

Process Model Difference Analysis for
Supporting Process Evolution

Martín Soto and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{soto, muench}@iese.fraunhofer.de

Abstract. Software development processes are subject to variations in time and
space, variations that can originate from learning effects, differences in applica-
tion domains, or a number of other causes. Identifying and analyzing such differ-
ences is crucial for a variety of process activities, like defining and evolving
process standards, or analyzing the compliance of process models to existing
standards, among others. In this paper, we show why appropriately identifying,
describing, and visualizing differences between process models in order to sup-
port such activities is a highly challenging task. We present scenarios that moti-
vate the need for process model difference analysis, and describe the conceptual
and technical challenges arising from them. In addition, we sketch an initial tool-
based approach implementing difference analysis, and contrast it with similar ex-
isting approaches. The results from this paper constitute the requirements for our
ongoing development effort, whose objectives we also describe briefly.

1 Introduction

Software development organizations striving to achieve a high level of process matur-
ity must sooner or later face the problem of process standardization, namely, guaran-
teeing that all organization units develop software according to one well-known,
unified process. Achieving process uniformity generally requires the definition of
standard processes (sometimes also called reference processes or generic processes)
that capture organization-wide process knowledge, possibly with emphasis on a par-
ticular application domain (e.g., space software) and/or on specific development con-
texts (e.g., large projects). However, since they are generic, standard processes must
be tailored to the particular needs of the various projects inside the organization, lead-
ing to many separate project-specific processes.

Both standard and project-specific processes are subject to evolving along their life
cycle. Rapid technology changes, newly available useful knowledge, changes in regu-
lations or process standards, and new project experience, to only mention a few fac-
tors, contribute to push processes in different directions. Moreover, processes need to
be designed, described, introduced, and maintained in such a way that they become
accepted by practitioners and thus actually used in practice. For this reason, evolution
must be guided by solid, practical experience.

The problem of driving process evolution based on experience involves activities
both at the organizational and at the project level. Initially, particular projects tailor

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 123 – 134, 2006.
© Springer-Verlag Berlin Heidelberg 2006

124 M. Soto and J. Münch

processes to their needs and proceed to enact them. During enactment, issues involv-
ing the process definition are typically observed, ranging from the need to refine cer-
tain process entities in order to make them more specific, to the identification of areas
of the process definition that are openly inadequate and must be redefined.

Incorporating this local, project-specific experience into the standard organiza-
tional process is a potentially complex task involving at least the following two steps.
First of all, local variations must be identified and characterized in order to determine
if they are general enough to become part of the standard process. Afterwards, se-
lected local variations must be generalized and added to the standard process as alter-
natives, together with constraints or rules limiting their use to particular cases. This,
of course, requires a deeper understanding of the appropriateness of the process alter-
natives for different contexts and their effects on these contexts.

Additionally, before the start of a new project, a characterization of the project
context and its goals must be produced, providing the information needed to select
adequate process alternatives for the project. This closes the experience cycle, open-
ing opportunities for experience reuse.

We believe that the first step can be effectively supported by so-called process
model difference analysis, namely, finding, analyzing, and displaying the differences
between variants of a single process model in ways that are meaningful, and thus use-
ful, to the people maintaining and using the process. The second step addresses the
so-called variability analysis, i.e., identifying which context characteristics and
project goals differ among a family of projects, and determining the corresponding
process variation points and the rules associated to them. The concept of variability
analysis originally comes from product line engineering [1].

This paper presents our current steps towards an effective, practical approach for
process model difference analysis. The rest of the paper is structured as follows: In
Section 2, we present two process management scenarios derived from our experience
with process modeling and implementation, analyze the possible role of difference
analysis in them, and derive a set of basic interesting difference analysis operations. In
Section 3, we discuss the conceptual and technical challenges of process model differ-
ence analysis, and contrast them to existing procedures like the standard longest com-
mon subsequence algorithm used by diff. Section 4 discusses the basic concepts of our
ongoing implementation work. Section 5 presents some related work and Section 6
concludes the paper by discussing open challenges and plans for realizing our view.

2 Application Scenarios for Difference Analysis

In the following, we sketch two scenarios that demonstrate the need for process model
difference analysis. These scenarios are based on the authors' experience in defining
and managing the evolution of process standards (such as the SETG [2] of the Euro-
pean Space Agency) and implementing compliance management in organizations.
The scenarios are used to identify a set of basic operations involved in difference
analysis. For each one of the two scenarios, we describe the problem at hand and
identify the process stakeholders (or rather, stakeholder roles) involved in it. In a sec-
ond step, we list the questions that each stakeholder must answer in the context of the
scenario, together with the difference analysis operations that can be used to support
the stakeholders in answering these questions.

 Process Model Difference Analysis for Supporting Process Evolution 125

2.1 Scenario 1: Definition and Evolution of Process Standards

In principle, there are two main approaches to the definition of process standards: top-
down and bottom-up. In the top-down approach, a standardization board collects indi-
vidual experiences, methods found in literature, or requirements enforced by other
standards, and creates a prescriptive process model, which is then provided to the
development organization and empirically optimized later on. The ECSS [3] standards
for space software, or the German national V-Modell XT standard [4] are examples of
the top-down approach. In the bottom-up approach, standards are mainly developed
based on observation and descriptive modeling. The WISEP reference process for
wireless Internet services [5] and the LIPE reference model for e-business software
development [6] illustrate this approach. It is important to observe that, independently
of how process evolution is managed, observing processes in practice, identifying
variations in them, analyzing these variations, and feeding them back into the stan-
dard process model [7] are fundamental activities for actual improvement. This feed-
back cycle can be supported by process model difference analysis.

One typical scenario is that a large software organization distributes a single proc-
ess model to several of its development units, which is intended to be used as the
main software process description for conducting independent software development
projects. Since the defined process has not been widely tested in the context of the
organization, and since conditions differ from one project to the next, individual pro-
jects are allowed to adapt the process description in an ad-hoc manner to better suit
their particular needs.

After a few months, the independently tailored process models have diverged sig-
nificantly. This poses a number of challenges:

− The central organization wants to make sure that, despite project differences, a
unified basic process is followed by all projects, and that the customization of this
process is done in a systematic way. In other words, it is important to prevent local
processes from diverging too much from the established organization standard.

− Additionally, practices introduced by individual projects may turn out to be useful
to other projects. It would be valuable to identify such practices, abstract them, and
eventually integrate them with the generic organization-level process definition.

− Furthermore, it would be valuable to identify areas of the current process that ade-
quately fit the organization's environment, as well as areas that may be difficult to
enact in the current environment. It would also be important to identify areas that,
although adequate, may require improvements in their documentation.

− Software managers, software developers and, generally, personnel working on
software projects, may be moved between projects based on changing organiza-
tional needs and priorities. People used to one project's process definition may
have problems getting acquainted with new, slightly different processes between
their previous and new projects. Process difference analysis could help to identify
these differences and provide guidance for working in the new project.

A similar scenario arises when a reference process model (e.g., V-Modell XT or
ECSS) is adopted and further tailored by separate organizations. The standards body

126 M. Soto and J. Münch

responsible for the reference model may be interested in collecting feedback from
process users in order to determine how the reference model should evolve.

The following table lists involved stakeholders, their questions, and the way proc-
ess model difference analysis can support them in answering their questions:

Stakeholder Question Helpful difference-analysis

operations

Are there any structural
changes (new/deleted activi-
ties/products, different rela-
tions) in project processes
with respect to the organiza-
tion's process?

Visualize structure with differences.

Do structural changes affect
the general process structure
or only the detailed structure
of particular process areas?

Provide different views into process
structure and structural differences:
general, per process area, per role, etc.

Which entity descriptions
were modified? What sort of
modifications happened?

List changed descriptions. Highlight
entities in the general structure whose
descriptions changed. Measure the
extent of changes and visualize it based
on the structure (i.e., map trees.) Apply
text comparison to descriptions.

Software
Process
Group

Which areas of the process
were changed by many pro-
jects? Are the changes simi-
lar?

Present differences with respect to the
main model in parallel. Apply similar-
ity detection algorithms to common
changed areas.

Project
Manager

Which process changes have
we made until now? Can we
justify them based on our
concrete project needs and
requirements?

Visualize structural differences, includ-
ing views. Visualize description differ-
ences on top of the structure. Visualize
recorded rationales for changes [17].

What is different between
the process I used to follow
in my old project and the
process defined for my new
project?

Compare processes from the old and
the new project with common ancestor
(main organizational process is the
ancestor.)

Developer
(process
agent)

What's special in my new
project's process with re-
spect to the general organi-
zation's process I learned in
my training?

Compare process with ancestor.

 Process Model Difference Analysis for Supporting Process Evolution 127

2.2 Scenario 2: Process Compliance Analysis

Nowadays, more and more organizations are subject to regulatory constraints requir-
ing the existence of explicit processes, as well as adherence to them (see, for example,
the IEC 61508 standard for safety-related systems [8].) Being compliant typically
requires maintaining traceability information that captures the relationships between
the actual and the prescribed development processes, a difficult task since, for a vari-
ety of reasons, it is possible for both models to evolve, thus leading to deviations.
Difference analysis can help to characterize the evolution in order to determine
whether action is necessary to stay compliant. In addition, traceability information
needs only to be updated for those process parts of the models that changed.

The following is one typical scenario: A development organization adopts a refer-
ence model as a base definition for its development processes. As usual with refer-
ence models, although they provide a good framework for process definition, some
aspects of them must be adapted to the unique needs of each organization. For this
reason, a tailoring effort is launched, which concludes several months later with a
process definition adequate for being used by new development projects at the or-
ganization. Some time afterwards, and independently from all internal process efforts,
a new version of the reference model is published. There is pressure from inside and
outside the organization to use this new version of the reference model. However, the
organization does not want to lose the significant effort invested in tailoring the old
version. The transition poses a number of difficulties:

− It is hard to determine which tailoring changes can be moved to the new version of
the reference model directly, which of them can be adapted, and which must be
discarded because either they are now covered by the new model or they conflict
with it.

− Moreover, since it is difficult to reliably identify the areas that must be changed,
even estimating the effort necessary to produce a tailored variant of the new refer-
ence model version can be very hard.

− In addition, standardization organizations typically do not give sufficient informa-
tion about the detailed changes. Often, differences between new versions are only
described on an abstract level (e.g., the new standard focuses more on reliability),
but it is unclear which process elements have changed.

The following table is similar to the one included in the previous scenario:

Stakeholder Question Helpful difference-analysis
operations

Software
Process
Group

How exactly were the structure
and contents of the reference
model modified? Which actual
elements were affected and how?

Compare process with ancestor
(old version of the reference
model is the ancestor.) Visualize
structure with differences.

128 M. Soto and J. Münch

Stakeholder Question Helpful difference-analysis
operations

How exactly did we tailor the
structure and contents of our cur-
rent process model? Which actual
elements were affected and how?

Compare process with ancestor
(old version of the reference
model is the ancestor.) Visualize
structure with differences.

Which areas did we tailor that
remained essentially untouched in
the new reference model version?
Which areas were modified in the
reference model that we did not
touch? Which areas were changed
in both cases (conflicts)?

Compare processes with com-
mon ancestor (old version of the
reference model is the ancestor.)
Visualize structure with differ-
ences.

How big are the conflicts? Were
do the most complex conflicts lie?

Measure the extent of changes.
Compare and visualize.

Are there structural or content
related similarities between our
changes and the changes made to
the reference model?

Apply similarity algorithms to
selected portions of the model.

2.3 Further Applications

Analyzing and visualizing differences between process models can be used in many
other situations: An example application is the collaborative design of development
processes. Here, difference analysis can be used during the integration of parallel de-
signed processes. Another example for the use of process difference analysis is the
development of systems for process versioning and configuration management. Here,
differences between process models can be determined and used as deltas to calculate
previous versions of process models.

3 Difference Analysis Challenges

Based on the set of useful operations presented above, this section discusses the main
challenges we observe in process difference analysis. These challenges cover various
conceptual and implementation issues.

3.1 Filtering and Presenting Results for a Multitude of User Groups

Practical process models used in real-world development organizations are often very
complex, comprising a large number of interrelated process entities (activities, arti-
facts, roles, etc). For this reason, a large majority of process stakeholders have to deal
with only one portion or aspect of the process model (e.g., only the analysis or the

 Process Model Difference Analysis for Supporting Process Evolution 129

testing process; only administrative or technical portions of the process; only high-
level process descriptions; etc.) while performing their daily work.

As shown in the scenarios, the need arises to provide such users with difference
analysis operations that are particularly tailored to their needs. This requires a flexible
notation for specifying comparisons that is able to express the composition of a vari-
ety of filtering, transformation, and visualization algorithms, among other possibili-
ties, to produce the difference analysis results.

Figure 1 shows a graphical comparison of two variants of a hierarchical structure
(for example, an activity hierarchy in a process model) that we kept intentionally
small for illustration purposes. Such a difference analysis would require filtering the
model variants to extract the desired hierarchy, comparing them, and producing an
adequate visualization with a graph layout algorithm.

3.2 Genericity

Our experience shows that organizations tend to have very specific, idiosyncratic
ways to speak about software development and software development processes.
Even if the general concepts used to model software processes tend to be similar, the
way they are exactly defined as well as the terminology used to refer to them may
vary widely among different software organizations, or even between divisions of a
single organization.

Such a variety of process model schemata further complicates difference analysis.
Even if we do not try to support comparing models structured according to different
schemata, comparison must often make use of schema information in order to produce
meaningful results. For example, particular attributes (e.g, long text descriptions) of
certain entities belong to data types that require comparison with specialized algorithms
(e.g., LCS-based text comparison). Also, the model may contain portions that, based on
the schema, may be known to correspond to sequences, trees, or some other known
structures that can benefit from being processed with more specialized algorithms.

3.3 Multiple Comparison Algorithms (or, Why Diff Is Not Enough?)

Comparing source code versions and analyzing the resulting differences (often re-
ferred to as patches) is a task software developers perform on an almost daily basis.
Source code comparison serves a variety of purposes, like sharing of changes; review
and analysis of changes done by others; space-savvy storage of multiple versions; and
measurement of the extent and scope of changes; among others. Such comparisons
can be performed using widely available software, like the well-known Unix diff util-
ity, and similar programs.

An obvious question when speaking about model difference analysis is whether the
problem is not solved by just storing the models in files and comparing them using
diff. Although this is usually possible, it is almost always the case that the results de-
livered by diff are practically unusable. Diff relies on interpreting files as being com-
posed of text lines (sequences of characters separated by the newline character) and
then finding the longest common sequence (LCS) of lines by using an efficient algo-
rithm (see [9] for example). The underlying practical assumption is that the material
in the file can be read and understood sequentially.

130 M. Soto and J. Münch

A

H

F

IBE

C

D

G

A

H

F

IE

C

D

G

A

H

F

BE

C

D

G Variant 1

Variant 2

Comparison

Fig. 1. Hierarchy difference analysis. The first two graphs represent two variants of the same
hierarchy (for example, with nodes corresponding to process activities and arrows correspond-
ing to a has-subactivity relationship.) The third graph displays the differences between the two
hierarchies: dashed elements are present only in the first variant, whereas elements drawn in
bold are only in the second one. Other elements are common to both variants. Such a display
can be very useful to quickly identify differences between complex structures.

Although this assumption holds true for source code files, process models usually
follow patterns that resemble trees or, more generally, graphs instead of plain se-
quences. They are often heterogeneous in nature, being composed of pieces of data
that follow different structural patterns and are represented in diverse ways. Of
course, it is always possible to use LCS-based algorithms to compare certain portions
of a process model (like text descriptions). It is also possible to store complete models
in a line-oriented format (i.e., a text-based formal process model notation) and com-
pare that representation. Although such an approach can be useful for determining
differences in particular denotations of a model, we deem it insufficient to cover the
wider range of abstract, task-oriented comparisons we are considering.

 Process Model Difference Analysis for Supporting Process Evolution 131

3.4 Detailed Change Histories Versus Difference Analysis

It is also possible to determine version differences along the evolution of a process
model by simply recording every change as it is done. Keeping such a change log
manually, however, is very hard, unreliable work that often prevents people from
concentrating on their main tasks. For this reason, the only viable alternative is to
embed support for recording changes in process modeling tools (similar to the “track
changes” function available in common word processing programs).

Even if that is the case and although such change traces can be useful for certain
purposes (e.g., auditing) they often contain too much information for most other pur-
poses. For example, changes must often be undone, or they get superseded by larger
modifications. Most difference analysis users are not interested in such minutiae.
Proper difference analysis requires expressing the differences in a condensed, targeted
form, which frequently can be obtained by directly processing the models instead of
looking at their detailed change history.

4 A Preliminary Architecture for Difference Analysis

At the time of this writing, we are taking the first steps to produce a practical imple-
mentation of the vision presented in the previous chapters. In this section, we briefly
discuss the elements that, according to our current vision, should comprise an ade-
quate process model difference analysis system.

A block diagram for our architecture is shown in Figure 2. It is comprised of the
following components:

− A model importer, which purpose is reading model variants in diverse formats and
storing them in a common, comparable format in the model database.

Fig. 2. Block diagram for a preliminary difference analysis architecture

132 M. Soto and J. Münch

− A model database, containing a number of model variants. The database stores
process models using W3C's Resource Description Framework (RDF) [18] as a
generic notation. RDF is able to represent internal model structures like graphs,
trees and sequences. Data attached to such structures, like text descriptions and
graphics, can also be stored as RDF literals. Currently, we are testing a trial im-
plementation of such a database, based on a standard relational database system.

− A low-level comparison engine, which calculates raw differences between model
variants. This engine takes two variants of a model and produces a single model
(called the comparison model) that contains the elements from both variants deco-
rated to indicate whether they are common to both variants or exclusive to one of
them. Our intent is to also use RDF to express such unified comparison models.

− A specialized query language interpreter, able to direct the above engine to build a
comparison model from two given model variants, and further filter and process it
in a variety of ways. This language is also able to feed the (potentially filtered)
comparison model to other algorithms for further processing or visualization.

− A number of visualization and display algorithms intended to provide a high–level
view of the comparison results.

5 Related Work

Although no previous work we know about specifically deals with analyzing and
visualizing differences between process models, other research efforts are concerned
in one way or another with comparing model variants and providing an adequate rep-
resentation for the resulting differences.

[10] and [11] deal with the comparison of UML models representing diverse as-
pects of software systems. These works are generally oriented towards supporting
software development in the context of the Model Driven Architecture. Although
their basic comparison algorithms are applicable to our work, they are not concerned
with providing analysis or visualization for specific users.

[12] presents an extensive survey of approaches for software merging, many of
which involve comparison of program versions. Most program comparison, however,
occurs at a rather syntactic level, and cannot be easily generalized to work with more
abstract structures like process model graphs.

[13] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [14] and [15] describe two systems currently in development
that allow for efficiently storing a potentially large number of variants of an RDF
model by using a compact representation of the differences between them. These
works concentrate on space-efficient storage and transmission of difference sets, but
do not go into depth regarding how to use them to support higher-level tasks.

Finally, an extensive base of theoretical work is available from generic graph com-
parison research (see [16]), an area that is basically concerned with finding isomor-
phisms (or correspondences that approach isomorphisms according to some metric)
between arbitrary graphs whose nodes and edges cannot be directly matched by name.
This problem is analogous in many ways to the problem that interests us, but applies
to a separate range of practical situations. In our case, we analyze the differences

 Process Model Difference Analysis for Supporting Process Evolution 133

(and, of course, the similarities) between graphs whose nodes can be reliably matched
in a computationally inexpensive way.

6 Summary and Future Work

Process model difference analysis helps to determine the differences between two
variants of a process model, and offers flexible mechanisms to filter, analyze, and
display those differences in specific ways, with the intent of supporting software
process evolution. This type of analysis relies on the fact that the compared models
contain a sizable common portion that can be used as a base for the comparison.

We have described two process management oriented scenarios where difference
analysis can be used to support the tasks of many of the stakeholders involved in
process improvement. The analysis of these scenarios allowed us to identify a number
of concrete comparison operations that would arguably be useful while performing
many of the discussed tasks.

Taking the scenarios and the particular comparison operation types into account,
we discussed the main conceptual and technical challenges we think we have to over-
come in order to implement a practical difference analysis system. We also presented
a preliminary sketch of the software architecture for such a system.

Our aim is to completely implement a working difference analysis system, in order
to validate its utility in practical scenarios. The main objectives for the validation are
guaranteeing that our system allows us to specify a wide variety of useful compari-
sons with reasonable effort, and that the produced comparison results constitute useful
support for the process improvement tasks at which they are targeted.

Acknowledgments. We would like to thank Sonnhild Namingha from Fraunhofer
IESE for proofreading this paper. This work was supported in part by the German
Federal Ministry of Education and Research (V-Bench Project, No.01| SE 11 A).

References

1. Rombach, D.: Integrated Software Process and Product Lines: Unifying the Software
Process Spectrum. In: International Software Process Workshop, SPW 2005, Revised Se-
lected Papers (Mingshu Li, Barry Boehm, Leon J. Osterweil, eds.) LNCS 3840. Springer-
Verlag, (2006)

2. European Space Agency, Board for Software Standardisation and Control (BSSC): Tailor-
ing of ECSS Software Engineering Standards for Ground Segments in ESA. BSSC docu-
ment 2005(1) Issue 1.0. (2005)

3. European Cooperation for Space Standardization (ECSS), standards available at
http://www.ecss.nl (last checked 2006-03-31)

4. V-Modell XT. Available from http://www.v-modell.iabg.de/ (last checked 2006-03-31).
5. Ocampo, A., Boggio, D., Münch, J., Palladino, G.: Towards a Reference Process for Wire-

less Internet Services, IEEE Transactions on Software Engineering, vol. 29, no. 12 (2003)
1122-1134

134 M. Soto and J. Münch

6. Zettel, J., Maurer, F., Münch, J., Wong, L.: LIPE: A Lightweight Process for E-Business
Startup Companies Based on Extreme Programming. In: Proceedings of the 3rd Interna-
tional Conference on Product Focused Software Process Improvement (Profes 2001).
LNCS 2188, Springer-Verlag (2001) 255-270

7. Basili, V. R.; Caldiera, G.; Rombach, H. D.: Experience Factory. In: Marciniak, J. J. (Ed.):
Encyclopedia of Software Engineering. Volume 1. A-O. John Wiley & Sons (2002) 511-519

8. International Electrotechnical Commission (IEC): IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems .
http://www.iec.ch/zone/fsafety/ (last checked 2006-03-31)

9. Algorithms and Theory of Computation Handbook, CRC Press LLC: Longest Common
Subsequence. From Dictionary of Algorithms and Data Structures, Paul E. Black, ed.,
NIST (1999)

10. Alanen, M., Porres, I.: Difference and Union of Models. In: Proceedings of the UML Con-
ference, LNCS 2863Produktlinien. Springer-Verlag (2003) 2-17

11. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA Work-
shop on Best Practices for Model-Driven Software Development, Vancouver (2004)

12. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, Vol. 28, No. 5, (2002)

13. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences Be-
tween RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).
Online publication http://www.w3.org/DesignIssues/Diff (last checked 2006-03-30)

14. Völkel, M., Enguix, C. F., Ryszard-Kruk, S., Zhdanova, A. V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe.
(2005)

15. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002.
(2002) Lyon, France.

16. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhäuser (1993)

17. Ocampo, A., Münch, J.: Process Evolution Supported by Rationale: An Empirical Investi-
gation of Process Changes. In: Proceedings of the 2nd Software Process Workshop and 7th
International Workshop on Software Process Simulation and Modeling, SPW/ProSim
2006. (2006)

18. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation, available from
http://www.w3.org/TR/rdf-primer/ (2004) (last checked 2006-03-31)

	Introduction
	Application Scenarios for Difference Analysis
	Scenario 1: Definition and Evolution of Process Standards
	Scenario 2: Process Compliance Analysis
	Further Applications

	Difference Analysis Challenges
	Filtering and Presenting Results for a Multitude of User Groups
	Genericity
	Multiple Comparison Algorithms (or, Why Diff Is Not Enough?)
	Detailed Change Histories Versus Difference Analysis

	A Preliminary Architecture for Difference Analysis
	Related Work
	Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

