

Lecture Notes in Computer Science 4266
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hiroshi Yoshiura Kouichi Sakurai
Kai Rannenberg Yuko Murayama
Shinichi Kawamura (Eds.)

Advances
in Information
and Computer Security

First International Workshop on Security, IWSEC 2006
Kyoto, Japan, October 23-24, 2006
Proceedings

13

Volume Editors

Hiroshi Yoshiura
The University of Electro-Communications, Faculty of Electro-Communications
Tokyo, Japan
E-mail: yoshiura@hc.uec.ac.jp

Kouichi Sakurai
Kyushu University, Faculty of Information Science and Electrical Engineering
Fukuoka, Japan
E-mail: sakurai@csce.kyushu-u.ac.jp

Kai Rannenberg
Goethe University Frankfurt, Institute of Business Informatics
Frankfurt, Germany
E-mail: Kai.Rannenberg@m-lehrstuhl.de

Yuko Murayama
Iwate Prefectural University, Faculty of Software and Information Science
Iwate, Japan
E-mail: murayama@iwate-pu.ac.jp

Shinichi Kawamura
Toshiba Corporation, Corporate Research and Development Center
E-mail: shinichi2.kawamura@toshiba.co.jp

Library of Congress Control Number: 2006934578

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.1, F.2.1, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-47699-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47699-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11908739 06/3142 5 4 3 2 1 0

Preface

It was our pleasure to hold the International Workshop on Security 2006 (IWSEC
2006) this year in Kyoto and to publish the proceedings as a volume of the
Lecture Notes in Computer Science series.

The workshop was our first trial in that two major academic society groups
on security in Japan, viz. ISEC and CSEC, jointly organized it; ISEC is a tech-
nical group on information security of the Institute of Electronics, Information
and Communication Engineers (IEICE), and CSEC is a special interest group
on computer security of the Information Processing Society of Japan (IPSJ).
It was Ryoichi Sasaki, the former head of CSEC, who proposed holding such
an international workshop in Japan for the first time, two years ago. The two
groups supported his idea and started organizing the workshop. CSEC has its
annual domestic symposium, the Computer Security Symposium (CSS), in Oc-
tober for three days, and we decided to organize the workshop prior to CSS this
year.

The initial aim of the workshop was primarily to provide young researchers
with the opportunity to present their work in English. However, due to more
submissions than we had anticipated, the quality of the accepted papers became
far better than we had expected.

The conference received 147 submissions, out of which the program committee
selected 30 for presentation. These proceedings contain the final versions of the
accepted papers, which the authors finalized on the basis of comments from the
reviewers. Since these revisions were not subject to editorial review, the authors
bear full responsibility for the contents of their papers.

The reviewing process was a challenging task. Each submitted paper was
reviewed by at least three members of the program committee. The individual
reviewing phase was followed by a Web-based discussion. Papers over which the
reviewers significantly disagreed were further reviewed by external experts. On
the basis of the comments and scores given by the reviewers, the final decisions
on acceptance were made at a one-day meeting of the program committee at the
University of Electro-Communications.

We appreciate the hard work of the organizing committee members. In par-
ticular, the workshop would not have been possible without the members of the
Advisory Committee. The members of the program committee also made impor-
tant contributions through their sincere reviews and discussions. We thank them
for their intellectual contributions as well as their hard work. The expertise of
the external reviewers improved the quality of the selection process. The review-
ing and discussion processes were greatly facilitated by the Web-based system,
which was developed by Wim Moreau and Joris Claessens, under the guidance
of Bart Preneel. We are sincerely grateful to them.

VI Preface

Finally, we would like to thank the authors who submitted papers. We hope
that you find the book interesting and informative.

October 2006 Yuko Murayama and Shinichi Kawamura
Hiroshi Yoshiura, Kouichi Sakurai, and Kai Rannenberg

Organization

IWSEC (International Workshop on Security) 2006 was organized by ISEC and
CSEC. ISEC is a technical group of IEICE (The Institute of Electronics, Infor-
mation and Communication Engineers) on information security, and CSEC is a
SIG (Special Interest Group) of IPSJ (Information Processing Society of Japan)
on computer security.

General Co-chairs

Yuko Murayama (Iwate Prefectural University, Japan)
Shinichi Kawamura (Toshiba Corporation, Japan)

Advisory Committee

Norihisa Doi (Chuo University, Japan)
Akira Hayashi (Kanazawa Institute of Technology, Japan)
Hideki Imai (Chuo University, Japan)
Günter Müller (University of Freiburg, Germany)
Eiji Okamoto (University of Tsukuba, Japan)
Ryoichi Sasaki (Tokyo Denki University, Japan)
Shigeo Tsujii (Institute of Information Security, Japan)

Program Committee Co-chairs

Hiroshi Yoshiura (University of Electro-Communications, Japan)
Kouichi Sakurai (Kyushu University, Japan)
Kai Rannenberg (Goethe University Frankfurt, Germany)

Program Committee

Thomas Berson (Anagram Labs, USA)
Bob Blakley (Texas A&M University, USA)
Soon Ae Chun (City University of New York, USA)
Kyo-il Chung (ETRI, Korea)
George Davida (University of Wisconsin-Milwaukee, USA)
Hiroshi Doi (Institute of Information Security, Japan)
Paul Dowland (University of Plymouth, UK)
Isao Echizen (Hitachi, Ltd., Japan)
Mahmoud T. El-Hadidi (Cairo University, Egypt)
Jan Eloff (University of Pretoria, South Africa)

VIII Organization

Steven Furnell (University of Plymouth, UK)
Soichi Furuya (Hitachi, Ltd., Japan)
Dieter Gollmann (Hamburg University of Technology, Germany)
Dimitris Gritzalis (Athens University of Economics & Business, Greece)
Yoshiaki Hori (Kyushu University, Japan)
Keiichi Iwamura (Tokyo University of Science, Japan)
Sushil Jajodia (George Mason University, USA)
Shinichi Kawamura (Toshiba Corporation, Japan)
Angelos Keromytis (Columbia University, USA)
Hiroaki Kikuchi (Tokai University, Japan)
Kwangjo Kim (Information and Communications University, Korea)
Mira Kim (Institute of Information Security, Japan)
Seungjoo Kim (Sungkyunkwan University, Korea)
Michiharu Kudo (IBM Japan, Japan)
Noboru Kunihiro (University of Electro-Communications, Japan)
Taekyoung Kwon (Sejong University, Korea)
Xuejia Lai (Shanghai Jiao Tong University, China)
Kwok-Yan Lam (Tsinghua University, China)
Dong Hoon Lee (Korea University, Korea)
Wansuk Lee (KISA, Korea)
William List (Firm Wm. List & Co., UK)
Javier Lopez (University of Malaga, Spain)
Jianhua Ma (Hosei University, Japan)
Masahiro Mambo (University of Tsukuba, Japan)
Mitsuru Matsui (Mitsubishi Electric Co., Japan)
Kanta Matsuura (The University of Tokyo, Japan)
Patrick McDaniel (Pennsylvania State University, USA)
Atsuko Miyaji (Japan Advanced Institute of Science and Technology, Japan)
Chang Joo Moon (Konkuk University, Korea)
Masakatsu Morii (Kobe University, Japan)
Günter Müller (University of Freiburg, Germany)
Yuko Murayama (Iwate Prefectural University, Japan)
Toru Nakanishi (Okayama University, Japan)
Masakatsu Nishigaki (Shizuoka University, Japan)
Ryuichi Ogawa (NEC Corporation, Japan)
Mirang Park (Mitsubishi Electric Corporation, Japan)
Raphael Phan (Swinburne University of Technology, Malaysia)
Hartmut Pohl (University of Applied Sciences Bonn-Rhein-Sieg, Germany)
Bimal Roy (Indian Statistical Institute, India)
Rossouw von Solms (Nelson Mandela Metropolitan University, South Africa)
Masakazu Soshi (Japan Advanced Institute of Science and Technology, Japan)
Leon Strous (De Nederlandsche Bank, The Netherlands)
Willy Susilo (University of Wollongong, Australia)
Mitsuru Tada (Chiba University, Japan)
Tsuyoshi Takagi (Future University Hakodate, Japan)

Organization IX

Kiyoshi Tanaka (Shinshu University, Japan)
Toshiaki Tanaka (KDDI Co., Japan)
Masato Terada (Hitachi, Ltd., Japan)
Masayuki Terada (NTT DoCoMo, Inc., Japan)
Doug Tygar (UC Berkeley, USA)
Ryuya Uda (Tokyo University of Technology, Japan)
Tetsutaro Uehara (Kyoto University, Japan)
Vijay Varadharajan (Macquarie University, Australia)
Teemupekka Virtanen (Helsinki University of Technology, Finland)
Jozef Vyskoc (VaF, Slovak Republic)
Hajime Watanabe (AIST, Japan)
Duncan Wong (City University of Hong Kong, Hong Kong)
Chuan-Kun Wu (Chinese Academy of Sciences, China)
Bin Xiao (Hong Kong Polytechnic University, Hong Kong)
Sung-Ming Yen (National Central University, Taiwan)
Maki Yoshida (Osaka University, Japan)
Moti Yung (RSA Laboratories, USA)
Jianying Zhou (Institute for Infocomm Research, Singapore)
Albin Zuccato (Karlstad University, Sweden)

External Reviewers

Chien-Ning Chen, Chun-I Fan, Hsi-Chung Lin, Hung-Min Sun,
Chih-Hung Wang, Bin Zhang, Philip Feng, Xiaojian Tian, Guomin Yang,
Robert Zhu, Osamu Takahashi, Fumitaka Yura, Kevin R.B. Butler,
Patrick Traynor, Will Enck, Joonsang Baek, Shane Balfe, Tanmoy Kanti Das,
Maria Papadaki, Sotiris Ioannidis, Matthew Burnside, Angelos Stavrou,
Michael Locasto, Stelios Sidiroglou, Yunho Lee, Jeeyeon Kim, Hyunjue Kim,
Heasuk Jo, Keunwoo Rhee, Seokhyang Cho, Isaac Agudo, Jose A. Montenegro,
Pablo Najera, Jose A. Onieva, Xinyi Huang, Shidi Xu, Koichiro Akiyama,
Kouichi Fujisaki, Yuichi Komano, Tatsuyuki Matsushita, Hideyuki Miyake,
Hirofumi Muratani, Hanae Nozaki, Satoshi Ozaki, Hideo Shimizu, Wook Shin,
Hyung Chan Kim, Koji Chida, Shin’ichiro Matsuo, Kazuomi Oishi,
Koutarou Suzuki, Keisuke Tanaka, Siu-Leung Chung, Meng Ge, Jinyang Shi,
Hongwei Sun, Xibin Zhao, Meng Ge, Hongwei Sun, Daniel R.L. Brown,
Benoit Chevallier-Mames, Bok-Min Goi, Javier Herranz, Anthony T.S. Ho,
Benoit Libert, Qibin Sun, Tamir Tassa, Bogdan Warinschi, Kazuo Ohta,
Tetsuya Izu, Miyako Ohkubo, Mitsugu Iwamoto, Santoso Bagus,
Kazuki Yoneyama, Hyun A. Park, Kyu Young Choi, Nam Su Chang,
Taek Young Youn, Ik Rae Jeong, Jeong Jae Yu, Bum Han Kim, Chang Ho Hong,
Ryohei Fujimaki, Tsutomu Murase, Masayuki Nakae, Kazuo Yanoo, Jeen Kim,
Dang Nguyen Duc, Vo Duc Liem, Divyan M. Konidala, Uday K. Tupakula,
Ching Lin, Keisuke Takemori, Hiroshi Aono, Makoto Iguchi, Takeshi Okamoto,
Tetsu Iwata, Koji Okada, Kouya Tochikubo, Toshihiko Matsuo,
Naonobu Okazaki, Kazuhiro Ono, Yoshiaki Terashima, Hirosato Tsuji,

X Organization

Haruko Kawahigashi, Ryuichi Kitaichi, Naishin Seki, Seiji Munetoh,
Sachiko Yoshihama, Takeo Yoshizawa, Megumi Nakamura, Yuji Watanabe,
Takuya Mishina, Seigo Arita, Keisuke Hakuta, Goichiro Hanaoka, Martin Hell,
Kentaro Imafuku, Tsuyoshi Nishioka, Katsuyuki Okeya, Hisayoshi Sato,
Hirotaka Yoshida, Sang Rae Cho, Jong-Gook Ko, Dosung Ahn.

Local Organizing Committee

Steering Chairs: Yuko Murayama (Iwate Prefectural University,
Japan)

Shinichi Kawamura (Toshiba Corporation, Japan)
Program Chairs: Hiroshi Yoshiura (University of Electro-

Communications, Japan)
Kouichi Sakurai (Kyushu University, Japan)

Finance Chair: Masato Terada (Hitachi, Ltd., Japan)
Publicity Chairs: Masakatsu Nishigaki (Shizuoka University, Japan)

Ryuya Uda (Tokyo University of Technology,
Japan)

Mitsuru Matsui (Mitsubishi Electric Co., Japan)
Tsuyoshi Takagi (Future University Hakodate,

Japan)
Local Arrangement Chairs: Tetsutaro Uehara (Kyoto University, Japan)

Masakatsu Morii (Kobe Univesity, Japan)
Publication Chairs: Hiroaki Kikuchi (Tokai University, Japan)

Masahiro Mambo (University of Tsukuba, Japan)
Kanta Matsuura (The University of Tokyo,

Japan)
Registration Chairs: Masato Terada (Hitachi, Ltd., Japan)

Masayuki Terada (NTT DoCoMo, Inc., Japan)
Award Chairs: Hiroshi Doi (Institute of Information Security,

Japan)
Atsuko Miyaji (Japan Advanced Institute of

Science and Technology, Japan)
Liaison Chair: Toshiaki Tanaka (KDDI Co., Japan)

Table of Contents

Signatures (1)

ID-Based Ring Signature Scheme Secure in the Standard Model 1
Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Duncan S. Wong

A Short Verifier-Local Revocation Group Signature Scheme with
Backward Unlinkability . 17

Toru Nakanishi, Nobuo Funabiki

Sound Computational Interpretation of Symbolic Hashes in the
Standard Model . 33

Flavio D. Garcia, Peter van Rossum

Security Evaluation

A Requirement Centric Framework for Information Security
Evaluation . 48

Reijo Savola

A Model-Based Method for Security Configuration Verification 60
Hiroshi Sakaki, Kazuo Yanoo, Ryuichi Ogawa

Personal Computer Privacy: Analysis for Korean PC Users 76
Young Chul Kwon, Sang Won Lee, Songchun Moon

Signatures (2)

Short Traceable Signatures Based on Bilinear Pairings 88
Seung Geol Choi, Kunsoo Park, Moti Yung

Ring Signature with Designated Linkability . 104
Joseph K. Liu, Willy Susilo, Duncan S. Wong

Ad Hoc Group Signatures . 120
Qianhong Wu, Willy Susilo, Yi Mu, Fangguo Zhang

Rateless Codes for the Multicast Stream Authentication Problem 136
Christophe Tartary, Huaxiong Wang

XII Table of Contents

Authentication

Crossing Borders: Security and Privacy Issues of the European
e-Passport . 152

Jaap-Henk Hoepman, Engelbert Hubbers, Bart Jacobs,
Martijn Oostdijk, Ronny Wichers Schreur

A New Approach to Hide Policy for Automated Trust Negotiation 168
Hai Jin, Zhensong Liao, Deqing Zou, Weizhong Qiang

Towards Remote Policy Enforcement for Runtime Protection of Mobile
Code Using Trusted Computing . 179

Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu

IP Address Authorization for Secure Address Proxying Using Multi-key
CGAs and Ring Signatures . 196

James Kempf, Jonathan Wood, Zulfikar Ramzan, Craig Gentry

Security for Multimedia

A Study of Detection Method of Printed Image Alteration Using
Digital Watermark . 212

Junji Onishi, Tsukasa Ono

Real-Time Watermark Embedding for High Resolution Video
Watermarking . 227

In-Koo Kang, Dong-Hyuck Im, Young-Ho Suh, Heung-Kyu Lee

Inhibiting Card Sharing Attacks . 239
Michael Tunstall, Konstantinos Markantonakis, Keith Mayes

Network Security

A Flooding-Based DoS/DDoS Detecting Algorithm Based on Traffic
Measurement and Prediction . 252

Shi Yi, Xinyu Yang, Huijun Zhu

Hardware Stack Design: Towards an Effective Defence Against Frame
Pointer Overwrite Attacks . 268

Yongsu Park, Younho Lee, Heeyoul Kim, Gil-Joo Lee, Il-Hee Kim

Modeling of Network Intrusions Based on the Multiple Transition
Probability . 278

Sang-Kyun Noh, DongKook Kim, Yong-Min Kim, Bong-Nam Noh

Table of Contents XIII

Encryption and Key Exchange

Chosen Ciphertext Security from Identity-Based Encryption Without
Strong Condition . 292

Chik How Tan

Ciphertext-Auditable Public Key Encryption . 308
Satoshi Hada, Kouichi Sakurai

Provably-Secure Two-Round Password-Authenticated Group Key
Exchange in the Standard Model . 322

Jeong Ok Kwon, Ik Rae Jeong, Dong Hoon Lee

Cryptanalysis and Implementation

On the Effectiveness of TMTO and Exhaustive Search Attacks 337
Sourav Mukhopadhyay, Palash Sarkar

Low Power AES Hardware Architecture for Radio Frequency
Identification . 353

Mooseop Kim, Jaecheol Ryou, Yongje Choi, Sungik Jun

The High-Speed Packet Cipher System Suitable for Small Sized Data 364
Sang-Hyun Park, Hoon Choi, Sang-Han Lee, Taejoo Chang

Access Control

A Tool for Managing Security Policies in Organisations 378
Anna V. Álvarez, Karen A. Garćıa, Raúl Monroy, Luis A. Trejo,
Jesús Vázquez

Information Flow Query and Verification for Security Policy of
Security-Enhanced Linux . 389

Yi-Ming Chen, Yung-Wei Kao

The Complexity of Discretionary Access Control . 405
Stephen Dranger, Robert H. Sloan, Jon A. Solworth

Traceroute Based IP Channel for Sending Hidden Short Messages 421
Zouheir Trabelsi, Hesham El-Sayed, Lilia Frikha, Tamer Rabie

Author Index . 437

ID-Based Ring Signature Scheme Secure in the
Standard Model

Man Ho Au1, Joseph K. Liu2, Tsz Hon Yuen3, and Duncan S. Wong4

1 Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, Australia

mhaa456@uow.edu.au
2 Department of Computer Science

University of Bristol
Bristol, BS8 1UB, UK
liu@cs.bris.ac.uk

3 Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
thyuen4@ie.cuhk.edu.hk

4 Department of Computer Science
City University of Hong Kong

Kowloon, Hong Kong
duncan@cityu.edu.hk

Abstract. The only known construction of ID-based ring signature
schemes which maybe secure in the standard model is to attach certifi-
cates to non-ID-based ring signatures. This method leads to schemes that
are somewhat inefficient and it is an open problem to find more efficient
and direct constructions. In this paper, we propose two such construc-
tions. Our first scheme, with signature size linear in the cardinality of
the ring, is secure in the standard model under the computational Diffie-
Hellman assumption. The second scheme, achieving constant signature
size, is secure in a weaker attack model (the selective ID and selective
chosen message model), under the Diffie-Hellman Inversion assumption.

1 Introduction

Identity-based (ID-based) cryptosystem, introduced by Shamir [16], eliminated
the need for checking the validity of the certificates. In an ID-based cryptosystem,
public key of each user is easily computable from a string corresponding to this
user’s identity (e.g. an email address, a telephone number, etc.). A private key
generator (PKG) then computes the private keys from a master secret for the
users. This property avoids the necessity of certificates and associates an implicit
public key (user identity) to each user within the system.

Ring signature is a group-oriented signature with privacy concerns. A user can
sign anonymously on behalf of a group on his own choice, while group members
can be totally unaware of being conscripted in the group. Any verifier can be

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 M.H. Au et al.

convinced that a message has been signed by one of the members in this group,
but the actual identity of the signer is hidden.

ID-based ring signature combines the property of ring signature and ID-based
signature. The first construction is in [20]. Since then, several construction have
been proposed [11,3,21,12,9]. The above scheme are all based on pairings with
signature size linear in the cardinality of the ring. Non-pairing-based approach
can be found in [2]. The first constant-size construction appears in [10]. Inde-
pendent work was given in [14]. Both of them use accumulator. Later [19] point
out a flaw in [14] and outline a patch. All existing constructions are only secure
in the random oracle model.

There are only a few number of ring signature scheme secure in the standard
model. One is a generic scheme based on standard signature, public-key encryp-
tion and ZAP proof system; and a second, more efficient ring signature scheme
but supporting only 2 users[4]. Another one is an independent work by Chow
et. al. without utilizing encryption and ZAP but rely on a new assumption [8].
Recently, independent of our work, Wei and Yuen have proposed a Hierarchical
Identity-Based Threshold Ring Signature scheme in the standard model [18].

Our Contribution. We give two direction construction for ID-Based ring signa-
ture scheme. Signature size of the first scheme is linear with the cardinality of
the ring. We prove that it is secure under the computational Diffie-Hellman as-
sumption. Signature size of the second scheme is constant. We prove that the
second scheme is secure under the Diffie-Hellman Inversion assumption in the
selective-ID, selective chosen message attack model. In terms of signature size
and computational cost, our schemes outperform schemes constructed indirectly
following the generic approach described above.

2 Preliminaries

2.1 Security Models

An ID-Based (1, n) Ring Signature scheme is a tuple of probabilistic polynomial-
time (PPT) algorithms below:

– Setup. On input an unary string 1λ where λ is a security parameter, the
algorithm outputs a master secret key s and a list of system parameters
param that includes λ and the descriptions of a user secret key space D, a
message space M as well as a signature space Ψ .

– Extract. On input a list param of system parameters, an identity IDi ∈
{0, 1}∗ for a user and the master secret key s, the algorithm outputs the
user’s secret key di ∈ D. When we say identity IDi corresponds to user
secret key di or vice versa, we mean the pair (IDi, di) is an input-output
pair of Extract with respect to param and s.

– Sign. On input a list param of system parameters, a group size n of length
polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a
message m ∈ M, and a secret key {dj ∈ D|j ∈ [1, n]}, the algorithm outputs
an ID-based (1, n) ring signature σ ∈ Ψ .

ID-Based Ring Signature Scheme Secure in the Standard Model 3

– Verify. On input a list param of system parameters, a group size n of
length polynomial in λ, a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities,
a message m ∈ M, a signature σ ∈ Ψ , it outputs either valid or invalid.

Correctness. An ID-Based (1, n) Ring Signature scheme should satisfy the
verification correctness – signatures signed by honest signers are verified to be
invalid with negligible probability.

2.2 Security Requirement

A secure ID-Based (1, n) Ring Signature scheme should be unforgeable and
anonymous which will be defined in a similar way to that of a traditional ring
signature scheme.

Unforgeability. It should not be possible for an adversary to forge any signature
just from the identities of the group members. We specify a security model which
mainly captures the following two attacks:

1. Adaptive chosen message attack
2. Adaptive chosen identity attack

Adaptive chosen message attack allows an adversary to obtain message-signature
pairs on demand during the forging attack. Adaptive chosen identity attack
allows the adversary to forge a signature with respect to a group chosen by the
adversary. To support adaptive chosen message attack, we provide the adversary
the following oracle queries.

– Extraction oracle (EO): On input IDi, di ← Extract(param, IDi) is
returned . The oracle is stateful, meaning that if IDi = IDj , then di = dj .

– Signing oracle (SO): A chooses a group of n identities {IDi}i∈[1,n] and a
message m, the oracle outputs a valid ID-based (1, n) ring signature denoted
by σ ← Sign(param, n, {IDi|i ∈ [1, n]}, m). The signing oracle may query
the extraction oracle during its operation.

Let U = {ID1, · · · , IDN} be a set of identities. An adversary A with oracles
EO and SO succeeds if it outputs (L, m, σ)← ASO,EO(U), such that it satisfies
Verify(param, L, m, σ) = valid, where L ⊆ U and |L| = n with restriction that
(L, m) should not be in the set of oracle queries and replies between A and SO,
and A is not allowed to make an Extraction query on any identity ID ∈ L.

The advantage of an adversary A is defined to be

AdvA = Pr[A succeeds]

Definition 1 (Unforgeability). An adversary A is said to be an (ε, t, qe, qs)-
forger of an ID-based (1, n) ring signature scheme if A has advantage at least
ε, runs in time at most t, and makes at most qe and qs extraction and signing
oracles queries respectively. A scheme is said to be (ε, t, qe, qs)-unforgeable if no
(ε, t, qe, qs)-forger exists.

4 M.H. Au et al.

Note that it cannot achieve the unforgeability in the stronger sense that the
adversary produces a different signature on the same message and the same list
of identities, as described in [1,13] since our proposed scheme does not enjoy this
level of stronger security.

Anonymity. It should not be possible for an adversary to tell the identity of
the signer with a probability larger than 1/n, where n is the cardinality of the
ring, even assuming that the adversary has unlimited computing resources.

Definition 2 (Anonymity). An ID-based (1, n) ring signature scheme is un-
conditional anonymous if for any group of n users with identity {ID1, · · · , IDn},
any message m and signature σ ← Sign(param, n, {IDi|i ∈ [1, n]}, m), any ad-
versary A, even with unbounded computational power, cannot identify the actual
signer with probability better than random guessing. That is, A can only output
the identity of the actual signer with probability no better than 1/n.

2.3 Bilinear Pairing

We briefly review bilinear pairing. We use the following notation [?]. Let G1 and
G2 be two (multiplicative) cyclic groups of prime order p. Let g be a generator
of G1, and ê be a bilinear map such that ê : G1 × G1 → G2 with the following
properties:

1. Bilinearity: For all u, v ∈ G1, and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) �= 1.
3. Computability: It is efficient to compute ê(u, v) for all u, v ∈ G1.

2.4 Intractability Assumptions

We review some intractability assumptions in bilinear groups.

Definition 3 (Computational Diffie-Hellman (CDH) Problem). Given a
group G of prime order p with generator g and elements ga, gb ∈ G where a, b are
selected uniformly at random from Z∗

p, the CDH problem in G is to compute gab.

We say that the (ε, t)-CDH assumption holds in a group G if no algorithm
running in time at most t can solve the CDH problem in G with probability at
least ε.

Definition 4. (n-DHI problem) The n-Diffie-Hellman Inversion problem is
that, given g, gα, gα2

, . . ., gαn ∈ G, for unknown α ∈ Z∗
p, to compute g1/α.

Definition 5. (n-DHI* problem) The n-Diffie-Hellman Inversion* problem is
that, given g, gα, gα2

, . . ., gαn ∈ G, for unknown α ∈ Z∗
p, to compute gαn+1

.

The n-DHI problem and n-DHI* problem are proven equivalent in [22]. We say
that the (ε, t, n)-DHI* assumption holds if no algorithm running in polynomial
time t can solve a random instance of the n-DHI* problem with non-negligible
probability ε.

ID-Based Ring Signature Scheme Secure in the Standard Model 5

3 The Proposed Scheme

Our proposed ID-based ring signature scheme is motivated from the signature
scheme in [15,6] and the encryption scheme in [17].

3.1 Construction

Let Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm be two collision-
resistant hash functions for some nu, nm ∈ Z. They are used to create identities
and messages of the desired length respectively. The proposed scheme is defined
by the following algorithms.

Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be
a generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα.
Also select randomly the following elements:

– u′, m′ ∈R G1
– ûi ∈R G1 for i = 1, . . . , nu. Let Û = {ûi}.
– m̂i ∈R G1 for i = 1, . . . , nm. Let M̂ = {m̂i}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, Û , m′, M̂) and the mas-

ter secret key is gα
2 .

Extract. Let uj = Hu(IDj) for user j with identity IDj , where j ∈ Z. Let uj [i]
be the i-th bit of uj . Define Uj ⊂ {1, . . . , nu} to be the set of indicies such that
uj [i] = 1.

To construct the private key, dj , of identity IDj , randomly selects ruj ∈R Zp

and compute dj =
(

gα
2
(
Uj

)ruj , gruj

)
= (D(1)

j , D
(2)
j) where Uj = u′∏

i∈U j
ûi.

Sign. Let L = {ID1, . . . , IDn} be the list of n identities to be included in the ring
signature, including the one of the actual signer. To sign a message m ∈ {0, 1}∗,
compute m = Hm(m, L). Let m[i] be the i-th bit of m and M⊂ {1, . . . , nm} be
the set of indicies i such that m[i] = 1.

Let the signer be indexed π, where π∈ [1, n], with private key dπ =(D(1)
π , D

(2)
π).

Randomly select r1, . . . , rn, rm ∈R Zp, compute Uj = u′∏
i∈U j

ûi for j = 1, . . . , n

and

σ =

(
D(1)

π

(n∏
j=1

(
Uj

)rj
)(

m′ ∏
i∈M

m̂i

)rm

, gr1 , . . . , grπ−1 , D(2)
π grπ , grπ+1 ,

. . . , grn , grm

)

= (V, R1, . . . , Rn, Rm)

Verify.Given a signatureσ=(V, R1, . . . , Rn, Rm) for a list of identities L on ames-
sage m, a verifier first computes m=Hm(m, L), Uj =u′∏

i∈U j
ûi for j =1, . . . , n

6 M.H. Au et al.

and checks whether e(V, g) ?= e(g2, g1)
(∏n

j=1 e(Uj, Rj)
)

e(m′∏
i∈M m̂i, Rm)

Output valid if the equality holds. Otherwise output invalid.

Correctness. It is easy to see that the signature scheme is correct, as shown in
following:

e(V, g) = e

(
gα
2
(
Uπ

)ruπ
(
U1
)r1

. . .
(
Un

)rn
(
m′ ∏

i∈M
m̂i

)rm
, g

)

e(V, g) = e

(
gα
2
(
U1
)r1

. . .
(
Uπ

)ruπ +rπ
. . .
(
Un

)rn
(
m′ ∏

i∈M
m̂i

)rm
, g

)

= e(g2, g)αe
(
U1, g

)r1
. . . e

(
Uπ, g

)ruπ +rπ
. . . e

(
Un, g

)rn
e
(
m′ ∏

i∈M
m̂i, g

)rm

= e(g2, g1)e
(
U1, R1

)
. . . e

(
Un, Rn

)
e
(
m′ ∏

i∈M
m̂i, Rm

)

3.2 Security Analysis

We will prove that our proposed scheme is unconditional anonymous and exis-
tentially unforgeable under a chosen message and identity attack, in the standard
model.

Theorem 1 (Anonymity). The scheme proposed in Section 3 is unconditional
anonymous.

Proof. In the signature σ = (V, R1, . . . , Rn, Rm), {Ri}, i ∈ [1, n] \ π and Rm are
randomly generated which provide no information on the actual signer. Rπ =
gruπ grπ . rπ is randomly generated by the actual signer. ruπ is randomly gener-
ated by the master which is independent to any user. Thus Rπ is also randomly dis-
tributed. V is in the form of gα

2
(
U1
)r1

. . .
(
Uπ

)ruπ +rπ
. . .
(
Un

)rn
(
m′∏

i∈M m̂i

)rm .
Using the same argument, r1, . . . , ruπ +rπ, . . . , rn, rm are random numbers while α
is the master’s secret key. All of them provide no information on the actual signer.
It is no better for the adversary to do a wild guess. Our proposed scheme is un-
conditional anonymous. �	

For unforgeability, our scheme relies on the hardness of CDH problem, which is
stated as below:

Definition 6 (Computational Diffie-Hellman (CDH) Problem). Given a
group G of prime order p with generator g and elements ga, gb ∈ G where a, b are
selected uniformly at random from Z∗

p, the CDH problem in G is to compute gab.

We say that the (ε, t)-CDH assumption holds in a group G if no algorithm running
in time at most t can solve the CDH problem in G with probability at least ε.

Theorem 2 (Existential Unforgeability). The 1-out-of-n ID-based ring sig-
nature scheme proposed in Section 3 is (ε, t, qe, qs)-unforgeable, assuming that

ID-Based Ring Signature Scheme Secure in the Standard Model 7

the (ε′, t′)-CDH assumption holds in G1, where ε′≥ ε
2n+3(qe+qs)n(nu+1)nqs(nm+1) ,

t′ = t + O
((

qenu + qs(nnu + nm)
)
ρ + (qe + nqs)τ

)
and ρ and τ are the time for

a multiplication and an exponentiation in G1 respectively.

Proof. Assume there is a (ε, t, qe, qs)-adversary A exists. We are going to con-
struct another PPT B that makes use of A to solve the CDH problem with
probability at least ε′ and in time at most t′.
B is given a problem instance as follow: Given a group G1, a generator g ∈ G1,

two elements ga, gb ∈ G1. It is asked to output another element gab ∈ G1. In
order to use A to solve for the problem, B needs to simulates a challenger and
the oracles (the extraction oracle and the signing oracle) for A. B does it in the
following way.

Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and
km such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p
and lm(nm +1) < p for the given values of qe, qs, nu and nm. It randomly selects
the following integers:

– x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp

– x̂i ∈R Zlu , for i = 1, . . . , nu. Let X̂ = {x̂i}.
– ẑi ∈R Zlm , for i = 1, . . . , nm. Let Ẑ = {ẑi}.
– ŷi ∈R Zp, for i = 1, . . . , nu. Let Ŷ = {ŷi}.
– ŵi ∈R Zp, for i = 1, . . . , nm. Let Ŵ = {ŵi}.

We further define the following functions for binary strings uj and m where
uj = Hu(IDj) for an identity IDj , j ∈ Z and m = Hm(m, L) for a message m
and a list of identities L, as follow:

F (uj) = x′ +
∑

i∈U j

x̂i − luku and J(uj) = y′ +
∑

i∈U j

ŷi

K(m) = z′ +
∑

i∈M
ẑi − lmkm and L(m) = w′ +

∑
i∈M

ŵi

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb

u′ = g−luku+x′
2 gy′

, ûi = gx̂i
2 gŷi for 1 ≤ i ≤ nu

m′ = g−lmkm+z′
2 gw′

, m̂i = gẑi
2 gŵi for 1 ≤ i ≤ nm

Note that the master secret will be gα
2 = ga

2 = gab and we have the following
equations: Uj = u′∏

i∈U j
ûi = g

F (uj)
2 gJ(uj) and m′∏

i∈M m̂i = g
K(m)
2 gL(m). All

public parameters are passed to A.
Oracles Simulation. B simulates the extraction and signing oracles as follow:

(Extraction oracle.) Upon receiving a query for a private key of an identity
IDj , B compute u = Hu(IDj). Although B does not know the master secret,

8 M.H. Au et al.

it can still construct the private key by assuming F (uj) �= 0 mod p. It ran-
domly chooses ruj ∈R Zp and computes the private key as duj = (D(1)

j , D
(2)
j) =(

g
− J(uj)

F (uj)

1

(
Uj

)ruj , g
− 1

F (uj)

1 gruj

)
By letting r̃uj = ruj − a

F (uj)
, it can be verifier that duj is a valid private key,

shown as follow:

D
(1)
j = g

− J(uj)
F (uj)

1

(
Uj

)ruj

= g
− J(uj)

F (uj)

1 (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj) (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj) (gF (uj)
2 gJ(uj))

a
F (uj) (gF (uj)

2 gJ(uj))
− a

F (uj) (gF (uj)
2 gJ(uj))ruj

= g
− aJ(uj)

F (uj) gabg
aJ(uj)
F (uj) (gF (uj)

2 gJ(uj))r̃uj

= gab(gF (uj)
2 gJ(uj))r̃uj = ga

2 (gF (uj)
2 gJ(uj))r̃uj = ga

2
(
Uj

)r̃uj

and D
(2)
j = g

− 1
F (uj)

1 gruj = g
ruj

− a
F (uj) = gr̃uj To the adversary, all private keys

given by B are indistinguishable from the keys generated by the true challenger.
If F (uj) = 0 mod p, since the above computation cannot be performed (di-

vision by 0), the simulator aborts. To make it simple, the simulator will abort
if F (uj) = 0 mod lu. The equivalency can be observed as follow. From the as-
sumption lu(nu + 1) < p, it implies 0 ≤ luku < p and 0 ≤ x′ +

∑
i∈U j

x̂i < p

(∵ x′ < lu, x̂i < lu, |Uj | ≤ nu). We have −p < F (uj) < p which implies if
F (uj) = 0 mod p then F (uj) mod lu. Hence, F (uj) �= 0 mod lu implies F (uj) �=
0 mod p. Thus the former condition will be sufficient to ensure that a private
key can be computed without aborting.

(Signing oracle.) For a given query of a signature on the list of identities L =
{ID1, . . . , IDn} and a message m 1, B first computes uj = Hu(IDj) and m =
Hm(m, L).

If F (uj) �= 0 mod lu for some j ∈ [1, n], B randomly selects π ∈R J where J is
the set of integers j such that F (uj) �= 0 mod lu. B just constructs a private key
for π as in the extraction oracle query, then use the Sign algorithm described
in the proposed scheme to create a signature on L and m.

If F (uj) = 0 mod lu for all j ∈ [1, n], B tries to construct the signature
in a similar way to the construction of private key in an extraction oracle
query. Assume K(m) �= 0 mod lm. Using the aforementioned argument, it im-
plies K(m) �= 0 mod p provided that lm(nm + 1) < p. The signature can be
constructed by first randomly selecting r1, . . . , rn, rm ∈R Zp and computing

1 Note that A is not allowed to make any extraction oracle query on any IDj , where
IDj ∈ L.

ID-Based Ring Signature Scheme Secure in the Standard Model 9

σ =

((n∏
j=1

(
Uj

)rj

)
g
− L(m)

K(m)
1

(
m′ ∏

i∈M
m̂i

)rm

, gr1 , . . . , grn , g
− 1

K(m)
1 grm

)

=

(
ga
2

(n∏
j=1

(
Uj

)rj

)(
m′ ∏

i∈M
m̂i

)r̃m

, gr1 , . . . , grn , gr̃m

)

where r̃m = rm − a
K(m) . If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return a list of identities L∗ =
{ID∗

1,. . . ,ID∗
n} and a message m∗ with a forged signature σ∗=(V,R1,. . . ,Rn, Rm)

on L∗ and m∗ with probability at least ε. B checks whether the following condi-
tions are fulfilled:

1. F (u∗j) = 0 mod p for all j ∈ [1, n], where u∗j = Hu(ID∗
j).

2. K(m∗) = 0 mod p , where m∗ = Hm(m∗, L∗).

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗

1)
1 . . . R

J(u∗
n)

n R
L(m∗)
m

=
ga
2
(
U1
)r1

. . .
(
Un

)rn
(
m′∏

i∈M m̂i

)rm

gJ(u∗
1)r1 . . . gJ(u∗

n)rngL(m∗)rm

=
ga
2

(
g

F (u∗
1)

2 gJ(u∗
1)
)r1

. . .
(
g

F (u∗
n)

2 gJ(u∗
n)
)rn
(
g

K(m∗)
2 gL(m∗)

)rm

gJ(u∗
1)r1 . . . gJ(u∗

n)rngL(m∗)rm

= ga
2 = gab

which is the solution to the CDH problem instance.
Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Extraction queries on an identity ID have F (u) �= 0 mod lu, where u =
Hu(ID).

2. Sign queries (L, m) will either have F (uj) �= 0 mod lu, for some j ∈ [1, n]
where IDj ∈ L, or K(m) �= 0 mod lm where m = Hm(m, L).

3. F (u∗j) = 0 mod lu for all j ∈ [1, n] where ID∗
j ∈ L∗ and K(m∗) = 0 mod lm.

For ease of analysis, we will bound the probability of a subcase of this event.
Let u1, . . . , uqI be the output of the hash function Hu appearing in either

extract queries or in sign queries not involving any of the challenge identity
included in L∗, and let m1, . . . ,mqM be the output of the hash function Hm in
the sign queries involving the challenge list of identities L∗. We have qI ≤ qe +qs

and qM ≤ qs. We also define the events Ai, A
∗, B�, B

∗ as follow:

Ai : F (ui) �= 0 mod lu where i = 1, . . . , qI

A∗ : F (u∗j) = 0 mod p for all j ∈ [1, n] where ID∗
j ∈ L∗

B� : K(m�) �= 0 mod lm where
 = 1, . . . , qM

B∗ : K(m∗) = 0 mod p

10 M.H. Au et al.

The probability of B not aborting is

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

�=1

B� ∧B∗
)]

Note that the events
(∧qI

i=1 Ai ∧A∗
)

and
(∧qM

�=1 B� ∧B∗
)

are independent.
The assumption lu(nu + 1) < p implies if F (u) = 0 mod p then F (u) =

0 mod lu. Since ku, x′ and X̂ are randomly chosen,

Pr[A∗] =
n∏

j=1

Pr[F (u∗j) = 0 mod p ∧ F (u∗j) = 0 mod lu]

=
n∏

j=1

Pr[F (u∗j) = 0 mod lu] Pr[F (u∗j) = 0 mod p | F (u∗j) = 0 mod lu]

=
(1

lu

1
nu + 1

)n

On the other hand, we have Pr
[∧qI

i=1 Ai|A∗
]

= 1 − Pr
[∨qI

i=1 Ai | A∗
]
≥

1−
∑qI

i=1 Pr[Ai | A∗]where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are

independent, where i1 �= i2, since the outputs of F (ui1) and F (ui2) will differ
in at least one randomly chosen value. Also since the events Ai and A∗ are
independent for any i, we have Pr[Ai|A∗] = 1/lu and

Pr
[qI∧

i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[qI∧

i=1

Ai|A∗
]

=
(

1
lu(nu + 1)

)n(
1− qI

lu

)

≥
(

1
lu(nu + 1)

)n(
1− qe + qs

lu

)

=
(

1
2(qe + qs)(nu + 1)

)n(
1− 1

2

)

(by setting lu = 2(qe + qs)) =
1

2n+1(qe + qS)n(nu + 1)

Using similar analysis technique for signing queries we can have

Pr
[qM∧

�=1

B� ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

�=1

B� ∧B∗
)]

ID-Based Ring Signature Scheme Secure in the Standard Model 11

≥ 1
2n+3(qe + qs)n(nu + 1)nqs(nm + 1)

If the simulation does not abort, A will produce a forged signature with proba-
bility at least ε. Thus B can solve for the CDH problem instance with probability
ε′ ≥ ε

2n+3(qe+qs)n(nu+1)nqs(nm+1)

Remark: We note that since n is included as the exponent of the denominator,
we suggest that n may not be too large in order to claim its security.

Time Complexity Analysis. The time complexity of B is dominated by the expo-
nentiation and multiplication operations for large values of nu and nm performed
in the extraction and signing queries.

There are O(nu) and O(nnu + nm) multiplications and O(1) and O(n) expo-
nentiations in the extraction and singing stage respectively. The time complexity
of B is t + O

((
qenu + qs(nnu + nm)

)
ρ + (qe + nqs)τ

)
�	

4 Constant-Size Identity Based Ring Signature

We propose a constant-size identity based ring signature without random oracles.
The size of the signature is independent of the size of the ring. However, this
scheme has a restriction on the maximum number of signers of the ring when the
private key is extracted from the identity. Furthermore, the scheme is provably
secure in a weak model for unforgeability, namely selective-identity, selective
chosen message attack. The security model of selective-identity can be found
in [7]. This model is used in some identity based schemes. The difference from
the standard model is that the adversary gives the challenge identity at the
beginning of the security game, and the query of the challenge identity (or its
prefix) to the extraction oracle is forbidden.

In this section, we use a security model in unforgeability which extends the
selective-identity model. We introduce the selective-identity, selective chosen mes-
sage attack model. The difference from the adaptive identity and adaptive chosen
message attack model is that the adversary gives the challenge identity and chal-
lenge message at the beginning of the unforgeability game, the query of the chal-
lenge identity to the extraction oracle is forbidden, and the query of the challenge
identity and the challenge message together to the signing oracle is forbidden.

4.1 Construction

Our scheme is motivated from the encryption scheme in [5]. Let Hu : {0, 1}∗ →
Z∗

p and Hm : {0, 1}∗ → Z∗
p be two collision-resistant hash functions. They are

used to create identities and messages of the desired length respectively. The
proposed scheme is defined by the following algorithms.

Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be
a generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα.
Also select randomly the following elements:

12 M.H. Au et al.

– u′, m′ ∈R G1
– ûi ∈R G1 for i = 1, . . . , n + 1. Let Û = {ûi}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, Û) and the master secret

key is gα
2 .

Extract. To generate a private key for ID, let id= Hu(ID). For 1 ≤ i ≤ n + 1,
the algorithm picks a random ri ∈ Z∗

p and computes:

SKID,i =
(
gα
2 (u′ûid

i)ri , gri , ûri
1 , . . . , ûri

i−1, ûri

i+1, . . . , ûri
n+1

)
= (ai, bi, ci,1, . . . , ci,i−1, ci,i+1, . . . , ci,n+1)

Sign. Let L = {ID1, . . . , IDn′} be the list of n′ < n identities to be in-
cluded in the ring signature, including the one of the actual signer at index
π. Let idi = Hu(IDi) for i = 1, . . . , n′. To sign a message M ∈ {0, 1}∗, let
m= Hm(M, L). The signer picks random t ∈ Zp, and uses SKID,π to compute:
V = aπ · (

∏n′

j=1,j �=π c
idj

π,j) · cm
π,n′+1 · (û

id1
1 · · · ûidn′

n′ · ûm
n′+1 · u′)t , R = bπ · gt The

signature σ is (V, R).
Verify. Given a signature σ = (V, R) for a list of identities L = {ID1, . . . , IDn′}
on a message M , a verifier first computes m= Hm(M, L) and idi = Hu(IDi)
for i = 1, . . . , n′ and then checks whether ê(g, V) ?= ê(g1, g2) · ê(R, ûid1

1 · · · ûidn′
n′ ·

ûm
n′+1 · u′) Output valid if the equality holds. Otherwise output invalid.

Correctness. The scheme is correct as shown in the following:

ê(g, V) = ê(g, aπ · (
n′∏

j=1,j �=π

c
idj

π,j) · cm
π,n′+1 · (ûid1

1 · · · ûidn′
n′ · ûm

n′+1 · u′)t)

= ê(g, gα
2 · (ûid1

1 · · · ûidn′
n′ · ûm

n′+1 · u′)rπ+t)

= ê(g1, g2) · ê(R, ûid1
1 · · · ûidn′

n′ · ûm
n′+1 · u′)

4.2 Security Analysis

Theorem 3 (Anonymity). The scheme proposed in Section 4 is unconditional
anonymous.

Proof. In the signature σ = (V, R), R = grπgt. t is randomly generated by the
actual signer. rπ is randomly generated by the master which is independent to
any user. Thus R is a random number. V is in the form of gα

2
(
ûid1

1 · · · ûidn′
n′
)rπ+t.

Using the same argument, rπ + t is a random number while α is the master’s
secret key. All of them provide no information on the actual signer. It is no better
for the adversary to do a wild guess. Our proposed scheme is unconditional
anonymous. �	

Theorem 4. The 1-out-of-(n − 1) ID-based ring signature scheme proposed in
section 4 is (ε, t, qe, qs)-unforgeable under the selective-ID attack model, assum-
ing that the (ε′, t′, n)-DHI∗ assumption holds in G1 and Hu, Hm are collision

ID-Based Ring Signature Scheme Secure in the Standard Model 13

resistant hash functions, where ε′ ≥ ε
(
1 − 1

p

)qe
(
1 − 1

p2

)qs

, t′ = t + O
(
(qe +

qs)nρ
)

+ O
(
(qe + qs)nτ

)
and ρ and τ are the time for a multiplication and an

exponentiation in G1 respectively.

Proof. Assume there is a (ε, t, qe, qs)-adversary A exists. We are going to con-
struct another PPT B that makes use of A to solve the n-DHI* problem with
probability at least ε′ and in time at most t′.

Setup. B is given the n-DHI* tuple (g, gx, . . . , gxn

). The game begins with A
sends the challenge identity L∗ = {ID∗

1, . . . , ID∗
n−1} and the challenge message

M∗ to B. Denote id∗j = Hu(ID∗
j) for 1 ≤ j ≤ n − 1 and id∗n = Hm(M∗, L∗).

B picks a random γ ∈ Zp and assigns g1 = gx, g2 = gxn · gγ . B picks random
γ1, . . . γn+1 ∈ Zp and sets ûj = gγj g−xn−j+1

, for 1 ≤ j ≤ n. It also picks a random
δ ∈ Zp and computes u′ = gδ+ n

j=1 xn−j+1id∗
j . B gives A the public parameters

param = (g, g1, g2, u
′, û1, . . . , ûn). The corresponding (unknown) master secret

key is gx
2 = gx(xn+γ).

Oracle Simulation. B simulates the extraction and signing oracles as follow:

(Extraction oracle.) Upon receiving a query for a private key of an identity ID,
if Hu(ID) = Hu(ID∗

1), B declares failure and exits. Otherwise the simulator
chooses a random r̃1 ∈ Zp. Denote id = Hu(ID) and r1 = x

(id−id∗
1) + r̃1 and

compute:

a1 = gxγ · Z · gxnr̃1(id∗
1−id) where Z =

(
gδ+idγ1 ·

n∏
i=2

gxn−i+1id∗
i

)r1

b1 = gr1 = gx/(id−id∗
1)gr̃1

c1,2 = ûr1
2 = g

(γ2−xn−1)(x
(id−id∗

1) +r̃1)

...

c1,n = ûr1
2 = g

(γn−x)(x
(id−id∗

1)+r̃1)

Refer to [5] for the well-formedness of the secret key. The computation for
(ai, bi, ci,j) where 1 ≤ i ≤ n− 1 are similar and hence are omitted.
(Signing oracle.) For input identities L = (ID1, . . . , IDn′) and message M , de-
note idj = Hu(IDj) for 1 ≤ j ≤ n′ and idn′+1 = Hm(M, L). If {id1, . . . , idn′+1}
is the same as {id∗1, . . . , id∗n} or is a prefix of it, B declares failure and exits.
Otherwise there exists a k ≤ n such that idk �= id∗k. We set k be the smallest
such index. To answer the query, B derives for the secret key of identity idk as
in the extraction oracle, and then computes the signature using the secret key.

Output Calculation. Finally, A returns a signature σ∗ for message M∗ and sign-
ers L∗. Notice that L∗ and M∗ is given at the beginning of the selective-ID game
and the total length of id∗i is n. We denote σ∗ = (V ∗, R∗). Therefore we can set
R∗ = gr̄ for some r̄ ∈ Zp. Then:

14 M.H. Au et al.

V ∗ = gα
2 (u′

n∏
i=1

û
id∗

i

i)r̄

= gα
2 (gδ

n∏
j=1

gxn−j+1id∗
j

n∏
i=1

(
gγi

gxn−i+1)id
∗
i)r̄

= gα
2 (gδ

n∏
i=1

gγiid∗
i)r̄ = gα

2 (gδ+ n
i=1(γiid∗

i))r̄

Therefore B returns gx�+1
= gα

2 /gxγ = V ∗/(R∗δ+ �
i=1(γiI

∗
i)gxγ) as the solution.

Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Extraction queries on an identity ID have Hu(ID) = Hu(ID∗
1).

2. Sign queries for {id1, . . . , idn′+1} is not the same as {id∗1, . . . , id∗n} or is a
prefix of it.

We define the events Ai, B� as follow:

Ai : Hu(IDi) �= Hu(ID∗
1) where i = 1, . . . , qe

B� : {id�,1, . . . , id�,n′
�
+1} �= {id∗1, . . . , id∗n̄} where
 = 1, . . . , qs, 2 ≤ n̄ ≤ n

The probability of B not aborting is Pr[not abort]≥Pr
[(∧qe

i=1 Ai

)
∧
(∧qs

�=1 B�

)]
Note that the events

(∧qe

i=1 Ai

)
and

(∧qs

�=1 B�

)
are independent.

The assumption that Hu and Hm are collision resistant hash functions implies:
Pr[Ai] = 1− 1

p and Pr[Bi] = 1− (1
p)n′

i+1

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qe∧

i=1

Ai

)
∧
(qs∧

�=1

B�

)]

=
(
1− 1

p

)qe
qs∏

i=1

(
1− (

1
p
)n′

i+1
)
≥
(
1− 1

p

)qe
(
1− 1

p2

)qs

If the simulation does not abort, A will produce a forged signature with proba-
bility at least ε. Thus B can solve for the DHI∗ problem instance with probability
ε′ ≥ ε

(
1− 1

p

)qe
(
1− 1

p2

)qs

Time Complexity Analysis. The time complexity of B is dominated by the expo-
nentiation and multiplication operations for large values of nu and nm performed
in the extraction and signing queries.

There are O(n) multiplications and O(n) exponentiations in the both extrac-
tion and singing stage. The time complexity of B is t+O

(
(qe +qs)nρ

)
+O
(
(qe +

qs)nτ
)

�	

ID-Based Ring Signature Scheme Secure in the Standard Model 15

Full Unforgeability. As shown in many identity-based schemes in the literature
with selective-ID security model, we can always turns a proof in selective-ID se-
curity model into a proof of adaptive-ID model by hashing the identity prior to
using it. However the reduction introduces a 2d multiplicative security loss factor
in the standard model, where d is the length of the output of the hash function.
The same result can be applied to our scheme. For the selective chosen message
attack, the case is similar to the selective-ID model. We can turn the proof into a
proof of adaptive chosen message attack model by hashing the message. However
the reduction introduces a 2d′

multiplicative security loss factor in the standard
model, where d′ is the length of the output of the hash function for message.

5 Conclusion

In this paper, we have proposed two new ID-based ring signature schemes which
are secure in the standard model. Our first scheme, with signature size linear
in the cardinality of the ring, is secure in the standard model under the com-
putational Diffie-Hellman assumption. The second scheme, achieving constant
signature size, is secure in a weaker attack model (the selective ID and selective
chosen message model), under the Diffie-Hellman Inversion assumption. It also
applies certain limitation on the size of the ring in the signature.

It remains an open problem to construct a scheme that is secure in the
strongest model with constant size signature while removing all limitations on
the size of ring.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Proc. ASIACRYPT 2002, pages 415–432. Springer-Verlag, 2002. Lecture Notes
in Computer Science No. 2501.

2. M. Au, J. K. Liu, P. P. Tsang, and D. S. Wong. A suite of id-based threshold ring
signature schemes with different levels of anonymity. Cryptology ePrint Archive,
Report 2005/326, 2005. http://eprint.iacr.org/.

3. A. K. Awasthi and S. Lal. ID-based Ring Signature and Proxy Ring Signature
Schemes from Bilinear Pairings. Cryptology ePrint Archive, Report 2004/184,
2004. http://eprint.iacr.org/.

4. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In TCC 2006, volume 3816 of Lecture Notes
in Computer Science, pages 60–79. Springer, 2006.

5. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In Proc. EUROCRYPT 2005, volume 3494 of LNCS,
pages 440–456. Springer, 2005.

6. X. Boyen and B. Waters. Compact group signatures without random oracles. In
Advances in Cryptology—EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 427–444. Springer-Verlag, 2006.

7. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In Proc. EUROCRYPT 2003, volume 2656 of Leture Notes in Computer Science,
pages 255–271. Springer-Verlag, 2003.

16 M.H. Au et al.

8. S. S. M. Chow, J. K. Liu, V. K. Wei, and T. H. Yuen. Ring signatures without
random oracles. In ASIACCS 06, pages 297–302. ACM, 2006.

9. S. S. M. Chow, S.-M. Yiu, and L. C. K. Hui. Efficient identity based ring signature.
In ACNS 2005, volume 3531 of Lecture Notes in Computer Science, pages 499–512.
Springer, 2005.

10. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad hoc groups. In EUROCRYPT 2004, volume 3027 of LNCS, pages 609–626.
Springer-Verlag, 2004.

11. J. Herranz and G. Sáez. A provably secure ID-based ring signature scheme. Cryp-
tology ePrint Archive, Report 2003/261, 2003. http://eprint.iacr.org/.

12. C.-Y. Lin and T.-C. Wu. An identity-based ring signature scheme from bilin-
ear pairings. Cryptology ePrint Archive, Report 2003/117, 2003. http://eprint.
iacr.org/.

13. J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and new
schemes (extended abstract). In ICCSA 2005, volume 3481 of LNCS, pages
614–623. Springer-Verlag, 2005.

14. L. Nguyen. Accumulators from Bilinear Pairings and Applications. In CT-RSA
2005, volume 3376 of LNCS, pages 275–292, 2005.

15. K. Paterson and J. Schuldt. Efficient identity-based signatures secure in the stan-
dard model. Cryptology ePrint Archive, Report 2006/080, 2006. http://eprint.
iacr.org/2006/080/.

16. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO
1984, volume 196 of LNCS, pages 47–53, 1984.

17. B. Waters. Efficient identity-based encryption without random oracles. In Proc.
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer-Verlag, 2005.

18. V. Wei and Y. H. Yuen. (hierarchical identity-based) threshold ring signatures.
http://eprint.iacr.org/2006/193/, 2006.

19. F. Zhang and X. Chen. Cryptanalysis and improvement of an id-based ad-hoc
anonymous identification scheme at ct-rsa 05. Cryptology ePrint Archive, Report
2005/103, 2005. http://eprint.iacr.org/.

20. F. Zhang and K. Kim. ID-Based Blind Signature and Ring Signature from Pair-
ings. In ASIACRYPT 2002, volume 2501 of LNCS, pages 533–547. Springer-Verlag,
2002.

21. F. Zhang and K. Kim. Efficient ID-Based Blind Signature and Proxy Signature
from Bilinear Pairings. In R. Safavi-Naini and J. Seberry, editors, Information Se-
curity and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong, Aus-
tralia, July 9-11, 2003, Proceedings, volume 2727 of Lecture Notes in Computer
Science, pages 312–323. Springer, 2003.

22. F. Zhang, R. Safavi-Naini, and W. Susilo. An efficient signature scheme from
bilinear pairings and its applications. In PKC 2004, volume 2947 of Lecture Notes
in Computer Science, pages 277–290. Springer, 2004.

A Short Verifier-Local Revocation Group
Signature Scheme with Backward Unlinkability

Toru Nakanishi and Nobuo Funabiki

Dept. of Communication Network Engineering, Okayama University, Japan
{nakanisi, funabiki}@cne.okayama-u.ac.jp

Abstract. Previously Verifier-Local Revocation (VLR) group signature
schemes from bilinear maps were proposed. In VLR schemes, only ver-
ifiers are involved in the revocation of a member, while signers are not
involved in the revocation. Thus, the schemes are suitable for mobile
environments. Furthermore, the previously proposed schemes satisfy an
important property, the backward unlinkability. It means that even af-
ter a member is revoked, signatures produced by the member before
the revocation remain anonymous. This property is needed in case a
member leaves voluntarily or in case of a stolen key. In this paper an
improved scheme is proposed, where the group signatures are shorter.
This is achieved using a different assumption, DLDH assumption, and
improving zero-knowledge proofs in the group signatures. The length of
the proposed group signatures is about 53% of that of the previous ones.

Keywords: group signature, revocation, backward unlinkability, bilinear
maps, DLDH assumption.

1 Introduction

A group signature scheme [8,1,14,2,7,16,5,6,13,12] allows a group member to
anonymously sign a message on behalf of a group, where a group manager con-
trols the membership of members. Then, often a third party can cancel the
anonymity of signatures to trace the signers (This topic is out of scope in this
paper). Another important topic in the group signature scheme is membership
revocation [14,2,7,16,5,6,12]. Namely, the membership of a member can be dis-
abled without influencing the other members.

The simplest revocation method is that the manager changes the group public
key and secret keys of all members except the revoked member to re-distribute
the keys [2]. However, the other members’ loads are large. A better solution is
to broadcast a small public membership message to all signers and verifiers, as
in [7,16,5]. Although the costs of signers are better, the signer still has to obtain
some data depending on the size of the group (or the number of revoked mem-
bers) whenever signing. On the other hand, there is another approach [14,2,6,12],
where some revocation messages are only sent to verifiers, although the verifiers
need the computational cost depending the number of revoked members. Since
the signers’ costs are lower, this type is suitable for mobile environments where

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 T. Nakanishi and N. Funabiki

mobile hosts anonymously communicate with the servers. We refer to this type
as Verifier-Local Revocation (VLR) group signature scheme, as in [6,12].

In [14,2], VLR group signature schemes based on the strong RSA assumption
are proposed. However, the schemes have some drawbacks on efficiency. The first
scheme of [14] and the scheme of [2] suffer from the inefficiency of signing, due
to the used inefficient zero-knowledge proofs. The second scheme of [14] forces a
signer to compute O(T) exponentiations at every time interval, where T is the
total number of time intervals.

In [6], a VLR group signature scheme from bilinear maps is proposed, where
the traceability (i.e., unforgeability) is based on the q-SDH (Strong DH) assump-
tion and the anonymity is based on the Decision Linear DH (DLDH) assumption.
The advantage of this scheme is that signatures are short, since the elliptic curves
can be adopted. However, unfortunately, this scheme [6] does not satisfy back-
ward unlinkability. This property means that even after a member is revoked,
signatures produced by the member before the revocation remain anonymous.
Namely, in the scheme [6], the anonymity of signatures produced before the re-
vocation is compromised. In case a member leaves voluntarily or in case of a
stolen key, the anonymity of signatures before leaving should be ensured.

In [12], improved schemes with the backward unlinkability are proposed. The
schemes introduce time intervals like [14]. Then, by obtaining a revocation to-
ken of a revoked member at a time interval from the manager, verifiers can
check whether a group signature at the corresponding interval was made by the
revoked member. Thus, by releasing only tokens after the revocation, the signa-
ture after the revocation can be detected, while the previous signatures can still
be anonymous. The anonymity with the backward unlinkability is proved under
the Decision BDH (DBDH) assumption.

In this paper, we propose a short VLR group signature scheme with the
backward unlinkability. Let e : G1 × G2 → GT be a bilinear map on groups
G1, G2, GT with the same prime order. Then, the previous group signature [12]
includes a GT element. Using MNT curves [11], GT elements are represented
as 1020 bit strings, while G1 elements are represented as 171 bit strings. On
the other hand, the proposed group signature excludes GT elements, and thus
the signature is shorter. This is achieved by utilizing the DLDH assumption,
on which the scheme [6] is also based. In addition to excluding GT elements,
we improve the efficiency of the signature, using the efficient zero-knowledge
proof technique, which is derived from the technique in [9]. In the above set-
ting, our group signature needs only 1533 bits, while the previous one needs
2893 bits. Therefore, the length of our signature is about 53% of that of the
previous one.

Remark 1. Recently, a short VLR group signature scheme is independently pro-
posed [15], which is based on another assumption, Decisional Tripartite DH
(DTDH) assumption [10]. However, since the signature includes a G2 element,
it becomes longer than the case where the signature includes only G1 elements,
which is our signature. In addition, the zero-knowledge proof in our signature
is improved, compared with the signature in [15] whose zero-knowledge proof is

A Short Verifier-Local Revocation Group Signature Scheme 19

Table 1. Comparisons among VLR schemes from bilinear maps

Scheme Sig. len. Comp. cost of revocation check Assumptions Backward
(bits) (# of bilinear map comp.) unlinkability

[6] 1192 2 q-SDH, DLDH No
[12] 2893 1 q-SDH, DBDH Yes
[15] 2557 2 q-SDH, DTDH Yes

Proposed 1533 2 q-SDH, DLDH Yes

similar to [12]. Using MNT curves, the signature in [15] is 2557 bits, though our
signature is only 1533 bits.

Among VLR schemes from bilinear maps including [15], we show the comparisons
w.r.t. important factors (i.e, signature length, computational cost of revocation
check, assumptions, and backward unlinkability) in Table 1. Since the domi-
nant computational cost in VLR schemes is caused in the revocation check in
the signature verification, we compare the cost of revocation check per revoked
member, based on the number of the bilinear map computations.

2 Model and Security Definitions

We show a model of VLR group signature scheme with backward unlinkability
in [12], which is extended from [6].

Definition 1. A VLR group signature scheme with backward unlinkability con-
sists of the following algorithms:

KeyGen(n, T): It is a probabilistic algorithm on inputs n, which is the number
of members, and T , which is the number of time intervals. It outputs a
group public key gpk, an n-element vector of members’ secret keys gsk =
(gsk[1], . . . , gsk[n]), and an n×T -element vector of revocation tokens grt =
(grt[1][1], . . . , grt[n][T]), where grt[i][j] indicates the token of member i at
time interval j.

Sign(gpk, j, gsk[i], M): This takes as inputs the group public key gpk, the cur-
rent time interval j, a secret key gsk[i], and a message M ∈ {0, 1}∗, and
outputs the signature σ.

Verify(gpk, j, RLj, σ, M): This takes as inputs gpk, j, a set of the revocation
tokens RLj at the time interval j, a signature σ, and the message M . Then,
it outputs either valid or invalid. The validity means that σ is a correct
signature on M at interval j w.r.t. gpk, and that the signer is not revoked
at the interval j.

Remark 2. In this model, when member i is revoked at interval j, the manager
has to publish the revocation tokens grt[i][j], . . . , grt[i][T].

Then, the security requirements, Correctness, Traceability, and BU-anonymity,
are defined as follows [12].

20 T. Nakanishi and N. Funabiki

Definition 2 (Correctness). Correctness requires that for all (gpk, gsk, grt) =
KeyGen(n, T), all j ∈ [1, T], all RLj, all i ∈ [1, n], and all M ∈ {0, 1}∗,

Verify(gpk, j, RLj,Sign(gpk, j, gsk[i], M), M) = valid ⇐⇒ grt[i][j] /∈ RLj.

As well as [6,12], we introduce implicit tracing algorithm: For any interval j, using
the revocation token grt[i][j] of all members, the implicit tracing algorithm can
trace the signer from a valid signature-message pair (σ, M).

The following traceability requirement captures the unforgeability of group
signatures, introduced first by [3]. Consider the following traceability game be-
tween an adversary A and a challenger, where A tries to forge a signature that
cannot be traced to one of members corrupted by A.

Setup: The challenger runs KeyGen(n, T), and obtains gpk, gsk, and grt. He
provides A with gpk and grt, and sets U with empty.

Queries: A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at an arbitrary interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i. The chal-
lenger adds i to U , and responds the key.

Output: Finally, A outputs a message M∗, an interval j∗, a set RL∗
j∗ of revo-

cation tokens, and a signature σ∗.

Then, A wins if (1) Verify(gpk, j∗, RL∗
j∗ , σ∗, M∗) = valid, and (2) σ∗ traces to

a member outside of the coalition, i.e, U \ RL∗
j∗ or the trace is failure, and (3)

A did not obtain σ∗ by making a signing query at M∗.

Definition 3 (Traceability). Traceability requires that for all PPT A, the
probability that A wins the traceability game is negligible.

The following BU-anonymity requirement captures the anonymity with the back-
ward unlinkability. Consider the following BU-anonymity game.

Setup: The challenger runs KeyGen(n, T), and obtains gpk, gsk, and grt. He
provides A with gpk.

Queries: At the beginning of every interval j ∈ [1, T], the challenger announces
the beginning of j to A, where j is incremented. At the current interval j,
A can query the challenger about the following.
Signing: A requests a signature on an arbitrary message M for an arbi-

trary member i at the current interval j. The challenger responds the
corresponding signature.

Corruption: A requests the secret key of an arbitrary member i.
Revocation: A requests the revocation of an arbitrary member i at the

current interval j. The challenger responds grt[i][j].
Challenge: A outputs a message M and two members i0 and i1. The corruption

of i0 and i1 must not be requested. Furthermore, the revocations of i0 and
i1 must not be requested before the current interval j0 (including j0). The
challenger chooses φ ∈R {0, 1}, and responds the signature on M of member
iφ at the current interval j0.

A Short Verifier-Local Revocation Group Signature Scheme 21

Restricted Queries: Similarly, A can make the signing queries, corruption
queries, and revocation queries, while the time interval is incremented. How-
ever, A cannot query the corruptions of i0 and i1, and the revocations of i0
and i1 at the interval j0 (Note that the revocations of i0 and i1 after j0 is
permitted).

Output: Finally, A outputs a bit φ′ indicating its guess of φ.

If φ′ = φ, A wins. We define the advantage of A as |Pr[φ′ = φ]− 1/2|.

Definition 4 (BU-Anonymity). BU-anonymity requires that for all PPT A,
the advantage of A on the BU-anonymity game is negligible.

3 Preliminaries

3.1 Bilinear Groups

Our scheme utilizes bilinear groups and bilinear maps as follows:

1. G1, G2 and GT are multiplicative cyclic groups of prime order p,
2. g1 is a generator of G1, and g2 is a generator of G2,
3. ψ is an efficiently computed isomorphism from G2 to G1, with ψ(g2) = g1,
4. e is an efficiently computed bilinear map: G1 × G2 → GT , i.e., (1) for

all u, u′ ∈ G1, all v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′), and (2) e(g1, g2) �= 1.

Such an e can be constructed by Weil or Tate parings on the elliptic curves.
As mentioned in [5,6], the Tate paring on MNT curves [11] gives us the efficient
implementation, where G1 �= G2 and ψ can be implemented by the trace map.

3.2 Assumptions

Our scheme is based on the q-SDH assumption [5,6,12] and the DLDH assump-
tion [5,6].

Definition 5 (q-SDH Assumption). For all PPT algorithm A, the probability

Pr[A(g1, g2, g
γ
2 , . . . , g

(γq)
2) = (g(1/γ+x)

1 , x) ∧ x ∈ Z∗
p]

is negligible, where g2 ∈R G2 (g1 = ψ(g2)) and γ ∈R Z∗
p .

Definition 6 (Decision Linear DH (DLDH) Assumption on G2). For all
PPT algorithm A, the probability

|Pr[A(u, v, h, ua, vb, ha+b) = 0]− Pr[A(u, v, h, ua, vb, hc) = 0|

is negligible, where u, v, h ∈R G2 and a, b, c ∈R Z∗
p .

22 T. Nakanishi and N. Funabiki

Based on the q-SDH assumption, the DL (Discrete Logarithm) assumption on
G2 also holds.

Definition 7 (DL Assumption on G2). For all PPT algorithm A, the prob-
ability

Pr[A(g2, g
γ
2) = γ]

is negligible, where g2 ∈R G2 and γ ∈R Z∗
p .

3.3 Proving Relations on Representations

As well as [6,12], we adopt signatures converted by Fiat-Shamir heuristic (using
a hash function) from zero-knowledge proofs of knowledge (PK), where a signer
can convince a verifier of knowledge with relations on representations. We call
the signatures SPKs. The SPKs we adopt are the generalization of the Schnorr
signature. We introduce the following notation.

SPK{(x1, . . . , xt) : R(x1, . . . , xt)}(M),

which means a signature of message M by a signer who knows secret values
x1, . . . , xt satisfying a relation R(x1, . . . , xt). In this paper, the following SPKs
on G1, GT are utilized.

SPK of Representation: An SPK proving the knowledge of a representation
of C ∈ G1 to the bases f1, f2, . . . , ft ∈ G1 on message M is denoted as

SPK{(x1, . . . , xt) : C = fx1
1 · · · fxt

t }(M).

This can be also constructed on group GT .
SPK of Representations with Equal Parts: An SPK proving the knowl-

edge of representations of C, C′ ∈ G1 to the bases f1, . . . , ft ∈ G1 on message
M , where the representations include equal values as parts, is denoted as

SPK{(x1, . . . , xu) : C = f
xj1
i1
· · · fxjv

iv
∧ C′ = f

xj′
1

i′
1
· · · f

xj′
v′

i′
v′
}(M),

where indices i1, . . . iv, i
′
1, . . . i

′
v′ ∈ {1, . . . , t} refer to the bases f1, . . . , ft, and

indices j1, . . . jv, j′1, . . . , j
′
v′ ∈ {1, . . . , u} refer to the secrets x1, . . . , xu. This

SPK can be extended for different groups G1 and GT with the same order
p, as follows.

SPK{(x1, . . . , xu) : C = f
xj1
i1
· · · fxjv

iv
∧C′ = f ′xj1

i′
1
· · · f ′xj′

v′
i′
v′
}(M),

where C, f1, . . . , ft ∈ G1, and C′, f ′
1, . . . , f

′
t ∈ GT .

In the random oracle model, the SPK can be simulated without the knowledge
using a simulator in the zero-knowledge-ness of the underlying PK. Moreover,
the SPK has an extractor of the proved secret knowledge given two accept-
ing protocol views whose commitments are the same and whose challenges are
different.

A Short Verifier-Local Revocation Group Signature Scheme 23

4 Proposed Scheme

4.1 Idea

The previous scheme [12] is informally as follows. In [12], the case of G1 = G2
is described, which can be easily extended to the case of G1 �= G2. Here, we
describe the case of G1 �= G2. The group public key is gpk = (g1, g2, g

γ
2 , hj),

where hj ∈ G2 for all 1 ≤ j ≤ T , and secret key gsk[i] of member i is an
SDH pair (Ai, xi) s.t. Ai = g

1/(γ+xi)
1 . Then, the group signature consists of

T3 = e(gxi
1 , hj)β , T4 = gβ

1 for β ∈R Z∗
p and the SPK proving the correctness

and the ownership of Ai corresponding to xi. The revocation token at interval
j is Bij = hxi

j . Then, by checking T3 = e(T4, B) for all revocation tokens B at
interval j, it can be checked whether T3 includes a token of a revoked member.
On the other hand, the revocation tokens at different interval j′ do not satisfy the
above checking. However, the signature includes a GT element, T3 = e(gxi

1 , hj)β .
When MNT curves are used, T3 is 6 times longer than the values from G1, and
thus the signature is long.

Here, we construct a VLR group signature scheme, where a signature in-
cludes only G1 elements and Z∗

p elements. In the previous scheme, since the
BU-anonymity is based on the DBDH assumption including the bilinear map e,
the signature includes e(gxi

1 , hj)β . On the other hand, the proposed scheme is
based on a different assumption, the DLDH assumption that does not include
e. The proposed scheme is informally as follows. The group public key gpk and
secret key gsk[i] are the same as the previous scheme. Then, the group signature
of i consists of T2 = ψ(f)β+xi and T3 = ψ(hj)β together with the SPK, where f
is a hashed value on G2. The revocation token at interval j is Bij = ψ(hj)xi . By
e(T2, hj) �= e(BT3, f) for all B ∈ RLj, it can be checked whether the signature
is not revoked. In the construction, it is desired to exclude longer G2 elements
from the signature. This is why f ∈ G2 is computed by both signer and verifier
via a hush function from the public information and a short random nonce. Only
the nonce is included in the signature.

In the proof of the BU-anonymity, regard u, v, h, ua, vb and ha+b in the DLDH
assumption as u = g2, v = hj, h = f, ux = gxi

2 , vb = hβ
j and ha+b = fβ+xi. Then,

informally the DLDH assumption means that ha+b = fβ+xi and a random hc

are indistinguishable, namely T3 = ψ(f)β+xi does not reveal any information on
xi. The formal proof is described later.

In addition, we improve the efficiency on the SPK proving the ownership of
Ai. The construction is derived from [9]. Let T1 be the commitment of Ai. T1 is
computed by T1 = Aig̃

α, where g̃ is a public element from G1 and α is a random
factor chosen by the signer. In the previous scheme [12], for the commitment
of Ai, the signer proves the knowledge of Ai s.t. Ai = g

1/(γ+xi)
1 directly, using

another commitment. Thus, forging a group signature implies forging an SDH
pair, which breaks the q-SDH assumption. The SPK is for the secrets xi, α,
and for more 3 secrets. On the other hand, in the proposed group signature, the
knowledge of T1 s.t. T1 = (g1g̃

αγ+ζ)1/(γ+xi) is proved in the SPK (If ζ = αxi,
it implies T1 = Aig̃

α). This proof can be achieved by only T1 and the SPK for

24 T. Nakanishi and N. Funabiki

secrets xi, α and another secret ζ. Thus, the signature size and computational
cost are improved. For a forged group signature proving the knowledge of T1, the
corresponding Ai can be computed using a discrete logarithm of g̃ to g1 without
the knowledge of γ, which leads to the security proof of the traceability. This
proof is described later.

Remark 3. Although this improvement of SPK is derived from [9], our SPK is
simpler, since the forms of Ai and T1 are simpler. This is why the security proof
is different from that in [9].

4.2 Proposed Algorithms

In addition to bilinear groups (G1, G2) with isomorphism ψ and bilinear map e,
we employ hash function H0 and H with respective ranges G2 and Zp, which
are treated as random oracles.

KeyGen(n, T): This key generation algorithm is given the number of members
and the number of time intervals, and computes keys as follows.

1. Select a generator g2 ∈ G2 and set g1 = ψ(g2). Additionally, select g̃ ∈R G1

and hj ∈R G2, and set ĥj = ψ(hj) for all j ∈ [1, T].
2. Select γ ∈R Z∗

p and compute w = gγ
2 .

3. Select xi ∈R Z∗
p and compute Ai = g

1/(γ+xi)
1 for all i ∈ [1, n].

4. Compute Bij = ĥxi

j for all i and j.

The group public key gpk is (g1, g2, g̃, h1, . . . hT , w). Each member’s secret
key gsk[i] is (Ai, xi). The revocation token at interval j of member with secret
(Ai, xi) is grt[i][j] = Bij . Output (gpk, gsk, grt).

Sign(gpk, j, gsk[i], M): The inputs of this signing algorithm are gpk = (g1, g2, g̃,
h1, . . . hT , w), the current time interval j, the signer’s secret gsk[i] = (Ai, xi) and
a signed message M ∈ {0, 1}∗. We assume that M includes the time interval j
in order to bind the signature to the interval. The algorithm is as follows:

1. Pick a random nonce r ∈R Zp. Compute f = H0(gpk, M, r) ∈ G2. Then,
compute f̂ = ψ(f), and ĥj = ψ(hj).

2. Select randoms α, β ∈R Z∗
p .

3. Compute T1 = Aig̃
α, T2 = f̂β+xi, T3 = ĥβ

j .
4. Set ζ = αxi. Then, compute

V = SPK{(α, β, xi, ζ) :
∧ e(T1, w)/e(g1, g2) = e(g̃, g2)ζe(g̃, w)α/e(T1, g2)xi

∧ T2 = f̂β+xi ∧ T3 = ĥβ
j }(M).

This SPK proves the knowledge α, β, xi, ζ s.t. T1 = (gg̃αγ+ζ)1/(γ+xi), T2 =
f̂β+xi, and T3 = ĥβ

j . The proof is described in Lemma 2.
Concretely, compute SPK V as follows.

A Short Verifier-Local Revocation Group Signature Scheme 25

(a) Pick blinding factors rα, rβ , rxi , rζ ∈R Zp.
(b) Compute

R1 = e(g̃, g2)rζe(g̃, w)rα/e(T1, g2)rxi

R2 = f̂ rβ+rxi

R3 = ĥ
rβ

j

(c) Compute a challenge c ∈ Zp as

c = H(gpk, j, M, T1, T2, T3, R1, R2, R3).

(d) Compute responses sα = rα + cα, sβ = rβ + cβ, sxi = rxi + cxi, and
sζ = rζ + cζ in Zp.

Output the group signature σ = (r, T1, T2, T3, c, sα, sβ , sxi , sζ).

Verify(gpk, j, RLj, σ, M): The inputs are gpk = (g1, g2, g̃, h1, . . . hT , w), the
current time interval j, the revocation list RLj that consists of grt[i][j] for all
revoked i at the interval j, a target signature σ = (r, T1, T2, T3, c, sα, sβ , sxi , sζ)
and the message M ∈ {0, 1}∗.

1. Signature Check. Check that σ is valid, by checking the SPK V , as follows.
(a) Compute ĥj = ψ(hj), f = H0(gpk, M, r), and f̂ = ψ(f).
(b) Retrieve

R̃1 = (e(g̃, g2)sζ e(g̃, w)sα/e(T1, g2)sxi)(e(g1, g2)/e(T1, w))c

R̃2 = f̂sβ+sxi (1/T2)c

R̃3 = ĥ
sβ

j (1/T3)c

(c) Check the challenge c as

c = H(gpk, j, M, T1, T2, T3, R̃1, R̃2, R̃3).

2. Revocation Check. Check that the signer is not revoked at the interval j,
by checking e(T2, hj) �= e(BijT3, f) for all Bij ∈ RLj.
Consider the case of T2 = f̂β+xi , T3 = ĥβ

j and Bij = ĥxi

j . Then, e(T2, hj) =
e(f̂β+xi, hj) = e(f̂ , hj)β+xi . On the other hand, e(BijT3, f) = e(ĥxi

j ĥβ
j , f) =

e(ĥj , f)β+xi. Let f = hζ
j for some ζ ∈ Z∗

p . Then, e(f̂ , hj) = e(ψ(hj), hj)ζ =
e(ĥj , f). Thus, in this case, e(T2, hj) = e(BijT3, f). Namely, the revoked
signature can be detected.

5 Security

Since the correctness is straightforward, only BU-anonymity and traceability are
shown.

26 T. Nakanishi and N. Funabiki

5.1 BU-Anonymity

Theorem 1. The proposed scheme satisfies the BU-anonymity in the random
oracle model under the DLDH assumption.

The following lemma implies the above theorem.

Lemma 1. Suppose adversary A breaks the BU-anonymity of the proposed
scheme with the advantage ε and qH hash queries and qS signature queries.
Then, we can construct B that breaks the DLDH assumption on G2 with the
advantage (1/nT − qSqH/p)ε.

Proof. The input of B is (u, v, h, ua, vb, Z) ∈ G2
6, where a, b ∈R Z∗

p and either
Z = ha+b or Z = hc for c ∈R Z∗

p . B decides which Z it is given by communicating
with A, as follows.

Setup. B simulates KeyGen(n, T) as follows.
1. B picks i∗ ∈R [1, n] and j∗ ∈R [1, T].
B sets g2 = u, and g1 = ψ(g2). Furthermore, B selects g̃ ∈R G1. Ad-
ditionally, B selects rj ∈R Z∗

p and computes hj = g
rj

2 for all j ∈ [1, T]
except j∗. For j∗, B sets hj∗ = v. For all j, B sets ĥj = ψ(hj).

2. As usual, B selects γ ∈R Z∗
p and computes w = gγ

2 .

3. As usual, B selects xi ∈R Z∗
p and computes Ai = g

1/(γ+xi)
1 for all i ∈ [1, n]

except i∗. For i∗, define xi∗ = a and Ai∗ = g
1/(γ+a)
1 , which are unknown

for B.
4. As usual, B computes Bij = ĥxi

j for all i except i∗ and all j. For i∗, B
sets Bi∗j = ψ((ua)rj) = ψ(garj

2) = ĥa
j except for j∗. For i∗ and j∗, define

Bi∗j∗ = ψ(va) = ĥxi∗
j∗ , which is also unknown.

Note that simulated hj and Bij have the same distributions as the real, due
to a, xi, rj ∈R Z∗

p .
Hash Queries. At any time, A can query the hash functions H0 and H . B

responds with random values with consistency.
Phase 1. A can request signing queries, corruption queries, and revocation

queries at any time interval j. If i �= i∗, then B uses the secret key of i
to respond to the query as usual. If i = i∗, B responds as follows.

Signing Queries: B computes a simulated group signature of i∗, depending
on j as follows.
Case of j �= j∗:

1. B selects r ∈R Zp and β, δ ∈R Z∗
p . In addition, B sets f = hδ

j ,
f̂ = ψ(f), and ĥj = ψ(hj).

2. B selects T1 ∈R G1. Furthermore, B computes T2 = f̂βBδ
i∗j =

f̂β ĥ
x∗

i δ
j = f̂β+x∗

i , and T3 = ĥβ
j .

A Short Verifier-Local Revocation Group Signature Scheme 27

3. B computes the simulated SPK V by using the simulator of
the perfect zero-knowledge-ness, which includes the backpatch
of the hash function. If the backpatch is failure, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Furthermore, B defines
f = H0(gpk, M, r). If this backpatch is failure, B also outputs a
random guess and aborts.

Case of j = j∗:

1. B selects r ∈R Zp and selects β, δ ∈R Z∗
p . In addition, B sets

f = uδ, f̂ = ψ(f), and ĥj = ψ(hj).
2. B selects T1 ∈R G1. Furthermore, B computes T2 = ψ(uβ(ua))δ=

ψ(fβ+x∗
i) = f̂β+x∗

i , and T3 = ĥβ
j .

3. This is the same as in Case of j �= j∗.

Then, B responds signature σ = (r, T1, T2, T3, V) to A. Note that each
value in σ has the same distribution as the real, due to α ∈R Z∗

p in
the real and T1 ∈R G1 in the simulation, and due to the perfect zero-
knowledge-ness of SPK.

Revocation Queries: If j �= j∗, B responds Bi∗j . Otherwise (i.e., j = j∗),
B outputs a random guess ω′ ∈R {0, 1} and aborts.

Corruption Queries: B outputs a random guess ω′ ∈R {0, 1} and aborts.

Challenge. A outputs a message M , the current time interval j and two mem-
bers i0, i1 to be challenged. If j �= j∗, B outputs a random guess ω′ ∈R {0, 1}
and aborts. Otherwise, B picks φ ∈R {0, 1}. Then, if iφ �= i∗, B outputs a
random guess ω′ ∈R {0, 1} and aborts. Otherwise, B responds the following
simulated group signature of i∗ and j∗.

1. B selects r ∈R Zp, regards b as β which is unknown, and sets f = h,
f̂ = ψ(f), and ĥj∗ = ψ(hj∗).

2. B selects T1 ∈R G1. Furthermore, B sets T2 = ψ(Z) and T3 = ψ(vb) =
ĥβ

j∗ . Note that if Z = ha+b, T2 = ψ(ha+b) = f̂β+xi∗ .
3. B computes the simulated SPK V by using the simulator of the perfect

zero-knowledge-ness. Furthermore, B defines f = H0(gpk, M, r).

Phase 2. This is the same as Phase 1.
Output. A outputs its guess φ′ ∈ {0, 1}. If φ = φ′, B outputs ω′ = 1 (implying

Z = ha+b), and otherwise outputs ω′ = 0 (implying Z = hc).

Now, we evaluate the advantage of the guess of B. Let ω ∈ {0, 1} denote
whether the input Z is hc (ω = 0) or ha+b (ω = 1). Let abort be the event that
B aborts. Then, we have Pr[ω = ω′|abort] = 1/2. On the other hand, assume
that B does not abort. If ω = 0, i.e., Z = hc, then the challenged signature has
no information on xi∗ . Thus, Pr[ω′ = 0|abort ∧ ω = 0] = 1/2. If ω = 1, i.e.,
Z = ha+b, then B perfectly simulates the real and thus A guesses correctly with
the advantage ε. Therefore, we obtain Pr[ω′ = 1|abort ∧ ω = 1] = 1/2 + ε.

28 T. Nakanishi and N. Funabiki

Putting everything together, we obtain the advantage of B’s guess, as follows.

|Pr[B(u, v, h, ua, vb, ha+b) = 0]− Pr[B(u, v, h, ua, vb, hc) = 0|
= |Pr[ω′ = 0|ω = 1]− Pr[ω′ = 0|ω = 0]|
= |(1 − Pr[ω′ = 1|ω = 1])− Pr[ω′ = 0|ω = 0]|
= |1− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]

− Pr[abort]Pr[ω′ = 1|abort ∧ ω = 1]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]
− Pr[abort]Pr[ω′ = 0|abort ∧ ω = 0]|

= |1− Pr[abort](
1
2

+
1
2
)− Pr[abort]((

1
2

+ ε) +
1
2
)|

= Pr[abort]ε.

In the rest, we evaluate Pr[abort]. If the guesses of i∗ and j∗ are correct, B
aborts only when the backpatch is failure in the signing query. The probability
that a specific signature causes the failure is at most qH/p, as well as [6]. Thus,
for all signature queries, the probability that B aborts due to the failure of the
backpatch is at most qSqH/p. On the other hand, since A has no information on
i∗ and j∗ and φ ∈R {0, 1}, the probability that B correctly guesses i∗ and j∗ is
at least 1/nT . Thus, Pr[abort] ≥ 1/nT − qSqH/p.

Therefore, the advantage that B’ guesses ω is at least (1/nT − qSqH/p)ε. �	

5.2 Traceability

Before proving the traceability, we show that the SPK V proves T1 =
(g1g̃

αγ+ζ)1/(γ+xi), T2 = f̂β+xi , and T3 = ĥβ
j .

Lemma 2. SPK V proves the knowledge α, β, xi, ζ s.t. T1 = (g1g̃
αγ+ζ)1/(γ+xi),

T2 = f̂β+xi , and T3 = ĥβ
j .

Proof. By the knowledge extractor for V , we can obtain α, β, xi, ζ s.t.

e(T1, w)/e(g1, g2) = e(g̃, g2)ζe(g̃, w)α/e(T1, g2)xi , (1)

T2 = f̂β+xi , (2)

T3 = ĥβ
j . (3)

From (1), the equation e(T1, w)e(T1, g2)xi = e(g̃, g2)ζe(g̃, w)αe(g1, g2) holds. The
left hand is equal to e(T1, wgxi

2). The right hand is equal to e(g̃, gζ
2wα)e(g1, g2).

Thus, the equation e(T1, wgxi
2) = e(g̃, gζ

2wα)e(g1, g2) holds. Define g̃ = gη
1 and

T1 = gθ
1 . Then, since w = gγ

2 , we obtain the following equations.

e(gθ
1 , gγ

2 gxi
2) = e(gη

1 , gζ
2g

αγ
2)e(g1, g2)

e(g1, g2)θ(γ+xi) = e(g1, g2)η(ζ+αγ)+1

A Short Verifier-Local Revocation Group Signature Scheme 29

Thus, θ(γ+xi) = η(ζ+αγ)+1 (mod p), which means T1 = g
(η(ζ+αγ)+1)/(γ+xi)
1 =

(g1g̃
αγ+ζ)1/(γ+xi). Furthermore, from (2) and (3), the extracted xi satisfies T2 =

f̂β+xi and T3 = ĥβ
j for the extracted β. �	

Now, we show the traceability.

Theorem 2. The proposed scheme satisfies the traceability in the random oracle
model under the q-SDH assumption.

The following lemma implies the above theorem.

Lemma 3. Suppose adversary A breaks the traceability of the proposed scheme
with the advantage ε and qH hash queries and qS signature queries. Then, we
can construct B that breaks the (n + 1)-SDH assumption with the advantage
(ε/n−1/p)/(4qH) or B′ that breaks the DL assumption on G2 with the advantage
(ε/n− 1/p)/(4qH).

Proof Sketch. Consider the following framework with A, which is derived from
the proof in [6,12].

Setup. It is given g1, g2, w = gγ
2 , and n pairs (Ai, xi). For each i ∈ [1, n], either

si = 1 indicating that an SDH pair (Ai, xi) is known, or si = 0 indicating
that xi is known but Ai is unknown. Pick η ∈R Z∗

p , and compute g̃ = gη
1 .

Furthermore, as usual, choose hj ∈R G2 for all j ∈ [1, T] and compute
Bij = ψ(hxi

j) for all i, j. Then, run A on gpk = (g1, g2, g̃, h1, . . . , hT , w) and
grt = (B11, . . . , BnT) .

Hash Queries. At any time, A can query the hash functions H0 and H . Re-
spond with random values with consistency.

Signing Queries. A queries a signature on message M at member i and inter-
val j. If si = 1, respond a signature using the secret key (Ai, xi). If si = 0,
pick r ∈R Zp, T1 ∈R G1, and β ∈R Z∗

p . Then, compute f = H0(gpk, M, r),
T2 = ψ(f)β+xi and T3 = ψ(hj)β . Furthermore, obtain a simulated SPK V
using the simulator of the SPK, which includes the backpatch of the hash
function. Respond (r, T1, T2, T3, V).

Corruption Queries. A requests the secret key at member i. If si = 0, then
abort. Otherwise, respond requested key (Ai, xi).

Output. Finally, A outputs a forged signature σ∗ = (r∗, T ∗
1 , T ∗

2 , T ∗
3 , V ∗) in-

cluding a secret key A∗. Using all Bij , we can identify the member. If the
identification fails (i.e., the member is outside of all i), output σ∗. Otherwise,
some i is identified. If si = 0, then output σ∗. Otherwise (i.e., si = 1), abort.

Then, there are two types of forger on the above framework. Type 1 forger
forges a signature of the member who is different from all i. Type 2 forger forges
a signature of the member i whose corruption is not requested.

For q-SDH instance (g1, g2, g
γ
2 , . . . , gγq

2), we can obtain g1, g2, w = gγ
2 and q−1

SDH pairs (Ai, xi), using the technique of [4]. On the other hand, any SDH pair
besides these q − 1 pairs can be transformed a solution of the q-SDH instance,
which means that the q-SDH assumption is broken, using the same technique.
As well as [6,12], we treat two types of forger differently.

30 T. Nakanishi and N. Funabiki

Type 1. Given (n+1)-SDH instance, obtain n SDH pairs (Ai, xi) with (g1, g2, w).
Then, perform the framework with Type 1 forger A (i.e., all si = 1). A finally
outputs a signature with secret key A∗ s.t. A∗ �= Ai for all i. In this case, the
simulation is perfect, and thus A succeeds with advantage ε.

Type 2. Given n-SDH instance, obtain n−1 SDH pairs (Ai, xi), which distributes
n pairs, and set si = 1. For the unfilled entry at random index i∗, select xi∗ ∈R Z∗

p

(Ai∗ is unknown), and set si∗ = 0. Then, perform the framework with type 2
forger A. In this case, it succeeds only if A never requests the corruption of i∗,
but forges the signature including Ai∗ . As discussed in [6], the value of i∗ is
independent A’s view. Thus, the probability that A outputs the signature of i∗

is at least ε/n.
Now we show how to obtain another SDH pair beyond the given q − 1 SDH

pairs, using the framework with Type 1 or Type 2. We can rewind the framework
to obtain two forged signatures on the same message M and the same interval
j, where the commitments in the SPK V are the same but the challenges and
responses are different. As shown in [6], by the forking lemma, the successful
probability is at least (ε′ − 1/p)2/(16qH), where ε′ is the probability that the
framework on each forger succeeds. Thus, using the extractor of the SPK V in
Lemma 2, we can obtain a tuple (α∗, x∗, ζ∗, T ∗

1) s.t. T ∗
1 = (g1g̃

α∗γ+ζ∗
)1/(γ+x∗),

e(T ∗
2 , hj) = e(ψ(hj)x∗

T ∗
3 , f) and x∗ �= xi for all i with the probability (ε′ −

1/p)2/(16qH).
After the extraction, check −ηα∗x∗ +1+ηζ∗ = 0 (mod p). If it is true, abort.

Otherwise (i.e., −ηα∗x∗+1+ηζ∗ �= 0 (mod p)), consider the following equations,
using g̃ = gη

1 .

T ∗
1 = (g1g̃

α∗γ+ζ∗
)1/(γ+x∗)

= (g1+η(α∗γ+ζ∗)
1)1/(γ+x∗)

= (gηα∗(γ+x∗)−ηα∗x∗+1+ηζ∗

1)1/(γ+x∗)

= gηα∗
1 g

(−ηα∗x∗+1+ηζ∗)/(γ+x∗)
1

Thus, the equation T ∗
1 g−ηα∗

1 = g
(−ηα∗x∗+1+ηζ∗)/(γ+x∗)
1 holds. Since −ηα∗x∗ +

1 + ηζ∗ �= 0 (mod p), this implies T ∗
1 g

−ηα∗/(−ηα∗x∗+1+ηζ∗)
1 = g

1/(γ+x∗)
1 . Thus,

we obtain another SDH pair (A∗, x∗), where A∗ = T ∗
1 g

−ηα∗/(−ηα∗x∗+1+ηζ∗)
1 .

Let ε′′ be the probability thatA outputs the group signature for (α∗, x∗, ζ∗, T ∗
1)

s.t. −ηα∗x∗ +1+ηζ∗ �= 0 (mod p). Putting everything together, we have shown
the following. Using Type 1 forger, we can solve the (n + 1)-SDH instance with
(ε′′− 1/p)2(16/qH). Using Type 2 forger, we can solve the n-SDH instance with
(ε′′/n− 1/p)2(16/qH). We can guess the type of forger with the probability 1/2.
Therefore, the pessimistic Type 2 forger implies the latter.

Finally, we consider the different game for the case of −ηα∗x∗ + 1 + ηζ∗ =
0 (mod p). Then, given g2, ḡ = gη

2 for an unknown η, we can break the DL
assumption on G2, using A, as follows. Set g̃ = ψ(ḡ) = gη

1 . For (g1, g2, g̃),
conduct the above framework with A. In the framework, choose γ and compute

A Short Verifier-Local Revocation Group Signature Scheme 31

all SDH pairs, as usual. Then, A outputs the group signature for (α∗, x∗, ζ∗, T ∗
1)

s.t. −ηα∗x∗ + 1 + ηζ∗ = 0 (mod p) (Otherwise, abort). Thus, η(α∗x∗ − ζ∗) = 1
(mod p). Since η �= 0, we obtain η−1 = α∗x∗ − ζ∗ (mod p). This is the discrete
logarithm of g2 to the base ḡ. By the similar discussion to the above case, the
advantage of this game is ((ε − ε′′)/n − 1/p)2(16/qH). Note that A can guess
which game is given with just probability 1/2.

If ε′′ ≥ ε/2, we can break the (n + 1)-SDH assumption with the advantage of
at least (ε/n−1/p)2(4/qH). Otherwise (i.e., ε′′ < ε/2), since ε−ε′′ > ε/2, we can
break the DL assumption with the advantage of at least (ε/n−1/p)2(4/qH). �	

6 Efficiency

We compare the efficiency of the proposed scheme to the previous scheme [12].

Signature Length. For the bilinear groups G1, G2 with bilinear map e and isomor-
phism ψ, we can adopt the elliptic curves proposed in [11] called MNT curves.
The use of MNT curves can make the representations of elements in G1 short.
Then, one can take the order p to be 170-bit prime, and the representations of
G1, GT can be expressed in 171 and 1020 bits, respectively [6].

The proposed group signature includes 3 elements from G1 and 6 elements
from Zp. In the above setting, this group signature is 1533 bits or 192 bytes.
Although the previous group signature is described in case of G1 = G2, it can be
extended in case of G1 �= G2. In the extended case, the previous group signature
includes 3 elements from G1, 1 element from GT and 8 elements from Zp. In
the above setting, this group signature is 2893 bits or 362 bytes. Therefore, the
length of our signature is about 53% of that of the previous one.

Performance. The signature generation requires 6 multi-exponentiations, 1 iso-
morphism computation and 1 bilinear map computation (plus 1 isomorphism
computation and 2 bilinear map computations that can be pre-computed). The
verification requires 3 multi-exponentiations, 1 isomorphism computation and
2 + 2|RLj| bilinear map computations (plus 3 bilinear map computations that
can be pre-computed). In the previous scheme, the signature generation re-
quires 10 multi-exponentiations and 1 bilinear map computation (plus 3 bilinear
map computations that can be pre-computed). The verification requires 6 multi-
exponentiations and 2 + |RLj| bilinear map computations (plus 4 bilinear map
computations that can be pre-computed).

Therefore, in the signature generation cost, our signature is better. However,
in the verification, although the multi-exponentiation costs in our scheme is
better, the dominant bilinear map computation cost depending on the size of
the revocation list is worse (almost double), which is overhead of our scheme.

7 Conclusion

We have been proposed a short VLR group signature scheme with the backward
unlinkability. Although the verification cost is worse (almost double), the length

32 T. Nakanishi and N. Funabiki

of the proposed group signature is about 53% of that of the previous one [12].
In addition, the signature generation cost is also reduced.

Our future works are to implement the proposed scheme, and to apply it to
the anonymous authentication in mobile environments.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably
secure coalition-resistant group signature scheme,” Proc. CRYPTO 2000, LNCS
1880, pp.255–270, 2000.

2. G. Ateniese, D. Song, and G. Tsudik, “Quasi-efficient revocation of group signa-
tures,” Proc. FC 2002, LNCS 2357, pp.183–197, 2003.

3. M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions,” Proc. EUROCRYPT 2003, LNCS 2656, pp.614–629, 2003.

4. D. Boneh and X. Boyen, “Short signatures without random oracles,” Proc. EU-
ROCRYPT 2004, LNCS 3027, pp.56–73, 2004.

5. D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” Proc. CRYPTO
2004, LNCS 3152, pp.41–55, 2004.

6. D. Boneh and H. Shacham, “Group signatures with verifier-local revocation,” Proc.
ACM-CCS ’04, pp.168–177, 2004.

7. J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to
efficient revocation of anonymous credentials,” Proc. CRYPTO 2002, LNCS 2442,
pp.61–76, 2002.

8. D. Chaum and E. van Heijst, “Group signatures,” Proc. EUROCRYPT ’91, LNCS
547, pp.241–246, 1991.

9. J. Furukawa and H. Imai, “An efficient group signature scheme from bilinear maps,”
Proc. ACISP 2005, LNCS 3574, pp.455–467, 2005.

10. F. Laguillaumie, P. Paillier, and D. Vergnaud, “Universally convertible directed
signatures,” Proc. ASIACRYPT 2005, LNCS 3788, pp.682–701, 2005.

11. A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of ellip-
tic curve traces for FR-reduction,” IEICE Trans. Fundamentals, vol.E84-A, no.5,
pp.1234–1243, 2001.

12. T. Nakanishi and N. Funabiki, “Verifier-local revocation group signature schemes
with backward unlinkability from bilinear maps,” Proc. ASIACRYPT 2005, LNCS
3788, pp.533–548, 2005.

13. L. Nguyen and R. Safavi-Naini, “Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings,” Proc. ASIACRYPT 2004, LNCS 3329,
pp.372–386, 2004.

14. D.X. Song, “Practical forward secure group signature schemes,” Proc. ACM-CCS
’01, pp.225–234, 2001.

15. Z. Sujing and L. Dongdai, “A shorter group signature with verifier-location revo-
cation and backward unlinkability.” Cryptology ePrint Archive: Report 2006/100,
2006.

16. G. Tsudik and S. Xu, “Accumulating composites and improved group signing,”
Proc. ASIACRYPT 2003, LNCS 2894, pp.269–286, 2003.

Sound Computational Interpretation of
Symbolic Hashes in the Standard Model

Flavio D. Garcia and Peter van Rossum

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{flaviog, petervr}@cs.ru.nl

Abstract. This paper provides one more step towards bridging the gap
between the formal and computational approaches to the verification of
cryptographic protocols. We extend the well-known Abadi-Rogaway logic
with probabilistic hashes and we give a precise semantic interpretation
to it using Canetti’s oracle hashes. These are probabilistic polynomial-
time hashes that hide all partial information. Finally, we show that this
interpretation is computationally sound.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two
different techniques. On the one hand, from a logical perspective, messages are
seen as algebraic objects, generated by some grammar from elementary objects
such as keys, nonces, and constants. Cryptographic operations are seen as al-
gebraic operations which are unbreakable. Attackers are typically modelled as
so-called Dolev-Yao attackers [DY83], having total control over the network,
having no computational limitations, and being only (but absolutely) incapable
of breaking cryptographic operations. These logical methods are appealing, be-
cause they are relatively easy to use and capture most mistakes commonly made
in security protocols.

On the other hand, from a complexity-theory perspective, messages are seen
as bit strings and cryptographic operations as functions on bit strings satisfy-
ing certain security properties [Gol01]. An attacker here is a resource bounded
probabilistic algorithm, limited by running time and/or memory, but capable
of breaking cryptographic operations, if that is computationally feasible. The
complexity based methods are more general and more realistic, but also more
complex.

In the last few years much research has been done to relate these two perspec-
tives [AR02, AJ01, MW04, Her05]. Such a relation takes the form of a function
mapping algebraic messages m to (distributions over) bit strings [[m]]. This map
should relate messages that are observationally equivalent in the algebraic world
(meaning that a Dolev-Yao attacker can see no difference between them) to in-
distinguishable distributions over bit strings (meaning that a computationally

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 33–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 F.D. Garcia and P. van Rossum

bounded adversary can only with negligible probability distinguish the distribu-
tions). Such a map allows one to use algebraic methods, possibly even automated,
to reason about security properties of protocols and have those reasonings be
valid also in the computational world.

The work carried out in the literature on relating these two perspectives
mainly deals with symmetric encryption [AR02, MW04] and public key encryp-
tion [Her05]. Micciancio and Warinschi [MW04] briefly but explicitly question if
this logical approach can be extended to, among other things, collision resistant
hashes. Backes, Pfitzmann, and Waidner [BPW06] show that in their simulata-
bility framework [PW00] a sound interpretation of hashes cannot exist, but that
it is possible to give a sound interpretation of formal hashes in the simulatability
framework using random oracles.

The problem with hashes is that in the algebraic world h(m) and h(m′) are
indistinguishable for a Dolev-Yao attacker if the attacker does not know m and
m′. In the computational world, however, the normal security definition — it
must be computationally infeasible to compute any pre-image of a hash value
or a hash collision [RS04] — does not guarantee that the hash function hides all
partial information about the message; hence there is no guarantee that [[h(m)]]
and [[h(m′)]] are computationally indistinguishable. A possible solution to this
can be found in the work of Canetti and others [Can97a, CMR98] on perfectly
one-way functions (a.k.a. oracle hashing). These are computable probabilistic
hash functions that hide all partial information of their input (see Section 3.3
for a definition and an example).

Our Contribution. We propose an extension to the commonly used Abadi-
Rogaway logic of algebraic messages introducing a probabilistic hash operator
hr(m) in the logic, next to the probabilistic symmetric encryption operator {|m|}r

k.
Just as the original logic introduces a �-operator to put in place of undecryptable
ciphertext (for us �r, since we also deal with repetitions of ciphertexts), we
introduce a �r-operator to put in place of the hash of an unknown message.
In the computational world, we interpret h as a perfectly one-way function and
prove that the resulting interpretation is sound.

It is relatively easy to see that the interpretation of messages like 〈m, hr(n, 0)〉
and 〈m, hr(n, 1)〉 are computationally indistinguishable whenever the adversary
can not learn n from m. If, however, the adversary can learn n from m, then the
messages are not observationally equivalent. The main technical difficulty that
has to be overcome is that the adversary can learn part of the argument of the
hash from the context, as for example in the message 〈k, hr(n, k)〉.

Overview. Section 2 introduces the message algebra, including the probabilistic
encryption and probabilistic hash operators. It also defines the observational
equivalence relation on messages. Section 3 then introduces the computational
world, giving the security definitions for encryption and hashes. In Section 4 the
semantic interpretation [[−]] is defined and Section 5 proves the soundness of this
interpretation. Finally, Section 6 discusses further research directions.

Sound Computational Interpretation of Symbolic Hashes 35

2 The Algebraic Setting

This section describes the message space and the observational equivalence ex-
tending the well-known Abadi-Rogaway logic [AR02] of algebraic messages with
hashes. These messages are used to describe cryptographic protocols and the ob-
servational equivalence tells whether or not two protocol runs are indistinguish-
able for a global eavesdropper. Here a protocol run is simply the concatenation
of all the messages exchanged in the run.

Definition 2.1. Key is an infinite set of key symbols, Nonce an infinite set of
nonce symbols, Const a finite set of constant symbols, and Random an infinite
set of randomness labels. Keys are denoted by k, k′, . . . , nonces by n, n′, . . . ,
constants by c, c′, . . . , and randomness labels by r, r′, There is one special
key called k� and for every randomness label r there is a special nonce called nr

�.
Using these building blocks, messages are constructed using algebraic encryption,
hashing, and pairing operations:

Msg � m := c | k | n | {|m|}r
k | hr(m) | 〈m, m〉 | �r | �r .

Here k and n do not range over all keys/nonces, but only over the non-special
ones. Special symbols (�r and �r) are used to indicate undecryptable cipher-
texts or hash values of unknown messages. When interpreting messages as (en-
sembles of distributions over) bit strings, we will treat �r as if it were {|0|}r

k�
and �r as if it were hr(nr

�).
A message of the form {|m|}r

k is called an encryption and the set of all such
messages is denoted by Enc. Similarly, messages of the form hr(m) are called hash
values and the set of all these messages is denoted by Hash. Finally Box denotes
the set of all messages of the form �r or �r. The set of all messages that involve
a “random choice” at their “top level”, i.e., Key∪Nonce∪Enc∪Hash∪Box, is
denoted by RanMsg.

The closure of a set U of messages is the set of all messages that can be con-
structed from U using tupling, detupling, and decryption. It represents the in-
formation an adversary could deduce knowing U .

Definition 2.2 (Closure). Let U be a set of messages. The closure of U , de-
noted by U , is the smallest set of messages satisfying:

1. Const ⊆ U ;
2. U ⊆ U ;
3. m, m′ ∈ U =⇒ 〈m, m′〉 ∈ U ;
4. {|m|}r

k, k ∈ U =⇒ m ∈ U ;
5. 〈m, m′〉 ∈ U =⇒ m, m′ ∈ U .

For the singleton set {m}, we write m instead of {m}.

We define the function encpat : Msg → Msg as in Abadi-Rogaway [AR02] which
takes a message m and reduces it to a pattern. Intuitively, this is the pattern

36 F.D. Garcia and P. van Rossum

that an attacker sees in a message given that he knows the messages in U . This
function does not replace hashes. Formally, it is defined as follows:

encpat(m) = encpat(m, m)
where

encpat(〈m1, m2〉, U) = 〈encpat(m1, U), encpat(m2, U)〉

encpat({|m|}r
k, U) =

{
{|encpat(m, U)|}r

k, if k ∈ U ;
�R({|m|}r

k), otherwise.

encpat(hr(m), U) = hr(encpat(m, U))
encpat(m, U) = m in any other case.

HereR : Enc∪Hash ↪→ Random is an injective function that takes an encryption
or a hash value and outputs a tag that identifies its randomness. We need this
tagging function to make sure that the function encpat is injective. That is, we
need to make sure that distinct undecryptable messages get replaced by distinct
boxes and similarly for hashpat below.

Now we define the function hashpat : Msg → Msg which takes a message m
and reduces all hashes of unknown (not in U) sub-messages, to �. This function
does not replace encryptions. Formally:

hashpat(m) = hashpat(m, m)
where

hashpat(〈m1, m2〉, U) = 〈hashpat(m1, U), hashpat(m2, U)〉
hashpat({|m|}r

k, U) = {|hashpat(m, U)|}r
k

hashpat(hr(m), U) =
{

hr(hashpat(m, U)), if m ∈ U ;
�R(hr(m)), otherwise.

hashpat(m, U) = m in any other case.

Naturally, we now define pattern as pattern = encpat ◦ hashpat.

Example 2.3. Consider the message

m = 〈{|{|1|}r′
k′, hr̃(n)|}r

k, hr̂(k), k〉.
hashpat(m) = 〈{|{|1|}r′

k′, �t |}r
k, hr̂(k), k〉, because n is not in m,Then

pattern(m) = 〈{| �s , �t |}r
k, hr̂(k), k〉, because k′ is not in m,and

where t = R(hr̃(n)) and s = R({|1|}r′
k′).

Definition 2.4 (Observational Equivalence). Two messages m and m′ are
said to be observationally equivalent, notation m ∼= m′, if there is a type preserv-
ing permutation σ of Key ∪Nonce ∪ Box such that pattern(m) = pattern(m′)σ.
Here pattern(m′)σ denotes simultaneous substitution of x by σ(x) in pattern(m′),
for all x ∈ Key ∪Nonce ∪ Box.

From the original setting in [AR02] we inherit the requirement that messages
must be acyclic for the soundness result to hold.

Sound Computational Interpretation of Symbolic Hashes 37

Definition 2.5 (Acyclicity). Let m be a message and k, k′ two keys. The key
k is said to encrypt k′ in m if m has a sub-message of the form {|m′|}r

k with
k′ being a sub-message of m′. A message is said to be acyclic if there is no
sequence k1, k2, . . . , kn, kn+1 = k1 of keys such that ki encrypts ki+1 in m for all
i ∈ {1, . . . , n}.

3 The Computational Setting

This section gives a brief overview of the concepts used in the complexity the-
oretic approach to security protocols. Much of this is standard; the reader is
referred to [GB01, BDJR97] for a thorough treatment of the basic concepts, to
[AR02] for the notion of type-0 security for cryptographic schemes (see Section 3.2
below), and to [Can97a] for the notion of oracle hashing (see Section 3.3 below).

In the computational world, messages are elements of Str := {0, 1}∗. Crypto-
graphic algorithms and adversaries are probabilistic polynomial-time algorithms.
When analyzing cryptographic primitives, it is customary to consider proba-
bilistic algorithms that take an element in Param := {1}∗ as input, whose
length scales with the security parameter. By making the security parameter
large enough, the system should become arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probability
ensembles over Str. Here a probability ensemble over Str is a sequence {Aη}η∈N

of probability distributions over Str indexed by the security parameter.

Definition 3.1 (Computational Indistinguishability). Two probability
ensembles {Aη}η and {Bη}η are computationally indistinguishable if for every
probabilistic polynomial-time algorithm A, for all polynomials p, and for large
enough η,

P[x $← Aη; A(1η, x) = 1]− P[x $← Bη; A(1η, x) = 1] <
1

p(η)
.

After a brief interlude on probabilistic polynomial-time algorithms in Section 3.1,
we give the formal definition of an encryption scheme and its security notion in
Section 3.2 and of oracle hashing in Section 3.3.

3.1 Probabilistic Algorithms

In Definition 3.1, the notion of probabilistic polynomial-time algorithm was al-
ready used. Because we explicitly use two different views of these algorithms and
in order to fix notation, we give a more precise definition.

Definition 3.2. Coins is the set {0, 1}ω, the set of all infinite sequences of 0’s
and 1’s. We equip Coins with the probability distribution obtained by flipping
a fair coin for each element in the sequence.

38 F.D. Garcia and P. van Rossum

Definition 3.3. The result of running a probabilistic algorithm A on an input
x ∈ Str is a probability distribution A(x) over Str. When we need to explicitly
write the randomness used while running A, we write A(x, ρ) with ρ ∈ Coins.
Using this notation, A(x) and [ρ $← Coins;A(x, ρ)] are the same probability
distribution. When confusion is unlikely, we will also denote the support of this
probability distribution, {y ∈ Str|P[ρ $← Coins; A(x, ρ = y)] > 0}, by A(x).

Now suppose that A runs in polynomial time p. Then running A on x cannot
use more than p(|x|) coin flips. Letting Coinsp(|x|) denote the uniform probability
distribution on {0, 1}p(|x|), we get that the probability distribution A(x) can also
be written as [ρ $← Coinsp(|x|); A(x, ρ)].

3.2 Encryption Scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a non-empty set of
plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆ Plaintextη+1 as in Gold-
wasser and Bellare [GB01]. Let us define Plaintext =

⋃
η Plaintextη. There is a

set Keys ⊆ Str of keys and also a set Ciphertext ⊆ Str of ciphertexts. Further-
more, there is a special bit string ⊥ not appearing in Plaintext or Ciphertext.
An encryption scheme Π consists of three algorithms:

1. a (probabilistic) key generation algorithm K : Param→ Keys that outputs,
given a unary sequence of length η, a randomly chosen element of Keys;

2. a (probabilistic) encryption algorithm E : Keys×Str → Ciphertext∪{⊥} that
outputs, given a key and a bit string, a possibly randomly chosen element
from Ciphertext or ⊥;

3. a (deterministic) decryption algorithm D : Keys × Str → Plaintext ∪ {⊥}
that outputs, given a key and a ciphertext, an element from Plaintext or ⊥.

These algorithms must satisfy that the decryption (with the correct key) of a
ciphertext returns the original plaintext. The element ⊥ is used to indicate failure
of en- or decryption, although there is no requirement that decrypting with the
wrong keys yields ⊥.

Now we define type-0 security of an encryption scheme as in [AR02], which
is a variant of the standard semantic security definition, enhanced with some
extra properties. In particular a type-0 secure encryption scheme is which-key
concealing, repetition concealing and length hiding. We refer to the original
paper for motivation and explanations on how to achieve such an encryption
scheme. The notion of type-0 security makes slightly unrealistic assumptions
on the encryption scheme. However our result on hashes does not significantly
depend on the specific security notion for the encryption scheme. As in [MP05,
Her05], it is possible to replace type-0 security by the standard notion of ind-cpa
or ind-cca by adapting the definition of encpat. For simplicity of the exposition,
throughout this paper we adopt the former security notion.

Definition 3.4. An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm AF(−),G(−) : Param → {0, 1} having access to two prob-
abilistic oracles F ,G : Str → Str. The advantage of such an adversary is the
function AdvA : N → R defined by

Sound Computational Interpretation of Symbolic Hashes 39

AdvA(η) = P[κ, κ′ $← K(1η); AE(κ,−),E(κ′,−)(1η) = 1]−

P[κ $← K(1η); AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key generation
algorithm, over the choices of the oracles, and over the internal choices of A. An
encryption scheme 〈K, E ,D〉 is called type-0 secure if for all polynomial-time
adversaries A as above, the advantage AdvA is a negligible function of η. This
means that for all positive polynomials p and for large enough η, AdvA(η) ≤ 1

p(η) .

In the sequel we need an extra assumption on the encryption scheme, namely
that the ciphertexts are well-spread as a function of the coins tosses of E . It means
that for all plaintexts μ and all keys κ, no ciphertext is exceptionally likely to
occur as the encryption of μ under κ. Note that this does not follow from, nor
implies type-0 security. Also note that every encryption scheme running in cipher
block chaining mode automatically has this property: the initial vector provides
the required randomness.

Definition 3.5 (Well-spread). An encryption scheme 〈K, E ,D〉 is said to be
well-spread if for every polynomial p,

∀η � 1.∀x ∈ Ciphertext.∀κ ∈ K(1η).∀μ ∈ Plaintextη : P[E(κ, μ) = x] <
1

p(η)
.

3.3 Oracle Hashing

The underlying secrecy assumptions behind formal or Dolev-Yao hashes [DY83]
are very strong. It is assumed that given a hash value f(x), it is not possible
for an adversary to learn any information about the pre-image x. In the litera-
ture this idealization is often modelled with the random oracle [BR93]. Such a
primitive is not computable and therefore it is also an idealization. Practical hash
functions like SHA or MD5 are very useful cryptographic primitives even though
this functions might leak partial information about their input. Moreover, un-
der the traditional security notions (one-wayness), a function that reveals half
of its input is considered secure. In addition, any deterministic hash function f
leaks partial information about x, namely f(x). Through this paper we consider
a new primitive introduced by Canetti [Can97a] called oracle hashing, that mim-
ics what semantic security is for encryption schemes. This hash function is proba-
bilistic and therefore it needs a verification function, just as in a signature scheme.
A hash scheme consists of two algorithms H and V . The probabilistic algorithm
H : Param×Str→ Str takes a unary sequence and a message and outputs a hash
value; the verification algorithm V : Str × Str → {0, 1} that given two messages
x and c correctly decides whether c is a hash of x or not. As an example we re-
produce here a hash scheme proposed in the original paper. Let p be a large (i.e.,
scaling with η) safe prime. Take H(x) = 〈r2, r2·h(x) mod p〉, where r is a ran-
domly chosen element in Z∗

p and h is any collision resistant hash function. The
verification algorithm V(x, 〈a, b〉) just checks whether b = ah(x) mod p.

40 F.D. Garcia and P. van Rossum

Canetti gives essentially two security notions for such a hash scheme. The
first one, oracle indistinguishability, guarantees that an adversary can gain no
information at all about a bit string, given its hash value (or rather, with suf-
ficiently small probability). The second one is an appropriate form of collision
resistance. It guarantees that an adversary cannot (or rather, again, with suffi-
ciently small probability) compute two distinct messages that successfully pass
the verification test with the same hash value.

Definition 3.6. A hash scheme 〈H,V〉 is said to be oracle indistinguishable if for
every family of probabilistic polynomial-time predicates {Dη : Str → {0, 1}}η∈N

and every positive polynomial p there is a polynomial size family {Lη}η∈N of
subsets of Str such that for all large enough η and all x, y ∈ Str \ Lη:

P[Dη(H(1η, x)) = 1]− P[Dη(H(1η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices
made by Dη. This definition is the non-uniform [Gol01] version of oracle indis-
tinguishability proposed by Canetti [Can97a] as it is finally used throughout the
proof (See the full version [Can97b], Appendix B).

Definition 3.7 (Collision Resistance). A hash scheme 〈H,V〉 is said to be
collision resistant if for every probabilistic polynomial time adversary A, the
probability

P[〈c, x, y〉 $← A(1η); x �= y ∧ V(x, c) = V(y, c) = 1]

is a negligible function of η.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by
some grammar. In Section 3 messages are bit strings and operations are given by
probabilistic algorithms operating on bit strings. This section shows how to map
algebraic messages to (distributions over) bit strings. This interpretation is very
much standard. We refer to [AR02, AJ01, MW04] for a thorough explanation. In
particular this section introduces notation that allows us to assign, beforehand,
some of the random coin flips used for the computation of the interpretation of
a message. This notation becomes useful throughout the soundness proof.

Definition 4.1. For every message m and set of messages V we define the set
R(m, V) ⊆ RanMsg of random messages in m relative to V as follows: if m ∈ V ,
then R(m, V) = ∅, otherwise

R(c, V) = ∅ R({|m|}r
k, V) = R(m, V) ∪ {k, {|m|}r

k}
R(n, V) = {n} R(hr(m), V) = R(m, V) ∪ {hr(m)}
R(k, V) = {k} R(〈m1, m2〉, V) = R(m1, V) ∪R(m2, V)

R(�r, V) = {k�, �r} R(�r, V) = {nr
�, �r}.

Sound Computational Interpretation of Symbolic Hashes 41

The set of random messages in m is defined as R(m) := R(m, ∅) and the set of
random messages in m relative to m′ as R(m, m′) := R(m, {m′}).

Note that R(m) is nearly equal to the set of all sub-messages of m that are in
RanMsg; the only difference is that R(m) also may contain the special key k� or
special nonces nr

�. When interpreting a message m as (ensembles of distributions
over) bit strings (Definition 4.4 below), we will first choose a sequence of coin
flips for all elements of R(m) and use these sequences as source of randomness
for the appropriate interpretation algorithms.

Also note that R(m, m′) is the set of all random messages in m except those
that only occur as a sub-message of m′ (see Definition 4.5 below).

Example 4.2. Let m be the message 〈k, {|0|}r
k, hr′

({|0|}r
k, n), n′〉 and let m̃ be

the message inside the hash: 〈{|0|}r
k, n〉. Then the randomness in m is R(m) =

{k, {|0|}r
k, h

r′
({|0|}r

k, n), n′, n}, the randomness inside the hash is R(m̃) = {{|0|}r
k,

k, n}, and the randomness that occurs only outside the hash is R(m, hr′
(m̃)) =

R(m) \ {hr′
(m̃), n}. The randomness that is shared between the inside of the

hash and the outside of the hash is R(m, hr′
(m̃)) ∩ R(m̃) = {{|0|}r

k}.

Definition 4.3. For every finite set X we define Coins(X) as {τ : X → Coins}.
We equip Coins(X) with the induced product probability distribution. Further-
more, for every message m we write Coins(m) instead of Coins(R(m)).

An element of τ of Coins(m) gives, for every sub-message m′ of m that requires
random choices when interpreting this sub-message as a bit string, an infinite
sequence τ(m′) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to
interpret encryptions, K to interpret key symbols, and H to interpret for hashes.
We let C : Const→ Str be a function that (deterministically) assigns a constant
bit string to each constant identifier. We let N : Param → Str be the nonce
generation function that, given a unary sequence of length η, chooses uniformly
and randomly a bit string from {0, 1}η.

Definition 4.4. For a message m, a value of the security parameter η ∈ N, a
finite set U of messages containing R(m), and for a choice τ ∈ Coins(U) of (at
least) all the randomness in m, we can (deterministically) create a bit string
[[m]]τη ∈ Str as follows:

[[c]]τη = C(c) [[{|m|}r
k]]τη = E([[k]]τη , [[m]]τη, τ({|m|}r

k))

[[k]]τη = K(1η, τ(k)) [[hr(m)]]τη = H(1η, [[m]]τη, τ(hr(m)))

[[n]]τη = N (1η, τ(n)) [[�r]]τη = E([[k�]]τη , C(0), τ(�r))

[[〈m1, m2〉]]τη = [[m1]]
τ
η [[m2]]

τ
η [[�r]]τη = H(1η, [[nr

�]]τη, τ(�r)).

Note that [[m]]τη = [[m]]τ |R(m)
η . For a fixed message m and η ∈ N, choosing τ from

the probability distribution Coins(R(m)) creates a probability distribution [[m]]η
over Str:

[[m]]η := [τ $← Coins(m); [[m]]τη].

42 F.D. Garcia and P. van Rossum

Note that although the codomain of τ ∈ Coins(m) is Coins, the set of infinite
bit strings, when interpreting a fixed message m at a fixed value of the security
parameter η, only a predetermined finite initial segment of each sequence of coin
flips will be used by K, N , E , and H (cf. Definition 3.3). Denoting by Coinsη(m)
the probability distribution (on {τ : R(m) → Str}) that is actually being used
when computing [[m]]η, we could also write

[[m]]η = [τ $← Coinsη(m); [[m]]τη].

Furthermore, letting η range over N creates an ensemble of probability distribu-
tions [[m]] over Str, namely [[m]] := {[[m]]η}η∈N.

Definition 4.5. We will also need a way of interpreting a message as a bit
string when the interpretation of certain sub-messages has already been chosen
in some other way. For this, let e be a function from some set Dom(e) ⊆ Pat
to Str and let τ ∈ Coins(U, Dom(e)) with U a finite set of messages containing
R(m). We interpret a message m using e whenever possible and τ otherwise: if
m ∈ Dom(e), then [[m]]e,τ

η = e(m), otherwise

[[c]]e,τ
η = C(c) [[{|m|}r

k]]
e,τ
η = E([[k]]τη , [[m]]e,τ

η , τ({|m|}r
k))

[[k]]e,τ
η = K(1η, τ(k)) [[hr(m)]]e,τ

η = H(1η, [[m]]e,τ
η , τ(hr(m)))

[[n]]e,τ
η = N (1η, τ(n)) [[�r]]e,τ

η = E([[k�]]e,τ
η , C(0), τ(�r))

[[〈m1, m2〉]]e,τ
η = [[m1]]

e,τ
η [[m2]]

e,τ
η [[�r]]e,τ

η = H(1η, [[nr
�]]e,τ

η , τ(�r)).

Definition 4.6. We also need a way of pre-specifying some of the random
choices to be made when interpreting a message. For this, let τ ∈ Coins(U)
for some finite set of messages U . Then for every η ∈ N and every message m,
the distribution [[m]]τη is obtained by randomly choosing coins for the remaining
randomness labels in m. Formally,

[[m]]τη := [τ ′ $← Coins(R(m) \ U); [[m]]τ∪τ ′

η],

where τ ∪ τ ′ ∈ Coins(m) denotes the function which agrees with τ on U ∩R(m)
and with τ ′ on R(m) \ U .

This can also be combined with the previous way of preselecting a part of the
interpretation. For a function e from a set Dom(e) ⊆ Pat to Str and τ ∈ Coins(U)
as above, we define [[m]]e,τ

η := [τ ′ $← Coins(R(m) \ U); [[m]]e,τ∪τ ′

η].

5 Soundness

This section shows that the interpretation proposed in the previous section is
computationally sound. Throughout this section we assume that the encryption

Sound Computational Interpretation of Symbolic Hashes 43

scheme 〈K, E ,D〉 is type-0 secure (or ind-cca with encpat modified as in [Her05,
MP05]) and well-spread, and that the probabilistic hash scheme 〈H,V〉 is oracle
indistinguishable and collision resistant.

The following lemma uses all these assumptions. It claims that if you pre-
specify some, but not all, of the sequences of coins to be chosen when interpreting
a message m, then no single bit string x is exceptionally likely to occur as the
interpretation of m.

Lemma 5.1 Let m be a message, U � R(m). Let p be a positive polynomial.
Then

∀η � 1.∀τ ∈ Coins(U).∀x ∈ Str : P[α $← [[m]]τη; α = x] <
1

p(η)
.

Proof. The proof follows by induction on the structure of m. See the full version
of this paper [GR06].

Theorem 5.2 Let m be a message with a sub-message of the form hr(m̃). As-
sume that m̃ �∈ m. Take m′ := m[hr(m̃) := �s], where s = R(hr(m̃)). Then
[[m]] ≡ [[m′]].

Proof. Assume that [[m]] �≡ [[m′]], say A : Param× Str → {0, 1} is a probabilistic
polynomial-time adversary and p a positive polynomial such that

1
p(η)

≤ P[μ $← [[m]]η; A(1η, μ) = 1]− P[μ $← [[m′]]η; A(1η, μ) = 1] (1)

for infinitely many η ∈ N. We will use this to build a distinguisher as in Defini-
tion 3.6 that breaks oracle indistinguishability of 〈H,V〉.

Let η ∈ N, abbreviate R(m, m̃) ∩ R(m̃) to U and let τ ∈ Coins(U). Note that
τ chooses coin flips for the randomness that occurs both inside and outside
the hash. Then define a probabilistic polynomial-time algorithm Dτ

η : {0, 1}∗ →
{0, 1} as follows.

algorithm Dτ
η (α) :

μ
$← [[m]]{h

r(m̃) �→α},τ
η

β
$← A(η, μ)

return β

This algorithm tries to guess if a given bit string α was drawn from [[hr(m̃)]]τη
or from [[�s]]τη = [[hs(ns

�)]]τ
η
. It does so by computing an interpretation for m

as follows. The sub-message hr(m̃) is interpreted as α; the randomness that is
shared between the inside of the hash (m̃) and the rest of the message is resolved
using hard-coded sequences of coin flips τ . It then uses the adversary A to guess
if the resulting interpretation was drawn from [[m]]η (in which case it guesses
that α was drawn from [[hr(m̃)]]η) or from [[m′]]η (in which case it guesses that
α was drawn from [[�s]]η).

44 F.D. Garcia and P. van Rossum

Even though τ has values in Coins, i.e., infinite strings, this is still a well-
defined probabilistic polynomial-time algorithm, as it uses only a finite, prede-
termined amount of bits from τ (cf. Definitions 3.3 and 4.4). However, (1η, α) �→
Dτ

η(α) would not be a well-defined probabilistic polynomial-time algorithm.
Now consider one of the infinitely many values of η for which (1) holds. Using

Dτ
η we can rephrase (1) as follows:

1
p(η)

≤ P[τ $← Coinsη(U), α $← [[hr(m̃)]]τη ; Dτ
η(α) = 1]−

P[τ $← Coinsη(U), α $← [[�s]]τη; Dτ
η (α) = 1]

=
∑

τ∈Coinsη(U)

(
P[α $← [[hr(m̃)]]τη; Dτ

η (α) = 1]−

P[α $← [[�s]]τη; Dτ
η (α) = 1]

)
· P[T $← Coinsη(U); T = τ]

=
∑

τ∈Coinsη(U)

(
P[α $← [[m̃]]τη; Dτ

η (H(1η, α)) = 1]−

P[α $← [[ns
�]]τη; Dτ

η(H(1η, α)) = 1]
)
· P[T $← Coinsη(U); T = τ].

Note that τ selects the randomness that is shared between the inside of the hash
and the outside of the hash; when α is drawn from [[m̃]]τη the randomness that
appears only inside the hash is chosen (and the assumption on m̃ means that
there is really something to choose); H chooses the randomness for taking the
hash; and Dτ

η itself resolves the randomness that appears only outside the hash.
This means that there must be a particular value of τ , say τ̄η, such that

1
p(η)

≤ P[α $← [[m̃]]τ̄η
η ; Dτ̄η

η (H(1η, α)) = 1] − P[α $← [[ns
�]]τ̄η

η ; Dτ̄η
η (H(1η, α)) = 1]. (2)

Gathering all D
τ̄η
η together for the various values of η, let D be the non-

uniform adversary {Dτ̄η
η }η∈N. Note that we have not actually defined D

τ̄η
η for

all η, but only for those (infinitely many) for which (1) actually holds. What D
does for the other values of η is irrelevant.

We will now show that D breaks the oracle indistinguishability of 〈H,V〉. For
this, let L = {Lη}η∈N be a polynomial size family of subsets of Str. We have to
show that for infinitely many values of η, there are x, y ∈ Str \ Lη such that D
meaningfully distinguishes between H(1η, x) and H(1η, y).

Once again, take one of the infinitely many values of η for which (1) holds.
Continuing from (2), a short computation (see the full version of this paper
[GR06]) gives

1
p(η)

≤ 1
2p(η)

+
α∈[[m̃]]

τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

P[Dτ̄η
η (H(1η , α)) = 1] − P[Dτ̄η

η (H(1η , β)) = 1]

· P[[[m̃]]τ̄η
η = α] · P[[[ns

�]]τ̄η

η = β] . (3)

Sound Computational Interpretation of Symbolic Hashes 45

Now suppose that for all α ∈ [[m̃]]τ̄η

η \ Lη and all β ∈ [[ns
�]]τ̄η

η
\ Lη we have

P[Dτ̄η
η (H(1η, α)) = 1]− P[Dτ̄η

η (H(1η, β)) = 1] <
1

2p(η)
.

Then, continuing from (3), we get a contradiction:
1

p(η)
<

1
2p(η)

+
α∈[[m̃]]

τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

1
2p(η)

· P[[[m̃]]τ̄η
η = α] · P[[[ns

�]]τ̄η

η = β]

=
1

2p(η)
+

1
2p(η)

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
�]]τ̄η

η
\Lη

P[[[m̃]]τ̄η
η = α] · P[[[ns

�]]τ̄η
η = β]

≤ 1
2p(η)

+
1

2p(η)
.

Therefore, there must be an x ∈ [[m̃]]τ̄η

η \ Lη and a y ∈ [[ns
�]]τ̄η

η
\ Lη such that

1
2p(η)

≤ P[Dτ̄η
η (H(1η, x)) = 1]− P[Dτ̄η

η (H(1η, y)) = 1].

Hence D breaks oracle indistinguishability, contradicting the assumption on
〈H,V〉. �	

Theorem 5.3 (Abadi-Rogaway) Let m be an acyclic message. Suppose that
for every sub-message hr(m̃) of m, m̃ ∈ m.Then [[m]] ≡ [[encpat(m)]].

Proof. The proof follows just like in Abadi-Rogaway [AR02]. Interpreting hashes
here is straightforward because their argument is always known, by assumption.
We refer the reader to the original paper for a full proof. �	

Theorem 5.4 (Soundness) Let m and m′ be acyclic messages. Then m ∼=
m′ =⇒ [[m]] ≡ [[m′]].

Proof. The assumption that m ∼= m′ means that there is a permutation σ of
Key ∪ Nonce ∪ Box such that pattern(m) = pattern(m′)σ. Therefore we get
[[pattern(m)]] ≡ [[pattern(m′)]]. By definition of pattern, [[encpat ◦ hashpat(m)]] ≡
[[encpat ◦ hashpat(m′)]]. Now, by applying Theorem 5.3 two times, we obtain
[[hashpat(m)]] ≡ [[hashpat(m′)]]. Finally, by repeatedly applying Theorem 5.2 on
both sides we get [[m]] ≡ [[m′]]. �	

6 Conclusions and Future Work

We have proposed an interpretation for formal hashes that is computationally
sound. For the proof we considered non-uniform adversaries and the assumption
that the encryption scheme is type-0 secure and well-spread and that the hash
scheme is oracle indistinguishable and collision resistant. This paper considers
passive adversaries. It would be interesting to study whether this result can be
extended to active adversaries. Another interesting research direction would be
proving completeness for this extended logic.

46 F.D. Garcia and P. van Rossum

Acknowledgements. We are thankful to David Galindo for providing the ref-
erence to [Can97a] and insightful comments.

References

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computa-
tional interpretation. In Naoki Kobayashi and Benjamin C. Pierce, ed-
itors, Proceedings of the Fourth International Symposium on Theoretical
Aspects of Computer Software (TACS’01), volume 2215 of Lecture Notes
in Computer Science, pages 82–94. Springer, 2001.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of Cryptology,
15(2):103–127, 2002.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Philip Rogaway. A concrete
security treatment of symmetric encryption. In 38th Annual Symposium on
Foundations of Computer Science (FOCS’97), pages 394–405. IEEE, 1997.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the re-
active simulatability/UC of Dolev-Yao models with hashes. Cryptology
ePrint Archive, Report 2006/014 (http://eprint.iacr.org/2006/068),
2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st ACM
CCS, pages 62–73. ACM, 1993.

[Can97a] Ran Canetti. Towards realizing random oracles: Hash functions that hide
all partial information. In Burt Kaliski, editor, Advances in Cryptology,
17th Annual International Cryptology Conference (CRYPTO’97), volume
1294 of Lecture Notes in Computer Science, pages 455–469. Springer, 1997.

[Can97b] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information. Cryptology ePrint Archive, Report 1997/007
(http://eprint.iacr.org/1997/007), 1997.

[CMR98] Ran Canetti, Danielle Micciancio, and Omer Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing (STOC’98),
pages 131–140. ACM, 1998.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–208, 1983.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. 2001.
http://www-cse.ucsd.edu/∼mihir/papers/gb.html.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge Uni-
versity Press, 2001.

[GR06] Flavio D. Garcia and Peter van Rossum. Sound computational inter-
pretation of formal hashes. Cryptology ePrint Archive, Report 2006/014
(http://eprint.iacr.org/2006/014), 2006.

[Her05] Jonathan Herzog. A computational interpretation of Dolev-Yao adver-
saries. Theoretical Computer Science, 340(1):57–81, 2005.

[MP05] Daniele Micciancio and Saurabh Panjwani. Adaptive security of symbolic
encryption. In Joe Kilian, editor, Theory of Cryptography: Second Theory
of Cryptography Conference (TCC’05), volume 3378 of Lecture Notes in
Computer Science, pages 169–187. Springer, February 2005.

Sound Computational Interpretation of Symbolic Hashes 47

[MW04] Daniele Micciancio and Bogdan Warinschi. Completeness theorems of the
Abadi-Rogaway logic of encrypted expressions. Journal of Computer Se-
curity, 12(1):99–129, 2004.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preser-
vation of secure reactive systems. In Proceedings of the 7th ACM CCS,
pages 245–254, 2000.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function
basics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In Bimal Roy and
Willi Meier, editors, Fast Software Encryption: 11th International Work-
shop (FSE’04), volume 3017 of Lecture Notes in Computer Science, pages
371–388. Springer, 2004.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 48 – 59, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Requirement Centric Framework for Information
Security Evaluation

Reijo Savola

VTT Technical Research Centre of Finland, Kaitoväylä 1, 90570 Oulu, Finland
Reijo.Savola@vtt.fi

Abstract. Information security evaluation of software-intensive systems
typically relies heavily on the experience of the security professionals.
Obviously, automated approaches are needed in this field. Unfortunately, there
is no practical approach to carrying out security evaluation in a systematic way.
We introduce a general-level holistic framework for security evaluation based
on security behaviour modelling and security evidence collection, and discuss
its applicability to the design of security evaluation experimentation set-ups in
real-world systems.

Keywords: Information security evaluation, security metrics, security modeling,
security testing.

1 Introduction

Products and services, and the technical infrastructures that enable them are showing
a strong trend towards convergence and networking. At the same time, industrial
companies and other organizations are creating very complex value nets to design and
manufacture products and to maintain them. These trends, together with pressure from
information security and privacy legislation, are increasing the need for adequately
tested and managed information security solutions in software intensive systems and
networks. The lack of appropriate information security solutions might have serious
consequences for business and the stakeholders.

Security evaluation, testing and assessment techniques are needed to be able find
adequate solutions. Seeking evidence of the actual information security level or
performance of systems still remains an ambiguous and undeveloped field. To make
progress in the field there is a need to focus on the development of better experimental
techniques, better security metrics and models with practical predictive power [4].

Security evidence can be used both for quantitative and qualitative analysis
methods. Evidence is more useful when they are meaningful for most of the systems
lifecycle:

• During research and development, security evidence helps researchers to
develop more secure solutions and to find design vulnerabilities. Research-oriented
security evidence can be constructed using analytical models that take account of
factors contributing to security and the cross-relationships of components.
Research-oriented metrics can concentrate on the critical parts, especially the
technical challenges.

 A Requirement Centric Framework for Information Security Evaluation 49

• During system implementation, security evidence can be used to find design and
implementation vulnerabilities as a part of security engineering. These are also
based on analytical models. If security metrics are part of a security engineering
process, they are more valuable.

• During the system maintenance phase, security evidence can be used for
preservation of the achieved security level during possible updates, integration or
modifications, and to find implementation vulnerabilities. From the point of view
of the security engineering process, a technical system can be constantly in the
system maintenance phase. In addition to preservation of the security level, this
level can be improved using feedback obtained from the application of security
evidence information.

The main contribution of this study is to introduce a holistic approach to security
evaluation based on evidence collection and to discuss the evidence collection process
in practice. The rest of this paper is organized as follows. Section 2 discusses security
metrics and their relationships in general, Section 3 presents our theoretical security
modelling and evaluation framework, Section 4 analyses how evidence collection can
be done in practice with the help of the framework, and, finally, Section 5 discusses
future work and Section 6 gives conclusions.

2 Background

The wide majority of the available security metrics approaches offering evidence
information have been developed for evaluating security policies and the maturity of
security engineering processes. The most widely used of these maturity models is the
Systems Security Engineering Capability Maturity Model SSE-CMM (ISO/IEC
21827) [8]. Other well-known models are Trusted Computer Security Evaluation
Criteria (TCSEC, The Orange Book) (TCSEC 1985) [17] and Common Criteria (CC)
[7]. In connection with policy and process metrics, it is extremely important to
evaluate the security functionality of products at the technical level, without
forgetting their life cycle management. The goal of the whole process of seeking of
security evidence should be targeted at understanding information security threats and
vulnerabilities of the product and its usage environment holistically.

Jonsson [9] sorts the methods of security measurement into the following
techniques: risk analysis, certification and measures of the intrusion process:

• Risk analysis is an estimation of the probability of specific intrusions and their
consequences and costs, and it can be thought of as a trade-off to the corresponding
costs for protection,

• Certification is the classification of the system in classes based on design
characteristics and security mechanisms. “The ‘better’ the design is, the more
secure the system.”

• Measures of the intrusion process means statistical measurement of a system based
on the effort it takes to make an intrusion. “The harder it is to make an intrusion,
the more secure the system.”

50 R. Savola

In addition to these methods, it is justifiable to consider auditing and security
evaluation as measurement techniques for information security. Most technical
security analysis is currently performed using penetrate-and-patch or “tiger team”
tactics. The security level is evaluated by attempting to break into a system under
evaluation, exploiting previously known vulnerabilities. If a break-in attempt is
successful, the vulnerability is patched. Penetrate-and-patch tactics have been used by
special security testing professionals whose methods and tools have not been made
public knowledge. There are several problems with penetrate-and-patch: it requires
experienced professionals, the actual testing is carried out too late, and the patches are
often ignored and even sometimes introduce new vulnerabilities. Most of the
technical testing metrics are meant for the unit or source code level. Various methods
for system security evaluation and assessment have been proposed in the literature,
see e.g. [2, 12, 13, 19]. These frameworks are conceptual and help in understanding
the problem area. However, these frameworks do not offer aggregated means for
practical security evaluation or the testing process.

3 Framework for Seeking Evidence of Security

In the following we introduce our holistic framework for model-based information
security evaluation or testing of software-intensive systems. This collection of
constructs and abstractions forms the basis of our approach to seeking evidence of
security in a system. Please note that the framework could be expressed in a formal
way using various types of representations, such as Labelled Transition Systems
(LTSs). However, in this paper we discuss the implications of the framework for
practical security testing and evaluation rather than intending to formalize the
framework.

3.1 Role of Threat Analysis

The most important task in the whole process of security evaluation is to identify
security risks and threats, taking enough assumptions of the attackers’ capabilities
into account. A subtask in threat analysis is to identify valuable assets that may be
subject to security risks. An asset is something in the context of the system that is to
be protected. A threat description can be represented, e.g., by threat / asset
combinations. A holistic and cross-disciplinary threat picture of the system controls
the development of security solutions. Threats that are possible during the whole life
cycle of the system under evaluation must be considered.

It must be noted that the collection of security threats to a system is not static.
Security algorithms and other solutions are cracked and new vulnerabilities are found
every now and then. Even complete platforms or communication protocol structures
can be compromised. As a consequence, a system’s threat landscape is constantly
changing, possibly reflecting different kinds of trends. A weak signal is a factor for
change hardly perceptible at present but which will constitute a strong trend in the
future. Some weak signals can represent on-going or anticipated changes in the threat
landscape. The actual change in time can happen in small steps or in one leap. In the
former case, the trend could be exposed, if weak signals presenting the steps could be
detected [11].

 A Requirement Centric Framework for Information Security Evaluation 51

Example 1. We denote the original set of identified threats in a system by T,
consisting of the threat factors T0, T1, T2,…Tn. Later, the effect of discipline Dx is
introduced into the system. This effect manifests itself as a weak signal type of threat

x, which can or cannot be identified. In the former case, T is updated to T := T ∪ x.
In the latter case, the effect of Dx remains a hidden threat represented by the
undetected weak signal x.

3.2 Role of Security Requirements

The goal of defining security requirements for a system is to map the results of risk
and threat analysis to practical security requirement statements that manage (cancel,
mitigate or maintain) the security risks of the system under investigation. Security
requirements are constraints on functional requirements intended to reduce
vulnerabilities. Security mechanisms are then developed to fulfil the requirements.
Haley et al. [6] represent an interesting method for deriving security requirements
from threat descriptions. They derive the security requirements using an iterative
process where each iteration recomposes the threat descriptions with the functional
requirements. Iterations are required because identifying and eliminating
vulnerabilities will often create new vulnerabilities.

The security requirements play a crucial role in the security evaluation. The
requirements guide the whole process of security evidence collection. For example,
security metrics can be developed based on requirements: If we want to measure
security behaviour of an entity in the system, we can compare it with the explicit
security requirements, which act as a “measuring rod”.

All applicable dimensions (or quality attributes) of security should be addressed in
the security requirements definition. See e.g. [1] for a presentation of quality attribute
taxonomy. Well-known general dimensions include confidentiality, integrity,
availability, non-repudiation and authenticity. Quality attributes like usability,
robustness, interoperability, etc., are important requirements too. In fact, an unusable
security construct can even turn out to be a security threat.

The safety community has developed a standard approach to solving the problem
of requirements relevance, and the similarity between safety and security implies that
it would be well worth considering if something similar could be done for security
[3]. For example, Security Importance Levels (SILs) could be used for categorizing
non-security requirements in terms of their security relevance and Security Evidence
Assurance Levels (SEALs) could be used to enforce the additional measures needed
to develop the more security-critical parts of systems.

It must be noted that one cannot easily define a general-level security requirement
list that could be used for different kinds of systems. The actual requirements and role
of the security dimensions heavily depends on the system itself, and its context and
use scenarios.

3.3 Modelling Entities and Their Cross Relationships

It is obvious that in order to be able to evaluate security systematically, a model of the
security behaviour of a system is needed. To make a decision about whether a system
is secure, we need evidence that (i) each software or hardware component and

52 R. Savola

subcomponent and (ii) the composition formed from them, taking account of cross-
relationships, are secure. Essentially, the process of security evaluation takes use
scenarios and the context of the system into account. In addition to this structural
classification of entities, it is important to find the behavioural entities in the system..
In order to help investigate the security behaviour of a system, we define security
action, atomic security action and security behaviour:

Definition 1. (security action) A security action, ar, is a behavioural entity of a
system that has some effect, either incremental or decremental, on the security
defined by a certain security requirement, r, of a system.

Definition 2. (atomic security action) An atomic security action, , is a security
action that cannot be split into other security actions. It is the lowest level of
observable security behaviour.

Definition 3. (security behaviour of a system) The security behaviour, A, of a system
consists of a composition of atomic security actions of all the security requirements of
the system that take their cross-relationships into account.

The security behaviour of the system, expressed using suitable modelling language, is
the basis model of the system under security evaluation. For example, a pattern
language could be used to describe the security actions and security behaviour.

Security actions can represent one or several dimensions or quality attributes of
security. We define the dimensions of a security action in the following:

Definition 4. (dimensions of security action) A security action, ar,, having effect on
security requirement r, has an impact, i(ar,u), and a probability, p(ar,v).

Definition 5. (impact of security action) The impact i(ar,u) of security action ar is the
estimate of its impact in scale [-1,1] to security requirement r. If the impact increases
security, it is positive; u is the uncertainty of the impact estimate, between [0,1],
where 1 presents complete certainty.

Definition 6. (probability of security action) The probability p(ar,v) of security action ar
is the estimated probability of the security action to be realized with uncertainty, v.

It is important to notice that impact analysis of security actions is within the focus of
our approach. After all, we are interested what the impact of a system’s security
behaviour is on the whole – i.e. the overall impact.

Definition of the actual security actions in the system under investigation is a
challenging task. In practice, this task may turn out to be impossible due to the
amount of functionality and use scenarios in practical systems. Real-world
implementations are far too complex for this kind of analysis. There is a need for
automated and easily applicable and standardized technical methods for software
implementation to ensure and measure security, e.g. standard secure memory
management support and component-level life cycle management support.

Modelling the security behaviour is an iterative process. Voas [18] states that we
do not know a priori whether the security of a system composed of two components,
A and B, can be determined merely from knowledge of the security of A and B.
Rather, the security of the composite is based on more than just the security of the

 A Requirement Centric Framework for Information Security Evaluation 53

individual components – it hinges on the cross-relationships. Both the atomic
behaviour and cross-relationships have to be known and analysed in an iterative way.

Security behaviour of a system could be modelled using tree representations, such
as Attack Trees [15], evaluation criteria, such as Common Criteria [7], several formal
approaches and semi-formal approaches, such as UML and its security extension
UMLSec [10]. Perhaps the most interesting method is to develop security patterns
[16]. A security pattern describes a particular recurring security problem that arises in
specific contexts and presents a well-proven generic scheme for its solution. In
practice, a chosen set of security patterns could guide the process of defining security
requirements. Security behaviour with adequate set of security actions could be
associated to these patterns. The key elements of security patterns include the
following:

• Name: a label representing the structure,
• Context: general conditions,
• Problem: a statement that defines the problem that will be solved by the security

pattern, and
• Solution: solution of the problem.

3.4 Evidence Information

Security evidence is gathered from various sources as input to the decision process of
security evaluation. The evidence collection should be arranged in a way that supports
evaluation of security behaviour and security actions. We classify the types of
security evidence information into three categories:

• Measured Evidence. The process of gathering measured or assessed information
uses security metrics as its basis. Table 1 lists some examples of measured security
evidence. Measured evidence can be collected during security testing or in a
security audit based on pre-defined metrics.

• Reputation Evidence. Reputation of software or hardware constructs, or their
origin, is an important class of evidence. A software company in charge of
implementing a product might have some confidential knowledge of the security of
different software components. Table 2 lists some examples of reputation evidence.
Reputation evidence can be collected from experience of R&D departments and be
based on general-level knowledge.

• Tacit Evidence. In addition to the measured and reputation evidence, there might
be some “silent” or “weak” signals of security behaviour. The subjectivity level of
tacit evidence might be higher than in the case of measured and reputation
evidence. Collection of tacit evidence is typically an ad hoc process. Senior
security experts and “tiger teams” play an important role in this kind of evidence.

The objectivity level of the evidence varies a lot. In many cases, even the
measurements are arranged in a highly subjective manner. Typically, no single
measured value is able to capture the security value of a system. Thus, several pieces
of security evidence have to be combined.

54 R. Savola

Table 1. Examples of measured evidence

Dimension Metric types
Confidentiality Use of compartmentalization in memory use
Confidentiality Encryption strength
Integrity Result of one-way hash function
Integrity Robustness of data synchronization algorithm
Availability Validation result of access control rules
Usability Amount of user interaction needed

Table 2. Examples of reputation evidence

Metric types
Reputation of practices of subcontractor
Reputation of implementation results of subcontractor
Reputation of a software version
Reputation of a software component provider
Reputation of a standard used in the implementation
Reputation of an integrator

3.5 Trust Assumptions

A trust assumption is a decision to trust the given properties of some domain and to
go no further in the analysis [5]. Trust assumptions set the boundaries for the need for
evidence. Trust assumptions can be made e.g. based on reputation evidence: if we
trust a software version fully, there is no need to investigate it at more detailed level.

Trust assumptions can make the security evaluation process feasible by taking a
certain risk to assume that the object left out of more detailed investigation is trusted.

3.6 Decision Process

The most final phase of security evaluation is the decision process. The overall goal
of the decision process is to make an assessment and form conclusions on the
information security level or performance of the system under investigation. The
decision process can be split into sub-decisions based on the security action model.

The decision process can be carried out in the following way:

1. For each security requirement and security action composition, seek evidence and
estimate the probability and impact of that action, taking cross-relationships and
trust assumptions into account.

2. Estimate the overall impact of the gathered evidence on each security requirement
3. Make a decision whether the security of the system with regard to the requirements

is at a sufficient level.

In a high abstraction level, the overall impact of all security actions on a security
requirement can be defined as follows:

Definition 7. (overall impact) The overall impact of all security actions on a security
requirement is

 A Requirement Centric Framework for Information Security Evaluation 55

tt

T

t
t ipwI ⋅⋅=

=0

 (1)

where I is the overall impact, T the number of all security actions of a security
requirement, and wt is a weighting factor, pt a probability and it the impact of security
action t on the requirement under investigation. The weighting factor depends on time
and context.

4 Modelling Example

We discuss the constructs presented in the previous section with help of a highly
simplified authorization example based on [14] representing the most usual
authorization rule, on which most other (more complex) access control models are
based, see. Fig. 1.

In authorization we are interested who is authorized to access specific resources in
a system. Granted permissions (authorizations) for security subjects accessing
protected objects need to be indicated explicitly. Otherwise, any subject could access
any resource. In the class diagram of Fig. 1., the class Subject describes an active
entity, which attempts to access a resource in some way. The class Object represents
the resource to be protected. The association between the subject and the object is
authorization (“isAuthorizedFor”). The association class Right describes the access
type (e.g. read or write) the subject is allowed to perform on the corresponding object.

In the following, we give examples of how our framework can be related to this
example. However, we do not aim at a complete analysis. Let us assume that only the
confidentiality requirements of the system specification are concerned. In reality,
other security dimensions are affected by authorization too.

Subject Object

Right

accessType

isAuthorizedFor * *

Fig. 1. A simplified authorization pattern

4.1 Subject

A security action associated with the class Subject can be, e.g., a request from a
process asking to read from a protected file. Let us assume that the system allows this
kind of request from both authenticated and unauthenticated sources. In the latter case
the assumption is that the request can come from a local process. The following types
of request security actions might be possible, depending in the design, e.g.:

56 R. Savola

• (req1) request from an authenticated process authorized to access the file,
• (req2) request from an authenticated process not authorized to access the file,
• (req3) request from an impersonating process that has been able to go through the

authentication,
• (req4) request from an unauthenticated process authorized to access the file, and
• (req5) request from an unauthenticated process not authorized to access the file.

Obviously, req1 is an atomic security action within req3. Note that req3 contains
other atomic security actions too. In this case req1 is dependent on them. If there are
no mechanisms to detect the impersonating process at this stage (e.g. additional
authentication), an attacker might be able to access a protected file.

The impact of req3 can be estimated based on evidence of the criticality of the
information contained in the protected file. The probability evidence of req3 can be
based on, e.g., interface descriptions and authentication mechanism evaluation.
Usually, the impact of req3 is negative on the security.

4.2 Object

The object of our example, a protected file, might have, e.g., directly critical
information or indirectly critical key or certificate information, enabling the
impersonator to continue his or her attack and cause more harm. Related security
actions include:

• (f_access1) access to a file with no directly or indirectly confidential information,
• (f_access2) access to a file with indirectly confidential but no directly

confidential,
• (f_access3) access to a file with directly confidential but no indirectly

confidential information, and
• (f_access4) access to a file with directly and indirectly confidential information.

“Confidential information” here means information that is confidential to the
subject. Recognizably, all the listed security actions, except f_access1, have varying
degrees of negative impact on the security.

If the system has some additional protection mechanisms for file access, the
security actions associated with this protection, e.g., encrypt_file and
ask_decrypt_key, have a positive impact on the confidentiality requirements.

4.3 Authorizer

The association “isAuthorizedFor” can be validated by an authorizer. As an input, the
authorizer receives access requests from a process and decides whether a process has
the right to access the protected file. The following security actions, e.g., are needed:

• (check_read_right) check the read right of the process requesting a read access,
• (authorize_req) authorize the process to read from the file,
• (not_authorize_req) forbid the process to read from the file,
• (upd_rd_r) update read rights, and
• (authenticate_right_change) authenticate the party asking for right change.

 A Requirement Centric Framework for Information Security Evaluation 57

The functionality of authentication and errors enabled by poor design might lead to,
e.g. upd_rd_r_wrong_unintent, upd_rd_r_wrong_intent, and update_rd_r_correctly –
all of which are atomic security actions of upd_rd_r.

4.4 Design and Implementation

The actual design and implementation generates more security actions; e.g., failure to
compartmentalize critical parts of the system, such as the authorizer, or programming
errors generate more negative security actions. In practice, the security actions
discussed above include several atomic security actions.

5 Practical Considerations

In the previous section we presented an approach to security modelling and
evaluation. Unfortunately, in practice, a thorough modelling of security behaviour is
only possible in a few ideal cases. Typically, today’s software-intensive products are
very complex, their functionality is not well documented and often has unknown
dependencies. Development of an ambiguous security behaviour model at an atomic
security action level is a very challenging and time-consuming task.

The practical needs for security evaluation are often limited too. This results to a
situation in which we should be able to try to find the security actions that are most
critical and most typical. To reach the desired security level it is not important to try
and measure every part and component that affects security. Instead, we need enough
evidence to make trade-off decisions.

We propose the following process to carry out practical-level security evaluation:

• Risk and threat analysis. Carry out risk and threat analysis of the system and its
use environment if not carried out before. In real-world engineering, risk and threat
analysis are not carried out adequately. Consequently, the set of security
requirements might not be sufficient.

• Define security requirements in a way that they can be compared with the
security actions of the system. Based on the threat analysis, define the security
requirements for the system, if not yet defined. These are lacking in many practical
systems.

• Prioritize security and other requirements. The most critical and most often
needed security requirements should be paid the most attention.

• Model the security behaviour. Based on the prioritized security requirements,
identify the functionality of the system that forms the security actions and their
dependencies in a priority order.

• Gather evidence from measured, reputation and tacit security information.
• Estimate the probabilities and impacts of security actions based on the

evidence.
• Aggregate the results from the probability and impact estimation to form a

clear picture of whether or not the system fulfils the security requirements.
and context.

58 R. Savola

6 Discussion and Future Work

A practical security evaluation framework based on the ideas discussed in this paper
requires a lot of future development. In the following we list some goals for the future
work.

A suitable language needs to be developed to formalize and express security
actions and their cross-dependencies, as well as security requirements. Both the
system security behaviour and requirements need to be expressed in a way that it is
possible to compare them. A language able to express behavioural patterns is a good
candidate for this purpose. Security patterns are currently under development in the
pattern community. Security patterns augmented with semantics representing security
properties could offer a feasible means to model security requirements and security
behaviour of systems. Possibly, the use of fuzzy logic might be connected to that kind
of language. A mechanism to describe the interactions and cross-dependencies of
security actions is needed.

A knowledge base of typical security constructs should be established to offer
pattern information on their security behaviour. The security actions of a system can
be expressed using patterns. Typical constructs include encryption elements,
firewalls, proxies, compartmentalization, inter-process communication, access control
mechanisms and authentication mechanisms. The information needs to be collected
experimentally to enable development of the knowledge base.

Security evaluation or testing can be done in practice if this kind of knowledge
base support could be used for security behaviour modelling and suitable security
requirement documentation of the system is available. Furthermore, the process of
evidence collection from different sources, and aggregation of it, should be developed
using experimental information from real-world systems.

7 Conclusions

We have discussed the problem of information security evaluation in the context of
software-intensive systems. There are no systematic means of carrying out security
evaluation. In this paper we have presented a conceptual holistic framework for
security modelling and evaluation with some practical considerations. The framework
is based on evidence collection and security requirement centred impact analysis.

This is not a rigorous solution and future work needs to be done on developing a
suitable language for expressing security requirements and security behaviour in an
unambiguous way. A collection of security patterns would be very helpful in
modelling the security behaviour when carrying out security testing or
experimentation.

In practical security evaluation, requirements should be prioritized and the system
modelled only to the extent needed to conform to the trust assumptions. Full
modelling of practical systems is not feasible without automated approaches that
are might be very challenging to develop.

 A Requirement Centric Framework for Information Security Evaluation 59

References

1. Avizienis A., Laprie J.-C., Randell B. and Landwehr C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. In: IEEE Transactions on Dependable and Secure
Computing, Vol. 1, No. 1, January/March, (2004) 11-33

2. Brocklehurst S., Littlewood B., Olovsson T. and Jonsson E.: On Measurement on
Operational Security. In: IEEE AES Systems Magazine, Oct. (1994) 7-15

3. Firesmith D. G. (2005) Analyzing the Security Significance of System Requirements. In:
Symposium on Requirements Engineering for Information Security (SREIS), August 25,
2005, Paris. (2005)

4. Greenwald M., Gunter C., Knutsson B., Seedrov A., Smith J. and Zdancewic S.: Computer
Security is not a Science (but it should be). In: Large-Scale Network Security Workshop,
Landsdowne, VA, March 13-14 (2003)

5. Haley C. B., Laney R. C., Moffett J. D. and Nuseibeh B.: Using Trust Assumptions in Security
Requirements Engineering. In: 2nd International iTrust Workshop on Trust Management in
Dynamic Open Systems, 15-17 September, Imperial College, London, UK (2003)

6. Haley C. B., Laney R. C. and Nuseibeh B.: Deriving Security Requirements from
Crosscutting Threat Descriptions. In: AOSD 04, March, Lancaster, UK (2004)

7. ISO/IEC 15408: Common Criteria for Information Technology Security Evaluation,
Version 2.2 (2004)

8. ISO/IEC 21827: Information Technology – Systems Security Engineering – Capability
Maturity Model (SSE-CMM) (2002)

9. Jonsson, E.: Dependability and Security Modelling and Metrics, Lecture Slides, Chalmers
University of Technology, Sweden (2003)

10. Jürjens J.: UMLSec: Extending UML for Secure Systems Development. In: UML
2002 – The Unified Modeling Language, Vol. 2460 of LNCS, Springer (2002) 412-425

11. Kajava J. and Savola R.: Weak Signals in Information Security Management. In:
Proceedings of the International Conference on Computational Intelligence and Security
(CIS) 2005, Part II, Xi’an, China, December 15-19, Springer (2005) 508-517

12. McDermid J.A. and Shi, Q.: A Formal Approach for Security Evaluation. In: Proceedings
of the 7th Annual Conference on Computer Assurance, Systems Integrity, Software Safety,
Process Security (1992) 47-55

13. Nicol D., Sanders W. H., Trivedi K. S.: Model-Based Evaluation: From Dependability to
Security. In: IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 1,
January/March (2004) 48-65

14. Priebe T., Fernandez E. B., Mehlau J. I. and Pernul.: A Pattern System for Access Control.
In: 18th Annual IFIP WG 11.3 Conf. on Data and Applications Security, Sitges, Spain,
235-249 (2004)

15. Schneier B.: Attack Trees. In: Doctor Dobb’s Journal, December (1999) 21-29
16. Schumacher M. and Roedig U.: Security Engineering with Patterns. In: Pattern Languages

of Programs, September 11-15, Monticello, Illinois (2001)
17. Trusted Computer System Evaluation Criteria, “Orange Book”, U.S. Department of

Defense Standard, DoD 5200.28-std (1985)
18. Voas, J.: Why is it so Hard to Predict Software System Trustworthiness from Sofware

Component Trustworthiness? In: Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems (2001)

19. Voas J., Ghosh A., McGraw G., Charron F. and Miller K.: Defining an Adaptive Software
Security Metric from a Dynamic Software Failure Tolerance Measure. In: Proceedings of
the 11th Annual Conference on Computer Assurance, Systems Integrity, Software Safety,
Process Security (1996)

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 60 – 75, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model-Based Method for Security Configuration
Verification

Hiroshi Sakaki, Kazuo Yanoo, and Ryuichi Ogawa

Internet Systems Research Laboratories, NEC Corporation,
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa, Japan

h-sakaki@cq.jp.nec.com, k-yanoo@ab.jp.nec.com,
r-ogawa@bq.jp.nec.com

Abstract. Various kinds of access control mechanisms have been employed in
today’s computer systems to protect confidential information. Since high exper-
tise is required for the system configuration maintenance, detecting vulnerabili-
ties due to configuration errors is a difficult task. In this paper, we propose a
model-based configuration verification method that can find complex errors of
two major access control mechanisms, network packet filtering and file access
control. This method constructs an information flow model using the configura-
tions of the two mechanisms and verifies whether the system is configured to
suffice access policies defined by system administrators. Through the develop-
ment of a prototype system and its experimental use, we confirmed that the pro-
posed method could discover configuration errors of Web servers that might
cause information leakage.

1 Introduction

Various kinds of access control mechanisms are employed in today’s computer sys-
tems to protect confidential information. Administrators should maintain configura-
tions of these mechanisms properly. But the configurations are often described in
different formats and maintained by different administrators. Also the access control
mechanisms often work collaboratively, so that one small configuration change can
affect many other ones. Still, the whole configurations must be subject to the same
security policies to keep information secret. The administrators must take proper
action in all such situations. Therefore verifying whether the configurations satisfy
given security policies is a quite difficult task, requiring high expertise both on secu-
rity and network management.

For example, suppose we have to verify the configurations of a simple server client
system as shown in Fig. 1. The system employs only two major access control
mechanisms, packet filtering and file access control, but they are implemented in
several different ways such as:

• Packet filtering rules in the Firewall
• A File access control list of operating system on the Web Server
• IP-based access control rules of Apache on the Web Server
• A File access control list of Apache on the Web Server
• Packet filtering rules of a Personal Firewall on the Client

 A Model-Based Method for Security Configuration Verification 61

We need to read the configuration files, usually written in different formats, to see
if any erroneous configurations exist. We also need to compare them according to the
network topology, because a configuration mismatch of two different access control
mechanisms can be a security hole and should be regarded as a configuration error.

Fig. 1. Example of simple server client system

We also should consider the layered structure of applications. The software
implementation usually has a layered structure and access control mechanisms are
usually implemented with the middleware or the platform software. For example the
access control mechanism of Apache depends on the OS as shown in Fig. 2. In
this case we say that the Apache is an upper access control mechanism, and the OS
is a lower one. In Web Server (A) in the figure, the user id “sakaki” on the Apache
is identified as “nobody” by the OS, and a file “/data/” is identified as
“/var/www/htdocs/data/” by the OS. When administrators verify whether “sakaki”
can read “/var/www/htdocs/”, they have to take account of these dependencies and
check not only whether the user “sakaki” has a read access right but also whether
“nobody” has a read access right.

In addition, administrators have to consider that the layered structure varies accord-
ing to system configurations. For example, they should take into account whether a
super server such as Xinetd is installed (Web Server (B)). If Xinetd is installed and it
is configured to execute Apache, administrators have to consider the IP-based access
control on Xinetd as shown in the Web Server (B).

Thus, the verification requirements are summarized as follows:

(1). Configurations of a packet filtering mechanisms and a file access control
mechanism should be verified.

(2). The combination based on network topology should be verified.
(3). The combination based on layered structure of access control mechanisms

should be verified.

For these requirements, we propose a model-based verification method for detect-
ing erroneous configurations, called the Information Leakage Path AnalysiS (LPAS)
Method. It verifies whether a system is configured to suffice access policies defined
by system administrators.

62 H. Sakaki, K. Yanoo, and R. Ogawa

Fig. 2. Layered structure of applications

In this paper, we describe details of the LPAS Method, and show an experimen-
tal implementation of a prototype to verify a DMZ network. Through the develop-
ment of a prototype system and its experimental use, we confirmed that the
proposed method could discover configuration errors of Web servers that might
cause information leakage.

This paper is structured as follows. In Section 2 we define the LPAS Method. In
Section 3 we define access policies used in the verification. In Section 4 we explain
the verification algorithm. In Section 5 we describe an implementation prototype of
the LPAS Method. In Section 6 we describe a verification experiment. In Section 7
we describe related work.

2 LPAS Method

2.1 Overview

The LPAS Method is a model-based verification method using an information flow
model. The method collects configurations such as file access control mechanisms of
OS and packet filtering rules of firewalls. It makes a model that describes an informa-
tion flow, and detects unauthorized access paths throughout an entire system. It there-
fore enables us to detect vulnerabilities due to configuration errors or misplacement of
documents, and fix these configuration errors.

The LPAS Method is composed of three modules: Model Generator, Translator,
and Verifier (Fig.3). The Model Generator collects packet filtering rules and access
control lists to generate the LPAS Model. The Translator generates policy matching
rules from Access Policies and Category Specifications. The Verifier verifies the
LPAS Model with the rules.

 A Model-Based Method for Security Configuration Verification 63

Fig. 3. Overview of LPAS Method

2.2 Definition

The LPAS Model, which is constructed from the configuration parameters of a target
system, describes all possible access paths from users to files. In order to meet the
requirements given in Section 1, the model is fundamentally built over the four ele-
ments shown in Definition 1.

Definition 1. LPAS Model is a tuple (TLSCC FP ,,,), where:

(A) A packet filtering PC is a set of authorized network accesses such that

SSCP ×⊆ , where S is a set of sockets in the target system.

(B) A file access control FC is a set of authorized file accesses such that

FUCF ×⊆ , where U is a set of user or group identities, and F is a set of file

identities.
(C) A Network topology T is a graph G over physical network nodes such

that),(ENG = , where E (NN ×⊆) is a set of pairs of physically adjacent net-

work nodes, where N a set of network nodes identified by specific IP addresses..
(D) A Layered Structure LS is a relation among elements (NCSFU P ∪∪∪∪⊆)

on different access control mechanisms.

This definition is designed to ensure that we can generate the four elements inde-
pendently. By analyzing configurations of each access control mechanism, we can
generate CP and CF without regard to configurations of other access control mecha-
nisms. T can be taken from a network management system such as OpenView[5]. LS
can be generated from the system configuration and specifications of each access
control mechanism.

Since we can generate an entire system model by combining independently gener-
ated models, our method is more scalable and feasible than previously proposed
method such as [10].

64 H. Sakaki, K. Yanoo, and R. Ogawa

In order to impose actual security configurations on the remaining components, we
make the components more detailed as follows.

A detailed model of PC :
An actual rule of packet filtering is specified with the following elements:

• A source end point identified with a pair of an IP address and a port number.
• A destination end point identified with a pair of an IP address and a port

number.

In order to impose these elements on PC , we define Ss ∈ as a pair of an IP ad-

dress and a port number such that),(portips = , where ip is an IP address of s , and

port is a port number that s may use in communication time.

A detailed model of FC :

In real systems, file access control is performed to access control lists (ACLs) on
individual network nodes. Generally, an ACL can be viewed as a set of file permis-
sions, each of which specifies a triple of a user identity, a file identity, and an author-
ized action such as “read” and “write.” Such file permissions are modeled as “can-
Read” and “canWrite” relations which are defined as follows.

Definition 2. “canRead” relation RF is a set of pairs of a user identity Uu ∈ and a

file identity Ff ∈ such that RFuf ∈),(if and only if there is a file permission that

allows a user identified with u to read a file identified with f . Similarly, “canWrite”

relation WF is a set of pairs such that WFfu ∈),(if and only if there is a file permis-

sion that allows a user identified with u to write a file identified with f .

Definition 3. A user network node relation UN is a set of pairs of a user u and a
socket s such that UNsu ∈),(. RN and WN are subsets of UN , which mean “can-

Read” and “canWrite” relations from u to s , respectively.

A detailed model of LS :
A layered structure is described in Section 1. For example, a user with the identity
“sakaki” on the access control mechanism such as an Apache may be identified as a
user with the identity “nobody” on the lower access control mechanisms such as an
OS. In another case, he may be identified as “root” when using setuid applications.
Regarding file identities, we can find similar cases in file aliases. For example, if the
Apache is configured with “alias /test/ = /var/www/test/”, the file identity
“/var/www/test/” on the OS is treated as the file identity “/test/” on the Apache. To
identify such ambiguity, we introduce the following identity relationships.

Definition 4. UR is a user identity relation such that URuuuu ∈∀),(;, 2121 if and only

if both 1u and 2u identify an identical user. Also, FR is a file identity relation such

that FRffff ∈∀),(;, 2121 if and only if that both 1f and 2f identify an identical file.

 A Model-Based Method for Security Configuration Verification 65

In addition to the layered structure between files and users, we also consider the lay-
ered structure among network elements.

For example, if the access control mechanism of the Xinetd is configured as Web
Server (B) in Fig. 2, packets coming from the network node n on the OS are firstly
sent to the packet filtering cP on the Xinetd, and then sent to the socket s on the
Apache. On the other hand, if the access control mechanism of Apache is configured
as Web Server (A), packets coming from the node n on the OS are directly sent to the
socket s on the Apache.

To identify such ambiguity, we introduce relations among sockets, network nodes,
and packet filtering rules. The relations stand when elements)(PCSN ∪∪∈ on the

lower access control mechanism communicate with other elements)(PCS ∪∈ on the

upper access control mechanism.

Definition 5.)(PNI CNR ×⊆ is a binary relation such that NIP Rcn ∈),(if and only if

an incoming packet through the network node n is evaluated by the packet filter cP.
)(NCR PNO ×⊆ is reverse of RNI, where NOP Rnc ∈),(if and only if an outgoing

packet from packet filter cP is sent to the network node n. To be concise, we denote

NONI RR ∪ by RN.

Similarly)(SCCSR PPS ×∪×⊆ and)(NSSNRNS ×∪×⊆ are defined for rela-

tion between sockets and a packet filtering rules, and sockets and network nodes,
respectively.

The following subsection shows an example of the LPAS Model generation from
actual system configurations.

2.3 Example LPAS Model

Fig. 4 shows a graphical example of an LPAS Model. It represents a server client
system such as that in Fig. 1, and the Web Server is configured as Web Server (B) in
Fig.2. To save space, we describe only details of the Web Server.
Apache is configured as follows:

(1) Basic authentication is enabled, and a user named sakaki is defined.
(2) Only authenticated users can read /secret/sec.html.
(3) Files in the /w directory are served as Web contents.
(4) The server accepts connection on port 80.
(5) Apache process runs as the user nobody.

Linux OS is configured as follows:
(6) IP address of the Web Server is 192.168.2.3.
(7) The user nobody can read files in /w directory.

Xinetd is configured as follows:
(8) Only the hosts with IP address 192.168.1.2 can connect Apache via port 80.

The Model Generator reads and analyzes the above configurations, and generates the
nodes and the arcs in Fig.4. For example, it generates RF arcs for (3), RU arcs for (5),
FR arcs on Linux for (7), and FR arcs on Apache for (2).

66 H. Sakaki, K. Yanoo, and R. Ogawa

E

FW,FR NW, NR
Ru

RF

RS

U
F

CP

LinuxLinux

192.168.1.2

sakaki
/

Web ClientWeb Client

/

192.168.1.2,1025,,

sakaki

XinetdXinetd

/w/index.html

192.168.1.2,1025,192.168.2.3,80

192.168.2.3

/w/secret/sec.htmlnobody

ApacheApache
anonymous

sakaki /secret/sec.html

,,192.168.2.3,80

/index.html

192.168.2.1

192.168.1.1

IptablesIptables

192.168.1.2,1026,192.168.2.3,80

192.168.1.3,1025,192.168.2.3,22

OSOS LinuxLinux

Client FW Web Server

Access control mechanism
RN

N

Host

S
RNS

Fig. 4. Graphical example of an LPAS Model

3 Access Policy

In general, an access policy is modeled as an access matrix such as (S, O, A), where S
is a set of subjects (e.g., users), O is a set of objects (e.g., files), and A is a set of
actions (e.g., read and write). We take an access matrix model enhanced with service-
based conditions C so that it becomes (S, O, C, A). This enhanced model allows us to
specify unauthorized access paths including an untrusted service such as a Web appli-
cation with no SSL functionality or authentication process.

Furthermore, as a practical policy specification, we introduce category specifica-
tions for users, files and services (e.g., user roles, confidential level for documents
and service functionalities, respectively) as well as domain specifications that corre-
spond to network domains.

An Access Policy used in an LPAS based verification method is formalized as
follows.

Definition 6. An Access Policy is a set of tuples (cS, ds, cO, do, sC, a). Each component
is defined as follows:

•)(SS Cc ∈ is a subject category, where SC is a predefined set of subject catego-

ries. A user-category relation)(SUCS CUR ×⊆ is defined such that

UCSS Rcu ∈),(, if u is a member of cS.

•)(SS Dd ∈ is a subject domain, where SD is a predefined set of subject do-

mains. A user-domain relation)(SUDS DUR ×⊆ is defined such that

UDSS Rdu ∈),(, if u is located on Sd .

 A Model-Based Method for Security Configuration Verification 67

•)(OO Cc ∈ is an object category. A file-category relation)(OFCO CFR ×⊆ is

defined such that FCOO Rcf ∈),(.

•)(OO Dd ∈ is a object domain. A file-domain relation)(OFDO DFR ×⊆ is de-

fined such that FDOO Rdf ∈),(, if f is located on Od .

•)(CC Ss ∈ is a service category that specifies a condition with respect to access

paths from S to O. CS is a predefined set of service categories. A network-

category relation)(CSSC SSR ×⊆ is defined such that SSCC Rss ∈),(, if s is

specified by Cs .

• a is an action such as read and write.

Note that most of the category specifications (i.e., RUCS, RUDS, RFCO, RFDO and
RSSC) can be constructed automatically, so that the administrator can specify access
policies easily. RUCS and RUDS can usually be retrieved from directory services, and
RFDO is constructed by scanning files on the computer. RSSC is small enough for the
administrator to define it, and RFCO may be constructed by analyzing the contents of
the files [1].

Usually an Access Policy has two types, one to permit policies, and the other to
deny policies. In this paper, we use only the latter to detect information leakage.
Therefore, we describe Access Polices as follows:

(1). deny(“any user”, “Inlab”, “any file”, “DMZ”, “unencrypted password”, read)
This means that no users on Inlab may read any file on servers in DMZ segment via
services that use unencrypted passwords.
(2). deny(“temporary personnel”, “any domain”, “personal”, “internal server”, “any

service”, write)
This means that temporary personnel must not write personal files on internal
servers in any service.

4 Verification Algorithm

The Verification Algorithm validates an LPAS Model in three steps as follows:

(1). Generate policy matching rules from access policies.
(2). Enumerate possible information flows, which describe permissive information

flows on file access mechanisms, without regard to packet filtering mechanisms.
(3). Check that no possible information flows violate the matching rules, with regard

to packet filtering mechanisms.
(4). Report access paths that may cause information leakage.

These steps are described below.
In the first step, the Translator translates access policies into policy matching rules.

Policy matching rules }),{(writereadSFUPM ×××⊆ is a set of unauthorized ac-

cess paths such that PMreadsfusfu ∈∀),,,(;,, if and only if the Access Policy

prohibits the user u from reading the file f via the service s.

68 H. Sakaki, K. Yanoo, and R. Ogawa

An Access Policy),,,,,(asdcdcdeny CFOUS is translated to PM, such that

PMasfusfu ∈∀),,,(;,, if and only if ∧∈∧∈ UDSSUCSS RduRcu),(),(

SSCCFDOOFCOO RssRdfRcf ∈∧∈∧∈),(),(),(holds.

In the second step, the Verifier constructs a directed graph),(ENM ′′=′ ,

where NNESCNFUN P ′×′=∪∪∪∪= ',' , and every Ee ′∈ satisfies all of the

following conditions:

(1). EFFNNRRRRe WRWRSNSNP ∪∪∪∪∪∪∪∪∈ (refer again to Section 3).

(2). if RFe∈ , for every e= (f, u), the following conditions must be satisfied:

(a) RUF FufRuuRffuf ∈′′∈∧∈′′∀),())',(())',((;, , and

(b) for any such)','(uf ,)','(uf also satisfies condition (2).

(3). if WFe∈ , for every e= (u, f), the following conditions must be satisfied:

(a) WUF FfuRuuRffuf ∈′′∈∧∈′′∀),())',(())',((;, , and

(b) for any such),'(fu ′ ,),'(fu ′ also satisfies condition (3).

Conditions (2) and (3) imply that the upper file access is permitted only if the
lower access control mechanism allows users access between corresponding files and
users.

Each path in M' represents a possible information flow, which describes a permitted
information flow on file access mechanisms, without regard to packet filtering
mechanisms.

In the third step, the Verifier detects paths (called unauthorized paths) in the directed
graph M' that violate given policy matching rules. For a policy matching rule m =
(f,u,s,a), the procedure identifies the unauthorized paths with respect to m as follows:

(1) Iterate the following steps for each directed path ES =(e1,e2, ...,en), where ES is
a directed path from f to u in M ′ (if a=read), or from u to f in M ′
(if a=write).

(2) If ES does not include s, then there is no unauthorized path with respect to m.
(3) Let ej be the first occurrence of an element of NW in ES, and let ek be the first

occurrence of an element of NR in ES. If neither ej nor ek exist, output ES as an
unauthorized path with respect to m. Note that if ES includes at least two socket
nodes, then both of ej and ek exist. Since for any socket node s, s is adjacent to a
user node according to Definitions 2 and 6.

(4) Let ESjk = (ej, ..., ek) be a substring of ES. Note that j < k always holds and
every edge in ESjk is a member of ERRRRNN NSSNPWR ∪∪∪∪∪∪ (by

definition of the LPAS Model).
(5) Let (i1, p1) be the source pair of an IP address and a port number, which corre-

sponds to the socket node sk connected with ek. Similarly, let (i2, p2) be the des-
tination pair, which corresponds to the socket node sj connected with ej. If there
exists a packet filter (PC∈) that blocks a packet from (i1, p1) to (i2, p2), then ES

is not an unauthorized path.

 A Model-Based Method for Security Configuration Verification 69

(6) If there are other elements of NW in the rest of ES(=(ek+1, ..., en)), repeat (3) to
(6). Otherwise, output ES as an unauthorized path with respect to m.

Step (2) ensures that any possible information flow that does not include s is not an
unauthorized path. Steps (3)-(5) ensure that any possible information flow that in-
cludes packet filtering that prohibits communication between ej and ek is not an unau-
thorized path.

5 Implementation

In this section, we describe the implementation of a prototype of the LPAS Method
(Fig. 5) which is composed of the Agents, the Manager, and the Policy Editor.

Each agent corresponds to an access control mechanism, and is deployed on the
target system. The Manager and the Policy Editor are deployed on the LPAS Server.

Target Network Peripheral

Operating System

Packet Filter

Target Computer

Operating System

Middleware

Application

LPAS Server

Application Agent

Middleware Agent

OS Agent

Information
about layered
structure of
applications

Manager

A local
LPAS
Model

Policy Editor

policy matching rules

Verification
Results:

List of files
that may leak

packet
filtering

rules

SCCML Scanner

SCCML Agent

Network
Topology

A local
LPAS
Model

Fig. 5. Implementation of LPAS Method

The Agents implement the Model Generator method, which collects configurations
of a target system and generates LPAS Models. Policy Editor implements the Transla-
tor method, which translates the Access Policies given by the administrator into pol-
icy matching rules. The Manager implements the Verifier method, which integrates
models generated by the Agents and verifies whether the LPAS Model satisfies the
policy matching rules.

5.1 Agents

In Fig. 5, when the Manager sends a request for creating a local LPAS Model of the
Target Computer, the OS Agent is invoked to collect configurations of the OS such as
file paths, user IDs and file permissions. After creating a model for the OS, the OS
Agent invokes another agent for the upper access control mechanisms according to

70 H. Sakaki, K. Yanoo, and R. Ogawa

the layered structure. In this way, each invoked agent generates a model for each
application and merges it into the local LPAS model that reflects the layered
structure.

As for network peripherals such as routers and firewalls, we employ a common
agent, SCCML Agent, instead of implementing different agents for each peripheral.
The agent adopts a common file format, SCCML, for describing packet filtering rules
written in different formats [2]. We also employ SCCML Scanners which collect the
configurations of major routers and firewalls and translate them into rules in SCCML
format. With the translated rules SCCML Agent can generate a local LPAS Model of
various kinds of network peripherals.

5.2 Policy Editor and Manager

Policy Editor implements Policy Input UI and the Translator. The Policy Input UI
displays domains and categories of users, files and service in menu format. The ad-
ministrator can define policies merely by selecting category and domain from the
menu with the Policy Input UI (Fig. 6).

Fig. 6. View of editing Access Policy

After input is completed, the Translator translates the Access Policy into the policy
matching rules based on category specifications.

The Manager collects local LPAS Models generated by the Agent and generates an
integrated LPAS Model from these models with network topology information. The
Manager then verifies whether the integrated model satisfies the given access policies.

6 Verification Experiment

 6.1 Verification Target

To evaluate the LPAS Method, we select a verification target whose configurations
are shown in Fig. 7. The target system has a WWW Server, a CISCO Router, a num-

 A Model-Based Method for Security Configuration Verification 71

ber of clients in an external network (CEN) and other clients in an internal network
(CIN). The router is a gateway between the CIN and the CEN. The WWW
Server provides documents for R&D division members with the domain
“www-i.example.co.jp”, and also provides documents for other divisions with
“www-e.example.co.jp”. These two domains are implemented by the virtual host
mechanism of Apache. The WWW Server also has the secret document “secret.html”,
and it provides this document with “http://www-i.example.co.jp/p/secret/secret.html”.
Users in CEN cannot access with this URL because the IP-based access control
mechanism of the Apache is enabled.

There are three configuration files related to the Apache, one for the global con-
figuration for the Apache, one for the internal virtual host, and one for the external
virtual host. The WWW Server has about 5300 files, and the SCCML Scanner has 10
compiled rules of the router in SCCML format.

Fig. 7. Block diagram of experimental system

Two agents are installed on the WWW Server, one for the OS, and the other for the
Apache. The former collects file permissions of the OS, and the latter reads and ana-
lyzes configuration files of the Apache. The SCCML Agent and the SCCML Scanner
are located on the LPAS Server. The SCCML Scanner reads the configuration of the
router via tftp, and translates it into the SCCML format. And then the SCCML Agent
generates a local LPAS Model of the router by analyzing the packet filtering rules
written in the SCCML format.

Instead of describing the whole information flow of all clients, we employ typical
client models of common client behavior and configurations such as Internet Ex-
plorer. The Manager combines these typical models and models generated by Agents
into an integrated LPAS Model, and verifies whether the integrated model satisfies
the following policy.

72 H. Sakaki, K. Yanoo, and R. Ogawa

deny(“any user”, “CEN”, “secret”, “WWW”, “any service”, “read”)

This policy means that CEN users must not read secret files on the WWW Server.

6.2 Experimental Results

Fig. 8 shows experimental results we obtained. The top of the figure shows a list of
files that may leak, and the bottom shows a list of configuration files that may cause
information leakage. It takes 18 minutes for the Manager to verify whether the LPAS
Model satisfies the Access Policies.

Configurations that may
cause information leakage

Files that may leak

Fig. 8. Verification results from the experimental system

An information leakage path is detected as shown in Fig. 9. The path means that
the user “user” in the CEN can access the file “/home/usr/public_html/s/secret.html”
via port 80. The configuration vulnerability that causes this information leakage path
is the lack of configurations of IP-based access control rules of the Apache. This is
because the directory “/public_html/” is selected as the UserDir of the Apache, so that
it can be read via both virtual hosts.

Therefore, the administrator must have configured IP-based access control on both
virtual hosts to prevent information leakage. However, he or she overlooked the fact
that the Apache configuration is divided into three files, and did not configure IP-
based access control on the virtual host with “www.e-example.co.jp”.

 A Model-Based Method for Security Configuration Verification 73

OSOS

Packet FilterPacket Filter

192.168.1.10
,1025,192.16

8.2.3,80

192.168.2.1

192.168.1.1

ApacheApache

/home/usr/p/s/secret.html
apache

,,192.168.2.3,80

192.168.2.3

nobody
/www2.example.co.jp

/~usr/s/secret.html

LinuxLinux

user
/

/

WindowsWindows

Web ClientWeb Client

user

192.168.1.10,1025,,

192.168.1.10

CISCO RouterCEN WWW

Fig. 9. Detected information leakage path

7 Related Work

Several vulnerability assessment tools have been proposed and used for detecting
system configuration errors. They can be classified into two categories: signature-
based and model-based.

Most practical vulnerability assessment tools [3, 4] are signature-based. They scan
for weak passwords to assess the security of password files, check whether any files
can be modified, and find potentially vulnerable services such as anonymous ftp.
Signature-based tools detect vulnerabilities based on signatures defined in advance.
Therefore, even though they can detect obvious configuration errors such as world-
readable password files, they cannot detect configuration errors caused by inconsis-
tent configurations.

Attack Graph[6,7,8] is a model-based method that employs model checking for
vulnerability analysis. An attack graph represents relations of vulnerabilities and ex-
ploits. The method verifies whether an attack graph may reach an undesired condition
when several vulnerabilities exist. Although Attack Graph can detect potential con-
figuration vulnerabilities, developing an attack graph requires a high level of exper-
tise. The method also requires high computational power for reasoning, and thus we
consider Attack Graph to be too complex for detecting misconfigurations of access
control mechanisms.

MulVAL[10] employs Datalog for expressing vulnerabilities and system configu-
rations. When a policy such as allow(Everyone, read, webPages) is given, the
Datalog engine decides whether it holds or not. Although MulVAL focuses on
vulnerability assessment, it can be used for configuration verification. Being based on
Datalog, it has more expressive power than the LPAS method. On the other hand,
MulVAL does not provide mechanisms for collecting network configurations. Ad-
ministrators thus have to provide host access control lists that express all accesses
between hosts allowed by the network. Thus MulVAL is rather difficult to use and too
error-prone for ordinary users.

ISM [9] is another model-based configuration verification method that employs
Datalog. Its target objective is very similar to that of the LPAS method: detecting policy

74 H. Sakaki, K. Yanoo, and R. Ogawa

violations caused by inconsistent configurations of access control mechanisms. How-
ever, the paper does not address how to construct models from network configurations.

8 Conclusion and Future Work

This paper described a model-based analysis method, which we call the Information
Leakage Path Analysis (LPAS) Method, for detecting configuration vulnerabilities.
The method collects the parameters of two major access control mechanisms: access
control and packet filtering. Its Model Generator constructs an LPAS Model that
represents information flows. Its Translator translates access policies defined by the
administrator into policy matching rules. Its Verifier then verifies whether the LPAS
Model satisfies access policies.

To evaluate the method's feasibility, we implemented a prototype system. Experi-
ments with it show that the LPAS System can find configuration vulnerabilities of a
live Web server.

While the LPAS Method promises to reduce system configuration maintenance
costs and time, a few problems remain to be resolved when we apply it to large prac-
tical systems. One known problem is that long computation time is required for model
generation. This is because the file element generation method is straightforward;
creating a new file element for every file used in applications, so that searching iden-
tity relations among the elements is time-consuming. To resolve this issue, we are
going to reduce the number of file elements by mapping files which have the same
ACLs onto one file element. In general, most files in the same directory have the
same ACLs, therefore this method will reduce the size of the model substantially.

Another known problem is that the LPAS Model is not expressive enough to de-
scribe network systems that deploy NAT and VPN. To resolve this issue we are going
to extend the LPAS Model by introducing NAT relation between a global IP address
and a set of local IP addresses and improve the verification algorithm so that it can
handle NAT relations.

As for the implementation, development cost of the agents might be a serious prob-
lem. Because we need to develop agents for each application that has access control
mechanisms with a programming language such as Java, it requires a large amount of
effort and expertise to develop them. One possible way to resolve this issue is to de-
sign a declarative scripting language for describing information flows in an applica-
tion. Because non-experts can develop agents easily by using this language, it can
reduce the development cost of the agents.

References

1. Hosomi, H. Sakaki and R. Ogawa, "An Information Leakage Risk Evaluation Method
Based on Sensitive Document Detection and Security Configuration Validation (2) Sensi-
tive Document Detection with Text and Structure Analysis", the 67th National Convention
of IPSJ, 2005 (in Japanese)

2. S. Okajo, K. Matsuda, R. Ogawa, A Policy Description Language for Policy-based Secu-
rity Management, 2004-CSEC-027, Vol.2004 No.129, December 2004 (in Japanese)

 A Model-Based Method for Security Configuration Verification 75

3. Nessus Vulnerability Scanner, http://www.nessus.org/
4. Symantec Enterprise Security Manager, http://www.symantec.com/Products/enterprise?

c=prodinfo&refId=855
5. HP OpenView, http://h50146.www5.hp.com/products/software/management/openview/
6. C. Phillips, L.P. Swiler, A graph-based system for network-vulnerability analysis, Proceed-

ings of the 1998 workshop on New security paradigms, pages 71 – 79 , 1998
7. C.R. Ramakrishnan, R. Sekar, Model-based Analysis of Configuration Vulnerabilities,

Journal of Computer Security Volume 10, Numbers 1-2 / 2002 pages189-209, 2003
8. S. Cheung, U. Lindqvist, M. W. Fong, Modeling Multistep Cyber Attacks for Scenario

Recognition, Proceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEX III), Washington, D.C., Volume I, pages 284–292, April 22–24, 2003

9. S. Bhatt, W. Horne, J. Pato, S. R. Rajagopalan, P. Rao, Model-based validation of enter-
prise access policies, HPL-20050152(R.1), 2006

10. X. Ou, S. Govindavajhala, A.W.Appel, MulVAL:A Logic-based Network Security Ana-
lyzer, 14th Usenix Security Symposium, 2005

Personal Computer Privacy:
Analysis for Korean PC Users

Young Chul Kwon, Sang Won Lee, and Songchun Moon

Graduate School of Management,
Korea Advanced Institute of Science and Technology(KAIST),

207-43 Cheongryang, Dongdaemun, Seoul 130-722, Korea
{yck, sangwonlee, scmoon}@kgsm.kaist.ac.kr

Abstract. In this paper, we introduce our own two-year experiments to
acquire sensitive personal information from discarded hard disks which
we had obtained with no ease in Korean second-hand PC markets. With
careful scanning, we found that most of hard disks were not adequately
cleaned, and had a plenty of confidential and sensitive personal data,
which could be utilized in crimes like identity theft. Collected private
data, analyzed based on the concept of identifiable individual, amounted
to 4,526 persons worth of data, including 3,584 resident registration num-
bers. The result also indicated that discovered data items of each person
were revealed to display a wide spectrum of sensitivity level.

Keywords: privacy, data forensics.

1 Introduction

Data in hard disks from discarded personal computers could be a substantial
privacy threat. Although hard disks must be disposed after permanent erasure,
many companies retire corporate PCs without concern for their data[8]. Nowa-
days, safe disposal of old computers becomes quite difficult in terms of overwrit-
ing time overhead. It is time-consuming to completely erase disks of enormous
capacity, e.g. hundreds or thousands gigabytes, as the time required for over-
writing a whole drive increases roughly in proportion to its size. Moreover, to
comply the environmental regulations for disposing electronic equipments, enter-
prises choose to leave retired drives reusable rather than to destroy or degauss
them. Since most of used hard drives are usually placed on sale to public or
donated to charity, potential criminals could find no difficulty in acquiring them
in a legitimate manner.

Actually, recent researches revealed that a considerable amount of personal
information has been found in hard drives purchased from second-hand markets.
For instance, in the analysis of used disks from U.K.’s PC markets[6], more
than half of disks contained customers’ and stakeholders’ private information.
They had identifiable names, contact details, and credit card numbers, which are
enough to be cloned in crimes such as identity theft. From a recent survey[5], the
majority of reported cases of identity theft seem to originate offline rather than

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 76–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Personal Computer Privacy: Analysis for Korean PC Users 77

online. As well as traditional methods such as stolen wallet or theft of paper
mail, used hard disk could be a good offline source for identity thieves.

However, preventing leakage of used PC’s data has paid less attention to
individuals at privacy risk. Conventional study focused on the protection of con-
fidential information merely in perspective of corporations. Note that previous
researches mainly discussed what would be the number of overwrites[4][10] for
safe sanitization. We will at this time instead attempt to answer more profound
questions like ”What part of data is potentially privacy-critical?” and ”What
kind of data is particularly vulnerable to identity-related crimes?” Our discus-
sion on these questions will help corporations and governments to establish PC
retirement policy based on customers’ privacy sensitivity.

Chapter 2 presents an overview of previous study on second-hand PC markets.
In chapter 3 we propose a standard procedure to evaluate experiments on PC
privacy from the viewpoint of individuals. We also introduce assumptions on
personal identifier and sensitivity criterion of private information. Chapter 4 is
dedicated to the two-year experiments based on hard drives that we had obtained
with no ease from Korean second-hand PC markets. The analysis results are
shown and then classified into our taxonomy for privacy sensitivity. In chapter
5 we conclude with new research ideas.

2 Related Works

A number of recent researches on second-hand PC market reported the possi-
bility of data leakage. They generally addressed canonical sanitization methods
like three-time overwriting strategy adopted in U.S. Department of Defense[10],
which could also be a guidance for corporates. They, however, have been limited
to revelation of simple-minded list of recovered data elements or document files.
Inattention has been paid to inspections like whether recovered data items would
violate personal privacy.

One of the attempts, Garfinkel et al.[3] of MIT, purchased 158 hard drives
mostly from eBay online auction service in 2002. Careful scanning has revealed
more than 5,000 credit card numbers, medical reports, detailed financial infor-
mation, several gigabytes of personal e-mails and pornography. Jones[6] in U.K.
discovered that from the 92 hard disks from internet auctions, computer fairs,
and a computer recycler, 49 of them(53 percent) had identifiable names and
47(51 percent) had details of personal information. We see from Table 1 that
the ratio of properly sanitized disks ranged from 9 to 17 percent of each sample.
Most of drives were not completely wiped and therefore contained recoverable
files.

We were able to note that there is no standard procedure to conduct analy-
sis of used hard disks that takes privacy impact on individuals seriously. Data
items of each person from drives were revealed to display a wide spectrum of
privacy threat levels, as for the instance the social security number of a person
is considered to possess a heavier privacy weight than the name of the person.
Once a SSN has been counterfeited, criminals could access not only person name

78 Y.C. Kwon, S.W. Lee, and S. Moon

but other crucial personal information in major public or private databases that
use SSN as search key. Studies like [2] have revealed how SSN is vulnerable to
various privacy intrusions. In this sense, the name and the SSN might be treated
separately for privacy sensitivity designation. Although summary results of pre-
vious studies, as in Table 1, could contribute to address security awareness levels
of a certain community like countries, the major metrics used in them, for ex-
ample number of hard drives or recovered files, merely do not convey anything
meaningful for the real privacy threat on individuals.

Table 1. Analysis by Number of Drives Examined

��������������Degree of erase
No. of drives

Garfinkel et al. [3] Jones [6]

(All functional) 129 92
Completely overwritten

12 (9 percent) 161(17 percent)
(No file structures contained)
Data removal attempted2 79 (61 percent) 44 (48 percent)
Recoverable data remained 81 (63 percent) 74 (80 percent)
Personal information remained N/A3 49 (53 percent)

1 12 of the 16 were procured from a computer recycling company.
2 Simple-minded efforts like simple deletion of files as well as disk format-

ting other than complete overwriting had been applied.
3 List of personal data items like credit card numbers had been merely been

reported.

3 Experiment Design

3.1 Analysis Process

Fig. 1 shows the experiment process of analyzing hard disks. We follow the
process that computer-literate people recover data by use of a general-purpose
PC and software. Our analysis focuses on functional hard disks, which can be
accessed with the tools and techniques available to computer literate users. Win-
nowing functional hard disks is to check whether they are connected to PC or
not. General recovery software and office tools extract files from target disks and
check sensitive personal information from the files. Extracted personal informa-
tion is used in statistics and summarization with the privacy sensitivity criteria
that is introduced in Section 3.3.

3.2 Assumptions on Personal Identifier

Because our data analysis counts each identifiable person, we need to choose ap-
propriate attributes for personal identifier. We mainly use resident registration
numbers and full names as the key attributes representing each individual. Resi-
dent registration number is a representative number that identifies each Korean
citizen. It is made up of 13 digits and has the meaning of birth date (year, month,

Personal Computer Privacy: Analysis for Korean PC Users 79

Readability
Test

Visible Data Extraction
& Recovery

Inspection with
Office Tool

and Document Viewer

Analysis with
Privacy Sensitivity Matrix

Fig. 1. Analysis Process for Used Hard Disks

and day) and birth place code in itself. In that RRN is an individual identifier
which is endowed by government, it is similar to social security number (SSN)
in U.S. However, SSN is subject to restriction for use, and if one declines to offer
his or her SSN, it does not make against his or her advantage for services. On
the other hand, RRN is widely used for recognizing a person’s identity in the
private sectors as well as the public ones. RRN should be essentially offered for
most services in Korea. Therefore, RRN has more impact on individuals’ privacy
in Korea than SSN do in U.S. We treat each RRN found in hard disks on the
Assumption 1 and 2.

Assumption 1. (Uniqueness of Resident Registration Numbers): A discovered
RRN is used as a unique key attribute.

Assumption 2. (Validity of Resident Registration Numbers): All the RRN dis-
covered are valid. That is, because they indicate actual persons, criminals could
misuse them for identity theft.

A full name is utilized instead if discovered personal data does not have RRN.
Our usage of full names is based on the Assumption 3.

Assumption 3. (Using Full Names as Personal Identifier): A full name with
family or given name is enough to be used as an individual identifier. In one
disk, a different person with the same name is handled as a same individual.

80 Y.C. Kwon, S.W. Lee, and S. Moon

3.3 Privacy Sensitivity Matrix for Used Personal Computers

To describe data found on recovered disk drives based on the privacy impact on
each PC user, we created privacy sensitivity matrix(see Fig. 2).

Privacy sensitivity level on the y-axis is the level of users’ perception of sensi-
tive data. Users’ perception of high sensitivity level means that users are hardly
willing to provide their private information in return for personalized service.
Ackerman’s privacy classification survey[1] reported that only 1 percent of their
sample felt comfortable with revealing their social security numbers, and 3 per-
cent with their credit card numbers respectively. Less than 20 percent of the
respondents were comfortable about disclosure of phone numbers, income, and
medical information. To the contrary, more than half of the sample would give
away their full names, age, email addresses, and preferences for TV show. In brief,
there is enormous difference of privacy sensitivity among personal attributes.

Type of data on the x-axis is divided into profile-related information and
identity-related information. This classification is originated from Spiekermann
et al.[9] regarding users’ privacy preferences in electronic commerce environment.
Identity-related information means data items with which one can surely infer
a specific person. Profile-related information is usually appended to identity-
related data and describes users’ profile(See Fig. 2 for examples). The risk of
private information owned by third-party incorporates privacy risk and imper-
sonation leading to fraud(= identity theft)[7]. Our sensitivity matrix embraces
these two types of risk – profile-related information is related to privacy risk and
identity-related information to identity theft.

4 Our Experiment

4.1 Acquisition of Used Hard Disks

How to obtain a sufficiently large number of used hard disk drives was the major
concern for this study. We have spent almost a half year to collect them only
through customer-to-customer online auction markets. We had tried other ways
to see if by any chance there is any possibility to get some of recycled PCs that
are regularly, most of cases in three years basis, disposed to second-hand PC
markets or to charity organization.

In the early four months of the experiment, we made a round of the recy-
cling centers administrated by the Seoul Metropolitan Government and exam-
ined whether we were able to obtain used PCs for analysis. However, we appre-
hended that used PCs of the recycling centers were not suited to our experiment
for the following reasons. Firstly, most of used PCs have no hard disk needed
for analysis. A hard disk is longer lived than other computer components and is
compatible with other computers with various function and performance. So as
soon as a PC was put into a recycling center, the hard disk in it is extracted by
used computer dealers and is resold at a used computer market like an online
auction. Secondly, although we obtain a used PC with a hard disk, there are

Personal Computer Privacy: Analysis for Korean PC Users 81

-

-

-

-

-

-

-

-

-

-

-

-

-

S

e
n

s
i
t
i
v

i
t
y

L

e
v

e
l

-

-

-

-

-

-

-

-

-

Type of data

Fig. 2. Privacy Sensitivity Matrix

many cases when we could not analyze further because careless recycling pro-
cess makes a hard disk damaged or disabled. That is to say, almost all PCs of
the recycling centers were nothing but ferrous scraps destined for abolition or
decomposition. Finally, we were obliged to give up collecting disks through the
recycling centers.

As another trial, we promoted to obtain disks through used computer whole
sellers. We tried to analyze data after purchasing 30 used hard disks at a time
at a store in Yongsan Electronic Market, the largest computer market in Korea.
However, we could not use these disks for analysis because of the uniformity of
samples. From the information on disk labels, we checked out that all the 30
hard disks were used at a bankrupt internet cafe. We were not able to find out
meaningful data because the outward appearances, capacities, manufacturers,
and options of all the hard disks were one and the same, and then all the hard

82 Y.C. Kwon, S.W. Lee, and S. Moon

disks were initialized as a condition of factory shipment through professional
complete deletion of disk sellers. We decided that to obtain a large amount
of disks through used computer whole sellers were not inconsistent with our
experimental goal, which intended to explore the possibility to find out personal
information from discarded PCs in Korea.

To increase the possibility of detecting personal information, we brought to a
conclusion that we should purchase only through customer-to-customer purchas-
ing, which of course requires tedious works. For one purchasing, we bought one to
three disks and avoided more than four disks from sellers who sold in large quan-
tities. The purchasing was carried out two times, 30 disks in August to December
2003 and the rest 25 in January to April 2005, mostly through internet auction ser-
vice (http://www.auction.co.kr). The total purchasing cost for 55 used hard
disks amounts to 400,000 Korean Won(� 400 U.S. Dollar). Before carrying out
data analysis, we numbered each hard disk and wrote its outward appearance and
physical specification for each. We also put down sellers’ information with referring
to sales for each hard disk. In case of buying hard disks by use of internet auctions,
minimal personal information (name, telephone number, address) should be mu-
tually exchanged between sellers and buyers. So, under favor of personal informa-
tion of second-hand sellers within hard disks through internet auctions, malicious
buyers are prone to make easy valuable information of sellers.

4.2 Initial Examination

As the first phase of analyzing disks, we first connected each drive to a computer
running Windows XP operating system and conducted recognition operations.
And then we wrote whether each disk is recognized or not and whether each is
formatted or not. After recognition process on 55 disks, we discovered that 17
disks were out of physical order and so we extracted files from the rest 38 disks.
Of the functional 38 disks, only two (5 percent) were found to be gone through
a complete erasure. 16 (42 percent) had one or more identifiable names. Table 2
shows the initial analysis results by the number of drives.

Table 2. Initial Analysis by Number of Drives Examined

��������������Degree of erase
No. of drives

Our experiment

(All functional) 38
Completely overwritten

2 (5 percent)(No file structures contained)
Data removal attempted1 17 (45 percent)
Recoverable data remained 30 (80 percent)
Personal information remained 16 (42 percent)

1 Simple-minded efforts like simple deletion of files as well as
disk formatting other than complete overwriting had been
applied.

Personal Computer Privacy: Analysis for Korean PC Users 83

4.3 Data Extraction and Recovery

Data extraction process for each hard disk is composed of three following stages:

1. Extracting regular files: Seeking all files that are visible and have names,
attributes, and contents in file systems (temporary files in folders like ’recycle
bin’ and internet cache files are included.)

2. Recovering deleted files and remained data blocks: Separating some recover-
able files by use of data recovery programs.

3. Storing files: Securing files from above two stages for further analysis.

Through the above stages, we extracted 3.2 gigabytes worth of data from 30
hard disks. For separating files that have the high possibility of including personal
information among data, we explore each file system of disks in search of file exten-
sion. The target file extensions are as follows; HWP as a Korean word processor
file of Hangul and Computer Co. Ltd., DOC, XLS, PPT, MDB as MS Office tool
files of Microsoft Corp., PDF as a universally used document file, and DBF as a
database file. Beyond these files, we found out some files with the following exten-
sion like PST as a MS Outlook file and MBX as a MS Outlook Express email file.
We so added them to the target data for detailed examination.

We examined some files among target files with the exception of damaged
files and default example files provided by application programs. And we sepa-
rated personal information of special concern and made a database with their
contents, the number of target persons, and field names. As a result, we dis-
covered variously sensitive personal information from personal profiles to secret
documents. Collected personal information amounted to 4,526 identifiable indi-
viduals. Among them, the number of private information data including resident
registration number is 3,584.

4.4 Results of Data Analysis

Data recovery produced the result that the majority of detected personal in-
formation is concentrated on several disks that would be used in enterprises.
We were able to infer the name of some organizations in which 12 hard disks
of totally 38 functional ones were used. All the distinguished organizations are
enterprises that cover a construction company, a national heath insurance com-
pany, an insurance company, and an IT solution company. We grasped that the
rest 26 disks would be used by individuals or unidentified organizations.

To make a more detailed study, we classified all personal information with
regard to the privacy sensitivity matrix(in Fig. 2 of Section 3.3). After we
understood identifiable name in each personal data, we grouped and counted
individual-related information of both profile-related and identity-related infor-
mation from low to high level of sensitivity. We found personal information of
more than low level in 16 hard disks, and show the detection record of personal
information for each disk. From seven disks originated from enterprises, there
was 4,478 people worth of personal information, which includes 3,566 RRNs and
other sensitive identity-related and profile-related data. 9 disks from individuals

84 Y.C. Kwon, S.W. Lee, and S. Moon

Table 3. Detailed Analysis Result for disks (from enterprises)

had 48 people worth of personal information with 18 RRNs. (See Table 3 and 4
for detailed list of number of exposed people and private data with only high
sensitivity level found in each disk.)

Personal Computer Privacy: Analysis for Korean PC Users 85

Table 4. Detailed Analysis Result for disks (from individuals)

Most of sensitive personal information is discovered in the hard disks used
in enterprises. A number of Excel files including laborers’ records of industrial
disaster victims or medical checkups were discovered in only one hard disk used
in a construction company. These files also have medical information including
personal history of disasters and disorder grades. In three disks used at a branch
of national health insurance, extremely sensitive information for more than 300
insurance defaulters was found with economic poverty, facility accommodation,
and physical disorder. In another three disks used at certain insurance company
in Korea, we detected customers’ names and resident registration numbers of
approximately 2,650 persons in one Excel file and then did approximately 250
WAV files recorded for training employees for canvassing insurance products. By
thorough examination of these files recording conversation between employees
and customers, we had additional finds with resident registration numbers from
insurance contract histories of 11 persons.

Even though an examination of personally-used disks did not find more per-
sonal information than we expected, it found many private emails or diaries,
resumes with resident registration numbers, and guidance records for student’s
life. One of disks contained membership applicant information for an amateur
anglers’ club, which included resident registration number, address, and so forth
for each member. For catching personal propensity for information retrieval on

86 Y.C. Kwon, S.W. Lee, and S. Moon

the internet, we researchers specially explored web site addresses and caches in
cookies. And as a result, we were able to get traces exploring pornography sites
in 6 disks.

5 Conclusion

We demonstrated the possibility to acquire much personal information easily
from hard disks in Korean second-hand PC markets. We also made clear that
a part of hard disks was used in enterprises although all of disks were bought
from individuals. As the analysis results, hard disks from enterprises have much
more abundant and sensitive personal information than those from individuals.
This could be a proof that disks including sensitive personal information was
hidden away by internal employees and distributed in the markets without any
complete-erasure procedure for inside files.

Penalties may be imposed when violation of data-privacy and computer-
disposal regulations is occurred. For instance, Health Insurance Portability and
Accountability Act[11] in U. S. addresses the security and privacy of health in-
formation. According to this Act, if violation is committed with the intent to
sell, transfer, or use identifiable health information for commercial advantage,
personal gain, or malicious harm individually, the fine or imprisonment will be
levied. Hence, the enterprises of today should manage and supervise the life cy-
cle from obtainment to abolition of personal information in making direct use of
personal information systematically. The taxonomy of data analysis we proposed
will make a contribution to assess the protection degree of personal information
especially in enterprises.

This paper has a limitation that the sensitivity taxonomy of personal informa-
tion is not detailed sufficiently and is dependent on subjective judgment. To set
up more correct policy for securing personal information, classification standards
according to the sensitivity of personal information should be clearer. Our pro-
posed taxonomy, in addition, has another limitation that does not consider the
cultural relativity although it complies with a common idea of society. A further
study on positive analysis of the importance of private information according to
demographic differences is needed.

References

1. Ackerman, M.S., Cranor, L.F. and Reagle, J.: Privacy in E-Commerce: Examin-
ing User Scenarios and Privacy Preferences. In Procs. of 1st ACM Conference on
Electronic Commerce., Denver, Colorado, U.S.A. (1999)

2. Berghel, H.: Digital Village: Identity Theft, Social Security Numbers, and the Web.
Communications of the ACM 43(2) (2000) 17–21

3. Garfinkel, S.L. and Shelat, A.: Remembrance of Data Passed: A Study of Disk
Sanitization Practices. IEEE Security and Privacy 1(1) (2003) 17–27

4. Gutmann, P.: Secure Deletion of Data from Magnetic and Solid-State Memory. In
Procs. of 6th USENIX Security Symposium, San Jose, California, U.S.A. (1996)

5. Javelin Strategy and Research: 2005 Identity Fraud Survey Report.

Personal Computer Privacy: Analysis for Korean PC Users 87

6. Jones, A.: How Much Information Do Organizations Throw Away? Computer
Fraud and Security 2005(3) (2005) 4–9

7. Schneier, B.: Risks of Third-party Data. Communications of the ACM 48(5) (2005)
136

8. Shein, E.: Die Hard (Drive). CFO Magazine (2004)
9. Spiekermann, S., Grossklags, J. and Berendt, B.: E-privacy in 2nd Generation E-

commerce: Privacy Preferences Versus Actual Behavior. In Procs. of 3rd ACM
Conference on Electronic Commerce., Tampa, Florida, U.S.A. (2001)

10. U.S. Department of Defense: DoD 5220.22-M National Industrial Security Program
Operating Manual (1995)

11. U.S. Public Law 104-191: Health Insurance Portability and Accountability Act of
1996.

Short Traceable Signatures Based on Bilinear
Pairings

Seung Geol Choi1, Kunsoo Park2, and Moti Yung1

1 Dept. of Computer Science, Columbia University, USA
{sc2506, moti}@cs.columbia.edu

2 Dept. of Computer Science and Engineering, Seoul National University, Korea
kpark@theory.snu.ac.kr

Abstract. We propose a short traceable signature scheme based on bi-
linear pairings. Traceable signatures, introduced by Kiayias, Tsiounis and
Yung (KTY), support an extended set of fairness mechanisms (mecha-
nisms for anonymity management and revocation) when compared with
the traditional group signatures. Designing short signatures based on the
power of pairing has been a current activity of cryptographic research,
and is especially needed for long constructions like that of traceable sig-
natures. The size of a signature in our scheme is less than one third of the
size in the KTY scheme and about 40% of the size of the pairing based
traceable signature (which has been the shortest till today). The security
of our scheme is based on the Strong Diffie-Hellman assumption and the
Decision Linear Diffie-Hellman assumption. We prove the security of our
system in random oracle model using the security model given by KTY.

Keywords: traceable signatures, group signatures, anonymity, crypto-
graphic protocols, bilinear pairings.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], provide anonymity
for signers. Any member of the group can sign messages, but the resulting sig-
nature keeps the identity of the signer secret. Because unconditional anonymity
may be a very dangerous tool against public safety, in case of dispute about the
signed message group signatures allow the group manager to open the signa-
ture and identify its originator. In this respect, group signatures can be said to
incorporate a fairness mechanism.

Traceable signatures, introduced by Kiayias, Tsiounis and Yung [13], support
an extended set of fairness mechanisms (mechanisms for anonymity management
and revocation) when compared with the traditional group signature schemes.
Consider the following scenario: a certain member of the group is suspected
of illegal activity. Its identity was revealed by opening a signature value. It is
then necessary to detect the signatures issued by this member so that his/her
transactions are traced. The only solution with existing group signature schemes
is to have the group manager open all signatures. However, this solution have two

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 88–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Short Traceable Signatures Based on Bilinear Pairings 89

problems. First, since all signatures are opened the solution violates the privacy
of all group members. Second, since only the group manager can open signatures
it impairs scalability. We need some parallel mechanism for scalability. Traceable
signatures support three different types of traceability :

1. signature opening : as in group signature, reveal the signer of a given signa-
ture

2. user tracing : check whether a signature was issued by a given user; it can
be applied to all signatures by designated tracing agents running in parallel

3. signature claiming : the signer of a signature provably claims a given signa-
ture that he/she has signed.

Therefore, the above scenario can be solved with user tracing if we use traceable
signatures.

Kiayias, Tsiounis and Yung (hereafter KTY) gave a formal security model
through three security requirements: misidentification, anonymity, framing. If the
adversary is able to generate a signature whose originator is not traced by the
group manager, the scheme is not secure against misidentification. Given a signa-
ture and two members of which one is its originator, if the adversary can identify
its originator no better than randomly, the scheme has anonymity. The adversary
succeeds in framing an honest user, if he generates a signature that is wrongly
traced to an innocent user. The KTY scheme [13] is secure under the Strong RSA
and Decisional Diffie-Hellman assumptions. We note that in concurrent indepen-
dent work, Bellare et al. [7,8] gave a formal security model for group signatures
with a security model which is nearly the same as that of KTY [13].

Traceable signature with the above scalable anonymity is suitable for various
applications and extends the reach of e-commerce while allowing users extended
anonymity. In a typical web based commerce, it may be desired that the service
provider does not know the user, yet that there is a mechanism that a tracing
authority (either as a law enforcement mechanisms for illegal activity or as a
routine mechanisms like billing by a bank) will be able at a different layer to
expose users selectively. The notion of “anonymous non-repudiation” that indeed
combines both anonymity at the service provider level, but identification at
another layer has high potential in many application domains.

Recent pairing based signatures: Boneh et al. [6] noticed that bilinear maps
can shorten signature schemes; this started a line of research of employing pair-
ings in order to shorten signatures. Boneh et al. [5] devised a short group signature
scheme using bilinear pairings. The size of a signature is under 200 bytes that offer
approximately the same level of security as a regular RSA signature of the same
length. The scheme used the Strong Diffie-Hellman (SDH) and Decision Linear
Diffie-Hellman (DLDH) assumptions. Nguyen and Safavi-Naini. [16] also intro-
duced a group signature scheme using bilinear pairings. The size of its signature
is slightly bigger than that of [5], but the scheme has stronger anonymity. They
also introduced a traceable signature scheme using El Gamal public key encryp-
tion under the assumptions above. Boyen and Waters [9] gave the group signature
scheme without random oracles but the scheme is not practical in that the size

90 S.G. Choi, K. Park, and M. Yung

of a signature grows logarithmically in the number of group members. Ateniese
et al. [2] devised practical group signature scheme without random oracles. Their
scheme is based on the Strong LRSW, q-EDH, and Strong SXDH assumptions.

Our Result: We extend the result of [5] to construct a traceable signature
scheme with the length of signatures 362 byte long (just about the size of three
RSA signatures), which is shorter than those of [13] and [16], which are 1200
byte and 900 byte long, respectively. In contrast to the previous schemes that
need two separate parts for tracing and claiming [13,16], we use one part for the
two procedures, which is possible with the help of bilinear pairing, and therefore
we get shorter signature size. In spite of its shorter length, the security level of
our scheme is the same as of the schemes using bilinear pairings. We used the
SDH and DLDH assumptions given by [5].

2 Preliminaries

2.1 Bilinear Pairings

We first review a few concepts related to bilinear pairings. Let G1, G2 be cyclic
additive groups generated by P1 and P2, respectively, both with prime order
p, and GT be a cyclic multiplicative group of order p. Suppose there is an iso-
morphism ψ : G2 → G1 such that ψ(P2) = P1. A bilinear pairing is a function
e : G1 ×G2 → GT with the following properties.

– Non-degeneracy : e(P1, P2) �= 1
– Bilinearity : For all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Zp, e(aQ1, bQ2) =

e(Q1, Q2)ab.
– Computability : For all Q1 ∈ G1, Q2 ∈ G2, there is an efficient algorithm to

compute e(Q1, Q2).

We assume that p is about 2170. G1 and G2 are assumed to be subgroups with
order p of an elliptic curve group where possibly G1 = G2. GT is a subgroup
with order p of a finite field of size about 21024. We note that the bilinear groups
of Rubin and Siverberg [18] or Miyagi et al. [15] can be used. We denote the
generation algorithm of bilinear pairings by GBP throughout this paper.

2.2 SDH Representation

Let G1, G2 be cyclic additive groups of prime order p where possibly G1 = G2.
Let P1 be a generator of G1 and P2 a generator of G2. The q-Strong Diffie
Hellman (q-SDH) problem in (G1, G2) is defined as follows [5]: Given (q + 2)-
tuple (P1, P2, γP2, . . . , γ

qP2) as input, output a pair (1
γ+xP1, x) where x ∈ Z∗

p.
The advantage of an algorithm A for the q-SDH problem is defined as follows:

Advq−SDH
A (k) = Pr

⎡
⎢⎣A(G, γP2, . . . , γ

qP2) =
(

1
γ+xP1, x

)
∧ x ∈ Z∗

p where
G = (p, G1, G2, GT , P1, P2, e)← GBP (1k)
γ

R←− Z∗
p

⎤
⎥⎦

Short Traceable Signatures Based on Bilinear Pairings 91

We define the q-Strong Diffie-Hellman assumption. This assumption was used
by Boneh and Boyen [4] to construct short signatures.

Definition 1. q-Strong Diffie-Hellman (q-SDH) Assumption. For every
PPT algorithm A, Advq−SDH

A (k) is negligible in k.

We next define an SDH representation. The representation is similar to a
discrete-log representation of an arbitrary power in the KTY scheme [13].

Definition 2. SDH representation. For G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) where Q ∈ G1, R = γP2 ∈ G2 with unknown γ, an SDH representation is
a tuple (A, x, t) with A ∈ G1 and x, t ∈ Z∗

p such that A = 1
γ+t (xP1 + Q) . Note

that the tuple satisfies e(A, tP2 + R) = e(xP1 + Q, P2).

In this work we will be interested in the following computational problem.

Definition 3. One more SDH representation problem. Given K SDH
representations for G = (p, G1, G2, GT , P1, P2, e) and (Q, R), one more SDH
representation problem is to find another SDH representation.

Lemma 1. Under the q-SDH assumption, it is infeasible for a PPT algorithm
to solve one more SDH representation problem with K = q.

2.3 Linear Encryption

Let G1 be a cyclic additive group of prime order p, and let X, Y, Z be generators
of G1. The Decision Linear Diffie-Hellman problem in G1 is defined as follows [5]:
Given X, Y, Z, aX, bY, cZ ∈ G1 as input, output yes if a+b = c and no otherwise.
The advantage of an algorithmA for the Decision Linear Diffie-Hellman problem
is defined as follows:

AdvDLDH
A (k) =

∣∣∣p(0)
k − p

(1)
k

∣∣∣
where

p
(i)
k = Pr

⎡
⎢⎢⎢⎢⎢⎣

A(H, aX, bY, cZ) = yes where
H = (p, G1, X, Y, Z)← GDL(1k)
a, b

R←− Z∗
p

c ← a + b if i = 0
c

R←− Z∗
p otherwise

⎤
⎥⎥⎥⎥⎥⎦ .

We define the Decision Linear Diffie-Hellman assumption. This assumption
was used by Boneh et al. [5] to construct short group signatures.

Definition 4. Decision Linear Diffie-Hellman (DLDH) assumption. For
every PPT algorithm A, AdvDLDH

A (k) is negligible in k.

The DLDH assumption gives rise to the Linear encryption (LE) scheme [5].
This scheme is semantically secure against chosen-plaintext attacks, assuming
the DLDH assumption holds.

92 S.G. Choi, K. Park, and M. Yung

Definition 5. Linear encryption. With M ∈ G1, along with arbitrary gener-
ators X, Y and Z of G1, linear encryption LE with public key X, Y and Z is as
follows:

LE(M) = (r1X, r2Y, M + (r1 + r2)Z)

where r1, r2 ∈ Zp is randomly chosen.

Lemma 2. [5] Under the DLDH assumption, linear encryption is secure against
chosen-plaintext attacks.

3 Zero-Knowledge Protocol for an SDH Representation

We assume that G = (p, G1, G2, GT , P1, P2, e), Q ∈ G1, R = γP2 ∈ G2 with
unknown γ are given as specified in Section 2. Let X, Y, Z be generators of G1,
and W a generator of G2. A zero-knowledge protocol for an SDH representation
(A, x, t) is as follows.
Protocol 1. The prover chooses exponents r1, r2, r3

R←− Zp, d1 ← tr1, d2 ← tr2,
and then computes the following values:

T1 ← r1X, T2 ← r2Y, T3 ← A + (r1 + r2)Z,

T4 ← r3W, T5 ← e(P1, T4)x .

Note that T1, T2 and T3 constitute a Linear encryption of the value A. Note also
that if we precalculate the value e(P1, W), we can compute T5 = e(P1, W)r3x

with just one exponentiation on GT avoiding the expensive pairing calculation
of e(P1, T4)x. Now, the prover and the verifier execute a proof of knowledge of
values (r1, r2, d1, d2, t, x) which satisfy the following equations:

r1X = T1, r2Y = T2,

tT1 − d1X = O, tT2 − d2Y = O,

e(P1, T4)x = T5,

e(T3, P2)t · e(Z, P2)−d1−d2 · e(Z, R)−r1−r2 · e(P1, P2)−x = e(Q, P2)/e(T3, R) .

This proof is a typical 3-move honest verifier zero-knowledge proof for dis-
crete logarithm relation set. For the first move, the prover randomly chooses
br1 , br2 , bd1, bd2 , bt, bx from Zp, and then computes the following values:

B1 ← br1X, B2 ← br2Y,

B3 ← btT1 − bd1X, B4 ← btT2 − bd2Y,

B5 ← e(P1, T4)bx ,

B6 ← e(T3, P2)bt · e(Z, P2)−bd1−bd2 · e(Z, R)−br1−br2 · e(P1, P2)−bx ,

He sends (T1, . . . , T5, B1, . . . , B6) to the verifier, who sends a random challenge
value c

R←− Zp to the prover as a second move. The prover computes and sends
back the values in response to the verifier as the last move:

sr1 ← br1 + cr1, sr2 ← br2 + cr2, sd1 ← bd1 + cd1,

sd2 ← bd2 + cd2, sx ← bx + cx, st ← bt + ct .

Short Traceable Signatures Based on Bilinear Pairings 93

The verifier checks if the following equations hold; if they hold the verifier ac-
cepts, otherwise he rejects.

sr1X
?= cT1 + B1 (1)

sr2Y
?= cT2 + B2 (2)

stT1 − sd1X
?= B3 (3)

stT2 − sd2Y
?= B4 (4)

e(P1, T4)sx
?= T c

5 ·B5 (5)
e(T3, P2)st · e(Z, P2)−sd1−sd2 · e(Z, R)−sr1−sr2 · e(P1, P2)−sx

?= (e(Q, P2)/e(T3, R))c ·B6 . (6)

Lemma 3. Protocol 1 is complete.

Lemma 4. There exists a simulator for the transcripts of Protocol 1 for an
honest verifier under the DLDH assumption.

Lemma 5. There exists an extractor for Protocol 1.

Proof. We allow an extractor to rewind a prover in the protocol to the point
just before the prover is given a challenge c. Then, the extractor can obtain two
protocol transcripts :

(T1, . . . , T5, B1, . . . , B6, c, sr1 , sr2 , sd1 , sd2 , sx, st)
(T1, . . . , T5, B1, . . . , B6, c

∗, s∗r1
, s∗r2

, s∗d1
, s∗d2

, s∗x, s∗t) .

First observe that, from (1), B1 = sr1X − cT1 = s∗r1
X − c∗T1 from which

we obtain (c − c∗)T1 = (sr1 − s∗r1
)X and it follows that r̃1 = (sr1 − s∗r1

)(c −
c∗)−1(mod p) satisfies r̃1X = T1. In a similar fashion we obtain from (2) r̃2 =
(sr2 − s∗r2

)(c− c∗)−1(mod p) which satisfies r̃2Y = T2.
Next we have, from (5), B5 = e(P1, T 4)sx/T c

5 = e(P1, T4)s∗
x/T c∗

5 from which
we obtain e(P1, T4)sx−s∗

x = T c−c∗
5 and it follows that x̃ = (sx − s∗x)(c −

c∗)−1(mod p) satisfies e(P1, T4)x̃ = T5 .
Next we have, from (3), B3 = stT1 − sd1X = s∗t T1 − s∗d1

X from which we
obtain (st − s∗t)T1 = (sd1 − s∗d1

)X . Since r̃1X = T1, we have (sd1 − s∗d1
) =

r̃1(st− s∗t)(mod p). Similarly, we have from (4) (sd2 − s∗d2
) = r̃2(st− s∗t)(mod p).

Finally, dividing two instances of (6), we obtain

(e(Q, P2)/e(T3, R))(c−c∗)

= e(T3, P2)(st−s∗
t) · e(Z, P2)−(sd1−s∗

d1
)−(sd2−s∗

d2
) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x)

= e(T3, P2)(st−s∗
t) · e(Z, P2)−r̃1(st−s∗

t)−r̃2(st−s∗
t) ·

e(Z, R)−(sr1−s∗
r1

)−(sr2−s∗
r2

) · e(P1, P2)−(sx−s∗
x) .

94 S.G. Choi, K. Park, and M. Yung

Taking (c− c∗)-th roots, we have

e(Q, P2)/e(T3, R)

= e(T3, P2)t̃ · e(Z, P2)t̃(−r̃1−r̃2) · e(Z, R)−r̃1−r̃2 · e(P1, P2)−x̃

= e(T3, t̃P2) · e(−(r̃1 + r̃2)Z, t̃P2) · e(−(r̃1 + r̃2)Z, R) · e(x̃P1, P2)−1,

where t̃ = (st − s∗t)(c− c∗)−1(mod p). This can be rearranged as

e(x̃P1 + Q, P2) = e(T3 − (r̃1 + r̃2)Z, t̃P2 + R) .

Thus the extractor obtains an SDH representation (T3 − (r̃1 + r̃2)Z, x̃, t̃). �	

By the three lemmas above, the following holds.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
for an SDH representation under the DLDH assumption.

4 The Traceable Signature Scheme

This section describes our traceable signature scheme. With Theorem 1, we
obtain from Protocol 1 a signature scheme secure in the random oracle model by
applying the Fiat-Shamir heuristic [1,12]. In our construction, in order to reduce
the length of a signature we use a variant of the Fiat-Shamir heuristic used by
Ateniese et al. [3], where the challenge c is included in the signature instead
of B1, . . . , B6. We verify the validity of the signature by checking whether the
output of the random oracle is equal to the challenge c.

A traceable signature scheme consists of nine operations Setup, Join/Iss, Sign,
Verify, Open, Reveal, Trace, Claim, Claim Verify. The operations are executed by
the active participants of the system, which are identified by the group manager,
tracing agents, and a set of users.

Setup(1k). For a given security parameter 1k, the system is setup as follows:

G = (p, G1, G2, GT , P1, P2, e)← GBP (1k),

γ
R←− Z∗

p, Q
R←− G1, R ← γP2, W

R←− G2 \ {1G2},

Z
R←− G1 \ {1G1}, ξ1, ξ2

R←− Z∗
p, X ← ξ−1

1 Z, Y ← ξ−1
2 Z .

The system public key Y is (G, Q, R, W, X, Y, Z). The group manager’s private
key S is (γ, ξ1, ξ2). The scheme also selects an hash function H : {0, 1}∗ → Zp,
which is to be considered as a random oracle here.

Join(Y)/Iss(Y,S). By executing Join operation, a user joins this system. On the
other part, when received a join request, the group manager gives a certificate
to the requester by executing Iss operation. The Join/Iss operation is performed
in a secure channel. The details are as follows.

Short Traceable Signatures Based on Bilinear Pairings 95

1. A user i generates non-adaptive random xi (see 4.2 in [16]) and sends xiP1
to the group manager. We will denote the i-th user’s membership secret by
seci = xi.

2. The group manager selects ti
R←− Z∗

p, computes Ai = 1
ti+γ (xiP1 + Q), and

then sends (i, Ai, ti) to the user i. We will denote the i-th user’s membership
certificate by certi = (Ai, ti).

3. The user i checks if (Ai, ti) satisfies e(Ai, tiP2 + R) = e(xiP1 + Q, P2), and
then stores (i, certi, seci).

4. We will denote the join transcript between the the group manager and i-th
user by transcripti = (Ci = xiP1, Ai, ti). The group manager stores transcripti
in the join transcript table transcripts.

Sign(m,Y, certi, seci). A member i of the group can sign a message m using this
operation with his certificate certi = (Ai, ti) and his secret seci = xi.

1. Compute the values T1, . . . , T5, B1, . . . , B6 using (Ai, xi, ti) according to Pro-
tocol 1.

2. Compute c using the hash function :

c ← H(m, T1, . . . , T5, B1, . . . , B6) .

3. Compute the values sr1 , sr2 , sd1 , sd2 , sx, st using c according to Protocol 1.
4. The signature is σ=(T1, . . . , T5, c, sr1 , sr2 , sd1, sd2 , sx, st). If each of T1, . . . , T4

is 170 bits, T5 is 1024 bits, and c, sr1 , . . . , st are 170 bits each, the signature size
is about (170× 11 + 1024)/8 = 362 bytes.

Verify(m, σ,Y). The signature σ of message m can be verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Reconstruct B̃1, . . . , B̃6 using equations (1)-(6).
3. Check if the following equation holds:

c
?= H(m, T1, . . . , T5, B̃1, . . . , B̃6) .

Return 1 if it holds and return 0 otherwise.

Open(σ,Y,S). The group manager can find who signed the signature σ of m
with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Compute Ã = T3 − (ξ1T1 + ξ2T2) using (ξ1, ξ2) from S.
3. Look up i in the join transcript table transcripts such that Ai = Ã and return

i.

Reveal(i, transcripts). The group manager can obtain the tracing information of
user i with this operation. User i is a suspicious user (e.g., detected by an Open
operation).

1. Return Ci of transcripti = (Ci = xiP1, Ai, ti) in the join transcript table
transcripts. Note that only the group manager can access the join transcript
table transcripts.

96 S.G. Choi, K. Park, and M. Yung

Trace(σ, C,Y). Tracing agents trace the signature generated by a suspicious user.
The input C is a tracing information of the suspicious user given by the group
manager. By executing this operation, tracing agents check whether σ is gener-
ated by the suspicious user. Note that all the signatures can be checked efficiently
when many tracing agents execute this operation in parallel.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Check if the following equation holds: e(C, T4)

?= T5.
Return 1 if it holds and return 0 otherwise.

Since C = xjP1 where j is the suspicious user e(C, T4) can be rewritten as
e(P1, T4)xj . If the originator of σ is i, we have T5 = e(P1, T4)xi . Therefore, if
i = j this procedure will return 1.

Claim(σ,Y, seci). The originator i of the signature σ can claim that he is its
originator with this protocol.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sx, st).
2. Generate a proof of knowledge of the value x which satisfies e(P1, T4)x = T5,

and return the proof τ . This is possible because if the prover is the real
originator of σ, seci will be xi such that e(P1, T4)xi = T5.

Claim Verify(σ, τ,Y). The output of Claim τ is verified with this operation.

1. Parse σ as (T1, . . . , T5, c, sr1 , sr2 , sd1 , sd2 , sxi , sti).
2. Verify the proof τ .

5 Correctness of the Traceable Signature Scheme

In this section we will prove the correctness of our scheme in the model of KTY
[13].

Definition 6. Correctness of a Traceable Scheme. A traceable signature
scheme with security parameter k is correct if the following four conditions are
satisfied (with overwhelming probability in k). Let SignU be the signing mecha-
nism of user U and ClaimU its corresponding claim mechanism and S the group
manager’s private key.

1. Sign-Correctness: For all m, Verify(m, SignU (m)) = 1.
2. Open-Correctness: For any m, Open(SignU (m),S) = U .
3. Trace-Correctness: For any m, Trace(SignU(m), Reveal(U)) = 1; on the

other hand Trace(σ, Reveal(U)) = 0 for any σ ← SignU ′(m) with U ′ �= U .
4. Claim-Correctness: Claim Verify(m, σ, ClaimU (σ)) = 1 for all m, σ ←

SignU (m).

Theorem 2. The traceable signature scheme of Section 4 is correct.

6 Security Model of the Traceable Signature Scheme

We introduce in this section the security model of KTY [13].

Short Traceable Signatures Based on Bilinear Pairings 97

6.1 Oracles

The security definitions will be formulated via experiments in which an adver-
sary’s attack capabilities are modelled by providing it with access to certain
oracles. Oracles shares the following variables with each other.

– state: It contains the join transcript, certificates and secrets of users which
are obtainable in the system’s perspective.

– n : It is a counter that stores the number of users joining the system.
– Sigs : It contains signatures generated by Qsig oracle.
– Revs : It contains the members revealed by Qreveal oracle.
– Up : It is a set of private users which are not corrupted.
– Ua : It is a set of users in corruption type A. We say that the user i falls in

corruption type A if the adversary controls the user i. In this case (i, certi,
seci) is leaked to the adversary.

– U b : It is a set of users in corruption type B. We say that the user i falls in
corruption type B if the transcript during the join procedure is exposed to
the adversary. In this case (i, certi) is leaked to the adversary.

The various oracle specifications are listed below.

– QY(). This oracle returns (n,Y). It allows the adversary to learn the public-
information of the system.

– QS(). This oracle returns S. It allows the adversary to corrupt the group
manager.

– Qp−join(). This oracle simulates Join/Iss protocol in private, increases the user
count n by 1, and sets state ← state||(n, transcriptn, certn, secn). It also adds
n into Up and transcripts ← transcripts || (n, transcriptn).

– Qa−join(). This oracle allows the adversary to introduce an adversarially con-
trolled user to the system. The introduced user falls in corruption type A.
Firstly, the oracle initiates Join/Iss protocol with the adversary. In the pro-
tocol, the oracles takes the role of the group manager and the adversary
the prospective user. When the protocol terminates successfully, the oracle
increases n by 1 and sets state ← state||(n, transcriptn, certn,⊥). It also adds
n into Ua and transcripts ← transcripts || (n, transcriptn).

– Qt−join(). This oracle is identical to the Qp−join() oracle except that at the
end it transmits (certn, secn) to the adversary and adds n to Ua (not Up).
As explained in [13], the statistical difference between Qa−join and Qt−join is
negligible. Therefore, we can always replace Qa−join with Qt−join when it is
hard to simulate the behavior of Qa−join.

– Qb−join(). This oracle allows the adversary as the group manager to introduce
users. Users introduced with this oracle falls in corruption type B. Firstly,
the oracle initiates Join/Iss protocol with the adversary. In the protocol, the
oracles takes the role of the prospective user and the adversary the group
manager. When the protocol terminates successfully, the oracle increases
n by 1 and sets state ← state||(n,⊥, certn, secn). It also adds n into U b. It
does not modify the join transcript table transcripts since this oracle behaves
as a user.

98 S.G. Choi, K. Park, and M. Yung

– Qsig(i, m). This oracle returns a signature of message m by the i-th user.
It parses state and if it discovers an entry of the form (i, ·, certi, seci) it
produces a traceable signature σ using certi and seci. If no such entry is
found or i ∈ Ua, it returns ⊥. When it successfully produces σ, it sets
Sigs← Sigs||(i, σ).

– Qreveal(i). This oracle returns the output of Reveal(i, transcripts). Note that
it returns ⊥ when user i does not exist or i ∈ U b. It also adds i into Revs.

6.2 Security Definitions of Traceable Signatures

Definition 7. A traceable signature scheme is said to be secure if it satisfies
security against misidentification, anonymity, and framing attacks.

Misidentification Attacks. In a misidentification attack the adversary is al-
lowed to control a number of users of the system (Qa−join, Qp−join). The adversary
is also allowed to observe the operation of the system while users are added and
they produce signatures (Qp−join, Qsig, Qreveal). Finally, the adversary is required
to produce a signature that does not open to any of the users controlled by the
adversary or that does not trace to any of the users controlled by the adversary.

Experiment Expmis
A (k)

(Y,S)← Setup(1k);
(m, σ) ← A(QY , Qp−join, Qa−join, Qsig, Qreveal);
If Verify(m, σ,Y) = 0 then return 0;
If Open(σ,Y,S) �∈ Ua or

∧
i∈Ua Trace(σ, Reveal(i)) = 0 then return 1;

return 0;

Definition 8. A traceable signature scheme is secure against misidentification
attacks if for any PPT algorithm A Pr[Expmis

A (k) = 1] is negligible in k.

Framing Attacks. In a framing attack, the adversary is allowed to act as a
group manager. The adversary is also allowed to observe the operation of the
system while users are added and they produce signatures. There are two types
of successful framing attacks. First, the adversary may construct a signature
that opens or traces to an innocent user. Second, it may claim a signature that
was generated by another user as its own. Note that in this attack the adversary
observes the operations as a group manager which are simulated through QS ,
Qb−join, and Qsig oracles.

Experiment Expfra
A (k)

(Y,S)← Setup(1k);
(m, σ, τ) ← A(QY , QS , Qb−join, Qsig);
If Verify(m, σ,Y) = 0 then return 0;
If Open(σ,Y,S) ∈ U b or

∨
i∈Ub Trace(σ, Reveal(i)) = 1 then return 1;

If
(∨

i∈Ub(i, σ) ∈ Sigs
)
∧ (Claim Verify(σ, τ) = 1) then return 1;

return 0;

Short Traceable Signatures Based on Bilinear Pairings 99

Definition 9. A traceable signature scheme is secure against framing attacks if
for any PPT algorithm A Pr[Expfra

A (k) = 1] is negligible in k.

Anonymity Attacks. In an anonymity attack, the adversary operates in two
stages called play and guess. In the play stage, the adversary is allowed to join
the system through Qa−join oracles. The adversary is also allowed to observe
the operation of the system while users are added and they produce signatures
through Qp−join, Qsig, and Qreveal oracles. At end of the play stage, the adversary
returns a message and two target users he does not control, and then receives a
signature of the message he returned. In the guess stage, the adversary tries to
guess which of the two produced the signature.

Experiment Expanon
A (k)

(Y,S)← Setup(1k);
(aux, m, i0, i1) ← A(play : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 �∈ Up) ∨ (i1 �∈ Up) ∨ (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
b

R←− {0, 1}, σ ← Sign(m,Y, certib
, secib

);
b∗ ← A(guess, σ, aux : QY , Qp−join, Qa−join, Qsig, Qreveal);
If (i0 ∈ Revs) ∨ (i1 ∈ Revs) then return 0;
If b = b∗ then return 1;
return 0;

Definition 10. A traceable signature scheme is secure against anonymity at-
tacks if for any PPT algorithm A

∣∣Pr[Expanon
A (k)]− 1

2

∣∣ is negligible in k.

6.3 Security of Our Scheme

These lemmas show the security properties.

Lemma 6. Under the q-SDH assumption, our scheme is secure against misiden-
tification attacks provided that the number of joined users is less than or equal to
q (an adaptable “assumption parameter” that does not influence the complexity).

Proof. Let A be an adversary that violates security against misidentification,
We construct an algorithm B which solves one more representation problem
using the attacker A. SDH representations for G = (p, G1, G2, GT , P1, P2, e) and
(Q, R) are given as Refs = {(Al, tl, xl)}q

l=1. B chooses W
R←− G2, Z

R← G1 and

ξ1, ξ2
R← Z∗

p. It then sets X ← ξ−1
1 Z, Y ← ξ−1

2 Z. B simulates oracles allowed to
A as follows.

– QY(). It returns n and (G, Q, R, W, X, Y, Z).
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n,⊥, certn, secn) and
transcripts ← transcripts||(n,⊥). Also, B adds n into Up.

100 S.G. Choi, K. Park, and M. Yung

– Qt−join. B increments j which is a counter representing how many SDH rep-
resentations have been consumed and then gets Refsj = (Aj , xj , tj) from
Refs. It gives (certn = (Aj , tj), secn = xj) to A. It then sets state ← state
||(n,⊥, certn, secn) and transcripts ← transcripts||(n,⊥). Also, B adds n into
Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, it simulates Protocol
1 with certi from state and get a signature σ, which is is possible because
Protocol 1 has a simulator. Also, B sets Sig ← Sig||(i, σ). Note that the
value c which is selected by the simulator during simulation must be stored
in the hash oracle such that the hash oracle should keep the random oracle
property.

– Qreveal(i). B searches from state an entry of the form (i, ·, ·, seci = xi), and
returns Ci = xiP1. It also adds i into Revs.

Let (m, σ∗
1) be a successful output of algorithm A. Using the general forking

lemma [14], B can get another pair (m, σ∗
2) which is also valid. Because Protocol

1 has a knowledge extractor, an SDH representation (Ã, x̃, t̃) used in signing m
can be extracted.

Now we have two alternative cases: (i) Open(σ,Y,S) �∈ Ua. It means that Ã is
not equal to any Ai for those i ∈ Ua. As a result, we solved one more SDH repre-
sentation problem. In the second case we have: (ii)

∧
i∈Ua Trace(σ, Reveal(i)) = 0.

It means that x̃ is not equal to any xi for those i ∈ Ua. Again we solved one
more SDH representation problem. �	
Lemma 7. Under the assumption of infeasibility of discrete logarithm in G1,
our scheme is secure against framing attacks.

Proof. Let A be an adversary that violates security against framing attacks. We
construct an algorithm B which solves a problem of discrete logarithm in G1
using the attacker A. B is given P1 and S = ρP1 ∈ G1 as input, and B wants to
find ρ. We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R←− G1, R ← γP2 with γ
R←− Z∗

p, and W
R←− G2. It also

chooses ξ1, ξ2, y
R← Z∗

p and Y←yP1 and then set Z ← ξ2Y, X ← ξ−1
1 Z. Then,

Y becomes (G, Q, R, W, X, Y, Z) and S becomes (γ, ξ1, ξ2). B simulates oracles
allowed to A as follows.

– QY(). B returns n and Y.
– QS(). B returns S.
– Qb−join(). B increments n by one. In the 1st step of Join/Iss procedure, B

chooses x′
n

R← Z∗
p, and supplies x′

nP1 + S as the xnP1 value. It receives
the tuple (An, tn) from A, in the 2nd step. When the procedure is finished
successfully, it sets certn ← (An, tn), secn ← x′

n +ρ = xn where ρ is unknown.
It then appends (n,⊥, certn, secn) to state. Finally, it adds i into U b.

– Qsig(i, m). If i ∈ U b, B extracts certi = (Ai, ti) and seci = x′
i + ρ from state.

Then it chooses r1, r2, r3
R← Z∗

p, and sets T1, . . . , T5 as follows :

T1 ← r1X, T2 ← r2Y, T3 ← Ai + (r1 + r2)Z,

T4 ← r3W, T5 ← e(x′
iP1 + S, T4) = e((x′

i + ρ)P1, T4) = e(P1, T4)xi .

Short Traceable Signatures Based on Bilinear Pairings 101

And then it simulates Protocol 1 and get a signatureσ. This is possible because
Protocol 1 has a simulator. Also, it sets Sigs ← Sigs||(i, σ). Note that the value
c which is selected by the simulator during simulation must be stored in the
hash oracle such that the hash oracle should keep the random oracle property.

Let (m, σ∗
1 , τ∗

1) be a successful output of algorithmA. Now we have three cases:
(i) Open(σ∗

1 ,Y,S) ∈ U b. Using the general forking lemma [14], B can get another
pair (m, σ∗

2) which is also valid. Moreover with the knowledge extractor in Proto-
col 1, an SDH representation (Ã, x̃, t̃) used in signing m can be extracted. Let i ∈
U b be the result of Open. Then, x̃ is equal to seci, which means x̃ = x′

i+ρ. There-
fore B can find ρ. In the second case we have: (ii)

∨
i∈Ub Trace(σ∗

1 , Reveal(i)) = 1.
It can also extract an SDH representation (Ã, x̃, t̃) using a similar method to the
case (i). We get also here x̃ = seci = x′

i + ρ. Therefore B can find ρ. In the
final case we have: (iii)

(∨
i∈Ub(i, σ∗

1) ∈ Sigs
)
∧ (Claim Verify(σ∗

1 , τ∗
1) = 1) Using

the general forking lemma [14], B can get another proof τ∗
2 for σ∗

1 . Then with a
knowledge extractor (actually it is a subpart of the extractor in Protocol 1), a
secret x̃ used for claim can be extracted. Let i be such that (i, σ∗

1) ∈ Sigs. Then,
we have x̃ = seci = x′

i + ρ. Therefore B can find ρ. �	

Lemma 8. Under the assumption of semantic security of Linear encryption,
our scheme is secure against anonymity attacks.

Proof. Let A be an adversary that violates security against anonymity. We con-
struct an algorithm B which breaks the semantic security of Linear encryption
using the attacker A. B is given X, Y, Z ∈ G1 as input which are a public key
for Linear encryption, and tries to break the semantic security of this encryption
scheme.

We assume G1 is a group such that G = (p, G1, G2, GT , P1, P2, e) is easily
obtained. B selects Q

R← G1 and R ← γP2 where γ
R← Z∗

p. It also selects W
R←−

G2, and set Y to (G, Q, R, W, X, Y, Z). B simulates oracles allowed toA as follows.

– QY(). B returns n and Y.
– Qp−join(). B increments n by one, and chooses A

R← G1 and t, x
R← Z∗

p. It sets
certn ← (A, t), secn ← x. It then sets state ← state ||(n,⊥, certn, secn) and
transcripts ← transcripts||(n,⊥). Also, B adds n into Up.

– Qt−join(). B generates an SDH representation (Aj , xj , tj) for (G, Q, R) which is
possible because it knows γ, and then gives (certn = (Aj , tj), secn = xj) to A.
It sets state ← state ||(n,⊥, certn, secn) and transcripts ← transcripts||(n,⊥).
Also, B adds n into Ua.

– Qsig(i, m). If i �∈ Up, B returns “fail” to A. If i ∈ Up, B finds certi =
(Ai, ti) and seci = xi from state, and encrypts Ai using the given public
key (X, Y, Z). The resulting cipher-text will be T1, T2, T3, and then it sets
T4 ← r3W, T5 ← e(P1, T4)xi where r3

R←− Z∗
p. It simulates Protocol 1 to

generate a signature. This is possible because Protocol 1 has a simulator.

102 S.G. Choi, K. Park, and M. Yung

Table 1. Comparison of number of operations and signature length (in bytes)

KTY Nguyen et al. Ours

sign
exponentiations 19 11 6

scalar multiplications 0 19 10
pairing computations 0 1 1

verify
exponentiations 17 6 7

scalar multiplications 0 14 8
pairing computations 0 3 3
signature length 1206 917 362

Also, it sets Sigs ← Sigs||(i, σ). Note that the value c which is selected by
the simulator during simulation must be stored in the hash oracle such that
the hash oracle should keep the random oracle property.

– Qreveal(i). B searches seci = xi from state, and returns xiP1. It also adds i
into Revs.

When A returns i0 and i1 to B as a challenge after play stage, B returns Ai0

and Ai1 as a challenge. B will be given the cipher-text (T ′
1, T

′
2, T

′
3) of Aib

, where b
is unknown. It generates a signature σ′ containing (T ′

1, T
′
2, T

′
3) using a simulator

for Protocol 1, and the value c must also be stored in a hash oracle. It returns σ′

to A. Let b∗ be the output of A after the guess stage. B returns b∗. If A breaks
anonymity, then it is obvious that B also breaks semantic security. �	
As a result of the lemmas we conclude the following:

Theorem 3. Under the q-SDH assumption, infeasibility of discrete logarithm
in G1, and the semantic security of Linear encryption, our traceable signature
scheme is secure provided that the number of joined users is less than or equal
to q .

7 Efficiency

In this section we compare our scheme with previous schemes in terms of the
signature length and the number of important operations such as exponentia-
tions, scalar multiplications and pairing computations. We summarize the result
in Table 1. we did not include pre-computable operations such as e(P1, P2) in
the number of pairing computations. While the numbers of operations are com-
parable in the three schemes, the signature length of our scheme is much shorter
than those of the previous schemes.

8 Conclusion

We presented a traceable signature scheme based on Strong Diffie-Hellman and
Decision Linear Diffie-Hellman assumptions. The scheme uses bilinear pairings,
and we get a signature under 400 bytes when any of the curves in [6] are used.
We have proved the correctness and security of our scheme.

Short Traceable Signatures Based on Bilinear Pairings 103

References

1. M. Abdalla, J. An, M. Bellare, and C. Namprepre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-
security. EUROCRYPT 2002, LNCS, Springer.

2. G. Ateniese, J. Camenisch, S. Hohenberger, and B. Medeiros. Practical Group
Signatures without Random Oracles. Cryptology ePrint Archive, Report 2005/385,
http://eprint.iacr.org/.

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. Crypto 2000, LNCS, Springer.

4. D. Boneh, X. Boyen. Short Signatures Without Random Oracles. EUROCRYPT
2004, LNCS, Springer.

5. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. Crypto 2004,
LNCS, Springer.

6. D. Boneh, B. Lynn, and H.Shacham. Short signatures from Weil pairing. Asiacrypt
2001, LNCS, Springer.

7. M. Bellare, D. Micciancio, and B.Warinshci. Foundations of group signatures:
Formal definitions, siimplified requirements, and a construction based on general
assumptions. EUROCRYPT 2003, LNCS, Springer.

8. M. Bellare, H. Shi, C. Zhang. Foundations of group signatures: The case of dynamic
groups. Cryptology ePrint Archive, Report 2004/077, http://eprint.iacr.org/.

9. X. Boyen and B. Waters. Compact Group Signatures Without Random Oracles.
Cryptology ePrint Archive, Report 2005/381, http://eprint.iacr.org/.

10. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT 1997,
LNCS, Springer.

11. D. Chaum and E. van Heyst. Group signatures. EUROCRYPT 1991, LNCS,
Springer.

12. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. Crypto 1986, LNCS, Springer.

13. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable Signatures. EUROCRYPT 2004,
LNCS, Springer.

14. A. Kiayias and M. Yung. Group signatures: Efficient constructions and an-
nymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076.
http://eprint.iacr.org/.

15. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234-43,
May 2001.

16. L. Nguyen and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Group
Signatures Schemes from Bilinear Pairings. Asiacrypt 2004, LNCS, Springer.

17. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361-396, 2000.

18. K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. Crypto
2002, LNCS, Springer.

19. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161-174, 1991.

Ring Signature with Designated Linkability

Joseph K. Liu1, Willy Susilo2, and Duncan S. Wong3,�

1 Department of Computer Science
University of Bristol

Bristol, BS8 1UB, UK
liu@cs.bris.ac.uk

2 Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, Australia

wsusilo@uow.edu.au
3 Department of Computer Science

City University of Hong Kong
Hong Kong, China

duncan@cityu.edu.hk

Abstract. Ring signatures enable a user to sign a message so that a ring
of possible signers is identified, without revealing exactly which member
of that ring actually generated the signature. This concept has been used
to construct new cryptographic applications, such as designated signa-
tures, concurrent signatures, etc. To avoid being abused, the concept of
linkable ring signatures was introduced. In this concept, when two ring
signatures are produced by the same signer, then anyone can link the
signatures. In this paper, we introduce a new concept called linkable ring
signature with designated linkability that lies between the two. In this
new concept, the ring signatures remain anonymous from the public’s
point of view. However, they can only be linked by a designated party,
whenever necessary. This notion allows the privacy of the signer, but
additionally, it also limits the receiver from being abused. We present a
generic construction for such schemes, and proceed with an instantiation
of our generic construction that is built from the existing linkable ring
signature scheme due to Liu et al.

Keywords: ring signature, linkable ring signature, spontaneous group
signature.

1 Introduction

The ability to communicate anonymously is requisite for any privacy preserving
interactions, in particular in the applications on the Internet era. The are many
cryptographic primitives proposed in the literature for supporting anonymity.
Among these protocols, ring signature [19] is one of the fundamental primitives

� The author was supported by a grant from CityU (Project No. 9360087).

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 104–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ring Signature with Designated Linkability 105

that is promising to solve this problem. Ring signature schemes allow a signer to
generate a signature on behalf of the group of users in such a way that everyone
can be sure that the signature is generated by one of the group members, but
no one can identify who the signer is. Unlike group signature [8], there is no
group manager. Thus the group formation of ring signature is spontaneous, or
setup-free. Moreover, no one is able to revoke anonymity. The privacy is even
stronger than group signature.

However, sometimes too strong anonymity is not suitable for some applica-
tions. For example, ring signatures can be abused as explained in [16]. Liu et al.
addressed this issue by proposing a new notion of linkable ring signature. In this
notion, the identity of the signer in a ring signature remains anonymous, but two
ring signatures can be linked if they are signed by the same signer. Linkable ring
signatures are suitable in many different practical applications, such as e-voting
and e-cash [20]. Original ring signatures cannot be used for e-voting because
any double votes cannot be detected as they are unlinkable. No one is able to
find out whether any two signatures (with two votes) are generated by the same
voter or not. Linkable ring signatures solve this problem by allowing the public
to detect for any signer producing two or more signatures (votes).

Note that linkability is compulsorily embedded into the signature instead
of voluntarily added in linkable ring signatures. If the signer refuses to add
the correct linking information, the whole signature is invalid. In other words,
linkability is enforced by the verifier. The signer cannot decline to do so. This
is different from voluntarily added linkability. In this case, whether allowing the
signature to be linked or not can be decided by the signer. This issue is also
explained in [16].

Since the introduction of linkable ring signature, it remains unknown if the
signers can actually control on who can determine linkability. Conventional link-
able ring signature allows the public to do so and the signers have no control
on it. In some situations, we require the linkability feature to be controllable.
By “controllable”, we mean that the linkability can only be performed by a
designated party, and not by everyone. Consider the following example for this
situation.

We re-consider the scenario of leaking a secret as suggested in [19]. A member
of CIA agents solicits information to the press. To ensure that the information is
valid, the information must satisfy the following conditions: 1) it is signed by a
CIA member (without any necessity to know who the signer is), 2) it is verified
that the signature has been constructed correctly by one of the group member,
and 3) to avoid being abused, the signature can be linked by a designated party
only. In this example, the signature produced by the CIA member must be
verifiable by anyone, but the signature can be linked only by the press media,
to convince the media that the secret is leaked by the same person since the
movement maybe continue from time to time. In this situation, we cannot employ
a group signature, since they require a group manager to do the setup stage and
key distribution. A standard ring signature is also not suitable, since the media
is not able to determine whether a serial of secret information is leaked by the

106 J.K. Liu, W. Susilo, and D.S. Wong

same person or not. Unfortunately, we cannot directly employ the notion of
linkable ring signature either, since the linking ability should not be conducted
by anyone, except a designated party (the press media). Otherwise, it gives CIA
more information in finding out the member who leaks the secret many times.
(They may use some non-cryptographic method to do so, if they know that
different secret information is in fact leaked by the same person.)

1.1 Our Contribution

In this paper, we answer the above question affirmatively by proposing the notion
of ring signature with designated linkability. In the new notion, the linkability
feature can only be conducted by a designated party, and we generalize this
by having t-out-of-n users who are designated to link signatures. We present a
generic construction for such schemes, and we proceed with a specific instan-
tiation of the generic construction based on Liu et al.’s linkable ring signature
scheme.

1.2 Related Work

Ring signature was formalized by Rivest et al. [19] in 2001 although the concept
was first suggested by Cramer et al. [13] in 1994. A number of variants were pro-
posed later, including threshold [5,22,17,10], identity-based [23,10,11], constant
size [14], blind ring signature [7] and improved security [4,12].

The notion of linkable ring signature was first proposed by Liu et al. [16] in
2004. Their construction is based on the ring signature scheme by Abe et al. [1].
A separable and threshold linkable ring signature scheme was proposed later on
by Tsang et al. [21]. Separability allows different users to choose their own type
of keys. It also provides a threshold option. Tsang and Wei [20] proposed an-
other scheme on linkable ring signature which achieves a constant size signature
length independent of the number of users involved in the ring. Liu and Wong
[18] proposed an enhanced security model on linkable ring signature scheme.
They also provided two instantiations. Recently, an identity-based linkable ring
signature scheme [2] is proposed, which is based on the strong RSA assumption.

1.3 Paper Organization

The rest of the paper is organized as follows. We specify the security models of
a linkable ring signature scheme with designated linkability in Sec. 2. A generic
construction is then given in Sec. 3. It is followed by a specific instantiation of
the generic scheme in Sec. 4. Finally we conclude the paper in Sec. 5.

2 Security Models

In this section, we give a formal definition of a ring signature scheme with des-
ignated linkability and then specify the security requirements of such a scheme.

Ring Signature with Designated Linkability 107

2.1 Syntax

A (1, n)-linkable ring signature scheme with (t′, n′)-designated linkability is a
quadruple (Gen, Sig, V er, Link) of polynomial-time algorithms. The first two
algorithms are randomized.

Key Generation (x, y) ← Gen(1k) takes a security parameter k ∈ N and
outputs a private key x and a public key y.

Signature Generation σ ← Sig(1k, n, t′, n′, x, L, L′, m) takes security param-
eter k, integers n, t′, n′ ∈ N such that t′ ≤ n′, private key x, an n-element
set L of public keys including the one corresponding to x, an n′-element set
L′ of public keys, and a message m, and outputs a signature σ. Each of n
and n′ are considered to be some polynomial in k.

Signature Verification 1/0 ← V er(1k, n, t′, n′, L, L′, m, σ) is a Boolean algo-
rithm which takes k, n, t′, n′, L, L′, m, (as in Sig) and signature σ, returns
1 or 0 for accept or reject, respectively.

Signature Linking 1/0← Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2) takes se-
curity parameter k, integers n, t′, n′, n-element set L of public keys, n′-
element set L′ of public keys, t′-element set Dt′ of private keys, messages
m1, m2, and signatures σ1, σ2, such that V er(1k, n, t′, n′, L, L′, m1, σ1) = 1
and V er(1k, n, t′, n′, L, L′, m2, σ2) = 1, returns 1 or 0 for linked or unlinked,
respectively.

Signature Correctness. We require that for any message m ∈ {0, 1}∗, any n-
element public key set L that includes the public key corresponding to x, and
any n′-element public key set L′, provided that all keys in L and L′ are generated
by Gen,

V er(1k, n, t′, n′, L, L′, m, Sig(1k, n, t′, n′, x, L, L′, m)) = 1

where 1 ≤ t′ ≤ n′.
Linking Correctness. We require that for any messages m1, m2 ∈ {0, 1}∗, any
n-element public key set L, and any n′-element public key set L′, provided that
all keys are generated by Gen, and any σ1 ← Sig(1k, n, t′, n′, x1, L, L′, m1),
σ2 ← Sig(1k, n, t′, n′, x2, L, L′, m2) such that the corresponding public keys of
x1 and x2 are in L respectively, any t′-element private key set Dt′ such that the
corresponding public keys are in L′,

Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2) =
{

1 if x1 = x2
0 otherwise.

Discussions. In the specification above, n represents the ‘ring’ size of the
ring signature. It corresponds to the set L which contains the signers who can
generate a signature on behalf of the signers in L. n′ is the number of users
in L′ who can determine the linkability of any two signatures generated by
some signer in L. Intuitively, we require that at least t′ users in L′ have to work
jointly in order to determine the linkability. We emphasize on the requirement of

108 J.K. Liu, W. Susilo, and D.S. Wong

having a threshold number of users collaborate before being able to determine
the linkability because this feature affects significantly on the privacy of the
signer. This is one of the major differences between the original linkable ring
signature and our notion (with designated linkability). In the original linkable
ring signature, anyone (the public) can determine linkability.

Also note that L and L′ can be chosen independently. The ‘ring’ L can be
entirely different from the group L′ of users who are responsible for determining
linkability. It can also be the case that L and L′ are coupled together. The
relationship between L and L′ should be determined by the target applications.
In our definition above and construction in the later part of this paper, we
consider the general setting of them. This is another major difference between
the original linkable ring signature and ours.

2.2 Security Requirements

The security of a (1, n)-linkable ring signature with (t′, n′)-designated linkability
has three aspects: unforgeability, signer anonymity and linkability.

Unforgeability. Consider a universal set of public keys denoted by U =
{y1, · · · , yN}. Assume that each public key in U is generated by Gen and N
is some polynomial in security parameter k. To capture adaptive chosen mes-
sage attack, we provide the adversary a signing oracle SO. SO(L̂, L̂

′
, t′, m̂)

takes an n-element subset L̂ and an n′-element subset L̂
′

of U , an integer t′

such that 1 ≤ t′ ≤ n′, and message m̂, produces a signature σ̂ such that
V er(1k, n̂, t̂′, n̂′, L̂, L̂

′
, m′, σ′) = 1.

Definition 1 (Existential Unforgeability against Chosen Message and
Public Key Attacks). A (1, n)-linkable ring signature scheme with (t′, n′)-
designated linkability is unforgeable if, for any probabilistic polynomial-time al-
gorithm A with signing oracle SO, it is negligible in k that (L, L′, t′, m, σ) ←
ASO(1k,U) such that V er(1k, n, t′, n′, L, L′, m, σ) = 1, where L, L′ ⊆ U , |L| = n,
|L′| = n′, 1 ≤ t′ ≤ n′, and m ∈ {0, 1}∗. Restriction is that (L, m) should not be
in the set of oracle queries between A and SO.

Signer Anonymity. Our definition is based on an enhanced model for the
original linkable ring signature due to Liu and Wong [18]. When compared with
the original model in [16], their enhanced model allows the adversary to corrupt
ring members (i.e. obtaining their private keys), adaptively obtain signatures
from SO and choose a ring of possible signers to challenge. Below are the details.

Consider an experiment with two stages: choose and guess. In the choose stage,
an adversary A with signing oracle SO chooses two subsets L and L′ of U and a
message m ∈ {0, 1}∗, where L is to define the ring members and L′ is to define
the designated parties for determining linkability. This is denoted by

(L, L′, n, n′, t′, m, State)← ASO(1k,U , choose)

where State is some state information which can be passed to the guess stage,
L, L′ ⊆ U , |L| = n, |L′| = n′, and 1 ≤ t′ ≤ n′. Let L = {yi1 , · · · , yin}. In

Ring Signature with Designated Linkability 109

the guess stage, A is given access to not only the signing oracle SO, but also a
corruption oracle CO. CO(π′) takes as input any π′ ∈ {i1, · · · , in} and returns
the private key xπ′ corresponding to the public key yπ′ ∈ L. The objective of A
in the guess stage is to determine the public key in L whose private key is used
to generate a given signature σ which is properly generated with respect to m,
L and L′. This is denoted by

ξ ← ASO,CO(1k, n, t′, n′, L, L′, m, σ, State,U , P rivN−n, guess)

where ξ ∈ {i1, · · · , in} and PrivN−n is the set of private keys corresponding to
the public keys in U \ L. Below is the complete description of the experiment.

Experiment Expanon
A (k, N)

For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips
Set U = {y1, · · · , yN}
(L, L′, n, n′, t′, m, State)← ASO(1k,U , choose)
π

R← {i1, · · · , in}, σ ← Sig(1k, n, t′, n′, xπ, L, L′, m).
ξ ← ASO,CO(1k, n, t′, n′, L, L′, m, σ, State,U , P rivN−n, guess)
If A failed, the experiment halts with failure
If A did not query CO with π then

return 1 if ξ = π, otherwise return 0
Else the experiment halts with failure

An experiment succeeds if it halts with no failure. We denote by

Advanon
A (k, N) = Pr[Expanon

A (k, N) = 1 | Experiment succeeds] − 1
n − t

the advantage of the adversary A in breaking the anonymity of a linkable ring
signature scheme with designated linkability where t is the number of private
keys that A has corrupted using CO.

Definition 2 (Signer Anonymity). A linkable ring signature scheme with
designated linkability is signer anonymous if for any integer N , for any proba-
bilistic polynomial-time adversary A, the function Advanon

A (·, N) is negligible.

Note thatA can obtain signatures for any messages and subgroups of U by query-
ing SO. This also captures an attacking scenario where an adversary may try
to find out the authorship of a signature instance through collecting signatures
generated for different subgroups of U [18].

Designated Linkability. Usually similar approach as above, we specify three
experiments for capturing the following attacks concerning designated linkability:

1. A group member generates two signatures such that Link returns 0.
2. (Framing) After learning some signature and the identity of the group mem-

ber who generates that signature, a different group member generates an-
other signature such that Link returns 1 on these two signatures.

3. A group of parties wants to determine the linkability of two signatures even
when the group does not have enough private keys (i.e. smaller than t′) with
respect to L′.

110 J.K. Liu, W. Susilo, and D.S. Wong

The last item above is the only additional requirement when compared with the
security requirements of a conventional linkable ring signature scheme.

Experiment Explink1
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. π ← ASO(1k,U , choose) where π ∈ {1, · · · , N};
4. (L, L′, n, t′, n′, m1, m2, σ1, σ2) ← ASO(1k, xπ ,U , sign)

where L, L′ ⊆ U , |L| = n, |L′| = n′, 1 ≤ t′ ≤ n′, yπ ∈ L, and
V er(1k, n, t′, n′, L, L′, mi, σi) = 1, for i = 1, 2;

5. if (L, L′, t′, mi, σi), i = 1, 2, are not in the set of oracle queries and replies
between A and SO then
return 1− Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2)

where Dt′ is the set of t′ private keys such that the corresponding
public keys are in L′;

6. else the experiment halts with failure.

The experiment above captures Attack 1. The adversary is only given one private
key while it tries to produce two signatures which are determined to be unlinked
by the algorithm Signature Linking.

Experiment Explink2
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. (L, L′, n, t′, n′, π1, m1)← ASO(1k,U , choose1)

where L, L′ ⊆ U , |L| = n, |L′| = n′, yπ1 ∈ L, 1 ≤ t′ ≤ n′;
4. σ1 ← Sig(1k, n, t′, n′, xπ1 , L, L′, m1);
5. π2 ← ASO(1k,U , L, L′, t′, π1, m1, σ1, choose2)

where π2 ∈ L \ {π1};
6. (m2, σ2)← ASO(1k,U , xπ2 , L, L′, π1, m1, σ1, sign)

such that V er(1k, n, t′, n′, L, L′, m2, σ2) = 1;
7. if (L, L′, t′, mi, σi), i = 1, 2, are not in the set of oracle queries and replies

between A and SO then
return Link(1k, n, t′, n′, L, L′,Dt′ , m1, m2, σ1, σ2)

where Dt′ is the set of t′ private keys such that the corresponding
public keys are in L′;

8. else the experiment halts with failure.

This experiment captures Attack 2. The adversary tries to generate a signature
with a different signer from another one, while the two different signatures are
linked.

Experiment Explink3
A (k, N)

1. For i = 1, · · · , N , (xi, yi)← Gen(1k) with fresh coin flips;
2. set U = {y1, · · · , yN};
3. (L, L′, n, t′, n′, π0, π1, m0, m1)← ASO(1k,U , choose1)

where L, L′ ⊆ U , |L| = n, |L′| = n′, yπ0 , yπ1 ∈ L, 1 ≤ t′ ≤ n′;
4. σ0 ← Sig(1k, n, t′, n′, xπ0 , L, L′, m0);

Ring Signature with Designated Linkability 111

5. b
R← {0, 1};

6. σ1 ← Sig(1k, n, t′, n′, xπb
, L, L′, m1);

7. T ← ASO(1k,U , n, t′, n′, L, L′, π0, π1, m0, m1, σ0, σ1, choose2)
where T ⊆ L′ and |T | < t′;

8. b′ ← ASO(1k,U , n, t′, n′, L, L′, π0, π1, m0, m1, σ0, σ1, T,DT)
where b′ ∈ {0, 1} and DT = {xi}i∈T ;

9. if any of (L, L′, t′, mi, σi), i = 0, 1, is in the set of oracle queries and replies
between A and SO, the experiment halts with failure;

10. if b′ = b, return 1; otherwise return 0.

The experiment above captures Attack 3. The adversary is only given strictly
less than t′ private keys of the designated parties. Two signatures are given to
the adversary, with only 1/2 probability that they are linked. The adversary is
to tell whether these two signatures are linked or not.

We denote by

Advlink
A (k, N) = Pr[Explink1

A (k, N) = 1 | Experiment succeeds] +

Pr[Explink2
A (k, N) = 1 | Experiment succeeds] +

(Pr[Explink3
A (k, N) = 1 | Experiment succeeds] − 1/2)

the advantage of the adversary A in breaking the linkability of a linkable ring
signature scheme with designated linkability.

Definition 3 (Designated Linkability). A linkable ring signature scheme has
designated linkability if for any integer N , for any probabilistic polynomial-time
adversary A, the function Advlink

A (·, N) is negligible.

Remark: In the security models of unforgeability and designated linkability
above, the adversaries are not given any access to the corruption oracle. This
essentially follows the original model of unforgeability given by Abe et al. [1] and
the comparable model for linkability of linkable ring signature given by [16,18].
We adopt this weaker model because in our schemes described in the subsequent
sections, we assume the existence of linkable ring signature schemes that are
secure in the sense of those previously proposed models. We leave the security
analysis of our schemes under the stronger model, that is, corruption oracle is
also provided to adversaries in both unforgeability model and the designated
linkability model, as our future work.

3 The Generic Construction

We now propose the generic construction of a (1, n)-ring signature scheme with
(t′, n′)-designated linkability.

3.1 Basic Idea

A conventional linkable ring signature scheme [16,21,20,18] uses an event-based
linking tag in such a way that a signer cannot generate two different tags for

112 J.K. Liu, W. Susilo, and D.S. Wong

two different signatures in any particular event. The linking tag is attached to a
signature so that the public can link a signer’s signature with another signature
generated by the same signer by simply examining the value of the associated
tags.

The idea of our generic construction is to adopt the concept of event-based
linking tag but change the method of tag examination so that at least t′ out of
n′ designated users have to work together for doing so.

One obvious approach is to encrypt the linking tag using a threshold encryp-
tion algorithm. However, if we solely use threshold encryption, the signer can
cheat by generating a fake linking tag since no one, except those designated
users can decrypt and verify the validity of the linking tag. The public, however,
cannot do the checking. Note that we still require the validity of the signature
(including the validity of the linkability) to be publicly verifiable. For solving
this problem, we need to do the threshold encryption while at the same time
allowing the public to verify the following:

– the encrypted linking tag can only be decrypted by any t′-subset of a desig-
nated group of n′ users; and

– the actual signer cannot generate fake linking tag.

These requirements can be satisfied by a combined use of some well-studied
techniques in some special way.

3.2 Details

Let θ : E × G1 → G2 be a one-way homomorphic mapping family indexed by
event e ∈ E , where E is the event space and G1, G2 are some groups of the same
order. For any e ∈ E , define θe(s) by θ(e, s). Also define θ−1

e (S) to be s such that
θ(e, s) = S. Assume that it is hard to determine θ−1

e (S) ?= θ−1
e′ (S′), if e and e′

are uniformly chosen at random from E , and for some S, S′ ∈ G2.
For any integers t′, n′ ∈ N such that 1 ≤ t′ ≤ n′, let Λθe

t′,n′ be the share genera-
tion function of a verifiable secret sharing (VSS) scheme [9,15] that takes a secret
s ∈ G1 and produces n′ shares s1, · · · , sn′ (each of them is in G1), S = θe(s),
Ci = θe(si), 1 ≤ i ≤ n′, and some auxiliary information aux1. The VSS scheme
ensures that any t′ of the shares are enough to recover s, but it is computa-
tionally infeasible to recover s if only t′−1 shares or less are known. Let Φθe

t′,n′

be the share verification function of the VSS scheme that takes S, C1, · · · , Cn

and aux, and outputs 1 or 0. If the output is 1, it implies that θ−1
e (S) = s,

and θ−1
e (Ci) = si for i = 1, · · · , n. In other words, this is the verification of

the n shares. Let Constructe be the secret commitment reconstruction function
which takes inputs of any t′ values of Ci’s and aux to reconstruct S. Readers
can consider the underlying VSS scheme to be the one described in [15].

We now start describing the scheme.

1 If the scheme of [15] is used, the auxiliary information aux will be some t′−1 elements
in G2.

Ring Signature with Designated Linkability 113

Key Generation. On input a security parameter k ∈ N, the algorithm ran-
domly picks x ∈R G1, and then sets private key to x and public key y := θg(x)
where g ∈ E is a public parameter chosen randomly but fixed throughout the
generation of all the public key pairs used in the system.

Signature Generation. We use Enci(m) to denote the public key encryption
function of a designated user (indexed by) i in L′ on a plaintext m, and use
LRingxπ,L,e′(m) to denote a linkable ring signature signing function which takes
a private key xπ and a set L of public keys with an event identity e′ ∈ E on
message m, and generates a linkable ring signature with a linking tag θe′(xπ)
(to be precise, it takes the first component of xπ only). Let LRingVerL,e′(m, σ′)
be the corresponding linkable ring signature verification function which outputs
1 if the signature σ′ is a valid with respect to m and L.

Let H : {0, 1}∗ → E be a hash function. For security analysis, we consider H
to behave as a random oracle [3]. The signature generation algorithm on message
m is described as follows:

1. Set e ← H(L) and call it the real event identity.
2. Randomly choose a virtual event identity e′ ∈R E such that e′ �= e, and

compute a virtual linking tag ỹ′ ← θe′(xπ).
3. Compute shares and associated information using the VSS scheme

(xπ(1), · · · , xπ(n′), S, C1, · · · , Cn′ , aux)← Λ
θe′
t′,n′(xπ),

where S = θe′(xπ) and Ci = θe′(xπ(i)), 1 ≤ i ≤ n′. Since S = ỹ′, we replace
the occurrence of S with ỹ′ in the rest of the scheme.

4. Compute ciphertext Ei = Enci(θe(xπ(i))), for 1 ≤ i ≤ n′. Note that we use
the real event identity e here.

5. Construct a non-interactive Proof-of-Knowledge (PoK) to show that all Ei

and Ci are formed correctly, for 1 ≤ i ≤ n′, that is,

PK{αi : Ei = Enci(θe(αi)) ∧ Ci = θe′(αi)}(m)

(For the notation of the proof-of-knowledge protocol, we refer readers to [6]).
6. Compute a linkable ring signature σ′ ← LRingxπ,L,e′(m‖Trans) where

Trans is the non-interactive PoK in Step (5). Note that we use the virtual
event identity e′ here and therefore the linking tag of σ′ is ỹ′.

The signature is σ(m) = (e′, σ′, ỹ′, E1, C1, · · · , En′ , Cn′ , aux, T rans).

Signature Verification. Given a list of public keys L and a signature σ(m)
for message m in the format above, one can verify the signature as follows:

1. Verify if LRingVerL,e′(m‖Trans, σ′) = 1.
2. Verify if Trans is valid with respect to the non-interactive PoK as con-

structed in Step 5 of the signature generation above.
3. Verify if Φ

θe′
t′,n′(ỹ′, C1, · · · , Cn′ , aux) = 1.

4. Output accept if all verifications above are passed. Otherwise, output reject.

114 J.K. Liu, W. Susilo, and D.S. Wong

Signature Linking. To link two signatures, for each of the signatures, any
t′ of the n′ verifiers corresponding to the public keys in L′ first decrypt their
corresponding ciphertexts Ei to obtain θe(xπ(i)) and work together to reconstruct
the linking tag θe(xπ) by applying Constructe on θe(xπ(i))’s. If the linkable
tags of the two signatures are the same, these verifiers will conclude that these
signatures are generated by the same signer.

3.3 Security Analysis

Theorem 1. The scheme proposed above satisfies the security requirements
specified in Sec. 2.2 under the random oracle model [3] if the underlying linkable
ring signature scheme LRing is unforgeable under the model of [1] and signer
anonymous under the corresponding model of [18].

Proof. (Sketch) We show its security in three aspects, namely Unforgeability,
Signer Anonymity and Designated Linkability.

Unforgeability. It follows directly from the unforgeability of the underlying
linkable ring signature scheme LRing under the model of [1]. The reason is that in
Def. 1, the adversary is at most as powerful as the adversary in the unforgeability
model defined by Abe et al. in [1]. The designated linkable ring signature scheme
proposed above is therefore also unforgeable as it contains the linkable ring
signature σ′ generated by LRing as part of the signature.

Signer Anonymity. We argue signer anonymity part by part. The signature is
σ(m) = (e′, σ′, ỹ′, E1, C1, · · · , En′ , Cn′ , aux, T rans). e′ is uniformly distributed
over E . σ′ is the signature generated by LRing which is signer anonymous under
the model of [18], and the adversary in experiment Expanon

A is at most as
powerful as that in the corresponding model of [18]. We remain to analyze the
remaining parts.

According to the configuration of experiment Expanon
A , without loss of gener-

ality, the adversary can obtain all the t′ (or even n′) private keys corresponding
to the designated parties for determining linkability, as long as the actual signer’s
private key xπ is not corrupted. In other words, the adversary is able to obtain
θe(x′) from {Ei}1≤i≤n′ , and θe′ (x′′) from {Ci}1≤i≤n′ , where e = H(L) while e′ is
uniformly chosen at random from E by the actual signer. Under the assumptions
that H behaves as a random function [3] and it is hard to determine if x′ ?= x′′

from θe(x′) and θe′(x′′) (Sec. 3.2). Thus the signature is signer anonymous.
Note that A is able to tell whether user i is the actual signer, by testing

whether ỹ′ ?= θe′(xi) if it has the private key xi. That is why we need to exclude
those t possibility in our definition of signer anonymity.

Designated Linkability. According to the definition in Sec. 2.2, we investigate
the security of our scheme in three experiments: Explink1

A , Explink2
A and Explink3

A .
In Explink1

A , the adversary A is given only one private key xπ . It tries to
produce two valid signatures such that they are unlinked.

Ring Signature with Designated Linkability 115

Let σ(i)(m(i)) = (e′(i), σ
′
(i), ỹ

′
(i), E(i), C(i), ·) for i = 1, 2 be two valid signatures

generated by A such that they are unlinked. Let t(i) be the reconstructed linking
tag after decrypting the ciphertext components E(i)’s from σ(i), for i = 1, 2.
Since both signatures are unlinked, it implies that

t(1) �= t(2) (1)

According to the non-interactive PoK in Step (5) of the signature generation
algorithm and the correctness of the underlying VSS, we have

t(i) = θe(xπi), i = 1, 2. (2)

and
ỹ′
(i) = θe′

(i)
(xπi), i = 1, 2. (3)

for some private keys xπ1 and xπ2 whose public keys are included in L. Since θ
is a deterministic function, from equation (1) and (2), we have

xπ1 �= xπ2 (4)

From equation (3) and (4), we have

θ−1
e′
(1)

(ỹ′
(1)) �= θ−1

e′
(2)

(ỹ′
(2)). (5)

ỹ′
(1) and ỹ′

(2) are the linking tag of the underlying linkable ring signature σ′
(1) and

σ′
(2) respectively. From equation (5), it implies that the linkability security of the

underlying linkable ring signature scheme is broken, since the adversary is only
given one private key. Note that it is obvious that ỹ′(1) �= ỹ′

(2) since e′(1) �= e′(2).
However, a secure linkable ring signature scheme requires that the inverse of
linking tag ỹ′(i), that is, θ−1

e′
(i)

(ỹ′
(i)) should be the same as that for signature σ′

(i),

i ∈ Z, generated by a single private key.

In Explink2
A , the adversary A is given a signature σ(1) generated by a private

key xπ1 and then a private key xπ2 such that xπ1 �= xπ2 . It tries to produce a
valid signature σ(2) such that the two signatures are linked.

Assume it succeeds with non-negligible probability. We try to derive a contra-
diction to the fact that the adversary knows only one private key xπ2 which is
equal to xπ1 . Let t(i) be the reconstructed linking tag by decrypting the cipher-
text from σ(i), for i = 1, 2. Since σ(1) is generated according to the algorithm,
we have

t(1) = θe(xπ1) (6)

Since both signatures are linked,

t(1) = t(2) (7)

As σ(2) is a valid signature, using the above argument,

θ−1
e (t(2)) = x (8)

116 J.K. Liu, W. Susilo, and D.S. Wong

for some private key x whose public key is included in L. On the other side, we
have

θe(x1) �= . . . θe(xπ1−1) �= θe(xπ1+1) �= . . . �= θe(xn) �= t(1) (9)

From equation (8) and (9), we have

x = xπ1 (10)

That is, xπ1 = xπ2 .

In Explink3
A , A is given two signatures and strictly less than t′ private keys

of the designated parties. It tries to tell whether two signatures are generated
by the same signer or not, given that exactly half of the chance that the two
signatures are linked.

Assume the underlying encryption scheme is secure. A cannot decrypt t′ or
more ciphertext and reconstruct θe(xπ) in both signatures. Obviously, ỹ′

(1) �= ỹ′
(2)

since e′(1) �= e′(2). In addition, A cannot tell whether θ−1
e′
(1)

(ỹ′
(1))

?= θ−1
e′
(2)

(ỹ′
(2)). ỹ′

(1)

and ỹ′
(2) are indistinguishable to A. The underlying linkable ring signatures σ′

(1)
and σ′

(2) do not help either, since they are generated using different virtual
events e′(1) and e′(2). Thus A needs to do a wild guess. The successful probability
is negligibly greater than 1/2. �	

4 A Specific Instantiation of Our Proposed Scheme

In this section, we give a concrete instantiation of the generic construction pro-
posed above. The underlying linkable ring signature scheme is due to Liu et al.
[16].

Let G = 〈g〉 be a group of prime order q such that the underlying discrete
logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G be
some statistically independent cryptographic hash functions. We require that for
any α ∈ {0, 1}∗, the discrete logarithm of H2(α) to the base g in G is intractable.
For i = 1, · · · , n, each user i has a distinct public key yi and a private key xi

such that yi = gxi. Let L = {y1, · · · , yn} be the set of the n public keys of the
ring included in the signature. For j = 1, · · · , n′, each user j has a distinct public
key y′

i and a private key x′
i such that y′

i = gx′
i . All the private keys in the system

are assumed to be chosen uniformly at random over Zq. Let L′ = {y′
1, · · · , y′

n′}
be the set of the n′ public keys of the designated linkers (that is, any t′ of them
can determine the linkability of signatures with respect to L′.)

Signature Generation. For some message m ∈ {0, 1}∗, a user (signer) indexed
by π, where 1 ≤ π ≤ n, uses his private key xπ and generates a (1, n)-ring
signature with (t′, n′)-designated linkability, with respect to L as follows.

1. Compute the real event identity e = H2(L) and ỹ = exπ .
2. Pick uniformly at random a virtual event identity e′ ∈R G and compute a

virtual linking tag ỹ′ = (e′)xπ .

Ring Signature with Designated Linkability 117

3. Randomly generate a polynomial f(x) =
∑t′−1

�=0 a�x
� of degree (t′ − 1) over

Zq such that f(0) = xπ (that is, a0 = xπ). Compute xπ(j) = f(j), for
j = 1, . . . , n′.

4. For j = 1, . . . , n′, generate an ElGamal Encryption on plaintext exπ(j) . That
is, compute the ciphertext (Aj , Bj) = (grj , y

rj

i exπ(j)) for some random rj ∈R

Zq.
5. For j = 1, . . . , n′, compute Cj = (e′)xπ(j) . For
 = 1, · · · , t′ − 1, compute

α� = (e′)a� where a� is the coefficient of the polynomial f . Let aux =
α1‖ · · · ‖αt′−1.

6. For j = 1, . . . , n′, construct a non-interactive proof-of-knowledge (PoK) on
message m as follows:

PK{(λj , βj)1≤j≤n′ : Aj = gλj ∧Bj = (yj)λj eβj ∧ Cj = (e′)βj}(m)

Let T be the concatenation of this non-interactive PoK and (L′, A1, B1, C1,
. . . , An′ , Bn′ , Cn′ , aux).

7. (Generate the signature) Pick uniformly at random u ∈R Zq, and compute

cπ+1 = H1(L, T , ỹ′, m, gu, (e′)u).

8. For i = π+1, · · · , n, 1, · · · , π−1, pick si ∈R Zq and compute

ci+1 = H1(L, T , ỹ′, m, gsiyci

i , (e′)si(ỹ′)ci).

9. Compute sπ = u− xπcπ mod q.

The signature is σL(m) = (e′, c1, s1, s2, · · · , sn, ỹ′, T).

Signature Verification. On input a set of public keys L, a message m and a
signature σL(m) = (e′, c1, s1, s2, · · · , sn, ỹ′, T), the algorithm proceeds as follows.

1. For i = 1, · · · , n, compute z′i = gsiyci

i , z′′i = (e′)si(ỹ′)ci and then ci+1 =
H1(L, T , ỹ′, m, z′i, z

′′
i) if i �= n.

2. Check whether c1
?= H1(L, T , ỹ′, m, z′n, z′′n). If not, reject.

3. (Verify the encryption) Compute e = H2(L) and verify the non-interactive
PoK on T . If it is not valid, reject.

4. (Verify the secret-sharing) For j = 1, . . . , n′, check whether

Cj
?= ỹ′

t′−1∏
�=1

(α�)j�

If all pass, output accept. Otherwise, output reject.

Signatures Linking. In order to link two signatures (corresponding to the
same L), any t′ out of n′ users decrypt their corresponding ciphertext (Aj , Bj),
for j = 1, . . . , t′, to obtain hxπ(j) and work together to reconstruct hxπ , which is
the linking tag. If the linkable tag of any two signatures are the same, they are
considered to be linked.

118 J.K. Liu, W. Susilo, and D.S. Wong

5 Conclusion

In this paper, we proposed a new concept called ring signature with designated
linkability. The term “designated linkability” refers to a designated party who
can link the ring signatures whenever required. In this paper, we generalize this
concept by allowing the designated party to be a t-out-of-n recipients of the ring
signatures. We presented a generic construction of such schemes, and proceed
with an instantiation of our generic construction based on Liu et al. linkable ring
signature scheme.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In Proc. ASIACRYPT 2002, pages 415–432. Springer-Verlag, 2002. Lecture Notes
in Computer Science No. 2501.

2. M. Au, J. K. Liu, P. P. Tsang, and D. S. Wong. A suite of id-based threshold ring
signature schemes with different levels of anonymity. Cryptology ePrint Archive,
Report 2005/326, 2005. http://eprint.iacr.org/.

3. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proc. 1st ACM Conference on Computer and Communica-
tions Security, pages 62–73. ACM Press, 1993.

4. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In TCC 2006, volume 3816 of Lecture Notes
in Computer Science, pages 60–79. Springer, 2006.

5. E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures and applications
to ad-hoc groups. In Proc. CRYPTO 2002, pages 465–480. Springer-Verlag, 2002.
Lecture Notes in Computer Science No. 2442.

6. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Proc. CRYPTO 97, pages 410–424. Springer-Verlag, 1997. LNCS Vol. 1294.

7. T. Chan, K. Fung, J. Liu, and V. Wei. Blind spontaneous anonymous group
signatures for ad hoc groups. In ESAS 2004, volume 3313 of LNCS, pages 82–94.
Springer-Verlag, 2004.

8. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, volume 547
of Lecture Notes in Computer Science, pages 257–265. Springer, 1991.

9. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In Proc. 26th IEEE Symp. on
Foundations of Comp. Science, pages 383–395, Portland, 1985. IEEE.

10. S. Chow, L. Hui, and S. Yiu. Identity based threshold ring signature. In ICICS
2004, volume 3506 of LNCS, pages 218–232. Springer-Verlag, 2005.

11. S. Chow, S. Yiu, and L. Hui. Efficient identity based ring signature. In ACNS
2005, volume 3531 of LNCS, pages 499–512. Springer-Verlag, 2005.

12. S. S. M. Chow, J. K. Liu, V. K. Wei, and T. H. Yuen. Ring signatures without
random oracles. In ASIACCS 06, pages 297–302. ACM, 2006.

13. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Proc. CRYPTO 94, pages 174–187.
Springer-Verlag, 1994. LNCS Vol. 839.

14. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in
ad hoc groups. In EUROCRYPT 2004, volume 3027 of LNCS, pages 609–626.
Springer-Verlag, 2004.

Ring Signature with Designated Linkability 119

15. P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
Proc. 28th IEEE Symp. on Foundations of Comp. Science, pages 427–438, Los
Angeles, 1987. IEEE.

16. J. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous group signature
for ad hoc groups. In ACISP04, pages 325–335. Springer-Verlag, 2004. Lecture
Notes in Computer Science No. 3108.

17. J. Liu, V. Wei, and D. Wong. A separable threshold ring signature scheme. In
ICISC 2003, pages 12–26. Springer-Verlag, 2004. Lecture Notes in Computer Sci-
ence No. 2971.

18. J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and new
schemes (extended abstract). In ICCSA 2005, volume 3481 of LNCS, pages 614–
623. Springer-Verlag, 2005.

19. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proc. ASIACRYPT
2001, pages 552–565. Springer-Verlag, 2001. Lecture Notes in Computer Science
No. 2248.

20. P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash and
attestation. In ISPEC 2005, volume 3439 of LNCS, pages 48–60. Springer-Verlag,
2005.

21. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable
linkable threshold ring signatures. In INDOCRYPT 2004, volume 3348 of LNCS,
pages 384–398. Springer-Verlag, 2004.

22. D. Wong, K. Fung, J. Liu, and V. Wei. On the RS-code construction of ring
signature schemes and a threshold setting of RST. In 5th Intl. Conference on
Information and Communication Security (ICICS 2003), pages 34–46. Springer-
Verlag, 2003. Lecture Notes in Computer Science No. 2836.

23. F. Zhang and K. Kim. ID-Based blind signature and ring signature from pairings.
In Proc. ASIACRYPT 2002, pages 533–547. Springer-Verlag, 2002. Lecture Notes
in Computer Science No. 2501.

Ad Hoc Group Signatures�

Qianhong Wu1, Willy Susilo1, Yi Mu1, and Fangguo Zhang2

1 Center for Information Security Research, SITACS
University of Wollongong, Wollongong NSW 2522, Australia

{qhw, wsusilo, ymu}@uow.edu.au
2 School of Information Science and Technology

Sun Yat-sen University, Guangzhou 510275, P.R. China
isszhfg@mail.sysu.edu.cn

Abstract. The main advantage of ring signatures is to ensure anonymity
in ad hoc groups. However, since a group manager is not present in ad hoc
groups, there is no existing way to identify the signer who is responsible
for or benefit from a disputed ring signature. In this paper, we address this
issue by formalizing the notion of ad hoc group signature. This new notion
bridges the gap between the ring signature and group signature schemes. It
enjoys the same advantage of ring signatures to provide anonymity whilst
not requiring any group manager. Furthermore, it allows a member in an
ad hoc group to provably claim that it has (not) issued the anonymous sig-
nature on behalf of the group. We propose the first construction of ad hoc
group signatures that is provably secure in the random oracle model under
the Strong RSA assumption. Our proposal is very simple and additionally,
it produces a constant size signature length and requires constant modular
exponentiations. This is to ensure that our scheme is very practical for ad
hoc applications where a centralized group manager is not present.

1 Introduction

Anonymity has been a main concern in cryptography for years. Group signatures
and ring signatures are the most popular notions for providing anonymity.

1.1 Group Signatures

In a group signature, any group member is allowed to anonymously generate
signatures on behalf of the group. In case of dispute, a trusted group manager
can open the group signature to trace the true signer. Group signatures were first
introduced and implemented by Chaum and van Heyst [8]. The state-of-the-art
group signature is the notion of traceable signature [16] which enjoys better
traceability: (1) Tracing a given user can be applied to all signatures by agents
running in parallel; (2) The signer can provably claim a given group signature
that it has signed. Currently, the most efficient group signatures are due to [5]
in the random oracle model and [1, 6] in the standard model.
� This work is supported by ARC Discovery Grant DP0557493 and the National Nat-

ural Science Foundation of China (No. 60403007).

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 120–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ad Hoc Group Signatures 121

Ateniese and Medeiros proposed an efficient group signature scheme [2] that
is without trapdoor in the sense that, the system trapdoor is only used during
the initialization to generate system parameters. The advantage of this property
is that the same trapdoor information can be used to initiate different groups.
In [20], Tsudik and Xu proposed a group signature initiated with an RSA integer
N whose factorization is unknown for none of parties. In [11], Dodis et al. also
exploited such an RSA integer to setup their system. In this paper, we use the
similar idea to make the system available for more applications.

1.2 Ring Signatures

A ring signature is an alternative mean to achieve anonymity for ad hoc groups
without any trusted manager. It is used to convince any third party that at
least one member in an ad hoc group has indeed issued the signature on behalf
of the group. Since its introduction in [19], the notion of ring signatures has
attracted a lot of attention [11, 17, 21, 22]. There are some natural extensions
such as threshold ring signatures and linkable/unlinkable ring signatures. In
(t, n)-threshold ring signatures, the generation of a ring signature requires the
involvement of at least t of n members, and yet the signature reveals nothing
about the identities of the signers [22]. Linkable ring signatures [17] allow anyone
to determine whether two signatures are signed by the same member. If a user
signs only once on behalf of a group, the user still enjoys anonymity similar to
that in conventional ring signatures.

The notion of ring signatures is attractive due to the following properties:
(1) Set-up free. Ring signatures require no managers to initialize the system.
All signers publish their public keys to form a public-key list and, any player
wishing to generate a ring signature later appends its own public key to the list
and can generate a valid ring signature. (2) Cooperation-free. It refers to the
capability of having a ring member to produce a ring signature for any message
independently. Hence, a ring signature requires no interactions or cooperations
among ring members provided that all the members’ public keys are known.

While having a simple group formation set up as an advantage, the size of
ring signatures linearly depends on the group size, as the verifier needs to know
at least the group description. However, as remarked in [11], in many scenarios,
the group does not change for a long time. Hence, an appropriate measurement
of ring signature complexity does not need to include the cost to describe the
group. All the early constructions of ring signatures suffer from linearly increas-
ing complexity related to the number of group members. Subsequent results
incorporating techniques from cryptographic accumulators have successfully re-
duced the size of a ring signature. The state-of-the-art ring signatures enjoying
a constant cost independent of group size have been proposed in [11, 21].

1.3 Motivations

While achieving privacy without any group manager is an advantage, in case
of dispute, the originator of ring signatures cannot be identified due to the ab-
sence of a group manager for revoking anonymity. Furthermore, for most existing

122 Q. Wu et al.

schemes, the anonymity is unconditional in the sense that, given the secret keys
of all the possible signers, one can not determine the true signer of a ring signa-
ture. Such perfect privacy comes at a price. Consider the following scenarios.

(1) Untraceable criminal.A policeman detects a ring signature involving a se-
rious crime and submits the signature to a judge as a witness. However, even if
the judge forces all the ring members to show their secret key, it cannot determine
who the criminal is. Then, what decision should the judge make and who will be
responsible for the crime? Indeed, perfect privacy implies perfect crime.

(2) Dilemma of lottery players. Lottery players tend to require anonymity
protection for fear of blackmail in case of winning the giant prize, while trust
no third party for fear that the party may leak their identities. Hence, it seems
that ring signatures enjoying unconditional anonymity is very applicable to such
applications by signing the lottery numbers. However, when the winning lottery
number is selected, the unlucky winner who luckily chose the winning number
cannot prove that it is the true winner even if it exposes its private signing key!

The two scenarios show that unconditional privacy seems to be an attractive
notion from the user’s view point, nevertheless it can potentially be a very trou-
blesome tool against public safety and can even be abused against the user itself.
In the first case, we need the security property that any innocent group member
can prove that it did not generate a given anonymous signature without the
help of a group manager or leaking its private key. If a ring signature scheme is
deniable in the sense that a non-signer group member can disavow a given ring
signature, then it can prevent criminals maliciously from abusing anonymity of
ring signatures. Due to the ad hoc property of ring signatures, such a denying
functionality is indeed essential to make ring signature practical for some appli-
cations. In the second case, we need the security that the true signer can prove
that it did generate a given anonymous signature without the help of a group
manger or leaking its private key.

Theoretically, the second property is implied by the first property since all the
group members except the true signer can deny the signature and the true signer is
identified. However, from the viewpoint of applications, such a traceability derived
from denying functionality is useless as it requires all the other group members to
cooperate to trace the true signer. On the one hand, the ad hoc group may be too
large to enable all the group members to deny one by one. On the other hand, the
group members may refuse to deny the signature if they are not the true signer,
for example the losers in the lotteries system. Hence, it is useful to integrate such
self-traceability into ring signatures in practice and bridge the gap between ring
signatures and group signatures, so that it can enjoy the advantages of both ad
hoc property of ring signatures and traceability of group signatures.

1.4 Contributions

The main contributions in this paper include a more general mathematical
model, a new functional notion of ad hoc group signatures, practical imple-
mentations, and their applications.

Ad Hoc Group Signatures 123

Collision quasi-resistant accumulator. In previous models (e.g., [11, 20]),
only primes and RSA integers are allowed to be accumulated. The extension al-
lows to accumulate any integers. We also notice that in several previous
accumulator-based group/ring signatures, random values were obliviously ac-
cumulated but not covered in their models. The extension captures and fixes
this discordance between the general model and its concrete implementations.

Ad hoc group signatures. The new notion has the same advantages of ring sig-
natures, i.e, setup free and cooperation free, except the unconditional anonymity
(else it contradicts to the traceability of group signatures). Furthermore, it en-
ables a group member to provably claim that a given signature was generated
by it or not. It addresses the ownership dispute in case of emergency and pro-
vides a general fair mechanism of privacy for self-organized groups. By dic-
ing the anonymity-revoking functionality of group signatures to the distributed
members, rather than a centralized manager, the new notion provides a generic
technique to remove the trusted third party such as a group manager from the
privacy systems. It enjoys more flexibility and practicality.

Practical instantiations of ad hoc group signatures. Efficient implemen-
tations are proposed with provable security in the random oracle model under
the standard Strong RSA assumption and the Decisional Factorization Diffie-
Hellman assumption. After the group key is pre-computed, only several (less
than 10) modular exponentiations are required to generate or verify the signa-
ture and the tracing arguments. The signature and the tracing argument are
both about 4 standard RSA signatures in length. It outperforms the state-of-
the-art ring signatures due to Dodis et al. [11]. We show efficient applications of
the proposed schemes to electronic lotteries, where a player can prove that it is
the winner without a third party. The schemes are simple and practical.

Organization of the Paper. The remaining of the paper is organized as fol-
lows. The new notion of ad hoc signatures and its security are formalized in
Section 2. In Section 3, we provide some preliminaries, including the complexity
assumption and the underlying mathematical model. Section 4 proposes practical
ad hoc signature schemes and details their security and performance. We show
some potential applications of self-traceable signatures to electronic lotteries in
Section 5, followed by the conclusion in the last section.

2 Definition of Ad Hoc Group Signatures

An ad hoc group signature scheme is a tuple of nine procedures AHGS=(PG,
MG, GG, Sig, SV, Own, OV, Dny, DV).

– Y ← PG(1λ) is a probabilistic polynomial-time (PPT) algorithm which, on
input a security parameter λ, outputs a public description of the system
including system-wide parameters such as collision-resistant hash functions.

– (ski, pki)← MG(1λ) is a PPT algorithm which, on input a security parameter
λ, outputs a secret/public key pair (ski, pki). We denote by SK and PK the
list of possible secret keys and public keys, respectively.

124 Q. Wu et al.

– y ← GG(Y, PK) is a PPT algorithm which, on input the output Y ← PG(1λ)
and all the possible public keys PK of ad hoc group members, outputs y as
the public key of the ad hoc group.

– σ ← SigAHGS
ski

(m) is a PPT algorithm which, on input a secret key ski and
message m, produces a signature σ on m.

– 1/0← SVAHGS(σ, m, y) is a deterministic polynomial-time algorithm which,
on input the ad hoc group public key y and a message-signature pair (m, σ),
returns 1 or 0 for Valid or Invalid, respectively.

– σ̇ ← OwnAHGS
ski

(σ, m) is a PPT algorithm which, on input a secret key ski

and a message-signature pair (m, σ), produces an ownership witness σ̇.
– 1/0 ← OVAHGS(σ, m, σ̇, y) is a polynomial-time algorithm which, on input

y, a message-signature pair (m, σ) and an ownership witness σ̇, returns 1 or
0 for Yes or Failure, respectively representing that member i is the author
of (m, σ) and there is a failure.

– σ̈ ← DnyAHGS
ski

(σ, m) is a PPT algorithm which, on input a secret key ski

and a message-signature pair (m, σ), outputs a denying witness σ̈.
– 1/0 ← DVAHGS(σ, m, σ̈, y) is a polynomial-time algorithm which, on input

the ad hoc group public key y, a message-signature pair (m, σ) and an deny-
ing witness σ̈, returns 1 or 0 for Not or Failure, respectively representing
that member i is not the author of (m, σ) and there is a failure.

Remark 1. Generally speaking, the ability of an ad hoc group member to prov-
ably claim the ownership of an ad hoc group signature does not imply it can
provably claim an ad hoc group signature was not generated by a particular
group member even if it really did not produce the signature. On the contrary,
the ability to provide the disavowal witness may imply the ability to provide
ownership witness. However, such a signer tracing procedure is impractical since
the non-signers may refuse to deny the ownership of signatures or the group is
too large to enable the non-signers to deny one by one. So we capture these
different functionalities by respective definitions.

2.1 Model of Adversaries

We model the behaviors of adversary Ad with a series of queries to a challenger
CH, who controls all the communication channels of Ad and will validly answer
all the necessary queries from Ad.

– Qran. Ad queries with its chosen string and CH returns a random string. It
is the standard random oracle query.

– Qpub. Ad queries for the public parameters of the system and CH returns
the string < λ,Y, PK, y >. This allows Ad to learn the public information
of the system, i.e., the number of users and the public-key information.

– Qjoin. Ad runs (skj , pkj) ← MG(1λ) and queries with (skj , pkj). CH checks
whether (skj , pkj) is a valid key pair. If not, it returns null. Else, it adds pkj

to the public key list. Then, it returns the updated < λ,Y, PK, y > to Ad
and update the corresponding local records of the system. This query action
allows Ad to introduce a new user to the system.

Ad Hoc Group Signatures 125

– Qskey . Ad queries with pki ∈ PK. CH checks whether pki ∈ PK. If not,
it returns null. Else, it returns ski corresponding to pki ∈ PK. This query
action allows Ad to corrupt the group members.

– Qsign. Ad queries with its chosen message m. CH returns an ad hoc group
signature σ on m such that SVAHGS(σ, m, y) = 1, where σ ← SigAHGS

ski
(m)

with ski corresponding to a random pki ∈ PK. This query action allows Ad
to get valid ad hoc group signatures.

– Qlink. Ad queries with two message-signature pairs (m, σ) and (m′, σ′), where
SVAHGS(σ, m, y) = 1 and SVAHGS(σ′, m′, y) = 1. CH returns 1/0 represent-
ing the fact that σ and σ′ were generated with the same secret key or not.
This query action allows Ad to learn the relation between signatures.

– Qtrace. Ad queries with a message-signature pair (m, σ) and an integer j
satisfying pkj ∈ PK. CH returns σ̇ ← OwnAHGS

skj
(σ, m) if σ ← SigAHGS

ski
(m)

and i = j, or σ̈ ← DnyAHGS
skj

(σ, m) if i �= j. This query action allows Ad to
learn the relation between signatures and signers.

2.2 Security Properties of Ad Hoc Group Signatures

We proceed to characterize the various security properties that an ad hoc group
signature scheme should satisfy. These properties except the correctness are de-
fined via a series of two-stage experiments Exp.

Definition 1. (Correctness.) An AHGS is correct if, for any λ, I = poly(λ) ∈
N, i �= j ∈ {1, · · · , I}, Y ← PG(1λ), (ski, pki) ← MG(1λ), PK = {pk1, · · · , pkI},
y ← GG(Y, PK), m ← {0, 1}∗, σ ← SigAHGS

ski
(m), σ̇ ← OwnRS

ski
(σ, m), σ̈ ←

DnyAHGS
skj

(σ, m), it holds that SVAHGS(σ, m, y) = 1, OVAHGS(σ, m, σ̇, y) = 1, and
DVAHGS(σ, m, σ̈, y) = 1 except a negligible probability in λ.

Definition 2. (Unforgeability.) In the first stage, CH initializes the game by
running Y ← PG(1λ), (ski, pki) ← MG(1λ) and y ← GG(Y, PK). Then, Ad is
allowed to ask all the above queries (in an adaptive fashion). At the end of the
first stage, Ad is required to choose a public list PK and a message m, where
Qskey(pk) for any pk ∈ PK has never been queried. In the second stage, Ad is
also allowed to ask all the above queries (in an adaptive fashion) except Qskey.
At the end of the second stage, Ad is required to forge a string σ̃ satisfying: (1)
Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. If Ad completes the
experiment, Exp = 1. Else, Exp = 0. An AHGS scheme is unforgeable if for any
PPT Ad, Pr[ExpAd

Unf (λ) = 1] < ε(λ), where ε(λ) is a negligible function in λ.

Definition 3. (Anonymity.) The first stage is the same as that of the Un-
forgeability game. At the end of the first stage, CH sends Ad two public keys
pki0 , pki1 ∈ PK and Ad is required to choose a message m, where Qskey(pk) for
any pk ∈ PK has never been queried. Then CH tosses a fair coin b ← {0, 1}
and sends σib

← SigAHGS
skib

(m) to Ad. In the second stage, Ad is also allowed to
ask all the above queries (in an adaptive fashion) except Qtrace(σib

), Qskey(pki0),
Qskey(pki1) and Qlink(σib

, σ′) for any valid signature σ′. At the end of the second

126 Q. Wu et al.

stage, Ad is required to output a bit b̂. If b̂ = b, Exp = 1. Else, Exp = 0. An AHGS
scheme is anonymous if for any PPT Ad, |Pr[ExpAd

Anon(λ) = 1]− 1/2| < ε(λ).

Definition 4. (Self-traceability.) It is defined by the following three two-stage
experiments Exp.

Experiment 1. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m and a public
key list PK = PKi ∪ PKj, where Qskey(pk) for any pk ∈ PKi has never been
queried while Qskey(pk) for any pk ∈ PKj has been queried. Then, CH sends
σ ← SigAHGS

ski
(m) to Ad, where ski corresponds to pki ∈ PKi. In the second

stage, Ad is also allowed to ask all the above queries except Qskey(pk) for any
pk ∈ PKi, Qtrace(σ, m) and Qlink(σ, m; σ′, m′), where SVAHGS(σ′, m′, y) = 1.
At the end of the second stage, Ad is required to output a string ˙̃σ such that
OVAHGS(σ, m, ˙̃σ, y) = 1. If Ad completes the experiment, Exp = 1. Else, Exp = 0.

Experiment 2. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m, a public key
list PK = PKi∪PKj, where Qskey(pk) for any pk ∈ PKi has never been queried
while Qskey(pk) for any pk ∈ PKj has been queried, and a string σ̃ satisfying:
(1) Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. In the second
stage, Ad is also allowed to ask all the above queries except Qskey(pk) for any
pk ∈ PKi, Qtrace(σ̃, m) and Qlink(σ̃, m; σ′, m′), where SVAHGS(σ′, m′, y) = 1.
At the end of the second stage, Ad is required to output a string ¨̃σ such that
DVAHGS(σ, m, ¨̃σ, y) = 1. If Ad completes the experiment, Exp = 1. Else, Exp = 0.

Experiment 3. The first stage is the same as that of the Unforgeability game.
At the end of the first stage, Ad is required to choose a message m, a public
key list PK = PKi ∪ PKj, where Qskey(pk) for any pk ∈ PKi has never been
queried while Qskey(pk) for any pk ∈ PKj has been queried, and a string σ̃
satisfying: (1)Qsign(m) has never been queried; (2) SVAHGS(σ̃, m, y) = 1. In
the second stage, Ad is also allowed to ask all the above queries (in an adaptive
fashion). At the end of the second stage, Ad is required to output a secret key
ski corresponding to a public key pki ∈ PKi, and a string ¨̃σ ← DnyAHGS

ski
(σ̃, m)

it holds that DVAHGS(σ̃, m, ¨̃σ, y) = 0. If Ad completes the experiment, Exp = 1.
Else, Exp = 0.

An AHGS is self-traceable if for any PPT Ad, Pr[ExpAd
Trace(λ) = 1] < ε(λ).

Definition 5. (Unlinkability.) The first stage is the same as that of the Un-
forgeability game. At the end of the first stage, Ad is required to choose two
messages m, m′ and two public keys pki0 , pki1 ∈ PK, where Qskey(pki0) and
Qskey(pki1) have never been queried. Then CH tosses two fair coins b, b̃← {0, 1}.
CH sends σib

← SigAHGS
skib

(m) and σib̃
← SigAHGS

ski
b̃

(m) to Ad. In the second

stage, Ad is also allowed to ask all the above queries except Qlink(σib
, m; σib̃

, m′),
Qtrace(σib

, m), Qtrace(σib̃
, m′), Qskey(pki0), Qskey(pki1). At the end of the sec-

ond stage, Ad is required to output a bit b̂. If b̂ = b⊕ b̃, Exp = 1. Else, Exp = 0.
An AHGS is unlinkable if for any PPT Ad, |Pr[ExpAd

Unl(λ) = 1]− 1/2| < ε(λ).

Ad Hoc Group Signatures 127

3 Mathematical Aspects

3.1 Complexity Assumptions

In this section we review the strong RSA assumption [3, 12] and suggest some
useful related extensions. A number N is an RSA integer if N=PQ where P and
Q are safe primes: P=2P ′+1, Q=2Q′+1, where both P ′ and Q′ are prime. Let
RSAλ be the set of RSA integers of size λ, QRN the set of quadratic residues.

Strong RSA Assumption [3, 12]. Given λ, a proper group G with unknown
order, for any PPT attacker A:

Pr[z ← G; (u, x)← A(1λ, G, z) : x �= ±1 ∧ ux = z] ≤ ε(λ).

Strong RSA-DLP Assumption. Given λ, an order-unknown group G where
Strong RSA holds, for any PPT attacker A:

Pr[g ← G; (u, x, y)← A(1λ, G, g) : ux = gy ∧ x �= 0 ∧ x � y] ≤ ε(λ).

Lemma 1. The Strong RSA and the Strong RSA-DLP are equivalent.

Proof. Clearly, any algorithm to solve the Strong RSA assumption can be trans-
formed to solve the Strong RSA-DLP Assumption. We prove that an algorithm
Ad can also be transformed to solve the Strong RSA assumption.

Given any Strong RSA challenge (z, G), one runs Ad and obtains (u, x, y) such
that x �= 0, 1,−1, ux = zy. Note that x � y. Let δ = gcd(x, y). Then 1 < δ < x
and x/δ > 1. From the extended Euclid algorithm, one finds α, β such that
δ = xα + yβ. It follows that z = zxα/δ+yβ/δ = (zα)x/δuxβ/δ = (zαuβ)x/δ. Notice
x/δ > 1. One finds a solution (zαuβ, x/δ) to the Strong RSA challenge (z, G).
The transformation is clearly polynomial in λ.

In our security proofs, we will use the following candidate (weak) Decisional Fac-
torization Diffie-Hellman (DFDH) assumption. Coarsely speaking, given g, h in
a proper group G with unknown order and two RSA integers n0, n1, it is difficult
to decide logg h is a non-trivial factor of n0 or n1. Intuitively, as the factorization
problem of RSA integers and the discrete logarithm problem in proper groups
are widely believed difficult, it will be difficult to determine whether the two
problems have the same solution. This assumption is not completely new. It
was implicitly used before without specification [8]. However, to the best of our
knowledge, there is no known efficient algorithm to reduce the DFDH problem
to other widely-believed difficult problems to date. So we will specify it as a new
candidate assumption and use it in our proofs.

DFDH Assumption. Given secure parameters λ, a proper group G with un-
known order, for any PPT attacker A:

Pr
[

n0 = p0q0 ← RSAλ, p1 ← Z2|p0|

g ← G, b← {0, 1}, h = gpb

∣∣∣∣ b′ ← A(1λ, G, n0, g, h)
∧b′ = b

]
≤ ε(λ).

128 Q. Wu et al.

Note that p1 is a random integer in the same size |p0| of prime p0. To make the
DFDH assumption hold, G must be chosen properly with unknown order to the
attacker, for instance, the additive group of the points of elliptic curves over ring
ZN , where N ← RSAλ [14]. However, we stress that one cannot directly use Z∗

N

as G with unknown order since in this case, the Jacobi symbols of ggp0 = gp0+1

ggp1 = gp1+1 are distinguishable for prime p0 and random integer p1. To cover
such groups G, we slightly weaken the DFDH as follows.

Weak DFDH Assumption. Given secure parameters λ, a proper group G
with unknown order, for any PPT attacker A:

Pr
[

n0 = p0q0, n1 = p1q1 ← RSAλ

g ← G, b← {0, 1}, h = gpb

∣∣∣∣ b′ ← A(1λ, G, n0, n1, g, h)
∧b′ = b

]
≤ ε(λ).

3.2 Accumulators

An accumulator scheme, introduced in [4] and further developed in [3,11], allows
aggregation of a large set of inputs into one constant-size value while keeping
some useful property of the inputs. It has been shown as a powerful tool for
efficiently constructing group signatures and ring signatures. We extend the no-
tations to accumulate random strings.

An accumulator family is a pair ({Fλ∈N}, {Xλ∈N}) where Fλ is a sequences
of families of functions such that each f ∈ Fλ is defined as f : Uf × Xext

f → Uf

for some Xext
f ⊇ Xλ, and additionally the following properties are satisfied:

– (Efficient generation) There exists an efficient algorithm G(·) that on input a
security parameter 1λ, outputs a random element f of Fλ, possibly together
with some auxiliary information Auxf .

– (Efficient evaluation) Any f ∈ Fλ is computable in time polynomial in λ.
– (Quasi-commutativity) For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ, f(f(u, x1),

x2) = f(f(u, x2), x1).

Definition 6. An accumulator is said to be collision quasi-resistant if for any
λ ∈ N and any PPT attacker A:

Pr
[

(f, Auxf)← G(1λ)
u ← Uf

∣∣∣∣ (x′, w, X)← A(f, u, Uf) ∧ w ∈ Uf

∧X ⊆ Xλ ∧ x′ /∈ Xwell ∧ f(w, x′) = f(u, X)

]
≤ ε(λ).

where Xwell is a well-determined set by X.

Definition 7. Let π be a map (maybe not efficient) π : Xλ × {0, 1}k → X′
well,

where k is a security parameter. Let X ⊆ Xλ. The set Xwell = π(X ×{0, 1}k) is
well-determined by X if there exists an efficient distinguisher, for any element
β ∈ X′

well, to determine whether β ∈ Xwell. Else, the set Xwell is not well-
determined by X.

Examples of a well-determined set. Let X = {x1, · · · , xk} where xi ←
Z∗

p for i = 1, · · · , n, and p is a sufficient large strong prime and n a security

Ad Hoc Group Signatures 129

parameter. Then Xwell = {β : β|
∏I⊆{1,··· ,k}

i∈I xi} is well-determined by X due
to the efficient Euclid algorithm. However, if n is sufficiently large, X̃well = {β :
β =

∏I⊆{1,··· ,k}
i∈I xi mod p } is not a well-determined set due to the difficulty of

the well-known subset product problem and discrete logarithm problem.

Examples of a collision quasi-resistant accumulator. For a security pa-
rameter λ, the family Fλ consists of the following functions: f : G × Z∗

p �→
G, f(u, x) = ux, where G is the corresponding group defined in the Strong
RSA and DFDH assumptions. The well-determined set Xwell by X is {β :
β|
∏

i∈{1,··· ,k} xi}. Directly from lemma 1, we have the following corollary.

Corollary 1. Under the Strong RSA assumption, the function family f(u, x) =
ux defined above is a collision quasi-resistant accumulator.

Remark 2. In [3], Baric and Pfitzman proposed an RSA-based accumulator to
accumulate random strings m. They use an underlying RSA-based accumulator
for primes and a conversion algorithm. Assume security parameters κ,
 and a
collision resistant hash function H(·) : {0, 1}∗ → {0, 1, · · · , 2� − 1}. Given m,
search for the smallest prime p = 2κH(m) + γ by improving γ ∈ N. Finally, ac-
cumulate the prime using an underlying RSA-based accumulator for primes. Our
extension is much more efficient than Baric-Pfitzman approach, which requires
a lot of primality tests. The cost is the DFDH assumption.

4 Proposed Ad Hoc Group Signature Schemes

In the ring signature schemes in the literature, there are a number of users and an
associated PKI. Ad hoc subsets of the user population can be formed without the
help of a group manager–but it is assumed that each user has a registered public
key correctly generated following the specifications of the system. In our schemes,
we also follow this pre-condition in the context of ad hoc group signatures.

4.1 Ad Hoc Group Signature with Linkability

In some applications, linkable anonymous signatures can be used to determine
whether some players voted multiple times. In this section, we detail a simple
yet efficient linkable ad hoc group signature scheme.

– (System parameter generation.) Let G be an order-unknown group in
which the Strong RSA and the DFDH hold. 1 < ε, κ,
,
1, λ1 < poly(λ) are
security parameters, where
1 = (
−2)/ε−κ. 1 < I < poly(λ) is the number
of group members. H(·) : {0, 1}∗ → G is a cryptographic hash function.

– (Member key generation.) ni ← RSAλ, where ni = piqi, pi ∈ S(0, 2�1) =
{2�1 + 1, · · · , 2�1 − 1}, 2� < qi. ni is player i’s (i ∈ {1, · · · , I}) public key
and pi, qi its private keys. PK = {ni}I

i=1 is the public key list. Note that
the member’s public key is RSA integers but the two factors are assumed in
different length, for instance, pi is in size of 510 bits while qi in 737 bits.

130 Q. Wu et al.

– (Group key generation.) Choose a generator g of G depending on PK, for
instance, the hash value of PK. Then, any one can compute y = gn1n2···nI .
The ad hoc group public key is {λ, ε,
,
1, κ, G, g, y, H(·), PK}.

– (Signature generation.) Compute u = gn1n2···nI/pi in advance. For a mes-
sage m, compute the following knowledge signature [9, 12, 7]:

� = KS{pi : y = upi ∧ pi ∈ S(0, 2�)}(m).

Output the signature σ = (u, �) on m.
– (Signature verification.) Check that u �= ±y±1 and the validity of the

knowledge signature �. Output 1 if all the checks hold. Otherwise, output 0.
– (Tracing arguments generation.) In case of dispute, member j can prove

to the judge that it has (not) produced a given linkable ad hoc group signa-
ture σ by computing ẏj = upj , h = H(PK||m||g||y||u||σ||ẏj), w = hnj , ḣ =
hqj , and knowledge signature [9, 12, 7]:

�̇ = KS{pj : ẏj = upj ∧ w = ḣpj ∧ pj ∈ S(0, 2�)}(m, σ).

Output self-tracing arguments σ̈ = σ̇ = (j, ẏj , ḣ, �̇).
– (Tracing witness verification.)Compute h, w as the member j and check

that yj �= ±u±1, w �= ±ḣ±1 and the validity of the knowledge signature �̇. If

any check does not hold, output Failure. Else, further check ẏ
?= ẏj . If the

equality holds, member j produced the given ad hoc group signature. Else,
member j did not produce it.

A straightforward verification shows that any legal ad hoc group member can
generate ad hoc group signatures on any message accepted by the verification
algorithm. For an ad hoc group signature, a group member can always provide
a valid knowledge signature so that a judge can determine whether or not the
given signature is generated by the member. Under the strong RSA assumption,
the knowledge signature � implies that signer knows p̂ such that gn1···nI = up̂.
From lemma 1, p̂|n1 · · ·nI . Note that p̂ �= ±1 ∈ S(0, 2�). So p̂ must be the unique
smallest non-trivial factor of some ni ∈ PK and u is uniquely determined by
p̂. The knowledge signature �̇ convinces one that the prover’s secret factor is
equal to the factor involved in � or not. So it can be used to determine whether
member j generated the plain ring signature �. Hence, the scheme is unforgeable,
traceable and linkable. An algorithm to break the anonymity can be used to
break the (weak) DFDH assumption.

Theorem 1. The above ad hoc group signature scheme is correct. In the ran-
dom oracle model, if the Strong RSA assumption holds, the above ad hoc group
signature scheme is unforgeable, self-traceable and linkable. If the (weak) DFDH
assumption holds, the above ad hoc group signature scheme is anonymous.

Proof. Omitted due to page limitation. We refer the readers to the full version
of this paper.

Ad Hoc Group Signatures 131

4.2 Ad Hoc Group Signature with Unlinkability

There are approaches to improve the basic linkable ad hoc group signature to an
unlinkable one. The first approach is to let the generator g not be a component
of the ad hoc group public keys. The generator g is now generated independently
before producing different ring signatures, for instance, generated with a hash
function as we suggested in the self-tracing procedure in the previous section.
The other procedures of the above scheme keep unchanged. In this case, g is a
part of the resulting anonymous signature. Following this approach, one indeed
obtains the same scheme in [8]. Clearly, now the new anonymous signature is
unlinkable and it is efficient in term of bandwidth consumption. However, the
online computation is heavy and linear to the number of possible group members.

In the following, we suggest an alternative to achieve unlinkability. Every time,
during the signing procedure, the group member will accumulate a random in-
teger that is co-prime to all the public keys to blind the witness of accumulating
the smaller prime factor of some RSA integer. The extended notion of accumu-
lators allows accumulating random integers. This feature critically contributes
efficiency improvements for our unlinkable ad hoc group signature. In the fol-
lowing, we will only specify the signing, verifying and tracing procedures, as the
other parts remain unchanged as discussed earlier.

– (Signing procedure.) Randomly select a �= 0 ← S(0, 2�1) co-prime with
pi, and compute z = ya, v = ua, α, β satisfying aα + piβ = 1, y1 = yβ and
the knowledge signature [9, 12, 7]:

�=KS{a, pi, α : z = ya∧z = vpi∧y = zαypi

1 ∧a ∈ S(0, 2�)∧pi ∈ S(0, 2�)}(m).

The resulting ad hoc group signature is σ = (z, v, β, �).
– (Verification procedure.) Compute y1 = yβ and verify z �= ±y±1, v �=
±z±1 and the validity of the knowledge signature �. Output 1 if and only if
all the checks hold.

– (Tracing arguments generation.) In case of dispute, a group member
j can prove to the judge that a given ad hoc group signature σ was (not)
generated by it without leaking its private key. As the above ad hoc group
signature is not linkable, tracing the given signature will leak no information
about the relation between of member j and other signatures.

żj = vpj , h = H(PK||m||g||y||σ||żj)2, w = hnj , ḣ = hqj

�̇ = KS{pj : żj = vpj ∧ w = ḣpj ∧ pj ∈ S(0, 2�)}(m, σ).

Output self-tracing arguments σ̈ = σ̇ = (j, ẏj , ḣ, �̇).
– (Tracing arguments verification.) The judge computes h, w as the prover

and checks that żj �= ±v±1, w �= ±ḣ±1 and the validity of the knowledge
signature �̇. If any check does not hold, the judge outputs Failure. Else, it
further checks z

?= żj. If the equality holds, the judge declares that member
j produced the given ad hoc group signature. Else, the judge declares that
member j did not produce it.

132 Q. Wu et al.

Similar to the basic linkable ad hoc group signature, under the strong RSA
assumption, the knowledge signature � implies that signer knows co-prime in-
tegers â, p̂ such that gan1···nI = up̂. From lemma 1, p̂|an1 · · ·nI . since â, p̂ are
proven co-prime, it follows that p̂|n1 · · ·nI . Note that p̂ �= ±1 ∈ S(0, 2�). So p̂
must be the unique smallest non-trivial factor of some ni ∈ PK. The unique u
determined by p̂ is masked by one-time random integer â in the form v = uâ for
each signature. The knowledge signature �̇ convinces one that the prover’s secret
factor is equal to the factor involved in � or not. So it can be used to determine
whether member j generated the ad hoc group signature �. Hence, the scheme
is unforgeable, traceable. An algorithm to break the anonymity or unlinkability
can be used to break the (weak) DFDH assumption.

Theorem 2. The above ad hoc group signature scheme is correct. In the random
oracle model, if the Strong RSA assumption holds, the above ad hoc group sig-
nature scheme is unforgeable and self-traceable. If the (weak) DFDH assumption
holds, the ad hoc group signature scheme is anonymous and unlinkable.

Proof. Omitted due to page limitation. We refer the readers to the full version
of this paper.

Remark 3. Note that given a valid ad hoc group signature σ = (z, v, β, �) from
member i, if the order of G is exposed to group member i, then group member
i can deny that the ownership of σ. In this case, member i choose a random
integers p′ �= pi, q

′ in the corresponding space such that ni = p′q′ mod ϕ(N) and
compute ż′i = vp′

i , h = H(PK||m||g||y||σ||ż′i)2, w = hni , ḣ = hq′
, �̇ = KS{p′i :

ż′i = vp′
i ∧ w = ḣp′

i ∧ p′i ∈ S(0, 2�)}(m, σ). Since the knowledge signature is valid
and z �= z′i, this forged denying arguments is valid. However, a group member
j �= i cannot provably claim the ownership of σ even if member j knows the
order of G, due to the fact that pi is uniquely determined by z and v and it
is impossible for member j to compute ḣ such that ḣpi = hnj if the discrete
logarithm is difficult in G as assumed. The above discussion also shows the
difference between ability to deny a signature and that to claim a signature.

4.3 Efficiency

In this section we summarize the performance of our schemes and compare them
with the state-of-the-art ring signatures. The most efficient secure existing ring
signatures are proposed by Dodis et al. in [11] which provides no self-traceability.
We denote it by DKNS scheme and our ad hoc group signature scheme with
linkability/unlinkability by LAHGS/ULAHGS scheme, respectively. Exp denotes
the single-base exponentiation modulo a λ-bit RSA integer. For fairness, we
compare it with our ad hoc group signatures enjoying the same functionalities
without considering the tracing arguments. As suggested in [11], we will measure
the complexity of signatures by the actual complexity without the description of
the group and the calculation of group public keys.

In the above tables, we consider G = QRN where N is an RSA integer with
unknown factorization. Accordingly, the security relies on the weak DFDH as-
sumption. But note that the schemes can be realized with more general case of

Ad Hoc Group Signatures 133

Table 1. Comparison of ring signatures with our ad hoc group signatures

Length (bits) Typical size Generation Verification
DKNS [11] 5λ+κ+ ε(7.5�1 +5κ)−5 10363 22 Exp 18 Exp
Our LAHGS λ + κ + � − 1 1920 1 Exp 2 Exp
Our ULAHGS 2λ + 2� + �1 + κ − 2 4196 7 Exp 6 Exp

Table 2. Complexity of the tracing arguments

Length (bits) Typical size Generation Verification
Our LAHGS 2λ + κ + � − 1 + log I 2944 + log I 5 Exp 5 Exp
Our ULAHGS 2λ + κ + � − 1 + log I 2944 + log I 5 Exp 5 Exp

G. We suggest typical security parameters as previous papers [16]: λ = 1024, κ =
160, ε = 1.1,
1 = 510. The computation complexity is in terms of modular ex-
ponentiations without any optimization, that is, a two-base exponentiation is
calculated as two single-base exponentiations. Clearly, without considering the
tracing arguments, our ad hoc group signatures dramatically improve the effi-
ciency of the DKNS scheme. The tracing procedures are also efficient and inde-
pendent of the group size. Moreover, a group member can judge whether it is
the owner of a given signature with its private key only. It does not require the
member’s previous inner random coins.

We also noted that there are some independent works to bridge the gap be-
tween ring signatures and group signatures. In [15], Komano et al. presented
the notion of deniable ring signatures which allowing a group member to deny
a ring signature. Their notion is weaker and indeed covered in our ad hoc group
signatures (see Remarks 1,3). In [18], Manulis proposed the notion of democratic
group signatures which provides outsider anonymity while any group member
can trace the signer. The democratic group signature requires interactive group
key agreement, and additional leave and join sub-protocols. Moreover, the im-
plementations in both [15] and [18] suffers from linear complexity regarding to
the group scale while ours are independent of the group size.

5 Applications

There are many potential applications of ad hoc group signatures. In the fol-
lowing, we show direct applications to electronic lotteries. In a typical lottery
one or more winners are chosen during a trusted process so that each purchased
ticket has an equal chance to be chosen. This process is usually monitored by
an outsider auditor which ensures the fairness of the protocol. As the process is
random it cannot be repeated and the ticket purchasers must trust the process.

We use the same framework as [19]. Assume there is a bulletin and some
necessary public information has been published on the bulletin including the
order-hiding group G. As previous schemes our lottery uses random numbers
chosen by the players in order to output a number whose randomness is granted
provided that at least one player chooses its number at random.

134 Q. Wu et al.

There are a few papers discussed how to implement the process to compute
the result of winning number [19, 13]. In the following, we focus on the privacy
of the lottery players. As we remarked in the introduction of the report, lottery
players tend to require anonymity protection for fear of blackmail when winning
the giant prize, while trust no third party for fear that the party may leak their
identities. The unlinkable ad hoc group signatures can provide the players with
the expected privacy. First, all lottery players register to the bulletin with their
RSA public keys. Then the group public key can be computed. Second, the
lottery players decide their lottery number and sign them using the unlinkable
ad hoc group signature scheme in Section 4.2. They cast their lottery number
(maybe, in the ciphertext form) and the signature to the bulletin. Finally, after
the winning numbers are calculated out, the winners can prove that they are
really the winners using the tracing arguments. In our scheme, a lottery has size
about 0.53K bytes. The lottery scheme is very simple and efficient. It enjoys
perfect privacy in the sense that no third party except that the lotteries issuer
can determine the true identity of the winner and additionally, no other player’s
identity will be exposed. Moreover, the system initialization can be speeded up
by letting the lotteries issuer generate G without affecting security of the lotteries
applications (see Remark 3).

6 Conclusion

We outlined the usefulness of adding the self-traceability to ring signatures in
practice, by proposing the notion of ad hoc group signatures. It provides a general
fair mechanism of privacy protection for self-organized groups. It also provides a
generic technique to remove the trusted third party such as a group manager from
the privacy protection systems. Meanwhile, it dices the anonymity-revoking func-
tionality of a conventional group signature to the distributed members, rather
than a centralized manager. It is flexible and practical.

We implemented the notion using a slightly extended model of cryptographic
accumulators with provable security in the random oracle model. The implemen-
tations are very efficient and elegant. After the group members are determined
and the group key is computed, the space, time, and communication complexities
of the relevant parameters and operations are constant. It outperforms the state-
of-the-art ring signatures. Furthermore, a group member can judge whether or
not it generated a given ad hoc group signature with its private key only. Hence,
the notion of ad hoc group signatures is useful, and the proposed implementa-
tions are very efficient and practical.

Acknowledgments

The authors are indebted to Duncan S. Wong for his useful comments on the
DFDH assumption and the anonymity of the linkable ad hoc group signature.
The authors would like to thank Bo Qin for many discussions during the prepa-
ration of the versions of this paper.

Ad Hoc Group Signatures 135

References

1. G. Ateniese, J. Camenisch, S. Hohenberger and B. de Medeiros. Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385.

2. G. Ateniese, and B. de Medeiros. Efficient group signatures without trapdoors.
Asiacrypt’03, LNCS 2894, pp. 246-268. Springer-Verlag, 2003.

3. N. Baric, B. Pfitzman. Collision-free accumulators and fail-stop signature schemes
without trees. Eurocrypt’97, LNCS 1233, pp. 480-494, Springer-Verlag, 1997.

4. J. Benaloh and M. de Mare. One-way accumulators: a decentralized alternative to
digital signatures. Eurocrypt’93, LNCS 765, pp. 274-285, Springer-Verlag, 1993.

5. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. ACM-
CCS 2004, pp.168-177, ACM Press, 2004.

6. X. Boyen and B. Waters. Compact Group Signatures Without Random Oracles.
Eurocrypt 2006, to appear. Available at Cryptology ePrint Archive: 2005/381.

7. A. Chan, Y. Frankel, and Y. Tsiounis. Each Come - Easy Go Divisible Cash.
Eurocrypt’98, LNCS 1403, pp. 561-575, Springer-Verlag, 1998.

8. D. Chaum, E. van Heyst. Group signatures. Eurocrypt’91, LNCS 547, pp. 257-265,
Springer-Verlag, 1991.

9. J. Camenisch and M. Michels. A group signature scheme based on an RSA variant.
Asiacrypt’98, LNCS 1514, pp. 160-174, Springer-Verlag, 1998.

10. J. Camenisch, M. Stadler. Efficient group signatures for large groups. Crypto’97,
LNCS 1294, pp. 465-479, Springer-Verlag, 1997.

11. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. Eurocrypt’04, LNCS 3027, pp. 609-626, Springer-Verlag, 2004.

12. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. Crypto’97, LNCS 1294, pp. 16-30, Springer-Verlag, 1997.

13. D. M. Goldschlag and S.G. Stubblebine. Publicly verifiable lotterie: applications
of delaying functions. FC’98, LNCS 1465, pp. 214-226. Springer-Verlag, 1998.

14. K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone. New public-key
schemes based on elliptic curves over the ring Zn. Crypto’91, LNCS 576, pp. 252-
266. Springer-Verlag, 1991.

15. Y. Komano, K. Ohta, A. Shimbo1, and S. Kawamura. Toward the Fair Anony-
mous Signatures: Deniable Ring Signatures. CT-RSA’06, LNCS 3860, pp. 174-191.
Springer-Verlag, 2006.

16. J. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures scheme. Eurocrypt
2004, LNCS 3027, pp. 571-589, Springer-Verlag, 2003.

17. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous group
signature for ad hoc groups (extended abstract). ACISP’04, LNCS 3108, pp. 325-
335. Springer-Verlag, 2004.

18. M. Manulis. Democratic Group Signatures on Example of Joint Ventures. To ap-
pear at ASIACCS’2006. Available at: http://eprint.iacr.org/2005/446.pdf.

19. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proc. Asi-
acrypt’01, LNCS 2248, pp. 552-565, Springer-Verlag, 2001.

20. G. Tsudik, S. Xu. Accumulating composites and improved group signing. Asi-
acrypt’03, LNCS 2894, pp. 269-286. Springer-Verlag, 2003.

21. Q. Wu, X. Chen, C. Wang, Y. Wang. Shared-key Signature and Its Application
to Anonymous Authentication in Ad Hoc Group. ISC’04, LNCS 3225, pp.330-341,
Springer-verlag, 2004.

22. D. S. Wong, K. Fung, J. K. Liu, and V. K. Wei. On the RS-code construction of
ring signature schemes and a threshold setting of RST. ICISC’03, LNCS 2971, pp.
34-46, Springer-Verlag, 2003.

Rateless Codes for the Multicast Stream Authentication
Problem

Christophe Tartary and Huaxiong Wang

Division of ICS, Department of Computing
Macquarie University, NSW 2109 Australia
{ctartary, hwang}@ics.mq.edu.au

Abstract. We study the multicast authentication problem when an opponent can
drop, reorder and introduce data packets into the communication channel. We
first study the packet authentication probability of a scheme proposed by Lysyan-
skaya, Tamassia and Triandopoulos in 2003 since our opponent model is based on
theirs. Using a family of rateless codes called Luby Transform codes (LT codes)
we design a protocol which allows any packet to be authenticated at the receiver
with probability arbitrary close to 1. We also compare LT codes to other families
of rateless codes which could be used in that context in order to minimize the
packet overhead as well as the time complexity of encoding and decoding data.

Keywords: stream authentication, polynomial reconstruction, rateless codes.

1 Introduction

Multicast protocols enable data to be transmitted from one sender to many receivers via
a communication network such as the Internet. The applications are as various as pay-
TV, online games and military defense systems for instance. Nevertheless large-scale
broadcasts prevent lost content from being retransmitted since the loss of any piece of
data could generate an overwhelming number of redistribution requests at the sender. In
addition the network can be under the influence of malicious users performing harmful
actions on the data stream. Thus the security of broadcast transmission schemes depends
on both network properties and opponents’ computational power. Unconditionally se-
cure schemes have been designed in [1, 4, 25] but either they can only be used for a
single authentication or they require too large storage capacities. In this paper we will
consider that opponents have bounded computational abilities.

In recent years several protocols were designed to deal with the multicast authenti-
cation problem [3]. Applications like stock quotes and pay-TV involve that the stream
size can be large and eventually infinite. On the other hand the receivers must be able to
authenticate data within a short period of delay upon reception. Since many protocols
will transfer private or sensitive information, non-repudiation of the sender is required
for most of them. Signing each packet1 via digital signatures is impractical since they
are generally time expensive to generate and verify. Using one-time or k-time signa-
tures [6, 24] overcomes this drawback but their size is, in general, too large to be used

1 Since the stream size is large, it is divided into small fixed-size entities called packets.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 136–151, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Rateless Codes for the Multicast Stream Authentication Problem 137

for broadcasting due to bandwidth limitations. Thus to provide non-repudiation, most
techniques rely on signature amortization. One signature is created and its overhead and
time generation/verification are amortized over several packets using hash functions.

In order to deal with packet loss Perrig et al. designed EMSS [21] and MESS [21]
where the hash of each packet is appended to several followers according to a spe-
cific pattern. One signature is generated from time to time and is always assumed to
be received providing non-repudiation and allowing new users to join the communi-
cation group at any time. Using k-state Markov chains [20, 30] to model packet loss
they computed bounds on packet authentication probability. Using augmented chains to
distribute hashes, Golle and Modadugu [7] and Miner and Staddon [17] obtained other
bounds. Unfortunately all these schemes rely on the reception of signed packets.

Wong and Lam [29] used Merkle-hash trees [16] to distribute hashes and solve the
problem of reliable signature transmission. Their scheme can tolerate any packet loss
and data injections but the size of the tag2 is logarithmic in the number of packets per
block3. As said earlier, bandwidth limitations prevent us from using such an approach.

To deal with packet loss without relying on reception of the signature packets one
can split the signature into k parts where only l of them (l < k) are enough for recovery.
Using error-correcting codes, Lysyanskaya et al. [14] developed a protocol which also
tolerates data injections. Their approach was recently extended by Tartary and Wang
[28]. Nevertheless none of these schemes provided bounds on packet authentication
probability. In addition the rate of their linear code depends on some network parame-
ters. If one of them changes then the whole structure of the code must be updated.

Our approach is motivated by the following observation. A necessary condition for
all these schemes to authenticate a packet P (at the receiver) is to get an element P̃
containing P along with some hashes [7, 17, 21, 29] or code symbols [14, 19, 28]. If
P̃ is dropped then P is definitely lost since such a P̃ is unique for each scheme. As
these previous techniques we will process data stream packet per block of n elements:
P1, . . . , Pn. Our technique can be seen as an extension of Lysyanskaya et al.’s approach
which enables any receiver to recover all data packets P1, . . . , Pn despite loss incurred
during transmission. This constitutes a major improvement from existing techniques
in the way that receivers not only authenticate what they received but also reconstruct
what was lost. This is particularly beneficial when P1, . . . , Pn represent audio or video
information where our technique prevents frozen images and audio gaps to happen.

We propose to use Luby Transform (LT) codes to encode blocks of n data packets
P1, . . . , Pn into N symbols E1, . . . , EN (the value of N is specified in Sect.3). LT
codes were introduced by Luby [12] as the first practical realization of rateless codes
to illustrate the Digital Fountain concept [2]. These codes are constructed in such a
way that there exists a threshold value m (depending on n) such that any subset of
{E1, . . . , EN } having at least m distinct elements can be used to recover all n original
packets P1, . . . , Pn with good probability. By representing E1, . . . , EN as coefficients
of a particular polynomial and carefully choosing N , the receiver will be able to run a
reconstruction algorithm due to Guruswami and Sudan [8] and will recover that poly-
nomial despite potential data injections performed by malicious users.

2 We call authentication tag the extra information appended to a packet to prove its authenticity.
3 In order to be processed, packets are gathered into fixed-size sets called blocks.

138 C. Tartary and H. Wang

In [14], Reed-Solomon codes were used to design a multicast authentication scheme
dealing with both packet loss and data injection. We will prove that its packet authenti-
cation probability (which has not been studied in [14]) does not exhibit an easy lower
bound. In addition when a packet was dropped during transmission its content was def-
initely lost for the receivers. Combining a LT code with the polynomial reconstruction
technique we design a broadcast protocol having two main advantages. First it allows
the receivers to reconstruct erased data which is, to our knowledge, a new feature in
the multicast authentication problem. Second it exhibits a minimal lower bound on the
packet authentication probability which can be chosen arbitrary close to 1.

Since we will use the same opponent model as Lysyanskaya et al., we will prove that
our scheme is as secure as theirs. Since its security depends on the consistency of the
LT decoding (while Lysyanskaya et al.’s relies on Reed-Solomon codes’ one), we will
compare LT codes to other families of rateless codes including Online and Raptor codes
[15, 26]. We will show that it is possible to achieve reasonable and constant packet over-
head by using a modified version of LT codes. We will also enlighten that Raptor codes
can provide good practical implementations for our scheme if they are used instead of
LT codes. A digital signature will be used to ensure non-repudiation and to enable new
members to join the communication group at any block boundary.

The paper is organized as follows. We will describe the scheme developed in [14]
and analyze its packet authentication probability in the next section. In Sect. 3 we will
develop our authentication protocol using LT codes. In Sect. 4 we will compare differ-
ent families of rateless codes that could be used instead of LT codes. The last section
will summarize our contribution to the multicast authentication problem.

2 Analysis of Lysyanskaya et al.’s Protocol

In this section we will shortly describe the scheme designed in [14]. We will first intro-
duce the network model used in that paper. Then we will recall the tasks performed at
the sender and the receiver to authenticate data and analyze the packet authentication
probability of that approach since it has not been studied in the original paper [14]. Fi-
nally we will illustrate our result when the network exhibit a bursty loss pattern [20].

Network Model. The network is assumed to be under partial control of an opponentO
who can drop and rearrange packets of his choice. He can also inject data into the chan-
nel. Since our main concern is the multicast authentication problem, we assume that a
reasonable number of packets reaches the different receivers and not too many packets
are injected by O. Indeed if too many packets are dropped then data transmission be-
comes the main problem to solve since the small number of received elements would
be useless even authenticated. On the other hand if O can introduce a large quantity of
packets then O can potentially overflow the network and the major problem becomes
strengthening the channel against denial-of-service attacks.

The stream is split into blocks of n packets and we introduce two parameters: α(0 <
α ≤ 1) (the survival rate) and β (β ≥ 1) (the flood rate). It is assumed that at least αn
original packets and a total of no more than βn packets reach each receiver.

Rateless Codes for the Multicast Stream Authentication Problem 139

Description of the Scheme. We need a collision-resistant hash function h [22] and a
secure signature scheme (SignSK,VerifyPK) [27] the couple of keys of which (SK,PK)
is created by a generator KeyGen. Denote {P1, . . . , Pn} the block of n packets to be
sent. The number BID denotes the block position within the whole stream. Each Pi is
hashed into hi by h. A signature σ is generated as: σ := signSK(BID‖h1‖ · · · ‖hn). The
concatenation C := h1‖ · · · ‖hn‖σ is encoded into [c1, . . . , cn] using the [n, ρn]q binary
systematic Reed-Solomon (SRS) code over IFq where q is a power of 2. Both ρ and q de-
pend on α and β. The sender builds the set of n authenticated packets {AP1, . . . , APn}
to be emitted to the receivers via the network as: ∀i ∈ {1, . . . , n}APi = BID‖i‖Pi‖ci.

When a receiver gets m elements {AP′
1, . . . , AP′

m} he first decomposes each of them
as: BIDi‖ji‖P ′

ji
‖c′ji

. He verifies that BIDi = BID and builds the family
{(j1, c′j1), . . . , (jm, c′jm

)} . He checks that m is consistent with the values of the rates α
and β. In order to deal with packet loss and data injections he uses an algorithm devel-
oped by Guruswami and Sudan [8] (GS-Decoder) to list-decode the SRS code. He gets
a list of candidates for the signature verification. If one of them verifies the signature
then this element must be C since the signature scheme is secure. Thus the receiver re-
covers the hashes of the original packets. What remains to achieve is to authenticate the
original packets amongst the received ones. The receiver computes the hashes of the m
packets P ′

j1 , . . . , P
′
jm

and look for matchings with the hi’s. Since h is collision resistant
if h′

jk
= hi then P ′

jk
= Pi. In this case Pi is said to have been authenticated by the

receiver. Using this process he can find the original packets amongst data he received.
This authentication scheme deals with both packets loss and data injections and the

communication group is joinable by new users at any block boundary. In addition no
reliable transmission of the block signature is assumed. Nevertheless no study of its
packet authentication probability was performed in [14]. We will now address this point.

Analysis of the Packet Authentication Probability. We call the actionO performs on
the stream a modification pattern. We first introduce the following definition:

Definition 1. We say that a couple (α, β) of survival and flood rates is accurate for a
network flow of n symbols if when data is sent per block of n elements, the receiver gets
at least α n of them and receives no more than βn pieces of data (including opponent’s
injections). In addition (α, β) is unique (and called the accuracy of the network) if:
(1) O can use a modification pattern M′ allowing to receive (at least) one set of αn
original packets with positive probability as well as a modification patternM′′ allow-
ing to receive (at least) one set of βn packets with positive probability and:
(2)O cannot use either a modification pattern allowing to receive less than αn original
packets with a non-zero probability or a modification pattern allowing to receive more
than βn packets with a non-zero probability

The previous definition means that the accuracy (α, β) is optimal in the sense that no
receiver can get less than α n original elements but O can drop packets in such a way
that at least one of the receivers can gets exactly αn of them (patternM′). It also means
that no receiver can get more than β n elements but O can inject packets in such a way
that at least one of the receivers can gets exactly βn elements (patternM′′).

From now on, we consider that (α, β) is the accuracy of the network. The set of n el-
ements of Definition 1 will be {AP1, . . . , APn}. Denote F the set of families having at

140 C. Tartary and H. Wang

least αn elements of {AP1, . . . , APn}. For any λ ∈ {αn, . . . , n} we also define Fλ the
subset of F consisting of families having exactly λ elements. Denote M the modifica-
tion pattern used by O. It induces a probabilistic distribution over F and therefore over
{P1, . . . , Pn}. Our aim is to compute PM(Pi is authenticated) for any i ∈ {1, . . . , n}.
Assume that we received a family of packets F for the block number BID. We denote
F̂ the subfamily of F consisting of the original packets. Since (α, β) is the accuracy of
the network we have: αn ≤ |F̂ | ≤ |F | ≤ βn. We have the following theorem:

Theorem 1 ([28]). If (α, β) is the accuracy of the network (for a flow n) then any
received family F verifies the signature.

Therefore we get for any i in {1, . . . , n}:
PM(Pi is authenticated) = PM(Pi is authenticated | F verifies the signature)

According to [14] once F verifies the signature, Pi is authenticated if and only if there
exists a received element BID‖k‖P ′

k‖c′k such that h(P ′
k) = hi. Given that h is collision

resistant this happens if and only if P ′
k = Pi. We have three cases. First, we have

APi = BID‖k‖P ′
k‖c′k . Second, we have APi �= BID‖k‖P ′

k‖c′k but there is another
original element APj(j �= i) such that APj = BID‖k‖P ′

k‖c′k (this corresponds to the
fact that a piece of data Pi has to be sent several times). Third, BID‖k‖P ′

k‖c′k does
come from the sender and therefore has been introduced by O. Since O can eavesdrop
the network, he knows all the APj’s. Since he has no interest in helping the receivers to
get original data, he will only introduce incorrect content. Thus we can claim the last
two cases have a very small probability to happen and approximate the right hand side
of the inequality by PM(APi is received):

PM(Pi is authenticated) � PM(APi is received) (1)

Since APi is an original packet, we have: PM(APi is received) = PM(APi ∈ F̂). Fur-
thermore the cardinality of F̂ belongs to {αn, . . . , n}. So we can write:

PM(APi ∈ F̂) = PM

(
n⋃

λ=αn

{
F̂ ∈ Fλ and APi ∈ F̂

})

=
n∑

λ=αn

PM(F̂ ∈ Fλ and APi ∈ F̂)

The last equality comes from the fact that {Fαn, . . . ,Fn} is a partition of F . The dis-
tribution induced by M may involve PM(F̂ ∈ Fλ) = 0 for some values of λ. In
this case PM(APi ∈ F̂ |F̂ ∈ Fλ) may not be uniquely defined [23] but the product
PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) is still equal to 0. Thus we get a unique value for
PM(APi ∈ F̂) as:

PM(APi ∈ F̂) =
n∑

λ=αn

PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) (2)

By combining (1) and (2), we get an approximation of the packet authentication proba-
bility of Lysyanskaya et al.’s scheme as:

PM(Pi is authenticated) �
n∑

λ=αn

PM(APi ∈ F̂ |F̂ ∈ Fλ) PM(F̂ ∈ Fλ) (3)

Rateless Codes for the Multicast Stream Authentication Problem 141

Definition 1 tells us that there exists a pattern M′ such that PM(F̂ ∈ Fαn) �= 0 so
that the starting index value αn cannot be increased in the general setting.

Resistance against Bursty Loss. In [20], Paxson outlined that the Internet experienced
bursty packet loss. Golle and Modadugu [7] and Miner and Staddon [17] designed
schemes based on graph theory to resist multiple bursts of fixed lengths. We will illus-
trate an application of (3) when M is a multiple-burst pattern in order to approximate
PM(Pi is authenticated). In this case there are no packet injections so β = 1. Due to
space limitations we only give milestones to follow and we refer the reader seeking
more details to the extended version of this paper.

Definition 2. A burst is a sequence a consecutive deletions. Two bursts are separated
by at least one non-erased element.

We must determine how many bursts can occur over {AP1, . . . , APn} providing that at
least αn of these elements are received.

Definition 3. Let (t1, . . . , tn) be a n-tuple. We say that a burst of length b (≤ n) starts
(respectively ends) at ti if the elements erased by the burst are ti, . . . , ti+b−1 (respec-
tively ti−b+1, . . . , ti).

Definition 4. A tuple of positive integers (B1, p1, . . . ,Bδ, pδ) is called a δ-burst if for
all i ∈ {1, . . . , δ}, Bi is the length of the ith burst occurring over a tuple (t1, . . . , tn)
and starts at position pi. (B1, . . . ,Bδ) is called the δ-length of the δ-burst.

It can be shown that in order to have a δ-burst over a set of n elements we must have:
n ≥ B1 + · · · + Bδ + (δ − 1). Since at least αn original elements have to be received
δ must not exceed min(!n+1

2 ", (1− α)n) either. Once δ and the δ-length (B1, . . . ,Bδ)
are chosen, it can be proved that there are:

N =
ξ+1∑
iδ=1

iδ∑
iδ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

possibilities to choose the starting positions (p1, . . . , pδ) where ξ is the unique natural
integer such that: n = B1 + · · ·+Bδ +(δ−1)+ ξ. This value N represents the number
of ways one can build a δ-burst (B1, p1, . . . ,Bδ, pδ) over {AP1, . . . , APn}. Since we
want APi to be received, we must determine the number Ni of such δ-bursts which do
not erase APi. We can assume that O chooses any δ-burst with equal likelihood. Thus:

PM(APi is received) =
Ni

N

If we denote ki (respectively k′
i) the maximal number of bursts which can occur over

{AP1, . . . , APi−1} (respectively {APi+1, . . . , APn}) then we have to compute how
many Δ-bursts (B1, p1, . . . ,BΔ, pΔ) can occur over {AP1, . . . , APi−1} and how many
(δ−Δ)-bursts (BΔ+1, pΔ+1, . . . ,Bδ, pδ) can occur over {APi+1, . . . , APn}. The value
Δ describes the set I(i) := {0, . . . , ki} ∩ {δ − k′

i, . . . , δ}. As before, we can prove:

NΔ
i =

⎛
⎝ b1∑

iΔ=1

iΔ∑
iΔ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠+

⎛
⎝ b2∑

iδ−Δ=1

iδ−Δ∑
iδ−Δ=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠

142 C. Tartary and H. Wang

where b1 = i− (B1 + · · ·+ BΔ + (Δ− 1)) and b2 = B1 + · · ·+BΔ + Δ + ξ− i +1.
So we can approximate PM(Pi is authenticated) to:

∑
Δ∈I(i)

⎛
⎝ b1∑

iΔ=1

iΔ∑
iΔ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1 +
b2∑

iδ−Δ=1

iδ−Δ∑
iδ−Δ=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

⎞
⎠

ξ+1∑
iδ=1

iδ∑
iδ−1=1

· · ·
i3∑

i2=1

i2∑
i1=1

1

(4)

We previously mentioned that Miner and Staddon [17] used p-random graphs to
resist multiple bursts. Namely they considered that the bursts occurring in the network
can only have a finite number
 of pairwise different length B1, . . . ,B�. They assumed
that each burst of length Bi can occur up to λi times. Their scheme was able to deal with
any distribution of these δ := λ1 + · · · + λ� bursts. Here we consider that each burst
of length Bi exactly occurs λi times. We denote Lδ the set of δ-length we can generate
with this duplicating process. The cardinality of Lδ is the multinomial coefficient:(

δ

B1 · · · B�

)

Once again we assume that any δ-length has the same probability to be chosen
by the opponent O. We denote IP(Lδ) the set of permutations of Lδ.
B := (B1, . . . ,B1, . . . ,B�, . . . ,B�) is an element of Lδ (eachBi is iterated λi times). We
deduce the packet authentication probability provided by Lysyanskaya et al.’s scheme.

PM(Pi is authenticated) =
(

δ

B1 · · · B�

)−1 ∑
τ∈IP(Lδ)

Pτ(B)(Pi is authenticated) (5)

where PM(Pi is authenticated) is approximated by (4) when M is the loss pattern cor-
responding to the δ-length τ(B).

The efficiency of an authentication scheme can be defined as the smallest value of
the packet authentication probability it provides. In other words, we are interested in

min
i∈{1,...,n}

PM(Pi is authenticated). Formulae (4) and (5) do not provide a clear lower

bound on this minimal probability and therefore practical efficiency of the scheme is
hard to guess. This motivates a search for a new authentication scheme exhibiting a
clear authentication probability. This can be achieved by using LT codes as we will
describe in the next session of this paper.

3 LT Codes for Multicast Stream Authentication

In this section, we will give a multicast authentication protocol using LT codes which is
robust against packet loss and data injection. As in Sect. 2 we allowO to use any pattern
M (not only the multiple-burst one) respecting the accuracy of (α, β). Our technique
also allows any new user to join the communication group at any block boundary and
exhibits a lower bound for the packet authentication probability. We will first review

Rateless Codes for the Multicast Stream Authentication Problem 143

the construction of LT codes. Then we will develop our authentication scheme, prove
its security and exhibit a minimal bound for the packet authentication probability.

Construction of LT Codes. We briefly describe how to generate outputs for LT codes
and how to decode data. A complete description of both processes can be found in [12].

Encoding. We have a fixed number of input symbols denoted by I1, . . . , In. In order to
generate a new encoding symbol E, we use a probabilistic distribution called the Ro-
bust Soliton distribution to choose the degree4 d of the symbol E. We randomly pick
d elements amongst the input symbols: Ii1 , . . . , Iid

5. We generate E as the XOR of
Ii1 , . . . , Iid

. Using this process we can generate as many encoding symbols as we want
since we only need to run the Robust Soliton distribution to get a new one.

Decoding. When the receiver gets m encoding symbols E1, . . . , Em he first builds the
bipartite graph used to compute E1, . . . , Em

6. We would like to point out that it can
happen that not every Ii is on the left hand side. This is true in particular if m is small
and the encoding symbols have small degrees. At the beginning of the decoding process
no Ij’s have been covered7. They are initialized with 0’s. We first release8 all Ek’s with a
single adjacent vertex to cover their unique neighbor. The set of covered input symbols
not yet processed is called the ripple and denoted R. All previous covered symbols
belong to R. At each step one element Ij is processed as follows:
1. Each neighbor Nk

j of Ij has its value XOR-ed with Ij’s.
2. Ij is removed as a neighbor of these elements Nk

j . That is, the corresponding edges
are removed from the graph.
3. For each Nk

j having one remaining neighbor in the new graph, Nk
j is released from

the graph and covers its remaining neighbors which are added to R (for those which
were not already in).
4. Ij is released from R (because it has no neighbors any longer).
Step 3 and 4 make the size of R vary. The decoding process ends when R is empty.
It is successful when I1, . . . , In have been released from R. We will use the following
theorem to deal with packet loss occurring during data transfer.

Theorem 2 ([12]). For δ ∈ (0, 1), the decoding process fails with probability at most δ
from any set of m := n + (R + R

2 + · · ·+ 1
n−R) ln

(
R
δ

)
encoding symbols where R :=

c ln
(

n
δ

)√
n for a positive constant c determined within the Robust Soliton distribution.

4 Any LT code can be represented as a bipartite graph with I1, . . . , In as the left hand side
vertices and all encoding symbols as right hand side vertices. An edge is drawn between Ij

and the encoding symbol E if Ij has been used to compute E. Ij is said to be a neighbor of
E (and conversely). We use the term degree to denote the number of neighbors a symbol has.

5 This is how we build the bipartite graph representing the LT code.
6 The positions of the input symbols XOR-ed to build an encoding symbol Ei are sent along

with Ei [9].
7 An input symbol Ij is said to be covered when it is the only adjacent vertex of an encoding

symbol Ek. The covering operation is a XOR of the current value of Ij with Ek.
8 A symbol is said to be released when we remove its representing vertex from the graph.

144 C. Tartary and H. Wang

Our Authentication Protocol. We will consider the same opponent model as in Sect. 2
and the same definitions for (α, β), h and the signature scheme (KeyGen,Sign,Verify).
As said before data is processed per block of n packets: P1, . . . , Pn. We assume that the
sender published a list of irreducible polynomials over F2 (remember that for any posi-
tive integer r, we can always build a irreducible polynomial of degree r over F2 [11]).
On this public list he also puts δ, n, α, β, PK as well as h and the verification algorithm
Verify. We denote τpar the tag representing the communication parameters, namely:
τpar = n‖α‖β‖δ. We assume that this tag is represented with a fixed number of bits
bpar. We denote H the size of a hash produced by h and S the size of a signature. We
first introduce the algorithm used by the sender.

Authenticator
Input: The private key SK, the network rates α, β, a block {P1, . . . , Pn}, its BID and
the parameter δ.

1. Compute N =
{

max($m
α %, $

β
α2 %) if β

α2 /∈ N

max($m
α %,

β
α2 + 1) otherwise

where m is defined in Theorem 2.

Consider the n packets as input symbols for the LT code and build N encoding sym-
bols: E1, . . . , EN . Each symbol Ei is along with the positions of its di neighbors
N1

i , . . . , Ndi

i . Compute the hashes: ∀i ∈ {1, . . .N} hi = h(Ei‖N1
i ‖ · · · ‖Ndi

i).
2. Compute the block signature: σ = SignSK(h(BID‖τpar‖h1‖ · · · ‖hN)) and form the

authentication tag τ = τpar‖h1‖ · · · ‖hN ‖σ. Compute k =

{
!α2N

β " if α2N
β /∈ N

α2N
β − 1 otherwise

.

Denote
 = k − [NH + S + bpar] + 1 and pad τ with
 zeros: τ ′ = τ‖0�.
3. Write τ ′ as the concatenation of (k + 1) elements of IF2r : p0‖ · · · ‖pk. Compute

r = max
(
$log2(N)%,

⌈HN+S+bpar
k+1

⌉)
. Form the polynomial P (X) =

k∑
i=0

piX
i and

evaluate it in the firstN points9 of IF2r : ∀i ∈ {1, . . . ,N} yi = P (i).
4. Form the authenticated packets:∀i ∈ {1, . . . ,N}APi = BID‖i‖Ei‖N1

i ‖ · · · ‖Ndi

i ‖yi

Output: {AP1, . . . , APN }: set of authenticated packets

We first notice that even when the channel rates α, β change the structure of the
LT code does not need to be modified since we keep working with the same inputs
P1, . . . , Pn and the same value c for the Robust Soliton distribution. Only the number
N of encoding symbols to be generated increases. This is an advantage over Lysyan-
skaya et al.’s technique since the size of their field as well as the rate of their code have
to be updated in case of modification of network rates. In addition it can be shown that
the ratio N

n (as a function of n) is asymptotically bounded by a constant.
We now justify our choices for N , k, r and P (X). In order to recover P1, . . . , Pn

with probability at least 1 − δ despite loss, the integer N must verify αN ≥ m. In
addition we want to represent the hashes of these N encoding symbols as coefficients
of a polynomial P (X) of degree k over an extension of degree r of F2. We want k to be

9 Since any element of F2r can be represented as λ0Y
0 + λ1Y1 + . . . + λr−1Y

r−1 where each
λi belongs to F2. We define the first N elements as (0, . . . , 0) , (1, 0, . . . , 0), (0, 1, 0, . . . , 0),
(1, 1, 0, . . . , 0) and so on until the binary decomposition of (N − 1).

Rateless Codes for the Multicast Stream Authentication Problem 145

as large as possible to minimize the extension degree r. The polynomial P (X) will be
evaluated in N different positions. The receiver must solve the polynomial reconstruc-
tion problem to recover P (X). In order to run GS-Decoder, the sufficient condition
exhibited by Guruswami and Sudan [8] is to have T >

√
kN where N is the num-

ber of points used for the reconstruction, T the number of these points (x, y) such that
y = P (x). Due to the definition of (α, β) we have T ≥ αN and αN ≤ N ≤ βN .
Thus (T >

√
kN) is verified as soon as 0 ≤ k < α2N

β . Since we want to split τ ′ into

several elements we have k ≥ 1. Thus α2N
β > 1 which justifies the value of N at step

1. The optimality of k at step 2 follows.
Since P (X) will be evaluated into N points we must have: 2r ≥ N . We want to

represent τ as the concatenation p0‖ · · · ‖pk the size of which is (k + 1)r since each
pi is an element of F2r . On the other hand the size of τ is NH + S + bpar. Thus r

must verify (k + 1)r ≥ NH+ S + bpar. Therefore r ≥ HN+S+bpar
k+1 . This justifies both

choices of
 and r at steps 2 and 3.
Now we describe a variant of the GS-Decoder called Modified GS-Decoder (MGS-

Decoder) which will be used as a subroutine of our decoding algorithm.

MGS-Decoder
Input: The number of packets per block n, the network rates α, β, the degree of the
polynomial k and N elements {(xi, yi), 1 ≤ i ≤ N}.
1. If N > βn or we have less than αn distinct values (xi, yi) then the algorithm stops.
2. Run GS-Decoder on the N points to get the list L of all polynomials of degree at
most k over IF2r passing through at least αn of the N points.
3. Write the list L as: L = {L1(X), . . . , Lμ(X)}. Write each element of L as: Li(X) =

k∑
j=0

LijX
j where ∀i ∈ {0, . . . , k}Lij ∈ IFq. Form the elements: Li = Li0‖ · · · ‖Lik.

Output: {L1, . . . ,Lμ}: list of candidates

When the receiver gets data he first runs MGS-Decoder to build a list of elements
(which are polynomial coefficients) and tests each of them until the signature is verified
or the list exhausted. When the signature is recovered the receiver knows the hashes of
the original encoding symbols of the LT code. Then he browses amongst the received
packets to find as many original encoding symbols as he can. Due to the definition of
α, there are at least αN of them. Using the first αN ones he attempts to decode the
LT code to recover all the original packets P1, . . . , Pn. According to Theorem 2, this
succeeds with probability at least 1− δ. Here is the formal description of the algorithm.

Decoder
Input: The public key PK, the number of packets per block n, the network rates α, β,
the block number BID, the parameter δ, the sender’s list of irreducible polynomials and
the set of received packets RP.

1. Compute N . Write the packets as BIDi‖ji‖Eji‖N1
ji
‖ · · · ‖Ndji

ji
‖yji and discard

those having BIDi �= BID or ji /∈ {1, . . . ,N}. Denote N the number of remaining
packets. If (N < α n or N > β n) then the algorithm stops.
2. Rename the set of received packets {AP′

1, . . . , AP′
N} and write each element as:

146 C. Tartary and H. Wang

AP′
i = BID‖ji‖Eji‖N1

ji
‖ · · · ‖Ndji

ji
‖yji where ji ∈ {1, . . . ,N}. Compute k and r.

Get the irreducible polynomial of degree r from the sender’s public list and run MGS-
Decoder on the set {(ji, yji), 1 ≤ i ≤ N} to get a list {c1, . . . , cμ} of candidates for
signature verification. If MGS-Decoder rejects that set then the algorithm stops.
3. Compute
. Initialize hi = ∅ for i ∈ {1, . . . ,N}. Initialize i = 1. While the list has
not been exhausted (and the signature not verified yet), we pick ci. We first check if the

last bits are zeros (we verify the length of the pad). If so,
we write ci as: τ i

par‖hi
1‖ · · · ‖hi

N ‖σi. If τ i
par = τpar then check whether

VerifyPK(h(BID‖τ i
par‖hi

1‖ · · · ‖hi
N), σi) = true . In this case we set hj = hi

j for
j ∈ {1, . . . ,N} and break out the loop. In any other cases we increment i by 1 and
start again the while loop.
4. If (h1, . . . , hN) = (∅, . . . , ∅) then the algorithm stops. Otherwise set E′

λ = ∅ for

λ ∈ {1, . . . ,N}. For each AP′
i written as at step 2, if h(Eji‖N1

ji
‖ · · · ‖Ndji

ji
) = hλ

then Eλ = Eji , dλ = dji and ∀ξ ∈ {1, . . . , dji}N
ξ
λ = N ξ

ji
.

5. Pick the first αN non-empty elements Eμ and decode the LT code using the Eμ’s as

encoding symbols with degree dμ and adjacent vertices positions E1
μ, . . . , E

dμ
μ . Get n

input symbols {P ′
1, . . . , P

′
n} (where some of them can be empty).

Output: {P ′
1, . . . , P

′
n}: set of identified packets

Security of the Scheme. We will now analyze the security of our authentication scheme.
We want the receivers to authenticate data despite malicious actions performed by O.
Similar to [14], we give the following definition:

Definition 5. (KeyGen,Authenticator,Decoder) is a secure and (α, β)-correct proba-
bilistic multicast authentication scheme if no probabilistic polynomial-time opponent
O can win with a non-negligible probability to the following game:

i) A key pair (SK, PK) is generated by KeyGen
ii) O is given: (a) The public key PK and (b) Oracle access to Authenticator (butO

can only issue at most one query with the same block identification tag BID)
iii) O outputs (BID, n, α, β, δ, RP)

O wins if one of the following happens:
a) (violation of the correctness property)O succeeds to output RP such that even if it

contains αN packets of some authenticated packet set APi for block identification tag
BID, decoding failure probability δ and parameters n, α, β, the decoder authenticates
some incorrect packets.

b) (violation of the security property)O succeeds to output RP such that the decoder
outputs {P ′

1, . . . , P
′
n} which is non-empty and was never authenticated by Authentica-

tor for the value BID, the probability δ and parameters n, α, β.

The difference from the definition given in [14] is that the packets are authenticated
by the receiver with certain probability. In short, even if the receiver gets a set RP
having at least αN original elements, the whole original set {P1, . . . , Pn} is recov-
ered with some probability. Nevertheless Definition 5 involves that no incorrect packets
can be authenticated. That is: ∀i ∈ {1, . . . , n}P ′

i ∈ {∅, Pi} where P ′
i denotes the ith

Rateless Codes for the Multicast Stream Authentication Problem 147

packet output by Decoder. Lysyanskaya et al. showed that their scheme is secure and
(α, β)-correct. Following their arguments, we obtain the following result for ours.

Theorem 3. Our scheme (KeyGen,Authenticator,Decoder) is secure and (α, β)-correct.

Proof (Sketch). If the scheme is neither secure nor (α, β)-correct thenO is able to cre-
ate data packets which will be authenticated by the receiver after LT decoding at step
5. Nevertheless the LT decoding process is consistent. That is, if only correct encoding
symbols are given to the decoder then it only outputs the corresponding input symbols
(along with some empty symbols when the decoding process is not successful). There-

fore O is able to create (at least) one fake symbol Ẽi‖Ñ1
i ‖ . . . ‖Ñ d̃i

i such that its hash
h̃i is a part of the element c̃ which successfully verified the signature at step 3. Since h
is collision resistant, we have: ∀j ∈ {1, . . . ,N} h̃i �= hj . Thus c̃ was never signed by
the sender andO is able to break the signature scheme. Due to space limitations we did
not include the complete proof here. It can still be found in the extended version of this
paper. It exhibits the necessity of using τpar as a part of the authentication tag. �	

Thus our authentication scheme is as secure and correct as the technique developed in
[14]. We will now study the packet authentication probability of our protocol.

Analysis of the Packet Authentication Probability. We now justify our use of LT
codes to enable the receivers to recover all the n data packets P1, . . . , Pn despite loss
with probability close to 1 as claimed in Sect. 1. We assume that the receiver gets a
set RP of packets. Since (α, β) is the network accuracy we have |RP| ≤ βN and at
least αN original authenticated packets are amongst RP. As before we denote M the
modification pattern used by O. We fix i in {1, . . . , n}. To be more concise we denote
VRP the probabilistic event {RP verifies the signature}. Using Bayes’ theorem we get:

pM(Pi is authenticated|VRP) pM(VRP)
=

pM(VRP|Pi is authenticated) pM(Pi is authenticated)

Again, even if one of the events {Pi is authenticated} or VRP is pM-negligible the
previous equality is still true since both products would be 0. Due to the design of
Decoder, a necessary condition to output packets is to verify the signature. So: pM
(VRP|Pi is authenticated) = 1. On the other hand, since (α, β) is accurate RP always
verifies the signature since MGS-Decoder outputs the list of all polynomials passing
through at least αN of the elements of RP. Thus the polynomial used by the sender
belongs to that list and therefore the signature is verified. So: pM(VRP) = 1. Thus we
get: pM(Pi is authenticated) = pM(Pi is authenticated|VRP) which can be written as:

pM(Pi is authenticated) = pM(All packets are authenticated|VRP)
+

pM({Pi is authenticated} ∩ {At least one Pj is not authenticated}|VRP)

Since pM(VRP) = 1, we deduce:

pM(All packets are authenticated|VRP) = pM(The LT code is successfully decoded)

148 C. Tartary and H. Wang

In addition we have:

pM({Pi is authenticated} ∩ {At least one Pj is not authenticated}|VRP)
=

pM({Pi is authenticated} ∩ {The LT code is not successfully decoded})

The last event is not pM-negligible in general since any symbol released from the ripple
during the LT decoding process is consistent with the original input symbols [12]. Thus:

pM(Pi is authenticated) ≥ pM(The LT code is successfully decoded) ≥ 1− δ

Since this is true for any value i, we deduce that:

min
i∈{1,...,n}

pM(Pi is authenticated) ≥ 1− δ

We also notice that this lower bound does not depends on the modification patternM.

4 Other Families of Rateless Codes

In this section we will compare the complexity in encoding/decoding of LT, Online and
Raptor codes. Indeed the security, correctness and computation of the lower bound on
the packet authentication probability only depend on the fact that the LT decoding al-
gorithm is consistent which is also the case for Online and Raptor codes. In addition
we will also compare these families to the modified LT codes introduced by Harrelson
et al. [9]. In their work, they changed the construction of LT codes given by Luby [12]
to fit them to their practical implementations without altering their optimality (i.e. if we
generate enough symbols then we can have δ � 0). Their technique consists of modify-
ing the way the neighbors of each encoding symbol E are chosen. As in [12], the degree
d is chosen using the Robust Soliton distribution. Instead of uniformly choosing the d
neighbors, Harrelson et al. proposed to uniformly choose two integers a and b and to
generate the positions of the d neighbors as a i + b for i ∈ {1, . . . , d}. Thus it is useless
to append the neighbors to the encoding symbol for transmission since only E‖a‖b‖d
needs to be sent. This means that the overhead per encoding symbol has a fixed and
much smaller size than in [12]. This is of particular interest in our case (step 4 of Au-
thenticator) since our overhead per packet is particularly limited and such a fixed size
helps to avoid data congestion due to irregular flow of information within the network.

Contrary to block codes which use finite field operations to encode and decode data,
these families of rateless codes rely on XOR operations over packets. Based on the
work done in [9, 12, 15, 26] we built Table 1. Both Raptor and Online codes require
preprocessing of data before encoding. In [15], Maymounkov proposed two differ-
ent ways to do so for Online codes. The complexities shown in Table 1 correspond
to the second method since the first technique involves a dependence between the
packet authentication probability and the number of packets per block. The notation εδ

means that the element depends on the decoding failure probability δ but is independent
from n.

Rateless Codes for the Multicast Stream Authentication Problem 149

Table 1. Complexity comparison for different classes of rateless codes

Average number Number of encoding Decoding Encoding
XOR operations symbols generated failure symbol

for decoding probability overhead
LT codes O(n log(n/δ)) n + O(

√
n log2(n/δ)) δ variable

LT codes O(n log(n/δ)) n + O(n5/6 polylog(n, 1/δ)) δ constant
(modified)

Online O(n log(1/εδ)) (1 + εδ)n O(δη) variable
codes (fixed εδ > 0) (fixed η > 0)
Raptor O(n log(1/εδ)) (1 + εδ)n δ variable
codes (fixed εδ > 0)

According to Table 1, Online and Raptor codes seem to have better encoding and
decoding complexities than LT codes. Nevertheless Raptor codes were designed for the
Binary Erasure channel (BEC) since the efficiency of its preprocessing part relies on
the existence on good pre-codes to achieve linear time for both encoding and decoding
process. That is the property which is achieved by Tornado codes on BEC [13, 26].
Given our opponent model it is unlikely that BEC can be the modification pattern
used by O. Nevertheless a recent work by Palanki and Yedidia [18] suggests that Rap-
tor codes can still be practically more efficient than LT codes for our authentication
scheme. Indeed they implemented both classes of codes on Additive White Gaussian
Noise Channel and Binary Symmetric Channel and noticed that, even on these chan-
nels, Raptor codes outperformed LT codes for decoding. Etesami et al. [5] performed
analoguous implementations and their results exhibited the same behavior. They also
showed that Raptor codes could perform quite well on any arbitrary symmetric channel.

As suggested by Harrelson at al. [9], it is possible to reduce the size of information to
be transmitted and achieve a constant packet overhead at the cost of extra symbols for
decoding (see Table 1). Since achieving a regular throughput within the communication
channel avoids data congestion, substituting original LT codes by their modifications
in our authentication protocol is recommended (the value of m in Theorem 2 has to be
updated consequently). Since Raptor codes are the concatenation of an erasure code (as
Tornado codes for instance) and a LT code, these modifications can also be applied to
these codes. Therefore we believe that practical implementations of the authentication
scheme described in Sect. 3 will be even more efficient when substituting LT codes by
Raptor codes (exhibiting the same modifications for their internal LT coding).

Nevertheless these threshold values enabling recovery of the n data packets can still
be too important for some applications. Karp et al. [10] gave a formula expressing the
probability of non-decoding u packets amongst n after receiving a fixed value of encod-
ing symbols which can be chosen by the sender. This can be useful if the application
which will run the received packets has a tolerance rate for loss of content. The sender
computes the number of packets he has to transmit in order to achieve at most this rate
of non-recovered packets. In this case the lower bound computed on Sect. 3 is not valid
any longer but the security and correctness of the scheme are still preserved.

150 C. Tartary and H. Wang

5 Conclusion

In 2003, Lysyanskaya et al. [14] designed a multicast authentication scheme dealing
with both packet loss and data injection. Unfortunately its packet authentication proba-
bility does not exhibit an easy lower bound and when a packet is dropped during trans-
mission its content is definitely lost for the receivers. Our technique, which can be con-
sidered as an extension of theirs, has two main advantages. First it allows the receivers
to reconstruct erased data which, to our knowledge, had never been achieved yet by any
existing multicast stream authentication protocol using signature dispersion. Second it
exhibits a minimal lower bound on the packet authentication probability which can be
chosen arbitrary close to 1. Our reconstruction property relies on the fact that (α, β) is
the network accuracy which can be hard to determine when the communication group
size is large. Hopefully any couple (α̃, β̃) such that α̃ ≤ α and β ≤ β̃ will also be
fine for our scheme. This is at the cost of creating more encoding symbols to run GS-
Decoder. Thus this couple of parameters has to be chosen carefully in order to respect
the heterogeneity of the receivers without generating unnecessary data. Our scheme
also allows new users to join the communication group at any time since each block of
n packets contains its own signature. We also proposed to use a modified version of LT
codes to achieve reasonable and fixed overhead per packet preventing the network from
having too irregular variations of data flow. Given [5, 18], we also stress that Raptor
codes could provide good implementations of our scheme if used instead of LT codes.

Acknowledgment

The authors would like to thank Professor Josef Pieprzyk for valuable conversations as
well as the anonymous reviewers for their comments to improve the quality of this pa-
per. This work was supported by the Australian Research Council under ARC Discovery
Project DP0344444. The first author’s work was also funded by an iMURS scholarship
supported by Macquarie University.

References

[1] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly-
secure key distribution for dynamic conferences. In Advances in Cryptology - Crypto’92,
volume 740 of LNCS. Springer - Verlag, August 1992.

[2] J. W. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach to asynchronous
reliable multicast. In IEEE Journal on Selected Areas in Communications, volume 20,
October 2002.

[3] Y. Challal, H. Bettahar, and A. Bouabdallah. A taxonomy of multicast data origin authen-
tication: Issues and solutions. In IEEE Communications Surveys and Tutorials, volume 6,
October 2004.

[4] Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiver/multi-sender network security: Effi-
cient authenticated multicast/feedback. In INFOCOM ’92, May 1992.

[5] O. Etesami, M. Molkaraie, and A. Shokrollahi. Raptor codes on symmetric channels. Avail-
able online at: http://www.cs.berkeley.edu/∼etesami/raptor.pdf, preprint 2003.

Rateless Codes for the Multicast Stream Authentication Problem 151

[6] R. Gennaro and P. Rohatgi. How to sign digital streams. In Proceedings of the 17th Annual
International Cryptology. Springer-Verlag, August 1997.

[7] P. Golle and N. Modadugu. Authenticating streamed data in the presence of random packet
loss. In Proceedings of the Symposium on Network and Distributed Systems Security (NDSS
2001). Internet Society, February 2001.

[8] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In IEEE Transactions on Information Theory, May 1999.

[9] C. Harrelson, L. Ip, and W. Wang. Limited randomness LT codes. In 41st Annual Allerton
Conference on Communication, Control and Computing, October 2003.

[10] R. Karp, M. Luby, and A. Shokrollahi. Finite length analysis of LT codes. In International
Symposium on Information Theory, 2004, June 2004.

[11] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applications - Revised
Edition. Cambridge University Press, 2000.

[12] M. Luby. LT codes. In 43rd Annual IEEE Symposium on Foundations of Computer Science.
IEEE ComputeR Society, November 2002.

[13] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman. Efficient erasure correcting
codes. In IEEE Transactions on Information Theory, volume 47, February 2001.

[14] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos. Multicast authentication in fully
adversarial networks. In IEEE Symposium on Security and Privacy, November 2003.

[15] P. Maymounkov. Online codes. Technical report, New York University, November 2002.
[16] R. Merkle. A certified digital signature. In Advances in Cryptology - Crypto’89. Springer

- Verlag, 1989.
[17] S. Miner and J. Staddon. Graph-based authentication of digital streams. In IEEE Sympo-

sium on Security and Privacy, May 2001.
[18] R. Palanki and J. S. Yedidia. Rateless codes on noisy channels. In 38th Annual Conference

on Information Sciences and Systems, March 2004.
[19] A. Pannetrat and R. Molva. Authenticating real time packet streams and multicasts. In 7th

International Symposium on Computers and Communications, July 2002.
[20] V. Paxson. End-to-end Internet packet dynamics. In IEEE/ACM Transactions on Network-

ing, June 1999.
[21] A. Perrig and J. D. Tygar. Secure Broadcast Communication in Wired and Wireless Net-

works. Kluwer Academic Publishers, 2003.
[22] J. Pieprzyk, T. Hardjono, and J. Seberry. Fundamentals of Computer Security. Springer,

2003.
[23] M. M. Rao. Conditional Measures and Applications (Second Edition). CRC Press, 2005.
[24] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authentication.

In 6th ACM Conference on Computer and Communications Security, 1999.
[25] R. Safavi-Naini and H. Wang. New results on multi-receiver authentication code. In Ad-

vances in Cryptology - Eurocrypt’98, volume 1403 of LNCS. Springer - Verlag, June 1998.
[26] A. Shokrollahi. Raptor codes. Technical report, Digital Fountain, June 2003.
[27] D. R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.
[28] C. Tartary and H. Wang. Efficient multicast stream authentication for the fully adversarial

network. In WISA 2005, volume 3786 of LNCS. Springer - Verlag, August 2005.
[29] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. In IEEE/ACM

Transactions on Networking, volume 7, August 1999.
[30] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measurement and modeling of the temporal

dependence in packet loss. In IEEE Conference on Computer Communications, 1999.

Crossing Borders: Security and Privacy Issues of
the European e-Passport�

Jaap-Henk Hoepman, Engelbert Hubbers, Bart Jacobs,
Martijn Oostdijk, and Ronny Wichers Schreur

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
{jhh, hubbers, bart, martijno, ronny}@cs.ru.nl

Abstract. The first generation of European e-passports will be issued
in 2006. We discuss how borders are crossed regarding the security and
privacy erosion of the proposed schemes, and show which borders need
to be crossed to improve the security and the privacy protection of the
next generation of e-passports. In particular we discuss attacks on Basic
Access Control due to the low entropy of the data from which the access
keys are derived, we sketch the European proposals for Extended Access
Control and the weaknesses in that scheme, and show how fundamentally
different design decisions can make e-passports more secure.

1 Introduction

After several years of preparation, many countries start issuing e-passports with
an embedded chip holding biometric data of the passport holder in 2006. This is
a major ICT-operation, involving many countries, most of them providing their
own implementation, using biometrics at an unprecedented scale. Passport secu-
rity must conform to international (public) standards, issued by the International
Civil Aviation Organization (ICAO) [11, 10]. The standards cover confidential-
ity, integrity and authenticity of the passport data, including the facial image.
Additionally, the European Union (EU) has developed its own standards (called
“Extended Access Control”).

The present paper reviews these developments (like in [14, 15]) especially from
a European perspective, with corresponding emphasis on fingerprint protection.
Also it tries to put these developments within a wider perspective of identity
management (IM) by governments, following [8]. This leads to a “revision” plan
for e-passports.

From an academic background we, the authors, closely follow the introduc-
tion of the e-passport in the Netherlands. We have advised the government on
several matters, and are involved in public debates on related issues. We have
received an early test version of the e-passport, and developed our own reader-
side software, based on the ICAO protocols. We have had access to confidential
� Id: passport.tex,v 1.44 2006/06/30 07:25:14 ronny Exp.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 152–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Crossing Borders: Security and Privacy Issues of the European e-Passport 153

material regarding the EU-protocols. However, the present paper is based solely
on publicly available material, and is organised as follows.

We first discuss the main security requirements the new e-passport should
satisfy. After a brief discussion of biometry in Sect. 3, we describe the standard
security measures of the ICAO standard and the weaknesses associated with
them in Sect. 4. Future European e-passports will be equipped with Extended
Access Control, which we outline in Sect. 5, and whose shortcomings we also
study. e-Passports enable new applications. Sect. 6 discusses the danger of such
function creep but also investigates the new possibilities created by such ap-
plications. We study identity management issues of the e-passport in Sect. 7,
and evaluate the realisation of the original goals in Sect. 8. We finish the pa-
per with some proposals for more fundamental changes to the architecture of a
second generation of e-passports that will increase both their security and their
flexibility of use in new applications.

2 Aims and Security Goals

It is a fact that modern passports are hard to forge. Thus, many criminal organ-
isations do not even try such fraud, but instead collect large numbers of genuine
passports, and pick one that shows a reasonable resemblance to a member that
needs a new identity. Similarly, passports are sometimes borrowed for illegal
border crossing, and later returned to the rightful owner.

The original aim of the use of biometrics in travel documents is thus to combat
“look-alike” fraud. Hence the emphasis is on biometric verification (instead of
identification), involving a 1:1 check to make sure that a particular passport
really belongs to a particular person.

The biometrics of the passport holder will be included in a chip that is embed-
ded in the passport. Communication with the chip will be wireless, and not via
contact points, because wireless communication allows higher data rates, does
not involve wear, and does not require a change of the standard format of the
passport to for instance credit-card size1.

The wireless character does introduce new security risks (with respect to tra-
ditional passports), for the holder, the issuing state, and for the accepting state.
At a high level of abstraction, the following three security goals seem reason-
able. The first two focus on confidentiality for the passport holder. The last one
mainly concerns the accepting (and also issuing) state.

1. A passport reader should identify itself first, so that only “trusted” parties
get to read the information stored in the chip.

2. No identifying information should be released without consent of the pass-
port holder.

3. The receiver of the information should be able to establish the integrity and
authenticity of the data.

1 A change of format for other official documents, like a drivers licence, is seen as less
problematic, because such a document is not stamped.

154 J.-H. Hoepman et al.

The first goal relates to the situation where for instance a police officer wishes
to check your identity. In most countries you have the right to ask the police
officer in question to identify himself first, so that you can be sure that you are
dealing with a genuine representative of the state. The second goal is relevant
to prevent “RFID-bombs” [14] for instance, that are activated by the immedi-
ate presence of (the passport of) a particular person, or citizen of a particular
country. Such information is also useful for a terrorist who is trying to decide
whether to blow himself up in a particular bus. We shall evaluate the realisation
of these goals later on, in Sect. 8

3 Biometry

This paper does not focus on the biometry involved, but a few words are in
order. ICAO has opted for the use of facial images and fingerprints as primary
biometrics because they are reasonably familiar, easy to use, and non-intrusive.
A controversial issue—from a privacy perspective—is that the passport chip will
not contain templates but pictures (actual JPEGs). The reason is that there is
no well-established digital standard for such templates, and early commitment
to a closed proprietary format is not desirable. This means that if a passport
chip (or data base, or reader) is compromised, original biometric data leaks out,
which may lead to reconstruction and additional (identity) fraud.

The effectiveness of biometry is highly overrated, especially by politicians
and policy makers. Despite rapid growth in applications, the large-scale use of
biometry is untested. The difficulty is that it is not only unproven in a huge single
application (such as e-passports), but also not with many different applications in
parallel (including “biometry for fun”). The interference caused by the diversity
of applications—each with its own security policy, if any—may lead to unforeseen
forms of fraud.

A basic issue that is often overlooked is fallback. What if my biometric identity
has been compromised, and I am held responsible for something I really did not
do, how can I still prove “it wasn’t me”?

The Netherlands has recently conducted a field test for the enrolment proce-
dures of the biometric passport, see [19], involving almost 15.000 participants.
The precise interpretation of the outcome is unclear, but failure-to-acquire turns
out to be a significant problem, especially for young and elderly people. Substan-
tial numbers of people will thus not have appropriate biometric travel documents,
so that fully automatic border crossing is not an option.

4 Standard Security Measures (ICAO)

The various ICAO standards for machine readable travel documents, notably [11]
and [10], specify precise requirements for accessing and interpreting the contents
of the embedded chip. Different security controls are described to ensure that
different security goals are met. We discuss these in the order in which the
mechanisms are used in a typical session between reader (or: inspection system,

Crossing Borders: Security and Privacy Issues of the European e-Passport 155

Fig. 1. Example of a Dutch passport. The two bottom lines of text are the MRZ.

the computer that is attempting to read information from the document) and
the European passport chip.

BAC: Basic Access Control. Before any information can be read from a passport,
the reader needs to go through basic access control (BAC). This is a challenge-
response protocol in which the reader proves to the passport that it has knowl-
edge of the contents of the machine readable zone (MRZ). The MRZ consists
of two lines of optically readable text containing among others the name of the
holder, and the passport number. It is printed on the first page of the physical
document (See Fig. 1).

The procedure is as follows. The reader optically reads the contents of the
MRZ, and derives the access key seed kIFD/ICC from the data it reads. After
that, the reader proves to the chip that it has optically read the MRZ by signing
a random challenge from the chip using a key derived from the access key seed.
Subsequently, passport and inspection system exchange some extra random data,
which is then used to generate session keys and an initial counter for secure
messaging. The session keys are fresh for each session.

BAC prevents so-called skimming of passports, i.e., reading the contents with-
out the cardholder’s knowledge. Note that BAC does not authenticate the reader:
anyone who knows the MRZ can successfully complete BAC and continue read-
ing other information on the chip.

SM: Secure Messaging. Confidentiality and integrity of all communication be-
tween reader and passport is provided by so-called secure messaging. Commands
sent to the passport as well as responses sent back to the reader are encrypted
and augmented with a message authentication code (MAC), using the keys estab-
lished during BAC. A sequence counter is included to prevent replay of messages.

PA: Passive Authentication. The data stored on the passport is organised in
a logical data structure (LDS), which consists of a number of files (called data
groups). Typical examples of data groups are: a file containing the information
in the MRZ, a file containing a JPEG image of the cardholder’s face, and files
containing other biometric features such as the cardholder’s fingerprints.

Each data group in the LDS is hashed. All these hashes together form the
(document) security object SOLDS. The security object is signed by the issuing

156 J.-H. Hoepman et al.

country and the result, SOD, is stored on the passport as well. This means
that the inspection system can check that the contents of the LDS have not
been altered during communication, thus ensuring the integrity of the LDS. The
standards refer to this integrity protection mechanism as passive authentication.

AA: Active Authentication. To prevent cloning of the chip, an integrity mecha-
nism called active authentication is used, in which the passport proves possession
of a private key kAA using a challenge-response protocol. The corresponding pub-
lic key, needed by the inspection system to check the response of the passport, is
part of the LDS and can be read by the inspection system. A hash of this public
key is signed through the SOD, to ensure authenticity.

4.1 Guessing the Access Key

To access the passport without having its MRZ, one needs to guess the access
key seed kIFD/ICC , which is 128 bits long. The National Institute of Standards
and Technology (NIST) [18] and the ECRYPT EU Network of Excellence on
cryptology [3] recommend 80 bits for a minimal level of general purpose protec-
tion in 2005, and 112 bits ten years from now. In other words, the access key
seed is long enough to provide adequate security.

But the fact that the access key seed is derived from information in the MRZ
can be used to the attackers’ advantage. The ‘MRZ-information’ consists of the
concatenation of the passport number, date of birth and date of expiry, including
their respective check digits, as described in [9]. Given a guess for the MRZ-
information, the corresponding access key seed kIFD/ICC is easily calculated,
and from that all other session keys can be derived as well. These keys can then
be tried against a transcript of an eavesdropped communication session between
this passport and the reader, to see if they deliver meaningful data.

To estimate the amount of work the attacker needs to perform for such an off-
line attack, we estimate the amount of Shannon entropy of each of these fields.
We should stress this is a very crude approach (unless we assume the underlying
probability distributions are uniform). For lower bounds, we should in fact use
the Guessing entropy [17] (

∑
i ipi) or even the min-entropy (mini− log pi). The

Shannon entropy only gives us an upper bound, but if that bound is small the
security of the system is most certainly weak.

The entropy of the date of birth field is log(100× 365.25) = 15.16 bits, as it
can contain only the last two digits of the year of birth. If one can see the holder
of the passport and guess his age correct within a margin of 5 years, the entropy
of this field decreases to 10.83.

The date of expiry is determined by the date of issuing and the validity period
of a passport. In the Netherlands, passports are valid for 5 years, and are issued
only on working days (barring exceptional circumstances). For a valid passport,
the entropy of this field becomes log(5× 365.25× 5/7) = 10.34.

The MRZ field for the passport number can contain 9 characters. If the pass-
port number is longer, the excess characters are stored in the MRZ optional
data field (which is not used to derive the access key seed). The entropy of

Crossing Borders: Security and Privacy Issues of the European e-Passport 157

Fig. 2. Known dates of issuing reduce the search space

the passport number field, assuming digits and upper-case letters only, becomes
log((26 + 10)9) = 46.53. Many countries have further restrictions on the format
of their passport numbers. Passport numbers may contain check digits, or start
with a common prefix to distinguish passport types (e.g., military passports).

At best, the total entropy of date of birth, date of expiry and passport number
becomes 15.16+10.34+46.53 = 72.03, which is less than 80 bits recommended by
both NIST and ECRYPT [3, 18] to protect against eavesdropping and other off-
line attacks. It is sufficient to protect against skimming attacks (where possible
keys are tried on-line) because the passport is slow to respond to each individual
key tried.

In certain countries the situation is even worse. Often, passport numbers are
issued sequentially. This implies there is a correlation between the date of issue
(and therefore date of expiry) and the passport number. Moreover, all currently
valid passports numbers (ignoring stolen or otherwise invalidated ones) form a
consecutive range, which is no longer than the total number of people of that
nationality. For the Dutch passport for instance, bounding the population from
above by 20 million, the passport number entropy drops to log(20×106) = 24.25.

With sequentially issued passports, the entropy drops even further with ev-
ery known combination of a passport number and the expiry date. Suppose we
know k such combinations. This gives rise to k + 1 intervals of possible passport
numbers for a given date range Let us take the rather pessimistic approach that
we do not assume anything about the distribution of passports over dates within
those intervals (although it is very likely that passports are issued at a reasonably
constant rate). On the optimistic side, let us assume the k known passports are
issued evenly distributed over the validity period length. This reduces the search
space by a factor k + 1 as illustrated in Fig. 2. Hence the entropy of expiry date
plus passport number drops with log(k+1). For the Dutch passport, using k = 15
and the figures above, the entropy of the passport number becomes as small as
20.25, and the total entropy could be as small as 10.83 + 10.34 + 20.25 = 41.42
(when we assume we can guess the age of the passport holder).

One obvious idea is to include the MRZ optional data field in the list of
MRZ items that is used to derive the MRZ access key seed. This would increase

158 J.-H. Hoepman et al.

the entropy of the MRZ access key seed, especially if this optional data field
is filled with random data. Unfortunately some countries already use this field
for other purposes. In the Netherlands, for instance, this field stores the social-
fiscal number, which is uniquely linked to an individual and not very secret
information. In fact, this idea was recently rejected for inclusion in the ICAO
standards.

4.2 Traceability

To avoid collisions, contactless smart cards and RFID systems use unique low-
level tag identifiers in the radio communication protocol. This is also true for the
e-passports. If this identifier is fixed (which is usually the case in RFID tags and
contactless smart cards), passports are clearly easily traceable. Note that because
this identifier is used in the very first stages of setting up a connection between
the passport and the reader, no form of access control or reader authentication
can be performed.

Luckily, this anti-collision identifier does not have to be fixed. The number
can also be randomly generated each time the passport comes within range of a
reader. If the random generator is of sufficient quality (and this is certainly an
issue in low-end RFID systems), the passport can no longer be traced through
the anti-collision identifier.

However, the anti-collision identifier creates a possible subliminal channel. For
instance, instead of simply generating a random number r, the passport could
be instructed to generate an anti collision identifier like

id = EkNSA(r, passportnumber) .

The resulting string looks random, because of the randomness of r and the
properties of the encryption function. But clearly it can be decrypted by the
owner of kNSA to reveal the passport number. Unless the passport chip is reverse
engineered, the existence of such a subliminal channel cannot be detected.

Another subliminal channel exists when Active Authentication is used [5]. Re-
call that active authentication requires the passport to sign a challenge from a
reader using its unique private key. Because the challenge is totally determined
by the reader, the reader can embed information into this string, which is un-
knowingly signed by the passport. For instance, the challenge could contain the
border crossing location, and the current date and time. A signature adds an
extra layer of non-repudiability to the border crossing logs, and can be used to
prove this fact to others. The challenge could also contain the passport number
of the person verified ahead of you at border inspection, possibly linking you to
the person you were travelling with.

Even if all the above issues are addressed, discriminating features of pass-
ports remain. Different countries may use different chip suppliers. Later batches
of passports will use more advanced technology, or may contain different or ad-
ditional information2. In the future, newer versions of chip operating systems
2 Indeed, the first passports will be issued without fingerprints.

Crossing Borders: Security and Privacy Issues of the European e-Passport 159

may be used. All these differences may be noticeable by looking carefully at
the behaviour of the chip on the radio channel, at the chip’s Answer To Reset
(ATR), which is sent in reaction to a reset command by the reader, or at the
responses the chip gives (or doesn’t give) to specific card commands sent to it.
We expect to see large differences in behaviour especially on unintended, unex-
pected or even unspecified input sent to the card. All these things are possible
before BAC has been performed.

Other applications may be put on the passports (see Sect. 6) as well. These
applications may even be accessible before BAC has been performed. The set of
available applications may actually constitute a narrow profile that identifies a
specific set of possible passport holders, and may reveal the place of work, or
the banks the passport holder has accounts with.

We conclude that even without access to the MRZ, i.e., in the classic skimming
scenario on streets, public transport, etc., passports still leak information that
can be traced back to individuals, or groups of individuals.

5 Extended Access Control

Standardisation of the security features and biometrics to be used in European
passports has been taken up independently (but of course in accordance with
the ICAO standards) by the European Union [7]. In recognition of the fact that
biometric information is quite sensitive, the European Union has mandated that
such data should be protected by a so-called “Extended Access Control” mech-
anism. The technical specifications of the European e-passport are drafted by a
special EU Committee, founded as a result of Article 6 of Regulation 1683/95
laying down a uniform format for visas [6].

Public information about the details of Extended Access Control has recently
become available [5, 16]. This allows us to discuss certain shortcomings in the
schemes under consideration, although we wish to stress that these schemes are
a huge improvement over the extremely minimal security features imposed by
the ICAO standards.

Extended Access Control consists of two phases, Chip Authentication followed
by Terminal Authentication. Chip Authentication performs the same function
as Active Authentication in the ICAO standards, i.e., proving the chip is gen-
uine and thus protecting the passport against cloning. It avoids the problems
associated with active authentication, like the challenge semantics discussed in
the previous section. Chip authentication achieves its task by first exchanging a
session key using a Diffie-Hellman key exchange. The chip uses a static key pair
for this, the public part of which is part of the logical data structure (LDS) on
the chip and thus signed through the security objects SOD. The terminal uses
a fresh key pair for each session. Authenticity of the chip is established once the
chip proves that it knows the session key, which happens implicitly when the
session key is used successfully to communicate with the chip.

Terminal Authentication aims to prove to the chip that the terminal is allowed
to access the data on the chip. This access is granted through a chain of certifi-

160 J.-H. Hoepman et al.

Fig. 3. Extended Access Control certificates

cates, the root of which is the issuer of the passport at hand (see Fig. 3). In other
words, the issuer of the passport controls who can access the data on the pass-
port. This root issues Document Verifier (DV) Certificates, one for each country
that is granted access to the data on the passport. These DV certificates are
used to generate Inspection System (IS) certificates, which can be distributed to
inspection systems (e.g., readers/terminals) at border crossings. Each passport
issued by a particular country can verify the authenticity of these DV certifi-
cates, and hence of the IS certificates issued through these DV certificates. A
valid IS certificate grants access to certain data on the chip. All certificates have
a limited validity period.

Terminal authentication, as proposed, does have a few weaknesses. First of all,
the chip cannot keep time itself, and does not have access to a reliable source of
time either. This makes it hard to check whether a certificate has expired or not.
This, in turn, makes it practically impossible to revoke a certificate. The problem
is the following. A terminal with a valid IS certificate and a valid DV certificate
can access the sensitive data on many passports. When such a terminal is stolen,
these access rights remain, even when the validity period of these certificates has
expired: the chip does not know the correct time, and the terminal does not have
to tell it the correct time. This is the case even if certificates have extremely short
validity periods, like a single day. We see that one stolen terminal breaks the
intended security goal of terminal authentication. Of course, stolen terminals do
not make skimming attacks possible: a terminal still needs access to the MRZ
in order to perform basic access control. To mitigate the problem somewhat,
the standards propose that the chip keeps the most recent date seen on a valid
certificate. In other words, the chip advances its idea of the current time each
time it passes a border inspection system. This only saves the frequent travellers;
people that barely use their passports stay vulnerable for a long time.

Secondly, the certificate hierarchy itself poses a problem. The hierarchy is
quite shallow. It does not make it easy to allow access to the biometric data
for other applications beyond border inspection, even though such applications
are already being discussed today (see also Sect. 6 below). To acquire access,

Crossing Borders: Security and Privacy Issues of the European e-Passport 161

one has to apply for IS certificates at the country DV, or for a DV certificate
at each issuing country. The latter would create a huge management overhead,
as it would require each country to reliably verify the identity and trustwor-
thiness of the requesting applicant and issue certificates in response. The first
makes it impossible for countries to differentiate access rights among different
applications, and would make the country DV responsible for the issuing of IS
certificates for each and every terminal involved in the new application. This
is clearly impractical, if we consider the use of passports for home banking or
single sign-on systems that require terminals at each and every PC.

Making the certificate hierarchy larger and more flexible may not be an option.
It means the chip has to verify even more certificates before it can grant access.
This does put quite a burden on the processing capabilities of the chip, which
should guarantee reasonably short transaction times. No one is willing to stand
in the queue at border inspection for an even longer amount of time, simply
because the new passports contain new, but slow, technology. A different, more
flexible, approach is discussed in Sect. 9.

6 New Applications

The new e-passport requires an international infrastructure for biometric verifi-
cation. This is a huge project, of which the effectiveness and risks are uncertain.
The main driving force is political pressure: the logic of politics simply requires
high profile action in the face of international terrorism. Once implemented, it
inevitably leads to function creep: new possible applications emerge, either spon-
taneously or via new policy initiatives. We shall discuss two such applications,
and speculate about the future.

Once we obtain a new passport with a high-end chip embedded with which we
can communicate ourselves (via open standards), we can ask ourselves whether
we can also use it for our own purposes. We briefly discuss two options: logon,
and digital signatures.

The e-passport can be used to log on to your computer account. For instance,
if you give your MRZ (or the associated keys) to your computer or local network,
the logon procedure can set up a challenge-response session with your passport:
activation of the chip happens via the MRZ, and checking of a signature written
by the passport-chip on a challenge generated by your computer can proceed
via the public key of the document signer. It allows your computer to check
the integrity of the passports security object, which contains the public key
corresponding to the private signature-key of your passport.

This authentication procedure only involves “something you have”: anyone
holding your passport can log in to your machine. You can strengthen the pro-
cedure by requiring a usual password, or even a biometric check based on a
comparison of facial images (a freshly taken one, and the one on the chip).

You may also wish to use your e-passport to sign documents and emails using
the embedded private key for Active Authentication. This is not such a good idea,

162 J.-H. Hoepman et al.

for two reasons. First of all, the signature is obtained by exploiting the challenge-
response mechanism for another purpose. Such interference should be avoided,
because a challenge-response at a border inspection could then be misused to
trick you into signing a certain document. Secondly, proving your identity after
signing requires publication of your MRZ, together with the security object of
your passport-chip (which is integrity-protected by a signature of the document
signer): this object couples the public key (for your signature) to identifying
information such as your name. But releasing the MRZ allows everyone to access
your passport, through Basic Access Control.

The underlying problem is that the e-passport was not designed with an em-
bedded useful certificate (such as X.509) for the holder.

Once there is an infrastructure for biometric verification, it becomes natural
to ask: why not use it for identification as well? People may loose (willingly
or unwillingly) their passport, or may apply for multiple copies, possibly un-
der different names. Indeed, the government of the Netherlands is preparing
legislation [1, 2] to set up a central database with biometric information, in or-
der to “increase the effectiveness of national identification laws”. Such a central
database goes beyond what is required by European directives.

The possibility of biometric identification of the entire (passport-holding) pop-
ulation involves a change of power balance between states and their citizens.
Consent or cooperation is then no longer needed for identification. Tracing and
tracking of individuals becomes possible on a scale that we have not seen before.

Assuming the biometric passport leads to a reliable infrastructure for verifica-
tion and identification of individuals, the societal pressure will certainly increase
to use it in various other sectors than just border inspection. Such applications
are not foreseen—or covered by—European regulations. Interested parties are
police and intelligence forces, banks and credit card companies, social security
organisations, car rental firms, casinos, etc. Where do we draw the line, if any?

We see that the introduction of the new e-passport is not only a large technical
and organisational challenge, but also a societal one. Governments are implic-
itly asking for acceptance of this new technology. This acceptance question is
not so explicit, but is certainly there. If some political action group makes a
strong public case against the e-passport, and manages to convince a large part
of the population to immediately destroy the embedded chip after issuance—for
instance by putting the passport in a microwave—the whole enterprise will fail.
The interesting point is that individuals do have decisive power over the use of
the chip in their e-passport. Even stronger, such a political action group may
decide to build disruptive equipment that can destroy the RFID-chips from some
distance, so that passports are destroyed without the holder knowing (immedi-
ately). To counter such movements, governments may try to make it sufficiently
unattractive or even impossible to cross borders for travellers without a func-
tioning passport. This is only possible, however, if the numbers of broken chips
is relatively low. And in any case, it will not improve popularity of the scheme
to begin with.

Crossing Borders: Security and Privacy Issues of the European e-Passport 163

7 Identity Management Issues

Identity management (IM) is about “rules-4-roles”: regulation of identification,
authentication and authorisation in and between organisations. The new e-
passport is part of IM by states. It forms an identification and authentication
mechanism that is forced upon citizens, primarily for international movement,
but also for internal purposes.

Identification and authentication in everyday life is a negotiation process.
When a stranger in the street asks for your biometric data, you will refuse. But
you may engage in a conversation, discover mutual interests, and exchange busi-
ness cards or phone numbers. Upon a next contact more identifying information
may be released, possibly leading to a gradual buildup of trust.

The e-passport, in contrast, provides a rigid format. In certain situations it
forms an overkill, for instance when you just need to prove that you are over
eighteen. When IM goes digital and becomes formalised one would like to have
more flexible mechanisms, with individual control via personal policies. In the
future we may expect to be carrying identity tokens that flexibly react to the
environment. Three basic rules for such systems are:

– The environment should authenticate itself first. For instance, when the en-
vironment can prove to be my home, my policy allows my token to release
much personal information, for instance about my music preference or health.

– Authentication should be possible in small portions, for instance via certifi-
cates or credentials saying “this person is over eighteen”, with a signature
provided by a relevant authority.

– Automatic recognition of individuals, for instance via an implanted RFID
chip that broadcasts your personal (social security) number, is excluded.
Privacy is important for personal security—and not, as too often stated,
only an impediment to public security.

8 Evaluation of Security Goals

In Sect. 2 we have formulated three security goals that we consider reasonable.
In this section we evaluate whether the current system meets these goals.

Readers should identify themselves first. In the usual sense of “authenticated”
or “trusted” readers, this goal is not reached. For instance, we managed to write
our own terminal application that retrieves the public information like the facial
image from the chip. And our reader is not considered trusted. The implemented
BAC protocol only assures that the reader has knowledge of the MRZ on the
passport. In the European implementation of EAC the reader must authenticate
itself and hence this goal is more or less met for the information marked as
sensitive, but weaknesses exist (see Sect. 5).

Consent by the passport holders. Theoretically this goal is reached. By use of
BAC any terminal that tries to read information first needs to read the MRZ

164 J.-H. Hoepman et al.

information printed on the inside of the passport. Hence the holder must give his
consent for the transaction by opening his passport. However, as we have seen
in Sect. 4.2 some subliminal channels exist that may leak information about the
card even before BAC has been applied or in other words even before the holder
has given his consent.

Proof of integrity and authenticity. The integrity part of this goal is reached
by the secure messaging system, which is applied for all communication after
BAC. As we have seen in Sect. 4 both commands and responses are encrypted
and augmented with a message authentication code to provide integrity and
confidentiality. Authenticity of the information is guaranteed through Passive
Authentication (see Sect. 4)

9 e-Passport v2

Until now we have discussed several issues with the security and privacy protec-
tion of the current proposed standards for biometric passports, from both ICAO
and, in particular, the EU. We have argued that protection mechanisms should
be improved. However, improvements to such standards are at best incremental,
and do not usually challenge the primary design decisions. In fact, such funda-
mental changes would certainly be backwards incompatible, and require a totally
new standard. In our opinion, more fundamental changes are required to really
provide strong security and proper privacy protection to the new generation of
e-passports.

9.1 Avoiding Contactless Cards

The most fundamental change is to reconsider the choice for a wireless commu-
nication interface between the chip in the passport and the terminal at border
inspection. Using a wireless interface makes skimming attacks possible. It is ex-
actly the fear of this possibility that has sparked a huge controversy over the
current e-passport proposals. Initially, the US passports would not even imple-
ment Basic Access Control. Now they are even considering to include metal
shields in the cover pages of the passport to function as a Faraday cage, to
physically disable the wireless communication link.

But all Basic Access Control really is, is a very elaborate way to achieve
exactly the same as what is achieved when inserting a smart card with contacts
into the slot of a reader: namely that the holder of the passport allows the
owner of the terminal to read the data on the chip. Then, why not simply use
smart cards with contacts for the new e-passport? The main arguments against
this have been the form-factor of the passport, and the need for a sufficient
bandwidth to quickly transmit the biometric data from the card to the terminal.
However, identity cards and drivers licenses with dimensions similar to credit
cards (ID-1) are already under consideration. And bandwidth concerns are no
longer an issue either. Many smart card suppliers already sell smart cards with

Crossing Borders: Security and Privacy Issues of the European e-Passport 165

integrated USB 1.1 interfaces that allow for a much higher throughput, using
the original [12] ISO contact module found on the card, and standardisation
for this approach is underway [13]. Such a solution would take away all worries
associated with using a wireless chip, and would keep the e-passport clear of all
discussions surrounding the (perceived) privacy issues with RFID.

9.2 On-Line Terminal Authentication

Once a connection between passport and terminal is established, a decision has to
be made regarding the access rights of the terminal and to determine which data
on the passport it is allowed to read. Current EU proposals for extended access
control are found wanting: stolen terminals cannot be revoked, and the shallow,
rigid certificate hierarchy proposed to regulate access does not allow for flexible
and/or dynamic access control policies (see Sect. 5). The EU approach was
chosen to allow for off-line, mobile terminals, like those that are used by mobile
border inspection units. But clearly such mobile terminals can be connected to
the network over a wireless link, if only through GPRS, which is the standard
on cell phones these days.

If we assume that terminals are always connected to the network, we can use
on-line terminal authentication. The general idea is then the following.

Each terminal owns a private/public key pair. Each terminal is used for a par-
ticular application. This application is encoded in a certificate CAA that contains
the public key KTA of the terminal, and which is signed by the application au-
thority AA. Access rights are associated with application. Each country stores,
for each application authority that it wishes to recognise, the access rights for
that application. These access rights are stored in the back office. The back office
also stores the public keys of all terminals that have been revoked.

On-line terminal authentication then proceeds as follows. First, the terminal
sends the certificate CAA (containing its public key KTA) to the chip. The chip
and the terminal perform a challenge-response protocol in which the terminal
proves to the chip that it owns the private key corresponding to KTA. This
establishes the identity of the terminal. Next, the chip sets up an authenticated
channel between itself and the back office of the issuing country. It can do so
using a country certificate that is stored in the chip during personalisation. The
channel should not be vulnerable to replay attacks. It sends CAA (and KTA) to
the back-office. There, CAA is verified against the known application authorities
(this validates that KTA was certified by such an authority) and KTA is checked
against the list of all revoked terminals. If these checks pass, the access rights for
AA are sent back to the chip. If not, then the empty set (i.e., no access rights) is
sent back to the chip. The chip interprets the access rights it receives and grants
access to the terminal accordingly. Because the channel is authentic and does
not allow replay attacks, the access rights received by the chip correspond to the
certificate it sent to the back office.

With on-line terminal authentication, terminals can be revoked in real-time:
as soon as they are marked as revoked in the back offices of the issuing country,
no passport of that country will allow that terminal access to its data. Also,

166 J.-H. Hoepman et al.

the access permissions can be changed dynamically, and can even be based on
the exact time the request was made, or on the specific usage pattern of the
passport. The general idea can be refined to also allow revocation of terminals
by the countries that manage them, instead of requiring them to inform all
other countries that a particular terminal should be revoked (because it was
stolen, for instance). Also, more levels of certificates can be introduced, to make
management of access rights easier.

9.3 Other Improvements

In Sect. 3 we have seen that real pictures are stored on the chip. With an
immediate consequence that whoever is able to retrieve these images from the
chip, has access to good biometric data, which he can use for identity theft. Using
templates that work like a one-way function, it will be possible to check whether
the template on the chip matches the template derived from the person who is
claiming to be the holder of the passport. This leaking of real biometric data
may not seem such a big deal in a time where many pictures are published on the
Internet. The point here is that these pictures for the passports are taken under
good conditions and hence provides highly accurate biometric information.

The entropy-related off-line attacks discussed in Sect. 4.1 are possible because
a guess of MRZ-information directly leads to all keys used in a communication
session. These keys can be checked against a transcript of that session to ver-
ify the guess. The situation is similar to many password-based authentication
and session-setup protocols. Encrypted key exchange protocols, discovered by
Bellovin and Merritt [4], do not suffer from this problem. There a low entropy
password is used to exchange a high entropy secret that cannot efficiently be
guessed using an off-line attack3. Using encrypted key exchange protocols for
basic access control would strengthen the security of the passport considerably.

In Sect. 6 we have seen that it will be inevitable that other applications want
to use the infrastructure available on the chip for other purposes than the original
ones. In the current system it is already possible to sign things with a private
key, but this causes some unwanted side effects as already described in Sect. 6.
In order to prevent this the standards should be rewritten in such a way that at
least these additional functions can be used and preferably in a disjoint setting
from the border inspection functions. A possible implementation for this could
be to have an X.509 certificate included with a public key that has nothing to
do with the MRZ or other information needed for the border inspection tasks.

References

[1] Kamerstuk II 2004/2005, 25 764, nr. 26. (Official communication of the Dutch
parliament).

[2] Kamerstuk II 2004/2005, 29 754, nr. 5. (Official communication of the Dutch
parliament).

3 Of course on-line attacks where all possible passwords are tried one by one can never
be prevented.

Crossing Borders: Security and Privacy Issues of the European e-Passport 167

[3] Yearly report on algorithms and keysizes (2005). Technical report, IST-2002-
507932 ECRYPT, January 2006. D.SPA.10 Rev 2005-0.2.

[4] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In IEEE Security & Privacy,
pages 72–84, Oakland, CA, USA, May 1992. IEEE.

[5] BSI. Advanced security mechanisms for machine readable travel documents –
extended access control (eac). Technical Report TR-03110, BSI, Bonn, Germany,
2006.

[6] Proposal for a council regulation amending regulation (ec) no 1683/95 laying down
a uniform format for visas. OJ C, 51:219–220, February 26 2002.

[7] Proposal for a council regulation on standards for security features and biometrics
in eu citizens’ passports. OJ C, 98:39, April 23 2004.

[8] Jaap-Henk Hoepman and Bart Jacobs. E-passports without the big picture. eGov
Monitor, February 20 2006. http://www.egovmonitor.com/node/4716.

[9] ICAO. Machine Readable Travel Documents. Technical report, ICAO, 2003. 5th
edition.

[10] ICAO. Development of a logical data structure - LDS for optional capacity ex-
pansion technologies, revision 1.7. Technical report, ICAO, May 2004.

[11] ICAO. PKI for machine readable travel documents offering ICC read-only access,
version - 1.1. Technical report, Oct 2004.

[12] ISO 7816. ISO/IEC 7816 Identification cards – Integrated circuit(s) cards with
contacts. Technical report, ISO JTC 1/SC 17.

[13] ISO 7816-12. ISO/IEC 7816 Identification cards – Integrated circuit(s) cards –
Part 12: Cards with contacts – USB electrical interface and operating procedures.
Technical report, ISO JTC 1/SC 17.

[14] A. Juels, D. Molnar, and D. Wagner. Security issues in e-passports. In Se-
cureComm 2005, 2005.

[15] Gaurav S. Kc and Paul A. Karger. Security and privacy issues in machine read-
able travel documents (MRTDs). IBM Technical Report (RC 23575), IBM T. J.
Watson Research Labs, April 2005.

[16] Dennis Kügler. Security mechanisms of the biometrically enhanced (eu) pass-
port. Presentation at the Security in Pervasive Computing conference, Boppard,
Germany, April 2005. www.spc-conf.org/2005/slides/SPC Passport.pdf.

[17] J.L. Massey. Guessing and entropy. In Proc. 1994 IEEE International Symposium
on Information Theory, page 204, 1994.

[18] National Institute of Standards and Technology. Recommendation for key man-
agement. Technical Report Special Publication 800-57 Draft, NIST, August 2005.

[19] Evaluation report biometrics trial 2B or not 2B, 2005. www.europeanbiometrics.
info/images/resources/88 630 file.pdf.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 168 – 178, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Approach to Hide Policy for Automated Trust
Negotiation*

Hai Jin, Zhensong Liao, Deqing Zou, and Weizhong Qiang

Cluster and Grid Computing Lab
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Automated trust negotiation (ATN) is an important approach to
establish trust between strangers through the exchange of credentials and access
control policies. In practice, access control policy may contain sensitive
information. The negotiation process becomes complicated when the access
control policy is designed complex in order to avoid information leakage.
Furthermore, if the access control policy has conflicts or cycles, normal
negotiation strategies often fail. In this paper, a new approach to hide access
control policy is proposed based on the study on the existing problems. In the
approach, the policy consistency is checked so as to detect policy conflicts. 0-1
table is used to implement it as well as discover minimal credential-set.
Meanwhile, a practical example shows that the approach is suitable and can
effectively protect sensitive information in access control policy.

1 Introduction

As computer systems become more and more interconnected, many situations arise
where different systems need to share data or resources [1][2][3]. For example, a
provider who wants to supply online service over the web must decide how much a
remote user with a certain set of credentials is to be trusted. Usually, in capability-
based/identity-based/attribute-based access control systems, the access control
decisions are decided by capabilities/identities/attributes of requesters.

Exchange of attribute credentials is a means to establish mutual trust relationship
between strangers, who wish to share resources or conduct business transactions.
ATN is invented as an effective method to regulate the exchange of sensitive
information during such process [1][2][4][5][6][7]. In ATN, access control policy
plays a key role in protecting resources from unauthorized access. Unlike in
traditional trust management systems, the policy for a resource is usually unknown to
the party, who requests access to the resource when trust negotiation starts. The
approach of ATN differs from traditional identity-based access control systems
mainly in the following aspects [2]:

* The paper is supported by National Natural Science Foundation of China under grant

No.90412010 and No.60503040.

 A New Approach to Hide Policy for Automated Trust Negotiation 169

• Trust between two strangers is established based on parties’ properties, which
are proven through disclosure of digital credentials. A digital credential is a
verifiable, non-forgeable digitally signed assertion by a credential issuer about
the properties of the parties;

• Each party can define access control policy to control outsiders’ access to their
sensitive resources;

• In the approaches to trust negotiation developed so far, two parties establish trust
directly without involving trust third parties, other than credential issuers.

However, an access control policy itself may also contain sensitive information.
Disclosing policies’ contents unconditionally may leak valuable business information
or jeopardize individual’s privacy [4][6][7][8]. So the disclosure strategy of access
control policy should take information protection into consideration. Meanwhile, the
following situations pose a new challenge to ATN.

Problem 1. Conflicts in access control policy. In order to prevent sensitive
information from leaking, the service/resource providers often place many constraints
on the access such as requiring more credentials as possible, which sometimes lead to
the policy conflicts. A simple case is that, Policy=P1∧P2, where P1=p and P2= p’, then
Policy=False. It means that the policy itself is of no effect. However, the negotiation
strategies cannot detect it and still occupy a lot of computational power (including
network overhead and computing cost). As a result, the negotiation process fails.

Problem 2. Policy cycles in access control policy. The service’s disclosure depends
on user’s credentials. The negotiator releases his credentials according to the access
control policy. If the disclosure of credentials and policies relies on each other, then
the deadlock generates. Surely, it results in the failed negotiation.

To take the above problems and privacy protection into consideration, a new approach
to hide access control policy for ATN is proposed in this paper. In the approach, 0-1
table is adopted to check the policy consistency before the negotiation so as to detect
whether access control policies are valid. During the checking process, it will produce
basic minimal credential-set, which forms the credential disclosure sequence to meet
the access requirements. Then, the negotiation process just matches the disclosed
credentials with minimal credential-set to find whether any credential-set is in the
credential disclosure sequence. Generally, the contributions of our work are as
follows:

1) We present a new negotiation strategy to compute the credential disclosure
sequence, which has the properties such as little overhead and loose-coupling
computing. The example below shows that the approach can hide access
control policy and effectively prevent sensitive information from omitting.

2) It is the first time for us to treat consistency of access control policy as an
important issue. Previous work takes an assumption that the access control
policy has no conflict and ignores the research on the policy consistency.

3) The approach offered can effectively deal with problems of policy cycle.
Normal negotiation strategies fail if the policy cycle exists, because the
existing strategies closely disclose the credentials and policies one by one,
while the policy cycle makes it deadlocked.

170 H. Jin et al.

The rest of this paper is organized as the following. Section 2 discusses the related
work, which shows the recent and relevant research in this area. Section 3 is the main
part of this paper. It gives a detailed description of the approach as well as how to
implement it. Section 4 provides a practical example to illustrate how the approach
works. Section 5 discusses the features of the approach. Section 6 concludes the
paper.

2 Related Work

Our work is originally motivated from the existing automated trust negotiation
research [1][2][4][5][6][7], whose goal is to enable trust establishment between
strangers in a decentralized or open environment, such as Internet or grid. In ATN,
each relying party publishes access control policies to regulate not only the granting
of resources, but also the disclosure of credentials. We focus on privacy protection via
hiding policies. Furthermore, we concentrate on handling the existing problems. So
we mainly investigate two aspects in ATN: information protection and negotiation
strategies.

Winsborough et al [1] presented ACK policy to control the disclosure of
credentials and policies, and developed TTG protocol to construct policy tree so that
it was easy to detect whether the credentials matched the policies or not. ACK policy
is useful in protecting sensitive information, and TTG protocol enables two parties to
do joint chain discovery in an interactive manner as well as the parties to use policies
to protect sensitive credentials and the attribute information contained in the
credentials. However, ACK policy and TTG are application-limited because of
difficulty in constructing them in practical use.

Li et al [9] proposed OSBE protocol to prevent important information from leaking
and being attacked. OSBE bases its idea on digital signature and examines the
message’s integrity so as to find whether the negotiator has the right signature. OSBE
protects message from unauthorized access, but it is heavyweight to build and the
signature computing has a great cost.

In [10], Bertino et al proposed a set of privacy preserving features to be included in
any trust negotiation system, such as the support for the P3P standards, as well as
different formats to encode credentials. Although they based their work on P3P
standards, the methods could be adopted to handle similar questions and differed from
our work.

Holt et al introduced hidden credentials in [11]. They gave a formal description for
hidden credentials, including the concepts of credential and policy indistinguishability,
and showed how to build them using IBE [12]. Their work also gave compelling
examples of the utility of hidden credentials. In short, they provided a good model for
trust negotiation to implement hidden credentials. Based on this, Robert et al [13]
utilized hidden credentials to conceal complex policies, and Keith et al [14] made use
of them to hide access control policies. Since hidden credential system cannot prevent
from invalid inference, its implementation is restricted to some extend.

 A New Approach to Hide Policy for Automated Trust Negotiation 171

Li et al proposed the notions of OACerts and OCBE in [15]. OCBE protocol
adopts the idea of zero-knowledge and ensures that if and only if the recipient is
specified, he can get the resource, otherwise he gets nothing from the trust
negotiation. However, the method did not discuss how to guarantee the security of
messages during the transmission over the insecure Internet.

A negotiation strategy determines characteristics of a negotiation such as which
credentials are requested and disclosed, and when the negotiation is halted. As far as
the negotiation strategies were concerned, Winsborough et al [4] proposed two
different categories of negotiation strategies: eager strategy and parsimonious
strategy. The eager strategy allows flooding-style negotiation, where each party
discloses a credential to the other party as soon as the policy of that credential is
satisfied, therefore ensuring a successful negation can be found in the minimum
possible number of rounds. Its disadvantage is that it usually results in disclosure of
irrelevant credentials.

At the other extreme, parsimonious strategy does not allow credential disclosures
until both parties know there exists a successful negotiation. When an incoming
request for a credential is received and this credential has not been unlocked, an
outgoing counter request is prepared according to the credential’s access control
policy and sent out in response.

Yu et al [16] proposed a brute-force backtracking strategy. The strategy backtracks
whenever a circular dependency is detected. Given the sets of credentials and policies
are finite at both parties, the search it conducts always terminates.

The existing negotiation strategies still base on the disclosure of credentials and
policies, which will inevitably release some information and cannot handle policy
cycles. In our approach, we hide the access control policy from revealing and match
credentials with minimal credential-set, which can effectively protect the access
control policy.

3 Hiding Policy

In this section, we depict our approach in detail. First, we review the concepts of ATN
and describe the above problems. Then, we use 0-1 table to check policy consistency.
This process examines conflicts in access control policy as well as generates minimal
credential-set. Finally, we explain the importance and the meaning of minimal
credential-set in hiding policy.

3.1 Basic Definitions

In ATN, the disclosure of service s is controlled by an access control policy ps, which
specifies the prerequisite conditions that must be satisfied in order for s to be
disclosed. Generally, an ATN system includes the following elements:

• Client: the relying party who initiates the request to service s. Accordingly,
server is the counterpart who possesses the service s. Note that the client and the
server are not the traditional C/S model, on the contrary, they are peer-to-peer,
they are just two different entities, and they are always treated as a negotiator
and an opponent.

172 H. Jin et al.

• C: credential set. Usually, Cc denotes client’s credential set, while Cs stands for
server’s credential set. Cred contains all the credentials in negotiation process,
i.e., Cred=Cc∪Cs.

• P: policy set. Pc is used as the policy to protect client’s credentials, and Ps denotes
server’s policy. Often, each policy Ps takes the form of Ps :s fs(c1,…,ck),
(c1,…,ck∈Cred), where fs(c1,…,ck) is a normal formula consisting of literals ci, the
Boolean operators ∧ and ∨, and parentheses. fs has the result in {True, False}. To
better understand fs, here gives an instance. Given a set of credentials C∈Cred
and a policy function fs(c1,…,ck). If fs=c1∨(c2∧c3), then fs({c1,c2})=True while
fs({c2,c4})=False. Policy Ps is satisfied by the credential set C∈Cred if and only if
fs(C)=True. During the trust negotiation, the client discloses its credentials till
fs(C’)=True (C’⊆C), then the negotiation succeeds; otherwise, the negotiation
fails and the process terminates.

In ATN, a trust negotiation protocol is initiated by a client requesting a
resource/service from the server. The server discloses some policies with the form of
si True. Here are the basic definitions of ATN for policy conflict and policy cycle.

Definition 1 (Automated Trust Negotiation). Let Cc and Cs denote the credential
sets of client and server. Pc and Ps are the policy sets of client and server. The
negotiation is initiated by a request for s∈Cs from the client. Before negotiation, the
server discloses all the policies that have the form of si True. The goal of the trust
negotiation is to find a credential disclosure sequence (c1, c2, …, cn=s), where ci∈
Cc∪Cs, and such that for each ci (1≤i≤n), the policy for ci is satisfied by the
credentials disclosed. In other words, fci(∪j<icj)=True. If the client and the server find
a credential disclosure sequence, the negotiation succeeds, otherwise, it fails.

The sequence of the disclosed credentials depends on the decisions of each party.
The decisions are decided by a negotiation strategy, which controls the credentials to
be disclosed, when to disclose them, and when to terminate a negotiation.

Definition 2 (Policy Conflict). Let Cs and Ps denote the credential set and policy set
of server. The negotiation is initiated by a request for s∈Cs from the client. In order to
protect important information of the access control policy, Ps has a complicated
expression requiring client to disclose more credentials. Ps: s fs(c1, c2,…, cn). If fs(c1,
c2,…, cn) False exists no matter ci=True or ci=False, the policy is called conflicted,
i.e., there exists a conflict in the access control policy.

Usually, fs(c1, c2,…, cn) should be True or False when {ci} sequence has different
values. Surely, when fs(c1, c2,…, cn) True, the policy is still unacceptable, since it
means the access control policy is always met no matter what credentials the client
provides. In the next part, we classify the states of Ps into three types: incompatible,
acceptable and non-recommended. Only the acceptable policy is valid, others are of
no effect.

Definition 3 (Policy Cycle). Let Cc and Cs (Pc and Ps) denote the credential (policy)
sets of client and server, respectively. The negotiation is initiated by a request for
s∈Cs from the client. If Pci:ci gci(sj) and Psj:sj hsj(ci) appear in a trust negotiation,

 A New Approach to Hide Policy for Automated Trust Negotiation 173

then the negotiation phase is deadlocked, in other words, there exists a policy cycle in
the access control policy.

Policy cycle leads the trust negotiation deadlock and ends up with a result of
failure. Normal negotiation strategies are unable to handle policy cycle, but still waste
much network, computing and communication overhead. In the next part, we will
illustrate how to minimize credential-set deals with policy cycle easily.

3.2 Checking Policy Consistency

Generally, the access control policy is consistent and can be satisfied by client’s
credentials. What will happen if the policy is self-contradictory or inconsistent? The
result is obvious. In order to avoid undesirable unsuccessful negotiation, we adopt 0-1
table to detect policy conflict before negotiation. 0-1 table works as two steps:

• Decompose the original policies into many meta-policies. 0-1 table is used to list
all possible results. In 0-1 table, 0 represents False, while 1 stands for True.

• Analyses the 0-1 results and classify them into three types: 1) Incompatible
policy, i.e., the access control policy has conflicts, and the results are all False.
For example, suppose a policy P can be expressed as P=p1∧p2, where p1=p,
p2=p’, then P False and is incompatible. 2) Acceptable policy, i.e., the result
includes some True and some False. Only the disclosure of right credentials can
meet the requirements of acceptable policy. 3) Non-recommended policy, i.e.,
there exists no conflict in the policy, but all the results are True. Non-
recommended policy means that the policy cannot control anything and deserves
not being recommended.

0-1 table is an effective method to list all the possible results of a policy
expression. To better understand 0-1 table, here gives an example to illustrate it.

Example 1. There exists a policy “The high performance computers of CGCL lab
provide open cluster computing. Everyone who is a professor, a teacher or a PhD can
use it directly. Otherwise, if a user is a graduate (Ms) and also a team-leader, he can
use it too.” This policy can be expressed as: Policy=p1∨p2∨p3∨(p4∧p5), where
psi:si ci (i=1,…,5) and c1:user.role=Professor, c2:user.role=Teacher,
c3:user.role=PhD, c4:user.role=Ms, c5:user.role=Teamleader. The corresponding 0-1
table can be expressed as Table 1, which shows that CGCL’s policy is an acceptable
one since the result contains 29 times of True and 3 times of False.

Table 1. 0-1 Table for Example 1 (0 represents False, 1 represents True, X represents 0 or 1)

p1 p2 p3 p4 p5 Policy
1 X X X X 1
X 1 X X X 1
X X 1 X X 1
X X X 1 1 1
0 0 0 0 X 0
0 0 0 X 0 0

174 H. Jin et al.

3.3 Minimal Credential-Set

The goal of various negotiation strategies is to find credential disclosure sequence
containing the requested service s. However, during the negotiation process, the
credentials, including Cc and Cs, are required to be disclosed iteratively, which will
inevitably bring information leakage problem. In this part, we use minimal credential-
set to compute credential disclosure sequence.

Definition 4 (Minimal Credential-Set). Let Ps denote the policy set of server.
Ps= Psi=Ps1∧…∧Psn and Psi:si fsi(ci). During the consistency detection process, 0-1
table lists all the possible results. Every credential sequence which makes Ps True is
added into an effective credential set CE. Minimal credential-set CM is the
simplification of CE.

Definition 4 tells us that minimal credential-set CM can be enough to meet the
requirements of access control policy. In the above example, P1=True can make Ps
True, then Seq1={c1}⊆CE. With the same, there exist Seq2={c1, c2}⊆CE, Seq3={c1,
c3}⊆CE etc. After a simplification towards CE, the CM will be {{c1}, {c2}, {c3},
{c4,c5}}. The goal of simplification is to make CE into the form of CE
=Seq1∨…∨Seqn. The principal the simplification must follow lies in that if Seqi⊆Seqj
(i j), then remove Seqj from CE. The remainder items of CE are the final minimal
credential-set.

Minimal credential-set helps to find the credential disclosure sequence that the
client should release. Now the trust negotiation process checks whether the client’s
credential set includes some items of minimal credential-set CM. During the
negotiation, the server does not need to disclose its access control policy any more; it
only publishes the minimal credential-set.

3.4 Credential-Policy Matching

Minimal credential-set aims at checking whether the client has the satisfied
credentials. It can also deal with policy cycle problem. The credential-policy
matching process complies with Theorem 1 described as the following.

Theorem 1. Let Cc and Cs denote the credential sets of client and server respectively.
The negotiation is initiated by a request for s∈Cs from the client. Let CM be the
minimal credential-set of Ps. if ∃Seq⊆CM, and Seq⊆Cc, then the negotiation succeeds
and the trust can be established, otherwise, the negotiation fails.

It is easy to prove Theorem 1. Note that s∈Cs, Ps:s fs(C). Since ∀Seq∈CM,
fs(Seq)=True, then fs(CM)=True. ∃Seq⊆CM and Seq⊆Cc fs(Cc)=True, which equals to
that negotiation succeeds. The algorithm is described as Fig.1. The function
MatchCreToPolicy(Cc, CM) is to check whether credential set Cc belongs to minimal
credential-set CM. If ∃Seq⊆CM and Seq⊆Cc, then MatchCreToPolicy(Cc, CM) returns
True. isBelongTo(Seq, Cc) is a Boolean function to judge whether the sequence Seq of
some credential set belongs to Cc.

 A New Approach to Hide Policy for Automated Trust Negotiation 175

Algorithm: MatchCreToPolicy(Cc, CM)
Input:

Cc: the credential set of the client
CM:the minimal credential-set

Output:
True or False

Procedure:
For i=1, 2,…, sizeof(CM)

Seqi∈CM;
If (isBelongTo(Seqi, Cc)==True)

return True;
return False

Function: isBelongTo(Seq, Cc)
Input:

Seq: the disclosure sequence
Cc: the credential set of the

client
Output:

True or False
Procedure:

For each c∈Seq
If (c∉Cc)

return False;
return True

Fig. 1. Credential-Policy Matching Algorithm

Now, we give an example to illustrate how minimal credential-set handles policy
cycle.

Example 2. Suppose the following access control policies exist between the client
and server.

Client Server
pc1: c1 s2∧s3 ps: s (c1∧c4)∨c5

pc2: c2 s2 ps1: s1 c6

pc3: c3 s6 ps2; s2 c2

pc4: c4 True pc3: c3 c4

In the example, Cc={c1, c2, c3, c4} and Cs={s, s1, s2, s3}. Since c2 and s2 depend on
each other so that the negotiation has policy cycle. Normal negotiation strategies
cannot work well and will lead the negotiation failure. When minimal credential-set
approach is taken, the process can go on. Since s (c1∧c4)∨c5, then {c1, c4}⊆CE,
{c5}⊆CE. Meanwhile, Ps=ps=((ps2∧ps3)∧True)∨False=ps2∧ps3, then {c2, c4}⊆CE, so
the minimal credential-set CM={{c2, c4},{c1, c4},{c5}}. Now {c1, c4}⊆Cc, the
negotiation succeeds.

4 Use Case Study

In this section, we apply 0-1 table and minimal credential-set to handle a practical
trust negotiation case.

4.1 Scenario Description

CGCL lab provides open high speed printing service. The printer is at the meeting
room. During the meeting, no one except the meeting chair can use it. When there is
no meeting at the working hours, teaching assistant can use it directly. Others can use
it when the lab assistant is at present.

176 H. Jin et al.

4.2 Policy Decomposition

Let Policy denote the access control policy. Policy can be described as Policy= (p1∧p2)
∨(p’1∧p3∧p4)∨(p’1∧p3∧p5). The corresponding credentials are: c1:Context.activity=
meeting, c2:user.role=meetingChair, c’1:Context.Activity≠meeting, c3:Context.
workinghours=True, c4:user.role=teacherAssistant, c5: labAssistant.atPresent=True.

4.3 0-1 Table

The 0-1 table shows in Table 2 based on policy description.

Table 2. 0-1 Table for the Case

p1 P’1 p2 p3 p4 p5 Policy
1 0 1 X X X 1
1 0 0 X X X 0
0 1 X 1 1 X 1
0 1 X 1 X 1 1
0 1 X 0 X X 0

As far as the results are concerned, the access control policy is acceptable since
there are 14 times of True and 18 times of False.

4.4 Minimal Credential-Sets

From Table 2 we can see that CE=Seq1∨Seq2∨…∨Seq14, where Seq1={c1, c2},
Seq2={c1, c2, c3}, Seq3={c1, c2, c4},…, Seq14={c3, c4, c5}. After the simplification
process, the final form is CE={c1, c2}∨{c’1, c3, c4}∨{c’1, c3, c5}. Then, the minimal
credential-set CM={{c1, c2}, {c’1, c3, c4}, {c’1, c3, c5}}.

4.5 Negotiation Process

The negotiation process computes whether any credential sequence of CM appears in
Cc. The MatchCreToPolicy(Cc, CM) algorithm is revoked to match the credentials to
the access control policy. If MatchCreToPolicy(Cc, CM)=True satisfies, the
negotiation succeeds. Otherwise, the client’s access will be denied.

5 Analysis

Based on the above description of 0-1 table and minimal credential-set, our approach
has the following features:

1) Policy consistency detection. We adopt 0-1 table to check consistency of
access control policy before the trust negotiation. We classify the access
control policy into three types. Only the acceptable policy is meaningful while
the others are not suitable.

 A New Approach to Hide Policy for Automated Trust Negotiation 177

2) Policy cycle disposal. Minimal credential-set can well handle the problem of
policy cycle. Unlike other negotiation strategies, minimal credential-set treats
client’s credentials as a total integrity and compares them with credential
sequence instead of disclosing the credentials and policies one by one.

3) Policy hiding as to protect sensitive information. After the policy consistency
checking at the side of server, the access control policy is never disclosed to
the client, which hides the policy from revealing and can greatly prevent
sensitive information in policy from leaking.

4) Little cost. Since the approach does not need the gradual disclosure of
credentials and policies, the overhead of network, communication and
computing will reduce greatly. Meanwhile, if the access control policy has
conflicts, our approach can prevent the negotiation from continuing, which can
improve the rate of successful negotiation and enhance negotiation efficiency.

6 Conclusion

In this paper, we present a new approach to hide access control policy. In the
approach, we adopt 0-1 table to check policy consistency and examine whether the
access control policy is consistent or not. We classify the access control policy into
three types according to its state. If the policy is an acceptable one, the trust
negotiation can continue. Minimal credential-set is used to list all the possible
credential disclosure sequences. If the client has the right credentials to include one of
the items in minimal credential-set, the trust can be established and the access is
allowed. In the paper, we describe the approach in detail and illustrate how it works
through practical example.

References

[1] W. H. Winsborough and N. Li, “Towards practical automated trust negotiation”, In
Proceedings of the 3rd International Workshop on Policies for Distributed Systems and
Networks, 2002, pp.92-103.

[2] T. Yu and M. Winslett, “A Unified Scheme for Resource Protection in Automated Trust
Negotiation”, In Proceedings of IEEE Symposium on Security and Privacy, 2003, pp.245-
257.

[3] T. Yu, Dynamic Trust Establishment in Open Systems, PhD thesis, Department of
Computer Science, University of Illinois. Sep, 2003.

[4] W. H. Winsborough, K. E. Seamons, and V. E. Jones, “Automated trust negotiation”, In
Proceedings of DARPA Information Survivability Conference and Exposition, 2000,
pp.88-102.

[5] W. H. Winsborough and N. Li, “Protecting sensitive attributes in automated trust
negotiation”, In Proceeding of ACM Workshop on Privacy in the Electronic Society,
2002, pp.102-113.

[6] W. H. Winsborough and N. Li, “Safety in automated trust negotiation”, In Proceedings of
the IEEE symposium on Security and Privacy, 2004, pp.147-160.

178 H. Jin et al.

[7] K. Seamons, M. Winslett and T. Yu, “Limiting the Disclosure of Access Control Policies
during Automated Trust Negotiation”, In Proceedings of Network and Distributed System
Security Symposium, 2001, pp.45-56.

[8] P. Bonatti and P. Samarati, “Regulating Service Access and Information Release on the
Web”, In Proceeding of 7th ACM Conference on Computer and Communications
Security, 2000, pp.78-87.

[9] N. Li, W.Du, and D. Boneh, “Oblivious signature-based envelope”, In Proceeding of the
22nd ACM Symposium on Principles of Distributed Computing, 2003, pp. 182-189.

[10] E. Bertino, E. Ferrari, and A. C. Squicciarini, “Privacy-preserving trust negotiation”, In
Lecture Notes in Computer Science, Vol.3424, Springer-Verlag, 2005, pp.283-301.

[11] J. E. Holt, R. Bradshaw, K. E Seamons, and H. Orman, “Hidden credentials”, In
Proceedings of 2nd ACM Workshop on Privacy in the Electronic Society. 2003, pp.1-8.

[12] D. Boneh and M. Franklin, “Identity based encryption from the Weil pairing”, In
Proceedings of Crypto2001, Advances in Cryptology, Lecture Notes in Computer
Science, Vol.2139, Springer-Verlag, 2001, pp.213-229.

[13] R. W. Bradshaw, J. E. Holt, and K. E. Seamons, “Concealing Complex Policies with
Hidden Credentials”, In Proceedings of the 4th ACM Conference on Computer and
Communications Security, 2004, pp.245-253.

[14] K. Frikken, M. Atallah, and J. Li, „Hidden Access Control Policies with Hidden
Credentials”, In Proceedings of the 3rd ACM Workshop on Privacy in the Electronic
Society, 2004, pp.130-131

[15] J. Li and N. Li, “OACerts: Oblivious Attribute Certificates”, In Proceeding of 3rd
Conference on Applied Cryptography and Network Security, 2003, pp.108-121.

[16] T. Yu, X. Ma, and M. Winslett, “PRUNES: An Efficient and Complete Strategy for
Automated Trust Negotiation over the Internet”, In Proceeding of the 2000 ACM
Conference on Computer and Communications Security, 2000, pp.88-97.

Towards Remote Policy Enforcement for Runtime
Protection of Mobile Code Using Trusted Computing

Xinwen Zhang, Francesco Parisi-Presicce, and Ravi Sandhu

George Mason University, Fairfax, Virginia, USA
{xzhang6, fparisip, sandhu}@gmu.edu

Abstract. We present an approach to protect mobile code and agents at runtime
using Trusted Computing (TC) technologies. For this purpose, a “mobile policy”
is defined by the mobile code originator, and is enforced by the runtime environ-
ment in a remote host to control which users can run the mobile code and what
kind of results a user can observe, depending on the security properties of the user.
The separation of policy specification and implementation mechanism in existing
mobile computing platform such as Java Runtime Environment (JRE) enables the
implementation of our approach by leveraging current security technologies. The
main difference between our approach and existing runtime security models is
that the policies enforced in our model are intended to protect the resources of
the mobile applications instead of the local system resources. This requires the
remote runtime environment to be trusted by the application originator to authen-
ticate the remote user and enforce the policy. Emerging TC technologies such
as specified by the Trusted Computing Group (TCG) provide assurance of the
runtime environment of a remote host.

1 Introduction

Mobile code refers to programs and processes that migrate and execute at remote hosts,
so that the execution environments are different for different instances. There is a wide
range of mobile applications encompassing autonomous mobile agents which actively
travel to remote hosts, Java applets, ActiveX, component software (e.g., COM/DCOM/
COM+ and Servlet/EJB), distributed ad hoc and sensor network applications,etcetera
[16].

Runtime environments provide mechanisms to protect the user’s and the system’s
sensitive information by enforcing security policies in a local host. The policies are
based on the attributes of the code and of the user who is running it. Possible attributes
include code sources, URLs, digital signatures, user groups, roles, and credentials. The
two mainstream runtime environments currently adopted in industry are Common Lan-
guage Runtime (CLR) in .Net and Java Runtime Environment (JRE) in Java. In Java,
the security in JDK1.0 and JDK1.1 uses a sandbox model to restrict the access of Java
Applets based on code source and digital signature, while in JDK1.2, a user-based ac-
cess control model is introduced [10,15]. Similar to Java, .Net enforces a code access
security model based on code source and location, as well as a role-based security
model [16].

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 179–195, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 X. Zhang, F. Parisi-Presicce, and R. Sandhu

The protection of mobile applications against malicious hosts and users is a more
difficult problem. Current security models in runtime environments are used mainly to
enforce the local host’s security policy to protect the local system resources. However,
there are cases in mobile applications where the originator may have some security
requirements to protect the sensitive information brought or accessible by the mobile
code. For example, a shopping application may carry a user’s sensitive information
while running in a remote site. The code originator may require that the code can only
run in a specific protected domain, and the user who runs this code must have a specific
role in an organization, or some other credentials. In this kind of situation, existing
access control models for mobile code are not adequate.

In this paper we propose an approach to enforce the policy of the mobile applica-
tion originator in remote host runtime environments to control accesses from users,
by leveraging emerging client-platform-based Trusted Computing (TC) technologies.
We call this kind of policy a “mobile policy” in our model, as compared with the re-
mote host’s local policy. A mobile policy is the security requirement provided by the
originator to specify what kind of subject in a remote host can run this code, execute
particular methods/components, or access some sensitive information included with the
mobile application. We use the mechanisms in current runtime environments to enforce
a mobile policy.

Since the subject of a mobile policy is a user or program that executes or accesses
the mobile code in a remote site, the authentication of the subject is a key point to
enforce the policy. Java authentication and authorization Service (JAAS) provides a
general layer of user-based authentication and access control mechanism, beyond the
sandbox model, which can be applied in our approach. One important advantage of our
approach is that we try to reuse the runtime security technologies employed in current
systems. A prerequisite for it is the basic assumption that all machines on which the
code is intended to run guarantee a minimum of security regarding the correct behavior
of the runtime environment. For an enterprise-wide environment, this is viable with
on-site configuration of each host by the administrator. For multidomain distributed
systems, a trusted runtime environment (TRE) is essential for our model. A TRE can
be built on a Trusted Computing Base (TCB) and can be considered an extension of
TCB. Emerging Trusted Computing (TC) technologies such as TCG’s Trusted Platform
Module (TPM) which provide hardware-based root of trust and extended trust to upper
levels with verifiable platform characteristics, thus enabling remote policy enforcement
in our architecture.

Our approach does not exclude ways other than mobile policies to distribute and
enforce security requirements in different hosts within an organization. For example,
a network administrator could install in each host, at the operating system level, the
policy to be used to determine the specific users who can run a specific application.
The use of mobile policies with mobile code has many advantages over this approach:
(1) as the deployment and management of mobile code and agents is highly automated,
the security management should also be automated and flexible, while administrator-
involved configuration for individual platforms is burdensome for an organization; (2)
extensibility and scalability of access control policy for a mobile application originator
since a mobile policy can be updated/revoked easily with our approach; (3) specification

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 181

of fine-grained access control for different users with different security properties in the
same remote host, by allowing different users in the remote host to obtain different
results from this application (beyond the simple “allowed/not allowed to execute); and
(4) simplification of the specification and enforcement of global security policies in an
organization.

The remainder of this paper is organized as follows: Section 2 shows some examples
which can benefit from our approach but are difficult to implement with current runtime
security technologies. Section 3 presents an overview of the security model in JRE. Sec-
tion 4 proposes our trusted platform architecture to support remote policy enforcement
in a distributed environment. Section 5 formulates our policy model specification and
enforcement in JRE. Section 6 mentions some related work in the mobile code security
area, and the differences between these and our approach. Section 7 summarizes this
paper and presents our future work.

2 Motivating Examples

Example 1. In a mobile application intended to perform E-shopping services, the mo-
bile code is transferred to a remote E-commerce server which collects related informa-
tion, such as price, location, shipping fee, etc., and then returns it to the customer. The
code carries the customer’s information, such as credit card number, address, telephone
number, etc., and some functions to perform specific work, such as data collecting and
transporting, order transaction, etc. If the customer makes the decision to order, the
mobile code places the order using the customer’s information. In this example, the
customer has access control requirements that his personal information can only be
read by a clerk in a specific organization without modification, and the functions can
only be executed in a particular domain. This objective cannot be achieved with current
runtime security models based on code attributes and local host’s policies to protect the
host’s resources. Also, the type safety and data encapsulation features of programming
languages such as Java cannot solve this problem. With type safe language, a protected
variable or class can be declared as a private element in object-oriented programming,
but, with this mechanism, the resulting access control is “black or white” to all users,
which is not suitable for fine-grained protection.

Example 2. Component-based software has been developed and applied in industry
so widely that it has become the mainstream for enterprise computing during the last
decade. A component is a software element that conforms to a component model and
can be independently deployed and composed without modification according to a com-
position standard. Regarded as building blocks, components can be reused in many
applications and deployed in different places. Consider a credit card company that has
implemented a credit service component. The component, with the customer’s informa-
tion as input, will check the database in the credit card server and return some billing
information. As a third party software, this component is deployed at an enterprise’s
application server and applied to build customized applications. As this component ac-
cesses the database, the owner of this component (e.g., the credit card company) has
to make sure that only an authenticated and properly authorized application developer,

182 X. Zhang, F. Parisi-Presicce, and R. Sandhu

deployer, or user can instantiate it and call it. With current technology, a component de-
ployer or system administrator has some access control mechanisms to do this to some
extent. For example, in Enterprise Java Bean (EJB), the deployment descriptor along
with the component in the enterprise’s application server controls what kind of roles
can access the component and can activate its methods. But this XML-based descriptor
is not generated by the component owner and cannot reflect his/her fine-grained access
control policies, since the component owner normally is not aware of the security con-
text of local roles in the enterprise. In this case, a mobile policy is a better solution, so
that whenever the component is initialized and instantiated in the component container,
the access control policy from the component owner can be enforced.

3 Java Runtime Security

This section presents an overview of the security mechanism in Java Virtual Machine
(JVM) for Java mobile code, which is an example that we use to support runtime en-
forcement of mobile policy in our framework.

3.1 Overview

JVM uses the sandbox model to enforce security policies at runtime. The sandbox
model in JDK1.0 and JDK1.1 is based on code attributes such as the code’s source,
the URL, the signature, etc. While JDK1.0 simply prohibits any Java Applet from ac-
cessing any of the local system’s resources, JDK1.1 assigns to a Java Applet the same
permissions as those of a local program if the host can trust the digital signature associ-
ated with this applet (reverts to JDK1.0 otherwise). Starting with JDK1.2, the concept
of protection domain based on code attributes is introduced with a complex sandbox
model, and the Java Authentication and Authorization Service (JAAS) introduces user-
based access control, and allows the local system’s access control models and policies
to be enforced in the runtime environment. Furthermore, a Java policy is augmented by
the security policies of the local operating system, for example, to prevent mobile code
executed by a user from accessing a file on the hard disk if the same user cannot read
the file at the operating system level.

Fig. 1. JDK1.2 security model [10]

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 183

Figure 1 shows the semantic sandbox model in JDK1.2 [10]. In this model, the code
is located in a protection domain which is defined by the code attributes and by the
local access control policies. The protection domain represents the permissions that the
code can hold during execution. The general process to run Java mobile code can be
described schematically as follows: a Java binary code is loaded by a class loader and
classes are defined with the defineClass method of the class loader. Each class is asso-
ciated with a protection domain according to policy information. The code is ready to
run or be called by other classes after being loaded; whenever it tries to access a local
system’s resource, it calls a Java API, which then calls the security manager (the access
controller since JDK1.2) to check if this operation is allowable. If the security man-
ager permits the operation, the Java API completes the call and returns to the original
code, otherwise, the security manger throws an exception to the Java API, which in turn
throws it to the user. Starting with JDK1.2, the operation permissions are determined
by the access controller, which supplements the security manager.

The access controller in JRE can enforce fine-grained policies based on the attributes
of the running code and of the user. Figure 2 illustrates an actual policy file in Java. The
permission definition in Java includes two parts: the object and the access right. The ob-
jects are the local system’s resources, such as the files and directories, sockets, registry
keys and values, and so on. Access rights are defined based on object properties, such
as “read” to file and directory (“*” means any operation). In Figure 2, the policy allows
any code downloaded from “http://www.myuniversity.edu” to “read” files in “/tmp”,
and to accept connections on, to connect to, or to listen on any port between 1024 and
65535 on any host within “myuniversity.edu”. The user has to be authenticated before
being defined as “principal” in a policy file and the JAAS provides a mechanism to ob-
tain the authentication context from the local platform. For example, the third item in
Figure 2 specifies that “Alice”, who is authenticated by Solaris, can access all files and
directories within “/usr/home/Alice”; the last item states that an authenticated subject
with Kerberos principal name “bob” with realm foo.org can call the System.getProperty
method to access the user environment information. A customized permission class

grant codeBase "http://www.myuniversity.edu/"{
permission java.io.FilePermission "/tmp", "read";

};
grant signedBy "myuniversity" {

permission java.net.socketPermission
"*.myuniversity.edu:1024-",‘‘accept,connect,listen";

};
grant Principal com.sun.security.auth.SolarisPrincipal

"Alice" {
permission java.io.FilePermission

"/usr/home/Alice", "*";
}

grant Principal
javax.security.auth.kerberos.KerberosPrincipal
"bob@foo.org" {
permission java.util.PropertyPermission

"user.home", "read";
permission java.io.FilePermission "bar.txt", "read";

};

Fig. 2. Java policy example

184 X. Zhang, F. Parisi-Presicce, and R. Sandhu

can be defined for an application, thus greatly increasing the flexibility and expressive
power of Java security policies.

Example 3. Consider the method shown below.

Public void sensitiveCall() {
Permission permission = new
java.net.SocketPermission("localhost:8080", "connect");
AccessController.checkPermission(permission);
// sensitive call
Socket s = new Socket("localhost", 8080); }

In this example, a permission object (permission) is defined as a socket connection to
local host port 8080. The single-instance class AccessController first checks the appli-
cation’s policy file. If this permission is granted in the policy or implied by any per-
mission granted in the policy, the AccessController’s checkPermission1 method keeps
silent; otherwise, an access control exception is thrown to the caller method. Whether
a permission is implied by another permission is defined in the implies method of the
latter’s Permission or PermissionCollection class. The details of defining a customized
permission and implied permissions can be found in [9,21]. By default, the Access-
Controller’s checkPermission method implements the checkPermission method imple-
mented in SecurityManager.

3.2 JAAS

JAAS has been integrated into Java Standard Edition since J2SDK v 1.4. The two pur-
poses of JAAS are to provide user-based authentication and authorization in Java. The
original sandbox model in Java is code source-based, so that, a permission is deter-
mined by the location where the code comes from and a digital signature generated by
the owner. In JAAS, security attributes of the user running the code are considered in
access control.

Authentication. JAAS implements the Pluggable Authentication Module (PAM) stan-
dard with Java. Whenever a mobile application is loaded, the Configuration class stores
all available LoginModules for this application, a LoginContext class is instantiated, and
its login method invokes all LoginModules and attempts to authenticate the user. If suc-
cessful, the user is authenticated as a Subject object with a set of Principals objects and
credentials which represent the user’s security attributes. Principals are names of iden-
tities with particular types, such as a SSN number, a group or domain name, a role, or a
tickets. Credentials can be general security related attributes, such as password, public
key certificates (X.509 or PGP), Kerberos tickets, etc. For example a successful authen-
tication with com.sun.security.auth.module.NTLoginModule imports principals userID,
domainID, and several groupIDs for a user.

Authorization. Starting with Java 2, the SecurityManager delegates security checks to
AccesssController. After a user is authenticated, the method Subject.doAs dynamically
associates this user with the AccessControlContext, which is retrieved by the Access-
Controller to check if it has sufficient permissions for a sensitive operation based on the

1 Actually this explicit permission check is redundant since any call to open a socket connection
is checked by the SecurityManager by default.

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 185

principals and credentials associated with the subject. A Subject class interface has the
form

Public final class Subject {
...
public static Object doAs (Subject s,
java.security.PrivilegedAction action) {}

}

4 Trusted Runtime Environment

As mentioned in Section 1, to correctly enforce a mobile policy, the application orig-
inator needs to trust the runtime environment of the remote host. A trusted runtime
environment (TRE) should not only detect any malicious modification of the policy,
but also detect any change of the security components in the virtual machine, such as
authentication and authorization modules. Specifically, a trusted runtime environment
(TRE) should provide:

– Integrity of mobile policy and code. Before being loaded, a mobile policy’s in-
tegrity should be attested and verified by the originator (the user who deploys the
code) to ensure that the correct policy is used. This requires that the JVM correctly
measures the integrity (e.g., with a hash function) and reports to the originator, upon
a request to run the code. On the other side, a remote host may also need to verify
the integrity and signature of the mobile policy, according to its local policies. For
example, the digital signature of a mobile policy/code enables it to be launched in a
JVM as a third party policy provider by means of code source-based authorization.

– Trusted authentication of remote subjects. The authentication modules in the re-
mote site must authenticate the user in the expected manner. While a uniform ap-
proach to authentication may be viable in an organization-wide system, more gen-
erally a trust mechanism is needed for multi-domain distributed systems.

– Trusted authorization enforcement. After a mobile policy is loaded, the enforce-
ment depends on the expected behavior of the remote JVM’s authorization module,
which is the policy enforcement point of the security system.

Therefore, a TRE is a prerequisite for our security model. It has been recognized
for some time that software alone does not provide an adequate foundation for building
a high-assurance trusted platform. The emergence of industry-standard Trusted Com-
puting (TC) technologies promises a revolution in this respect by providing roots of
trust upon which secure applications can be developed. These technologies offer a
particularly attractive platform for security policy enforcement in general distributed
systems. Many current efforts, especially the industry-led Trusted Computing Group
(TCG), have focused on building trust rooted in hardware [5].

TCG has defined a set of specifications aimed at providing a hardware-based root of
trust and a set of primitive functions that allow trust to propagate to application soft-
ware, in addition to crossing over platforms. The root of trust in TCG is a hardware
component on the platform called the Trusted Platform Module (TPM). Application-
level trust requires strong integrity checks of binary code for running processes and a
mechanism that allows other entities (applications or platforms) to verify that integrity

186 X. Zhang, F. Parisi-Presicce, and R. Sandhu

as well. A TPM has the capabilities to measure and report runtime configurations of
the platform, from BIOS to OS. TPM and TC-enhanced hardware technologies, such as
Intel’s LaGrande Technology (LT) [2] and AMD’s Secure Execution Mode (SEM) [1],
generally allocate isolated memory partitions to different application processes to pre-
vent software-based attacks at runtime.

In our work, we abstract the underlying trusted computing technology, and focus on a
high-level trusted runtime environment built beyond that. Since a runtime environment
such as Java Virtual Machine is normally loaded after the OS is loaded, we consider the
TRE as an application or service level trusted domain, which is built beyond the trusted
hardware and OS of the remote host with the attestation mechanism of trusted comput-
ing technology, as shown in Figure 3. In this platform, the hardware layer (comprising a
TCG compliant TPM and some other necessary hardware such as LT-enabled CPU and
chipset) provides the root of trust for TC. The secure kernel (SK) provides the protected
runtime environment for the JVM. This can be done through controlling DMA-enabled
device drivers and memory management unit (MMU).

TPM Device Device Hardware

Secure Kernel

Operating System

Class Loader

Code

Java Virtual Machine

JAAS

AccessController
SecurityManager

XACML PDP

Mobile
Policy

Fig. 3. Platform architecture to support trusted runtime environment for mobile code

4.1 The Trust Model

The integrity of SK is measured by the TPM when the system boots. Also, SK is pro-
tected in memory space by hardware so that its integrity is guaranteed at runtime. Before
the JVM is started, SK measures the integrity of JVM and stores its hash value locally.
In turn, when mobile code is loaded, the JVM measures the integrity of the program
(Java bytecode) and the mobile policy, e.g., implemented by the class loader of JVM.
Note that SK enhances the language-based security of the JVM by means of trusted
hardware.

The measured integrity can be verified by the code originator with remote attesta-
tions, which is enabled by the TC hardware. A hash chain is constructed corresponding

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 187

to an attestation challenge to establish the trust of JVM, the mobile code, and the mobile
policy based on the root of trust provided by the hardware. Specifically, SK has a public-
private key pair generated by the TPM when the platform is initialized, where the public
key is certified by the attestation identity key (AIK) of TPM. SK also generates a public-
private key pair for the JVM, where the public key is certified by the SK (by signing with
its private key) and the private key is protected by JVM, e.g., with the sealed storage
function of TPM. The key pair for JVM is generated for the first time when it is installed
in the platform. When the platform receives an attestation challenge from a remote side
to check a running code’s environment state, TPM signs a set of platform configuration
register (PCR) values with its AIK key2, and SK signs the integrity value of JVM with
its private key, while JVM signs the integrity value of the code. These three signatures
are then sent to the attestation challenger. The challenger verifies all the signatures and
the public key certificates of AIK, SK, and JVM, respectively. If all are valid and the
integrity values match, the JVM is trusted, and the code and mobile policy’s authenticity
is verified. Thus, the code originator can trust the security enforcement of the remote
JVM and the result generated by the code.

5 Mobile Policy Specification and Enforcement

The primary goal of our framework is to enforce the code originator’s mobile policy
in remote runtime environments. Policy management in our framework includes three
phases: (1) policy specification by a mobile code originator, (2) policy distribution by
the originator or a trusted third party (such as a central server), and (3) policy enforce-
ment in the remote host. We mainly describe phases (1) and (3) in this paper. For phase
(2), a mobile policy could be attached to the code and distributed along the network,
in which the policy can be bound to the code itself, or the policy could be downloaded
from a central repository only to sites where the code is actually run. In both cases the
integrity of the mobile policy is critically important, as mentioned earlier.

5.1 Mobile Policy Specification

We have two levels of policy specification. The high-level phase is a logic specification
with an authorization specification language (ASL) [14]. This provides a clear defini-
tion and analysis, as well as confliction resolution, which is needed when the policies
are derived or composed from different resources. For example, a policy can be de-
rived from a policy in a group and another policy of an individual user, or a policy
can be combined from several policies from different departments in an organization.
The low-level phase is a concrete specification of the mobile policy with the extensible
access control markup language (XACML) [3] format, enforced in a runtime environ-
ment as an input. The separation of these two levels provides flexible deployment and
decentralized policy specification and composition. Because of space limitations we
only explain the XACML policy specification in this paper.

2 We do not explicitly specify what PCR values are included in an attestation, since the re-
quired properties of a platform (including hardware, BIOS, and OS configurations) are very
application-specific.

188 X. Zhang, F. Parisi-Presicce, and R. Sandhu

XACML is an open-standard format to specify access control policies, and expected
to be widely used thanks to the properties of interoperability and extensibility. A mobile
policy can be described in XACML format as the following shows:

<Policy PolicyId="(policy-name)"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>(predicates over subject attributes)</Subjects>
<Resources>(predicates over object attributes)</Resources>
<Actions>(predicates over access rights such as read and write)</Actions>

</Target>
<Rule effect="permit"/> (Specification that this policy is positive)
<Obligations>(Specification of attribute-update actions)</Obligations>

</Policy>

where the <Subjects> and <Resources> elements specify the attributes of the
subjects and the objects, the rights are in <Actions> element, and the update actions
are defined in <Obligations> element. Update of attributes result from granting the
access thereby possibly changing the state of the subject or the object.

Subjects. A subject is a process running on behalf of a user or role that actually exe-
cutes the code. In a mobile policy, subject attributes can be a username, or a role name,
group name, certificate signed by a particular certificate authority, etc. Each subject or
user attribute has to be authenticated by the runtime platform before running the code.
JAAS, entrusted with enforcing the user-based access control, can be used within an
enterprise or organization. For general distributed environment, a trusted third party
subject attribute service may be needed for authentication.

Permissions. A pair (object, right) is regarded as a permission. The objects3 in a mo-
bile policy may be classes or methods of a mobile code, or information accessed or
stored by a mobile code. Specifically, since a mobile policy is to protect a mobile ap-
plication, possible objects include information on the state of the mobile code, results
accumulated at other hosts by a mobile agent, sensitive information of the code orig-
inator, and functions to access other sensitive information, implemented as variables,
classes, methods or components of a mobile application. Normally, the right associated
with a function or component is to “execute”, the right for any sensitive information,
partial result, and individual variables may include “read” and “write”, and the right
to a class may be “instantiate” and “inherit”. We assume that all the sensitive accesses
of (object, right) are encapsulated in a method implemented in the classes, while the
sensitive variables are private members of the classes. For example, to “read” a credit
card number, a call to getCredit method is invoked, while “write” a credit number with
setCredit. Thus, a permission must be granted to call a method to obtain sensitive infor-
mation. So generally a permission is checked when a sensitive method is invoked and
executed, or a protected object is instantiated or constructed.

5.2 Mobile Policy Enforcement

In a typical access control system, a policy decision point (PDP) evaluates access re-
quests with subject and object attributes and sends results to a policy enforcement point

3 Note that an object in a mobile policy is a different concept from the object (an instance of a
class) in Java language.

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 189

(PEP). Using Sun’s XACML library [4], the PDP module interprets XACML policies
in the mobile policy file and makes access decisions, while the PEP can be just a simple
interface of the enforcement mechanisms implemented in current JVM (refer to Fig-
ure 3). To re-use these functions, each mobile code needs to implement the permission
classes for the protected access rights, which are application-specific.

Define Permission Classes. Although Java API provides some basic permission
classes, most of them are used in local policy enforcement. Normally a mobile code
originator has to define his/her own permissions according to the particular applica-
tions. For instance, in Example 1, a creditPermission class is needed with rights such as
“read”. Figure 4 is the skeleton to define a CreditPermission class for the E-Shopping
example. In Java, an application-defined permission class inherits from the system class
Permission and implements the Serializable interface. Each permission object has a
type, name and action (access type). For CreditPermission, we only define “read” ac-
cess type. Note that a permission instance does not imply that this permission is granted,
but states that accessing this instance is checked by the access controller.

public final class CreditPermission extends Permission
implements Serializable {
public CreditPermission(string name, string actions){
//Creates new CreditPermission object with the
//specified actions. name is the method name that
//represents the method to read credit card number,
//such as "getCreditNo". actions is a list of the
//desired actions granted to the object. In this example,
//only "read" action to credit information.

...
}
public boolean implies(Permission permission){...}
...

}

Fig. 4. Sample permission class

The implies method specifies complex permission semantics, such as a prerequisite
permission. For example, an “update” permission of an online account requires a “read”
permission to that account object. Permission constraints such as separation of duty can
also be specified in this method.

Import XACML Mobile Policy. From the XACML policy file, each subject in the
mobile policy is mapped to principals defined in JAAS, such as role, group-name, etc,
while the subject attributes and security related credentials such as password, ticket,
public key certificate, etc., are associated with these principals after authentication. One
of the advantages of using XACML for mobile policy is that XML provides flexible
data specifications and semantics, and it is easy to extend it in future work if other
information is needed to specify policies. Also, graph tools can be easily developed for
policy composition and analysis.

Since the default policy implementation in Java is in a text file, we need to replace
this with our alternative implementation. For this, an XMLPolicy class is defined which
is a subclass of the abstract class Policy in Java, and is part of the PDP module to retrieve
policy information from the XML file.

190 X. Zhang, F. Parisi-Presicce, and R. Sandhu

A mobile policy is defined by the code originator who is, in general, not the
rightholder of the local host system. Therefore the JVM needs the permission from
the local host system to load the mobile policy. In implementation, a mobile policy is
loaded into a JVM dynamically as the code is loaded. Specifically, a third-party policy
implementation can be inserted into a runtime environment by invoking the setPolicy
method of the Policy class. A mobile policy file can be attached with a mobile code in
a single Java Archive (JAR) file and captured by JVM, or it can be stored in a central
server and a URL argument as the location is provided to load the application code in
JVM. If a mobile policy is outside the remote side’s domain, dynamically loading the
policy requires runtimePermission checked by the AccessController. This requires that
the remote host’s default policy be configured to support a third-party policy provider.
Code signature for authentication and integrity of the mobile policy is needed according
to the host’s local policy.

5.3 Policy Enforcement

After the permission and policy classes are loaded, and the user is authenticated with
JAAS, a sensitive operation can be authorized to a particular subject at runtime. With
JAAS, after a user is authenticated with a set of principals, the method Subject.doAs
dynamically associates all the principals with the local AccessController (actually, it is
AccessControlContext by calling AccessController.getContext()). Then, when a sensi-
tive call is requested, the AccessController can make a decision based on the pre-defined
policy. As shown in Section 3, a Subject.doAs method combines an authenticated sub-
ject and a PriviledgedAction object. Therefore to enforce a mobile policy, all sensitive
operations should be encapsulated in PriviledgedAction classes. The following example
shows a simple implementation.

Example 4. Consider an eshop mobile application where creditPermission is defined
by the code originator and policy is specified as the following XACML format.

<Policy PolicyId="makeorder-policy"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
<Subjects>

<Subject>
<!-- The subject identity must include "OU=Org1". -->
<SubjectMatch MatchId="function:x500Name-match">

<AttributeValue DataType="string">OU=Org1</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-id" DataType="x500Name"/>

</SubjectMatch>
<!-- The subject’s rolename is PurchaseManager -->
<SubjectMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">PurchaseManager</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-rolename" DataType="string"/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="function:regexp-string-match">

<AttributeValue DataType="string">creditPermission</AttributeValue>
<ResourceAttributeDesignator AttributeId="permission-name" DataType="string"/>

</ResourceMatch>

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 191

<Resource>
</Resources>
<Actions>

<!-- "GET" represents the read privilege. -->
<Action>GET</Action>

</Actions>
</Target>
<Rule effect="permit"/>

</Policy>

A subject is authenticated as a Org1.PurchaseManager role and trying to call the
sensitive method getCredit. The following code shows the outline of the class.

public class EShop {
public static void main(String[] args) {
...
Subject.doAs(aPurchaseManager, new MakeOrder());
// where aPurchaseManager is an authenticated Subject
// with a principal of Org1.role named PurchaseManager.
...

}
}
public class MakeOrder implements PrivilegedAction {

public Object run() {
...
//sensitive call
String creditCardNo=CreditInfo.getCreditNo();
...

}
}

In this example the sensitive code is encapsulated in the MakeOrder class, which im-
plements PriviledgedAction class. The CreditInfo is a static class that stores a credit card
information, which can be obtained by some methods. The getCredit method is a sen-
sitive operation since as defined in the XML policy file. The MakeOrder will trigger an
access control check when getCredit is called. According to the policy, the permission
is granted. The general authorization in a mobile policy is similar to that in enforcing a
local policy.

5.4 Access Control Algorithm

Java uses a stack-inspection mechanism to enforce the security policy in the runtime
environment. In our model, the same stack-inspection mechanism is used, but the ac-
cess controller checks the permissions based on the mobile policy file. Specifically, for
each call in the stack frame, when there is a call to access protected objects in a mobile
code, the call is forwarded to the access controller. The access controller determines
if the operation is permitted according to the XML mobile policy: if the operation is
not permitted, the access controller throws an exception back to the call, which in turn
throws it back to the user running the code, otherwise the call completes the operation.
Figure 5 shows the access control algorithm. For each call in the stack, the access con-
trol algorithm first checks its protection domain. If the target permission is not in the
domain, an AccessControlException is thrown; otherwise, the algorithm in turn checks
if this calling method is declared as a privileged action. If so, and an AccessControlCon-
text is provided in the doPrivileged method, then the permission is checked with this

192 X. Zhang, F. Parisi-Presicce, and R. Sandhu

AccessControlContext, if not, this permission is granted. If a thread is created by a par-
ent thread, the AccessControlContext of the parent is associated with the created thread.
The permission is checked with the local thread’s inherited context if it has not been
granted or denied after the first two steps. More details on stack-inspection mechanism
can be found in [9,27].

Access Control Algorithm:
checkPermission (permission) {

//loop, from newest to oldest stack frame
foreach (stackFrame in the stack of current thread) {

if (stackFrame caller’s protection domain does not
have permission defined in the mobile policy)

throw AccessControlException;
else if (stackFrame calling method has been marked

as privileged action with permission){
if (an AccessControllerContext context is

specified in the call to doPrivildged)
context.checkPermission(permission);

return; // allow access
}
else if(an AccessControlContext inheritedContext

is inherited when this thread is created)
inheritedContext.checkPermission(permission);

return;
}

}
Fig. 5. Access control with mobile policy

6 Related Work

Security is a basic problem in mobile computing. Generally, there are two distinct areas
in mobile code security: (1) protection of the host from malicious mobile code and (2)
protection of the mobile code from malicious hosts or users. Researchers have presented
several models and mechanisms to deal with malicious code [20,29], such as Sand-
box [19,10,15], code signing/code access [16], proof carrying code [17], etc. Protection
of mobile code, however, is still an open problem. Vigna [26] proposes an execution
tracing technology for mobile agents using cryptographic hash. Yee [28] presents mech-
anisms to detect tempering by malicious hosts with partial result authentication codes
(PARCs) and forward-integrity security policy. Sander and Tschudin [22] formalize a
theoretical result aimed at allowing an agent to preserve some secrecy from a malicious
host by using encrypted forms of functions in mobile code. Algesheimer et al [6] intro-
duce an approach for securely executing mobile code that relies on a minimally trusted
third party. This third party cannot learn anything about the computing with guaran-
tee of privacy and integrity to the code originator. The main difference between our
approach and previous work is that we enforce the security policy in the runtime envi-
ronment of the mobile code. Compatible with existing mechanism, fine-grained access

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 193

control policies can be easily implemented in our approach, at the cost of a minimum
of trust in the remote runtime environment.

Another line of work is reported in [12], where a Java Secure Execution Framework
(JSEF) is proposed to support local user specific security policies and a global security
policy defined by the administrator. The objective in JSEF is still to protect users from
erroneous or malicious mobile code, and not to prevent malicious users from improperly
accessing or using mobile code. An isolated program execution approach is presented
in [18]. The isolation is achieved by delaying a sensitive operation such as file access to
a “modification cache” that is invisible to others in the system. While this is practical
in isolated applications to protect local system resources, it is not applicable in our
approach since we aim at protecting resources brought in by mobile code, which can
be not only an object in the virtual machine, but also a remote resource which can be
accessed by the mobile code.

Venkatakrishnan et al [25] present a permission “empowering” mechanism to mobile
code in the runtime environment instead of restricting the behavior. The scope of this
work is still in the range of protecting resources in the local host from mobile code.
Cubaleska et al [8] propose a method to build a trusted policy for a mobile agent owner.
The policy indicates which host is malicious or not trusted anymore, so that the owner
does not deploy mobile agents to these hosts. Since the trusted policy is a posteriori, the
solution is useful only for some mobile applications which re-visit previous hosts. In
our approach, the mobile policy is enforced in a trusted runtime environment, with no
such limitation. Hohl [13] introduces a blackbox model to protect mobile agents from
malicious hosts. In this idea, a parallel executable blackbox agent is generated from the
original agent, which has a different structure. As declared by the author, this idea only
partially solves the malicious host problem. However, our solution can be applied to
any mobile code.

A trusted Java Virtual Macine (TrustedVM) is proposed in [11] to capture the behav-
iors of a remote computing entity. Similar to our approach, the virtual machine itself is
attested by signed-hash mechanism. The main difference between this and our approach
is that in TrustedVM, policies are used to confine the behavior of the Java program ac-
cording pre-defined protocols in distributed environments, while the mobile policy in
our framework is to protect the execution of mobile code at runtime, that is, the ob-
jects in mobile policy are the components of the code itself. Also, our architecture uses
hardware-based TC technologies to enhance the security of the language-based JVM in
a platform.

7 Conclusions

This paper presents a mobile policy framework to protect the information and resources
imported by mobile code and agents in runtime environments with trusted computing
technologies. This framework includes policy specification and definition, as well as
a high-level implementation architecture in Java environment. For the implementation,
the access control mechanism in the Java Runtime Environment is used with the ex-
isting stack-inspection mechanism. The benefit of this enforcement architecture is that
we can define and implement the permission class in a mobile policy, maintaining the

194 X. Zhang, F. Parisi-Presicce, and R. Sandhu

flexibility and compatibility with current runtime technologies. The extensibility of the
Java authorization model, as well as the separation of policy specification and enforce-
ment mechanism, makes our approach practical. A trusted computing architecture is
proposed in our framework, to provide verifiable trusted behaviors of a remote host’s
runtime environment.

In future work we can consider development of a runtime policy analysis engine to
dynamically answer permission checks. With this, permission derivation and inference,
as well as policy analysis can be achieved in runtime. This benefits from scalability
and development efficiency beyond the static policy specification and definition. For
example, a policy for a code may be combined from several sources, and a real time
check and analysis of these sources will improve the system performance by avoiding
the redefinition of the static policy files and the restarting of the program.

References

1. AMD platform for trustworthy computing. Microsoft WinHEC, http://www.microsoft.com/
whdc/winhec/pres03.mspx, 2003.

2. LaGrande Technology Preliminary Architecture Specification, http://www.intel.com/
technology/security/downloads/PRELIM-LT-SPEC D52212.htm.

3. OASIS XACML TC. Core Specification: eXtensible Access Control Markup Language
(XACML), 2005.

4. Sun’s XACML implementation, http://sunxacml.sourceforge.net/.
5. TCG Specification Architecture Overview. https://www.trustedcomputinggroup.org.
6. J. Algesheimer, C. Cashin, J. Camenisch, and G. Karjoth, Cryptographic Security for Mobile

Code, IEEE Symposium On Research in Security and Privacy, 2001.
7. D. Balfanz and L. Gong, Experience with Secure Multi-Processing in Java, International

Conference on Distributed Computing Systems, 1998.
8. B. Cubaleska and M. Scheider, Applying Trust Policies for Protecting Mobile Agents Agan-

ist DoS, 3rd Workship on Policies for Distributed Systems and Networks, 2002.
9. L. Gong, E. Gary, and D. Mary, Inside Java 2 Platform Security: Architecture, API Design,

and Implementation, Addison-wesley, 2003.
10. L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, Going Beyond the Sandbox:

An Overview of the New Security Arthitecture in the Java Development Kit 1.2, USENIX
Symposium on Internet Technologies and Systems, 1997.

11. V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation - a virtual machine di-
rected approach to trusted computing. In Proc. of the Third virtual Machine Research and
Technology Symposium. USENIX, 2004.

12. M. Hauswirth, C. Kerer and R. Kurmanowytsch, A Secure Execution Framework for Java,
In Proc. of ACM Computer and Communication Security, 2000.

13. F. Hohl, Time Limited Blackbox Security: Protecting Mobile Agents From Malicious Hosts,
Lecture Notes in Computer Science 1419, Springer-Verlag, Berlin, 1998.

14. S. Jajodia, P. Samarati, and V. Subrahmanian, and E. Bertino, A Unified Framework for
Enforcing Multiple Access Control Policies, ACM SIGMOD, 1997.

15. C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers, User Authentication and Autho-
rization in the Java Platform, Annual Computer Security Applications Conference, 1999.

16. B. LaMacchia, S. Lange, M. Lyons, R. Martin, and K. Price, .Net Framework Security,
Addison-Wesley, 2002.

17. P. Lee and G. Necula, Research on Proof-carry Code for Mobile Code Security, DARPA
workshop on Foundation for Secure Mobile Code, 1997.

Towards Remote Policy Enforcement for Runtime Protection of Mobile Code 195

18. Z. Liang, V. N. Venkatakrishan, and R. Sekar, Isolated Program Execution: An Applica-
tion Transparent Approach for Executing Untrusted Programs, Annual Computer Security
Applications Conference, 2003.

19. G. McGraw and E. Felten, Securing Java: Getting Down to Business with Mobile Code,
Wiley, http://www.securingjava.com, 1999.

20. G. McGraw and G. Morrisett, Attacking Malicious Code: A Report to the Infosec Research
Council, IEEE Software, Volume 17 Issue 5, Sep/Oct 2000.

21. S. Oaks, Java Security, O’Reilly, 2001.
22. T. Sander and C. F. Tschudin, Protecting Mobile Agent against Malicious Hosts, In G.Gigna,

ed., Mobile Agents and Security, Lecture Notes in Computer Science 1419, 1998.
23. TCPA Design Philosphies and Concepts, http://www.trustedcomputing.org/home
24. Trusted Computing Group Home, https://www.trustedcomputinggroup.org/home
25. V. Venkatakrishnan, R. Peri, and R. Sekar, Empowering Mobile Code Using Expressive

Security Policies, New Security Paradigms Workshop, 2002.
26. G. Vigna, Protecting Mobile Agents Through Tracing, In Proc. of the Workshop on Mobile

Object systems, 1997.
27. D. S. Wallach and E. Felten, Understand Java Stack Inspection, IEEE Symposium On

Research in Security and Privacy, 1998.
28. B. Yee, A Sanctuary for Mobile Agents, Secure Internet Programming: Security Issures for

Mobile Code and Distributed Objects, J.Vitek and C.Jensen, eds., LNCS 1603, 1999.
29. J. Zachry, Protecting Mobile Code in the Wild, IEEE Internet Computing, March/April 2003.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 196 – 211, 2006.
© Springer-Verlag Berlin Heidelberg 2006

IP Address Authorization for Secure Address Proxying
Using Multi-key CGAs and

Ring Signatures

James Kempf1, Jonathan Wood2, Zulfikar Ramzan3, and Craig Gentry4

1 DoCoMo Labs USA, 181 Metro Drive, Suite 300, San Jose, CA, 95110, USA
kempf@docomlabs-usa.com

2 Nominum, Inc., 2385 Bay Road, Redwood City, CA, 94063, USA
jonwood@speakeasy.net

3 Symantec, Inc., 1600 Seaport Blvd., Suite 200, Redwood City, CA, 94063, USA
zulfikar@alum.mit.edu

4 Computer Science Dept., 353 Serra Mall, Stanford University, Stanford CA 94305, USA
cgentry@cs.stanford.edu

Abstract. Address proxying is a process by which one IP node acts as an
endpoint intermediary for an IP address that actually belongs to another IP
node. Address proxying serves many useful functions in IP networks. In IPv6,
the Secure Neighbor Discovery Protocol (SEND) provides powerful tools for
securing the mapping between the IP address and the link address which is the
basis of local link address proxying; however, these tools don’t work for
address proxies. In this paper, we present an extension to SEND for secure
proxying. As an example of how secure address proxying can be used, we
propose a minor extension of the Mobile IPv6 protocol to allow secure
proxying by the home agent. We then present measurements comparing SEND
with and without the address proxying extensions.

Keywords: secure address proxy, ring signature, SEND, Mobile IPv6, multi-
key cryptographically generated address.

1 Introduction

Address proxying is a process whereby one IP node acts as an endpoint intermediary
for an IP address that is in some sense “owned” by another node. IP address proxies
are used in a variety of ways. The original link layer protocol for converting IPv4
addresses to 48 bit Ethernet addresses, Address Resolution Protocol (ARP) [15],
allowed network devices to proxy-resolve (Proxy ARP) addresses for hosts in order to
support bridging and other functions. In IPv6, ARP was replaced by an IPv6 layer
protocol called the Neighbor Discovery Protocol [9] which similarly allows routers
and other network agents to perform proxy address resolution but at the IPv6 level.

As an example of the usefulness of address proxying, proxy IPv6 address
resolution is used in the Mobile IPv6 protocol [6] to make it look like a mobile node
is on its home link when it is not. The Mobile IPv6 home agent – a router in the home
network of a mobile host – proxies the address of a mobile host on the home link –

 IP Address Authorization for Secure Address Proxying 197

the home address – when the mobile host is not currently on the home link. This
allows the home agent to intercept packets sent to the mobile host’s home address and
forward them to the mobile host's current address on the foreign link - the care-of
address. Additionally, proxying prevents any other node on the home link from
claiming the home address.

Despite its usefulness, address proxying is fraught with security problems. The
underlying ARP protocol for translating between an IPv4 address and an Ethernet
address never included any security measures. The sender of an ARP query therefore
cannot tell whether a response comes from the legitimate owner of the IPv4 address,
from a legitimate proxy (such as a router on the link), or from an attacker attempting
to disrupt traffic to the legitimate owner. Such an attack is called "ARP spoofing"1. In
IPv6, the Secure Neighbor Discovery Protocol (SEND) [1] allows a node to prove its
authorization to claim ownership of an IPv6 address, but, as currently defined, the
SEND protocol does not support address proxying either. Secure proxying, in effect,
requires two nodes - the node claiming the address as its source address and the proxy
- to be able to securely perform control signaling involving the address.

If a single IPv6 host is claiming ownership of the address, the requirements for IP
address authorization in IPv6 are met fairly nicely with Cryptographically Generated
Addresses (CGAs) [2] (sometimes called Statistically Unique and Cryptographically
Verifiable (SUCV) addresses [8]). CGAs are used in the SEND protocol to secure the
IPv6 to link address mapping on the local link [2]. CGAs are constructed by hashing
the host's public key and some additional parameters into the bottom 64 bits of the
IPv6 address, to form a cryptographically generated interface identifier. When a
control protocol message is sent involving the address, the message is signed with the
public key. The signature provides data origin authentication, while the
cryptographically generated interface identifier in the address proves that the message
was signed by the owner of the address.

While CGAs provide a fine solution for address ownership in IPv6 when one node
can claim ownership of the address, they are less useful when multiple nodes might
legitimately be viewed as owners since only the node generating the public key can
claim the address. An example of multiple nodes being viewed as owners is address
proxying. "Ownership" in this case means some kind of proof that the node in
question is authorized to perform control signaling operations, such as routing
updates, on the address. In order for the proxy node to be able to securely proxy the
address, it must be able to present the same kind of cryptographic proof of ownership
as the node that generated the address. CGAs only allow the node owning the public
key and generating that address to present such proof.

1.1 Contribution

Our contribution in this paper is threefold:

1) We describe a technique that extends CGAs to addresses generated by keys
from multiple hosts, called multi-key CGAs, in order to support address
proxying and other functions where more than one node needs to claim

1 The threat here is not hypothetical. One of the authors experienced an ARP spoofing attack at

a prestigious international networking conference in 2003.

198 J. Kempf et al.

authorization for ownership. The technique uses a kind of group signature
called a ring signature [5] [16] to secure the signaling.

2) We develop an extension of the SEND protocol using multi-key CGAs and a
ring signature algorithm called Rivest-Shamir-Tauman (RST) [16] that allows
a node autoconfiguring an IPv6 address to designate a router on the local
subnet as a secure address proxy.

3) We compare the performance of IPv6 Neighbor Discovery without SEND,
with SEND, and with SEND using multi-key CGAs and ring signatures
instead of the standard RSA signature. We also present some performance
figures comparing RST with RSA signatures, and characterize the scalability
of the RST algorithm as the number of group members increases. To our
knowledge, this is the first realistic application and first implementation of the
RST ring signature algorithm.

2 Secure Neighbor Discovery and Proxy Address Resolution

In the basic Neighbor Discovery protocol, a node resolves an IPv6 address on the
local link to a link layer address by multicasting a Neighbor Solicitation (NS)
message. The node owning the IPv6 address replies with a Neighbor Advertisement
(NA) containing the link layer address. This allows the soliciting node to forward
packets using link layer routing on the last hop. Neighbor Discovery also allows a
node to discover a router, by multicasting a Router Solicitation (RS). Routers on the
link respond with Router Advertisements (RSs) containing their link layer addresses
and other information about the link. This allows the soliciting node to find a router
that can forward packets off the local link.

There are two basic attacks on Neighbor Discovery [13]. An attacker can respond
to a NS message in lieu of the actual owner of the IPv6 address causing the sender to
set up a mapping between the attacker’s link address and the victim’s IPv6 address,
thereby allowing the attacker to siphon off the victim’s traffic. An attacker can set up
a fake router, advertise it on the link with a RA, and dupe victim nodes on the link to
send traffic through the fake router, thereby allowing the attacker to control the
victim’s traffic. SEND [1][2] was designed to counter these threats to Neighbor
Discovery.

Figure 1 illustrates the SEND protocol. In Step 1, a node coming on the link
solicits a RA message by multicasting a RS message on the All Routers Multicast
Address. A SEND router responds with an RA signed with the router's certified public
key in Step 2, and containing IPv6 subnet prefixes for the link. If the node does not
have the certificate for the router in its cache, in Step 3 the node sends out a
Certificate Path Solicitation (CPS) to obtain the router’s certificate path. The node
includes in the CPS the names of trust anchors for certificate authorities for which the
node has certificates in its cache. The router returns one Certificate Path
Advertisement (CPA) per certificate for the entire chain, rooted in one of the trust
anchors, and culminating with the CPA containing the router's own certificate. When
the certificate path has been validated, the node can use the router’s certified public
key to validate the signature on the RA.

 IP Address Authorization for Secure Address Proxying 199

Last Hop Router Correspondent HostOn-link Host

1) Multicast RS

2) RA + RSA Signature

3) CPS/CPA to obtain the Router’s
Certification Path

5) DAD: Multicast NS + AH

+
RSA Signature

6) Packet for AH

7) Multicast NS for AH

8) NA + AH link address
+

RSA Signature

9) Deliver Packet to AH

Create Neighbor
Cache entry for AH

< No reply >Address
AH OK!

4) Form
CGA AH

from
RSA key

Fig. 1. Basic SEND prototcol

Once the RA has been certified, in Step 4 the node generates an RSA public
key /private key pair for the CGA, and then generates the address using the public key
and one of the subnet prefixes from the RA. In Step 5, the node uses Duplicate
Address Detection (DAD) [17] to determine if the address is unique on the link. DAD
requires the node to multicast a NS to the Solicited Node Multicast Address. Any
node that also has the prospective address hears the NS and responds with a NA. The
NS and NA must be signed with the respective RSA keys. The soliciting node then
must use a different address. SEND allows three address conflicts to be reported
before considering the node to be under attack. If DAD succeeds, the node is free to
use the address.

In Step 6, a packet incoming from off link to the SEND router triggers the router in
Step 7 to solicit for the link address so the packet can be delivered on the last hop. In
Step 8, the node replies with a NA signed with the RSA key and using the CGA. The
router checks these and establishes a Neighbor Cache entry for the CGA if the
signature and CGA validate. In Step 9, the router finally delivers the packet to the
node.

For proxy address resolution, the node replying with the NA to claim the IPv6
address in response to the DAD in Step 5 or the node replying with the NA for link
address resolution in Step 8 is not the same the node that generated the address, it is
the proxy. The proxy does not have access to the owning node's RSA private key and
therefore the receiver cannot be sure that the proxy is authorized to claim the address.
With no signature, an attacker could easily pose as an address proxy and steal the
node's traffic. As a consequence, SEND cannot be used to secure proxy address
resolution, and address proxying is therefore prohibited in the base SEND protocol.
This is the basic address proxy security problem.

200 J. Kempf et al.

3 Previous Work

Two previous solutions have been proposed to solve the problem of proxy address
resolution security. The simplest solution, proposed by Daley [4], is to allow a
certified last hop router to sign the NA message on behalf of the owning node if the
router is proxying. The router's public key certificate could be augmented with a
property indicating permission from the certificate authority to proxy. Nikander and
Arkko [12] propose having the owning node construct a signed attribute certificate
delegating address proxying rights, and sending the attribute certificate to the proxy.
The proxy then includes the attribute certificate in any signaling messages involving
the proxyed address, such as the NA, and signs the messages with its own private key.

Both these solutions have a problem with location privacy, which is important for
applications such as the Mobile IPv6 example cited in Section 1. If the signature and
security parameters on the message are not the same regardless of whether the proxy
or the owning node are defending the address, the NA message has some indication
that the message was signed by the proxy, and not by the owning node. A node
receiving the NA can infer whether or not the owning node is on the local link. The
location privacy of the owning node is thereby compromised. In contrast, by using the
technique described in this paper, the receiving node cannot infer anything about the
whether the owning node is on the local link or not, because the message looks the
same regardless of whether the proxy or the owning node originated it. The ring
signature itself does not reveal anything about which group member actually
generated it, and the cryptographic parameters are the same in both cases.

The attribute certificate technique has an additional problem in that it requires a
certain amount of preconfiguration between the proxy and the owning node before the
address can be proxied. The owning node must send an attribute certificate to the
proxy. With the technique described in this paper, the proxy must know the public
key of the owning node, but it can learn that as part of the standard SEND protocol
(for example, during DAD) if proxying is to be done without any additional signaling.
The proxy group can be formed opportunistically because ring signatures allow the
hosts in the ring to sign without any preconfiguration of cryptographic material or
interaction with network infrastructure; although the hosts do need to agree on the
membership of the group before the address is configured. Note, however, that the
question of whether another node can actually be trusted to correctly proxy the
address is not handled directly, and must be dealt with using certificates or another
secure identity-determining technique.

4 Multi-key CGAs and Ring Signatures

In order to allow CGAs to be proxied securely, generation of the interface identifier
portion of the address needs to be modified to include the public keys from more than
one host. In addition, the signature algorithm must allow more than one signer. A
group signature algorithm [3] is a good candidate, since group signatures typically
allow multiple signers. For the address proxying application, we use a kind of group
signature called a ring signature, because ring signature algorithms do not require a
group manager or any preconfiguration on the members of the group (except that they

 IP Address Authorization for Secure Address Proxying 201

must possess the public keys of all group members) and ring signatures are
anonymous, protecting the location privacy of the node that originated the address.

4.1 Generating and Validating Multi-key CGAs

SEND [1] specifies an algorithm for constructing and verifying single key CGAs. The
same algorithm can be used to generate and verify multi-key CGAs for unicast by
simply replacing the single public key in the algorithm for SEND by the SHA-1 hash
of the public keys in the group. A modification of the CGA algorithm in [2],
appropriate for address proxying, is given below.

Generating a Multi-key CGA. The input parameters for constructing a multi-key
CGA are the following:

• pk1 through pkn, the public keys of the n nodes in the group,
• The Sec parameter, which can have a value from 0 to 7. Increasing the value

of the Sec parameter increases the cost of constructing a CGA, and therefore
the cost of a dictionary attack [2].

In the following, | is the bit-wise concatenation function, and SHA1() is the SHA-1
cryptographic hash function [10]. A multi-key CGA is constructed as follows:

1) Compute the hash of the public keys for the nodes in the group:

ConcatVal = SHA1 (pk1 | pk2 | ... | pkn)

2) Set the 128 bit value modifier to a random value.
3) Form the following difficulty test value:

Hash2 = SHA1112 (modifier | B9(0) | ConcatVal)

where SHA1n() indicates the left-most n bits of the SHA1 hash and B9(0)
indicates nine bytes set to zero.
4) Check the leftmost Sec times 16 bits of Hash2. If all bits are zero (or Sec

itself is zero), go to the next step. Otherwise, increment modifier by one
and redo Step 3.

5) Set collision-count to zero.
6) Using the final value of modifier, form the following CGA interface

identifier:

Hash1 = SHA164 (modifier | subnet-prefix | collision-count | ConcatVal)

where subnet-prefix is the 64 bit IPv6 subnet prefix for the address.
7) Replace the leftmost 3 bits of Hash1 with Sec and set bits 6 and 7 (i.e. the

"g" and "u" bits) in Hash1 to zero.
8) Form the multi-key CGA as follows:

mCGA = subnet-prefix | Hash1

202 J. Kempf et al.

9) Perform DAD [17] on the address. If a collision is detected, increment
collision-count and return to Step 6 if collision-count < 3. If collision-
count 3, stop and report, since an attack or serious network
misconfiguration is likely.

Validating a Multi-key CGA. The validation algorithm for multi-key CGAs is a
modification of the SEND algorithm for single key CGAs, and follows from the
generation algorithm above.
The input parameters for validating a multi-key CGA are the following:

• pk1 through pkn, the public keys of the n nodes in the group,
• The modifier random value and collision-count value used to generate the

multi-key CGA,
• A multi-key CGA.

Note that nothing in an IPv6 address identifies it as a multi-key CGA, so this will
have to be deduced from the context. In addition, the modifier and collision-count
parameters need to be included in the control message in some fashion.
A multi-key CGA is validated as follows:

1) Check that collision-count ≤ 3. If not, the multi-key CGA verification
fails. Exit.

2) Compute the hash of the public keys for the nodes in the group:

TestVal = SHA1 (pk1 | pk2 | ... | pkn)

3) Form the following value:

Hash1 = SHA164 (modifier | subnet-prefix | collision-count | TestVal)

4) Compare Hash1 with the rightmost 64 bits of the address (the interface
identifier bits), ignoring bits 6 and 7 and the leftmost 3 bits (i.e. the "g"
and "u" bits and the Sec bits). If the comparison fails, the address does not
match and the multi-key CGA verification fails. Exit.

5) Extract the security parameter from the three rightmost bits of the 64 bit
interface identifier, treating the result as an unsigned integer Sec.

6) Form the following difficulty check value:

Hash2 = SHA1112 (modifier | B9(0) | TestVal)

7) Compare the leftmost Sec x 16 bits of Hash2 to zero. If any are not zero,
then the verification fails. Otherwise, the address is verified. Note that the
verification never fails at this step if Sec is zero.

4.2 Ring Signature Background

Group signatures have been an object of investigation in the cryptographic
community for some time [3]. Until recently, most group signature algorithms

 IP Address Authorization for Secure Address Proxying 203

required one member of the group to be designated as the group manager, and
additionally allowed the group manager to break anonymity on the signature. Rivest,
Shamir, and Tauman [16] formalized the notion of a fully anonymous, ad-hoc group
signature, called a ring signature. A ring signature does not require the intermediation
of a group manager, allowing the group to form opportunistically. In fact, a group
member can form a group and sign even without the active co-operation of other
group members. The only requirement is that a signer possesses the individual public
keys of the group members, and that the public keys are also available to the verifier.
The signature is completely anonymous, so it is not possible to determine who the
actual signer is. Verification of the signature requires the public keys of all members
in the group. These properties make ring signatures an attractive approach for multi-
host address authorization as applied to address proxying.

A theoretical disadvantage of the RST ring signature algorithm is that the size of
the signature grows linearly as the number of members in the ring grows. Recently,
work by Dodis, et. al. [5] describes a technique for generating constant sized ring
signatures, based on the Strong RSA Assumption. The algorithm is not completely ad
hoc because a group manager is needed and verification still requires possession of
the public keys for all the group members, but the size of the signature itself is
bounded. For address proxying, the requirement for a group manager makes the Dodis
algorithm less practical than the RST algorithm, since it would require some amount
of prior co-ordination between the proxy and the originating node. It is for this reason
that the RST algorithm was selected for use in the secure address proxying extension
to SEND.

4.3 Overview of How RST Signatures Work

This section gives a high-level overview of how RST ring signatures work [16],
referencing the steps of the detailed procedure described below. Suppose that node i
is wants to sign message m. Node i actually computes a standard RSA signature on a
sequence of values y1, …, yn which will be related to m by means of a combining
function (signing Step 4 below). The signature on each yj will be valid with respect
to the public key (Nj, ej).

Since node i knows the i-th signing key corresponding to public key (Ni, ei) it can
easily compute the signature corresponding to yi. The main question is how it can
sign the remaining yj values without knowing the private key corresponding to (Nj,
ej)? To accomplish this, the RST algorithm uses an interesting feature of RSA
signatures: it is possible to come up with a valid message/signature pair by first
generating the signature (e.g., at random) and then computing a message for which
this signature is valid. This feature is relatively harmless in practice, since in practical
applications of the RSA signature itself, one has to start with a meaningful message
first and compute the resulting signature, not the other way around. In addition, hash
functions like SHA-1 are applied to a message to create a digest which is signed,
thereby making it harder for an attacker to generate a random forgery for which the
pre-image of the digest is known. However, in the present case we can actually
benefit from this feature.

Node i first generates random values xj for all j ≠ i (signing Step3i). Node i
essentially computes messages yj for which xj is a valid signature by exponentiating xj

204 J. Kempf et al.

using the public exponent ej (signing Step 3iii). Since we are dealing with different
RSA moduli Nj, we have to exercise some care to make sure that the resulting values are
in the right range (this issue is handled in Steps 3ii and 3iv of the signing algorithm).
Next, node i calculates the value yi for which y1, …, yn satisfies the combining function
(Step 4). Finally, node i uses knowledge of the private key corresponding to (Ni, ei) to
compute a standard textbook RSA signature on yi (step 6), again taking care of range
issues associated with using different moduli (Steps 5 and 7).

At this point, the pairs (x1, y1), …, (xn, yn) are each valid RSA message/signature
pairs under the respective RSA public keys (e1, N1), …, (en, Nn), so these pairs would
constitute a legitimate ring signature on the message m. The verifier simply verifies
each pair separately, taking care of range issues (verification, Step 2).

However, we can perform an optimization by noting that given x1, …, xn, anyone
can compute the corresponding y1, …, yn by exponentiating (respectively) by e1, …, en,
modulo N1, …, Nn. So, the signer need not transmit y1, …, yn. Instead, only the single
value v in addition to the xj values need to be transmitted, thereby allowing the
verifier to construct y1, …, yn, and to check that these values together with v satisfy the
combining equation (verification, Step 3).

Note that the privacy property of ring signing is achieved because by looking at the
signature, it is not possible to tell which value yi the signer actually signed in Step 6
and which signatures were generated at random in Step 3.

4.4 Generating and Validating RST Signatures

The RST ring signature algorithm is based on the Rabin signature algorithm, which
the authors describe as being preferable to a version based on RSA since signature
verification for Rabin signatures is faster. However, we use a version of the RST
algorithm based on RSA because RSA is more widely deployed.

This RSA-based ring signature algorithm is as secure as regular RSA-based
signatures. Specifically, if an attacker is able to forge a ring signature which is valid
for a group of signers that the forger does not belong to, with public keys pk1 through
pkn, then such an attacker could break a regular RSA signature. The security proof of
the ring signature algorithm is in the random oracle model and ideal cipher model.
See [16] for the details.

In the following, let E() be an encryption algorithm that uses d-bit keys and has b-
bit input and output (we impose an additional condition on b below). Let t be a
parameter – e.g., t may equal 80. Let ⊕ denote the XOR function.

Generating the Public Keys. The public keys in the RST ring signature algorithm
are the same as public keys in RSA. Specifically pki = (Ni , ei), where Ni is a large
(e.g., 1024-bit) composite integer that is the product of two large prime numbers pi

and qi and where ei is an integer that is relatively prime to (pi - 1)(qi - 1). Let b be
an integer such that 2b > 2t Ni for all i.

Generating a RST Signature. Let pki be the public key of the node constructing the
signature. Form the ring signature as follows:

 IP Address Authorization for Secure Address Proxying 205

1) Set the symmetric encryption key k to be SHA1(m), where m is the
message to be signed.

2) Pick a random b-bit string v.
3) For j from 1 to n (except j ≠ i) do:

a) Pick random b-bit string xj.
b) Compute (qj, rj) such that xj = qjNj + rj for rj ∈ [0, Nj].

c) Compute yj’ = je
jx (mod Nj) for yj’ ∈ [0, Nj].

d) Set yj = qjNj + yj’.
e) Go back to Step a if yj ≥ 2b, otherwise exit loop.

4) Compute yi such that:
Ek (yn ⊕ Ek (yn-1 ⊕ Ek (… ⊕ Ek (y1 ⊕ v)…))) = v.

5) Compute (qi, ri) such that yi = qiNi + ri for ri ∈ [0, Ni].

6) Compute xi’ = ie
iy /1

(mod Ni) for xi’ ∈ [0, Ni].

7) Set xi = qiNi + xi’.
8) Go to Step 3 if xi ≥ 2b.
9) Output the ring signature (x1, …, xn , v).

If t is large enough, there will be only a negligibly small probability that the signature
generation algorithm will abort in Step 3e or Step 8 because yj or xi spills out of the
permitted range [0, 2b). Regarding Step 4, notice that:
yi = Ek

-1 (yi+1 ⊕ Ek
-1 (… yn ⊕ Ek

-1 (v))) ⊕ Ek (yi-1 ⊕ Ek (… ⊕ Ek (y1 ⊕ v))).

Validating a RST Signature. Given the message m and public keys keys pk1 through
pkn , the ring signature (x1, …, xn , v) can be verified as follows:

1) Set the symmetric encryption key k to be SHA1(m), where m is the
contents of the signed message.

2) For j from 1 to n do:
i) Compute (qj, rj) such that xj = qjNj + rj for rj ∈ [0, N)];

ii) Compute yj’ = je
jx (mod Nj) for yj’ ∈ [0, Nj].

iii) Set yj = qjNj + yj’.
3) Calculate v' = Ek(yn ⊕ Ek (yn-1 ⊕ Ek (… ⊕ Ek (y1 ⊕ v)…))).
4) If v' = v, the signature is verified.

5 Applying Multi-key CGAs and Ring Signatures to Secure
Address Proxying

In this section, an extension of the SEND protocol to provide secure, location
privacy-preserving address proxying on the last hop link [7] is described. An
application of secure address proxying to mobility management, involving secure
proxying of a mobile node home address by a Mobile IPv6 home agent is also
presented.

206 J. Kempf et al.

5.1 Proxy SEND

Prior to forming a multi-key CGA, the host uses the SEND CPS/CPA exchange or
some other means to obtain a certificate for its chosen default router, Step 3 in Figure
1 (for Mobile IPv6, the default router is the home agent). The host then uses the
router's public key and its own RSA public key to generate the multi-key CGA, as
described above, Step 4 in Figure 1. Use of the router certificate ensures that the node
selected for proxying can, in fact, be trusted. In Steps 5 and 8 of Figure 1 - where
SEND requires the host to use an RSA signature in the NA or NS message - proxy
SEND uses an RST signature. No new protocol messages are required. The use of a
RST requires a new Ring Signature Option to hold the new signature instead of the
standard RSA Signature Option in SEND. In addition, the host sends the public key
for the router along with its own public key in the CGA Parameters Option, since both
keys are needed to validate the signature. The router uses the CGA when proxying;
otherwise, a receiving node can detect if the owning node is on link or not. For
backward compatibility, the host needs some indication that the router supports secure
proxying, so that it knows whether to use SEND or proxy SEND. An extension to the
router's certificate can provide this information.

The security of this extension is the same as SEND. Validation of the RST
signature indicates that a node owning one of the public keys in the CGA signed the
message with its private key, and the multi-key CGA indicates that the message was
sent from a source address that can claim authorization to send control signaling
affecting the source address (i.e. that the address is not being spoofed). An attacker
can't construct an RST signature for the same CGA because the attacker doesn't
possess the private key for the owning node or the proxy. The attacker could forge a
CGA, but failure to validate the signature would tip off the receiver.

5.2 Mobile IPv6 Secure Proxying

As mentioned, Mobile IPv6 [6] requires the home agent to act as a proxy for all home
addresses when their owners are off link. The home agent discovers that a mobile host
is off link when it receives a Binding Update (BU) message containing an off-link
care-of address. The BU requests that the home agent establish a binding between the
home address and care-of address, and that any traffic arriving on the link for the
home address should be forwarded through a tunnel to the care-of address. The
mobile host also sends traffic back to its correspondents by reverse tunneling through
the home agent. The BU is secured by an IPsec security association to prevent an
unauthorized node from changing the binding.

Again, no change is required in the basic Mobile IPv6 binding update protocol for
secure proxying. Figure 2 illustrates the protocol. If the home agent is capable of
doing proxy SEND, in Step 1 of the figure, the mobile host sends its public key ("MN
Key") and the home agent's public key ("HA Key") along with the BU in a new
Binding Update Option, the Secure Proxy Mobility Option, through an IPsec ESP
tunnel to the home agent. The two public keys are used to calculate the multi-key
CGA. The home agent uses this information to check that it is the owner of the public
key and therefore capable of proxying.

 IP Address Authorization for Secure Address Proxying 207

Last Hop
Router

Correspondent Host

1) BU + MN Key
+ HA Key

3) Packet for
Mobile

Host at Home
Address4) Multicast NS

for
Mobile Host's
Home Address

5) NA + Mobile
Host's

link address +
RST Signature

6) Deliver Packet to
Home Agent

Off-link Mobile Host Home Agent

2) BAk

7) Deliver Packet to
Mobile Host at

Care-of Address

Fig. 2. IPv6 Binding Update with secure proxying

In Step 2 of the figure, the home agent replies with a Binding Acknowledgement
(BAk), again through an IPsec ESP tunnel, indicating that the routing to the care-of
address has been established. At this point, the home agent is prepared to securely
proxy the mobile node's home address. A packet from a correspondent host directed
to the home address of the mobile host arrives at a last hop router on the link, in Step
3. The last hop router solicits the mobile host's link address in Step 4 using the NS. In
Step 5, the home agent securely proxies the home address by replying with a signed
NA including the link address, the multi-key CGA, the two public keys, and the RST
signature. Note that the NA contains exactly the same information and is formatted
exactly the same as if it had been sent by the mobile node itself, so the router can't tell
from the NA contents whether the mobile node is off the link or not. The router then
delivers the packet to the home agent in Step 6, and in Step 7 the home agent tunnels
the packet to the mobile host at its care-of address, using either an IP-IP tunnel or an
IPsec ESP tunnel.

6 Implementation Results

We implemented the proxy SEND algorithm described above and ran performance
tests comparing it with insecure Neighbor Discovery and with SEND which uses a
standard RSA signature. The RST implementation was done on OpenSSL version
0.9.8 running on Linux version 2.6.14.3. In order to make the comparison fair, we
used our own custom implementation of RSA that was very basic rather than the
version of RSA provided with OpenSSL, because the OpenSSL implementation
contains many features to increase the security and performance of RSA. Such
features could ultimately be included in a release version of RST too. Tests were run

208 J. Kempf et al.

on 2 GHz Pentium M laptops with 1 GB of RAM and a 1 Gbit Ethernet connection.
For the tests, 1024 bit keys were used and the block cipher was AES128 [11]. The
reported measurements are the average of twenty runs.

Fig. 3. Performance of IPv6 Neighbor Solicitation with and without security

Figure 3 compares the performance of the three cases. Note that in this figure and
Table 1, SEND with RST signatures uses two keys, the mobile node key and the
router key. The performance test was done by running ping to discover the link
address of the neighbor node when the IPv6 to link address map was not in the
Neighbor Cache. Note that the performance of SEND with RST is not substantially
worse than SEND with RSA. The big difference in performance occurs when security
is enabled for Neighbor Discover. Since Neighbor Discovery is only performed if the
IPv6 address to link address map is not in the Neighbor Cache, however, the hit taken
by adding security is not critical. After the Neighbor Cache entry is available, the
address is resolved from the cache entry until it either times out or is invalidated by
the owning node, and therefore no network traffic is required.

Table 1. Comparison of SEND RSA and SEND RST Cryptographic Operations Performance

 SEND RSA SEND RST
Signature Calculation 7.973 ms 8.331 ms

Verification Calculation 0.174 ms 0.350 ms

 IP Address Authorization for Secure Address Proxying 209

Table 1 contains a more detailed comparison between SEND with standard RSA
and with the RST ring signature algorithm. As can be seen from the table, signing and
verification performance are all slightly slower than RSA performance.

Figures 4 and 5 illustrate the time required to generate and verify (respectively) an
RST signature for between 1 and 10 hosts (1 host corresponds to a standard RSA
signature). As expected, signature generation and verification times increase linearly
as the number of group members increases However, the rate of increase is not
particularly large, and for the purposes of address proxy security – where the group
size is most likely to be exactly 2 – the signing and verification performance appear to
be acceptable.

7.000

7.500

8.000

8.500

9.000

9.500

10.000

1 2 3 4 5 6 7 8 9 10

Number of Ring Members

S
ig

n
at

u
re

 T
im

e
(m

s)

Fig. 4. RST signature generation time as a function of ring size

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

1 2 3 4 5 6 7 8 9 10

Number of Ring Members

V
er

if
ic

at
io

n
 T

im
e

(m
s)

Fig. 5. RST signature verification time as a function of ring size

210 J. Kempf et al.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Number of Signers

S
ig

n
at

u
re

 S
iz

e
(b

yt
es

)

Fig. 6. RST signature size as a function of the number of signers

Figure 6 illustrates the size of the RST signature for between 1 and 10 hosts. As
expected, the signature size also increases linearly with the number of signers. As
mentioned above, the Dodis [5] ring signature algorithm maintains a constant
signature size as the number of members increases and could be used in an
application where group sizes are considerably larger. The disadvantage of the Dodis
algorithm is that it requires a group manager and therefore preconfiguration on the
nodes in the group, resulting in more protocol support to set up.

7 Conclusions

In this paper, we have described a scheme by which cryptographically generated
addresses (CGAs) can be extended to support multiple hosts. We utilize the resulting
multi-key CGAs and ring signatures to extend the SEND protocol to support secure
address proxying. The SEND extension allows a router on the link to proxy a CGA
when the host owning the address is off link. We also described how proxy SEND can
be used to provide address proxy security on the home link for home addresses in
Mobile IPv6. Both applications require no additional protocol messages. Finally, we
presented some measurements from a Linux/OpenSSL implementation of multi-key
CGA SEND and the RST ring signature algorithm. The measurements suggest that
the RST algorithm could be a practical solution for proxy SEND security, since the
group size is usually 2. The results of this work promise to firmly ground the security
of address proxying; a function that today is basically insecure, and may be applicable
to other IPv6 protocols where multiple hosts can claim a single address.

References

1. Arkko, J. (ed.), Kempf, J., Zill, B., and Nikander, P., “SEcure Neighbor Discovery
(SEND)”, RFC 2971, March, 2005.

2. Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, March, 2005.

 IP Address Authorization for Secure Address Proxying 211

3. Chaum, S., and van Heyst, E., "Group Signatures", Eurocrypt, 1991.
4. Daley, G., "Securing Proxy Neighbour Discovery Problem Statement", Internet Draft,

work in progress, 2004.
5. Dodis, Y., Kiayias, A., Nicolosi, A., and Shoup, V., "Anonymous Identification in Ad-Hoc

Groups", Eurocrypt 2004, LNCS 3027, pp. 609-626, Springer, 2004.
6. Johnson, D., Perkins, C., and Arkko, J., "Mobility Support in IPv6", RFC 3775, June,

2004.
7. Kempf, J., and Gentry, C., "Secure IPv6 Address Proxying using Multi-Key

Cryptographically Generated Addresses (MCGAs" Internet Draft, work in progress.
8. Montenegro, G., and Castellucia, C., "Crypto-Based Identifiers (CBIDs): Concepts and

Applications", ACM Transactions on Information and System Security, 7(1), pp. 97-127,
Feburary, 2004.

9. Narten, T., Nordmark, E., and Simpson, W., "Neighbor Discovery for IP version 6 (IPv6)",
RFC 2461, December, 1998.

10. National Institute of Standards and Technology, "Secure Hash Standard", Federal FIPS
180-1, April,1993.

11. National Institute of Standards and Technology, "Specification for the Advanced
Encryption Standard (AES)", FIPS 197, November, 2001.

12. Nikander, P., and Arkko, J., "Delegation of Signalling Rights", in B. Christianson, et al.
(editors), Security Protocols, Springer Lecture Notes in Computer Science 2845, pp. 203-
214, 2004.

13. Nikander, P., Kempf, J., and Nordmark, E., “IPv6 Neighbor Discovery (ND) Trust Models
and Threats”, RFC 3756, May, 2004.

14. O'Shea, G., and Roe, M., "Child-proof Authentication for MIP6 (CAM)", ACM
SIGCOMM Computer Communication Review, 31(2), pp. 4-8, April, 2001.

15. Plummer, D. C., “Ethernet Address Resolution Protocol”, RFC 826, November, 1982.
16. Rivest, R., Shamir, A., and Tauman, Y., “How to Leak A Secret”, ASIACRYPT 2001, pp.

552--565. Lecture Notes in Computer Science 2248, Colin Boyd, ed., Springer, 2001.
17. Thompson, S., and Narten, T., “IPv6 Stateless Address Autoconfiguration”, RFC 2462,

December, 1998.

A Study of Detection Method of Printed Image
Alteration Using Digital Watermark

Junji Onishi and Tsukasa Ono

National Universities Corporation Tsukuba University of Technology, Tsukuba,
Ibaraki 305-8521, Japan

ohnishi@cs.k.tsukuba-tech.ac.jp, ono@cs.k.tsukuba-tech.ac.jp

Abstract. The digital watermark is used for detection of digital image
alteration. However, most of digital images are printed on the paper
document for submitting. Once digital images are printed on the paper,
it is hard to detect alteration of it. In this paper, the detection method
of printed image alteration by using digital watermark is proposed.

1 Introduction

Today’s digital imaging systems provide sophisticated processing capabilities,
flexibility, and reliability at lower costs and competitive quality when compared
with the analog systems of yester-year. As a result, digital image acquisition,
processing, storage and reproduction systems have been steadily replacing their
analog counterparts. Nevertheless, the lack of built-in integrity and quality veri-
fication mechanisms often raises doubts about the use of digital imaging systems.

Traditionally, due to the limited processing abilities in analog media, mali-
cious manipulation of images has been a tedious task with only inferior results
being realized without prohibitively expensive professional equipment. However,
digital images, unlike their analog counterparts can be easily manipulated using
a variety of sophisticated signal processing tools that are readily available as
commercial packages. Photo-realistic manipulations can be created by virtually
everyone using low cost hardware and software components. (Fig. 1 shows a ex-
ample of such manipulations, which is created by the author using a personal
computer system.) The ease and extent of such manipulations raise serious ques-
tions about the integrity and authenticity of digital images. Potential security
loopholes of shared information networks, e.g. Internet, on which digital images
are commonly posted and distributed further exacerbates the problem. As a re-
sult, there is a need for secure image authentication techniques in applications
where verification of integrity and authenticity of the image content is essential.

Digital watermarking[1] offers a promising alternative to digital signatures
in image authentication applications. The use of watermarks instead of digi-
tal signatures typically affords additional functionality by exploiting inherent
properties of image content. One such advantage is the direct embedding of au-
thentication information into the image data. As a result, the authentication
information survives even when the host image goes under format conversions.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 212–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Study of Detection Method of Printed Image Alteration 213

Insecure
Channel

Integrity questionable!Original
Image

Fig. 1. Integrity and authenticity of digital image are questionable without additional
security mechanisms

In contrast, a digital signature appended in the header of an image file maybe
easily stripped off, when the file is opened and saved in a different format. This
functionality is known as the tamper localization property.

In the development of integrity verification for digital image, two approaches
have been proposed. One solution is to use digital signatures which is a data
string which associates a message with some originating entity. Image authenti-
cation in this manner, however, requires an auxiliary channel for the storage and
transmission of a digital signature for each image. This increases the bandwidth
requirements and imposes restrictions on implementation. In practical implemen-
tations, the signatures and other helper information are kept either as a separate
file/bit-stream or as a part of the image header[2]. A second solution is to use
digital watermarks which are designed to be easily destroyed if the watermarked
image is manipulated in the slightest manner. Many fragile watermarks are also
capable of localization, where the areas of the watermarked image that have been
tampered with can be determined and distinguished from areas where the wa-
termarked image has not been modified. Early fragile watermarking[3] systems
embedded checksums[4] or pseudo-random sequences[5] in the least significant
bit (LSB) plane of an image while more recent systems apply more sophisticated
embedding mechanisms including the use of cryptographic hash functions[6] to
detect changes to a watermarked image.

On the other hand, digital images can be used for printing to a photo paper.
Digital photographs look like traditional photographs when printed, displayed
on a monitor or projected on a television. Most of people react with the same
trust to digital photographs as they do to traditional photographs. In most of
case, it is impossible to detect alteration of printed image without comparison
to the original digital image, if a source digital image has been altered before
printing. Unfortunately, most of recent works for detecting the alteration image
is target to the digital image data. They will not be available for printed image
such as analog data. Oki Electric Industry Co., Ltd. has developed the integrity
verification system for paper documents under printing[7]. However, their system
is not available for photo printing, because their system can distort the image
under printing process.

Our goal is to detect printed image alteration. In this paper, we propose the
detection method for printed image alteration by using digital watermark which

214 J. Onishi and T. Ono

is based on extending a simple spread-spectrum watermarking technique[8] with
a modified detector in the spatial domain. The detection process is performed
on each block of the image so regions of alterations can be identified.

2 Definition of Image Alteration

Generally, digital images can be manipulated using a variety of sophisticated
signal processing tools by owner. These manipulation can be considered as al-
teration. Thus, let us define the our target of image alteration clearly. In this
paper, our target of image is described the below.

– Original image is a color image taken by the digital camera without manip-
ulating.

– Original image has been embedded the signal for detecting image alteration
by using our proposed method.

The definition of image alteration is described the below.

– Replacement of some objects in the source image by using another photo
data.

– Overwriting a part of image in order to remove or add some objects on the
original source image from another image which is taken the same scene.

Our method do not consider as image alteration in cases described the below.

– Cropping the apart of image from original.
– Image manipulate processing without image alteration described the above.

3 Overview of Technique Relationship with Watermark

In this paper, digital watermark is applied for detecting of printed image alter-
ation. The watermark embedded into the original image is required the robust-
ness under printing process. Therefore, a digital watermark based on a spread-
spectrum technique is used in order to embed the signal for detecting the image
alteration. The signal for detecting the image alteration is attached into the
middle frequency domain of the source digital image which is divided by several
blocks. To extract the signal, the signal is extracted from each blocks of the
source image. The image alteration can be detected to verify the signal on each
blocks of the source image. Then, the block of image alteration can be detected.
On the other hand, to use the property of Fourier Transform, the embedded sig-
nal can have the property of translation invariant, which is useful for detecting
the detail domain of image alteration. On the other hand, it is higher possible to
have error detection under extracting the signal from printed image, even if the
target image is not altered. Our goal is to detect printed image alteration cor-
rectly. Thus, in order to avoid the error detection, our method creates the gray
scale mask image which shows the domain of image alteration under extracting

A Study of Detection Method of Printed Image Alteration 215

Fig. 2. An example of a spread spectrum signal used as an alteration detection signal

the signal. To observe the mask image, we can understand which domain on
the target image has lots of error detection under extracting process. Therefore,
the mask image will help us to find out the domain of image alteration more
correctly.

3.1 Spread Spectrum of the Alteration Detection Signal

A method for encoding the signal for detecting image alteration which can later
be recovered given knowledge of the key used is described here. A sequence of
N randomly generated real numbers X = x1, x2, . . . , xn is a random number
defined as

xn ←− a ·mn (0 ≤ n < N) (1)

where mn is a pseudo random noise and a(> 0) is a real number. The alteration
detection signal is written in the form of a sequence of symbols S1, S2, . . . , SK ,
most generally by a change in a number base with L. The next stage is to encode
each symbol Sk in the form of a zero mean pseudo random vector of length N .
The alteration detection signal is defined as

xn ←− xn + mL·k+Sk+n+1 (0 ≤ n < N) (2)

Fig. 2 shows a spread spectrum signal of the alteration detection signal as given
by equation 2. Let us decode the alteration detect signal from yn which extracted
mark. A sequence of N randomly generated real numbers mn as same as encoding
steps with the same key is a random number. qn is the sequence of detection
symbol defined as

qn ←− mL·k+l+n+1 (0 ≤ n < N) (3)

where, l = 0, . . . , L− 1 is a range value of symbol. The next stage is to calculate
each qn in the form of a zero mean pseudo random vector of length N . We
measure the similarity of yn and qn by

Zl ←−
(

N−1∑
n=0

qn · yn

)
/

⎛
⎝
√√√√N−1∑

n=0

y2
n

⎞
⎠ (4)

216 J. Onishi and T. Ono

Fig. 3. An example of detection alteration detect signal

The symbol of alternation detect signal is l where Zl is the maximum value
among each Zl calculated by the equation 4. Fig. 3 shows the detection of alter-
ation detect signal as given by equation 4.

3.2 FFT: Translation

Let the image be a real valued continuous function f(x, y) defined on an integer-
valued. F (u, v) is the Discrete Fourier Transform coefficient value of f(x, y).
Shifts in the spatial domain cause a linear shift in the phase component.

F (u, v)exp[−j(au + bv)] ←→ f(x + a, y + b) (5)

Note that both F (u, v) and its dual f(x, y) are periodic functions so it is im-
plicitly assumed that translations cause the image to be ”wrapped around”. We
shall refer to this as a circular translation or a cyclic shift. From property 5 of
the Fourier transform it is clear that spatial shifts affect only the phase represen-
tation of an image. This leads to the well known result that the magnitude of the
Fourier transform is a circular translation invariant. This property allow to ex-
tend for the detection of alteration domain of printed image by using watermark.
Fig. 4 illustrates the property of translation invariant of Fourier Transform.

4 Algorithm

4.1 Embed the Signal for Detecting Image Alteration

Let the image be a function f(x, y). A function b(n1, n2) is a block image divided
by M ×M from the image f(x, y). A function F (u, v) is the Discrete Fourier
Transform of b(n1, n2) given by

F (u, v) =
M−1∑
n1=0

M−1∑
n2=0

b(n1, n2)e−j2πn1u/M−j2πn2v/M (6)

The DFT of a real image is generally complex valued. This leads to magnitude
and phase representaton for the image:

Amp(u, v) = [F (u, v)] (7)

A Study of Detection Method of Printed Image Alteration 217

Fig. 4. The property of translation invariant of Fourier Transform

Φ(u, v) = � F (u, v) (8)

The next stage, the integer number group (un, vn)(0 ≤ n < N) is defined by
the pseudo-random sequence with the key value key2, where a point (un, vn)
is contained in the middle frequency domain of DFT. The spread signal for
alteration detect xn is embedded into Amp(u, v) by

Amp(un, vn)←− Amp(un, vn) + p · xn (9)

Amp(M − un, M − vn)←− Amp(M − un, M − vn) + p · xn (10)

where, p is real number. The reconstruction of the image b′(n1, n2) is given by
Inverse Discrete Fourier Transform. To apply the above process for all block
images on the original image, The image which is embedded the alteration de-
tect signal f ′(x, y) is created. Fig. 5 illustrates this processing of embedding of
alteration detect signal.

4.2 Extraction of the Signal for Detecting Image Alteration

Let the image which is target for detecting image alteration be a function f ′(x, y).
b′(n1, n2) is a block image divided by M ×M from the image f ′(x, y). Let the
function F ′(x, y) denote the Discrete Fourier Transform of b′(n1, n2). The integer
sequence group (un, vn) is generated by the key value key2 which is the same key
as embedding process. The magnitude elements Amp′(x, y) is computed from the
target image f ′(x, y) by DFT. The sequence of yn which includes the signal of
alteration detect is given by

yn ←− Amp(un, vn) (0 ≤ n < N) (11)

The sequence of qn for detecting symbol code is generated by

qn ←− mL·k+l+n+1 (0 ≤ n < N) (12)

218 J. Onishi and T. Ono

Fig. 5. Outline of embedding process of alteration detect signal

The sequence of qn is adjusted to be zero-meaning. To extract the embedded
symbol data, the symbol response function Zl is computed with following the
equation 4, where l = 0, 1, . . . , L−1. The symbol data is l, when Zl becomes the
maximum value among each Zl values. The embedded signal Sk is determined the
value which transformed l by base L. Fig. 6 illustrates the outline of extracting
the signal.

4.3 Detect the Domain of Image Alteration

Let the mask image which shows the domain of alteration be a function D(x, y)
which is determined by

D(x, y) ←− 0 (13)

The symbol of alteration detect signal Sk is extracted by the process described
in the previous section at the offset position (ox, oy) on the image f ′(x, y). If Sk

cannot be extracted correctly, the process defined the below is carried out.

D(ox + t, oy + t)←− D(ox + t, oy + t) + δ (14)

where δ is real number and t consists of the integer number which range is
(0 ≤ t < M). To carry out these process described the above with shifting

Fig. 6. Outline of extracting the signal

A Study of Detection Method of Printed Image Alteration 219

the offset position by α, where α is the integer number, the function D(x, y)
shows the measurement of the domain which the alteration detect signal is not
extracted. If D(x, y) is satisfied with the inequality:

D(x, y) ≥ δ (15)

then, it stands for possibility of image alteration domain at position (x, y) of the
image. As the result, to investigate D(x, y), the domain of image alteration can
be detected. Then, the accuracy of the detection depends on the value of α.

5 Experimental Results

To evaluate the proposed technique, let two nature images be used shown in
Fig. 7 which image size is 512× 512 pixels. The parameters for this evaluation
are M = 128,N = 512,a = 0.12,L = 256, p = 1000.0Cδ = 5.0Cα = 8, and (un, vn)
which is given by 32 ≤

√
u2

n + v2
n ≤ 64. Some of these parameters except of

the parameters which stands for image size and block size for DFT are defined
manually by the performance of image quality and its robustness based on our
pre-evaluation. Note that the automatic definition of parameters system has not
been proposed in our method. The number of bits of the signal for detecting
image alteration is 8 bits. The images embedded the signal by our method fol-
lowing these parameters are shown in Fig. 8. In this evaluate, the devices for
printing and capturing which used in this evaluate are described the below

– Canon BJ-F850 for photo printing.
– EPSON LP-7000C for color or gray scale printing.
– EPSON GT-X800 for capturing the image from printed image.

(a) Test image No.1 (b) Test image No.2

Fig. 7. Original image. (512 × 512 pixels).

220 J. Onishi and T. Ono

(a) Test image No.1 (b) Test image No.2

Fig. 8. The images embedded the signal for detectiong image alteration

5.1 Evaluation of the Influences of Adjusting Gamma Factor

The purpose of the evaluation in this section is to know robustness of watermark
which we use under manipulating the digital image for printing. One of favorite
manipulation is to adjust gamma factors for fine printing. This manipulation
does not mean image alteration under our definition of image alteration. How-
ever, it is possible to fail to extract the embedded signal correctly. The signal for
detecting image alteration has to be robustness against the adjust of gamma fac-
tors and so on which do not stand for image alteration. Thus, let us evaluate the
robustness of the signal for detecting image alteration. In most of case, gamma
adjustment is used for perceptually fine veiw. Then, gamma factor takes from

(a) Test image No.1 (b) Test image No.2

Fig. 9. The image of adjustment of gammer factor

A Study of Detection Method of Printed Image Alteration 221

(a) Test image No.1 (b) Test image No.2

Fig. 10. Extraction of the area of image alteration

0.8 to 1.2 which depends on the target image. In this evaluation, we choose 1.2
for adjusting gamma factor. Fig. 9 are the images that adjusted gamma factor
which value is 1.2 from the images shown in Fig. 8 by using Adobe Photoshop.
These images are not altered. Fig. 10 shows the result of the detection of im-
age alteration which stands for the function D(x, y). The domain of black color
stands for the domain which is not altered. To observe Fig. 10(a), we consider
that Fig. 9(a) is not altered. On the other hand, Fig. 10(b) shows the domain
which is detected as alteration on the image shown in Fig. 9(b). That domain
corresponds to the region of cloudy on the original image. This domain is almost
composed by white color only, and which includes low frequency component on
DFT. Therefore, it is possible that the signal has been lost under the embedding
processing because this signal is embedded into the elements of middle frequency
components on the original image. Therefore, we understand that most of de-
tection errors may occure on the simple color pattern domain of the image. We
are under studying in order to solve this issue. In this paper, we suppose that
the region of cloudy of test image No.2. will not be altered in this evaluation.

5.2 The Alteration Detect of Photo Printed Images

Let the image alteration be created from Fig. 8 by using Adobe Photoshop
which are shown in Fig. 11. These images are printed to photo papers by printer
device. Fig. 12 shows the images captured by the scanner device from printed
photo papers. To detect the alteration, the function D(x, y) are computed, and
which result is shown in Fig. 13. Fig. 14 shows the object or region which is
altered on the images by using both Fig. 11 and Fig. 13. As this result, our
proposed method is available for detecting image alteration.

222 J. Onishi and T. Ono

(a) Test image No.1 (b) Test image No.2

Fig. 11. Altered image

5.3 The Alteration Detect for Printed Images

Let us to evaluate the performance of our method against printed image on the
non-photo paper. Printed images is created from the images shown in Fig. 11
by the printer device. Fig. 15 is the result of alteration detect. This evaluation
shows our method works against the target of paper printed image.

5.4 The Alteration Detect for Paper Printed Gray Scale Images

Let us consider the case of gray scale printed image. In order to evaluate the
capability of our method, gray scale image shown in Fig. 11 is printed by the same

(a) Test image No.1 (b) Test image No.2

Fig. 12. Printed image captured by scanner

A Study of Detection Method of Printed Image Alteration 223

(a) Test image No.1 (b) Test image No.2

Fig. 13. Result of detection image alteration

printer device as section 5.3. To carry out our method, the detector performance
is shown in Fig. 16. This result is almost the same as section 5.3, because the
alteration detect signal is embedded into the intensity of the original image.
Therefore, detector performance shows the same as the case of color printed
image.

(a) Test image No.1 (b) Test image No.2

Fig. 14. Extraction of altered object or region

5.5 Compensating for Rotation Capturing

In this section, we described the steps required to locate the template given the
following scenario: When the target printed image is captured, it is then rotated
shown in Fig. 17. In this case, we evaluate to detect image alteration. Fig. 18
shows the result of detection. To observe it, our method even works good.

224 J. Onishi and T. Ono

(a) Test image No.1 (b) Test image No.2

Fig. 15. Result of detection of the area of alteration

(a) sample image No.1 (b) sample image No.2

Fig. 16. Result of detection of the area of alteration

6 Conclusions

Unlike robust watermarks, fragile watermarks are designed to be easily destroyed
if the watermarked image is manipulated in the slightest manner. This property
is ideal for image authentication applications, where the objective is to determine
if watermarked image has been tampered with or modified. In this paper, the
alteration detect algorithm for printed natural images based on the watermark
techniques are proposed. As the experimental result, our proposed method can
detect the object or domain on the printed image alteration. To apply our method
to the digital camera devices, the source of digital image can be included the

A Study of Detection Method of Printed Image Alteration 225

(a) sample image No.1 (b) sample image No.2

Fig. 17. Rotated image captured by scanner

(a) Test image No.1 (b) Test image No.2

Fig. 18. Result of detection of alteration domain

signal for detecting image alteration automatically. It also supports to detect the
fake image created by an owner. Our method helps to reduce the fake images on
the public official documents.

On the other hand, as the experimental result shows, our method has some
issues that cannot support white or black color flat pattern domain. The image
alteration detected by our method stands for integrity questionable. To make a
reliable detection system for printed image alteration, the key certificate system
and so on based on cryptograph theory are needed for watermark encoder and
detector of our method. Future work will focus on the construction of trust
detector system against printed image alteration.

226 J. Onishi and T. Ono

References

[1] I. Cox, M. Miller, and J. Bloom: Digital Watermarking. Morgan Kaufmann Pub-
lishers (2002)

[2] ISO/IEC 15444-8: Information technology JPEG 2000 image coding system part
8: JPSEC (2004).

[3] Fragile and Robust Watermarking by Histogram Specification. D. Coltuc, P. Bolon
and J. Chassery: Proceeding of the SPIE Security and Watermarking of Multimedia
Contents IV, Edward J. Delp III, Ping W. Wong, Editors, vol.4675 (2002), 701-710

[4] S. Walton: Information authentication for a slippery new age. Dr. Dobbs Journal
vol.20 no.4 (1995) 18–26

[5] R. B. Wolfgang and E. J. Delp: Fragile Watermarking Using the VW2D Water-
mark. Proceedings of the SPIE/IS&T International Conference on Security and
Watermarking of Multimedia Contents. vol.3657 (1999) 204–213

[6] P. Wong: A watermark for image integrity and ownership verification. Final Pro-
gram and Proceedings of the IS&T PICS99 (1999) 374–379

[7] Oki Electric Industry Co., Ltd.: TrustPaper http://www.oki.com/en/otr/198/
downloads/otr-198-R15.pdf (2005)

[8] Bijan G. Mobasseri: Exploring CDMA for watermaking of digital video. Proc. SPIE,
vol.3657 (1999) 96–102

Real-Time Watermark Embedding for High
Resolution Video Watermarking

In-Koo Kang1, Dong-Hyuck Im1, Young-Ho Suh2, and Heung-Kyu Lee1

1 Department of EECS, Korea Advanced Institute of Science and Technology,
Guseong-dong, Yuseong-Gu, Deajeon, Republic of Korea

{ikkang, iammoni, hklee}@mmc.kaist.ac.kr
2 Digital Content Research Division, Electronics and Telecommunications Research

Institute, Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea
syh@etri.re.kr

Abstract. This paper addresses implementation issues for real-time wa-
termark embedding scheme of High Definition(HD) resolution videos on
personal computers. In most watermark applications, an embedding pro-
cedure should be built at low costs and at the same time the embedded
watermarks should have robustness against signal and image process-
ing as well as malicious attacks. This paper provides some performance
optimization guidelines and a simplified Human Visual System (HVS)
method for fast and robust watermark embedding. This work demon-
strates a real-time watermark embedding process including HD MPEG-
2 video decoding, watermark embedding and displaying on Intel archi-
tecture personal computers. Experimental results show optimized em-
bedding performances and robustness against several malicious attacks
commonly happened to videos.

1 Introduction

In proportion to developments of digital infrastructures and industries, digital
watermarking technologies are also advanced to protect the copyright of those
contents from illegal distributions and reproductions. In these days, people can
easily access digital contents from various sources, furthermore, their requests for
high quality contents are rising rapidly. In watermark applications, watermark-
ing schemes should be implemented at low cost, especially real-time embedding
systems are required for authentication, fingerprinting, copy protection systems.
Real-time watermarking systems for high quality contents are not an exception
any more.

In this work, we implemented a real-time watermark embedding system for
1920×1080high resolution MPEG-2 video contents on an Intel Pentium� system.
We will present some general tips for system optimization in section 2. In the next
section, we will define our watermark embedding scope and specify implementa-
tion details and optimization issues for a real-time embedding scheme. In section
4, experimental results are presented to verify our embedding scheme is suitable
for real-time processing and robust against video attacks.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 227–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 I.K. Kang et al.

processor N

instruction

instruction

instruction

data

data

.

.

.

.

.control unit

processor 1 memory 1

memory N

Fig. 1. SIMD structure : A SIMD structure includes several processors and those
processors are controlled by one control unit. Even if all processors are assigned one
instruction from one control unit, they use different data from different memories.(In
some cases, processors share memories.)

2 General Optimization Guidelines

Many multimedia applications in these days are implemented for a real-time
processing according to their purposes. However, due to intensive computing vol-
umes for multimedia data, applications are used to be implemented with appli-
cation specific integrated circuits(ASICs) or digital signal processors. Things are
changed owing to the introduction of Single-Instruction-Multiple-Data(SIMD)
extensions to general-purpose processors. With this, the following optimizations
are possible [5]:

1. Use a current generation compiler that will produce an optimized applica-
tion. This will help you generate good codes from the start.

2. Maximize memory access performance:
– Minimize memory references,
– Maximize register usages,
– Prefetch data,
– Arrange code to minimize instruction cache misses and optimize prefetch,
– Align frequently executed branch targets on 16-byte boundaries,
– Make sure all data are aligned

3. Minimize branching penalties:
– Minimize branch instructions, for instance, unroll small loops,
– Arrange code to minimize the misprediction in the branch prediction

algorithm, for example, forward conditional branches are usually not
taken and backward conditional branches are usually taken.

4. Use software pipelining to schedule latencies and functional units. Unroll
small loops to schedule more instructions.

With multimedia instruction set extensions such as Intel’s MMX(Multi-Media
eXtension) technology, we can speed up the computing time up to eight times

Real-Time Watermark Embedding for High Resolution Video Watermarking 229

faster[1][4]. The SIMD technique is the reason to make it possible. Earlier ver-
sion of CPUs which do not use the SIMD technique process one data using
one instruction, where as in SIMD one instruction can handle several data con-
currently. That is to say, MMX technology offers much greater capabilities of
speed up to multimedia data owing to eight data, each of eight-bits, concurrency
processing power using 64-bits data buffers. Nevertheless, advantages of MMX
technique, this technique cannot be adopted to all of implementation areas be-
cause the MMX technique is best-suitable to simple and steady data structures
or iterative data processing like multimedia data. This method, for that reason,
is regarded as a second majority technique to improve system performances, not
main methodology for data process enhancements. Under this circumstances,
it is an important work to recognize possible areas of MMX optimization for
performance improvements. The followings are three basic steps [5]:

1. Understand where the application spends most of its execution time: The
benefit of optimizing computationally-intensive parts is larger than that
of optimizing non-intensive parts. We should start optimizations from the
most computationally-intensive components.In our watermarking system, we
found the most time-spending part that bothers the real-time embedding
processing and modified it.

2. Understand which algorithm is the best for MMX technology in this ap-
plication: Matching the algorithms to MMX instruction capabilities is the
key to extracting the best performance. Once the computationally-intensive
sections of code are identified, an evaluation should be done to determine
whether the current algorithm or a modified one will give the best perfor-
mance. There could be many algorithms for a same application. In some
cases, it is possible to improve performance by changing the types of opera-
tions in the algorithm.

3. Understand where data values in the application can be converted to integer
(fixed-point) while maintaining the required range and precision if the data
values are not originally of an integer type: The MMX instructions offer the
best support for 8-bit and 16-bit integer data types. While some DSP can be
done in the integer domain, some must be done in the floating-point domain.
MMX can provide significant speedup in certain DSP and multimedia appli-
cation, even over hand-optimized floating-point assembly code. MMX seems
well-suited for image processing applications because of the large amount
of contiguous, 8-bit data to process and precision requirements that rarely
extend beyond 8 bits.

3 Optimization Issues for Real-Time Embedding

In this section, first we will define real-time scope of our watermarking sys-
tem and describe optimization issues and our solutions for those problems. For
an optimum system, we analyzed time complexities of a watermarking system
implemented using pure C code. Then, we decided which parts of the system

230 I.K. Kang et al.

should be rebuilt to reduce the execution time suitable for real-time processing
and modified those modules.

3.1 Real-Time Performance Scope

First in this session, we would like to define the term “real-time” in our work.
The term “real-time” is cited in many applications in slightly different meanings.
The word in our work defines that a watermark embedding process should not
be recognizable during video playing time. That means watermark embedding
time should be shorter than a frame processing time. In case of 30 fps(frames
per second) framerates videos, a frame is decoded and displayed on a screen
in around 0.03 second. It is obvious that watermark embedding time should be
more shorter than 0.03 second. Furthermore, we manipulate 1920×1080 size HD
contents to embed watermarks.

Our real-time watermarking system consists of three major parts as shown in
figure 2: a decoding unit of HD MPEG-2 video bitstreams into raw frames, a wa-
termark embedding unit and a video display unit on a screen. More specifically,
our watermarking unit includes subunits such as a HVS masking function, wa-
termark multiplication to HVS masked frames and addition of the watermarks
to raw frames on a spatial domain, etc. In our real-time scheme, these three
units are scope of real-time processing.

We included a video display unit to our scope for two reasons. One is that our
real-time solution could be used in other applications. For example, in digital
fingerprinting systems, the unique fingerprint code assigned to each different
customer is embedded to contents at the end-users’ computers, not on suppliers’
servers. In this case, the fingerprint codes should be embedded while videos are
being displayed on a screen. The other is our solution could be adopted to real-
time watermark detection systems. In most of watermarking systems, watermark
detection complexities are lower than embedding complexities. That means if a
embedding scheme can be executed in real-time, a detection routine can be also
executed in real-time.

Encodings of watermarked raw frames to MPEG-2 video streams are beyond
of our scope. A real-time encoding to HD MPEG-2 bitstreams on personal com-
puters is too heavy work and it cannot be implemented by software approaches,
without any MPEG-2 encoding specific hardware. It, however, should be noted
that our embedding scheme including decodings of HD MPEG-2 stream, HVS
masking function and watermark addition to decoded frames have merits in
watermark applications. Because all these steps should be performed within
theoretically 0.03 second in case of 30 fps videos and software approaches of
watermarking systems are more efficient over hardware approaches when modi-
fications or updates are needed.

3.2 Use of the MMX Technique to Reduce Computing Time

The MMX instructions offer the best support for 8-bit and 16-bit integer data
types. MMX can provide significant speedup in certain DSP and multimedia

Real-Time Watermark Embedding for High Resolution Video Watermarking 231

WM
Generator

Insert
Payload

Tiling

HVS
Local

Scaleing
ADD

Watermark Embedder

Watermarked
Frame

MMX Output

Key

Payload

Frames

Input Hold

Decoder Display

Fig. 2. High-level view of real-time watermarking system. Our real-time scope consist
of a HD MPEG-2 decoding, a watermark embedding and displaying of video. In the
watermark embedder, routines that need fast processing are implemented with MMX
instructions.

applications. MMX seems well-suited for image processing applications because
of the large amount of contiguous, 8-bit data to process and precision require-
ments that rarely extend beyond 8 bits. With the MMX technique, the following
optimization guideline will be applicable for real-time programming [4][5][6][7]:

1. Do not intermix MMX instructions and floating-point instructions. MMX
instructions do not mix well with floating-point instructions. MMX registers
and states are aliased onto the floating-point registers and state, so no new
registers or states are introduced by MMX.

2. MMX code sections should end with “emms” instructions if floating-point
operations are to be used later in the program.

3. MMX shift/pack/unpack instructions do not mix well with each other. In
general, two MMX instructions can be executed at the same clock. However,
only one MMX shift/pack/unpack instruction can be executed at one clock
because there is only one shifter unit.

4. MMX multiplication instructions “pmull/pmulb/pmadd” do not mix well
with each other. Currently, there is only one multiplication unit.

5. MMX instructions, which reference memory or integer registers, do not mix
well with integer instructions referencing same memory or registers.

6. It is important to arrange data in the best way for MMX processing, e.g.,
structure of array, array of structure, row-wise, or column-wise arrangements.
Column-wise processing in general is better than sequential row-wise process-
ing.

We applied the MMX technology to several embedding modules that spend
much time and need to be rebuilt for speedup as shown in figure 2. This includes
watermark tiling, a HVS masking, watermark addition to source frames and
other miscellaneous operations such as multiplications or additions as depicted in
grayed rectangles. These modules have some common features which are suitable
to be manipulated by the MMX instructions: they are frequently and regularly
used, conduct simple and repeatable operations and need fast processing time.
The MMX implementation of such heavy modules produced great performance

232 I.K. Kang et al.

improvements especially at HVS (Human Visual System) masking function as
described in Table 1.

3.3 Use of Simplified HVS Function

A HVS function plays an important role in watermarking systems. Watermarks
embedded in flat areas can be notified easily, so we have to embed watermarks
into those areas weakly. On the other hand, watermarks in edge or textured
areas are not noticeable compared to flat areas, so we can embed watermarks
more strongly into those areas. That says a HVS function adjusts watermark
strength according to local features of source images. While the HVS function
is the most important part for robust and invisible watermarking methods, it is
the heaviest processing step over the rest of other embedding steps.

In many literatures, a NVF (Noise Visibility Function) is a commonly used
HVS function [2]. The NVF function measures flat areas and edge(textured)
areas of source images by calculating local variance and mean values. Despite
of its popularity for the purpose of a HVS mask, this function takes bunch of
processing time than that of other embedding modules due to heavy calcula-
tions for local mean, local variance values and division operations as shown in
equation 1, where σ2

x is a local variance of source images, σ2
x max is the max-

imum local variance for a given image and D ∈ [50, 100] is an experimentally
determined parameter. Even if sophisticated computations of local measures in
NVF provide more exact estimation of source images, a number of computations
prevent watermark embedding from real-time processing. We confirm this effect
in a table 1. In the pure C code implementation of watermarking system, the
HVS function took the most longest time in the embedding processes and its
processing time(0.05sec.) is already over the 0.03 second, upper bound frame
processing time in our application.

NV F (i, j) =
1

1 + θσ2
x(i, j)

, where θ =
D

σ2
x max

. (1)

For a real-time embedding, the HVS function should be lightened. To reduce
the time complexity, we would rather use an edge detector than NVF function
in our system for following reasons:

– As described above, the NVF function is too heavy in real-time video process-
ing.

– The NVF function results in floating point values between 0 and 1, i.e.
0 ≤ NV F ≤ 1. That means the NVF function cannot be implemented by the
MMX instructions, because the MMX code can process floating point value
data. Furthermore, floating point data operations decrease the processing
time.

– Edge detectors can be also used as a HVS function, because edge detectors
also extract highly textured area of source images and watermarks can be
strongly embedded in those area.

Real-Time Watermark Embedding for High Resolution Video Watermarking 233

Fig. 3. Edge Detectors of our HVS module(compass operators): With a “separable”
feature and MMX instructions, we implemented the HVS function at a low complexity.
(a) shows four different edge detectors and (b) depicts eight compassed kernels of the
second kernel of (a).

– Furthermore, we also consider flat regions of source images as well as edge
or highly textured area using equation 2 like that used in a NVF function.

– Some edge detectors have a “separable” property which makes its computa-
tion more faster and are also more suitable for a MMX instructions.

In our system, we adopted a compass operator as an edge detector. Compass
operators measure gradients in as selected number of directions. Figure 3 (a)
shows four different compass gradients for north-going edges. An anti-clockwise
circular shift of the eight boundary elements of these masks gives a 45 degree
rotation of the gradient direction. For example, the eight compass gradients
corresponding to the second operator of figure 3 (a) are shown in figure 3 (b).

This compass operator can be transformed to be separable. A 2D filter is
“separable” if the kernel [h2D] can be decomposed into two 1D kernels which are
applied successively. The filtering is performed in one dimension (rows), followed
by filtering in another dimension (columns) : [h2D] = [h(V)

1D] ⊗ [h(H)
1D], where ⊗

stands for a convolution operator. The rows and the columns in the original
image are thus separately filtered. Whatever the first 1D filtering performed,
the output image IS(m, n) is still the same. To be separable, a 2D filter must
have proportional elements on the rows and the columns: mathematically that is
seldom true, however, several usual 2D filters are separable. In figure 4, properties
of separable filters and some examples are presented.

The complexity is low for 2D separable filters because the number of oper-
ations (multiplications and additions) is reduced, thus the computation time
is faster. Typically if the kernel size is M × N , we need only (M + N) multi-
plications and (M + N − 2) additions instead of (M × N) multiplications and

234 I.K. Kang et al.

Fig. 4. Separable filter properties and examples. Ie(M, N) is a original image, hH(n)
and hV (m) are 1D horizontal and vertical filters, respectively. IS(m, n) is a 2D filtered
image of Ie(M, N).

(M + N − 1) additions for a non-separable 2D filter. Often the term “MAP”
is preferred (multiplications and accumulations per pixel): there are (M + N)
MAP for a separable filter instead of (M ×N) MAP for a non-separable filter.

When applying edge detectors to get a HVS masked image, the result shows
only edged areas or highly textured areas are strongly highlighted. On the other
hand, pixel values of flat areas approach zero. That means watermarks embedded
in only textured areas are emphasized and easily visible, but the watermark
information is nearly lost in flat areas. We should concern both textured areas
and flat areas for robust and invisible watermarks. As a consequence of this
consideration, we adopted the contents-adaptive embedding rule in the NVF
method and slightly modified it suitable for our HVS [2]:

Λ = (C −HV S) · α + HV S · β, (2)

where C is a constant value that limits the upper bound of HVS energies, α is a
strength parameter for edged areas(textured areas) and β is a strength parameter
for flat regions. As a result of this embedding rule, watermarks have a strength
range between α and β. So watermarks could be embedded with a at least β
strength in the very flat areas and the watermark strength could be controlled
by adjusting the parameters α and β according to a tradeoff of a watermark
visibility and robustness.

4 Experiments

We experimented our embedding scheme on an Intel Pentium IV processor
3.6GHz and with a 1 GB RAM. The decoding time of HD bitstreams and the dis-
play time after watermark embedding is constant as shown in table 1 and these

Real-Time Watermark Embedding for High Resolution Video Watermarking 235

values are beyond of our analysis scope because they are already optimized
for the best performance. We embedded watermarks into 1920×1080 size HD
MPEG-2 videos using the same watermarks and embedding ways as the method
described in [3]. We adjusted the Λ value in equation 2 between 1 to 7, that
says watermarks were embedded in strength 7 on textured areas and strength 1
on flat areas. An average PSNR after watermark embedding was around 45dB,
so image visual degradations due to watermark embedding were not perceptual.
We tested five MPEG-2 HD videos in the fields of movies, entertainment shows,
documentaries, etc. which contain more than 20 different scenes and features as
shown in figure 5.

Fig. 5. Snapshot examples of test videos: All test videos have 1920×1080 resolu-
tions(HD). This test set contains a number of scenes and different features.

First, we measured time complexities of subfunctions for a embedding process.
As mentioned earlier, the decoding process and the display process took a con-
stant time during all experiments and time complexities for embedding steps
such as a HVS masking function, multiplication and addition operations are
varied according to the implementation methods and programming languages as
shown below:

All the three experiment systems consist of three subfunctions: decoding of
bitstreams to raw frames, watermark embedding and a display of watermarked
frame to a screen. The watermark embedding unit includes taking a HVS mask-
ing function to decoded raw frames, multiplication and addition operations for
watermark manipulations and other miscellaneous operations which do not take
serious time for an analysis. The first experiment was designed to measure
processing time taken for units, each of which is implemented using pure C
programming language. In this test, the NVF masking function was used as
a HVS method. As we mentioned earlier, the NVF masking method with C
code implementation is inappropriate for a HD real-time video watermarking

236 I.K. Kang et al.

Table 1. Time complexity comparisons between experiment systems that implemented
with pure C code and MMX code. Execution time taken for each subfunction is shown
in the table. The total time is the time complexity taken for watermark processing per
frame.

[sec.]

0.02800.0020.002
0.006

(our HVS)
System 3.

0.02100.0010.0020System 2.

0.0770

0.0048

0.0030.006
0.050

(NVF)

0.0132

System 1.

miscellaneous
MUL, ADD

function
HVS function

Total TimeDisplay Time

Watermark Embedding Time
Decoding

time

0.02800.0020.002
0.006

(our HVS)
System 3.

0.02100.0010.0020System 2.

0.0770

0.0048

0.0030.006
0.050

(NVF)

0.0132

System 1.

miscellaneous
MUL, ADD

function
HVS function

Total TimeDisplay Time

Watermark Embedding Time
Decoding

time

application: the NVF process time is 0.050 second and the total processing time
is 0.077 second, beyond of the time limit per frame.

A MMX code implementation considerably drops processing time compared
with C code implementation. In the second experiment, all units were imple-
mented with MMX code but a HVS function. We observe that the MMX coding
considerably reduced the time complexity of a whole embedding process and
the real-time watermark embedding is feasible. However, watermarks that were
simply added to source frames without any HVS processing were not robust to
various well-known watermark attacks.

Our proposed HVS method conducted its job fast under MMX implemen-
tation. In the third experiment, we applied an edge detector as a HVS mask,
the second one in figure 3 (a) and its compassed ones like (b) with a “sep-
arable” feature. Our masking function took only 0.006 second to get masked
images and the total processing time is 0.028 second, still under the processing
limit time per frame. That means our implementation can decode HD-resolution
bitstreams, embed robust watermarks with HVS masking and display the wa-
termarked frames on a screen within 0.03 second. From the results, the total
processing time of system 1, 0.077 sec., was decreased to 0.028 sec. of system 3,
thus we achieved about 63% performance enhancement.

We tested robustness of our watermarks against several common attacks to
videos. Various video processing attacks in the table 2 are expected to occur to
HD videos owing to its high resolution and excellent visual qualities. People may
scale down HD contents to VGA files for efficient playing on personal computers,
convert the MPEG-2 format to various MPEG-4 formats to reduce file sizes
for easy manipulations or network transference. Watermarks embedded in our
method survived against various kinds of attacks as shown in below table.

It should be noted that we selected attack items by focusing on video ma-
nipulations which could be happened frequently to HD videos, so we did not
consider common image(signal) processing attacks or geometric attacks of

Real-Time Watermark Embedding for High Resolution Video Watermarking 237

Table 2. Summarization of performance of our watermark robustness in the real-time
system. After various attacks, watermarks were survived with the following normalized
correlation values.

0.730.300.60Slow Motion

0.700.500.60MPEG-4 Conversion

0.720.100.48MPEG-1 Conversion

0.310.100.18White-noise Addition

0.700.250.58Color Conversion (RGB to Gray)

0.740.250.62Framerate Conversion (30 24 fps)

0.690.200.56Cropping

0.450.140.35Resize to VGA (640x480)

0.450.150.28Resize to VGA with padding (640x360)

0.730.370.63Original (1920x1080)

MaximumMinimumAverage

0.730.300.60Slow Motion

0.700.500.60MPEG-4 Conversion

0.720.100.48MPEG-1 Conversion

0.310.100.18White-noise Addition

0.700.250.58Color Conversion (RGB to Gray)

0.740.250.62Framerate Conversion (30 24 fps)

0.690.200.56Cropping

0.450.140.35Resize to VGA (640x480)

0.450.150.28Resize to VGA with padding (640x360)

0.730.370.63Original (1920x1080)

MaximumMinimumAverage

[Normalized Correlation]

to

image watermarking. However, we applied robust watermarking methods such
as spread-spectrum method in [3] or human visual masking method in [2], thus
we expect our watermarks would be robust against those kind of attacks.

5 Conclusion

As digital content markets and infrastructures are emerging, high quality con-
tents are becoming the center of market shares. Digital watermarking techniques
should come up with the market currencies. In this paper, we proposed real-
time video watermarking implementation guidelines for HD videos. We sug-
gested a system implementation using the MMX technique to decrease processing
time and increase multimedia manipulation efficiency, a simplified HVS method
for robust watermark embedding. The MMX implementation offers significant
speedup in multimedia data processing and certain DSP instructions because
MMX instructions are well-suited for manipulating large amount of contiguous
8-bit data that are common forms of multimedia data.

Our HVS method provides low time complexities and high performance ca-
pabilities. By using an edge detector for the purpose of HVS mask, we achieved
the real-time embedding requirement as well as robustness. The “separable” fea-
ture of edge detectors reduces multiplication and addition complexities and its
structure is well-suited for the MMX implementation.

We measured the processing time of our embedding units and experimented
the robustness of our watermarks against various video dedicated attacks. The
watermarking system that was implemented with MMX instructions and ap-
plied with the simplified HVS function presented the best performances in both

238 I.K. Kang et al.

real-time processing and robustness. With our implementation, watermarks are
embedded into HD-resolution high quality videos in real-time, 0.03 second per
frame, and robust against video manipulation attacks. All these techniques could
be applied to other video watermarking schemes and other video signal process-
ing applications.

Acknowledgment. This work is financially supported by the Ministry of Ed-
ucation and Human Resources Development(MOE),the Ministry of Commerce,
Industry and Energy(MOCIE) and the Ministry of Labor(MOLAB) through the
fostering project of the Lab of Excellency.

References

[1] A. Peleg and U. Weiser : The MMX Technology Extension to the Intel Architecture,
IEEE Micro, Vol. 16, no. 4, pp. 42-50, Aug. 1996.

[2] S. Voloshynovskiy, A. Herrigel, N. Baumgartner and T. Pun : A stochastic ap-
proach to content adaptive digital image watermarking, In International Workshop
on Information Hiding, Vol. LNCS 1768, pp. 212-236, Springer Verlag, Dresden,
Germany, 1999.

[3] Ingemar J. Cox, Joe Kilan, F. Thomson Leighton and Talal Shamoon : Secure
spread spectrum watermarking for multimedia, in IEEE Trans. on Image Process-
ing, Vol. 6, No. 12, Dec., 1997.

[4] The complete guide to MMX technology, McGraw-Hill, 1997.
[5] Yen-Kuang Chen, Matthew Holliman, William Macy and Minerva Yeung : Real-

time Detection of Video Watermark o nIntel Architecture, Proceeding of SPIE,
Vol. 3971, pp. 198-208, May 2000.

[6] R. Ceolho and M. Hawash : DirexX�, RDX, RSX and MMX Technology : a Jump-
start Guide to High Performance APls, MA, Addison-Wesely, April 1998.

[7] Intel Architecture MMX Technology Developer’s Manual, IL, Intel Corporation,
Order Number 243006, 1996.

Inhibiting Card Sharing Attacks

Michael Tunstall, Konstantinos Markantonakis, and Keith Mayes

Smart Card Centre, Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK
{m.j.tunstall, k.markantonakis, keith.mayes}@rhul.ac.uk

Abstract. The satellite TV industry relies heavily on the use of smart
card technology at the very heart of broadcasted services that are pro-
tected by legacy conditional access systems. The process of Satellite TV
signal protection is distributed amongst a number of system compo-
nents, e.g. smart cards, receivers, Conditional Access Modules (CAM)
and the content provider. However, the introduction of “Open” Satellite
Receivers, providing a highly configurable environment with software
emulation of conditional access systems, enabled the implementation of
whole range of new attacks. A widely deployed attack is often referred
to as the “card sharing” attack, by which one legitimate user colludes
to provide protected content to a larger group of unauthorised users.
This paper proposes a countermeasure that increases the bandwidth re-
quirements of this attack to the point where it is no longer practical
with a standard internet connection, with a minimal impact on existing
protocols and architectures.

1 Introduction

During the early development of the satellite TV industry it became evident
that in order to protect its investment and revenue streams it was necessary to
encrypt digital content. Protection of the digital content traditionally relied on
a number of system components including Set-Top-Boxes (STB), smart cards
and content encryption boxes at the service provider level. Encryption, in the
context of the satellite TV industry, is often defined as “the process of protecting
the secret keys that have to be transmitted with the scrambled signal in order
for the descrambler to work”. The above procedure requires the existence of a
conditional access system [19,13] that combines a signal encryption algorithm
and key protection algorithm in order to prevent unauthorised signal reception.
Many providers follow the DVB-S standard [9] and tailor the necessary configu-
ration parameters [11] to their own particular needs.

The recent technological advances of the computer industry, along with the
continued requirements for more advanced and powerful set of services means
that satellite TV providers are all trying to differentiate their offerings, each with
their own STB software and hardware. Conversely, consumers are constantly
looking for ways that will allow them to use more flexible and powerful equipment
that will simplify or even enhance their viewing experience.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 239–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

240 M. Tunstall, K. Markantonakis, and K. Mayes

The natural market response was the introduction of open satellite receivers
[30] that allowed consumers to purchase the STB that met their viewing and
personal requirements. These STBs are highly configurable environments based
on open operating systems such as Linux. Basically, they can be considered as
traditional computer workstations enhanced with satellite TV signal process-
ing capabilities. However, the fact that they are powerful and open devices has
introduced a number of new threats. At the very least, it has enabled a more
efficient realisation of a number of already identified and well-documented at-
tacks [20,22,16]. The market trend towards open receivers along with current
hardware restrictions (e.g. at the card level) has forced the satellite TV con-
tent providers to mitigate their protection mechanisms away from the underly-
ing STB hardware and bring it closer to the smart card and Conditional Access
Module (CAM). The latter two are often seen as a single component.

The purpose of this paper is to briefly introduce how these recent techno-
logical advances are affecting the satellite TV industry and then to propose
a relevant countermeasure for a specific type of attack i.e. the card sharing
attack [22].

The aforementioned open satellite receivers can be used to share one sub-
scriber’s rights with numerous people. A subscriber can start a server on a STB
that will accept connections from other open STBs. These client STBs belong
to people that are not subscribers and therefore have no rights to view a given
broadcast. Every time the client STB receives an encrypted key from the broad-
caster, it is sent to the server STB that deciphers it and returns the key neces-
sary to decipher the broadcast. As the maximum frequency that this key can be
changed is once every two seconds, the amount of bandwidth required for this is
negligible (a maximum of 5 bytes of information per second in each direction).
With the bandwidth requirement being so small synchronisation issues can be
minimised.

Furthermore, it implies that one receiver can act as a server and provide
numerous clients with the sequence of keys necessary to watch a given broad-
cast. As an open receiver can simulate a CAM it is difficult to base a solution
at this level as any behaviour can be simulated. The CAM should therefore
be regarded as an untrustworthy entity within the protocol. This paper will
propose a smart card based solution to this sharing attack that will mean that
all users watching a given broadcast will need to have a smart card issued by
the broadcaster.

The remainder of the paper is structured as follows: Section 2 provides all
the necessary background information that will enable the reader to understand
how content encryption works in the satellite TV industry along with the recent
smart card attacks in the light of the introduction of open STBs. In Section 3
we provide an overview of the proposed countermeasures and how different com-
munication protocols change the countermeasure. Section 4 discusses how the
proposed countermeasure affects users with various different types of counter-
measure. This is followed by the conclusion in Section 5.

Inhibiting Card Sharing Attacks 241

2 Issues Around Content Provision for the Satellite TV
Industry

In the following sections we provide an overview of how the situation is changing
in the light of the recent technological advances in the smart card, STB and
satellite TV industries. Subsequently, the main characteristics of two widely
used satellite TV attacks are highlighted in order to provide a reference point
for the proposed countermeasure.

2.1 A Changing World – New Requirements for Open Receivers

An Open Receiver (OR) or Open Set-top-Box (OSTB) is a highly reconfigurable
computer system that offers the capability to receive and decrypt the scrambled
TV signals. These receivers often come with a number of pre-installed Condi-
tional Access Module (CAMs) along with a Linux operating system. Further-
more, they also come pre-installed with a number of “images” containing all the
necessary software to watch subscribed TV channels, along with various other
tools for recording and organising channels using a variety of graphical interfaces.

However, the hacking communities are taking advantage of these open re-
ceivers by developing their own “images” containing all the necessary hacking
tools that will enable them to circumvent the security around a protected TV
signal. These images reside in the EEPROM or flash memory of the OSTB and
can be easily upgraded, deleted and modified by connecting the receiver to an-
other computer through a network or serial cable. A variety of the plug-in images
enable the receivers to access USB tokens, hard disks, connected cameras or key-
boards and to use the network or modem cards. All this functionality along with
the plethora of freeware hacking tools makes the open receiver a very powerful
tool in the hands of illegitimate users.

2.2 Recent Satellite TV Attacks

Over the last decade a number of satellite TV attacks have emerged. Some of
them are based on cards being cloned, communication being logged and on-
card elements being emulated by software residing in the STB. In the following
paragraphs we provide a very brief overview of the main type of attack that has
particular significance in the light of the proposed countermeasure.

The Card Sharing attack [20], see Figure 1, belongs in a set of simple, powerful
and effective satellite TV attacks. This attack requires an OSTB with a legiti-
mate card (i.e. the Server CAM), sharing its secrets with a number of illegitimate
receivers (i.e. Client CAM) in order to provide them with access to unauthorised
content. The user with the legitimate card runs a Card Server image on their
OSTB.

The server image enables the OSTB server to accept connections from a num-
ber of OSTB clients (Client CAM) across a number of communication mecha-
nisms including the Internet. As soon as an Electronic Management Message

242 M. Tunstall, K. Markantonakis, and K. Mayes

Fig. 1. Overview of the card sharing attack

(EMM) or an Electronic Code word Message (ECM) is received by an OSTB
client it is forwarded to the corresponding OSTB server and in turn to the cor-
responding smart card in order to be processed. The server subsequently carries
out the message decryption and forwards back to each client the decrypted CW
or other relevant messages. This type of attack is often referred to as the jugular
attack [22].

2.3 The Concept of Secure Content Provision for the Satellite TV
Industry

Satellite communication is considered a very expedient vehicle for broadcasting a
large amount of valuable information over wide geographical areas. The satellite
TV industry needs to rigorously safeguard its revenue streams, i.e. the content
or “Services”. Various sources [18,7] estimate that in Australia, for example,
approximately 4-5% of all satellite TV subscriptions were illegal resulting in a
direct loss in the realm of 50 million Australian dollars. Broadcasters wanting to
protect their revenue streams will therefore have to employ some effective and
robust means to control access to the transmitted services.

The process of satellite TV signal transmission is often divided into two dis-
tinct phases: The first begins with the service provider encrypting or “scram-
bling” the signal and the second when the subscriber uses the necessary equip-
ment, i.e. STB, in order to decrypt the signal. There are several systems that can
provide access control for satellite TV; the most widely used ones are presented
in [15,21].

Digital Video Broadcast (DVB) is a broadcasting standard developed by the
major European satellite TV producers. The DVB standard is based on the
MPEG-2 standard [1] that organises broadcasts into packets separating multi-
plexed information from program streams. The most commonly deployed satel-
lite TV broadcasting methods involves a STB, a satellite dish responsible for re-
ceiving the encrypted signal, a Conditional Access System (CAS) [6] which often
includes a CAM and a smart card that is responsible for the service decryption.

Inhibiting Card Sharing Attacks 243

Fig. 2. Summarised process of DVB signal de-scrambling and cryptographic key
hierarchy

The process is simplified in Figure 2 and summarised as follows. The service
signal is encrypted/scrambled (by using the DVB Common Scrambling Algo-
rithm) using a cryptographic key, called a Code Word (CW), that is generated
by a Control Word Generator.

In turn, the CW is encrypted and encapsulated within an ECM, in order to
protect the CW during transmission to all legitimate recipients. The encryption
of the CW is often defined as “the process of protecting the keys that will be
transmitted with the scrambled signal in order for the descrambler to work”.
A CAS offers all the necessary flexibility to satellite TV operators to operate
proprietary conditional access systems that better fit their security and oper-
ational requirements. Some of the most commonly used CAS systems include
VIAaccess [29], Irdeto [17], Cryptoworks [8], and Seca [26]. In principle, the
CAS prohibits brute force attacks from taking place as the signal encryption key
is changing every 2–10 seconds [5], i.e. the crypto period. The details of the CAS
remain confidential but the basic idea that a chain of encryptions is taking place
on the CW to guarantee protection of keys and avoid brute force attacks.

The role of the STB is to receive the satellite TV signal through the satellite
dish and return the descrambled stream. This actually involves the utilisation
of both the smart card and the CAM. The multiplexed/scrambled services and
ECM are forwarded to the CAM residing within the STB. The actual ECM is
forwarded from the CAM to the smart card. A Service Key (K0) is stored in the
smart card and it is used in order to decrypt the CW. An Electronic Management
Message (EMM) updates these keys, and their validity period is usually one
month but varies from one broadcaster to another. The newly obtained CW is
also used within the CAM in order to decrypt the signal and return it back to
the STB. The ECM and EMM can be used in order to send commands and new
keys to the smart cards. In the above architecture the STB can host multiple
CAMs in order to match the individual broadcaster requirements.

244 M. Tunstall, K. Markantonakis, and K. Mayes

In terms of the DVB data broadcast the following process is incorporated: the
DVB transmission is an encrypted signal that has a bandwidth of 1 to 4 Mbits
per second in packets of 188 bytes. The encrypted signal is accompanied by series
of control words (CW) that can be deciphered by receivers to provide a key (CK)
that can be used to decipher the broadcast. The CW can be updated during a
broadcast so that more than one key is needed to decipher the broadcast. The
maximum frequency this can occur is once every two seconds [5]. The keys for
transforming CW to CK from a set of 292 keys that are distributed and updated
by the broadcaster. This key is then used to decipher the payload of the DVB
packets being delivered to each STB.

Fig. 3. Deciphering the contents of DVB packets using key CK

Figure 3 shows the deciphering process that comprises of two layers. The
payload (PL(i) for i ∈ [0, 23]) of the packet is first deciphered by a stream
cipher (SC) and then deciphered by a block cipher (BD) using the CBC chaining
method. This produces the plaintext of the signal (PT(i) for i ∈ [0, 23]). The
value for i can take values in the interval [0, 23] as the stream cipher and block
cipher treat the data in blocks of eight bytes. Further information on this process
is available at [2], although the authors admit that in an actual implementation
the details may vary.

In most cases this process takes place in a controlled environment where the
STB and CAM are provided by the broadcaster. If an OSTB is used the whole
process can be simulated and each incoming CW is sent to a server OSTB that
will return CK, that can then be used to decipher a given broadcast. Every time
CW is changed the client OSTB is required to send and receive a message of 10
bytes. If CW is changed every 2 seconds (the maximum frequency) this gives a
bandwidth of 40 bits per second in each direction.

Inhibiting Card Sharing Attacks 245

3 Increasing the Bandwidth Requirements

A way of raising the difficulty of this attack would be to use the fact that a
smart card contains all the keys necessary for deciphering the arriving CWs. It
is assumed that these keys can be delivered securely and are not at risk once
stored within the smart card.

The smart card could be used to create a stream of values for CK rather than
one value that is valid for 2–10 seconds. As the deciphering key changes much
more frequently a server OSTB would have to provide much more information to
enable a client OSTB to decipher a broadcast. This would have two effects, the
amount of bandwidth necessary to share viewing rights becomes prohibitively
large, and as the smart card is constantly communicating (i.e. it’s bandwidth is
saturated) it can no longer be asked to decipher arbitrary CWs as it can only
create one stream at a time.

Fig. 4. Generating a series of values for CK

For a given CW a smart card can deliver a series of CKs, as shown in Figure 4,
that are used to decipher the signal until the delivery of another CW. The
arriving CW is deciphered with a block cipher (BD) using the key (K0) to
produce a CK, this is again deciphered to produced the next CK etc. The value
for K is chosen from the 292 available by the header delivered with CW. This
means that an attacker would be obliged to share each CK as it is generated to
enable someone else to decipher the same signal. New values can be generated by
continuing to decipher the delivered CW to produce other values of CK. When
a new CW is delivered the process restarts with the new CK.

Two different possibilities for implementing this idea are discussed below:
using a standard smart card and using a card with a fast protocol to provide the
sequence of CK values.

3.1 Using a Standard Smart Card

In order to ask a smart card for a new value for CK the CAM will need to send
an APDU and then receive the procedure byte, the data, and status word [23].

246 M. Tunstall, K. Markantonakis, and K. Mayes

This gives an overhead of 8 bytes for each request to the card for a new value
for CK. In order to minimise the effect of this, numerous values of CK can be
delivered by the same APDU to minimise the amount of protocol bytes sent.
These keys will be stored on the CAM and used as necessary. Table 1 gives the
set of keys that can be generated per second for every amount of keys that can
be delivered in 1 APDU. The bandwidth requirement is shown as a function of
the number of CKs provided per APDU.

Each CK value is assumed to be 8 bytes long as this is the key length
required by the block ciphers if DES or the proprietary CSA algorithm is used.
The maximum number of CK values that can be delivered by one APDU is

Table 1. The bandwidth requirements for different length commands

CKs per APDU Clock cycles CKs per Bandwidth
per command per second required (Kbits/s)

1 3072 1627.6 104.2
2 4608 2170.1 138.9
3 6144 2441.4 156.2
4 7680 2604.1 166.7
5 9216 2712.6 173.6
6 10752 2790.1 178.6
7 12288 2848.3 182.3
8 13824 2893.5 185.2
9 15360 2929.6 187.5
10 16896 2959.2 189.4
11 18432 2983.9 191.0
12 19968 3004.8 192.3
13 21504 3022.6 193.5
14 23040 3038.1 194.4
15 24576 3051.7 195.3
16 26112 3063.7 196.1
17 27648 3074.3 196.8
18 29184 3083.8 197.4
19 30720 3092.4 197.9
20 32256 3100.1 198.4
21 33792 3107.2 198.9
22 35328 3113.6 199.3
23 36864 3119.5 199.7
24 38400 3125 200
25 39936 3130.0 200.3
26 41472 3134.6 200.6
27 43008 3138.9 200.9
28 44544 3142.9 201.1
29 46080 3146.7 201.4
30 47616 3150.2 201.6
31 49152 3153.4 201.8

Inhibiting Card Sharing Attacks 247

!255/8" = 31 (i.e. the maximum data size possible in one APDU divided by
8). If this algorithm is replaced with an AES the same table can be used. In
this case the number of CKs per APDU will be divided by 2, so only the rows
corresponding to an even number of CKs per APDU need be considered. This
is because an AES key will require twice the number of bytes as a DES key.

These calculations are based on a smart card with an external clock of 5 MHz
and an ETU1 of 16 clock cycles, which is the fastest speed provided for in the ISO
standards [23]. A faster clock speed can sometimes be used but the behaviour
of a smart card cannot be predicted (some smart cards will refuse to function),
this case is therefore not taken into account.

The values given in Table 1 also assume that data is constantly being sent
or received across the I/O between the CAM and the smart card i.e. process-
ing time is not taken into account. This requires that the I/O is being con-
ducted by an UART2 in the smart card and the block cipher is being done
with a crypto-coprocessor i.e. the I/O and algorithm calculation are not de-
pendent on the CPU. The CPU is therefore just required to send data from
the UART to the crypto-coprocessor and vice versa, as the UART and crypto-
coprocessor will be separate blocks on the chip. In the case of proprietary
algorithms a hardware implementation is unlikely to be available, which will
significantly lower the amount of keys that can be delivered per second, as
CPU cycles will need to be used to calculate the block cipher. It will still
be possible to calculate values of CK while the UART is communicating but
the performance will be significantly slower than a hardware implementation.
As the performance of the proprietary CSA algorithm on a smart card is not
known it is not possible to predict the effect this will have on the proposed
countermeasure.

To use a smart card in this manner will require a special mode, where the
smart card will only respond to commands asking for more keys or to exit this
mode. Otherwise the command dispatcher will take too much time and the
performance will drop.

As can be seen the bandwidth required to share the CKs is greatly increased
from 40 bits per second. It may still be feasible for an attacker to share the series
of CKs with one other person if they have a fast enough internet connection,
but will be unable to act as a server for numerous people. The client OSTB
will also be obliged to decipher the same broadcast as the server OSTB. Even
if an attacker is sharing this data with one other person there are likely to be
synchronisation difficulties streaming this data from one receiver to another,
which will lower the quality of the signal that can be produced by the client
receiver.

1 An ETU is an Elementary Time Unit in the T = 0 protocol [23] and is the amount
of clock cycles required to send one byte. 12 ETU’s are required to send 1 byte.

2 A Universal Asynchronous Receiver-Transmitter (UART) is an autonomous block
on the chip that will receive and and send signals on the I/O pin based on in-
structions from the CPU. This greatly simplifies I/O routines as the CPU does
not need to concern itself with the state of the I/O pin at any given time.

248 M. Tunstall, K. Markantonakis, and K. Mayes

3.2 Using Fast Protocols

The countermeasure proposed above is based on a standard smart card using the
T = 0 protocol. The smart card industry is currently working on several solutions
to the bandwidth problems posed by this protocol. With a fast protocol it should
be possible to have a card that deciphers the broadcast on-the-fly. These are
summarised below, with a brief description on how this would change or replace
the proposed countermeasure:

Proprietary Protocols: A method of using a standard smart card with a pro-
prietary protocol, and therefore a proprietary reader, was presented by Gem-
plus at Cartes 2003 [12]. This protocol allowed music from a CD player to be
deciphered on-the-fly. Using this technology to implement the above counter-
measure a smart card would be able to produce 11000 keys per second [12],
given the bandwidth required to decipher a CD on-the-fly, which gives a re-
quired bandwidth to share the series of CKs of 680.8 Kbits per second. This is
potentially too fast as the CK will change 3 times for each DVB packet treated
by the CAM, assuming that the broadcast is arriving at its maximum band-
width of 4 Mbits/s. It may not be possible to re-key the CAM this often. The
major draw back is the use of a proprietary protocol means that substantial
changes will be required in the CAM to be able to communicate with this card.

USB Smart Cards: Some chip manufacturers propose smart cards with a
USB interface that will allow for a larger bandwidth between a smart card
and reader [28]. These chips include a USB interface conforming to USB
1.1 that will provide a bandwidth of 10 Mbits/s. This is more than enough
to handle a DVB broadcast, although problems may arise with deciphering
the signal. The specification of an example smart card chip can be found
at [27] based on ST Microelectronic’s ST19 chip family. The internal clock
frequency can be raised to 10 MHz, which will not be enough to decipher a
broadcast at 4 Mbits/s on-the-fly. If we assume that a hardware DES takes
16 clock cycles (i.e. 1 clock cycle per round) the deciphering will take about
a tenth of the CPU time, leaving enough time for data transfer etc. In the
case of proprietary protocols this chip is unlikely to be able to provide de-
ciphering on-the-fly due to the amount of CPU time that will be required.
In practice industry has found these cards inadequate to increase the band-
width between a smart card and reader due to the complexity of the host
interface [25], although this view may no longer be valid.

Secure MultiMediaCards: A more recent initiative is the Secure MultiMedi-
aCards (Secure-MMC) [10] that aims to blend smart card technology with
MultiMediaCards [3]. These chips aim to provide secure storage in devices,
such as mobile phones, principally for digital rights management. The advan-
tage of this technology in the context of this paper is that MultiMediaCards
generally have a bus rather than a serial interface. The MMC standard al-
lows for a bandwidth of up to 416 Mbits/s depending on the clock frequency
and the size of the bus used. It is assumed that a Secure-MMC will be able
to decipher several megabytes per second on-the-fly [24]. The Secure-MMC

Inhibiting Card Sharing Attacks 249

is a relatively new technology so no specifications are currently available. It
is assumed that such cards will be able to decipher broadcasts on-the-fly as
the new generation of MultiMediaCards are designed to accept clock speeds
up to 52 MHz [4].

The use of any of these fast protocols is going to be a difficult choice for a
broadcaster. The use of feature rich chips increases the price of each smart card,
as each extra block will require more silicon and development time. This extra
cost will have to be included in the subscription fees, which may drive customers
away. However, it is anticipated that revenue would increase over time if such a
solution was chosen as only subscribers would be able to view broadcasts. The
proposed countermeasure will provide the most cost effective solution until USB
cards or Secure-MMCs become more affordable.

4 Connection Speeds

There are several different connection speeds offered by internet providers. A
summary of these connections is shown in Table 2, where the majority of the
information is taken from [14].

Table 2. The bandwidth available with different connection types

Type of Internet Download Bandwidth Upload Bandwidth
Connection Kbits/s Kbits/s
ADSL 256 256 128
ADSL 512 512 128
ADSL 1024 1024 256

T1 1500 1500
T3 45000 45000

The proposed countermeasure should be effective in stopping the card sharing
attack for ADSL users. A smart card with over 2 keys per APDU will easily be a
able to saturate the upload bandwidth of a “slow” speed ADSL connection. An
ADSL connection with an upload bandwidth of 256 Kbits/s is more problematic.
In theory this would make it possible to share one channel with one other person.
However, in practice it is unlikely to to be practical as ADSL internet connections
will not consistently attain their theoretical maximums. The headers and footers
of all the protocol layers will also add to the bandwidth requirements.

This countermeasure will not stop a the card sharing attack where an attacker
has access to a T1/T3 connection. These connections provide enough bandwidth
that the stream of keys could be shared with another user. It is assumed that
each extra client will add the same bandwidth requirements as the same data
needs to be sent to each client. A T3 connection would therefore be able to supply
key information to a small group of clients. The proposed countermeasure will
not prevent the card sharing attack in this case.

250 M. Tunstall, K. Markantonakis, and K. Mayes

This does not mean that the countermeasure is worthless, as T1/T3 connec-
tions are generally only used by businesses. There is also no way of preventing
a user with a T3 connection from sharing the broadcast they are watching with
at least one other user. Broadcasts are delivered to a user with a bandwidth of
between 1 and 4 Mbits/s. An attacker could potentially decipher the broadcast
and deliver it in clear to a third party.

5 Conclusion

A method of inhibiting the card sharing attack is described that functions by
increasing the bandwidth required to the point where it is less practical to share
the information required to conduct the attack. The communication with the
card is saturated so the only information that an attacker is able to share is the
broadcast being watched rather than an arbitrary channel. It has been shown
that sharing the information required to continue conducting the attack is pro-
hibitive unless the attacker uses a T1/T3 connection, which are normally only
used by businesses and are not affordable by everybody.

The proposed countermeasure provides a way of inhibiting the card sharing
attack until USB and Secure-MMC devices become readily available and afford-
able. For this reason the countermeasure has been designed to minimise the
impact on the existing protocol as major changes to the protocol will be expen-
sive, and may be unnecessary if more powerful secure devices are going to be
used in the near future.

The principle problem of using this countermeasure is that one smart card
is required per screen. It will not be possible to view one broadcast and video
another, or have two televisions viewing different broadcasts, etc. In order to
record a second broadcast a viewer would be required to store the data and
CWs and have this deciphered on-the-fly at viewing time. This is a possible
advantage for broadcasters as they are sure that only legitimate users can view
their emissions, as a smart card needs to be present.

References

1. ETR 154:. Digital video broadcasting (DVB): Implementation guidelines for the use
of MPEG-2 systems; video and audio in satellite, cable and terrestrial broadcasting
applications.

2. Anonymous. CSA – known facts and speculations. http://CSA.irde.to.
3. MultiMediaCard Association. http://www.mmca.org.
4. MultiMediaCard Association. Application note, an0501-1.00, April 2005. http://

www.mmca.org/compliance/buy spec/AN MMCA050419.pdf.
5. EBU Project Group B/CA. Functional model of a conditional access system. EBU

technical Review, Winter 1995.
6. CENELEC. Common interface specification for conditional access and other digital

video broadcasting decoder applications. Technical Report CENELEC Standard
50221, European Committee for Electrotechnical Standardization (CENELEC),
Brussels, Belgium, February 1997.

Inhibiting Card Sharing Attacks 251

7. V. Chachiere. Man ordered to pay $180m restitution for TV signal piracy. Naples
Daily News. http://www.naplesnews.com.

8. Cryptoworks. http://www.digitalnetworks.philips.com.
9. D. J. Cutts. DVB conditional access. IEE Electronics and Communications Engi-

neering Journal, 9(1):21–27, February 1997.
10. Giesecke & Devrient. Secure and mobile storage media – the memory card with

smart card technology. http://www.gi-de.com/, 2005.
11. ETSI. Digital video broadcasting (DVB); support for use of scrambling and condi-

tional access (CA) within digital broadcasting systems. Technical Report ETSI
Technical Report ETR 289, European Telecommunications Standards Institute
(ETSI), Sophia Antipolis, France, October 1996.

12. Gemplus. Cryptomotion. presented at Cartes 2003, 2003. review available at
http://www.prnewswire.co.uk/cgi/news/release?id=112260 .

13. L. C. Guillou. Smart cards and conditional access. In T. Beth, N. Cot, and
I. Ingemarsson, editors, Advances in Cryptology - EUROCRYPT ’84, volume 209
of Lecture Notes in Computer Science, pages 480–485. Springer-Verlag, 1984.

14. helpwithpcs.com. Internet connections explained, a guide to dial-up, adsl and cable
connections. http://www.helpwithpcs.com/internet/internet-connections.
htm#adsl-connections.

15. R. Hewitt. North american MPEG-2 information, July 2003. http://www.
coolstf.com/mpeg.

16. D. Holankar and M. Stamp. Secure streaming media and digital rights manage-
ment. In Proceedings of the 2004 Hawaii International Conference on Computer
Science, pages 85–96. ACM Press, 2004.

17. Irdeto. http://www.irdetoaccess.com.
18. P. Kalina. No-pay TV costs industry $50m. The Age Journal. http://www.theage.

com.um.
19. D. W. Kravitz and D. M. Goldschlag. Conditional access concepts and principles.

In M. K. Franklin, editor, Financial Cryptography – FC ’99, volume 1648 of Lecture
Notes in Computer Science, pages 158–172. Springer-Verlag, 1999.

20. M. Kuhn. Attack on pay-tv access control systems. Security Seminar talk. Uni-
versity of Cambridge, London, UK., 1997.

21. G. C. Langelaar. Overview of protection methods in existing TV and storage
devices. Technical University of Delft, July 1996.

22. J. McCormac. European scrambling system. Waterford University Press, 1996.
23. International Standards Organisation. ISO7816–3 smart card standard: Part 3:

Electronic signals and transmission protocols.
24. D. Praca. Next generation smart card: New features, new architecture and system

integration. 6th e-Smart Conference, Sophia Antipolis, France, September 2005.
25. D. Praca and C. Barral. From smart cards to smart objects: The road to new

smart card technologies. Computer networks, 36(4):381–389, July 2001.
26. Seca. http://www.securityit.com.
27. STmicroelectronics. Smartcard solutions ST19 multi-application smartcard ICs.

http://www.st.com.
28. STmicroelectronics. STmicroelectronics delivers world’s first USB-certified smart

card chips. http://www.st.com, 2002.
29. VIAccess. http://www.viaccess.com.
30. Dream Multimedia Worldwide. Dreambox DM7000s user manual.

http://www.dream-multimedia-tv.de/manual/manual eng.zip.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 252 – 267, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Flooding-Based DoS/DDoS Detecting Algorithm
Based on Traffic Measurement and Prediction*

Shi Yi, Yang Xinyu, and Zhu Huijun

Dept. Computer Science & Technology, Xi’an Jiaotong University,
Xianning West Road 28#, Xi’an, P.R.C.
yxyphd@mail.xjtu.edu.cn

Abstract. This paper analyzed the features of the flooding-based DoS/DDoS at-
tack traffic, and proposed a novel real-time algorithm for detecting such
DoS/DDoS attacks. In order to shorten the delay of detection, short-term traffic
prediction was introduced, and prediction values were used in the detecting
process. Though we use real-time traffic data to calculate the mean and vari-
ance, few periods of data need to be stored because the algorithm is a recurring
process, therefore the occupied storage space is less. Moreover, the complex
and cost of the recurring process is less than calculating the whole sequence, so
the load of the server would not increase much. Although we focus our research
on detecting flooding-based DoS/DDoS attacks, the simulation shows that the
approach also can deal with DDoS attacks that zombies start without simulta-
neousness.

1 Introduction

Flooding-based DoS/DDoS attacks, such as SYN-flooding, ICMP-flooding, UDP
flooding, DNS flooding, and so on, have already become a major threat to the stability
of the Internet [1]. In these attacks, attackers send a large stream of packets to a vic-
tim to consume its key resources, and then the victim fails to provide services to
legitimate clients [2].

It is found by our experiments that the flooding-based DoS/DDoS attacks behaves
such features --- traffic burst and remaining of comparative smooth for some time,
and this can be described by calculating the global average value and the variance of
the traffic. In this paper, we simplify the variance calculating by just calculating the
variance of difference sequence of the traffic, and propose a novel method to detect
the flooding-based DoS/DDoS attacks. Furthermore, to accelerate the attack detect-
ing, we also give an adjusted detecting algorithm with short-term traffic prediction.

The rest of this paper is organized as follows. Section 2 describes the traffic fea-
tures during flooding-based DoS/DDoS attacks. Section 3 proposes the basic

* This work is supported by the NSFC (National Natural Science Foundation of China -- under

Grant 60403028), NSFS (Natural Science Foundation of Shaanxi -- under Grant 2004F43),
and Natural Science Foundation of Electronic and Information Engineering School, Xi’an
Jiaotong University.

 A Flooding-Based DoS/DDoS Detecting Algorithm 253

DoS/DDoS detection algorithm based on the traffic features presented in Section 2.
Section 4 introduces the short-term traffic prediction into the basic detecting algo-
rithm and gives an adjusted method. Experiment results are shown in section 5 to
testify the feasibility of the algorithm and to analyze the sensitivity of the algorithm
by different parameter values. Section 6 expresses related works. Finally, conclusions
are drawn in Section 7.

2 Traffic Features During Flooding-Based Dos/DDos Attacks

Under flooding-based DoS/DDoS attacks, the traffic arrived at a victim behaves
differently from normal traffic. The normal traffic fluctuates violently, and the av-
erage value of it is far from the bandwidth capacity. Whereas the flooding-based
DoS/DDoS attack traffic behaves two distinct features: the burst of traffic and the
trends to be smooth, i.e., it behaves flat-burst. Described by statistical values, it
means the traffic volume measured at the traffic burst is much greater than its
global average value before the burst; and the variance presents a decreasing trend
in a small range after the traffic burst. These features can be clarified by a set of
data as follows.

Fig. 1 shows the measured network traffic data of an FTP server opened to the pub-
lic in our lab. The data set is a time series with the unit packets/s. The length of the
sequence is 4000 seconds. During some periods, DoS attacks were launched by using
a program launching syn-flooding attacks to the server. The start moment and attack-
ing duration of each attack are listed in Table 1.

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

Observation sequence number (seconds elapsed)

N
um

be
r o

f p
ac

ke
ts

Fig. 1. Original observed traffic

Table 1. The start moment and attacking duration of each attack

Attack Start Moment (s) Attacking Duration (s)
Attack A 341 3
Attack B 1428 3
Attack C 2009 5
Attack D 2508 5
Attack E 3855 145

Local features around the periods under attacks are demonstrated from Fig. 2 to
Fig. 4:

254 Y. Shi, X. Yang, and H. Zhu

3800 3820 3840 3860 3880 3900 3920 3940 3960 3980 4000
0

200

400

600

Time/s

T
ra

ff
ic

/P
ac

ke
ts original data

average data

3855

Fig. 2. The real traffic and mean traffic around Attack E(3855s~4000s)

Fig. 3. The difference variance traffic around Attack E(3855s~4000s)

2500 2510 2520 2530 2540 2550
0

200

400

600

Time/s

T
ra

ff
ic

/P
ac

ke
ts original data

average data

2508

Fig. 4. (left) The real traffic and mean traffic around Attack D(2508s~2512s) (right) The differ-
ence variance traffic around Attack D(2508s~2512s)

In Fig. 2 and the left of Fig. 4, the blue solid lines and red dotted lines represent
original data and average data respectively, and during attacks original data are much
higher than average data compared with normal situations. In Fig. 3 and the right of
Fig. 4, the red dotted lines represent the difference variance (defined in Equation 3) of
the data set, and they decrease during the attacks.

In Probability Theory, the formula to calculate the variance of a sequence X with
the length t is

=

−=
t

i

i
t

t
1

2)X)(X(
1

)var((1)

In Equation 1, X(i) means the observed value at the moment i, and X means the
expectation of the sequence X. In practical calculations, the expectation of the traffic
is substituted by the mean of X, which is computed after acquiring every traffic da-
tum, thus it is not stable. However, what is worth concerned about is the relative and

 A Flooding-Based DoS/DDoS Detecting Algorithm 255

local fluctuation of the data, rather than concrete values. On the other hand, the mean
of the difference of a large sequence can be considered as 0, the proof is as follows.

Let d_X be the difference sequence of X, namely for every i>1, d_X(i)=X(i)-X(i-1).
Let d_mean be the mean of d_X, then

()

() ()()

() () () ()
() () () ()

() ()()1
1

)121

2312(
1

1
1

_
1

_

2

2

XtX
t

tXtXtXtX

XXXX
t

iXiX
t

iXd
t

meand

t

i

t

i

−=

−−+−−−+

⋅⋅⋅+−+−=

−−=

=

=

=

(2)

At least, d_mean is much closer to 0 than X is, and when t ∞ , d_mean 0. So
we regard it as 0 to simplify the calculation.

Therefore, the variance of difference sequence of the traffic (called “difference
variance” in this paper, and represented by d_var) can reflect the fluctuation as well.
And the function to calculate d_var is

() ()()

()

() ()()
=

=

=

−−
−

=

−
=

−
−

=

t

i

t

i

t

i

iXiX
t

iXd
t

meandiXd
t

td

2

2

2

2

2

2

1
1

1

_
1

1

__
1

1
var_

(3)

Calculating the variance of the difference sequence in Equation 3 is simpler than
calculating the variance of the original traffic sequence in Equation 1.

3 The Basic Attack Detecting Algorithm

According to the features of flooding-based DoS/DDoS attack traffic given above, a
recursive algorithm to detect such attacks is proposed in the following subsections.

3.1 The Calculation of Statistical Values

In order to satisfy the real-time demands of the algorithm, statistical values are calcu-
lated by a recursive way.

Suppose at the moment t, the original traffic is C(t), the global average value (the
mean of all C(i),i<=t) is c_mean(t), the difference of the traffic is z(t), and the differ-
ence variance (the variance of all z(i),i<=t) is d_var(t). The mean of z(t) is d_mean(t),
which can be considered as 0 according to Equation 2. The calculations of these
statistical values are:

256 Y. Shi, X. Yang, and H. Zhu

1) c_mean(t)=1/t*((t-1)*c-mean(t-1)+C(t)), considering the traffic under at-
tacks may cause the global traffic mean to be greater, the calculation
should be stopped when an attack is detected, and be resumed after it ends.
Such measures can mitigate t gdhe impacts of attacking traffic to the global
mean, so make it much closer to the natural scenario of the network.

2) z(t)=C(t)-C(t-1), (t>1)

3)

() () ()()

()

() ()

() () ()()2

2

22

2

2

2

2

1var_2
1

1

1

1

1

1

_
1

1
var_

tztdt
t

tziz
t

iz
t

tmeandiz
t

td

t

i

t

i

t

i

+−⋅−
−

=

+
−

=

−
=

−
−

=

=

=

=

4) In order to weigh the volume of the traffic at the moment t, a function (t)
is defined as:

()

⋅>

⋅⋅∈
−

−
⋅−

⋅<

=

)(mean_)(,1

c_mean(t)]ht c_mean(t),[ltC(t),
)(mean_)(

)(

)(mean_)(,0

tG

tchttC

ltht

lt

tcltht

tC

tclttC

μ

This definition borrows the concept of “membership function” in Fuzzy Arithme-
tic, but much simpler. In the definition, lt*c_mean(t) means the lower limit of “great”
traffic; if the traffic volume is less than lt*c_mean(t), it can be considered to be “not
great”, namely the weight of “great” is 0. If C(t) [lt*c_mean(t), ht*c_mean(t)], its
weight of “great” is defined by the function (t)=C(t)/((ht-lt)*c_mean(t))-lt/(ht-lt).
And ht*c_mean(t) means the upper limit of ”great” traffic; if the traffic volume ex-
ceeds the global mean by ht times, it can be considered to be “very great”, namely its
weight of “great” is 1. In real applications, the parameters lt and ht should be assigned
according to the performance of networks. For example, according to long-term
measured data of the network, and the definition of lt may have more significant.

3.2 Judging Process

According to the definition of (t), if (t)=0, it is regarded that no attacks occur; if at
the moment t, (t)>0, it is a hint of the beginning of an attack, and the judging proc-
ess is triggered immediately to verify its occurrence.

The following is the description of judging process. There are two predefined two
variables: one is interval, representing the detecting period; another is accumu-
late_volume, representing a volume threshold for a host to tolerate, for example, the

 A Flooding-Based DoS/DDoS Detecting Algorithm 257

size of buffer1. For each time slot t during detection, A(t) represents the attack inten-
sity at that slot. And let accumulate_steps be the largest integer less than (accumu-
late_volume*interval)/C(t). The variables attack_count cooperates with accumu-
late_steps to decide when to alarm. Once the judging process starts up, if the attack
intensity enhances (A(t)>=A(t-1), attack_count increases by 1, otherwise it decreases
by 1. If attack_count accumulates to or surpasses accumulate_steps, the process
alarms. The calculation of attack intensity at the moment t is shown in the following
pseudo code. The influences on detecting results by the value of accumulate_volume
discussed in Section 5.

for each t-th time slot of detection do
accumulate_steps = floor((interval*accumulate_volume)

/C(t)) ; /*(1)*
if(accumulate_steps == 0)

alarm(); /*(2)*/
else{

if(μG(t) > 0){
attack_count++; /*(3)*/
if(d_var(t) >= d_var(t-1))

A(t) = μG(t); /*(4)*/
else A(t) = max(μG(t-1), μG(t)); /*(5)*/

}else attack_count = 0; /*(6)*/
if (attack_count > =accumulate_steps){

if (A(t) >= A(t-1)) /*(7)*/
 alarm();
 else attack_count=accumulate_steps-1; /*(8)*/
 }
}

Explanations to the algorithm:
 (1) This sentence calculates the largest integer that is less than or equal to (accu-

mulate_volume*interval)/C(t) and assign to accumulate_steps;
(2) If large pulsing attacks or flash-crowd-type attacks happen, C(t) would be ex-

tremely huge (larger than accumulate_volume*interval), causing accumulate_steps to
equal to 0, and the process alarms immediately;

(3) If the traffic is “great”, it means an occurrence of a traffic burst, probably a be-
ginning of an attack, increase attack_count by 1;

(4) If the difference variance increases or remains at the moment t compared with
that at t-1, it means that the fluctuation of the traffic is not weakened. There are two
possibilities causing the fluctuation: a) the traffic increases, so (t)> (t-1), and the
probability of attacks enhances as well, then A(t) should be assigned the larger ,

1 The unit of buffer size should be the same as the unit to measure the traffic in the algorithm.

For example, if the measuring unit is the number of packets per time slot, buffer size can be
the number of packets with average size to replete the buffer; if the measuring unit is moni-
tored bytes per time slot, buffer size can be the whole byte number of the buffer. In this paper,
we use the number of packets in both trace experiments and simulation.

258 Y. Shi, X. Yang, and H. Zhu

namely (t) b) the traffic decreases, so (t)< (t-1), and the probability of attacks
reduces, then A(t) is assigned the smaller , which is also (t);

(5) If the difference variance decreases at the moment t compared with that at t-1, it
means that the traffic changes little, therefore the probability of attack enhances, thus
the larger is assigned to A(t);

(6) If the traffic is “not great”, reassign 0 to attack_count, and the process enters
the next time slot of detection;

(7) The coincidence of attack_count>=accumulate_steps and A(t)>=A(t-1) indi-
cates that the attack possibility has already increased or at least remained for no less
than accumulate_steps time slots, and the possibility continues to enhance, so the
process alarms;

(8) While attack_count>=accumulate_steps, but A(t)<A(t-1), it indicates that al-
though the attack possibility has increased or remained for a while, it reduces at the
moment t, the process continues to observe and waits for verification.

According to the recurring of statistical values and the judging process, the only
data needed at a time slot t are C(t-1), c_mean(t-1), d_var(t-1), (t-1), and A(t-1).
The data C(t), c_mean(t), d_var(t), (t), and A(t) are stored for the next time slot.

4 The Ajusted Detecting Algorithm with Short-Term Traffic
Prediction

4.1 The Feasibility of Introducing Short-Term Traffic Prediction into
Flooding-Based DoS/DDoS Attacks Detection

Treating the traffic as a time series, we can establish an adaptive AR model on it and
predict its values based on the model. The predicting approach is Error-adjusted LMS
(EaLMS), which has shorter predicting delay and less prediction error for the short-
term real-time prediction to smoother traffic than to violent fluctuating traffic [3]. The
main intent of introducing short-term traffic prediction into DoS/DDoS detection is to
obtain some data in advance, thus to accelerate detecting. Under flooding-based
DoS/DDoS, the arriving traffic of a victim is smoother than normal. Therefore, if

1425 1430 1435
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

re
la

tiv
e

er
ro

r

time/s
(a)

2505 2510 2515
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

re
la

tiv
e

er
ro

r

time/s
(b)

3852 3857 3862
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

re
la

tiv
e

er
ro

r

time/s
(c)

Fig. 5. Relative prediction errors (a) around Attack B(1428s~1430s) (b) around Attack
D(2508s~2512s) (c) around Attack E(3855s~4000s)

 A Flooding-Based DoS/DDoS Detecting Algorithm 259

EaLMS is applied to predict traffic values, the prediction under attacks is more
accurate than that under normal situations, namely the prediction error is less. Dem-
onstrated in Fig. 5, the relative prediction error during an attack is smaller than nor-
mal cases (to show clearly, the values more than 2 or less than -2 are cut to 2 or -2).

For each C(t), suppose its prediction value is C_p(t), then r_p_err(t) (the relative
prediction error at moment t) is defined as r_p_err(t)=(C-p(t)-C(t))/C(t). From the
Table 2 showing the average |r_p_err(t)|, it is clear that prediction errors during at-
tacks are much smaller than global prediction errors.

Table 2. The comparison of relative prediction error among global traffic and attacking cases

 Average |r_p_err(t)|
Global 2.49

Attack A 0.23
Attack B 0.64
Attack C 0.32
Attack D 0.51

4.2 Adjustments to the Algorithm

After obtained the difference of current traffic (presented by z(t)), the single step
prediction z_predict(t+1) for z(t+1) is calculated. Then let C_p(t+1) be the prediction
value for the traffic at t+1. The z_predict(t+1) is regarded as z(t+1) and be used for
calculating d_var(t+1) and (t+1).

1)

))tz_predict(var(t)1)((t
t

1

)z(z(i)
t

1

z(i)
t

1

(t))(z(i)
t

1
1)var(t

2

2
t

2i

2

t

2i

2

1t

2i

2

1_d

)1t(

mean_d_d

1

++⋅−=

++=

=

−=+

=

+

=

+

=

2) () () ()1_1_ ++=+ tpredictztCtpC

3)

() () ()

() ⋅>+

⋅⋅∈+
−

−
⋅−

+
⋅<+

=

)(mean_1_,1

c_mean(t)]ht c_mean(t),[lt1tC_p ,
)(_mean)(

1_

)(mean_)1(_,0

tG

tchttpC

ltht

lt

tcltht

tpC

tclttpC

μ

For the algorithm in Section 3.2, replace d_var(t) and (t) by d_var(t+1) and
(t+1) respectively. Without short-term prediction, if at the moment t+1 an attack is

detected, it could be detected at the moment t with short-term prediction, because the

260 Y. Shi, X. Yang, and H. Zhu

relevant data at t+1 is obtained by prediction at t, consequently the attack is detected
in advance. If multi-step prediction is applied, the time of detecting the attack will be
ahead more. However, such advance could not be unlimited. For one thing, the more
steps to predict, the more errors to occur. For another thing, only if attacks do occur,
the prediction value are worthy in detection algorithm. Thus multi-step prediction
should be carefully deployed in practice. It is important to point that d_var(t) and (t)
are calculated at the moment t-1 according to the data at that time, so they should be
recomputed based on the real datum at the moment t.

5 Experiment Results and Discussion

5.1 The Basic Algorithm Without Short-Term Prediction

Without the loss of generality, set the parameters accumulate_volume=1200, lt=2.5
and ht=3.5, and the algorithm shows perfect detection performances on the data set of
Fig. 1. The effects are demonstrated in Fig. 6 and Table 3, in which the rate of suc-
cessful detection (the times of correct detections/the total times of attack) is 100%,
and the rate of false detection (rate of considering normal traffic as attack) is 0.

0 500 1000 1500 2000 2500 3000 3500 4000
Time/s

A
tt

ac
ke

d
or

 n
ot

Fig. 6. The detection effects when accumulate_volume=1200, lt=2.5 and ht=3.5

Table 3. The detection effects when accumulate_volume=1200, lt=2.5 and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detected Delay(s)
Attack A 341 344 3
Attack B 1428 1431 3
Attack C 2009 2012 3
Attack D 2508 2510 2
Attack E 3855 3859 4

1) The detection results of different values of accumulate_volume
According to the definition in Section 3.2, accumulate_volume is a parameter

to evaluate the protected host’s tolerable capacity. In real application, it can be
set the buffer size of the host, or any value that the administrator considered as a
threshold for the host to tolerate.

a) accumulate_volume=1100, lt=2.5 and ht=3.5, see Table 4.

 A Flooding-Based DoS/DDoS Detecting Algorithm 261

Table 4. The detection effects when accumulate_volume=1100, lt=2.5 and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detection Delay (s)
Attack A 341 343 2
Attack B 1428 1431 3
Attack C 2009 2011 2
Attack D 2508 2510 2
Attack E 3855 3858 3

- - 2074 -
- - 3588 -

The rate of successful detection is 100%, and the delays of detection are
shorter in Attack A, C and E than those in Table 3, but there are two false detec-
tions. Because reducing accumulate_volume means a smaller tolerable threshold
for traffic of a host, although there are no attacks at 2073s and 3587s, the large
volumes at those moments make the algorithm generate alarms. So if the value
of accumulate_volume is assigned smaller, it is possible to detect an attack
faster, but enhance the probabilities of false alarms.

b) accumulate_volume=1500, lt=2.5 and ht=3.5, see Table 5.

Table 5. The detection effects when accumulate_volume=1500, lt=2.5 and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detection Delay (s)
Attack A 341 344 3
Attack B 1428 Undetected -
Attack C 2009 2014 5
Attack D 2508 2511 3
Attack E 3855 3859 4

Augmenting accumulate_volume has two impacts to the results. Firstly, At-
tack B is undetected in this experiment, because it is the weakest attack (with the
least average intensity) among the five, and the algorithm believes that such in-
tensity fails to reach the tolerable threshold. Secondly, the delay of Attack C is
prolonged. So, larger accumulate_volume would reduce the sensitivity of the
algorithm.
The analysis in a) and b) indicates that the value of accumulate_volume can in-

fluence the response speed of alarms and the probability of false alarms. Small ac-
cumulate_volume value helps to shorten the delays of alarms, but enhances the
chances of false alarm. Large accumulate_volume value increases the delays of
alarms to some extent, and may omit attacks. However, because accumu-
late_volume is assigned due to the process capacity, the ignorant attacks would not
impact the host’s performance seriously. So it is important to assign a proper value
to accumulate_volume to protect the host efficiently by this algorithm.

2) The detection results of different values of lt
a) lt=2, accumulate_volume=1200, and ht=3.5, see Table 6

262 Y. Shi, X. Yang, and H. Zhu

Table 6. The detection effects when lt=2, accumulate_volume=1200, and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detection Delay (s)
Attack A 341 343 2
Attack B 1428 1431 3
Attack C 2009 2012 3
Attack D 2508 2510 2
Attack E 3855 3859 4

- - 900 -
- - 2074 -
- - 2419 -
- - 2654 -
- -- 2757 -
- 2900 -

b) lt=3, accumulate_volume=1200, and ht=3.5, see Table 7.

Table 7. The detection effects when lt=3, accumulate_volume=1200, and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detection Delay (s)
Attack A 341 344 3
Attack B 1428 Undetected -
Attack C 2009 2012 3
Attack D 2508 2510 2
Attack E 3855 3859 4

According to the results of a) and b), the assignment of lt also determines the
sensibility of the detection. Small value of lt means lower tolerance to traffic
bursts of the network, thus attacks can be detected correctly, but less intensity
bursts would be considered as attacks by the process. Contrarily, large value of lt
means higher scale of traffic bursts to bear, thus false alarms would be avoided
to some extent, whereas some attacks would be omitted.
3) The detection results of different values of ht

a) ht=3, lt=2.5 and accumulate_volume=1200
 The results are the same to Fig. 7 and Table 3.

b) ht=4, lt=2.5 and accumulate_volume=1200
 The results are the same to Fig. 7 and Table 3.

According to the experiments in a) and b), the value of ht has few influences
on the results while lt and accumulate_volume remain.
4) Sum up

The algorithm refers to three parameters: accumulate_volume, lt and ht.
Among them accumulate_volume and lt have important influences on the ex-
periment results, determines the sensitivity of the algorithm. And the value of ht
only need to satisfy the condition to make (t) resoluble when
C(t)>=lt*c_mean(t).

 A Flooding-Based DoS/DDoS Detecting Algorithm 263

5.2 The Algorithm with Short-Term Traffic Prediction

5.2.1 The Experiment Results of the Data in Fig. 1
The results of applying the adjusted algorithm with short-term prediction on the data
in Fig. 1 are shown in Fig. 7 and Table 8. The parameters here are still accumu-
late_volume=1200, lt=2.5 and ht=3.5.

Fig. 7. The detection effects of Fig. 1 with single-step prediction when accumulate_volume=1200,
lt=2.5 and ht=3.5

Table 8. The detection effects of Fig. 1 with single-step prediction when accumulate_volume=
1200, lt=2.5 and ht=3.5

Attack Start Moment (s) Detected Moment (s) Detection Delay (s)
Attack A 341 343 2
Attack B 1428 1430 2
Attack C 2009 2011 2
Attack D 2508 2510 2
Attack E 3855 3858 3

- - 588 -
- - 2074 -
- - 2673 -
- - 2876 -
- - 3046 -
- - 3588 -

Compared with the algorithm without prediction, the adjusted algorithm can detect
attacks in advance in most situations if the detections are correct, and the detection
delays are shortened(see Attacks A,B,C and E). But on account of inevitable predic-
tion errors, false detections occurred sometimes.

The two algorithms have advantages respectively. The one that completely relies
on current and former data without any prediction has a higher accuracy, while the
one with predictions has a faster response if the attacks are detected correctly. Accu-
racy and high velocity in detection are conflicting, but we believe that the speed of
detecting is more important in DoS/DDoS attacks detecting. In order to obtain a high
response speed and avoid additional cost for false alarm as more as possible, we apply
both algorithms in every detecting period. An alarm should be generated when either
algorithm detects an attack at first, then corresponding processes (such as source ori-

264 Y. Shi, X. Yang, and H. Zhu

entation [4]) start immediately. If an alarm is from the algorithm without prediction, it
is regarded correct, and running corresponding processes continue without any inter-
ruption in the following time. On contrast, there are two possibilities if the algorithm
with prediction alarms at first. For one thing, the algorithm without prediction alarms
in the next period, it is testified that the alarm in the previous period is correct, so
corresponding processes continues. For another thing, if there is not any alarm from
the algorithm without prediction in the following period, it is testified that the alarm
of the previous period is wrong, and corresponding processes should stop.

The detection effects with the combination of the two algorithms are demonstrated
in Table 9. It is shown that the delay situations are the same as those in Table 8, but
the false alarms are amended.

Table 9. The detection effects of Fig. 1 using the basic algorithm and the combined algorithms
when accumulate_volume=1200, lt=2.5 and ht=3.5

Basic Algorithm Combined Approach
Attack

Start
Moment

(s)
Detected

Moment (s)
Detection

Delay (s)
Detected

Moment (s)
Detection

Delay (s)
A 341 344 3 343 2
B 1428 1431 3 1430 2
C 2009 2012 2 2011 2
D 2508 2510 2 2510 2
E 3855 3859 4 3858 3

5.2.2 The Analysis on the Traffic Sequence of LLS_DDOS_1.0
LLS_DDOS_1.0 is a data set provided by Lincoln Laboratory, MIT to evaluate DDoS
detection [5]. In the final phase of the scenario, the attacker manually launches the
“mstream DDOS” to 131.84.1.31 from three servers simultaneously. The “mstream
DDOS” consists of many, many connection requests to a variety of ports on the
victim. All packets have a spoofed, random source IP address. The traffic is shown
in Fig. 8.

Fig. 8. The traffic data of LLS_DDOS_1.0 phase 5

In this data set, the normal traffic is much less than attack traffic. Table 10 shows
the detection results with 0.1s as its detection period.

 A Flooding-Based DoS/DDoS Detecting Algorithm 265

Table 10. The detection results of Fig. 8 when accumulate_volume=15000, lt=2.5 and ht=3.5

Start Moment 95.8s
Detected Moment 95.9s
Detection Delay 0.10s

5.3 Simulating Experiments in NS-2

5.3.1 Simulation Framework
The experiments in this section are simulations in NS-2 [6]. With the architecture
concerning syn-flooding attack detecting, source orientating and defense proposed in
[4]. The algorithm proposed in this paper works as detecting component in this
system. Its topology is shown in Fig. 9:

The nodes in Fig. 9 are classified into two groups, end-host nodes and router nodes.
Nodes 5, 15, 16, 17, 18, 19, 21, 22, 23 and 24 are end-host nodes, among which nodes 15
and 17 are attacking nodes, with node 16 as their fake source address during attacking,
and nodes 18 and 23 are normal nodes. Node 5 is a protected node (a victim). For other
purposes in this simulation, node 5 forwards all the packets it receives to node 20 which
is deployed the detection algorithm, so node 20 is the same node as node 5 logically.

Fig. 9. The topology of NS-2 simulating experiments

5.3.2 Simulation Results
The steps of the experiments are:

 At the 0th second, nodes 15, 17, 18 and 23 start to request normal TCP con-
nections, and the detecting algorithm starts.

 At the 4th second, nodes 15 and 17 launch syn-flooding attacks to node 20
(node 5) by requesting TCP connections with node 16 as their fake source
thus to destruct normal TCP connections.

 At the 30th second, the simulation stops.

266 Y. Shi, X. Yang, and H. Zhu

Table 11 shows detection results with different attack intensity. The average rate of
normal connection is 20 packets/s each node and the average rate of attacking is
changing. Detection parameters are accumulate_volume=400, lt=2.5 and ht=3.5.

Table 11. The two attacking nodes start at 4.0s simultaneously

Average Attacking Rate per Node Detected Moment Detection Delay
200 packets/s 4.1s 0.1s
160 packets/s 4.2s 0.2s
100 packets/s 4.2s 0.2s
60 packets/s 4.3s 0.3s

Table 11 shows the sensitivity of the detecting algorithm to different attack intensi-
ties, the larger the attacking rate is, the faster the detecting algorithm responses. In
Table 12, the two attacking nodes start at different moments, causing the traffic to
reach a high level in several time slots rather than at once, and the algorithm can also
detect the attacks. So the algorithm shows a valuable performance in DoS/DDoS
attack detecting.

Table 12. The two attacking nodes start at different time with the rate 100 packets/s each

Node 15 Start
Moment

Node 17 Start
Moment

Detected
Moment

Detection
Delay

4.0s 4.1s 4.3s 0.3s
4.0s 4.2s 4.3s 0.3s
4.0s 4.3s 4.3s 0.3s

6 Conclusion

Through analyzing the time series of the traffic arriving at a host, it is clarified in this
paper that the flooding-based DoS/DDoS attacks behaves such features --- traffic
burst and remaining of comparative smooth for some time. According to these fea-
tures, a novel real-time approach to detect such attacks is proposed. The approach
contains a membership function to express the degree of how great a current traffic
value is. It calculates the global average value and the difference variance based on
data obtained in real time, and then judges the occurrence of attacks according to the
following ideas: when the traffic is “great”, the judging process is triggered; then if
the difference variance decreases, or the volume remains “great”, an attack alert is
generated. In order to shorten the delay of detection, short-term traffic prediction was
introduced, and prediction values were used in the detecting process. The feasibility
of the algorithms and their sensitivity to parameter values are analyzed experimen-
tally. Although we focus our research on detecting flooding-based DoS/DDoS attacks,
the simulation shows that the approach also can deal with DDoS attacks that zombies
start without simultaneousness. We will research this in depth in future.

 A Flooding-Based DoS/DDoS Detecting Algorithm 267

References

[1] Comp. Emergency Response Team, “Results of the Distributed-Systems Intruder Tools
Workshop,” http://www.cert.org/reports/dsit_workshop-final.html.

[2] Jelena Mirkovic, Janice Martin and Peter Reiher, “A Taxonomy of DDoS Attacks and
DDoS Defense Mechanisms”, ACM SIGCOMM Computer Communication Review Vol-
ume 34 , Issue 2 (April 2004)

[3] YANG Xinyu, ZENG Ming, ZHAO Rui, SHI Yi, “A Novel LMS Method for Real-time
Network Traffic Prediction”, Lecture Notes in Computer Science, Springer-Verlag Hei-
delberg, ISSN: 0302-9743, Volume 3046 / 2004 (April 2004) 127 – 136, Computational
Science and Its Applications - ICCSA 2004: International Conference(Assisi, Italy, May
14-17, 2004) Proceedings, Part IV

[4] YANG Wen-jing, YANG Xin-yu, SHI Yi, ZENG Ming, ZHENG Shou-qi, “A Novel Al-
gorithm of SYN Flooding Attack Source Orientation & Defense based on Network Traffic
and its Description using Petri Network”, Microelectronics & Computer, Vol.22 No.1
2005,20-24

[5] http://www.ll.mit.edu/IST/ideval/data/2000/LLS_DDOS_1.0.html
[6] The Network Simulator - ns-2. http://www.isi.edu/ns

Hardware Stack Design: Towards an Effective
Defence Against Frame Pointer Overwrite

Attacks

Yongsu Park1, Younho Lee2, Heeyoul Kim2, Gil-Joo Lee1, and Il-Hee Kim1

1 The College of Information and Communications, Hanyang University,
17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea

{yongsu, kjlee, ihkim}@hanyang.ac.kr
2 Division of Computer Science, Department of Electrical Engineering and Computer

Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1
Guseong-Dong, Yuseong-Gu, Daejeon, Korea

{yhlee, hykim}@camars.kaist.ac.kr

Abstract. Currently, a buffer overflow attack is one of the most seri-
ous and widely utilized assaults in computer systems. Defense methods
against this attack can be classified as three: compiler modification, sys-
tem software modification, and hardware modification. Among them,
most of the cases, hardware modification methods aim at detecting or
tolerating alternation of return addresses in the memory stack. How-
ever, to the best of our knowledge, the previous methods cannot defend
against frame pointer overwrite attacks, where an adversary can control
the execution at his/her will by modifying the saved frame pointers in
the stack. In this paper, we present a new reliable hardware stack to de-
tect alternation of saved frame pointers as well as return addresses. We
show that the proposed method can defend against both frame pointer
overwrite attacks and stack smashing attacks.

Keywords: computer security, buffer overflow attack, computer archi-
tecture.

1 Introduction

Buffer overflow occurs when a process tries to store more data in a buffer than
its maximum capacity, by which an adversary can execute a malicious code
or make the process operate in an unintended way [4]. In spite of countless
methods designed to cope with buffer overflow vulnerabilities, new attacks are
continuously appeared such as format string attacks [8], heap overflow attacks,
or multiple free errors. Up till now, buffer overflows are still major cause of
exploited vulnerability.

To cope with this problem, numerous researches have been conducted, which
can be classified as three ways: compiler modification, system software modifi-
cation, and hardware modification.

Among them, we focus on modifying the hardware to enhance security and
to defend against some types of buffer overflow attacks. Up till now, hardware

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 268–277, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hardware Stack Design 269

modification schemes have focused on protecting mainly memory stack contents.
Currently, commercial CPUs such as Pentium-4 or Athlon 64 have the NX (No-
eXecute) bit [3] (Intel calls it the Execute Disable Bit), by which we can prohibit
execution of instructions in the stack. While this helps to defend against some
of buffer overflow attacks where the attack code is injected and executed in the
stack, it cannot defend against various indirect attacks where most of the cases
execution is redirected to system() library function with argment “/bin/sh”.

In addition to the NX-bit, recently several hardware modification methods
have been devised and developed. They use a specially designed RAS (Return
Address Stack) in the CPU to detect modification of the return address in the
memory stack [12,7] or they rely on an additional hardware stack in the CPU
to detect/evade the modification [10,12].

To the best of our knowledge, all the hardware modification methods (ex-
cept for the NX bit) focus on protecting only the return address in the stack
from alternation. Hence, they are vulnerable to the frame pointer overwrite at-
tack, where an adversary modifies only the saved frame pointer to control the
execution (including running a shell).

In this paper, we present a new reliable hardware stack that is located in
the CPU to defend against the frame pointer overwrite attack as well as the
stack smashing attack. In our scheme the hardware stack stores 3-tuples: (saved
frame pointer, return address, stack pointer), by which we can detect the frame
pointer overwrite attack and deal with several exceptional cases such as the
context switch, setjmp/longjmp problem [10], etc.

To examine feasibility of our method, first a stack smashing attack is given and
we show that the proposed scheme can detect it. Then, by slight modification,
we change it into the frame pointer overwrite attack. After that, we show that
the proposed method can also detect the modified attack.

Our scheme can be viewed as an approach to increase trustworthiness as well
as to enhance security of the systems to be protected. The rest of this paper is
organized as follows. In Section 2 we describe the stack smashing attack and the
frame pointer overwrite attack. In Section 3 we describe the proposed method
and in Sections 4 we examine feasibility of our scheme. Finally, we offer some
conclusions in Section 5.

2 Stack Smashing Attack and Frame Pointer Overwrite
Attack

In this section we briefly explain the stack smashing attack and the frame pointer
overwrite attack. Furthermore, we show the relation between them, i.e., with
slight modification the stack smashing attack can be easily changed into the
frame pointer overwrite attack.

2.1 Brief Description of Stack Smashing Attacks [9]

First, we explain the stack smashing attack [9]. Let us consider the vulnerable
code below, which is written in the ANSI C language.

270 Y. Park et al.

#include <stdio.h>
func(char *sm) {

char buffer[256];
int i;
strcpy(buffer, sm);

}

main (int argc, char *argv[]) {
func(argv[1]);

}

Code 1. An example of vulnerable code

Fig. 1 shows the activation record (a. k. a. stack frame) when the function
func() is called in the above code. Note that in Fig. 1 the activation record of
func() is below that of main() and that the stack grows downward (by successive
function calls). On the contrary, the buffer is filled upward (from buffer[0] to
buffer[255] by memory copy operations such as strcpy() or memcpy()).

S
t
a
c
k

f
r
a
m

e
:

m
a
i
n
(
)

S
t
a
c
k

g
r
o
w

s

d
o
w

n
w

a
r
d

%ebp

%esp

char buffer[255]

char buffer[0]

char buffer[1]

int i

…

saved frame ptr

return address

parameter (=argv[1])

S
t
a
c
k

f
r
a
m

e
:

f
u
n
c
(
)

S
t
a
c
k

f
r
a
m

e
:

m
a
i
n
(
)

S
t
a
c
k

g
r
o
w

s

d
o
w

n
w

a
r
d

B
u
f
f
e
r

g
r
o
w

s

u
p
w

a
r
d

%ebp

%esp

<before calling func()> <after calling func()>

Fig. 1. Activation records when func() is called in Code 1

We briefly explain how the stack frame of func() is constructed as follows.
Initially, the stack pointer register %esp points out the top of the stack and the
frame pointer register %ebp indicates the base of the main() stack frame.

First, when the func() is called in the main() function, the parameter (=argv[1])
is pushed in the stack and then the return address is pushed on the stack. After
that, at the beginning of func() execution, the frame pointer register %ebp is
pushed into the stack (we call this value the saved frame pointer hereafter) and
the %ebp is changed to point out the address of the saved frame pointer. After
the all the local variables (buffer[256] and i) are allocated in the stack, finally,
the body code of the func() is executed.

Hardware Stack Design 271

When the execution of func() is finished, immediately before the exit of func(),
the %ebp is copied to the %esp and then the saved frame pointer is popped into
the %ebp (i.e., %ebp is restored to point out the base of the main() stack frame).
Finally, the instruction pointer register %eip has the return address value to
resume the execution of the main().

Now assume that the local buffer buffer[] is overflowed during executing str-
cpy() in the func() and the return address is modified as the value x. Then at
the exit of function func(), the instruction pointer register %eip is changed into
x, which means that the code in the address x is executed. By this way, the
adversary can control the execution, e.g., he can execute the shell code by in-
serting it into buffer[] and redirecting into it [6]. Up till now, there have been
devised countless variants of stack smashing attacks and all of them have the
one common objective, overwriting the return address at their will.

To cope with these attacks several defense methods have been devised
[5,4,11,2,1,12,7,10] and most of them focus on protecting the return address
or detecting alternation of the return address. For example, they use specially
designed RAS (Return Address Stack) in the CPU to detect modification of the
return address in the memory stack [12,7] or they rely on an additional hardware
stack in the CPU to detect/evade the modification [10,12].

2.2 Frame Pointer Overwrite Attack [6]

In the previous subsection, we showed how the stack smashing attack can be
done. With slight modification of that attack scenario, an adversary can evade
the defense against the stack smashing attack (such as checking the modification
of the return addresses in the stack [12,7,10]). The modification attack overwrites
the frame pointer while leaving the return address untouched, from which we
call this a frame pointer overwrite attack [6].

Let us consider the vulnerable code, Code 1 in Section 2.1. Recall that Fig. 1
shows the activation record when the function func() is called in Code 1. Recall
that in Fig. 1 the activation record of func() is below that of main(). At this time,
we explain how this structure is constructed by using the following disassembled
code of the above program. In the main() function, command ‘pushl %edx’ puts
the parameter (=argv[1]) in the stack and ‘call 0x8048134 <func>’ pushes the
return address. At the beginning of func(), ‘pushl %ebp’ saves the frame pointer
into the stack. Immediately before the exit of func(), commands ‘popl %ebp’
restores the frame pointer and command ‘ret’ returns the execution to the main
function. Then, in main(), the commands ‘addl $0x04, %esp; movel %ebp, %esp;
popl %ebp; ret’ are sequentially executed.

Assume that the local buffer buffer[] is overflowed during executing strcpy() in
the func() and the saved frame pointer is modified as the value x. Then at the
exit of function func(), the frame pointer register %ebp has the value x. After the
return to the main function, the commands ‘addl $0x04, %esp; movel %ebp, %esp;
popl %ebp’ increase the value of %esp by 4, move the value of %ebp to %esp,
change the value of %ebp. Finally, the command ‘ret’ changes the instruction
pointer %eip into the value that is pointed by the stack pointer %esp (= x + 4).

272 Y. Park et al.

0x8048180 <main>: pushl %ebp <- beginning of the function main()
0x8048181 <main+1>: movel %esp, %ebp
...
0x80481a8 <main+40>: pushl %edx
0x80481a9 <main+41>: call 0x8048134 <func>
0x80481ae <main+46>: addl $0x4, %esp
0x80481b1 <main+49>: movl %ebp, %esp
0x80481b3 <main+51>: popl %ebp
0x80481b4 <main+52>: ret <- end of the function main()
...
0x8048134 <func>: pushl %ebp <- beginning of the function func()
0x8048135 <func+1>: movel %esp, %ebp
0x8048137 <func+3>: subl %0x104, %esp
...
0x804817c <func+72>: movl %ebp, %esp
0x804817e <func+74>: popl %ebp
0x804817f <func+75>: ret <- end of the function func()

Code 2. Disassembled instructions of Code 1

If an attacker wants to execute the code having the address y, then he care-
fully overflows the local buffer buffer[] such that the frame pointer register %ebp
has the value x = y − 4. Then, at the exit of the function ‘main()’, the in-
struction having address y is executed. By using this abnormal behaviour, the
attacker can execute the shell code by inserting and redirecting into it [6] or
can perform the return-into-libc() attack or the GOT (Global Offset Table)
attack, etc.

3 Proposed Method

As mentioned in the abstract, defense methods against buffer overflow attacks
can be classified as three: compiler modification, system software modification,
and hardware modification. Among them, we believe that hardware modification
is more effective than the others because we need not recompile the user pro-
gram and only slight modification of system softwares is required, i.e., if we use
the enhanced CPU that contains the proposed scheme and then slightly patch
the system softwares, security of the entire system can be strengthened. (This
approach is identical to that of the NX-bit (No-eXecute) bit [3] in Pentium-4 or
Athlon 64, which is the most practically and widely used defense method against
buffer overflow attacks.)

Unlike hardware modification methods, compiler modification techniques such
as StackGuard [5] or PointGuard [4] need recompilation of each application.
System software modification methods such as ASLR (Address Space Layout
Randomization) provided by the PAX project [11] or Bhatker et al.’s scheme
[2] require complex modification of system softwares (operating system kernel,
application loader, etc).

Hardware Stack Design 273

Note that our method is the way to extend the facility in the existing CPU
architecture while preserving compatibility, not to modify the ISA (Instruction
Set Architecture) to break compatibility.

Moreover, we suggest that this hardware enhancement technique can be used
to only the privileged processes to minimize the security risk and to reduce
the performance degradation. (e.g., for the NX bit major operating systems
such as Windows Server 2003 can selectively use it to the privileged/important
processes).

In this section we describe the proposed hardware stack. This stack resides
in the CPU, has the fixed size, and supports overflow/underflow detection fa-
cilities. The stored value is 3-tuple: <saved frame pointer, stack pointer, return
address>. Fig. 2 shows the structure of the hardware stack.

…

stack pointer

saved frame ptr

return address

…

return address

stack pointer

saved frame ptr

-
t
u
p
l
e

S
t
a
c
k

g
r
o
w

s

u
p
w

a
r
d

3

Fig. 2. Hardware stack in the proposed scheme

When the call instruction is executed, a 3-tuple is pushed into the hardware
stack and when the ret instruction is executed, the 3-tuple is popped. Detailed
description is as follows.

1. Call Instruction Execution: First, the return address and the value of
stack pointer %esp are stored into the hardware stack. Then, the original call
operation is performed: the return address is stored in the memory stack and
the instruction pointer %eip is set to the starting address of the callee func-
tion. After the call instruction is executed, the CPU observes the fetched
instructions until ‘pushl %ebp’ appears. If so, after this instruction is ex-
ecuted, the hardware stack stores the value of %ebp (= the saved frame
pointer) and completes the 3-tuple.

274 Y. Park et al.

2. Ret Instruction Execution: When the CPU fetches ‘popl %ebp’, it trig-
gers a certain internal status bit, called check ebp. This status bit is turned
off when the value of the register %ebp is changed (by instructions addl/movl/
incl, etc). In the case of the execution of ‘ret’, if the check ebp bit is on, the
CPU compares the value of %ebp and the saved frame pointer in the hard-
ware stack. If two values are identical, then the CPU performs the following
2 comparisons: the saved stack pointer in the hardware stack and the value
of the register %esp, the return address in the hardware stack and the return
address in the memory stack. If they are identical to each other, the CPU ex-
ecutes the ret instruction. Otherwise, it terminates the execution and raises
an exception.

3.1 Handling Overflow/Underflow in the Hardware Stack

Since the size of the hardware stack is finite, it can be overflowed if deeply-nested
functions are called. If an exception is raised due to overflow, the CPU raises
an exception and the operating system should swap the entire content of the
hardware stack into the main memory.

Because the swapped memory should be protected under alternation by ad-
versaries, we suggest that it is saved in the PCB (Process Control Block), which
cannot be directly accessed by the user process. The swapping procedure can be
done by the special CPU instruction or regular load/store instructions by using
the memory mapped I/O, just as in [10].

If underflow occurs, the operating system catches the exception and restores
the swapped context in the PCB into the hardware stack.

3.2 Handling the Context Switch

When a context switch occurs in the operating system, all status including regis-
ter values should be saved and restored. In addition to this, the operating system
should save the content of the hardware stack for the saved process/thread and
restore the saved content for the resumed process/thread. The saving or restoring
procedure is already mentioned in Subsection 3.1.

3.3 Setjmp()/Longjmp() Problem

When a C-language source code contains setjmp() or longjmp(), multiple activa-
tion records should be popped together, which causes inconsistency between the
hardware stack and the memory stack (for further explanation, refer to [10]). We
choose [10]’s solution, where longjmp() should be modified to use indirect jump
(i.e., we should modify the shared library, libc.so) and in the case of execution
of call instruction, the value of the stack pointer is stored in the hardware stack.
We omit the detailed the procedure to handle the setjmp()/longjmp(). Refer
to [10].

Hardware Stack Design 275

4 Security Analysis

In this section, we show that the proposed scheme can defend against both the
stack smashing attack and the frame pointer overwrite attack. Fig. 3 shows the
structure of the execution parameter by which an adversary can invoke the stack
smashing attack in the code described in Section 2.

NOP NOP … shell code any X

256 bytes
4 bytes 4 bytes

address X

Fig. 3. Parameter for the stack smashing attack

If the execution is done by using the above parameter, during the strcpy()
execution in func(), the return address in Fig. 1 is changed to the value X .
Hence, at the return of func(), shell code is executed.

However, in the proposed scheme, at the func() call, both the return address
and the value of the stack pointer (=%esp) are stored in the hardware stack.
After that, the return address in the memory stack is overwritten to X . Finally,
at the return of func(), an exception is raised due to inconsistency between the
return address in the hardware stack and that in the memory stack.

From now on, consider the frame pointer overwrite attack that was described
in Section 2. Fig. 4 shows the structure of the execution parameter by which an
adversary can invoke the frame pointer overwrite attack in the code described
in Section 2.

NOP NOP … shell code Y- 4

256 bytes
4 bytes

address Y

Fig. 4. Parameter for the frame pointer overwrite attack

As explained in Section 2, by using the above parameter, an adversary can
overwrite the saved frame pointer as Y − 4 and eventually the shell code is
executed.

If the above attack is done in the proposed scheme, at the function call of
func(), the return address and the value of stack pointer %esp are stored in
the hardware stack. Then, call operation is performed (the return address is
stored in the memory stack and the instruction pointer is set to the starting

276 Y. Park et al.

address of func()). After the call instruction is executed, the CPU fetches ‘pushl
%ebp’ instruction and the hardware stack stores the value of %ebp. Then, during
execution of strcpy(), the saved frame pointer in the memory stack is overwritten
to Y − 4. At the return of func(), the CPU fetches ‘popl %ebp’ and sets the
check ebp bit on. Then, CPU fetches ‘ret’ and the CPU compares the value of
%ebp and the saved frame pointer in the hardware stack. Since the two values
are different, execution is terminated and an exception is raised.

5 Conclusion

In this paper we have designed a new hardware stack to defend against both the
stack smashing attack and the frame pointer overwrite attack by storing 3-tuples:
(return address, stack pointer, frame pointer). Moreover, we have dealt with how
to handle the problems due to the context switch, stack underflow/overflow,
and setjmp()/longjmp(). To examine the feasibility of our method, first a stack
smashing attack is given and we show that the proposed scheme can detect
it. Then, by slight modification, we change it into the frame pointer overwrite
attack and show that the proposed method can also detect the modified attack.
Our scheme can be viewed as an approach to increase trustworthiness as well as
to enhance security of the systems to be protected.

Acknowledgement

This work was partially supported by Korea Information Security Agency and
National Security Research Institute. The content of this work does not neces-
sarily reflect the position or policy of the government.

References

1. Gabiela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko
Stefanovic, and Dino Dai Zovi. Randomized Instruction Set Emulation to Dis-
rupt Binary Code Injection Attacks. In 10th ACM Conference on Computer and
Communication Security, pages 281–289, October 2003.

2. Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address Obfuscation: an
Efficient Approach to Combat a Broad Range of Memory Error Exploits. In 12th
USENIX Security Symposium, pages 105–120, August 2003.

3. NX bit. from wikipidia, free enclopedia. avaliable at http://en.wikipedia.org/wiki/
NX bit.

4. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: Pro-
tecting Pointers From Buffer Overflow Vulnerabilities. In 12th USENIX Security
Symposium, pages 91–104, August 2003.

5. Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, and Steve
Beattie. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
overflow Attacks. In 7th USENIX Security Symposium, pages 63–78, January 1998.

6. klog. The Frame Pointer Overwrite, Phrack Magazine, Vol. 9, Issue 5, 1999.

Hardware Stack Design 277

7. R. B. Lee, D. K. Kang, J. P. McGregor, and Z. Shi. Enlisting Hardware Architecture
to Thwart Malicious Code Injection. In International Conference on Security in
Pervasive Computing, 2003.

8. T. Newsharm. Format String Attacks, GUARDENT Technical Report, 2000.
9. Aleph One. Smasing The Stack For Fun And Profit. Phrack 49, File 14 of 16, 1996.

10. H. Ozdoganoglu, T. N. Vijaykumar, and C. A. Jalote et al. SmashGuard: A Hard-
ware Solution to Prevent Security Attacks on the Function Return Address. Tech-
nical report, TR-ECE-03-13, Purdue University, School of ECE, 2003.

11. PaX team. The PaX Project. avaliable at http://pageexec.virtualave.net, 2001.
12. J. Xu, Z. Kalbarczyk, S. Partel, and R. K. Iyar. An Architecture Support for

Defending Against Buffer Overflow Attacks. In Workshop on Evaluating and Ar-
chitecting System Dependability, 2002.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 278 – 291, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling of Network Intrusions Based on
the Multiple Transition Probability*

Sang-Kyun Noh1, DongKook Kim2, Yong-Min Kim3, and Bong-Nam Noh2,**

1 Interdisciplinary Program of Information Security,
Chonnam National University, Korea
guru@lsrc.chonnam.ac.kr

2 Div. of Electronics Computer Engineering,
Chonnam National University, Korea
{dkim, bbong}@chonnam.ac.kr

3 Dept. of Electronic Commerce,
Chonnam National University, Korea

ymkim@chonnam.ac.kr

Abstract. In the TCP network environment, all unit transmissions are con-
structed using sessions. In the session, packets are transmitted sequentially. In
this case, the previous and next packets contain causality mutually. Thus, we
propose a method that models network transmission information based on tran-
sitions of packet states. In addition to the transition model, a probability matrix
for the multiple state-transition models of all sessions is represented. The
matching of the models is achieved using the maximum log-likelihood ratio.
Evaluation of the proposed method for intrusion modeling is conducted by us-
ing 1999 DARPA data sets. The method is also compared with Snort-2 which is
misuse-based intrusion detection system. In addition, the techniques for advanc-
ing proposed method are discussed.

Keywords: Network-based intrusion detection, multiple transition probability,
Ergodic model, probability-based modeling, likelihood measure.

1 Introduction

The set of TCP network packets transmitted depending on one activity is called a
session, which is the sequential transmission group of a series of packets from
connection opening to closing. In the session, all packets include sequential
characters. This means that there is causality between a previous packet and the next
packet, and this causality is represented as state-transition information. The states of
TCP packets are composed of field values of several pieces of header information. In
a session, statistical transition information of all packet states can be shown as a
frequency matrix.

 * This research was supported by the MIC(Ministry of Information and Communication),

Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Assessment).

** Correspondent author.

 Modeling of Network Intrusions Based on the Multiple Transition Probability 279

To combine such frequency matrices for multiple sessions, we propose a
probability matrix for multiple state-transition information. In this case, we use the
ergodic model [1] are applied using Markov chains of Markov models for multiple
(independent) observation sequences. Each state can reach any other state of the
model in a single step. We also detect on the model matching method using the
maximum log-likelihood ratio [2].

In this paper, experiment of the proposed model is achieved using 1999 DARPA
Intrusion Detection Evaluation Data Sets (DARPA99) [7]. We show the possibility of
our modeling technique through analysis of detection results. And the effectiveness of
our intrusion detection system is compared with Snort-2, which is a packet-based
misuse detection system. Moreover, ideas for advancing the effectiveness of the
proposed model are introduced.

This paper is structured as follows: In Sect. 2, characteristics of intrusion detection
using Markov models are represented. In Sect. 3, the frequency model of state-
transition of each packet in a TCP session is proposed. In Sect. 3.1, selected features
are introduced. In Sect. 3.2, state information of packets is shown. In Sect. 3.3, state-
transition information using a frequency matrix is presented. In Sect. 4, the modeling
method of multiple state-transition information is represented. In Sect. 4.1, a model
for multiple transition probability is proposed. In Sect. 4.2, the method of model
matching is represented. In Sect. 5, the effectiveness of the proposed method is
analyzed using several experimental results. Finally, this paper is concluded and
future ideas for improvements are discussed in Sect. 6.

2 Related Works

The two main Markov models are the left-to-right model and the ergodic model. In
the left-to-right model, the probability of going back to the previous state is set to
zero, and therefore the model will always start from a certain state and end in an
exiting state. In the ergodic model of every state can be reached from any other state
in a finite number of time steps [1].

In [4], Otsuka and Ohya used left-to-right models with three states to model each
type of facial expression. The advantage of using this model lies in the fact that it
appears natural to model a sequential event with a model that also starts from a fixed
starting state and always reaches an end state. It also involves fewer parameters, and
therefore is easier to train. However, it reduces the degrees of freedom the model in
an attempt to account for the observation sequence. There has been no study to
indicate that the facial expression sequence is indeed modeled well by the left-to-right
model. On the other hand, using the ergodic model allows more freedom for the
model to account for the observation sequences, and in fact, for an infinite amount of
training data it can be shown that the ergodic model will reduce to the left-to-right
model, if that is indeed the true model. In this work both types of models were tested
with various numbers of states in an attempt to study the best structure for modeling
facial expressions.

280 S.-K. Noh et al.

[5] has proposed an anomaly-based IDS using the privilege transition flows data
and combining multiple hidden Markov models. This method can open a new way of
utilizing the computation-intensive anomaly detection technique in the real world,
based on behavioral constraints imposed by security policies and on models of typical
behavior of users. However, this method is not suitable for network data.

Estevez-Tapiador, et al. [8] proposed anomaly detection methodology applied to
TCP and disposed in two steps. First, a quantization of the TCP header space is
accomplished, so that a unique symbol is associated with each TCP segment, and
then represented by a sequence of symbols. The second step is the modeling of
these sequences by means of a Markov chain. The model is built using the normal
usage of the protocol, so that deviations from the behavior provided by the model
are detected. However, this approach simply models using the flags of TCP header
without information about transmission directions of the packets and so on. It is
difficult to clearly define the characteristics of a mutual communication. Moreover,
the model is not complete because the probabilities of all transitions are not
computed.

3 State-Transition Information of Packets in a TCP Session

A session in the TCP network environment is formed by packets of the same socket
pair1, and these packets which are included in the session, have correlated sequences
such as the stream of network traffic. It is assumed that previous packet and next
packet (in other words, current packet or observed packet), are closely connected in a
session.

3.1 Feature Selection

To indicate the property of each TCP packet, we extract important features from the
packet header fields. [6] described the causality of protocol measures for network-
based intrusion detection, using DARPA99. The causality analysis system has some
fault to extract specific measures depending on a change of a network environment;
nevertheless, we could have gained hints about general characteristic measures in a
TCP/IP network.

IP-flag offers the fragmentation information of packets. TCP-flag also can reveal
the role information of packets. In this case, Direction of the transmission is
important.

3.2 State of a Packet

We select the state of each packet from the protocol header fields. The state
information is presented in Table 1.

1 The socket pair is a way to uniquely specify a connection in a TCP/IP network, i.e., source IP

address, source port, destination IP address, and destination port.

 Modeling of Network Intrusions Based on the Multiple Transition Probability 281

Table 1. Bits-based state information for each network packet. The state has a value of 9-bits
composed of IP-flag, TCP-flag, and Direction. Thus, it can represent 512 (29) kinds of states.

 State Information by 9-bits

Composition
Direc-

tion
TCP-flag IP-flag

sub-States DIR URG ACK PSH RST SYN FIN DF MF

sub-Values 256 128 64 32 16 8 4 2 1

IP-flag (flag field of IP protocol header) consists of a total of 3-bits, i.e., R
(Reserved), DF (Don’t Fragment), and MF (More Fragments). Only a space of 2-bits
is allocated to IP-flag sub-state information, because the R bit is not used. TCP-flag
(flag field of TCP protocol header) consists of a total of 6-bits, i.e., URG (Urgent
Pointer field significant), ACK (Acknowledgment field significant), PSH (Push
Function), RST (Reset the connection), SYN (Synchronize sequence numbers), and
FIN (No more data from sender). If it is the packet transmitted from client to server,
the Direction bit is set, otherwise the bit is zero.

Fig. 1. Operation example for the state of a network packet. A packet transmitted from client to
server has TCP-flag of ACK|PSH and IP-flag of MF. And the state value is 353.

The state of a packet transmitted from client to server, has TCP-flag of ACK|PSH
and IP-flag of MF is gained as shown in Fig. 1. The bits-based state of the packet is
101100001(2), and thus the state value becomes 353(10). These states can be
represented as 512 (29) kinds of states in 0 state 511.

3.3 State-Transition Information

A state-transition matrix is generated based on state information. We save the
transition information of an observed state that is changed from a previous state in a
session. The matrix is composed of previous-states row and observed-states column.
The matrix has information of the statistical frequencies of each state-transition. Fig. 2
represents a frequency matrix for the state-transition information of the following:

(264 72 322 354 66 354 66 324 66 68 322)

which is transition information of states the packets have in a session. In this way, a
session has a frequency matrix for its state-transition information. We can attempt
statistical learning based on state-transition information of all the training sessions.

282 S.-K. Noh et al.

 Observed States

 S 0 1 . . . 66 67 68 . . . 72 . . . 322 323 324 . . . 354 . . . 511

0

1

. . . .

66 1 1 1

67

68 1
. . .

72 1

. . . .

264 1

. . .

322 1

323

324 1
. . .

354 2

. . .

P
re

vi
ou

s
 S

ta
te

s

511

Fig. 2. Frequency matrix for state-transition. The matrix represents the statistical frequency
numbers of state-transition information of all packets in a session.

4 Modeling for the Multiple State-Transition Information

The method of using a frequency matrix has the defect that it must maintain the
matrix for all sessions. We thus describe a technique that generates only a single state-
transition matrix for all training sessions, and is based on Markov models theory.

Markov models contain each state and the associated transition probability. We
propose a specific model for state-transition on the basis of the ergodic model shown
in Fig. 3. The model contains statistical causalities between states of sequential
packets in a session.

 Modeling of Network Intrusions Based on the Multiple Transition Probability 283

Fig. 3. Ergodic model of Markov chains

4.1 Multiple State-Transition Probability Model

The transition probability from previous state p to observed state o is defined as the
following equation:

)|Pr(1 pSoSa iipo === − , 0:, ≥∀ poaop and
=

=∀
N

o
poap

1

1: (1)

where N is total number of possible states. And the probability of the initial state is
defined as the following:

)Pr(1 pSp ==π ,
=

=
N

p
p

1

1π (2)

On the other hand, the transition probability is calculated by frequency, as the
following:

= −

−
− ==

− N

j ij

ii
iiSS

SS

SS
SSa

ii

1 1

1
1

)|Fr(

)|(Fr
)|Pr(

1
, 2: ≥∀ ii (3)

where N
J=1Fr(Sj|Si-1) is total frequency of all observed states about the previous state.

This is proposed in order to indicate the relationship with the previous states. If it is
divided by total frequency of all previous states, it will have a relationship with the
observed state, of all previous states. However, the operation leads to results of Pr(Si-

1|Si) against transition probability of equation (1).
The probability of sequence S = {S1,S2,...,ST} can be defined by Markov properties

as the follows:

284 S.-K. Noh et al.

)|Pr()...|Pr()Pr(),...,,Pr()Pr(112121 −== TTT SSSSSSSSS (4)

In other words, we have:

∏∏∏
==

−
=

−
===

T

i
SSS

T

i
ii

T

i
i ii

aSSSSS
22

11
1

11
)|Pr()Pr()Pr()Pr(π (5)

The probability defined in equation (5) is the likelihood it can be used as the
criterion for recognizing models. Here, the probability of initial state is ignored,
because the start of TCP connections is almost a transmission of SYN packet that is
the first step for 3-way handshake. The first step is not important. However, we must
take precautions because thereafter repeated transmissions of the SYN packet might
be a DoS attack, such as SYN flooding.

Therefore, the likelihood (L) can be defined by the following equation:

∏
=

−
=

T

i
SS ii

aL
2

1
 (6)

However, the likelihood may result in an underflow by multiplications of the
probabilities. Thus, ultimately, log-likelihood (LL) is specified as:

=
−

==
T

i
SS ii

aLLL
2

)log()log(
1

 (7)

The log-likelihood is the sum of the transition log-probabilities of states. This is
our method for model matching, and the model is built for multiple state-transition
information as the probability matrix. Fig. 4 presents an example for building the
probability matrix. In the example, the three training sessions have four sub-states,
i.e., 0, 1, 2, and 3. The trained sessions are as follows:

- Session #1 = {2,2,2,3,3,1} : 2 2 2 3 3 1
- Session #2 = {2,2,2,3,3,0,1} : 2 2 2 3 3 0 1
- Session #3 = {3,3,2,0,1} : 3 3 2 0 1

If a frequency is zero, we give a minimum value for including all cases of the state-
transition among the proposed model. The minimum frequency (Frmin) value must be
a low number such as 0.001.

As an additional example, the log-likelihood between an arbitrary session
{2,2,3,0,1} with the probability matrix of Fig. 4, is calculated by the following:

)log()log()log()log(01302322 aaaaLL +++=

003.2

2
log

6

1
log

001.7

2
log

001.7

4
log +++=

566.1−=

This demonstrates that the greater the log-likelihood, the greater the similarity.

 Modeling of Network Intrusions Based on the Multiple Transition Probability 285

S 0 1 2 3 S 0 1 2 3 S 0 1 2 3

0 0 1 0 1

1 1 1

2 2 1 2 2 1 2 1

3 1 1 3 1 1 3 1 1

Frequency Matrix
of Session #1

Frequency Matrix
of Session #2

Frequency Matrix
of Session #3

S 0 1 2 3

0 2

1

2 1 4 2

3 1 1 1 3

Multiple Frequency Matrix of all the Sessions

 Minimum Frequency (0.001)

S 0 1 2 3 Sum

0 0.001 2 0.001 0.001 (2.003)

1 0.001 0.001 0.001 0.001 (0.004)

2 1 0.001 4 2 (7.001)

3 1 1 1 3 (6)

Applying Minimum Frequency to Zero Frequencies

 log-Probability

S 0 1 2 3

0
003.2

001.0
log

003.2

2
log

003.2

001.0
log

003.2

001.0
log

1
004.0

001.0
log

004.0

001.0
log

004.0

001.0
log

004.0

001.0
log

2
001.7

1
log

001.7

001.0
log

001.7

4
log

001.7

2
log

3
6

1
log

6

1
log

6

1
log

6

3
log

Probability Matrix for Multiple State-Transition

Fig. 4. Example of probability matrix for multiple state-transition of sessions #1, #2, and #3

286 S.-K. Noh et al.

4.2 Matching for the Detection

We represent a method for detecting intrusions using model matching. We ultimately
calculate a ratio with normal model, for determining the attacks. The log-likelihood
ratio (LLR) is defined as:

)()()
)(

)(
log(NLLMLL

NL

ML
LLR −== , },,,...,,{ 21 NAAAAM K∈ (8)

where will also be referred to as “normalized scaled log-likelihood”. The usual
normalized likelihood is typically used to obtain posterior estimates from likelihoods
(as often used, e.g., to estimate confidence measures) [3]. The log-likelihood ratio is
defined as the ratio of log-likelihood with the trained models M, LL(M), and log-
likelihood with normal model N, LL(N). A is an integrated model of all trained attacks
{A1,A2,...,AK}.

In this paper, we propose the intrusion detection system (Fig. 5) based on the
method of the maximum log-likelihood ratio (MLLR). The multiple state-transition
probability models (i.e., matrices) of the three kind of learning sets are built, these
are: each attack, all attacks, and normal sessions. And then we detect trough the
model matching. The input data are matched by the model with the greatest
likelihood. In this case, data matched by model of all attacks can be classified as
unknown attacks, because these are not included in each of the trained attacks or
normal data.

Fig. 5. The overview of the proposed intrusion detection system

 Modeling of Network Intrusions Based on the Multiple Transition Probability 287

The decision process of the detection module is shown above. It is detected when
MLLR is bigger than zero. This is achieved as follows.

)max(LLRMLLR = , 0≥MLLR (9)

If MLLR is zero, the matched target is a normal session, because LLR computed by
matching with the trained normal model is zero always. The model matching process
is described in Fig. 6.

Fig. 6. The process of model matching. Normalized scaled MLLR has range bigger than or
equal to zero.

In other words, the input data are determined as normal if MLLR = 0, otherwise,
these can be detected in the case of MLLR > 0. In order to apply the threshold
concept, it is detected when MLLR is bigger than or equal to (> 0).

5 Experimental Results

We have used the DARPA99 data sets for evaluation of the proposed model. This
includes old data sets, but the trust of this data for intrusion detection can still be
beneficial. It is sufficient to guess the possibility of the proposed modeling technique.

Attacks from week2 data sets (Table 2) and normal data sets of week1 were used for
training in the preprocessing stage of the learning module. Attacks of week4 data sets
(Table 3) were also used for testing in the detection module. The data consists of three
attack classes, which are Denial-of-Service (DoS), Probes, and Remote-to-Local
(R2L). And sessions of TCP protocol were extracted from traffic of the data sets. In the
training data sets, attack sessions are not sufficient except for mailbomb and neptune
attacks. To gain more correct models of attacks, more training data is required.

The testing data sets include unknown attacks. Generally, the propensities of
attacks of the DoS class are similar with one other, and Probes is also the same. We
can see the possibility of worm detection from their unknown detection ability,

288 S.-K. Noh et al.

Table 2. Training data sets of week2 attacks

Attack Class Attack Name Number of Sessions
back 80

crashiis 4
land 2

mailbomb 1000
DoS

neptune 20480
NTinfoscan 14
portsweep 33 Probes

satan 55
ftpwrite 6

httptunnel 4 R2L
phf 2

Table 3. Testing data sets of week4 attacks. These sets also include unknown attacks.

Attack Class Attack Name Number of Sessions
crashiis 2
dosnuke 1

land 1
mailbomb 1366

DoS

sshprocesstable 501
NTinfoscan 15
portsweep 26 Probes

satan 16
ftpwrite 3

guest 18
httptunnel 10

imap 1
named 6
ncftp 27
phf 2

xlock 4

R2L

xsnoop 2

because the behaviors of worm attacks are similar to them. In addition, the DSI (deep
stream inspection) method will be useful in detecting such spread attacks.

We have compared the detection rates and the false-positive error rates for
verifying the trained models in the Receiver Operating Characteristic (ROC) curve as
shown in Fig. 7. The results of the several attacks (mainly, mailbomb and satan) were
not available. They are attacks of the DoS and the Probes class. We can assume that
the reason for this is due to training data sets not containing sufficient data.

 Modeling of Network Intrusions Based on the Multiple Transition Probability 289

Fig. 7. ROC for each of all training data sets

For the probability matrix, in all experiments, the minimum frequency of (Frmin =
0.001), is used.

Three modeling modes for all the trained attacks were used in the experiment. First,
we have built models for each attack. Second, we have built three attack models for
each class (DoS, Probes, R2L). Third, we have built one integrated model for all attacks.

Such as Table 4, the first modeling method reveals the best results, and the detector
is more efficient than Snort-2. The false-positive rate was given equally. It is possible
to make improvements by analyzing differences in the attacks and the normal models.
Details of the detection results are described in Table 5. The proposed detection
system shows better effectiveness in DoS and Probes attacks. These attacks are
difficult to be detected in Snort-2, the typical packet-based IDS.

Table 4. The result of detections in the testing data sets. These include both known and
unknown attacks.

Multiple Transition Probability Model
 Snort-2

for each Attack for each Class for all Attacks

Detection rate 65 % 84 % 61 % 30 %

False-Positive rate 0.5 % 0.5 % 0.5 % 0.5 %

290 S.-K. Noh et al.

Table 5. Details of the detection results

Multiple Transition Probability Model
Attack Snort-2

for each Attack for each Class for all Attacks

crashiis 100 % 100 % 100 % 0 %

dosnuke 0 % 100 % 100 % 100 %

land 100 % 100 % 100 % 0 %

mailbomb 0 % 62 % 48 % 48 %

D
oS

sshprocesstable 0 % 100 % 100 % 0 %

NTinfoscan 100 % 100 % 100 % 26 %

portsweep 33 % 100 % 100 % 100 %

Pr
ob

es

satan 100 % 81 % 31 % 31 %

ftpwrite 100 % 100 % 33 % 0 %

guest 0 % 100 % 100 % 77 %

httptunnel 0 % 80 % 80 % 0 %

imap 100 % 100 % 0 % 0 %

named 67 % 50 % 17 % 17 %

ncftp 100 % 33 % 25 % 11 %

phf 100 % 100 % 0 % 0 %

xlock 100 % 20 % 0 % 0 %

R
2L

xsnoop 100 % 100 % 100 % 100 %

experimental Threshold 2.0 4.5 2.5

6 Conclusions and Future Works

In this paper, we proposed a modeling technique of network intrusions based on the
probability matrix for multiple state-transition information. The states of TCP packets
are composed of field values of protocol header information, and in a session,
statistical transition information of all packet states can be shown as a frequency
matrix. To combine such frequency matrices for multiple sessions, the ergodic model

 Modeling of Network Intrusions Based on the Multiple Transition Probability 291

was used for Markov chains. We also detected to be based on the model matching
method using the maximum log-likelihood ratio.

We demonstrated the possibility of our modeling technique through analysis of
detection results of DARPA99 data sets. The model had better effectiveness in the
detection of DoS and Probes attacks. It is assumed that the proposed technique is also
useful in detection of worm spread. On the other hand, the detection rate still
remained as a task that must be improved.

In order to gain better effectiveness, it is necessary to extract features containing a
lot of differences in attack and normal models. In this case, the distance between
distributed features is computed. Moreover, in order to advance the performance of
model matching, methods that detect data before the complete session is constructed
are required. It can be implemented by detecting the beginning of sequential
transition.

References

1. Sheldon M. Ross, Introduction to Probability Models, Academic Press, 8th Edition, 2002.
2. Carl W. Helstrom, Statistical Theory of Signal Detection, London: Pergamon Press, 2nd

Edition, 1968.
3. A. F. Shchervinin, “Conditional normalized likelihood estimators of parameters of the

normal distribution,” Measurement Techniques, Springer New York, 1992.
4. T. Otsuka and J. Ohya. “Recognizing multiple persons’ facial expressions using HMM

based on automatic extraction of significant frames from image sequences,” In Proc. Int.
Conf. on Image Processing (ICIP’97), pages 546–549, Santa Barbara, CA, USA, October
1997.

5. S-B Cho and S-J Han, “Two Sophisticated Techniques to Improve HMM-Based Intrusion
Detection Systems,” Recent Advances in Intrusion Detection (RAID’03), Lecture Notes in
Computer Science, Pittsburgh, USA, September 2003.

6. I-A Cheong, Y-M Kim, M-S Kim, and B-N Noh, “The Causality Analysis of Protocol
Measures for Detection of Attacks based on Network,” The Intl. Conf. on Information
Networking, Proc. Vol. III, February 2004.

7. Lincoln Laboratory, MIT, DARPA Intrusion Detection Evaluation Data Sets, http://www.
ll.mit.edu/IST/ideval/data/data_index.html.

8. Juan M. Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E. Diaz-Verdejo, “Stochastic
Protocol Modeling for Anomaly Based Network Intrusion Detection,” The First IEEE
International Workshop on Information Assurance (IWIA’03), Darmstadt, Germany, March
2003.

Chosen Ciphertext Security from Identity-Based
Encryption Without Strong Condition

Chik How Tan

NISlab, Department of Computer Science and Media Technology
Gjøvik University College, Norway

chik.tan@hig.no

Abstract. Recently, Canetti et al [11] gave a generic construction
(called CHK construction) of public key encryption (PKE) from a selec-
tive identity-based encryption scheme combined with a strong one-time
signature scheme. Later, few schemes were proposed to improve the ef-
ficiency of CHK construction [11], for example, Boneh-Katz scheme [8]
replaced a strong one-time signature with a message authentication code
and Boyen-Mei-Waters scheme [9] was constructed directly from Wa-
ters’ IBE scheme. But, both constructions have either trade-off the pub-
licly verifiable property or security against adaptive chosen-ciphertext
attack. We ask a question whether it is possible to construct an effi-
cient and publicly verifiable PKE scheme from a selective IBE scheme
with a weak one-time signature scheme. In this paper, we provide an
affirmative answer and construct a public key encryption scheme which
preserves the publicly verifiable property and is secure against adaptive
chosen-ciphertext attack. The construction of the proposed scheme is
based on Boneh-Boyen identity-based encryption (IBE) scheme [5] and
a weak one-time signature scheme (using Waters’ signature scheme [24])
built within Boneh-Boyen IBE scheme. In this construction, one-time
signature scheme is not required to be strongly existential unforgeable
as Waters’ signature scheme is not a strongly existential unforgeability.
We also show that the proposed scheme is ”almost” as efficient as the
original Boneh-Boyen IBE scheme.

Keywords: Cryptography, public key encryption, bilinear map.

1 Introduction

After Rackoff and Simon [22] introduced the security notion for encryption
scheme against adaptive chosen ciphertext attack (CCA2) in 1991, this security
notion was widely accepted to provide the right level of security for public key
encryption (PKE) scheme, which is also referred to IND-CCA2 secure scheme.
The first provably secure public key encryption schemes against adaptive chosen
ciphertext attack under the standard assumptions in the standard model was
proposed by Rackoff and Simon [22]. But the scheme was impractical. The first
practical and provably secure PKE scheme against CCA2 under the standard
assumption in the standard model was proposed by Cramer and Shoup [12] in

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 292–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Chosen Ciphertext Security from Identity-Based Encryption 293

1998. Their scheme is based on the hardness of decisional Diffie-Hellman prob-
lem. Cramer and Shoup [13] further generalized and extended [12] to obtain a
new and practical encryption schemes that are secure against CCA2 under two
different standard assumptions, that is, Paillier’s decision composite residuosity
assumption and the classical quadratic residuosity assumption. These schemes
[13] are provably secure against CCA2 in the standard model. Since then, many
attempts were made to construct new public key encryption scheme based on
different assumptions in the standard model.

Related Works and Our Contributions

Recently, Canetti, Halevi and Katz [11] gave a generic construction of an IND-
CCA2 secure public key encryption scheme (PKE) from a secure selective iden-
tity based encryption scheme (IND-sID-CPA IBE) against chosen-plaintext at-
tack. In their construction, they used a strong one-time signature scheme to con-
vert a CPA secure scheme into a IND-CCA2 secure scheme. As mentioned in [21],
Canetti-Halevi-Katz construction is relatively efficient as Cramer-Shoup scheme
[14] if the underlining one-time signature scheme is efficient and Boneh-Boyen
identity-based encryption scheme (BB-IBE) [5]1 is used in the construction. The
main advantage of Canetti-Halevi-Katz PKE construction over Cramer-Shoup
scheme [12] is that the validity of a ciphertext can be verified publicly; while
Cramer-Shoup scheme could only be verified with a private key. Since then, few
attempts were made to construct an efficient PKE scheme based on a selective
IBE scheme. In 2005, Boneh and Katz [8] improved the Canetti-Halevi-Katz
construction by replacing a one-time signature with a message authentication
code; however Boneh-Katz construction is no longer publicly verifiable. Later,
Boyen, Mei and Waters [9] constructed a secure PKE which is only secure against
direct chosen ciphertext in the standard model and not adaptive chosen cipher-
text attack. Their construction is based on Waters’ IBE scheme [24]. Hence,
both constructions have either trade-off the publicly verifiable property or se-
curity against adaptive chosen-ciphertext attack. We ask a question whether it
is possible to construct an efficient and publicly verifiable PKE scheme from
a selective IBE scheme with a weak one-time signature scheme. In this pa-
per, we provide an affirmative answer and construct a public key encryption
scheme which preserves the publicly verifiable property and is secure against
adaptive chosen-ciphertext attack. The construction of the proposed scheme is
based on Boneh-Boyen identity-based encryption (IBE) scheme [5] and a weak
one-time signature scheme (using Waters’ signature scheme [24]) built within
Boneh-Boyen IBE scheme. In this construction, one-time signature scheme is
not required to be strongly existential unforgeable as Waters’ signature scheme
is not a strongly existential unforgeability. We also showed that the proposed
scheme is secure against adaptive chosen ciphertext attack and it is ”almost” as
efficient as original Boneh-Boyen IBE scheme.

1 The identity-based encryption scheme defined in [5] is a simplified version of [2]
without admissible hash function and is different from [3] which is based on decision
q-BDHI assumption.

294 C.H. Tan

Organization of Paper

The paper is organised as follows: In Section 2, we briefly describe bilinear maps
and its properties; and bilinear Diffie-Hellman assumptions. A definition of a
strong/weak one-time signature scheme and a secure PKE against adaptive cho-
sen ciphertext attacks are also given in Section 2. In Section 3, we construct a
public key encryption scheme with a weak one-time signature scheme; the con-
struction is based on the Boneh-Boyen identity-based encryption (IBE) scheme
and Waters’ signature scheme. Section 4 gives a detailed proof of the proposed
scheme which is secure against CCA2 under the hardness of decisional bilin-
ear Diffie-Hellman assumption (DBDH) in the standard model. In Section 5,
the computational complexity of the proposed scheme is compared with other
schemes which are based on Canetti-Halevi-Katz construction. We showed that
the proposed scheme is ”almost” as efficient as Boneh-Boyen IBE scheme.

2 Preliminaries

2.1 Bilinear Maps and Assumptions

Let G1 and G2 be cyclic groups of prime order p and g be a generator of G1. Let
e be an admissible bilinear map from G1 ×G1 to G2 satisfying the following:

a. Bilinear: for all u, v ∈ G1 and integers a, b, then e(ua, vb) = e(u, v)ab.

b. Non-degenerate: e(g, g) �= 1.

c. Computability: ∀u, v ∈ G1, e(u, v) is efficiently computable.

Definition 1. (Bilinear Diffie-Hellman Problem (BDH)). Given a quadruple
(g, ga, gb, gc) ∈ G4

1 where a, b, c ∈ Zp, output e(g, g)abc.

Definition 2. (Decisional Bilinear Diffie-Hellman Problem (DBDH)). Given a 5-
tuple (g, ga, gb, gc, T) ∈ G4

1 × G2 where a, b, c ∈ Zp, decide T = e(g, g)abc.
We say that an algorithm has an advantage ε in solving DBDH if

∣∣Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, Z) = 1]
∣∣ ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, the random
choice of Z ∈ G2.

Definition 3. (DBDH Assumption). We say that (t, ε)-DBDH assumption holds
if no t-polynomial time algorithm has an advantage of at least ε in solving the
DBDH problem.

Now, we give a definition of a collision resistant hash function and a target
collision resistant hash function as follows.

Chosen Ciphertext Security from Identity-Based Encryption 295

Definition 4. (Collision Resistance). Let w̄ and n̄ be two positive integers. We
say that a family of hash function H = {Hk : {0, 1}w̄ → {0, 1}n̄}k∈K is (t, εH)-
collision resistance hash function if the probability of any t-polynomial time al-
gorithm A is

Pr[Hk(x) = Hk(y) and y �= x : k ← K; x, y ← A(Hk)] < εH .

Definition 5. (Target Collision Resistance). Let w̄ and n̄ be two positive inte-
gers. We say that a family of hash function H = {Hk : {0, 1}w̄ → {0, 1}n̄}k∈K

is (t, εH)-target collision resistance hash function if the probability of any t-
polynomial time algorithm A is

Pr[Hk(x) = Hk(y) and y �= x : given x ∈ {0, 1}w̄, k ← K; y ← A(k)] < εH .

2.2 Signatures

A digital signature scheme (K,S,V) involves three algorithms, that is, key gener-
ation K, signature generation S and signature verification V . A digital signature
scheme is said to be secure if it is existentially unforgeable under a chosen mes-
sage attack, and was first defined in [16]. This definition normally refers to a
weak existential unforgeable. In some applications, such as, encrypt-then-sign
scheme [1] and CHK construction [11], a strong notion of signature scheme is
required, which is called strong existential unforgeability. Strong existential un-
forgeability means that an adversary is unable to produce a new signature of
an old message which was signed before. The formal definition of a weak and a
strong existential unforgeability are given below:

Definition 6. A digital signature scheme (K,S,V) is (t, qs, ε)-weak existentially
unforgeable secure against adaptive chosen-message attacks if no forger F out-
puts a valid forgery with probability of at least ε after at most qs signatures
queries and t processing time, where a forger F ’s probability is defined as

Pr

⎡
⎢⎢⎢⎢⎣

(pk, sk)← K(1l);
for i = 1, · · · , qs;
mi ← F(pk, m1, σ1, · · · , mi−1, σi−1), σi ← S(sk, mi);
(m, σ) ← F(pk, m1, σ1, · · · , mqs , σqs),
m �= mi for all i ∈ {1, · · · , qs} and V(pk, m, σ) = accept.

⎤
⎥⎥⎥⎥⎦ .

Definition 7. A digital signature scheme (K,S,V) is (t, qs, ε)-strong existen-
tially unforgeable secure against adaptive chosen-message attacks if no forger F
outputs a valid forgery with probability of at least ε after at most qs signatures
queries and t processing time, where a forger F ’s probability is defined as

Pr

⎡
⎢⎢⎢⎢⎣

(pk, sk)← K(1l);
for i = 1, · · · , qs;
mi ← F(pk, m1, σ1, · · · , mi−1, σi−1), σi ← S(sk, mi);
(m, σ) ← F(pk, m1, σ1, · · · , mqs , σqs),
(m, σ) �= (mi, σi) for all i ∈ {1, · · · , qs} and V(pk, m, σ) = accept.

⎤
⎥⎥⎥⎥⎦ .

296 C.H. Tan

It is noted that (m, σ) �= (mi, σi) means that it can be m = mj and σ �= σj for
some j.

One-time signature is referred to the signing key which is only used once. This
means that a signature produced each time uses a different signing key. We
say that a one-time signature scheme is weak/strong existential unforgeability
secure is same as above definitions except that it is only allow to query once in
the above definitions.

2.3 Secure Encryption

A public key encryption scheme PE= (K, E ,D) consists of three algorithms. The
key generation algorithm K generates a pair (pk, sk)← K, where pk is a public
key and sk is a private key. The encryption algorithm E takes a public key pk and
a plaintext m, then returns a ciphertext c ← E(pk, m). The decryption algorithm
D takes a private key sk and a ciphertext c, then returns m = D(sk, c) or reject.

Definition 8. (Adaptive Chosen Ciphertext Attack (CCA2)) Let PE =
(K, E ,D) be a public key encryption. Let A be an attacker modeled as a proba-
bilistic Turning machine. Consider the following game played by a challenger C
and an adversary A.

Set Up. C takes a security parameter and runs the key generation algorithm to
obtain a public key pk and private key sk. It gives pk to A and keeps sk secret.

Phase 1. In this phase, A adaptively makes a decryption queries on a ciphertext
C. The challenger C responds with D(sk, C) or reject.

Challenge. A outputs two equal length plaintexts (m0, m1). The challenger C
picks a random b ∈ {0, 1}, computes a target ciphertext C∗ = E(pk, mb) and
gives it to A.

Phase 2. The adversary A continues to make decryption queries on a ciphertext
C as in Phase 1 except C �= C∗. The challenger C responds with D(sk, C) or
reject.

Guess. A outputs a bit b′ ∈ {0, 1}. It wins if b′ = b.

The advantage of an adversary A of the above game is defined as

AdvIND−CCA2
PE (A) = |Pr[b′ = b]− 1/2|.

An encryption scheme is said to be secure against adaptive chosen ciphertext
attack, if no polynomial time bounded adversary has non-negligible advantage
in the game described above.

Definition 9. A public key encryption scheme PE = (K, E ,D) is said to be
(t, qd, ε)-IND-CCA2 secure if the advantage of any t-polynomial time adversary
A is

AdvIND−CCA2
PE (t, qd) = maxA{AdvIND−CCA2

PE (A)} < ε,

where the maximum is over all A which runs in time t and makes at most qd

queries to the decryption oracle.

Chosen Ciphertext Security from Identity-Based Encryption 297

3 Propose Encryption Scheme

In this section, we construct a public key encryption scheme which is called EO.
The proposed scheme is constructed from Boneh-Boyen IBE scheme [5] with a
one-time signature scheme (using Waters’ signature scheme [24]) built within the
Boneh-Boyen IBE scheme. In this construction, the one-time signature scheme
is not required to be strongly existential unforgeable. We also show that the
proposed scheme is almost as efficient as Boneh-Boyen IBE scheme with only an
increase of two exponentiations and one multi-exponentiation in encryption and
decryption respectively.

Let G1 and G2 be groups of prime order p, let g be a generator of G1 and e be
an admissible bilinear map from G1 ×G1 into G2. Let a family of hash function
H1 = {Hk̄1

: {0, 1}w̄1 → {0, 1}n̄1}k̄1∈K1
be a target collision resistant hash

function and a family of hash function H2 = {Hk̄2
: {0, 1}w̄2 → {0, 1}n̄2}k̄2∈K2

be a collision resistant hash function, where w̄1, w̄2, n̄1 and n̄2 are integers such
that n̄1 < log2 p and K1 and K2 are key spaces.

Keygen: Choose random integers x, y, z ∈ Zp and compute g1 = gx, g2 =
gy, h1 = gz and Z = e(g1, g2). Choose a random u′ ∈ G1 and a random n-
dimensional vector U = (u1, · · · , un) where element ui is randomly chosen from
G1 for i ∈ {1, · · · , n}. Select Hk̄1

∈ H1 and Hk̄2
∈ H2 for fixed k̄1 ∈ K1 and k̄2 ∈

K2 respectively such that n̄2 = n. For simplicity, denote Hk̄1
and Hk̄2

as H1 and
H2 respectively. Then the public key is PK = (g1, g2, h1, Z, u′, U, H1, H2)
and the private key is SK = (x, y, z).

Encryption: To encrypt a message m, first choose random integers s, α ∈ Zp such
that gα �= g1. Then, compute the following:

c0 = gα, c1 = Zsm, c2 = gs, c3 = (gv
1 h1)s, c4 = gα

2 (u′
n∏

i=1

uwi

i)s,

where v = H1(c0, c2), w = H2(c1, c3) and w = (w1, · · · , wn) ∈ {0, 1}n. Then,
the ciphertext is C = (c0, c1, c2, c3, c4).

Decryption: Upon receipt of ciphertext C = (c0, c1, c2, c3, c4), the receiver first
computes v = H1(c0, c2), w = H2(c1, c3). Let the binary representation of w be
(w1, · · · , wn). The receiver first checks e(c4, g) = e(u′∏n

i=1 uwi

i , c2) · e(g2, c0)
and e(c3, g) = e(gv

1 h1, c2) (or c3 = cxv+z
2). If one of them is not equal, output

reject symbol ⊥, otherwise decrypt the ciphertext as either

A. Choose a random r ∈ Zp and compute a decryption key DK = (d1, d2)
as d1 = gx

2 · (gv
1h1)r and d2 = gr and compute the plaintext as m = c1 · e(c3, d2)

e(c2, d1)
.

B. Compute the plaintext as m = c1
e(c2, gxy) .

It is noted that (c1, c2, c3) is a ciphertext of Boneh-Boyen identity-based
encryption scheme if v is an identity. (c2, c4) is a signature of Waters’ sig-
nature scheme with the public key (c0, g2). It is worth to mention that c2 is

298 C.H. Tan

commonly shared by both Boneh-Boyen IBE encryption scheme and Waters’
signature scheme.

From the above two decryptions, method B is more efficient than method
A, which requires two exponentiations and four pairing. Method A is basi-
cally followed from Boneh-Boyen identity-based encryption scheme [5]. In fact,
the computational complexity of decryption can be further optimized if one
chooses ℵ = (μ′, μ1, · · · , μn) ∈ Zp such that u′ = gμ′

and ui = gμi for
i ∈ {1, · · · , n} and store ℵ as a part of private key. Then, Waters’ signature
scheme can be verified by c4 = cy

0c
μ′+ n

i=1 wiμi

2 instead of using three pairings.
Therefore, the decryption of the proposed scheme requires only one pairing,
two exponentiations and one multi-exponentiation. Hence, the proposed scheme
only increases two exponentiations (one of these is multi-exponentiation) and one
multi-exponentiation in encryption and decryption respectively as compared to
Boneh-Boyen IBE encryption scheme.

4 Security Proof

Before we state the main theorem, we first list the following useful lemma which
was called ”Difference Lemma” and was defined by Cramer and Shoup in [23].

Lemma 1. ([23], Difference Lemma) Let S1, S2 and F be events defined on
some probability space. Suppose that the event S1 ∧ ¬F occurs if and only if
S2 ∧ ¬F occurs. Then ∣∣Pr[S1]− Pr[S2]

∣∣ ≤ Pr[F].

Theorem 1. The proposed encryption scheme EO is (t, qd, ε)-IND-CCA2 se-
cure, assuming that the (t′, ε′)-DBDH assumption, the (t′′, ε′′)-weak existen-
tially unforgeable one-time Waters’ signature scheme, and the (t1, ε1)-target
collision resistant hash function H1 and the (t2, ε2)-collision resistant hash func-
tion H2 holds, such that

ε ≤ ε′ + 2ε′′ + ε1 + ε2 +
2qd

p
,

where t′, t′′, t1 and t2 are essentially the same as t and qd < p.

Proof. The proof of the theorem is by reductionist proof. Suppose there exists a
t-polynomial time adversaryA who breaks the proposed encryption scheme EO in
the sense of IND-CCA2, then we build an algorithm B that solves the decisional
bilinear Diffie-Hellman (DBDH) assumption in a random instance with advan-
tage ε′. First, algorithm B is given an input of 7-tuple (G1, G2, g, gx, gy, gs∗

,
T), where T is either e(g, g)xys∗

or a random element from G2. The algorithm
B’s goal is to output 1 if T = e(g, g)xys∗

and 0 otherwise. The algorithm B
interacts with A in the IND-CCA2 game as follows:

Chosen Ciphertext Security from Identity-Based Encryption 299

Set Up: First, B sets g1 = gx, g2 = gy, g3 = gs∗
and Z = e(g1, g2). Then, B

chooses random integers α∗, γ, μ′, μ1, · · · , μn ∈ Zp such that gα∗ �= g1
2 and

computes v∗ = H1(gα∗
, g3), u′ = gμ′

and ui = gμi for i ∈ {1, · · · , n}. Let
H1 be a target collision hash function chosen from H1 and H2 be a collision
hash function chosen from H2. The algorithm B gives A the public key PK =
(g1, g2, h1, Z, u′, U, H1, H2) where U = (u1, · · · , un). The private key of
B is (x, y, γ − xv∗) which are unknown to B. The algorithm B also keeps the
secret elements (μ′, μ1, · · · , μn) for decryption in this simulation.

Phase 1: The adversary A makes a number of decryption queries on C = (c0, c1,
c2, c3, c4). If c2 = g3 (g3 will be defined as c∗2 in the challenge ciphertext later),
then the simulation aborts, otherwise B computes v = H1(c0, c2) and w =
H2(c1, c3) and checks e(c2, gv

1h1) = e(g, c3) and e(c4, g) = e(u′∏n
i=1 uwi

i , c2) ·
e(c0, g2) where w = (w1, · · · , wn) ∈ {0, 1}n. If one of them is not equal, return
reject symbol ⊥, otherwise chooses a random r ∈ Zp and generates a decryption
key DK = (d1, d2) for decryption as follows:

d1 = g
− γ

v−v∗
2 · (gv−v∗

1 · gγ)r = gx
2 · g

−y
1 · g−

γ
v−v∗

2 · (gv−v∗
1 · gγ)r

= gx
2 · (gv−v∗

1 · gγ)r− y
v−v∗ = gx

2 · (gv
1 · h1)r̄

d2 = g
− 1

v−v∗
2 · gr = gr̄,

where r̄ = r − y
v−v∗ . Then, B returns the plaintext m as follows:

m = c1 ·
e(c3, d2)
e(c2, d1)

.

Challenge: After the number of queries in phase 1, A outputs two equal length
messages m0 and m1 on which it wishes to be challenged. B flips a fair coin
b ∈ {0, 1}, and responds with the challenge ciphertext C∗ = (c∗0, c∗1, c∗2, c∗3, c∗4)
as follows:

c∗0 = gα∗
, c∗1 = T ·mb, c∗2 = g3, c∗3 = gγ

3 , c∗4 = gα∗
2 · gμ′+ n

i=1 w∗
i μi

3 ,

where w∗ = H2(c∗1, c∗3) and w∗ = (w∗
1 , · · · , w∗

n) ∈ {0, 1}n. It is noted that
c∗3 = gv∗s∗

1 · hs∗
1 and c∗4 = gα∗

2 · (u′∏n
i=1 u

w∗
i

i)s∗
.

Phase 2: The adversary A continues to make its decryption queries on ciphertext
C except C �= C∗.

Guess: After the number of decryption queries, the adversary A returns a bit
b′ ∈ {0, 1}. If b = b′, the simulator return β′ = 1, else it returns β′ = 0. This
completes the description of the simulator. Note that the simulator behaves
exactly as in the original public key encryption except the abort in Phase 1, we
will discuss this in detail below.
2 If gα∗

= g1, then x = α∗ and it is easy to check whether T = e(gy, gs∗
)x. In this

case, B will output the correct result and stop.

300 C.H. Tan

In order to analyse the success probability of B, we consider a sequence of the
”indistinguishable” modified games, from game G0 to game G6, where G0 is the
original game and the last game G6 clearly gives no advantage to the adversary
A. Let b′ ∈ {0, 1} be the output of A and Ti be the event that b′ = b in the
game Gi for 0 ≤ i ≤ 6. Then, we have

AdvIND−CCA2
EO (A) =

∣∣Pr[T0]− 1/2
∣∣

and the sequence of games are described as follows:

Game G1: First, game G0 is modified to a new game G1 such that the decryption
oracle in Phase 1 is modified with the rejection rule R1 as follows : If the
adversary submits a ciphertext C = (c0, c1, c2, c3, c4) with c0 = c∗0 or c2 = c∗2,
the decryption oracle immediately outputs reject and halt. In Phase 1, since
the adversary has no information (in a statistical sense) about c∗0 or c∗2 from
the challenge ciphertext C∗, and if the adversary makes at most qd decryption
queries in Phase 1, then the probability of having c0 = c∗0 or c2 = c∗2 is 2qd

p .
Therefore, by Lemma 1, we have

∣∣Pr[T1]− Pr[T0]
∣∣ ≤ 2qd

p
.

Game G2: To turn game G1 to a new game G2, the decryption oracle in Phase 2
is modified such that the rejection rule R2 is applied as follows: If the adversary
A submits a ciphertext C = (c0, c1, c2, c3, c4) with (c0, c2) �= (c∗0, c∗2) and
v = v∗ where v = H1(c0, c2), then the decryption oracle immediately outputs
reject and halt. Let R2 be the event that the decryption oracle in game G2 rejects
a ciphertext using the rule R2. As games G2 and G1 proceed identically until
the event R2 occurs, therefore the event T2 ∧ ¬R2 and T1 ∧ ¬R2 are identical.
Hence, by Lemma 1, we have

∣∣Pr[T2]− Pr[T1]
∣∣ ≤ Pr[R2].

Lemma 2. Pr[R2] ≤ ε1.

Game G3: In this game, the decryption oracle in Phase 2 is further modified
such that the ciphertext is not rejected by the rule R2 before and the rejection
rule R3 of this game is applied as follows : If the adversary submits a ciphertext
C = (c0, c1, c2, c3, c4) with either c1 �= c∗1 or c3 �= c∗3; and w = w∗ where
w = H2(c1, c3), the decryption oracle immediately outputs reject and halt. Let
R3 be the event that the decryption oracle in game G3 rejects a ciphertext using
the rule R3. So, by Lemma 1, we have

∣∣Pr[T3]− Pr[T2]
∣∣ ≤ Pr[R3].

Lemma 3. Pr[R3] ≤ ε2.

Game G4: The decryption oracle in Phase 2 is further modified from game G3
to obtain a new game G4 with the rejection rule R4. It rejects those ciphertexts
that are not be rejected by rules R2 and R3 before and is as follows : If the
adversary submits a ciphertext C = (c∗0, c1, c2, c3, c4) with C �= C∗ and
v �= v∗, the decryption oracle immediately outputs reject and halt. Let R4 be
the event that the decryption oracle in game G4 rejects a ciphertext using the
rule R4. So, by Lemma 1, we have

∣∣Pr[T4]− Pr[T3]
∣∣ ≤ Pr[R4].

Chosen Ciphertext Security from Identity-Based Encryption 301

Lemma 4. Pr[R4] ≤ ε′′.

Game G5: In game G5, the decryption oracle is further modified so that it
rejects all the invalid ciphertext C = (c0, c1, c2, c3, c4) in Phase 2 with
v �= v∗, where v = H1(c0, c2). This rejection rule rejects those ciphertext which
are not rejected under game G2, G3 and G4 before. Let R5 be the event that
the decryption oracle in game G5 rejects a ciphertext using the rule R5. So, by
Lemma 1, we have

∣∣Pr[T5]− Pr[T4]
∣∣ ≤ Pr[R5].

Lemma 5. Pr[T5] ≤ ε′′.

Game G6: In this game, the encryption oracle is modified so that c∗1 is replaced
by random c′1 in G2. Due to this change, c′1 is independent of the challenge bit
b, and does not provide any information in the adversary’s view. Therefore, we
have Pr[T6] = 1/2. As game G6 does not depend on T , therefore, we have

∣∣Pr[T6]− Pr[T5]
∣∣ ≤ ε′.

Combine the results from the above games, we immediately obtain the fol-
lowing:

ε ≤ ε′ + 2ε′′ + ε1 + ε2 +
2qd

p
.

5 Performance Comparisons

In this section, we compare the performance of the proposed PKE scheme to
those PKE schemes using Canetti-Halevi-Katz’s construction [11] with a strong
one-time signature scheme. As Canetti-Halevi-Katz’s construction is generic on
any selective-identity IBE scheme, in order to have better understanding of the
comparison, we give a brief description of Canetti-Halevi-Katz’s construction on
Boneh-Boyen IBE encryption scheme [5] as follows:

Canetti-Halevi-Katz’s construction on Boneh-Boyen IBE scheme

Keygen: The key generation is similar to Section 3 except PK2 = (u′, U, H2),
which is only particular to Waters’ signature scheme. Therefore, the public key
is PK1 = (g1, g2, h1, Z, H1) and the private key is SK = (x, y, z).

Encryption: To encrypt a message m, one chooses a random integer s ∈ Zp and
random one-time private key sko and compute its public key pko. Then, one
computes the following:

c0 = pko, c1 = Zsm, c2 = gs, c3 = (gv
1 h1)s, c4 = Sgo(sko, c1, c2, c3),

where v = H1(c0) and c4 is a signature of (c1, c2, c3) with the signing key sko.
Then, the ciphertext is C = (c0, c1, c2, c3, c4).

302 C.H. Tan

Decryption: Upon receipt of ciphertext C = (c0, c1, c2, c3, c4), the receiver first
computes v = H1(c0) and checks the validity of the signature c4 with the public
key c0 and e(c3, g) = e(gv

1 h1, c2) (or c3 = cxv+z
2). If the signature is not valid or

the equality does not hold, then output reject symbol ⊥, otherwise the plaintext
is computed as m = c1

e(c2, gxy) .
As a one-time signature scheme requires to be strong existential unforgeable,

we consider two such signature schemes for comparisons, that is, the strong
Waters’ signature scheme (BSW) [10] (By Boneh-Shen-Waters’ transformation
from a weak existential unforgeability to a strong existential unforgeability) and
Boneh-Boyen signature scheme (BB) [4]. Up to now (up to my knowledge),
these two signature schemes based on bilinear maps are provable to be strongly
existential unforgeable in the standard model. We first briefly described the
strong Waters’ signature scheme [10] as follows:

Strong Waters’ Signature Scheme

Keygen: The basic parameter setting is same as that in Section 3, that means
g, G1, G2 are same as that of Section 3. Choose random α ∈ Zp and ḡ2, h ∈ G1.
Set ḡ1 = gα and choose random u′ ∈ G1 and random n-dimensional vector U =
(u1, · · · , un) where element ui is randomly chosen from G1 for i ∈ {1, · · · , n}.
Let Hk̄ ∈ H be a collision hash function for fixed k̄ ∈ K and denote Hk̄ as H .
Then, the public key is pko = (ḡ1, ḡ2, h, u′, U, H) and the private key is
sko = (ḡα

2).

Sign: To sign a message M , choose random integers r, d ∈ Zp and compute the
following sequentially

σ2 = gr, t = H(M, σ2), m = H(gthd), σ1 = ḡα
2 (u′

n∏
i=1

umi

i)r,

where m is written as (m1, · · · , mn)∈{0, 1}n. Then, the signature is (σ1, σ2, d).

Verify: Upon receipt of signature (σ1, σ2, d) on message M , the receiver first
computes t̄ = H(M, σ2) and m̄ = H(gt̄hd). Write m̄ as (m̄1, · · · , m̄n). The
receiver checks e(σ1, g) = e(u′∏n

i=1 um̄i

i , σ2) ·e(ḡ1, ḡ2). If they are equal, accept
the signature, otherwise reject.

As all the compared encryption schemes are based on Boneh-Boyen IBE en-
cryption scheme, we only need to compare the additional computation cost in-
curred by the one time signatures, that is, c0 and c4 in all the schemes under
comparison. As PK2 is only for Waters’ signature scheme and is not generated
during the encryption phase, therefore it can be included as part of the public key
of PKE scheme. Hence, the public key of PKE scheme based on Waters’ signa-
ture scheme and the proposed scheme will be longer than the CHK construction
with one-time BB signature scheme [4].

Let l1 be the length of the representation of an element in G1 and lp = log2 p.
The efficiency comparisons are listed below:

Chosen Ciphertext Security from Identity-Based Encryption 303

Table 1. Efficiency Comparisons

pko length sko Signature length Signature Signature
c0 length c4 Generation1 Verification

Strong 2l1 l1 2l1 + lp 3 exp2, 2 pairings,
Waters3 [10] 2 m-exp 1 exp, 1 m-exp

BB4 2l1 2lp l1 + lp 3 exp 1 pairings,
[4] 1 m-exp

Prop Scheme l1 lp l1 1 exp, 1 m-exp
1 m-exp

Note :
1. The signature generation also includes public/private key generation.
2. exp is the usual exponentiation and m-exp denotes the multi-exponentiation.
3. In a strong Waters’ scheme [10], (u′, U) is part of public key of the encryption

scheme. Therefore, the signature verification is e(σ1σ
−(μ′+ n

i=1 wiμi)
2 , g) = e(ḡ1, ḡ2)

which reduces the original 3 pairings to 2 pairings.
4. In BB scheme, e(g, g) is part of the public key, therefore, the number of pairings

in signature verification is reduced to one instead of two.

From Table 1 above, the proposed scheme required an addition of two expo-
nentiations and one multi-exponentiation in encryption and decryption respec-
tively; and there is no additional pairing. While two pairings and one pairings are
required in strong Waters’ signature scheme and BB signature scheme respec-
tively. Therefore, the proposed scheme is more efficient than CHK construction
with Waters’ signature scheme and BB signature scheme respectively. Below we
list the timings of the respective schemes which run on MIRACL software [18]
on 3.0GHz Pentium IV computer. The elliptic curve and size of finite fields are
same as that of [7].

Table 2. Timing of PKE Schemes

CHK with CHK with Proposed Scheme CS Scheme
Waters Scheme [10] BB Scheme [5] [12]

Encryption 32.66ms 17.17ms 21.07ms 3.12ms

Decryption 84.42ms 57.86ms 35.04ms 2.73ms

From Table 2, the encryption of CHK construction with BB signature scheme
is slightly faster than the proposed scheme. This is because that computing
c4 = gα

2 (u′∏n
i=1 uwi

i)s takes more time and we did not optimize this. But the
decryption of the proposed scheme is faster than the CHK construction with
BB signature scheme. From Table 2, Cramer-Shoup scheme [12] is still faster

304 C.H. Tan

than other schemes as there is no pairing in decryption and the length of prime
number is 1024-bit, while the finite field in the proposed scheme is 512-bit.

6 Conclusion

In this paper, we constructed an efficient public key encryption with a weak
one-time signature scheme and publicly verifiable. The security depends on the
hardness of decisional bilinear Diffie-Hellman problem, secure one-time Waters’
signature scheme, the collision resistance hash function and the target collision
resistance hash function. Furthermore, the computational complexity is almost
as efficient as Boneh-Boyen IBE encryption scheme with only an increase of
two exponentiations and one multi-exponentiation in encryption and decryption
respectively.

Acknowledgments

The author wishes to thank Jens-Are Amundsen for providing the timings of
Table 2 using MIRACL software run on 3.0GHz Pentium IV computer. The
author also wishes to thank the anonymous reviewers for invaluable suggestions
to improve this revised paper.

References

[1] J.-H. An, Y. Dodis and T. Rabin, ”On the security of joint signature and en-
cryption,” Advances in Cryptology - Eurocrypt’02, Lecture Notes in Computer
Science, vol.2332, pp.83-107, Springer-Verlag, 2002.

[2] D. Boneh and X. Boyen, ”Secure identity based encryption without random
oracles,” Advances in Cryptology - Crypto’04, Lecture Notes in Computer Science
vol.3152, pp.443-459, Springer-Verlag, 2004.

[3] D. Boneh and X. Boyen, ”Efficient selective-id secure identity based encryption
without random oracles,” Advances in Cryptology - Eurocrypt’04, Lecture Notes
in Computer Science vol.3027, pp. 223-238, Springer-Verlag, 2004.

[4] D. Boneh and X. Boyen, ”Short signatures without random oracles,” Advances
in Cryptology - Eurocrypt’04, Lecture Notes in Computer Science, vol.3027, pp.
56-73, Springer-Verlag, 2004.

[5] D. Boneh, R. Canetti, Shai Halevi, and J. Katz, ”Chosen-Ciphertext Security
From Identity-Based Encryption,” Accepted to SIAM Journal on Computing.
Available from http://www.cs.umd.edu/∼jkatz/papers/id-cca-journal/pdf.

[6] D. Boneh and M. Franklin, ”Identity-based encryption from Weil pairing,” Ad-
vances in Cryptology - Crypto’01, Lecture Notes in Computer Science vol.2139,
pp.213-229, Springer-Verlag, 2001.

[7] D. Boneh and M. Franklin, ”Identity-based encryption from Weil pairing,” SIAM
J. Comput., vol.32(3), pp.586-615, Springer-Verlag, 2003.

[8] D. Boneh and J. Katz, ”Improved efficiency for CCA-secure cryptosystems built
using identity based encryption,” Topics in Cryptology – CT-RSA 2005, Lecture
Notes in Computer Science vol.3376, pp. 87-103, Springer-Verlag, 2005.

Chosen Ciphertext Security from Identity-Based Encryption 305

[9] X. Boyen, Q. Mei, and B. Waters, ”Direct chosen ciphertext security from identity-
based techniques,” In ACM Conference on Computer and Communications
Security CCS 2005, pp. 320-329, ACM Press, 2005. Full version available at
http://eprint.iacr.org/2005/288.

[10] D. Boneh, E. Shen, and B. Waters, ”Strongly unforgeable signatures based on
computational Diffie-Hellman,” Public Key Cryptography - PKC’06, Lecture
Notes in Computer Science vol.3958, pp.229-240, Springer-Verlag, 2006.

[11] R. Canetti, S. Halevi and J. Katz, ”Chosen-ciphertext security from identity-
based encryption,” Advances in Cryptology - Eurocrypt’04, Lecture Notes in
Computer Science vol.3027, pp. 207-222, Springer-Verlag, 2004.

[12] R. Cramer and V. Shoup, ”A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack,” Advances in Cryptology - Crypto’98,
Lecture Notes in Computer Science vol.1462, pp. 13-25, Springer-Verlag, 1998.

[13] R. Cramer and V. Shoup, ”Universal hash proofs and paradigm for adaptive
chosen ciphertext secure public-key encryption,” Advances in Cryptology - Euro-
crypt’02, Lecture Notes in Computer Science vol.2332, pp.46-64, Springer-Verlag,
2002.

[14] R. Cramer and V. Shoup, ”Design and analysis of prractical public-key encryption
schemes secure adaptive chosen ciphertext attack,” SIAM J. Comput., vol.33,
no.1, pp.167-226, 2003.

[15] D. Dolev, C. Dwork, and M. Naor, ”Non-malleable cryptography,” The 23rd
Annual ACM Symposium on Theory of Computing – STOC’91, pp.542-552, ACM
press, 1991.

[16] S. Goldwasser, S. Micali and R. L. Rivest, ”A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM J. Computing, vol.17, no.2,
April, pp.281-308, 1988.

[17] E. Kiltz, ”On the limitation of the spread of an IBE-to-PKE transformation,”
Public key Cryptography - PKC’06, Lecture Notes in Computer Science vol.3958,
pp. 274-289, Springer-Verlag, 2006.

[18] MIRACL, Multiprecision integer and rational arithmetic C/C++ library, Shamus
Software Ltd. Available from http://indigo.ie/∼mscott/.

[19] D. Naccache, ”Secure and practical identity-based encryption,” Available from
http://eprint.iacr.org/2005/369.

[20] N. Noar and M. Young, ”Universal one-way hash functions and their crypto-
graphic applications,” The 21st ACM Symposium on Theory of Computing –
STOC’89, pp.33-43, ACM Press, 1989.

[21] T. Okamoto, ”Cryptography based on bilinear maps,” The 16th International
Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes - AAECC-16, Lecture Notes in Computer Science Vol.3857, pp.35-50,
Springer-Verlag, 2006.

[22] C. Rackoff and D. Simon, ”Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack,” Advances in Cryptology - Crypto’91, Lecture Notes in
Computer Science Vol.576, pp.46-64, Springer-Verlag, 1991.

[23] V. Shoup, ”Sequences of games: a tool for taming complexity in security proofs,”
manuscript, 2004. Available from http://eprint.iacr.org/2004/332.

[24] B. Waters, ”Efficient identity-based encryption without random oracles,” Ad-
vances in Cryptology - Eurocrypt’05, Lecture Notes in Computer Science vol.3494,
pp.114-127, Springer-Verlag, 2005.

306 C.H. Tan

Appendix A

Proof of Lemma 2

We construct an algorithm A′ which acts as a simulator and interacts with A
as follows. First, algorithm A′ takes (G1, G2, g, gx, gy, gs∗

, T) as input,
it constructs a public and private key-pair for the encryption scheme which is
similar to the key generation algorithm as before. The construction of encryption
and decryption is same as before. Assume that the challenge ciphertext is C∗ =
(c∗0, c∗1, c∗2, c∗3, c∗4), if A submits a decryption query on C = (c0, c1, c2, c3, c4)
with v = v∗ where v = H1(c0, c2), then A′ applies the rejection rule R2 in the
game G2. A′ will reject C and halt. In this case, A′ has obtained a collision of
H1. Therefore, the lemma is proved.

Proof of Lemma 3

The proof of this lemma is similar to Lemma 2 and we omit the proof here.

Proof of Lemma 4

Let w = H2(c1, c3), we consider the following two cases.

Case i: w �= w∗. In this case, we show that there is a forgery of Waters’ signature
scheme. We construct an algorithm A′′ which provides an environment for A and
interacts with A as follows. Algorithm A′′ takes (G1, G2, g, gx, gy, gs∗

, T) as
input, it first constructs a public and private key-pair for the encryption scheme
which is similar to the key generation algorithm as before. The construction of
encryption and decryption is same as before. Assume that the challenge cipher-
text is C∗ = (c∗0, c∗1, c∗2, c∗3, c∗4), if A submits a decryption query on C =
(c∗0, c1, c2, c3, c4) with C �= C∗ and e(c4, g) = e(u′∏n

i=1 uwi

i , c2) · e(c0, g2),
then A′′ applies the rejection rule R4 in the game G4. A′′ will reject C and
halt. In this case, A′′ has obtained a valid signature (c2, c4) of the message
M = (c1, c3). Therefore, we have Pr[R4] ≤ ε′′ in this case.

Case ii: w = w∗. As this case is not the same as game G3, therefore, c1 = c∗1 and
c3 = c∗3. Now, we consider the following two sub-cases:
Subcase a: c2 = gs such that the adversary A controls s. If the adversary A is
able to produce a valid signature, then the adversary could obtain the secret key
gα∗
2 = c4 · (u′∏n

i=1 uwi

i)−s. This means that the adversary could compute the
secret key gα∗

2 or Diffie-Hellman problem for given (c0, g2). This contradicts to
the hardness of Diffie-Hellman problem, so, the adversary is not able to submit
a correct c4. Hence, we have Pr[T4] = Pr[T3] in this sub-case.
Subcase b: c2 = gs such that the adversaryA does not fully know s (s depends on
s∗). Assume that the adversaryA knows k = s−s∗ where c2 = gs, otherwise, the
adversary A is still not able to gain any information about T as the decryption
oracle returns a message as c1 · e(g1, g2)−s. Since c3 = c∗3 and c3 = (gv

1h1)s, we

Chosen Ciphertext Security from Identity-Based Encryption 307

have (gv∗
1 h1)s∗

= (gv
1h1)s. Let a = v(v∗)−1 mod p, then, we have gv∗s∗−vs

1 = hk
1

and

g
(1−a)v∗s∗
1 = (h1g

av∗
1)k,

gs∗
1 = (h1g

av∗
1)

k
v∗(1−a) .

This shows that given g1 and c∗2, the adversary A can compute gs∗
1 which

is a Diffie-Hellman problem. Consequently, the adversary can easily compute
e(g1, g2)s∗

which is a Bilinear Diffie-Hellman problem. Hence, we conclude that
the adversary is not able to produce a valid c2 and c3 = (gv

1h1)s such that
c3 = c∗3. Therefore, we have Pr[T4] = Pr[T3] in this sub-case.

From the above two cases, we have Pr[T4] ≤ ε′′.

Proof of Lemma 5

In this proof, we consider the following two cases:
Case i: The adversary A has full control of c0. Here, we consider two sub-cases.
Subcase a: c2 = gs such that the adversary A controls s. As the adversary also
controls c0, the adversary A is able to produce a valid signature (c2, c4). Then
the actual decryption oracle will returns a message as c1 · e(g1, g2)−s. If c1 is
related to T , the adversary A will not gain any useful information about T from
this query as he/she can only get back to c1. Therefore, we have Pr[T5] = Pr[T4]
in this sub-case.
Subcase b: c2 = gs such that the adversary A does not fully know s (s depends
on s∗). If the adversary A is able to produce c3 = (gv

1h1)s for v �= v∗ with either
s = k+s∗ or s = ks∗, where A knows k. If A does not know k, A will not gain any
information about T even if c1 is related to T as the decryption oracle returns
a message as c1 · e(g1, g2)−s. Now, consider s = k + s∗, let a = v(v∗)−1 mod p

and we have c∗3c
−1
3 = gv∗s∗−vs

1 h−k
1 and

c∗3c
−1
3 hk

1 = g
(1−a)v∗s∗
1 g−av∗k

1 ,

gs∗
1 = (c∗3c

−1
3 hk

1gav∗k
1)

1
v∗(1−a) .

If s = ks∗, we obtain gs∗
1 = (c∗3c

k−1

3)1/(v∗−v). This shows that given g1 and c∗2,
the adversary A can compute gs∗

1 which is a Diffie-Hellman problem. Hence, we
conclude that the adversary is not able to produce a valid c2 and c3 = (gv

1h1)s.
Therefore, we have Pr[T5] = Pr[T4] in this sub-case.

Case ii: The adversary A has no full control of c0. That means that A does not
know the exponent of c0 and so does not know the private key of the one-time
signature. Then, we consider two sub-cases: w = w∗ and w �= w∗. The proof of
these two cases is similar to the two cases in Lemma 4, we omit the proof here.
Therefore, we have Pr[T5] ≤ ε′′ in this case.

Combine the above two cases, we have Pr[T5] ≤ ε′′.

Ciphertext-Auditable Public Key Encryption

Satoshi Hada1 and Kouichi Sakurai2

1 Tokyo Research Laboratory, IBM Research, 1623-14, Shimotsuruma, Yamato,
Kanagawa 242-8502, Japan

2 Dept. of Computer Science and Communication Engineering, Kyushu University,
Hakozaki, Fukuoka 812-81, Japan

Abstract. Loss of backup tapes containing personal information (PI) is
a potential breach of privacy and encryption is the typical way to prevent
the breach. This paper considers an attack scenario where an adversary
who encrypts the PI for backup purpose tries to hide the plain PI in a
valid-looking ciphertext without being detected. We show that the stan-
dard security notion IND-CCA2 does not capture such a scenario. For ex-
ample, the Cramer-Shoup scheme is vulnerable to such an attack. To cap-
ture such a scenario, we define a new notion of “ciphertext-auditability”
as a new property of public key encryption schemes (PKESs). It requires
that, given a public key and a ciphertext, anyone should be able to ver-
ify whether the ciphertext was actually generated using the public key.
Also, it requires that, given a public key and a plaintext, no adversary
should be able to generate a valid-looking ciphertext so that the verifi-
cation passes, but nevertheless the plaintext can be recovered from the
ciphertext without the corresponding secret key. We propose a general
construction of such PKESs based on standard cryptographic primitives
in the random oracle model.

1 Introduction

1.1 Motivating Scenario

Recently, the number of enterprises that collect personal information (PI) from
their customers and that use it for various purposes, including advertising and
marketing, has been increasing. At the same time, the number of cases where
the collected PI is leaked by malicious employees is also increasing. To prevent
such leakages by insiders, network security such as firewalls is widely used. For
example, it prohibits employees from sending the PI out by email. In addition
to network security, physical security also needs to be addressed to prohibit
employees from taking storage devices such as CDs, DVDs, and backup tapes
out of the building.

One of the typical data leakage scenarios is as follows: An enterprise copies
the PI to a backup tape and asks a transport service (TS) to transport it to a
secure warehouse. There are a lot of cases where backup tapes get lost in transit1

1 For example, a major American bank announced that backup tapes containing fed-
eral workers’ customer and account information were somehow lost during shipment
to a backup data center (February 25, 2005).

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 308–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ciphertext-Auditable Public Key Encryption 309

and are potentially leaked to outsiders. In order to prevent this kind of potential
leakages, the PI needs to be encrypted. Does encryption really help here? We
consider an attack scenario, where traditional encryption does not help. In our
scenario, the backup operation is performed by the following three entities in an
enterprise:

1. Backup manager BM who provides the enterprise-wide backup management
service. According to a corporate backup policy, BM periodically (e.g., every
three months) sends to every department a request that it must backup its
PI database and transport it to a secure warehouse. Also, BM is responsible
for managing encryption keys.

2. An operator O who maintains the PI database in a department. O is respon-
sible for encrypting the PI using a right encryption key before copying it to
a backup tape.

3. An auditor A in the same department. A is responsible for auditing the
backup tape to ensure that it is encrypted under a right encryption key.
Note that, when BM and O are in different locations, BM has no physical
access to the backup tape and cannot play the role of A.

Our basic assumption is that the PI database is protected by both network and
physical security so that it is difficult for O to take the PI and related information
out of the building. An exception is the case where O needs to backup the PI
and transport it to a warehouse. In our scenario, a public key encryption scheme
(PKES) is used to encrypt it in the following steps:

Step 1: BM sends a backup request with a public key to both O and A in an
authenticated way (e.g., over SSL).

Step 2: O uses the public key to encrypt the PI and copies the encrypted PI to
a backup tape.

Step 3: A audits the backup tape to check whether O used the right public key
to encrypt the PI (and of course to check that it contains only the encrypted
PI). The purpose of this audit is to ensure that the PI cannot be recovered from
the backup tape without the corresponding secret key (even if O is malicious).

Step 4: If it passes the audit, then O is authorized to ask the TS to transport
the backup tape to a warehouse.

We assume that BM is always trusted and that O could be malicious and collude
with the TS for the PI theft. In this scenario, we need to satisfy the following
two requirements:

1. Since no one checks whether A audits the backup tape appropriately, A
should have no chance to leak the PI to outsiders. That is, A should have
no access to the PI database and corresponding secret key. Therefore, the
first requirement is that A should be able to check whether O used the right
public key to encrypt the PI without having access to the secret key and
PI database. In other words, given the public key and backup tape, anyone
should be able to play the role of A.

310 S. Hada and K. Sakurai

2. Consider the following attack by malicious O. It tries to forge a valid-looking
encryption of the PI (a valid-looking ciphertext) such that it passes the audit
by A, but nevertheless it is easy for the malicious TS to recover the PI from
the forged ciphertext without the corresponding secret key. Intuitively, O
tries to hide the PI in a ciphertext without being detected by A (as in
steganography [15]). Therefore, the second requirement is that O should not
be able to succeed in this attack.

In general, traditional public key encryption schemes do not satisfy these two
requirements. Actually, as we will see in Section 3.2, the IND-CCA2 scheme
suggested by Bellare and Rogaway [4] and the Cramer-Shoup scheme [7] are
vulnerable to a forgery attack by malicious O.

Remark 1. We can consider a similar scenario using symmetric encryption in-
stead of public key encryption. In this case, BM generates a secret key and
sends it to both O and A in a secure manner. Since our basic assumption does
not allow malicious O to leak the secret key to TS, such a scenario would make
sense. However, it is still true that malicious O has a chance to leak it. This
is why we focus on the public key encryption scenario, where O does not have
such a chance at all unless O breaks the encryption scheme. We believe that the
notion of ciphertext-auditability would be useful in the symmetric encryption
setting, too.

1.2 Our Contribution

In order to address the two requirements, this paper proposes a new notion
of ciphertext-auditable public key encryption. In ciphertext-auditable PKESs,
encryption algorithms output not only a ciphertext but also an associated proof
string for the validity of the ciphertext. Ciphertext-auditability is defined as the
following two properties corresponding to the two requirements:

Verifiability: Given a public key and a ciphertext, anyone having the associ-
ated proof string should be able to verify whether the ciphertext was actually
generated using the public key.

Unforgeability: No adversary should be able to forge a valid-looking pair of a
ciphertext and a proof string such that the verification passes, but nevertheless
the plaintext can be recovered from the ciphertext without the corresponding
secret key.

Ciphertext-auditability ensures that as long as a ciphertext is verified to be a
valid one the plaintext cannot be recovered from the ciphertext without the
corresponding secret key. We give a formal definition of such a PKES in Section
3. Also, as mentioned above, we will show that IND-CCA2 security does not
imply ciphertext-auditability.

In Section 4, we propose a general construction in the random oracle model
[4], where we use as building blocks a non-interactive zero-knowledge (NIZK)
proof of knowledge for NP and a trapdoor one-way permutation. We give a brief
overview of our construction. Consider an encryption algorithm E(pk, M ; r) and

Ciphertext-Auditable Public Key Encryption 311

a forgery strategy called the semi-honest strategy where, given a plaintext M , an
adversary somehow selects a dummy pair of a plaintext M ′ and a set of random
coins r′ and outputs the ciphertext E(pk, M ′; r′) as a valid-looking ciphertext.
We will construct an encryption scheme such that, no matter how an adversary
selects such a dummy pair (M ′, r′), the original plaintext M cannot be recovered
from the ciphertext without the secret key (as long as the adversary follows the
semi-honest strategy). Given any trapdoor permutation, we will construct such
an encryption scheme in the random oracle model. The encryption algorithm
behaves close to a random oracle on a pair of a plaintext and a set of random
coins. That is, no matter how an adversary selects such a dummy pair (M ′, r′),
the resulting ciphertext becomes close to a random string. As a result, the origi-
nal plaintext M cannot be recovered from the ciphertext without the secret key.
Intuitively, this implements unforgeability. Given such an encryption scheme,
what remains is to force adversaries to follow the semi-honest strategy. For this
purpose, we can use an NIZK proof of knowledge to append to each ciphertext
a proof of its “well-formedness” as in [18,19,10,17]. Such a proof string is used
to implement verifiability.

Remark 2. Under our basic assumption, the backup tape (encrypted PI) is the
only thing that O is allowed to take out of the building. Otherwise, malicious O
can take the plain PI out and there is nothing to solve. Our formal definition of
ciphertext-auditability captures this basic assumption (See Remark 6).

1.3 Related Work

Refer to [1] for the standard security notions of public key encryption such
as IND-CPA, IND-CCA1, IND-CCA2. There is a sequence of works that pro-
vide plausibility results for IND-CCA1 and IND-CCA2 schemes based on NIZK
proofs [18,19,10,17]. Since our focus is not on such notions, we don’t review the
definitions in this paper.

Bellare et al. investigated the notion of key-privacy, which requires that ci-
phertexts should reveal no information on the public key used [2,13]. Ciphertext-
auditability is a property contradicting key-privacy.

Bellare et al. defined a similar notion called ciphertext-verifiability in a differ-
ent context [3]. Ciphertext-verifiability contradicts IND-CPA security (See Re-
mark 4), but ciphertext-auditability does not contradict any standard security
notions. Indeed, as shown in Section 4, ciphertext-auditability and IND-CCA2
can be satisfied simultaneously.

A notion of unforgeability of encryption is implicit in the design of IND-CCA2
schemes [18,19,10,17], where the purpose is to make the decryption oracle useless.
Also, Katz and Yung explicitly defined such a notion in the context of symmetric
key encryption [14]. Their purpose is different from ours. Our unforgeability im-
plies some ability to prevent steganography (although it is impossible to prevent
it perfectly [15]).

Desmedt investigated how to prevent steganography in many cryptographic
protocols including encryption, but the proposed solution requires that the

312 S. Hada and K. Sakurai

auditor must be involved in the encryption process and so the auditor must
be trusted [8]. On the other hand, the auditor in our proposed scheme needs not
be trusted. Also, there are recent works on how to prevent it perfectly in the
context of zero-knowledge and mix networks [16,6].

2 Preliminaries

We say that a function ν(·) : IN → IR is negligible in n if for every polynomial
p(·) and all sufficiently large n’s, it holds that ν(n) < 1/p(n).

We let the string ATK be instantiated by any of CPA, CCA1, and CCA2.
PPTM stands for “probabilistic polynomial time machine” and PSCF stands
for “polynomial-size circuit family”.

Given a probability distribution S, we denote by x← S the operation of select-
ing an element according to S. If A is a probabilistic machine then
A(x1, x2, . . . , xk) denotes the output distribution of A on inputs (x1, x2, . . . , xk).
Let Pr[x ← S1; x2 ← S2; . . . ; xk ← Sk : E] denote the probability of the event
E after the processes x1 ← S1, x2 ← S2, . . . , xk ← Sk are performed in order.
Similarly, let E[x← S1; x2 ← S2; . . . ; xk ← Sk : f(x1, x2, · · · , xk)] denote the ex-
pectation of f(x1, x2, · · · , xk) when the processes x1 ← S1, x2 ← S2, . . . , xk ← Sk

are performed in order. We say that a probability distribution ensemble {Dn} is
well-spread if the largest probability of an element, i.e., maxv Pr[x ← Dn : x = v],
is negligible in n [5].

We review the definition of trapdoor one-way permutations. A permutation
generator is a PPTM G such that G(1n) outputs (the descriptions of) a pair of
deterministic polynomial-time algorithms (f, f−1) specifying a permutation and
its inverse on {0, 1}n.

Definition 1. We say that a permutation generator G is a trapdoor one-way
permutation generator if, for every non-uniform PSCF M , Pr[(f, f−1)← G(1n);
x← {0, 1}n : M(f(x)) = x] is negligible in n.

Finally, we recall the definition of efficient adaptive NIZK proofs of knowledge
[19,11,10].

Definition 2. We say that π = (f,P ,V , S = (S1,S2), EXT = (EXT 1, EXT 2))
is an efficient adaptive NIZK proof of knowledge for a language L ∈ NP with
witness relation R if f is a polynomial and (P ,V ,S, EXT) are PPTMs such that:

Efficient Completeness: For all x ∈ L and all w such that R(x, w) is true, for
all strings σ of length f(|x|), we have that V(x,P(x, w, σ), σ) = Acc.

Witness Extractability: {EXT 1(1n)} and the uniform distribution on
{0, 1}f(n) are statistically indistinguishable. For all adversaries A, we have
that

Pr

⎡
⎣σ ← {0, 1}f(n);

(x, p) ← A(σ) :
V(x, p, σ) = Acc

⎤
⎦− Pr

⎡
⎢⎢⎣

(σ, aux) ← EXT 1(1n);
p ← A(x, σ);
w ← EXT 2(σ, aux, x, p) :
(x, w) ∈ R

⎤
⎥⎥⎦

is negligible in n, where x is any string in L of length n.

Ciphertext-Auditable Public Key Encryption 313

Adaptive ZK: For all non-uniform PSCFs A = (A1, A2), we have that∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

σ ← {0, 1}f(n);
(x, w, τ) = A1(σ);
p ← P(x, w, σ) :
A2(p, τ) = true

⎤
⎥⎥⎦ − Pr

⎡
⎢⎢⎣

(σ, aux) ← S1(1n);
(x, w, τ) = A1(σ);
p← S2(x, aux) :
A2(p, τ) = true

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣

is negligible in n, where x is any string in L of length n.

3 Ciphertext-Auditability

In this section, we present a formal definition of ciphertext-auditable PKESs and
show that some IND-CCA2 schemes do not satisfy ciphertext-auditability.

3.1 A Formal Definition

Let AE = (K, E ,D) be a PKES, which consists of three algorithms (K, E ,D).
The key generation algorithm K is a randomized algorithm that takes as input
the security parameter 1n and returns a pair of public and secret keys (pk, sk).
The encryption algorithm E is a randomized algorithm that takes a public key
pk and a plaintext M ∈ {0, 1}∗ to return a ciphertext C, and the encryption
process is denoted by C ← E(pk, M). When we need to make explicit the random
coins r used by E , we write C = E(pk, M ; r). The decryption algorithm D is a
deterministic algorithm that takes a secret key sk and a ciphertext C to return
the plaintext M , and the decryption process is denoted by M = D(sk, C). It
is required that, for every key pair (pk, sk) generated by K and every plaintext
M ∈ {0, 1}∗, it holds that D(sk, E(pk, M)) = M with probability 1.

We syntactically extend the encryption algorithm so that it outputs not only
the ciphertext but also a proof string for its validity, that is, we write (C, p) ←
E(pk, M), where p denotes the proof string. The idea is that knowledge of p
enables anyone to verify whether C was actually generated using pk. We assume
that p is not required for decryption and so we make no syntactic change to the
decryption algorithm. Since we can view p as part of the generated ciphertext, we
can apply the standard security notions such as IND-CPA to this syntactically
extended formulation. Basically, this requires that the pair of C and p should
not reveal any information about M . We say that a PKES is “standard” when
the encryption algorithm does not output any proof string, i.e., when the proof
string is empty.

Let X (1n) denote a well-spread distribution over {0, 1}m(n), where m(n) is
a polynomial. We use it as a source of plaintexts. We consider an adversary
who consists of two algorithms, which we call an encryption adversary Ae and
a decryption adversary Ad. Given a pair of a public key pk and a plaintext M
generated by X (1n), Ae tries to forge a valid-looking pair of a ciphertext C
and a proof string p such that the verification passes, but nevertheless Ad can
recover M from C without the corresponding secret key. Ciphertext-auditable
public-key encryption is formally defined as follows:

314 S. Hada and K. Sakurai

Definition 3. We say that a PKES AE is ciphertext-auditable if it has the
following two properties:

Verifiability: There exists a PPTM CV (verification algorithm) such that, for
every M ∈ {0, 1}∗, Pr[(pk, sk) ← K(1n); (C, p) ← E(pk, M) : CV(pk, C, p) =
Acc] = 1.

Unforgeability: For every pair of non-uniform PSCFs Ae = {Ae
n} and Ad =

{Ad
n} and every well-spread distribution X (1n), Pr[(pk, sk) ← K(1n); M ←

X (1n); (C, p) = Ae
n(pk, M) : CV(pk, C, p) = Acc and Ad

n(pk, C) = M] is negli-
gible in n.

Note that adversaries Ae and Ad correspond to the malicious operator and trans-
port service in our motivating scenario, respectively. Also, the auditor can be
implemented using the verification algorithm.

Several remarks are as follows:

Remark 3. Like key-privacy [2], verifiability is a property orthogonal to the stan-
dard security notions such as the semantic security and indistinguishability of
encryptions. On the other hand, unforgeability seems to imply some kind of
one-wayness of encryption. It is an open issue to investigate relations between
unforgeability and known security notions.

Remark 4. The verification algorithm is not allowed to take as input the plain-
text M . If we allow it then the definition contradicts IND-CPA security. Such
a property is defined in a different context in [3], where it is called “ciphertext-
verifiability”.

Remark 5. The decryption adversary Ad is not allowed to take as input the proof
string p for the reason that we will describe in Remark 10. This is the reason
why we made explicit the existence of p in our formulation. This means that, in
our motivating scenario, p is not copied to the backup tape by the operator, but
the auditor must be able to access it. Also, see Remark 10.

Remark 6. There is no information flow allowed from Ae to Ad except for the
public key pk and ciphertext C. If arbitrary information flow is allowed, the
definition makes no sense at all. This is because Ae can pass the plaintext M
to Ad and Ad can output it as it is. This restriction corresponds to our basic
assumption (See Remark 2). Also, due to this restriction, Ad has no access to
any data generated internally in the encryption process, e.g., a hash value of the
plaintext. Remark 11 will discuss this issue from the perspective of our proposed
general construction.

Remark 7. We need to assume that X (1n) is well-spread in the definition of
unforgeability. Otherwise, the definition makes no sense. For example, if a se-
quence of messages {Mn} is generated by X (1n) with probability at least 1

2 (for
infinitely many n’s), then Ad that always outputs such a message breaks the
unforgeability.

Ciphertext-Auditable Public Key Encryption 315

Remark 8. The current definition captures a minimalistic requirement. It is a
future research issue to investigate how we can strengthen the definition. For
example, the definition is very weak in the sense that it only requires that de-
cryption adversaries should not be able to recover the whole plaintext. Ideally,
we want to require that no decryption adversary should be able to recover even
a single bit of the plaintext. However, such a stronger definition could make no
sense. For example, it could be easy for Ae to hide the last bit of plaintexts in
a valid ciphertext. That is, Ae can repeat the (randomized) encryption using
the right public key until the ciphertext becomes an odd value if and only if
the last bit is 1, and Ad outputs 1 if and only if the ciphertext is odd. From
the perspective of steganography [15], it is impossible to prevent such an attack
perfectly since encryption must be randomized.

Remark 9. Unlike the standard security notions such as the semantic security
and indistinguishability of encryptions [12, Section 5.2.4], ciphertext auditabil-
ity is not robust in the sense that it cannot be extended to the setting where
multiple messages are encrypted. For example, consider a situation where an
adversary has an opportunity to encrypt multiple messages (M1, M2, · · · , Mn),
each of length n. The adversary could hide M1 in the ciphertexts by hiding the
i-th bit of M1 in Mi in the way described in the previous remark.

3.2 IND-CCA2 Does Not Imply Ciphertext-Auditability

We show that some IND-CCA2 schemes do not satisfy ciphertext-auditability.
Take for example, the IND-CCA2 scheme suggested by Bellare and Rogaway [4],
where pk is a trapdoor permutation f and C = (C1, C2, C3) = E(pk, M ; r) =
(f(r),H1(r)⊕M,H2(M, r)), where H1 and H2 are random oracles. If an encryp-
tion adversary uses a fixed string R as the random coins r to forge a valid-looking
ciphertext, i.e., C = (f(R),H1(R)⊕M,H2(M, R)), then a decryption adversary
having the fixed R can always recover M from C, i.e., M = C2 ⊕H1(R) (Note
that Definition 3 allows Ae and Ad to share a priori information). In this case,
the forged ciphertext would be considered as valid no matter how we implement
a verification algorithm. It is easy to see that the same attack can be applied
to some encryption schemes in the standard model, too. Examples include the
ElGamal and Cramer-Shoup schemes [9,7].

4 A General Construction

In this section, we propose a general construction of ciphertext-auditable PKESs
in the random oracle model [4]. We will do so in two steps. Intuitively, verifiability
and unforgeability are implemented in the first and second steps, respectively.
The first step works in the standard model while the second step works in the
random oracle model. Before describing it, we would like to point out that,
given an arbitrary secure PKES, verifiability is easy to implement, i.e., we can
just append the used public key to each ciphertext as the proof string. So the
non-trivial task is to satisfy unforgeability at the same time.

316 S. Hada and K. Sakurai

4.1 Step 1: Implementation of Verifiability

Let AE = (K, E ,D) be a standard PKES. We consider a specific strategy for
encryption adversaries to forge valid-looking ciphertexts, which we call the semi-
honest strategy. It is a generalization of the attack described in Section 3.2. In
this strategy, given a pair of a public key pk and a plaintext M , an encryption
adversary Ae somehow selects a plaintext M ′ and a set of random coins r′ and
then outputs C = E(pk, M ′; r′), where M ′ may not be equal to M . In the case
of the attack described in Section 3.2, M ′ = M and r′ is a fixed string R.

We consider a standard PKES for which the semi-honest strategy does not
work, that is, no matter how an encryption adversary selects (M ′, r′), it is diffi-
cult for any decryption adversary to recover M . We define it formally as follows:

Definition 4. We say that a standard PKES AE = (K, E ,D) is secure against
the semi-honest strategy if, for every pair of non-uniform PSCFs F = {Fn}
and DA = {DAn} and every well-spread distribution X (1n), Pr[(pk, sk) ←
K(1n); M ← X (1n); (M ′, r′) = Fn(pk, M); C = E(pk, M ′; r′) : DAn(pk, C) =
M] is negligible in n.

Basically, F and DA play the roles of Ae and Ad in Definition 3, respectively. A
general construction of such a scheme is presented at Step 2 (in the random oracle
model) and Theorem 1 says that we can use such a scheme as a building block to
construct a ciphertext-auditable PKES. Specifically, we can convert a standard
PKES that is secure against the semi-honest strategy into a ciphertext-auditable
PKES by appending to each ciphertext an NIZK proof of its “well-formedness”
as in [18,19,10,17] in order to force F to follow the semi-honest strategy.

Theorem 1. Let AE be a standard PKES that is secure against the semi-honest
strategy. If there exist efficient adaptive NIZK proofs of knowledge for NP, then
we can transform AE into a ciphertext-auditable PKES AE ′ while preserving the
IND-ATK security.

Proof: Let AE = (K, E ,D) be a standard PKES that is secure against the
semi-honest strategy. Given a public key pk for AE , define an NP language
L = {(pk, C) : ∃(M, r) such that C = E(pk, M ; r)}. L is the set of “well-formed”
ciphertexts in the sense that they are an encryption of a plaintext under a public
key. Let π = (f,P ,V , S = (S1,S2), EXT = (EXT 1, EXT 2)) be an efficient
adaptive NIZK proof of knowledge for L.

We apply a well-known technique to AE , that is, we use π to append to each
ciphertext an NIZK proof of its “well-formedness” as in [18,19,10,17]. This will
force encryption adversaries to follow the semi-honest strategy. Formally, AE is
converted into AE ′ = (K′, E ′,D′) as follows:

– K′(1n) generates ((pk, σ), sk), where (pk, sk) ← K′(1n) and σ ← {0, 1}f(n)

(σ is the common reference string for π and is part of the public key).
– E ′(pk, M) generates (C, p), where C ← E(pk, M) (C = E(pk, M ; r)) and

p ← P((pk, C), (M, r), σ).
– D′(sk, C) = D(sk, C).

Ciphertext-Auditable Public Key Encryption 317

Note that K and E are modified for appending the proof, but D is not.
It is easy to see that AE ′ preserves the IND-ATK security (Recall that the con-

version is based on the standard technique for security enhancement
[18,19,10,17]). Also, it is easy to see that AE ′ satisfies verifiability, that is, we
can use CV((pk, σ), C, p) = V((pk, C), p, σ) as the verification algorithm.

It remains to show that AE ′ satisfies unforgeability. For contradiction, as-
sume that there exists a pair of non-uniform PSCFs Ae = {Ae

n} and Ad = {Ad
n}

and a well-spread distribution X (1n) such that Pr[((pk, σ), sk) ← K′(1n); M ←
X (1n); (C, p) = Ae

n((pk, σ), M) : Ad
n((pk, σ), C) = M and V((pk, C), p, σ) =

Acc] is not negligible in n. We construct from (Ae, Ad) a pair of non-uniform
PSCFs F = {Fn} and DA = {DAn}, which contradicts the assumption that
AE is secure against the semi-honest strategy. For simplicity, we describe F as a
probabilistic non-uniform PSCF. The idea is that F uses the knowledge extractor
of π to extract the pair of plaintext and random coins that Ae used and DA just
simulates Ad.

Circuit: Fn

Input: pk, M

Step1: Generate (σ, aux) ← EXT 1(1n).
Step2: Generate (C, p) = Ae

n((pk, σ), M).
Step3: Generate (M ′, r′) ← EXT 2(σ, aux, (pk, C), p).
Step4: Output (M ′, r′).

Circuit: DAn

Input: pk, C

Advice: σn (this is the σ generated by Fn)
Step1: Output Ad

n((pk, σn), C)

Note that we can derandomize F so that all random coins including (σ, aux)
are fixed. It is easy to see that Pr[(pk, sk) ← K(1n); M ← X (1n); (M ′, r′) =
Fn(pk, M); C = E(pk, M ′; r′) : DAn(pk, C) = M] is not negligible in n. This
contradicts the assumption that AE is secure against the semi-honest strategy.

�	
Remark 10. The proof of Theorem 1 depends on the fact that Ad is not allowed
to have access to the proof string p. Note that our construction rules out the
possibility that an adversary can hide the plaintext in the ciphertext, but does
not necessarily rule out the possibility that an adversary can somehow hide the
plaintext in the proof string p. It is an interesting open problem whether we can
construct a ciphertext-auditable scheme such that Ad is allowed to have access
to p, in other words, p is always empty. See Remark 5.

4.2 Step 2: Implementation of Unforgeability

We show how to construct a standard PKES that is secure against the semi-
honest strategy. Unfortunately, we don’t know if we can construct such a scheme

318 S. Hada and K. Sakurai

in the standard model. Alternatively, we will construct it in the random oracle
model, where we allow encryption/decryption algorithms and the two PSCFs
(F, DA) in Definition 4 to have oracle access to random oracles.

Our proposed scheme AE = (K, E ,D) is a modification of the IND-CCA2
scheme suggested by Bellare and Rogaway [4]. Let H1 : {0, 1}∗ → {0, 1}n, H2 :
{0, 1}n → {0, 1}∞, and H3 : {0, 1}∗ → {0, 1}n be random oracles. Let G be the
generator for a trapdoor one-way permutation, denoted by (f, f−1) ← G(1n).
AE is defined as follows:

– K(1n) is the same as G(1n), where pk = f and sk = f−1.
– E(pk,M ; r)=(C1, C2, C3)=(f(H1(M, r)),H2(H1(M, r)) ⊕ M, H3((H1(M, r), M))),

where r is chosen uniformly at random from {0, 1}n.
– D(sk, (C1, C2, C3)) = C2 ⊕H2(f−1(C1)) if C3 = H3((f−1(C1), C2 ⊕H2(f−1(C1))),

decryption fails otherwise.

If we omit the hashing by H1, i.e., if we replace H1(M, r) by r, then AE is the
same as the IND-CCA2 scheme suggested by Bellare and Rogaway. Therefore, it
is easy to see that the IND-ATK security ofAE is reducible to the security of their
IND-CCA2 scheme. Also, it is important to note that E(pk, ·; ·) : {0, 1}m(n)+n →
{0, 1}m(n)+2n behaves close to a random oracle unless F can find an H1-collision,
where m(n) is the length of plaintexts. Therefore, no matter how F selects
(M ′, r′), the probability that the ciphertext C = E(pk, M ′; r′) is contained in
the set of ciphertexts from which DA can recover M is negligible in n. This
means that AE is secure against the semi-honest strategy.

Theorem 2. Assume that G is a trapdoor one-way permutation generator. Then
AE is a standard IND-CCA2 PKES that is secure against the semi-honest strat-
egy in the random oracle model.

Proof: If we omit the hashing by H1, i.e., if we replace H1(M, r) by r, then
AE is the same as the IND-CCA2 scheme suggested by Bellare and Rogaway.
Given a plaintext M , the distributions of its ciphertexts generated by the two
schemes are statistically close as long as r is chosen uniformly at random. This
implies that the IND-ATK security of AE is reducible to the security of Bellare
and Rogaway’s scheme. Therefore, AE is IND-CCA2.

It remains to show that AE is secure against the semi-honest strategy. Given
a PSCF DA = {DAn}, a public key pk, a plaintext M , and three random oracles
(H1,H2,H3), let S

DA
H1,H2,H3
n

(pk, M) be the set of the ciphertexts from which
DAn can recover M , i.e., S

DA
H1,H2,H3
n

(pk, M) = {C |M = DAH1,H2,H3
n (pk, C)}.

When X (1n) is well-spread, its expected size is negligibly small. That is, for every
non-uniform PSCF DA, every well-spread distribution X (1n), every public key
pk, and every three oracles (H1,H2,H3),

Size
DA

H1,H2,H3
n

(X , pk) = E

[
M ← X (1n) :

|S
DA

H1,H2,H3
n

(pk, M)|
2m(n)+2n

]

is negligible in n, where m(n) is a polynomial that represents the output length
of X (1n).

Ciphertext-Auditable Public Key Encryption 319

Note that, given a public key pk and a plaintext M , Fn tries to find a pair
(M ′, r′) such that E(pk, M ′; r′) is contained in the S

DA
H1,H2,H3
n

(pk, M). We need
to prove that it succeeds only with negligible probability. That is, we will show
that, for every pair of non-uniform PSCFs (F, DA) and every well-spread distri-
bution X (1n), the probability

SuccessFn,DAn(X) = Pr

⎡
⎢⎢⎢⎢⎣

(H1,H2,H3)← 2∞;
(pk, sk)← K(1n);
M ← X (1n);
(M ′, r′) = FH1,H2,H3

n (pk, M) :
E(pk, M ′; r′) ∈ S

DA
H1,H2,H3
n

(pk, M)

⎤
⎥⎥⎥⎥⎦

is negligible in n, where 2∞ denotes the set of all random oracles from which
(H1,H2,H3) is chosen.

Without loss of generality, we can assume that

– Fn outputs one of the queries that it made to H1 and the number of queries
is at most q1(n). The q1(n) queries may be adaptively chosen.

– The number of queries to H2 andH3 is at most q2(n) and q3(n), respectively.
Again, the queries may be adaptively chosen.

– When Fn makes the i’th query (Mi, ri), if at least one of the following con-
ditions holds, then Fn runs a special program.

1. A pair of (Mi, ri) and (Mj , rj)(j < i) is a collision under H1, i.e.,
H1(Mi, ri) = H1(Mj , rj).

2. Fn has already made the query H1(Mi, ri) to H2.
3. Fn has already made the query (H1(Mi, ri), Mi) to H3.

Let SP
F

H1,H2,H3
n

(pk, M) denote the event that Fn, given a pair of a public key
pk and a plaintext M , runs the special program. It is easy to see that, for every
pair of pk and M , the probability of the event occurring, i.e., Pr[(H1,H2,H3) ←
2∞ : SP

F
H1,H2,H3
n

(pk, M)], is negligible in n. We denote by ν(n) the negligible
probability, which does not depend on any pair of pk and M .

When Fn makes the i’th query (Mi, ri) to H1, the conditional probability that
the corresponding ciphertext is contained in S

DA
H1,H2,H3
n

(pk, M) assuming that
SPFn(pk, M) has not occurred is at most

PDAn(pk, M) = E

[
(H1,H2,H3) ← 2∞ :

|S
DA

H1,H2,H3
n

(pk,M)|
(2n−q1(n)−q2(n)−q3(n))2m(n)+n

]
.

Therefore, for every pair of non-uniform PSCFs (F, DA) and every well-spread
distribution X (1n), SuccessFn,DAn(X) is bounded from above as follows:

SuccessFn,DAn(X) ≤ E

⎡
⎣ (pk, sk)← K(1n);

M ← X (1n) :
1− (1− PDAn(pk, M))q1(n)

⎤
⎦ (1− ν(n)) + ν(n).

320 S. Hada and K. Sakurai

≤ E

⎡
⎣ (pk, sk)← K(1n);

M ← X (1n) :
q1(n)PDAn(pk, M)

⎤
⎦+ ν(n).

= q1(n)E

⎡
⎢⎢⎢⎣

(pk, sk)← K(1n);
M ← X (1n);
(H1,H2,H3) ← 2∞ :

|S
DA

H1,H2,H3
n

(pk,M)|
(2n−q1(n)−q2(n)−q3(n))2m(n)+n

⎤
⎥⎥⎥⎦+ ν(n).

=
q1(n)2n

2n−q1(n)−q2(n)−q3(n)
E

⎡
⎣(pk, sk)← K(1n);
(H1,H2,H3)← 2∞ :
Size

DA
H1,H2,H3
n

(X , pk)

⎤
⎦+ν(n).

Since q1(n), q2(n), and q3(n) are polynomials, the value is negligible in n. �	

Remark 11. What if an encryption adversary uses a fixed string R as in the
attack described in Section 3.2? If the encryption adversary is allowed to pass the
value of H1(M, R) to the decryption adversary, M can be easily recovered from
C. However, Definition 3 does not allow it (See Remark 6). From the perspective
of our motivating scenario, passing the value ofH1(M, R) is as difficult as passing
the plaintext M itself under our basic assumption.

5 Concluding Remarks

Motivated by a privacy breach scenario, we have proposed a new notion of
ciphertext-auditable PKESs, which is not captured by the standard security
notion IND-CCA2. We have shown a plausibility result for the new notion, that
is, it can be realized using as building blocks an NIZK proof of knowledge for
NP and a trapdoor one-way permutation in the random oracle model. We have
the following research issues: (1) construct practical schemes based on number-
theoretic assumptions such as discrete logarithm and factoring problems, and (2)
investigate general construction in the standard model rather than in the random
oracle model. Also, we have already mentioned some open issues in Remarks 1,
3, 5, 8, and 10.

Also, as we have already mentioned, it would be interesting to investigate:

– ciphertext-auditability in the symmetric encryption setting (See Remark 1).
– relations between ciphertext-auditability and standard security notions such

as IND-CPA (See Remark 3).
– whether it is possible to construct a ciphertext-auditable PKES with empty

proof string (See Remarks 5 and 10).
– how to strengthen the definition of ciphertext-auditable PKESs (See Re-

mark 8).

Ciphertext-Auditable Public Key Encryption 321

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations among Notions
of Security for Public-key Encryption Schemes,” Proceedings of Crypto’98, 1998.

2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, “Key-Privacy in Public-
Key Encryption,” Proceedings of ASIACRYPT’01, 2001.

3. M. Bellare, A. Boldyreva and A. Palacio, “An Uninstantiable Random-Oracle-
Model Scheme for a Hybrid-Encryption Problem,” Proceedings of Eurocrypt’04,
2004.

4. M. Bellare and P. Rogaway, “Random Oracles are Practical: a paradigm for de-
signing efficient protocols,” Proceedings of the 1st ACM Conference on Computer
and Communications Security, pp. 62-73, 1993.

5. R. Canetti, “Towards Realizing Random Oracles: Hash Functions that Hide All
Partial Information,” Proceedings of CRYPTO’97, pp.455-469, 1997.

6. J. Y. Choi, P. Golle, and M. Jakobsson, “Auditable Privacy: On Tamper-evident
Mix Networks,” Proceedings of Financial Crypto’06, 2006.

7. R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack,” Proceedings of CRYPTO’98, pp.13-25,
1998.

8. Y. Desmedt, “Abuses in Cryptography and How to Fight Them,” Proceedings of
CRYPTO’88, pp.375-389, 1988.

9. T. ElGamal, “A public key cryptosystem and signature scheme based on discrete
logarithms,” IEEE Trans. Inform. Theory, Vol. 31, pp.469-472, 1985.

10. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai, “Robust
Noninteractive Zero-Knowledge,” Proceedings of CRYPTO 2001, 2001.

11. A. De Santis and G. Persiano, “Zero-Knowledge Proofs of Knowledge without
Interaction,” Proceedings of the 33rd FOCS, 1992.

12. O. Goldreich, “Foundations of Cryptography: Volume II Basic Applications,” Cam-
bridge University Press, 2004.

13. S. Halevi, “A sufficient condition for key-privacy,” Cryptology ePrint Archive, Re-
port 2005/005, 2005.

14. J. Katz and M. Yung, “Unforgeable Encryption and Chosen Ciphertext Seucre
Modes of Operation, ” Proceedings of FSE 2000, 2001.

15. J. Langford, N. Hopper, and L. Ahn, “Provably Secure Steganography,” Proceed-
ings of CRYPTO’02, 2002.

16. M. Lepinski, S. Micali, A. Shelat, “Fair-Zero Knowledge,” Proceedings of TCC’05,
2005.

17. Y. Lindell, “A Simpler Construction of CCA2-Secure Public-Key Encryption Under
General Assumptions,” Proceedings of Eurocrypt’03, 2003.

18. M. Naor and M. Yung, “Public-key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks,” Proceedings of the 22nd STOC, 1990.

19. A. Sahai, “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security,” Proceedings of the 40th FOCS, 1999.

Provably-Secure Two-Round
Password-Authenticated Group Key Exchange

in the Standard Model�

Jeong Ok Kwon1, Ik Rae Jeong2, and Dong Hoon Lee1

1 Graduate School of Information Security CIST, Korea University,
Anam-dong Seongbuk-Gu, Seoul, 136-701 Korea

{pitapat, donghlee}@korea.ac.kr
2 ETRI (Electronics and Telecommunications Research Institute),

161 Gajeong-dong, Yuseoung-Gu, Daejeon, 305-700 Korea
jir@etri.re.kr

Abstract. Password-authenticated group key exchange (PAGKE) al-
lows group users to share a session key using a human-memorable pass-
word only. The fundamental security goal of PAGKE is security against
dictionary attacks. Several solutions have been proposed to solve this
problem while most ones require rounds linearly increasing in the num-
ber of group users, so they are neither scalable nor practical. Recently a
provably-secure constant-round PAGKE protocol overcoming this short-
coming is proposed at PKC ’06. However current PAGKE protocols have
been proven secure in the ideal model. The ideal model assumes that
some functions are “ideal” functions (or random functions). In the ideal
cipher model, we assume a block cipher is an ideal cipher and in the ideal
hash model (also the so-called the random oracle model), we assume a
hash function is an ideal hash function. However it is well-known that a
provably-secure scheme in the ideal model may be insecure if the ideal
functions are implemented by the real functions. In this paper we pro-
pose the first provably-secure PAGKE protocol in the standard model.
Our protocol is a two-round protocol and the security of the protocol is
reduced to the Decisional Diffie-Hellman (DDH) problem.

1 Introduction

To communicate securely over an insecure public network it is essential that
secret keys are exchanged securely. The shared secret key may be subsequently
used to achieve some cryptographic goals such as confidentiality or data integrity.
Password-authenticated key exchange (PAKE) protocols are used to share a
secret key between two or more specified users using only a human-memorable
password. PAKE has many merits in views of convenience, mobility, and less
� This work was supported by the MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Assessment) and was
done while the first author was visiting Kyushu University in Japan.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 322–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Provably-Secure Two-Round PAGKE in the Standard Model 323

hardware requirement. Because in PAKE protocols, each party remembers only
an easily memorable password and the parties do not need any additional devices
like smart cards or hardware tokens, and any additional trusted third party.

Protocols for password-authenticated group key exchange (PAGKE) can be
used in several environments, especially in mobile networks. In mobile networks
session key exchange for the secure group communication services, such as elec-
tronic conferences [4,39], personal networking [13,27], military operations, and
emergency rescue [38,39,40], has to be done efficiently using relatively small re-
sources. Since protocols for PAGKE provide a way to authenticate users of a
group and derive cryptographically secure keys for users from low-entropy pass-
words in environments where a security infrastructure like the PKI (Public-Key
Infrastructure) is not deployed, PAGKE protocols can be more easily imple-
mented and efficiently used for the applications. The main efficiency issues in
real applications over mobile networks is how to reduce the number of rounds, the
computing time, and the size of the transmitted message since wireless clusters
have memory and processing constraints, and the networks have limited band-
width. Especially the number of rounds is very important factor in case that the
size of group users is large or group keys have to be exchanged frequently.

Compared to other security models, the most distinguishable characteristic of
the PAKE security model is that the model must incorporate dictionary attacks.
The dictionary attacks are possible due to the low entropy of the password space.
In practice, a password consists of 4 or 8 characters such as natural language
phrase to be easily memorized. The set of these probable passwords is small, so
there exists a relatively small dictionary. Usually dictionary attacks are classified
into two classes: on-line and off-line dictionary attacks. In on-line dictionary
attacks, an adversary attempts to use a guessed password by participating in a
key exchange protocol. If the protocol run is failed, the adversary initiates a new
protocol run using another guessed password. These on-line attacks require the
participation of an adversary. In off-line dictionary attacks, an adversary selects
a password from a dictionary and verifies his guess in the off-line manner, i.e., the
adversary uses only recorded transcripts from a successful run of the protocol. So
such off-line attacks are undetectable. The on-line dictionary attacks are always
possible, but these attacks can not become a serious threat because the on-line
attacks can be easily detected and thwarted by counting access failures. However,
off-line dictionary attacks are more difficult to prevent. Even if there exist tiny
amounts of redundancy information in flows of the scheme, then adversaries
may mount an off-line dictionary attack by using the redundancy as a verifier
for checking whether a guessed password is correct or not. The main security goal
of schemes for PAKE is to restrict the adversary to on-line dictionary attacks
only. If a PAKE scheme is secure, an adversary can not obtain any advantage
in guessing the passwords and the session keys of users through the off-line
dictionary attacks.

One of the most basic security requirements of PAKE protocols is key secrecy,
which guarantees that no computationally bounded adversary should learn any-
thing about the session keys shared between honest users by eavesdropping or

324 J.O. Kwon, I.R. Jeong, and D.H. Lee

sending messages of its choice to parties in the protocol. Other desirable security
goals are as follows (formal definitions are given in Section 4). The importance of
the following attributes depends on the real applications. Forward Secrecy means
that even with the password of the users any adversary does not learn any in-
formation about session keys which are successfully established between honest
parties without any interruption. A PAKE protocol is secure against known-key
attacks if compromise of multiple session keys for sessions other than the one does
not affect its key secrecy. This notion of security means that session keys are com-
putationally independent from each other. A bit more formally, this security pro-
tects against “Denning-Sacco” attacks [23] involving compromise of multiple ses-
sion keys (for sessions other than the one whose secrecy must be guaranteed). Se-
curity against known-key attacks also implies that an adversary cannot gain the
ability to perform the off-line dictionary attacks on the passwords from the com-
promised session keys which are successfully established between honest parties.

2 Our Work in Relation to Prior Work

Related Work. There are several works about how to make the PAGKE pro-
tocol [4,16,34,24,2]. In [4], Asokan et al. have proposed a PAGKE protocol based
on the group key exchange protocol of Becker and Wille [11] without a formal
proof. A forward-secure key exchange guarantees that the expose of a password
does not compromise the previous session keys. Bresson et al. have suggested
the first provably forward-secure PAGKE protocol in both the ideal hash/cipher
model under the TG-CDH and M-DDH assumptions [16]. The protocols in [4]
and [16] requires O(n) rounds and O(n) exponentiations per each user, where
n is the number of group users, and the protocols are asymmetric. Asymmet-
ric group key exchange protocol places an unfair computational burden to any
specific user of the key exchange. [24] proposed a password-based variant of the
Kim-Lee-Lee group key exchange protocol [31]. The PAGKE protocol requires
constant-round and uses an ideal cipher. However, in [2] Abdalla et al. show that
the protocol is vulnerable to an off-line dictionary attack since the encryption
key used by each user is unique. Very recently, Abdalla et al. [2] have provided
a symmetric PAGKE protocol with consant-round and a security proof without
forward secrecy in both the ideal hash/cipher model under the DDH assumption.
The protocol is built on the protocol of Burmester and Desmedt.

Motivation. All previous PAGKE protocols have been constructed in the ideal
model. The ideal model is a security model, where we assume that a certain
function is an “ideal” function. In the ideal cipher model, a block cipher ideally
behaviors through encryption/decryption oracles as follows: Let G and C to be
finite sets of strings where |G| = |C| and fix K ∈ {0, 1}∗. The encryption oracle
E produces a truly random value c ∈ C for each new query (m ∈ G, k ∈ K)
and identical answers if the same query is asked twice. The decryption oracle D
produces a truly random value m ∈ G for each new query (c ∈ {0, 1}∗, k ∈ K)
and identical answers if the same query is asked twice. In the ideal hash model

Provably-Secure Two-Round PAGKE in the Standard Model 325

(also called the random oracle model [6]) a hash function is a true random
function. The hash function produces a truly random value for each new query
and identical answer if the same query is asked twice.

The security proof of a protocol in the ideal model gives an insight in analyzing
the protocol, but does not guarantee that the protocol is secure in the real world.
In fact, many results [20,37,26,21,10] on the ideal hash methodology show that
a scheme secure using ideal hash oracles may be not secure if the oracles are
replaced by real functions; Canetti, Goldreich and Halevi [20] point out that
although the ideal hash methodology formulated by Bellare and Rogaway [6]
seems to be useful in practice, it is unclear how to put the methodology on the
real world. They showed that there exist a signature scheme and an encryption
scheme, which are secure in the ideal hash model but result in insecure schemes
for any implementation of the ideal hash in the real world. A secure PAGKE
scheme in the ideal cipher model only guarantees that the PAGKE protocol is
secure against general attacks that do not exploit a particular implementation
of the block cipher. Added to that, in practice current block ciphers are far from
being random permutations. Thus a protocol seems to be more reliable, if we
do not use ideal functions such as an ideal hash and an ideal cipher. Thus, a
protocol is more reliable, if we do not use ideal functions such as an ideal hash
and an ideal cipher. This is the motivation of our work.

Table 1. Comparisons of complexity and security with the related PAGKE protocols

Scheme Asokan et al. [4] Bresson et al. [16] Abdalla et al. [2] Our Protocol
Round n + 1 n 3 2

Exponentiation O(n) O(n) 4 4
Communication O(n · |p|) O(n · |p|) 2 · |p| + |N | 2 · |p|

Security − KK and FS KK KK and FS
Assumption − IH and IC IH and IC Standard

We use a group Z∗
p where p is a prime. n is the number of users in a group and |N | is the

length of a random number. An FS protocol is a forward-secure key exchange protocol
and a KK protocol is a secure key exchange protocol against known-key attacks. IH
denotes the ideal hash model and IC denotes the ideal cipher model.

Our Result. Our main contribution is the first provably-secure constant-round
PAGKE protocol in the standard model under the DDH assumption. The pro-
tocol also provides forward secrecy and is symmetric. The suggested protocol
is based on the protocol of Burmester and Desmedt [19]. The Burmester and
Desmedt protocol is not a password-authenticated key exchange protocol, and
the security of the protocol in the passive adversarial model was proved by Katz
and Yung [30]. In [30], Katz and Yung also proposed a forward-secure constant-
round group key exchange protocol against active adversaries in the standard
model, which is based on the group key exchange protocol of Burmester and
Desmedt. They use signatures to authenticate the messages of the protocol

326 J.O. Kwon, I.R. Jeong, and D.H. Lee

of [19]. To use a signature scheme, all group users have an associated public-
/private-key pair known to all other users in the network. Due to the critical
assumption for possessing of public-/private-key pair, the approach in [30] can
not be applied to PAGKE.

We note that converting a group key exchange protocol secure against passive
adversaries into a PAGKE protocol secure against dictionary attacks is not easy
at all. Because PAGKE must provide authentication using only a password,
redundancy information in the flows of the PAGKE protocols can provide a clue
to mount an off-line dictionary attack. To solve this problem, instead of using
signatures to authenticate the protocol messages of [19], we use a multiplicative
function as in [32,3,1], where the multiplicative function multiplies the protocol
messages of [19] by a value which is made with a password and a pseudo random
function to generate a session key.

We compare the efficiency and the security of our protocol with the protocols
of Asokan et al. in [4], Bresson et al. in [16], and Abdalla et al. in [2]. Table 1
summarizes the comparisons in which communication cost is the total number of
bits that each user sends during a protocol run. In the comparisons, we consider
the protocol [2] by omitting the mutual authentication part (However, the omis-
sion does not affect the main mechanism of the protocol because the protocol is
analyzed in the ideal cipher and the ideal hash models).

3 Primitives

Decisional Diffie-Hellman Assumption. Let G = 〈g〉 be any finite cyclic
group of prime order q. The DDH problem is defined as follows: given a triple
(U, V, W), determine that the triple is a Diffie-Hellman triple (ga, gb, gab) or a
random triple (ga, gb, gr). The advantage of an algorithm A, Advddh

G,A(t), running
in time t is ε, if

|Pr[a, b ← Zq : A(g, ga, gb, gab) = 1]− Pr[a, b, r ← Zq : A(g, ga, gb, gr) = 1]| ≥ ε.

We say the DDH assumption holds in G if no probabilistic polynomial time
algorithm A can solve the DDH problem with non-negligible advantage. We
let Advddh

G (t) denote the maximum advantage which is over all adversaries As
running in time at most t.

Pseudorandom Functions. Let F : Keys(F) × D → R be a family of func-
tions, and g : D → R a random function. A is an algorithm that takes an oracle
access to a function and returns a bit. We consider two experiments:

Expprf-1
F,A Expprf-0

F,A
K

R← Keys(F) g
R← RandD→R

d ← AFK(·) d← Ag(·)

return d return d

The advantage of an adversary A is defined as follows:

Advprf
F,A = Pr[Expprf-1

F,A = 1]− Pr[Expprf-0
F,A = 1].

Provably-Secure Two-Round PAGKE in the Standard Model 327

The advantage function is defined as follows:

Advprf
F (κ, T, q, μ) = max

A {Advprf
AF,A},

whereA is any adversary with time complexity T making at most q oracle queries
and the sum of the length of these queries being at most μ bits. The scheme F
is a secure pseudo random function family if the advantage of any adversary A
with time complexity polynomial in κ is negligible.

The protocol of Burmester and Desmedt [19]. Our protocol is based on
the Burmester and Desmedt’s conference key exchange protocol in broadcast
networks. Let U1, . . . , Un be a group of n users wishing to generate a session key.
The indices are cyclic, i.e., Un+i is Ui.

BD

Round 1. Each user Ui chooses a random ri ∈ Z∗
q and broadcasts zi =

gri mod p.

Round 2. Each useer Ui broadcasts Xi = (zi+1/zi−1)ri mod p.

Key computation. Each user Ui computes the session key as follows:

Ki = (zi−1)nri ·Xn−1
i ·Xn−2

i+1 · · ·Xi−2 mod p.

It may be easily verified that all honest users compute the same key,

K = gr1r2+r2r3+...+rnr1 mod p.

The following characterizes the security of BD. The proof of below theorem ap-
pears in the proof of Theorem 3 of [30].

Theorem 1. Let G be a group in which the DDH assumption holds. Then BD
is a secure group key exchange (GKE) protocol achieving forward secrecy in
an authenticated channel model (i.e., secure against only passive adversaries).
Concretely,

Advgke-fs
BD (k, t, 1) ≤ 2n · Advddh

G (t),

where t is the maximum total game time including an adversary’s running time,
and an adversary makes only a single execute query. n is the upper bound of the
number of the parties in the game.

4 Model

The model described in this section is based on Bresson et al.’s model in [15,16]
and Katz et al.’s model in [30] which follow closely the model established by
Bellare and Rogaway [7,8]. In the paper, we assume that the network is a broad-
cast network, where the users can simultaneously broadcast messages to each

328 J.O. Kwon, I.R. Jeong, and D.H. Lee

other. But we do not assume that the broadcast network guarantees that all
users receive identical messages, i.e., we allow that a malicious adversary may
intercept the broadcast messages and substitute his own messages for some of
them. In our model, we assume that the group users do not deviate from the
protocol and the adversary is not a group user.

Initialization. We fix a nonempty set U = {U1, . . . , Un} of potential users,
where n is the number of users. A user Ui ∈ U may have many instances of the
protocol. An instance of Ui is represented by an oracle Πs

i , for any s ∈ N. A
set of users shares a password pw obtained at the start of the protocol using a
password generation algorithm PG(1κ) which on input a security parameter 1κ

outputs a password pw uniformly distributed in a password space of size PW.

Partnering. We define partnering for broadcast networks. We do not assume a
synchronous network, and a round number is appended to a broadcast message.
We assume that a sender’s identity is also appended to the message to indicate
the sender of the message. Let sids

i be the concatenation of all (broadcast) mes-
sages that oracle Πs

i has sent and received. For the concatenation we assume
that the messages are lexically ordered according to the sender’s identity. Let a
partner identifier pids

i for instance Πs
i be a set of the identities of the users with

whom Πs
i intends to establish a session key. pids

i includes Ui itself. The oracles
Πs

i and Πt
j are partnered if:

- pids
i = pidt

j and sids
i = sidt

j .

Queries. An adversary A is a probabilistic polynomial-time machine that con-
trols all the communications and makes queries to any oracle. The queries that
A can use are as follows:

- Execute(U): This query models passive attacks, where the adversary gets the
instances of honest executions of a protocol by U .

- Send(Πs
i , m): This query is used to send a message m to Πs

i and get the
response from Πs

i . The adversary can initiate a new instance Πs
i with a set

of communicating users U1, . . . , Un by calling Send0(Ui, (U1, . . . , Un)).
- Reveal(Πs

i): This query models the adversary’s ability to obtain session keys
(known-key attacks). If a session key skΠs

i
has previously been constructed

by Πs
i , it is returned to the adversary.

- Corrupt(Ui): This query models the adversary’s ability to obtain long-term
keys of parties (forward secrecy). The adversary is assumed to be able to
obtain long-term keys of parties, but cannot control the behavior of these
players directly (of course, once the adversary has asked a query Corrupt(Ui),
the adversary may impersonate Ui in subsequent Send queries.) We restrict
that on Corrupt(Ui) the adversary only can get the password pw, but cannot
obtain any internal data of Ui.

- Test(Πs
i): This query is used to define the advantage of the adversary. This

query is allowed only once by the adversary A, and only to fresh oracles,
which is defined later. On this query a simulator flips a coin b. If b is 1,
then the session skΠs

i
is returned. Otherwise a string randomly drawn from

a session key distribution is returned.

Provably-Secure Two-Round PAGKE in the Standard Model 329

A passive adversary can use the Execute, Reveal, Corrupt and Test queries
while an active adversary additionally can use the Send query. Even though the
Execute query may seem to be useless since it can be simulated by repeatedly
using the Send queries. Yet the Execute query is essential to distinguish on-line
dictionary attacks from off-line dictionary attacks. The Send queries are directly
asked by the adversary and the number of those dose not take into account the
number of Execute queries. Thus, the number of on-line dictionary attacks can
be bounded by the number of Send queries.

PAGKE Security. Consider a game between an adversary A and a set of
oracles. A asks the above queries to the oracles in order to defeat the security of
a protocol P , and receives the responses. At some point during the game a Test
query is asked to a fresh oracle, and the adversary may continue to make other
queries. Finally the adversary outputs its guess b′ for the bit b used by the Test
oracle, and terminates. We define CG to be an event that A correctly guesses the
bit b. The advantage of adversary A must be measured in terms of the security
parameter k and is defined as follows:

AdvP,A(k) = 2 · Pr[CG]− 1.

The advantage function is defined as follows:

AdvP (k, t) = max
A {AdvP,A(k)},

where A is any adversary with time complexity t which is polynomial in k.

Freshness. We define a notion of freshness considering forward secrecy which
means that an adversary does not learn any information about previously estab-
lished session keys when making a Corrupt-query. We say an oracle Πs

i is fresh
if the following conditions hold:

- Πs
i has computed a session key sk �= NULL and neither Πs

i nor Πt
j have

been asked for a Reveal query, where Πs
i and Πt

j are partnered.
- No Corrupt query has been made by the adversary since the beginning of the

game.

Definition 1. We say a protocol P is a secure password-authenticated group key
exchange protocol if the following two properties are satisfied:

- Validity: if all oracles in a session are partnered, the session keys of all oracles
are same.

- Key secrecy: AdvP (k, t) is bounded by qse/PW + ε(k), where ε(k) is negligi-
ble, qse is the number of Send queries, and PW is the size of the password
space.

(1) We say a protocol P is a secure PAGKE protocol if validity and key secrecy
are satisfied when no Reveal and Corrupt queries are allowed.

(2) We say a protocol P is a secure PAGKE-KK protocol if validity and key
secrecy are satisfied when no Corrupt query is allowed.

330 J.O. Kwon, I.R. Jeong, and D.H. Lee

(3) We say a protocol P is a secure PAGKE-FS protocol if validity and key secrecy
are satisfied when no Reveal query is allowed.

(4) We say a protocol P is a secure PAGKE-KK&FS protocol if validity and key
secrecy are satisfied.

5 A Two-Round Protocol for PAGKE

In this section, we present protocol PAGKE which requires only two rounds,
achieves forward secrecy, and is secure against known-key attacks. PAGKE is
designed without using the random oracle model and its security is proved under
the DDH assumption. In order to convert the unauthenticated Burmester and
Desmedt’s group key exchange protocol to a PAGKE protocol, we use a multi-
plicative function; the user Ui’s ephemeral Diffie-Hellman value gri

1 is multiplied
by g

H(pw‖Ui)
2 in the first round.

PAGKE

Public information: Let U1, . . . , Un be the identities in lexical order of n
users. A finite cyclic group G of order q in Z∗

p. Two primes p, q such that
p = 2q + 1, where p is a safe prime such that the DDH problem is hard to
solve in G. g1 and g2 are generators of G both having order q, where g1 and
g2 must be generated so that their discrete logarithmic relation is unknown.
A hash function H from {0, 1}∗ to Z∗

q . F is a pseudo random function family.

Round 1: Each user Ui chooses a random number ri ∈ Z∗
q , computes xi =

gri
1 mod p and Xi = xi · gH(pw‖Ui)

2 mod p. Ui broadcasts Ui‖1‖Xi, where 1
represents the broadcast message in the first round.

Round 2: Each user Ui computes xi−1 and xi+1 using pw and the senders’
identities Ui−1 and Ui+1, respectively. Ui computes Yi = (xi+1/xi−1)ri mod p
and broadcasts Ui‖2‖Yi.

Key computation: Each user Ui computes the secret key for F as ki =
(xi−1)nri · Y n−1

i · Y n−2
i+1 · · ·Yi−2 mod p and the session key ski = Fki(U||sid),

where U = (U1, . . . , Un), sid = 1||X||2||Y, X = (X1, . . . , Xn), and Y =
(Y1, . . . , Yn).

If everything works correctly in PAGKE , the session key computed by Ui is
ski = Fki(U||sid), where ki = gr1r2+r2r3+...+rnr1

1 mod p.

6 Security Analysis

We now present that under the intractability assumption of the decisional Diffie-
Hellman (DDH) problem and if F is a secure pseudo random function, the

Provably-Secure Two-Round PAGKE in the Standard Model 331

proposed group key exchange protocol is secure against dictionary attacks and
known-key attacks and provides forward secrecy.

Theorem 2. Let G be a group in which the DDH assumption holds and F is a
secure pseudo random function family. Then PAGKE is a secure PAGKE-KK&FS
protocol. Concretely,

Advpagke-kk&fs
PAGKE (k, t, qex, qse) ≤ 2(n + 2n ·Ns + qse) · Advddh

G (t) + Advprf
F (κ, T, q, h)

+
2qse

PW +
|U|(qex + qse)2

2q
,

where t is the maximum total game time including an adversary’s running time,
and an adversary makes qex Execute queries and qse Send queries. n is the upper
bound of the number of the parties in the game, Ns is the upper bound of the
number of sessions that an adversary makes, and PW is the size of the password
space.

Proof of Theorem 2. Consider an adversary A attacking PAGKE in the sense
of forward secrecy and security against known-key attacks. In this proof, we
prove that the best strategy A can take is to eliminate one password from the
password dictionary per initiated session. Assume that A breaks PAGKE with a
non-negligible probability. An adversary may get information about a particular
session key if a collision appears on the transcripts (for the same set of users)
during the experiment; i.e., there exists a user Ui ∈ U and t, s (t �= s) such that
the transcript used by instance Πs

i is equal to the transcript used by instance
Πt

i . The other cases allow us to solve the DDH problem and break a pseudo
randomness of a pseudo random function family with probability related to the
adversary’s success probability. We now proceed with a more formal proof. Let
Col be the event that a transcript is used twice by a particular user.

The advantage with the event Col is bounded by the birthday paradox:

Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse) = 2Pr[CG ∧ Col]− 1 ≤ 2Pr[Col] ≤ |U|(qex + qse)2

q
,

(1)

where q is the size of the group G.

The advantage without the event Col is from the following two cases:

(Case 1) For the Test oracle Πs
i , all parties in pids

i have a partner oracle.
(Case 2) For the Test oracle Πs

i , there exists at least one party Uj (j �=
i ∧ Uj ∈ pids

i) such that Uj does not have a partner oracle.

For i ∈ {1, 2}, let Advpagke-kk&fs-Case i
PAGKE (k, t, qex, qse) be the advantage of an adver-

sary from Case i. Then we have

332 J.O. Kwon, I.R. Jeong, and D.H. Lee

Advpagke-kk&fs
PAGKE (k, t, qex, qse) = Advpagke-kk&fs-Col

PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse)

= Advpagke-kk&fs-Col
PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 1
PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse).

If the advantage of an adversary is from Case 1, the password of the parties
may be revealed by Corrupt queries. Although Corrupt queries are allowed by the
definition of freshness, for the Test oracle Πs

i , all instances in pids
i are executed

by Execute queries. This case can be seen that there is no the password in the
protocol, and thus we may ignore Corrupt queries. Therefore, computing the
upper bound of the advantage from Case 1 is similar to that of Theorem 3 of
[30] (Theorem 1 in this paper) and hence we omit the details.

Advpagke-kk&fs-Case 1
PAGKE (k, t, qex, qse) ≤ Ns ·Advgke-fs

BD (k, t, qex) ≤ 2n·Ns ·Advddh
G (t). (2)

To compute the upper bound of the advantage from Case 2, we assume an
adversary A gets the advantage from Case 2. In this case, the password of the
parties is not revealed by freshness conditions. Informally, there are only two
ways an adversary can get information about a particular session key; either
the adversary successfully breaks the authentication part, which means that the
adversary correctly guesses the password, or correctly guesses the bit b involved
in the Test query. The advantage from Case 2 is bounded as follows:

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse)≤2(n+n ·Ns+qse) · Advddh

G (t)+Advprf
F (κ, T, q, h)

+
2qse

PW . (3)

From Equations (1),(2) and (3) lead to

Advpagke-kk&fs
PAGKE (k, t, qex, qse) = Advpagke-kk&fs-Case1

PAGKE (k, t, qex, qse) +

Advpagke-kk&fs-Case 2
PAGKE (k, t, qex, qse) + 2Pr[Col]

≤ 2(n + 2n ·Ns + qse) · Advddh
G (t) + Advprf

F (κ, T, q, h) +
2qse

PW +
|U|(qex + qse)2

2q
.

The detailed proof of the theorem appears in the full version of the paper [33].

7 Explicit Authentication

PAGKE is a PAGKE protocol with implicit authentication; A key exchange
protocol is said to provide implicit key authentication if users are assured that

Provably-Secure Two-Round PAGKE in the Standard Model 333

no other users aside from partners can possibly learn the value of a particu-
lar secret key. Note that the property of implicit key authentication does not
necessarily mean that the partners actually have computed the key. Another
notion is explicit authentication, which guarantees to each user that it actually
shares the same session key with all the others. To convert PAGKE with im-
plicit authentication into the protocol PAGKE ′ that provides explicit authen-
tication, we use the well-known approach which generates an “authenticator”
for the other users by using a message authentication code (MAC) keyed by
the shared session key [22]. We now present the modification PAGKE ′ provid-
ing implicit authentication which is the same as PAGKE except the following
points.

PAGKE′

Public information: A message authentication code (MAC), Mac =
(Mac.gen, Mac.ver). Given a random key k, Mac.gen computes a tag τ for a
message M ; we write this as τ = Mac.genk(M). Mac.ver verifies the message-
tag pair using the (shared) key, and returns 1 if the tag is valid or 0 otherwise.

Key computation: Each user Ui computes the secret key for F as follows:

ki = (xi−1)nri · Y n−1
i · Y n−2

i+1 · · ·Yi−2 mod p.

Each user Ui broadcasts his authenticator τi = Mac.genki
(U||1||X||2||Y), where

U = (U1, . . . , Un), X = (X1, . . . , Xn), and Y = (Y1, . . . , Yn).

Key confirmation: Upon receiving τj (j �= i), each user Ui checks the validity
of τj (1 ≤ j ≤ n). If all are valid, each user Ui computes the session key as
ski = Fki(U||sid), where sid = (1||X||2||Y||3||τ) and τ = (τ1, ..., τn).

8 Concluding Remarks

A previous constant-round PAGKE protocol has been proven secure in both the
ideal hash model and the ideal cipher model [2]. However, a provably-secure
protocol using ideal functions may be insecure if the ideal functions are imple-
mented by the real-world functions. Thus a protocol without using ideal func-
tions in proving its security is more desirable. In the paper, we have proposed
the first provably-secure two-round PAGKE protocol without using any ideal
function. This result is the best solution since the security of the protocol is
based on weaker and more reasonable assumptions and the protocol achieves
constant-round complexity, yet much work remains to be done to improve the
computational efficiency.

334 J.O. Kwon, I.R. Jeong, and D.H. Lee

References

1. M. Abdalla, E. Bresson, O. Chevassut, A. Essiari, B. M öller, and D. Pointcheval,
Provably Secure Password-Based Authentication in TLS, In Proc. of ASIACCS’06,
ACM Press, pages 35-45, ACM Press, 2006.

2. M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-based Group
Key Exchange in a Constant Number of Rounds, In Proc. of PKC ’06, LNCS ??,
pages ??-??, 2006.

3. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols, In Proc. of CT-RSA 2005, LNCS 3376, pages 191-208. Springer-Verlag,
2005.

4. N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks, Journal of Com-
puter Communications 23(17), pages 1627-1637, 2000.

5. S. Bellovin and M.merritt. Encrypted Key Exchange: Password-Based Protocols
Secure against Dictionary Attacks, In Proc. of the Symposium on Security and
Privacy, pages 72-84. IEEE Computer Society, 1992.

6. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols, In Proc. of 1st Conference on Computer and Communications
Security, pages 62-73, ACM, 1993.

7. M. Bellare and P. Rogaway. Entity authentication and key distribution, In Proc. of
CRYPTO ’93, LNCS 773, pages 232-249, Springer-Verlag, 1993.

8. M. Bellare and P. Rogaway. Provably secure session key distribution-the three party
case, In Proc. of the 27th ACM Symposium on the Theory of Computing, 1995.

9. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key agreement se-
cure against dictionary attacks, In Proc. of EUROCRYPT ’00, LNCS 1807, pages
139-155. Springer-Verlag, 2000.

10. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem, In Proc. of EUROCRYPT ’04, LNCS
3027, pages 171-188, 2004.

11. K. Becker and U. Wille. Communication Complexity of Group Key Distribution,
In Proc. of the 5th ACM confernce on Computer and Communications Security,
pages 1-6, 1998.

12. J. Black and P.Rogaway. Ciphers with Arbitrary Finite Domains, In Proc. of the
RSA Data Security Conference, Cryptographer’s Track (RSA CT ’02), LNCS 2271,
pages 114-130, Springer-Verlag, 2002.

13. Bluetooth. Specification of the Bluetooth System, December 1999, Available at
http://www.bluetooth.com/developer/specification/specification.asp.

14. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman, In Proc. of EUROCRYPT ’01, LNCS 1807,
pages 156-171, Springer-Verlag, 2001.

15. E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authen-
ticated Group Diffie-Hellman Key Exchange, In Proc. of the 8th ACM conference
on Computer and Communications Security, pages 255-264, 2001.

16. E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman Key Exchange
Secure Against Dictionary Attacks, In Proc. of ASIACRYPT 2002, LNCS 2501,
pages 497-514, Springer-Verlag, 2002.

17. E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for an Efficient
Password-Based Key Exchange, In Proc. of the 10th ACM Conference on Computer
and Communications Security, ACM, pages 241-250, 2003.

Provably-Secure Two-Round PAGKE in the Standard Model 335

18. E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange, In Proc. of PKC 04, LNCS 2947, pages 145-158, Springer-Verlag,
2004.

19. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution
System, In Proc. of EUROCRYPT ’94, LNCS 950, pages 275-286, Springer-Verlag,
1995.

20. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited,
In Pro. of the 32nd Annual ACM Symposium on Theory of Computing, pages
209-218, 1998.

21. R. Canetti, O. Goldreich and S. Halevi. On the Random-Oracle Methodology as
Applied to Length-Restricted Signature Schemes, In Pro. of 1st Theory of Cryptog-
raphy Conference (TCC), LNCS 2951 , pages 40-57, 2004.

22. R. Canetti and H. Krawczyk. Universally Composable Notions of Key Ex-
change and Secure Channels. In Eurocrypt ’02. Full version available at
http://eprint.iacr.org/2002/059.

23. D. Denning and G. M. Sacco. Timestamps in Key Distribution Protocols, Commu-
nications of the ACM, 24(8), pages 533-536, 1981.

24. R. Dutta and R. Barua. Password-based encrypted group key agreement, In-
ternational Journal of Network Security, 3(1):30-41, July 2006. http://isrc.
nchu.edu.tw/ijns.

25. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only, In Proc. of CRYPTO ’01, LNCS 2139, pages 408-432. Springer-Verlag, 2001.

26. S. Goldwasser and Y. Taumen. On the (in)security of the Fiat-Shamir Paradigm,
In Proc. of STOC ’03, pages 102-115, IEEE Computer Society, 2003.

27. M. Jakobsson and S. Wetzel. Security Weaknesses in Bluetooth, In Proc. of the
RSA Data Security Conference, Cryptographer’s Track (RSA CT ’01), LNCS 2020,
pages 176-191, Springer-Verlag, 2001.

28. J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change using Human-Memorable Passwords, In Proc. of EUROCRYPT ’01, LNCS
2045, pages 475-494, Springer-Verlag, 2001.

29. J. Katz, R. Ostrovsky, and M. Yung. Forward secrecy in Password-only Key Ex-
change Protocols, In Proc. of SCN ’02, LNCS 2576, pages 29-44,Springer-Verlag,
2002.

30. J. Katz and M. Yung. Scalable Protocol for Authenticated Group Key Exchange, In
Proc. of CRYPTO ’03, LNCS 2729, pages 110-125, Springer-Verlag, 2003.

31. H. J. Kim, S. M. Lee, and D. H. Lee. Constant-round authenticated group key
exchange for dynamic groups, In Proc. of ASIACRYPT 2004, LNCS 3329, pages
245-259, 2004.

32. K. Kobara and H. Imai. Pretty-simple password-authenticated key-exchange under
standard assumptions, IEICE Transactions, E85-A(10): 2229-2237, Oct. 2002. Also
available at http://eprint.iacr.org/2003/038/.

33. J. O. Kwon, I. R. Jeong and D. H. Lee. Full version of this paper, Available at
http://cist.korea.ac.kr/new/Publication.

34. S. M. Lee, J. Y. Hwang and D. H. Lee. Efficient Password-Based Group Key Ex-
change, In Proc. of TrustBus ’04, LNCS 3184, pages 191-199, Springer-Verlag,
2004.

35. P. MacKenzie. More Efficient Password Authenticated Key Exchange, In Proc. of
the RSA Data Security Conference, Cryptographer’s Track (RSA CT ’01), LNCS
2020, pages 361-377, Springer-Verlag, 2001.

336 J.O. Kwon, I.R. Jeong, and D.H. Lee

36. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions, In Proc. of the 38th IEEE Symposium on Foundations of Com-
puter Science, pages 458-467, IEEE Computer Society, 2004.

37. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs:
The Non-Committing Encryption Case, In Proc. of CRYPTO ’02, LNCS 2442,
pages 111-126, 2002.

38. K. Obraczka, G. Tsudik, and K. Viswanath. Publishing Limits of Multicast in Ad
Hoc Networks, In Proc. of International Conference on Distributed Computing
Systems, 2001.

39. C. E. Perkins. Ad Hoc Networking, Addison Weseley, 2001.
40. L. Zhou and Z. J. Haas. Securing Ad Hoc Networks, IEEE Networks Magazine

13(6), pages 24-30, 1999.

On the Effectiveness of TMTO and Exhaustive
Search Attacks

Sourav Mukhopadhyay1 and Palash Sarkar2

1 Projet CODES, INRIA Rocquencourt
B.P. 105 78153 Le Chesnay Cedex, France

Sourav.Mukhopadhyay@inria.fr
2 Applied Statistics Unit

Indian Statistical Institute
203 B.T. Road, Kolkata-700 108, India

palash@isical.ac.in

Abstract. In this paper, we consider time/memory trade-off (TMTO)
and exhaustive search attacks and analyze their effectiveness on various
key sizes. The first part of the paper is an overview of TMTO methodol-
ogy and summarizes earlier work on hardware implementation of TMTO
and exhaustive search attacks. The second part of the paper develops a
cost model for analysing the effectiveness of generic attacks. Analysis
of the cost model shows that 128-bit keys seem safe for the present.
However, key sizes less than 96 bits do not provide comfortable security
assurances. This is particularly relevant for the 80-bit stream ciphers in
the Ecrypt call for stream ciphers as well as for the A5/3 encryption
algorithm used in GSM mobile phones.

Keywords: one-way function, cryptanalysis.

1 Introduction

Cryptographic algorithms such as block and stream ciphers require the use of
a secret key to ensure confidentiality of transmitted messages. The basic goal
of a cryptanalytic attack is to recover the secret key from publicly available
information. Very often a successful attack exploits weakness in the design of
the specific algorithm being considered.

On the other hand, a generic approach to cryptanalysis is to try every possi-
ble key until the correct one is found. This is called an exhaustive search attack.
The importance of such an approach arises from the fact that if a cryptographic
algorithm is not secure against exhaustive search, then it cannot be considered
secure at all. The resistance against exhaustive search depends on the size of
the key space. However there are other factors to consider: Implementation in
software or special purpose hardware; the number of parallel processors avail-
able; the speed at which each key can be processed; the cost of each processor
and the overall cost of implementing the attack. (There are other issues like
power consumption and mean time between failures to consider.) Implementa-
tion of exhaustive search is most feasible in special purpose hardware. In 1998,

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 337–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 S. Mukhopadhyay and P. Sarkar

a remarkable achievement was made when the Electronics Frontier Foundation
built a machine for cracking DES at a cost of US $200,000 and which cracked a
DES problem in 3 and 1/2 days.

One disadvantage of using exhaustive search is that it has to be repeated
separately for each target. Hellman [12] introduced an approach to avoid this
problem. In his approach, one performs an exhaustive search once in an offline
pre-computation phase. The actual attack, i.e., finding the key corresponding
to a target is done in an online phase and is significantly faster then exhaustive
search. Also, one can repeat the attack on different targets without going through
the pre-computation each time. This approach has been called a time-memory
trade-off (TMTO) attack. A TMTO attack is a generic attack which can be
carried out against any one-way function f . The online target consists of an
image y and the goal of the attack is to find a k, such that f(k) = y.

This paper has two parts. The first part is a summary of state of the art on im-
plementation of TMTO and exhaustive search attacks. We present an overview
of TMTO algorithms and summarize the work done so far on software and
hardware implementation of such algorithms. In this part we also describe the
work done on special purpose hardware for exhaustive search with special em-
phasis on DES. In the second part of the paper, we develop a cost-time-data
trade-off model and analyze the effectiveness of exhaustive search and TMTO
pre-computation for s-bit keys with s ≤ 128. This analysis shows that s ≤ 96
does not afford comfortable security while s = 128 appears to be secure in the
foreseeable future. We apply our trade-off model to stream ciphers and find that
the 80-bit stream ciphers does not provide adequate protection against TMTO
attacks. Further, we show that the A5/3 encryption algorithm used in GSM
mobile phone also does not provide adequate security.

2 TMTO Methodology

In 1980, Hellman [12] presented a cryptanalytic time/memory trade-off attack
which can viewed as a generic one-way function (f : {0, 1}s → {0, 1}s) inverter.
Hellman’s attack consists of two steps: precomputing the tables and searching
(table lookups) in the tables. In a precomputed table, we generate a chain of
length t from a start point k0 as,

k0
f−→ k1

f−→ k2 → . . .→ kt−2
f−→ kt−1.

For an m × t table, m chains of length t are generated. We store start and
end points in the table, sorted in the increasing order of end points. Using
matrix stopping rule, we choose m and t such that mt2 = N , where N = 2s.
So one table can cover only a fraction mt

N = 1
t of N . Hence, we need t different

(unrelated) tables to cover all N keys. For the ith table, we choose a function
fi(k) = φi(f(k)), which is a simple output modification of f(k). The functions
fi, i = 1, 2, . . . , t are unrelated. In the ith table, we randomly select m distinct
keys from the key space, generate m chains taking each key as a start point with
the same function fi.

On the Effectiveness of TMTO and Exhaustive Search Attacks 339

Given a target y = f(k), we need to find its pre-image k. Suppose k is in
one of the constructed tables. For all i = 1, 2, . . . , t, we repeatedly apply fi to
y′ = φi(y) at most t times, each time we check whether it reaches an end point of
ith table. The number of table lookups for this is at most t. If it reaches an end
point, we have the position of k. Then we come to the corresponding start point
and repeatedly apply the function until it reaches y. The previous value it visited
is k. Hence, the total number of f invocations = t2 + t ≈ t2. The total number
of table lookups required is t2. The Hellman method can recovers a key in time
T (total number of f invocations) using M memory such that TM2 = N2, this
is called the trade-off curve.

Rivest introduced the distinguished point (DP) property in time/memory
trade-off attack. We can define a DP property on the key space K as follows: a
key k satisfies the DP property if its first p bits are zero. In the DP method, we
stop a chain after reaching a DP. So the chains are of variable lengths. Given a
cipher text, in the search phase we generate a chain, until we reach a DP. After
reaching a DP, we perform a table lookup, and so the number of table lookups
reduces from t2 (for t Hellman tables) to t.

In 2003, Oechslin [16] proposed the rainbow method to reduce the runtime
cost to one-half of Hellman method. This method can obtain the key using the
same trade-off curve as Hellman method, i.e., TM2 = N2 for 1 ≤ T ≤ N . The
rainbow method replaces t Hellman tables of size m × t into a single rainbow
table with size mt× t. Each row of a rainbow table is a rainbow chain,

k0
f1−→ k1

f2−→ k2 → . . .→ kt−2
ft−1−→ kt−1.

Given a target y, to find the pre-image, rainbow method does the following:
Apply ft−1 to y′ and lookup the value in the endpoints of the table. If found,
then we get the position of the key in the last column. Otherwise, we apply ft−2,
ft−1 to check whether the key is in the second last column of the table. This
way we apply ft−3, ft−2, ft−1 and so forth. After getting the position of the
key (assuming that it is in the table) we come to the corresponding start point
and apply the functions f1, f2, . . . until it reaches y′. Then the previous value it
visited is k. So, the total number of f invocations required is t(t−1)+2t

2 ≈ t(t−1)
2 .

TMTO was applied to stream ciphers by Babbage [4] and Golić [10]. This
attack is jointly known as the BG attack. Later, Biryukov and Shamir [7] com-
bined the Hellman and the BG attack to obtain TMTO with multiple data. They
obtained the curve TM2D2 = N2. In [9], a rigorous time/memory trade-off con-
struction is given that works for any function f . Unfortunately, the trade-offs
obtained in [9] are worse than the Hellman trade-offs. Hence, [9] is primarily of
theoretical interest.

3 Implementation of TMTO Attack

3.1 Software Implementation

In 2003, Oechslin [16] described the implementation of rainbowcrack which is a
general purpose implementation of rainbow method. Rainbowcrack can attack

340 S. Mukhopadhyay and P. Sarkar

MS-Windows password hashes and crack 99.9% of all aphanumerical password
hashes (out of 237) in 13.6 seconds using 1.4 GB data.

There is an elegant application of TMTO in [6], which uses a special type of
sampling technique called the BSW sampling. This technique uses only part of
the available online data and also reduces the search space. Use of this technique
allowed particularly efficient attacks on A5/1 which is a 64-bit stream cipher.
After a 248 parallelizable data preparation stage (which has to be carried out
only once), the actual attacks can be carried out in real time on a single PC.

3.2 Hardware Implementation

In 1988, Amirazizi and Hellman [3] proposed time/memory/processor trade-off
where more than one processors execute in parallel, sharing a large memory
through a switching/sorting network. This requires n log n switching elements, n
being both the number of processor and blocks of memory. The emphasis of the
work is to minimize the runtime of the cryptanalytic attacks in time/memory
trade-off cryptanalysis by running the processors in parallel. The cost of the wires
(number of wires required) is one of the dominating cost in the switching/sorting
network. Amirazizi and Hellman [3] assumed that the cost of the wires is less than
n log n and left this as an open problem for further study. Recently, Wiener [21]
investigated the problem and proved that the wiring cost can not be less than
Θ(n

3
2) for any switching/sorting network to connect n processors with n memory

blocks.
Quisquater and Standaert [19] provide a sketch of a generic architecture based

on their two previous works [17, 20]. They suggest a pipelined architecture for
implementing a multi-round function f . This builds on Wiener’s design [22] of
implementing DES in his exhaustive search attack on DES.

Nele Mentens et al [14] propose a hardware architecture for key search based
on rainbow method. They have estimated that an FPGA implementation of the
machine can run at 17.5 Unix password tests/second on a Virtex-4. Their design
targets Unix passwords of length 48 bits (out of 56 bits). In 11 days, using 56
Gigabyte with 16 FPGAs, the precomputation for one salt and recovering an
individual password takes a few minutes. A problem with this approach is the
inherent difficulty of implementing a single large table.

4 Exhaustive Search on DES

In 1977, Diffie and Hellman [8] proposed an exhaustive search machine for DES
which consists of 106 DES chips. The cost of the machine was estimated to
be around 20M USD and it was expected to find the key in 12 hours. An im-
provement of this exhaustive search technique was proposed by Quisquater and
Delescaille [17] in 1989, followed by a suggestion for distributed computation by
Quisquater and Desmedt [18] in 1991.

A gate-level design of DES chip was proposed by Wiener [22] in 1993. In this
design, every chip has 16 pipeline stages with a clock frequency of 50 Mhz. A

On the Effectiveness of TMTO and Exhaustive Search Attacks 341

machine consists of 57600 DES chips and was expected to recover the key in 3.5
hours and the total expected cost was 1M USD.

In 1997, a prize for cracking DES was announced at the annual RSA Cryp-
tographic Trade Show. As a result, in 1998 DES was broken in 39 days using
exhaustive search on a network of PCs.

In 1998, EFF (Electronics Frontier Foundation) built a machine for cracking
DES [2] in 3 days with a total cost of 200,000 USD (80,000 USD for man power
+ 120,000 USD for production) by exhaustive search. The DES cracker is a
ciphertext only attack where a PC drives many search units. Each search unit
is a DES chip and searches 2.5 million keys per second. A total of 24 search
units fit inside a custom chip and searches 60 million keys per second. A large
circuit board contains 64 chips which searches 3.8 billion keys per second and
12 boards are mounted into a chassis which searches 46 billion keys per second.
They use two chassis to search 92 billion keys per second, i.e., covering half of
the key space in about 4.5 days. Recently, Quisquater and Standaert [19] gave a
rough estimate that a 12000 USD machine could break DES in 3 and 1/2 days
by exhaustive search.

Very recently, Bernstein [5] describes the pre-computation phase of two known
TMTO attacks (rainbow; Hellman+DP) as parallel brute force search algo-
rithms. Exhaustive search normally does not require sorting. However, since
Bernstein adapts TMTO to brute force, he requires parallel sorting. Bernstein
does not provide architectural details.

5 Cost Analysis

Let f be the one-way function that we want to invert and N is the size of its
domain. We would like to perform a cost-time analysis of TMTO and exhaustive
search attacks. To do this, we need to identify the dominant components of both
the attack time and the costs. This is relatively easy to do for exhaustive search.
The function f has to be applied on every possible input in the domain. Hence,
the dominant component of the time is the time required to apply f a total of
N times; for parallel implementation, this time is scaled down by the number
of processors used. The dominant cost component is the cost of implementing
the parallel f -invocation units (or processors). The cost should also include the
manpower cost, but this is harder to estimate.

A TMTO algorithm is more complex than exhaustive search and deriving
an appropriate cost model is more difficult. The precomputation phase of the
TMTO algorithm has several time components – time required to obtain the
(start-point, end-point) pairs; memory access time required to store these pairs
into the table; and the time required to sort the tables. The online time has
two major components – time to obtain the end-points; and the time for table
look-up. Similarly, the cost has several components – the cost of the parallel
f -invocation units; and the cost of storage media. In the online stage, the wiring
cost of connecting processors to memory can also be substantially high [21].

To a large extent, the appropriate choice of the cost model depends on the
underlying architecture used for the implementation. Following Wiener’s work,

342 S. Mukhopadhyay and P. Sarkar

it is currently believed that the dominant cost of the hardware will be the inter-
connection cost of connecting a set of processors to a set of memory locations.
However, this assumes a particular architecture, i.e., all the processors will ac-
tually be connected to all the memory locations. This is not the only possible
architecture. Below we provide a sketch of a pipelined architecture for which
the interconnection cost will be minimal. Similarly, for the time component, the
current belief is that the dominant factor is the time required for memory ac-
cess. This is true for a sequential implementation on a PC connected to a single
disk. On the other hand, with special purpose hardware, there are several ways
to efficiently pipeline the operations such that the cost of memory access can
actually be ignored. We discuss this in more details below with respect to the
Hellman with distinguished point (Hellman+DP) method.

Pre-Computation Phase: Let us consider the tasks performed in the pre-comput-
ation phase. At a top level this consists of the following two separate tasks for
each table.

1. Compute the chains and write the (start-point, end-point) pairs to the table.
2. Sort the table.
3. Write the table into a DVD

Let us call the first task, chain-computation, the second task sorting, and third
task DVDwrite. We take the following issues in consideration.

– Chain computation and sorting hardware should be designed so that they
complete simultaneously. In any case, sorting should not take more time than
chain computation.

– Both chain computation and sorting phase will require memory writes. For
the chain computation stage, batching can be used to reduce number of mem-
ory accesses. Also chain computation and memory access can be pipelined
to some extent.

– We use few blocks of high speed memory while keeping the actual tables
into DVDs. The completed table in a high speed memory will be written
to a DVD and then the high speed memory will be cycled back into fresh
memory.

– If the DVD writing time is more than the time required for chain computa-
tion for a table, then we use more than one DVD writers (running in parallel)
to synchronize the chain computation and DVD write.

In the Hellman+DP method, a total of r tables are to be prepared. Let us denote
the tables by T1, . . . , Tr. Consider the following algorithm.

1. Perform chain-computation for T1;
2. do in parallel

perform chain-computation for T2;
perform sorting for T1;

3. for i = 3 to r do in parallel
perform chain-computation for Ti;

On the Effectiveness of TMTO and Exhaustive Search Attacks 343

perform sorting for Ti−1;
initiate DVDwrite for Ti−2 ;

4. end do;
5. do in parallel

perform sorting for Tr;
perform DVDwrite for Tr−1;

6. perform DVDwrite for Tr.

This algorithm pipelines the chain computation for Ti with the sorting of Ti−1
and DVD writing for Ti−2. Under the reasonable assumption that the sorting
time is at most the chain computation time, the major time component is at
most the time required for chain-computation of r tables plus the time required
to sort a table and write to DVD. The chain-computation itself has two tasks –
parallel f -invocations and writing to high speed memory. These two tasks can
also be pipelined as we discuss below.

Suppose n many f -invocation units are available. Each table has a total of m
many (s-p, e-p) pairs. These are divided into m/n blocks B1, . . . , Bm/n, where
each block contains n pairs. The n many f -invocation units will be operating in
parallel to produce one block.

1. Generate block B1;
2. for i = 2 to m/n do in parallel

Generate block Bi;
Write block Bi−1 to the table;

3. end do;
4. Write block Bm/n to the table;

Producing each block Bi requires n×t many f -invocations. We may assume that
the time for nt many f -invocations is more than the time to write a block of n
pairs to the table. Hence, the dominant time is the time required to compute all
the chains in a table, which is time required for m× t many f invocations.

Let us consider the time required to prepare all the tables. Using the above
two algorithms, the total time will essentially be mrt many f -invocations done in
parallel by n many f -invocation units. The cost has several components–cost of
the f -invocation units; cost of input/output (I/O) units to write the blocks Bi’s
to the table; cost of storing r tables; and cost of the sorting unit. The dominant
cost components are the cost of the f -invocation units and the cost of storage
(memory).

On-Line Phase: We would like to avoid the lower bound on the wiring cost
obtained by Wiener [21]. An architecture which avoids this cost can be described
as follows. There is a set of n many f -invocation units, which produce DPs and
write them to a buffer. There is another set of q many I/O processors, which
read from this buffer and perform look-up into the tables.

At a time, the q I/O processors are connected to q tables. Once look-up on q
tables are completed, the tables are moved out and a new set of q many tables
are moved into place. Thus, the system operates as follows: Look-up on T1, . . . Tq

344 S. Mukhopadhyay and P. Sarkar

are completed, then look-up on Tq+1, . . . , T2q are completed, and so on. Once a
table is replaced, it is never loaded again for this data set. Thus, if we have D
targets, then the look-up into table Ti for all these targets are completed before
Ti is replaced.

In the above scenario, the following two tasks are performed in parallel.

– Apply f -invocations to the D targets and write the final DPs to the buffer.
– Read from the buffer; perform look-up in the q tables; and then replace the

tables.

With a suitable design and choice of the parameters q and n, we can make
the assumption that the above two tasks require approximately the same time.
Under this assumption, the total time required in the online phase can be taken
to be the total time for all the f -invocations. Further, in this architecture, the
wiring cost is minimal and the dominant cost is the cost of implementing the
f -invocation units. The task of an I/O processor is relatively simple and also
we will have q to be much less than n. Hence, the cost of implementing q I/O
processors can be ignored with respect to the cost of implementing the n many
f -invocation units. See [15] for more details.

We summarize the above discussion with respect to the cost and time mea-
sures.

Pre-computation phase:
– Time: time required for rmt many f -invocations;
– Cost: cost of implementing n many parallel f -invocation units and cost

of storing r many tables.
Online phase:

– Time: time required for rtD many f -invocations;
– Cost: cost of implementing n many parallel f -invocation units.

5.1 Approximate Cost Analysis

In CHES 2005, Good and Benaissa [11] proposed a new FPGA design for AES
using Xilink Spartan-III (XC3S2000). The cost of a Xilink Spartan-III FPGA
device whose cost is around 12 USD (see [19]). The speed of encryption of the
design in [11] is 25Gbps=0.2× 232 AES-128 encryption/sec. Under the assump-
tion that the cost and time scale linearly as we move from one processor to
n processors, the total processor cost for n processor units is Hp = 12n USD
and the speed is n × 0.2 × 232 AES-128 encryptions/sec. Let Tsec be the pre-
computation time in seconds. In Tsec time, the number of encryptions will be,
Tsec × n× 0.2× 232.

For a general s-bit (s ≤ 128) cipher, attacking D = 2d online data points,
the number of encryptions required at the pre-computation stage is 2s−d. We
assume that for an s-bit cipher with s ≤ 128, the throughput and chip area will
remain same as for the best AES-128 implementation. Hence, in Tsec time, the
number of encryptions will be, Tsec × n× 0.2× 232 and we get,

Tsec × n× 0.2× 232 = 2s−d. (1)

On the Effectiveness of TMTO and Exhaustive Search Attacks 345

Using Hp = 12n, we get TsecHp = 60× 2s−d−32, or

232TsecHpD = 60N. (2)

This gives a new type of trade-off involving pre-computation time Tsec, processor
cost Hp and data D whereas usual trade-off curve involves online time (number
of f invocations), data and memory.

Memory Cost: We assume that one table will fit into one memory block.
This simplifies the table management and in particular the design of the sorting
algorithm. The latest cheap high density storage is DVD with storage capacity
between 4 and 20 Gbyte. In the near future, SONY will launch the paper disk
with capacity of 100 Gbytes. At present, we consider 4Gbyte (= 4× 232 bytes)
DVD with cost around 1 USD. Since, for a table we need 2sm

8 bytes storage, so
2sm

8 ≤ 4× 232, or,

sm ≤ 236. (3)

DVD write time: At present, we consider the writing time for a 4GB DVD is
1min1 (≈ 26sec). The total number of f -invocations required for a single table is
mt and the time required for this is t1 = mt

n×0.2×232 . Let W1, . . . Wk be the DVD
writers which are running in parallel. At each of time T = it1 for i = 2, . . . r +1,
one table will be ready for DVD write. At time T = (i + 1)t1, the table Ti will
be assigned to Wi for i = 1, 2, . . . , k. The next table Tk+1 will be ready for DVD
write at time T = (k + 2)t1. If we choose kt1 ≥ 26, then at time T = (k + 2)t1,
W1 will be free (since the time difference between the present time and the time
when W1 was assigned the table is (k + 2)t1 − 2t1 = kt1 ≥ 26 = DVD write
time). So the table Tk+1 will be assigned to W1 for DVD write. In this way the
next table will be assigned to W2 and so on. So in this case all the processors
and DVD writers will remain busy at all the time. Hence from the above discuss
we have kt1 ≥ 26, or,

k × mt

n× 0.2× 232 ≥ 26. (4)

or,

k ≥ n236

mt
. (5)

Note the there are r table to be written into r DVDs and each DVD write takes
26 seconds. The total time required for DVD write is r26

k while k many DVD
writers are running in parallel. This time must be less than or equal to the
pre-computation time, i.e., r26

k ≤ Tsec, or,

k ≥ r26

Tsec
. (6)

We take k = max
(

n236

mt , r26

Tsec
, 1
)
. Then k satisfies both the inequalities 5 and 6.

At present, we consider the DVD writer cost is 100 USD each. The total DVD
writer cost is Hw = 100k USD. For r tables, memory cost is Hm = r USD and
1 For example writing speed of Samsung SH-W162 is 21.6MB/sec (16X).

346 S. Mukhopadhyay and P. Sarkar

Table 1. Trade-off for different values of s with D = 1

s r m t Tsec n Hp Hm k Hw τsec

56 219 219 219 216.5 210 213.6 219 28.5 215 0.31
64 221 221 221 216.5 218 221.6 221 212 218.5 0.03
80 227 227 227 225 225 228.6 227 28 214.5 0.62
86 229 229 229 225 231 234.6 229 210 216.5 0.61
96 232 232 232 238.3 228 232 232 1 26.5 80
128 232 264 232 270.3 228 232 232 1 26.5 80

total hardware cost C = Hp +Hm +Hw = (12n+r+100k) USD. Let us consider
the following cases.

Case 1: D = 1 (d = 0). We choose the Hellman table parameters as: r =
m = t = N1/3 = 2s/3. The total number of f invocations required at the on-
line stage = r × t and the time required for this is τsec = r×t

n×0.2×232 , running n

processors in parallel with the speed of 0.2 × 232 encryptions/sec. Suppose we
want to finish the pre-computation within a day, then Tsec = 216.5 (the number
of seconds in one day). From Equation 1, we get, n = 5 × 2s−48.5. For 1 year
pre-computation time, i.e., Tsec = 225 (the number of seconds in one year) we
need the number of processors, n = 5 × 2s−57. In Table 1, we summarize some
of the trade-offs with different values of s.

Case 2: D > 1. The memory cost increases with the number of tables. We
consider the following table parameters as in [7]: r = N1/3

D = 2
s
3−d and m =

t = N1/3 = 2s/3. The total number of f invocations required for online search
= rtD and the time required for this is τsec = r×t×D

n×0.2×232 , running n proces-
sors in parallel with speed of 0.2× 232 encryption/sec. From Equation 1 we get,
n = 5×2s−d−32

Tsec
. Table 2 summarizes some of the trade-offs with different values

of s and d = s
4 . The rows of the tables were calculated by fixing some of the

parameters as mentioned below.

– Table 1 (d = 0)
–rows 1 and 2: Fix Tsec to be one day.
–rows 3 and 4: Fix Tsec to be one year.
–rows 5 and 6: Fix Hp = Hm = 232.

Table 2. Trade-off for different values of s and d = s
4

s r m = t Tsec n Hp Hm k Hw τsec

80 26.7 226.7 216.5 214 217.6 26.7 1 26.5 845
86 26.7 228.6 216.5 218 221.6 26.7 1 26.5 776
96 28 232 216.5 226 229.6 28 1 26.5 320
96 28 232 225 217 220.6 28 1 26.5 217.3

128 211 243 225 241 244.6 211 1 26.5 215.3

128 232 232 225 241 244.6 232 213 219.5 225.3

128 232 232 238 228 232 232 1 26.5 238.3

On the Effectiveness of TMTO and Exhaustive Search Attacks 347

– Table 2 (d = s/4)

–rows 1, 2 and 3: Fix Tsec to be one day.
–rows 4 and 5: Fix Tsec to be one year.
–row 6: Fix Tsec to be one year and Hm = 232.
–row 7: Fix Hp = Hm = 232.

Discussion: From Tables 1 and 2, we conclude the following.

– 56-bit and 64-bit f ’s are completely insecure.
– For d = 0, with one year pre-computation time and around 500M USD

investment it is possible to crack 80-bit f in online time less than one second.
For multiple targets (data) with d = s/4, attacking 80-bit becomes easier.

– For s = 96, and with a single data point, pre-computation time is more
than 4000 years. This is at a cost of around 1 billion USD. It is possible to
bring down the pre-computation time to a few years by increasing the cost
to around 1 trillion dollar. Another problem is that the size of single table
becomes large and barely fits in a single storage unit (see the bound 3). In the
presence of multiple data of the order of 224 (d = s/4), the attack becomes
reasonable. Hence, 96-bit f also does not provide comfortable security.

– For s = 128, and with a single data point (d = 0), at least one of the param-
eters among (Tsec, Hp, Hm) become infeasible. Also even with d = s/4 = 32,
one of the above parameters continue to remain infeasible. Increasing d
beyond 32 is not practical. Hence, 128-bit can be considered to provide ad-
equate security margin, at least until a new technological revolution invali-
dates the analysis performed here.

General Case: For the general case, let us assume that C1 and C2 are the
costs of one search unit and one storage unit respectively and ρ, δ are the rate of
encryption and size of one storage unit in Gbyte respectively. Then Equation 1
becomes,

Tsec × n× ρ = 2s−d (7)

and, Hp = C1n and Hm = C2r. Using Hp = C1n in Equation 7, we get Tsec ×
Hp × ρ = 2s−dC1, or ρTsecHpD = C1N . Since for a table we need 2sm

8 bytes
storage, so 2sm

8 ≤ δ × 232, or,

sm ≤ δ234. (8)

This constraint is required because we are fitting one table into one storage
unit. Let ε be the DVD (storage) writing time. Then equation 4 becomes, k ×
mt

n×ρ ≥ ε, or, k ≥ n×ρ×ε
m×t and equation 6 becomes, k ≥ rε

Tsec
. Thus we take

k = max
(

n×ρ×ε
m×t , rε

Tsec
, 1
)
. Let C3 be the cost of one DVD writer, then Hw =

kC3USD.

348 S. Mukhopadhyay and P. Sarkar

5.2 Cost of Exhaustive Search

Cost analysis of exhaustive search is same as the cost analysis for TMTO pre-
computation except the memory cost and DVD writer cost. Note that the proces-
sor cost Hp is required for both exhaustive search and TMTO pre-computation.
The factor Hm is additionally required for TMTO. Hence, the trade-off for ex-
haustive search is same as Equation 2, i.e.,

232THD = 60N (9)

where T denotes the time in seconds required for exhaustive search, H is the
total processor cost and D is the number of data points. The general equation
is the following.

ρTHD = C1N (10)

5.3 Rainbow Method

The rainbow method replaces t Hellman table of size m × t into a single rain-
bow table with size m′ × t, where m′ = mt. Let us consider the case when
s = 56 (DES). Then N = 256, taking m = t = N1/3, we get m′ = 236, i.e.
sm′ = 56× 236 > 236. This violates the constraint 3 (sm′ ≤ 236). Hence a single
large rainbow table has to be stored into the more than one memory block (the
number of memory block will increase with the value of s). Then the sorting
algorithm becomes much more complicated since it has now to sort the table
which is split into different memory blocks. On the other hand, if we break the
large single rainbow table into several number of small mutually disjoint rainbow
tables the online time increases by a factor of r, where r is the number of rain-
bow tables. In view of this, rainbow method is not a good choice for hardware
implementation.

6 Application to Stream Ciphers with IV

Application of TMTO to stream ciphers with IV was analysed in [13]. For a
k-bit stream cipher using an l-bit IV, consider the following (k + l)-bit one-way
function f :

(k-bit key, l-bit IV) �→ (k + l)-bit keystream prefix. (11)

As pointed out in [13], inverting this one-way function f will provide the secret
key. Since many IVs are used with the same key, and since IVs are public, one
can apply multiple data TMTO to f , using D many publicly available IVs. It
has been shown in [13], that if IV length is less than key length, then this the
online time of TMTO is less than exhaustive key search. (This has resulted in
the recent Ecrypt call for stream ciphers, to mandate IV length to be at least
equal to the key length.) However, the pre-computation time becomes 2k+l which

On the Effectiveness of TMTO and Exhaustive Search Attacks 349

is more than exhaustive key search. On the other hand, the importance of IV
in a TMTO attack matters more than its length. The effective length of IV is
also crucial and has been pointed out in [13]. Let us consider this point in more
details.

The usual requirement on IV is that it should be a nonce, i.e., no value should
be repeated. Thus, for example, one can fix a key and use the numbers 1, 2, . . . ,
as IVs for different messages. Suppose at most 2λ messages are encrypted before
a key change. The above appears to be a valid protocol for using stream cipher.
The problem is that in this approach, only the last λ bits of the IV ever change.
If we put the (arbitrary) restriction that at most 1000 messages are encrypted
before a key change, then λ ≈ 10.

Suppose, for a particular key we have access to the keystream segment for
about 32 = 25 messages. This gives D = 25. Since we know all the IVs, we can
apply TMTO to a search space of size N = 2k+10 with D = 25. The precom-
putation time is N/D = 2k+10/25 = 2k+5 and the online time then comes to
around 22(k+5)/3. If k = 80, then the precomputation can be completed in one
year at a cost of 232 USD and the online time is around a minute. While the
cost is quite high, it is not out of reach of powerful organizations.

We interpret this situation as indicating that to resist TMTO, it is not suf-
ficient to have IV length to be equal to key length. The protocol must ensure
that the entire IV length is actually used. One simple way of doing this can be
to choose a random nonce as IV for the first msg encrypted using a particular
key and then use nonce + 1, nonce + 2, . . . as IVs for subsequent msg.

6.1 GSM

For the GSM mobile phones [1], A5/3 stream cipher is used which is based on
the iterated block cipher KASUMI. The cipher A5/3 uses 64-bit key and 22-bit
effective IV size (others bits of IV are fixed). The following one-way function f
from 86-bit to 86-bit has been considered in [13]:

(64-bit key, 22-bit effective IV) �→ 86-bit keystream prefix. (12)

The size of the search space for exhaustive search attack is 264. From Table 1
(see row 2), we have the time for exhaustive search attack which is same as the
pre-computation time for TMTO to be 216.5 sec with a 221 USD investment.

This is certainly doable and hence GSM mobile phone communications cannot
be considered secure for more than a day. However, can we consider such com-
munications to be secure for a shorter duration such as an hour. For example,
a stock order is placed over a phone and the order is executed within an hour.
Once the order is executed, there is no need for secrecy. Thus, it is enough to
ensure secrecy from the point of the order being placed and it being executed,
which is at most an hour. If we consider only exhaustive search attacks, then
such communication over GSM phones appears to be secure. However, if we ap-
ply TMTO to the search space of the function f defined in (12), then this might
not be true.

350 S. Mukhopadhyay and P. Sarkar

The size of the search space f is N = 286. From Equation 1 we get, n =
5×286−d−32

Tsec
where 2d is the number of data points availible to the attacker. Table 3

summarizes some of the trade-offs with different values of D where the table
parameters are taken as: r = N1/3

D = 2
s
3−d and m = t = N1/3 = 2s/3. From

Table 3, we conclude that the A5/3 algorithm of GSM provides inadequate
security.

Table 3. Trade-off of GSM for different values of D

D r m = t Tsec n Hp Hm k Hw τsec

1 229 229 225 231 234.6 229 210 216.5 0.61
28 221 229 225 223 226.6 221 22 28.5 32
216 213 229 216.5 224 227.6 213 23 29.5 16
222 27 229 216.5 218 221.6 27 1 26.5 210

7 TMTO Versus Exhaustive Search

In this section, we provide a comparison between TMTO and exhaustive search.
Note that the size of the search space is same irrespective of whether we use
TMTO or exhaustive search. The availability of multiple data (targets) bring
down both the precomputation and online time of TMTO. The same is true
for exhaustive search which of course does not have separate online and offline
phases.

1. TMTO is a chosen plaintext attack which can be converted to weak known
plaintext or ciphertext only attack (see [12]). On the other hand, exhaustive
search can be a ciphertext only attack [2].

2. TMTO pre-computation phase is also an exhaustive search. However it ad-
ditionally requires the following,
– Memory is required to store the table(s).
– Memory access is needed to write the (start point, end point) pairs into the
table. Unless suitably pipelined, the memory access time can be substantial
overhead.
– Sorting is performed on the table(s) to sort (start point, end point) pairs
in the increasing order of the end points. Again unless suitably pipelined,
this is a substantial overhead.

Possible advantages of TMTO over exhaustive search. Pre-computation of TMTO
is a one-time activity. Once completed, the online stage is much faster than exhaus-
tive search for target available at different times. In the case of exhaustive search,
the entire attack has to be repeated every time.

Rechannelising the memory cost of TMTO into processor cost for exhaustive
search does not significantly reduce the exhaustive search time. To justify this, we
consider a TMTO which can find the key in time τsec with Tsec precomputation
time, Hp processor cost and Hm memory cost. We also consider an exhaustive
search attack which can find the key in time T with the processor cost H =
Hp + Hm. Then we will have the following three cases:

On the Effectiveness of TMTO and Exhaustive Search Attacks 351

Case 1: If Hp > Hm, then H ≈ Hp. Eq. (2) and (9) yield T = Tsec > τsec.
Case 2: If Hp ≈ Hm, then H ≈ 2Hp. Eq. (2) and (9) yield T = 1

2Tsec > τsec.
Case 3: If Hp < Hm, then H ≈ Hm. This case occurs only when the key

size is small. For instant consider s = 56. Then from Table 1, we see that
Hp = 213.6 and Hm = 219. So H ≈ 219 and from Equation (9), we get
T = 480 sec > 0.31 =τsec

The above three cases show that the exhaustive search time will be more than
the online search time for TMTO. Hence, transferring the cost of memory to
the processor and performing only exhaustive search does not bring down search
time to make it comparable to online phase of TMTO.

8 Conclusion

In this paper, we have considered the effectiveness of time/memory trade-off
and exhaustive search attacks. For TMTO, we have outlined a possible pipelined
architecture, in which the dominant cost is the total number of f -invocations.
The hardware cost of TMTO is the cost of implementing parallel f -invocation
units and the cost of memory. On the other hand, the hardware cost of exhaustive
search is just the cost of the f -invocation units.

To study the effectiveness of these attacks, we have developed a cost-time-data
trade-off model based on the currently best known AES-128 implementation. We
conclude that while 128-bit keys appear to be secure, key sizes less than 96 bits
do not offer comfortable security. A possible future work is to reconsider our
cost estimates and develop designs targeted for special purpose hardware at a
lower cost and/or at higher speed. Additionally, for TMTO approach, one has
to consider the possibility of lower cost bulk storage technology.

References

[1] 3GPP TS 55.215 V6.2.0 (2003-09), A5/3 and GEA3 Specifications. Available from
http://www.gsmworld.com

[2] Electronics Frontier Foundation, Cracking DES, O’Reilly and Associates, 1998.
[3] H. R. Amirazizi and M. E. Hellman. “Time-memory-processor trade-offs”, in

IEEE Transactions on Information Theory, vol. 34, no. 3, pp. 505-512, 1988.
[4] S. H. Babbage. “Improved exhaustive search attacks on stream ciphers”, in

European Convention on Security and Detection, IEE Conference publication,
no. 408, pp. 161-166, IEE, 1995.

[5] D. J. Bernstein. “Understanding brute force”, http://cr.yp.to/papers.
html#bruteforce, 2005.

[6] A. Biryukov and A. Shamir and D. Wagner. “Real Time Cryptanalsis of A5/1 on
a PC”, in the proceedings of FSE 2000, LNCS 1978, pp. 1-18, 2000.

[7] A. Biryukov and A. Shamir. “Cyptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers”, in the proceedings of Asiacrypt 2000, LNCS 1976, pp. 1-13, 2000.

[8] W. Diffie and M. Hellman. “Exhaustive Cryptanalysis of the NBS Data Encryption
Standard”, in Computer, vol. 10, no. 6, pp. 74-84, June 1977.

352 S. Mukhopadhyay and P. Sarkar

[9] A. Fiat and M. Naor. “Rigorous time/space tradeoffs for inverting functions”, in
STOC 1991, pp. 534-541, 1991.

[10] J. Dj. Golić. “Cryptanalysis of alleged A5 stream cipher”, in the proceedings of
Eurocrypt 1997, LNCS 1233, pp. 239–255, 1997.

[11] T. Good and M. Benaissa. “AES on FPGA from the Fastest to the Smallest”, in
the proceedings of CHES 2005, LNCS 3659, pp 427-440, 2005.

[12] M. Hellman. A cryptanalytic Time-Memory Trade-off, IEEE Transactions on
Information Theory, vol 26, pp 401-406, 1980.

[13] J. Hong and P. Sarkar. “New Applications of Time Memory Data Tradeoffs”, in
the proceedings of Asiacrypt 2005, LNCS 3788, pp. 353-372, 2005.

[14] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. “Cracking Unix passwords
using FPGA platforms”, in the proceedings of SHARCS’05, 2005.

[15] S. Mukhopadhyay and P. Sarkar. “Hardware Architecture and Trade-offs for
Generic Inversion of One-way Functions”, in 2006 IEEE International Symposium
on Circuits and Systems (ISCAS 2006), 2006. Full version available as (Indian
Statistical Institute Techinical Report No. ASD/2006/2).

[16] P. Oechslin. “Making a faster Cryptanalytic Time-Memory Trade-Off”, in the
proceedings of Crypto 2003, LNCS 2729, pp. 617-630, 2003.

[17] J.J. Quisquater and J.P. Delescaille. “How easy is collision search? Application
to DES”, in the proceedings of Eurocrypt 1989, LNCS 434, pp 429-434, 1990.

[18] J.J. Quisquater and Y.G. Desmedt, “Chinese Lotto as an Exhaustive Code-
Breaking Machine”, in Computer, vol. 24, issue 11 (November 1991), pp. 14-22,
1991.

[19] J.J. Quisquater and F.X. Standaert. “Exhaustive Key Search of the DES: Updates
and Refinements”, presented at SHARCS’05, 2005.

[20] J.J. Quisquater, F.X. Standaert, G. Rouvroy, J.P. David and J.D. Legat. A Crypt-
analytic Time-Memory Tradeoff: First FPGA Implementation, in the proceeding
of FPL 2002, LNCS 2438, pp 780-789, 2002.

[21] M. J. Wiener. “The Full Cost of Cryptanalytic Attacks”, in Journal of Cryptology,
vol. 17, no. 2, pp. 105-124, 2004.

[22] M. J. Wiener. “Efficient DES Key Search”, Crypto 1993 (rump session pre-
sentation), Santa Barbara, California, USA, August 1993. Reprint in Practical
Cryptography for Data Internetworks, William Stallings editor,IEEE Computer
Society Press, pp. 31-79, 1996.

Low Power AES Hardware Architecture
for Radio Frequency Identification

Mooseop Kim1, Jaecheol Ryou2, Yongje Choi1, and Sungik Jun1

1 Electronics and Telecommunications Research Institute (ETRI)
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, South Korea

{gomskim, choiyj, sijun}@etri.re.kr
2 Division of Electrical and Computer Engineering, Chungnam National University

220 Gung-dong, Yuseong-gu, Daejeon, 305-764, South Korea
jcryou@home.cnu.ac.kr

Abstract. We present a new architecture of Advanced Encryption Stan-
dard (AES) cryptographic hardware which can be used as cryptographic
primitives supporting privacy and authentication for Radio Frequency
Identification (RFID). RFID is a technology to identify goods or per-
son containing the tags. While it is a convenient way to track items, it
also provides chances to track people and their activities through their
belongings. For these reasons, privacy and authentication are a major
concern with RFID system and many solutions have been proposed. M.
Feldhofer , S. Dominikus, and J. Wolkerstorfer introduced the Interleaved
Protocol which serves as a means of authenticating RFID tag to reader
devices in [14]. They designed very small and low power AES hardware
as a cryptographic primitive. In this contribution, we introduce a novel
method to increase the operating speed of previous method for low power
AES cryptographic circuits. Our low power AES cryptographic hardware
can encrypt 128-bit data block within 870 clock cycles using less than
4000 gates and has a power consumption about or less than 20 μW on
a 0.25 μm CMOS process.

1 Introduction

Radio Frequency Identification (RFID) is a technology for automated identifi-
cation of objects and people with electromagnetic fields. Conceptually, RFID is
similar to a bar-code system, but its wireless communication allows significant
qualitative advances. The reader need not have line-of-sight to the tag and in-
terrogates multiple tags at the same time. The tag can store many more bits
of information. There are various applications for low-cost and low power tags
such as logistics, point-of-sales, animal identification, item management, and so
on. Thanks to advances in the capabilities of tags, drastic decreases in the cost
of RFID system, and many efforts to adapt it in the real world, RFID system
seems to replace optical bar-code and proliferate in the near future.

However, the radio communications between RFID tag and readers raise a
number of security issues. Basically, RFID tags send their identifier without fur-
ther security verification when they are powered by electromagnetic waves from

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 353–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

354 M. Kim et al.

a reader. For these reasons, the security and privacy aspects of RFID systems
have become a major issue. Current RFID systems do not protect the unique
identifier so that unauthorized readers in the proximity can gather identity data.
The collected identifying data could be accumulated and linked with location
information in order to generate a customer profile. The threat to privacy grows
when a tag serial number is combined with personal information.

Over the past few years, several efforts have been made to protect privacy
problems of RFID systems. The first step to protect user privacy in RFID sys-
tems was physical approaches such as Kill Tag, Faraday cage, Blocker tag tech-
niques [2], [3], [4]. But these methods have weak points such as reusability and
operating range restriction.

Another approaches are to design an authentication protocol using crypto-
graphic solutions. The Hash-Lock and Randomized Hash Lock scheme [2], [3], [4]
was introduced to prevent an exposure of tag identity by using cryptographic
hash functions. However, these schemes do not fully protect location privacy.

Other approaches are more secure than above presented methods because
these methods use symmetric cryptography to protect tag data. In [14], M. Feld-
hofer, S. Dominikus, and J. Wolkerstorfer introduced the Interleaved Protocol
which serves as a means of authenticating RFID tag to reader devices. They used
AES cryptographic algorithm for their authentication protocol. Considering the
constraints of tag, data encryption requires high computation cost especially in
power consumptions. They designed very small AES hardware circuit as a cryp-
tographic primitive. The proposed circuit requires about 1,000 clock cycles and
consumes below 9 μA to encrypt a 128-bit block of data.

In general, small and inexpensive RFID tags are passive. Passive tags derive
their transmission power from the signal of an interrogating reader because they
have no on-board power source. For these architectural features, RFID systems
have very stringent limitations with respect to available power, physical circuit
area, and costs. Therefore special architecture and design methods for low power
AES circuit are required.

In this paper, we introduce a novel method to increase the operating speed
of previous method [14] for low power AES cryptographic hardware. As a re-
sult, a compact and low power AES implementation capable of supporting the
Interleaved Protocol for RFID authentication was developed and evaluated.

This paper is constructed as follows. Section 2 describes some related works
for low power design of AES circuit. Section 3 describes AES algorithm reviews
and architecture of our low power AES circuits. Section 4 describes synthesis and
implementation results. Finally, in Section 5, we conclude this work.

2 Related Works

The National Institute of Standard and Technology (NIST) selected the Rijndael
algorithm as the Advanced Encryption Standard (AES) [8] in 2001. Numerous
FPGA and ASIC implementations [10], [11], [12], [13] of the AES were previously
proposed and evaluated. Most of these implementations feature high speeds and

Low Power AES Hardware Architecture for RFID 355

high costs suitable for high-performance usages. The need for secure data ex-
change will become more important in the low-end devices such as RFID, sensor
network systems and many other embedded systems. Most of these low-end em-
bedded systems do not require high speed encryption functions and have very
strict environment in power consumption and in circuit area. For these reasons,
compact and low power AES hardware design became a new trend in the cryp-
tographic hardware design.

The first effort to compact design of AES was proposed by V. Rijmen [9]. AES
S-box is based on the mapping x→ x−1, where x−1 is the multiplicative inverse
in the field. He suggested an efficient method to calculate the multiplicative
inverse using composite fields which can reduce an 8-bit computing to several 4-
bit ones. J. Wolkerstoefer [15] introduced an ASIC implementation of the S-box
based on finite field arithmetic rather than using lookup-tables. In contrast to
Rijmen’s idea, they used the polynomial representation of finite filed elements
for more flexible hardware architecture. M. Feldhofer [14] proposed a symmetric
challenge-response authentication protocol which can be integrated into the ex-
isting ISO/IEC 18000 standard. They introduced an efficient architecture for a
low power and low die-size implementation of the AES algorithm. For compact
and low power design, they adapted previous methods of S-box using combina-
tional logic and suggested using a submodule in the crucial step of computing
MixColumn operation. A. Satoh [16] further extended the idea of Rijnmen [9].
They introduced a new composite field to optimize the S-box structure suited for
compact ASIC design. In this scheme, they reduced the 4-bit calculation to 2-bit
ones. D. Canright [18] improved the compact implementation of [16] using nor-
mal basis representation. To achieve a more compact S-box, he examined many
choices of basis for each subfield, not only polynomial bases but also normal
bases. This approach leads to a whole family of 432 implementation cases. He
also find out that replacing some XORs and NANDs with NORs gives further
saving of logic area. The best implementation case of S-box is 20% smaller than
previous work of [16], which resulted in the smallest AES S-box architecture to
date.

3 Low Power AES Hardware Architecture

The AES algorithm is a symmetric block cipher with a variable block length and
a variable key length. The block length and the key length can be independently
specified to 128, 192, 256 bits. The corresponding number of rounds for each key
size is 10 rounds, 12 rounds, and 14 rounds, respectively. Our implementation
uses a fixed size of 128 bits data block and key length because 128-bit length of
key gives sufficient security level for RFID systems.

We began the design of the low power AES architecture by analyzing the basic
architecture of AES algorithm [7], [8]. Each data block of AES is modified by sev-
eral predefined rounds of processing, where each round involves four functional
steps. As figure 1 indicates, the four steps in each round of data encryption are
called SubBytes, ShiftRows, MixColumn, and AddRoundKey. Before the first

356 M. Kim et al.

round operation, the input data block is processed by AddRoundKey. Also, the
last round skips the MixColumn operation. Otherwise, all rounds are process
the same functions, except each round uses a different round key.

Fig. 1. Operating steps of AES algorithm

M. Feldhofer [14] designed a data path to reduce these four steps to three ones.
The first step of each round operation is SubByte function. During the execu-
tion of SubByte, the controller addresses the data memory to operate ShiftRow
function at the same time. Then MixColumn and AddRoundKey functions are
executed.

Our innovative method to optimize our AES circuit is the reordering and
modifying of the AES round operation steps. The primitive functions SubByte
and ShiftRow are based on byte-oriented arithmetic, and AddRoundKey is a
simple 128-bitwise XOR operation. Their operating order is not important be-
cause SubByte operates on one single byte, and ShiftRow reorders byte data
without changing them. We use these arithmetic features of AES algorithm to
reduce AES round operation to two functional steps by reordering and merg-
ing AddRondKey, SubByte, and ShiftRow into a single step. The modified AES
processing steps are shown in figure 2. By reducing functional steps, we can save
clock cycles which are consumed to operate a separate AddRoundKey function.

The efficiency of a low-cost AES cryptographic hardware in terms of circuit
area, power consumption, and throughput is mainly determined by the data

Low Power AES Hardware Architecture for RFID 357

Fig. 2. Modified AES processing steps

path structure of AES circuit and by the implementation of MixColumn and
Sboxes. We use 8-bit architecture for our low power AES circuit. This approach
for a low power AES cryptographic circuit implementation is motivated by two
reasons. First, RFID system offers very strict circuit design environment such as
circuit area and limited power. Second, an 8-bit architecture enables to decrease
the number of S-box to save silicon area. To compute AES encryption, 128-bit
data block is divided into sixteen 8-bit data state, and is processed through 8-bit
data buses.

In order to optimize our low power AES cryptographic circuit, resource shar-
ing in the data path is fully employed. We also used some low power circuit design
technologies. At the gate level, gated clock is used to reduce switching activity
of latches and flip-flops. Data gating is used to decrease unwanted switching in
combinational logic blocks. At the architectural level, we try to optimize the
data path by reordering and integrating the functional steps of AES algorithm.
The main goal of these low power circuit design methods are to reduce dynamic
power consumption by reducing unwanted switching activities.

For our low power AES circuit, the first step was to find a minimal architecture.
This part was done by hand. A set of key components thus obtained. Components
of AES circuit then designed and applied aforementioned low power techniques to
each component. The architecture of our 8-bit based low power AES cryptographic
circuit is represented in figure 3. It unrolls only one round operation, and itera-
tively loops data through this round operation until the entire encryption is com-
pleted. There are several key components for our low power AES cryptographic
circuit: a controller, data and key memory, S-box, and data path.

358 M. Kim et al.

Dmem Kmem

0 1

Sbox

reg1

0 1

MixColumn
Sub-block

0 1 2 3

01

rcon

0 1

0 1

I/O BUS

Fig. 3. Architecture of low power AES circuit

Although it is not illustrated in figure 3, the controller is one of the most
important components. Controller communicates other modules to receive data
and control signals through interface modules. It also sequences the ten rounds
of AES operation. Therefore, it addresses data memory and key memory accord-
ingly and generates control signals for proper data path selection and round key
generation.

We separate a data memory (Dmem) and a key memory (Kmem) for efficient
control. They store intermediate sate data and round keys of each round opera-
tion. By separate data and key memory, parallel processing for data encryption
and round key calculation is possible. These memories are register based and
single port 128-bit memory using standard logic cells. Gated clock is applied
every memory cell registers to reduce unwanted switching activity. Each mem-
ory uses multiplexer to select data between initial input data and intermediate
round operation data.

The data path of low power AES contains combinational logic to calculate
the AES SubByte functions. We use a novel method and a data path to execute
SubByte, ShiftRow, and AddRoundKey at the same time. An additional 8-bit
register is used to store modified state and calculated round key before they over-
write previous values in memories. By choosing the read and write address of
memory properly, and controlling the data path effectively to write data of reg-
ister to current address of memory, we combined efficiently SubByte, ShiftRow,

Low Power AES Hardware Architecture for RFID 359

and AddRoundKey functions. The combined function of AddRoundKey, Sub-
Byte, and ShiftRow takes 42 clock cycles to calculate one round operation.

Another important part of AES data path is S-box which is used for the
SubByte. During the MixColumn operation, it also used to generate round key
which used for next round operation. There are several methods to implement
an AES S-box. The most naive method is using 256 × 8-bit ROM to imple-
ment lookup table. But, using a lookup table requires very large silicon area.
Fortunately, J. Wolkerstofer [15] presented an alternative method. It used com-
binational logics to implement AES S-box. We adapted this combinational S-box
for our low power AES cryptographic circuit. However, combinational logic al-
ways consumes current whenever data signal is inputed. To solve this problem,
we use additional 8-bit register as a data gating circuit to prevent unwanted
dynamic power consumption.

The MixColumn multiplies the input polynomial by a constant polynomial
c(x), given by

c(x) = {03}x3 + {01}x2 + {01}x + {02}. (1)

As shown in equation 2, the MixColumn operation for one column is written
as

q(x) = c(x)⊗ a(x)
q0 = ({02} · a0)⊕ ({03} · a1)⊕ ({01} · a2)⊕ ({01} · a3)
q1 = ({02} · a1)⊕ ({03} · a2)⊕ ({01} · a3)⊕ ({01} · a0)
q2 = ({02} · a2)⊕ ({03} · a3)⊕ ({01} · a0)⊕ ({01} · a1)
q3 = ({02} · a3)⊕ ({03} · a0)⊕ ({01} · a1)⊕ ({01} · a2)

(2)

The equation shows that all output byte data of MixColumn are calculated
using the same function except the order of the input column bytes. For our
low power AES architecture, we designed a sub-block which calculates one forth
of the full MixColumn operations. Figure 4 depicts a detailed structure of the
sub-block.

By accessing the sub-block four times, one column of data is calculated. A 32-
bit shift register and several combinational XOR logics are used for an efficient
implementation of MixColumn operation. In contrast to M. Feldhofer [14], we use
a 32-bit shift register for its convenient control. Additional reason of using a shift
register is clock gating and data gating which reduce unwanted switching activ-
ity of register and reduce unwanted switching of sub-block’s combinational logics.
The sub-block needs eight clock cycles to process one column of MixColumn oper-
ation. Among these clock cycles, four clock cycles are used to load a column data
stored in the data memory(Dmem) to the shift register and the other clock cycles
are used to shift the register’s data and overwrite the output data of sub-block to
Dmem. Therefore, a complete MixColumn function takes 32 clock cycles.

Remaining modules of the data path are used to generate round keys. Round
keys are derived from previous one by using Sbox, rcon, two XOR gates, and
several data multiplexors of the data path. Rcon is a simple circuit to generate
predefined round constant used for round key computation. The round keys are

360 M. Kim et al.

Fig. 4. Sub-block of MixColumn operation

computed in between the rounds of the cipher, so called on-the-fly method, and
therefore the key generation operation is repeated for every round operation
execution. More accurately, round keys are calculated during the MixColumn
operation. It takes 36 clock cycles to calculate a round key. Because round key
calculation is processed with the MixColumn function in parallel, our architec-
ture requires only four clock cycles to generate a round key.

4 Synthesis and Implementation Results

The implementation of our low power AES cryptographic circuit, which combines
SubByte, ShiftRow, and AddRoundKey from AES algorithm, is a standard-cell
circuit on a 0.25 μm CMOS process from Hynix Corp. and Samsung Electron-
ics. For synthesis of our low power AES circuit, we used the Synopsys Design
Compiler. It needs 870 clock cycles to encrypt a 128-bit data block. The required
hardware complex is estimated to be 3,900 gates from Hynix process and 3,868
gates from Samsung process.

Table 1 shows the synthesis results of our AES circuit using Samsung 0.25
μm CMOS process. All presented results come from simulations and synthesis
on transistor level.

The clock cycles of each functional step for a single round operation are re-
quired as follows:

– AddRoundKey/ByteSub/SiftRow: 42 clock cycles
– MixColumn: 32 clock cycles
– KeySchedule: 4 clock cycles

There are several additional clock cycles for entire AES encryption operation.

– data and key IO: 70 clock cycles
– final round key addition: 16 clock cycles
– interrupt signal for end of operation: 1 clock cycle
– command check: 3 clock cycles

Considering overall ten rounds of AES operation, the total operating clock
cycles for 128-bit data block encryption are calculated as follows:

Low Power AES Hardware Architecture for RFID 361

Table 1. Logic blocks and their complexity from Samsung 0.25 μm CMOS process

Logic Block Gate count Clock cycle
Interface 144 70
S-box 413
Memory 1,940
AddRoundKey/ByteSub/ShiftRow 192 440
MixColumn 441 320
KeySchedule 157 40
Controller 581

Total 3,868 870

Total clock cycles
= (AddRoundKey/ByteSub/SiftRow) + MixColumn

+ KeySchedule + Interface
= (42× 10 + 17 + 3) + (32× 10) + (4× 10) + 70
= 870 clocks

Table 2. Logic blocks and their power consumptions

Samsung† Hynix†

Logic Block power percentage power percentage
Interface 0.008 ≈ 0 0.033 0.7
S-box 14.61 68.3 4.36 89.9
Memory 2.87 13.4 0.307 6.3
AddRoundKey/ByteSub/ShiftRow 0.52 2.43 0.054 1.1
MixColumn 0.45 2.11 0.036 0.74
KeySchedule 0.23 1.06 0.018 0.36
Controller 2.71 12.7 0.042 0.9

Total 21.4μW 100% 4.85μW 100%
† All process use 0.25 μm CMOS technology.

After synthesis, Synopsys PowerCompiler was used for assessing the perfor-
mance of our low power AES circuit. Table 2 shows the results of power estima-
tions. The standard cell library was 0.25 μm technology from Hynix Corp. and
Samsung Electronics. The applied voltage was 2.5V and the operating frequency
was 100 KHz.

The table 2 shows that the combinational S-box is the major power consumer
because it is shared in both data path computing for integrated function of
AddRoundKey, ByteSub, and ShiftRow and for round key generation.

Table 3 presents a comparison of our design with some previous results. For
fair comparison, our results of power consumption converted to current repre-
sentation. Our result shows 14% reduction of clock cycles with a similar or less
power consumption, but shows about 7.5% increase in the circuit area against
the results of M. Feldhofer [14]. The increase of circuit area is mainly due to the
using of gated clock and data gating used for memory cells and other registers.

362 M. Kim et al.

Table 3. Comparison with previous works based on power consumption, gate count,
and clock cycles

128-bit encryption μA at 100 KHz Gate counts Clock cycles

This work† 1.94 3,900 870
M. Feldhofer [14] 8.15 3,628 1,016
S. Mangard [10] 47.24 10,799 64
I. Verbauwhede [11] 307 173K 10

† Test results using 0.25 μm CMOS process from Hynix Corp.

5 Conclusions

In this work, we proposed a compact yet high-speed architecture for a low power
AES cryptographic circuit and evaluated through simulation and synthesis for
ASIC implementation. In order to minimize the hardware size and to optimize
the throughput, the order of SubByte, ShiftRow, and AddRoundKey arithmetic
functions were changed and integrated into a single step.

Our architecture provides a compact and high performance AES crypto-
graphic hardware for low power RFID system authentication. Our AES hardware
has a chip size of 3,868 gates from Samsung and 3,900 gates from Hynix 0.25
μm CMOS process. It has a power consumption of 21.4 μW on Samsung and
4.85 μW on Hynix process respectively at the operating frequency of 100 KHz.
Low power techniques used are mainly based on clock and data gating. The
encryption of 128 bits data requires 870 clock cycles.

The results of power consumption, throughput, and functionality make our
low power AES cryptographic hardware practical and suitable in RFID applica-
tions and other low-end embedded systems.

Acknowledgements

The second author of this research was supported by the MIC (Ministry of Infor-
mation and Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute of Infor-
mation Technology Assessment) (IITA-2005-(C1090-0502-0020)).

References

1. K. Finkenzeller. RFID-Handbook. 2nd edition, Carl Hanser Verlag Munchen 2003.
2. S.A. Weis. Security and Privacy in Radio-Frequency Identification Devices. Mas-

ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA 02139, May
2003.

3. S.E. Sarma, S.A. Weis, and D.W. Engels. RFID Systems and security and privacy
implications. In CHES2002, volume 2523 of Lecture Notes in Computer Science,
pages 454-469. Springer, 2002.

Low Power AES Hardware Architecture for RFID 363

4. K.P. Fishkin, S. Roy, and B. Jiang. Some Methods for Privacy in RFID Commu-
nication. In ESAS2004, volume 3313 of Lecture Notes in Computer Science, pages
42-53. Springer, 2004.

5. L. Sumi, H. Youngju, L. Donghoon, and L. Jongin. Efficient Authentication for
Low-Cost RFID Systems. In ICCSA2005, volume 3480 of Lecture Notes in Com-
puter Science, pages 619-627. Springer, 2005.

6. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer-Verlag, ISBN 30540-42580-2, 2002.

7. J. Daemen and V. Rijmen. AES Proposal: Rijndale. available at: http://csrc.nist.
gov/encryption/aes/rijndael/Rijndael.pdf

8. NIST. Specification for the ADVANCED ENCRYPTION STANDARD (AES).
Technical Report FIPS PUB 197, 2001.

9. V. Rijmen. Efficient Implementation of the Rijndael SBox. available at: http://
www.esat.ku-leuven.ac.be/ rijmen/rijndael/sbox.pdf, 2001.

10. S. Mangard, M. Aigner, and S. Dominikus. A Highly Regular and Scalable AES
Hardware Architecture. IEEE Transactions on Computers, 52(4) pages 483-491,
April 2003.

11. I. Verbauwhede, P. Schaumont, and H. Kuo. Design and Performance Testing of a
2.29 Gb/s Rijndael Processor. IEEE Journal of Solid-State Circuits, pages 569-572,
March 2003.

12. S. Morioka and A. Satoh. A 10 Gbps full-AES crypto design with a twisted-BDD
S-box architecture. IEEE International Conference on Computer Design. IEEE,
2002.

13. N. Weavwe and J. Wawrzynek. High Performance, compact AES implementations
in Xilinx FPGAs. available at: http://www.cs.Berkeley.edu/˜nweaver/papers/
AES inFPGAs.pdf, September 2002.

14. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID
Systems Using the AES Algorithm. In CHES2004, volume 3156 of Lecture Notes
in Computer Science, pages 357-370. Springer, 2004.

15. J. Wolkerstorfer, E. Oswald, and M. Lamberger, An ASIC Implementation of the
AES Sboxes, In CT-RSA 2002, volume 2271 of Lecture Notes in Computer Science,
pages 67-78. Springer, 2002.

16. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hard-
ware Architecture with S-Box Optimization. In ASIACRYPT2001, volume 2248 of
Lecture Notes in Computer Science, pages 239-254. Springer, 2001.

17. P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES Al-
gorithm. In CHES2003, volume 2779 of Lecture Notes in Computer Science, pages
319-333. Springer, 2003.

18. D. Canright. A Very Compact S-Box for AES. In CHES2005, volume 3659 of
Lecture Notes in Computer Science, pages 441-455. Springer, 2005.

19. K. Wonjong, K. Seungchul, B. Younghwan, J. Sungik, P. Youngsoo, and C. Hanjin.
A Platform-Based SoC Design of a 32-bit Smart Card. ETRI Journal, vol.25, no.6,
pages 510-516, December 2003.

20. W. Stallings. Cryptography and Network Security: Principles and Practice. 3rd
edition, Pearson Education Inc., 2003.

21. K.C. Chang. Digital Systems Design with VHDL and Synthesis: An Integrated
Approach. IEEE Computer Society Press, 1999.

The High-Speed Packet Cipher System Suitable
for Small Sized Data

Sang-Hyun Park1, Hoon Choi2, Sang-Han Lee1, and Taejoo Chang1

1 National Security Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

{sanghyun, freewill71, tchang}@etri.re.kr
2 Department of Computer Engineering, Chungnam National University

220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
hc@cnu.ac.kr

Abstract. Since all data input and output to a cryptographic mod-
ule must occur through its interface, performance degradation coming
from interface constraints is inevitable for small data packets even the
best-performing cipher chip. This paper proposes the High-Speed Packet
Cipher System that encrypts even small packet data at high speed by
improving the packet data processing method used in existing crypto-
graphic modules. Looking at the test result, we see that speed of 68Mbps
better than 0.5Mbps of 4-step Procedure is achieved for 32-byte packets.

Keywords: Packet Cipher, SoC(System on Chip), Cryptographic mod-
ule, Security API.

1 Introduction

The openness of the ubiquitous computing environment - wherein users can
access a network anytime, anywhere - facilitates information sharing. Still, its
downside includes the exposure to misuse, wiretapping, forgery, and alteration
by malicious users. Protecting user data from such risks requires encryption. The
high-performance cryptographic module performing the hardware-based cipher
algorithm using the cipher chip has recently been enjoying growing popularity.

Under the ubiquitous computing environment, the cryptographic module fea-
tures the SoC(System on Chip) type to satisfy requirements such as low cost,
small size, and low power consumption. PCI is currently used as the external
interface of SoC for high-performance servers or network devices. For portable
devices in particular, the USB interface is widely used for its flexibility, scala-
bility, and usability. It is also expected to be very popular under the ubiquitous
computing environment.

USB1.1 and USB2.0 standards govern the USB interface. In particular, USB2.0
can theoretically transmit data at a maximum of 480Mbps[1]. PCI standards in-
clude PCI 2.1, PCI-X, and PCI Express whose transmission support ranges from
the Gbps level to tens of Gbps level[2][3]. Still, the maximum performances of
these standards are realized only when massive volumes of data are transmitted

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 364–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The High-Speed Packet Cipher System Suitable for Small Sized Data 365

simultaneously by the host. When only a small amount of data is transmitted,
however, actual performance is quite different. Since all data inputs and outputs of
the cryptographic module occur through the interface, even the best-performing
cipher chip cannot display maximum performance given small data size owing to
interface constraint.

This paper proposes the High-Speed Packet Cipher System that encrypts even
small packet data at high speed by improving the packet data processing method
used in existing cryptographic modules.

The rest of this paper is organized as follows: Chapter 2 reviews related works;
Chapter 3 analyzes the USB interface as the most popular interface for portable
cryptographic modules as well as the packet processing performance of cryp-
tographic modules with the USB interface; Chapter 4 presents the design of
the High-Speed Packet Cipher System; Chapter 5 analyzes the performance of
the portable cryptographic module applying the proposed system to prove the
appropriateness of the high-speed packet processing system proposed in this pa-
per for both large and small amounts of data; finally, Chapter 6 presents the
conclusion.

2 Review of Related Works

According to the report of the Tolly Group, a world-renowned network perfor-
mance test agency, the packet transmission performance of NETSAQ F2000
is 1.684Gbps for 1,518 bytes but only 177Mbps for 128 bytes, or a tenfold
difference[4]. Similar tenfold difference in performance is noted when the AES128
block cipher algorithm is used for SECUi.com’s VPN device called NXG 2000:
1.9Gbps for 1,400 bytes but 221Mbps for 64-byte ciphering[5]. A large difference
in packet size is also noted for Future System’s FSC2003 [6].

Figure 1 shows the result of the test conducted by the Tolly Group for SE-
CUi.com’s NXG 2000. NXG 2000 uses a PCI-X v1.0 interface with maximum
transfer speed of 8Gbps. For the block cipher algorithm, 3DES and AES128 are
used as the 2Gbps class cipher chip. As shown in the figure, performance of
1.9Gbps for 1,400 bytes and 221Mbps for 64 bytes data is observed, a tenfold
difference in data size. Such difference is attributed to the effect of the commu-
nication overhead, i.e., the time required by the cryptographic module in order
to transmit the packet is almost the same regardless of the data size. There-
fore, the relative effect of the overhead increases as data size decreases; hence
deteriorating overall system performance.

3 Analysis of Packet Data Performance

3.1 USB2.0 Standard Analysis

In the USB2.0 standard, the basic unit of time for communication is called a
micro frame; one micro frame is 125μs long. In other words, data communication
occurs in units of micro frame under the USB2.0 standard, with even the smallest
data consuming 125μs for data input/output activity.

366 S.H. Park et al.

Fig. 1. Performance per packet size(NXG 2000)

Since it takes at least 125μs even for the smallest data size under the USB2.0
standard, transfer performance deteriorates when small sized data is transferred.
For example, since the maximum data size for transmitting 1,500-byte data in
each transaction is 512 bytes, only 3 transactions occur within 1 micro frame;
the remaining 10 transactions merely consume time without actual data transfer.
Therefore, the theoretical transfer speed of a 1,500-byte data becomes (1500×
8)/125μs = 96Mbps, which is 1/5 of the maximum speed of 480Mbps. Figure 2
depicts such phenomenon.

Fig. 2. Conceptual diagram of 1,500-byte data transmission in 1 micro frame

Table 1 shows the theoretical maximum data transfer speed based on data size
under the USB2.0 standard[1]. Given a payload size of 512 bytes, up to 13 data
transactions are realized in 1 micro frame. Therefore, the data transfer speed is
(512×8(bit))×13/125μs = 426.0Mbps, approximating the theoretical maximum
(480Mbps). For data payload of 4 bytes, up to 127 transfers are enabled, however;
thus the transmission speed decreases to (4× 8(bit))× 127/125μs = 32Mbps.

Figure 3 shows the transfer speed with respect to varying data sizes under the
USB2.0 standard. Transfer performance deteriorates with small sized data, with
the maximum transfer speed of 480Mbps approximated when data size is a mul-
tiple of 6,656 bytes. Since all data transactions of the cryptographic module with
the USB 2.0 interface occur through USB2.0’s matching functions, the data ci-
pher/decipher cannot exceed the data transfer speed under the USB2.0 standard.

The High-Speed Packet Cipher System Suitable for Small Sized Data 367

Table 1. USB2.0 High-speed Bulk Transaction Limits

Protocol Overhead (3 X 4) SYNC bytes 3PID bytes 2EPADDR+CRC bytes
2 CRC16 and 3 X (1+11)bytes interpacket delay

Data Max Bandwidth Microframe Bandwidth Max Number Byte/Microframe
Payload (Mbps) per Transfer(%) of Transfer Useful Data

1 8.512 1 133 133
4 32.512 1 127 508
16 107.52 1 86 2,752
128 327.68 2 40 5,120
512 426.00 8 13 6,656

0

100

200

300

400

500

32 64 128 256 512 1024 1500 2048 4096 6656 8192 13312 16384 26624 32768 53248 65536

Payload Size(Bytes)

P
er

fo
rm

a
nc

e
[M

b
ps

]

Fig. 3. Data transfer speed given varying payload data sizes under the USB2.0 standard

3.2 Encryption Speed Based on Data Size

Although it differs by cryptographicmodule and command type, the cryptographic
module generally communicates with the host device through the USB interface
based on the procedure in Table 2 for implementing the ciphering process:

All inputs and outputs of the command and data occur through USB com-
munication; even reading small command consumes one micro frame of 125μs.

Since ciphering occurs between ➂ the data read for ciphering and ➃ the cipher
result output steps, ➀ the command read and ➁ response output steps are addi-
tional steps causing the deterioration of overall cipher performance. Specifically,
such steps may cause the performance to deteriorate considerably when encrypt-
ing small sized data.

Table 2. Procedure for Ciphering

Process Content
➀ Command Reading Read the command of cipher processing transmitted

by the host.
➁ Response Output transmit the result of the command interpretation

to the host.
➂ Data Read for Ciphering Read the data for ciphering from the host and start

the ciphering process of the input data.
➃ Cipher Result Output Transmit the cipher result to the host.

368 S.H. Park et al.

Figure 4 depicts byte data ciphering under USB2.0 communication. As shown
in the figure, command read and response output require 1 micro frame each
for a total of 2 micro frames. Since 6,656 bytes can be transferred per micro
frame, ($N/6656%) micro frames are required for each data read and response
output. Therefore, the total number of frames transferred is {2+(2×$N/6656%)}.
Performance can be expressed as:

Performance(Mbps) =
N × 8

{2 + (2× $N/6656%)} × 125
(1)

Fig. 4. N bytes ciphering process

0

50

100

150

200

250

32 64 12
8

25
6

51
2

10
24

15
00

20
48

40
96

66
56

81
92

13
31

2

16
38

4

26
62

4

32
76

8

53
24

8

65
53

6

Payload size [byte]

P
er

fo
m

an
ce

 [
M

bp
s]

USB2.0 Cryptographic module

Fig. 5. Ciphering performance vs USB 2.0 standard data transfer performance

The High-Speed Packet Cipher System Suitable for Small Sized Data 369

Given a sufficiently large N, the time required by two micro frames for com-
mand read and for response output will be negligible; otherwise, it may be longer
than the time required for actual cipher processing.

Figure 5 compares the data transfer performance of the USB2.0 standard and
ciphering performance of the cryptographic module per data size based on Equa-
tion 1. Here, the transfer performance of USB 2.0 and ciphering performance of
the cryptographic module drastically deteriorate with small sized packet data to
be encrypted. The transfer performance of USB 2.0 is highest when data size is
a 6,656 bytes or multiples of 6,656bytes.

4 High-Speed Packet Cipher System Design

4.1 System Design Overview

To design the High-Speed Packet Cipher System, the cause of performance de-
terioration of the existing cryptographic module was analyzed, and improve-
ment has been made accordingly. Key features of the High-Speed Packet Cipher
System of the new cryptographic module include:

– Minimization of the USB communication
• The 4-step procedure of “Command Read⇒Response Output⇒Data

Read for ciphering⇒Cipher Result Output” is simplified into a 2-step
procedure of “Command and Data Read⇒Response and Cipher Result
Output”

• A packet is structured with the command and cipher/decipher data.
• Command and data read is performed through the data input channel,

and response and data output is through the data output channel.
– Addition of a separate hardware in order to handle command interpretation,

processing, and response which used to be handled by CPU
• Command Interpretation: Command and data are separated from the

packet that transmitted by the host.
• Command Processing: The cipher process is executed to interpret the

command and to appropriately control the block cipher processing engine
based on such interpretation.

• Response Output: Response data is created according to the command
interpretation and result and sent to the host.

– Grouping of the multiple packet data into 6,656 bytes for batch processing
• Multiple packets are grouped to form data size of a multiple of 6,656

bytes and sent to the cryptographic module in 1 USB communication.

In this paper, we define three packet processing system as follows.

– 4-step Procedure
• Command interpretation, processing, and response handled by CPU
• The 4-step procedure of “Command Read⇒Response Output⇒Data

Read for ciphering⇒Cipher Result Output”

370 S.H. Park et al.

– Proposed Method 1
• Addition of a separate hardware for command interpretation, processing,

and response
• The 2-step procedure for ciphering

– Proposed Method 2(High-Speed Packet Cipher System)
• Grouping of the multiple packet data for batch processing in addition to

the Proposed Method 1

4.2 Hardware Circuit Design

The High-Speed Packet Cipher System hardware consists of the USB controller,
CPU, and FPGA containing the block cipher processing engine (Figure 6).

Fig. 6. Hardware design of the High-Speed Packet Cipher System

Widely used for SoC development, ARM926EJ CPU from ARM is used to
perform cipher engine initialization, generation and management of the cipher/
decipher key, and general control of the hardware.

For the USB controller, Cypress’s CY7C68013 is used to match USB2.0 with
the external host device. This chip features the local slave FIFO bus; the system
uses a total of 4 FIFOs.

FPGA uses the XC2V8000 chip from Xilinx. As shown in Figure 6, the main
blocks of the FPGA circuit include the local bus interface logic, block cipher en-
gine, cmd/data parsing logic, and command DEC/EXE logic plus CPU memory
of 160 KB using the distributed SelectRAM of FPGA, memory controller, and
CPU interface logic with the AHB interface function.

The local bus interface logic handles the interface to the external USB con-
troller and contains 4 internal FIFO (FIFO CI, FIFO CO, FIFO DI, FIFO DO)
as in the USB controller.

CPU receives the block cipher engine initialization command sent by the host
device through FIFO CI, executes the initialization process, and sends the result
back to the host through FIFO CO.

The High-Speed Packet Cipher System Suitable for Small Sized Data 371

On the other hand, the host device sends the high-speed packet process-
ing command delivered to the command/data parsing logic through FIFO DI.
The command/data parsing engine then separates the command for delivery
to the command DEC/EXE Logic, confirms the packet completion flag of the
command, and sends the completion signal to the local bus interface block to
initiate the generation of the packet completion signal (nPKDEND). The USB
controller confirms the packet completion signal and initiates USB communica-
tion to output the cipher processing result data efficiently at the time requested
by the host.

The command DEC/EXE logic interprets the delivered command, delivers
the generated key to the block cipher engine, controls the initiation and com-
pletion of the processing action, and delivers the command execution result to
the cmd/data parsing block. The cmd/data parsing logic then transmits the
command response along with cipher result data delivered from the command
DEC/EXE logic and block cipher engine to the host device through FIFO DO.

4.3 Software Design

This section describes the design of software for the High-Speed Packet Cipher
System. The security API(Application Programming Interface) for high-speed
packet processing is first designed, and the specification of each command, de-
fined.

Security API is a library enabling the use of the cipher function that protects
against security risks even without extensive knowledge of security mechanism.
In other words, a security library is a security toolkit that enables the easy addi-
tion of the cipher service such as encryption and authentication to the software
even without expertise in the cipher algorithm.

Widely known cipher APIs include GSS-API by IETF, CGS-API by X/OPEN,
CryptoAPI by Microsoft, Cryptoki by RSA, and CDSA by Intel. Recently, how-
ever, CryptoAPI by Microsoft and Cyptoki by RSA become popular. CryptoAPI
runs on MS Windows. This paper uses Cryptoki[7] in designing the security API
to make it portable to other operating systems.

Security API’s general model is illustrated in Figure 7. The model begins with
one or more applications that need to perform certain cryptographic operation,
and ends with one or more cryptographic modules, on which some or all of the
operations are actually carried out. Security API provides an interface to one
or more cryptographic modules that are active in the system through a number
of “slots”. Each slot may contain a token. A token is typically “present in the
slot” when a cryptographic module is present in the reader. It is possible that
multiple slots may share the same physical reader. The point is that a system
has some number of slots, and applications can connect to tokens in any or all of
those slots. A cryptographic module can perform some cryptographic operations,
following a certain command set; these commands are typically passed through
standard device drivers.

Security API makes each cryptographic module look logically like every other
device, regardless of the implementation technology. Thus the application need

372 S.H. Park et al.

Application 1

Other Security Layers

Security API Security API

Application K

Other Security Layers

Device Driver

Slot 1 Slot n

Token 1
(Module 1)

Token n
(Module n)

Crypto-Module
Interface

Crypto-Module
Interface

Fig. 7. Security API usage

not interface directly to the device drivers; Security API hides these details.
Indeed, the underlying “module” may be implemented entirely in software -no
special hardware is necessary.

Application can receive security services including encryption, decryption and
digital signature from one or multiple cryptographic module using security API.

We define CI(Crypto-module Interface) as the logical specification that trans-
forms the API command by application program into something that can be
understood by the cryptographic module. The CI sends it to the cryptographic
module and transmits the response of the command to API. Table 3 describes
the CI command/Response block structure and elements for the High-Speed
Packet Cipher System.

CMD, PE, hSession, data length, and ACK are collectively called command
header. These fields commonly appear in all packets. As shown in Table 3, the
header takes up 8 bytes. Therefore, cipher performance deteriorates with shrink-
ing cipher data size. For example, the header occupies 20% of packet when ci-

Table 3. Command/Response block

Category Byte Size Description
CMD 8 Command Code

PE(Packet End) 1 Flag bit indicating whether the currently transmitted
command is the last packet data

reserved 7 Reserved for future expansion
hSession 16 Session identifier

Data length 16 Data length in bytes
0xFFFF for a command block

ACK/RV 16 Cipher result as the return value defined in PKCS #11
specification for the response block

Data Variable Data for cipher

The High-Speed Packet Cipher System Suitable for Small Sized Data 373

phering 32 data bytes since the total packet size will be 40 bytes. With increasing
data size, however, the effect of the header becomes negligible.

The PE flag in the command and response blocks indicates whether the cur-
rently transmitted command is the last one. In other words, when the host device
groups the multiple packets, the last packet has a PE flag of “1” to let the cryp-
tographic module know that the current command is the last packet cipher com-
mand. Cipher result data of less than the maximum payload size under the USB
2.0 standard are stored by the cryptographic module in the buffer until the PE
flag becomes “1”. At this time, the collected cipher result data are sent to the host
simultaneously; thus minimizing unnecessary USB communication considerably.

Figure 8 shows how multiple packets are processed. API stores the packets
transmitted from the application program in the buffer and sends them to the
cryptographic module after setting the PE value of the last data header to “1”
once the stored data reaches the largest size or Chunk time expires. Chunk Time
is time to accumulate the packet transmitted and MAX SIZE is the maximum
size of packets transmitted. The cryptographic module then encodes the received
data of less than the maximum payload and stores them in the output buffer until
the PE value is “1”. Data accumulated in the output buffer are then transmitted
to the host simultaneously.

In the High-Speed Packet Cipher System, it is very important to set the
Chunk time and MAX SIZE appropriately. The MAX SIZE value should be
set to match the interface used. For example, as was calculated in Section 3,
MAX SIZE should be set to 6,656 for the USB 2.0 interface.

Appropriate value for Chunk time will depend on the environment the cryp-
tographic module is used in. For the server environment, where there is a con-

1. Host
 Command/Data

2. Scheduler
 do{
 If ((Chunk_time < MAX_TIME) &&
 (Packet Size < MAX_SIZE))
 concatenates packet
 else{
 mark 1 in the PE of last packet
 send packet to the module
 }
 }while(1)

3. Cryptographic Module
 while (PE != 1){
 Encrypt packet
 }
 Output response and
 encrypted data

4. Host
 Response/
 Encrypted Data

Cryptographic
Module

Scheduler

Fig. 8. Software design of the High-Speed Packet Cipher System

374 S.H. Park et al.

tinuous stream of packets to encrypt, it should be set to the time it takes to
encrypt MAX SIZE bytes. In the opposite case, where packet occurrence is less
frequently, Chunk time should be set as small as possible. It is advisable to set
it to 0 in the personal environment, so that the scheduler relays the packet to
the cryptographic module as soon as it receives without holding it in the buffer.

5 Performance Analysis

Figure 9 shows the test environment. The USB host and the analyzer PC are
a general-purpose PC with Windows XP and Pentium 4 3.0GHz CPU. The
USB protocol analyzer uses LE-620HS from LINEEYE, with the cryptographic
module employing ARM926EJ CPU with 33MHz clock. The AES algorithm is
applied to Xilinx XC2V8000 FPGA.

Fig. 9. Test environment

The USB host generates the packet for sending to the cryptographic module,
which then sends the cipher result to the host. The USB protocol analyzer mon-
itors the packet and reports it to the analyzer PC to display the analysis result
on the screen.

We set the value of Chunk time to 1ms and the value of MAX SIZE to
6,656 bytes. Figure 10 shows the packet monitoring display generated by the
USB protocol analyzer (LE-620HS). Here, 6,656-byte long data are encrypted
through the 4-step Procedure. The cipher speed shows a performance of (6656×
8)bit/(1264.375 − 1263.500)ms = 60.85Mbps. Since the theoretical maximum
performance as presented in Figure 5 in section 3.2(Encryption speed based on
data size) for ciphering 6,656 bytes is 106Mbps, this means that only 60% of the
theoretical maximum performance is achieved.

On the other hand, Figure 11 shows the test result for ciphering 6,656 bytes
by Proposed Method 1. The test result reveals that it takes 0.5ms to cipher
6,656 bytes, which is equivalent to the cipher speed of (6656× 8)bit/(1236.625−
1236.125)ms= 106Mbps. About 70% improvement is achieved by reducing the

The High-Speed Packet Cipher System Suitable for Small Sized Data 375

Command Read
1263.500ms

Response Output
1263.625ms

Data Read for
Ciphering

1263.875 ms

Cipher Data Output
1264.375 ms

1
m

ic
ro

 fr
am

e

Fig. 10. Ciphering by 4-step Procedure

number of communications and by addition of a separate hardware for command
interpretation, processing, and response.

The reason not to achieve the theoretical performance 480Mbps (maximum
performance under USB2.0 standard) as calculated in Section 3.2 (Encryption
speed based on data size) in Figure 10 and Figure 11 is due to the number of
transactions per frame. Only 9 transactions are transferred per frame instead
of 13. This is because of the immature performance of the cipher chip which is
only a prototype in FPGA logic. Therefore, 13 transactions transfer per frame
is expected show the improved cipher chip performance.

Figure 12 depicts the performance measurements from the 4-step Procedure,
Proposed Method 1, and Proposed Method 2. It shows a 200% performance
increase of Proposed Method 1 over 4-step Procedure for small packet data.

Command and Data
Read

1236.125 ms

Response and
Cipher Result

Output
 1236.625 ms

Fig. 11. Ciphering by Proposed Method 1

376 S.H. Park et al.

Looking at the data for Proposed Method 2, we see that the maximum cipher
chip performance of 100Mbps is maintained for packet sizes larger than or equal
to 128 bytes. For 32-byte packets, reduced speed of 68Mbps is achieved, due to
the 8-byte packet header taking up 20% of data, but this performance is still
better than that of 4-step Procedure and Proposed Method 1.

We can also see that the performance of Proposed Method 1 and Proposed
Method 2 are identical for packets of 4,096-byte and 6,656-byte sizes. This is
because a concatenation of two 4,096 bytes would result in something larger
than 6,656 bytes and hence Proposed Method 2 sends a 4,096 byte packet to the
cryptographic module without concatenating it with the next packet.

0

20

40

60

80

100

120

Packet Size(Bytes)

P
er

fo
rm

an
ce

(M
bp

s)

4-step Procedure 0.51 1.02 2.05 4.1 8.2 16.4 24 26.2 52.4 60.8

Proposed Method 1 1.02 2.05 4.1 8.19 16.38 32.76 48 65.53 87.38 106.5

Proposed Method 2 68 75.4 98.3 102.4 98.3 98.3 96 98.3 87.38 106

32 64 128 256 512 1024 1500 2048 4096 6656

Fig. 12. Cipher performance per packet size

6 Conclusion

Since all data input and output to a cryptographic module must occur through
its interface, performance degradation coming from interface constraints is in-
evitable for small data packets. This paper proposes the High-Speed Packet
Cipher System that encrypts even small packet data at high speed by improving
the packet processing method used in existing cryptographic modules.

Base on the observation that the transfer rate of a USB 2.0 interface is at
its highest when data is sent in packets of 6,656-bytes size, we have designed
the High-Speed Packet Cipher System to concatenate data before sending them
to the USB interface in a single USB communication step. Test shows that it
maintains the maximum cipher chip performance of 100Mbps regardless of the
packet size. The High-Speed Packet Cipher System may be used in encryption
of small packet data at high speed in PCI interface.

Performance of the High-Speed Packet Cipher System proposed in this paper
depends on the frequency of pack occurrence. In the server environment with
frequent packets, its performance is good. In the opposite environment, if Chunk
time is set to be too large, performance deteriorates due to the buffering. There-
fore, Chunk time must be set to a small value in this environment. A possible
future study would be on the optimal Chunk time value.

The High-Speed Packet Cipher System Suitable for Small Sized Data 377

References

1. Universal Serial Bus Specification Revision 2.0, Compaq, Hewlett-Packard, Intel,
Lucent, Microsoft, NEC, Philips, Apr.27, 2000

2. PCI DMA Chaining Reference Design, QuickLogic, Application Note 63
3. DMA Chaining Performance when using the QL5064, QuickLogic, Application Note

56
4. NETASQ F2000 IPS-Firewall Multiservice Security Appliance Performance Evalua-

tion. http://www.tollygroup.com/TS/2005/NETASQ/F2000/TollyTS205120NETA
SQF2000IPS-FirewallJune2005.pdf

5. SECUi.COM NXG 2000 Evaluation of Gigabit Ethernet Firewall & VPN Per-
formance. http://www.tolly.com/ts/2005/Secui/NXG2000/TollyTS205102-TTA-
SECUI-NXG2000-Feb2005.pdf

6. Future Systems, Inc. FSC2003 SoC(System on a Chip) in Future Systems RenoGate,
Fire-wall and VPN Performance Evaluation. http://www.tolly.com/TS/2005/
FutureSystems/FSC2003/TollyTS205147FutureSystemsFSC2003December2005.pdf

7. PKCS#11 v2.10 : Cryptographic Token Interface Standard, RSA Lab., Dec. 1999

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 378 – 388, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Tool for Managing Security Policies in Organisations

Anna V. Álvarez1, Karen A. García1, Raúl Monroy1,
Luis A. Trejo1, and Jesús Vázquez2

1 Tecnológico de Monterrey, Campus Estado de México,
Km 3.5 Carretera al Lago de Guadalupe,

Col. Margarita Maza de Juárez, Atizapán de Zaragoza,
Estado de México, Mexico, 52926

{A00472185, kazurim, raulm, ltrejo}@itesm.mx
2 Banco de México

Avenida 5 de Mayo, Col. Centro, Del. Cuauhtémoc
México D.F., Mexico, 06059

jjesusvg@banxico.org.mx

Abstract. Security policies are rules aimed at protecting the resources of an or-
ganisation from the risks associated with computer usage. Designing, implement-
ing and maintaining security policies are all error prone and time consuming. We
report on a tool that helps managing the security policies of an organisation. Se-
curity policies are formalised using first-order logic with equality and the
unique names assumption, closely following the security policy language sug-
gested in [1]. The tool includes a link to an automated theorem prover, Otter
[2], and to a model finder, Mace [2], used to formally verify a set of formal se-
curity policies. It also includes a GUI and a number of links to read information
and security policies from organisation databases and access control lists.

1 Introduction

Security policies are rules that prescribe how to manage IT resources in order to pro-
tect them from risks associated with computer usage. If properly defined, they help
ensuring the goals of computer security, namely: integrity, confidentiality, and avail-
ability of IT resources.

Crafting proper security policies is a very difficult task, for two reasons. First, se-
curity policies may be ambiguous or clash one another, therefore they ought to be
formalised. This formalisation, however, is tedious and error-prone. Second, policies
quickly become obsolete, thus maintaining security policies is never-ending and also
time-consuming. This situation prompts the construction of a tool that could help a
user to readily design and develop proper security policies.

This paper reports on a security policy manager, called e-policy manager, portray-
ing the following features:

1. It captures security policies using a language similar to the security policy lan-
guage L7, defined by Halpern and Weissman [1]. Our language has a clear and
precise semantics, namely: first-order logic with equality, together with the
unique names assumption.

 A Tool for Managing Security Policies in Organisations 379

2. It reasons about security policies simultaneously running Otter [2], a first-order
theorem prover, and Mace [3], a first-order model finder.

3. It eases the capture of security policies, reading information from different
sources, including database systems, access control lists, etc. E-policy manager
also comes with a GUI for human interaction.

Currently, e-policy manager deals only with security policies of type access con-
trol. E-policy manager is not a security model1 for a security policy, but a means of
capturing, managing and ensuring logical consistency of a set of security policies.

Paper overview
The rest of this paper is organised as follows: In Section 2, we describe how to ex-

press security policies using first-order logic with equality and the unique names
assumption. We also introduce the verification tasks we are interested in. In Section 3,
we recapitulate Halpern and Weissman’s results, namely: a first-order logic language
for the specification of security policies and a characterisation of the computational
complexity of verification tasks. In Section 4, we show how to apply the pair Otter
and Mace to conduct the verification process. In Section 5, we describe how to use e-
policy manager. We also present a graphical user interface for easily capturing secu-
rity policies. In Section 6, we report on the results we have obtained from a psycho-
logical validity test carried on the e-policy manager. In Section 7, we compare related
work and in Section 8, we present the conclusions drawn from our research.

2 Expressing Security Policies Using First-Order Logic

Hereafter, we assume the reader is familiar with the syntax of first-order logic, includ-
ing terms, atoms, literals and well-formed formulae, the semantics of first-order logic,
including models and valuations, and with validity and satisfiability of first-order
formulae.

In this paper, security policies are mainly of either of two types: permitting or deny-
ing. A permitting (respectively denying) security policy conveys the conditions under
which someone, the subject, is allowed (respectively forbidden) to perform an action
on some object. Accordingly, the vocabulary of our language is assumed to contain at
least four collection of predicate relations, one denoting subjects (agents, processes,
officers, etc.), one denoting objects (files, directories, databases, applications, etc.), one
denoting actions (read, write, execute, etc.), and another denoting constraints (roles,
etc.) The vocabulary also contains a reserved binary predicate, called permitted. The
literal permitted(S, A) means S, a term of type subject, is allowed to carry out A, a
(compound) term representing an action over some term of type object.

A security policy is a sentence of the form:2

∀X1:T1,…, Xn:Tn. (C → [¬]permitted(S, A)) (1)

1 A computer security model consists of a set of underlying protection mechanisms, security

issues of a computing environment, and formal models that provide a framework for a secu-
rity policy.

2 We sometimes find it convenient to abbreviate ∀X. (T(X) → P(X)) and ∃X. (T(X) ∧ P(X)) by
∀X:T. P(X) and ∃X:T. P(X), respectively.

380 A. V. Álvarez et al.

where is a conjunction of literals, S and A are terms, and where [¬]permitted(S, A)
indicates that permitted may or may not be negated. A policy of the form (1) is called
a standard policy [1]. Standard policies are generally enough to express most security
policies. For example, the policies “only security officers may edit the password file”,
“anyone who is allowed to edit a file may read it”, “anyone who is forbidden to read a
file may not edit it” and “employees may read all the information associated with
their department of affiliation” can be expressed as follows:

∀X:staff, Y:posts. (post(X, officer, sec) → permitted(X, write(passwords)))

∀X:staff, Y:posts. (¬post(X, officer, sec) → ¬permitted(X, write(passwords)))

∀X:staff, F:info. (permitted(X, write(F)) → permitted(X, read(F)))

∀X:staff, F:info. (¬permitted(X, read(F)) → ¬permitted(X, write(F)))

∀X:staff,Y:posts,Z:dpt,F:info.(post(X,Y,Z)∧blng2(F,Z)→permitted(X,read(Z))).

The environment is a non-empty set of relevant facts describing the organisation
[1]. “John is a manager”, “managers are employees”, “file F is of security clearance
l”, etc. are all example facts of a typical environment. Formally, an environment is a
set of sentences, each of which does not contain the permitted predicate. The envi-
ronment is said to be standard, if it can be partitioned into two sets, E0 and E1, where
E0, called a basic environment, contains only ground literals, while E1 contains only
universally quantified formulae.

The verification tasks we are interested in are formalised as follows: Let E and
P1,…,Pn respectively denote an environment and some policies and let S and A be
closed terms, then we want to address the following queries:

1. Is individual S allowed (respectively forbidden) to carry out action A?
This query amounts to ask whether E ∧ P1 ∧ … ∧ Pn permitted(S, A)
(respectively ¬permitted(S, A)) is valid.

2. What is the individual profile of individual S? This query amounts to ask
whether, and how many times, E∧P1∧…∧Pn permitted(S, X) ∨ ans(X)
is valid, where X is an answer literal for the associated fill-in the blank
question.

3. Are the policies consistent amounts to ask if E ∧ P1 ∧ … ∧ Pn is satisfi-
able.

4. Are the policies Bell-LaPadulla compliant? This query amounts to ask if
E ∧ P1 ∧ … ∧ Pn satisfies the simple security condition, clearance(S) ≤
clearance(O) permitted(S, read(O)), and the *-property, permitted(S,
write(O)) clearance(S) ≤ clearance(O), of the Bell-LaPadulla model.

3 Tractability Results

Halpern and Weissman have shown that the problem in which we are interested is in
general undecidable [1]. For the decidable part, it cannot be answered efficiently
unless we impose severe restrictions. Halpern and Weissman have, in particular,
shown that the language L7 is the most amenable to computation:

 A Tool for Managing Security Policies in Organisations 381

Theorem 4.3. [1]: Let φ be a vocabulary that contains permitted (and possibly other
predicate, constant, and function symbols). Let L7 consists of all closed formulas F in
LF0(φ) of the form E0 ∧ E1 ∧ P1 ∧ … ∧ Pn permitted(S, A), where E0 is a Basic
environment, E1 is a conjunction of universal formulas, P1 ∧ … ∧ Pn is a conjunction
of standard policies, and both S and A are closed terms of the appropriate sort, such
that:

1. E0 has m constants,
2. no conjunct in E1 ∧ P1 ∧ … ∧ Pn has an inequality in its antecedent, and
3. each conjunct in E1 ∧ P1 ∧ … ∧ Pn has at most one literal that is bipolar in E1

∧ P1 ∧ … ∧ Pn relative to the equality statements in E0.
3

Halpern and Weissman determined that the validity of a query of type 1 can be
answered in:

O(|E1 ∧ (P1 ∧ … ∧ Pn)|log|E1 ∧ (P1 ∧ … ∧ Pn)| + b|Cl| + T)

where b is the number of bipolar pairs in F relative to the equality statements in E0, Cl
is the longest conjunct in F, and T depends on the number of variables that appear as
an argument to an instance of permitted (see [1] for further details).

Unfortunately, our security policies are not part of L7, because they might not sat-
isfy condition 2. We have been forced to include inequalities in the antecedent of a
policy for the sake of completeness. We illustrate this by means of a simple example.
Consider again the set of security policies defined in the previous section. To decide
whether these policies permit (respectively forbid) anna to edit the password file, we
must know if the statement post(anna, officer, sec) is true (respectively false). But if
anna is a head of department, neither of these queries can be decided unless we ex-
plicitly assert ¬post(anna, officer, sec).

To get around this incompleteness issue, we adopt a conservative meta-rule: any
action is forbidden, unless it is explicitly allowed. This meta-rule is implemented by
(automatically) including the closure of every permitting security policy. The closure
of a permitting policy P, denoted R(P), is the smallest set of denying policies that are
logically consistent with P. Consider, for example, the policy “all head of departments
are permitted to read information that is classified as confidential (clearance(F) = 4)”,
in symbols:

∀X:staff, Z:dpt. (post(X,mgr,Z))∧clearance(F)=4→permitted(X,read(F)))

The closure of this policy is given by:

∀X:staff, Y:posts, Z:dpt. (post(X, Y, Z) ∧ Y ≠ mgr ∧ clearance(F) = 4
→ ¬permitted(X,read(F)))

which is then complemented with another policy stating that “anyone who is forbid-
den to read a file may not edit it or share it or print it (see Section 3).

3 A literal l is said to be bipolar in a formula F, written in conjunctive normal form, if l is in F,

and if there is another literal l’ in F such that l and ¬l’ unify; that is, ∃σ. (l’≡¬l’)σ. If (l’≡¬l’)σ
follows from a set E of equality statements, then l is said to be bipolar in a formula F relative
to E.

382 A. V. Álvarez et al.

The unique names assumption is used to establish the inequality of two objects
with distinct names. Unfortunately, R(P) cannot be characterised logically, only pro-
cedurally.

Even though our security policies cannot be accommodated in L7, our experiments
show that our 4 verification tasks can be carried out quickly, as discussed below.

4 Reasoning About Security Policies

Once captured, both the policies and the environment are given to an automated first-
order theorem prover. We have chosen to use Otter [2], since it is well-established.
Otter’s main inference rules are resolution and paramodulation. Resolution is well-
known to be refutation complete: if a formula is unsatisfiable then resolution will
eventually deduce the proposition false, the empty clause.

First-order logic is semi-decidable: if a formula is satisfiable, then the resolution
procedure may not terminate. To partly approach this problem, we simultaneously
apply Mace, models and counter-examples, a searcher for finite models of first-order
and equational statements [3]. Mace serves as a complementary companion to Otter:
given an input first-order conjecture, Otter will search for a proof and Mace will
search for a counter-example. Mace’s engine is a Davis-Putnam-Loveland-Logemann
propositional decision procedure.

Our 4 verifications tasks are then tackled as follows. Let E0 be a conjunction of
ground formulae, E1 be a conjunction of universal formulas, P1 ∧ … ∧ Pn be a con-
junction of standard policies, and let S and A be closed terms representing a subject
and an action over some object, respectively. Then:

1. Is individual S allowed to carry out action A amounts to giving both Otter
and Mace E0 ∧ E1 ∧ P1 ∧ … ∧ Pn ∧ ¬permitted(S, A). If the conjecture is a
theorem, Otter will hopefully deduce the empty clause; otherwise, Mace
will hopefully find a counter-example. We proceed similarly to verify
whether S is forbidden to carry out action A.

2. To determine the individual profile of an individual S, we give Otter the
conjecture E0 ∧ E1 ∧ P1 ∧ … ∧ Pn ∧ (¬permitted(S, X) ∨ ans(X)) and ask
it to find as many proofs as possible.

3. Are the policies consistent amounts to give both Otter and Mace the con-
jecture E0 ∧ E1 ∧ P1 ∧ … ∧ Pn. If Otter deduces the empty clause, we use
the proof to automatically hint the user which security policies are thought
to be in conflict. Otherwise, Mace will hopefully find a counter-example.

4. Whether the security policies are Bell-LaPadulla compliant amounts to
giving Otter and Mace two formulae: i) for the simple security condition
E0 ∧ E1 ∧P1 ∧ … ∧Pn ∧ clearance(S) ≤ clearance(O) ∧¬permitted(S, A),
and ii) for the *-property, E0 ∧ E1 ∧P1 ∧ … ∧Pn ∧¬permitted(S, A) ∧
¬(clearance(S) ≤ clearance(O)).

In our experiments, Otter was able to quickly find inconsistencies in the input secu-
rity policies, (deriving the empty clause), if there was any, but usually spent a while,
otherwise. Notice that, if the input security policies are not inconsistent, then Otter
may run forever.

 A Tool for Managing Security Policies in Organisations 383

When asked a specific query about what a specific user can do, Otter also replied
quickly. Our experiments confirm the theoretical results of [1]. Otter has been made
to run in automatic mode, applying binary resolution, unary resolution or UR-
Resolution, hyper-resolution, and binary paramodulation. Otter works searching for
the empty clause, which, in the case of a verification task of type 3, is an evidence of
contradiction amongst the security policies.

5 Using E-Policy Manager

The basic environment, E0, which is a conjunction of ground formulae, is usually built
using a simple, three-view approach. In the first view, the organisation is character-
ised as a collection of employees. Each employee is described in terms of the standard
attributes, e.g. name, surname, etc. In the second view, the organisation is character-
ised in terms of a structure, which usually consists of several departments and their
relations. Relations, e.g. staff(X), post(Y), dpt(Z), post(X, Y, Z), etc., are used to named
departments, employees, etc. At this point, each employee is affiliated with some
department and given a role. In the third view, the organisation is described in terms
of its resources, information in our case. Files, directories and all kinds of information
resources are then incorporated into the environment.

Using the unique names assumption, we may express and prove simple properties
of the basic environment. Proven properties include “every employee is affiliated to
one and only one department”, “every employee has one and only one password”, etc.

5.1 Linking E-Policy Manager with a Database Management System

Mostly, the basic environment is captured through a database management system. E-
policy manager can be linked, so far, to read information from Access or SQL server.
To fulfil the intended interpretation, the basic environment is assumed to come from
the following tables:

• Subject<identifier, name, department of affiliation, position>
• Object<identifier, name, department this object belongs to, class>
• Action<identifier, action description, object this action is applied to>
• Security_mechanism<identifier, access mechanism>

The second part of the environment, which is a conjunct of universally quantified
formulae, together with the security policies, is captured via a GUI, which we de-
scribed below. Notice, though, that security policies can be also captured by means of
a collection of control access lists. An access control list (ACL) is a concept in com-
puter security used to enforce privilege separation. It is a means of determining the
appropriate access rights to a given object depending on certain aspects of the process
that is making the request, principally the process's user identifier.4

5.2 A Graphical User Interface

Writing, developing and maintaining security policies are all responsibilities of a secu-
rity officer, who can not be assumed to be acquainted with formal methods. Formal

4 http://en.wikipedia.org/wiki/Access_control_list

384 A. V. Álvarez et al.

methods require both significant skill and time (and therefore financial resources) to
use. To get around this problem, e-policy manager comes with a graphical user inter-
face (GUI) that makes it easy to capture security policies by means of wizards and
other graphical techniques. Also the GUI makes it easy both to correctly interpret the
input security policies and to formalise them in FOL.

Through the GUI, a security officer can capture a set of security policies at a high,
abstract level, by means of schemata. Although schemata restrict the expressiveness
of our policy language, the output security policies contain the necessary ingredients
for guaranteeing a simple but correct translation into our first-order language. More-
over, the GUI hides formal methods and knowledge representation out of the user,
who no longer needs to be acquainted with these techniques.

To provide flexibility to the user, we maintain a database of action names synony-
mous. So a user may write (or select) “change”, “manipulate”, “alter”, etc. rather than
the default “access”. To avoid slowing down the deduction process, we normalise all
the synonymous of an action to a designated, default action name. This way, we do
not perform additional, unnecessary applications of paramodulation or rewriting.

Using the capturing schema, each security policy is translated into both a first order
formula and a semi-natural language expression. The formula is regarded as the for-
mal model of the associated security policy. The expression is used for documentation
purposes. It is part of the security policies manual of the associated organisation.

Given that a policy specifies the conditions under which a subject is allowed
(respectively forbidden) to perform an action on some object, the GUI portrays a
schemata, based on wizards, through which the user conveys several pieces of infor-
mation. This involves the subject, e.g. users, processes, etc., the action, e.g. reading,
writing, creating, etc., the object, an information file, the restrictions under which the
action is permitted, e.g. a user role, a user affiliation, etc., and whether the action
should be denied or permitted. The subject of a security policy can be a specific indi-
vidual or a group of individuals that are related by some condition.

The GUI also allows the introduction of a modifier, we call the purpose modifier.
If the purpose modifier is on, the interpretation of the security policy at hand is
changed so that it now reads “only subject is allowed (respectively forbidden) to per-
form the associated action on the object under the given conditions”.

Using the GUI, a user is thus able to capture a security policy through a suitable
schema. Schematically, the wizard enables the user to convey six pieces of informa-
tion: i) the subject of the policy, ii) number of purposes (use only to denote exclusive-
ness, otherwise this field is left apart), iii) the type of policy (permitting or denying),
iv) the action to be carried out, v) the object the action should be performed on, and
vi) the constraints.

As an example policy capturing, consider that, after interacting with the wizard, the
user has input the following information: subject =staff, condition on the
subject = officer, department = sec, purpose modifier = on, policy type
= permitting, action = read, object = passwords (the password file), and object
constraints = none, then the policy manager records the following formulae
within the policy database:

∀X:staff. (post(X,officer, sec) → permitted(X, read(passwords)))

∀X:staff. (¬post(X,officer, sec) → ¬permitted(X, read(passwords)))

 A Tool for Managing Security Policies in Organisations 385

As another example of security policy capturing, consider that, after interacting
with the wizard, a security officer has input the following information: subject =
staff, subject constraints = affiliated2(subject, it), purpose modifier = off,
policy type = permitting, object = information, object constraint = be-
longs2(object, it), action = read. Then, e-policy manager outputs:

∀X:staff, Y:dpt, F:info. (post(X, Y, it) ∧ blngs2(Y, it) → permitted(X, read(Y)))

Each policy can be added or removed from the database by means of a wizard,
which pops up a table containing all existing policies. A user only has to select an
unwanted policy, by clicking on it, and then indicate policy removal or edition.

The design of both the interface and the security policy schemata of e-policy man-
ager was largely inspired by LaSCO [4]. LaSCO is an object oriented programming
language which expresses a security policy by means of a constraint imposed on an
object. Other policy languages were also considered, e.g. [5], but none of them pro-
vides as much a solid theoretical foundation as that of [1]. We have more to say about
related work in Section 5.

6 Testing Psychological Validity

E-policy manager was used to capture a number of security policies found in books or
gathered from practitioners. Although they impose severe constraints on the policy
language, schemata were found to be enough to capture all these security policies.
Our experiments show that the verification process may take a few milliseconds.

E-policy manager was also evaluated for psychological validity. We run a test on
six security officers, who answered a survey and interacted with the tool prototype.
Our results from this experiment are encouraging. The answers provided by these
security officers point that e-policy manager has achieved its two primary design
goals, namely: i) to make it easy to capture a security policy while guaranteeing it is
correct in the sense of interpretation, and ii) to provide a means for formally verifying
the security policies are consistent. Rather than an adverse opinion, we were urged to
include an account for policies about other resources.

E-policy manager is available upon request by sending e-mail to the first author. In
the next section, we will review existing languages for the specification of security
policies.

7 Related Work

A policy specification language aims at formalising the intent of a policy designer
into a form that can be read and interpreted by both people and machines [5]. It is
especially designed to specify the relations amongst system entities in terms of
actions and the conditions upon which these actions are denied or performed. There
exist several policy specification languages. In what follows, we review the main
features of four policy specification tools and associated languages: i) Keynote, ii)
SPSL [5], iii) LaSCO [3], and iv) the General Computer Security Policy Model [6].

Keynote and SPSL [5] are used to specify security policies about network applica-
tions. Neither Keynote nor SPL provide a visual tool for policy capturing. However,

386 A. V. Álvarez et al.

they are both equipped with a policy compiler, which produces a user profile that the
intended application can use for denying or permitting the execution of an action.
Keynote cannot be used to specify facts about the environment. Keynote does not
scale properly, as it is difficult to foresee the state that results when enforcing a num-
ber of security policies. E-policy manager can be used to capture facts about the envi-
ronment but was never thought as a mechanism for enforcing security policies.

LaSCO [3] is based on a model where a system consists of objects and events and
works by conveying restrictions on objects. This language represents the policies by
means of directed graphs which describe a specific state of the system (domain) and
specific access constraints (requirements) and in mathematic logic. The nodes repre-
sent system objects and the edges represent system events. LaSCO [3] can be used to
express a wide variety of standard and customised security policies, including access
control and other history-based and context-dependent policies. Our work has been
inspired in this language. For example, for the graphical user interface, we have
adopted the use of graphs facilitating the security policies representation, as well as
denoting information access control. LaSCO expressions can be translated into a low-
level language for security policy enforcement. However, the tool does not involve
the use of a mechanism to guarantee that the policies are consistent or that they meet
certain properties.

Krsul, Spafford and Tuglualar [6] have presented a functional approach to the
specification of security policies that allows policy stepwise refinement. The model
makes the explicit assumption that policies and the value of the system objects are
related. This model expresses policies as algorithmic and mathematical expressions.
The specification policy explicitly lists the objects and attributes that are needed to
enforce the policy. The model helps identifying the components that are relevant to
the policy and hence provides a better policy understanding.

These languages are all adequate for the specification of security policies. How-
ever, they are not this effective, since, except for [6], they do not have a formal
semantics, with which to reason about the security policies. Also security policy cap-
turing using no visual aid has proven to be error prone, making it necessary to verify
the written policies. Languages have been developed for the integration of local and
distributed security policies oriented towards the interoperability of several computer
sites [9,10]. They do not help ensuring that policies do not contradict one another.

Halpern and Weissman have shown that (a subset of) first order logic is enough to
express and efficiently reason about security policies [1]. They represent a security
policy as a relation between three sorts, Actions (e.g. accessing a file), Subjects (the
agents that perform actions) and Times. This contrasts with our work, where we de-
note a policy as a relation amongst Subjects, Objects and Actions. Halpern and
Weissman are much more interested in using a user profile in order to enforce secu-
rity policies; they argue that their security policy schema (which we have borrowed
for our work) makes it easier for a user to write proper policies. They have not paid
attention to checking policy consistency. As we can see, our work is also based on
Halpern and Weissman’s. Indeed, in [1] it is mentioned these two researchers are
working on developing a user-friendly interface for security policy capturing, but no
report has been published yet.

E-policy manager ensures that the set of security policies are unambiguous and do
not contradict each other; that is, it guarantees that the security policies are, what we

 A Tool for Managing Security Policies in Organisations 387

call, consistent. This contrasts with related work where methods are proposed to en-
sure that the security policies are consistent across a distributed environment [11,12].

More related to ours is the work of Zanin et al. [13], where a formal model, called
SELinux Access Control (SELAC), is proposed for analyzing an arbitrary security
policy configuration for the SELinux system.5 SELAC defines a semantics for the
constructs of the SELinux configuration language and models the relationships occur-
ring among sets of configuration rules. Zanin et al. have developed an algorithm
based upon SELAC, which, given an arbitrary security policy configuration, can ver-
ify whether or not a given subject can access a specific object in a particular mode.
They are planning on extending the model and the tool functionalities to support the
analysis of data confidentiality and integrity.

E-policy manager is a second-generation of that presented in [14]. In particular, the
newer e-policy manager has much better reasoning capabilities, a better interface and
more linking capabilities to interact with other systems.

8 Conclusions and Future Work

To secure the most significant resources of an organisation, it is necessary to have a
set of appropriate policies. Managing security policies is not an easy task and cur-
rently it does not have computer support. The goal of our work is to provide a tool
that supports this task and gives a basis for future research. The tool, called e-policy
manager, includes a graphical user interface that makes it easy to capture security
policies and a module that formalises these policies to be verified by a first-order
theorem prover, Otter, and a first-order model finder, Mace.

Further work includes using a natural language processor so as to allow a user to
input security policies as he would in an informal document. This interface would
significantly increment the acceptance of E-policy manager from potential users.
Further work also considers expressing and reasoning about policies regarding re-
sources other than information.

References

[1] Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about policies.
In Proceedings of the 16th IEEE Computer Security Foundations Workshop CSFW 2003,
pages:187-201. IEEE Computer Society, 2003.

[2] William McCune. Otter 2.0 In Mark E. Stickel, editor, Proceedings of the 10th Confer-
ence on Automated Deduction, volume 449 of Lecture Notes in Computer Science, pages
663-664. Springer, 1990.

[3] William McCune. Mace4 Reference Manual and Guide. The Computing Research Reposi-
tory (CoRR) CS.SC/0310055, 2004.

[4] James A. Hoagland. Specifying and enforcing policies using LaSCO, the language for
security constraints on objects. The Computing Research Repository, CS.CR/0003066,
2000.

5 SELinux (Security Enhanced Linux) consists of a collection of security enhancements in the

Linux kernel.

388 A. V. Álvarez et al.

[5] Renato Iannella. ODRL: The open digital rights language initiative. Technical report.
[6] Minna Kangasluoma. Policy Specification Languages. Department of Computer Science,

Helsinki University of Technology, 1999.
[7] Ivan Krsul, Eugene Spafford, and Tugkan Tuglular. A New Approach to the Specifica-

tion of General Computer Security Policies. COAST Techical Report 97-13., 1998, West
Lafayette, IN 47907–1398.

[8] E. Davies, Representation of Commonsense Knowledge, Courant Institute for Mathe-
matical Sciences, 1990.

[9] T. Ryutov, C. Neuman. Representation and evaluation of security policies for distributed
system services. In Proceedings of DARPA Information Survivability Conference and
Exposition 2000 (DISCEX '00), pages:172-183, vol. 2, 2000.

[10] R. Bhatti, A. Ghafoor, E. Bertino, J. Joshi. X-GTRBAC: an XML-based policy specifica-
tion framework and architecture for enterprise-wide access control. ACM Transactions
on Information and System Security (TISSEC) 8(2):187-227, 2005.

[11] S. Ngamsuriyaroj, T.F. Keefe, A.R. Hurson. Maintaining consistency of the
security policy using timestamp ordering. In Proceedings of the 2002 International Con-
ference on Information Technology: Coding and Computing, pages:164–170. IEEE
Computer Society, 2002.

[12] S. Ngamsuriyaroj, T.F. Keefe, A.R. Hurson. Maintaining consistency of the
security policy in distributed environment. In Proceedings of the 21st IEEE International
Performance, Computing, and Communications Conference, pages:179-186. IEEE Com-
puter Society, 2002.

[13] G. Zanin, L. Vincenzo Mancini. Security analysis: Towards a formal model for security
policies specification and validation in the selinux system. In Proceedings of the ninth
ACM symposium on Access control models and technologies, pages:126-135. ACM
Press, 2004.

[14] K. García, R. Monroy and J. Vázquez. An Artificial Manager for Security Policies in Or-
ganizations. Journal of Research in Computing Science 17:97-106, 2005.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 389 – 404, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Information Flow Query and Verification for Security
Policy of Security-Enhanced Linux

Yi-Ming Chen and Yung-Wei Kao

Department of Information Management, National Central University
300, Jungda Rd., Joungli, 32054, Taiwan, ROC
{cym, 93423010}@cc.ncu.edu.tw

Abstract. This paper presents a Colored Petri Nets (CPN) approach to analyze
the information flow in the policy file of Security-Enhanced Linux (SELinux).
The SELinux access control decisions are based on a security policy file that
contains several thousands of security rules. It becomes a challenge for policy
administrator to determine whether the modification of the security policy file
conforms to the pre-specified security goals. To address this issue, this paper
proposes a formal information flow model for SELinux security policy file, and
presents a simple query language to help administrators to express the
expected/unexpected information flow. We developed a method to transform the
SELinux policy and security goal into Policy CPN Diagram and Query CPN
Diagram. A tool named SEAnalyzer that can automatically verify the SELinux
policy has been developed and two application examples of this tool will be
presented in the context.

Keywords: Colored Petri Nets, information flow, SELinux, security policy.

1 Introduction

OS security is considered to be the basis of the computer security [1]. In 1983, the
Department of Defense published the TCSEC (Trusted Computer System Evaluation
Criteria). In TCSEC, there are seven levels for security computer system, from D to A1.
In 2001, NSA (National Security Agency) proposed the SELinux (Security-Enhanced
Linux) [2] system, which has reached the B1 level of TCSEC [3]. It is considered to be
secure, because that most of the popular OS, like Windows or Linux, do not even
satisfy the requirement of B1 level.

Although the SELinux is secure, the policy of SELinux is complex to make. For
example, in the SELinux example policy file which associated with the distribution of
SELinux, there are more than 30,000 policy statements. In different situation, different
applications running in the system, or different resources allocation, the security policy
should be modified to adapt the current environment and ensure the security of the
whole system. So this is a problem for policy administrator, who has the responsibility
to handle thousands of policy statements and make sure that these policy statements

390 Y.-M. Chen and Y.-W. Kao

will exactly behave as what he expects. Several researches have tried to solve this
problem [4][5][6][7][8][9][10][11], and we will compare our approach to theirs in the
last two sections.

The aim of this paper is to provide a more intuitive for users to analyze the
information flow of SELinux security policy. We first propose a formal information
flow model for SELinux security policy file, then presents a simple query language to
help administrators to express the security flow that he/she concerns. We have
developed a method that transform the information flow related rules and security
query to Colored Petri Net (CPN) diagram. We have implemented a tool named
SEAnalyzer and will illustrate its uses by several examples in the context.

The paper is organized in 9 sections. Section 2 introduces the SELinux security
model. Section 3 presents the system definition. Section 4 explains the security goal
and security query. Section 5 presents the verification tool and process. Section 6
describes our CPN diagram transformation methodology. Section 7 gives analysis
examples to the application of our approach and Section 8 compares our work with
related work. Finally we make conclusions and give future research directions in
Section 9.

2 SELinux Security Model

2.1 SELinux MAC Operation

The key factor to make SELinux a more secure system than many other popular
operating systems is that SELinux adopt the MAC (Mandatory Access Control)
mechanism, not the DAC (Discretionary Access Control). DAC only depends on the
user ID and ownership of this user to decide whether the subject (e.g. process) can
access the object (ex. file) or not. On the other hand, MAC depends on labels to make
the decision. The label contains a variety of security-relevant information [13]. Subject
and object are the most basic terms in the literature on access control. Subject refers to
the active component in a system, usually the process, while object refers to any system
resource accessed by subject, such as file, directory, network socket, or even another
process. If any subject intents to access any object, only the behavior of access that is
clearly defined to be allowed in the MAC policy can be conducted.

MAC is an important feature that makes the main difference between level C and
level B in TCSEC. However, traditional MAC architecture has some limitations. For
example, the MAC mechanism is typically tightly coupled to a MLS (multi-level
security) policy. That makes the system very inflexible. To overcome this problem,
NSA and SCC (Secure Computing Corporation) worked with University of Utah’s
Flux research group to develop Flask architecture [13], which provides the support of
dynamic security policies.

Figure 1 shows the Flask architecture. The Flask architecture separates the definition
of the policy logic from the enforcement mechanism. Two components, Security Server
and Object Manager, respond in those tasks respectively.

 Information Flow Query and Verification for Security Policy of SELinux 391

In the SELinux implementation, all the kernel subsystems (e.g. process management,
filesystem, socket IPC, System V IPC), except the Security Server, are Object
Managers. If any subject intends to access some objects, Object Manager will query the
Security Server first. After the Security Server send the decision of this access back,
Object Manager then conduct the enforcement to accept or deny the access depends on
the Security Server decision. Security Server stores the security policy. Security Server
receives the query sent by the Object Manager, checks the rules defined in the security
policy, and makes the decision for this query.

Object Manager

Policy
enforcement

Security Server

Security
Policy

client
Object
request

query

decision

enforcement policy

Fig. 1. Flask architecture

2.2 Security Context

Security context is one of the policy-independent data type for security labels in Flask
architecture [13]. The security context is a variable-length string, and the security
identifier is an integer that is mapped to a security context. SELinux associates a
security context with every subject and object in the system. Here a security context is a
3-tuple (user, role, type). The notion of user is the person who makes the process
running if it is in the subject security context, and is the owner of object in the object
security context. The notion of role, derived from the literature on role-based access
control, is used to represent a set of permissions that the user can be granted. The notion
of type is also known as domains, which divides subjects or objects into groups [14].
The information stored in security context is used as the representation of environment
by SELinux for making authorization decisions.

3 System Definition

3.1 CPN Definition

CPN is proposed by Kurt Jensen in 1980s [12]. The difference between Petri Nets and
CPN is that CPN involve the concept of color set that just is similar to the concept of
data type in general purpose programming languages. CPN is a graphic-oriented
language, which use oval to represent the place, rectangle to the transition, and arrow to
the arc. Arc expression represents the condition for the transition occurs. There may be
zero, one, or many tokens in each place. If the value of the token matches to the
condition on the arc expression, the transition will be initiated.

392 Y.-M. Chen and Y.-W. Kao

CPN can be formally defined by a tuple N = (,P,T,A,N,C,G,E,I) which satisfies the
following requirements:

1. is a finite set of non-empty data types, called color sets.
2. P is a finite set of places.
3. T is a finite set of transitions.
4. A is a finite set of arcs.
5. N A → P×T T ×P is a node function that associates arcs with two nodes.
6. C P → is a color function that associates places with data types.
7. G T → EXP is a guard function that associates transitions with expressions such

that: ∀ t∈T, (type(G(t)) = bool) ∧ (type(var(G(t))) ⊆), where type(e) denotes the
data type of an expression e, type({e1,e2, . . .}) denotes the set of data types of
expressions e1,e2, . . ., var(e) denotes the set of free variables of an expression e, and
EXP denotes the set of all expression.

8. E A → EXP is an arc expression function that associates arcs with expressions
such that: ∀ a∈A, (type(E(a)) = C(p(a))MS) ∧ (type(var(E(a))) ⊆) ,

where p(a) is the place of N(a), and ’ tMS’ denotes type ’multi-set of type t’.
9. I P → EXP is an initialization function that associates places with expressions

such that: ∀ p∈P, type(I (p)) = C (p)MS.

3.2 Security Policy Definition

In order to define what the security policy is, we have to define several basic sets first.
Here are several sets defined for the SELinux policy:

Pu the set of users in SELinux policy
Pr the set of roles in SELinux policy
Pt the set of types in SELinux policy
Pc the set of classes in SELinux policy
Pp the set of permissions in SELinux policy

After these sets were defined, several relations of these sets can be defined to
represent some declarations and rules which are used in the SELinux policy. Here are
several relation definitions:

1. User declaration relation :

 (u, r1, r2,…, rn), where u∈Pu, for each 1 ≤ i ≤ n, i∈N, ri∈Pr
Relation represents that user u play the role r1, r2,…, or rn. For example: user root
roles { user_r sysadm_r };

2. Role declaration relation :

 (r, t1, t2,…, tn), where r∈Pr, for each 1 ≤ i ≤ n, i∈N, ti∈Pt
Relation represents that role r is declared, and r can access type t1, t2,…, or tn. For
example: role user_r types user_t;

3. Class declaration relation :

 (c1 ,c2, p1, p2 ,…, pn), where c ∈Pr, for each 1 ≤ i ≤ n, i ∈N, pi ∈Pp.

 Information Flow Query and Verification for Security Policy of SELinux 393

Relation represents that class c1 is defined that it inherits from c2 and contains the
permission set {p1, p2,…, pn} permission set of c2. For example: class dir inherits
file { add_name }

4. Allow rule relation :

(t1 ,t2, c, p1, p2,…, pn), where t1∈Pt, t2∈Pt, c∈Pc, for each 1 ≤ i ≤ n, i∈N, p

i∈Pp. Relation represents that type t1 can access type t2 with operation of class c
and permission p1, p2,…, or pn. For example: allow crond_t locale_t:dir { read
getattr lock search ioctl };

3.3 Security Context Definition

SELinux uses security context to summarize the security-relevant information of
resources. Here is the definition of the legal security context set S:

S = { (u,r,t) | u ∈Pu, r ∈Pr, t ∈Pt, (u,r), (r,t) }

3.4 Information Flow Definition

The most important control in SELinux is the access control from subject to object.
After the basic sets and relations have been defined, we can define the direct
information flow that flows from some security context to another, but doesn’t pass
trough any security context in the middle. The direct information flow is defined as:

 (u1, r1, t1, u2, r2, t2, c, p), where,
(u1, r1, t1) ∈S, (u2, r2, t2) ∈S, (c, p), (t1, t2, c, p) if write_like(p), or
(u1, r1, t1) ∈S, (u2, r2, t2) ∈S, (c, p), (t2, t1, c, p) if read_like(p)

Function write_like returns true if p is a write-like permission and false if read-like.
Also, function read_like returns true if p is read-like permission and false if write-like.
However, usually the information flow doesn’t come alone. For example, the httpd_t is
allowed to access log_t to log something in the log file, so there exits one information
flow form httpd_t to log_t. After that, maybe the sysadm_t is allowed to check the log
file, so there will be one information flow from log_t to sysadm_t. In this example, the
information flow can flow from httpd_t, through log_t, and into sysadm_t. Such
successive information flow is called Sequenced Information Flow. The sequenced
information flow can be defined as:

(u1, r1, t1, un, rn, tn), where, ∃ {(u1, r1, t1) ... (un, rn, tn)} ⊆ S, { c1, c2,…, cn-1 } ⊆ Pc,
{ p1, p2,…, pn-1 } ⊆ Pp, 1 ≤ i ≤ n, i∈N, so that (u1, r1, t1, u2, r2, t2, c1, p1), (u2, r2, t2,
u3, r3, t3, c2, p2), …, (un-1, rn-1, tn-1, un, rn, tn, cn-1, pn-1).

Moreover, if the information flow flows to any security context that is passed
through before, we name this kind of information flow as Recursive Information Flow.
For example, if there is a user writes something into a file, and reads the file later, then
the information flow will flow form the user’s security context to the file’s, and back to
the user’s, as the event of reading. The Recursive Information Flow is defined as:

394 Y.-M. Chen and Y.-W. Kao

(u1, r1, t1, un, rn, tn), where (u1, r1, t1, un, rn, tn), 1 ≤ n, n∈N,
and (u1, r1, t1)=(un, rn, tn).

4 Security Goal and Security Query

4.1 Security Goal

One of the challenges to address the SELinux policy analysis problem is how to express
the security goal. Here the security goal indicates the security condition that the
administrator wants to know whether it exists in the policy configuration file. With
security goal, we can validate the policy, and examine that is there exist any
wrong-made policy which conflicts the goal we expect. For this reason, we need a kind
of expression to represent the security goal, or so-called security policy specification.
For example, after the administrator installs a SAMBA service in a SELinux server,
he/she wants to know whether the samba program would access the password file that it
is permitted to access. In this case, we may describe the security goal as:

“Only the information flow which starts from samba_t and directly flows into
passwd_t is the legal information flow”

However, there will several situations that are considered to be illegal information
flows under this description:

1. The information flow which starts from samba_t, and flows to another type, but
enters into passwd_t.

2. The information flow which starts from samba_t, but doesn’t flow through
passwd_t.

3. The information flow doesn’t flows through samba_t, but enters into passwd_t.
4. The information flow which flows through neither samba_t nor passwd_t.

It is obvious that, many of these situations could be unreasonable. For example, in
the fourth case, most of the information flows in the policy should be illegal. Hence, the
representation of this security goal is very improper. The reason of this improper
representation is that it is a positive representation. Positive representation means that
it describes the legal information flow of the security goal. On the other hand, if the
negative representation is used, that will be more specific. The negative representation
describes the illegal information flow of the security goal. For example, the negative
representation of security goal in the samba_t-passwd_t case maybe as:

“Only the information flow that starts from samba_t, and flows to another type, but
enters into passwd_t is the illegal information flow”

However, not all of the security goals are suitable to be described in negative
representation. For example, consider the following security goal:

“There must be information flow flowing from samba_t to passwd_t”

 Information Flow Query and Verification for Security Policy of SELinux 395

This is a positive representation of security goal. If we use negative representation
instead, we will find that it is difficult and complex. In such situation, positive
representation is the better choice. In conclusion, the selection of positive or negative
representation to describe security goal depends on the property of this security goal.

SLAT [8][9] supports a security goal description language, called Diagram. The
Diagram in SLAT must be made in positive representation, and SLAT will convert this
Diagram into negative representation automatically. This is a dangerous step because
that there maybe one positive representation of the security but many negative
representations that conflict the positive one. SLAT only chose one of them to verify
the security policy. So it is likely that the result of SLAT verification (the information
flow that matches the converted security goal) is talking about the wrong story about
the illegal information flows.

4.2 Security Query

Query is a neuter way because that it can be used in both positive and negative
representation. In the positive case, query can be used to find legal information flow. If
any result was found in positive query, then the security goal is satisfied. In the negative
case, query can be used to find illegal information flow. If any result was found in
negative query, then the security goal is violated.

In Order to allow the administrator easily expresses the security goal, we develop a
simple query language which expresses the information flow that administrator wants
to query, no matter it is a positive or negative query. The BNF form [15] of the query
language is expressed as follows:

Goal ::= IF IFP type“;”
IF ::= IF IFP type
 | type
IFP ::= “:(“ Perm “,” Operator “, !(“ Not_List “)):”
 | “:(“ Perm “,” Operator “, !()):”
Perm ::= “WL” | “RL” | “ALL”
Operator ::= “+” | “-”
Not_List ::= Not_List “,” type
 | type
type ::= ([a-z,A-Z] | “_”)+

 “IF” represents the information flow, and “IFP” represents the information flow
path. The direction of information flow is from the left type of the information flow
path to the right type of the same information flow path.

“Perm” represents all the permissions in this information flow. If “Perm” is “WL”,
that means all the permissions in information flow path are write-like permissions, and
“RL” means read-like permissions. At last, if “Perm” is “ALL”, then permission type is
not checked.

“Operator” represents the direct information flow in “-“, and sequenced
information flow in “+”. “Not_List” represents the SELinux types that are not

396 Y.-M. Chen and Y.-W. Kao

included in the information flow path. Finally, “type” represents the SElinux type
name. For example, if the query is formulated as:

a_t:(WL,+,!()):b_t:(RL,-,!()):c_t:(ALL,+,!(d_t)):e_t;

Then this query is made to find the information flow that:

1. a_t can access b_t with write-like permissions in sequenced information flows
2. c_t can access b_t with read-like permission in direct information flow
3. c_t can access e_t with the information flow that doesn’t pass through type d_t

It is noticeable that c_t access b_t by read-like permission, not b_t access c_t. The
reason is that the direction of information flow is from left to right, in other words, from
b_t to c_t. So only when c_t accesses b_t with read-like permission, the information
flow direction is matched.

5 Verification Tool and Verification Process

In order to verify the user maintained SELinux security policy with user specified
security goal, we need a verification tool which can automatically parse the policy,
parse the query, construct the model to simplify the policy, and deduce the model
automatically to conclude that whether the security policy satisfies the security goal or
not. We propose the tool, named SEAnalyzer, to responds for theses tasks. In
SEAnalyzer, CPN is used to model the security policy and query separately, into the
Policy CPN Diagram and Query CPN Diagram. Allow relation is the majority part of
SELinux policy, and it is the most important relation in the information flow. Hence,
the SEAnalyzer only focus on allow relations and model information flow with allow
relations in Policy CPN Diagram.

6 CPN Diagram Transformation

Before the usage of CPN, the colors and variables should be defined first. We define the
following colors and variables that would be used in information flow analysis using
CPN ML notation [16].

color Match = BOOL;
color SELinux_type = string;
color Perm_type = string;
color Pre_Query_Type = string;
color Type_List = list SELinux_type;
color Perm_List = list Perm_type;
color INFO= product
Match*Pre_Query_Type*Type_List*Perm_List;
var selinux_type : SELinux_type;
var pre_query_type : Pre_Query_Type;
var type_list : Type_List;

 Information Flow Query and Verification for Security Policy of SELinux 397

var info : INFO;
var pre_query_type : Pre_Query_Type;
var match : Match;

6.1 Policy CPN Diagram Transformation

First of all, the allow relation will be extracted from SELinux policy and transformed
into Policy CPN Diagram. For each allow relation, the source type and destination type
will be transformed into CPN place with the name as the SELinux type name. Each of
the permission in the allow relation will be transformed into place named “RL” if this is
a read-like permission and “WL” if write-like permission. For example, the following
two allow relations (1) and (2) will be transformed into Table 1 individually for each of
the permission.

allow p1, p2:c { read, write }; (1)

allow p1, p2:c { read ,write }; (2)

After these Diagrams were transformed individually, then combine these Diagrams
into one Policy CPN Diagram as Figure 2.

Fig. 2. Combined Policy CPN Diagram for (1) and (2)

Finally, for each of the arc which direct to any SELinux type, the arc expression
should be altered to put some information into the token and check the recursive
information flow. For example, the allow relation in (3) will be modeled as Figure 3.

allow user_t fsadm_t : file { write }; (3)

Fig. 3. Security Policy Diagram for (3)

398 Y.-M. Chen and Y.-W. Kao

Table 1. CPN Diagram transformed from (1) and (2) for each of the permission

Types and permission CPN Diagram

p1 read p2

p1 write p2

p2 read p1

p2 write p1

6.2 Query CPN Diagram Transformation

The verification methodology is designed to check all of the information flows which
flow through the SELinux types that are specified in the user query. Hence, in the
Query CPN Diagram transformation, one “match” transition and one place should be
added for the corresponding SELinux type. If any of the information flow flows
through the type which is specified in query, this information flow should be checked
by the “match” transition with token from the corresponding query place to decide this
information flow should be dropped or not.

The decision was made by the arc expression directing from “match’ transition to
SELinux type place. In different user query situation, there will be different condition
in “if” decision of the arc expression. If the condition was satisfied for any information
flow passes through, then returns the altered token to SELinux type place. If the
condition was not satisfied, then drops this token. The information flow will be
terminated after the token was dropped, and this information flow will be excluded
from the result information flow set for the user query. Table 2 lists different conditions

Fig. 4. Security Query Diagram for (4)

 Information Flow Query and Verification for Security Policy of SELinux 399

that should be added in the “if” decision of the arc for different user query. For
example, if the query is defined as (4):

user_t :(WL,+,!(fsadm_t)):fixed_disk_device_t; (4)

Then the Security Query Diagram for (4) will be modeled as Figure 4.

Table 2. Different conditions that should be added in “if” decision for different query

User Query Condition to be added
First type of query type #2 info = ""
Not first type and not Not_List
type #2 info = previous not Not_List_Type

Not_List type #2 info <> previous not Not_List_Type
Not Not_List type, and exist
“RL” Perm in previous IFP andalso not (List.exists(fn(x)=>x="WL")(#4 info))

Not Not_List type, and exist
“WL” Perm in previous IFP andalso not (List.exists(fn(x)=>x="RL")(#4 info))

Not Not_List type, and exist
“ALL” Perm in previous IFP Do nothing

Not Not_List type, and exist
“+” Operator in previous IFP

andalso List.exists(fn(x)=>x= previous not
Not_List_Type)(#3 info)

Not Not_List type, and exist “-”
Operator in previous IFP

andalso List.nth(#3 info,0) = previous not
Not_List_Type

6.3 Diagram Combination

After the Policy CPN Diagram and Query CPN Diagram were transformed
successfully, the Combined CPN Diagram should be established. First, the SELinux

Fig. 5. Combined CPN Diagram for policy (5), (6) and query (4)

400 Y.-M. Chen and Y.-W. Kao

type in Query CPN Diagram should be replaced by the type with the same name in
Security Policy Diagram. Second, add the “security” transition and “end” place at the
end of the SELinux type in query. Finally, put initial tokens on all query types and the
SELinux type that corresponding to the first query type. For example, if (5) and (6) are
only two policy statements in SELinux policy, and the security goal is defined as (4),
then the Combined CPN Diagram will be modeled as Figure 5.

allow user_t fsadm_t:process { write };

allow fsadm_t fixed_disk_device_t: file { write };

(5)

(6)

7 Analysis Examples

The analysis of SELinux security policy is performed when the administrator modifies
the security policy file after changing the system configuration. The administrator has
to guarantee that the modified policy file would not conflict with some specific security
goal. In this section, we give an application example.

First of all, suppose one of the security goals for the SELinux is that:

“For all the sequenced information flows which start from user_t and flow to
fixed_disk_device_t must flow through the trusted type fsadm_t ”

(7)

By the analysis method mentioned in Section 5, we transform this security goal to a
security query, as shown below:

user_t :(ALL,+,!(fsadm_t)): fixed_disk_device_t; (8)

Assume the original policy statements in the security policy file contains only the
following statements:

allow user_t httpd_t:file { write };
allow httpd_t fsadm_t:file { write };
allow fsadm_t fixed_disk_device_t : file { write};

The above statements indicate that the system permits the user to write something to
HTTP server, permits the HTTP server to access the trusted program fsadm_t, and
permits the fsadm_t to write the low security level disk type fixed_disk_device_t.

Now suppose the administrator installs an audit program to audit the web logs and
allows this audit program to access hard disks, he/she may add the following two policy
statements to reflect the system changes:

allow httpd_t log_t : file { write };

allow log_t fixed_disk_device_t : file { write};

(9)

(10)

Above statements implies that the system permits the HTTP server to write
something to log_t for auditing, and the log_t to write fixed_disk_device_t. After the
addition of above statements, the administrator would like to check whether this
addition conforms to the security goal of (7). Using the SEAnalyzer, he/she can make
the query of (8) and obtained the results as shown in Figure 7.

 Information Flow Query and Verification for Security Policy of SELinux 401

Fig. 7. A query result with a token flown in the end place

Note that in Figure 7, there is one token flowing into the end place. From the contents of
that token’s list: [“fixed_disk_device_t”, ”log_t”, ”httpd_t”, ”user_t”], the administrator
could easily be mentioned that the security conflict comes from the flow between httpd_t
and log_t, and the flow between log_t and fixed_device_t. He/she can then locate the
problematical policy statements (9) and (10), and readjust the configuration of audit
program to delete these two statements from the policy file. After above conflict resolution
steps, he/she can repeat the same security query of (8) by the SEAnalyzer again. The new
result shown in Figure 8 indicates that there is no token flown into the end place, i.e. no
security violation exists, so the security goal of (7) is verified.

Fig. 8. A query result with no token flown in the end place

8 Related Work

SLAT [8][9] and PAL [10], like ours, are tools that come with a security goal/query
language. A SLAT goal is like a kind of regular expression that specifies the expected
form of information-flow paths between two specified security contexts. For example,
if there is a security goal

402 Y.-M. Chen and Y.-W. Kao

“For each information-flow which starts from user_t and flows to
fixed_disk_device_t has to pass through fsadm_t”

(11)

Then the security goal of SLAT will be written as:

[t=user_t, TRUE+; t=fsadm_t, TRUE+;]
t=fixed_disk_device_t;

The first “+” inside the goal means that information flow starting from user_t can
traverse many other types and then flows to fsadm_t. The second “+” has the similar
meaning. After the goal is specified by user in positive representation, SLAT
improperly converts it to the negative representation as:

!(t=user_t & E[t !=fsadm_t t= fixed_disk_device_t &
EF (k=TRUE & t= fixed_disk_device_t)])

This negative representation means that the information flow which starts from
user_t, flows through fsadm_t, and flows to fixed_disk_device_t is the illegal
information flow. However, if the administrator consider that the information flow
which starts from user_t, pass trough fsadm_t, and flows to fixed_disk_device_t is the
illegal one, then SLAT is unable to come out the right verification. PAL, unlike SLAT,
has to transform the security goal to a security query program. For example, for the
same security goal (12), the query of PAL is:

init(fdisk_automaton, [user_t, R, U]).
trans(fdisk_automaton,[T0,R0,U0],(Class,Perm),[T1,R1,U1],[neq(T1,fsadm_t)]).
trans(fdisk_automaton,[T0,R0,U0],(Class,Perm),[fixed_disk_device_t,R1,U1], []).
final(fdisk_automaton, [fixed_disk_device_t,_R,_U], []).

Table 3. The different goal/query forms among SLAT, PAL and SEAnalyzser

Analysis tools Security goal = (12)
Illegal information flow=”information flow
that starts from user_t and flows to
fixed_disk_device_t but doesn’t pass through
fsadm_t”

Characters count
(including space)

SLAT [t=user_t, TRUE+; t=fsadm_t, TRUE+;]
t=fixed_disk_device_t;

60

PAL init(fdisk_automaton, [user_t, R, U]).
trans(fdisk_automaton,[T0,R0,U0],(Class,Per
m),[T1,R1,U1],[neq(T1,fsadm_t)]).
trans(fdisk_automaton,[T0,R0,U0],(Class,Per
m),[fixed_disk_device_t,R1,U1], []).
final(fdisk_automaton,
[fixed_disk_device_t,_R,_U], []).

249

SEAnalyzser user_t:(ALL,+!(fsadm_t)):fixed_disk_device_t 45

 Information Flow Query and Verification for Security Policy of SELinux 403

Note that there is a neq operator in the second line of above query. The above
program means that administrator wants to “find all information-flow which starts from
user_t and flow to fixed_disk_device_t without passing through fsadm_t”. The
disadvantage of PAL is that its query is much more complicated than SLAT’s and ours.
It looks more like a small program than a simple query.. In addition, the analysis engine
behind PAL and ours are very different. PAL use the logic program to deduce the
results, while ours uses the CPN to perform the analysis. The graphic property of CPN
graph and the data type design in the token flown from place to place can give users
more useful information in the course of query formulation and security analysis.
Table 3 compares the different goal/query forms among SLAT, PAL and SEAnalyzser.

9 Conclusion

This paper presents a CPN approach to analyze the information flow in the policy file
of SELinux. All of the power of SELinux depends on a set of well defined access
control policies. Unfortunately, the large number of policy statements within the
SELinux example security policy file and the complex relationships among these
statements make the verification of security policy correctness for SELinux difficult,
thus constrains the wide-spread use of SELinux. In this paper, we propose a CPN
approach to analyze the security policy of SELinux. The use of a well established CPN
model enables the administrators to formally model a security query. In addition, the
graphic property of CPN model allows the administrators to easily use and comprehend
the analysis results. Therefore, in comparison with alternative approaches, such as
SLAT and PAL, our approach has the advantages of intuitive use and powerful analysis
and verification capabilities. Our contribution in this paper includes: (1) propose a
model to transform the allow-rule police statement to Policy CPN Diagram, (2) propose
a intuitive and powerful query language to express the information flow that the
administrators may concern, and (3) propose a method to combine the Policy CPN
Diagram of security policy file and Query CPN Diagram of user query in respective as
an Combined CPN Diagram to let our CPN engine to perform analysis automatically.

Currently, we only analyze allow rules. We assume that the SELinux types don’t
change in the operation. However, the types do change in the real world with type
transition rules .The address of other rules will be the direction of our future research.
Moreover, we only consider about one query a time. The research of multi-query
analysis and multi-query conflict resolution is also the interesting future research.

References

1. Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff
Turner, John F. Farrell., The Inevitability of Failure: The Flawed Assumption of Security in
Modern Computing Environments. Proceedings of the 21st National Information Systems
Security Conference (1998) 303-314.

2. NSA SELinux, http://www.nsa.gov/selinux/

404 Y.-M. Chen and Y.-W. Kao

3. TCSEC, http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
4. P.A. Loscocco, and S.D. Smalley, Meeting critical security objectives with Security-

Enhanced Linux. In proceedings of the 2001 Ottawa Linux Symposium (2001)
5. M. Archer, E. Leonard and M Pradella, Towards a Methodology and tool for the Analysis of

Security-Enhanced Linux Security Policies. NRL Memorandum Report NRL/MR/5540-
02-8629 (2002)

6. T. Jaeger, R. Sailer, and X. Zhang, Analyzing integrity protection in the SELinux example
policy. In Proc. USENIX Security Symposium (2003) 59-74

7. T. Jaeger, R. Sailer, and X. Zhang, Resolving Constraint Conflicts. Proceedings of the 2004
ACM Symposium on Access Control Models and Technologies. (2004)

8. J.D. Guttman, A.L. Herzog, and J.D. Ramsdell, Information Flow in Operating Systems:
Eager Formal Methods. Workshop on Issues in the Theory of Security (WITS'03) (2003)

9. J.D. Guttman, A.L. Herzog, and J.D. Ramsdell, SLAT: Information Flow Analysis in
Security Enhanced Linux. Included in the SLAT distribution, available from
http://www.nsa.gov/SELinux (2005)

10. B. Sarna-Starosta and S.D. Stoller, Policy Analysis for security-Enhanced Linux. Workshop
on Issues in the Theory of Security (WITS) (2004)

11. G. Zanin and L.V. Mancini, Towards a Formal Model for Security Policies Specification
and Validation in the SELinux System. In the Proceeding of SACMAT’04, Yorktown
Heights, New York, USA 136-145

12. Kurt Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use”.
Vol. 1 Basic Concepts. In EATCS Monographs on Theoretical Computer Science,
Spring-Verlag (1992) 1-234

13. P.A. Loscocco, and S.D. Smalley, Integrating Flexible Support for Security Policies into the
Linux Operating System. USENIX Annual Technical Conference (2001)

14. Bill Mccarty, SELinux NSA’s Open Source Security Enhanced Linux. ISBN: 0-596-00716-7,
256 pages, published by O'Reilly

15. Tony Stubblebine, Regular Expression Pocket Reference. ISBN: 0-596-00415-X, 112
pages, published by O'Reilly (2003)

16. Gutnik, G. and Kaminka, G.A., Representing Conversations for Scalable Overhearing. JAIR
Volume 25 (2006) 349-387

The Complexity of Discretionary Access Control

Stephen Dranger, Robert H. Sloan�, and Jon A. Solworth

Dept. of Computer Science
University of Illinois at Chicago

stdrange@alumni.uchicago.edu, {sloan, solworth}@uic.edu

Abstract. A recent paper presented an access control scheme for dis-
cretionary access controls with a decidable safety problem. This paper
deals with the complexity analysis of that access control, and finds it to
be, in its worst cases, PSPACE-complete, but polynomial time for prac-
tical cases. The PSPACE-hardness reduction uses the theory of succinct
problems in a more general manner than circuit representation.

1 Introduction

In a computer system, access controls restrict subjects (users and/or processes)
to performing only those operations on objects (e.g., files) for which they are
authorized. For each such operation, the access controls either allow or disallow
that operation to be performed. In Discretionary Access Controls (DACs), each
object has an owner who exercises primary control over the object. DACs are
oldest and most widely used class of access controls, the access controls for both
Windows and UNIX are DAC. The Unix DAC, for example, has the well known
three primitive permissions read, write, and execute.

In the late 1970s, Harrison, Ruzzo, and Ullman (HRU) introduced a seemingly
very simple general-purpose language for Discretionary Access Control (DAC).
In spite of the simplicity of the HRU language, a safety property with parameters
a specific permission p, subject s, and object o:

“Always s does not have permission p for o” (1)

is undecidable [3].
Recently Solworth and Sloan gave a group-based mechanism for designing

DACs for which the safety problem (Equation 1) is decidable [10], and showed
that that mechanism is expressive enough to construct any particular DAC from
a taxonomy of DACs given by Osborne et al. (OSM) [8].

That group-based access control scheme was the first general access control
model proved both to have a decidable safety property and to be capable of
implementing the full range of DAC models. From HRU’s work in the 1970s
though the early 2000s, general access control models were published that have
both decidable (but relatively weak) and undecidable (but more expressive) vari-
ants. This includes HRU, Sandhu’s 1992 Typed Access Model (TAM) [9], and
� Partially supported by NSF grant No. CCF-0431059.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 405–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

406 S. Dranger, R.H. Sloan, and J.A. Solworth

Koch et al.’s 2002 graph-based model [5,4]. In each of these cases, decidability is
obtained by requiring a type of monotonicity: an operation can add or remove
privileges but not both. Thus, for example, changing a user’s group membership
is not permitted in the decidable version of those access control schemes, since
changing groups typically both adds and removes privileges.

In this paper we consider the precise complexity of the safety problem in the
Solworth and Sloan access control scheme. We show that for the implementation
of any DAC in Osborne et al.’s taxonomy, the safety problem can be decided
in polynomial time, and that for the mechanism in its full generality, the safety
problem is PSPACE complete. The proof of PSPACE hardness may have some
interest in its own right. As we mention very briefly in Section 6, it generalizes
the theory of succinct graph problems [2].

In the next section we quickly sketch the group-based access control model
of [10] (full details are given in that paper). Section 3 describes the sliding marker
net, a new marked graph model, which is the appropriate abstraction of the key
part of the group-based access control system. Section 4 gives the polynomial-
time result, and Section 5 gives the PSPACE-completeness result. We conclude
in Section 6.

2 Review of the Access Control Scheme

Solworth and Sloan’s group-based access control model is a general purpose
scheme that allows one to describe a wide variety of particular access control
systems. It corresponds to what they called “Layer 1” [10], and to what Li
and Tripunitara [6] call an access control scheme. An access control scheme has
a set of states and family of transition functions, and possible permissions. A
particular access control system specifies a particular transition function, and
the specific permissions, and typically narrows the set of states as well.

In all particular access control systems in the Solworth-Sloan scheme, pro-
cesses derive authority to perform operations from the user on whose behalf
they execute. Every object—or entity that can be accessed by a process—has a
label that (indirectly) defines the privilege (also called permission or right) that
various users have to perform operations on the object. (A file is the typical
example of an object.) Objects are disjoint from users.

In defining a particular system, a fixed constant number of privileges is chosen
(e.g., read, write, and execute). Privileges map labels to groups of users; the
mapping is fixed when the label is created, although the membership of the
group is not fixed. Protection is at the granularity of labels.

The group mechanism is the novel part of the scheme. A group set is a collec-
tion of one or more groups ; a group is a set of users.1 Every group set has a set
of users, a set of group tags, and a set of pairs, 〈u, t〉 where u is a user ID and t
is a group tag, which determine group membership.
1 What we describe in this section are “native groups and group sets” in [10]; to

implement a particular DAC policy one typically uses more than one of these native
groups to implement one group in the specified policy.

The Complexity of Discretionary Access Control 407

2.1 Formal Description of Solworth-Sloan Scheme

In this subsection, for completeness, we give a fairly detailed description of the
relevant parts of the Solworth-Sloan access control scheme. However, the reader
can probably follow the main points of this paper without reading these details.

Formally, in the Solworth-Sloan scheme, every state (in any possible system)
is a tuple with the following (many) components:

– The set U of current users
– The set O of current objects
– The set L of current labels of objects
– A map
 : O → L giving the label of every object
– The set GS of current group sets
– The set G of current groups
– The set of privileges, and for each privilege, a map p : L → G telling which

group of users has that privilege
– A map gs : G→ GS that determines the group set of each group
– The set T G of current group tags, and a map f : T G → GS that gives the

group set of each group tag.
– The set GL ⊂ U × T G of all user–group tag pairs. Each ordered pair 〈u, t〉

can be thought of as a “group label” on a notional group object.
Each user has at most one group tag for each group set at any time; that
is, if both 〈u, t〉, 〈u, t′〉 ∈ GL then f(t) �= f(t′). The current set of users
of a given group set is exactly the set of users that have a an group tag
associated with the group set; that is, the users of groups set gs are exactly
{u : ∃t : f(t) = gs and 〈u, t〉 ∈ GL}.

– A relation r ⊂: T G × G relating group tags to groups. User u is a member
of group g iff there is a t ∈ T G such that 〈u, t〉 ∈ GL and r(t, g).
We require that group tags give membership only in groups in the tags group
set; that is, that if r(t, g), we have f(t) = gs(g).

– A set of triples rules ⊂ T G×T G×G. Each triple 〈t, t′, g〉 gives a group label
relabel rule of the form Relabel(t, t′) = g , which means that any member of
group g can, for any u change group label 〈u, t〉 to 〈u, t′〉.
A relabel rule must be inside of a single group set; that is, if 〈t, t′, g〉 ∈ rules,
then f(t) = f(t′). However, we do not require that the group administering
the relabel be in the group set; that is, we do not require gs(g) = f(t).

– The current set N ⊂ T G of new user group tags. When a new user un is
added to the system, for each t ∈ N a new group label 〈un, t〉 is created.

2.2 Key Points About Groups and Group Sets

In this paper, we are not concerned with any state transitions that add new
groups or group sets to a system. We are concerned exclusively with those tran-
sitions that change the membership of existing groups. There are two types of
transitions that change group membership: the addition of new users, and the
application of group tag relabel rules to change the user–group tag pairs. These
transition rules are the same in any system using the Solworth-Sloan access

408 S. Dranger, R.H. Sloan, and J.A. Solworth

control scheme—what varies from system to system are the groups and group
sets that can be created. In obtaining the hardness results in this paper, we
assume that arbitrary groups and groups sets can be created.

Roughly speaking (see the previous subsection for more details), every system
is comprised of a set of users U , a set of objects O, a set of labels L, a mapping

 : O → L, and group sets, groups, and permissions. We describe group sets in
detail shortly, but each group set has some (unique) groups, and the set of all
groups in all groups sets is denoted G. Now for each primitive privilege (e.g.,
read, write) we have a map p : L → G specifying the group of users that have
that permission for objects with a particular label.

Each group set includes the following components:

1. Its set of groups. Every group belongs to exactly one group set.
2. Its set of group tags. Every group tag is associated with exactly one group

set.
3. The current group tag–user pairs.
4. An optional new user tag.
5. Its set of users.2
6. The relation of the group set’s group tags to its groups.
7. Group tag relabel rules.

All components are finite, and all components except the group tag–user pairing
are specified and fixed for the life of the group set when the group set is created.
An initial group tag–user pairing is specified when the group set is created, but
it evolves over time.

Each user in the group set has exactly one group tag at any time. The group-
tag–user pairs are referred to as group labels, and are thought of as labels on
notional objects. Thus, if group tag G is associated with groups g1 and g3, and
user u has group tag G in group set G, then (at that time) u is a member
of groups g1 and g3, and not a member of any other group of G (From this
information alone, we cannot tell which groups of other group sets u is in.)

The definition of the group set tells which users are initially in the group set,
and the group tag for each user. If G has new user tag Gn, then all users added
to the system are added to group set G with tag Gn.

For any two group tags G1, G2 in group set gs, a group relabel permission
Relabel(G1, G2) = g may be defined at gs’s creation that enables any member
of group g to change the group tag of any user u in G from G1 to G2. Group g
may be either in gs or an existing group in another group set.

2.3 Safety Problem in This Setting

In this setting, the safety problem of Equation 1 becomes, “Can user s become
a member of group g = p(
(o))?”, where l =
(o) is the label of object o and p(l)
is the group having permission p for label l. This in turn becomes the question,
“for each group tag G associated with group g in group set gs, could user u be
paired with tag G?”
2 Formally, the set of users is induced by the set of group tag–user pairs.

The Complexity of Discretionary Access Control 409

3 Abstract Model of Problem

To model the safety problem for this access control system, we introduce the
sliding marker net model. Group tags form the vertices of a digraph, with the
edges corresponding to the existence of a relabel rule. Markers on the vertices
represent users. Thus k markers in a vertex representing group tag G correspond
to k users having a user–group-tag pair with G. Each edge is governed by a
set of vertices—corresponding to the tags for the group that has the relabel
permission for that edge. A marker can be moved across an edge only if at least
one vertex in the set of vertices governing that edge contains a marker. A set of
new marker vertices that can have markers added to them models the new user
tag mechanism for adding new users. More formally:

Definition 1. A sliding marker net is a 5-tuple, (V, E, A, M0, N), where V
and E are the vertices and edges of a directed graph, A is a function A : E → 2V ,
mapping each edge to a vertex set, M0 : V → N is the initial marking, and
N ⊆ V . (N represents the group of new users.) We say vertex set A(e) governs
edge e (if |A(e)| = 1 we may say a vertex governs an edge). The underlying
digraph is called the sliding marker graph.

The marking of a sliding marker net is its state. For marking M we say that
vertex v is nonempty if M(v) > 0 and empty if M(v) = 0.

Given a marking M of a sliding marker net, we can obtain a new marking M ′,
or make a move, in two ways. One is by “sliding a marker” over edge (u, v) ∈ E.
This move requires that M(u) > 0 and that there is a w ∈ A(u, v) s.t. M(w) > 0
(i.e., A(u, v) has at least one nonempty vertex in marking M), and decreases
M(u) by 1 and increases M(v) by 1. The other kind of move is to add 1 to M(v)
for every v ∈ N , which models adding new users.

The Vertex set nonemptiness problem for sliding marker nets is as fol-
lows: Given a sliding marker net (V, E, A, M0, N) and a vertex set S, is there
a sequence of moves that yields a new marking in which at least one v ∈ S is
nonempty? This has the same complexity as Vertex nonemptiness (ignoring
a multiplicative factor of at most |V |), whether a particular v ∈ V can be made
nonempty, and we work with this slightly simpler problem. To the best of our
knowledge, sliding marker net Vertex nonemptiness is a novel graph problem.

We are in fact analyzing the complexity of a slightly different problem than
the analog of the stated safety problem (1). The sliding marker net analog of the
safety problem in this context is, “Can a specific, named marker reach vertex
v?” However, this problem and Vertex nonemptiness are both PSPACE-
complete. A slightly messier version of Theorem 1’s construction would show
this problem is in PSPACE as well. In the other direction, there is a simple
reduction of Vertex nonemptiness to the specific-marker version: Given a
sliding marker net and vertex v∗, add two new vertices v1 and v2 with an edge
(v1, v2), and add the specific named marker to v1 in the initial marking. Finally
set A((v1, v2)) = {v∗}. The Vertex nonemptiness instance has a solution iff
the named marker can reach v∗.

410 S. Dranger, R.H. Sloan, and J.A. Solworth

4 The OSM DACs Can Be Decided in Polynomial Time

The group mechanism of Sloan and Solworth can be used to implement some in-
tricate access control policies that go beyond what are conventionally considered
DAC systems. To obtain the PSPACE hardness result we show in Section 5, we
construct an artificial access control system that certainly goes beyond a normal
reasonable DAC system. In this section we briefly argue that the safety question
for conventional DAC systems can be answered in polynomial time.

The result needed for sliding marker nets is that Vertex nonemptiness
can be decided quickly for an sliding marker net with a simple structure. We say
vertices U ⊂ V of sliding marker net (V, E, A, M0, N) form an isolated component
iff both (1) there is no directed edge between U and Ū in the underlying graph
and (2) every edge e within U has A(e) ⊆ U .

Theorem 1. If the underlying digraph of sliding marker net (V, E, A, M0, N)
consists of isolated components where each component has only a constant num-
ber of vertices, then Vertex nonemptiness can be solved in linear time.

Proof. We need consider only the component with the vertex in question; let
its size be c. To decide its nonemptiness, first, add c markers to every vertex
in the set N . If any vertex in the component has more than c markers, reduce
its number of markers to c. Then exhaustively construct the portion of the
state space obtained only by sliding markers in the component. The required
bookkeeping can be done in time linear in the size of the sliding marker net.

Now OSM gave a taxonomy intended to include all reasonable DAC systems.
In all of them, the owner of an object can grant or revoke ordinary permissions
(e.g., read, write, and execute) to the object. The various OSM DACs allow the
following variations: (1) Whether or not a owner of an object can give it away
(change ownership). (2) Whether the owner of an object can delegate the right
to grant ordinary permissions to other users. The case where the owner can
delegate is called liberal DAC, and it has a number of variations: (a) who can
revoke ordinary permissions, and (b) whether the delegation propagates. OSM
propose no propagation (“one-level grant”), that an owner can make either a
grant that cannot be propagated, or a grant that can be propagated once (“two-
level grant”), and arbitrary propagation (multi-level grant).

Solworth and Sloan [10] sketched the implementation of any of these DAC
mechanisms on top of their group mechanism. Objects are protected at the
granularity of labels. For each label l and each ordinary permission, two group
sets are used, one for the ordinary permission and one for the administration. The
ordinary permission group set has two group tags, and the administrative group
set has only two tags in all cases except for liberal DAC with 2-level grant, when
it has three tags. In all cases, all group tag relabel permissions within those two
group sets are held by members of the administrative group set. The group tags
correspond to vertices. Relabeling of a users group tag occurs only among group
tags inside one group set. The sets A((u, v)) correspond to the users allowed to
relabel an arbitrary user’s group tag from u to v. Thus the construction gives

The Complexity of Discretionary Access Control 411

isolated components of 4 vertices for each OSM DAC except for 5 vertices for
liberal DAC with two-level grant.

Thus we have sketched the argument for:

Corollary 1. The safety problem can be decided in polynomial time for all the
OSM DACs.

Remark: The extension to OSM to allow n-level grants for any constant n is also
decidable.

5 General Problem is PSPACE Complete

In this section we will show that sliding marker net Vertex nonemptiness is
PSPACE complete.

5.1 Vertex Nonemptiness Is in PSPACE

Theorem 2. Sliding marker net Vertex nonemptiness ∈ PSPACE.

Proof. We argue Vertex nonemptiness is in PSPACE = NPSPACE. Consider
net (V, E, A, M0, N). Vertices having more than one, as opposed to exactly one,
marker affect the emptiness/nonemptiness of vertices in reachable markings only
because some of those “extra” markers could later move, creating additional
nonempty vertices. Thus we can treat markings with more than |V | markers in
a vertex as if they had only |V | in that vertex. Hence we may modify M0 to a
marking M ′

0 by first adding |V | markers to every vertex in N (“new users”), and
then reducing the marking of any vertex u with more than |V | markers to |V |.

Thus we have at most |V | 2 markers. So the total number of distinct markings is
less than the number of ways we can fit |V | 2 indistinguishable markers into |V |+1
containers, or

(|V |2+|V |
|V |2

)
< (|V |2 + |V |)|V |. (We add another container to repre-

sent the markers that are not on the sliding marker net yet.) To solve the problem
nondeterministically, we simply choose a legal move, increment a counter, and
repeat. This requires O

(
|V | log |V |+ log

((
|V |2 + |V |

)|V |)) = O(|V | log |V |)
space: O(|V | log |V |) to keep track of where the markers are (i.e., we need to store
|V | + 1 integers in the range of 0 to |V | 2) and O

(
log
((
|V |2+|V |

)|V |)) to keep
to keep track of the binary counter.

5.2 Vertex Nonemptiness Is PSPACE Hard

Our reduction for PSPACE hardness is loosely inspired by succinct representa-
tions of graphs [2,7]. In that theory, a graph is represented by a (sometimes)
exponentially smaller circuit describing the graph. Here, the state space of the
sliding marker net is exponentially bigger than the sliding marker net itself.

Theorem 3. Sliding marker net Vertex nonemptiness is PSPACE-hard.

We will reduce Quantified Boolean Formula (QBF) to Vertex non-
emptiness. The reduction is rather involved; we give it here, and then sketch
the argument for its correctness.

412 S. Dranger, R.H. Sloan, and J.A. Solworth

Reduction

Throughout let n be the number of variables in the given QBF

ψ = Q1x1Q2x2 · · ·Qnxnφ(x1, . . . , xn) (2)

where each Qi is either ∃ or ∀, and φ is some 3CNF formula.
We implicitly use but do not construct a “QBF graph” of ψ that has a path

from a designated source to a designated sink iff ψ is satisfiable. This graph is
adopted from [7]; here we construct a digraph. We construct a sliding marker
net such that it has designated vertex that can become nonempty iff the QBF
graph has a source to sink path. We will rely on:

Proposition 1 ([7]). A QBF is satisfiable if and only if its QBF graph has a
path from s to t.

QBF graph. The QBF graph is a digraph with source s and sink t; every vertex
is either “s-side” or “t-side.” Each vertex corresponds to a partial assignment
to the n Boolean variables. A vertex’s level m, for 0 ≤ m ≤ n, tells how many
variables are set. The only level 0 vertices are s and t. For 1 ≤ m ≤ n, in a level
m vertex, the first m variables are set. We give each vertex a 2n + 1 bit label:
First, n bits for the level m in (padded) unary; then 1 bit for s or t; then m bits
for the setting of the first m variables; and lastly (n−m) 0s if on the s side, or
1s if on the t side.

The edges are (roughly) as follows. For m < n, each s-side level (m − 1)
vertex has one or two level m successors on the s-side: two successors setting
xm to each of 0 and 1 if Qm is ∃, and one successor setting xm = 0 if Qm is ∀.
For each (complete) variable assignment a that satisfies φ, there is an edge from
the level n s-side to the level n t-side vertex with assignment a. For 0 < m ≤ n,
the edges out of each t-side vertex with level m are as follows. If Qm = ∃ or the
assignment to xm = 1, then the vertex has a level m − 1 t-side successor with
the same assignment to the first m− 1 variables and with xm = 1 (though the
level m− 1 means that this is not considered part of the partial assignment). If
Qm = ∀ and xm = 0, then the vertex has a level m s-side successor with the
same assignment except xm = 1.

We now make one modification, so that there are no edges where both the
level and the truth setting changes. For existential variables on the s side, for
the successor that corresponds to setting the variable to 1, we use two vertices—
the immediate successor has a label with the level not increased and the truth
setting changed to 1, and that vertex has one successor with the level increased.
Similarly, for the t side we decrease the level, then change the truth setting to 0
when we unset an existential variable. See Figure 1.

Sliding marker net construction. We do not construct the QBF graph. We
do construct a sliding marker net of size polynomial in n that has certain special
markings corresponding to vertices of ψ’s QBF graph. Our construction will
allow it to move from one special marking to another if and only if there is a

The Complexity of Discretionary Access Control 413

Levels (0)(1)(2)(3)(3)(2)(1)(0)

s/t
side

s

t

000

000

100

000

010

100

110

000

001

011

010

100

101

110

111

000

001

110

011

100

101

010

111

001

111

011

101

011

111

111

000 100 110 111 111 000100110

Fig. 1. QBF graph for ∃x1∀x2∃x3φ. The vertex labels shown are the values of xi,
written x1x2x3. (Full vertex label doesn’t fit in this diagram.) Vertex levels are shown
above in both unary and decimal. The line through the center of the graph divides the
s and t sides. The dotted horizontal lines through that line represent edges that exist
exactly when φ is true for that particular value of x1x2x3. Dashed vertices and dashed
edges show the minor modification in our construction. Notice that unset variables are
always 0 on the s side and 1 on the t side.

corresponding edge in the QBF graph. From there, we will show this construction
therefore allows a designated vertex v∗ to be marked if and only if there is an
s-to-t path in the QBF graph.

The sliding marker net has two isolated vertices, empty (with no marker) and
full (with one marker). We lay out the remaining vertices in rows within 3n + 2
numbered columns: first n level columns, then one s/t column, then n truth
(assignment) columns, then n ON/OFF columns, and lastly one final column.
We denote the ith column by Ci. All columns except the s/t column have 3n+2
vertices. (The number of vertices in the s/t column depends on the number of
clauses in the formula.) The initial marking puts one marker in each column, in
the top-most vertex. Each column has both directed edges between every pair of
(vertically) adjacent vertices, except the final column which has only the down
directed edge. There are no other edges. We refer to edges from vertex m to

414 S. Dranger, R.H. Sloan, and J.A. Solworth

m + 1 in a column as down (side) edges, and edges from vertex m + 1 to m as
up (side) edges. See Figure 2 for the layout of the sliding marker graph.

Level Columns (n) Truth Columns (n)

number of
clauses

Final Column

3n+2

ON/OFF columns (n)

1

1
n

n

s/t column

3n+2

3n+2

0 0

1 1 empty

full

v*

0 0 0 0

1 1 1

1

OFF

ON ON

OFF0

1

Fig. 2. Overall layout of constructed sliding marker graph for n-variable formula

The top-most and bottom-most rows play a special role. We refer to the top
row of the ON/OFF columns as the OFF row and the bottom row as the ON
row. For the other columns we refer to the top row as the 0 row and the bottom
row as the 1 row; we also speak of ON, OFF, 0, and 1 vertices. (It may help
to remember that QBF graph we are modeling starts at 0 and ends at 1.) The
notation 0m (respectively 1m) stands for the top (respectively bottom) vertex
of column Cm; 0/1m denotes the vertex set{0m, 1m}. Somewhat inconsistently,
OFFi (respectively ONi) stands for the OFF (respectively ON) vertex of the ith
ON/OFF column, which is column C2n+1+i. When clear from context we also
use the term for a vertex for the singleton set containing that vertex.

A marking of this sliding marker net is a QBF marking if every marker is in
the top or a bottom row of its column. A QBF marking corresponds to a QBF
vertex whose label is obtained from the bits of the level, s/t, and truth columns
of the sliding marker net. See Figure 3 for an example of a QBF marking.

We give some more notation; then describe the governing sets for the edges.
For simplicity’s sake, we call an edge (in either direction) between rows r and r+1
the “rth edge.” (Row 1 is the top row.) Besides vertex sets mentioned already, we
need n−1 additional OFF vertex sets: {OFF1, OFF2}, . . . , {OFF1, . . . , OFFn}.
We refer to these vertex sets as OFF1...2, . . . , OFF1...n.

There is a correspondence between the rth edge of an arbitrary column (ex-
cluding the final column) and the rth column for 1 ≤ r ≤ 3n + 1. First, for any

The Complexity of Discretionary Access Control 415

s/t
truthlevel columns

column

columns

000 000

100

000

010

100

110

000 100 110

1 1 1 1

0

1

0 0 0 0 0 0

1 1
empty full

OFF3OFF2OFF1

ON1 ON3ON2

Fig. 3. Example of a marking of the sliding marker net that corresponds to a vertex
in the QBF graph. In this figure, the shaded circles in the sliding marker net represent
vertices with markers on them and the shaded circle in the QBF graph represents the
vertex that the sliding marker net marking corresponds to.

column Cm, we can speak of the first n edges of column Cm as being the “level
edges” of Cm. Similarly, edge n+1 is the “s/t edge”, and then we have n “truth”
edges followed by n ON/OFF edges. Second, if the rth edge of column Cm is
not governed by empty, full, or some OFF group, then it must be governed by a
vertex set contained in the corresponding column Cr.

That is, for any column Cm, if the rth edge of Cm for 1 ≤ r ≤ 3n + 1 is not
governed by one of empty, full, or some OFF group, then the rth edge of column
Cm (between rows r and r + 1) must be governed by one of the vertex sets 0r,
1r, 0/1r of column r. Thus we often use the shorthand of saying that edge e has
A(e) = 0 (or 1 or 0/1 or ON) without specifying the column for the set A(e),
because A(e)’s column is determined by e’s row.

We now specify the governing vertex set of each edge. First, every ON/OFF
edge is governed by ON unless otherwise stated.

The level columns. Our goal is that a marking with a marker in 1i for i ≤ m and
in 0i in the remaining n −m level columns should correspond to a QBF graph
vertex with level m.

Level column Cm, down edges: The first m − 1 level edges are governed by
1; the mth by full, and the remaining n −m level edges by 0. That is, the rth
down edge in column Cm is governed by the 1 vertex of column Cr for r < m,
and by the 0 vertex of column Cr for r > m. This forces the level columns to
move their markers from the 0 to the 1 row in order—Cm can move its marker
down the first n rows from its 0 vertex only if C1, . . . , Cm−1 all have markers in
their 1 vertices, and Cm+1, . . . , Cn all have markers in their 0 vertices.

The s/t down edge is governed by 0 (s), insuring that we can move down this
edge only there is a marker in the s/t column corresponding to the s side of the
QBF graph.

The n truth edges depend on Qm. If Qm = ∀, the xth truth edge is governed
by the 0/1 vertex set 1 ≤ x ≤ m−1, and by the 0 vertex set for m ≤ x ≤ n. This

416 S. Dranger, R.H. Sloan, and J.A. Solworth

corresponds to allowing either setting of the first m − 1 Boolean variables and
requiring the remaining variables to be 0 in the universal case. The case Qm = ∃
is the same except that the mth truth edge is governed by the 0/1 rather than
the 0 vertex set, because for existential quantifiers, m Boolean variables would
have been set already.

Level column Cm, up edges: These are the same as the down edges with two
exceptions. First, the s/t edge is governed by 1 (t), corresponding to being on the
t side of the QBF graph for decreasing of level. Second, those truth edges that
must be governed by the 0 vertex for the down edges must instead be governed
by the 1 the vertex. This is because instead of making sure variables have been
set, we must make sure variables have been unset.

The s/t column. The s/t column is special in this construction: it has a different
number of vertices (and edges). This column is used to control the edges between
the s and t sides. There is a path from s to t if the Boolean formula φ is true for
the particular variables; edges from t back to s are needed to handle universally
quantified variables.

The s/t column, Cn+1, starts with 3n + 2 vertices with 3n + 1 edges just
like the level columns. The s/t column’s down level edges are governed by 1,
since we must be at level n to evaluate the Boolean formula. The s/t down edge
is governed by full. The truth edges are governed by the 0/1 vertex set. The
governing vertex sets for the up edges of this s/t column are the same as for the
down direction except that edges governed by ON on the down side are governed
by OFF1...n on the up side.

Going downwards from vertex 3n+2, this column should “compute” whether
φ is true on the truth setting encoded in the truth columns in the current marking
(i.e., Boolean xi is 1 (respectively 0) if the 1 (respectively 0) vertex of the ith
truth column is marked). We add one additional vertex to the column for each
clause of φ. To govern the down edge for each of these these additional vertices,
we use a vertex set of three vertices (from the truth columns) for the clause.
If the clause contains xi (respectively x̄i), then the vertex set contains truth
column i’s 1 (respectively 0) vertex.

The corresponding up edges are all governed by the full.

The truth columns Column Cn+1+m is the mth of the n truth columns.
Truth column m, down edges: The first m− 1 level edges are governed by 1.

Edge m is governed by 0m if Qm = ∃ and 1m if Qm = ∀. (If xm is existential,
our QBF graph sets xm = 1 immediately before incrementing the level to m.)
The remaining n−m level edges are governed by 0. The s/t edge is governed by
0/1 if Qm = ∃ and 1 if Qm = ∀.

The first m − 1 truth edges are governed by 0/1, and the mth by full. The
last n−m truth edges are governed by the 0/1 vertex set if Qm = ∃, and the 1
vertex if Qm = ∀.

If Qm = ∀, the mth ON/OFF edge is governed by OFFm.
Truth column m, up edges: The first m − 1 level edges are governed by 0/1;

the remaining level edges by 0. This is to allow xm to revert to false if a universal

The Complexity of Discretionary Access Control 417

xi for i < m needs to reset itself. The s/t edge is governed by 1 (t) to make sure
we are on the t side of the graph.

The truth edges are governed by 0/1 except that the mth truth edge is gov-
erned by full. The first m − 1 ON/OFF edges are all governed by OFF1...m−1.
(All the truth edges of the first truth column are governed by empty.)

ON/OFF columns. The n ON/OFF columns are designed to be ON/OFF
switches. Intuitively they are used to turn off the sliding marker net—put it
into a QBF marking not corresponding to an QBF graph vertex. This is used
when we have two QBF vertices u and v that differ in more than one area of
information, which happens when we need to test the second value of a univer-
sally quantified variable. The governing vertex sets are assigned so that we can
move ON/OFF switch m from ON to OFF only at level m.

ON/OFF column m up edges: We first give the rules for the up edges. The
first m level edges are governed by 1 and the remaining level edges by 0. This
ensures that we can move a marker down over these edges only at level m. The
mth level is the point in the graph where we must retest the xm with the other
Boolean value if Qm = ∀.

The s/t edge is governed by 1 (t), because we must be on the t side of the
graph. The first m− 1 truth edges are governed by 0/1; the mth truth edge by
0; the remaining n −m truth edges by 1. The mth ON/OFF edge is governed
by full.

ON/OFF column m down edges: If Qm = ∃, then empty is the governing
group for every edge of the mth ON/OFF column. Thus xm can never be turned
on after being turned off.

Otherwise (Qm = ∀), the level edges are the same as for the down edges of
this column, and the s/t edge is governed by 0 (s), because to turn back on,
we must be on the s side of the QBF graph. The first m − 1 truth edges are
governed by 0/1, the mth truth edge by 1, and the remaining n−m truth edges
by 0. The mth ON/OFF edge is governed by full.

The final column. The final column has 3n + 2 vertices; its bottom vertex the
special designated vertex v∗.

The final column’s first n edges are level edges governed by the 1 vertex, its
next n edges behave as a second set of level edges, governed by 0, its next n
edges behave as truth edges, governed by 1, and its last edge as an s/t edge
governed by t.

This ensures that the rest of the net first enters a marking with level n, and
then later enters a marking with level 0. Then we make sure that we have the
right Boolean values for the end and we are on the correct side.

Sketch of why reduction is correct

Let G(ψ) be the QBF graph of ψ of the form of Equation (2), and let SM be
the constructed sliding marker net. Then SM is of size O(n2 + |φ|), and can be
constructed in polynomial time.

418 S. Dranger, R.H. Sloan, and J.A. Solworth

By Proposition 1, ψ is satisfiable if and only if G(ψ) has an s to t path. Thus
we need to argue that a marker can reach the bottom vertex of the final row of
SM if and only G(ψ) has an s to t path.

A QBF marking is a QBF ON marking if all the markers in the ON/OFF
columns are in ON. The point of our construction is that each QBF ON marking
of the sliding marker net corresponds to a vertex of the QBF graph whose level,
s/t, and truth labels match the marking of the level, s/t, and truth-setting
columns of the sliding marker net. In this correspondence, the initial marking of
SM is a QBF ON marking that corresponds to the vertex s of G(ψ).

To show that an s to t path in G(ψ) implies that a marker can reach the
bottom vertex of the final column of SM , it suffices to show that if there is a
directed edge from vertex u to vertex v in G(ψ), then from a QBF ON marking
corresponding to the label of u, there is a series of legal moves to a QBF ON
marking corresponding to the label of v. In fact, this can be done without moving
any of the markers in the ON/OFF columns in all cases except when u is on the
t side and v is on the s side. In that case, then exactly one ON/OFF column has
to have its marker move from the ON to the OFF column and then back again,
as well as markers moving in at least one truth column, as SM passes through
one or more QBF markings.

Secondly, we have to show that for any QBF ON marking of SM that cor-
responds to the label of a vertex v that is in G(ψ), then for every QBF ON
marking reachable directly (without any intervening QBF ON marking) in SM ,
there is a corresponding successor of v in G(ψ).

The following technical lemma says that we can always restrict our attention
in SM to moves that move one marker from one end of a column all the way to
the other end, without any moves in other columns in between, and would be
used in a formal proof of both directions.

Lemma 1. If the constructed sliding marker net can go from QBF marking M1
to QBF marking M2, then it can do so with moves such that a marker always
moves from one top/bottom vertex to the opposite top/bottom vertex before any
other marker moves at all.

Proof. Given any QBF marking M and any two columns Cc and Cd, if the
marker in Cc moves, and stops at row x in between column Cc’s top and bottom
vertices, then the marker in column Cd cannot move from one to the other
top/bottom vertex because (exactly) one edge of column Cd is governed either
by a vertex set consisting of one or two top/bottom vertex vertices of column
Cc or by empty. Therefore, if the marker in column Cc moves, then Cd’s marker
cannot move until the marker in column Cc reaches a top/bottom vertex (and
thus sliding marker net reaches a QBF marking again).

If the marker in c begins to move, then the most any other column d can
do until c reaches a top/bottom vertex is to move only part of the way from
top/bottom vertex of its column to the other. Therefore, when c’s marker finally
reaches one top/bottom vertex of the column, the graph is not in a QBF marking;
however, the marker in column d could have reached the same vertex had it
waited until c “finished” its move.

The Complexity of Discretionary Access Control 419

6 Concluding Remarks

In this paper, we have determined the complexity of the safety problem for the
group-based access control system of [10]. For Osborne et al.’s exhaustive catalog
of DAC systems [8], it is polynomial time. In general, it is PSPACE-complete.

This in fact creates an important open problem for practical access control
systems, because there are numerous access control policies that have aspects of
discretionary access control, but are not purely discretionary. The group-based
mechanism appears to be powerful enough to implement any of the access control
policies discussed in the literature, discretionary, mandatory, or otherwise. In
considering any particular such policy, say, Chinese Wall [1], we have been able
to make some sort of particular argument similar to Section 4 that that policy’s
implementation gives a safety problem that can be decided in polynomial time.
However, we would like to find a characterization of some group structure that
could implement any of these more exotic access control policies in addition to
DAC policies, while still having a polynomial-time safety problem.

In the area of complexity theory, we think the time may be ripe to revisit the
area of succinct graph representations, taking a much broader view of represen-
tations, and, simultaneously, a view that is more tied to application areas. In
the original theory [2], a graph is represented by an exponentially smaller circuit
that recognizes the graph. Here “recognize” meant that the circuit returns 1 for
those binary numbers that encode an edge of the graph. In this paper we showed
an application from computer access controls where a group membership system
could represent, through its state space, an exponentially larger graph. Perhaps
similar results can be obtained for various structures used in contemporary ar-
tificial intelligence, such as Bayes nets (belief nets).

References

1. D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. In Proc. IEEE
Symp. Security and Privacy, pages 206–214, 1989.

2. Hana Galperin and Avi Wigderson. Succinct representations of graphs. Informa-
tion and Control, 56:183–198, 1983.

3. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in oper-
ating systems. Communications of the ACM (CACM), 19(8):461–471, 1976.

4. Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. Decidability of
safety in graph-based models for access control. In Proc. European Symp. Research
in Computer Security (ESORICS), pages 229–243. LNCS, Springer-Verlag, 2002.

5. Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. A graph-based
formalism for RBAC. ACM Transactions on Information and System Security
(TISSEC), 5(3):332–365, 2002.

6. Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. In Proc. of ACM Symposium on Access Control Models and Technologies
(SACMAT), 2004.

7. Antonio Lozano and José L. Balcazár. The complexity of graph problems for
succinctly represented graphs. In Proc. of Graph-Theoretic Concepts in Computer
Science, volume 441 of Lecture Notes in Computer Science, pages 277–285, 1990.

420 S. Dranger, R.H. Sloan, and J.A. Solworth

8. Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based ac-
cess control to enforce mandatory and discretionary access control policies. ACM
Transactions on Information and System Security (TISSEC), 3(2):85–106, 2000.

9. Ravi S. Sandhu. The typed access matrix model. In Proc. IEEE Symp. Security
and Privacy, pages 122–136, 1992.

10. Jon A. Solworth and Robert H. Sloan. A layered design of discretionary access
controls with decidable properties. In Proc. IEEE Symp. Security and Privacy,
pages 56–67, 2004.

H. Yoshiura et al. (Eds.): IWSEC 2006, LNCS 4266, pp. 421 – 436, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Traceroute Based IP Channel
for Sending Hidden Short Messages

Zouheir Trabelsi1, Hesham El-Sayed1, Lilia Frikha2, and Tamer Rabie1

1 United Arab Emirates University
College of Information Technology

PO Box 17555
Al Ain, United Arab Emirates

2 College of Telecommunications (SupCom)
The University of Tunisia

Cité Technologique des Communications
Route de Raoued Km 3, 5 – 2083 El Ghazala, Ariana, Tunisia

trabelsi@uaeu.ac.ae

Abstract. The paper proposes a novel IP channel for sending hidden short mes-
sages, based mainly on the use of the “traceroute” command and the IP header
Record route options. Instead of encrypting a hidden message or embedding it
into a multimedia object, as in traditional multimedia steganography, we proc-
ess the entire message and generate several IP packets with different types to
carry the secret message. Thereby we foil an eavesdropper who is primarily ap-
plying statistical tests to detect encrypted communication channels. We show
that our approach provides more protection against Steganalysis and sniffing at-
tacks. A friendly graphical tool has been implemented to demonstrate the pro-
posed secret IP channel.

Keywords: Covert channel, Hidden information, IP header Record route op-
tion, Steganalysis, Traceroute.

1 Introduction

Steganography is the technique of hidden communication. It relies on hiding covert
message in unsuspected multimedia data. It is generally used in secret communication
between acknowledge parties. It is a method of encryption that hides data among the
bits of a covert file, such as a graphic or an audio file. The technique replaces unused or
insignificant bits with the secret data. A covert channel is a mechanism that can be used
to communicate data across network or between processes within the system in a man-
ner that goes unnoticed [23]. An effective covert channel is the one that is undetectable
by the adversary and can provide high degree of privacy. The goal of the covert channel
is to communicate data from one host to another host in a way that receiving host can
detect the data but the eavesdropper won’t even get the hint that some secret data was
being communicated. Some features of the TCP/IP protocol suite can be used to send
covert messages as discussed in [6]. Encrypted or non-encrypted information can be

422 Z. Trabelsi et al.

encapsulated within otherwise normal TCP/IP packets. The TCP/IP header informa-
tion can also be modified to encode secret messages. There are some fields in the
packet headers that are not used by the current communication networks. These fields
can be used as message carries.

These covert channels are an immense cause of security concern because they can
be used to pass malicious messages. These messages could be in the form of computer
virus, spy programs, terrorist messages, etc. Therefore, detecting these covert chan-
nels is an important issue that needs to be addressed [10]. However, covert channels
can also be used to exchange hidden information, such as e-commerce transaction
data or governmental confidential information, so that a hacker or any one spying the
communication channel will not be able to detect that the captured packets carry hid-
den information. The sheer volume of Internet traffic provides a higher bandwidth
vehicle for covert communications which leads to a plethora of applications.

This paper proposes a novel IP channel for sending hidden short messages, based
mainly on the use of the “traceroute” command and the IP header Record route op-
tions. It will be demonstrated that the hidden message or information exchanged over
the secret IP channel is protected against Steganalysis and sniffing. That is, a hacker
or any one spying the communication will not notice the existing of hidden informa-
tion in the packets exchanged.

The rest of the paper is organized as follows. Section 2 discusses the related works
in the literature. Section 3 provides the necessary background information to under-
stand the principle of the proposed IP channel which is described in Section 4. Section
5 presents a mechanism to protect the proposed covert channel against Steganalysis
and sniffing. Section 6 discuses an example of how a hidden message is inserted in
the covert memory. Section 7 shows a comparison between the covert memories
available in several existing covert channels. Section 8 presents a friendly tool, im-
plemented to demonstrate the proposed covert channel. The tool provides the user
with a friendly interface to send and receive hidden messages. Finally, Section 9
provides the conclusion and future work.

2 Related Work

The concept of a covert channel was first introduced by Lampson [4] as a channel that
is used for information transmission, but that is not designed nor intended for com-
munication. Then, Girling [5] analyzes covert channels in a network environment. His
work focuses on local area networks (LANs) in which three obvious covert channels
(two storage channels and one timing channel) are identified. The first uses the bits
reserved for addresses, the second uses the bits reserved for the length and the third
uses the time difference between the packets. In [14], Wolf presents results applied to
LAN protocols. He highlights the relationship between covert storage channels and
protocol format, and the link between covert timing channels and protocol procedure
elements taking into account the frame layouts of the LAN protocols. Covert storage
channels utilize the reserved fields, padding fields and undefined fields of the frames.
In [22], Handel and Sanford take a broader perspective and focus on covert channels
within the general design of network communication protocols. They employ the OSI
(Open System Interconnection) network model as a basis for their development in
which they characterize system elements having potential to be used for data hiding.

 Traceroute Based IP Channel for Sending Hidden Short Messages 423

Covert channels are discussed more generally in a variety of papers. A generalized
survey of information-hiding techniques is described in “Information Hiding- A Sur-
vey”, [15]. Theoretical issues in information hiding are considered in [7] and [17]. In
[12], John McHugh provides a wealth of information on analyzing a system for covert
channels.

Many covert channels have been identified in the IP and TCP protocols [26], using
fields like: the IP identification field, the TCP initial sequence number field, the TCP
acknowledge sequence number field, windowing bits, and protocol identification field
([2, 3, 6]). These papers focused on finding places where covert data could potentially
be sent but did not work out the details of how to send it.

Kamran [2, 3] discussed also a covert channel based on the flags bits (URG, ACK,
PSH, RST, SYN, FIN) in the TCP header. This covert channel offers only few bits as
a covert memory per TCP packet. Techniques for detecting covert channels, as well as
possible places to hide data in the TCP stream, are discussed (the sequence numbers,
duplicate packets, TCP window size and the urgent pointer) in [24]. In [8], the idea of
using IP checksums for covert communication is discussed. Katzenbeisser and Petit-
colas [21] have also observed the potential for data hiding in the TCP/IP protocol
suite. Katzenbeisser and Petitcolas use the term Internet Steganography for this po-
tential scenario and indicate that the ongoing research work includes the embedding,
recovering and detecting information in TCP/IP packet headers.

In [13], the idea of hiding data in TCP timestamps is discussed. By imposing slight
delays on the processing of selected TCP packets, the low order bits of their time-
stamps can be modified. The low bit of the TCP timestamp, when modified in this
way, provides a covert channel.

Also, some research works propose to use ICMP packet [11] to carry hidden in-
formation in the ICMP header [1, 2]. These covert channels involve putting hidden
data and messages in the data fields of the ICMP packets, mainly in Ping ICMP pack-
ets. Obviously, the existence of hidden data and messages in such data fields can be
easily identified. However, such covert channels exploit the fact that network devices
usually do not apply filters on the data fields of the ICMP headers.

 Unfortunately most of the existing covert channels in literature are not efficient
and/or practical. They either provide very limited covert memory such as TCP-based
covert channels, or not robust enough against Steganalysis such as ICMP-based cov-
ert channels. The covert channel proposed in this paper addresses the above draw-
backs and provides a more practical and robust covert channel for hiding information.

3 Background

In order to introduce the terms used in this paper and lay the groundwork for what
follows, we will introduce briefly the option field in the IP protocol header.

3.1 The Fields of the IP Header Option

The IP option field in the IP header is not required in every IP datagram. Options are
included primarily for network testing or debugging. Options processing is an integral
part of the IP protocol, and all standard implementations must include it.

Figure 1 shows the structure of the IP header option.

424 Z. Trabelsi et al.

Fig. 1. The IP header Option structure

The field Code indicates the type of the option in the IP header. The field Length
indicates the size of the field Option. The Pointer field plays a particular function,
depending on the type of the option. There are eight possible types of options in an IP
datagram. The four most used options are:

• Loose source routing: used to route a datagram along a specific
path.

• Record route: used to trace a route.
• Strict source routing: used to route a datagram along a specified

path.
• Internet timestamp: used to record timestamps along a route.

For the proposed covert channel in this paper, we are only interested in the Record
route option.

3.2 The Record Route Option in an IP Header

The Record route option in an IP datagram allows the source host to create an empty
list of IP addresses and arrange for each router that handles the datagram to add its IP
address to the list. Figure 2 shows the format of the Record route option.

The Code field is set to the value 7. The Length field specifies the total length of
the Record route option in an IP datagram, including the first three bytes. The Pointer
field specifies the offset within the Record route option of the next available slot. That
is, it specifies the position in the Record route option where the next gateway can
insert its IP address.

Whenever a router handles an IP datagram that has the Record route option set, the
router adds its IP address to the record route list. It is clear that enough space must be
allocated in the Record route option by the original source host to hold all the IP ad-
dresses of the routers. To add its IP address to the list, a router first compares the

Fig. 2. The format of the Record route option in an IP datagram

 Traceroute Based IP Channel for Sending Hidden Short Messages 425

values in the Pointer and Length fields. If the value in the Pointer field is greater than
the value in the Length field, this means that the list is full, then the router forwards
the IP datagram without inserting its IP address. If the list is not full, the router inserts
its 4-bytes IP address at the position specified by the Pointer field, then increments
the Pointer by four. When the IP datagram reaches its destination, the destination host
extract and process the record route list of IP addresses.

3.3 Classes of IP Addresses

In order to provide the flexibility required to support different size networks, the
Internet designers decided that the IP address space should be divided into three dif-
ferent address classes - Class A, Class B, and Class C [18, 19]. This is often referred
to as "classful" addressing because the address space is split into three predefined
classes, groupings, or categories. Each class fixes the boundary between the network-
prefix and the host-number at a different point within the 32-bit address.

In addition to the three most popular classes, there are two additional classes. Class
D addresses have their leading four-bits set to 1-1-1-0 and are used to support IP Mul-
ticasting. Class E addresses have their leading four-bits set to 1-1-1-1 and are reserved
for experimental use.

4 A Covert Channel Based on the Record Route Option

The idea behind the proposed covert channel is to allow a source host to use the avail-
able bytes in the Record route option to insert hidden information, and at the same
time prevent any router (along the path to the destination host) from inserting its IP
address to keep the hidden information intact.

When the IP header option designates a record route, the Code and Pointer fields
should be set to the standard values 7 and 4, respectively. Also, the maximum value in
the Length field should be 39.

In its way to its destination, any packet with such an IP header option would ask
each router to write its IP address in the 4-bytes field pointed by the Pointer field
(Fig. 3). Then, the value of the Pointer field in the IP header option is increased by 4.
So that, the next router would write its IP address in the next 4-bytes field in the IP
header option. However, if the value of the Pointer field becomes greater than the
value of the Length field, then no more routers can write their IP addresses.

Fig. 3. A normal Record route option header

426 Z. Trabelsi et al.

Therefore, we may establish a covert channel for sending hidden messages if the
initial value of the Pointer field is greater than the value of the Length field (Fig. 4.a),
or just greater than the length of the hidden message (Fig. 4.b).

Fig. 4. The different values of the Pointer field used for the covert channel

If we set the initial value of the Pointer field greater than the value of the Length
field, then no router can write its IP address. In this case, we can use all the 36 bytes
of the IP header option to put hidden data or messages. However, if we set the initial
value of the Pointer field just greater than the length of the hidden message, then a
number of routers can write their IP addresses in the remaining bytes of the IP header
option.

This covert channel has the following features:

• Considerable covert memory: In the proposed covert channel, we have
nearly 40 bytes of covert memory per packet. This provides more flexibil-
ity compared to the existing TCP-based covert channels such as in [6],
which offer a maximum of 4 bytes of covert memory per packet.

• Flexibility: The proposed covert channel may use ICMP, TCP and/or
UDP packets to exchange hidden information. This removes any restric-
tions imposed by the only use of TCP packets (such as synchronisation,
flow and congestion control) as in the case of TCP-based covert channels
[6].

• Undetectability: Inserting the hidden information in the Record route op-
tions will in general not alert users who are analyzing the traffic about the
presence of the hidden information in those packets. Most of these users
would assume that this hidden information represents a valid list of IP ad-
dresses of the routers along the connection path. However, an advanced
Steganalysis process may be able to notice that these IP addresses are not
valid and generate a suspicious situation. In Section 5, we propose a

 Traceroute Based IP Channel for Sending Hidden Short Messages 427

mechanism to further protect the covert channel form such Steganalysis.
But, the available covert memory will be reduced in order to offer pro-
tected covert channel against Steganalysis.

5 Protection Against Steganalysis and Sniffing

The information in the covert channel is packaged in the form of IP addresses of
routers. However, it is possible for one to verify the validity of these IP addresses in
the connection path which immediately offers a means for Steganalysis. For example,
if we want to send the hidden message “RDV at 9pm” in an IP packet, then the con-
tents of the Record route option would appear as shown in Figure 5. However, a
Steganalysis process may identify that the IP addresses in the Record route option
(82.68.86.32, 97.116.32.57, 112.109.0.0) are not valid IP addresses.

Fig. 5. The contents of the Record route option

To protect the scheme from such potential Steganalysis process, it is clear that the
IP addresses used in the Record route option should look-like valid router IP ad-
dresses. Hence, a mechanism is proposed to generate packets carrying hidden infor-
mation and satisfying the above condition.

The proposed mechanism is based on two steps. The purpose of the first step is to
collect the IP addresses of the routers that will most likely be in the connection path.
The purpose of the second step is compute the number of IP packets needed to carry
the hidden information and generate the contents of the Record route options in these
packets.

Step 1: Collection of the IP addresses
Before generating any packet carrying hidden information, we collect the list of IP

addresses of the routers that will most likely be in the connection path. Unix com-
mand ‘traceroute’, Windows command ‘tracert’ [20], or any program that provides
the same functionality can be used to collect such a list as shown in Figure 6. In the-
ory, this path may not be identical for all packets sent to the same destination. How-
ever, in practice all packets that belong to the same flow always follow very similar
paths, if not the same path. So, this should not raise any concern.

428 Z. Trabelsi et al.

Fig. 6. Unix command “traceroute”

Step 2: Generation of the contents of the Record route options
To generate packets carrying hidden information and protect them from any Stega-

nalysis process, the following two requirements should be satisfied:

 First, the IP addresses inserted in the Record route options should look-
like valid router IP addresses. That is, they should be very similar to the
router IP addresses collected by commands such as “traceroute” or
“tracert”.

 Second, the hidden information should be included in the IP addresses
inserted in the Record route options.

Hence, we developed an algorithm for generating IP packets carrying the hidden
information and satisfying the above two requirements. The algorithm takes two pa-
rameters as input:

a) a hidden message of k characters; HM = {c1,…,ck}, and
b) the collected list of IP addresses of the routers that most likely will be in the

connection path. This list can have a mixture of Class A, B and C IP ad-
dresses: List_IP = ({IP1,…,IPnB},{ IP1,…,IPnC}), where nB = number of
Class A and B IP addresses, and nC = number of Class C IP addresses. It is
important to note that a maximum of nine IP addresses can be inserted in a
Record route option, since the maximum available space in the Record route
option is 39 bytes, and each IP address needs four bytes.

As output, the algorithm produces:

 The number of IP packets that are needed to carry the hidden text,
 The contents of the Record route option in each packet to be sent.

The algorithm is defined as follows:

Algorithm generatePackets (HM, List_IP)

Step 1: calculate the number of IP packets needed to hide HM using the following
formula:

+
+

++
+

= 4.0
2

)2%(
2

int),,(
nCnB

nCnBk
round

nCnB

k
nCnBkP

where int(.) denotes integer division where the fraction part is discarded,
round(.) denotes rounding to the nearest whole number [e.g. round(0.5)=1],
and % denotes the modulus operator [in general: a%b = a - int(a/b) * b].

 Traceroute Based IP Channel for Sending Hidden Short Messages 429

Step 2: Repeat for each packet to be sent
Step 3: Construct an IP packet with a random type.

 // This is important to further confuse and mislead someone
who is sniffing the

 // communication channel
Step 4: Insert the list of IP addresses (List_IP) in the Record route

option
Step 5: Repeat for each IP address in the Record route option

 If there is no more characters in HM, exit.
 If the IP address belongs to Class C

Replace the least significant byte by the
next character from HM

 Else // Class B or Class A
 Replace the least significant two bytes

by the next two characters
 from HM

End // repeat step 5
End // repeat step 2

End // Algorithm generatePackets

Using this algorithm, the secret information will be hidden inside valid IP ad-
dresses to protect the covert channel against Steganalysis. However, this would re-
quire more packets to be generated since the algorithm uses only one or two bytes in
each IP address in the Record route options. If further secrecy is deem important, the
confidentiality of the hidden information can be enhanced further using any crypto
technique.

6 Example

Assume that we want to send the hidden message (HM) “RDV at 9pm”, which has 10
characters from a source host (190.100.20.10) to a destination host 195.95.40.10 as
shown in Figure 7. The command ‘traceroute’ retrieves the following two IP ad-
dresses of Class B and two IP addresses of Class C from the connection path:

1. Class B addresses:
 190.100.20.1
 190.100.30.1

2. Class C addresses:
 195.95.37.1
 195.95.40.1

Fig. 7. An example of a connection path

430 Z. Trabelsi et al.

By applying the algorithm, the number of packets that should be sent to carry the
HM is computed as follow:

P(10,2,2) = int(10/6) + round(0.67 + 0.4) = 1 + 1 = 2 packets.

The contents of the Record route options of the two packets that are generated by
the algorithm are shown in Figure 8.

Fig. 8. The contents of the Record route options of the two packets

As shown in Figure 8, the hidden message HM will be sent to the destination host
in two separate packets. Packet 1 will carry the string “RDV at” and Packet 2 will
carry the remaining string“ 9pm”. For Class C IP addresses, we modified only the
least significant byte, and the least significant two bytes for Class B IP addresses. It is
clear from Figure 8 that even if the traffic is sniffed and analyzed, it will be very dif-
ficult to notice that the IP addresses in the Record route options are not valid ad-
dresses that carry hidden message.

 Compared with the contents of the Record route option of Figure 5 (which was
generated without using the generatePackets Algorithm), Figure 8 shows clearly the
strength of the algorithm in protecting the covert channel against Steganalysis. Figure
5 includes non-valid addresses such as 112.109.0.0, which is quite suspicious to be
included in any Record route option. On the contrary, all IP addresses appear in
Figure 8 look -like valid router IP addresses.

7 Covert Memory Per Packet

The proposed covert channel offers more covert memory per packet than the existing
available covert channels. The number of bytes in the covert memory depends on the
classes of the IP addresses of the routers between the source host and the destination
host. The following formula computes the number of bytes (n) available in the covert
memory per packet:

n = (2 * m1) + m2
Where:

• m1 is the number of Class A and Class B's IP addresses of the
routers between the source host and the destination host.

• m2 is the number of Class C's IP addresses of the routers between
the source host and the destination host.

 Traceroute Based IP Channel for Sending Hidden Short Messages 431

Table 1 gives examples of the number of bytes (n) available in the covert memory
per packet.

Table 1. The number of bytes (n) in the covert memory per packet

Number of
routers between
the source host

and the
destination host

Number of Class
A and B's IP

addresses of the
routers (m1)

Number of
Class C's IP
addresses of
the routers

(m2)

Number of
bytes in the

covert
memory per
packet (n)

1 1 0 2 bytes
1 0 1 1 bytes
2 1 1 3 bytes
3 2 1 5 bytes
4 2 2 6 bytes
5 1 4 5 bytes
5 3 2 7 bytes

Table 2 shows the covert memory per packet in a number of existing covert chan-
nels. The proposed covert channel in this paper offers the highest covert memory,
when there are more than three routers between the source host and the destination
host (Table 1). In addition, it is not limited to any particular protocol type. For exam-
ple, the packets carrying the hidden information can be a combination of ICMP, TCP
and UDP packets.

Table 2. Available covert memory per packet in some existing covert channels

Protocols of the
covert channels

The fields carrying the hidden information Covert memory /
Packet

IP protocol The Identification field in the IP header 2 bytes / packet

TCP protocol The Initial Sequence Number (ISN) field in
the TCP header

4 bytes / packet

TCP protocol The Acknowledge Sequence Number field
in the TCP header

4 bytes / packet

TCP protocol

The TCP Options field in the TCP header
(TCP timestamp)

4 bytes / packet

TCP protocol TCP flags Bits
(URG, ACK, PSH, RST, SYN, FIN)

Few bits / packet

ICMP protocol The Data field in the ICMP Header 4 bytes / packet

8 Implementation

A friendly graphical tool has been developed based on the proposed covert channel,
using Visual C++ and Winsock library. At the source host, the tool allows a user to
write his hidden message and then generates the necessary packets that will carry the

432 Z. Trabelsi et al.

hidden message. At the destination host, the tool extracts the hidden messages from
the received packets and displays their contents to the user.

The following steps describe the process of sending an example hidden message to
a destination host using the tool. Figure 9 shows the network's architecture used in
this example. The network has two Cisco routers (2600 series) connected via a serial
interface. The first router is connected to the source host via subnetwork 2.2.2.x, and
the second router is connected to the destination host via subnetwork 1.1.1.x.

Fig. 9. Network architecture

Step 1: At the source host, as soon as the user invokes the tool, he will get the
main screen shown in Figure 10. The source IP address of the source host will be

Fig. 10. Main screen of the Covert channel tool

 Traceroute Based IP Channel for Sending Hidden Short Messages 433

displayed automatically by the tool. The user needs only to write the IP address of the
destination host (1.1.1.12), and his hidden message ("Meet you in Tunis") as shown in
Figure 10.

Step 2: The user clicks on the "Traceroute" button to get the list of the IP ad-
dresses of the routers between the source host (2.2.2.12) and the destination host
(1.1.1.12). In response, the tool will automatically execute the “traceroute” command
and retrieve the list of IP addresses along the path to destination. Then it computes the
minimum number of packets required to send the hidden message, and displays this
information as shown in Figure 11.

Fig. 11. The result of the "Traceroute" command

To compute the minimum number of packets needed to carry the hidden message,
it is important to note that, although the number of characters in the hidden message is
17, the tool will use 18 bytes to send the message. The first byte will include
 the number of character in the hidden message and the remaining 17 bytes will in-
clude the ASCII codes of the 17 characters of the hidden message. Since there are
three class-A IP addresses identified along the path to the destination, and the tool
uses the two least significant bytes of each class-A IP address to carry two characters
of the message (see the algorithm generatePacket in, Section 5), then each packet will
carry 6 characters of the hidden message. Consequently, three packets are required to
send the hidden message.

Step 3: Once the user agrees with the identified list of IP addresses and the number
of packets to be used (Figure 12), the tool will automatically generate the three pack-
ets with random types, which could be ICMP and/or UDP. The types of the ICMP
packets are also chosen randomly, in order to avoid one type of packets carrying the
hidden message. This would contribute considerably to further protect the covert
channel from Steganalysis. Figure 17 shows that two ICMP packets (Type = 15 and
Type = 13) and one UDP packet will be generated to carry the hidden message "Meet
you in Tunis".

434 Z. Trabelsi et al.

Fig. 12. The types of the three packets used to send the hidden message

Step 4: At the destination host (1.1.1.12), the tool uses a graphical interface to ex-
tract and reconstruct the hidden message inserted in the three received packet as
shown in Figure 13.

Fig. 13. The hidden message displayed to destination user

9 Conclusion

This paper discusses a novel IP channel for sending hidden short messages, based
mainly on the use of the “traceroute” command and the IP header Record route op-
tions The IP channel is protected against Steganalysis and sniffing by hiding the se-
cret message inside valid IP addresses in the Record route options. An algorithm has
been developed to generate the necessary packets to carry the secret information. In
order to avoid one type of packets carrying the hidden message, the types of the pack-
ets are chosen randomly, and could be ICMP and/or UDP. This would contribute
considerably to further protect the covert channel from Steganalysis. Compared to the

 Traceroute Based IP Channel for Sending Hidden Short Messages 435

existing covert channel proposed in literature, our covert IP channel offers more cov-
ert memory than any of the existing covert channels, especially when there are more
than three routers between the source host and the destination host. It also exploits the
simplicity of the ICMP and UDP tunnelling to avoid the restriction and rules (syn-
chronisation, flow and congestion control) imposed by TCP-based covert channels.

A friendly graphical tool has been developed to demonstrate the proposed covert IP
channel. The tool allows a user to write his hidden message and then generates the
necessary packets that will carry the message. At the destination host, the tool extracts
the hidden messages from the received packets and displays their contents to the user.

Currently, we are developing new mechanisms to further protect the scheme from
other advanced Steganalysis, especially in networking environments that are highly
protected by Firewalls (using filtering rules) and intrusion detections systems.

References

1. Abhishek Singh ,Ola Nordström, Chenghai Lu, Andre L M dos Santos, ”Malicious ICMP
Tunnelling : Defence against the Vulnerability”, in Proceedings of the 8th Australasian
Conference: Information Security and Privacy (ACISP 2003), Wollongong, Australia,
pp. 226 – 236, July 9-11, 2003.

2. Ahsan Kamran, “Covert Channel Analysis and Data Hiding in TCP/IP”, Master Thesis,
University of Toronto, 2002.

3. Kamran Ahsan and Deepa Kundur, "Practical data hiding in TCP/IP", In Proceedings of
the Workshop on Multimedia Security at ACM Multimedia, December 2002.

4. B. W. Lampson, “A note on the confinement problem,” in Proceedings of the Communica-
tions of the ACM, number 16:10, pp. 613–615, October 1973.

5. C. Girling, “Covert channels in LAN’s,” Vol. SE-13 of 2, IEEE Transactions on Software
Engineering, February 1987.

6. C. H. Rowland, “Covert channels in the TCP/IP protocol suite,” Tech. Rep. 5, First Mon-
day, Peer Reviewed Journal on the Internet, July 1997.

7. Christin Cachin, “An information-theoretic model for steganography”, In David Aucsmith,
editor, Information Hiding, 2nd International Workshop, volume 1525 of Lecture Notes in
Computer Science, pages 306-318, Springer, 1998.

8. Christopher Abad, "IP checksum covert channels and selected hash collision", Technical
report, 2001.

9. D. Wu and F. Wong., “Remote Sniffer Detection”. Computer Science Division, University
of California, Berkeley. December 14, 1998.

10. Gina Fisk , Mike Fisk , Christos Papadopoulos, Joshua Neil, "Eliminating Steganography
in Internet Traffic with Active Wardens", In the Proceedings of the 5th International
Workshop on Information Hiding, p.18-35, October 07-09, 2002.

11. J. Postel, “Internet Control Message Protocol”, Protocol Specifications, DARPA Internet
Program, September 1984.

12. John McHugh, “Covert Channel Analysis”, Portland State University, December, 1995.
13. John Giffin, Rachel Greenstadt, Peter Litwack, and Richard Tibbetts. Covert messaging

through TCP timestamps. In Workshop on Privacy Enhancing Technologies, San Fran-
cisco, volume 2482, pages 194--208, April 2002.

14. M. Wolf, “Covert channels in LAN protocols,” in Proceedings of the Workshop on Local
Area NetworK Security (LANSEC’89), pp. 91 – 102, 1989.

436 Z. Trabelsi et al.

15. Markus G. Kuhn Fabian A.P. Petitcolas, Ross J. Anderson, “Information hiding – a sur-
vey.” In Proceedings of the IEEE, special issue on protection of multimedia content,
87(7):1062–1078, July 1999.

16. Richard Stevens – “TCP/IP Illustrated: Volume 1”, 2001.
17. Ross Anderson and Fabien A.P. Petitcolas. “On the limits of steganography”, IEEE Jour-

nal on Selected Areas in Communications, 16:474-481, May 1998.
18. RFC 950 - Internet Standard Subnetting Procedure.
19. RFC 1466 - Guidelines for Management of IP Address Space.
20. RFC 1393 - Traceroute message.
21. S. Katzenbeisser and F. Petitcolas, "Information Hiding Techniques for Steganography and

Digital Watermarking", Computer Security Series, 685 Canton Street, Norwood, MA
02062: Artech House, Inc., 2000.

22. T. Handel and M. Sandford., “Hiding data in the OSI network model,”, Cambridge, U.K.,
First International Workshop on Information Hiding, May-June 1996.

23. U.S.D.O.D., “Trusted computer system evaluation criteria”, 1985.
24. Uc davis denial of service (dos) project, meeting notes. <http://seclab.cs.ucdavis.edu/

projects/denial-service/meetings/01-27-99m.html>, January 27, 1999.
25. Regunathan Radhakrishnan, Kulesh Shanmugasundaram, Nasir D. Memon, "Data mask-

ing: a secure-covert channel paradigm". IEEE Workshop on Multimedia Signal Process-
ings, 339-342, 2002

26. Steven J. Murdoch, Stephen Lewis, "Embedding Covert Channels into TCP/IP", the 7th
Information Hiding Workshop, Barcelona, Catalonia (Spain) 6 – 8 June 2005.

Author Index

Álvarez, Anna V. 378
Au, Man Ho 1

Chang, Taejoo 364
Chen, Yi-Ming 389
Choi, Hoon 364
Choi, Seung Geol 88
Choi, Yongje 353

Dranger, Stephen 405

El-Sayed, Hesham 421

Frikha, Lilia 421
Funabiki, Nobuo 17

Garcia, Flavio D. 33
Garćıa, Karen A. 378
Gentry, Craig 196

Hada, Satoshi 308
Hoepman, Jaap-Henk 152
Hubbers, Engelbert 152

Im, Dong-Hyuck 227

Jacobs, Bart 152
Jeong, Ik Rae 322
Jin, Hai 168
Jun, Sungik 353

Kang, In-Koo 227
Kao, Yung-Wei 389
Kempf, James 196
Kim, DongKook 278
Kim, Heeyoul 268
Kim, Il-Hee 268
Kim, Mooseop 353
Kim, Yong-Min 278
Kwon, Jeong Ok 322
Kwon, Young Chul 76

Lee, Dong Hoon 322
Lee, Gil-Joo 268
Lee, Heung-Kyu 227

Lee, Sang-Han 364
Lee, Sang Won 76
Lee, Younho 268
Liao, Zhensong 168
Liu, Joseph K. 1, 104

Markantonakis, Konstantinos 239
Mayes, Keith 239
Monroy, Raúl 378
Moon, Songchun 76
Mu, Yi 120
Mukhopadhyay, Sourav 337

Nakanishi, Toru 17
Noh, Bong-Nam 278
Noh, Sang-Kyun 278

Ogawa, Ryuichi 60
Onishi, Junji 212
Ono, Tsukasa 212
Oostdijk, Martijn 152

Parisi-Presicce, Francesco 179
Park, Kunsoo 88
Park, Sang-Hyun 364
Park, Yongsu 268

Qiang, Weizhong 168

Rabie, Tamer 421
Ramzan, Zulfikar 196
Ryou, Jaecheol 353

Sakaki, Hiroshi 60
Sakurai, Kouichi 308
Sandhu, Ravi 179
Sarkar, Palash 337
Savola, Reijo 48
Schreur, Ronny Wichers 152
Sloan, Robert H. 405
Solworth, Jon A. 405
Suh, Young-Ho 227
Susilo, Willy 104, 120

438 Author Index

Tan, Chik How 292
Tartary, Christophe 136
Trabelsi, Zouheir 421
Trejo, Luis A. 378
Tunstall, Michael 239

van Rossum, Peter 33
Vázquez, Jesús 378

Wang, Huaxiong 136
Wong, Duncan S. 1, 104

Wood, Jonathan 196
Wu, Qianhong 120

Yang, Xinyu 252
Yanoo, Kazuo 60
Yi, Shi 252
Yuen, Tsz Hon 1
Yung, Moti 88

Zhang, Fangguo 120
Zhang, Xinwen 179
Zhu, Huijun 252
Zou, Deqing 168

	Frontmatter
	Signatures (1)
	ID-Based Ring Signature Scheme Secure in the Standard Model
	A Short Verifier-Local Revocation Group Signature Scheme with Backward Unlinkability
	Sound Computational Interpretation of Symbolic Hashes in the Standard Model

	Security Evaluation
	A Requirement Centric Framework for Information Security Evaluation
	A Model-Based Method for Security Configuration Verification
	Personal Computer Privacy: Analysis for Korean PC Users

	Signatures (2)
	Short Traceable Signatures Based on Bilinear Pairings
	Ring Signature with Designated Linkability
	Ad Hoc Group Signatures
	Rateless Codes for the Multicast Stream Authentication Problem

	Authentication
	Crossing Borders: Security and Privacy Issues of the European e-Passport
	A New Approach to Hide Policy for Automated Trust Negotiation
	Towards Remote Policy Enforcement for Runtime Protection of Mobile Code Using Trusted Computing
	IP Address Authorization for Secure Address Proxying Using Multi-key CGAs and Ring Signatures

	Security for Multimedia
	A Study of Detection Method of Printed Image Alteration Using Digital Watermark
	Real-Time Watermark Embedding for High Resolution Video Watermarking
	Inhibiting Card Sharing Attacks

	Network Security
	A Flooding-Based DoS/DDoS Detecting Algorithm Based on Traffic Measurement and Prediction
	Hardware Stack Design: Towards an Effective Defence Against Frame Pointer Overwrite Attacks
	Modeling of Network Intrusions Based on the Multiple Transition Probability

	Encryption and Key Exchange
	Chosen Ciphertext Security from Identity-Based Encryption Without {\itshape Strong} Condition
	Ciphertext-Auditable Public Key Encryption
	Provably-Secure Two-Round Password-Authenticated Group Key Exchange in the Standard Model

	Cryptanalysis and Implementation
	On the Effectiveness of TMTO and Exhaustive Search Attacks
	Low Power AES Hardware Architecture for Radio Frequency Identification
	The High-Speed Packet Cipher System Suitable for Small Sized Data

	Access Control
	A Tool for Managing Security Policies in Organisations
	Information Flow Query and Verification for Security Policy of Security-Enhanced Linux
	The Complexity of Discretionary Access Control
	Traceroute Based IP Channel for Sending Hidden Short Messages

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

