using
signatures to authenticate the protocol messages of [19], we use a multiplicative
function as in [32,3,1], where the multiplicative function multiplies the protocol
messages of [19] by a value which is made with a password and a pseudo random
function to generate a session key.

We compare the efficiency and the security of our protocol with the protocols
of Asokan et al. in [4], Bresson et al. in [16], and Abdalla et al. in [2]. Table 1
summarizes the comparisons in which communication cost is the total number of
bits that each user sends during a protocol run. In the comparisons, we consider
the protocol [2] by omitting the mutual authentication part (However, the omis-
sion does not affect the main mechanism of the protocol because the protocol is
analyzed in the ideal cipher and the ideal hash models).

3 Primitives

Decisional Diffie-Hellman Assumption. Let G = 〈g〉 be any finite cyclic
group of prime order q. The DDH problem is defined as follows: given a triple
(U, V, W ), determine that the triple is a Diffie-Hellman triple (ga, gb, gab) or a
random triple (ga, gb, gr). The advantage of an algorithm A, Advddh

G,A(t), running
in time t is ε, if

|Pr[a, b ← Zq : A(g, ga, gb, gab) = 1]− Pr[a, b, r ← Zq : A(g, ga, gb, gr) = 1]| ≥ ε.

We say the DDH assumption holds in G if no probabilistic polynomial time
algorithm A can solve the DDH problem with non-negligible advantage. We
let Advddh

G (t) denote the maximum advantage which is over all adversaries As
running in time at most t.

Pseudorandom Functions. Let F : Keys(F ) × D → R be a family of func-
tions, and g : D → R a random function. A is an algorithm that takes an oracle
access to a function and returns a bit. We consider two experiments:

Expprf-1
F,A Expprf-0

F,A
K

R← Keys(F ) g
R← RandD→R

d ← AFK(·) d← Ag(·)

return d return d

The advantage of an adversary A is defined as follows:

Advprf
F,A = Pr[Expprf-1

F,A = 1]− Pr[Expprf-0
F,A = 1].
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The advantage function is defined as follows:

Advprf
F (κ, T, q, μ) = max

A {Advprf
AF,A},

whereA is any adversary with time complexity T making at most q oracle queries
and the sum of the length of these queries being at most μ bits. The scheme F
is a secure pseudo random function family if the advantage of any adversary A
with time complexity polynomial in κ is negligible.

The protocol of Burmester and Desmedt [19]. Our protocol is based on
the Burmester and Desmedt’s conference key exchange protocol in broadcast
networks. Let U1, . . . , Un be a group of n users wishing to generate a session key.
The indices are cyclic, i.e., Un+i is Ui.

BD

Round 1. Each user Ui chooses a random ri ∈ Z∗
q and broadcasts zi =

gri mod p.

Round 2. Each useer Ui broadcasts Xi = (zi+1/zi−1)ri mod p.

Key computation. Each user Ui computes the session key as follows:

Ki = (zi−1)nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi−2 mod p.

It may be easily verified that all honest users compute the same key,

K = gr1r2+r2r3+...+rnr1 mod p.

The following characterizes the security of BD. The proof of below theorem ap-
pears in the proof of Theorem 3 of [30].

Theorem 1. Let G be a group in which the DDH assumption holds. Then BD
is a secure group key exchange (GKE) protocol achieving forward secrecy in
an authenticated channel model (i.e., secure against only passive adversaries).
Concretely,

Advgke-fs
BD (k, t, 1) ≤ 2n · Advddh

G (t),

where t is the maximum total game time including an adversary’s running time,
and an adversary makes only a single execute query. n is the upper bound of the
number of the parties in the game.

4 Model

The model described in this section is based on Bresson et al.’s model in [15,16]
and Katz et al.’s model in [30] which follow closely the model established by
Bellare and Rogaway [7,8]. In the paper, we assume that the network is a broad-
cast network, where the users can simultaneously broadcast messages to each
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other. But we do not assume that the broadcast network guarantees that all
users receive identical messages, i.e., we allow that a malicious adversary may
intercept the broadcast messages and substitute his own messages for some of
them. In our model, we assume that the group users do not deviate from the
protocol and the adversary is not a group user.

Initialization. We fix a nonempty set U = {U1, . . . , Un} of potential users,
where n is the number of users. A user Ui ∈ U may have many instances of the
protocol. An instance of Ui is represented by an oracle Πs

i , for any s ∈ N. A
set of users shares a password pw obtained at the start of the protocol using a
password generation algorithm PG(1κ) which on input a security parameter 1κ

outputs a password pw uniformly distributed in a password space of size PW.

Partnering. We define partnering for broadcast networks. We do not assume a
synchronous network, and a round number is appended to a broadcast message.
We assume that a sender’s identity is also appended to the message to indicate
the sender of the message. Let sids

i be the concatenation of all (broadcast) mes-
sages that oracle Πs

i has sent and received. For the concatenation we assume
that the messages are lexically ordered according to the sender’s identity. Let a
partner identifier pids

i for instance Πs
i be a set of the identities of the users with

whom Πs
i intends to establish a session key. pids

i includes Ui itself. The oracles
Πs

i and Πt
j are partnered if:

- pids
i = pidt

j and sids
i = sidt

j .

Queries. An adversary A is a probabilistic polynomial-time machine that con-
trols all the communications and makes queries to any oracle. The queries that
A can use are as follows:

- Execute(U): This query models passive attacks, where the adversary gets the
instances of honest executions of a protocol by U .

- Send(Πs
i , m): This query is used to send a message m to Πs

i and get the
response from Πs

i . The adversary can initiate a new instance Πs
i with a set

of communicating users U1, . . . , Un by calling Send0(Ui, (U1, . . . , Un)).
- Reveal(Πs

i ): This query models the adversary’s ability to obtain session keys
(known-key attacks). If a session key skΠs

i
has previously been constructed

by Πs
i , it is returned to the adversary.

- Corrupt(Ui): This query models the adversary’s ability to obtain long-term
keys of parties (forward secrecy). The adversary is assumed to be able to
obtain long-term keys of parties, but cannot control the behavior of these
players directly (of course, once the adversary has asked a query Corrupt(Ui),
the adversary may impersonate Ui in subsequent Send queries.) We restrict
that on Corrupt(Ui) the adversary only can get the password pw, but cannot
obtain any internal data of Ui.

- Test(Πs
i ): This query is used to define the advantage of the adversary. This

query is allowed only once by the adversary A, and only to fresh oracles,
which is defined later. On this query a simulator flips a coin b. If b is 1,
then the session skΠs

i
is returned. Otherwise a string randomly drawn from

a session key distribution is returned.
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A passive adversary can use the Execute, Reveal, Corrupt and Test queries
while an active adversary additionally can use the Send query. Even though the
Execute query may seem to be useless since it can be simulated by repeatedly
using the Send queries. Yet the Execute query is essential to distinguish on-line
dictionary attacks from off-line dictionary attacks. The Send queries are directly
asked by the adversary and the number of those dose not take into account the
number of Execute queries. Thus, the number of on-line dictionary attacks can
be bounded by the number of Send queries.

PAGKE Security. Consider a game between an adversary A and a set of
oracles. A asks the above queries to the oracles in order to defeat the security of
a protocol P , and receives the responses. At some point during the game a Test
query is asked to a fresh oracle, and the adversary may continue to make other
queries. Finally the adversary outputs its guess b′ for the bit b used by the Test
oracle, and terminates. We define CG to be an event that A correctly guesses the
bit b. The advantage of adversary A must be measured in terms of the security
parameter k and is defined as follows:

AdvP,A(k) = 2 · Pr[CG]− 1.

The advantage function is defined as follows:

AdvP (k, t) = max
A {AdvP,A(k)},

where A is any adversary with time complexity t which is polynomial in k.

Freshness. We define a notion of freshness considering forward secrecy which
means that an adversary does not learn any information about previously estab-
lished session keys when making a Corrupt-query. We say an oracle Πs

i is fresh
if the following conditions hold:

- Πs
i has computed a session key sk �= NULL and neither Πs

i nor Πt
j have

been asked for a Reveal query, where Πs
i and Πt

j are partnered.
- No Corrupt query has been made by the adversary since the beginning of the

game.

Definition 1. We say a protocol P is a secure password-authenticated group key
exchange protocol if the following two properties are satisfied:

- Validity: if all oracles in a session are partnered, the session keys of all oracles
are same.

- Key secrecy: AdvP (k, t) is bounded by qse/PW + ε(k), where ε(k) is negligi-
ble, qse is the number of Send queries, and PW is the size of the password
space.

(1) We say a protocol P is a secure PAGKE protocol if validity and key secrecy
are satisfied when no Reveal and Corrupt queries are allowed.

(2) We say a protocol P is a secure PAGKE-KK protocol if validity and key
secrecy are satisfied when no Corrupt query is allowed.
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(3) We say a protocol P is a secure PAGKE-FS protocol if validity and key secrecy
are satisfied when no Reveal query is allowed.

(4) We say a protocol P is a secure PAGKE-KK&FS protocol if validity and key
secrecy are satisfied.

5 A Two-Round Protocol for PAGKE

In this section, we present protocol PAGKE which requires only two rounds,
achieves forward secrecy, and is secure against known-key attacks. PAGKE is
designed without using the random oracle model and its security is proved under
the DDH assumption. In order to convert the unauthenticated Burmester and
Desmedt’s group key exchange protocol to a PAGKE protocol, we use a multi-
plicative function; the user Ui’s ephemeral Diffie-Hellman value gri

1 is multiplied
by g

H(pw‖Ui)
2 in the first round.

PAGKE

Public information: Let U1, . . . , Un be the identities in lexical order of n
users. A finite cyclic group G of order q in Z∗

p. Two primes p, q such that
p = 2q + 1, where p is a safe prime such that the DDH problem is hard to
solve in G. g1 and g2 are generators of G both having order q, where g1 and
g2 must be generated so that their discrete logarithmic relation is unknown.
A hash function H from {0, 1}∗ to Z∗

q . F is a pseudo random function family.

Round 1: Each user Ui chooses a random number ri ∈ Z∗
q , computes xi =

gri
1 mod p and Xi = xi · gH(pw‖Ui)

2 mod p. Ui broadcasts Ui‖1‖Xi, where 1
represents the broadcast message in the first round.

Round 2: Each user Ui computes xi−1 and xi+1 using pw and the senders’
identities Ui−1 and Ui+1, respectively. Ui computes Yi = (xi+1/xi−1)ri mod p
and broadcasts Ui‖2‖Yi.

Key computation: Each user Ui computes the secret key for F as ki =
(xi−1)nri · Y n−1

i · Y n−2
i+1 · · ·Yi−2 mod p and the session key ski = Fki(U||sid),

where U = (U1, . . . , Un), sid = 1||X||2||Y, X = (X1, . . . , Xn), and Y =
(Y1, . . . , Yn).

If everything works correctly in PAGKE , the session key computed by Ui is
ski = Fki(U||sid), where ki = gr1r2+r2r3+...+rnr1

1 mod p.

6 Security Analysis

We now present that under the intractability assumption of the decisional Diffie-
Hellman (DDH) problem and if F is a secure pseudo random function, the
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proposed group key exchange protocol is secure against dictionary attacks and
known-key attacks and provides forward secrecy.

Theorem 2. Let G be a group in which the DDH assumption holds and F is a
secure pseudo random function family. Then PAGKE is a secure PAGKE-KK&FS
protocol. Concretely,

Advpagke-kk&fs
PAGKE (k, t, qex, qse) ≤ 2(n + 2n ·Ns + qse) · Advddh

G (t) + Advprf
F (κ, T, q, h)

+
2qse

PW +
|U|(qex + qse)2

2q
,

where t is the maximum total game time including an adversary’s running time,
and an adversary makes qex Execute queries and qse Send queries. n is the upper
bound of the number of the parties in the game, Ns is the upper bound of the
number of sessions that an adversary makes, and PW is the size of the password
space.

Proof of Theorem 2. Consider an adversary A attacking PAGKE in the sense
of forward secrecy and security against known-key attacks. In this proof, we
prove that the best strategy A can take is to eliminate one password from the
password dictionary per initiated session. Assume that A breaks PAGKE with a
non-negligible probability. An adversary may get information about a particular
session key if a collision appears on the transcripts (for the same set of users)
during the experiment; i.e., there exists a user Ui ∈ U and t, s (t �= s) such that
the transcript used by instance Πs

i is equal to the transcript used by instance
Πt

i . The other cases allow us to solve the DDH problem and break a pseudo
randomness of a pseudo random function family with probability related to the
adversary’s success probability. We now proceed with a more formal proof. Let
Col be the event that a transcript is used twice by a particular user.

The advantage with the event Col is bounded by the birthday paradox:

Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse) = 2Pr[CG ∧ Col]− 1 ≤ 2Pr[Col] ≤ |U|(qex + qse)2

q
,

(1)

where q is the size of the group G.

The advantage without the event Col is from the following two cases:

(Case 1) For the Test oracle Πs
i , all parties in pids

i have a partner oracle.
(Case 2) For the Test oracle Πs

i , there exists at least one party Uj (j �=
i ∧ Uj ∈ pids

i ) such that Uj does not have a partner oracle.

For i ∈ {1, 2}, let Advpagke-kk&fs-Case i
PAGKE (k, t, qex, qse) be the advantage of an adver-

sary from Case i. Then we have
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Advpagke-kk&fs
PAGKE (k, t, qex, qse) = Advpagke-kk&fs-Col

PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse)

= Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 1
PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse).

If the advantage of an adversary is from Case 1, the password of the parties
may be revealed by Corrupt queries. Although Corrupt queries are allowed by the
definition of freshness, for the Test oracle Πs

i , all instances in pids
i are executed

by Execute queries. This case can be seen that there is no the password in the
protocol, and thus we may ignore Corrupt queries. Therefore, computing the
upper bound of the advantage from Case 1 is similar to that of Theorem 3 of
[30] (Theorem 1 in this paper) and hence we omit the details.

Advpagke-kk&fs-Case 1
PAGKE (k, t, qex, qse) ≤ Ns ·Advgke-fs

BD (k, t, qex) ≤ 2n·Ns ·Advddh
G (t). (2)

To compute the upper bound of the advantage from Case 2, we assume an
adversary A gets the advantage from Case 2. In this case, the password of the
parties is not revealed by freshness conditions. Informally, there are only two
ways an adversary can get information about a particular session key; either
the adversary successfully breaks the authentication part, which means that the
adversary correctly guesses the password, or correctly guesses the bit b involved
in the Test query. The advantage from Case 2 is bounded as follows:

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse)≤2(n+n ·Ns+qse) · Advddh

G (t)+Advprf
F (κ, T, q, h)

+
2qse

PW . (3)

From Equations (1),(2) and (3) lead to

Advpagke-kk&fs
PAGKE (k, t, qex, qse) = Advpagke-kk&fs-Case1

PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse) + 2Pr[Col]

≤ 2(n + 2n ·Ns + qse) · Advddh
G (t) + Advprf

F (κ, T, q, h) +
2qse

PW +
|U|(qex + qse)2

2q
.

The detailed proof of the theorem appears in the full version of the paper [33].

7 Explicit Authentication

PAGKE is a PAGKE protocol with implicit authentication; A key exchange
protocol is said to provide implicit key authentication if users are assured that
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no other users aside from partners can possibly learn the value of a particu-
lar secret key. Note that the property of implicit key authentication does not
necessarily mean that the partners actually have computed the key. Another
notion is explicit authentication, which guarantees to each user that it actually
shares the same session key with all the others. To convert PAGKE with im-
plicit authentication into the protocol PAGKE ′ that provides explicit authen-
tication, we use the well-known approach which generates an “authenticator”
for the other users by using a message authentication code (MAC) keyed by
the shared session key [22]. We now present the modification PAGKE ′ provid-
ing implicit authentication which is the same as PAGKE except the following
points.

PAGKE′

Public information: A message authentication code (MAC), Mac =
(Mac.gen, Mac.ver). Given a random key k, Mac.gen computes a tag τ for a
message M ; we write this as τ = Mac.genk(M). Mac.ver verifies the message-
tag pair using the (shared) key, and returns 1 if the tag is valid or 0 otherwise.

Key computation: Each user Ui computes the secret key for F as follows:

ki = (xi−1)nri · Y n−1
i · Y n−2

i+1 · · ·Yi−2 mod p.

Each user Ui broadcasts his authenticator τi = Mac.genki
(U||1||X||2||Y), where

U = (U1, . . . , Un), X = (X1, . . . , Xn), and Y = (Y1, . . . , Yn).

Key confirmation: Upon receiving τj (j �= i), each user Ui checks the validity
of τj (1 ≤ j ≤ n). If all are valid, each user Ui computes the session key as
ski = Fki(U||sid), where sid = (1||X||2||Y||3||τ) and τ = (τ1, ..., τn).

8 Concluding Remarks

A previous constant-round PAGKE protocol has been proven secure in both the
ideal hash model and the ideal cipher model [2]. However, a provably-secure
protocol using ideal functions may be insecure if the ideal functions are imple-
mented by the real-world functions. Thus a protocol without using ideal func-
tions in proving its security is more desirable. In the paper, we have proposed
the first provably-secure two-round PAGKE protocol without using any ideal
function. This result is the best solution since the security of the protocol is
based on weaker and more reasonable assumptions and the protocol achieves
constant-round complexity, yet much work remains to be done to improve the
computational efficiency.
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Abstract. In this paper, we consider time/memory trade-off (TMTO)
and exhaustive search attacks and analyze their effectiveness on various
key sizes. The first part of the paper is an overview of TMTO methodol-
ogy and summarizes earlier work on hardware implementation of TMTO
and exhaustive search attacks. The second part of the paper develops a
cost model for analysing the effectiveness of generic attacks. Analysis
of the cost model shows that 128-bit keys seem safe for the present.
However, key sizes less than 96 bits do not provide comfortable security
assurances. This is particularly relevant for the 80-bit stream ciphers in
the Ecrypt call for stream ciphers as well as for the A5/3 encryption
algorithm used in GSM mobile phones.

Keywords: one-way function, cryptanalysis.

1 Introduction

Cryptographic algorithms such as block and stream ciphers require the use of
a secret key to ensure confidentiality of transmitted messages. The basic goal
of a cryptanalytic attack is to recover the secret key from publicly available
information. Very often a successful attack exploits weakness in the design of
the specific algorithm being considered.

On the other hand, a generic approach to cryptanalysis is to try every possi-
ble key until the correct one is found. This is called an exhaustive search attack.
The importance of such an approach arises from the fact that if a cryptographic
algorithm is not secure against exhaustive search, then it cannot be considered
secure at all. The resistance against exhaustive search depends on the size of
the key space. However there are other factors to consider: Implementation in
software or special purpose hardware; the number of parallel processors avail-
able; the speed at which each key can be processed; the cost of each processor
and the overall cost of implementing the attack. (There are other issues like
power consumption and mean time between failures to consider.) Implementa-
tion of exhaustive search is most feasible in special purpose hardware. In 1998,
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a remarkable achievement was made when the Electronics Frontier Foundation
built a machine for cracking DES at a cost of US $200,000 and which cracked a
DES problem in 3 and 1/2 days.

One disadvantage of using exhaustive search is that it has to be repeated
separately for each target. Hellman [12] introduced an approach to avoid this
problem. In his approach, one performs an exhaustive search once in an offline
pre-computation phase. The actual attack, i.e., finding the key corresponding
to a target is done in an online phase and is significantly faster then exhaustive
search. Also, one can repeat the attack on different targets without going through
the pre-computation each time. This approach has been called a time-memory
trade-off (TMTO) attack. A TMTO attack is a generic attack which can be
carried out against any one-way function f . The online target consists of an
image y and the goal of the attack is to find a k, such that f(k) = y.

This paper has two parts. The first part is a summary of state of the art on im-
plementation of TMTO and exhaustive search attacks. We present an overview
of TMTO algorithms and summarize the work done so far on software and
hardware implementation of such algorithms. In this part we also describe the
work done on special purpose hardware for exhaustive search with special em-
phasis on DES. In the second part of the paper, we develop a cost-time-data
trade-off model and analyze the effectiveness of exhaustive search and TMTO
pre-computation for s-bit keys with s ≤ 128. This analysis shows that s ≤ 96
does not afford comfortable security while s = 128 appears to be secure in the
foreseeable future. We apply our trade-off model to stream ciphers and find that
the 80-bit stream ciphers does not provide adequate protection against TMTO
attacks. Further, we show that the A5/3 encryption algorithm used in GSM
mobile phone also does not provide adequate security.

2 TMTO Methodology

In 1980, Hellman [12] presented a cryptanalytic time/memory trade-off attack
which can viewed as a generic one-way function (f : {0, 1}s → {0, 1}s) inverter.
Hellman’s attack consists of two steps: precomputing the tables and searching
(table lookups) in the tables. In a precomputed table, we generate a chain of
length t from a start point k0 as,

k0
f−→ k1

f−→ k2 → . . .→ kt−2
f−→ kt−1.

For an m × t table, m chains of length t are generated. We store start and
end points in the table, sorted in the increasing order of end points. Using
matrix stopping rule, we choose m and t such that mt2 = N , where N = 2s.
So one table can cover only a fraction mt

N = 1
t of N . Hence, we need t different

(unrelated) tables to cover all N keys. For the ith table, we choose a function
fi(k) = φi(f(k)), which is a simple output modification of f(k). The functions
fi, i = 1, 2, . . . , t are unrelated. In the ith table, we randomly select m distinct
keys from the key space, generate m chains taking each key as a start point with
the same function fi.



On the Effectiveness of TMTO and Exhaustive Search Attacks 339

Given a target y = f(k), we need to find its pre-image k. Suppose k is in
one of the constructed tables. For all i = 1, 2, . . . , t, we repeatedly apply fi to
y′ = φi(y) at most t times, each time we check whether it reaches an end point of
ith table. The number of table lookups for this is at most t. If it reaches an end
point, we have the position of k. Then we come to the corresponding start point
and repeatedly apply the function until it reaches y. The previous value it visited
is k. Hence, the total number of f invocations = t2 + t ≈ t2. The total number
of table lookups required is t2. The Hellman method can recovers a key in time
T (total number of f invocations) using M memory such that TM2 = N2, this
is called the trade-off curve.

Rivest introduced the distinguished point (DP) property in time/memory
trade-off attack. We can define a DP property on the key space K as follows: a
key k satisfies the DP property if its first p bits are zero. In the DP method, we
stop a chain after reaching a DP. So the chains are of variable lengths. Given a
cipher text, in the search phase we generate a chain, until we reach a DP. After
reaching a DP, we perform a table lookup, and so the number of table lookups
reduces from t2 (for t Hellman tables) to t.

In 2003, Oechslin [16] proposed the rainbow method to reduce the runtime
cost to one-half of Hellman method. This method can obtain the key using the
same trade-off curve as Hellman method, i.e., TM2 = N2 for 1 ≤ T ≤ N . The
rainbow method replaces t Hellman tables of size m × t into a single rainbow
table with size mt× t. Each row of a rainbow table is a rainbow chain,

k0
f1−→ k1

f2−→ k2 → . . .→ kt−2
ft−1−→ kt−1.

Given a target y, to find the pre-image, rainbow method does the following:
Apply ft−1 to y′ and lookup the value in the endpoints of the table. If found,
then we get the position of the key in the last column. Otherwise, we apply ft−2,
ft−1 to check whether the key is in the second last column of the table. This
way we apply ft−3, ft−2, ft−1 and so forth. After getting the position of the
key (assuming that it is in the table) we come to the corresponding start point
and apply the functions f1, f2, . . . until it reaches y′. Then the previous value it
visited is k. So, the total number of f invocations required is t(t−1)+2t

2 ≈ t(t−1)
2 .

TMTO was applied to stream ciphers by Babbage [4] and Golić [10]. This
attack is jointly known as the BG attack. Later, Biryukov and Shamir [7] com-
bined the Hellman and the BG attack to obtain TMTO with multiple data. They
obtained the curve TM2D2 = N2. In [9], a rigorous time/memory trade-off con-
struction is given that works for any function f . Unfortunately, the trade-offs
obtained in [9] are worse than the Hellman trade-offs. Hence, [9] is primarily of
theoretical interest.

3 Implementation of TMTO Attack

3.1 Software Implementation

In 2003, Oechslin [16] described the implementation of rainbowcrack which is a
general purpose implementation of rainbow method. Rainbowcrack can attack
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MS-Windows password hashes and crack 99.9% of all aphanumerical password
hashes (out of 237) in 13.6 seconds using 1.4 GB data.

There is an elegant application of TMTO in [6], which uses a special type of
sampling technique called the BSW sampling. This technique uses only part of
the available online data and also reduces the search space. Use of this technique
allowed particularly efficient attacks on A5/1 which is a 64-bit stream cipher.
After a 248 parallelizable data preparation stage (which has to be carried out
only once), the actual attacks can be carried out in real time on a single PC.

3.2 Hardware Implementation

In 1988, Amirazizi and Hellman [3] proposed time/memory/processor trade-off
where more than one processors execute in parallel, sharing a large memory
through a switching/sorting network. This requires n log n switching elements, n
being both the number of processor and blocks of memory. The emphasis of the
work is to minimize the runtime of the cryptanalytic attacks in time/memory
trade-off cryptanalysis by running the processors in parallel. The cost of the wires
(number of wires required) is one of the dominating cost in the switching/sorting
network. Amirazizi and Hellman [3] assumed that the cost of the wires is less than
n log n and left this as an open problem for further study. Recently, Wiener [21]
investigated the problem and proved that the wiring cost can not be less than
Θ(n

3
2 ) for any switching/sorting network to connect n processors with n memory

blocks.
Quisquater and Standaert [19] provide a sketch of a generic architecture based

on their two previous works [17, 20]. They suggest a pipelined architecture for
implementing a multi-round function f . This builds on Wiener’s design [22] of
implementing DES in his exhaustive search attack on DES.

Nele Mentens et al [14] propose a hardware architecture for key search based
on rainbow method. They have estimated that an FPGA implementation of the
machine can run at 17.5 Unix password tests/second on a Virtex-4. Their design
targets Unix passwords of length 48 bits (out of 56 bits). In 11 days, using 56
Gigabyte with 16 FPGAs, the precomputation for one salt and recovering an
individual password takes a few minutes. A problem with this approach is the
inherent difficulty of implementing a single large table.

4 Exhaustive Search on DES

In 1977, Diffie and Hellman [8] proposed an exhaustive search machine for DES
which consists of 106 DES chips. The cost of the machine was estimated to
be around 20M USD and it was expected to find the key in 12 hours. An im-
provement of this exhaustive search technique was proposed by Quisquater and
Delescaille [17] in 1989, followed by a suggestion for distributed computation by
Quisquater and Desmedt [18] in 1991.

A gate-level design of DES chip was proposed by Wiener [22] in 1993. In this
design, every chip has 16 pipeline stages with a clock frequency of 50 Mhz. A
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machine consists of 57600 DES chips and was expected to recover the key in 3.5
hours and the total expected cost was 1M USD.

In 1997, a prize for cracking DES was announced at the annual RSA Cryp-
tographic Trade Show. As a result, in 1998 DES was broken in 39 days using
exhaustive search on a network of PCs.

In 1998, EFF (Electronics Frontier Foundation) built a machine for cracking
DES [2] in 3 days with a total cost of 200,000 USD (80,000 USD for man power
+ 120,000 USD for production) by exhaustive search. The DES cracker is a
ciphertext only attack where a PC drives many search units. Each search unit
is a DES chip and searches 2.5 million keys per second. A total of 24 search
units fit inside a custom chip and searches 60 million keys per second. A large
circuit board contains 64 chips which searches 3.8 billion keys per second and
12 boards are mounted into a chassis which searches 46 billion keys per second.
They use two chassis to search 92 billion keys per second, i.e., covering half of
the key space in about 4.5 days. Recently, Quisquater and Standaert [19] gave a
rough estimate that a 12000 USD machine could break DES in 3 and 1/2 days
by exhaustive search.

Very recently, Bernstein [5] describes the pre-computation phase of two known
TMTO attacks (rainbow; Hellman+DP) as parallel brute force search algo-
rithms. Exhaustive search normally does not require sorting. However, since
Bernstein adapts TMTO to brute force, he requires parallel sorting. Bernstein
does not provide architectural details.

5 Cost Analysis

Let f be the one-way function that we want to invert and N is the size of its
domain. We would like to perform a cost-time analysis of TMTO and exhaustive
search attacks. To do this, we need to identify the dominant components of both
the attack time and the costs. This is relatively easy to do for exhaustive search.
The function f has to be applied on every possible input in the domain. Hence,
the dominant component of the time is the time required to apply f a total of
N times; for parallel implementation, this time is scaled down by the number
of processors used. The dominant cost component is the cost of implementing
the parallel f -invocation units (or processors). The cost should also include the
manpower cost, but this is harder to estimate.

A TMTO algorithm is more complex than exhaustive search and deriving
an appropriate cost model is more difficult. The precomputation phase of the
TMTO algorithm has several time components – time required to obtain the
(start-point, end-point) pairs; memory access time required to store these pairs
into the table; and the time required to sort the tables. The online time has
two major components – time to obtain the end-points; and the time for table
look-up. Similarly, the cost has several components – the cost of the parallel
f -invocation units; and the cost of storage media. In the online stage, the wiring
cost of connecting processors to memory can also be substantially high [21].

To a large extent, the appropriate choice of the cost model depends on the
underlying architecture used for the implementation. Following Wiener’s work,
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it is currently believed that the dominant cost of the hardware will be the inter-
connection cost of connecting a set of processors to a set of memory locations.
However, this assumes a particular architecture, i.e., all the processors will ac-
tually be connected to all the memory locations. This is not the only possible
architecture. Below we provide a sketch of a pipelined architecture for which
the interconnection cost will be minimal. Similarly, for the time component, the
current belief is that the dominant factor is the time required for memory ac-
cess. This is true for a sequential implementation on a PC connected to a single
disk. On the other hand, with special purpose hardware, there are several ways
to efficiently pipeline the operations such that the cost of memory access can
actually be ignored. We discuss this in more details below with respect to the
Hellman with distinguished point (Hellman+DP) method.

Pre-Computation Phase: Let us consider the tasks performed in the pre-comput-
ation phase. At a top level this consists of the following two separate tasks for
each table.

1. Compute the chains and write the (start-point, end-point) pairs to the table.
2. Sort the table.
3. Write the table into a DVD

Let us call the first task, chain-computation, the second task sorting, and third
task DVDwrite. We take the following issues in consideration.

– Chain computation and sorting hardware should be designed so that they
complete simultaneously. In any case, sorting should not take more time than
chain computation.

– Both chain computation and sorting phase will require memory writes. For
the chain computation stage, batching can be used to reduce number of mem-
ory accesses. Also chain computation and memory access can be pipelined
to some extent.

– We use few blocks of high speed memory while keeping the actual tables
into DVDs. The completed table in a high speed memory will be written
to a DVD and then the high speed memory will be cycled back into fresh
memory.

– If the DVD writing time is more than the time required for chain computa-
tion for a table, then we use more than one DVD writers (running in parallel)
to synchronize the chain computation and DVD write.

In the Hellman+DP method, a total of r tables are to be prepared. Let us denote
the tables by T1, . . . , Tr. Consider the following algorithm.

1. Perform chain-computation for T1;
2. do in parallel

perform chain-computation for T2;
perform sorting for T1;

3. for i = 3 to r do in parallel
perform chain-computation for Ti;
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perform sorting for Ti−1;
initiate DVDwrite for Ti−2 ;

4. end do;
5. do in parallel

perform sorting for Tr;
perform DVDwrite for Tr−1;

6. perform DVDwrite for Tr.

This algorithm pipelines the chain computation for Ti with the sorting of Ti−1
and DVD writing for Ti−2. Under the reasonable assumption that the sorting
time is at most the chain computation time, the major time component is at
most the time required for chain-computation of r tables plus the time required
to sort a table and write to DVD. The chain-computation itself has two tasks –
parallel f -invocations and writing to high speed memory. These two tasks can
also be pipelined as we discuss below.

Suppose n many f -invocation units are available. Each table has a total of m
many (s-p, e-p) pairs. These are divided into m/n blocks B1, . . . , Bm/n, where
each block contains n pairs. The n many f -invocation units will be operating in
parallel to produce one block.

1. Generate block B1;
2. for i = 2 to m/n do in parallel

Generate block Bi;
Write block Bi−1 to the table;

3. end do;
4. Write block Bm/n to the table;

Producing each block Bi requires n×t many f -invocations. We may assume that
the time for nt many f -invocations is more than the time to write a block of n
pairs to the table. Hence, the dominant time is the time required to compute all
the chains in a table, which is time required for m× t many f invocations.

Let us consider the time required to prepare all the tables. Using the above
two algorithms, the total time will essentially be mrt many f -invocations done in
parallel by n many f -invocation units. The cost has several components–cost of
the f -invocation units; cost of input/output (I/O) units to write the blocks Bi’s
to the table; cost of storing r tables; and cost of the sorting unit. The dominant
cost components are the cost of the f -invocation units and the cost of storage
(memory).

On-Line Phase: We would like to avoid the lower bound on the wiring cost
obtained by Wiener [21]. An architecture which avoids this cost can be described
as follows. There is a set of n many f -invocation units, which produce DPs and
write them to a buffer. There is another set of q many I/O processors, which
read from this buffer and perform look-up into the tables.

At a time, the q I/O processors are connected to q tables. Once look-up on q
tables are completed, the tables are moved out and a new set of q many tables
are moved into place. Thus, the system operates as follows: Look-up on T1, . . . Tq
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are completed, then look-up on Tq+1, . . . , T2q are completed, and so on. Once a
table is replaced, it is never loaded again for this data set. Thus, if we have D
targets, then the look-up into table Ti for all these targets are completed before
Ti is replaced.

In the above scenario, the following two tasks are performed in parallel.

– Apply f -invocations to the D targets and write the final DPs to the buffer.
– Read from the buffer; perform look-up in the q tables; and then replace the

tables.

With a suitable design and choice of the parameters q and n, we can make
the assumption that the above two tasks require approximately the same time.
Under this assumption, the total time required in the online phase can be taken
to be the total time for all the f -invocations. Further, in this architecture, the
wiring cost is minimal and the dominant cost is the cost of implementing the
f -invocation units. The task of an I/O processor is relatively simple and also
we will have q to be much less than n. Hence, the cost of implementing q I/O
processors can be ignored with respect to the cost of implementing the n many
f -invocation units. See [15] for more details.

We summarize the above discussion with respect to the cost and time mea-
sures.

Pre-computation phase:
– Time: time required for rmt many f -invocations;
– Cost: cost of implementing n many parallel f -invocation units and cost

of storing r many tables.
Online phase:

– Time: time required for rtD many f -invocations;
– Cost: cost of implementing n many parallel f -invocation units.

5.1 Approximate Cost Analysis

In CHES 2005, Good and Benaissa [11] proposed a new FPGA design for AES
using Xilink Spartan-III (XC3S2000). The cost of a Xilink Spartan-III FPGA
device whose cost is around 12 USD (see [19]). The speed of encryption of the
design in [11] is 25Gbps=0.2× 232 AES-128 encryption/sec. Under the assump-
tion that the cost and time scale linearly as we move from one processor to
n processors, the total processor cost for n processor units is Hp = 12n USD
and the speed is n × 0.2 × 232 AES-128 encryptions/sec. Let Tsec be the pre-
computation time in seconds. In Tsec time, the number of encryptions will be,
Tsec × n× 0.2× 232.

For a general s-bit (s ≤ 128) cipher, attacking D = 2d online data points,
the number of encryptions required at the pre-computation stage is 2s−d. We
assume that for an s-bit cipher with s ≤ 128, the throughput and chip area will
remain same as for the best AES-128 implementation. Hence, in Tsec time, the
number of encryptions will be, Tsec × n× 0.2× 232 and we get,

Tsec × n× 0.2× 232 = 2s−d. (1)
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Using Hp = 12n, we get TsecHp = 60× 2s−d−32, or

232TsecHpD = 60N. (2)

This gives a new type of trade-off involving pre-computation time Tsec, processor
cost Hp and data D whereas usual trade-off curve involves online time (number
of f invocations), data and memory.

Memory Cost: We assume that one table will fit into one memory block.
This simplifies the table management and in particular the design of the sorting
algorithm. The latest cheap high density storage is DVD with storage capacity
between 4 and 20 Gbyte. In the near future, SONY will launch the paper disk
with capacity of 100 Gbytes. At present, we consider 4Gbyte (= 4× 232 bytes)
DVD with cost around 1 USD. Since, for a table we need 2sm

8 bytes storage, so
2sm

8 ≤ 4× 232, or,

sm ≤ 236. (3)

DVD write time: At present, we consider the writing time for a 4GB DVD is
1min1 (≈ 26sec). The total number of f -invocations required for a single table is
mt and the time required for this is t1 = mt

n×0.2×232 . Let W1, . . . Wk be the DVD
writers which are running in parallel. At each of time T = it1 for i = 2, . . . r +1,
one table will be ready for DVD write. At time T = (i + 1)t1, the table Ti will
be assigned to Wi for i = 1, 2, . . . , k. The next table Tk+1 will be ready for DVD
write at time T = (k + 2)t1. If we choose kt1 ≥ 26, then at time T = (k + 2)t1,
W1 will be free (since the time difference between the present time and the time
when W1 was assigned the table is (k + 2)t1 − 2t1 = kt1 ≥ 26 = DVD write
time). So the table Tk+1 will be assigned to W1 for DVD write. In this way the
next table will be assigned to W2 and so on. So in this case all the processors
and DVD writers will remain busy at all the time. Hence from the above discuss
we have kt1 ≥ 26, or,

k × mt

n× 0.2× 232 ≥ 26. (4)

or,

k ≥ n236

mt
. (5)

Note the there are r table to be written into r DVDs and each DVD write takes
26 seconds. The total time required for DVD write is r26

k while k many DVD
writers are running in parallel. This time must be less than or equal to the
pre-computation time, i.e., r26

k ≤ Tsec, or,

k ≥ r26

Tsec
. (6)

We take k = max
(

n236

mt , r26

Tsec
, 1
)
. Then k satisfies both the inequalities 5 and 6.

At present, we consider the DVD writer cost is 100 USD each. The total DVD
writer cost is Hw = 100k USD. For r tables, memory cost is Hm = r USD and
1 For example writing speed of Samsung SH-W162 is 21.6MB/sec (16X).



346 S. Mukhopadhyay and P. Sarkar

Table 1. Trade-off for different values of s with D = 1

s r m t Tsec n Hp Hm k Hw τsec

56 219 219 219 216.5 210 213.6 219 28.5 215 0.31
64 221 221 221 216.5 218 221.6 221 212 218.5 0.03
80 227 227 227 225 225 228.6 227 28 214.5 0.62
86 229 229 229 225 231 234.6 229 210 216.5 0.61
96 232 232 232 238.3 228 232 232 1 26.5 80
128 232 264 232 270.3 228 232 232 1 26.5 80

total hardware cost C = Hp +Hm +Hw = (12n+r+100k) USD. Let us consider
the following cases.

Case 1: D = 1 (d = 0). We choose the Hellman table parameters as: r =
m = t = N1/3 = 2s/3. The total number of f invocations required at the on-
line stage = r × t and the time required for this is τsec = r×t

n×0.2×232 , running n

processors in parallel with the speed of 0.2 × 232 encryptions/sec. Suppose we
want to finish the pre-computation within a day, then Tsec = 216.5 (the number
of seconds in one day). From Equation 1, we get, n = 5 × 2s−48.5. For 1 year
pre-computation time, i.e., Tsec = 225 (the number of seconds in one year) we
need the number of processors, n = 5 × 2s−57. In Table 1, we summarize some
of the trade-offs with different values of s.

Case 2: D > 1. The memory cost increases with the number of tables. We
consider the following table parameters as in [7]: r = N1/3

D = 2
s
3−d and m =

t = N1/3 = 2s/3. The total number of f invocations required for online search
= rtD and the time required for this is τsec = r×t×D

n×0.2×232 , running n proces-
sors in parallel with speed of 0.2× 232 encryption/sec. From Equation 1 we get,
n = 5×2s−d−32

Tsec
. Table 2 summarizes some of the trade-offs with different values

of s and d = s
4 . The rows of the tables were calculated by fixing some of the

parameters as mentioned below.

– Table 1 (d = 0)
–rows 1 and 2: Fix Tsec to be one day.
–rows 3 and 4: Fix Tsec to be one year.
–rows 5 and 6: Fix Hp = Hm = 232.

Table 2. Trade-off for different values of s and d = s
4

s r m = t Tsec n Hp Hm k Hw τsec

80 26.7 226.7 216.5 214 217.6 26.7 1 26.5 845
86 26.7 228.6 216.5 218 221.6 26.7 1 26.5 776
96 28 232 216.5 226 229.6 28 1 26.5 320
96 28 232 225 217 220.6 28 1 26.5 217.3

128 211 243 225 241 244.6 211 1 26.5 215.3

128 232 232 225 241 244.6 232 213 219.5 225.3

128 232 232 238 228 232 232 1 26.5 238.3
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– Table 2 (d = s/4)

–rows 1, 2 and 3: Fix Tsec to be one day.
–rows 4 and 5: Fix Tsec to be one year.
–row 6: Fix Tsec to be one year and Hm = 232.
–row 7: Fix Hp = Hm = 232.

Discussion: From Tables 1 and 2, we conclude the following.

– 56-bit and 64-bit f ’s are completely insecure.
– For d = 0, with one year pre-computation time and around 500M USD

investment it is possible to crack 80-bit f in online time less than one second.
For multiple targets (data) with d = s/4, attacking 80-bit becomes easier.

– For s = 96, and with a single data point, pre-computation time is more
than 4000 years. This is at a cost of around 1 billion USD. It is possible to
bring down the pre-computation time to a few years by increasing the cost
to around 1 trillion dollar. Another problem is that the size of single table
becomes large and barely fits in a single storage unit (see the bound 3). In the
presence of multiple data of the order of 224 (d = s/4), the attack becomes
reasonable. Hence, 96-bit f also does not provide comfortable security.

– For s = 128, and with a single data point (d = 0), at least one of the param-
eters among (Tsec, Hp, Hm) become infeasible. Also even with d = s/4 = 32,
one of the above parameters continue to remain infeasible. Increasing d
beyond 32 is not practical. Hence, 128-bit can be considered to provide ad-
equate security margin, at least until a new technological revolution invali-
dates the analysis performed here.

General Case: For the general case, let us assume that C1 and C2 are the
costs of one search unit and one storage unit respectively and ρ, δ are the rate of
encryption and size of one storage unit in Gbyte respectively. Then Equation 1
becomes,

Tsec × n× ρ = 2s−d (7)

and, Hp = C1n and Hm = C2r. Using Hp = C1n in Equation 7, we get Tsec ×
Hp × ρ = 2s−dC1, or ρTsecHpD = C1N . Since for a table we need 2sm

8 bytes
storage, so 2sm

8 ≤ δ × 232, or,

sm ≤ δ234. (8)

This constraint is required because we are fitting one table into one storage
unit. Let ε be the DVD (storage) writing time. Then equation 4 becomes, k ×
mt

n×ρ ≥ ε, or, k ≥ n×ρ×ε
m×t and equation 6 becomes, k ≥ rε

Tsec
. Thus we take

k = max
(

n×ρ×ε
m×t , rε

Tsec
, 1
)
. Let C3 be the cost of one DVD writer, then Hw =

kC3USD.
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5.2 Cost of Exhaustive Search

Cost analysis of exhaustive search is same as the cost analysis for TMTO pre-
computation except the memory cost and DVD writer cost. Note that the proces-
sor cost Hp is required for both exhaustive search and TMTO pre-computation.
The factor Hm is additionally required for TMTO. Hence, the trade-off for ex-
haustive search is same as Equation 2, i.e.,

232THD = 60N (9)

where T denotes the time in seconds required for exhaustive search, H is the
total processor cost and D is the number of data points. The general equation
is the following.

ρTHD = C1N (10)

5.3 Rainbow Method

The rainbow method replaces t Hellman table of size m × t into a single rain-
bow table with size m′ × t, where m′ = mt. Let us consider the case when
s = 56 (DES). Then N = 256, taking m = t = N1/3, we get m′ = 236, i.e.
sm′ = 56× 236 > 236. This violates the constraint 3 (sm′ ≤ 236). Hence a single
large rainbow table has to be stored into the more than one memory block (the
number of memory block will increase with the value of s). Then the sorting
algorithm becomes much more complicated since it has now to sort the table
which is split into different memory blocks. On the other hand, if we break the
large single rainbow table into several number of small mutually disjoint rainbow
tables the online time increases by a factor of r, where r is the number of rain-
bow tables. In view of this, rainbow method is not a good choice for hardware
implementation.

6 Application to Stream Ciphers with IV

Application of TMTO to stream ciphers with IV was analysed in [13]. For a
k-bit stream cipher using an l-bit IV, consider the following (k + l)-bit one-way
function f :

(k-bit key, l-bit IV) �→ (k + l)-bit keystream prefix. (11)

As pointed out in [13], inverting this one-way function f will provide the secret
key. Since many IVs are used with the same key, and since IVs are public, one
can apply multiple data TMTO to f , using D many publicly available IVs. It
has been shown in [13], that if IV length is less than key length, then this the
online time of TMTO is less than exhaustive key search. (This has resulted in
the recent Ecrypt call for stream ciphers, to mandate IV length to be at least
equal to the key length.) However, the pre-computation time becomes 2k+l which
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is more than exhaustive key search. On the other hand, the importance of IV
in a TMTO attack matters more than its length. The effective length of IV is
also crucial and has been pointed out in [13]. Let us consider this point in more
details.

The usual requirement on IV is that it should be a nonce, i.e., no value should
be repeated. Thus, for example, one can fix a key and use the numbers 1, 2, . . . ,
as IVs for different messages. Suppose at most 2λ messages are encrypted before
a key change. The above appears to be a valid protocol for using stream cipher.
The problem is that in this approach, only the last λ bits of the IV ever change.
If we put the (arbitrary) restriction that at most 1000 messages are encrypted
before a key change, then λ ≈ 10.

Suppose, for a particular key we have access to the keystream segment for
about 32 = 25 messages. This gives D = 25. Since we know all the IVs, we can
apply TMTO to a search space of size N = 2k+10 with D = 25. The precom-
putation time is N/D = 2k+10/25 = 2k+5 and the online time then comes to
around 22(k+5)/3. If k = 80, then the precomputation can be completed in one
year at a cost of 232 USD and the online time is around a minute. While the
cost is quite high, it is not out of reach of powerful organizations.

We interpret this situation as indicating that to resist TMTO, it is not suf-
ficient to have IV length to be equal to key length. The protocol must ensure
that the entire IV length is actually used. One simple way of doing this can be
to choose a random nonce as IV for the first msg encrypted using a particular
key and then use nonce + 1, nonce + 2, . . . as IVs for subsequent msg.

6.1 GSM

For the GSM mobile phones [1], A5/3 stream cipher is used which is based on
the iterated block cipher KASUMI. The cipher A5/3 uses 64-bit key and 22-bit
effective IV size (others bits of IV are fixed). The following one-way function f
from 86-bit to 86-bit has been considered in [13]:

(64-bit key, 22-bit effective IV) �→ 86-bit keystream prefix. (12)

The size of the search space for exhaustive search attack is 264. From Table 1
(see row 2), we have the time for exhaustive search attack which is same as the
pre-computation time for TMTO to be 216.5 sec with a 221 USD investment.

This is certainly doable and hence GSM mobile phone communications cannot
be considered secure for more than a day. However, can we consider such com-
munications to be secure for a shorter duration such as an hour. For example,
a stock order is placed over a phone and the order is executed within an hour.
Once the order is executed, there is no need for secrecy. Thus, it is enough to
ensure secrecy from the point of the order being placed and it being executed,
which is at most an hour. If we consider only exhaustive search attacks, then
such communication over GSM phones appears to be secure. However, if we ap-
ply TMTO to the search space of the function f defined in (12), then this might
not be true.
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The size of the search space f is N = 286. From Equation 1 we get, n =
5×286−d−32

Tsec
where 2d is the number of data points availible to the attacker. Table 3

summarizes some of the trade-offs with different values of D where the table
parameters are taken as: r = N1/3

D = 2
s
3−d and m = t = N1/3 = 2s/3. From

Table 3, we conclude that the A5/3 algorithm of GSM provides inadequate
security.

Table 3. Trade-off of GSM for different values of D

D r m = t Tsec n Hp Hm k Hw τsec

1 229 229 225 231 234.6 229 210 216.5 0.61
28 221 229 225 223 226.6 221 22 28.5 32
216 213 229 216.5 224 227.6 213 23 29.5 16
222 27 229 216.5 218 221.6 27 1 26.5 210

7 TMTO Versus Exhaustive Search

In this section, we provide a comparison between TMTO and exhaustive search.
Note that the size of the search space is same irrespective of whether we use
TMTO or exhaustive search. The availability of multiple data (targets) bring
down both the precomputation and online time of TMTO. The same is true
for exhaustive search which of course does not have separate online and offline
phases.

1. TMTO is a chosen plaintext attack which can be converted to weak known
plaintext or ciphertext only attack (see [12]). On the other hand, exhaustive
search can be a ciphertext only attack [2].

2. TMTO pre-computation phase is also an exhaustive search. However it ad-
ditionally requires the following,
– Memory is required to store the table(s).
– Memory access is needed to write the (start point, end point) pairs into the
table. Unless suitably pipelined, the memory access time can be substantial
overhead.
– Sorting is performed on the table(s) to sort (start point, end point) pairs
in the increasing order of the end points. Again unless suitably pipelined,
this is a substantial overhead.

Possible advantages of TMTO over exhaustive search. Pre-computation of TMTO
is a one-time activity. Once completed, the online stage is much faster than exhaus-
tive search for target available at different times. In the case of exhaustive search,
the entire attack has to be repeated every time.

Rechannelising the memory cost of TMTO into processor cost for exhaustive
search does not significantly reduce the exhaustive search time. To justify this, we
consider a TMTO which can find the key in time τsec with Tsec precomputation
time, Hp processor cost and Hm memory cost. We also consider an exhaustive
search attack which can find the key in time T with the processor cost H =
Hp + Hm. Then we will have the following three cases:
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Case 1: If Hp > Hm, then H ≈ Hp. Eq. (2) and (9) yield T = Tsec > τsec.
Case 2: If Hp ≈ Hm, then H ≈ 2Hp. Eq. (2) and (9) yield T = 1

2Tsec > τsec.
Case 3: If Hp < Hm, then H ≈ Hm. This case occurs only when the key

size is small. For instant consider s = 56. Then from Table 1, we see that
Hp = 213.6 and Hm = 219. So H ≈ 219 and from Equation ( 9), we get
T = 480 sec > 0.31 =τsec

The above three cases show that the exhaustive search time will be more than
the online search time for TMTO. Hence, transferring the cost of memory to
the processor and performing only exhaustive search does not bring down search
time to make it comparable to online phase of TMTO.

8 Conclusion

In this paper, we have considered the effectiveness of time/memory trade-off
and exhaustive search attacks. For TMTO, we have outlined a possible pipelined
architecture, in which the dominant cost is the total number of f -invocations.
The hardware cost of TMTO is the cost of implementing parallel f -invocation
units and the cost of memory. On the other hand, the hardware cost of exhaustive
search is just the cost of the f -invocation units.

To study the effectiveness of these attacks, we have developed a cost-time-data
trade-off model based on the currently best known AES-128 implementation. We
conclude that while 128-bit keys appear to be secure, key sizes less than 96 bits
do not offer comfortable security. A possible future work is to reconsider our
cost estimates and develop designs targeted for special purpose hardware at a
lower cost and/or at higher speed. Additionally, for TMTO approach, one has
to consider the possibility of lower cost bulk storage technology.
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Abstract. We present a new architecture of Advanced Encryption Stan-
dard (AES) cryptographic hardware which can be used as cryptographic
primitives supporting privacy and authentication for Radio Frequency
Identification (RFID). RFID is a technology to identify goods or per-
son containing the tags. While it is a convenient way to track items, it
also provides chances to track people and their activities through their
belongings. For these reasons, privacy and authentication are a major
concern with RFID system and many solutions have been proposed. M.
Feldhofer , S. Dominikus, and J. Wolkerstorfer introduced the Interleaved
Protocol which serves as a means of authenticating RFID tag to reader
devices in [14]. They designed very small and low power AES hardware
as a cryptographic primitive. In this contribution, we introduce a novel
method to increase the operating speed of previous method for low power
AES cryptographic circuits. Our low power AES cryptographic hardware
can encrypt 128-bit data block within 870 clock cycles using less than
4000 gates and has a power consumption about or less than 20 μW on
a 0.25 μm CMOS process.

1 Introduction

Radio Frequency Identification (RFID) is a technology for automated identifi-
cation of objects and people with electromagnetic fields. Conceptually, RFID is
similar to a bar-code system, but its wireless communication allows significant
qualitative advances. The reader need not have line-of-sight to the tag and in-
terrogates multiple tags at the same time. The tag can store many more bits
of information. There are various applications for low-cost and low power tags
such as logistics, point-of-sales, animal identification, item management, and so
on. Thanks to advances in the capabilities of tags, drastic decreases in the cost
of RFID system, and many efforts to adapt it in the real world, RFID system
seems to replace optical bar-code and proliferate in the near future.

However, the radio communications between RFID tag and readers raise a
number of security issues. Basically, RFID tags send their identifier without fur-
ther security verification when they are powered by electromagnetic waves from

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 353–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a reader. For these reasons, the security and privacy aspects of RFID systems
have become a major issue. Current RFID systems do not protect the unique
identifier so that unauthorized readers in the proximity can gather identity data.
The collected identifying data could be accumulated and linked with location
information in order to generate a customer profile. The threat to privacy grows
when a tag serial number is combined with personal information.

Over the past few years, several efforts have been made to protect privacy
problems of RFID systems. The first step to protect user privacy in RFID sys-
tems was physical approaches such as Kill Tag, Faraday cage, Blocker tag tech-
niques [2], [3], [4]. But these methods have weak points such as reusability and
operating range restriction.

Another approaches are to design an authentication protocol using crypto-
graphic solutions. The Hash-Lock and Randomized Hash Lock scheme [2], [3], [4]
was introduced to prevent an exposure of tag identity by using cryptographic
hash functions. However, these schemes do not fully protect location privacy.

Other approaches are more secure than above presented methods because
these methods use symmetric cryptography to protect tag data. In [14], M. Feld-
hofer, S. Dominikus, and J. Wolkerstorfer introduced the Interleaved Protocol
which serves as a means of authenticating RFID tag to reader devices. They used
AES cryptographic algorithm for their authentication protocol. Considering the
constraints of tag, data encryption requires high computation cost especially in
power consumptions. They designed very small AES hardware circuit as a cryp-
tographic primitive. The proposed circuit requires about 1,000 clock cycles and
consumes below 9 μA to encrypt a 128-bit block of data.

In general, small and inexpensive RFID tags are passive. Passive tags derive
their transmission power from the signal of an interrogating reader because they
have no on-board power source. For these architectural features, RFID systems
have very stringent limitations with respect to available power, physical circuit
area, and costs. Therefore special architecture and design methods for low power
AES circuit are required.

In this paper, we introduce a novel method to increase the operating speed
of previous method [14] for low power AES cryptographic hardware. As a re-
sult, a compact and low power AES implementation capable of supporting the
Interleaved Protocol for RFID authentication was developed and evaluated.

This paper is constructed as follows. Section 2 describes some related works
for low power design of AES circuit. Section 3 describes AES algorithm reviews
and architecture of our low power AES circuits. Section 4 describes synthesis and
implementation results. Finally, in Section 5, we conclude this work.

2 Related Works

The National Institute of Standard and Technology (NIST) selected the Rijndael
algorithm as the Advanced Encryption Standard (AES) [8] in 2001. Numerous
FPGA and ASIC implementations [10], [11], [12], [13] of the AES were previously
proposed and evaluated. Most of these implementations feature high speeds and
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high costs suitable for high-performance usages. The need for secure data ex-
change will become more important in the low-end devices such as RFID, sensor
network systems and many other embedded systems. Most of these low-end em-
bedded systems do not require high speed encryption functions and have very
strict environment in power consumption and in circuit area. For these reasons,
compact and low power AES hardware design became a new trend in the cryp-
tographic hardware design.

The first effort to compact design of AES was proposed by V. Rijmen [9]. AES
S-box is based on the mapping x→ x−1, where x−1 is the multiplicative inverse
in the field. He suggested an efficient method to calculate the multiplicative
inverse using composite fields which can reduce an 8-bit computing to several 4-
bit ones. J. Wolkerstoefer [15] introduced an ASIC implementation of the S-box
based on finite field arithmetic rather than using lookup-tables. In contrast to
Rijmen’s idea, they used the polynomial representation of finite filed elements
for more flexible hardware architecture. M. Feldhofer [14] proposed a symmetric
challenge-response authentication protocol which can be integrated into the ex-
isting ISO/IEC 18000 standard. They introduced an efficient architecture for a
low power and low die-size implementation of the AES algorithm. For compact
and low power design, they adapted previous methods of S-box using combina-
tional logic and suggested using a submodule in the crucial step of computing
MixColumn operation. A. Satoh [16] further extended the idea of Rijnmen [9].
They introduced a new composite field to optimize the S-box structure suited for
compact ASIC design. In this scheme, they reduced the 4-bit calculation to 2-bit
ones. D. Canright [18] improved the compact implementation of [16] using nor-
mal basis representation. To achieve a more compact S-box, he examined many
choices of basis for each subfield, not only polynomial bases but also normal
bases. This approach leads to a whole family of 432 implementation cases. He
also find out that replacing some XORs and NANDs with NORs gives further
saving of logic area. The best implementation case of S-box is 20% smaller than
previous work of [16], which resulted in the smallest AES S-box architecture to
date.

3 Low Power AES Hardware Architecture

The AES algorithm is a symmetric block cipher with a variable block length and
a variable key length. The block length and the key length can be independently
specified to 128, 192, 256 bits. The corresponding number of rounds for each key
size is 10 rounds, 12 rounds, and 14 rounds, respectively. Our implementation
uses a fixed size of 128 bits data block and key length because 128-bit length of
key gives sufficient security level for RFID systems.

We began the design of the low power AES architecture by analyzing the basic
architecture of AES algorithm [7], [8]. Each data block of AES is modified by sev-
eral predefined rounds of processing, where each round involves four functional
steps. As figure 1 indicates, the four steps in each round of data encryption are
called SubBytes, ShiftRows, MixColumn, and AddRoundKey. Before the first
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round operation, the input data block is processed by AddRoundKey. Also, the
last round skips the MixColumn operation. Otherwise, all rounds are process
the same functions, except each round uses a different round key.

Fig. 1. Operating steps of AES algorithm

M. Feldhofer [14] designed a data path to reduce these four steps to three ones.
The first step of each round operation is SubByte function. During the execu-
tion of SubByte, the controller addresses the data memory to operate ShiftRow
function at the same time. Then MixColumn and AddRoundKey functions are
executed.

Our innovative method to optimize our AES circuit is the reordering and
modifying of the AES round operation steps. The primitive functions SubByte
and ShiftRow are based on byte-oriented arithmetic, and AddRoundKey is a
simple 128-bitwise XOR operation. Their operating order is not important be-
cause SubByte operates on one single byte, and ShiftRow reorders byte data
without changing them. We use these arithmetic features of AES algorithm to
reduce AES round operation to two functional steps by reordering and merg-
ing AddRondKey, SubByte, and ShiftRow into a single step. The modified AES
processing steps are shown in figure 2. By reducing functional steps, we can save
clock cycles which are consumed to operate a separate AddRoundKey function.

The efficiency of a low-cost AES cryptographic hardware in terms of circuit
area, power consumption, and throughput is mainly determined by the data
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Fig. 2. Modified AES processing steps

path structure of AES circuit and by the implementation of MixColumn and
Sboxes. We use 8-bit architecture for our low power AES circuit. This approach
for a low power AES cryptographic circuit implementation is motivated by two
reasons. First, RFID system offers very strict circuit design environment such as
circuit area and limited power. Second, an 8-bit architecture enables to decrease
the number of S-box to save silicon area. To compute AES encryption, 128-bit
data block is divided into sixteen 8-bit data state, and is processed through 8-bit
data buses.

In order to optimize our low power AES cryptographic circuit, resource shar-
ing in the data path is fully employed. We also used some low power circuit design
technologies. At the gate level, gated clock is used to reduce switching activity
of latches and flip-flops. Data gating is used to decrease unwanted switching in
combinational logic blocks. At the architectural level, we try to optimize the
data path by reordering and integrating the functional steps of AES algorithm.
The main goal of these low power circuit design methods are to reduce dynamic
power consumption by reducing unwanted switching activities.

For our low power AES circuit, the first step was to find a minimal architecture.
This part was done by hand. A set of key components thus obtained. Components
of AES circuit then designed and applied aforementioned low power techniques to
each component. The architecture of our 8-bit based low power AES cryptographic
circuit is represented in figure 3. It unrolls only one round operation, and itera-
tively loops data through this round operation until the entire encryption is com-
pleted. There are several key components for our low power AES cryptographic
circuit: a controller, data and key memory, S-box, and data path.
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Fig. 3. Architecture of low power AES circuit

Although it is not illustrated in figure 3, the controller is one of the most
important components. Controller communicates other modules to receive data
and control signals through interface modules. It also sequences the ten rounds
of AES operation. Therefore, it addresses data memory and key memory accord-
ingly and generates control signals for proper data path selection and round key
generation.

We separate a data memory (Dmem) and a key memory (Kmem) for efficient
control. They store intermediate sate data and round keys of each round opera-
tion. By separate data and key memory, parallel processing for data encryption
and round key calculation is possible. These memories are register based and
single port 128-bit memory using standard logic cells. Gated clock is applied
every memory cell registers to reduce unwanted switching activity. Each mem-
ory uses multiplexer to select data between initial input data and intermediate
round operation data.

The data path of low power AES contains combinational logic to calculate
the AES SubByte functions. We use a novel method and a data path to execute
SubByte, ShiftRow, and AddRoundKey at the same time. An additional 8-bit
register is used to store modified state and calculated round key before they over-
write previous values in memories. By choosing the read and write address of
memory properly, and controlling the data path effectively to write data of reg-
ister to current address of memory, we combined efficiently SubByte, ShiftRow,
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and AddRoundKey functions. The combined function of AddRoundKey, Sub-
Byte, and ShiftRow takes 42 clock cycles to calculate one round operation.

Another important part of AES data path is S-box which is used for the
SubByte. During the MixColumn operation, it also used to generate round key
which used for next round operation. There are several methods to implement
an AES S-box. The most naive method is using 256 × 8-bit ROM to imple-
ment lookup table. But, using a lookup table requires very large silicon area.
Fortunately, J. Wolkerstofer [15] presented an alternative method. It used com-
binational logics to implement AES S-box. We adapted this combinational S-box
for our low power AES cryptographic circuit. However, combinational logic al-
ways consumes current whenever data signal is inputed. To solve this problem,
we use additional 8-bit register as a data gating circuit to prevent unwanted
dynamic power consumption.

The MixColumn multiplies the input polynomial by a constant polynomial
c(x), given by

c(x) = {03}x3 + {01}x2 + {01}x + {02}. (1)

As shown in equation 2, the MixColumn operation for one column is written
as

q(x) = c(x)⊗ a(x)
q0 = ({02} · a0)⊕ ({03} · a1)⊕ ({01} · a2)⊕ ({01} · a3)
q1 = ({02} · a1)⊕ ({03} · a2)⊕ ({01} · a3)⊕ ({01} · a0)
q2 = ({02} · a2)⊕ ({03} · a3)⊕ ({01} · a0)⊕ ({01} · a1)
q3 = ({02} · a3)⊕ ({03} · a0)⊕ ({01} · a1)⊕ ({01} · a2)

(2)

The equation shows that all output byte data of MixColumn are calculated
using the same function except the order of the input column bytes. For our
low power AES architecture, we designed a sub-block which calculates one forth
of the full MixColumn operations. Figure 4 depicts a detailed structure of the
sub-block.

By accessing the sub-block four times, one column of data is calculated. A 32-
bit shift register and several combinational XOR logics are used for an efficient
implementation of MixColumn operation. In contrast to M. Feldhofer [14], we use
a 32-bit shift register for its convenient control. Additional reason of using a shift
register is clock gating and data gating which reduce unwanted switching activ-
ity of register and reduce unwanted switching of sub-block’s combinational logics.
The sub-block needs eight clock cycles to process one column of MixColumn oper-
ation. Among these clock cycles, four clock cycles are used to load a column data
stored in the data memory(Dmem) to the shift register and the other clock cycles
are used to shift the register’s data and overwrite the output data of sub-block to
Dmem. Therefore, a complete MixColumn function takes 32 clock cycles.

Remaining modules of the data path are used to generate round keys. Round
keys are derived from previous one by using Sbox, rcon, two XOR gates, and
several data multiplexors of the data path. Rcon is a simple circuit to generate
predefined round constant used for round key computation. The round keys are
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Fig. 4. Sub-block of MixColumn operation

computed in between the rounds of the cipher, so called on-the-fly method, and
therefore the key generation operation is repeated for every round operation
execution. More accurately, round keys are calculated during the MixColumn
operation. It takes 36 clock cycles to calculate a round key. Because round key
calculation is processed with the MixColumn function in parallel, our architec-
ture requires only four clock cycles to generate a round key.

4 Synthesis and Implementation Results

The implementation of our low power AES cryptographic circuit, which combines
SubByte, ShiftRow, and AddRoundKey from AES algorithm, is a standard-cell
circuit on a 0.25 μm CMOS process from Hynix Corp. and Samsung Electron-
ics. For synthesis of our low power AES circuit, we used the Synopsys Design
Compiler. It needs 870 clock cycles to encrypt a 128-bit data block. The required
hardware complex is estimated to be 3,900 gates from Hynix process and 3,868
gates from Samsung process.

Table 1 shows the synthesis results of our AES circuit using Samsung 0.25
μm CMOS process. All presented results come from simulations and synthesis
on transistor level.

The clock cycles of each functional step for a single round operation are re-
quired as follows:

– AddRoundKey/ByteSub/SiftRow: 42 clock cycles
– MixColumn: 32 clock cycles
– KeySchedule: 4 clock cycles

There are several additional clock cycles for entire AES encryption operation.

– data and key IO: 70 clock cycles
– final round key addition: 16 clock cycles
– interrupt signal for end of operation: 1 clock cycle
– command check: 3 clock cycles

Considering overall ten rounds of AES operation, the total operating clock
cycles for 128-bit data block encryption are calculated as follows:
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Table 1. Logic blocks and their complexity from Samsung 0.25 μm CMOS process

Logic Block Gate count Clock cycle
Interface 144 70
S-box 413
Memory 1,940
AddRoundKey/ByteSub/ShiftRow 192 440
MixColumn 441 320
KeySchedule 157 40
Controller 581

Total 3,868 870

Total clock cycles
= (AddRoundKey/ByteSub/SiftRow) + MixColumn

+ KeySchedule + Interface
= (42× 10 + 17 + 3) + (32× 10) + (4× 10) + 70
= 870 clocks

Table 2. Logic blocks and their power consumptions

Samsung† Hynix†

Logic Block power percentage power percentage
Interface 0.008 ≈ 0 0.033 0.7
S-box 14.61 68.3 4.36 89.9
Memory 2.87 13.4 0.307 6.3
AddRoundKey/ByteSub/ShiftRow 0.52 2.43 0.054 1.1
MixColumn 0.45 2.11 0.036 0.74
KeySchedule 0.23 1.06 0.018 0.36
Controller 2.71 12.7 0.042 0.9

Total 21.4μW 100% 4.85μW 100%
† All process use 0.25 μm CMOS technology.

After synthesis, Synopsys PowerCompiler was used for assessing the perfor-
mance of our low power AES circuit. Table 2 shows the results of power estima-
tions. The standard cell library was 0.25 μm technology from Hynix Corp. and
Samsung Electronics. The applied voltage was 2.5V and the operating frequency
was 100 KHz.

The table 2 shows that the combinational S-box is the major power consumer
because it is shared in both data path computing for integrated function of
AddRoundKey, ByteSub, and ShiftRow and for round key generation.

Table 3 presents a comparison of our design with some previous results. For
fair comparison, our results of power consumption converted to current repre-
sentation. Our result shows 14% reduction of clock cycles with a similar or less
power consumption, but shows about 7.5% increase in the circuit area against
the results of M. Feldhofer [14]. The increase of circuit area is mainly due to the
using of gated clock and data gating used for memory cells and other registers.
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Table 3. Comparison with previous works based on power consumption, gate count,
and clock cycles

128-bit encryption μA at 100 KHz Gate counts Clock cycles

This work† 1.94 3,900 870
M. Feldhofer [14] 8.15 3,628 1,016
S. Mangard [10] 47.24 10,799 64
I. Verbauwhede [11] 307 173K 10

† Test results using 0.25 μm CMOS process from Hynix Corp.

5 Conclusions

In this work, we proposed a compact yet high-speed architecture for a low power
AES cryptographic circuit and evaluated through simulation and synthesis for
ASIC implementation. In order to minimize the hardware size and to optimize
the throughput, the order of SubByte, ShiftRow, and AddRoundKey arithmetic
functions were changed and integrated into a single step.

Our architecture provides a compact and high performance AES crypto-
graphic hardware for low power RFID system authentication. Our AES hardware
has a chip size of 3,868 gates from Samsung and 3,900 gates from Hynix 0.25
μm CMOS process. It has a power consumption of 21.4 μW on Samsung and
4.85 μW on Hynix process respectively at the operating frequency of 100 KHz.
Low power techniques used are mainly based on clock and data gating. The
encryption of 128 bits data requires 870 clock cycles.

The results of power consumption, throughput, and functionality make our
low power AES cryptographic hardware practical and suitable in RFID applica-
tions and other low-end embedded systems.
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Abstract. Since all data input and output to a cryptographic mod-
ule must occur through its interface, performance degradation coming
from interface constraints is inevitable for small data packets even the
best-performing cipher chip. This paper proposes the High-Speed Packet
Cipher System that encrypts even small packet data at high speed by
improving the packet data processing method used in existing crypto-
graphic modules. Looking at the test result, we see that speed of 68Mbps
better than 0.5Mbps of 4-step Procedure is achieved for 32-byte packets.

Keywords: Packet Cipher, SoC(System on Chip), Cryptographic mod-
ule, Security API.

1 Introduction

The openness of the ubiquitous computing environment - wherein users can
access a network anytime, anywhere - facilitates information sharing. Still, its
downside includes the exposure to misuse, wiretapping, forgery, and alteration
by malicious users. Protecting user data from such risks requires encryption. The
high-performance cryptographic module performing the hardware-based cipher
algorithm using the cipher chip has recently been enjoying growing popularity.

Under the ubiquitous computing environment, the cryptographic module fea-
tures the SoC(System on Chip) type to satisfy requirements such as low cost,
small size, and low power consumption. PCI is currently used as the external
interface of SoC for high-performance servers or network devices. For portable
devices in particular, the USB interface is widely used for its flexibility, scala-
bility, and usability. It is also expected to be very popular under the ubiquitous
computing environment.

USB1.1 and USB2.0 standards govern the USB interface. In particular, USB2.0
can theoretically transmit data at a maximum of 480Mbps[1]. PCI standards in-
clude PCI 2.1, PCI-X, and PCI Express whose transmission support ranges from
the Gbps level to tens of Gbps level[2][3]. Still, the maximum performances of
these standards are realized only when massive volumes of data are transmitted

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 364–377, 2006.
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simultaneously by the host. When only a small amount of data is transmitted,
however, actual performance is quite different. Since all data inputs and outputs of
the cryptographic module occur through the interface, even the best-performing
cipher chip cannot display maximum performance given small data size owing to
interface constraint.

This paper proposes the High-Speed Packet Cipher System that encrypts even
small packet data at high speed by improving the packet data processing method
used in existing cryptographic modules.

The rest of this paper is organized as follows: Chapter 2 reviews related works;
Chapter 3 analyzes the USB interface as the most popular interface for portable
cryptographic modules as well as the packet processing performance of cryp-
tographic modules with the USB interface; Chapter 4 presents the design of
the High-Speed Packet Cipher System; Chapter 5 analyzes the performance of
the portable cryptographic module applying the proposed system to prove the
appropriateness of the high-speed packet processing system proposed in this pa-
per for both large and small amounts of data; finally, Chapter 6 presents the
conclusion.

2 Review of Related Works

According to the report of the Tolly Group, a world-renowned network perfor-
mance test agency, the packet transmission performance of NETSAQ F2000
is 1.684Gbps for 1,518 bytes but only 177Mbps for 128 bytes, or a tenfold
difference[4]. Similar tenfold difference in performance is noted when the AES128
block cipher algorithm is used for SECUi.com’s VPN device called NXG 2000:
1.9Gbps for 1,400 bytes but 221Mbps for 64-byte ciphering[5]. A large difference
in packet size is also noted for Future System’s FSC2003 [6].

Figure 1 shows the result of the test conducted by the Tolly Group for SE-
CUi.com’s NXG 2000. NXG 2000 uses a PCI-X v1.0 interface with maximum
transfer speed of 8Gbps. For the block cipher algorithm, 3DES and AES128 are
used as the 2Gbps class cipher chip. As shown in the figure, performance of
1.9Gbps for 1,400 bytes and 221Mbps for 64 bytes data is observed, a tenfold
difference in data size. Such difference is attributed to the effect of the commu-
nication overhead, i.e., the time required by the cryptographic module in order
to transmit the packet is almost the same regardless of the data size. There-
fore, the relative effect of the overhead increases as data size decreases; hence
deteriorating overall system performance.

3 Analysis of Packet Data Performance

3.1 USB2.0 Standard Analysis

In the USB2.0 standard, the basic unit of time for communication is called a
micro frame; one micro frame is 125μs long. In other words, data communication
occurs in units of micro frame under the USB2.0 standard, with even the smallest
data consuming 125μs for data input/output activity.
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Fig. 1. Performance per packet size(NXG 2000)

Since it takes at least 125μs even for the smallest data size under the USB2.0
standard, transfer performance deteriorates when small sized data is transferred.
For example, since the maximum data size for transmitting 1,500-byte data in
each transaction is 512 bytes, only 3 transactions occur within 1 micro frame;
the remaining 10 transactions merely consume time without actual data transfer.
Therefore, the theoretical transfer speed of a 1,500-byte data becomes (1500×
8)/125μs = 96Mbps, which is 1/5 of the maximum speed of 480Mbps. Figure 2
depicts such phenomenon.

Fig. 2. Conceptual diagram of 1,500-byte data transmission in 1 micro frame

Table 1 shows the theoretical maximum data transfer speed based on data size
under the USB2.0 standard[1]. Given a payload size of 512 bytes, up to 13 data
transactions are realized in 1 micro frame. Therefore, the data transfer speed is
(512×8(bit))×13/125μs = 426.0Mbps, approximating the theoretical maximum
(480Mbps). For data payload of 4 bytes, up to 127 transfers are enabled, however;
thus the transmission speed decreases to (4× 8(bit))× 127/125μs = 32Mbps.

Figure 3 shows the transfer speed with respect to varying data sizes under the
USB2.0 standard. Transfer performance deteriorates with small sized data, with
the maximum transfer speed of 480Mbps approximated when data size is a mul-
tiple of 6,656 bytes. Since all data transactions of the cryptographic module with
the USB 2.0 interface occur through USB2.0’s matching functions, the data ci-
pher/decipher cannot exceed the data transfer speed under the USB2.0 standard.
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Table 1. USB2.0 High-speed Bulk Transaction Limits

Protocol Overhead (3 X 4) SYNC bytes 3PID bytes 2EPADDR+CRC bytes
2 CRC16 and 3 X (1+11)bytes interpacket delay

Data Max Bandwidth Microframe Bandwidth Max Number Byte/Microframe
Payload (Mbps) per Transfer(%) of Transfer Useful Data

1 8.512 1 133 133
4 32.512 1 127 508
16 107.52 1 86 2,752
128 327.68 2 40 5,120
512 426.00 8 13 6,656
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Fig. 3. Data transfer speed given varying payload data sizes under the USB2.0 standard

3.2 Encryption Speed Based on Data Size

Although it differs by cryptographicmodule and command type, the cryptographic
module generally communicates with the host device through the USB interface
based on the procedure in Table 2 for implementing the ciphering process:

All inputs and outputs of the command and data occur through USB com-
munication; even reading small command consumes one micro frame of 125μs.

Since ciphering occurs between ➂ the data read for ciphering and ➃ the cipher
result output steps, ➀ the command read and ➁ response output steps are addi-
tional steps causing the deterioration of overall cipher performance. Specifically,
such steps may cause the performance to deteriorate considerably when encrypt-
ing small sized data.

Table 2. Procedure for Ciphering

Process Content
➀ Command Reading Read the command of cipher processing transmitted

by the host.
➁ Response Output transmit the result of the command interpretation

to the host.
➂ Data Read for Ciphering Read the data for ciphering from the host and start

the ciphering process of the input data.
➃ Cipher Result Output Transmit the cipher result to the host.
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Figure 4 depicts byte data ciphering under USB2.0 communication. As shown
in the figure, command read and response output require 1 micro frame each
for a total of 2 micro frames. Since 6,656 bytes can be transferred per micro
frame, ($N/6656%) micro frames are required for each data read and response
output. Therefore, the total number of frames transferred is {2+(2×$N/6656%)}.
Performance can be expressed as:

Performance(Mbps) =
N × 8

{2 + (2× $N/6656%)} × 125
(1)

Fig. 4. N bytes ciphering process

0

50

100

150

200

250

32 64 12
8

25
6

51
2

10
24

15
00

20
48

40
96

66
56

81
92

13
31

2

16
38

4

26
62

4

32
76

8

53
24

8

65
53

6

Payload size [byte]

P
er

fo
m

an
ce

 [
M

bp
s]

USB2.0 Cryptographic module

Fig. 5. Ciphering performance vs USB 2.0 standard data transfer performance



The High-Speed Packet Cipher System Suitable for Small Sized Data 369

Given a sufficiently large N, the time required by two micro frames for com-
mand read and for response output will be negligible; otherwise, it may be longer
than the time required for actual cipher processing.

Figure 5 compares the data transfer performance of the USB2.0 standard and
ciphering performance of the cryptographic module per data size based on Equa-
tion 1. Here, the transfer performance of USB 2.0 and ciphering performance of
the cryptographic module drastically deteriorate with small sized packet data to
be encrypted. The transfer performance of USB 2.0 is highest when data size is
a 6,656 bytes or multiples of 6,656bytes.

4 High-Speed Packet Cipher System Design

4.1 System Design Overview

To design the High-Speed Packet Cipher System, the cause of performance de-
terioration of the existing cryptographic module was analyzed, and improve-
ment has been made accordingly. Key features of the High-Speed Packet Cipher
System of the new cryptographic module include:

– Minimization of the USB communication
• The 4-step procedure of “Command Read⇒Response Output⇒Data

Read for ciphering⇒Cipher Result Output” is simplified into a 2-step
procedure of “Command and Data Read⇒Response and Cipher Result
Output”

• A packet is structured with the command and cipher/decipher data.
• Command and data read is performed through the data input channel,

and response and data output is through the data output channel.
– Addition of a separate hardware in order to handle command interpretation,

processing, and response which used to be handled by CPU
• Command Interpretation: Command and data are separated from the

packet that transmitted by the host.
• Command Processing: The cipher process is executed to interpret the

command and to appropriately control the block cipher processing engine
based on such interpretation.

• Response Output: Response data is created according to the command
interpretation and result and sent to the host.

– Grouping of the multiple packet data into 6,656 bytes for batch processing
• Multiple packets are grouped to form data size of a multiple of 6,656

bytes and sent to the cryptographic module in 1 USB communication.

In this paper, we define three packet processing system as follows.

– 4-step Procedure
• Command interpretation, processing, and response handled by CPU
• The 4-step procedure of “Command Read⇒Response Output⇒Data

Read for ciphering⇒Cipher Result Output”
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– Proposed Method 1
• Addition of a separate hardware for command interpretation, processing,

and response
• The 2-step procedure for ciphering

– Proposed Method 2(High-Speed Packet Cipher System)
• Grouping of the multiple packet data for batch processing in addition to

the Proposed Method 1

4.2 Hardware Circuit Design

The High-Speed Packet Cipher System hardware consists of the USB controller,
CPU, and FPGA containing the block cipher processing engine (Figure 6).

Fig. 6. Hardware design of the High-Speed Packet Cipher System

Widely used for SoC development, ARM926EJ CPU from ARM is used to
perform cipher engine initialization, generation and management of the cipher/
decipher key, and general control of the hardware.

For the USB controller, Cypress’s CY7C68013 is used to match USB2.0 with
the external host device. This chip features the local slave FIFO bus; the system
uses a total of 4 FIFOs.

FPGA uses the XC2V8000 chip from Xilinx. As shown in Figure 6, the main
blocks of the FPGA circuit include the local bus interface logic, block cipher en-
gine, cmd/data parsing logic, and command DEC/EXE logic plus CPU memory
of 160 KB using the distributed SelectRAM of FPGA, memory controller, and
CPU interface logic with the AHB interface function.

The local bus interface logic handles the interface to the external USB con-
troller and contains 4 internal FIFO (FIFO CI, FIFO CO, FIFO DI, FIFO DO)
as in the USB controller.

CPU receives the block cipher engine initialization command sent by the host
device through FIFO CI, executes the initialization process, and sends the result
back to the host through FIFO CO.
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On the other hand, the host device sends the high-speed packet process-
ing command delivered to the command/data parsing logic through FIFO DI.
The command/data parsing engine then separates the command for delivery
to the command DEC/EXE Logic, confirms the packet completion flag of the
command, and sends the completion signal to the local bus interface block to
initiate the generation of the packet completion signal (nPKDEND). The USB
controller confirms the packet completion signal and initiates USB communica-
tion to output the cipher processing result data efficiently at the time requested
by the host.

The command DEC/EXE logic interprets the delivered command, delivers
the generated key to the block cipher engine, controls the initiation and com-
pletion of the processing action, and delivers the command execution result to
the cmd/data parsing block. The cmd/data parsing logic then transmits the
command response along with cipher result data delivered from the command
DEC/EXE logic and block cipher engine to the host device through FIFO DO.

4.3 Software Design

This section describes the design of software for the High-Speed Packet Cipher
System. The security API(Application Programming Interface) for high-speed
packet processing is first designed, and the specification of each command, de-
fined.

Security API is a library enabling the use of the cipher function that protects
against security risks even without extensive knowledge of security mechanism.
In other words, a security library is a security toolkit that enables the easy addi-
tion of the cipher service such as encryption and authentication to the software
even without expertise in the cipher algorithm.

Widely known cipher APIs include GSS-API by IETF, CGS-API by X/OPEN,
CryptoAPI by Microsoft, Cryptoki by RSA, and CDSA by Intel. Recently, how-
ever, CryptoAPI by Microsoft and Cyptoki by RSA become popular. CryptoAPI
runs on MS Windows. This paper uses Cryptoki[7] in designing the security API
to make it portable to other operating systems.

Security API’s general model is illustrated in Figure 7. The model begins with
one or more applications that need to perform certain cryptographic operation,
and ends with one or more cryptographic modules, on which some or all of the
operations are actually carried out. Security API provides an interface to one
or more cryptographic modules that are active in the system through a number
of “slots”. Each slot may contain a token. A token is typically “present in the
slot” when a cryptographic module is present in the reader. It is possible that
multiple slots may share the same physical reader. The point is that a system
has some number of slots, and applications can connect to tokens in any or all of
those slots. A cryptographic module can perform some cryptographic operations,
following a certain command set; these commands are typically passed through
standard device drivers.

Security API makes each cryptographic module look logically like every other
device, regardless of the implementation technology. Thus the application need
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Application 1

Other Security Layers

Security API Security API

Application K

Other Security Layers

Device Driver
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Token 1
(Module 1)

Token n
(Module n)

Crypto-Module 
Interface

Crypto-Module 
Interface

Fig. 7. Security API usage

not interface directly to the device drivers; Security API hides these details.
Indeed, the underlying “module” may be implemented entirely in software -no
special hardware is necessary.

Application can receive security services including encryption, decryption and
digital signature from one or multiple cryptographic module using security API.

We define CI(Crypto-module Interface) as the logical specification that trans-
forms the API command by application program into something that can be
understood by the cryptographic module. The CI sends it to the cryptographic
module and transmits the response of the command to API. Table 3 describes
the CI command/Response block structure and elements for the High-Speed
Packet Cipher System.

CMD, PE, hSession, data length, and ACK are collectively called command
header. These fields commonly appear in all packets. As shown in Table 3, the
header takes up 8 bytes. Therefore, cipher performance deteriorates with shrink-
ing cipher data size. For example, the header occupies 20% of packet when ci-

Table 3. Command/Response block

Category Byte Size Description
CMD 8 Command Code

PE(Packet End) 1 Flag bit indicating whether the currently transmitted
command is the last packet data

reserved 7 Reserved for future expansion
hSession 16 Session identifier

Data length 16 Data length in bytes
0xFFFF for a command block

ACK/RV 16 Cipher result as the return value defined in PKCS #11
specification for the response block

Data Variable Data for cipher
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phering 32 data bytes since the total packet size will be 40 bytes. With increasing
data size, however, the effect of the header becomes negligible.

The PE flag in the command and response blocks indicates whether the cur-
rently transmitted command is the last one. In other words, when the host device
groups the multiple packets, the last packet has a PE flag of “1” to let the cryp-
tographic module know that the current command is the last packet cipher com-
mand. Cipher result data of less than the maximum payload size under the USB
2.0 standard are stored by the cryptographic module in the buffer until the PE
flag becomes “1”. At this time, the collected cipher result data are sent to the host
simultaneously; thus minimizing unnecessary USB communication considerably.

Figure 8 shows how multiple packets are processed. API stores the packets
transmitted from the application program in the buffer and sends them to the
cryptographic module after setting the PE value of the last data header to “1”
once the stored data reaches the largest size or Chunk time expires. Chunk Time
is time to accumulate the packet transmitted and MAX SIZE is the maximum
size of packets transmitted. The cryptographic module then encodes the received
data of less than the maximum payload and stores them in the output buffer until
the PE value is “1”. Data accumulated in the output buffer are then transmitted
to the host simultaneously.

In the High-Speed Packet Cipher System, it is very important to set the
Chunk time and MAX SIZE appropriately. The MAX SIZE value should be
set to match the interface used. For example, as was calculated in Section 3,
MAX SIZE should be set to 6,656 for the USB 2.0 interface.

Appropriate value for Chunk time will depend on the environment the cryp-
tographic module is used in. For the server environment, where there is a con-

1. Host
   Command/Data

2. Scheduler 
    do{
         If ( (Chunk_time < MAX_TIME) && 
                   (Packet Size < MAX_SIZE))
             concatenates packet
         else{
             mark 1  in  the PE of last packet
             send packet to the module
         }
    }while(1)

3. Cryptographic Module
    while (PE != 1){
        Encrypt packet
    } 
    Output  response and
    encrypted data   

4. Host
   Response/ 
   Encrypted Data    

Cryptographic 
Module

Scheduler

Fig. 8. Software design of the High-Speed Packet Cipher System
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tinuous stream of packets to encrypt, it should be set to the time it takes to
encrypt MAX SIZE bytes. In the opposite case, where packet occurrence is less
frequently, Chunk time should be set as small as possible. It is advisable to set
it to 0 in the personal environment, so that the scheduler relays the packet to
the cryptographic module as soon as it receives without holding it in the buffer.

5 Performance Analysis

Figure 9 shows the test environment. The USB host and the analyzer PC are
a general-purpose PC with Windows XP and Pentium 4 3.0GHz CPU. The
USB protocol analyzer uses LE-620HS from LINEEYE, with the cryptographic
module employing ARM926EJ CPU with 33MHz clock. The AES algorithm is
applied to Xilinx XC2V8000 FPGA.

Fig. 9. Test environment

The USB host generates the packet for sending to the cryptographic module,
which then sends the cipher result to the host. The USB protocol analyzer mon-
itors the packet and reports it to the analyzer PC to display the analysis result
on the screen.

We set the value of Chunk time to 1ms and the value of MAX SIZE to
6,656 bytes. Figure 10 shows the packet monitoring display generated by the
USB protocol analyzer (LE-620HS). Here, 6,656-byte long data are encrypted
through the 4-step Procedure. The cipher speed shows a performance of (6656×
8)bit/(1264.375 − 1263.500)ms = 60.85Mbps. Since the theoretical maximum
performance as presented in Figure 5 in section 3.2(Encryption speed based on
data size) for ciphering 6,656 bytes is 106Mbps, this means that only 60% of the
theoretical maximum performance is achieved.

On the other hand, Figure 11 shows the test result for ciphering 6,656 bytes
by Proposed Method 1. The test result reveals that it takes 0.5ms to cipher
6,656 bytes, which is equivalent to the cipher speed of (6656× 8)bit/(1236.625−
1236.125)ms= 106Mbps. About 70% improvement is achieved by reducing the
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1263.625ms

Data Read for 
Ciphering
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Cipher Data Output
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Fig. 10. Ciphering by 4-step Procedure

number of communications and by addition of a separate hardware for command
interpretation, processing, and response.

The reason not to achieve the theoretical performance 480Mbps (maximum
performance under USB2.0 standard) as calculated in Section 3.2 (Encryption
speed based on data size) in Figure 10 and Figure 11 is due to the number of
transactions per frame. Only 9 transactions are transferred per frame instead
of 13. This is because of the immature performance of the cipher chip which is
only a prototype in FPGA logic. Therefore, 13 transactions transfer per frame
is expected show the improved cipher chip performance.

Figure 12 depicts the performance measurements from the 4-step Procedure,
Proposed Method 1, and Proposed Method 2. It shows a 200% performance
increase of Proposed Method 1 over 4-step Procedure for small packet data.

Command and Data 
Read

1236.125 ms

Response and 
Cipher Result 

Output
 1236.625 ms

Fig. 11. Ciphering by Proposed Method 1
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Looking at the data for Proposed Method 2, we see that the maximum cipher
chip performance of 100Mbps is maintained for packet sizes larger than or equal
to 128 bytes. For 32-byte packets, reduced speed of 68Mbps is achieved, due to
the 8-byte packet header taking up 20% of data, but this performance is still
better than that of 4-step Procedure and Proposed Method 1.

We can also see that the performance of Proposed Method 1 and Proposed
Method 2 are identical for packets of 4,096-byte and 6,656-byte sizes. This is
because a concatenation of two 4,096 bytes would result in something larger
than 6,656 bytes and hence Proposed Method 2 sends a 4,096 byte packet to the
cryptographic module without concatenating it with the next packet.
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Fig. 12. Cipher performance per packet size

6 Conclusion

Since all data input and output to a cryptographic module must occur through
its interface, performance degradation coming from interface constraints is in-
evitable for small data packets. This paper proposes the High-Speed Packet
Cipher System that encrypts even small packet data at high speed by improving
the packet processing method used in existing cryptographic modules.

Base on the observation that the transfer rate of a USB 2.0 interface is at
its highest when data is sent in packets of 6,656-bytes size, we have designed
the High-Speed Packet Cipher System to concatenate data before sending them
to the USB interface in a single USB communication step. Test shows that it
maintains the maximum cipher chip performance of 100Mbps regardless of the
packet size. The High-Speed Packet Cipher System may be used in encryption
of small packet data at high speed in PCI interface.

Performance of the High-Speed Packet Cipher System proposed in this paper
depends on the frequency of pack occurrence. In the server environment with
frequent packets, its performance is good. In the opposite environment, if Chunk
time is set to be too large, performance deteriorates due to the buffering. There-
fore, Chunk time must be set to a small value in this environment. A possible
future study would be on the optimal Chunk time value.
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Abstract. Security policies are rules aimed at protecting the resources of an or-
ganisation from the risks associated with computer usage. Designing, implement-
ing and maintaining security policies are all error prone and time consuming. We 
report on a tool that helps managing the security policies of an organisation. Se-
curity policies are formalised using first-order logic with equality and the 
unique names assumption, closely following the security policy language sug-
gested in [1]. The tool includes a link to an automated theorem prover, Otter 
[2], and to a model finder, Mace [2], used to formally verify a set of formal se-
curity policies. It also includes a GUI and a number of links to read information 
and security policies from organisation databases and access control lists. 

1   Introduction 

Security policies are rules that prescribe how to manage IT resources in order to pro-
tect them from risks associated with computer usage. If properly defined, they help 
ensuring the goals of computer security, namely: integrity, confidentiality, and avail-
ability of IT resources.  

Crafting proper security policies is a very difficult task, for two reasons. First, se-
curity policies may be ambiguous or clash one another, therefore they ought to be 
formalised. This formalisation, however, is tedious and error-prone. Second, policies 
quickly become obsolete, thus maintaining security policies is never-ending and also 
time-consuming. This situation prompts the construction of a tool that could help a 
user to readily design and develop proper security policies.  

This paper reports on a security policy manager, called e-policy manager, portray-
ing the following features:  

1. It captures security policies using a language similar to the security policy lan-
guage L7, defined by Halpern and Weissman [1]. Our language has a clear and 
precise semantics, namely: first-order logic with equality, together with the 
unique names assumption.  
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2. It reasons about security policies simultaneously running Otter [2], a first-order 
theorem prover, and Mace [3], a first-order model finder. 

3. It eases the capture of security policies, reading information from different 
sources, including database systems, access control lists, etc. E-policy manager 
also comes with a GUI for human interaction. 

Currently, e-policy manager deals only with security policies of type access con-
trol. E-policy manager is not a security model1 for a security policy, but a means of 
capturing, managing and ensuring logical consistency of a set of security policies.  

Paper overview 
The rest of this paper is organised as follows: In Section 2, we describe how to ex-

press security policies using first-order logic with equality and the unique names 
assumption. We also introduce the verification tasks we are interested in. In Section 3, 
we recapitulate Halpern and Weissman’s results, namely: a first-order logic language 
for the specification of security policies and a characterisation of the computational 
complexity of verification tasks. In Section 4, we show how to apply the pair Otter 
and Mace to conduct the verification process. In Section 5, we describe how to use e-
policy manager. We also present a graphical user interface for easily capturing secu-
rity policies. In Section 6, we report on the results we have obtained from a psycho-
logical validity test carried on the e-policy manager. In Section 7, we compare related 
work and in Section 8, we present the conclusions drawn from our research. 

2   Expressing Security Policies Using First-Order Logic 

Hereafter, we assume the reader is familiar with the syntax of first-order logic, includ-
ing terms, atoms, literals and well-formed formulae, the semantics of first-order logic, 
including models and valuations, and with validity and satisfiability of first-order 
formulae. 

In this paper, security policies are mainly of either of two types: permitting or deny-
ing. A permitting (respectively denying) security policy conveys the conditions under 
which someone, the subject, is allowed (respectively forbidden) to perform an action 
on some object. Accordingly, the vocabulary of our language is assumed to contain at 
least four collection of predicate relations, one denoting subjects (agents, processes, 
officers, etc.), one denoting objects (files, directories, databases, applications, etc.), one 
denoting actions (read, write, execute, etc.), and another denoting constraints (roles, 
etc.) The vocabulary also contains a reserved binary predicate, called permitted. The 
literal permitted(S, A) means S, a term of type subject, is allowed to carry out A, a 
(compound) term representing an action over some term of type object. 

A security policy is a sentence of the form:2 

∀X1:T1,…, Xn:Tn. (C → [¬]permitted(S, A)) (1) 

                                                           
1 A computer security model consists of a set of underlying protection mechanisms, security 

issues of a computing environment, and formal models that provide a framework for a secu-
rity policy. 

2 We sometimes find it convenient to abbreviate ∀X. (T(X) → P(X)) and ∃X. (T(X) ∧ P(X)) by 
∀X:T. P(X) and ∃X:T. P(X), respectively. 
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where is a conjunction of literals, S and A are terms, and where [¬]permitted(S, A) 
indicates that permitted may or may not be negated. A policy of the form (1) is called 
a standard policy [1]. Standard policies are generally enough to express most security 
policies. For example, the policies “only security officers may edit the password file”, 
“anyone who is allowed to edit a file may read it”, “anyone who is forbidden to read a 
file may not edit it”  and “employees may read all the information associated with 
their department of affiliation” can be expressed as follows: 

∀X:staff, Y:posts. (post(X, officer, sec) → permitted(X, write(passwords))) 

∀X:staff, Y:posts. (¬post(X, officer, sec) → ¬permitted(X, write(passwords))) 

∀X:staff, F:info. (permitted(X, write(F)) → permitted(X, read(F))) 

∀X:staff, F:info. (¬permitted(X, read(F)) → ¬permitted(X, write(F))) 

∀X:staff,Y:posts,Z:dpt,F:info.(post(X,Y,Z)∧blng2(F,Z)→permitted(X,read(Z))). 

The environment is a non-empty set of relevant facts describing the organisation 
[1]. “John is a manager”, “managers are employees”, “file F is of security clearance 
l”, etc. are all example facts of a typical environment. Formally, an environment is a 
set of sentences, each of which does not contain the permitted predicate. The envi-
ronment is said to be standard, if it can be partitioned into two sets, E0 and E1, where 
E0, called a basic environment, contains only ground literals, while E1 contains only 
universally quantified formulae. 

The verification tasks we are interested in are formalised as follows: Let E and 
P1,…,Pn respectively denote an environment and some policies and let S and A be 
closed terms, then we want to address the following queries: 

1. Is individual S allowed (respectively forbidden) to carry out action A? 
This query amounts to ask whether E ∧ P1 ∧ … ∧ Pn  permitted(S, A) 
(respectively ¬permitted(S, A)) is valid. 

2. What is the individual profile of individual S? This query amounts to ask 
whether, and how many times, E∧P1∧…∧Pn  permitted(S, X) ∨ ans(X) 
is valid, where X is an answer literal for the associated fill-in the blank 
question.   

3. Are the policies consistent amounts to ask if E ∧ P1 ∧ … ∧ Pn is satisfi-
able. 

4. Are the policies Bell-LaPadulla compliant? This query amounts to ask if 
E ∧ P1 ∧ … ∧ Pn satisfies the simple security condition, clearance(S) ≤ 
clearance(O)  permitted(S, read(O)), and the *-property, permitted(S, 
write(O))  clearance(S) ≤ clearance(O), of the Bell-LaPadulla model. 

3   Tractability Results 

Halpern and Weissman have shown that the problem in which we are interested is in 
general undecidable [1]. For the decidable part, it cannot be answered efficiently 
unless we impose severe restrictions. Halpern and Weissman have, in particular, 
shown that the language L7 is the most amenable to computation: 
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Theorem 4.3. [1]: Let φ be a vocabulary that contains permitted (and possibly other 
predicate, constant, and function symbols). Let L7 consists of all closed formulas F in 
LF0(φ) of the form E0 ∧ E1 ∧ P1 ∧ … ∧ Pn  permitted(S, A), where E0 is a Basic 
environment, E1 is a conjunction of universal formulas, P1 ∧ … ∧ Pn is a conjunction 
of standard policies, and both S and A are closed terms of the appropriate sort, such 
that: 

1. E0 has m constants, 
2. no conjunct in E1 ∧ P1 ∧ … ∧ Pn has an inequality in its antecedent, and  
3. each conjunct in E1 ∧ P1 ∧ … ∧ Pn has at most one literal that is bipolar in E1 

∧ P1 ∧ … ∧ Pn relative to the equality statements in E0.
3 

Halpern and Weissman determined that the validity of a query of type 1 can be  
answered in: 

O(|E1 ∧ (P1 ∧ … ∧ Pn)|log|E1 ∧ (P1 ∧ … ∧ Pn)| + b|Cl| + T) 

where b is the number of bipolar pairs in F relative to the equality statements in E0, Cl 
is the longest conjunct in F, and T depends on the number of variables that appear as 
an argument to an instance of permitted (see [1] for further details).   

Unfortunately, our security policies are not part of L7, because they might not sat-
isfy condition 2. We have been forced to include inequalities in the antecedent of a 
policy for the sake of completeness. We illustrate this by means of a simple example. 
Consider again the set of security policies defined in the previous section. To decide 
whether these policies permit (respectively forbid) anna to edit the password file, we 
must know if the statement post(anna, officer, sec) is true (respectively false). But if 
anna is a head of department, neither of these queries can be decided unless we ex-
plicitly assert ¬post(anna, officer, sec).  

To get around this incompleteness issue, we adopt a conservative meta-rule: any 
action is forbidden, unless it is explicitly allowed. This meta-rule is implemented by 
(automatically) including the closure of every permitting security policy. The closure 
of a permitting policy P, denoted R(P), is the smallest set of denying policies that are 
logically consistent with P. Consider, for example, the policy “all head of departments 
are permitted to read information that is classified as confidential (clearance(F) = 4)”, 
in symbols: 

∀X:staff, Z:dpt. (post(X,mgr,Z) )∧clearance(F)=4→permitted(X,read(F))) 

The closure of this policy is given by: 

∀X:staff, Y:posts, Z:dpt. (post(X, Y, Z) ∧ Y ≠ mgr  ∧ clearance(F) = 4 
→ ¬permitted(X,read(F))) 

which is then complemented with another policy stating that “anyone who is forbid-
den to read a file may not edit it or share it or print it (see Section 3). 
                                                           
3 A literal l is said to be bipolar in a formula F, written in conjunctive normal form, if l is in F, 

and if there is another literal l’ in F such that l and ¬l’ unify; that is, ∃σ. (l’≡¬l’)σ. If (l’≡¬l’)σ 
follows from a set E of equality statements, then l is said to be bipolar in a formula F relative 
to E. 
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The unique names assumption is used to establish the inequality of two objects 
with distinct names. Unfortunately, R(P) cannot be characterised logically, only pro-
cedurally.  

Even though our security policies cannot be accommodated in L7, our experiments 
show that our 4 verification tasks can be carried out quickly, as discussed below. 

4   Reasoning About Security Policies 

Once captured, both the policies and the environment are given to an automated first-
order theorem prover. We have chosen to use Otter [2], since it is well-established. 
Otter’s main inference rules are resolution and paramodulation. Resolution is well-
known to be refutation complete: if a formula is unsatisfiable then resolution will 
eventually deduce the proposition false, the empty clause.  

First-order logic is semi-decidable: if a formula is satisfiable, then the resolution 
procedure may not terminate. To partly approach this problem, we simultaneously 
apply Mace, models and counter-examples, a searcher for finite models of first-order 
and equational statements [3]. Mace serves as a complementary companion to Otter: 
given an input first-order conjecture, Otter will search for a proof and Mace will 
search for a counter-example. Mace’s engine is a Davis-Putnam-Loveland-Logemann 
propositional decision procedure. 

Our 4 verifications tasks are then tackled as follows. Let E0 be a conjunction of 
ground formulae, E1 be a conjunction of universal formulas, P1 ∧ … ∧ Pn be a con-
junction of standard policies, and let S and A be closed terms representing a subject 
and an action over some object, respectively. Then: 

1. Is individual S allowed to carry out action A amounts to giving both Otter 
and Mace E0 ∧ E1 ∧ P1 ∧ … ∧ Pn ∧ ¬permitted(S, A). If the conjecture is a 
theorem, Otter will hopefully deduce the empty clause; otherwise, Mace 
will hopefully find a counter-example. We proceed similarly to verify 
whether S is forbidden to carry out action A. 

2. To determine the individual profile of an individual S, we give Otter the 
conjecture E0 ∧ E1 ∧ P1 ∧ … ∧ Pn ∧ (¬permitted(S, X) ∨ ans(X)) and ask 
it to find as many proofs as possible.  

3. Are the policies consistent amounts to give both Otter and Mace the con-
jecture E0 ∧ E1 ∧ P1 ∧ … ∧ Pn. If Otter deduces the empty clause, we use 
the proof to automatically hint the user which security policies are thought 
to be in conflict. Otherwise, Mace will hopefully find a counter-example. 

4. Whether the security policies are Bell-LaPadulla compliant amounts to 
giving Otter and Mace two formulae: i) for the simple security condition 
E0 ∧ E1 ∧P1 ∧ … ∧Pn ∧ clearance(S) ≤ clearance(O) ∧¬permitted(S, A), 
and ii) for the *-property, E0 ∧ E1 ∧P1 ∧ … ∧Pn ∧¬permitted(S, A) ∧ 
¬(clearance(S) ≤ clearance(O)). 

In our experiments, Otter was able to quickly find inconsistencies in the input secu-
rity policies, (deriving the empty clause), if there was any, but usually spent a while, 
otherwise. Notice that, if the input security policies are not inconsistent, then Otter 
may run forever.  
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When asked a specific query about what a specific user can do, Otter also replied 
quickly. Our experiments confirm the theoretical results of [1]. Otter has been made 
to run in automatic mode, applying binary resolution, unary resolution or UR-
Resolution, hyper-resolution, and binary paramodulation. Otter works searching for 
the empty clause, which, in the case of a verification task of type 3, is an evidence of 
contradiction amongst the security policies. 

5   Using E-Policy Manager 

The basic environment, E0, which is a conjunction of ground formulae, is usually built 
using a simple, three-view approach. In the first view, the organisation is character-
ised as a collection of employees. Each employee is described in terms of the standard 
attributes, e.g. name, surname, etc. In the second view, the organisation is character-
ised in terms of a structure, which usually consists of several departments and their 
relations. Relations, e.g. staff(X), post(Y), dpt(Z), post(X, Y, Z), etc., are used to named 
departments, employees, etc. At this point, each employee is affiliated with some 
department and given a role. In the third view, the organisation is described in terms 
of its resources, information in our case. Files, directories and all kinds of information 
resources are then incorporated into the environment.  

Using the unique names assumption, we may express and prove simple properties 
of the basic environment. Proven properties include “every employee is affiliated to 
one and only one department”, “every employee has one and only one password”, etc.  

5.1   Linking E-Policy Manager with a Database Management System 

Mostly, the basic environment is captured through a database management system. E-
policy manager can be linked, so far, to read information from Access or SQL server. 
To fulfil the intended interpretation, the basic environment is assumed to come from 
the following tables: 

• Subject<identifier, name, department of affiliation, position> 
• Object<identifier, name, department this object belongs to, class> 
• Action<identifier, action description, object this action is applied to> 
• Security_mechanism<identifier, access mechanism> 

The second part of the environment, which is a conjunct of universally quantified 
formulae, together with the security policies, is captured via a GUI, which we de-
scribed below. Notice, though, that security policies can be also captured by means of 
a collection of control access lists. An access control list (ACL) is a concept in com-
puter security used to enforce privilege separation. It is a means of determining the 
appropriate access rights to a given object depending on certain aspects of the process 
that is making the request, principally the process's user identifier.4  

5.2   A Graphical User Interface 

Writing, developing and maintaining security policies are all responsibilities of a secu-
rity officer, who can not be assumed to be acquainted with formal methods. Formal 
                                                           
4 http://en.wikipedia.org/wiki/Access_control_list 
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methods require both significant skill and time (and therefore financial resources) to 
use. To get around this problem, e-policy manager comes with a graphical user inter-
face (GUI) that makes it easy to capture security policies by means of wizards and 
other graphical techniques. Also the GUI makes it easy both to correctly interpret the 
input security policies and to formalise them in FOL.  

Through the GUI, a security officer can capture a set of security policies at a high, 
abstract level, by means of schemata. Although schemata restrict the expressiveness 
of our policy language, the output security policies contain the necessary ingredients 
for guaranteeing a simple but correct translation into our first-order language. More-
over, the GUI hides formal methods and knowledge representation out of the user, 
who no longer needs to be acquainted with these techniques.  

To provide flexibility to the user, we maintain a database of action names synony-
mous. So a user may write (or select) “change”, “manipulate”, “alter”, etc. rather than 
the default “access”. To avoid slowing down the deduction process, we normalise all 
the synonymous of an action to a designated, default action name. This way, we do 
not perform additional, unnecessary applications of paramodulation or rewriting. 

Using the capturing schema, each security policy is translated into both a first order 
formula and a semi-natural language expression. The formula is regarded as the for-
mal model of the associated security policy. The expression is used for documentation 
purposes. It is part of the security policies manual of the associated organisation.  

Given that a policy specifies the conditions under which a subject is allowed 
(respectively forbidden) to perform an action on some object, the GUI portrays a 
schemata, based on wizards, through which the user conveys several pieces of infor-
mation. This involves the subject, e.g. users, processes, etc., the action, e.g. reading, 
writing, creating, etc., the object, an information file, the restrictions under which the 
action is permitted, e.g. a user role, a user affiliation, etc., and whether the action 
should be denied or permitted. The subject of a security policy can be a specific indi-
vidual or a group of individuals that are related by some condition. 

The GUI also allows the introduction of a modifier, we call the purpose modifier. 
If the purpose modifier is on, the interpretation of the security policy at hand is 
changed so that it now reads “only subject is allowed (respectively forbidden) to per-
form the associated action on the object under the given conditions”.  

Using the GUI, a user is thus able to capture a security policy through a suitable 
schema. Schematically, the wizard enables the user to convey six pieces of informa-
tion: i) the subject of the policy, ii) number of purposes (use only to denote exclusive-
ness, otherwise this field is left apart), iii) the type of policy (permitting or denying), 
iv) the action to be carried out, v) the object the action should be performed on, and 
vi) the constraints.  

As an example policy capturing, consider that, after interacting with the wizard, the 
user has input the following information: subject =staff, condition on the 
subject = officer, department = sec, purpose modifier = on, policy type 
= permitting, action = read, object = passwords (the password file), and object 
constraints = none, then the policy manager records the following formulae 
within the policy database: 

∀X:staff. (post(X,officer, sec) → permitted(X, read(passwords))) 

∀X:staff. (¬post(X,officer, sec) → ¬permitted(X, read(passwords))) 
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As another example of security policy capturing, consider that, after interacting 
with the wizard, a security officer has input the following information: subject = 
staff, subject constraints = affiliated2(subject, it), purpose modifier = off, 
policy type = permitting, object = information, object constraint = be-
longs2(object, it), action  = read. Then, e-policy manager outputs: 

∀X:staff, Y:dpt, F:info. (post(X, Y, it) ∧ blngs2(Y, it) → permitted(X, read(Y))) 

Each policy can be added or removed from the database by means of a wizard, 
which pops up a table containing all existing policies. A user only has to select an 
unwanted policy, by clicking on it, and then indicate policy removal or edition. 

The design of both the interface and the security policy schemata of e-policy man-
ager was largely inspired by LaSCO [4]. LaSCO is an object oriented programming 
language which expresses a security policy by means of a constraint imposed on an 
object. Other policy languages were also considered, e.g. [5], but none of them pro-
vides as much a solid theoretical foundation as that of [1]. We have more to say about 
related work in Section 5. 

6   Testing Psychological Validity  

E-policy manager was used to capture a number of security policies found in books or 
gathered from practitioners. Although they impose severe constraints on the policy 
language, schemata were found to be enough to capture all these security policies. 
Our experiments show that the verification process may take a few milliseconds.  

E-policy manager was also evaluated for psychological validity. We run a test on 
six security officers, who answered a survey and interacted with the tool prototype. 
Our results from this experiment are encouraging. The answers provided by these 
security officers point that e-policy manager has achieved its two primary design 
goals, namely: i) to make it easy to capture a security policy while guaranteeing it is 
correct in the sense of interpretation, and ii) to provide a means for formally verifying 
the security policies are consistent. Rather than an adverse opinion, we were urged to 
include an account for policies about other resources.  

E-policy manager is available upon request by sending e-mail to the first author. In 
the next section, we will review existing languages for the specification of security 
policies. 

7   Related Work 

A policy specification language aims at formalising the intent of a policy designer 
into a form that can be read and interpreted by both people and machines [5]. It is 
especially designed to specify the relations amongst system entities in terms of 
actions and the conditions upon which these actions are denied or performed. There 
exist several policy specification languages. In what follows, we review the main 
features of four policy specification tools and associated languages: i) Keynote, ii) 
SPSL [5], iii) LaSCO [3], and iv) the General Computer Security Policy Model [6]. 

Keynote and SPSL [5] are used to specify security policies about network applica-
tions. Neither Keynote nor SPL provide a visual tool for policy capturing. However, 
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they are both equipped with a policy compiler, which produces a user profile that the 
intended application can use for denying or permitting the execution of an action. 
Keynote cannot be used to specify facts about the environment. Keynote does not 
scale properly, as it is difficult to foresee the state that results when enforcing a num-
ber of security policies. E-policy manager can be used to capture facts about the envi-
ronment but was never thought as a mechanism for enforcing security policies. 

LaSCO [3] is based on a model where a system consists of objects and events and 
works by conveying restrictions on objects. This language represents the policies by 
means of directed graphs which describe a specific state of the system (domain) and 
specific access constraints (requirements) and in mathematic logic. The nodes repre-
sent system objects and the edges represent system events. LaSCO [3] can be used to 
express a wide variety of standard and customised security policies, including access 
control and other history-based and context-dependent policies. Our work has been 
inspired in this language. For example, for the graphical user interface, we have 
adopted the use of graphs facilitating the security policies representation, as well as 
denoting information access control. LaSCO expressions can be translated into a low-
level language for security policy enforcement. However, the tool does not involve 
the use of a mechanism to guarantee that the policies are consistent or that they meet 
certain properties.  

Krsul, Spafford and Tuglualar [6] have presented a functional approach to the 
specification of security policies that allows policy stepwise refinement. The model 
makes the explicit assumption that policies and the value of the system objects are 
related. This model expresses policies as algorithmic and mathematical expressions. 
The specification policy explicitly lists the objects and attributes that are needed to 
enforce the policy. The model helps identifying the components that are relevant to 
the policy and hence provides a better policy understanding. 

These languages are all adequate for the specification of security policies. How-
ever, they are not this effective, since, except for [6], they do not have a formal 
semantics, with which to reason about the security policies. Also security policy cap-
turing using no visual aid has proven to be error prone, making it necessary to verify 
the written policies. Languages have been developed for the integration of local and 
distributed security policies oriented towards the interoperability of several computer 
sites [9,10]. They do not help ensuring that policies do not contradict one another. 

Halpern and Weissman have shown that (a subset of) first order logic is enough to 
express and efficiently reason about security policies [1]. They represent a security 
policy as a relation between three sorts, Actions (e.g. accessing a file), Subjects (the 
agents that perform actions) and Times. This contrasts with our work, where we de-
note a policy as a relation amongst Subjects, Objects and Actions. Halpern and 
Weissman are much more interested in using a user profile in order to enforce secu-
rity policies; they argue that their security policy schema (which we have borrowed 
for our work) makes it easier for a user to write proper policies. They have not paid 
attention to checking policy consistency. As we can see, our work is also based on 
Halpern and Weissman’s. Indeed, in [1] it is mentioned these two researchers are 
working on developing a user-friendly interface for security policy capturing, but no 
report has been published yet. 

E-policy manager ensures that the set of security policies are unambiguous and do 
not contradict each other; that is, it guarantees that the security policies are, what we 
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call, consistent. This contrasts with related work where methods are proposed to en-
sure that the security policies are consistent across a distributed environment [11,12].  

More related to ours is the work of Zanin et al. [13], where a formal model, called 
SELinux Access Control (SELAC), is proposed for analyzing an arbitrary security 
policy configuration for the SELinux system.5 SELAC defines a semantics for the 
constructs of the SELinux configuration language and models the relationships occur-
ring among sets of configuration rules. Zanin et al. have developed an algorithm 
based upon SELAC, which, given an arbitrary security policy configuration, can ver-
ify whether or not a given subject can access a specific object in a particular mode. 
They are planning on extending the model and the tool functionalities to support the 
analysis of data confidentiality and integrity. 

E-policy manager is a second-generation of that presented in [14]. In particular, the 
newer e-policy manager has much better reasoning capabilities, a better interface and 
more linking capabilities to interact with other systems. 

8   Conclusions and Future Work 

To secure the most significant resources of an organisation, it is necessary to have a 
set of appropriate policies. Managing security policies is not an easy task and cur-
rently it does not have computer support. The goal of our work is to provide a tool 
that supports this task and gives a basis for future research. The tool, called e-policy 
manager, includes a graphical user interface that makes it easy to capture security 
policies and a module that formalises these policies to be verified by a first-order 
theorem prover, Otter, and a first-order model finder, Mace. 

Further work includes using a natural language processor so as to allow a user to 
input security policies as he would in an informal document. This interface would 
significantly increment the acceptance of E-policy manager from potential users. 
Further work also considers expressing and reasoning about policies regarding re-
sources other than information. 
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Abstract. This paper presents a Colored Petri Nets (CPN) approach to analyze 
the information flow in the policy file of Security-Enhanced Linux (SELinux). 
The SELinux access control decisions are based on a security policy file that 
contains several thousands of security rules. It becomes a challenge for policy 
administrator to determine whether the modification of the security policy file 
conforms to the pre-specified security goals. To address this issue, this paper 
proposes a formal information flow model for SELinux security policy file, and 
presents a simple query language to help administrators to express the 
expected/unexpected information flow. We developed a method to transform the 
SELinux policy and security goal into Policy CPN Diagram and Query CPN 
Diagram. A tool named SEAnalyzer that can automatically verify the SELinux 
policy has been developed and two application examples of this tool will be 
presented in the context. 

Keywords: Colored Petri Nets, information flow, SELinux, security policy. 

1   Introduction 

OS security is considered to be the basis of the computer security [1]. In 1983, the 
Department of Defense published the TCSEC (Trusted Computer System Evaluation 
Criteria). In TCSEC, there are seven levels for security computer system, from D to A1. 
In 2001, NSA (National Security Agency) proposed the SELinux (Security-Enhanced 
Linux) [2] system, which has reached the B1 level of TCSEC [3]. It is considered to be 
secure, because that most of the popular OS, like Windows or Linux, do not even 
satisfy the requirement of B1 level. 

Although the SELinux is secure, the policy of SELinux is complex to make. For 
example, in the SELinux example policy file which associated with the distribution of 
SELinux, there are more than 30,000 policy statements. In different situation, different 
applications running in the system, or different resources allocation, the security policy 
should be modified to adapt the current environment and ensure the security of the 
whole system. So this is a problem for policy administrator, who has the responsibility 
to handle thousands of policy statements and make sure that these policy statements 
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will exactly behave as what he expects. Several researches have tried to solve this 
problem [4][5][6][7][8][9][10][11], and we will compare our approach to theirs in the 
last two sections. 

The aim of this paper is to provide a more intuitive for users to analyze the 
information flow of SELinux security policy. We first propose a formal information 
flow model for SELinux security policy file, then presents a simple query language to 
help administrators to express the security flow that he/she concerns. We have 
developed a method that transform the information flow related rules and security 
query to Colored Petri Net (CPN) diagram. We have implemented a tool named 
SEAnalyzer and will illustrate its uses by several examples in the context. 

The paper is organized in 9 sections. Section 2 introduces the SELinux security 
model. Section 3 presents the system definition. Section 4 explains the security goal 
and security query. Section 5 presents the verification tool and process. Section 6 
describes our CPN diagram transformation methodology. Section 7 gives analysis 
examples to the application of our approach and Section 8 compares our work with 
related work. Finally we make conclusions and give future research directions in 
Section 9. 

2   SELinux Security Model 

2.1   SELinux MAC Operation 

The key factor to make SELinux a more secure system than many other popular 
operating systems is that SELinux adopt the MAC (Mandatory Access Control) 
mechanism, not the DAC (Discretionary Access Control). DAC only depends on the 
user ID and ownership of this user to decide whether the subject (e.g. process) can 
access the object (ex. file) or not. On the other hand, MAC depends on labels to make 
the decision. The label contains a variety of security-relevant information [13]. Subject 
and object are the most basic terms in the literature on access control. Subject refers to 
the active component in a system, usually the process, while object refers to any system 
resource accessed by subject, such as file, directory, network socket, or even another 
process. If any subject intents to access any object, only the behavior of access that is 
clearly defined to be allowed in the MAC policy can be conducted. 

MAC is an important feature that makes the main difference between level C and 
level B in TCSEC. However, traditional MAC architecture has some limitations. For 
example, the MAC mechanism is typically tightly coupled to a MLS (multi-level 
security) policy. That makes the system very inflexible. To overcome this problem, 
NSA and SCC (Secure Computing Corporation) worked with University of Utah’s 
Flux research group to develop Flask architecture [13], which provides the support of 
dynamic security policies. 

Figure 1 shows the Flask architecture. The Flask architecture separates the definition 
of the policy logic from the enforcement mechanism. Two components, Security Server 
and Object Manager, respond in those tasks respectively. 
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In the SELinux implementation, all the kernel subsystems (e.g. process management, 
filesystem, socket IPC, System V IPC), except the Security Server, are Object 
Managers. If any subject intends to access some objects, Object Manager will query the 
Security Server first. After the Security Server send the decision of this access back, 
Object Manager then conduct the enforcement to accept or deny the access depends on 
the Security Server decision. Security Server stores the security policy. Security Server 
receives the query sent by the Object Manager, checks the rules defined in the security 
policy, and makes the decision for this query. 

Object Manager

Policy 
enforcement

Security Server

Security
Policy

client
Object
request

query

decision

enforcement policy  

Fig. 1. Flask architecture 

2.2   Security Context  

Security context is one of the policy-independent data type for security labels in Flask 
architecture [13]. The security context is a variable-length string, and the security 
identifier is an integer that is mapped to a security context. SELinux associates a 
security context with every subject and object in the system. Here a security context is a 
3-tuple (user, role, type). The notion of user is the person who makes the process 
running if it is in the subject security context, and is the owner of object in the object 
security context. The notion of role, derived from the literature on role-based access 
control, is used to represent a set of permissions that the user can be granted. The notion 
of type is also known as domains, which divides subjects or objects into groups [14]. 
The information stored in security context is used as the representation of environment 
by SELinux for making authorization decisions. 

3   System Definition 

3.1   CPN Definition 

CPN is proposed by Kurt Jensen in 1980s [12]. The difference between Petri Nets and 
CPN is that CPN involve the concept of color set that just is similar to the concept of 
data type in general purpose programming languages. CPN is a graphic-oriented 
language, which use oval to represent the place, rectangle to the transition, and arrow to 
the arc. Arc expression represents the condition for the transition occurs. There may be 
zero, one, or many tokens in each place. If the value of the token matches to the 
condition on the arc expression, the transition will be initiated.  
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CPN can be formally defined by a tuple N = ( ,P,T,A,N,C,G,E,I) which satisfies the 
following requirements: 

1.  is a finite set of non-empty data types, called color sets. 
2. P is a finite set of places. 
3. T is a finite set of transitions. 
4. A is a finite set of arcs. 
5. N A → P×T  T ×P is a node function that associates arcs with two nodes. 
6. C P →  is a color function that associates places with data types. 
7. G T → EXP is a guard function that associates transitions with expressions such 

that: ∀ t∈T, (type(G(t)) = bool) ∧ (type(var(G(t))) ⊆ ), where type(e) denotes the 
data type of an expression e, type({e1,e2, . . .}) denotes the set of data types of 
expressions e1,e2, . . ., var(e) denotes the set of free variables of an expression e, and 
EXP denotes the set of all expression. 

8. E A → EXP is an arc expression function that associates arcs with expressions 
such that: ∀ a∈A, (type(E(a)) = C( p( a ) )MS) ∧ (type(var( E( a ) ) ) ⊆ ) , 

where p(a) is the place of N(a), and ’ tMS’ denotes type ’multi-set of type t’. 
9. I P → EXP is an initialization function that associates places with expressions 

such that: ∀ p∈P, type( I ( p ) ) = C ( p )MS. 

3.2   Security Policy Definition 

In order to define what the security policy is, we have to define several basic sets first. 
Here are several sets defined for the SELinux policy: 

Pu the set of users in SELinux policy 
Pr the set of roles in SELinux policy 
Pt the set of types in SELinux policy 
Pc the set of classes in SELinux policy 
Pp the set of permissions in SELinux policy 

After these sets were defined, several relations of these sets can be defined to 
represent some declarations and rules which are used in the SELinux policy. Here are 
several relation definitions: 

1. User declaration relation : 

 (u, r1, r2,…, rn ), where u∈Pu, for each 1 ≤ i ≤ n, i∈N, ri∈Pr 
Relation  represents that user u play the role r1, r2,…, or rn. For example: user root 
roles { user_r sysadm_r }; 

2. Role declaration relation : 

 (r, t1, t2,…, tn ), where r∈Pr, for each 1 ≤ i ≤ n, i∈N, ti∈Pt 
Relation  represents that role r is declared, and r can access type t1, t2,…, or tn. For 
example: role user_r types user_t; 

3. Class declaration relation : 

 (c1 ,c2, p1, p2 ,…, pn ), where c ∈Pr, for each 1 ≤ i ≤ n, i ∈N, pi ∈Pp. 
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Relation  represents that class c1 is defined that it inherits from c2 and contains the 
permission set {p1, p2,…, pn}  permission set of c2. For example: class dir inherits 
file { add_name } 

4. Allow rule relation : 

(t1 ,t2, c, p1, p2,…, pn ), where t1∈Pt, t2∈Pt, c∈Pc, for each 1 ≤ i ≤ n, i∈N, p 

i∈Pp. Relation  represents that type t1 can access type t2 with operation of class c 
and permission p1, p2,…, or pn. For example: allow crond_t locale_t:dir { read 
getattr lock search ioctl }; 

3.3   Security Context Definition 

SELinux uses security context to summarize the security-relevant information of 
resources. Here is the definition of the legal security context set S: 

S = { (u,r,t) | u ∈Pu, r ∈Pr, t ∈Pt, (u,r), (r,t) } 

3.4   Information Flow Definition 

The most important control in SELinux is the access control from subject to object. 
After the basic sets and relations have been defined, we can define the direct 
information flow that flows from some security context to another, but doesn’t pass 
trough any security context in the middle. The direct information flow  is defined as: 

 (u1, r1, t1, u2, r2, t2, c, p), where,  
(u1, r1, t1) ∈S, (u2, r2, t2 ) ∈S, (c, p), (t1, t2, c, p) if write_like(p), or 
(u1, r1, t1) ∈S, (u2, r2, t2 ) ∈S, (c, p), (t2, t1, c, p) if read_like(p) 

Function write_like returns true if p is a write-like permission and false if read-like. 
Also, function read_like returns true if p is read-like permission and false if write-like. 
However, usually the information flow doesn’t come alone. For example, the httpd_t is 
allowed to access log_t to log something in the log file, so there exits one information 
flow form httpd_t to log_t. After that, maybe the sysadm_t is allowed to check the log 
file, so there will be one information flow from log_t to sysadm_t. In this example, the 
information flow can flow from httpd_t, through log_t, and into sysadm_t. Such 
successive information flow is called Sequenced Information Flow. The sequenced 
information flow  can be defined as: 

(u1, r1, t1, un, rn, tn ), where, ∃ {(u1, r1, t1 ) ... (un, rn, tn)} ⊆ S, { c1, c2,…, cn-1 } ⊆ Pc, 
{ p1, p2,…, pn-1 } ⊆ Pp, 1 ≤ i ≤ n, i∈N, so that (u1, r1, t1, u2, r2, t2, c1, p1), (u2, r2, t2, 
u3, r3, t3, c2, p2), …, (un-1, rn-1, tn-1, un, rn, tn, cn-1, pn-1). 

Moreover, if the information flow flows to any security context that is passed 
through before, we name this kind of information flow as Recursive Information Flow. 
For example, if there is a user writes something into a file, and reads the file later, then 
the information flow will flow form the user’s security context to the file’s, and back to 
the user’s, as the event of reading. The Recursive Information Flow  is defined as: 
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(u1, r1, t1, un, rn, tn ), where (u1, r1, t1, un, rn, tn ), 1 ≤ n, n∈N, 
and (u1, r1, t1)=(un, rn, tn). 

4   Security Goal and Security Query 

4.1   Security Goal 

One of the challenges to address the SELinux policy analysis problem is how to express 
the security goal. Here the security goal indicates the security condition that the 
administrator wants to know whether it exists in the policy configuration file. With 
security goal, we can validate the policy, and examine that is there exist any 
wrong-made policy which conflicts the goal we expect. For this reason, we need a kind 
of expression to represent the security goal, or so-called security policy specification. 
For example, after the administrator installs a SAMBA service in a SELinux server, 
he/she wants to know whether the samba program would access the password file that it 
is permitted to access. In this case, we may describe the security goal as:  

“Only the information flow which starts from samba_t and directly flows into 
passwd_t is the legal information flow” 

However, there will several situations that are considered to be illegal information 
flows under this description: 

1. The information flow which starts from samba_t, and flows to another type, but 
enters into passwd_t. 

2. The information flow which starts from samba_t, but doesn’t flow through 
passwd_t. 

3. The information flow doesn’t flows through samba_t, but enters into passwd_t. 
4. The information flow which flows through neither samba_t nor passwd_t. 

It is obvious that, many of these situations could be unreasonable. For example, in 
the fourth case, most of the information flows in the policy should be illegal. Hence, the 
representation of this security goal is very improper. The reason of this improper 
representation is that it is a positive representation. Positive representation means that 
it describes the legal information flow of the security goal. On the other hand, if the 
negative representation is used, that will be more specific. The negative representation 
describes the illegal information flow of the security goal. For example, the negative 
representation of security goal in the samba_t-passwd_t case maybe as: 

“Only the information flow that starts from samba_t, and flows to another type, but 
enters into passwd_t is the illegal information flow” 

However, not all of the security goals are suitable to be described in negative 
representation. For example, consider the following security goal: 

“There must be information flow flowing from samba_t to passwd_t” 
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This is a positive representation of security goal. If we use negative representation 
instead, we will find that it is difficult and complex. In such situation, positive 
representation is the better choice. In conclusion, the selection of positive or negative 
representation to describe security goal depends on the property of this security goal. 

SLAT [8][9] supports a security goal description language, called Diagram. The 
Diagram in SLAT must be made in positive representation, and SLAT will convert this 
Diagram into negative representation automatically. This is a dangerous step because 
that there maybe one positive representation of the security but many negative 
representations that conflict the positive one. SLAT only chose one of them to verify 
the security policy. So it is likely that the result of SLAT verification (the information 
flow that matches the converted security goal) is talking about the wrong story about 
the illegal information flows. 

4.2   Security Query 

Query is a neuter way because that it can be used in both positive and negative 
representation. In the positive case, query can be used to find legal information flow. If 
any result was found in positive query, then the security goal is satisfied. In the negative 
case, query can be used to find illegal information flow. If any result was found in 
negative query, then the security goal is violated. 

In Order to allow the administrator easily expresses the security goal, we develop a 
simple query language which expresses the information flow that administrator wants 
to query, no matter it is a positive or negative query. The BNF form [15] of the query 
language is expressed as follows: 

Goal ::= IF IFP type“;” 
IF ::= IF IFP type 
   | type 
IFP ::= “:(“ Perm “,” Operator “, !(“ Not_List “)):” 
    | “:(“ Perm “,” Operator “, !()):” 
Perm ::= “WL” | “RL” | “ALL” 
Operator ::= “+” | “-” 
Not_List ::= Not_List “,” type 
         | type 
type ::= ([a-z,A-Z] | “_”)+ 

 “IF” represents the information flow, and “IFP” represents the information flow 
path. The direction of information flow is from the left type of the information flow 
path to the right type of the same information flow path. 

“Perm” represents all the permissions in this information flow. If “Perm” is “WL”, 
that means all the permissions in information flow path are write-like permissions, and 
“RL” means read-like permissions. At last, if “Perm” is “ALL”, then permission type is 
not checked. 

“Operator” represents the direct information flow in “-“, and sequenced 
information flow in “+”. “Not_List” represents the SELinux types that are not 
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included in the information flow path. Finally, “type” represents the SElinux type 
name. For example, if the query is formulated as: 

a_t:(WL,+,!()):b_t:(RL,-,!()):c_t:(ALL,+,!(d_t)):e_t; 

Then this query is made to find the information flow that: 

1. a_t can access b_t with write-like permissions in sequenced information flows 
2. c_t can access b_t with read-like permission in direct information flow 
3. c_t can access e_t with the information flow that doesn’t pass through type d_t 

It is noticeable that c_t access b_t by read-like permission, not b_t access c_t. The 
reason is that the direction of information flow is from left to right, in other words, from 
b_t to c_t. So only when c_t accesses b_t with read-like permission, the information 
flow direction is matched. 

5   Verification Tool and Verification Process 

In order to verify the user maintained SELinux security policy with user specified 
security goal, we need a verification tool which can automatically parse the policy, 
parse the query, construct the model to simplify the policy, and deduce the model 
automatically to conclude that whether the security policy satisfies the security goal or 
not. We propose the tool, named SEAnalyzer, to responds for theses tasks. In 
SEAnalyzer, CPN is used to model the security policy and query separately, into the 
Policy CPN Diagram and Query CPN Diagram. Allow relation is the majority part of 
SELinux policy, and it is the most important relation in the information flow. Hence, 
the SEAnalyzer only focus on allow relations and model information flow with allow 
relations in Policy CPN Diagram.  

6   CPN Diagram Transformation 

Before the usage of CPN, the colors and variables should be defined first. We define the 
following colors and variables that would be used in information flow analysis using 
CPN ML notation [16].  

color Match = BOOL; 
color SELinux_type = string; 
color Perm_type = string; 
color Pre_Query_Type = string; 
color Type_List = list SELinux_type; 
color Perm_List = list Perm_type; 
color INFO= product  
Match*Pre_Query_Type*Type_List*Perm_List; 
var selinux_type : SELinux_type; 
var pre_query_type : Pre_Query_Type; 
var type_list : Type_List; 
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var info : INFO; 
var pre_query_type : Pre_Query_Type; 
var match : Match; 

6.1   Policy CPN Diagram Transformation 

First of all, the allow relation will be extracted from SELinux policy and transformed 
into Policy CPN Diagram. For each allow relation, the source type and destination type 
will be transformed into CPN place with the name as the SELinux type name. Each of 
the permission in the allow relation will be transformed into place named “RL” if this is 
a read-like permission and “WL” if write-like permission. For example, the following 
two allow relations (1) and (2) will be transformed into Table 1 individually for each of 
the permission. 

allow p1, p2:c { read, write }; (1) 

allow p1, p2:c { read ,write }; (2) 

After these Diagrams were transformed individually, then combine these Diagrams 
into one Policy CPN Diagram as Figure 2. 

 

Fig. 2. Combined Policy CPN Diagram for (1) and (2) 

Finally, for each of the arc which direct to any SELinux type, the arc expression 
should be altered to put some information into the token and check the recursive 
information flow. For example, the allow relation in (3) will be modeled as Figure 3. 

allow user_t fsadm_t : file { write }; (3) 

 

Fig. 3. Security Policy Diagram for (3) 
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Table 1. CPN Diagram transformed from (1) and (2) for each of the permission 

Types and permission CPN Diagram 

p1 read p2 

p1 write p2 

p2 read p1 

p2 write p1 

 

6.2   Query CPN Diagram Transformation 

The verification methodology is designed to check all of the information flows which 
flow through the SELinux types that are specified in the user query. Hence, in the 
Query CPN Diagram transformation, one “match” transition and one place should be 
added for the corresponding SELinux type. If any of the information flow flows 
through the type which is specified in query, this information flow should be checked 
by the “match” transition with token from the corresponding query place to decide this 
information flow should be dropped or not. 

The decision was made by the arc expression directing from “match’ transition to 
SELinux type place. In different user query situation, there will be different condition 
in “if” decision of the arc expression. If the condition was satisfied for any information 
flow passes through, then returns the altered token to SELinux type place. If the 
condition was not satisfied, then drops this token. The information flow will be 
terminated after the token was dropped, and this information flow will be excluded 
from the result information flow set for the user query. Table 2 lists different conditions 
 

 

Fig. 4. Security Query Diagram for (4) 
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that should be added in the “if” decision of the arc for different user query. For 
example, if the query is defined as (4): 

user_t :(WL,+,!(fsadm_t)):fixed_disk_device_t; (4) 

Then the Security Query Diagram for (4) will be modeled as Figure 4. 

Table 2. Different conditions that should be added in “if” decision for different query 

User Query Condition to be added 
First type of query type #2 info = "" 
Not first type and not Not_List 
type #2 info = previous not Not_List_Type

Not_List type #2 info <> previous not Not_List_Type
Not Not_List type, and exist 
“RL” Perm in previous IFP andalso not (List.exists(fn(x)=>x="WL")(#4 info)) 

Not Not_List type, and exist 
“WL” Perm in previous IFP andalso not (List.exists(fn(x)=>x="RL")(#4 info)) 

Not Not_List type, and exist 
“ALL” Perm in previous IFP Do nothing 

Not Not_List type, and exist 
“+” Operator in previous IFP 

andalso List.exists(fn(x)=>x= previous not 
Not_List_Type)(#3 info) 

Not Not_List type, and exist “-” 
Operator in previous IFP 

andalso List.nth(#3 info,0) = previous not 
Not_List_Type

 

6.3   Diagram Combination 

After the Policy CPN Diagram and Query CPN Diagram were transformed 
successfully, the Combined CPN Diagram should be established. First, the SELinux 
 

 

Fig. 5. Combined CPN Diagram for policy (5), (6) and query (4) 
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type in Query CPN Diagram should be replaced by the type with the same name in 
Security Policy Diagram. Second, add the “security” transition and “end” place at the 
end of the SELinux type in query. Finally, put initial tokens on all query types and the 
SELinux type that corresponding to the first query type. For example, if (5) and (6) are 
only two policy statements in SELinux policy, and the security goal is defined as (4), 
then the Combined CPN Diagram will be modeled as Figure 5. 

allow user_t fsadm_t:process { write }; 

allow fsadm_t fixed_disk_device_t: file { write }; 

(5) 

(6) 

7   Analysis Examples 

The analysis of SELinux security policy is performed when the administrator modifies 
the security policy file after changing the system configuration. The administrator has 
to guarantee that the modified policy file would not conflict with some specific security 
goal. In this section, we give an application example. 

First of all, suppose one of the security goals for the SELinux is that: 

“For all the sequenced information flows which start from user_t and flow to 
fixed_disk_device_t must flow through the trusted type fsadm_t ” 

(7) 

By the analysis method mentioned in Section 5, we transform this security goal to a 
security query, as shown below: 

user_t :(ALL,+,!(fsadm_t)): fixed_disk_device_t; (8) 

Assume the original policy statements in the security policy file contains only the 
following statements: 

allow user_t httpd_t:file { write }; 
allow httpd_t fsadm_t:file { write }; 
allow fsadm_t fixed_disk_device_t : file { write}; 

The above statements indicate that the system permits the user to write something to 
HTTP server, permits the HTTP server to access the trusted program fsadm_t, and 
permits the fsadm_t to write the low security level disk type fixed_disk_device_t. 

Now suppose the administrator installs an audit program to audit the web logs and 
allows this audit program to access hard disks, he/she may add the following two policy 
statements to reflect the system changes: 

allow httpd_t log_t : file { write }; 

allow log_t fixed_disk_device_t : file { write}; 

(9) 

(10) 

Above statements implies that the system permits the HTTP server to write 
something to log_t for auditing, and the log_t to write fixed_disk_device_t. After the 
addition of above statements, the administrator would like to check whether this 
addition conforms to the security goal of (7). Using the SEAnalyzer, he/she can make 
the query of (8) and obtained the results as shown in Figure 7.  
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Fig. 7. A query result with a token flown in the end place 

Note that in Figure 7, there is one token flowing into the end place. From the contents of 
that token’s list: [“fixed_disk_device_t”, ”log_t”, ”httpd_t”, ”user_t”], the administrator 
could easily be mentioned that the security conflict comes from the flow between httpd_t 
and log_t, and the flow between log_t and fixed_device_t. He/she can then locate the 
problematical policy statements (9) and (10), and readjust the configuration of audit 
program to delete these two statements from the policy file. After above conflict resolution 
steps, he/she can repeat the same security query of (8) by the SEAnalyzer again. The new 
result shown in Figure 8 indicates that there is no token flown into the end place, i.e. no 
security violation exists, so the security goal of (7) is verified. 

 

Fig. 8. A query result with no token flown in the end place 

8   Related Work 

SLAT [8][9] and PAL [10], like ours, are tools that come with a security goal/query 
language. A SLAT goal is like a kind of regular expression that specifies the expected 
form of information-flow paths between two specified security contexts. For example, 
if there is a security goal 



402 Y.-M. Chen and Y.-W. Kao 

“For each information-flow which starts from user_t and flows to 
fixed_disk_device_t has to pass through fsadm_t” 

(11) 

Then the security goal of SLAT will be written as: 

[ t=user_t, TRUE+; t=fsadm_t, TRUE+; ] 
t=fixed_disk_device_t; 

The first “+” inside the goal means that information flow starting from user_t can 
traverse many other types and then flows to fsadm_t. The second “+” has the similar 
meaning. After the goal is specified by user in positive representation, SLAT 
improperly converts it to the negative representation as: 

!(t=user_t & E[t !=fsadm_t  t= fixed_disk_device_t & 
EF (k=TRUE & t= fixed_disk_device_t)]) 

This negative representation means that the information flow which starts from 
user_t, flows through fsadm_t, and flows to fixed_disk_device_t is the illegal 
information flow. However, if the administrator consider that the information flow 
which starts from user_t, pass trough fsadm_t, and flows to fixed_disk_device_t is the 
illegal one, then SLAT is unable to come out the right verification. PAL, unlike SLAT, 
has to transform the security goal to a security query program. For example, for the 
same security goal (12), the query of PAL is: 

init(fdisk_automaton, [user_t, R, U]). 
trans(fdisk_automaton,[T0,R0,U0],(Class,Perm),[T1,R1,U1],[neq(T1,fsadm_t)]). 
trans(fdisk_automaton,[T0,R0,U0],(Class,Perm),[fixed_disk_device_t,R1,U1], []). 
final(fdisk_automaton, [fixed_disk_device_t,_R,_U], []). 

Table 3. The different goal/query forms among SLAT, PAL and SEAnalyzser 

Analysis tools Security goal = (12) 
Illegal information flow=”information flow 
that starts from user_t and flows to 
fixed_disk_device_t but doesn’t pass through 
fsadm_t”

Characters count 
(including space) 

SLAT [ t=user_t, TRUE+; t=fsadm_t, TRUE+; ] 
t=fixed_disk_device_t;

60

PAL init(fdisk_automaton, [user_t, R, U]). 
trans(fdisk_automaton,[T0,R0,U0],(Class,Per
m),[T1,R1,U1],[neq(T1,fsadm_t)]). 
trans(fdisk_automaton,[T0,R0,U0],(Class,Per
m),[fixed_disk_device_t,R1,U1], []). 
final(fdisk_automaton, 
[fixed_disk_device_t,_R,_U], []). 

249 

SEAnalyzser user_t:(ALL,+!(fsadm_t)):fixed_disk_device_t 45  
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Note that there is a neq operator in the second line of above query. The above 
program means that administrator wants to “find all information-flow which starts from 
user_t and flow to fixed_disk_device_t without passing through fsadm_t”. The 
disadvantage of PAL is that its query is much more complicated than SLAT’s and ours. 
It looks more like a small program than a simple query.. In addition, the analysis engine 
behind PAL and ours are very different. PAL use the logic program to deduce the 
results, while ours uses the CPN to perform the analysis. The graphic property of CPN 
graph and the data type design in the token flown from place to place can give users 
more useful information in the course of query formulation and security analysis.  
Table 3 compares the different goal/query forms among SLAT, PAL and SEAnalyzser. 

9   Conclusion 

This paper presents a CPN approach to analyze the information flow in the policy file 
of SELinux. All of the power of SELinux depends on a set of well defined access 
control policies. Unfortunately, the large number of policy statements within the 
SELinux example security policy file and the complex relationships among these 
statements make the verification of security policy correctness for SELinux difficult, 
thus constrains the wide-spread use of SELinux. In this paper, we propose a CPN 
approach to analyze the security policy of SELinux. The use of a well established CPN 
model enables the administrators to formally model a security query. In addition, the 
graphic property of CPN model allows the administrators to easily use and comprehend 
the analysis results. Therefore, in comparison with alternative approaches, such as 
SLAT and PAL, our approach has the advantages of intuitive use and powerful analysis 
and verification capabilities. Our contribution in this paper includes: (1) propose a 
model to transform the allow-rule police statement to Policy CPN Diagram, (2) propose 
a intuitive and powerful query language to express the information flow that the 
administrators may concern, and (3) propose a method to combine the Policy CPN 
Diagram of security policy file and Query CPN Diagram of user query in respective as 
an Combined CPN Diagram to let our CPN engine to perform analysis automatically. 

Currently, we only analyze allow rules. We assume that the SELinux types don’t 
change in the operation. However, the types do change in the real world with type 
transition rules .The address of other rules will be the direction of our future research. 
Moreover, we only consider about one query a time. The research of multi-query 
analysis and multi-query conflict resolution is also the interesting future research. 
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Abstract. A recent paper presented an access control scheme for dis-
cretionary access controls with a decidable safety problem. This paper
deals with the complexity analysis of that access control, and finds it to
be, in its worst cases, PSPACE-complete, but polynomial time for prac-
tical cases. The PSPACE-hardness reduction uses the theory of succinct
problems in a more general manner than circuit representation.

1 Introduction

In a computer system, access controls restrict subjects (users and/or processes)
to performing only those operations on objects (e.g., files) for which they are
authorized. For each such operation, the access controls either allow or disallow
that operation to be performed. In Discretionary Access Controls (DACs), each
object has an owner who exercises primary control over the object. DACs are
oldest and most widely used class of access controls, the access controls for both
Windows and UNIX are DAC. The Unix DAC, for example, has the well known
three primitive permissions read, write, and execute.

In the late 1970s, Harrison, Ruzzo, and Ullman (HRU) introduced a seemingly
very simple general-purpose language for Discretionary Access Control (DAC).
In spite of the simplicity of the HRU language, a safety property with parameters
a specific permission p, subject s, and object o:

“Always s does not have permission p for o” (1)

is undecidable [3].
Recently Solworth and Sloan gave a group-based mechanism for designing

DACs for which the safety problem (Equation 1) is decidable [10], and showed
that that mechanism is expressive enough to construct any particular DAC from
a taxonomy of DACs given by Osborne et al. (OSM) [8].

That group-based access control scheme was the first general access control
model proved both to have a decidable safety property and to be capable of
implementing the full range of DAC models. From HRU’s work in the 1970s
though the early 2000s, general access control models were published that have
both decidable (but relatively weak) and undecidable (but more expressive) vari-
ants. This includes HRU, Sandhu’s 1992 Typed Access Model (TAM) [9], and
� Partially supported by NSF grant No. CCF-0431059.
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Koch et al.’s 2002 graph-based model [5,4]. In each of these cases, decidability is
obtained by requiring a type of monotonicity: an operation can add or remove
privileges but not both. Thus, for example, changing a user’s group membership
is not permitted in the decidable version of those access control schemes, since
changing groups typically both adds and removes privileges.

In this paper we consider the precise complexity of the safety problem in the
Solworth and Sloan access control scheme. We show that for the implementation
of any DAC in Osborne et al.’s taxonomy, the safety problem can be decided
in polynomial time, and that for the mechanism in its full generality, the safety
problem is PSPACE complete. The proof of PSPACE hardness may have some
interest in its own right. As we mention very briefly in Section 6, it generalizes
the theory of succinct graph problems [2].

In the next section we quickly sketch the group-based access control model
of [10] (full details are given in that paper). Section 3 describes the sliding marker
net, a new marked graph model, which is the appropriate abstraction of the key
part of the group-based access control system. Section 4 gives the polynomial-
time result, and Section 5 gives the PSPACE-completeness result. We conclude
in Section 6.

2 Review of the Access Control Scheme

Solworth and Sloan’s group-based access control model is a general purpose
scheme that allows one to describe a wide variety of particular access control
systems. It corresponds to what they called “Layer 1” [10], and to what Li
and Tripunitara [6] call an access control scheme. An access control scheme has
a set of states and family of transition functions, and possible permissions. A
particular access control system specifies a particular transition function, and
the specific permissions, and typically narrows the set of states as well.

In all particular access control systems in the Solworth-Sloan scheme, pro-
cesses derive authority to perform operations from the user on whose behalf
they execute. Every object—or entity that can be accessed by a process—has a
label that (indirectly) defines the privilege (also called permission or right) that
various users have to perform operations on the object. (A file is the typical
example of an object.) Objects are disjoint from users.

In defining a particular system, a fixed constant number of privileges is chosen
(e.g., read, write, and execute). Privileges map labels to groups of users; the
mapping is fixed when the label is created, although the membership of the
group is not fixed. Protection is at the granularity of labels.

The group mechanism is the novel part of the scheme. A group set is a collec-
tion of one or more groups ; a group is a set of users.1 Every group set has a set
of users, a set of group tags, and a set of pairs, 〈u, t〉 where u is a user ID and t
is a group tag, which determine group membership.
1 What we describe in this section are “native groups and group sets” in [10]; to

implement a particular DAC policy one typically uses more than one of these native
groups to implement one group in the specified policy.



The Complexity of Discretionary Access Control 407

2.1 Formal Description of Solworth-Sloan Scheme

In this subsection, for completeness, we give a fairly detailed description of the
relevant parts of the Solworth-Sloan access control scheme. However, the reader
can probably follow the main points of this paper without reading these details.

Formally, in the Solworth-Sloan scheme, every state (in any possible system)
is a tuple with the following (many) components:

– The set U of current users
– The set O of current objects
– The set L of current labels of objects
– A map 
 : O → L giving the label of every object
– The set GS of current group sets
– The set G of current groups
– The set of privileges, and for each privilege, a map p : L → G telling which

group of users has that privilege
– A map gs : G→ GS that determines the group set of each group
– The set T G of current group tags, and a map f : T G → GS that gives the

group set of each group tag.
– The set GL ⊂ U × T G of all user–group tag pairs. Each ordered pair 〈u, t〉

can be thought of as a “group label” on a notional group object.
Each user has at most one group tag for each group set at any time; that
is, if both 〈u, t〉, 〈u, t′〉 ∈ GL then f(t) �= f(t′). The current set of users
of a given group set is exactly the set of users that have a an group tag
associated with the group set; that is, the users of groups set gs are exactly
{u : ∃t : f(t) = gs and 〈u, t〉 ∈ GL}.

– A relation r ⊂: T G × G relating group tags to groups. User u is a member
of group g iff there is a t ∈ T G such that 〈u, t〉 ∈ GL and r(t, g).
We require that group tags give membership only in groups in the tags group
set; that is, that if r(t, g), we have f(t) = gs(g).

– A set of triples rules ⊂ T G×T G×G. Each triple 〈t, t′, g〉 gives a group label
relabel rule of the form Relabel(t, t′) = g , which means that any member of
group g can, for any u change group label 〈u, t〉 to 〈u, t′〉.
A relabel rule must be inside of a single group set; that is, if 〈t, t′, g〉 ∈ rules,
then f(t) = f(t′). However, we do not require that the group administering
the relabel be in the group set; that is, we do not require gs(g) = f(t).

– The current set N ⊂ T G of new user group tags. When a new user un is
added to the system, for each t ∈ N a new group label 〈un, t〉 is created.

2.2 Key Points About Groups and Group Sets

In this paper, we are not concerned with any state transitions that add new
groups or group sets to a system. We are concerned exclusively with those tran-
sitions that change the membership of existing groups. There are two types of
transitions that change group membership: the addition of new users, and the
application of group tag relabel rules to change the user–group tag pairs. These
transition rules are the same in any system using the Solworth-Sloan access
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control scheme—what varies from system to system are the groups and group
sets that can be created. In obtaining the hardness results in this paper, we
assume that arbitrary groups and groups sets can be created.

Roughly speaking (see the previous subsection for more details), every system
is comprised of a set of users U , a set of objects O, a set of labels L, a mapping

 : O → L, and group sets, groups, and permissions. We describe group sets in
detail shortly, but each group set has some (unique) groups, and the set of all
groups in all groups sets is denoted G. Now for each primitive privilege (e.g.,
read, write) we have a map p : L → G specifying the group of users that have
that permission for objects with a particular label.

Each group set includes the following components:

1. Its set of groups. Every group belongs to exactly one group set.
2. Its set of group tags. Every group tag is associated with exactly one group

set.
3. The current group tag–user pairs.
4. An optional new user tag.
5. Its set of users.2
6. The relation of the group set’s group tags to its groups.
7. Group tag relabel rules.

All components are finite, and all components except the group tag–user pairing
are specified and fixed for the life of the group set when the group set is created.
An initial group tag–user pairing is specified when the group set is created, but
it evolves over time.

Each user in the group set has exactly one group tag at any time. The group-
tag–user pairs are referred to as group labels, and are thought of as labels on
notional objects. Thus, if group tag G is associated with groups g1 and g3, and
user u has group tag G in group set G, then (at that time) u is a member
of groups g1 and g3, and not a member of any other group of G (From this
information alone, we cannot tell which groups of other group sets u is in.)

The definition of the group set tells which users are initially in the group set,
and the group tag for each user. If G has new user tag Gn, then all users added
to the system are added to group set G with tag Gn.

For any two group tags G1, G2 in group set gs, a group relabel permission
Relabel(G1, G2) = g may be defined at gs’s creation that enables any member
of group g to change the group tag of any user u in G from G1 to G2. Group g
may be either in gs or an existing group in another group set.

2.3 Safety Problem in This Setting

In this setting, the safety problem of Equation 1 becomes, “Can user s become
a member of group g = p(
(o))?”, where l = 
(o) is the label of object o and p(l)
is the group having permission p for label l. This in turn becomes the question,
“for each group tag G associated with group g in group set gs, could user u be
paired with tag G?”
2 Formally, the set of users is induced by the set of group tag–user pairs.
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3 Abstract Model of Problem

To model the safety problem for this access control system, we introduce the
sliding marker net model. Group tags form the vertices of a digraph, with the
edges corresponding to the existence of a relabel rule. Markers on the vertices
represent users. Thus k markers in a vertex representing group tag G correspond
to k users having a user–group-tag pair with G. Each edge is governed by a
set of vertices—corresponding to the tags for the group that has the relabel
permission for that edge. A marker can be moved across an edge only if at least
one vertex in the set of vertices governing that edge contains a marker. A set of
new marker vertices that can have markers added to them models the new user
tag mechanism for adding new users. More formally:

Definition 1. A sliding marker net is a 5-tuple, (V, E, A, M0, N), where V
and E are the vertices and edges of a directed graph, A is a function A : E → 2V ,
mapping each edge to a vertex set, M0 : V → N is the initial marking, and
N ⊆ V . (N represents the group of new users.) We say vertex set A(e) governs
edge e (if |A(e)| = 1 we may say a vertex governs an edge). The underlying
digraph is called the sliding marker graph.

The marking of a sliding marker net is its state. For marking M we say that
vertex v is nonempty if M(v) > 0 and empty if M(v) = 0.

Given a marking M of a sliding marker net, we can obtain a new marking M ′,
or make a move, in two ways. One is by “sliding a marker” over edge (u, v) ∈ E.
This move requires that M(u) > 0 and that there is a w ∈ A(u, v) s.t. M(w) > 0
(i.e., A(u, v) has at least one nonempty vertex in marking M), and decreases
M(u) by 1 and increases M(v) by 1. The other kind of move is to add 1 to M(v)
for every v ∈ N , which models adding new users.

The Vertex set nonemptiness problem for sliding marker nets is as fol-
lows: Given a sliding marker net (V, E, A, M0, N) and a vertex set S, is there
a sequence of moves that yields a new marking in which at least one v ∈ S is
nonempty? This has the same complexity as Vertex nonemptiness (ignoring
a multiplicative factor of at most |V |), whether a particular v ∈ V can be made
nonempty, and we work with this slightly simpler problem. To the best of our
knowledge, sliding marker net Vertex nonemptiness is a novel graph problem.

We are in fact analyzing the complexity of a slightly different problem than
the analog of the stated safety problem (1). The sliding marker net analog of the
safety problem in this context is, “Can a specific, named marker reach vertex
v?” However, this problem and Vertex nonemptiness are both PSPACE-
complete. A slightly messier version of Theorem 1’s construction would show
this problem is in PSPACE as well. In the other direction, there is a simple
reduction of Vertex nonemptiness to the specific-marker version: Given a
sliding marker net and vertex v∗, add two new vertices v1 and v2 with an edge
(v1, v2), and add the specific named marker to v1 in the initial marking. Finally
set A((v1, v2)) = {v∗}. The Vertex nonemptiness instance has a solution iff
the named marker can reach v∗.
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4 The OSM DACs Can Be Decided in Polynomial Time

The group mechanism of Sloan and Solworth can be used to implement some in-
tricate access control policies that go beyond what are conventionally considered
DAC systems. To obtain the PSPACE hardness result we show in Section 5, we
construct an artificial access control system that certainly goes beyond a normal
reasonable DAC system. In this section we briefly argue that the safety question
for conventional DAC systems can be answered in polynomial time.

The result needed for sliding marker nets is that Vertex nonemptiness
can be decided quickly for an sliding marker net with a simple structure. We say
vertices U ⊂ V of sliding marker net (V, E, A, M0, N) form an isolated component
iff both (1) there is no directed edge between U and Ū in the underlying graph
and (2) every edge e within U has A(e) ⊆ U .

Theorem 1. If the underlying digraph of sliding marker net (V, E, A, M0, N)
consists of isolated components where each component has only a constant num-
ber of vertices, then Vertex nonemptiness can be solved in linear time.

Proof. We need consider only the component with the vertex in question; let
its size be c. To decide its nonemptiness, first, add c markers to every vertex
in the set N . If any vertex in the component has more than c markers, reduce
its number of markers to c. Then exhaustively construct the portion of the
state space obtained only by sliding markers in the component. The required
bookkeeping can be done in time linear in the size of the sliding marker net.

Now OSM gave a taxonomy intended to include all reasonable DAC systems.
In all of them, the owner of an object can grant or revoke ordinary permissions
(e.g., read, write, and execute) to the object. The various OSM DACs allow the
following variations: (1) Whether or not a owner of an object can give it away
(change ownership). (2) Whether the owner of an object can delegate the right
to grant ordinary permissions to other users. The case where the owner can
delegate is called liberal DAC, and it has a number of variations: (a) who can
revoke ordinary permissions, and (b) whether the delegation propagates. OSM
propose no propagation (“one-level grant”), that an owner can make either a
grant that cannot be propagated, or a grant that can be propagated once (“two-
level grant”), and arbitrary propagation (multi-level grant).

Solworth and Sloan [10] sketched the implementation of any of these DAC
mechanisms on top of their group mechanism. Objects are protected at the
granularity of labels. For each label l and each ordinary permission, two group
sets are used, one for the ordinary permission and one for the administration. The
ordinary permission group set has two group tags, and the administrative group
set has only two tags in all cases except for liberal DAC with 2-level grant, when
it has three tags. In all cases, all group tag relabel permissions within those two
group sets are held by members of the administrative group set. The group tags
correspond to vertices. Relabeling of a users group tag occurs only among group
tags inside one group set. The sets A((u, v)) correspond to the users allowed to
relabel an arbitrary user’s group tag from u to v. Thus the construction gives
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isolated components of 4 vertices for each OSM DAC except for 5 vertices for
liberal DAC with two-level grant.

Thus we have sketched the argument for:

Corollary 1. The safety problem can be decided in polynomial time for all the
OSM DACs.

Remark: The extension to OSM to allow n-level grants for any constant n is also
decidable.

5 General Problem is PSPACE Complete

In this section we will show that sliding marker net Vertex nonemptiness is
PSPACE complete.

5.1 Vertex Nonemptiness Is in PSPACE

Theorem 2. Sliding marker net Vertex nonemptiness ∈ PSPACE.

Proof. We argue Vertex nonemptiness is in PSPACE = NPSPACE. Consider
net (V, E, A, M0, N). Vertices having more than one, as opposed to exactly one,
marker affect the emptiness/nonemptiness of vertices in reachable markings only
because some of those “extra” markers could later move, creating additional
nonempty vertices. Thus we can treat markings with more than |V | markers in
a vertex as if they had only |V | in that vertex. Hence we may modify M0 to a
marking M ′

0 by first adding |V | markers to every vertex in N (“new users”), and
then reducing the marking of any vertex u with more than |V | markers to |V |.

Thus we have at most |V | 2 markers. So the total number of distinct markings is
less than the number of ways we can fit |V | 2 indistinguishable markers into |V |+1
containers, or

(|V |2+|V |
|V |2

)
< (|V |2 + |V |)|V |. (We add another container to repre-

sent the markers that are not on the sliding marker net yet.) To solve the problem
nondeterministically, we simply choose a legal move, increment a counter, and
repeat. This requires O

(
|V | log |V |+ log

((
|V |2 + |V |

)|V |)) = O(|V | log |V |)
space: O(|V | log |V |) to keep track of where the markers are (i.e., we need to store
|V | + 1 integers in the range of 0 to |V | 2) and O

(
log
((
|V |2+|V |

)|V |)) to keep
to keep track of the binary counter.

5.2 Vertex Nonemptiness Is PSPACE Hard

Our reduction for PSPACE hardness is loosely inspired by succinct representa-
tions of graphs [2,7]. In that theory, a graph is represented by a (sometimes)
exponentially smaller circuit describing the graph. Here, the state space of the
sliding marker net is exponentially bigger than the sliding marker net itself.

Theorem 3. Sliding marker net Vertex nonemptiness is PSPACE-hard.

We will reduce Quantified Boolean Formula (QBF) to Vertex non-
emptiness. The reduction is rather involved; we give it here, and then sketch
the argument for its correctness.
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Reduction

Throughout let n be the number of variables in the given QBF

ψ = Q1x1Q2x2 · · ·Qnxnφ(x1, . . . , xn) (2)

where each Qi is either ∃ or ∀, and φ is some 3CNF formula.
We implicitly use but do not construct a “QBF graph” of ψ that has a path

from a designated source to a designated sink iff ψ is satisfiable. This graph is
adopted from [7]; here we construct a digraph. We construct a sliding marker
net such that it has designated vertex that can become nonempty iff the QBF
graph has a source to sink path. We will rely on:

Proposition 1 ([7]). A QBF is satisfiable if and only if its QBF graph has a
path from s to t.

QBF graph. The QBF graph is a digraph with source s and sink t; every vertex
is either “s-side” or “t-side.” Each vertex corresponds to a partial assignment
to the n Boolean variables. A vertex’s level m, for 0 ≤ m ≤ n, tells how many
variables are set. The only level 0 vertices are s and t. For 1 ≤ m ≤ n, in a level
m vertex, the first m variables are set. We give each vertex a 2n + 1 bit label:
First, n bits for the level m in (padded) unary; then 1 bit for s or t; then m bits
for the setting of the first m variables; and lastly (n−m) 0s if on the s side, or
1s if on the t side.

The edges are (roughly) as follows. For m < n, each s-side level (m − 1)
vertex has one or two level m successors on the s-side: two successors setting
xm to each of 0 and 1 if Qm is ∃, and one successor setting xm = 0 if Qm is ∀.
For each (complete) variable assignment a that satisfies φ, there is an edge from
the level n s-side to the level n t-side vertex with assignment a. For 0 < m ≤ n,
the edges out of each t-side vertex with level m are as follows. If Qm = ∃ or the
assignment to xm = 1, then the vertex has a level m − 1 t-side successor with
the same assignment to the first m− 1 variables and with xm = 1 (though the
level m− 1 means that this is not considered part of the partial assignment). If
Qm = ∀ and xm = 0, then the vertex has a level m s-side successor with the
same assignment except xm = 1.

We now make one modification, so that there are no edges where both the
level and the truth setting changes. For existential variables on the s side, for
the successor that corresponds to setting the variable to 1, we use two vertices—
the immediate successor has a label with the level not increased and the truth
setting changed to 1, and that vertex has one successor with the level increased.
Similarly, for the t side we decrease the level, then change the truth setting to 0
when we unset an existential variable. See Figure 1.

Sliding marker net construction. We do not construct the QBF graph. We
do construct a sliding marker net of size polynomial in n that has certain special
markings corresponding to vertices of ψ’s QBF graph. Our construction will
allow it to move from one special marking to another if and only if there is a
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Levels (0)(1)(2)(3)(3)(2)(1)(0)
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000 100 110 111 111 000100110

 

Fig. 1. QBF graph for ∃x1∀x2∃x3φ. The vertex labels shown are the values of xi,
written x1x2x3. (Full vertex label doesn’t fit in this diagram.) Vertex levels are shown
above in both unary and decimal. The line through the center of the graph divides the
s and t sides. The dotted horizontal lines through that line represent edges that exist
exactly when φ is true for that particular value of x1x2x3. Dashed vertices and dashed
edges show the minor modification in our construction. Notice that unset variables are
always 0 on the s side and 1 on the t side.

corresponding edge in the QBF graph. From there, we will show this construction
therefore allows a designated vertex v∗ to be marked if and only if there is an
s-to-t path in the QBF graph.

The sliding marker net has two isolated vertices, empty (with no marker) and
full (with one marker). We lay out the remaining vertices in rows within 3n + 2
numbered columns: first n level columns, then one s/t column, then n truth
(assignment) columns, then n ON/OFF columns, and lastly one final column.
We denote the ith column by Ci. All columns except the s/t column have 3n+2
vertices. (The number of vertices in the s/t column depends on the number of
clauses in the formula.) The initial marking puts one marker in each column, in
the top-most vertex. Each column has both directed edges between every pair of
(vertically) adjacent vertices, except the final column which has only the down
directed edge. There are no other edges. We refer to edges from vertex m to
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m + 1 in a column as down (side) edges, and edges from vertex m + 1 to m as
up (side) edges. See Figure 2 for the layout of the sliding marker graph.

Level Columns (n) Truth Columns (n)

number of
clauses

Final Column

3n+2

ON/OFF columns (n)

1

1
n

n

s/t column

3n+2

3n+2

0 0

1 1 empty

full

v*

0 0 0 0

1 1 1

1

OFF

ON ON

OFF0

1

Fig. 2. Overall layout of constructed sliding marker graph for n-variable formula

The top-most and bottom-most rows play a special role. We refer to the top
row of the ON/OFF columns as the OFF row and the bottom row as the ON
row. For the other columns we refer to the top row as the 0 row and the bottom
row as the 1 row; we also speak of ON, OFF, 0, and 1 vertices. (It may help
to remember that QBF graph we are modeling starts at 0 and ends at 1.) The
notation 0m (respectively 1m) stands for the top (respectively bottom) vertex
of column Cm; 0/1m denotes the vertex set{0m, 1m}. Somewhat inconsistently,
OFFi (respectively ONi) stands for the OFF (respectively ON) vertex of the ith
ON/OFF column, which is column C2n+1+i. When clear from context we also
use the term for a vertex for the singleton set containing that vertex.

A marking of this sliding marker net is a QBF marking if every marker is in
the top or a bottom row of its column. A QBF marking corresponds to a QBF
vertex whose label is obtained from the bits of the level, s/t, and truth columns
of the sliding marker net. See Figure 3 for an example of a QBF marking.

We give some more notation; then describe the governing sets for the edges.
For simplicity’s sake, we call an edge (in either direction) between rows r and r+1
the “rth edge.” (Row 1 is the top row.) Besides vertex sets mentioned already, we
need n−1 additional OFF vertex sets: {OFF1, OFF2}, . . . , {OFF1, . . . , OFFn}.
We refer to these vertex sets as OFF1...2, . . . , OFF1...n.

There is a correspondence between the rth edge of an arbitrary column (ex-
cluding the final column) and the rth column for 1 ≤ r ≤ 3n + 1. First, for any



The Complexity of Discretionary Access Control 415

s/t
truthlevel columns

column

columns

000 000

100 

000

010

100

110

000 100 110

1 1 1 1

0

1

0 0 0 0 0 0

1 1
empty full

OFF3OFF2OFF1

ON1 ON3ON2

Fig. 3. Example of a marking of the sliding marker net that corresponds to a vertex
in the QBF graph. In this figure, the shaded circles in the sliding marker net represent
vertices with markers on them and the shaded circle in the QBF graph represents the
vertex that the sliding marker net marking corresponds to.

column Cm, we can speak of the first n edges of column Cm as being the “level
edges” of Cm. Similarly, edge n+1 is the “s/t edge”, and then we have n “truth”
edges followed by n ON/OFF edges. Second, if the rth edge of column Cm is
not governed by empty, full, or some OFF group, then it must be governed by a
vertex set contained in the corresponding column Cr.

That is, for any column Cm, if the rth edge of Cm for 1 ≤ r ≤ 3n + 1 is not
governed by one of empty, full, or some OFF group, then the rth edge of column
Cm (between rows r and r + 1) must be governed by one of the vertex sets 0r,
1r, 0/1r of column r. Thus we often use the shorthand of saying that edge e has
A(e) = 0 (or 1 or 0/1 or ON) without specifying the column for the set A(e),
because A(e)’s column is determined by e’s row.

We now specify the governing vertex set of each edge. First, every ON/OFF
edge is governed by ON unless otherwise stated.

The level columns. Our goal is that a marking with a marker in 1i for i ≤ m and
in 0i in the remaining n −m level columns should correspond to a QBF graph
vertex with level m.

Level column Cm, down edges: The first m − 1 level edges are governed by
1; the mth by full, and the remaining n −m level edges by 0. That is, the rth
down edge in column Cm is governed by the 1 vertex of column Cr for r < m,
and by the 0 vertex of column Cr for r > m. This forces the level columns to
move their markers from the 0 to the 1 row in order—Cm can move its marker
down the first n rows from its 0 vertex only if C1, . . . , Cm−1 all have markers in
their 1 vertices, and Cm+1, . . . , Cn all have markers in their 0 vertices.

The s/t down edge is governed by 0 (s), insuring that we can move down this
edge only there is a marker in the s/t column corresponding to the s side of the
QBF graph.

The n truth edges depend on Qm. If Qm = ∀, the xth truth edge is governed
by the 0/1 vertex set 1 ≤ x ≤ m−1, and by the 0 vertex set for m ≤ x ≤ n. This
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corresponds to allowing either setting of the first m − 1 Boolean variables and
requiring the remaining variables to be 0 in the universal case. The case Qm = ∃
is the same except that the mth truth edge is governed by the 0/1 rather than
the 0 vertex set, because for existential quantifiers, m Boolean variables would
have been set already.

Level column Cm, up edges: These are the same as the down edges with two
exceptions. First, the s/t edge is governed by 1 (t), corresponding to being on the
t side of the QBF graph for decreasing of level. Second, those truth edges that
must be governed by the 0 vertex for the down edges must instead be governed
by the 1 the vertex. This is because instead of making sure variables have been
set, we must make sure variables have been unset.

The s/t column. The s/t column is special in this construction: it has a different
number of vertices (and edges). This column is used to control the edges between
the s and t sides. There is a path from s to t if the Boolean formula φ is true for
the particular variables; edges from t back to s are needed to handle universally
quantified variables.

The s/t column, Cn+1, starts with 3n + 2 vertices with 3n + 1 edges just
like the level columns. The s/t column’s down level edges are governed by 1,
since we must be at level n to evaluate the Boolean formula. The s/t down edge
is governed by full. The truth edges are governed by the 0/1 vertex set. The
governing vertex sets for the up edges of this s/t column are the same as for the
down direction except that edges governed by ON on the down side are governed
by OFF1...n on the up side.

Going downwards from vertex 3n+2, this column should “compute” whether
φ is true on the truth setting encoded in the truth columns in the current marking
(i.e., Boolean xi is 1 (respectively 0) if the 1 (respectively 0) vertex of the ith
truth column is marked). We add one additional vertex to the column for each
clause of φ. To govern the down edge for each of these these additional vertices,
we use a vertex set of three vertices (from the truth columns) for the clause.
If the clause contains xi (respectively x̄i), then the vertex set contains truth
column i’s 1 (respectively 0) vertex.

The corresponding up edges are all governed by the full.

The truth columns Column Cn+1+m is the mth of the n truth columns.
Truth column m, down edges: The first m− 1 level edges are governed by 1.

Edge m is governed by 0m if Qm = ∃ and 1m if Qm = ∀. (If xm is existential,
our QBF graph sets xm = 1 immediately before incrementing the level to m.)
The remaining n−m level edges are governed by 0. The s/t edge is governed by
0/1 if Qm = ∃ and 1 if Qm = ∀.

The first m − 1 truth edges are governed by 0/1, and the mth by full. The
last n−m truth edges are governed by the 0/1 vertex set if Qm = ∃, and the 1
vertex if Qm = ∀.

If Qm = ∀, the mth ON/OFF edge is governed by OFFm.
Truth column m, up edges: The first m − 1 level edges are governed by 0/1;

the remaining level edges by 0. This is to allow xm to revert to false if a universal
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xi for i < m needs to reset itself. The s/t edge is governed by 1 (t) to make sure
we are on the t side of the graph.

The truth edges are governed by 0/1 except that the mth truth edge is gov-
erned by full. The first m − 1 ON/OFF edges are all governed by OFF1...m−1.
(All the truth edges of the first truth column are governed by empty.)

ON/OFF columns. The n ON/OFF columns are designed to be ON/OFF
switches. Intuitively they are used to turn off the sliding marker net—put it
into a QBF marking not corresponding to an QBF graph vertex. This is used
when we have two QBF vertices u and v that differ in more than one area of
information, which happens when we need to test the second value of a univer-
sally quantified variable. The governing vertex sets are assigned so that we can
move ON/OFF switch m from ON to OFF only at level m.

ON/OFF column m up edges: We first give the rules for the up edges. The
first m level edges are governed by 1 and the remaining level edges by 0. This
ensures that we can move a marker down over these edges only at level m. The
mth level is the point in the graph where we must retest the xm with the other
Boolean value if Qm = ∀.

The s/t edge is governed by 1 (t), because we must be on the t side of the
graph. The first m− 1 truth edges are governed by 0/1; the mth truth edge by
0; the remaining n −m truth edges by 1. The mth ON/OFF edge is governed
by full.

ON/OFF column m down edges: If Qm = ∃, then empty is the governing
group for every edge of the mth ON/OFF column. Thus xm can never be turned
on after being turned off.

Otherwise (Qm = ∀), the level edges are the same as for the down edges of
this column, and the s/t edge is governed by 0 (s), because to turn back on,
we must be on the s side of the QBF graph. The first m − 1 truth edges are
governed by 0/1, the mth truth edge by 1, and the remaining n−m truth edges
by 0. The mth ON/OFF edge is governed by full.

The final column. The final column has 3n + 2 vertices; its bottom vertex the
special designated vertex v∗.

The final column’s first n edges are level edges governed by the 1 vertex, its
next n edges behave as a second set of level edges, governed by 0, its next n
edges behave as truth edges, governed by 1, and its last edge as an s/t edge
governed by t.

This ensures that the rest of the net first enters a marking with level n, and
then later enters a marking with level 0. Then we make sure that we have the
right Boolean values for the end and we are on the correct side.

Sketch of why reduction is correct

Let G(ψ) be the QBF graph of ψ of the form of Equation (2), and let SM be
the constructed sliding marker net. Then SM is of size O(n2 + |φ|), and can be
constructed in polynomial time.



418 S. Dranger, R.H. Sloan, and J.A. Solworth

By Proposition 1, ψ is satisfiable if and only if G(ψ) has an s to t path. Thus
we need to argue that a marker can reach the bottom vertex of the final row of
SM if and only G(ψ) has an s to t path.

A QBF marking is a QBF ON marking if all the markers in the ON/OFF
columns are in ON. The point of our construction is that each QBF ON marking
of the sliding marker net corresponds to a vertex of the QBF graph whose level,
s/t, and truth labels match the marking of the level, s/t, and truth-setting
columns of the sliding marker net. In this correspondence, the initial marking of
SM is a QBF ON marking that corresponds to the vertex s of G(ψ).

To show that an s to t path in G(ψ) implies that a marker can reach the
bottom vertex of the final column of SM , it suffices to show that if there is a
directed edge from vertex u to vertex v in G(ψ), then from a QBF ON marking
corresponding to the label of u, there is a series of legal moves to a QBF ON
marking corresponding to the label of v. In fact, this can be done without moving
any of the markers in the ON/OFF columns in all cases except when u is on the
t side and v is on the s side. In that case, then exactly one ON/OFF column has
to have its marker move from the ON to the OFF column and then back again,
as well as markers moving in at least one truth column, as SM passes through
one or more QBF markings.

Secondly, we have to show that for any QBF ON marking of SM that cor-
responds to the label of a vertex v that is in G(ψ), then for every QBF ON
marking reachable directly (without any intervening QBF ON marking) in SM ,
there is a corresponding successor of v in G(ψ).

The following technical lemma says that we can always restrict our attention
in SM to moves that move one marker from one end of a column all the way to
the other end, without any moves in other columns in between, and would be
used in a formal proof of both directions.

Lemma 1. If the constructed sliding marker net can go from QBF marking M1
to QBF marking M2, then it can do so with moves such that a marker always
moves from one top/bottom vertex to the opposite top/bottom vertex before any
other marker moves at all.

Proof. Given any QBF marking M and any two columns Cc and Cd, if the
marker in Cc moves, and stops at row x in between column Cc’s top and bottom
vertices, then the marker in column Cd cannot move from one to the other
top/bottom vertex because (exactly) one edge of column Cd is governed either
by a vertex set consisting of one or two top/bottom vertex vertices of column
Cc or by empty. Therefore, if the marker in column Cc moves, then Cd’s marker
cannot move until the marker in column Cc reaches a top/bottom vertex (and
thus sliding marker net reaches a QBF marking again).

If the marker in c begins to move, then the most any other column d can
do until c reaches a top/bottom vertex is to move only part of the way from
top/bottom vertex of its column to the other. Therefore, when c’s marker finally
reaches one top/bottom vertex of the column, the graph is not in a QBF marking;
however, the marker in column d could have reached the same vertex had it
waited until c “finished” its move.
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6 Concluding Remarks

In this paper, we have determined the complexity of the safety problem for the
group-based access control system of [10]. For Osborne et al.’s exhaustive catalog
of DAC systems [8], it is polynomial time. In general, it is PSPACE-complete.

This in fact creates an important open problem for practical access control
systems, because there are numerous access control policies that have aspects of
discretionary access control, but are not purely discretionary. The group-based
mechanism appears to be powerful enough to implement any of the access control
policies discussed in the literature, discretionary, mandatory, or otherwise. In
considering any particular such policy, say, Chinese Wall [1], we have been able
to make some sort of particular argument similar to Section 4 that that policy’s
implementation gives a safety problem that can be decided in polynomial time.
However, we would like to find a characterization of some group structure that
could implement any of these more exotic access control policies in addition to
DAC policies, while still having a polynomial-time safety problem.

In the area of complexity theory, we think the time may be ripe to revisit the
area of succinct graph representations, taking a much broader view of represen-
tations, and, simultaneously, a view that is more tied to application areas. In
the original theory [2], a graph is represented by an exponentially smaller circuit
that recognizes the graph. Here “recognize” meant that the circuit returns 1 for
those binary numbers that encode an edge of the graph. In this paper we showed
an application from computer access controls where a group membership system
could represent, through its state space, an exponentially larger graph. Perhaps
similar results can be obtained for various structures used in contemporary ar-
tificial intelligence, such as Bayes nets (belief nets).
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Abstract. The paper proposes a novel IP channel for sending hidden short mes-
sages, based mainly on the use of the “traceroute” command and the IP header 
Record route options. Instead of encrypting a hidden message or embedding it 
into a multimedia object, as in traditional multimedia steganography, we proc-
ess the entire message and generate several IP packets with different types to 
carry the secret message. Thereby we foil an eavesdropper who is primarily ap-
plying statistical tests to detect encrypted communication channels. We show 
that our approach provides more protection against Steganalysis and sniffing at-
tacks. A friendly graphical tool has been implemented to demonstrate the pro-
posed secret IP channel. 

Keywords: Covert channel, Hidden information, IP header Record route op-
tion, Steganalysis, Traceroute. 

1   Introduction 

Steganography is the technique of hidden communication. It relies on hiding covert 
message in unsuspected multimedia data. It is generally used in secret communication 
between acknowledge parties. It is a method of encryption that hides data among the 
bits of a covert file, such as a graphic or an audio file. The technique replaces unused or 
insignificant bits with the secret data.  A covert channel is a mechanism that can be used 
to communicate data across network or between processes within the system in a man-
ner that goes unnoticed [23]. An effective covert channel is the one that is undetectable 
by the adversary and can provide high degree of privacy. The goal of the covert channel 
is to communicate data from one host to another host in a way that receiving host can 
detect the data but the eavesdropper won’t even get the hint that some secret data was 
being communicated. Some features of the TCP/IP protocol suite can be used to send 
covert messages as discussed in [6]. Encrypted or non-encrypted information can be 
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encapsulated within otherwise normal TCP/IP packets. The TCP/IP header informa-
tion can also be modified to encode secret messages. There are some fields in the 
packet headers that are not used by the current communication networks. These fields 
can be used as message carries. 

These covert channels are an immense cause of security concern because they can 
be used to pass malicious messages. These messages could be in the form of computer 
virus, spy programs, terrorist messages, etc. Therefore, detecting these covert chan-
nels is an important issue that needs to be addressed [10]. However, covert channels 
can also be used to exchange hidden information, such as e-commerce transaction 
data or governmental confidential information, so that a hacker or any one spying the 
communication channel will not be able to detect that the captured packets carry hid-
den information. The sheer volume of Internet traffic provides a higher bandwidth 
vehicle for covert communications which leads to a plethora of applications. 

This paper proposes a novel IP channel for sending hidden short messages, based 
mainly on the use of the “traceroute” command and the IP header Record route op-
tions. It will be demonstrated that the hidden message or information exchanged over 
the secret IP channel is protected against Steganalysis and sniffing. That is, a hacker 
or any one spying the communication will not notice the existing of hidden informa-
tion in the packets exchanged.  

The rest of the paper is organized as follows. Section 2 discusses the related works 
in the literature. Section 3 provides the necessary background information to under-
stand the principle of the proposed IP channel which is described in Section 4. Section 
5 presents a mechanism to protect the proposed covert channel against Steganalysis 
and sniffing. Section 6 discuses an example of how a hidden message is inserted in 
the covert memory. Section 7 shows a comparison between the covert memories 
available in several existing covert channels. Section 8 presents a friendly tool, im-
plemented to demonstrate the proposed covert channel. The tool provides the user 
with a friendly interface to send and receive hidden messages. Finally, Section 9 
provides the conclusion and future work. 

2   Related Work 

The concept of a covert channel was first introduced by Lampson [4] as a channel that 
is used for information transmission, but that is not designed nor intended for com-
munication. Then, Girling [5] analyzes covert channels in a network environment. His 
work focuses on local area networks (LANs) in which three obvious covert channels 
(two storage channels and one timing channel) are identified. The first uses the bits 
reserved for addresses, the second uses the bits reserved for the length and the third 
uses the time difference between the packets. In [14], Wolf presents results applied to 
LAN protocols. He highlights the relationship between covert storage channels and 
protocol format, and the link between covert timing channels and protocol procedure 
elements taking into account the frame layouts of the LAN protocols. Covert storage 
channels utilize the reserved fields, padding fields and undefined fields of the frames. 
In [22], Handel and Sanford take a broader perspective and focus on covert channels 
within the general design of network communication protocols. They employ the OSI 
(Open System Interconnection) network model as a basis for their development in 
which they characterize system elements having potential to be used for data hiding.  
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Covert channels are discussed more generally in a variety of papers. A generalized 
survey of information-hiding techniques is described in “Information Hiding- A Sur-
vey”, [15]. Theoretical issues in information hiding are considered in [7] and [17]. In 
[12], John McHugh provides a wealth of information on analyzing a system for covert 
channels.  

Many covert channels have been identified in the IP and TCP protocols [26], using 
fields like: the  IP identification field, the TCP initial sequence number field, the TCP 
acknowledge sequence number field, windowing bits, and protocol identification field 
([2, 3, 6]). These papers focused on finding places where covert data could potentially 
be sent but did not work out the details of how to send it.  

Kamran [2, 3] discussed also a covert channel based on the flags bits (URG, ACK, 
PSH, RST, SYN, FIN) in the TCP header. This covert channel offers only few bits as 
a covert memory per TCP packet. Techniques for detecting covert channels, as well as 
possible places to hide data in the TCP stream, are discussed (the sequence numbers, 
duplicate packets, TCP window size and the urgent pointer) in [24]. In [8], the idea of 
using IP checksums for covert communication is discussed. Katzenbeisser and Petit-
colas [21] have also observed the potential for data hiding in the TCP/IP protocol 
suite. Katzenbeisser and Petitcolas use the term Internet Steganography for this po-
tential scenario and indicate that the ongoing research work includes the embedding, 
recovering and detecting information in TCP/IP packet headers. 

In [13], the idea of hiding data in TCP timestamps is discussed. By imposing slight 
delays on the processing of selected TCP packets, the low order bits of their time-
stamps can be modified. The low bit of the TCP timestamp, when modified in this 
way, provides a covert channel.  

Also, some research works propose to use ICMP packet [11] to carry hidden in-
formation in the ICMP header [1, 2]. These covert channels involve putting hidden 
data and messages in the data fields of the ICMP packets, mainly in Ping ICMP pack-
ets. Obviously, the existence of hidden data and messages in such data fields can be 
easily identified. However, such covert channels exploit the fact that network devices 
usually do not apply filters on the data fields of the ICMP headers.   

 Unfortunately most of the existing covert channels in literature are not efficient 
and/or practical. They either provide very limited covert memory such as TCP-based 
covert channels, or not robust enough against Steganalysis such as ICMP-based cov-
ert channels. The covert channel proposed in this paper addresses the above draw-
backs and provides a more practical and robust covert channel for hiding information.  

3   Background 

In order to introduce the terms used in this paper and lay the groundwork for what 
follows, we will introduce briefly the option field in the IP protocol header.  

3.1   The Fields of the IP Header Option  

The IP option field in the IP header is not required in every IP datagram. Options are 
included primarily for network testing or debugging. Options processing is an integral 
part of the IP protocol, and all standard implementations must include it. 

Figure 1 shows the structure of the IP header option. 
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Fig. 1. The IP header Option structure 

The field Code indicates the type of the option in the IP header. The field Length 
indicates the size of the field Option. The Pointer field plays a particular function, 
depending on the type of the option. There are eight possible types of options in an IP 
datagram. The four most used options are:  

• Loose source routing: used to route a datagram along a specific 
path. 

• Record route: used to trace a route. 
• Strict source routing: used to route a datagram along a specified 

path. 
• Internet timestamp: used to record timestamps along a route. 

For the proposed covert channel in this paper, we are only interested in the Record 
route option.  

3.2   The Record Route Option in an IP Header 

The Record route option in an IP datagram allows the source host to create an empty 
list of IP addresses and arrange for each router that handles the datagram to add its IP 
address to the list. Figure 2 shows the format of the Record route option. 

The Code field is set to the value 7. The Length field specifies the total length of 
the Record route option in an IP datagram, including the first three bytes. The Pointer 
field specifies the offset within the Record route option of the next available slot. That 
is, it specifies the position in the Record route option where the next gateway can 
insert its IP address. 

Whenever a router handles an IP datagram that has the Record route option set, the 
router adds its IP address to the record route list. It is clear that enough space must be 
allocated in the Record route option by the original source host to hold all the IP ad-
dresses of the routers. To add its IP address to the list, a router first compares the 
 

 

Fig. 2. The format of the Record route option in an IP datagram 



 Traceroute Based IP Channel for Sending Hidden Short Messages 425 

values in the Pointer and Length fields. If the value in the Pointer field is greater than 
the value in the Length field, this means that the list is full, then the router forwards 
the IP datagram without inserting its IP address. If the list is not full, the router inserts 
its 4-bytes IP address at the position specified by the Pointer field, then increments 
the Pointer by four. When the IP datagram reaches its destination, the destination host 
extract and process the record route list of IP addresses.  

3.3   Classes of  IP Addresses 

In order to provide the flexibility required to support different size networks, the 
Internet designers decided that the IP address space should be divided into three dif-
ferent address classes - Class A, Class B, and Class C [18, 19]. This is often referred 
to as "classful" addressing because the address space is split into three predefined 
classes, groupings, or categories. Each class fixes the boundary between the network-
prefix and the host-number at a different point within the 32-bit address.  

In addition to the three most popular classes, there are two additional classes. Class 
D addresses have their leading four-bits set to 1-1-1-0 and are used to support IP Mul-
ticasting. Class E addresses have their leading four-bits set to 1-1-1-1 and are reserved 
for experimental use. 

4   A Covert Channel Based on the Record Route Option  

The idea behind the proposed covert channel is to allow a source host to use the avail-
able bytes in the Record route option to insert hidden information, and at the same 
time prevent any router (along the path to the destination host) from inserting its IP 
address to keep the hidden information intact.  

When the IP header option designates a record route, the Code and Pointer fields 
should be set to the standard values 7 and 4, respectively. Also, the maximum value in 
the Length field should be 39. 

In its way to its destination, any packet with such an IP header option would ask 
each router to write its IP address in the 4-bytes field pointed by the Pointer field 
(Fig. 3). Then, the value of the Pointer field in the IP header option is increased by 4. 
So that, the next router would write its IP address in the next 4-bytes field in the IP 
header option.  However, if the value of the Pointer field becomes greater than the 
value of the Length field, then no more routers can write their IP addresses. 

 

Fig. 3. A normal Record route option header 
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Therefore, we may establish a covert channel for sending hidden messages if the 
initial value of the Pointer field is greater than the value of the Length field (Fig. 4.a), 
or just greater than the length of the hidden message (Fig. 4.b).  

 

Fig. 4. The different values of the Pointer field used for the covert channel 

If we set the initial value of the Pointer field greater than the value of the Length 
field, then no router can write its IP address. In this case, we can use all the 36 bytes 
of the IP header option to put hidden data or messages.  However, if we set the initial 
value of the Pointer field just greater than the length of the hidden message, then a 
number of routers can write their IP addresses in the remaining bytes of the IP header 
option.  

This covert channel has the following features: 

• Considerable covert memory: In the proposed covert channel, we have 
nearly 40 bytes of covert memory per packet. This provides more flexibil-
ity compared to the existing TCP-based covert channels such as in [6], 
which offer a maximum of 4 bytes of covert memory per packet.  

• Flexibility: The proposed covert channel may use ICMP, TCP and/or 
UDP packets to exchange hidden information. This removes any restric-
tions imposed by the only use of TCP packets (such as synchronisation, 
flow and congestion control) as in the case of TCP-based covert channels 
[6].  

• Undetectability: Inserting the hidden information in the Record route op-
tions will in general not alert users who are analyzing the traffic about the 
presence of the hidden information in those packets. Most of these users 
would assume that this hidden information represents a valid list of IP ad-
dresses of the routers along the connection path. However, an advanced 
Steganalysis process may be able to notice that these IP addresses are not 
valid and generate a suspicious situation.  In Section 5, we propose a 
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mechanism to further protect the covert channel form such Steganalysis.  
But, the available covert memory will be reduced in order to offer pro-
tected covert channel against Steganalysis.  

5   Protection Against Steganalysis and Sniffing  

The information in the covert channel is packaged in the form of IP addresses of 
routers. However, it is possible for one to verify the validity of these IP addresses in 
the connection path which immediately offers a means for Steganalysis. For example, 
if we want to send the hidden message “RDV at 9pm” in an IP packet, then the con-
tents of the Record route option would appear as shown in Figure 5. However, a 
Steganalysis process may identify that the IP addresses in the Record route option 
(82.68.86.32, 97.116.32.57, 112.109.0.0) are not valid IP addresses. 

 

Fig. 5. The contents of the Record route option 

To protect the scheme from such potential Steganalysis process, it is clear that the 
IP addresses used in the Record route option should look-like valid router IP ad-
dresses. Hence, a mechanism is proposed to generate packets carrying hidden infor-
mation and satisfying the above condition.  

The proposed mechanism is based on two steps. The purpose of the first step is to 
collect the IP addresses of the routers that will most likely be in the connection path. 
The purpose of the second step is compute the number of IP packets needed to carry 
the hidden information and generate the contents of the Record route options in these 
packets. 

Step 1: Collection of the IP addresses  
Before generating any packet carrying hidden information, we collect the list of IP 

addresses of the routers that will most likely be in the connection path. Unix com-
mand ‘traceroute’, Windows command ‘tracert’ [20], or any program that provides 
the same functionality can be used to collect such a list as shown in Figure 6. In the-
ory, this path may not be identical for all packets sent to the same destination. How-
ever, in practice all packets that belong to the same flow always follow very similar 
paths, if not the same path. So, this should not raise any concern.  
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Fig. 6. Unix command “traceroute” 

Step 2: Generation of the contents of the Record route options  
To generate packets carrying hidden information and protect them from any Stega-

nalysis process, the following two requirements should be satisfied:  

 First, the IP addresses inserted in the Record route options should look-
like valid router IP addresses. That is, they should be very similar to the 
router IP addresses collected by commands such as “traceroute” or 
“tracert”. 

 Second, the hidden information should be included in the IP addresses 
inserted in the Record route options. 

Hence, we developed an algorithm for generating IP packets carrying the hidden 
information and satisfying the above two requirements. The algorithm takes two pa-
rameters as input: 

a) a hidden message of k characters; HM = {c1,…,ck}, and 
b) the collected list of IP addresses of the routers that most likely will be in the 

connection path. This list can have a mixture of Class A, B and C IP ad-
dresses:  List_IP = ({IP1,…,IPnB},{ IP1,…,IPnC}), where nB = number of 
Class A and B IP addresses,  and nC = number of Class C IP addresses. It is 
important to note that a maximum of nine IP addresses can be inserted in a 
Record route option, since the maximum available space in the Record route 
option is 39 bytes, and each IP address needs four bytes.  

As output, the algorithm produces: 

 The number of IP packets that are needed to carry the hidden text,  
 The contents of the Record route option in each packet to be sent.  

The algorithm is defined as follows: 

Algorithm generatePackets (HM, List_IP) 

Step 1: calculate the number of IP packets needed to hide HM using the following 
formula: 

+
+

++
+

= 4.0
2

)2%(
2

int),,(
nCnB

nCnBk
round

nCnB

k
nCnBkP

 

where int(.) denotes integer division where the fraction part is discarded, 
round(.) denotes rounding to the nearest whole number [e.g. round(0.5)=1], 
and % denotes the modulus operator [in general: a%b = a - int(a/b) * b]. 
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Step 2: Repeat for each packet to be sent 
Step 3: Construct an IP packet with a random type.  

               // This is important to further confuse and mislead someone 
who is sniffing the 

                   //  communication channel   
Step 4: Insert the list of IP addresses (List_IP) in the Record route 

option 
Step 5: Repeat for each IP address in the Record route option 

 If there is no more characters in HM, exit. 
 If the IP address belongs to Class C  

Replace the least significant byte by the 
next character from HM 

 Else  // Class B or Class A 
            Replace the least significant two bytes 

by the next two characters 
            from HM 

End // repeat  step 5 
End // repeat step 2 

End // Algorithm generatePackets  
 

Using this algorithm, the secret information will be hidden inside valid IP ad-
dresses to protect the covert channel against Steganalysis. However, this would re-
quire more packets to be generated since the algorithm uses only one or two bytes in 
each IP address in the Record route options. If further secrecy is deem important, the 
confidentiality of the hidden information can be enhanced further using any crypto 
technique. 

6   Example 

Assume that we want to send the hidden message (HM) “RDV at 9pm”, which has 10 
characters from a source host (190.100.20.10) to a destination host 195.95.40.10 as 
shown in Figure 7. The command ‘traceroute’ retrieves the following two IP ad-
dresses of Class B and two IP addresses of Class C from the connection path:  

1. Class B addresses:  
 190.100.20.1 
 190.100.30.1 

2. Class C addresses:  
 195.95.37.1 
 195.95.40.1 

 

Fig. 7. An example of a connection path 
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By applying the algorithm, the number of packets that should be sent to carry the 
HM is computed as follow: 

P(10,2,2) = int(10/6) + round(0.67 + 0.4) = 1 + 1 = 2 packets. 

The contents of the Record route options of the two packets that are generated by 
the algorithm are shown in Figure 8. 

 

Fig. 8. The contents of the Record route options of the two packets 

As shown in Figure 8, the hidden message HM will be sent to the destination host 
in two separate packets. Packet 1 will carry the string “RDV at” and Packet 2 will 
carry the remaining string“ 9pm”. For Class C IP addresses, we modified only the 
least significant byte, and the least significant two bytes for Class B IP addresses. It is 
clear from Figure 8 that even if the traffic is sniffed and analyzed, it will be very dif-
ficult to notice that the IP addresses in the Record route options are not valid ad-
dresses that carry hidden message. 

 Compared with the contents of the Record route option of Figure 5 (which was 
generated without using the generatePackets Algorithm), Figure 8 shows clearly the 
strength of the algorithm in protecting the covert channel against Steganalysis. Figure 
5 includes non-valid addresses such as 112.109.0.0, which is quite suspicious to be 
included in any Record route option. On the contrary, all IP addresses appear in  
Figure 8 look -like valid router IP addresses.  

7   Covert Memory Per Packet 

The proposed covert channel offers more covert memory per packet than the existing 
available covert channels. The number of bytes in the covert memory depends on the 
classes of the IP addresses of the routers between the source host and the destination 
host. The following formula computes the number of bytes (n) available in the covert 
memory per packet: 

n = (2 * m1) + m2  
Where:  

• m1 is the number of Class A and Class B's IP addresses of the 
routers between the source host and the destination host. 

• m2 is the number of Class C's IP addresses of the routers between 
the source host and the destination host. 
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Table 1 gives examples of the number of bytes (n) available in the covert memory 
per packet.   

Table 1. The number of bytes (n) in the covert memory per packet 

Number of 
routers between 
the source host 

and the  
destination host 

Number of Class 
A and B's IP 

addresses of the 
routers (m1) 

Number of 
Class C's IP 
addresses of 
the routers 

(m2) 

Number of 
bytes in the 

covert  
memory per 
packet (n) 

1 1 0 2 bytes 
1 0 1 1 bytes 
2 1 1 3 bytes 
3 2 1 5 bytes 
4 2 2 6 bytes 
5 1 4 5 bytes 
5 3 2 7 bytes 

Table 2 shows the covert memory per packet in a number of existing covert chan-
nels. The proposed covert channel in this paper offers the highest covert memory, 
when there are more than three routers between the source host and the destination 
host (Table 1). In addition, it is not limited to any particular protocol type. For exam-
ple, the packets carrying the hidden information can be a combination of ICMP, TCP 
and UDP packets.  

Table 2. Available covert memory per packet in some existing covert channels 

Protocols of the 
covert channels 

The fields carrying the hidden information Covert memory / 
Packet 

IP protocol The Identification field in the IP header 2 bytes / packet 
 

TCP protocol The Initial Sequence Number (ISN) field in 
the TCP header 

4 bytes / packet 
 

TCP protocol The Acknowledge Sequence Number field 
in the TCP header 

4 bytes / packet 
 

TCP protocol 
 

The TCP Options field in the TCP header 
(TCP timestamp) 

4 bytes / packet 
 

TCP protocol TCP flags Bits 
(URG, ACK, PSH, RST, SYN, FIN) 

Few bits / packet 

ICMP protocol  The Data field in the ICMP Header 4 bytes / packet 

8   Implementation 

A friendly graphical tool has been developed based on the proposed covert channel, 
using Visual C++ and Winsock library. At the source host, the tool allows a user to 
write his hidden message and then generates the necessary packets that will carry the 
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hidden message. At the destination host, the tool extracts the hidden messages from 
the received packets and displays their contents to the user.  

The following steps describe the process of sending an example hidden message to 
a destination host using the tool. Figure 9 shows the network's architecture used in 
this example. The network has two Cisco routers (2600 series) connected via a serial 
interface. The first router is connected to the source host via subnetwork 2.2.2.x, and 
the second router is connected to the destination host via subnetwork 1.1.1.x.  

 

Fig. 9. Network architecture 

Step 1: At the source host, as soon as the user invokes the tool, he will get the 
main screen shown in Figure 10.  The source IP address of the source host will be 
 

 

Fig. 10. Main screen of the Covert channel tool 
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displayed automatically by the tool. The user needs only to write the IP address of the 
destination host (1.1.1.12), and his hidden message ("Meet you in Tunis") as shown in 
Figure 10. 

Step 2: The user clicks on the "Traceroute" button to get the list of the IP ad-
dresses of the routers between the source host (2.2.2.12) and the destination host 
(1.1.1.12).  In response, the tool will automatically execute the “traceroute” command 
and retrieve the list of IP addresses along the path to destination. Then it computes the 
minimum number of packets required to send the hidden message, and displays this 
information as shown in Figure 11.  

 

Fig. 11. The result of the "Traceroute" command 

To compute the minimum number of packets needed to carry the hidden message, 
it is important to note that, although the number of characters in the hidden message is 
17, the tool will use 18 bytes to send the message. The first byte will include 
 the number of character in the hidden message and the remaining 17 bytes will in-
clude the ASCII codes of the 17 characters of the hidden message. Since there are 
three class-A IP addresses identified along the path to the destination, and the tool 
uses the two least significant bytes of each class-A IP address to carry two characters 
of the message (see the algorithm generatePacket in, Section 5), then each packet will 
carry 6 characters of the hidden message.  Consequently, three packets are required to 
send the hidden message.  

Step 3: Once the user agrees with the identified list of IP addresses and the number 
of packets to be used (Figure 12), the tool will automatically generate the three pack-
ets with random types, which could be ICMP and/or UDP.  The types of the ICMP 
packets are also chosen randomly, in order to avoid one type of packets carrying the 
hidden message. This would contribute considerably to further protect the covert 
channel from Steganalysis. Figure 17 shows that two ICMP packets (Type = 15 and 
Type = 13) and one UDP packet will be generated to carry the hidden message "Meet 
you in Tunis". 
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Fig. 12. The types of the three packets used to send the hidden message 

Step 4: At the destination host (1.1.1.12), the tool uses a graphical interface to ex-
tract and reconstruct the hidden message inserted in the three received packet as 
shown in Figure 13. 

 

Fig. 13. The hidden message displayed to destination user 

9   Conclusion 

This paper discusses a novel IP channel for sending hidden short messages, based 
mainly on the use of the “traceroute” command and the IP header Record route op-
tions The IP channel is protected against Steganalysis and sniffing by hiding the se-
cret message inside valid IP addresses in the Record route options. An algorithm has 
been developed to generate the necessary packets to carry the secret information. In 
order to avoid one type of packets carrying the hidden message, the types of the pack-
ets are chosen randomly, and could be ICMP and/or UDP. This would contribute 
considerably to further protect the covert channel from Steganalysis. Compared to the 
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existing covert channel proposed in literature, our covert IP channel offers more cov-
ert memory than any of the existing covert channels, especially when there are more 
than three routers between the source host and the destination host. It also exploits the 
simplicity of the ICMP and UDP tunnelling to avoid the restriction and rules (syn-
chronisation, flow and congestion control) imposed by TCP-based covert channels. 

A friendly graphical tool has been developed to demonstrate the proposed covert IP 
channel. The tool allows a user to write his hidden message and then generates the 
necessary packets that will carry the message. At the destination host, the tool extracts 
the hidden messages from the received packets and displays their contents to the user.  

Currently, we are developing new mechanisms to further protect the scheme from 
other advanced Steganalysis, especially in networking environments that are highly 
protected by Firewalls (using filtering rules) and intrusion detections systems. 
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