

Lecture Notes in Computer Science 4257
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ita Richardson Per Runeson
Richard Messnarz (Eds.)

Software Process
Improvement

13th European Conference, EuroSPI 2006
Joensuu, Finland, October 11-13, 2006
Proceedings

13

Volume Editors

Ita Richardson
University of Limerick
National Technological Park
Castletroy, Limerick, Ireland
E-mail: Ita.Richardson@ul.ie

Per Runeson
Lund University
Department of Communication Systems
Box 118, 221 00 Lund, Sweden
E-mail: per.runeson@telecom.lth.se

Richard Messnarz
ISCN
Florence House, 1 Florence Villas, Bray, Co. Wicklow, Ireland
E-mail: rmess@iscn.com

Library of Congress Control Number: 2006934304

CR Subject Classification (1998): D.2, K.6, K.4.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-47695-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-47695-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11908562 06/3142 5 4 3 2 1 0

Preface

This textbook is intended for use by SPI (Software Process Improvement) man-
agers and researchers, quality managers, and experienced project and research
managers. The papers constitute the research proceedings of the 13th EuroSPI
(European Software Process Improvement, www.eurospi.net) conference, held
in Joensuu, Finland, 11-13 October 2006. The conference was held in 1994 in
Dublin (Ireland), 1995 in Vienna (Austria), 1997 in Budapest (Hungary), 1998
in Gothenburg (Sweden), 1999 in Pori (Finland), 2000 in Copenhagen (Den-
mark), 2001 in Limerick (Ireland), 2002 in Nuremberg (Germany), 2003 in Graz
(Austria), 2004 in Trondheim (Norway), and 2005 in Budapest (Hungary). Eu-
roSPI has established an experience library (library.eurospi.net) which will be
continuously extended over the next years and will be made available to all at-
tendees. EuroSPI has also initiated a European Qualification Network in which
different SPINs and national initiatives join mutually beneficial collaborations
(EQN -- EU Leonardo da Vinci network project).

With a founding conference on 5.12.2006 through EuroSPI partners and net-
works, in collaboration with the European Union (supported by the EU Leonardo
da Vinci Programme), a European certification association will be created for
the IT and services sector to offer SPI knowledge and certificates to industry,
establishing close knowledge transfer links between research and industry. The
biggest value of EuroSPI lies in its function as a European knowledge and expe-
rience exchange mechanism for SPI know-how between research institutions and
industry.

September 2006 Richard Messnarz
www.eurospi.net

Organization

Organization Committee

EuroSPI 2006 is organized by the EuroSPI partnership (www.eurospi.net), in-
ternationally coordinated by ISCN, and locally supported by the University of
Joensuu.

Program Committee

Conference Chair: Richard Messnarz (ISCN, IRL)
Scientific Program Chair: Ita Richardson (University of Limerick, Ireland)
Scientific Program Chair: Per Runeson (University of Lund, Sweden)
Industrial Program Chair: Jorn Johansen (DELTA, Denmark)
Industrial Program Chair: Mads Christiansen (DELTA, Denmark)
Industrial Program Chair: Nils Brede Moe (SINTEF, Norway)
Industrial Program Chair: Risto Nevalainen (STTF,Finland)
Tutorial Chair: Richard Messnarz (ISCN, Ireland)
Exhibition Chair: Stephan Goericke (ISQI, Germany)
Organizing Chair: Markku Tukiainen(University of Joensuu,

Finland)
Organizing Chair: Adrienne Clarke (ISCN, Ireland)

Local Committee

Local Organizer: University of Joensuu, www.joensuu.fi

Additional Scientific Reviewers

Abrahamsson, Pekka (VTT Electronics, Finland)
Ambriola, Vincenzo (Università di Pisa, Italy)
Aurum, Aybüke (University of New South Wales, Australia)
Baddoo, Nathan (University of Hertfordshire, UK)
Biffl, Stefan (Technische Universität Wien, Austria)
Biro, Miklos (Corvinus University of Budapest, Hungary)
Bunse, Christian (Fraunhofer IESE, Germany)
Cater-Steel, Aileen (The University of Southern Queensland, Australia)
Ciolkowski, Marcus (TU Kaiserslautern, Germany)
Coleman, Gerry (Dundalk Institute of Technology, Ireland)
Dalcher, Darren (School of Computing Science, UK)

VIII Organization

Daughtrey, Taz H. (James Madison University, USA)
Desouza, Kevin C. (University of Illinois at Chicago, USA)
Dingsoyr, Torgeir (SINTEF IKT, Norway)
Duncan, Howard (Dublin City University, Ireland)
Dyba, Tore (SINTEF Telecom and Informatics, Norway)
Gorschek, Tony (Blekinge Institute of Technology, Sweden)
Gresse, Von Wangenheim Christiane (Universidade do Vale do Itajai, Brazil)
Heijstek, Andre (SEI-Europe, Germany)
Jorgensen, Magne (Simula Research Laboratory, Norway)
Landes, Dieter (Fachhochschule Coburg, Germany)
Mcquaid, Patricia (California Polytechnic State University, USA)
Müller, Matthias (Universität Karlsruhe, Germany)
Münch, Jürgen (Fraunhofer IESE, Germany)
Oivo, Markku (University of Oulu, Finland)
Ostolaza, Elixabete (European Software Institute, Spain)
Pries-Heje, Jan (IT University of Copenhagen, Denmark)
Ruhe, Günther (University of Calgary, Canada)
Schneider, Kurt (Universität Hannover, Germany)
Shepperd, Martin (Bournemouth University, UK)
Siakas, Kerstin (Technological Educational Institute of Thessaloniki, Greece)
Sillitti, Alberto (Free University of Bolzano-Bozen, Italy)
Stalhane, Tor (Norwegian University of Science and Technology, Norway)
Tukiainen, Markku (University of Joensuu, Finland)

Table of Contents

Introduction

Software Process Improvement – EuroSPI 2006 Conference 1
Richard Messnarz, Ita Richardson, Per Runeson

SPI and Processes

Developing Software with Scrum in a Small Cross-Organizational
Project . 5

Torgeir Dingsøyr, Geir Kjetil Hanssen, Tore Dyb̊a, Geir Anker,
Jens Olav Nygaard

Implementing an ISO 9001 Certified Process . 16
Tor St̊alhane

Software Process in Practice: A Grounded Theory of the Irish Software
Industry . 28

Gerry Coleman, Rory O’Connor

SPI and Problem/Risk Management

Improving the Software Problem Management Process: A Case Study . . . 40
Marko Jäntti, Kari Kinnunen

A Framework for Overcoming Supplier Related Threats in Global
Projects . 50

Darja Šmite, Juris Borzovs

Three Case-Studies on Common Software Process Problems in Software
Company Acquisitions . 62

Jarmo J. Ahonen, Anne-Maria Aho, Hanna-Miina Sihvonen

SPI Measurement

Simple Indicators for Tracking Software Process Improvement
Progress . 74

Anna Börjesson

X Table of Contents

Investigating Suitability of Software Process and Metrics for Statistical
Process Control . 88

Ayça Tarhan, Onur Demirörs

Current Practices of Measuring Quality in Finnish Software
Engineering Industry . 100

Jari Soini, Vesa Tenhunen, Markku Tukiainen

SPI and Process Modelling

An Industry-Based Evaluation of Process Modeling Techniques 111
Brent Cahill, David Carrington, Brian Song, Paul Strooper

Process Model Difference Analysis for Supporting Process Evolution 123
Mart́ın Soto, Jürgen Münch

Changing Role of SPI – Opportunities and Challenges of Process
Modeling . 135

Antero Järvi, Tuomas Mäkilä, Harri Hakonen

SPI and Human Success Factors

Mentality Patterns: Capturing and Dealing Explicitly with Recurring
Turns of Mind in Software Development . 147

Georgios Koutsoukos

Improving by Involving: A Case Study in a Small Software Company 159
Nils Brede Moe, Tore Dyb̊a

Trust Facilitating Good Software Outsourcing Relationships 171
Kerstin V. Siakas, Dimitri Maoutsidis, Errikos Siakas

SPI Implementation

Assessing Software Replacement Success: An Industrial Case Study
Applying Four Approaches . 183

Jussi Koskinen, Henna Sivula, Tero Tilus, Irja Kankaanpää,
Jarmo J. Ahonen, Päivi Juutilainen

Leveraging Feedback on Processes in SOA Projects . 195
Daniel Lübke, Kurt Schneider

Table of Contents XI

Taba Workstation: Supporting Software Process Improvement
Initiatives Based on Software Standards and Maturity Models 207

Analia Irigoyen Ferreiro Ferreira, Gleison Santos,
Roberta Cerqueira, Mariano Montoni, Ahilton Barreto,
Ana Regina Rocha, Sávio Figueiredo, Andrea Barreto,
Reinaldo C. Silva Filho, Peter Lupo, Cristina Cerdeiral

Author Index . 219

Software Process Improvement – EuroSPI 2006
Conference

R. Messnarz1, I. Richardson2, and P. Runeson3

1 EuroSPI , c/o ISCN LTD, Bray, Co. Wicklow, Ireland
http://www.eurospi.net

2 Department of Computer Science & Information Systems and ISERC,
University of Limerick, Limerick, Ireland

3 Lund University, Dept. of Communication Systems, SE-221 00 LUND, Sweden

Abstract. This book constitutes the refereed research proceeding of the 13th
European Software Process Improvement Conference, EuroSPI 2006, held in
Joensuu, Finland in October 2006. The 18 revised full papers presented were
carefully reviewed and selected from 62 submissions. The papers are organized
in topical sections on SPI (Software Process Improvement) processes, SPI and
risk management, measurement, process modelling, human factors, and
implementation of SPI.

1 EuroSPI

EuroSPI's mission is to develop an experience and knowledge exchange platform for
Europe where SPI practices can be discussed and exchanged and knowledge can be
gathered and shared. This mission is implemented by three major action lines:

1. An annual EuroSPI conference supported by Software Process Improvement
Networks from different EU countries.

2. Establishing an Internet based knowledge library, newsletters, and a set of
proceedings and recommended books.

3. Establishing an effective team of national representatives (in future from
each EU country) growing step by step into more countries of Europe.

EuroSPI represents a European experience forum collaborating with nearly all
SPINs in Europe. EuroSPI offers experiences which can be re-used creating benefits
in your own organization.

EuroSPI is a successful initiative since 1994. Annual conferences were held 1994 in
Dublin (Ireland), 1995 in Vienna (Austria), 1996 in Brighton (UK), 1997 in Budapest
(Hungary), 1998 in Gothenburg (Sweden), 1999 in Pori (Finland), 2000 in Copenhagen
(Denmark), 2001 in Limerick (Ireland), 2002 in Nuremberg (Germany), 2003 in Graz
(Austria), and 2004 in Trondheim (Norway), 2005 in Budapest (Hungary), 2006 in
Joensuu (Finland), and is scheduled /planned 2007 in Berlin (Germany).

1.1 Board Members

EuroSPI is managed by a partnership of large Scandinavian research companies and
experience networks (SINTEF, DELTA, STTF), the ASQF as a large German quality

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 1 – 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 R. Messnarz, I. Richardson, and P. Runeson

association, the American Society for Quality, and ISCN as the co-ordinating partner.
EuroSPI collaborates with a large number of SPINs (Software Process Improvement
Network) in Europe.

ASQ, http://www.asq.org
ASQF, http://www.asqf.de
DELTA, http://www.delta.dk
FiSMA, http://www.fisma.fi
ISCN, http://www.iscn.com
SINTEF, http://www.sintef.no

1.2 EuroSPI Scientific Program Committee

EuroSPI applies strict quality management procedures and each paper is reviewed by
three independent reviewers. The research program committee for EuroSPI 2006
comprises 35 reviewers from 17 different countries.

ABRAHAMSSON Pekka, VTT Electronics, FINLAND
AMBRIOLA Vincenzo, Universita di Pisa, ITALY
AURUM Aybüke, University of New South Wales, AUSTRALIA
BADDOO Nathan, University of Hertfordshire, UK
BIFFL Stefan, Technische Universität Wien, AUSTRIA
BIRO Miklos, Corvinus University of Budapest, Hungary
BUNSE Christian, Fraunhofer IESE, GERMANY
CATER-STEEL Aileen, The University of Southern Queensland, AUSTRALIA
CIOLKOWSKI Marcus, TU Kaiserslautern, GERMANY
COLEMAN Gerry, Dundalk Institute of Technology, IRELAND
DALCHER Darren, School of Computing Science, UK
DAUGHTREY Taz H., James Madison University, USA
DESOUZA Kevin C., University of Illinois at Chicago, USA
DINGSOYR Torgeir, SINTEF IKT, NORWAY
DUNCAN Howard, Dublin City University, IRELAND
DYBA Tore, SINTEF Telecom and Informatics, NORWAY
GORSCHEK Tony, Blekinge Institute of Technology, SWEDEN
GRESSE VON WANGENHEIM Christiane, Universidade do Vale do Itajai,

BRAZIL
HEIJSTEK Andre, SEI-Europe, GERMANY
JORGENSEN Magne, Simula Research Laboratory, NORWAY
LANDES Dieter, Fachhochschule Coburg, GERMANY
MCQUAID Patricia, California Polytechnic State University, USA
MUELLER Matthias, Universitaet Karlsruhe, GERMANY
MUENCH Juergen, Fraunhofer IESE, GERMANY
OIVO Markku, University of Oulu, FINLAND
OSTOLAZA Elixabete, European Software Institute, SPAIN
PRIES-HEJE Jan, IT University of Copenhagen, DENMARK
RUHE Guenther, University of Calgary, CANADA
SCHNEIDER Kurt, Universitaet Hannover, GERMANY
SHEPPERD Martin, Bournemouth University, UK

 Software Process Improvement – EuroSPI 2006 Conference 3

SIAKAS Kerstin, Technological Educational Institute of Thessaloniki, GREECE
SILLITTI Alberto, Free University of Bolzano-Bozen, ITALY
STALHANE Tor, Norwegian University of Science and Technology, NORWAY
TUKIAINEN Markku, University of Joensuu, FINLAND

1.3 EuroSPI Scientific Chairs

The EuroSPI general chair is responsible for the entire conference, including the
research and the industry tracks. The EuroSPI Scientific Program Committee Chairs
represent acknowledged scientific experts in the SPI field who coordinate the reviews
of papers in collaboration with the members of the scientific program committee.

Dr Richard Messnarz
General Chair of EuroSPI
ISCN, Ireland and Austria
rmess@iscn.com

Dr Ita Richardson
EuroSPI Scientific Programme Committee Chair
University of Limerick , Ireland
Ita.Richardson@ul.ie

Prof. Dr Per Runeson
EuroSPI Scientific Programme Committee Chair
Lund University, Sweden
per.runeson@telecom.lth.se

2 European Certification Association

The EuroSPI group with partners joined a consortium and received EU funding (EU
Leonardo da Vinci Network EQN – European Quality Network, 2005 - 2007) to
establish a European qualification strategy for job roles, such as SPI manager, project
manager, scope manager, innovation manager, etc.) Key job roles are being identified,
and all job roles need to fulfil certain European quality criteria to become accredited.

An EU-Certificates association will be founded in December 2006 as an
accreditation association, seated in Vienna, managed by EuroSPI partners. All
partners of EQN become founding members, plus those who will be invited to the
founding conference. Project partners from participating EU projects and programs
will join as members as well. Every 2 years a director is elected from all members
who will be heading the management team (those managing the EU certificates and
the test portal systems).

4 R. Messnarz, I. Richardson, and P. Runeson

The services are
• Accreditation of training institutions who offer specific job roles and publishing

the list of accredited training institutions
• Accreditation of trainers who offer specific job roles and publishing the list of

accredited trainers
• Certification of students and publishing the list of certified students (list of all

innovation managers who are certified…etc.)
• Access to the online knowledge library through a flat fee per year

The core group contains 17 organisations, plus approx. 50 European training
organisations who will be invited to the founding conference in December 2006.

3 How to Read the Proceedings

Since its beginning in 1994 in Dublin, the EuroSPI initiative outlines that there is not
a single silver bullet to solve SPI issues but you need to understand a combination of
different SPI methods and approaches to achieve concrete benefits. Therefore each
proceeding covers a variety of different topics and at the conference we discuss
potential synergies and combined use of such methods and approaches. This
proceeding contains selected research papers for 6 topics:

SPI and Processes (3 papers)
SPI and Problem / Risk Management (3 papers)
SPI and Measurement (3 papers)
SPI and Process Modelling (3 papers)
SPI and Human Success Factors (3 papers)
SPI Implementation (3 papers).

3.1 Recommended Further Reading

In [1] we integrated the proceedings of 3 EuroSPI conferences into one book which
was edited by 30 experts in Europe. In [2] you find the EuroSPI research proceeding
published by Springer and based on EuroSPI 2004. In [3] you find the most recent
EuroSPI research proceeding published by Springer and based on EuroSPI 2005.

References

1. Messnarz R., Tully C. (eds.), Better Software Practice for Business Benefit - Principles and
Experience, IEEE Computer Society Press, ISBN: 0-7695-0049-8, paperback, 409 pages,
Wiley-IEEE Computer Society Press, September 1999

2. Dingsøyr, T. (Ed.) , Software Process Improvement 11th European Conference, EuroSPI
2004, Trondheim, Norway, November 10-12, 2004. Proceedings, 2004, X, 207 p.,
Softcover, ISBN: 3-540-23725-9, in: Lecture Notes in Computer Science, Vol. 3281 ,
Springer Verlag, November 2004

3. Richardson I., Abrahamsson P, Messnarz R., (Ed.) , Software Process Improvement 12th
European Conference, EuroSPI 2005, Budapest, Hungary, November 9-11, 2005.
Proceedings, 2005, X, 213 p., Softcover, ISBN: 3-540-30286-7, in: Lecture Notes in
Computer Science, Vol. 3792, Springer Verlag, November 2005

Developing Software with Scrum in a Small
Cross-Organizational Project

Torgeir Dingsøyr1,2, Geir Kjetil Hanssen1, Tore Dybå1
Geir Anker3, and Jens Olav Nygaard3

1 SINTEF Information and Communication Technology,
NO-7465 Trondheim, Norway

2 Dept. of Computer and Information Science,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
3 SINTEF Information and Communication Technology,

N-0314 Oslo, Norway

Abstract. In an action research study, we describe the application of the scrum
software development process in a small cross-organizational development
project. The stakeholders in the project report many of the benefits we have
found in previous studies, such as increased overview of the project, flexibility
and motivation. In addition, we have found that estimation can be challenging
in cross-organizational projects due to the customer-provider relationship
between the participating organizations.

1 Introduction

Agile development has recently attracted much interest because of claims of many
improvements on areas such as work performance, quality and work environment.
This paper discusses experience with the introduction of Scrum to improve certain
aspects of the software development process for a department in a research institute
working with mathematical and geographical software. The context is a joint project
for, and in cooperation with, a public limited company to develop a digital map
application.

The purpose of this paper is to add to the scant literature on empirical studies of
software development with Scrum, specifically in a small-team setting comprising
developers from two organizations, in this case a public limited company (customer)
and a research institute.

The rest of the paper is organized as follows: First we set the theoretical context for
the study, summarize previous empirical studies of Scrum, and discuss our research
question. Further, we discuss action research, which is the research method applied in
this study. We have organized the findings according to the phases of action research:
we describe how we diagnosed the development processes at the research institute,
how we planned to introduce Scrum, what actually happened when introducing Scrum
to a pilot project, and how we evaluate this with respect to the business goal and
research goal. Finally, we specify the contributions of this study in relation to the
existing empirical knowledge base of Scrum.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 5 – 15, 2006.
© Springer-Verlag Berlin Heidelberg 2006

6 T. Dingsøyr et al.

2 Theoretical Context

Rising and Janoff [8] described Scrum as a development process for small teams,
which includes a series of short development phases, “sprints”, which typically lasts
from one to four weeks. The team captures identified tasks in a backlog, which is
reprioritized and updated in the beginning of each sprint. This also includes
estimating the effort required to complete each task. The customer participates in the
sprint meetings, but is not allowed to influence the team in between the meetings.
During a sprint, the team holds short daily Scrum meetings to discuss progress, plans
and potential problems. Scrum is thoroughly described by Schwaber and Beedle [11]
and Schwaber [10].

2.1 The Theory of Scrum

The cornerstone argument for the suitability of Scrum is that software development is
a complex process where many factors influence the final result. It is therefore
difficult or even impossible to plan ahead such as described in traditional waterfall-
like development processes. Scrum extends incremental software development to
what is called “empirical process control”; where feedback loops is the core element.
Scrum is inspired by a range of fields like complexity theory [4], system dynamics
[12] and Nonaka and Takeuchi’s theory of knowledge creation [7, 15], adapted to a
setting of software development.

2.2 Studies on Scrum

There are few studies of Scrum in the research literature. Most of the studies are
reports with little scientific backing of claims. We have found three lessons-learned
reports from companies taking up Scrum and one case study examining overtime
amongst developers and customer satisfaction in Scrum. We briefly summarize these
four studies:

AG Communication systems have tried using Scrum in several development
projects [8], and reported improved teamwork, more efficient problem-solving and
increased motivation in development projects.

Primavera, a company that develops project management solutions, reported a 30%
decrease of software defects the first nine months after release [9]. They also claimed
that Scrum improved the time to market, and improved the work environment for the
development team. It made the teams more aware of the importance and the business
value of the features they were implementing. Another effect observed was that the
stakeholders got closer to the work through seeing the product evolve during monthly
sprint reviews.

Easel Corporation applied Scrum in developing an object-oriented analysis and
design tool in 1993 [14]. Lessons learned from this case were that the company
delivered software on time and with more functionality than expected. Customer
satisfaction was also high. The study does not give details as it is reported more than
10 years after the project ended.

Mann and Maurer reported on Scrum’s impact on overtime and customer
satisfaction. In a case study in a small company that developed software for the oil

 Developing Software with Scrum in a Small Cross-Organizational Project 7

and gas industry [6], PetroSleuth, overtime data for a period over two years showed
that there was a significant drop after introducing Scrum, from a mean percentage of
19 to 7. Customers were interviewed about the software delivered before and after
Scrum was introduced, and they state that they were more satisfied with the software
after Scrum was introduced. One customer said “I believe there have been far greater
consistency, transparency and coordination since the implementation of Scrum”.
Also, developers themselves were more satisfied with their products after introducing
Scrum.

2.3 Study Aim and Research Question

This study is made in a research institute with a department developing mathematical
software (“Applied Mathematics”) and a department focusing on software process
improvement. The goal of the applied mathematics department was to improve their
software development processes, particularly improving change management,
knowledge management, estimation and risk management.

The research goal of this study is to add to the literature of empirical studies of
Scrum by providing an action research study of the introduction of Scrum in a small
cross-organizational development team. We hope this research can contribute to
building theory on which situations and contexts Scrum is a suitable development
method. Our research question is:

What characterizes the use of Scrum in small-team cross-organizational development
projects?

Do we still see the benefits reported in other Scrum-studies like team motivation,
increased productivity, and higher customer satisfaction in cross-organizational
projects? And what might be new problems arising in this context? How would, for
example, the management of the project be seen by the participants in such a model?

3 Research Method

To investigate our research question and to achieve the improvement goals of the
department, we used the participative research method action research [1, 5]. We
have organized the research according to the five principles suggested by Davison et
al. [2].

As for the first principle of researcher-client agreement, this research is done in a
project on agile software development, where one department of a research institute is
participating as well as one of their customers: a public limited company: Avinor. We
have agreed on an improvement and research plan, which gives an overview of what
data was to be collected during the study, which included semi-structured interviews
(interview guide given in the appendix) with three of the four participants in a pilot
project, minutes of sprint reviews, versions of backlogs and other documents.

We followed the cyclical process model (principle two) proposed by Susman and
Evered [14] in discussing the situation of the company, planning action, taking action,

8 T. Dingsøyr et al.

Fig. 1. The cyclical model of action research (taken from Susman and Evered)

evaluating action, and finally specifying what we think others can learn from our
study. The third principle, of theory, is satisfied in our research question, although our
study is not intended to validate theory, but to add a descriptive study of practice in a
particular setting. We analyzed the qualitative interview material using principles
from grounded theory [13]. The fourth principle (“change through action”) is satisfied
through the actions taken in our cycle, when introducing Scrum into the project.

Table 1. The five principles of canonical action research, suggested by Davison et al

Principles of canonical action research

1. The principle of the researcher-client agreement.
2. The principle of the cyclical process model.
3. The principle of theory.

4. The principle of change through action.
5. The principle of learning through reflection.

The fifth principle of action research deals with learning through reflection. This
was ensured in the project through arenas where researchers and case participants
discussed actions that were taken, and the following analysis by the all participants
from the research institute. This included phone discussions, a workshop, a
postmortem review [3] and interviews.
The participants in this study include three parties, the Applied Mathematics (SAM)
and Software Process Improvement departments at SINTEF ICT as well as a public
limited company, Avinor, which is a customer of SAM.

SAM delivers mathematical software, mainly to the Norwegian market, and has
about 20 employees. The business of SAM is organized in projects, which may range
from a few man-months to more than 15 man-years in size. This is usually spread out
so that between one and five employees work on a project at a given time. The

 Developing Software with Scrum in a Small Cross-Organizational Project 9

customers range from institutions such as the Research Council of Norway to smaller
private technology-oriented startups. This makes for an interesting mix of projects
with composition of research and development ranging pure research to development
projects.

SAM’s “equity” consists largely of its intellectual property, and it is traditionally
“encoded” in the form of computer software and libraries. This is also the main
deliverable in projects with companies and many other institutions as customers.
Thus, much time in SAM is spent developing, maintaining and extending software.
The ideas behind agile development present an interesting approach both with respect
to the problems of handling changes during development and estimation of time and
costs.

The process improvement group conducts empirical studies of software process
improvement, and has lately been particularly interested in agile methods like Scrum.
Avinor has a long customer relation to SAM.

4 Action Research Study

We present the action research study through the phases suggested by Susman and
Evered [13]: Diagnosing, action planning, action taking, evaluating and specifying for
learning.

4.1 Diagnosing

We started the diagnosing phase by conducting a postmortem review [3] at SAM in
order to identify strong and weak aspects with their software development processes.
Four developers and project managers from the department participated in a half-day
workshop. We found that the main strong aspects were:

• Good products – customers get value for money through efficient software
developed by ambitious developers.

• Research-oriented environment – the environment is creative and develops
good product ideas, through informal self-organization.

• Customer relations – good dialogue and cooperation with customers.

We found some points that could be improved, where the most important ones were:

• Software development process – few common methods and standards, poor
estimation, change and risk management, sharing of competence and reuse.

• Software development method – poor documentation from projects, projects
often continues after the product is “good enough”, some “dirty hacks”.

Other problems identified, were related to the management of software projects and
the fact that many projects involve only one person.

4.2 Action Planning

Based on the postmortem review, we discussed what could be the right tasks in order
to improve the situation and still keep what the department held as their strong

10 T. Dingsøyr et al.

aspects. The researchers from the process improvement group were interested in
trying out principles from agile software development, which we also thought was a
suitable choice given the size and type of organization. Research-based software
solutions require development processes that give sufficient room for creativity,
which is found in the agile development methods. During the discussions, we found
that improving project management and change management would help with many
of the problems that were aired. We decided to run a pilot project with an agile
software development method focusing on these two aspects. The choice was then to
try Scrum, because this method focuses mainly on project management and also has
solutions for change management. We selected a pilot project which was run by
Avinor to develop a digital map application. The project involved one developer and
one project manager from SAM and two developers from the public limited company
(the customer), where one also was the general project manager. The pilot study
covered the first phase of the project, which started with a kick-off on the 28th of
April 2005 and continued throughout that year. The project is planned to end by the
summer of 2006 and has a total budget of approximately 100,000€. The contractor
and the customer were not co-located, although the developer from SAM stayed at the
customer’s site for shorter periods. To handle the practicalities, the developers worked
on separate tasks and had little cooperation at the development-level. As the solution
involved advanced graphics functionality for maps, new browser technology and
various other state-of-the-art components, it was technically challenging although the
developers made use of pre-existing components.

4.3 Action Taking

The first task was to discuss with the customer if they would be interested in using
Scrum as a development process in the project. Because of good prior relations to the
department, they agreed to participate, even though there was a contract written with a
requirement specification and a fixed price in the traditional way. We organized a
kick-off where all project members participated. In addition some observers from
other projects at SAM, who considered using Scrum in their own projects, attended
the beginning of the workshop. The workshop started with a researcher from the
process improvement group introducing Scrum, followed by a discussion to determine
if the project was appropriate for trying this out. The project decided favorably, and
discussed the consequences of this change, and proceeded to generate an initial
backlog in the form of an excel-sheet. This was mainly based on the original
requirement specification and planned the first sprint. The project manager said: We
defined each task on an A4 sheet, and discussed what needed to be done first. The
first phase of the project was set to contain six sprints. The backlog contained 46
tasks, of which five were included in the first sprint. The sprints lasted approximately
ten work-days, but would always take more calendar time as all people involved were
working on other projects in parallel. The sprint durations were adjusted slightly to
optimize placement of holidays and meetings in other projects.

4.4 Evaluating

We evaluated the project after interviewing three of the four participants in the project
after sprint five, and after gathering backlog data from the first five sprints.

 Developing Software with Scrum in a Small Cross-Organizational Project 11

We present the evaluation in three parts, first we let the participants describe how
they experienced the main elements in Scrum, present what the participants view as
positive aspects of the development method, and then discussed challenges in this
particular project.

Main Scrum Principles Followed
In the project, the sprint meetings were organized after approximately ten full work-
days. The project manager said: The agenda was very simple: we divided the sprint
meeting in two, where the first part was the sprint review and the next sprint
planning. And then we opened the product backlog to check out completed tasks and
record time spent, and discussed the tasks in the sprint. Then, we made a new sprint
out of the remaining requirements. I think that worked well. Scrum meetings were
organized at regular intervals, but the participants decided to organize them separately
as they worked on different parts and thus was not synchronized. Also, for much of
the time the SAM part and the customer’s developers were not located together. The
Scrum master from SAM said: We did not do daily Scrums, we found that to be
overkill. Here, we had a Scrum meeting every third day in the beginning, and I think it
got a bit more seldom after a while. The short meetings were seen as valuable by both
participants. The Scrum master said: It was very useful in the beginning, when I asked
what are the problems, what happened since the last time and so on. I think just
wording those questions is beneficial. The developer from SAM said: Yes it makes
you conscious of things, but also makes sure that the Scrum master is in control, that
there will not be any bombs under way.

The concept of having working software which increases customer value after each
sprint seems to have been successful. The people from SAM said: We have tried to
have a working system as a result of each sprint, it has not only been a demo … I
think it worked really well, because the software has in fact been working after every
release. This was also appreciated by the customer, the project manager said: I
remember the first delivery, which we got on a CD, and it was like: ‘here is the
delivery’.

Perceived Benefits of Scrum
In total, both the SAM department and the customer were satisfied with the process
followed. The Scrum master from SAM said: I think it has worked very well... It
would have worked perfectly if we had started working at the same time and if we had
filled more of the backlog at the beginning of the project. The developer from SAM
said: I feel this is the way to go in future projects. I see clear benefits by working in
this way compared to the traditional way. And I have the impression that this is also
what the customer is thinking. The project manager said: I am very satisfied with the
way we have worked. You get an early overview of what has been done. It is easier to
know what remains. We are very happy with Scrum, we just wish we had been able to
use it more … A dream situation would be that everyone could be in one place, in the
same room. The project manager described the flexibility of Scrum as an advantage:
Maybe we have been a bit more flexible. … we have not reverted totally from what
was written in the requirement specification, but new tasks have appeared.

The developer from SAM was satisfied with working at the customer site during
some sprints of the project: There you have everything… People that know something

12 T. Dingsøyr et al.

about how the back-end systems your software talks to works, it is a lot easier to get
answers to things you wonder about.

Challenges with Scrum in Cross-Organizational Projects
The project manager described effort estimation as the main problem with the project
so far: …we have not at all been good at… effort estimation. … There were many
tasks that took twice as much time as estimated. The developer from SAM said: I
really have a hard time making effort estimates. It is R&D we are doing, there is a lot
of new technology which is pushed to the extreme in this project. But the benefit of
Scrum is that you do the estimates at a low level, and have more control with the
mistakes you do when you have broken it down to task level. But the people from
SAM thought that they themselves had become better and more realistic at doing
estimation during the project, because of the frequent feedback. The Scrum master
said: after all, I feel that we have much better control. However, the backlog grew
during the project, which was a problem because the contract for the project was fixed
on functionality. The developer agreed that he would like to continue working in this
manner. If we look at the planned and actual effort given in Table 2, we see that the
largest deviation was in sprint number two, which could indicate that the project
participants got better at estimating as the project proceeded. The deviation in sprint
one was low as the tasks were initial preparations and basic setup that was more or
less straight forward and thus easy to estimate more precise.

Table 2. Total effort estimate and actual use for the first five Sprints in number of hours

Sprint # 1 2 3 4 5
Planned effort (h) 76 48 56 136 112
Actual effort (h) 80 84 52 180 132
Deviation (%) 5 75 -7 32 18

The project participants from SAM expressed that it was difficult to estimate the
effort when Avinor participated in the development team as well as being the
customer of SAM’s part. The Scrum master said: We have a customer-supplier
relationship, even though we participated in the same project, and I think we lowered
the estimates more for us than we would if the customer was to do the tasks
themselves [maybe unconsciously]. This could have been easier if both parties had
experienced problems with estimates at the same time: If they had worked more in the
beginning, I think they would have experienced that the estimates were too low, and
they would not implicitly lower the estimates. If they said “hmm… two days?” for a
task, then after maybe five seconds, we suggested “maybe we can do it in one and a
half”. SAM was working alone for the first two sprints, and the customer started
working as well from sprint three. The project manager said: The reason for that was
that we had a lot of other matters to take care of, which forced us to wait, and also
that SAM were working on the basic maps and issues on the server-side, which had to
be completed before we could start our tasks.

The problem with estimation would not have been of the same magnitude if
Scrum was followed fully, but in this project there was a signed contract which

 Developing Software with Scrum in a Small Cross-Organizational Project 13

specified what SAM was to do, and it was a problem for them when they spent a lot
of time in the initial phase of the project. The overall work was to be divided equally
between the parties, but there was not a clear model on how this should be done. For
the lower level tasks, it was clear who was to do what, but as these were only
precisely defined as work progressed, this problem of workload splitting could arise.

4.5 Specifying Learning

What were the main learning points from using Scrum in the way described in the
digital map project? The goal of SAM Applied Mathematics was to improve their
development process, in particular change management and project management, and
with a focus on small projects. It is of course necessary also in smaller projects to be
able to estimate resources precisely. One problem with such projects is that
management easily grows to an inappropriate fraction of the whole project. Hence, a
goal for SAM was to figure out a way to manage projects with an “agility scaled to
the size of the project”, if at all possible.

Some key experiences can be singled out:

• Resource (especially development time) estimation is hard. Furthermore, it is not
obvious that it helps breaking tasks down. Instead of missing the total with a
large amount, SAM felt that they missed a lot of smaller tasks with smaller
amounts (but maybe equal percentage wise) at the cost of having to add more of
these smaller tasks. One big advantage is of course the possibility of discovering
such issues at a much earlier time.

• Continuous monitoring of the state of progress came inexpensively with this
development process. The agile process worked well both for the SAM developer
and project manager. The latter could concentrate on the actual development
work, and did not have to spend much time on management. The mix of
combined sprint reviews and sprint starts together with the short scrum meetings
appears to have given a very good “real work to management” ratio.

• One improvement to SAM’s process could be to spend some more time inititally
trying to complete the backlog. This would make it even easier to detect a budget
overflow at early stages. For projects of a more research-oriented nature than the
current one, this would maybe not be so important, or even possible or desirable.

The research question for this study was to examine what characterizes the use of
Scrum in small-team cross-organizational development projects. We have found
many of the benefits expressed in previous lessons learned-reports, like increased
overview of the project, more flexibility and motivation.

However, we also found that resource estimation became problematic for SAM as
the customer was participating in discussing the estimates. SAM thinks this implicitly
lowered the estimates because it happened at a point where the customer had not yet
worked enough in the project to encounter estimation-errors themselves. It can seem
that the nature of a relationship where a customer and contractor participates in
development can lower the learning effect of frequent feedback, when one party is
carrying more workload than the other in a period. Another problem for SAM is the
duality of working in a flexible manner with Scrum on a project with fixed price and
functionality.

14 T. Dingsøyr et al.

5 Conclusions and Further Work

In an action research project, we have tried out and evaluated the use of Scrum in a
cross-organizational project to develop a digital map application. Scrum is found to
offer a good development process for smaller R&D projects at SAM. The project
currently described has encouraged SAM to consider this model also for other
projects. However, effort estimation was found to be challenging due to the customer-
provider relationship in the project.

We will continue to follow the digital map application project in 2006, mainly
focusing on the learning effects of Scrum.

Acknowledgement

We are grateful to Anette Johnsrud at Avinor for participating in this study, and for
commenting on this article.

References

1. David Avison, Francis Lau, Michael Myers, and Peter Axel Nielsen, “Action Research,”
Communications of the ACM, no. 1, vol. 42, pp. 94-97, 1999.

2. Robert M. Davison, Maris G. Martinsons, and Ned Kock, “Principles of canonical action
research,” Information Systems Journal, no. 1, vol. 14, pp. 65 - 86, 2004.

3. Torgeir Dingsøyr, “Postmortem reviews: Purpose and Approaches in Software
Engineering,” Information and Software Technology, no. 5, vol. 47, pp. 293-303, 2005.

4. Kevin Kelly, Out of Control. Reading, Massachusets: Addison-Wesley, 1994,
5. Ned Kock, “The three threats of action research: a discussion of methodological antidotes

in the context of an information systems study,” Decision Support Systems, no. 2, vol. 37,
pp. 265 - 286, 2003.

6. Chris Mann and Frank Maurer, “A case study on the Impact of Scrum on Overtime and
Customer Satisfaction,” in Proceedings of Agile 2005. Denver: IEEE Press, 2005.

7. Ikujiro Nonaka and Hirotaka Takeuchi, The Knowledge-Creating Company: Oxford
University Press, 1995, ISBN 0-18.509269-4.

8. L. Rising and N. S. Janoff, “The Scrum software development process for small teams,”
Ieee Software, no. 4, vol. 17, pp. 26-+, 2000.

9. Bob Schatz and Ibrahim Abdelshafi, “Primavera gets agile: A successfull transition to
agile development,” IEEE Software, no. May/June, pp. 36 - 42, 2005.

10. Ken Schwaber, Agile Project Management with Scrum. Redmond: Microsoft Press, 2004,
11. Ken Schwaber and Mike Beedle, Agile Software Development with Scrum. Upper Saddle

River: Prentice Hall, 2001,
12. Peter M. Senge, The Fifth Discipline: The Art & Practise of The Learning Organisation:

Century Business, 1990, ISBN 0-7126-56871.
13. Anselm Strauss and Juliet Corbin, Basics of Qualitative Research: Second edition: Sage

Publications, 1998, ISBN 0-8039-5939-7.
14. G Susman and R Evered, “An assessment of the scientific merits of action research,”

Administrative Science Quarterly, no. 4, vol. 23, pp. 582-603, 1978.
15. Hirotaka Takeuchi and Ikujiro Nonaka, “The new product development game,” Harvard

Business Review, no. January, pp. 137 - 146, 1986.

 Developing Software with Scrum in a Small Cross-Organizational Project 15

Appendix: Interview Guide

1. How has the previous relationship between <the customer> and <the software
 provider> been?

2. How did you organize the work in the project?
3. How has the work been in this project compared to previous projects?
4. What changes were done during the project?
5. How were sprint meetings carried out?
6. How were changes from the customer handled?
7. How were contracts and formalism handled?
8. What did collocation lead to?
9. How were daily scrum meetings organized?
10. What was the effect of these meetings?
11. Were there ad-hoc meetings after the scrum meetings? How did they work out?
12. Are you satisfied with the scrum model in this project?
13. What would you do differently if you were to start again?

Implementing an ISO 9001 Certified Process

Tor Stålhane

Norwegian University of Science and Technology - NTNU
stalhane@idi.ntnu.no

Abstract. This paper presents a case study of how a Norwegian company intro-
duced an ISO certified process. By identifying the company’s strong and weak
sides plus the expectations and fears of the developers, we managed to intro-
duce process changes in an efficient manner. By reusing the existing processes
and procedures used in the company, the additions needed in order to be ISO
9001confromant was surprisingly small – only 37 pages. The way we worked to
achieve our goal can serve as a starting point to other companies that are in the
same situation as our company – a company with lots of good processes and
procedures but without the framework needed to make it ISO 9001 conform.

1 Introduction

How difficult is it to develop an ISO 9001 certifiable process? Since ISO 9001 fo-
cuses on what to do and not on how to do it, it is flexible and should thus be simple to
implement, at least for small companies. Some companies have, however, claimed
that the large implementation costs and the large amount of documents needed are
major obstacles to ISO 9001 [7]. We believe that ISO 9001 is just common sense and
that it thus should be easy to implement. The SPIKE project provided us with an op-
portunity to show that we were right.

Our company wanted to implement an ISO 9001 certified development process,
not because they thought that they needed it but because the market increasingly de-
manded it. They already had their own documented development process which was
quite satisfactory and hoped that this would give them a flying start to ISO certifica-
tion. The work was done by two NTNU researchers – both with extensive consultancy
experience – in cooperation with the company’s developers and managers.

ISO does not give any guidelines on how to introduce an ISO 9001 conformant
process. We thus started the work by setting down some principles – reuse as much of
the current processes as possible, control risk and opportunities, involve all stake-
holders, and introduce the process in a stepwise manner. In our opinion, these princi-
ples contributed significantly to our success.

Our company is a small Norwegian company with seven developers plus a manag-
ing director and a chief analyst. Everybody working in the company have a long ex-
perience, with an average software development experience of ca. five years. The
company mainly develops software for the public and financial sectors and most of
the development is done in-house. Most of their systems are web-based and in many
cases the company is also responsible for maintaining the system and the server where
the system runs.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 16 – 27, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 Implementing an ISO 9001 Certified Process 17

The rest of this paper is organized as follows: first we describe some related work
in the field of ISO certification. Then we describe how we arrived at our questionnaire
and how this was used to identify risks and opportunities. We then discuss how we
advanced in order to be able to reuse as much as possible of exiting processes before
describing what we produced and the results of the first audit. At last, we describe the
lessons learned and what we think can be extracted as general results from this case
study and discuss our plans for future work in this area.

2 Related Work

The papers that are published focus on the effect of introducing an ISO 9001 certified
process into a software development company [1, 2] or the comparison of ISO 9001
to other quality models, e.g. CMM [3]. Norris et al sums up a lot of important experi-
ences in [4] but the paper is mainly related to assessment of development processes.
There are, however, also published important papers on the experience of introducing
the ISO 9001 or other quality assurance standards. Two of them [5, 6] will be
summed up below and related to our own experiences.

Some studies have also been performed on the key question for all process changes
– does it pay? The results reported in [1] shows that companies that are ISO 9001
certified and are heavy users of the introduced processes outperform non-certified
companies and companies that are certified but are not heavy users of the processes.
The difference in ROA – Return On Assets - is significant at the 5% level. FitzGibbon
reports similar results in [7]. His survey shows that ISO certified companies had a
larger profit margin – 5.4% versus 1.9% for the non-certified companies – and a lar-
ger ROA.

FitzGibbon [7] also reports a survey on the problems related to an ISO 9001 certi-
fied process. The top three problems reported were “Time to write the manual” –
reported by 31% of the respondents, “High volume of the paper work” – 27% of the
respondents and “The high cost of implementation” – 25% of the respondents.

Since we later will present what we think are the main reason for a successful im-
plementation of an ISO 9001 conformant process, it is interesting to see what success
factors others have identified. In [5], based on the experiences from 12 change proc-
esses, the following success factors are identified as the most important ones:

• A consistent perception of change objectives. In successful companies, all
interviewees identified the same goals and described them with the same
level of detail.

• Managing resistance. In successful companies possible conflicts were an-
ticipated and taken into account during the change process.

• Collective decision process. In successful companies, all decisions on
whether and how to implement changes were based on agreement.

• Involvement of affected staff members. In the successful companies, there
was a considerable effort to include those employees who would later be
affected by the changes of the work process.

18 T. Stålhane

In a survey of 56 software companies [6], the following success factors are identi-
fied as the most important ones:

• Management commitment and support. Process change requires investing
time, money and effort – all of which are controlled by management.

• Staff involvement. If staff members do not buy into the proposed changes,
the change initiative is useless.

• Providing enhanced understanding. Process change can only be successful
if mangers and staff have a thorough understanding of how the process
contributes to the company’s mission.

• Tailoring improvement initiatives. Many problems of process improve-
ment may seem like details. However, to quote Humphrey [8]: “It is such
details that make the difference between an annoying and inconvenient
process and a comfortable and efficient one”.

What is common for these papers is their focus on involving all stake holders –
staff and management – and on a collective decision process. The latter is important
in order to handle possible resistance. As should be expected, these factors are also
found to be important success factors for software process improvement [12].

If we look at the goals – what the companies want to achieve – the most compre-
hensive research results are again reported by FitzGibbon [7]. Based on a survey of
647 representatives from British software organisations he found that 69% of all
asked answered that they want better procedural efficiency while 55% wanted to
reduce their error rates. Customer satisfaction came third with 49%.

A paper from 1995 is also important because the authors did a large UK survey to
obtain answers to three important questions – what are the most frequent non-
conformities discovered during an audit, what is difficult to implement and what is
perceived as most useful [11]. The survey gave the following results:

• The three most common non-conformity areas were design control, man-
agement responsibility and contract review.

• The three areas that were considered to be most difficult to implement
were corrective and preventive action (SPI), purchasing control and de-
sign control / statistical techniques.

• The three areas that the organisations considered most useful were correc-
tive and preventive actions (SPI), contract review and internal quality au-
dits / management responsibility.

It is surprising to note that e.g. contract review is in the top three both for non-
conformity and usefulness. SPI is in the top three both for usefulness and for difficult
to implement. The paper’s conclusion in this area is interesting [11]: “A general prob-
lem is the lack of adequate analysis of non-conformances. Few companies perform
regular analysis of processes and roles in order to remove sources of non-
conformances”. They never learn, do they?

 Implementing an ISO 9001 Certified Process 19

3 Risks and Opportunities

The first things to consider when we want to change a people intensive process are:

• What do the people involved fear? These are the risks - things that we
must prevent.

• What do people hope for? These are the opportunities – things that we
must strive to obtain.

In order to better understand risks and opportunities, we used a two-step approach.
We started by interviewing two developers and one manager. The interviews were
semi-structured in that we had a set of questions that we needed answers to but in
addition, we used follow-up questions to gain a better understanding of the answers to
the predefined questions. The focus of the interview was on what they expected
would happen if the company implemented an ISO 9001 certified process. Two typi-
cal examples of what came out of the interviews are shown below – one from a de-
veloper and one from a manger.

Manager: Implementing ISO 9001 will cost quite a lot. At the same time, the com-
pany will get a better overview of its competence, its experience and its document
templates. ISO certification is an investment. We are, however, unsure of how long
we have to wait before we can reap the benefits.

Developer: Some of the developers may have a negative attitude towards ISO cer-
tification because they are afraid it will hurt creativity. This is not only true for ISO
standards but holds also for coding standards and other rules and regulations. Rules
and standards can take away all the fun from the job. In many ways this is the same
attitude as we saw when we started to reuse components – many developers were
afraid that they would not be allowed to develop things but just had to use “toy
bricks”.

After the interviews we extracted all opinions, ideas, fears and hopes. Based on
this, we constructed a questionnaire. The full questionnaire is included as appendix A.
Everybody in the company – both mangers and developers - filled in the question-
naire. The items in the questionnaire that got an average score of 5.0 or more were
considered for risk and opportunity analysis. This gave us the following items:

• When we get ISO certified, we will have to generate more documents for
each development project. This is consistent with FitzGibbon’s observa-
tions in [7].

• It is important that all employees participate actively in the introduction of
new processes, standards and procedures. This is consistent with e.g.
Trittmann et al’s observation in [5].

• Active management participation is important in order to make the intro-
duction of an ISO certified process a success. This, and the next point is
consistent with e.g. the observations of Stelzer et al in [6].

• Active management support is important in order to make the introduction
of ISO certification a success.

• An ISO certified process will lead to better working practices in the com-
pany in general. This is consistent with FitzGibbon’s findings in [7].

20 T. Stålhane

Based on our findings, we identified the following risks that needed to be con-
trolled throughout the implementation of the ISO 9001 certified process:

Risk 1: The introduction of new documents or additions to existing documents.
We decided that we should not make new documents except if absolutely needed.

Risk 2: Developer participation. The developers must be included at all steps in the
process. Their experiences and advices are important input to the new processes and
procedures.

Risk 3: Management participation and support. Management must show their
commitment by allocating money and time to the ISO implementation activities.

Opportunity 1: Better working practices. The changes in the development process
must be considered to be improvements by the developers.

Management and developers are in agreement in the sense that everything the de-
velopers found important also was ranked high by management. There were, how-
ever, some cases where the two groups disagreed strongly - average score difference
greater than 2.0. In all cases, management ranked these items higher than the devel-
opers. The points are:

• Introducing an ISO certified process will cost a lot but will be a good in-
vestment – developers 3.3 vs. mangers 6.0

• Introducing an ISO certified process will give the company a better con-
trol over the order situation – developers 3.0 vs. mangers 6.0

• Introducing an ISO certified process will give us more satisfied customers
already after one year – developers 3.2 vs. mangers 6.0

Management is more optimistic than the developers when it comes to business re-
lated issues such as order situation and customer satisfaction.

4 What We Had and What We Needed

By reusing as much as possible of existing standards and procedures we hoped to
obtain two things: keep the number of new documents down to an absolute minimum
and reduce the need for unlearning old processes before learning the new ones. This
leads us to make up status as to what we had and what we needed, which was done
early in the change process. We took ISO 9001 [9] – the quality assurance standard -
and ISO 90003 [10] – a set of guidelines to ISO 9001 for software development and
maintenance – as our starting points. In order to get a good overview we created a
table as shown below.

Table 1. What we had, what ISO 9001 requires and what ISO 90003 recommends

Company ref. ISO 9001 ref. ISO 9001 activity description ISO 90003 comments

Status and docu-
ment ref.

Paragraph
number

What the standard requires Explanations and
comments

 Implementing an ISO 9001 Certified Process 21

The contents of the three rightmost columns are taken from the appropriate ISO
documents. The leftmost column was filled in while going through all available com-
pany standards, documents and procedures. The status for each ISO 9001 item was
found to be one of the following:

• OK – no further action is needed. In addition, no new training is needed.
• Partly OK – some additions are needed. We also need to include some

training on these points.
• Missing – we need to develop new procedures and processes. The person-

nel must learn new ways of working.

The final version of the table showed what was needed. In this way we made sure
that we did not miss any of the ISO 9001 requirements. The list of missing or incom-
plete procedures and processes also served as a basis for cost estimation for the rest of
the work. It turned out that we needed additional or new processes in all sections of
the standard. The section that needed most attention was section 7 which contains
processes related to product realization – in our case software development.

Our total estimate was 20 person days for writing new material plus training for
seven persons. The total costs later turned out to be 61 person days over two years.
This should be compared to the total company turn-over which is 1400 person days
per year. The costs were thus ca. 2% per year.

Even though the company did not plan to introduce any SPI processes, this was in-
cluded since it is part and parcel of ISO 9001. This did not create much fuss in the
company – it just seemed like a practical thing to do. There are clear requirements in
the standard that the company shall identify:

• The sources of all non-conformities and remove or reduce them – reactive
improvement

• Processes, procedures or activities that can lead to non-conformities and
change them – proactive improvement.

The big challenge when introducing the new processes is ISO 9001’s requirements
concerning process traceability – “evidence of conformity”. The reason for this is that
these evidences are not needed by anybody in the company – only by the auditors. It
is thus something we do only because the ISO 9001 standard requires us to do so. The
standard uses three forms of conformity, namely conformity to:

• The quality system – “Records shall be established and maintained to pro-
vide evidence of conformity to requirements and of the effective operation
of the quality management system” – ISO 9001, 4.2.4.

• Product requirements –“The organization shall determine the monitoring
and measurement to be undertaken and the monitoring and measurement
devices needed to provide evidence of conformity of product to determine
requirements” – ISO 9001, 7.6.

• The acceptance criteria – “Evidence of conformity with the acceptance
criteria shall be maintained. Records shall indicate the person(s) authoriz-
ing release of product” – ISO 9001, 8.2.4

22 T. Stålhane

In principle, almost anything can be used for evidence - emails, notes, meeting
agendas, logs etc. Our company already had a document driven development process
and thus found it natural to build on this also for evidences. In this way, we did not
change any process but added the requirement that the resulting documents must be
placed in the project archive and that they should be easy to retrieve.

5 Implementing an ISO 9001 Conformant Process

5.1 Our Starting Point

Development of new processes and procedures used the current company processes as
a basis. We knew what we needed to write from scratch and what we needed to en-
hance. Where the company already had processes in place, the relevant section just
contains a reference to the existing document. All other sections are written according
to the following template:

1. Title and reference to the part of ISO 9001 that is covered in this section.
2. Description of all compulsory and optional documents that are used as in-

put to this process.
3. The role that is responsible and how the process should be performed.
4. The results of this process: one part that describes the documents gener-

ated and one part that describes the decisions made based on the process’
results - for instance to start another process. The output documents are
important for other processes and are also used as evidence that the proc-
ess has been performed.

Defining a template simplified the job of writing the new processes and helped us
to focus on the important points, like what is the necessary input and what should be
the result of this process.

The following table shows the results of applying our method to the implementa-
tion of ISO 9001, section.2.3.

Table 2. The project evaluation process

Title: Project Evaluation
Input:
• Planned and real project duration, measured in weeks. This can be found in the project

plan document, chapter 4.2
• Planned and real costs - measured in NOK. Real cost is defined as all costs registered to

the project. Planned cost includes all variation orders and other contract extensions and
can be found in the project status report.

Process:
We will assess deviations from planned cost and durations as follows: If the real duration or
cost is more than 20 % larger than the planned one, we shall initiate the process “Corrective
actions”- see section 5.2.1 - for the project under consideration.
Output:
The result of this process is a report with one of the following contents:
• The situation is normal. All measurements are within acceptable limits.
• One or more problem areas that should be improved, together with the decided corrective

actions.

 Implementing an ISO 9001 Certified Process 23

5.2 The New Standards

The new standard contains templates for 16 documents normally produced in a devel-
opment project. Some of the templates existed before we started to implement an ISO
9001 certified process but all are collected in the new standard for ease of reference.
The templates consist of four parts with the following contents:

• The purpose of the document – why we need this document.
• The file id for the document on the format <report name>< version num-

ber>.doc. This makes it easy to find the latest version of each document in
the project archive.

• The table of contents. This is used to describe what we expect to find in-
side this document.

• Miscellaneous. This part contains references to the processes where this
document is produced or used, who is responsible for the quality of this
document and to who shall it be distributed.

Both the documents and the process descriptions are simple. Beside the general
principle that things always should be made as simple as possible, there are some
specific reasons for our choices:

• First and foremost the simplicity is a result of a tug-of-war between the
researchers – who wanted an advanced process with lots of metrics and
statistical analysis – and the company representatives – who wanted a
minimum of changers and extra work and documents.

• Simple processes and document templates make the start-up phase easy.
This will increase the speed of take-up in the organization.

• By choosing simple processes – e.g. just a few project metrics – it is eas-
ier for the developers and management to see that the metrics are useful.

• In most cases, a simple solution will suffice. If there are processes or
templates that need to be extended, we can extend them later, as we get
more experience as to what is needed. The rest can be kept simple.

Considering all that the ISO 9001 standard requires and that our company had
never before been ISO 9001 certified, the size of the new document is rather surpris-
ing – 37 pages all in all in addition to the 50 pages already used to describe the exist-
ing development processes. This includes all new document templates and forms for
such things as checking customer satisfaction. Thus, no new large documents were
needed on the company’s intranet. In our opinion, there is no reason why an ISO 9001
conformant process should be any larger for a larger company. The amount of proce-
dures needed will, however, most likely increase.

This confirms our observation that ISO 9001 is a practical document for practical
people and not an excuse for defining an enormous amount of new processes and
documents. The knowledge that a large amount of new documents would make the
ISO certification a sure fiasco had a moderating effect on any attempts to go beyond
the bare necessities when it comes to defining new documents.

The main reason for the small volume of the new processes is ISO 9001’s focus on
what shall be done – not on how it should be done. This enabled us to tailor the proc-

24 T. Stålhane

ess to this specific company’s needs and it also gave us the opportunity for consider-
able reuse of processes and templates.

5.3 Implementing the New Processes

We decided to introduce the new processes stepwise and only in one project in order
to gain practical experience. In this way we could limit any counterproductive effect.
At the same time both we and the developers had the chance to learn more about the
new processes. It was furthermore decided to hold an internal quality audit when this
first project was well under way in order to see if the process worked as intended and
whether it was followed by developers and project manager. The first internal quality
audit identified five non-conformities – three of medium severity and two of low
severity. In addition, there were seven observations – items that were not in complete
agreement with the standard but not important enough to be considered deviations.
All deviations were fixed in the next release of the quality manual.

The three non-conformities of medium severity were:

• There was no review of the offers that were sent from the company to a
prospective customer. This review should be linked to the project risk
analysis.

• The system’s test log did not contain references to the relevant system re-
quirements. Such references are needed in order to ensure traceability.

• The system’s documents do not follow the relevant document templates.

A follow-up audit - the last before final certification – was held during the begin-
ning of March 2006 and the company was certified in May 2006.

6 Lessons Learnt

First and foremost, our belief that ISO 9001 is just common sense and thus is easy to
implement has been confirmed.

The results reported come from one single case study. Based on the many similari-
ties between our case study and the results reported from related studies and surveys,
we see that the goals, risks and problems - see for instance [6, 7 and 11] – are the
same as are found elsewhere.

Based on our experiences from the case study, we have extracted some lessons that
we believe to be generally applicable, not only for implementing an ISO 9001 certi-
fied process but for process change in general.

• Perform a survey or set of interviews in order to identify risks and opportu-
nities that are relevant for the planned changes. After having analysed the
results we must include in our plan actions that help us to avoid the identi-
fied risks and help us to reap the benefits from identified opportunities. Thus
“We cannot introduce X because it leads to too much of B” is a dead end
and an example of defensive thinking. Instead, we should think “We want to
introduce X. How can we control the risk of getting too much of B?”

• Reuse as much as possible of existing processes, procedures, templates and
activities. This will reduce the need for new documents and the need for

 Implementing an ISO 9001 Certified Process 25

training. Thus, we will get a much steeper learning curve and large parts of
the new process will be useful already for the next project.

• Any new process should start out as simple as possible and be introduced in
a stepwise fashion. Extra details and process steps should only be added af-
ter we have identified a specific need. There is also an element of strategic
considerations here – the auditing company expects to see improvements in
the quality system from one audit to the next. Starting out simple give us
more opportunities to show improvements over time.

• Both developers, management and change agents must participate in all ac-
tivities. The resulting tug-of-war gives a process that is adapted to the com-
pany and has just enough formalities. If we cannot reach an agreement, the
developers and management should, however, have the final say.

7 Further Work

When the company is certified we plan to do follow-up interviews and surveys in
order to see if – and how - the developers’ attitudes towards ISO 9001 certification
change. At the present we plan to do this every six months, at least the first two years
after certification. We will use a questionnaire that is an adapted versions of the one
we used before certification, e.g. instead of “When we get ISO certified, we will have
to generate more documents for each development project” we will use the statement
“After we got ISO certified, we have to generate more documents for each develop-
ment project” and so on.

The most important things that we want to check out are:

• Have we been able to implement a quality standard that does not flood the
developers with extra paper work?

• Did the developers feel that they participated in the work and contributed
to the company’s quality standard?

• Have the working practices in the company improved after ISO 9001?
• Has the customers’ satisfaction improved?

As pointed out, for instance by [1, 7], the ISO certificate is not the end of an im-
provement initiative – it is the beginning. We believe that the customer surveys intro-
duced into our company will serve as a catalyst for greater focus on customer needs
and process improvement. Only a follow-up survey, however, can show if this will
really be the case.

References

1. E. Naveh and A. Marcus: Achieving competitive advantage through implementing a rep-
licable management standard: Installing and using ISO 9000. Journal of Operations Man-
agement, vol. 24, issue 1, December 2005.

2. D. Stelzer, W. Mellis and G. Herzwurm: Software Process Improvement via ISO 9000.
Results of two surveys among European Software Houses. IEEE 1996.

26 T. Stålhane

3. I. Rozman, R. Vajde and J. Gyrøkøs: United view on ISO 9001 model and SEI CMM.
IEEE, 1994.

4. M. Norris, P. Rigby and S. Stockman: Life After ISO 9001: British Telecom’s Approach
to Software Quality. IEEE Communications Magazine, October 1994.

5. R. Trittmann et al.: Changing software development: A case study at SAP AG. Proceed-
ings of the 7th European Conference on Information Systems - Copenhagen, Denmark 23 –
25 June, 1999, vol. 2.

6. D. Stelzer, W. Mellis: Success Factors of Organizational Change in Software Process Im-
provement. Software process Improvement and Practice, vol. 4, issue 4, 1999.

7. C. FitzGibbon: Are Companies Earning Return on Investment in ISO 9000 Registration? A
Review of the Empirical Evidence. 2000

8. W.S. Humphrey: A discipline of software engineering, Addison-Wesley, Reading, MA,
1995.

9. ISO: ISO 9001 International Standard – Quality management systems – Requirements.
Reference number ISO 9001:2000(E).

10. ISO: ISO 90003 International Standard – Software Engineering – Guidelines for the appli-
cation of ISO 9001:2000 to computer software. Reference number ISO 90003:2000(E).

11. C.B. Løken and T. Skramstad: ISO 9000 Certification – Experience from Europe. World
Congress for Software Quality, June 20 – 22, 1995, San Francisco, CA.

12. T. Elisberg, G. Hansen and N.G. Hansen: Success in SPI – the stakeholders’ point of view.
In “On the road to improvement” (in Danish). A Talent@IT report. Edited by O. Vinter
and J. Pries-Heje. Delta, Copenhagen, December 2004.

Appendix A

The following answer alternatives were available: 1 - Totally disagree, 2 - Partly dis-
agree, 3- Disagree somewhat, 4 - Agree somewhat, 5 - Partly agree, 6 - Totally agree

Score Statement
Dev. Mng. All

When we get ISO certified, we will have to generate more
documents for each development project

5.0 6.0 5.1

An ISO certified process will make us less creative but only in
the short term perspective

4.0 3.0 3.9

An ISO certified process will make us less creative, also in the
long term perspective

3.3 3.0 3.3

We will be less flexible in our customer relationship but only
in the short time perspective

3.3 4.0 3.4

We will be less flexible in our customer relationship also in
the long time perspective

2.7 4.0 2.9

Processes, standards and procedures must be introduced
gradually

4.8 5.0 4.9

It is important that all employees participate actively in the
introduction of new processes, standards and procedures

5.2 5.0 5.1

An ISO certified process will lead to better working practices
in the company in general

4.8 6.0 5.0

An ISO certified process will lead to better project manage-
ment in the company

4.5 6.0 4.7

 Implementing an ISO 9001 Certified Process 27

The customers will fear that an ISO certified process will lead
to extra costs without adding value but only in the short time
perspective

4.0 5.0 4.1

The customers will fear that an ISO certified process will lead
to extra costs without adding value also in the long time
perspective

3.0 4.0 3.1

Also those who work as consultants in an other companies will
benefit from an ISO certified process

4.2 5.0 4.3

Introducing an ISO certified process will create enthusiasm in
the company

3.0 3.0 3.0

The attitude towards an ISO certified process is generally
positive in our company

4.2 4.0 4.1

If we introduce an ISO certified process I will continuously be
watch to check that I do everything “by the book”

3.5 4.0 3.6

Introducing an ISO certified process will cost a lot but will be
a good investment

3.3 6.0 3.7

Introducing an ISO certified process will cost a lot. This is a
waste of money

2.8 1.0 2.6

Introducing an ISO certified process will give the company a
better control over the order situation

3.0 6.0 3.4

The developers that follow the new procedures and processes
will do a better job but only in the short time perspective

3.2 5.0 3.4

The developers that follow the new procedures and processes
will do a better job also in the long time perspective

4.5 5.0 4.6

Introducing an ISO certified process will give us more satis-
fied customers already after one year.

3.2 6.0 3.6

Introducing an ISO certified process will give us more satis-
fied customers but only in the long term perspective

3.5 5.0 3.7

Active management participation is important in order to make
the introduction of ISO certification a success

5.3 6.0 5.4

Active management support is important in order to make the
introduction of ISO certification a success

5.8 6.0 5.9

Software Process in Practice:
A Grounded Theory of the Irish Software Industry

Gerry Coleman1 and Rory O’Connor2

1 Department of Computing, Dundalk Institute of Technology, Dundalk, Ireland
gerry.coleman@dkit.ie

2 School of Computing, Dublin City University, Dublin 9, Ireland
roconnor@computing.dcu.ie

Abstract. This paper presents the results of a Grounded Theory study of how
software process and software process improvement (SPI) is applied in the
practice of software development. This study described in this paper focused on
what is actually happening in practice in the software industry. Using the in-
digenous Irish software product industry as a test-bed, we examine the ap-
proaches used to develop software by companies at various stages of growth.
The study used the grounded theory methodology and the results produce a pic-
ture of software process usage, with the outcome being a theory, grounded in
the field data, that explains how software processes are formed and evolve, and
when and why SPI is undertaken. The grounded theory is based on two concep-
tual themes, Process Formation and Process Evolution, and one core theoretical
category, Cost of Process. Our research found that SPI programmes are imple-
mented reactively and that many software managers reject SPI because of the
associated implementation and maintenance costs and are reluctant to imple-
ment SPI models such as ISO 9000 and CMMI.

1 Introduction

A software process defines what steps a development organisation should take at each
stage of production and provides assistance in making estimates, developing plans,
and measuring quality. There is a widely held belief that a better software process
results in a better software product. SPI models, such as Capability Maturity Model
Integration (CMMI) and ISO 15504, claim to represent best practice. However, al-
though these models have been highly publicised and marketed, they are not being
widely adopted.

The motivation for our research originates in the premise that, in practice software
companies are not following ‘best practice’ process improvement models. On this
basis, we initially set out to explore two primary questions: Why are software compa-
nies not using ‘best practice’ SPI models?, and What software processes are software
companies using?

In order to answer these questions it was first necessary to define both a context
and scope for the study. To ensure the participation of software development pro-
fessionals who would be familiar with the considerations involved in using both

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 28 – 39, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 29

software process and process improvement models, it was decided to limit the scope
to software product companies whose primary business is software development. In
addition, given the geographical location of the researchers, it was decided to con-
fine the study to Irish software product companies, which has the added advantage
of restricting the study to within the same economic and regulatory regime. Finally
as the Irish software industry is populated by both indigenous and multinational
software companies, a decision was made to limit the scope of the study to indige-
nous Irish software product companies, as they could provide the historical infor-
mation required to understand process foundation and evolution. To support the
capture and analysis of this information, we chose grounded theory as the method-
ology most suited to our research.

2 Research Methodology

The two research paradigms that have received most attention in the literature can be
broadly labelled as positivist and phenomenological [21] or positivist and interpretiv-
ist [3]. The most commonly used terms to differentiate these paradigms with respect
to their associated methods and techniques, are quantitative and qualitative respec-
tively, with quantitative methods being based on the positivist paradigm while
qualitative methods are built on a phenomenological world view [7, 8]. Quantitative
methods are used to establish general laws or principles [4] and its scientific approach
can provide answers which have a provable base. However, if one wants to study
human behaviour and the social and cultural contexts in which it functions, then the
limitations of quantitative research become apparent [17] and direct the researcher
towards qualitative techniques. Advocates of qualitative methods in software engi-
neering research propose that a principal advantage of their usage is that they force
the researcher to delve into the complexity of the problem rather than abstract away
from it and therefore the results are richer and more informative [25].

Researching in software engineering is more appropriately placed in the domain of
Information Systems (IS). IS research is the formal study of information systems
within an organisation, which differs from the field of software engineering in that
takes social and organisational aspects into account. Lee and Liebenau [15] believe
that qualitative research is required in IS because, ‘while there has been great success
in applying natural science and engineering models to research into computer tech-
nology, they have been inadequate and inappropriate in explaining the human, group,
organisational and societal matters which surround the use of information systems’.
Bertelsen [2] also supports the use of qualitative research in IS stating that as software
development is socio-cultural in nature any research conducted cannot be based ex-
clusively on natural science approaches but must include provision for interpreting
social, psychological and cultural issues.

2.1 The Study Methodology

There are a number of basic study methodologies, including phenomenology, ethnog-
raphy, case studies and action research, which are used within qualitative research.

30 G. Coleman and R. O’Connor

However, this study chose another approach, grounded theory, as the method of en-
quiry for the following reasons:

• Given the lack of an integrated theory in the literature as to why software compa-
nies are avoiding SPI models, an inductive approach, which allowed theory to
emerge based on the experiential accounts of software development managers
themselves, offered the greatest potential.

• It has established guidelines for conducting inductive, theory-generating research.
• It is renowned for its application to human behaviour. Software development is a

labour intensive activity and software process relies heavily on human compliance
for its deployment.

• It is an established and credible methodology in sociological and health disci-
plines (e.g. nursing studies, psychology), and a burgeoning one in the IT arena.
This study provided an opportunity to apply a legitimate and suitable methodol-
ogy to the software field.

A number of researchers have used grounded theory to look at a diverse range of
socio-cultural activities in IS. [1] used a novel combination of action research and
grounded theory to produce a grounded action research methodology for studying
how IT is practiced. Others have used the methodology to examine, the use of ‘sys-
tems thinking’ practices [11], software inspections [6, 24], process modelling [5],
requirements documentation [19] and virtual team development [32, 20]. [14] used
grounded theory to study the use of development practices in a Danish software com-
pany and concluded that it was a methodology well suited for use in the IS sector.

3 Grounded Theory

Grounded Theory was first established by Glaser and Strauss [10]. As the objective
with the methodology is to uncover theory rather than have it pre-conceived,
grounded theory incorporates a number of steps to ensure good theory development.
Its main components are:

• Theoretical Sampling - Theoretical sampling refers to the process of collecting,
coding and analysing data whilst simultaneously generating theory. The re-
searcher engages in ‘constant comparison’ between the analysed data and the
emerging theory and this process continues until ‘theoretical saturation’ has been
reached, i.e. where additional data being collected is providing no new knowledge
about the categories.

• Open Coding and Analysis - From the interview transcripts the researcher analy-
ses the data line-by-line and allocates codes to the text. The codes represent con-
cepts that will later become part of the theory. From the initial interviews, a list of
codes emerges and this list is then used to code subsequent interviews. At the end
of the sampling process a large number of codes should have emerged.

• Axial Coding - Axial coding is the process of relating categories to their subcate-
gories (and) termed axial because coding occurs around the axis of a category
linking categories to subcategories at the level of properties and dimensions. This
involves documenting category properties and dimensions from the open coding

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 31

phase; identifying the conditions, actions and interactions associated with a phe-
nomenon and relating categories to subcategories.

• Selective Coding - Selective coding is the process of integrating and refining the
theory. Because categories are merely descriptions of the data they must be further
developed to form the theory. The first step is to identify the central, or ‘core’
category around which the theory will be built. As the core category acts as the
hub for all other identified categories, it must be central in that all other categories
must relate to it and it must appear frequently in the data.

• Memoing - Memoing is ‘the ongoing process of making notes and ideas and ques-
tions that occur to the analyst during the process of data collection and analysis’
[23]. Typically, ideas which are recorded during the coding process, memos assist
in fleshing out the theory as it emerges and are written constantly during a
grounded theory study. Memos may take the form of statements, hypotheses or
questions. In the latter part of the study, following extensive coding and analysis,
memos become increasingly theoretical and act as the building blocks for the final
report.

Since the initial launch of grounded theory, the Glaser and Strauss alliance gradually
separated until each was developing a different version of the methodology. Though
acknowledging and recognising the spirit of Glaser’s original version of the method-
ology, this study employed the Strauss and Corbin approach [26] as:

• They believe that the researcher’s personal or professional experience, is suppor-
tive of theory building and contributes to ‘theoretical sensitivity’, the ability to
understand the data’s important elements and how they contribute to theory. The
researchers have operated as software process consultants and professional soft-
ware engineers for a number of years.

• They favour setting the research question in advance of commencing a grounded
theory study, as was done in this case.

• This study aimed to generate hypotheses, testable within the study, an approach
supported by Strauss and Corbin.

4 The SPI Case Study

Despite the research questions being clearly defined, the theoretical sampling ap-
proach of grounded theory means it is unclear in advance exactly the types of practi-
tioners and companies that need to be interviewed during a study to meet the research
objectives. Because of this, a preliminary study phase involving 4 interviews, was
embarked upon to generate more detailed information on how the sampling process
should progress.

To support the semi-structured interviewing process, an interview guide, based on
the researchers’ experience as ‘cultural insiders’ and their prior familiarity with the
literature, was created for use with the first two interviews. The first interview was
taped and then transcribed and printed. The interview was then coded, by hand, in
accordance with the open coding procedure of grounded theory. Memos were written
as and when they occurred to the researcher during the coding. The second interview
was coded in the same way as the first one, with the second being compared to the

32 G. Coleman and R. O’Connor

first and coded where possible according to the list of codes generated from the first
interview. The initial interviews highlighted several drawbacks with the interview
guide, and these limitations drove the development of a second interview guide which
was then used on interview 3. Then, and in each successive instance, the interviews
and the line of questioning concentrated more on the memos and codes from the prior
interview coding and analysis rather than on the formalised question set.

The conclusion of interview 4 heralded the end of the preliminary study stage,
which was primarily used to drive the theoretical sampling process. The stage high-
lighted two issues in particular which would steer the immediately subsequent sam-
pling activity. Firstly, analysis of the software companies’ target market indicated that
the intended list of companies, in the full study, should incorporate as many sectors as
possible. Secondly, a specialist qualitative analysis tool, which supported the
grounded theory approach, was essential.

4.1 Software Support for Grounded Theory

Having investigated the range of tools which are used for data management in qualita-
tive research, Atlas TI [16], a tool designed specifically for use with grounded theory
was selected. Atlas allows for the linking, searching and sorting of data. It enables the
researcher to keep track of interview transcripts, manage a list of codes and related
memos, generate families of related codes and create graphical support for codes,
concepts and categories. It also supports the axial and selective coding process as
proposed by Strauss and Corbin [26], which is used in this study. A sample list of
codes from this stage is contained in Table 1.

Table 1. Sample codes as assigned using Atlas TI

Absence of process Automated documentation Background of CEO
Acceptance test process Automated testing Background of CTO
Actual Vs ‘official’ process Background drives SPI Beginnings of formality

4.2 Conducting the Full Study - Stages 1 and 2

Study Stage 1 involved interviews with an additional 11 companies. Closely follow-
ing the tenets of grounded theory meant that, following the initial open coding, the
interviews were then re-analysed and coded axially across the higher-level categories
that had emerged from earlier interviews. Any memos, or propositions, that emerged
through the coding process were recorded for further analysis and inclusion as ques-
tions in subsequent interviews. A consequence of this was that the interview guide
was constantly updated. In conjunction with the theoretical sampling process, the
constant comparative method was also used. This involved comparing interview-to-
interview and searching for any themes or patterns in the data. Though a number of
theoretical concepts emerged during the early fieldwork, the researchers decided to re-
evaluate the study progress following the interview with Company 14. This suggested
that the range of companies interviewed should be diversified. This approach is in
accordance with both Strauss and Corbin [26] and Goulding [13], who advocate di-
versity in the data gathering and ‘staying in the field’ until no new evidence emerges.

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 33

The researchers believed that to conclude the sampling process at this point would
constitute premature closure, a mistake often associated with grounded theory [9].

To progress the study, the data, memos and propositions created during the con-
stant comparative process were further analysed by the researchers and a number of
provisional hypotheses formulated (Table 2). These hypotheses had the potential to
explain how the concepts and categories emerging from the study were linked. Hy-
pothesis testing can also be used within grounded theory to validate the theory that is
emerging [26]. The analysis of the results from 14 companies and the subsequent
hypothesis creation, constituted the end of Stage 1. Stage 2 would be used to test these
hypotheses and ensure the emergent theory was properly grounded.

Table 2. Study Stage 1 Provisional Hypothesises

H1 The initial software process used by Irish software product companies is
based on the prior experience of the software development manager.

H2 The initial software development process used by Irish software product
companies is tailored to suit the requirements of the target product market.

H3 Within Irish software product companies, SPI occurs as a result of positive
and negative ‘trigger’ events

H4 The recruitment of external management expertise is used by Irish software
product companies to solve positive and negative ‘trigger’ events

H5 The use of minimum process in Irish software product companies does not
diminish the company’s ability to satisfy its business objectives

H6 Within Irish software product companies, restrictions are imposed on team
sizes to achieve minimum process requirements

H7 The use of XP practices satisfy an Irish software product company’s mini-
mum process requirement better than ISO 9000 or CMM/CMMI

H8 Development managers in Irish software product companies believe that by
using XP practices they get more developer buy-in to process, than if using
ISO 9000 or CMM/CMMI

H9 Non-ISO 9000/CMM/CMMI-certified Irish software product companies
generate only minimum documentation

H10 Within Irish software product companies, adoption of ISO 9000 and
CMM/CMMI is limited because of their emphasis on what development
managers perceive as non-essential process elements

H11 XP is perceived by development managers in Irish software product com-
panies to be more cost effective than ISO 9000 and CMM/CMMI

H12 The costs associated with achieving and adhering to ISO 9000 and
CMM/CMMI prevent their adoption in Irish software product companies

Stage 2 involved the participation of 7 new companies. Three of the Stage 2 inter-
views involved re-interviewing Stage 1 participants a technique available to grounded
theory studies and supported by [12]. Building on the need for diversity within the
data, the companies in Stage 2 came from different business sectors than those in
Stage 1. During the Stage 2 fieldwork, the semi-structured interview questions were
primarily derived from the Stage 1 hypotheses. This meant that less time was spent

34 G. Coleman and R. O’Connor

exploring issues which did not directly relate to the hypotheses thus allowing more
time to ensure the categories and subcategories were fully ‘saturated’. During Stage 2,
full category saturation was reached after an additional 9 interviews as, in line with
Goulding’s [13] assertion, similar incidences within the data were now occurring
repeatedly.

4.3 The Emergent Categories

Where axial coding’s role is to identify the categories into which the discovered
codes and concepts can be placed, selective coding is used to identify a key cate-
gory or theme that can be used as the fulcrum of the study results [26]. In this in-
stance, the analysis showed that there was one central category to support and link
the two theoretical themes. Furthermore, as the relationships were developed and
populated, new categories emerged that were not explicitly covered by the hypothe-
ses generated in Stage 1.

Table 3. Themes, Core Categories and Main Categories

Theme Category
Process Formation1 Background of Software Development Manager

Background of Founder
Management Style
Process Tailoring
Market Requirements

Theme Category
Process Evolution Process Erosion

Minimum Process
Business Event
SPI Trigger
Employee Buy-in to Process
Hiring Expertise
Process Inertia

Core Category Category
Cost of Process Bureaucracy

Documentation
Communication
Tacit Knowledge
Creativity Flexibility

The final list of themes, the core category and the main categories identified by the
study are shown in Table 3. Each category and code can be linked to quotations
within the interviews and these are used to provide support and rich explanation for
the results. The ‘saturated’ categories and the various relationships were then com-
bined to form the theoretical framework.

1 From heron, the themes, categories and core category are denoted in italics.

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 35

5 Evaluation

5.1 Verification of the Theory

The issue of verification of a grounded theory study is one which distinguishes the
positions of its founders Glaser and Strauss. To Glaser [9], grounded theory merely
produces hypotheses and nothing more and these need not be verified or validated
because that is the responsibility of verificational studies which are carried out using a
different methodology. Strauss and Corbin’s argue that theories are conceived, elabo-
rated on, and checked out, in that order and this is facilitated through the concurrent
processes of induction, deduction, and verification [26]. As the Strauss and Corbin
version of grounded theory, was used in this research, the study has been verified
through a systematic approach of data collection, sampling and analysis which then
allowed the emerging concepts, memos and propositions to lead the subsequent sam-
pling effort. Then, from the field data, a series of provisional hypotheses were derived
and these were tested as the study developed.

On the issue of theory generalisability, differences arise between the two founders
of grounded theory. Whereas Glaser believes generalisability is related to verifica-
tional studies and not to grounded theory, Strauss and Corbin contend that the use of a
theory-building methodology is to build theory and, therefore, in grounded theory
studies, the researcher is talking more about explanatory power than generalisability
[26]. Context is always relevant to any grounded theory study whereas generalisabil-
ity describes a situation that is essentially context-free. The findings from this re-
search are context-dependent and this is reflected in the categories. Therefore it is not
proposed that the findings are generalisable beyond the defined study boundaries.

5.2 Adequacy of the Research Process

In judging the quality of any research study designed to generate theory, reviewers
must be provided with information to allow them to assess its adequacy. This infor-
mation relates to how the original sample was selected, how the categories and core
category emerged and subsequently drove the sampling process and how were any
hypotheses were treated during the analysis activity.

Category development continued throughout the research. The hypotheses that
were formulated during the study were validated according to the procedures de-
scribed above. Whilst all of the hypotheses were ‘tested’ and verified in Stage 2 of the
study, one hypothesis (H6) – Within Irish software product companies, restrictions
are imposed on team sizes to achieve minimum process requirements – failed to
develop further during that stage. Despite not fully supporting hypothesis H6, the
findings in Stage 2 did support the remaining hypotheses and these in turn were in-
corporated into the theoretical categories and attributes. However, a number of cate-
gories emerged in Stage 2 which were not directly included in the Hypotheses list in
Stage 1. The field data from the diversity of companies used for Stage 2 helped these
categories to emerge.

The selection of the core category, Cost of Process, was made during Stage 2 of
the study, though attributes of it had been apparent in Stage 1. In selecting the core
category, the researcher closely followed the steps recommended by Strauss and

36 G. Coleman and R. O’Connor

Corbin [26], including the fact that all other categories must relate to it and that it
appears frequently in the data. Whilst many others were contenders as core categories
in their own right, it was the additional analysis from Stage 2 that created the core
category. The fact, therefore, that it did not crystallise until Stage 2 provided reassur-
ance to the researchers that the correct category had been identified.

5.3 Grounding the Findings

Strauss and Corbin [26] also provide a list of criteria to assist in determining how well
the findings are grounded. The foundations of any theory are a set of concepts
grounded in the data. Table 1 shows an example of some of the codes produced from
the coding processes and includes both terms used by the practitioners, and concep-
tual codes assigned by the researcher. Through the use of network diagrams we
established the linkages and relationships between concepts, which categories act as
predecessors and successors within the theory, and how the categories link to the core
category and research themes.

Strauss and Corbin suggest that variation is important because it signifies that a
concept has been examined under a range of different conditions and dimensions.
Though this research is concerned with indigenous Irish software product companies,
we have endeavoured to incorporate the views of as wide a range of practitioners as
possible. Furthermore, Stage 2 of the study expanded the range of interview partici-
pants to achieve coverage of a greater range of markets, and thus reduced the pros-
pects of phenomena relating only to specific market domains, or company size.

5.4 Study Findings

On the primary question of what software processes are software companies using,
the study has found that all of the companies are Tailoring standard software proc-
esses to their own particular operating context such as the size of the company, the
target market, and project and system type.

One of the key theoretical themes addressed by the research was Process Forma-
tion. The findings show that this depends on several factors including the Background
of the Software Development Manager, essentially the expertise that manager has
accumulated over their working and educational lives, the demands of the market in
which the company operates, the founder’s Management Style, and the organisational
culture.

The second key theoretical theme of the study is Process Evolution. There, evi-
dence from the study data suggests that managers instigate SPI as a reaction to
Trigger events, essentially business occurrences which the current process does not
adequately cater for. The Triggers for process change can be either positive or nega-
tive. The field data shows that many of the companies feel they don’t have the capa-
bility to deal with the change from within their own resources and, therefore, hire an
individual externally who has the necessary expertise to deal with the Business Event.
However, companies experience difficulty in institutionalising any SPI gains and
subsequent retrenchment reflects a clear Erosion from the process in place immedi-
ately following the SPI initiative. This Erosion eventually resolves to a Minimum
Process which is ‘barely sufficient’ to satisfy the organisation’s business objectives.

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 37

The periods between SPI initiatives witness Process Inertia, wherein the existing
process is capable of satisfying all of the business demands that arise. The SPI cycle
only restarts when the appropriate Business Event triggers the necessity for change.

The second primary research question addressed in the study, why are software
companies not using ‘best practice’ SPI models produced the study’s core category
Cost of Process. Implementing and maintaining any SPI initiative incurs significant
cost. Participant companies perceive Documentation as the greatest process-related
cost-inducing element. There was also a clear link between the amount of Documen-
tation carried out and the size and growth stage of the company; the smaller the com-
pany the greater the hostility towards Documentation. However, even in the larger
organisations, Documentation was regarded as a ‘necessary evil’. Many companies
substituted verbal Communication for Documentation, and co-located their develop-
ment teams in an effort to reduce process cost. A benefit of doing this was an increase
in the sharing of Tacit Knowledge.

From the commercial SPI perspective, the study was dominated by two particular
models CMMI and ISO 9001, and the development methodology XP. Respondents
did not differentiate between processes and methodologies and categorised XP as a
process. As a result, XP, albeit tailored to various degrees, was by far the most popu-
lar commercial ‘process’ model used by organisations across all size sectors. XP was
perceived to have the least associated Cost of Process and its low level of Documen-
tation was deemed to be attractive. Where managers were familiar with CMMI or ISO
9000 they were against introducing it to their new organisations. Overall, respondents
felt that the resources required to implement the commercial models far exceeded the
benefits that may accrue.

6 Discussion

This section will briefly discuss two issues central to this paper: The suitability of
Grounded Theory as a research methodology for the SPI researcher and the implica-
tions of the research study findings.

Software engineering is a highly social activity. In attempting to study human be-
haviour and the social contexts in which it functions, the researcher is directed to-
wards qualitative techniques. In seeking an appropriate methodology to investigate
the software process aspects of software engineering we have selected grounded the-
ory as being a suitable candidate and describe the successful implementation of
grounded theory in a study of SPI. The grounded theory approach is inductive, prag-
matic and provides a highly concrete methodology [18]. Using grounded theory in the
software engineering context, the researcher’s task is to generate theory from holistic
data gathered through naturalistic inquiry, to understand the interaction between soft-
ware engineers and their environment and the impacts, consequences and outcomes of
these interactions. Researchers can use grounded theory to ‘reality test’ their own
theories of action and the relationships between action and effects can serve to take
researchers into the empirical world so that they can discover whether what they think
to be the nature of the empirical world is really the case. It is our contention that
grounded theory is both an appropriate and valuable methodology for the software
engineering researcher, specifically for exploring and understanding the action and

38 G. Coleman and R. O’Connor

interaction between practitioners and their environment, in relation to software
process and SPI.

The findings presented in this paper are potentially significant to software entre-
preneurs who will need to make decisions about process and process change within
their organisations as they grow. The theory presented here represents a form of ‘ex-
perience road map’ illustrating some of the potential pitfalls an Irish software product
company could face and how others have avoided or resolved them. With respect to
the rejection of CMM/CMMI and ISO 9000 by Irish software product companies, it is
the associated Bureaucracy which needs to be addressed to help increase acceptance.
Both models rely heavily on documentary evidence in respect of certification. How-
ever, the study practitioners believe that Documentation is no proof of capability.
Perhaps therefore, if the models had an increased emphasis on non-documentary evi-
dence, in relation to the development practices followed, they would have greater
appeal to practitioners. Furthermore, CMM/CMMI is firmly wedded to the belief that
better processes mean better products. But many of the small Irish software product
companies are merely concerned about getting a product released to the market as
quickly as possible. As noted in [1] Quality is not the most important thing in this
environment, rather time to market and innovation are key. It is development models
such as those in the agile family, rather than CMM/CMMI, which support these ob-
jectives. Until models are adapted to take account of this reality, they will remain
largely ignored by a great portion of the software development community.

References

[1] Baskerville, R. and Pries-Heje, J., 1999, ‘Grounded Action research: A Method for Un-
derstanding IT in Practice’, Accounting, Management & Information Technologies, No.
9, pp. 1-23.

[2] Bertelsen, O.W., 1997, ‘Towards a Unified Field of SE Research and Practice’, in IEEE
Software, November/December, pp. 87-88.

[3] Bryman, A., 2001, ‘Social research methods’, Oxford University Press.
[4] Burns, R. B., 2000, Introduction to Research Methods, 4th Edition, Sage Publications.
[5] Carvalho, L., Scott, L. and Jeffery, R., 2005, ‘An Exploratory Study into the Use of

Qualitative Research Methods in Descriptive Process Modelling’, in Information and
Software Technology, No. 47, pp. 113-127.

[6] Carver, J. and Basili, V., 2003, ‘Identifying Implicit Process Variables to Support Future
Empirical Work’, in Journal of the Brazilian Computer Society, October-December.

[7] Creswell, J. W., 2003, ‘Research design: Qualitative, quantitative, and mixed methods ap-
proaches’ (2nd ed), Sage.

[8] Firestone, W. A., 1987, ‘Meaning in method: The rhetoric of quantitative and qualitative
research’, Educational Researcher 16(7), 16-21.

[9] Glaser, B., 1992, Basics of Grounded Theory Analysis: Emergence Vs Forcing, Mill Val-
ley, CA, Sociology Press.

[10] Glaser, B. and Strauss, A., 1967, The Discovery of Grounded Theory: Strategies for
Qualitative Research, Chicago, Aldine.

[11] Goede, R. and De Villiers, C., 2003, ‘The Applicability of Grounded Theory as Research
Methodology in Studies on the use of Methodologies in IS Practices’, in Proceedings of
SAICSIT, pp. 208-217.

 Software Process in Practice: A Grounded Theory of the Irish Software Industry 39

[12] Goulding, C., 1999, ‘Grounded Theory: Some Reflections on Paradigm, Procedures and
Misconceptions’, Technical Working Paper, University of Wolverhampton, UK.

[13] Goulding, C., 2002, Grounded Theory: A Practical Guide for Management, Business and
Market Researchers, Sage Publications.

[14] Hansen, B. and Kautz, K, 2005, ‘Grounded Theory Applied – Studying Information Sys-
tems Development Methodologies in Practice’, in Proceedings of 38th Annual Hawaiian
International Conference on Systems Sciences, Big Island, HI.

[15] Lee, A.S. and Liebenau, J., 1997, ‘Information Systems and Qualitative Research’, in
Proceedings of Information Systems and Qualitative Research, eds. A. Lee, J Liebenau
and J.I. DeGross, Kluwer Academic, Boston, MA.

[16] Muhr, T., 1997, Atlas TI User’s Manual, Scientific Software Development, Berlin.
[17] Myers, M.D., 1997, ‘Qualitative Research in Information Systems’, in Management In-

formation Systems Quarterly, Vol. 21, No. 2, June, pp. 241-242.
[18] Patton Quinn, M., 1987, ‘How to use Qualitative Methods in Evaluation’, Sage.
[19] Power, N., 2002, ‘A Grounded Theory of Requirements Documentation in the Practice of

Software Development’, PhD Thesis, Dublin City University, Ireland.
[20] Qureshi, S., Liu, M. and Vogel, D., 2005, ‘A Grounded Theory Analysis of e-

Collaboration Effects for Distributed Project Management’, in Proceedings of 38th An-
nual Hawaiian International Conference on Systems Sciences, Big Island, HI.

[21] Reichardt, C. S., & Cook, T. D. (1979). Beyond qualitative versus quantitative methods.
In T. D. Cook & C. S. Reichardt (Eds.), Qualitative and quantitative methods in evalua-
tion research (pp. 7-32). Beverly Hills: Sage.

[22] Sarker, S., Lau, F. and Sahay, S., 2001, ‘Using an Adapted Grounded Theory Approach
for Inductive Theory Building About Virtual Team Development’, in The Data Base for
Advances in Information Systems, Vol. 32, No. 1, pp. 38-56.

[23] Schreiber, R.S., 2001, ‘The ‘How To’ of Grounded Theory: Avoiding the Pitfalls’, in ‘Us-
ing Grounded Theory in Nursing’, Schreiber, R.S. and Noerager Stern, P. (Eds.),
Springer.

[24] Seaman, C. and Basili, V., 1997, ‘An Empirical Study of Communication in Code In-
spections’, in Proceedings of the 19th International Conference on Software Engineering.

[25] Seaman, C., 1999, ‘Qualitative Methods in Empirical Studies of Software Engineering’,
IEEE Transactions on Software Engineering, Vol. 25, No. 4.

[26] Strauss, A. and Corbin, J.M., 1998, Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory, 2nd Edition, Sage Publications.

Improving the Software Problem Management
Process: A Case Study

Marko Jäntti1 and Kari Kinnunen2

1 University of Kuopio, Department of Computer Science,
P.O Box 1627, 70211, Kuopio, Finland

mjantti@cs.uku.fi
2 TietoEnator Forest&Energy Oy, Microkatu 1,

P.O Box 1199, 70211, Kuopio, Finland
kari.kinnunen@tietoenator.com

Abstract. This paper describes the results of a case study focusing on
improving the software problem management process in TietoEnator Oyj.
The research question is what kind of challenges are related to the software
problem management process. As main findings, we show a list of chal-
lenges identified during the study. Those challenges include the increasing
number of open and duplicate problems in the problem database, difficul-
ties in combining existing problem management concepts with ITIL-based
concepts, a lack of performance metrics such as incident turnaround times,
and a lack of knowledge base. The main contribution of this study is to help
IT organizations to identify the challenges and problems that are related
to ITIL-based problem management.

1 Introduction

One of the most important goals of software process improvement (SPI) is iden-
tifying challenges and problems with current processes. In this paper, we focus
on software problem management process that is categorized into support and
maintenance processes in the ISO/IEC standard [1]. Implementing a systematic
problem management process is an effective way to improve customer satis-
faction. Many IT organizations have started to adopt a problem management
model described by the IT Infrastructure Library (ITIL) because of the follow-
ing reasons: firstly, ITIL is a most widely accepted de facto standard for IT
service management [2]. Hence, organizations have started to update their cur-
rent processes to the ITIL-compliant processes because their customers require
it. Secondly, IT organizations see ITIL as a way to decrease operational costs
and increase the quality of services and customer satisfaction.

Problem management has two different dimensions: 1) proactive and 2) reac-
tive problem management. The purpose of the proactive problem management
is to prevent incidents and problems before they occur. An incident can be de-
fined as "any event which is not part of the standard operation of a service and
which may cause a reduction in the quality of that service" [2]. Reactive prob-
lem control focuses on identifying the underlying cause of reported incidents.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 40–49, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving the Software Problem Management Process: A Case Study 41

Proactive problem management methods include problem analysis based on the
incident/problem history recorded in the knowledge base. Knowledge base is a
repository that contains information on known errors and their solutions [3].
Customers and end users have usually a restricted access to the knowledge base
that is maintained by the service desk and problem management teams [4].

The functions of software problem management partly overlap with those of
software defect management. Many studies have explored software defect man-
agement activities such as defect causal analysis method [5], implementation of
the defect management process [6], defect measurement checklists [7], and cre-
ating defect profiles for application modules [8]. Similarly, previous studies have
emphasized the role of the causal analysis in identifying the root cause of the
defects and problems [9], [10]. Many organizations use the Capability Maturity
Model (CMM) to improve software processes. The level 5 of CMM includes de-
fect management as a key process area [11]. While software defect management
methods are more often used by software developers and testers, software prob-
lem management is performed by the service desk, maintenance and support
teams.

However, few studies have dealt with software problem management. San-
dusky and Gasser have focused on a distributed software problem management
process and its phases [12]. Kajko-Mattsson et al. combine software problem
management with corrective maintenance [13], [14] and state that service level
agreements are useful for monitoring service quality issues between IT providers
and customers [15]. Further research is needed to gather information on field
experiences with software problem management.

This study continues the previous work where we examined the use of a UML-
based test model in identifying software problems [16], [17]. More recently we
proposed a conceptual model of IT service problem management. In this pa-
per, the results of the validation of the problem management model in a case
organization are presented. Several challenges were identified during the model
validation. As main findings of this paper we present a list of the challenges
regarding the ITIL-based problem management. Identified challenges include,
for example, dealing with duplicate incidents, mapping ITIL concepts and exist-
ing business concepts, a lack of performance metrics, unnecessary datafields in
problem records, and availability problems of the online support site.

The rest of the paper is organized as follows. In Section 2 we describe the
research method of this study. In Section 3 findings of the case study are pre-
sented. Section 4 is the analysis of findings. The discussion and the conclusions
are given in Section 5.

2 Research Methods

This case study is a part of the work of the research project SOSE (Service
Oriented Software Engineering) at the University of Kuopio, Finland. SOSE is
funded by the National Technology Agency TEKES, the European Regional
Development Fund (ERDF), and four partner companies. The study was carried

42 M. Jäntti and K. Kinnunen

out during SOSE problem management pilot project (January - March 2006),
which focused on improving problem management methods in TietoEnator Oyj,
Forest&Energy.

The research question in this paper is what kind of challenges are related to the
improving the software problem management process. Figure 1 shows the general
research plan for developing the problem management model. In phases 1 and 2,
we examined how different organizations perform defect management and prob-
lem management activities and identified bottlenecks regarding those activities.
In the third phase, we presented an improved problem management model based
on the ITIL. The main purpose of this study is to describe the challenges that
we identified during the validation of our software problem management model.

Validate
the PM model

in practice

Create

a new PM model
and an example

of how to use it

Identify the

difficulties and
challenges in
PM models

Identify
current PM

models
used in

organizations

Phase 1 Phase 2 Phase 3 Phase 4

PM = Problem Management

Fig. 1. The research plan for developing the problem management model

A case study research method was used because it is well suited for the study
of information systems in organizations. A case study is "an empirical inquiry
that investigates a contemporary phenomenon within its real-life context [18].

2.1 A Case Organization and Data Collection Methods

TietoEnator is one of the largest IT service companies in Scandinavia with over
15 000 employees. It supplies information systems to various industries, such as
banking and insurance, energy, telecom and media, and healthcare.

The methods used to examine the improvement of software problem manage-
ment have included 1) direct observation (participation in support team meet-
ings, the support tool training provided by the tool supplier and ITIL training),
2) open discussions with a problem manager, a customer support manager and
service desk workers, 3) participative observation (meetings related to improve-
ment of the knowledge base with a service desk worker and a research assistant),
4) access to the incident/problem management tool (participating in configuring
the user interface of the knowledge base during the problem management study).
Support team meetings included persons who held different roles within the
organization (configuration management, service desk, problem management).
During personal discussions participants were encouraged to identify problems
that decrease their productivity.

Improving the Software Problem Management Process: A Case Study 43

2.2 Data Analysis Methods

A within-case analysis technique was used in this study to analyze data from
the case organization [19]. In the data analysis, we created first a list of chal-
lenges and bottlenecks in the case organization’s problem management process.
For each challenge, we defined the source who reported the issue within the case
organization. For some challenges, there were several sources. Then, the vision
state was defined, and tasks or activities required to solve the challenge were de-
termined. Additionally, we analyzed why it is important to solve these challenges
or problem areas. Finally, we analyzed how the organization could improve its
support processes in general level. The process improvement was based on the
process framework of ITIL [6] that consists of the following questions:

1. Where are we now? What are the difficulties or bottlenecks in the current
problem management process?

2. Where do we want to be? What is the vision state and business objectives?
3. How do we get where we want to be? What are practical means to reach the

vision state?
4. How do we know we have arrived? What metrics can be used to measure the

process?

We use the first three steps in Section 3.2. First, the process bottleneck (prob-
lem) is defined. Then, we propose how the process should work and present busi-
ness benefits for the process change. Finally, we present a practical solution to
eliminate the problem.

3 Empirical Findings

This section presents our main findings from the case organization. In this study,
we explored the strengths and challenges regarding the problem management
process of the case organization. After challenges and bottlenecks were identified,
we analyzed how we can solve them and defined the rationale (benefits) why it
is important to resolve challenges.

3.1 The Strengths of the Problem Management Process

Besides challenges, several positive observations were made regarding the prob-
lem management process of the case organization. The first strength was that
the roles and responsibilities of problem management, incident management,
and change management were clearly documented in the organization’s business
framework called WayToExcellence (W2E). The second strength was that the
case organization provides already customers with online support site where cus-
tomers are able to browse FAQs and reported cases. The third strength was that
the organization had started to train both management and workers effectively
for process changes. Several managers of the business unit had participated in
ITIL practitioner and foundation courses. ITIL awareness training was organized
for ordinary workers. Finally, we found that the support tool used by the orga-
nization is easy to configurate for various business needs without programming.

44 M. Jäntti and K. Kinnunen

3.2 The Challenges in the Problem Management Process

The following challenges were identified regarding the case organization’s problem
management process. Abbreviations after the issues refer to the source of the re-
ported issue:AU=Author,SD=ServiceDesk,PM=ProblemManager,SM=Service
Support manager, CU=Customer (an energy company), SA=System Analyst
(product delivery unit). The source of the issue was documented in order to clar-
ify roles of different actors in identifying challenges.

1. Combining ITIL concepts to the existing business concepts is difficult. ITIL-
based concepts such as known errors and knowledge base articles are not
included in the current problem management process. Additionally, there is
no knowledge base available for the service desk or customers at the moment
(AU).

2. There is an increasing number of duplicate or open incidents and problems
in the database (AU, SD, PM, SM).

3. Problem management and Service Level Management have no connection
(SM, AU, PM). There is no Service Level Manager or templates for Service
Level Agreements.

4. There is no category for errors in third party products in the incident/problem
record (AU).

5. Incident/problem records include some datafields that are never used (SD,
PM, SA, SM, AU).

6. The connection between testing and problem management is unclear in the
current process (PM, AU).

7. Incidents and problems can not be linked to hardware configuration items
(AU).

8. Several customers have complained about problems with the availability of
the web-based support service site (CU, SD).

9. The information required by the support and maintenance teams is stored
on separate locations but is not linked to the support tool (SA, AU).

10. Service desk workers have difficulties in assigning certain cases to other teams
(a lack of guidelines how to use different types of actions in the support
tool)(SD).

1) The first challenge is related to the lack of a known error concept. Problems
should have a known error status after the work around/solution has been found.
There are two solutions to the first challenge: first, adding a new case type
(Known Error) and second, designing and implementing a knowledge base. The
benefit of solving the first challenge is that resolved problems and errors with
resolution data are stored in the knowledge base that is available for both the
service desk and customers. Thus, it is possible to conduct a more powerful
search for known errors, problems, and solutions. The knowledge base helps
the organization to learn from the experiences [20] and transfer the knowledge
quickly to the organization [21].

2) The second challenge is the increasing number of similar incidents and
problems recorded in the datastore. Similar incidents and problems should be

Improving the Software Problem Management Process: A Case Study 45

combined or merged by the service desk using the support tool. The solu-
tion to this challenge is to train support staff to use Merge Cases and Relate
Cases functions. Hence, it is possible to close several incidents by resolving one
problem.

3) The third challenge is the disconnection between problem management
and service level management. Service level requirements should be defined for
problem management such as target resolution times for incidents and problems.
We recommend as a solution that the case organization appoints a professional
service level manager that is responsible for creating SLA templates and defining
the monitoring system for SLAs. Somebody must be trained to configure the SLA
module of the support tool and SLA rules related to SLA templates. As a result,
it is possible to negotiate SLAs with customers and monitor whether SLAs are
met or breached.

4) The fourth challenge relates to the missing category for errors in third-
party products and services. The problems and errors caused by third party
products should be recorded by the service desk of the case organization. A
simple solution to this problem is to create new category "Error in third party
product". The benefit is that problem management is able to monitor errors in
third party products more effectively and collect information to support decision
making whether service providers meet the required quality standards.

5) The fifth challenge addresses the issue that incident/problem records in-
lude too many datafields that reduce the productivity. Problem records should
include only the fields that are really important. The recommended solution is to
organize the meeting with important stakeholders to identify which data fields
are really needed. As a benefit, recording incidents and problems will be faster
and more effective.

6) The sixth challenge is the unclear connection between testing and problem
management. Problem records, error records and change records should include
references to test cases, for example, a test case id to maintain the traceability
chain. The simplest solution is to add a new datafield test case id that is a link
to the test case record. Another way is to insert the whole description of the
test case(s) to the problem record. As a benefit, customers can easily see that
changes and errors have been tested.

7) The seventh challenge relates to the monitoring problems in hardware con-
figuration items. Organization needs a problem or error category that includes
errors in application components, hardware components, and third party prod-
ucts. The recommended solution is similar than in the challenge number 4: a new
data field "category" is added to the incident and problem records. The benefit
of a category field is that problems can be linked to the hardware components
such as servers and third party components such as database components and
service packs.

8) The eighth challenge needs very careful investigation. The customers of
the case organization have complained a couple of times that the online support
service site is not working. The root cause of the problem is the internal server
that is maintained by another business unit within the case organization. The

46 M. Jäntti and K. Kinnunen

solution to the challenge is to create an operational level agreement (OLA) be-
tween business units defining reliability and availability requirements for the
support site service. The benefit is the decreased number of service outages con-
cerning the support site and the increased level of customer satisfaction.

9) The ninth challenge is also very important issue addressing that the in-
formation required by problem solving: bug fixes, quick deliveries, release notes,
user instructions are stored in separate locations and are not linked to the sup-
port tool. The recommended solution is to use a knowledge base module (see
Figure 2) of the support tool as a common datastore for known errors, user in-
structions, delivery notes, and release notes. The benefit is that the service desk
is able to find solutions to problems more rapidly from the knowledge base than
by browsing a large number of folders.

Fig. 2. A knowledge base record

10) The last challenge emphasizes the importance of clear instructions for
service desk and product support teams such as how to handle a simple service
request or one that requires information from a specialist, how to manage change
orders, development ideas and other incidents, who is responsible for closing
incidents, and how to relate incidents and problems. The benefit is that service
desk and product support are able to classify incidents rapidly and assign them
to specialist teams. Hence, the number of open incidents should decrease.

Improving the Software Problem Management Process: A Case Study 47

4 Lessons Learned

Implementing an ITIL-based problem management model seemed to be more
difficult task than expected although the problem management process (roles,
responsibilities, and activities) was well-described in the organization’s business
framework. Several challenges were identified during the study. The following
list of lessons learned is based on our case study results. Firstly, a large part of
challenges were somehow related to the support tool. Introduction of new tool
features such as a knowledge base module and service level agreement module
requires both time and patience. Some of the process bottlenecks (adding new
and deleting unnecessary datafields) can be easily solved by making simple tool
configurations. The tool might require a lot of configuration work before it can
be used to measure the quality of service (e.g. incident turnaround times, cases
per period metrics).

Secondly, the service desk and problem management teams need clear instruc-
tions how to manage different incident scenarios such as what are the rules for
handling different types of service requests. Additionally, it is important to de-
fine who are responsible for recording data on incidents, problems, and known
errors, how to change a status of the incident, or how to classify and categorize
incidents and problems.

Thirdly, managers have to allocate sufficient resources to proactive problem
management to prevent incidents and problems before they occur. Focusing on
proactive problem management is more useful than perform only reactive actions
(correcting a large number of repetitive incidents, problems, and errors).

Fourthly, the case organization needs a service level manager to design and
implement a service level management process including methods of service level
monitoring. It might be hard to create SLA rules based on the priority levels of
incident and problems because customers and end users tend to consider each
incident as a critical incident.

Fiftly, organizations can use the knowhow of external stakeholders (e.g. uni-
versity researchers and consults) to enhance process improvement. However, it
takes several months to learn how processes work, how business concepts are re-
lated to each other and how challenges and problems regarding processes could
be solved. Finally, the cooperation with international business partners creates
challenges to business and to problem management. Solving and reporting prob-
lems with foreign business units requires more efforts than one with domestic
units.

5 Discussion and Conclusions

This paper described the results of a case study focusing on improving the prob-
lem management process in TietoEnator Oyj, Forest&Energy. Our findings show
that improving a problem management process based on ITIL principles requires
a lot of efforts and might cause several tool-related and process-related chal-
lenges. However, tool-related challenges can often be solved by making simple

48 M. Jäntti and K. Kinnunen

configurations such as changes to the user interface of the support tool. It is more
difficult to solve process-related challenges such as to create a common datastore
for the support and maintenance or implement an effective service level moni-
toring system. Clear instructions for handling problems play also an important
role in process improvement. The challenge is how to produce guidelines that
cover various scenarios of incident and problem handling.

As with all case studies, there are threats to the validity of this study. First,
construct validity is problematic in case study research. We tried to avoid prob-
lems with construct validity by collecting data using several sources of evidence:
by investigating the problem management tool, participating in support team
work, and collecting information based on informal discussions. Second, we have
taken into consideration the threat to external validity (the generalizability of
the results). In future work we are going to examine whether the results of this
study are generalizable to other organizations such as small-sized IT service
providers.

The main contribution of this study is to help IT companies to identify difficul-
ties in implementing ITIL-based problem management model. In future studies
we intend to improve our research framework by examining proactive problem
management methods such as how to build an effective knowledge base for known
errors.

Acknowledgment

This paper is based on research in the SOSE project (2004-2006), funded by the
National Technology Agency TEKES, European Regional Development Fund
(ERDF), TietoEnator Corp., Savon Voima Oyj, Softera Solutions Oy, and DNA
Finland Oy.

References

1. ISO/IEC 12207: Information Technology Software Life-Cycle Processes. ISO/IEC
Copyright Office (1995)

2. Office of Government Commerce: ITIL Service Delivery. The Stationary Office,
UK (2002)

3. Jackson, A.L., Lyon, G., Eaton, J.: Documentation meets a knowledge base: blur-
ring the distinction between writing and consulting (a case study). In: SIGDOC
’98: Proceedings of the 16th annual international conference on Computer docu-
mentation, New York, NY, USA, ACM Press (1998) 5–13

4. Saunders, A.: Online solutions: looking to the future of knowledgebase manage-
ment. In: SIGUCCS ’04: Proceedings of the 32nd annual ACM SIGUCCS confer-
ence on User services, New York, NY, USA, ACM Press (2004) 194–197

5. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect
prevention. IBM Syst. J. 29(1) (1990) 4–32

6. Office of Government Commerce: ITIL Service Support. The Stationary Office,
UK (2002)

Improving the Software Problem Management Process: A Case Study 49

7. Florac, W.: Software quality measurement a framework for counting problems and
defects. Technical Report CMU/SEI-92-TR-22 (1992)

8. Hirmanpour, I., Schofield, J.: Defect management through the personal software
process. Crosstalk, The Journal of Defense Software Engineering (2003)

9. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
ICSE ’00: Proceedings of the 22nd international conference on Software engineer-
ing, New York, NY, USA, ACM Press (2000) 428–437

10. Zhen, J.: It needs help finding root causes. Computerworld 39(33) (2005) 26 ID:
EBSCO Academic Search Elite.

11. Jalote, P.: CMM in Practice, Processes for Executing Software Projects at Infosys.
Addison-Wesley (2000)

12. Sandusky, R.J., Gasser, L.: Negotiation and the coordination of information and
activity in distributed software problem management. In: GROUP ’05: Proceedings
of the 2005 international ACM SIGGROUP conference on Supporting group work,
New York, NY, USA, ACM Press (2005) 187–196

13. Kajko-Mattsson, M.: Problem management maturity within corrective mainte-
nance. Journal of Software Maintenance and Evolution - research and practise
14(3) (2002) 197–227 Article; English; ID: Web of Science (ISI).

14. Kajko-Mattsson, M., Forssander, S., Olsson, U.: Corrective maintenance maturity
model (cm3): maintainer’s education and training. In: ICSE ’01: Proceedings of
the 23rd International Conference on Software Engineering, Washington, DC, USA,
IEEE Computer Society (2001) 610–619

15. Kajko-Mattsson, M., Ahnlund, C., Lundberg, E.: Cm3: Service level agreement.
In: ICSM ’04: Proceedings of the 20th IEEE International Conference on Software
Maintenance, Washington, DC, USA, IEEE Computer Society (2004) 432–436

16. Jäntti, M., Toroi, T.: Uml-based testing: A case study. In: Proceedings of
NWUML’2004. 2nd Nordic Workshop on the Unified Modeling Language, Turku:
Turku Centre for Computer Science (2004) 33–44

17. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
(2001)

18. Yin, R.: Case Study Research : Design and Methods. Beverly Hills, CA: Sage
Publishing (1994)

19. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14 (1989) 532–550

20. Garvin D.A: Building a learning organization. Harward Business Review (1993)
78–91

21. Gasston, J., Halloran, P.: Continuous software process improvement requires or-
ganisational learning: An australian case study. Software Quality Control 8(1)
(1999) 37–51

A Framework for Overcoming Supplier Related
Threats in Global Projects

Darja Šmite and Juris Borzovs

Riga Information Technology Institute
Kuldigas 45b, LV-1083, Riga, Latvia

{Darja.Smite, Juris.Borzovs}@riti.lv

Abstract. The process of globalization expands with each year along with the
growing complexity of software development. Outsourcing transforms a
common way of producing software to distributed software life cycle activities
among teams separated by various boundaries, such as contextual,
organizational, cultural, temporal, geographical, and political. Risks associated
with these boundaries make managers struggle with pressures unique to this
type of environment. In this paper we describe a research that aims to
investigate the nature of global risks and build a comprehensive and easy to use
framework for risk management. We emphasize the necessity of awareness
about global factors and threats that distinguish distributed projects and require
adequate attention throughout the project.

1 Introduction

1.1 Global Software Development

While the process of globalization expands with each year, complexity of software
development grows. The concept of global software development (GSD) addresses
distribution of common software life cycle activities among teams separated by
various boundaries, such as contextual, organizational, cultural, temporal,
geographical, and political. Risks associated with these boundaries make managers
struggle with pressures unique to this type of environment [9, 13].

Although global work is not a new phenomenon, distributed software development
is relatively new. Global Software Work (GSW) described by Sundeep Sahay et al.
[13] is recognized as still an unexplored form of work and is enabled through
organizational forms quite distinctive from traditional global arrangements as typified
by large multinational corporations. It extends the concept of traditional outsourcing
(the practice of subcontracting manufacturing work to outside [11]) through involving
complex interdependencies between the teams involved in a joint software
development life cycle. Virtual product development is recognized as considerably
more complex, than even the most complex project managed entirely in house [9].

The importance of timely risk management in the extremely dynamic and diverse
environment of global software development grows. Global risks are recognized as
just the part of everyday existence that cannot be avoided, that must be confronted on
a continuous basis [13]. On the other hand, lacking expertise and experience
precludes effective risk identification.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 50 – 61, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 A Framework for Overcoming Supplier Related Threats in Global Projects 51

This paper describes research results on global software development project
threats and provides an introduction to a framework that addresses risk management
practices for global risk elimination.

1.2 Research Context and Motivation

Most of research in the area of global software development was conducted mainly
from the customer’s perspective because the objective of outsourcing was to self-
maximize their internal resources without taking into account the service provider’s
situation [7]. Subsequently, there is still a lack of research on how achieve effective
performance in distributed environment [10]. Motivated by its industrial background
and market demand, the research described in this paper focuses on outsourcing
service supplier related risks.

The research takes place in one of the largest software houses in Latvia that is
involved in global collaboration (custom and product software development as either
a direct supplier for foreign customers, as an associate contractor or as a subcontractor
for a related prime contractor). The research is motivated by a necessity of global
software development projects performance improvement. The nature of projects and
their success is not stable. The projects suffer from lack of common practices
addressing global risks and unpredictable performance. In addition, a single study
conducted within the company uncovered problems with knowledge and awareness
transfer [17]. As a result, it becomes difficult to introduce a new inexperienced project
manager to the corporate culture of managing distributed projects.

1.3 Concepts of Risk Management

As the terminology in the area of risk management is inconsistent and does not allow
a precise vision of project risk [3, 5], we first define the concepts being used.

Risk management activities are directed to systematically identifying, analyzing,
and responding to risks throughout the project life cycle before they turn into
problems. The term “risk” and related concepts “risk factor” and “risk exposure” are
exploited by various authors differently. In this paper we use the term “risk” to
describe an uncertain future event that has a potential for negative effect on a project
objective. Although some authors and frameworks, including Project Management
Body of Knowledge (PMBOK) [12], combine the ideas of risks and opportunities, it
argues with the well-established concepts used by practitioners. Therefore, we use the
term “event” meaning an occurrence of a threat and its negative consequences on
project objectives.

Threats can be defined as items or activities that have potential for negative
consequences. Consequences include but are not limited to unexpected management
costs, customer cost escalation, budget overrun, late product delivery, time delays,
customer dissatisfaction, undermined morale, disputes and litigations.

For risk prioritization we calculate risk exposure as a probability of risk occurrence
multiplied by its magnitude (assessment of negative effects of a risk):

Risk exposure = probability (risk) x magnitude (risk)

52 D. Šmite and J. Borzovs

To illustrate these definitions, let’s consider an example.
-

Poor communication, that has potential to endanger the project schedule, is a
threat for a project. It can lead to time delays and cause late product delivery. Time
delays and late product delivery are consequences of poor communication.
Accordingly we can say that the project has 2 risks:

- Time delays due to poor communication;

- Late product delivery due to poor communication.

In order to quantify risk exposure, we have to assume different values of the
consequences, in other words, evaluate risk magnitude. This is necessary, because
each of these risks (possible event) has potential to different significance of the time
delays and size of the slip of product delivery, and has its own probability of
occurrence.
-

However, the nature of threats can be more complex. One threat can lead to
another, which can lead to another … etc. This produces a hierarchy of threats. The
threat that initiates the hierarchy is called a root threat.
-

A good example to illustrate the risks hierarchy would be exploring the causes of
poor communication. Poor communication can be caused e.g. by distance between
the virtual teams, by language differences, and poor cultural fit.
-

In this paper we discuss global threats as threats that endanger software projects
in distributed environment, and their potential consequences. We highlight global
factors as roots of global threats (e.g., geographical distribution being the root of
various threats, such as dominant use of asynchronous communication and
increased costs of holding face to face meetings). In the same way as in the threat
hierarchy, a global factor can cause several global threats, and a global threat can
be caused by several root threats or global factors. We emphasize global factors
because they characterize the difference between in-house software development
projects and global projects.

The paper is organized as follows. The next section provides insight in how the
theory on global threats was built. Research results are described in section 3. Section
4 provides an overview of the proposed framework for global risk management. The
paper ends with a discussion (section 5), conclusions and future work (section 6).

2 Research Overview

In this paper we describe an ongoing research project which aims to answer the
following research questions:

 - What is the nature of global software development?
 - What are the GSD project threats?
 - How to assist project managers in managing global threats?

 A Framework for Overcoming Supplier Related Threats in Global Projects 53

2.1 Approach

The entire research is run as an action research [8] - “learning by doing” - which aims
to improve global software development projects in the investigated company. In
practice project managers involved in the research help to identify the problems faced
by their projects, investigate possible solutions, test them in project environments and
learn from experience. Researchers play the role of “coaches” supporting practitioners
in risk management activities. Knowledge and experience is being accumulated for
further utilization in a database that is developed according to the concepts referred to
as Experience Factory [4].

In order to investigate the nature of global software development projects, an
exploratory study has been performed aiming to derive the major global threats.
Grounded theory building methodology developed by Glaser and Strauss [6] was
chosen as the basis for the study. This methodology introduces a qualitative approach
that generates theory from observation [14].

Theory-creating studies are very suitable for exploratory investigations, i.e., when
there is no prior knowledge of a part of reality or a phenomenon [8]. Grounded
theories, because they are drawn from data, are likely to offer insight, enhance
understanding, and provide a meaningful guide to action [15].

The study started with the definition of the phenomenon under study – GSD
project risk management. Thereafter a theory was evolved grounded by systematically
gathered and analyzed data about the phenomenon. The data was gathered from a
variety of sources, including interviews [16] and enhanced analysis of related
literature. Data analysis was performed according to principles prescribed by a
grounded theory through applying open, axial, and selective coding techniques [14],
also called as theoretical sampling. A Lotus Notes-based database was used for data
storage and further analysis facilitating in easy categorization.

Application of grounded theory in more detail is described in the next section.

2.2 Theory Building

Data sources. Various data sources were used for building the theory, including
interviews with experienced project managers, research literature (journal articles,
papers form conference proceedings), and books on global software development.
The data was gathered from a variety of sources, including interviews and field
observations [16] and enhanced analysis of related literature.

We have chosen to interview project managers from different business units in the
organization, from projects with different destinations (customer countries). These
project managers were advised by the business unit managers to be the most
experienced in global projects, by this providing representative input for the research.
The interviews were written down for further analysis.

Data analysis. To start analyzing the data we used open coding for data breaking
down and examining, comparing, conceptualizing and categorizing. While examining
data sources, items related to risk management in GSD projects were identified and
labeled. These items and their context (total of 253 GSD related issues) were then
stored into the database. Each issue at the beginning was represented by a single label.

54 D. Šmite and J. Borzovs

Then we analyzed the existing labels in order to identify issues that are similar in
meaning. They were then grouped under more general concepts called "categories".

- - - -
E.g., the categories “Cultural barriers”, “Cultural distance”, and “Poor cultural

fit” were coded under a joint category “Poor cultural fit”.
-
This reduced the number of GSD related categories to 163.
By analyzing the existing categories we identified, that many issues are related

between each other and form cause-effect interconnections. We have used axial
coding for deriving connections between the existing categories and the risk
management concepts, during which the identified GSD related issues from open
coding were categorized into a hierarchy of sub-categories as follows:

- Global factors – root of global threats, that distinguish global projects;
- Global threats – items or activities that have potential for negative

consequences and result from one or a combination of global factors (Customer
related threats and Supplier related threats);

- Consequences – an outcome of a threat (Customer related consequences and
Supplier related consequences);

- Practices – recommendations for risk treatment (Customer related practices and
Supplier related practices).

Then selective coding was used for systematically validating relationships and
filling in categories that need further refinement and development. During axial
coding we discovered that some of the existing categories have to be reconsidered.
For some categories identified during open coding this meant dividing into two or
even more categories.

-
E.g., the category “E-mail communication causes time delays and

misunderstandings” was divided into “E-mail communication” – a threat, and “Time
delays” and “Misunderstandings” – consequences. “E-mail communication” was
then united with one of the more general existing categories – “Asynchronous
communication”. The relations between these three categories were then produced.

-
Customer related issues were not analyzed in detail at this point. But we kept the

data for a possibility to analyze it in future. In addition, we have chosen only those
threats that appeared more than once, i.e. the threats that are strongly dependent on
particular environment were omitted. New versions of records were processed, saving
the history and notes reflecting the decisions within the database.

Results. Grounded theorizing resulted in 7 global factors, 32 supplier related threats,
7 supplier related major consequences and 32 supplier related practices.

As the theory was built, we concluded that the most valuable results refer to global

factors and threats. In its turn consequences and relationships between the global
factors, threats and consequences are weak and inconsistent. Therefore, further
research steps aim to empirically validate these considerations and improve the
theory.

 A Framework for Overcoming Supplier Related Threats in Global Projects 55

3 Research Results

3.1 Global Factors

The following are global factors or root threats that have been derived:

- Geographic distribution - distance that separates the participating teams;
- Socio-cultural differences - diversity in social, ethnic, and cultural gospel;
- Time zone differences - temporal distance, level of working hours overlay;
- Language differences - linguistic diversity;
- Multisourcing - multiple team involvement in a single life cycle;
- Contextual differences - organizational differences, diversity in process

maturity, inconsistency in work practices, goals and expectations;
- Cross border transaction - political and legislative diversity.

3.2 Global Threats Within Taxonomy

We highlight the importance of global threats. The identified issues can be used in
GSD projects during risk management to identify threats for further evaluation.
Aiming to facilitate risk management in global projects, we have chosen to use the
taxonomy of software development risks, developed by Software Engineering
Institute (SEI) [2]. We have applied a taxonomy-based approach for threat
identification in a set of the company’s projects earlier and received positive
references.

The SEI developed taxonomy-based risk identification method facilitates the
systematic and repeatable identification of threats associated with development of
software dependent projects. Taxonomy organizes software development threats into
3 levels – class, element, and attribute. The major classes are: A. Product
Engineering, B. Development Environment, and C. Program Constraints.

We used SEI proposed taxonomy to classify the uncovered global threats. SEI
taxonomy is developed to support risk management in different kinds of software
development projects, while our aim was to facilitate risk management in global
projects. The Program Constraints class of the SEI taxonomy contains an element
called Program Interfaces, which consists of attributes such as Customer, Associate
Contractors, Subcontractors, Prime Contractor, and other. The nature of distributed
projects, in fact, prescribes these attributes to be a part of the project work
environment. However, we didn’t want to produce one more version of an existing
taxonomy. Thereby, we prescribe that the risks identified within the Work
Environment element’s attributes (such as Cooperation, Communication, and others)
in global projects shall also focus on all related collaboration partners (Customer,
Associate Contractors, Subcontractors, Prime Contractor).

While mapping the identified threats onto the SEI taxonomy components, we
identified that some of the threats overlap with the taxonomy’s elements or attributes;
other can be sub-categorized under one or more taxonomy’s attributes.

The following global threats caused by the previously discussed global factors
have been identified and classified within the taxonomy (see Table 1).

56 D. Šmite and J. Borzovs

The results show that most of the identified threats address Work Environment
issues (14 threats) and Management Process and Methods issues (9 threats). This
relates to the distinguishing nature of the distributed projects and indicates the areas
of concern for global project management.

Table 1. Global Threats within the Taxonomy

A. Product Engineering
1. Requirements • Poorly defined or inconsistent SRSs
c. Clarity • Terminology differences
2. Design • Poorly defined / inconsistent design or architecture

B. Development Environment
1. Development Process
b. Suitability • Poor/disadvantageous distribution of SW life cycle

activities
c. Process Control • Increased level of unstructured poorly-defined tasks

• Relatedness with other suppliers
d. Familiarity • Lack of experience with outsourcing projects
3. Management
Process

• Increased level of complexity of project management

a. Planning • Increased complexity of project/activ./resource planning
• Relatedness with other suppliers

b. Project
Organization

• Supplier’s complex hierarchy / several escalation levels
• Poor/disadvantageous distribution of SW life cycle

activities
c. Management
Experience

• Lack of experience with outsourcing projects

d. Program Interfaces • Lack of clarity about responsibility share
• Lack of joint risk management
• Increased level of reporting on project progress to the

contractor
• Relatedness with other suppliers

4. Management
Methods

• Increased level of complexity of project management

a. Monitoring • Poor or complex project measurement
d. Configuration
Management

• Poor artifact version control

5. Work Environment
b. Cooperation • Lack of trust and commitment

• Lack of team spirit
• Belief that the work cannot be done from a far location
• Poor socio-cultural fit
• Prime contractor employees’ unwillingness to

collaborate caused by threat of being fired due to
switching to outsourcing mode

 A Framework for Overcoming Supplier Related Threats in Global Projects 57

Table 1. (continued)

 • Lack of common goals
• Lack of understanding of each other’s context of

decision making
• Diversity in process maturity/inconsistency in work

practices

c. Communication • Lack of language skills of the supplier employees
• Dominant use of asynchronous communication
• Increased virtualness between the parties
• Prime contractor’s complex hierarchy / several

escalation levels
• Time zone difference

d. Morale • Prime contractor employees’ unwillingness to
collaborate caused by threat of being fired due to
switching to outsourcing mode

• Lack of trust and commitment
• Lack of team spirit

C. Program Constraints
1. Resources
a. Schedule • Relatedness with other suppliers

• Faulty effort estimates
b. Staff • Lack of experience with outsourcing projects
c. Budget • Faulty effort estimates

• Incr. cost of logistics of holding face to face meetings
3. Program Interfaces
a. Customer
b. Associate Contr.
c. Subcontractors
d. Prime Contractor

• Poor/disadvantageous distribution of SW life cycle
activities

• Lack of experience with outsourcing projects

3.3 Consequences

We find consequences rather dependent on project environment. In our study we
identified the following supplier related negative consequences in the project results
that are used for threat magnitude evaluation: Unexpected management costs; Budget
overrun; Customer costs escalation; Time delays; Late product delivery; Customer
dissatisfaction; Undermined morale; Disputes and litigations. However, this list can
be enlarged by other potential consequences for a given project to be evaluated.

3.4 Global Practices

We have gathered 32 different supplier related practices through this study to support
project managers during the process of risk treatment. Most of the practices facilitate
proactive project management at the beginning of distributed collaboration. Some
practices help to avoid global threats, other mitigate the magnitude of their
consequences or probability of occurrence.

58 D. Šmite and J. Borzovs

4 Experience Factory and Risk Management

We have developed an Experience Factory based on a Lotus Notes tool to provide
users with various functions, including global threat description and categorization
according to various keywords; risk treatment experience generalization; new issue
proposal; templates and checklists for risk management; discussions; notifications;
wide searching opportunities.

However, Experience Factories are recognized as rarely used. Therefore, to
motivate the reuse of existing practices accumulated in our database, we have
integrated it into the process of risk management (see Fig. 1).

Fig. 1. Risk Management Scheme [16]

Recognized as a means for stimulating effective knowledge interchange,
“coaching” is used to assist project managers in organizing risk management
activities. It provides an opportunity for effective organizational learning by
supporting knowledge dissemination from the Experience Factory along with
continuous improvement of risk management processes within the organization.

The Experience Factory also helps to introduce new software development projects
and project managers with earlier experiences.

5 Discussion

5.1 Global Factors and Threats

Global software development puts new demands on the software processes stressed by
increased complexity of project coordination (through temporal and geographical
distances), communication (lacking proximity and troubled by cultural diversity),
cooperation (lacking trust and commitment), and infrastructure management (uniting

 A Framework for Overcoming Supplier Related Threats in Global Projects 59

heterogeneous contexts). Global factors, that have been derived, very precisely
characterize the nature of distributed software development projects. These factors in
fact form unavoidable elements that shall be analyzed throughout the project.

The identified global threats tend to be general. During the process of coding global
issues, we aimed to avoid too detailed categorization of the threats to prevent the
complexity of correlated threat hierarchy. We derived general concepts that are
evaluated along with various consequences. This will also relieve the process of threat
identification (too long checklists with odd issues are rarely used).

5.2 Future Project Management Within Globalization

The root of major global threats is hidden in the complex diversity of environmental
elements of a global project, such as internal and external contexts, temporal and
geographical distance, culture, and politics. Therefore, in order to eliminate the threats
of a distributed environment, a strategy that addresses diversity minimization shall be
implemented. A set of practices that helps to establish a common work environment
for every team involved in the project shall form a shared domain for successful
collaboration. This includes implementing adequate technological infrastructure
(modern communication tools, fast connection channels, etc.) and achieving common
understanding of goals, tasks, methods, cultural and moral expectations, etc. through
organizing socialization workshops.

As globalization expands the “future software development workspace” will focus
on supporting multiple distributed teams by minimization of distance and diversity
between the virtual teams.

5.3 Threat Avoidance – Possible or Not?

It is worth to mention though that some of the threats cannot be eliminated.
-

E.g. you can hardly exclude the cultural differences if they exist; however, being
aware about them helps to preclude or eliminate misunderstandings and disputes.
This is why experienced managers advise to train project personnel in soft skills.
-

Subsequently, we emphasize the importance of being aware of global threats that
endanger your project. Joint risk management involving every participating party in a
distributed project is an essential practice for successful global project management.

6 Conclusion and Future Work

The nature of global software development brings forward new areas of concern that
require careful attention from project managers. While practitioners lack standardized
approaches to overcome these risks in global software development [16], various
managers are experimenting and quickly adjusting their tactical approaches [12].
Threats caused by such unique factors as context diversity, geographical distribution,
temporal and socio-cultural differences, cross-border transaction and multisourcing,
not only make global projects different but can also lead to project failure if managed
inadequately.

60 D. Šmite and J. Borzovs

Marvin J. Carr describes [1] that as simple as it sounds, many organizations
however are unable to manage risks effectively for any of the following three reasons:

- a risk-averse culture;
- an inadequate management infrastructure to support effective risk management;
- lacking systematic and repeatable method to identify, analyze, and plan risk

mitigation.

The framework described in this paper provides all the necessary preconditions for
successful risk management. In addition, the provided framework facilitates tacit
knowledge accumulation and precludes loss of achieved experiences with the loss of
human resources within the organization.

The current work within the research focuses on research results validation using
global and in-house project surveys, however due to the limited length of this paper,
we couldn’t provide any detail on validation results.

This study is limited to focusing on global software development suppliers related
risks and can be further enlarged by investigating the customer related risks.

Acknowledgements

The author appreciates valuable research input received from the project managers
within the investigated software house.

This research is partly supported by European Social Fund and the Latvian Council
of Science project Nr. 02.2002 “Latvian Informatics Production Unit Support
Program in the Area of Engineering, Computer Networks and Signal Processing”.

References

[1] Carr M.J., “Counterpoint: Risk Management May Not Be for Everyone”, IEEE Software,
Vol.30 No.5, 1997, pp. 21,24

[2] Carr M., Kondra S., Monarch I., Ulrich F., Walker C., “Taxonomy-Based Risk
Identification”, CMU/SEI-93-TR-6, ADA266992, SEI, Carnegie Mellon University,
Pittsburgh, June 1993

[3] Dedolph F. M. “The neglected management activity: Software risk management”. Bell
Labs Technical Journal, Vol. 8, Issue 3, 2003, pp. 91-95

[4] Dingsøyr T., “An Evaluation of Research on Experience Factory”, Workshop on
Learning Software Organisations at the 6th Int. Conf. on Product Focused Software
Process Improvement (PROFES), Oulu, Finland, pp. 55 – 66

[5] Émond C., “From Donald Rumsfeld to Little Gibus… “Revisited”: Understanding and
managing risks and other project uncertainties”, Le Bulletin, PMI Monteral, Vol. 15, No
2., December 2005, pp.8-11

[6] Glaser B., Strauss A. “The discovery of grounded theory: Strategies of qualitative
research”, Wiedenfeld and Nicholson, London, 1967

[7] Jae-Nam Lee et al, "The Evolution of Outsourcing Research: What is the Next Issue?", In
the Proc. of the 33rd Hawaii Int. Conf. on System Sciences, 2000

[8] Jarvinen P. “On research methods”, Opinpajan Kirja, Tampere, 2001

 A Framework for Overcoming Supplier Related Threats in Global Projects 61

[9] Karolak D.W., “Global Software Development: Managing Virtual Teams and
Environments” , IEEE Computer Society, 1998

[10] Loh, L., Venkatraman, N. “An empirical study of information technology outsourcing:
Benefits, risks, and performance implications”. In Proc. of the 16th Int. Conf. on
Information Systems, 1995, Amsterdam, the Netherlands, pp. 277-288

[11] Merriam-Webster Online Dictionary, www.m-w.com
[12] Project Management Institute, “A Guide to the Project Management Body of Knowledge:

PMBOK guide. – 3rd Edition”, ISBN 1-930699-45-X, 2004
[13] Sahay S., Nicholson B., Krishna S., “Global IT Outsourcing: Software Development

across Borders”. Cambridge University Press, 2003
[14] Strauss A., Corbin J. “Basics of qualitative research – Grounded theory procedures and

techniques”, Sage Publications, Newbury Park Ca, 1990
[15] Strauss, A., Corbin, J., “Basics of qualitative research: Techniques and procedures for

developing grounded theory”. Thousand Oaks, CA: Sage Publications, 1998
[16] Smite D., “A Case Study: Coordination Practices in Global Software Development”, In

Proc. of the 6th Int. Conf. on Product Focused Software Process Improvement
(PROFES), Springer, Oulu, Finland, June 2005, pp. 234-244

[17] Smite D., Moe N.B. “An ISO 9001:2000 Certificate and Quality Awards from Outside –
What’s Inside? – A Case study” accepted for publication in proc. of the 7th Int. Conf. on
Product Focused Software Process Improvement (PROFES), Amsterdam, the
Netherlands, June 2006

Three Case-Studies on Common Software Process
Problems in Software Company Acquisitions

Jarmo J. Ahonen1, Anne-Maria Aho2, and Hanna-Miina Sihvonen1

1 Department of Computer Science
University of Kuopio

P.O. Box 1627
FI-70211 Kuopio, Finland

{jarmo.ahonen, hanna-miina.sihvonen}@uku.fi
2 School of Information and Communication Technology

Seinäjoki University of Applied Sciences
Kampusranta 9 A

FI-60320 Seinäjoki, Finland
anne-maria.aho@seamk.fi

Abstract. In this article three cases of small or medium sized software compa-
nies acquiring companies of the same or smaller size are analyzed from the
software process point of view. The analysis shows that the problems in those
acquisitions are fairly common and the types of those problems are fairly simi-
lar in different cases. Although those acquisitions have the potential to satisfy
their goals of complementing or improving the product portfolio or the cus-
tomer base of the companies, the actual success of the acquisitions may not be
as good as expected. The main reasons for the relative unsuccessfulness of the
analyzed cases seem to be the lack of proper planning for the merger and com-
munication problems which hinder effective and high-quality work in the new
post-acquisition organization.

1 Introduction

It seems to be a law of the nature that bigger software companies buy smaller soft-
ware companies. In some cases both the buyer and the bought are not very large com-
panies and in some extreme cases a smaller company buys a larger one. The use of
acquisitions as the way to grow may look very tempting in the current business envi-
ronment in which the mad days of the dot-com mania are over and an annual growth
of 20 % of the turnover is not a bad performance at all. Such acquisitions are not,
however, as rosy for software companies as one might assume.

The acquisition of another company may be the means of growing the turnover of
the purchasing company, or the means for getting the customer base of the acquired
company, or the means for getting the product portfolio of the acquired company in
order to make the purchaser’s product portfolio more complete. In addition to the ac-
quisition of a complete company it is possible to buy only certain parts of the other
company. For buying just a part of another company the reasons for the purchase are
the same as for buying a complete company. In the case that only a part of a company

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 62 – 73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 Three Case-Studies on Common Software Process Problems 63

is sold, the relative sizes of the purchasing company and the purchased business may
be of almost any combination.

It is a well-known fact that most of the business acquisitions fail due to the uncom-
promising difficulties in merging the acquired company or business into the acquirer.
Most of those studies are, however, of big companies purchasing each others. Only a
few of those studies of mergers or acquisitions cover software engineering oriented
businesses. The possibility of success is not much better in the case of software com-
panies. An illustrative story of the possible problems and mistakes that can be made in
merging software engineering businesses is outlined in [1]. The story illustrates the
fact that in the case of software engineering organizations the nature of the software
engineering work may make the merging even more difficult. That is at least partly
due to the fact that software engineers are specialists who do creative work. The com-
panies discussed in [1] are not, however, from the smallest size of companies that pur-
chase each others. In this article the most interesting type of software companies are
small or medium sized software engineering organizations that purchase each others.

Three separate cases of a small or medium sized software engineering organiza-
tions acquiring another software engineering organization of a smaller or a quite simi-
lar size are analyzed in this article. Turning the acquired business into a seamlessly
incorporated part of the acquirer failed at least in some respects in every one of the
analyzed cases, and the reasons for all of those failures were related to the difficulties
of incorporating different software engineering processes and the mistakes made dur-
ing the attempted incorporation. The problems were practically identical in every case
and were caused by communication problems and misunderstandings.

In this paper the features of those failed incorporations are outlined, analyzed and
discussed. The surprising similarity of the cases is pointed out and the common mis-
takes made in every case are outlined and analyzed. The structure of this article is as
follows: Section 2 represents the settings of the studies, Section 3 outlines how the
data on the cases was collected and briefly outlines the data, Section 4 consists of an
analysis and Section 5 is the discussion.

2 Research Question and Background

The reason why the reported studies were performed was — in every case — the sub-
standard quality of the software produced by the post-acquisition company. In every
case the quality had dropped after the merger and the estimated benefits had not been
achieved as expected. The aim of each of the individual studies was to find out the
current state of the merger and to propose relevant corrective activities. Only one of
the authors was involved in every case — although with a couple of other people who
did not wish to participate in the article writing process.

The cases were analyzed independently and the companies that were involved did
not know about each other. They were interested in finding practically usable solu-
tions for their real problems, but they agreed to scientific reporting if their identities
would not be revealed. The research situation was set up as individual consulting pro-
jects. The aims for those projects were to find out

64 J.J. Ahonen, A.-M. Aho, and H.-M. Sihvonen

1. What went wrong?
2. What are currently the most serious problems?
3. What steps should be taken in order to resolve the most serious problems?

Although the companies do not wish to be identified, some of the background of each
of the cases must be presented in order to make the cases understandable. Those
backgrounds are vague, but that vagueness is intentional and required in order to pub-
lish the results.

In every case the rationale of the acquisition decision had been based on a careful
analysis of the market situation and the bought company. The rationales for the acqui-
sitions are outlined in Table 1. From the table it should be noted that in all cases the
role of the products acquired through the purchase was important but the role of the
customer base was not considered relevant in one case. Although the authors of this
article have got the impression that many of the similar purchases are made in order to
get rid of existing competition, only one of the analyzed cases fell into that type of
purchases.

In all cases the insufficient level of quality had not been an issue for some time, in
every case the acquisition had been performed from two to three years ago and quality
problems had crept in during that time. At least in one case the reason why no atten-
tion had been paid to the quality problems had been the previous management of the
acquiring company. In other cases similar reasons could be guessed due to the fact
that corrective or analytic actions had been decided to be taken only after at least
some of the top-management people had changed in every company.

In Case A the merger had been successful in the sense of technology transfer. The
technological leadership of the bought company had been successfully transferred to
the acquiring company. That technology transfer was brilliantly done and had been
the main reason for the current successfulness of the new combined company due to
the fact that the strong but technologically out of date product portfolio of the acquir-
ing company had been successfully updated to the same technological level as the
products of the purchased company. The excellent quality of the products of the ac-
quired company had, however, deteriorated after the merger. Therefore the manage-
ment wanted to find out what had happened and what could be done.

In Case B corrective actions were sought after the owners of the company had
changed. During the previous owners and the previous management such actions were
not actively pursued. It is not known why that was, but it can be assumed that the per-
sonal relations of the management and the owners prohibited any critical analysis of
the decisions made by the owners who were actively participating in running the
company. After the ownership of the company changed the new management was
much keener on getting software engineering activities up to the task.

In Case C the problems were a bit different. The quality of produced software had
also deteriorated but the original products of the acquired company were to be phased
out in a few years. The deteriorating software quality might not have been a major is-
sue if its impact would have been mainly on the original products of the purchased
company. The deteriorating software quality was considered a major issue because
the lack of quality was especially evident in those products and projects that were per-
formed by using the technology of the purchaser. In addition to that, even the cus-
tomer base acquired through the purchase had started to fall apart.

 Three Case-Studies on Common Software Process Problems 65

Table 1. The rationale of the acquisition decision

Rationale Case A Case B Case C

Strengthen the
product portfolio.

Yes. The bought
company was the
technology leader.

Yes. The bought
company had prod-
ucts that are neces-
sary for the business
and were lacking
from the buyer’s
portfolio.

Yes, but not a major
way.

The role of the
bought company.

Technology leader. The only independ-
ent provider of simi-
lar products.

Master of marketing
in its niche.

The role of the
customer base of
the bought com-
pany.

Irrelevant because
the customers of the
bought company
were already cus-
tomers of the buyer.

A well-come bonus. The most important
factor.

The relation be-
tween the buyer
and the bought
before the deal.

Deepening coopera-
tion.

Cooperation. The
bought company
sold its products as
parts of larger sys-
tems provided by the
buying company.
Other providers of
compatible products
were scooped up by
the competition of
the buying company

Competition.

Improved pres-
ence in the inter-
national market.

Buyer already pre-
sent in all important
markets.

Buyer already pre-
sent in all important
markets.

Improved access to
one important mar-
ket.

The software en-
gineering re-
sources of the
bought company.

Very valuable and
necessary for keep-
ing up the technol-
ogy leadership. In
addition to that, it
was planned that the
buying company
would adopt the
technology acquired
through the deal and
gradually stops using
its own technological
architecture.

Very valuable due to
the fact that the
buyer’s staff had no
knowledge of the in-
ternals of the prod-
ucts of the bought
company.

Relevant, because
the required domain
knowledge is scarce.
The products and the
technology of the
bought company
were to be phased
out over time and re-
placed by new prod-
ucts that would con-
form to the buyer’s
technological deci-
sions.

In other words: none of the acquisitions had fulfilled its original promise. All
mergers were plagued with quality problems. Two of the cases also showed some
signs of problems with the customer relations and the size of the customer base.
Therefore the managements of the companies in question were seriously concerned
and the search for the reasons of the problems was a priority.

66 J.J. Ahonen, A.-M. Aho, and H.-M. Sihvonen

3 Research Method and Data Collection

The research method used in all cases was a combination of case-specific analysis
and action research [2]. When the researcher’s intention is not only to observe, in-
terpret and understand a case, but also participate in the efforts of changing the
situation of the case, the approach can be described an action case research. In all
cases the studies were performed as consulting cases, not as academic research al-
though the permission to publish academic results was obtained from every com-
pany involved.

In all process-improvement oriented approaches the first step is to get an overview
of the actual situation. In order to get that overview a sufficiently detailed but rela-
tively light-weight procedure was performed. The procedure consists of three steps
that were:

1. The modeling of the actual information flows in the organization.
2. The modeling of the actual software engineering processes of the organization.
3. Interviews of several members of the staff of the organization.

The actual information flows were modeled by using the technique outlined in [3].
The technique was used in its original form and with some variations. The variations
included the modeling of information flows between different roles and different geo-
graphical locations. The modeling technique was, however, similar to the original
technique — the diagonal matrix technique was used in all cases.

The software engineering processes were modeled by using the light-weight tech-
nique described in [4]. The most important aspects of that approach are its light-
weight nature and its informal nature. Due to those features that modeling technique
has turned out to be very effective in revealing the real software engineering proc-
esses and their problems, see e.g. [5] and [6].

The modeling workshops were directed by the researchers in every case, although
the researchers were working under a commercial agreement and were called con-
sults. It is, however, worth to note that only one of the authors participated in every
case and therefore there might be some slight variation in the flow of the events. In
addition to that it must be noted that the author who participated in every modeling
session did not act as the chairman in all modeling sessions.
During the information-flow modeling sessions the relative number of the software
engineers and other relevant staff members who participated in the sessions were
70%, 91% and 83% for Case A, Case B, and Case C, respectively. That is, of course,
possible only in fairly small software organizations. In the analyzed cases the total
number of software engineers in the post-acquisition organizations was about 120, 50,
and 70 for Case A, Case B and Case C, respectively. In Figure 1 a part of a wall-chart
produced during a modeling session is shown. In order to get the permission to use
the picture we had to paint over most of the texts. That is regrettable but understand-
able from the company’s point of view.

 Three Case-Studies on Common Software Process Problems 67

Fig. 1. An example of the wall-charts created during the information flow modeling sessions

The process-modeling sessions were also based on the use of wall-charts. The rea-
son for the use of the technique was its familiarity to both the staff of the companies
and the researchers. The problems with modeling processes with this technique are
outlined in [4]. The most difficult issue with process modeling turned out to be the
fact that in some cases the concept of a process was not familiar to everyone and there
really were no standard ways to perform various activities. The lack of standard proc-
esses was manifested in quite illustrative discussions between the software engineers.
It must be noted, however, that the “software engineers” who participated in the ses-
sions included software engineers, project managers and involved members of the
management. The percentages of the relevant staff that participated in the sessions
were about the same as for the information flow modeling sessions.

After the information flow modeling sessions and the process modeling sessions
the models were written into electronic forms and sent to the representatives of the
company in question. The companies added missing knowledge to the models and
changed them in some degree. In only one case the additions were substantial, namely
in Case C. In other cases the additions were only cosmetic. The reason why there
were so many additions required in Case C is not known to the authors. After the
companies had corrected the models of information flows and processes a subset of
the staff of the companies were interviewed. The subset was selected by the manage-
ment of the company in question.

The interview questions were based on the results of the modeling sessions and
were somewhat different to every company. The difference can, however, be thought
only superficial because the questions were based on the problems and difficulties en-
countered or revealed in the modeling sessions, and those problems were surprisingly
similar in all cases, as will be seen later on. The basic structure of the interviews was
the one shown in Figure 2. The case-specific interviews were surprisingly similar

68 J.J. Ahonen, A.-M. Aho, and H.-M. Sihvonen

despite the fact that the case specific information flow models and process models
were used as background in order to tune the contents of the interviews.

1. How many people belong to your team?
2. How many products or projects your team manages in a six-month period?
3. Please describe your work during a typical month.
4. What are the main quality hindrances in your team and the company in general?
5. Which are the strengths of software engineering processes, issues or parts in your team

and the company in general?
6. What are the tools your team is using? Are they adequate?
7. How is your working time divided between different tasks? Please describe the tasks and

the time you use for each task. Please use at least the following tasks:
− creating new products
− maintaining old products
− fixing bugs
− testing

8. Do you think that the amount of training (tools, methodologies, domain training, or any
other type training) is enough?

9. What kind of training would you like to get?
10.How should software quality be improved in your company?
11.How would you like to improve your working environment?
12.Do you have any personal concerns regarding your job?

Fig. 2. The basic structure of the interviews

After the information flow models and the process models were accepted by the
representatives of the company in question and the interviews were analyzed the re-
sults were combined into company-specific reports in which the situation was ana-
lyzed and corrective steps proposed. In the following section the analysis and the
steps are outlined on a level that has been accepted by the companies.

4 Analysis and Proposed Improvements

The analysis of the situations in each case was performed by using the collected in-
formation and additional material provided by the company. In this section the com-
mon features of the cases are analyzed and discussed. Case specific features are men-
tioned only in the case that they are especially interesting.

In every case the acquisition had been performed at least a couple of years ago.
Despite that fact the structure of the companies had not been changed to reflect the
new situation. The original situation in which the companies and the processes of the
companies had been separate was present in every case. That separation was clearly
illustrated in the information flow models. An illustration of the problem outlined by
the models is shown in Figure 3.

The diagram in Figure 3 shows that the flow of information is directed through a
central role, Role G (the diagram is not one of the real models, it has been created for
clarifying the problem). Such a central role existed in Case A, Case B, and Case C. In
the central role there was either a member of the previous management of the ac-
quired company or a new manager appointed by the acquiring company. In every case

 Three Case-Studies on Common Software Process Problems 69

Role B

Role D

Role E

Role F

Role G

Role H

Role I

Role J

Role A

Role C

The organization of the acquired company

The organization of the acquiring company

Fig. 3. The communication deadlock common for the studied cases

the manager had started to slow down the flow of information and hence his/her role
had started to build up a deadlock which severely affected the smoothness of software
engineering processes. It must, however, be noted that the deadlock was not a result
of the manager’s intentional activities. The problem was a natural result of the setting
of the situation in which no specific attention had been paid to the integration of in-
formation flows.

The process modeling sessions in which the software process of both the acquirer
and the acquired were modeled showed quite a similar situation. Although there was
no deadlock in the same way as in the case of information flows, the software engi-
neering processes were still surprisingly dissimilar. The lack of similarity was shown
in the processes, and the different break-down structure of the tasks and the work
products in individual projects. The differences made it very difficult to find specific
documentation or to compare the state of a project. At the time of the reported studies
there were no plans for making the processes and documentation standards similar in
any of the companies.

The differences in the process models and software engineering methodologies
were a serious issue. In Case A and Case C the companies had been implementing
software process improvements for several years before the acquisition. The software
process improvement models used by the companies were not the same, in Case A the
acquirer had been using CMM(I) and the acquired company had been using SPICE. In

70 J.J. Ahonen, A.-M. Aho, and H.-M. Sihvonen

Case C both of the companies had been using SPICE. Neither the acquirer nor the ac-
quired company in Case B had been performing any specific software process im-
provement activities. The software process improvement models are not very easy to
combine and the lack of a transition plan caused difficulties. Additional confusion
was caused by the fact that in every case the software engineering methodologies
were based on different methodological models like RUP [7] and OMT++ [8], or
there were significant company specific modifications made into the basic model pro-
vided by RUP. In one case there was a completely home-grown methodology which
just used UML [9] as the notation. The software engineering methodology has its ef-
fects on the thinking of software engineers and the definitions of the processes of the
company.

Due to various reasons, of which some have been mentioned above, the processes
that were used for the same purpose were very different in every case. Therefore the
procedures and even the process infrastructure of the companies were surprisingly dif-
ferent. There were no plans to incorporate the process infrastructures and make the
processes uniform at the time of the study. In order to realize the benefits of the ac-
quisition a situation in which there would be similar process models and methodolo-
gies used throughout the post-acquisition company must be achieved. For the reason
the promises of the acquisitions had not been achieved.

The interviews added surprising flavors to the situation. In Case A and Case B the
software engineers in the acquired organization felt that the new management had
forgotten them. The reasons for that feeling were lack of training, lack of coordination
with other development projects, and lack of information. In Case C the most promi-
nent feeling was insecurity, the engineers thought that their jobs were not very secure
and the fate of the pre-acquisition products would be a reliable estimate of their own
fate.

Another issue that was clear from the interviews was the surprisingly large cultural
differences between the acquirer and the acquired in every case. In Case A the ac-
quired company was the technology leader, or at least very near that position, and the
culture in that company was engineer driven. The acquiring company in Case A was,
and still is, more oriented towards thinking in which cooperation with customers and
close relations with the representatives of the customers and especially trust were val-
ued over technical mastership. Differences like that are not easy to overcome.

In Case B the acquiring company was at least as much a master of technology as
the acquired company. In that case the most remarkable differences were in the man-
agement culture. The acquiring company was, and still is, managed by people ap-
pointed by a large multinational owner that allows remarkable freedom if business
goes well, and the acquired company was managed by its entrepreneur owner who
acted as the CEO. The atmosphere of the acquiring company was very professional
and straightforward and the managerial infrastructure of the company has been tuned
to work very fast but according to the rules. In the acquired company the entrepreneur
knew everybody personally but managed the company according to his whims with-
out any regard to the rules he had set himself.

The companies in Case C were a different story because the takeover was hostile in
the sense that the acquiring company was buying a nuisance out of the market. Both
of the companies were managed by their owners before the deal and the management

 Three Case-Studies on Common Software Process Problems 71

cultures were not as different as in other cases. The situation, the life after a hostile
take-over, made the atmosphere awkward and the lack of trust obvious.

It was reasonably easy to propose necessary improvement steps to be taken in each
case. The interesting feature of all cases is that several of those improvement steps are
common. Those common features were not expected due to the fact that the settings
of the cases were at least superficially different as listed in Table 1. The superficial
differences were, however, only the surface and the real problems were fairly similar.

The first type of common recommendations was geared towards removing the
communication deadlock between the acquirer and the acquired parts of the compa-
nies. The problem illustrated in Figure 3 was actually quite easy to remove at least in
principle. The proposed improvements were to

− allow direct communication between different parts of the company;
− change the regional structure into a process oriented one in which processes are not

restricted into the original company boundaries;
− reconsider the need for the manager who acted as the communication deadlock;
− create and implement a well-thought and detailed plan for incorporating the differ-

ent processes and practices.

All improvement steps would cause changes in the power structures of the companies.
The empowerment of software engineers makes some types of management unneces-
sary, which is the reason why some types of software process improvement steps are
difficult to achieve [10]. Direct communication and the dismissal of the regional
structure are difficult steps to implement due to the required changes in the power
structure of the company. The creation and implementation of the plan for incorporat-
ing the different processes and working cultures is also fairly difficult to do because a
fair and sustainable plan would include best practices selected from both the acquirer
and the acquired.

It is interesting to note that the aims set for the acquisitions, as shown in Table 1,
were not unrealistic, but the acquisitions had not been satisfactory the time of the
study. The business aims had not been achieved. Our opinion is that the reason for the
problems was that some pre-planning and reconfiguration activities had been ne-
glected. This is contrary to the experience that successful acquisitions are results from
careful planning and reconfiguration activities, and the acquired operations are not
left to operate within their original boundaries [11].

Typical pre-acquisition activities are for example following: surveys of political at-
titudes, investigations of competitive environment, analyzing the similarities between
corporate goals of the acquirer and the firm to be acquired, searching for similarities
in management policies between the two firms and similar items that span the whole
spectrum of the business [12]. In the analyzed cases those activities had not been per-
formed in the way and magnitude which is required in order to perform a successful
acquisition. The performed pre-acquisition activities had been able to identify viable
business reasons for the acquisitions, but the other parts of the pre-acquisitions analy-
sis had been left undone.

One of the common features of the analyzed cases was that the human issues had
not been properly handled in any case. The acquisition decisions were justified, but
the analysis had stopped before touching issues like the company cultures and the

72 J.J. Ahonen, A.-M. Aho, and H.-M. Sihvonen

differences in other people-oriented aspects of the companies. It seems that the soft
issues outside the hard business facts and technological issues had not been considered
at all. It would be interesting to know whether such neglect is common to information
technology companies or have the analyzed cases just been extraordinary bad examples.

5 Discussion

It is very difficult to get a company acquisition to work. The history of company
mergers seems to be a history of failures. It is not, however, a law of the nature that
mergers of companies are failures. There is no such law even in the case of informa-
tion technology companies. It is possible to get a merger working, although that re-
quires careful planning, hard work, and probably a bit of luck. All of those things are
required before and after the actual acquisition.

In order to get an acquisition to work at least some typical pre- and post-
incorporation activities have to be performed. Typical pre-acquisition activities in-
clude at least surveys of political attitudes, investigations of competitive environment,
analyzing the similarities in management policies between the companies. The fol-
lowing post-incorporation activities typically include a well-thought plan to coordi-
nate managerial activities, encouraged cooperation among employees and units, tech-
nology transfer, assessing the degree of adaptation of acquired firm to the
organizational culture of the acquirer etc [12]. In the analyzed cases those activities
had not been performed in any systematic way if at all.

The cases analyzed in this article make one to wonder whether it is especially com-
mon for information technology companies to neglect the considerations of soft issues
when planning and implementing business restructuring. Technical issues are easier to
understand and plan for, but the soft side of companies is not easy to tackle. The lack
of considerations of the soft issues could explain at least some of the failed acquisi-
tions in the software industry. It is, however, quite difficult to draw general conclu-
sions after analyzing only three cases. Obviously additional cases have to be analyzed
and if the neglect of soft issues seems to be more general, then our attitudes to manag-
ing and organizing software operations should change.

References

1. Ahonen, J.J., Sihvonen, H-M.: How things should not be done: A real-world horror story
of software engineering process improvement. In Richardson, I., Abrahamsson, P., Mess-
narz, R., eds.: 12th European Conference on Software Process Improvement, EuroSPI
2005. Volume 3792 of Lecture Notes in Computer Science., Springer-Verlag (2005) 59-70

2. Järvinen, P.: On Research Methods. Opinpajan Kirja, Tampere, Finland (2001)
3. Karjalainen, A., Päivärinta, T., Tyrväinen, P., Rajala, J.: Genre-based metadata for

enterprise document management. In: Proceedings of the 33rd Hawaii International Con-
ference on System Sciences, HICSS’00, Washington, DC, USA, IEEE Computer Society
(2000) 3013-3022

4. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process model-
ing technique for software process improvement. Software Process Improvement and Prac-
tice 7 (2002) 33-44

 Three Case-Studies on Common Software Process Problems 73

5. Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the organizational model on testing:
Three industrial cases. Empirical Software Engineering 9 (2004) 275-296

6. Ahonen, J.J., Junttila, T.: A case study on quality-affecting problems in software engineer-
ing projects. In: Proceedings of 2003 IEEE International Conference on Software Sci-
ence, Technology & Engineering, SwSTE’03. (2003) 145-153

7. Jacobson, I., Booch, G., Rumbauch, J.: Unified Software Development Process. Addison-
Wesley, New Yor (1999)

8. Jaaksi, A., Aalto, J.M., Aalto, A., Vättö, K.: Tried & True Object Development: Industry-
Proven Approaches with UML. Cambridge University Press, Cambridge (1999)

9. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Ad-
dison-Wesley, New York (1999)

10. Zahran, S.: Software Process Improvement. Addison-Wesley, London (1998)
11. Karim, S., Mitchell, W.: Innovating through acquisition and internal development: A quar-

ter-century of boundary evolution at Johnson & Johnson. Long Range Planning 37 (2004)
525-547

12. Yeheskel, O., Newberry, W., Zeira, Y.: Significant differences in the pre- and post incor-
poration stages of equity international join ventures (IJVs) and international acquisitions
(IAs), and their impacts on effectiveness. International Business Review 13 (2004)
613-636

Simple Indicators for Tracking Software Process
Improvement Progress

Anna Börjesson

Ericsson AB and IT University of Gothenburg, Lindholmspiren 11, 417 56 Gothenburg,
Sweden

anna.borjesson@ericsson.com

Abstract. We know from the software process improvement (SPI) literature
that new technologies are often acquired, but not deployed. Fichmand and
Kemerer call this phenomenon the assimilation gap. Important prerequisites to
SPI success are SPI implementation success and SPI initiative progress. This
study presents four simple and practical indicators for SPI initiatives to stay
focused on deployment and facilitate SPI initiative progress. These practical
indicators are easy to gather, manage and evaluate and they provide an
organization with useful information to determine the progress of an SPI
initiative. The indicators focus on competence build-up, employee capabilities,
process adoption and management commitment. The result shows there are
simple and practical indicators for tracking and follow-up SPI initiatives’
progress to stay focused on deployment and decrease the assimilation gap.

1 Introduction

Already in 1978 Argyris and Schön argued there are espoused theories, a conception of
what one wants to do, and theories-in-use, action as actually performed. This theory
explains that there is a difference in what we think we do and what we actually do.
Fichman and Kemerer (1999) provide the software community with an understanding of
an existing assimilation gap similar to the difference in what we do and what we think
we do. Organizations do not manage to deploy potential improvements in the same
pace as they acquire them. Fichman and Kemerer argue an organization can err by
adopting the right potential improvements, but failing implement them in a way that
generates benefits. The successful improvement can be illusory. Organizations might
think they successfully improve, but they do something else.

Many promising reasons have been found that explain the assimilation gap, like
lack of management commitment (Abrahamsson, 2001), not understanding reactions
to change (Weinberg, 1997), knowledge barriers (Attewell, 1992), poor deployment
tactics (Börjesson and Mathiassen, 2004), and lack of agile methods (Dove, 2001;
Haeckel, 1999). The ultimate situation is of course not only to understand why there
is an assimilation gap, but also to make sure that the acquired improvements become
deployed to decrease the gap. Successful deployment requires successful software
process improvement (SPI) implementation, which then of course requires progress in
the SPI initiative.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 74 – 87, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 Simple Indicators for Tracking Software Process Improvement Progress 75

Known SPI literature agrees on the necessity of measuring to understand and
improve practice (Humphrey, 1989; McFeeley, 1996; Grady, 1992; 1997; Weinberg,
1993). Measuring is however expensive and must be considered as an investment
(Humphrey, 1989). Most measurements also focus on the end result, i.e.
understanding increased or decreased productivity, like costs, resources used, time
spent and defects found. SPI is an approach to improve the software quality and
productivity. It is therefore interesting to understand the progress in the ongoing SPI
initiatives. We need to measure not only on current software practices, but also on the
SPI initiatives that will provide us with our wanted future software practices.
Measuring SPI initiatives’ progress also keep attention to deployment, which is a
prerequisite to decrease the assimilation gap (Fichman and Kemerer, 1999). It is also
likely the high failure rate in SPI initiatives (SEMA, 2002) are related to this lack of
progress in the SPI initiatives.

The current SPI literature provides us with little understanding of simple and
practical measurements or indicators for tracking and follow-up SPI initiatives’
progress. There are numerous reports on CMM appraisals (Bollinger and McGowan,
1991; SEMA, 2002), but also the CMM model and its appraisal methods are criticized
for not having enough emphasize on measurements (Brown and Goldenson, 2004).
Goethert and Siviy (2004) suggest a template that can help an organization to define
indicators, or graphical representations of measurement data in general. The template
addresses the importance of having progress indicators to know how well plans
proceed. Goethert and Siviy’s study provides however no actual practical suggestions
for which indicators to use. Grady (1997) briefly suggests four baseline measurements
for SPI programs to understand environmental aspects that have effect on the SPI
initiatives’ progress. Apart from this suggestion, the SPI literature provides little
understanding of possible, simple and practical indicators for tracking and follow-up
SPI initiatives’ progress. The existing assimilation gap, the importance of measuring,
the SPI initiatives’ progress as a necessary prerequisite to SPI success, and the lack of
simple and practical SPI progress indicators make it therefore interesting to find
answers to the following question: What simple and practical indicators can be used
to track SPI initiatives’ progress?

The author has studied and participated in four different SPI initiatives over a five
years period within the telecom company Ericsson AB in Gothenburg, Sweden, where
four practical indicators for tracking and follow-up SPI initiatives’ progress have been
used. The indicators focus on competence build-up, employee capabilities, process
adoption and management commitment. The result from the study indicates that there are
simple and practical indicators to use to track and follow-up SPI initiatives’ progress. The
study is presented as follows. Chapter two presents the theoretical context, focusing on
current understanding of indicators for software and SPI success. Chapter three describes
the action-based research approach. Chapter four presents the SPI initiatives using the
studied indicators and the outcome of this use. Chapter five discusses the contributions
from this research and finally, chapter six presents the conclusions.

2 Theoretical Framing

It is today fairly well understood that the most effective way to improve the
performance of an organization is by directly acting upon the processes it uses to

76 A. Börjesson

achieve its results. The problem is to objectively measure the quality of a process (i.e.
the ability of the process to produce good quality results) to see where you are today
and to measure improvements. The first section (2.1) describes the current
understanding of why measure and the second section (2.2) focuses on measuring
software and SPI.

2.1 Why Measure

Software measurements play an important role in ensuring desired software quality.
“As we face increasingly demanding software projects, we need to understand more
precisely what we are doing and how to improve the effectiveness” (Humphrey, 1989,
p. 301). Humphrey (1989) and Weinberg (1993) argue that data gathering is
expensive and time-consuming, it affects the busiest people, it can be viewed
personally threatening and there can be a considerable confusion on what data to
gather and how to use it. It is also often a considerable delay before benefits is
apparent. Grady (1992) argues software measurements are necessary to help us make
better decisions. Software measurements are used to derive a basis for estimates,
project progress, relative complexity, understanding when quality goals are reached,
analyzing defects, and for validating best practices.

From the capability maturity model (CMM) (Paulk et al., 1995) we can further
understand the difficulties measuring software implies. The key practices areas for
measuring is found at level four – the managed level. Few companies ever manage to
reach level four (SEMA, 2002). The maturity level four in the CMM is dedicated to
explain goals, commitment, abilities and actions for measuring. To fulfil this level an
organization requires having measurements for productivity and quality for the most
important software project activities across all projects as a part of an organizational
measurement program (Paulk et al., 1995). Despite of the known and accepted
difficulties regarding measuring, there is no doubt that measuring is an important step
toward increased software productivity and quality (Humphrey, 1989; Paulk et al.,
1995, Weinberg, 1993). Without facts from measuring activities, presentations tend to
be nothing more than yet another opinion.

2.2 Measuring Software and Software Process Improvements

Measuring software quality and productivity today relies heavily upon four distinct
metrics: time, costs, size and defects found (Humphrey, 1989; Grady, 1992;
Weinberg, 1993). Even though both time and cost can be measured in many different
ways the major discussion within software measurements is focused on size and
defects found. It has been shown very difficult to objectively measure software
quality and productivity because of the subjectivity of software size (Flaherty, 1995;
Humphrey, 1985; Jones, 1993; 1994) and software complexity (Albrecht and Gaffney,
1993; Albrecht, 1979).

Software measures are difficult to gather and even trickier to use and when applied
on an organizational level, they are prone to misuse. It is however desirable to have
some measures and we must not stop measuring (Humphrey, 1989). No literature
argue for stop measuring software just because of all known difficulties, but the
literature discusses what can go wrong (Humphrey, 1989; Grady, 1992) and claim
when analyzing the measurements, one must understand we see indications rather

 Simple Indicators for Tracking Software Process Improvement Progress 77

than firm answers. It is therefore important to recognize indicators as satisfying
measurements.

Software process implementation is a first and necessary step toward successful
SPI (Börjesson and Mathiassen, 2004). Software process implementation does not
alone assure SPI success, but without implementation SPI success is impossible.
There are also many reports about SPI failures (Bach, 1995; Bollinger and McGowan,
1991; Börjesson and Mathiassen, 2004; Fayad and Laitinen, 1997; Humphrey and
Curtis, 1991). It is therefore of highest interest to facilitate that ongoing SPI initiatives
will be deployed, i.e. implemented and used. SPI initiatives need to be continuously
measured to understand and communicate progress to be able to take corrective
actions. To monitor the SPI programs and progress, a measurement system to evaluate
progress must be in place (McFeeley, 1996). McFeeley argues the key to evaluate the
SPI program will be the measurements that are selected and the ease with which they
can be gathered. Grady (1997) states based on lessons learned from industry failure
analysis activities, we seldom record adequate data to understand progress. This data
is vital to understand environmental aspects that have effect on potential
improvements (Grady, 1997). Grady suggests measuring what he calls “high-level
information”. These are measurements that affect the total result, not alone, but in
combination with other measurements. Grady discusses the four measurements
“percentage of team trained”, “how extensively applied”, “applied by the team
before” and “team opinion value”. Measuring high-level information will together
with other distinguished measures contribute to understanding SPI initiatives’
progress. Grady argues that these indicators are simple and cost-efficient to gather.
These practical suggestions by Grady (1997) are one of the few found in the SPI
literature today. The Goal Question Metric approach developed by Basili et al. (1994)
can help identifying metrics for assessing new software engineering technologies and
Abrahamsson’s five dimensions (2000a) to measure SPI success can help identifying
types of beneficial metrics. It is obvious we need to measure, but there are few simple
and practical indicators guiding the SPI initiatives how to do it in practice.

3 Research Approach

This study has the dual goal of both improving how to track and follow-up SPI
initiatives’ progress and contributing to the body of knowledge in SPI about the same
theme. The author has been actively involved in and responsible for the different
discussed SPI initiatives. The author is also dedicated to a research program in a joint
venture between Ericsson AB and the IT University of Gothenburg.

The study is based on action research (Baskerville and Wood-Harper, 1996;
Galliers, 1992; Davison et al., 2004) with a focus on understanding how to track SPI
progress. The research question is: What simple and practical indicators can be used
to track SPI initiatives’ progress? Baskerville and Pries-Heje (1999) argue that the
fundamental contention of action research is that a complex social process can be
studied best by introducing changes into that process and observing the effects of
these changes.

78 A. Börjesson

The author collected data throughout the SPI initiatives as summarized in Table 1.
Triangulation of data (Yin, 1994) has been important to avoid bias and to secure
validity of the research. The combination of many different data sources has been
important to make triangulation possible.

Table 1. Data collected throughout the studied SPI initiatives

What Explanation
1 Direct involvement The author has been directly involved in or responsible for the

management and outcome of the discussed SPI initiatives, which gives
primary access to the organization, personal opinions, coffee break
discussion, etc.

2 Interviews with four
SPI project managers

Each SPI project manager first answered a questionnaire with six
questions about the used indicators. The SPI project managers were then
interviewed for 30 min (occasionally more) to clarify and follow
up on answers in the questionnaire.

3 Minutes of Meetings The author attended steering group meetings where decisions about the
SPI initiatives were taken,

4 Participatory
observations

The author took the outsider role (Bartunek and Louis, 1996) at selected
management and project meetings to view how data was discussed and
used

5 Questionnaires to
training participants

All training participants were asked a number of specific question (six
grade scale answering alternatives from fully agree to fully disagree)
I believe the course content and structure were clear
I believe the exercises were valuable
I believe I’m capable to start practicing the improvement
I believe I can support and help my colleagues with the new practice

6 SPI initiative data The author collected data from project meetings and final reports (time,
participants, measurements, decisions, outcome, etc)

7 Tool data Access to data in the tool to view who and how many that entered data
in the tool and if they had followed the process

4 The Case

The first section (4.1) of this chapter describes the characteristics for the four studied
indicators. The second section (4.2) describes the use of the indicators in the four
studied SPI initiatives. The third and final section (4.3) describes the SPI project
managers’ evaluation of the use of the four indicators.

The indicators used and studied in this research project are closely related to
Abrahamsson’s second important dimension for measuring SPI success – the
impact on the process user (2000a). Abrahamsson argues the level of success is
characterized in terms of level of satisfaction with the new process and whether the
new process actually is used. The indicators “training participation” and
“perceived acquired know-how” map to level of satisfaction, while tool use map to
actual use. The indicator “steering group participation” map to the identified need
of management commitment (Abrahamsson, 2000b) to manage successful SPI
projects. Table 2 shows the relation between the SPI initiatives and the used
indicators.

 Simple Indicators for Tracking Software Process Improvement Progress 79

Table 2. The relation between the studied SPI initiatives and the used indicators

4.1 Characteristics of the Indicators

The training participation indicator was designed to keep exact track of who
participated at which training occasion in major SPI initiatives aiming to change
several competences for several different engineering roles at the same time. This
indicator was also designed to make line managers committed to assure employee
participation at training occasions and that it was possible to understand fulfilment of
the training participation. Figure 1 visualizes the training participation indicator.

Fig. 1. Training Participation

The SPI project managers collected, from each affected line manager, the expected
number of participators (needs in Figure 1) for each training occasion (training X, Y
and Z in Figure 1). The SPI project managers then kept track of the number of
participants at each training occasion and updated the data table after each training
occasion (actual in Figure 1). This follow-up was done with help of prepared excel
sheets. The training participation indicator made it possible for all interested, at all
times, to follow up the progress of training participation.

The perceived acquired know-how indicator was designed to understand how
valuable a given training occasion was. It was also designed to understand how well
the new know-how was diffused among the participants for them to be able to start
working according to the new know-how in ongoing development projects. Each
training participant had to answer a questionnaire with a number of predefined

20

60

20 20

120

10 10 10 5

35

5

40

0
10

55

15

48

18 20

101

15
3 9 4

31

4

32

1 6

43

0

20

40

60

80

100

120

140

Dep. A Dep. B Dep. C Dep. n SUM Dep. A Dep. B Dep. C Dep. n SUM Dep. A Dep. B Dep. C Dep. n SUM

Tr aining X Tr aining Y Tr aining Z

Needs

Actual

80 A. Börjesson

questions with six grade answer possibilities (Table 1). Figure 2 visualizes the
perceived acquired know-how indicator.

0
1
2
3
4
5
6
7
8

D
is

ag
re

e * * * *

A
gr

ee

D
is

ag
re

e * * * *

A
gr

ee

D
is

ag
re

e * * * *

A
gr

ee

D
is

ag
re

e * * * *

A
gr

ee

Clear content and
structure

Good exercise Can start practicing X Can help colleagues

Fig. 2. Perceived Acquired Know-How

The SPI project managers assured that a predefined questionnaire (Table 1) was
available at each training occasion to be filled in by all participants after the training
was completed. The questions were defined as statements where the participant could
both evaluate the value of the course and how he believed he could start working
according to the new know-how. The SPI project managers then collected the
questionnaires and updated the data table (excel sheet). This made it possible for
whoever was interested, at all times, to follow up the progress of perceived acquired
know-how.

The tool use indicator was designed to understand actual use of the new build up
competence. The indicator was also designed to understand actual progress of the SPI
initiative as tool use indicates SPI implementation success. Figure 3 shows the tool
use indicator.

0

50

100

150

200

250

300

Feb March Apr il May June

Accumulated number of X
submit t ed

Accumulated number of unique
users

Fig. 3. The Tool Use Indicator

The SPI project manager regularly (per month) collected data through looking in
the tool’s databases on actual use. Figure 3 shows the number of unique users and the
number of new submitted change requests in the tool. This measure makes it possible
to follow-up who and how many that uses the new tool and also in some ways how
they use it.

 Simple Indicators for Tracking Software Process Improvement Progress 81

The steering group participation indicator was designed to keep track of how
steering group members participated at steering group meetings where decisions
about the SPI initiatives were taken. It was also designed to make it visual for the
steering group members (mostly busy line managers) if they participated or not to
make them understand that without participation, commitment to a decision is
impossible. Figure 4 shows the steering group participation indicator.

Nam

e Area Jan Feb
Marc

h
Apri

l May
Jun

e

NN Requirement
Presen

t

NN Software

 NN Hardware Partly
NN Verification

NN
Project
Management

Absen
t

NN
Configuration
Management

NN X

Fig. 4. The Steering Group Participation Indicator

The chairman of the SPI steering group collected data about presence and absence.
This was easily done in the minutes of meetings for each steering group meeting. The
chairman summarized (in excel) the data to show steering group members how they
have participated. The data was also shown for other management teams to visualize
how managers spend time on discussions, decisions and commitment to SPI. This
measure makes it possible to follow-up managers’ participation at SPI steering group
meetings, which is a prerequisite for management commitment.

4.2 The SPI Initiatives’ Use of the Indicators

The implementation of RUP SPI initiative was conducted during 2000-2001 in a
development unit with approximately 900 employees. The SPI initiative affected
requirements engineering, software engineering, verification engineering, project
management, and configuration management practices. The SPI initiative was
managed according to a dedicated approach (Börjesson and Mathiassen, 2004) and
SPI initiative had an appointed SPI project manager with a responsibility to drive and
manage the SPI initiatives’ progress. During this period, approximately 15 different
training courses were managed and coordinated by the SPI project manager.
Approximately 500 of the 900 employees were affected by the SPI initiative. The
development unit had a special steering group responsible for discussing, deciding,
follow-up and solving problems for the SPI initiatives and related activities in the SPI
area. The SPI project manager used the training participation, perceived acquired
know-how and steering group participation indicators to track and follow-up SPI
progress (see Table 2).

The deployment of the SPI principles initiative was conducted during the autumn
2003 within a development unit of approximately 550 employees. The SPI initiative

82 A. Börjesson

aimed to raise the awareness and know-how about how to run effective SPI
initiatives. The initiative was assigned to define and hold an SPI course including a
dedicated part about SPI principles for conducting effective SPI initiatives according
to lessons learned in previous SPI initiatives (Börjesson and Mathiassen, 2004). The
SPI manager acted SPI project manager for the initiative. 550 employees were invited
to attend the course and 258 employees participated. The SPI project manager used
the perceived acquired know-how indicator to track and follow-up the value of the
SPI initiative (see Table 2).

The implementation of a new change request process and tool initiative was
conducted during 2004 in a development unit of approximately 550 employees. The
initiative aimed to define and deploy a new process and tool for change request
handling directly affecting nearly 200 employees. The initiative had a dedicated SPI
project manager (Börjesson and Mathiassen, 2004) and the initiative was successfully
diffused (Börjesson et al., 2005). The SPI project manager used the tool use indicator
to track and follow-up progress of the SPI initiative (see Table 2).

The implementation of model based software development initiative was
conducted during 2004 within a development unit of approximately 500 employees.
The initiative aimed to increase the understanding of software architecture and
software sub component interfaces. The initiative affected the requirements
engineering, the software engineering, and the configuration management practices.
During this period, six different training courses were managed and coordinated by
the SPI project manager to diffuse the new know-how. Approximately 220 of the 500
employees were directly affected by the SPI initiative. The development unit had a
special steering group to discuss, decide, follow-up and solve problems for the SPI
initiative. The SPI initiative was managed according to a dedicated approach
(Börjesson and Mathiassen, 2004). The SPI project manager used the training
participation, perceived acquired know-how and steering group participation
indicators to track and follow-up SPI progress (see Table 2). This SPI initiative used
many lessons learned from the implementation of the RUP initiative, which explains
the similar set-up.

4.3 SPI Indicator Evaluation

The four SPI project managers were interviewed (Table 1) about the use and value of
the four described indicators. They had all either been responsible for or deeply
involved in one or several of the described SPI initiatives. The SPI project managers
also had experiences from similar indicators from other SPI initiatives not described
in this study. Table 3 summarizes the answers from the project managers regarding
the use and value of the studied indicators. The column ‘positive features’ shows the
most positive comments from the SPI project managers. The column ‘negative
features’ shows the most negative comments from the SPI project managers. The
column ‘in combination with’ shows how the value of the indicators increases when
combined with one or several of the other indicators.

All the SPI project managers were, in general, positive to have indicators for SPI
progress. They believed the value of each indicator always could be questioned, but
the value was considered high, especially compared to not having any indicators at
all. The indicators made it possible to set up goals and evaluate the value of the

 Simple Indicators for Tracking Software Process Improvement Progress 83

Table 3. Summary of answers from SPI project managers

 Positive Features Negative Features In Combination With

T
ra

in
in

g
pa

rt
ic

ip
at

io
n

Control of who participates
and gets the new information,
which is a first step towards
building up new know-how.
Commitment from managers
to send employees to training
occasions.

It does not show peoples’
ability to use the new know-
how.
The organization might get an
illusory view on what they
think they know compared to
what they actually know.

Perceived acquired
knowledge gives a
broader view on the value
of the training.
Steering group
participation makes it
possible to connect
commitment and action.

Pe
rc

ei
ve

d
ac

qu
ir

ed
 k

no
w

-
ho

w

Understand how participants
appreciate a course.
Understand if people feel
comfortable start working
according to new know-how.

People often tend to
underestimate what they
learned.
What people believe they can
do is not necessary the same as
what they can do.

Tool use (when
applicable) makes it
possible to relate
perceived knowledge and
actual knowledge.

T
oo

l u
se

A strong indicator for actual
process adoption.
of new users working in the
tool is a good indicator for
how people actually change.

Too much focus on tool use
takes away focus from the
process.
This indicator is most effective
for initiatives with a tool with a
stringent process main flow.

Perceived acquired know-
how makes it feasible to
understand possible
resistance to change to be
able to take preventive
actions (for instance
increased support).

St
ee

ri
ng

gr

ou
p

pa
rt

ic
ip

at
io

n A precondition to achieve
commitment.
Visualizes busy managers’
focus on improvement work.

Commitment by word in a
steering group does not
necessarily mean commitment
in action.

Training participation and
perceived acquired know-
how give a broad
indicator of the progress
of an SPI initiative.

initiative, to show progress for stakeholders and people affected by the initiative, to
understand and take action to facilitate progress, and to visualize the SPI initiative’s
progress in general to prevent down prioritization because of unawareness. When
asking the SPI project managers about other potential indicators for facilitating SPI
progress, all given answers were strengthened variants of the studied indicators. One
answer suggested asking employees not only what they think they are capable of, but
also what they actually do. The questions should be designed according to the new
process and when they had started to work, they should be asked the question(s). The
weakness is that this indicator only can be performed in the later phases of the SPI
initiative. Another answer suggested looking for the existence and process compliance
of new process documents. This is in line with the tool use indicator, where actual use
is indicated. Again, this indicator can only be performed in the later phases of the SPI
initiatives.

5 Discussion

There is no doubt about the positive value of measuring software development
(Humphrey, 1989; McFeeley, 1996; Weinberg, 1993) and SPI initiatives’ progress
(Goethert and Siviy, 2004; Grady, 1997). The majority of existing software related
measurements are focused on end result. Measuring software productivity has

84 A. Börjesson

however been proved to be difficult, especially since it requires knowledge of
software complexity (Albrect and Gaffney, 1993). Humphrey (1989) and Weinberg
(1993) argue data gathering is expensive, time consuming and confusing. We
therefore need to find valuable indicators dealing with the difficulties Grady (1992;
1997), Humphrey (1989), McFeeley (1996), and Weinberg (1993) all pinpoint.
Indicators for understanding SPI initiatives’ progress needs to be easy to gather,
manage and evaluate.

Making sense of gathered data is a major challenge (Grady, 1992; Humphrey,
1989). The four indicators studied in this research project have provided indications
for actual progress as the indicators are based on undisputable data. None of the
interviewed SPI project managers argued there had been problems regarding the trust
of the data. Table 4 below summarize the usefulness of the studied indicators.

Table 4. Summary of the usefulness of the studied indicators

Indicator Indication
of

Easy to gather Easy to
manage

Easy to
evaluate

Reference

Training
participation

Competenc
e build-up

Yes – a part of
noting
attendance

Yes – no
extra time
apart from
data
compiling

Yes –
either
they
attend or
not

A similar measurement
is suggested by Grady
(1997). It map well to
Abrahamsson’s second
dimension for measuring
SPI (2000a)

Percieved
acquired
know-how

Employee
capabilities

Yes –
questionnaires
to training
participators

Yes - no
extra time
apart from
data
compiling

Yes –
what they
say is
what they
feel

Attewell (1992) argues
knowledge barriers are
preventing change. It
map well to
Abrahamsson’s second
dimension for measuring
SPI (2000a)

Tool Use Process
Adoption

Yes – tool
database access
required

Yes –
having
access and
know-how
to read the
database is
however
necessary

Yes –
either the
data is in
the tool
database
or not

The full use of this
measurement can be
found in Börjesson et al.
(2005).
It map well to
Abrahamsson’s second
dimension for measuring
SPI (2000a)

Steering
Group
Participation

Manage-
ment
Commit-
ment

Yes – a part of
noting
attendance

Yes - no
extra time
apart from
data
compiling

Yes –
either
they
attend or
not

Abrahamsson (2000b,
2001) argues about the
importance of
management
commitment

Grady (1992) argues we need to measure to estimate project progress. This is as
important for development projects as for SPI projects. Key to evaluate SPI projects
are according to McFeeley (1996) the selected measurements and the ease of
gathering them. The selected indicators presented in Table 4 are both supported by the
SPI literature (column ‘Reference’) and easy to gather, manage and evaluate. It is
therefore likely the studied indicators are useful to track and follow-up SPI initiatives’
progress.

The key practice areas for measuring in the CMM (Paulk et al., 1995) is found first
at level four. This indicates the needed maturity to benefit from measuring software

 Simple Indicators for Tracking Software Process Improvement Progress 85

and how confusing measurements can be when lacking this maturity. The indicators
used for understanding SPI initiatives’ progress are neither expensive or confusing,
nor time consuming (see Table 4). The SPI project managers believed the indicators
helped them understand the SPI initiatives’ progress and they were capable of taking
adequate actions to address situations when the progress decreased. The indicators
helped them facilitate SPI progress success, which is an important prerequisite for SPI
implementation success and SPI success. SPI progress success helped decreasing the
assimilation gap (Fichman and Kemerer, 1999) as the progress guided the SPI
initiative towards implementation and use, i.e. the acquired potential improvements
were deployed. Based on findings from this study it is fare to say there are simple and
practical indicators that can be used to understand prerequisites for SPI success like
SPI initiatives’ progress.

As the studied indicators are independent of software specific measurements such
as LoC (Flaherty, 1995; Humphrey, 1985) it is likely they could be useful to track
progress of all kind of improvement initiatives. The main lesson learned from this
study for practitioners and researchers are therefore to use, try-out and improve these
indicators not only within the software community, but also in whatever community
that needs to improve. It is of course important to understand that there are other areas
than SPI progress that also affect SPI success.

6 Conclusion

This study shows the value and use of four simple and practical indicators (training
participation, perceived acquired knowledge, tool use and steering group
participation) to track SPI initiatives’ progress to facilitate deployment and decrease
the assimilation gap. The indicators indicate real competence build-up, employee
capability, process adoption and management commitment. The four indicators were
found to be easy and cost-efficient to gather, manage and evaluate.

References

1. Abrahamsson, P. (2000a) Measuring the Success of Software Process Improvement: The
Dimensions, EuroSPI2000, Copenhagen, Denmark.

2. Abrahamsson, P. (2000b) Is Management Commitment a Necessity After All in III:
Software Process Improvement? Euromicro '00, Maastricht, The Netherlands, IEEE
Computer Society, 246-253.

3. Abrahamsson, P. (2001) Rethinking the Concept of Commitment in Software Process
Improvement, Scandinavian Journal of Information Systems 13:69-98.

4. Albrecht, A. J. (1979) Measuring Application Development Productivity, Proceedings of
the IBM Application Development Symposium, Montery, California, October, pp. 83-92.

5. Albrecht, A. J. and Gaffney, J. E. Jr (1993) Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation, IEEE Transactions on
Software Engineering, October, Vol. SE-9, No. 6, pp.639-648.

6. Argyris, C. and Schön, D. (1978) Organizational Learning, Reading Massachusetts:
Addison-Wesley.

86 A. Börjesson

7. Attewell, P. (1992) Technolgy Diffusion and Organisational Learning: The Case of
Business Computing, Organization Science 3(1): 1-19.

8. Bach, J. (1995) Enough About Process: What We Need are Heroes. IEEE Software, 12, 2,
pp. 96-98.

9. Bartunek, J.M. and Louis M.R. (1996) Insider/outsider Team Research, Qualitative
Research Methods Vol. 40, Sage Publications.

10. Basili, V. G., Caldiera, G. and Rombach H.D., Goal Question Metric Approach,
Encyclopedia of Software Engineering, pp. 528-532, John Wiley & Sons, Inc., 1994.

11. Baskerville, R. and Pries-Heje, J (1999) Grounded action research: a method for
understanding IT in practice. Management and Information Technology 9, pp.1-23.

12. Baskerville, R. and Wood-Harper, T (1996) A critical perspective on action research as a
method for information systems research, Journal of Information Technology 11, 235-246.

13. Bollinger, T.B. and McGowan, C. (1991) A Critical Look at Software Capability
Evaluations. IEEE Software, Vol. 8, No. 4, pp. 25-41.

14. Brown, M. and Goldenson, D. (2004) Measurement and Analysis: What Can and
Does Go Wrong?, presented at the 10th International Symposium on Software Metrics,
14 September 2004.

15. Börjesson, A. and Mathiassen, L. (2004) Successful Process Implementation, IEEE
Software, Vol. 21, Nr. 4, pp. 36-44.

16. Börjesson, A., Martinsson, F. and Timmerås, M. (2005) Using Agile Improvement
Practices in Software Organizations, Conditionally accepted to European Journal of
Information Systems.

17. Davison, R., Maris, Martinsons, M. and Kock, N. (2004) Principles of canonical action
research, Info Systems Journal. Vol. 14, pp. 65-86.

18. Dove, R. (2001) Response Ability – The Language, Structure, and Culture of the Agile
Enterprise. New York: Wiley.

19. Fichman, R. G. and Kemerer, C. F. (1999) The Illusory Diffusion of Innovation: An
Examination of Assimlation Gaps. Information Systems Research, Vol. 10, issue 3, pp
255-275.

20. Fayad, M. E. and Laitinen, M. (1997) Process Assessment Considered Wasteful,
Communications of the ACM, Vol. 40, No. 11, pp. 125-128.

21. Flaherty, M. J. (1985) Programming Process Productivity Measurement System for System
370, IBM System Journal, Vol. 24, No. 2.

22. Galliers, R. D. (1992) Choosing an Information Systems Research Approach, In: Galliers
(Ed.): Information Systems Research: Issues, Methods, and Practical Guidelines, Oxford:
Blackwell Scientific Publications, pp.144-162.

23. Grady, R.B. (1992) Practical Software Metrics for Project Management and Process
Improvement, Upper Saddle River, New Jersey, Prentice Hall.

24. Grady, R. B. (1997) Successful Software Process Improvement, Upper Saddle River, New
Jersey: Prentice Hall.

25. Goethert, W. and Siviy, J. (2004) Applications of the Indicator Template for Measurement
and Analysis, Technical Note CMU/SEI-2004-TN-024.

26. Jones, C. (1993) Sources of Errors in Software Cost Estimating, version 1.0, November 24,
Software Productivity research, Burlington, MA 01803.

27. Jones, C. (1994) Assessment and Control of Software Risks, Prentice Hall, Englewood
Cliffs, NJ 07632.

28. Haeckel, S. H. (1999) Adaptive Enterprise: Creating and Leading Sense-and-Respond
Organizations. Boston, Massachusetts: Harvard Business School Press.

 Simple Indicators for Tracking Software Process Improvement Progress 87

29. Humphrey, W. S. (1985) the IBM Large-System Software Development Process:
Objectives and Directions, IBM Systems Journal, Vol. 24, No.2.

30. Humphrey, W. S. (1989) Managing the Software Process. Reading, Massachusetts:
Addison Wesley.

31. McFeeley, B. (1996) IDEAL. A User’s Guide for Software Process Improvement, The
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Handbook
CMU/SEI-96-HB-001.

32. Paulk, M. C., C. V. Weber, B. Curtis and M. B. Chrissis (1995) The Capability Maturity
Model: Guidelines for Improving the Software Process. Reading, Mass., Addison-Wesley
Pub. Co.

33. SEMA (2002) Process Maturity Profile of the Software Community, Software Engineering
Institute, Carnegie-Mellon University.

34. Weinberg, G. M. (1993) Quality Software Management volume II – First-Order
Measurement. Dorset House Publishing, New York, USA.

35. Yin, R. (1994) Case Study Research, Newburry Park, California: Sage Publication.

Investigating Suitability of Software Process and Metrics
for Statistical Process Control

Ayça Tarhan1 and Onur Demirörs2

1 The Bilgi Group Software Research, Education, and Consultancy Ltd.,
ODTU Teknokent Gumus Blk No:3, 06531 Ankara, Turkey

ayca.tarhan@bg.com.tr
2 Informatics Institute, Middle East Technical University,

MM Kat:4, 06531 Ankara, Turkey
demirors@ii.metu.edu.tr

Abstract. The application of statistical process control (SPC) techniques for
software is rare due to such requirements as high maturity, rational sampling,
and effective metric selection. Existing studies report results from their own
implementations and provide suggestions for success. In this paper, we explain
an approach used for assessing the suitability of software process and metrics
for starting SPC implementation via control charts. The approach includes guid-
ance to identify rational samples of a process as well as to select process met-
rics. We explain the application of the approach over a review process of a
software and system development organization.

1 Introduction

Statistical Process Control (SPC) contains powerful collection of problem solving
tools that are used for achieving process stability and improving process capability by
the reduction of variability. It has been widely used in manufacturing domains, after
proposed by Shewhart [29] and sophisticated by Deming’s studies [7][8]. While bene-
fits of SPC are proven for manufacturing companies, SPC techniques for software
have not been frequently implemented by the software companies [3][9][14][21][31].

As process improvement models like CMM [26], ISO/IEC 15504 [18] and CMMI
[5] have become popular during the last decade; SPC for software has gained atten-
tion. These models implicitly direct companies to implement SPC as a crucial step for
achieving higher maturity levels [4][6]. Once a company invests on one of these mod-
els, it can take the advantage of following a well-founded framework to establish the
infrastructure required for SPC. For other companies, however, the path to SPC im-
plementation is not that clear. While a number of researchers provide approaches to
utilize measurement and SPC techniques for software [1][10][13][15][16][20]
[32][33], existing implementations focus on the potential benefits of SPC results
rather than on providing satisfactory guidelines based on practical evidence. We lack
knowledge on the techniques for rational sampling and sub-grouping, applicability of
different metrics, the means of reliable data collection and meaningful data analysis,
especially for emergent development organizations.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 88 – 99, 2006.
© Springer-Verlag Berlin Heidelberg 2006

 Investigating Suitability of Software Process and Metrics for SPC 89

The need for such knowledge encouraged us to develop an approach to investigate
suitability of software process and metrics for statistical process control. The ap-
proach includes guidance to identify rational samples of a process as well as to select
process metrics. In this paper, we elaborate the approach in section 2, and demon-
strate its application over an example assessment in section 3. Section 4 provides con-
clusions derived from the example assessment and the future work.

2 An Approach for SPC Utilization

In our approach, we address two basic requirements for SPC implementation and fo-
cus on resolving difficulties brought by them: 1) Rational sampling of process execu-
tions and data, and 2) Metric data utilization (or suitability) for statistical analysis.

The purpose of rational sampling is to obtain and use data that are representative of
the performance of the process with respect to the issues being studied. If we can con-
sider that observations are made under essentially the same conditions and that differ-
ences between the measurements are primarily due to common cause variation, then
we are very likely that we rationally group the observations [12]. Since we want to
sample process executions as being from a single and constant system of chance
causes, we developed a clustering method based on the idea of process consistency
assessment. We recommend describing each process execution in a number of process
attributes such as inputs, outputs, activities, roles, and tools and techniques (Figure 1).
Process consistency is assessed for similarity in process attribute values of process
executions. If repetitions of a process show similarity in terms of these attributes, then
we assume that the process is consistently performed among its executions.

Fig. 1. Process attributes used for rational sampling (The process has a number of inputs to
each execution, outputs from each execution, and activities carried out within each execution. It
allocates responsibility to a number of roles participating in one or more process activities, and
holds a number of tools and techniques that are used in one or more process activities.)

The second requirement is metric utilization. This includes elaboration of basic
measurement practices as well as metric data existence and characteristics. Measure-
ment practices should be performed for a specific purpose [1][25] and, metrics should
have operational definitions to enable consistent implementation. Operational defini-
tions tell people how measurements are made so that others will get the same results if

90 A. Tarhan and O. Demirörs

they follow the same procedures. There are studies that define procedures for success-
fully implementing measurement practices and for incorporating measurement
capability into the projects of an organization [5][19][22][25]. Also, there are high-
maturity companies that developed factors to consider for measurement evaluation
and to determine what measures to select for their specific use [27]. To evaluate met-
ric utilization, we identified a number of metric usability attributes (Table 1), and
developed questionnaires based on these attributes for base and derived metrics sepa-
rately. Questionnaires include a rating system based on the answers of questions, and
accordingly, evaluate the usability of a specific metric for applying SPC.

Table 1. Metric usability attributes used for evaluating metric utilization

Attribute Explanation
Metric Identity Metric should be identified including entity and attribute to measure; scale type,

unit, formula; and data type and range. Measurement theory states that we cannot
use nominal and ordinal scale metrics for control charting [11].

Data
Existence

For any analysis, there should be measurement data. For control limits to be calcu-
lated reliably there should be at least 20 data points [2].

Data
Verifiability

Metric data should be recorded at the same place in the process, by the same re-
sponsible body, and using the same method every time.

Data
Dependability

Metric data should be recorded and stored as it is generated to ensure accuracy and
precision; and be collected for a specific purpose. Feedback mechanisms should ex-
ist and be known by data collectors regarding data analysis and reporting.

Data
Normalizability

Metric data can be normalized with a parameter or with another metric. Normalized
metrics provide more insight in terms of statistical analysis. Normalizing metric-A
with a parameter-P provides comparable values of metric-A in terms of the parame-
ter-P (e.g., normalizing number of defects in a product with product size).

Data
Integrability

Metric data can be integrated at project or organization levels. In practice, metric
data should be integrated from individual level up to organization level for the re-
sults of statistical analysis to be effective organization-wide.

The process that we follow for rational sampling and metric utilization evaluation
cannot be given here due to space limitations, but are explained in section 3 over an
example assessment. We briefly describe the process assets and their usage below:

Process Execution Record: This is a form used to capture the instant values of
process attributes for a process execution. Actual values of inputs, outputs, activities,
roles, and tools and techniques for a specific process execution are recorded on the
form. Recorded values are used to identify the merged list of process attribute values
which are entered into Process Similarity Matrix for verification.

Process Similarity Matrix: This is a form used to verify process attribute values
against process executions. We construct the matrix based on the values of process at-
tributes previously entered into Process Execution Records. Process attribute values
are recorded into the rows, and process execution numbers are recorded into the col-
umns of the matrix. By going over the executions, the values of process attributes are
questioned and marked if applicable for each process execution (see Figure 3 as ex-
ample). The completed matrix helps us to see the differences among process execu-
tions and enables us to identify rational samples of executions accordingly.

Metric Usability Questionnaire: This is a form used to investigate the usability of a
process metric in terms of metric usability attributes. The form includes a number of
questions and rules for rating usability attributes as given in Figure 2.

 Investigating Suitability of Software Process and Metrics for SPC 91

(a) Metric usability questions used for rating usability of base metrics

(b) Metric usability questions used for rating usability of derived metrics

Fig. 2. Questions and rules used for rating metric usability

Both “metric identity” and “data existence” attributes have a single question as basis
for rating, and each must be rated as 1 for a metric to be usable in the first place. If the
scale type requirement is not satisfied or there are not enough data points, there is no
need to continue the evaluation for the rest of the attributes since it will not be possible
to use metric data for statistical analysis. “Data verifiability” and “data dependability”
attributes have several questions as basis for rating and the weights of these questions
are assigned equally to sum up 1. The resulting value for these attributes is calculated by
summing the question weights shown in the rightmost column in Figure 2. The value
determines the level of confidence that we should have in data analysis results, and
should be as close to 1 for both attributes.

The questionnaire has two types, for base and derived metrics separately (see Fig-
ure 5 for examples). For each base metric, the answers are rated on the questionnaires
according to the rules described above, and the values are formulated into a unique
Metric Usability Index (MUI) by multiplying the individual values of usability attrib-
utes. For derived metrics, the calculated index is further multiplied by the arithmetic
mean of the indices of base metrics that make up the derived metric.

The value of MUI is used to have a judgment on the usability of the process metric
for control charting. It is interpreted in four states: Not usable ([0.00-0.25]), poorly
usable ([0.26-0.50]), largely usable ([0.51-0.75]), and fully usable ([0.76-1.00]). The
ranges used to distinguish these states provide a means to judge the confidence we
should have on metric data for statistical analysis.

92 A. Tarhan and O. Demirörs

Process Execution Questionnaire: This is a form used to investigate the assignable
causes for a process execution in terms of changes in process performers, process en-
vironments, and other factors if any. While working retrospectively on existing proc-
ess data, answers to the questionnaire are used to understand the assignable causes for
a process execution if it is an out-of-control point.

3 An Example Assessment

We applied the approach described above, as an example assessment, for review
process of a system and software development organization [30]. The company, hav-
ing 15 years of experience in the sector, supplies products for Turkish Armed Forces
with its 45-staff development team which involves system and software engineers,
project managers, and quality experts. It already has ISO 9001 [17] and AQAP-150
[24] certificates, and has been pursuing process improvement studies to achieve
CMMI L3 certification for 18 months. The review process has been used by the staff
to review system and software development documents as well as software code. The
company did not have a specific measurement process, but was obeying policies for
analyzing the data and reporting the results to high-level management. The results re-
ported to the management were not systematically used for decision-making purposes.

While performing the assessment, we spent 12 person-days for gathering and trans-
lating review data, applying the approach, performing the analyses, and interpreting
the results. We worked on existing review process data of 196 data points which were
collected during two years. We translated the review data to a form that is appropriate
for comparison among different projects and products.

Since the study was retrospective, we identified process attributes of review proc-
ess executions by inspecting review process outputs and consulting the Quality As-
surance Expert participated in the reviews. We sampled 5 reviews and filled a process
execution record for each. The information on process execution records provided us
typical values of process attributes, and formed an initial base to create the similarity
matrix. We then verified sampled values of process attributes against 196 process
executions. We recorded any new attribute value on the matrix during verification.
The appearance of the matrix for the first 20 executions was as in Figure 3.

Fig. 3. Process similarity matrix for review process executions

 Investigating Suitability of Software Process and Metrics for SPC 93

After finalizing the matrix, we analyzed it for similarity and differences in process
executions. By going over the matrix, we looked for executions with different attrib-
ute values and copied each as a separate cluster while skipping the similar ones. We
identified 9 process clusters labeled from A through I as shown in Figure 4. Each
process cluster we identified was a rational sample of the review process, and ideally
we could chart the data for each cluster to see if it was under control. When we
counted the number of process executions in the clusters, we noticed that many clus-
ters (except A and B) had few executions. We could either remove the clusters with
few data from the set and continue our study with clusters A and B only, or find a way
to merge the clusters with limited data to some other cluster. We chose the latter for
the purpose of experimentation.

Fig. 4. Initial process clusters and cluster distances

To identify possible merges among the clusters, we worked on pairs of clusters. We
calculated the number of different attribute values between two clusters, and called this
number as “cluster distance”. For example, the distance between the clusters A and B in
Figure 4 was 2, since the attribute values of these clusters differed for process attributes
2.1 and 3.4. We recorded the distances between the pairs of process clusters in the form
of a triangle as shown in the upper right corner of Figure 4. Every row in the triangle
showed us which clusters that a specific process cluster was the most similar to in terms
of process attributes. For example, the fifth row of the triangle in the figure held dis-
tance values of process cluster F to other clusters; and when we had a close look at these
values, we saw that the distance between clusters B and F was 1, meaning that B was
the most similar cluster for F. When identifying possible merges, we searched for the
pairs of clusters having a distance of 1. If a row included the distance values all above 1
(e.g. cluster D in row 3), we concerned the related cluster “not mergable” to any other
cluster. By going over the rows of the triangle, we identified the clusters with a distance
of 1, if any, for each cluster; and recorded these clusters in a table showing mergable
clusters (the table shown below the triangle in Figure 4 provides this information).
Here we should note that the purpose of the metric that we utilize on a control chart can
affect the value of cluster distance allowed for identifying mergable clusters. If we were
trying to meet customer specification limits set for code defectiveness in a project, for
example, we would probably not allow a cluster distance value above 0.

We identified final process clusters (rational samples) considering mergable clus-
ters detected and the number of data points in each process cluster. We randomly
chose to merge cluster I to cluster A, and we excluded cluster H from the study due to

94 A. Tarhan and O. Demirörs

few number of data points. As a result, we ended up with the following clusters: Clus-
ter A (including initial clusters A, C, and I); cluster B (including initial clusters B and
F); cluster D; and cluster E (including initial clusters E and G). Cluster D entirely in-
cluded process executions for code review. Unfortunately, the number of data points
for cluster D was so few that we excluded it from the study.

After we identified initial process clusters, we worked on process metrics to evalu-
ate their usability for statistical analysis. We identified review opening date, review
closure date, number of detected nonconformances, number of accepted nonconfor-
mances, and nonconformance resolution effort as base metrics of the review process.
These were the metrics for which data was available on review records. From the base
metrics, we identified derived review metrics by the formulas shown in Table 2.

For evaluating the usability, we used separate questionnaires for base and derived
metrics. Figure 5 provides examples of metric usability questionnaires and calculated
metric usability indices for review effort and noncompliance detection efficiency met-
rics. The results of usability evaluations for all review metrics are given in Table 3.

Table 2. Derived review metrics

Derived Metric Formula
Open period Closure date – Opening date
Open period with respect to non-conformances Open period / Number of accepted non-

conformances
Nonconformance detection efficiency Number of accepted nonconformances /

Review effort
Nonconformance resolution efficiency Number of accepted nonconformances /

Nonconformance resolution effort

Fig. 5. Example metric usability questionnaires (lefthand base, righthand derived)

 Investigating Suitability of Software Process and Metrics for SPC 95

Table 3. Metric usability evaluation results

Metric MUI Usability Status
Opening date 0.00 Not Usable [0.00-0.25]
Closure date 0.00 Not Usable
Number of detected nonconformances 0.50 Poorly Usable [0.26-0.50]
Number of accepted nonconformances 0.75 Largely Usable [0.51-0.75]
Rewiew effort 0.75 Largely Usable
Nonconformance resolution effort 0.75 Largely Usable
Open period 0.50 Poorly Usable
Open period with respect to nonconformances 0.58 Largely Usable
Nonconformance detection efficiency 0.75 Largely Usable
Nonconformance resolution efficiency 0.75 Largely Usable

We reviewed process data and used the results from process similarity assessment
and metric usability evaluation to finalize process clusters and metrics prior to control
charting. We intended to work with the data for derived metrics having metric usabil-
ity index greater than 0.50. Open period with respect to nonconformances, noncon-
formance detection efficiency and nonconformance resolution efficiency were such
metrics. We later included the data for open period derived metric for control chart-
ing, since it had a metric usability index of 0.50 which was very close to the lower
limit for large usability. We did not intend to chart the data for any of the base metrics
because they needed to be normalized for effective use. We also noticed that process
cluster B (with initial clusters B and F) included process instances in which no
nonconformance was detected. It would not be meaningful to chart the data for non-
conformance detection efficiency, nonconformance resolution efficiency, and open
period with respect to nonconformances derived metrics in this case, since all values
would be zero according to their formulas. We excluded cluster B from the study.

As a result, we chose two clusters as basis for control charting with derived met-
rics: Process cluster A (including initial clusters A, C, and I) and process cluster E
(including initial clusters E and G). We renamed these clusters as M and N, respec-
tively, to distinguish them from their initial clusters.

We depicted review data on control charts for process clusters M and N, and for each
derived metric separately. We applied variables charts for individuals of review data us-
ing Minitab Statistical Software [25]. We applied the following tests to detect the out-
of-control points: 1 point > 3 standard deviations from center line, 9 points in a row on
same side of center line, 2 out of 3 points > 2 standard deviations from center line (same
side), and 4 out of 5 points > 1 standard deviation from center line (same side).

Figure 6 shows the charts for clusters M and N for nonconformance detection effi-
ciency. From the figure we saw that cluster M had many out-of-control points and
cluster N was under control with respect to nonconformance detection efficiency. We
performed similar analyses for nonconformance resolution efficiency, open period,
and open period with respect to nonconformances metrics. Accordingly, we catego-
rized cluster M into four sub-clusters with respect to input product types to continue
our analysis: Project plans (M-1), design documents (M-2), analysis documents (M-
3), and the rest (M-4 including test documents, release documents, and user manuals).

We re-charted the data for derived metrics on process cluster N and sub-clusters of
M, and conducted interviews with process performers in order to understand any

96 A. Tarhan and O. Demirörs

Observat ion

In
di

vi
du

al
 V

al
ue

60544842363024181261

25

20

15

10

5

0

-5

_
X=2,24

UCL=9,08

LCL=-4,61

22
2

222

1

1
1

1

I Chart of Nonc Det Eff

 Observat ion

In
di

v
id

ua
l V

a
lu

e

1413121110987654321

2,5

2,0

1,5

1,0

0,5

0,0

-0,5

-1,0

_
X=0,941

UCL=2,504

LCL=-0,622

I Chart of Nonc Det Eff

Fig. 6. Individuals charts for nonconformance detection efficiency (lefthand M, righthand N)

reasons for the assignable causes. The interviews were performed in two parts. In the
first part, the experiences and dynamics of process executions were investigated in
free format dialogs, and notes were taken. Here the purpose was to have an under-
standing of the context related to process executions, and to identify any assignable
cause (probably that our approach could not detected) from the performers’ point of
view. During the interviews, three issues were reported by process performers as po-
tential reasons for out-of-control points: Involvement of contractors in the review,
project schedule, and product type under review. In the second part, the reasons for
assignable causes detected by our approach were questioned specifically by using
process execution questionnaire.

Table 4. Summary of final results from re-charted data for derived metrics

Derived Metric
Process
Cluster

Nonconformance
Detection
Efficiency

Nonconformance
Resolution
Efficiency

Open Period
with respect to

Nonconformances

Open Period

M-1 1 out-of-control point Under control Not under control Not under control
M-2 Under control 1 out-of-control point Not under control Not under control
M-3 Under control Under control Not under control Not under control
M-4 Under control Under control Under control Under control

N Under control No data Not under control Not under control

Based on the knowledge obtained during interviews, we re-charted the data by ex-
cluding the data points of assignable causes. Results from re-charted data given in
Table 4 showed that our approach was useful as a guide for starting SPC implementa-
tion. Assessment results suggested that nonconformance detection efficiency, noncon-
formance resolution efficiency, and open period with respect to nonconformances
metrics were largely usable for performing SPC analysis on process cluster N and
sub-clusters of M, the first two being more likely to succeed considering metric us-
ability indices. After re-charting the data we observed that all process clusters were
under control with respect to nonconformance detection efficiency and nonconfor-
mance resolution efficiency metrics except two out-of-control points for which we
could detect assignable causes. We also observed that the company could not use the
control charts for open period with respect to nonconformances metric confidently, al-
though the metric was suggested as usable by our approach. After the interviews we

 Investigating Suitability of Software Process and Metrics for SPC 97

could detect that the schedule of the projects played a significant role in the open pe-
riods of review records. When the project schedule was tight, the reviews were closed
more quickly. Process cluster M-4 was under control with respect to all derived met-
rics since it included regular documents, for which the review process was affected at
minimum degree by factors as project dynamics, development maturity, and etc.

After the assessment, we concluded that nonconformance detection efficiency and
nonconformance resolution efficiency metrics were usable for SPC analysis. Noncon-
formance detection efficiency metric could be an indicator of review process effi-
ciency, but definitely not alone, since we had no idea on the defectiveness of the
product under review. The size of the product under review was not recorded regu-
larly, but software product’s LOC data was recorded partially per month basis for
year 2005. Therefore, we utilized existing LOC data to rationalize nonconformance
detection efficiency for process performance. We identified reviews performed in
2005, and according to their opening dates, we recorded regarding LOC values. From
the number of nonconformances accepted in these reviews and regarding software
product size in LOC, we calculated nonconformance density metric by the formula
“number of accepted nonconformances/KLOC” and we charted the metric data. We
observed that overall process had two out-of-control points, while process clusters M
and N were both under control as shown in Figure 7. That is, nonconformance detec-
tion efficiency metric could be used to judge and improve process performance since
the nonconformance density metric was stable at the moment. We noted that the com-
pany should keep recording product size to continually monitor nonconformance den-
sity for possible changes in the performance.

Observat ion

In
di

vi
du

al
 V

al
ue

3632282420161284

0,15

0,10

0,05

0,00

-0,05

_
X=0,0331

UCL=0,1287

LCL=-0,0625

I Chart of Defect Density

 Observat ion

In
di

vi
du

al
 V

al
ue

151413121110987654321

0,125

0,100

0,075

0,050

0,025

0,000

-0,025

-0,050

_
X=0,0313

UCL=0,1119

LCL=-0,0492

I Chart of Defect Density

Fig. 7. Individuals charts for nonconformance density (lefthand M, righthand N)

During the assessment we observed that evaluating usability of review metrics was
supporting but not enough to effectively select the metrics to be used in SPC analysis.
Project context and dynamics in which the process was executed (such as project or-
ganization, schedule, development life cycle, maturity of development practices, and
etc.) should also be considered while selecting the metrics. Open period with respect
to nonconformances metric was such an example due to the effect of project schedule
on open periods of review records. Elaboration on process metrics prior to SPC im-
plementation requires special attention from this perspective. We can work on each
process metric specifically, investigate factors that might affect its utilization, and de-
velop guidelines for successful application.

98 A. Tarhan and O. Demirörs

4 Conclusions

The roles of rational sampling and metric selection practices are crucial in initiating
SPC implementation for software processes. The lack of well-defined guidelines to
direct these practices encouraged us to develop an approach to assess the suitability of
software process and metrics for SPC. We performed an example assessment to
evaluate the usability of the approach. Our experience has showed us that with estab-
lished guidelines for rational sampling and metric utilization, an organization can
apply SPC techniques and attain the ability to understand its processes based on quan-
titative data.

Before the assessment, the company had been reporting total number of noncon-
formances, total review effort, total nonconformance resolution effort, and ratio of to-
tal nonconformance resolution effort to total review effort metrics per project basis in
high level management reviews. However, none of these metric values had been used
for a specific purpose. At the end of the case study, the company initiated SPC im-
plementations for nonconformance detection efficiency and nonconformance resolu-
tion efficiency metrics, and adopted related control charts as parts of the measurement
and analysis system that it built for CMMI L3. By doing so, the company had the
chance of observing and improving review process performance based on quantitative
data, which is a basic requirement for achieving higher CMMI maturity levels.

The assessment was performed retrospectively on existing review records. Al-
though it had a minimum disturbance on the work of process performers this way, we
had difficulties in observing implementation details. Organizing a prospective study
will support better understanding of process executions and related characteristics.

Currently we have initiated further assessments on test design, test script develop-
ment and test peer review processes applied within an avionics project of another
system and software development organization. The assessments will include both
retrospective and prospective parts. There is no one-fits-all approach to guide SPC
implementations; however, we believe trials will be beneficial to improve our ap-
proach and to fasten process improvement studies.

References

1. Basili, V.R., Caldiera, G., and Rombach, H.D., “The Goal Question Metric Approach”,
Encyclopedia of Software Engineering, Vol.1, pp.528-¬532, John Wiley & Sons, 1994.

2. Burr, A., Owen, M., Statistical Methods for Software Quality. Thomson Publishing Com-
pany, 1996. ISBN 1-85032-171-X.

3. Card, D., “Statistical Process Control for Software?”, IEEE Software, May 1994, pp.95-97.
4. CMU/SEI, “Process Maturity Profile of the Software Community – 2000 Year End Up-

date”, Presentation, March 2001(a).
5. CMU/SEI, CMMI Product Team, “CMMISM for Systems Engineering and Software En-

gineering”, CMMI-SE/SW V1.1 Continuous, CMU/SEI-2002-TR-001, December 2001(b).
6. CMU/SEI, “The 2001 High Maturity Workshop”, CMU/SEI-2001-SR-014, January 2002.
7. Deming, W.E., Statistical Adjustment of Data, John Wiley and Sons, 1943. (Re-printed by

Dover Publications, July 1984.)
8. Deming, W.E., Out of the Crisis, Massachusetts Institute of Technology, Center of Ad-

vanced Engineering, Cambridge, Mass., 1986.

 Investigating Suitability of Software Process and Metrics for SPC 99

9. Demirörs, O., and Sargut, K.U., “Utilization of a Defect Density Metric for SPC Analy-
sis”, 13th International Conference on Software Quality, Dallas, Texas, October 2003.

10. Fenton, N.E., and Neil M., Software Metrics: Successes, Failures and New Directions. The
Journal of Systems and Software, 47, 1999, PP 149-157.

11. Fenton, N.E., and Pfleeger, S.L., Software Metrics: A Rigorous and Practical Approach,
2nd Ed., PWS Publishing Company, 1997.

12. 12.Florac, A.W., Carleton A.D., Measuring the Software Process: Statistical Process Con-
trol for Software Process Improvement. Pearson Education, 1999. ISBN 0-201-60444-2.

13. Florac, A.W., Carleton A.D., Statistically Controlling the Software Process (The 99 SEI
Software Engineering Symposium), Software Engineering Institute, Carnegie Mellon Uni-
versity, September 1999.

14. Florac, A.W., Carleton A.D., Statistical Process Control: Analyzing a Space Shuttle On-
board Software Process. IEEE Software, July/August 2000, PP 97-106.

15. Florac A.W., Park E.R., Carleton A.D., Practical Software Measurement: Measuring for
Process Management and Improvement (CMU/SEI-97-HB-003). Software Engineering In-
stitute, Carnegie Mellon University, April 1997.

16. Humphrey, Watts, Managing the Software Process. Reading, Mass.: Addison-Wesley Pub-
lishing Company, 1989. ISBN 0-201-18095-2.

17. 17.ISO, “ISO 9001: Quality Management Systems – Requirements”, 2000.
18. ISO/IEC, “ISO/IEC TR 15504: Information Tech. – Software Process Assessment”, 1998.
19. ISO/IEC, “ISO/IEC 15939: Software Measurement Process”, 2002.
20. 20.Kan, S. H., Metrics and Models in Software Quality Engineering. Addison-Wesley

Publishing Company, 1995. ISBN 0201633396.
21. Lantzy, M.A., “Application of Statistical Process Control to Software Processes”,

WADAS '92, Proceedings of the Ninth Washington Ada Symposium on Empowering Soft-
ware Users and Developers, 1992, pp.113-123.

22. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., and Hall, F., Practical
Software Measurement: Objective Information for Decision Makers, Addison-Wesley Pro-
fessional, 1st edition, 2001. ISBN 0201715163.

23. MINITAB Statistical Software, Release 14, http://www.minitab.com/products/minitab/14/
default.aspx.

24. 24.NATO, “AQAP-150: NATO Quality Assurance Requirements for Software Develop-
ment (Edition 2)”, September 1997.

25. Park, R.E., Goethert, W.B., and Florac, W.A., “Goal-Driven Software Measurement”,
CMU/SEI-96-HB-002, August 1996.

26. Paulk, M.C., Weber, C.V., Curtis, B., and Chrissis, M.B., The Capability Maturity Model:
Guidelines for Improving Software Process, Addison-Wesley Publishing, October 1995.

27. Paulk, M.C., “Practices for High Maturity Organizations”, Proceedings of the 1999 Soft-
ware Engineering Process Group Conference, Atlanta, Georgia, March 1999, pp.28-31.

28. Radice, R., “Statistical Process Control for Software Projects”, 10th Software Engineering
Process Group Conference, Chicago, Illinois, March 1998.

29. Shewhart, W.A., Economic Control of Quality of Manufactured Product, Van Nostrand,
New York, 1931 (re-printed by American Soc.of Quality Control, Milwaukee, Wisc., 1980.)

30. 30.Tarhan A., and Demirors, O., “Remarks from SPC Trial for an Emergent Organiza-
tion”, Presentation, Europen SEPG Conference, 12-15 June 2006, Amsterdam, Holland.

31. Weller, E., Practical Applications of Statistical Process Control. IEEE Software, May/June
2000, pp.48-55.

32. Wheeler, D.J., Understanding Variation: The Key to Managing Chaos, SPC Press, Knox-
ville, Tenn., 1993.

33. Wheeler, D.J., Advanced Topics in Statistical Process Control, SPC Press, Knoxville, 1995.

Current Practices of Measuring Quality in
Finnish Software Engineering Industry

Jari Soini1, Vesa Tenhunen2 and Markku Tukiainen2

1 Tampere University of Technology - Pori, P.O. Box 300, FIN-28101 Pori, Finland
2 University of Joensuu, Department of Computer Science, P.O. Box 111, FIN-80101

Joensuu, Finland

Abstract. Measurement is an important factor in Software Process Im-
provement, but many organizations have difficulties in establishing and
utilizing metrics programs. Our ongoing research project Software Mea-
surement (SoMe) is aimed at creating a set of tools to help in measuring
and improving the quality of software products and processes. In this
paper we present the current state of measurement in the Finnish soft-
ware companies participating in our project and the experience they have
gained. The research is based on a series of interviews and questionnaires,
created to collect the experiences the companies have about individual
metrics and measurement in general. These results show which process
groups the measurement is focused on, and who are the beneficiaries of
the measurement results in practice.

Measurement,metrics,quality,softwareprocess improvement.

1 Introduction

Continuous process improvement has become almost a necessity for software
companies, if they want to enhance their operational precondition and competi-
tiveness in the software business [3, 17]. It is widely known that measurement is
a prerequisite for improvements to process and reliability. [17].

The objective of this paper is to evaluate the focus of process and product
quality measurement in practice, and how the results of measurements are used
in organizations. As a part of an ongoing research project called Software Mea-
surement, or SoMe, we carried out a series of interviews in a sample of Finnish
software companies. In this paper we present the results from these interviews,
concentrating on the information needs of the companies by mapping the metrics
used in ISO/IEC 15504 (SPICE) [12] standard’s process groups. We also looked
into the beneficiaries of the data produced by the metrics. These results will
give some indication of how and where to find future targets for measurement
to improve the quality of software products and software engineering processes.

The structure of this paper is as follows: Firstly, the background of the study
is described in Chapter 2, as well as the key concepts used and the limitations on

Keywords:

,

: EuroSPI 2006, LNCS 4257, pp. 100–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
I. Richardson, P. Runeson, and R. Messnarz (Eds.)

obtained from the research, and in Chapter 5 their analysis and evaluation. In
Chapter 6, we summarize the conclusions of the paper.

2 Background

This chapter describes the background and context of the study. We briefly
describe the connection between measuring and SPI, and also give an outline of
the ongoing project and in particular the interview section, which is analyzed
in this paper. Finally the limitations and the key concepts of this research are
presented.

There is a strong belief that SPI is essential for future success and that it can sig-
nificantly improve software quality [14]. Continuous process improvement cannot
exist reliably without a continuous and systematic monitoring and measurement
of the company’s own processes [6, 17]. Software measurement is widely recog-
nized as an essential part of understanding, controlling, monitoring, predicting
and evaluating software development and maintenance projects [6, 4, 15] and as
a necessary part of any SPI program [1, 11, 8]. Two of the most fundamental
reasons for measuring software are to control the processes of software produc-
tion, and to indicate the quality of the product. It is also a widely accepted fact
that the quality of a software product is largely determined by the quality of the
process used [17].

Measurement plays an important role in process and product quality to en-
sure that customer requirements have been met, to provide a visible means for
the management to monitor their own performance level, highlight quality prob-
lems, and provide feedback to drive the improvement effort. In practice, it has
proved difficult to define the key functional process and product measurements.
Especially, the utilization of the measurement results must be taken into account
when developing new measurement systems in the future.

Measurement is not a goal in itself. The most effective use of data for organi-
zational learning and SPI is to feed the data back in some form to the members
of the organization. Monitoring and reporting progress has been important in
creating continuing support from various levels of the organization. Measurement
is meaningless without interpretation and judgment by those who will make the
decisions and take actions based on them [5]. As well as management, measure-
ment provides opportunities for developers to participate in analyzing, inter-
preting and learning from the results of measurements and to identify concrete
areas for improvement. It is important that measurement systems are designed
by software developers for learning, rather than by management for control [5].

the scope of the study. In Chapter 3, we present the research method we selected
and the participants in the research. Next, in Chapter 4, we present the results

2.1 Measurement – An Essential Part of SPI

Current Practices of Measuring Quality 101

of both software process development and software products. We also find out
the current needs and experiences of the software companies participating in our
project. As a part of the research, we have collected and analyzed project level
and organizational level data about improving process and product quality, and
together with measurement experiences from companies and experts we have
created knowledge items from them. The final outcome of the project will be a
measurement knowledge base consisting of a large metrics database. It will be
released together with its support systems at the end of the project.

The project was initiated by FiSMA, the Finnish Software Measurement
Association [7]. Among its members are many of the most notable software
companies in Finland.

2.3 The Key Concepts and Outlines of This Study

The concepts that are central to this study are as follows: Factor means the
objective on which the measurement is focused. Metrics are quantifiable at-
tributes of the development or maintenance processes and their environment
(process metrics) or quantifiable features of the software product (product met-
rics). Software process improvement (SPI) means a systematic methodology that
significantly helps businesses simplify and streamline operational processes. The
objective of process improvement is to ensure that business processes eliminate
errors, minimize delays, promote understanding, are easy to use, are customer-
friendly, adaptable, enhance competitiveness, and reduce excess capacity [10].

The research scope was limited as follows: Firstly, the research was defined so
that our target group was software companies who are members of FiSMA. Of
these, we sampled the companies that had previous experience and knowledge
with software measurement. Secondly, the persons selected to be interviewed
were people who had experience, knowledge and understanding of measurement
within their respective companies – mainly quality managers, heads of depart-
ments and systems analysts. We assumed that the monitoring of their own
company’s internal processes and operations is part of the management’s job
description. Quality managers can also be considered as having a holistic view
on the company’s measurement activities. The third limitation is related to the
research topic. In the SoMe project, our scope is to study process and product
quality, because the software companies in FiSMA recognize measuring them as
a challenge. Therefore, our focus in this paper is to describe the current situa-
tion related to the factors where the process and product quality measurement
is emphasized in the target companies.

2.2 SoMe, Software Measurement Project

In the ongoing project SoMe (Software Measurement), we are studying different
practices and tools to help solve the measurement problems related to the quality

102 J. Soini, V. Tenhunen, and M. Tukiainen

3.1 Method

Our method was to conduct interviews to address research questions. The target
group was FiSMA participants from all over Finland. The research material was
collected with the help of personal interviews. We used the same structured inter-
view templates in all interview sessions: one form to collect general information
about the company and its measurement practices, and another spreadsheet-
style form to collect all metrics the company uses or has used (see Appendix
A).

When planning the interview forms, we tried to formulate the questions on
quite a general level and to make them easy to answer using terminology which
would be well known to all participants. In the interview sessions we asked the
quality managers about the current measurement objectives related to process
and product quality, and how the measurement is arranged in practice. The
aim was to clarify the factors on which the current measurement is focused.
For the purpose of further analysis, we also inquired detailed information about
the individual metrics. From these results we can see which process groups the
measurement emphasized and who are the beneficiaries.

3.2 Participants

A total of eight companies participated in this study. Three of them work in
financial industry, two in software engineering, one in ITC services, one in man-
ufacturing and one in automation systems. Five of the companies operate in
Finland only, the other three also internationally. By the number of employees,
the company sizes range from 195 to 15 000 (see Table 1). The common charac-
teristic shared by these companies is that they all carry out software development
independently.

Table 1. Size of participating companies by number of employees

Measurement practices and targets varied somewhat between companies. The
longest systematically collected and utilized measurement history was over 12
years, but there are also companies who have only recently started to adopt
this measurement work. Those who have a long experience of measurement have
usually tested a wide set of metrics and measurement targets, and are today
concentrating only on a limited amount of ”core metrics”.

3 Case Study

The following two sections describe how the research was carried out. First we
describe the research method and then give a short overview of the participants
in the research.

Current Practices of Measuring Quality 103

4 Results

Using our interview forms, the interviewees gave us a total of 102 metrics which
in their opinion were related to projects, processes, products and their quality.
For the majority of metrics, they also provided descriptions of purposes, usage,
effort required, and people using measurement data. Many of those metrics were
not strictly in the field we required, so for the purposes of this study, we left
out all those that were more geared towards measuring business, personnel and
other non-software engineering areas. In addition the metrics without sufficient
descriptions were discarded.

Table 2. Companies and their metrics for different measurement factors

The companies involved in our project were selected by their history in soft-
ware measurement and by voluntarily participation. This, together with them
being members of FiSMA, may create a bias in results, as these companies are
more likely to perform SPI and related activities – including measurement –
than the Finnish software industry in general.

After these eliminations, we ended up with 57 metrics, which could be fur-
ther mapped to 19 distinct measurement factors, derived from the interviews.

104 J. Soini, V. Tenhunen, and M. Tukiainen

Fig. 1. Different measurement purposes and the number of companies measuring them

One key question in this study was the utilizers of measurement data and
their place within organizational hierarchy. In Fig. 2 the metrics are classified
according to three utilizer groups: software/project engineers; project managers;
and upper management (management above project level including, but not
restricted to, quality, business, department and company managers). In each
group the metrics are further divided into two segments: metrics that are pri-
marily meant for the members of that group, and those that are secondarily
used by that group after some other group has had access to them primarily.
Fig. 2 shows that the majority of measurement data benefits upper management.
Upper management utilizes 100 % of the metrics, project managers 58 % and
software engineers 26 %.

Please note that the numbers of metrics (both the initial 102 and the final 57)
are a sum of all the metrics of every company; that is, if two companies are
using the same metric, it is counted twice, not just once. On the other hand,
if a company measures for instance system size with two metrics, within that
particular company they are counted only as one metric instead of two.

Current Practices of Measuring Quality 105

Fig. 2. Distribution of measurement results and their users in a company organization

Fig. 3. The number of companies using metrics in various SPICE process groups

5 Discussion

To understand better what are the measurement needs of the companies, we
classified the 19 measurement factors using the process groups of ISO/IEC 15504,
or SPICE, reference model as a framework. The mapping of factors was carried
out so that within each factor, the metrics’ purpose for the company and the life
cycle phase when it is used determined to which SPICE process area the factor
belonged.

106 J. Soini, V. Tenhunen, and M. Tukiainen

Table 3. Measurement factors mapped to SPICE process groups

However, there seems to be a distinctive lack of metrics concerning prod-
ucts and product quality. For example, only three companies measure the defect
counts in the system, two companies measure the defect counts in testing and
four the post-release defects, but only one company measures all three factors.
The same phenomenon can be seen with process quality metrics, too. Less than
half of the companies measure their processes, or carry out process assessments.

This bias can be explained by looking into beneficiaries, or those who utilize
measurement data. Fig. 2 shows clearly, that most of the measurements are
carried out for the benefit of management. All the data produced by all 57

Measurement is mostly focused on project management and customer satisfac-
tion. Seven out of eight companies measure schedule keeping, the same propor-
tion also collects feedback from customers and measure their satisfaction, and
only one company less measures project workload. This is not surprising, as most
of the work is done in projects. Also the customer satisfaction can be seen as an
important high-level factor indicating company’s business performance.

eration (OPE), Support (SUP), Supply (SPL) and Process Improvement(PIM).Op

As can be seen in Table 3 and Fig. 3, most of the used metrics fall in the
process groups of Management (MAN) and Engineering (ENG), followed by

Current Practices of Measuring Quality 107

information has very probably detrimental effects: if not to projects or software
engineering, then at least to the validity and reliability of measurements. Much
of the data needed to calculate various metrics is gathered by engineers, and the
literature contains many cautionary examples of measurement programs fail-
ing because of insufficient communication as the personnel is unable to see the
relevance or benefit in collecting data for the metrics.[2, 9, 13]

6 Conclusions

In order to improve the quality of software processes and products we have to
find out what kind of measurement is practised currently and how to advance
these practices. Measurement activities are considered successful if they help
project stakeholders first to understand what is happening during their processes,
and second, to control what is happening on their projects. Although this is
acknowledged, many measurement initiatives have not succeeded in software
industry. In many cases this has been contributed to the lack of motivation of
the engineering personnel towards doing the measurements.

This paper reports a case study of Finnish software industry’s measurement
practices and demonstrates that the majority of the measurements is done on
the purposes of financial and top-management decision support. There is obvi-
ously an imbalance of who gets the results and how the metrics are selected for
communication in the organization.

However, the measurement is considered essential by the management and
the practices of the measurement are carried out in most of the software orga-
nizations. With the purpose of succeeding in measurement programs we need
to answer many questions, for example how to make the metrics available to
the levels of organization who really need them; and are the right metrics avail-
able for upper management, project manager and software engineers? Further
research could include investigating the practical means to measure the relevant
metrics on different levels of a software company’s organization.

In spite of the fact that projects are deemed important and therefore mea-
sured rather extensively, the scarcity of metrics data intended to software engi-
neers and other project workers is surprising. Even though some of the metrics
are usually regarded as tools for project teams and engineers (e.g. system size,
defects found, many project metrics, etc.) [16], information they provide seems
to be used only on managerial level. As the measurement data is an important
means to management and decision-making, this is understandable. But the un-
derrepresentation of engineer-level beneficiaries and the uneven distribution of

metrics come to upper management, 82 % of them primarily. On the other
hand, the engineers on the development level benefit only from 15 metrics, and
of those only four are primarily meant for them. Project managers are in the
middle with 33 metrics, but 73 % of them are primary.

.

108 J. Soini, V. Tenhunen, and M. Tukiainen

6. Fenton, N.E., Pfleeger, S.H.: Software Metrics: A Rigorous & Practical Approach.
2.Edition, International Thompson Computer Press (1997)

7. FISMA,
Finnish Software Measurement Association. http://www.fisma.fi/eng/index. htm
(13.4.2006)

8. Grady, R.B.: Successful Software Process Improvement. Prentice-Hall (1997)
9. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Pro-

gram. Prentice-Hall (1987)
10. Harrington, H.J.: Business Process Improvement: The Breakthrough Strategy for

Total Quality, Productivity, and Competitiveness. McGraw Hill (1991)
11. Humphrey, W.S.: Managing the Software Process. Addison-Wesley (1989)
12. ISO/IEC 15504. http://www.sei.cmu.edu/iso-15504/ (13.4.2006)
13. Kan, S.: Metrics and Models in Software Quality Engineering. Addison-Wesley

(2003)
14. The SPIRE Handbook. Centre for Software Engineering (1998)
15. Van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical

Guide for Quality Improvement of Software Development. McGraw-Hill (1999)
16. Wiegers, K.: A Software Metrics Primer.

http://www.processimpact.com/articles/metrics primer.html (13.4.2006)
17. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Suc-

cess. Addison-Wesley (1997)

References

1. Basili, V.R., Caldiera, G.: Improve Software Quality by Reusing Knowledge and
Experience. Sloan Management Review, Vol. 37, No. 1 (1995) 55–64

2. Briand, L., Differding, C., Rombach, H.: Practical Guidelines for Measurement-
Based Process Improvement, Software Process: Improvement and Practice, Vol. 2,
Num. 4 (1996) 253–280

3. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE Com-
puter Society Press, Vol. 19, No. 4 (2002) 92–99

4. DeMarco, T.: Controlling Software Projects: Management, Measurement and Es-
timation. Yourdon Press (1982)

5. Dyb̊a, T.: An Empirical Investigation of the Key Factors for Success in Software
Process Improvement. IEEE Transactions on Software Engineering, Vol. 31, No. 5
(2005) 410–424

Current Practices of Measuring Quality 109

Appendix A

Spreadsheet-style interview form for collecting detailed metrics information.

110 J. Soini, V. Tenhunen, and M. Tukiainen

An Industry-Based Evaluation of
Process Modeling Techniques

Brent Cahill, David Carrington, Brian Song, and Paul Strooper

School of ITEE, The University of Queensland, St Lucia, Australia
Brent.Cahill@au.fujitsu.com,

{davec, bsong, pstroop}@itee.uq.edu.au

Abstract. There are many ways to model software development processes. This
paper reports a feature analysis of four process modeling techniques using
criteria specified by a software development organization. The evaluation used
a single process, peer review, modeled using all four techniques. Performing the
modeling activity highlighted the usefulness of the modeling activity and the
usefulness of metamodels in structuring processes.

1 Introduction

This paper describes the evaluation of techniques for specifying software
development processes. This evaluation forms part of a larger project to evaluate
process improvement techniques supported by process modeling. Among other
benefits, process modeling has the potential to allow simulation of changes or
improvements made to processes. This project is a collaborative partnership between
The University of Queensland and Boeing Australia. The aim of the evaluation is to
select a process modeling technique based on the requirements of Boeing Australia.
Similar organizations can also benefit from this research despite the specific Boeing
Australia context, by following the evaluation approach described in this paper for
their context.

Boeing Australia is a large software/systems development organization with a
primary domain of defense systems. This research is being performed to improve the
performance of Boeing Australia’s software and systems development.

In related work, Henderson-Sellers et al. [1] describe a metamodel level
comparison of the OPF (Open Process Framework) and the Rational Unified Process
(RUP). Wang et al. [2] performed a similar comparison of different modeling
techniques, but their comparison was smaller in scope and was not conducted in a
commercial software/systems context.

To evaluate the different techniques, Qualitative Feature Analysis of the DESMET
[3] methodology was used. Section 2 outlines the evaluation approach and details
which process modeling techniques were chosen and why. Section 3 contains an
application of the four modeling techniques on Boeing Australia’s existing peer
review process. A comparison of the techniques and the final selection are presented
and discussed in Section 4.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 111 – 122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

112 B. Cahill et al.

2 Evaluation Approach

2.1 Criteria for Evaluation

Our evaluation of process modeling techniques was based on criteria identified by
stakeholders within Boeing Australia. Key stakeholders were the Software
Engineering Functional Manager and Chief Engineer.

Each criterion was assigned a weighting representing its importance to Boeing
Australia. The weighting was on a scale of 1 – 5, one being the least important and
five the most important. While it was desired that all criteria were met, the weightings
were introduced to provide a clear understanding of each criterion’s relevance. The
following criteria were identified for evaluation:

1. Ease of use – Weighting 4 since ease of use influences how readily the technique

is adopted.
2. Industry Acceptance – Weighting 4 since use in industry indicates the likely

longevity of the technique and support.
3. Tailoring – Weighting 5 since tailoring is essential for the type of projects at

Boeing Australia.
4. Mapping – Weighting 3 since it would be useful for the process modeling

technique to be mapped to other techniques and/or approaches.
5. Improvement Over Current Practice – Weighting 5 since for acceptance of the

new technique, it must be better than the current technique.
6. Measurement Data – Weighting 2 since it is considered desirable. If measurement

data cannot be incorporated, existing methods will continue to be used.
7. CMMI – Weighting 5 since attaining CMMI Level 3 is a high priority for Boeing

Australia and any process initiative should support this goal.
8. Related Elements – Weighting 3 since modeling the relationships between the

process architecture, measurement and information architectures would increase
the value of the technique.

9. Tool Support – Weighting 5 since without tool support, the technique will not be
used. This weighting is in agreement with Firesmith & Henderson-Sellers’ [4]
perspective on CASE tool support.

2.2 Selection of Process Modeling Techniques

Four process modeling techniques (PMTs) were chosen for evaluation:

1. Software Process Engineering Metamodel (SPEM) [5]
2. OPEN Process Framework (OPF) [4]
3. Business Process Definition Metamodel (BPDM) [6]
4. Specification of Coordinated and Cooperative Activities (SOCCA) [7].

The choice of PMTs was determined by an informal evaluation of how each
technique would suit Boeing Australia’s criteria. It was obvious to consider the two
best-known modeling techniques: the Software Process Engineering Metamodel
(SPEM) and the OPEN Process Framework (OPF). The SOCCA technique was
included because of its ability to model elements of processes, even though it has no

 An Industry-Based Evaluation of Process Modeling Techniques 113

metamodel, and the BPDM technique was chosen due to its emphasis on business
processes. However the essential feature of all these techniques is that they are able
to represent processes.

2.3 Process Selection

To perform the comparative analysis within an acceptable time frame, it was decided
to model a single process with each technique. Peer review was chosen for two main
reasons: familiarity with the process by the first-named author and the loosely
coupled nature of the peer review process.

The first-named author was involved in the development and rollout of an updated
peer review process within Boeing Australia. This activity provided an intimate
knowledge of the process and its requirements prior to modeling. The peer review
process is loosely coupled, because its activities can be defined independently of other
processes, which simplifies the modeling. The modeling activities using the four
techniques were performed by the first-named author in consultation with Boeing
Australia employees working on process improvement.

3 Process Modeling Techniques

Although all four techniques were evaluated, due to space limitations in this paper,
only SPEM and OPF are presented in detail as they displayed the most relevant and
interesting results.

3.1 Software Process Engineering Metamodel

3.1.1 Background
Developed by the Object Management Group (OMG), the Software Process
Engineering Metamodel (SPEM) is intended for the development and maintenance of
software processes. It conforms to the Meta Object Facility (MOF) [8], which ensures
that it integrates with other models that are MOF-based.

3.1.2 Modeling Overview
SPEM 1.1, which was used in this research, uses UML 1.4 notation. There is good
tool support for SPEM due to its inherent relationship with UML and a number of
UML tools are able to create SPEM models. Enterprise Architect (v4.5) was the tool
used in this project to produce the SPEM models.

At the simplest level, SPEM is an abstraction of roles, work products, and
activities. These three concepts are related with roles performing activities on work
products. Using SPEM requires that the elements to be modeled are part of the
metamodel or extensions to the metamodel. Since SPEM is a UML profile,
structuring of SPEM elements can be performed with further constraints that capture
domain-specific semantics and modeling patterns.

Modeling using SPEM typically uses a class diagram (Figure 1), activity diagram
(Figure 2), and a statechart diagram. The latter diagram is not presented here due to
space limitations and also the similarity across techniques. States can also be
represented in the activity diagram.

114 B. Cahill et al.

In the SPEM specification, only one role can own an activity. The role-activity rule
led to several changes in the modeling of the peer review process and a re-thinking of
the structure of roles within that process. Changes to the peer review roles led to a
refactoring of the process model to include the role of the peer review team, a role
that would not have been developed otherwise. The role of the peer review team is
central to the peer review process as displayed in Figure 1. The creation of the peer
review team simplified the representation of the peer review process. Rather than
have multiple roles interact with peer review activities, refinement introduced the
concept of a peer review team with shared role behaviors. Thus, the peer review team
can also be used to distinguish between multiple roles performing an activity together
and multiple roles performing the same activity individually. Figure 2 provides
further evidence of the simplification of using a peer review team. Without the peer
review team role, the number of swim lanes (and hence the complexity of the
diagram) would have increased, reducing readability. Activity diagrams can represent
changes to work products. State changes are indicated via the names of work products
as shown in Figure 2. The activity diagram shows the relationship between roles,
activities and the states of the work products.

3.1.3 Technique Distinctions
A unique element of SPEM is the use of well-formedness rules. These rules provide
guidance to the methodologist (process architect) as to the correct structure of
methodology entities. The use of these rules provides clarity of understanding that
appears to be lacking in the other process modeling techniques.

cd Peer Rev iew

ReviewTeamMemberPeerReviewCoordinator

Author

- ReviewWP: WorkProduct

PrimaryReviewerModeratorRecorder

ReviewTeam

Reviewer

WorkProduct

ReviewWP

- State: ActionState = Draft

WorkProduct

PrepRecord

WorkProduct

MinutesRecord

ReviewPack

WorkProduct

ActionRecord

- State: ActionState
- «date» InitialisationDate: date
- «date» ClosedDate: date

WorkProduct

DefectRecord

ProcessRole

ReviewEntity

WorkProduct

ReviewMetrics

Owns Owns Owns

Owns

Uses a

Owns

Uses a

Has Reference To

Reviews

Has a

Maintains
Authority of

Uses a

Sourced from
Uses a

Sourced from

Makes use of

Makes use of

Sourced
from

Sourced from

Makes use of

Makes use of

1..*

1

1

1

0..*

1

1

1

1

1

1

1

1

1..*

1

1..*

11..*

1

1

11..*
1 1

1

1

1..*

1..*

1..*

1..*

1..*

1..*

1

1..*

Fig. 1. Peer Review SPEM class model

 An Industry-Based Evaluation of Process Modeling Techniques 115

ad SPEM-Activ ity Diagram

ReviewTeamAuthorPeerReviewCoordinator

Schedule Reviews

Perform Causal
Analysis

Plan Review

Perform Re-work

Prepare for Review

Perform Review

Draft :
ReviewWP

Related :
WorkProduct

Support :
WorkProduct

Blank :
PrepRecord

Blank :
MinutesRecord

Redlined :
ReviewWP

Completed :
PrepRecord

Reviewed :
ReviewWP

Completed :
MinutesRecord

:DefectRecord :ActionRecord

«datastore»

Action Items

«datastore»

Defect
Records

«datastore»

Review
Records

Updated :
ReviewWP

Is Re-review
Required?

Store Records

Initiate

Finish

ReviewPack

Yes

No

Fig. 2. Peer Review SPEM Activity Diagram

SPEM can be used with or without a UML profile, however use without a UML
profile removes the ability to use <<stereotypes>> resulting in a potentially less
constrained metamodel. Stereotypes allow entities to be modeled as a type of class

116 B. Cahill et al.

already specified, thus reducing the number of classes that exist in the process model.
The SPEM UML profile was used for this research.

3.1.4 Discussion
The use of preconditions and goals provide the criteria for entry and exit of life cycles
that govern processes, goals essentially forming the post-conditions for processes.
SPEM provides a simple construct using preconditions and goals to develop rules for
when and how a process is performed and when it is successful in performing that
function.

“WorkDefinition behavior is defined using no more than a single Activity Graph
and in no other way” [5]. Although this well-formedness rule states that no more than
one activity graph should be used to describe a work definition (a description of the
work performed in the process), we have chosen to interpret that the iterative nature
of the subwork role, WorkDefinition, allows for each work definition that constitutes
the parent work definition to have its own activity graph. A result of this
interpretation is that an activity graph of a work definition can have multiple levels.

Overall there is room for interpretation within the SPEM model and this is partly
due to the range of SPEM’s optional elements. This allows users flexibility in the
creation of the model but is a weakness when considering rigorous specification of
processes.

3.2 OPEN Process Framework (OPF)

3.2.1 Background
A product of the OPEN consortium, the OPEN Process Framework (OPF) provides a
metamodel for defining object-oriented and component-based software development
processes. The OPF was developed from prior research to advance OO and
component-based software engineering processes.

As recommended by the OPEN Consortium, the OPEN Modeling Language
(OML) was used. The OML notation is a recognized variant of UML, providing full
UML support as well as further functionality not provided by UML [4].

From the OPEN philosophy, the weakness in UML is the poor support for
responsibilities, roles, and whole-part relationships. A primary difference between
OML and UML is that OML provides only unidirectional relationships between
classes, thus maintaining encapsulation and information hiding in designs.

3.2.2 Modeling Overview
We are not aware of CASE tools that support OML so OML modeling was performed
in Microsoft VisioTM which is a generic modeling tool. In the peer review class model
using OPF/OML displayed in Figure 3, the classes remain the same, yet relationships
between the classes are subtly different. Where review team was a composition under
the UML notation in Figure 1, it is shown in Figure 3 as a membership. It is evident
that the activity diagram of OPF/OML in Figure 4 is radically different from SPEM’s
activity diagram.

The OPF/OML activity diagram in Figure 4 presents a relatively simple activity
diagram relating roles to work products via activities. This diagrammatic technique
does not assist understanding of the order in which activities are to be performed, nor
does it provide insight into the state changes of work products.

 An Industry-Based Evaluation of Process Modeling Techniques 117

3.2.3 Technique Distinctions
Life cycles are built into the OPF allowing for the specification of life cycles
separately to processes, tasks, activities, etc. OPF process constraints are represented

Producer
ReviewEntity

PeerReview
Coordinator

Configurational,
whole-part
relationship

U
Containment
relationship+

Membership
relationship

Generalise Association <<isInstanceOf>>

ReviewTeam
Member

WorkProduct
PrepRecord

Moderator
Primary

Reviewer
Reviewer Author

ReviewTeam

WorkProduct
ReviewWP

WorkProduct
ReviewMetrics

WorkProduct
MinutesRecord

Recorder

+

+

WorkProduct
ActionRecord

WorkProduct
DefectRecord

ReviewPack

U

1

1

1..*

1

1

1 1 1 1 1

1..*

1..*

1..*

1..*

1

1..*
1..*

1

1

1

1

1

1..*

1..*

1

1..*
0..*

1..*

1..* 0..*

Fig. 3. Peer Review OPF Class Diagram

Review
Team

Author

Primary
Reviewer

Moderator

Recorder

Reviewer

Peer Review
Coordinator

ReviewWP

RelatedWP

SupportWP

PrepRecord

MinutesRecord

ReviewPack

DefectRecord ActionRecord

DataStore
DefectRecords

DataStore
ReviewRecords

DataStore
ActionItems

May
be

May
be

May
be

May
be

Schedules
Review for

Selects

Determines type of

Completes

M
ai

nt
ai

ns

Reviews

U

U

Upd
ate

s
Update

Updates

Fig. 4. Peer Review OPF Activity Diagram

118 B. Cahill et al.

as goals, objectives, purposes, pre-conditions, and post-conditions. These concepts
help define processes and activities. Pre-conditions and post-conditions are heavily
relied upon within the OPF.

3.2.4 Discussion
A process framework, according to Firesmith & Henderson-Sellers [4], should
include a large class library of standard pre-defined process components. This
philosophy is apparent in the significantly larger OPF metamodel compared to SPEM.
This metamodel provides finer granularity by pre-defining a number of metamodel
elements. A strength of the OPF is that it has a large class library of elements. Indeed
it is not possible to provide a model of the OPF within the limits of this paper. Even
though SPEM has fewer elements in the metamodel than OPF, it is possible to extend
either metamodel, in accordance with certain rules.

The use of an extensive predefined class library is an advantage for OPF/OML by
providing more guidance in the development of its models. Conversely this extensive
predefined class library also takes more time to learn and understand, a disadvantage
by comparison with SPEM which has a simpler metamodel allowing flexibility in
defining its process models.

4 Technique Comparison

Table 1 summarizes the evaluation of the process modeling techniques against the
criteria defined in Section 2.1. Following is the rationale for the ratings.

Table 1. Technique weighted comparison

Criteria Weight SPEM OPF /
OML SOCCA BPDM

Ease of Use 4 4 4 2 3
Industry Support 4 5 4 0 1
Tailoring 5 3 3 0 2
Mapping 3 4 1 0 2
Improvement Over
Current Practice

5 5 5 3 4

Measurement Data 2 1 1 1 1
CMMI Support 5 5 5 3 5
Related Elements 3 3 3 3 3
Tool support 5 5 2 2 2

Weighted Total 149 121 59 98

1. Ease of Use – SPEM and OPF/OML provide a well-structured metamodel on
which to base process models. The use of standard notation or the variant OML,
assisted greatly in ease of use due to the availability of tools, reference material,
and knowledge.

 An Industry-Based Evaluation of Process Modeling Techniques 119

2. Industry Acceptance – Industry acceptance was determined by the existence of an
active community for the modeling technique. SPEM and OPF scored well since
SPEM has the support of the OMG and OPF the support of the open consortium,
although the wide acceptance of UML provided SPEM an advantage over OPF.
The OPF rating may be strengthened on two points: the use of the UML notation
instead of OML and the development of the OPF into the international standard
ISO/IEC WD 24744 [10]. However the current evaluation was based on the OPF
with OML.

3. Tailoring – Those techniques based on a metamodel provide rules for the
extension of the metamodel. Such extensions allow limited tailoring at the
metamodel level.

4. Mapping – SPEM has the greatest support in terms of mapping. Derived from
OMG’s MOF, SPEM is compatible across the suite of OMG standards. BPDM was
not given the same rating however, due to the formative status of the standard.

5. Improvement Over Current Practice – Each of SPEM, OPF, and BPDM provide
a more detailed approach to process modeling than Boeing Australia’s current
practice.

6. Measurement Data – None of the techniques evaluated provided an obvious
mechanism for incorporating metrics into process models. However, it is possible
to improvise measures by representing them in the same way as work products in
the class and activity diagrams of all the evaluated techniques. An example of
representing metrics is shown in Figure 1 and Figure 3.

7. CMMI Support – The simple act of using these techniques to specify and model
processes provides support for CMMI. The use of a process model also allows a
standard process to be specified and tailored as required for multiple projects.

8. Related Elements – As identified in point 6, the capturing of measurement is a
weak point for each of these techniques, however the information architecture can
be captured in the work product elements of the processes modeled. Therefore each
of the techniques rated moderately.

9. Tool Support – Modeling tools exist for the support of UML, resulting in a high
rating for SPEM. OPF/OML received a low score because of the lack of tool
support for OML. SOCCA uses its own notation for the modeling of processes and
BPDM uses a variation of UML activity diagrams that have no tool support.

From the weighted ratings, it is clear that SPEM and OPF rate much higher than
either of the other two techniques. SPEM rated higher primarily due to industry
support and the portability provided through its close relationship with UML. Most of
the difference between SPEM and OPF could be removed if UML had been used
instead of OML for the OPF models.

The two leading techniques have a key difference in the guidance and rigor
provided. OPF contains a relatively large set of elements in comparison to SPEM.
Consequently OPF contains more rules and guidance for the specification and
modeling of processes, while SPEM has greater flexibility for instantiating processes,
allowing the user more freedom of expression in its process models, but lacking the
rigid specification of OPF.

During the development of process models, the original form of the peer review
process was altered based on weaknesses identified during modeling. This refactoring

120 B. Cahill et al.

reinforced the benefit of developing process models using the three types of diagrams,
activity, class and statechart. Iterating through the process models, the first-named
author and Boeing Australia employees identified weaknesses in the existing peer
review process. The result was a refined process description capturing better
understanding of the roles, activities and work products required.

To some extent, OPF provides a formal description of a practice already performed
in Boeing Australia. OPF’s concept of a Contract Driven Life Cycle provided a
framework for the use of pre-conditions and post-conditions.

Evaluation of the modeling techniques raised issues for future research. The
SPEM, OPF and BPDM metamodels are evolving, thus a future evaluation of the
techniques would be considered prudent. OPF forms the basis for Australian Standard
(AS 4651-2004) [9] which is seeking adoption from the International Standards
Organization (ISO/IEC WD 24744) [10]. OMG currently has a request for
submissions for a new version of SPEM and is currently developing the Business
Process Development Metamodel.

From a usability perspective, SPEM was the only technique to incorporate the state
change of work products in the activity diagram and this reduces the number of
diagrams that a process engineer potentially needs to develop.

5 Concluding Remarks

The evaluation of process modeling techniques within Boeing Australia was
performed to identify the most appropriate modeling technique for the organization,
when developing an overall process architecture. The criteria for assessing the process
modeling techniques were set by Boeing Australia. Each technique was used to model
a single process, the peer review process, so the effectiveness of the techniques could
be readily compared. Although this research was done in the specific context of
Boeing Australia, the outcome of this evaluation is relevant to similar organizations
especially from the finding that process modeling can contribute to process
improvement. Organizations can adopt the proposed evaluation criteria or can follow
the approach presented in this paper with their own customized criteria and context.

Peer review was chosen for this evaluation because it does not require tight
integration with other processes. However the activity of modeling and specifying
processes to develop a process architecture will require a focus on the integration
between processes. This focus will ensure that a complete picture of an organization’s
processes can be developed. Subsequently changes made to one process can have
impacts on other processes identified and managed.

The weighted criteria identify SPEM as the most appropriate option for Boeing
Australia. As a modeling technique, SPEM provides greater flexibility and support
than OPF, with either OML or UML. This conclusion holds even though OPF
provides more guidance and structure. SPEM has greater industry support through the
OMG, which also allows for transformation of models into other descriptions. The
results of this evaluation may need to be updated, given the adoption of the OPF as
ISO/IEC WD 24744 [10] and should be reassessed once the standard has stabilized
and gathered support.

 An Industry-Based Evaluation of Process Modeling Techniques 121

Modeling the peer review process was worthwhile, since the refactoring performed
led to a better understanding and streamlining of the process model. An improved
process description was developed compared to the original. The refactoring led to
new roles and new states for work products.

Measurement was not explicitly included in the techniques used for this
evaluation. The lack of measurement classes/objects means that no association was
made for measuring and managing processes. Support for Boeing Australia’s CMMI
goals was also weakened since measurement was not easily captured in the process
models.

A framework is currently being developed for using SPEM to model the
integration between processes starting with Requirements Analysis, which will be
seen as the core process. Its integration with supporting processes and measurements
will be part of the modeling scope. The contribution of this project towards Boeing
Australia’s CMMI initiative will continue to be a key factor in determining the value
of process modeling.

Acknowledgements

We thank Boeing Australia for participating in this research and for their continuing
support of collaborative software process research. We also thank those individuals at
Boeing Australia who provided their time to the project, Rick Neilson, Gary Morris,
Nikola Gluhajic, Kym Drummond and Derek Dominish. The Australian Research
Council provided funding for the Effective Software Process Improvement project via
an Australian Research Council Linkage Grant. We also thank the referees who
reviewed this paper.

References

1. Henderson-Sellers, B., Collins, G., Due, R., Graham, I. A Qualitative Comparison of Two
Processes for Object-Oriented Software Development. Information and Software
Technology, 43 (2001) 705-724

2. Wang, A.I., Conradi, R., Thuv, C.: Framework for Evaluating Process Modelling
Languages for Distributed Environments, Software Engineering and Applications, ACTA
Press Phoenix, (2005) 6-9

3. Kitchenham, B. A.: Evaluating Software Engineering Methods and Tool – Part 1: The
Evaluation Context and Evaluation Methods. ACM Software Engineering Notes, 21, 1
(1996) 11-15

4. Firesmith, D., and Henderson-Sellers, B.: The OPEN Process Framework. Addison-
Wesley, Harlow, UK (2002)

5. Software Process Engineering Metamodel Specification v1.1 – Object Management Group
(2001)

6. Frank, J., Gardner, T., Johnston, S., White, S., Iyengar, S.: Business Process Definition
Metamodel – Concepts and Overview. IBM whitepaper, Object Management Group,
Needham, MA (2004)

122 B. Cahill et al.

7. Engels, G. and Groenewegen, L.: SOCCA: Specifications of Coordinated and Cooperative
Activities, Software Process Modelling and Technology. Research Studies Press, Taunton,
UK (1994)

8. Wiegers, K. E.: Peer Reviews in Software – A Practical Guide. Addison-Wesley, Reading,
MA (2002)

9. AS 4651-2004 Australian Standard – Standard Metamodel for Software Development
Methodologies (2005)

10. ISO/IEC WD 24744 (2005-12-23) Information Technology – Software Engineering –
Metamodel for Development Methodologies (2005)

Process Model Difference Analysis for
Supporting Process Evolution

Martín Soto and Jürgen Münch

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{soto, muench}@iese.fraunhofer.de

Abstract. Software development processes are subject to variations in time and
space, variations that can originate from learning effects, differences in applica-
tion domains, or a number of other causes. Identifying and analyzing such differ-
ences is crucial for a variety of process activities, like defining and evolving
process standards, or analyzing the compliance of process models to existing
standards, among others. In this paper, we show why appropriately identifying,
describing, and visualizing differences between process models in order to sup-
port such activities is a highly challenging task. We present scenarios that moti-
vate the need for process model difference analysis, and describe the conceptual
and technical challenges arising from them. In addition, we sketch an initial tool-
based approach implementing difference analysis, and contrast it with similar ex-
isting approaches. The results from this paper constitute the requirements for our
ongoing development effort, whose objectives we also describe briefly.

1 Introduction

Software development organizations striving to achieve a high level of process matur-
ity must sooner or later face the problem of process standardization, namely, guaran-
teeing that all organization units develop software according to one well-known,
unified process. Achieving process uniformity generally requires the definition of
standard processes (sometimes also called reference processes or generic processes)
that capture organization-wide process knowledge, possibly with emphasis on a par-
ticular application domain (e.g., space software) and/or on specific development con-
texts (e.g., large projects). However, since they are generic, standard processes must
be tailored to the particular needs of the various projects inside the organization, lead-
ing to many separate project-specific processes.

Both standard and project-specific processes are subject to evolving along their life
cycle. Rapid technology changes, newly available useful knowledge, changes in regu-
lations or process standards, and new project experience, to only mention a few fac-
tors, contribute to push processes in different directions. Moreover, processes need to
be designed, described, introduced, and maintained in such a way that they become
accepted by practitioners and thus actually used in practice. For this reason, evolution
must be guided by solid, practical experience.

The problem of driving process evolution based on experience involves activities
both at the organizational and at the project level. Initially, particular projects tailor

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 123 – 134, 2006.
© Springer-Verlag Berlin Heidelberg 2006

124 M. Soto and J. Münch

processes to their needs and proceed to enact them. During enactment, issues involv-
ing the process definition are typically observed, ranging from the need to refine cer-
tain process entities in order to make them more specific, to the identification of areas
of the process definition that are openly inadequate and must be redefined.

Incorporating this local, project-specific experience into the standard organiza-
tional process is a potentially complex task involving at least the following two steps.
First of all, local variations must be identified and characterized in order to determine
if they are general enough to become part of the standard process. Afterwards, se-
lected local variations must be generalized and added to the standard process as alter-
natives, together with constraints or rules limiting their use to particular cases. This,
of course, requires a deeper understanding of the appropriateness of the process alter-
natives for different contexts and their effects on these contexts.

Additionally, before the start of a new project, a characterization of the project
context and its goals must be produced, providing the information needed to select
adequate process alternatives for the project. This closes the experience cycle, open-
ing opportunities for experience reuse.

We believe that the first step can be effectively supported by so-called process
model difference analysis, namely, finding, analyzing, and displaying the differences
between variants of a single process model in ways that are meaningful, and thus use-
ful, to the people maintaining and using the process. The second step addresses the
so-called variability analysis, i.e., identifying which context characteristics and
project goals differ among a family of projects, and determining the corresponding
process variation points and the rules associated to them. The concept of variability
analysis originally comes from product line engineering [1].

This paper presents our current steps towards an effective, practical approach for
process model difference analysis. The rest of the paper is structured as follows: In
Section 2, we present two process management scenarios derived from our experience
with process modeling and implementation, analyze the possible role of difference
analysis in them, and derive a set of basic interesting difference analysis operations. In
Section 3, we discuss the conceptual and technical challenges of process model differ-
ence analysis, and contrast them to existing procedures like the standard longest com-
mon subsequence algorithm used by diff. Section 4 discusses the basic concepts of our
ongoing implementation work. Section 5 presents some related work and Section 6
concludes the paper by discussing open challenges and plans for realizing our view.

2 Application Scenarios for Difference Analysis

In the following, we sketch two scenarios that demonstrate the need for process model
difference analysis. These scenarios are based on the authors' experience in defining
and managing the evolution of process standards (such as the SETG [2] of the Euro-
pean Space Agency) and implementing compliance management in organizations.
The scenarios are used to identify a set of basic operations involved in difference
analysis. For each one of the two scenarios, we describe the problem at hand and
identify the process stakeholders (or rather, stakeholder roles) involved in it. In a sec-
ond step, we list the questions that each stakeholder must answer in the context of the
scenario, together with the difference analysis operations that can be used to support
the stakeholders in answering these questions.

 Process Model Difference Analysis for Supporting Process Evolution 125

2.1 Scenario 1: Definition and Evolution of Process Standards

In principle, there are two main approaches to the definition of process standards: top-
down and bottom-up. In the top-down approach, a standardization board collects indi-
vidual experiences, methods found in literature, or requirements enforced by other
standards, and creates a prescriptive process model, which is then provided to the
development organization and empirically optimized later on. The ECSS [3] standards
for space software, or the German national V-Modell XT standard [4] are examples of
the top-down approach. In the bottom-up approach, standards are mainly developed
based on observation and descriptive modeling. The WISEP reference process for
wireless Internet services [5] and the LIPE reference model for e-business software
development [6] illustrate this approach. It is important to observe that, independently
of how process evolution is managed, observing processes in practice, identifying
variations in them, analyzing these variations, and feeding them back into the stan-
dard process model [7] are fundamental activities for actual improvement. This feed-
back cycle can be supported by process model difference analysis.

One typical scenario is that a large software organization distributes a single proc-
ess model to several of its development units, which is intended to be used as the
main software process description for conducting independent software development
projects. Since the defined process has not been widely tested in the context of the
organization, and since conditions differ from one project to the next, individual pro-
jects are allowed to adapt the process description in an ad-hoc manner to better suit
their particular needs.

After a few months, the independently tailored process models have diverged sig-
nificantly. This poses a number of challenges:

− The central organization wants to make sure that, despite project differences, a
unified basic process is followed by all projects, and that the customization of this
process is done in a systematic way. In other words, it is important to prevent local
processes from diverging too much from the established organization standard.

− Additionally, practices introduced by individual projects may turn out to be useful
to other projects. It would be valuable to identify such practices, abstract them, and
eventually integrate them with the generic organization-level process definition.

− Furthermore, it would be valuable to identify areas of the current process that ade-
quately fit the organization's environment, as well as areas that may be difficult to
enact in the current environment. It would also be important to identify areas that,
although adequate, may require improvements in their documentation.

− Software managers, software developers and, generally, personnel working on
software projects, may be moved between projects based on changing organiza-
tional needs and priorities. People used to one project's process definition may
have problems getting acquainted with new, slightly different processes between
their previous and new projects. Process difference analysis could help to identify
these differences and provide guidance for working in the new project.

A similar scenario arises when a reference process model (e.g., V-Modell XT or
ECSS) is adopted and further tailored by separate organizations. The standards body

126 M. Soto and J. Münch

responsible for the reference model may be interested in collecting feedback from
process users in order to determine how the reference model should evolve.

The following table lists involved stakeholders, their questions, and the way proc-
ess model difference analysis can support them in answering their questions:

Stakeholder Question Helpful difference-analysis

operations

Are there any structural
changes (new/deleted activi-
ties/products, different rela-
tions) in project processes
with respect to the organiza-
tion's process?

Visualize structure with differences.

Do structural changes affect
the general process structure
or only the detailed structure
of particular process areas?

Provide different views into process
structure and structural differences:
general, per process area, per role, etc.

Which entity descriptions
were modified? What sort of
modifications happened?

List changed descriptions. Highlight
entities in the general structure whose
descriptions changed. Measure the
extent of changes and visualize it based
on the structure (i.e., map trees.) Apply
text comparison to descriptions.

Software
Process
Group

Which areas of the process
were changed by many pro-
jects? Are the changes simi-
lar?

Present differences with respect to the
main model in parallel. Apply similar-
ity detection algorithms to common
changed areas.

Project
Manager

Which process changes have
we made until now? Can we
justify them based on our
concrete project needs and
requirements?

Visualize structural differences, includ-
ing views. Visualize description differ-
ences on top of the structure. Visualize
recorded rationales for changes [17].

What is different between
the process I used to follow
in my old project and the
process defined for my new
project?

Compare processes from the old and
the new project with common ancestor
(main organizational process is the
ancestor.)

Developer
(process
agent)

What's special in my new
project's process with re-
spect to the general organi-
zation's process I learned in
my training?

Compare process with ancestor.

 Process Model Difference Analysis for Supporting Process Evolution 127

2.2 Scenario 2: Process Compliance Analysis

Nowadays, more and more organizations are subject to regulatory constraints requir-
ing the existence of explicit processes, as well as adherence to them (see, for example,
the IEC 61508 standard for safety-related systems [8].) Being compliant typically
requires maintaining traceability information that captures the relationships between
the actual and the prescribed development processes, a difficult task since, for a vari-
ety of reasons, it is possible for both models to evolve, thus leading to deviations.
Difference analysis can help to characterize the evolution in order to determine
whether action is necessary to stay compliant. In addition, traceability information
needs only to be updated for those process parts of the models that changed.

The following is one typical scenario: A development organization adopts a refer-
ence model as a base definition for its development processes. As usual with refer-
ence models, although they provide a good framework for process definition, some
aspects of them must be adapted to the unique needs of each organization. For this
reason, a tailoring effort is launched, which concludes several months later with a
process definition adequate for being used by new development projects at the or-
ganization. Some time afterwards, and independently from all internal process efforts,
a new version of the reference model is published. There is pressure from inside and
outside the organization to use this new version of the reference model. However, the
organization does not want to lose the significant effort invested in tailoring the old
version. The transition poses a number of difficulties:

− It is hard to determine which tailoring changes can be moved to the new version of
the reference model directly, which of them can be adapted, and which must be
discarded because either they are now covered by the new model or they conflict
with it.

− Moreover, since it is difficult to reliably identify the areas that must be changed,
even estimating the effort necessary to produce a tailored variant of the new refer-
ence model version can be very hard.

− In addition, standardization organizations typically do not give sufficient informa-
tion about the detailed changes. Often, differences between new versions are only
described on an abstract level (e.g., the new standard focuses more on reliability),
but it is unclear which process elements have changed.

The following table is similar to the one included in the previous scenario:

Stakeholder Question Helpful difference-analysis
operations

Software
Process
Group

How exactly were the structure
and contents of the reference
model modified? Which actual
elements were affected and how?

Compare process with ancestor
(old version of the reference
model is the ancestor.) Visualize
structure with differences.

128 M. Soto and J. Münch

Stakeholder Question Helpful difference-analysis
operations

How exactly did we tailor the
structure and contents of our cur-
rent process model? Which actual
elements were affected and how?

Compare process with ancestor
(old version of the reference
model is the ancestor.) Visualize
structure with differences.

Which areas did we tailor that
remained essentially untouched in
the new reference model version?
Which areas were modified in the
reference model that we did not
touch? Which areas were changed
in both cases (conflicts)?

Compare processes with com-
mon ancestor (old version of the
reference model is the ancestor.)
Visualize structure with differ-
ences.

How big are the conflicts? Were
do the most complex conflicts lie?

Measure the extent of changes.
Compare and visualize.

Are there structural or content
related similarities between our
changes and the changes made to
the reference model?

Apply similarity algorithms to
selected portions of the model.

2.3 Further Applications

Analyzing and visualizing differences between process models can be used in many
other situations: An example application is the collaborative design of development
processes. Here, difference analysis can be used during the integration of parallel de-
signed processes. Another example for the use of process difference analysis is the
development of systems for process versioning and configuration management. Here,
differences between process models can be determined and used as deltas to calculate
previous versions of process models.

3 Difference Analysis Challenges

Based on the set of useful operations presented above, this section discusses the main
challenges we observe in process difference analysis. These challenges cover various
conceptual and implementation issues.

3.1 Filtering and Presenting Results for a Multitude of User Groups

Practical process models used in real-world development organizations are often very
complex, comprising a large number of interrelated process entities (activities, arti-
facts, roles, etc). For this reason, a large majority of process stakeholders have to deal
with only one portion or aspect of the process model (e.g., only the analysis or the

 Process Model Difference Analysis for Supporting Process Evolution 129

testing process; only administrative or technical portions of the process; only high-
level process descriptions; etc.) while performing their daily work.

As shown in the scenarios, the need arises to provide such users with difference
analysis operations that are particularly tailored to their needs. This requires a flexible
notation for specifying comparisons that is able to express the composition of a vari-
ety of filtering, transformation, and visualization algorithms, among other possibili-
ties, to produce the difference analysis results.

Figure 1 shows a graphical comparison of two variants of a hierarchical structure
(for example, an activity hierarchy in a process model) that we kept intentionally
small for illustration purposes. Such a difference analysis would require filtering the
model variants to extract the desired hierarchy, comparing them, and producing an
adequate visualization with a graph layout algorithm.

3.2 Genericity

Our experience shows that organizations tend to have very specific, idiosyncratic
ways to speak about software development and software development processes.
Even if the general concepts used to model software processes tend to be similar, the
way they are exactly defined as well as the terminology used to refer to them may
vary widely among different software organizations, or even between divisions of a
single organization.

Such a variety of process model schemata further complicates difference analysis.
Even if we do not try to support comparing models structured according to different
schemata, comparison must often make use of schema information in order to produce
meaningful results. For example, particular attributes (e.g, long text descriptions) of
certain entities belong to data types that require comparison with specialized algorithms
(e.g., LCS-based text comparison). Also, the model may contain portions that, based on
the schema, may be known to correspond to sequences, trees, or some other known
structures that can benefit from being processed with more specialized algorithms.

3.3 Multiple Comparison Algorithms (or, Why Diff Is Not Enough?)

Comparing source code versions and analyzing the resulting differences (often re-
ferred to as patches) is a task software developers perform on an almost daily basis.
Source code comparison serves a variety of purposes, like sharing of changes; review
and analysis of changes done by others; space-savvy storage of multiple versions; and
measurement of the extent and scope of changes; among others. Such comparisons
can be performed using widely available software, like the well-known Unix diff util-
ity, and similar programs.

An obvious question when speaking about model difference analysis is whether the
problem is not solved by just storing the models in files and comparing them using
diff. Although this is usually possible, it is almost always the case that the results de-
livered by diff are practically unusable. Diff relies on interpreting files as being com-
posed of text lines (sequences of characters separated by the newline character) and
then finding the longest common sequence (LCS) of lines by using an efficient algo-
rithm (see [9] for example). The underlying practical assumption is that the material
in the file can be read and understood sequentially.

130 M. Soto and J. Münch

A

H

F

IBE

C

D

G

A

H

F

IE

C

D

G

A

H

F

BE

C

D

G Variant 1

Variant 2

Comparison

Fig. 1. Hierarchy difference analysis. The first two graphs represent two variants of the same
hierarchy (for example, with nodes corresponding to process activities and arrows correspond-
ing to a has-subactivity relationship.) The third graph displays the differences between the two
hierarchies: dashed elements are present only in the first variant, whereas elements drawn in
bold are only in the second one. Other elements are common to both variants. Such a display
can be very useful to quickly identify differences between complex structures.

Although this assumption holds true for source code files, process models usually
follow patterns that resemble trees or, more generally, graphs instead of plain se-
quences. They are often heterogeneous in nature, being composed of pieces of data
that follow different structural patterns and are represented in diverse ways. Of
course, it is always possible to use LCS-based algorithms to compare certain portions
of a process model (like text descriptions). It is also possible to store complete models
in a line-oriented format (i.e., a text-based formal process model notation) and com-
pare that representation. Although such an approach can be useful for determining
differences in particular denotations of a model, we deem it insufficient to cover the
wider range of abstract, task-oriented comparisons we are considering.

 Process Model Difference Analysis for Supporting Process Evolution 131

3.4 Detailed Change Histories Versus Difference Analysis

It is also possible to determine version differences along the evolution of a process
model by simply recording every change as it is done. Keeping such a change log
manually, however, is very hard, unreliable work that often prevents people from
concentrating on their main tasks. For this reason, the only viable alternative is to
embed support for recording changes in process modeling tools (similar to the “track
changes” function available in common word processing programs).

Even if that is the case and although such change traces can be useful for certain
purposes (e.g., auditing) they often contain too much information for most other pur-
poses. For example, changes must often be undone, or they get superseded by larger
modifications. Most difference analysis users are not interested in such minutiae.
Proper difference analysis requires expressing the differences in a condensed, targeted
form, which frequently can be obtained by directly processing the models instead of
looking at their detailed change history.

4 A Preliminary Architecture for Difference Analysis

At the time of this writing, we are taking the first steps to produce a practical imple-
mentation of the vision presented in the previous chapters. In this section, we briefly
discuss the elements that, according to our current vision, should comprise an ade-
quate process model difference analysis system.

A block diagram for our architecture is shown in Figure 2. It is comprised of the
following components:

− A model importer, which purpose is reading model variants in diverse formats and
storing them in a common, comparable format in the model database.

Fig. 2. Block diagram for a preliminary difference analysis architecture

132 M. Soto and J. Münch

− A model database, containing a number of model variants. The database stores
process models using W3C's Resource Description Framework (RDF) [18] as a
generic notation. RDF is able to represent internal model structures like graphs,
trees and sequences. Data attached to such structures, like text descriptions and
graphics, can also be stored as RDF literals. Currently, we are testing a trial im-
plementation of such a database, based on a standard relational database system.

− A low-level comparison engine, which calculates raw differences between model
variants. This engine takes two variants of a model and produces a single model
(called the comparison model) that contains the elements from both variants deco-
rated to indicate whether they are common to both variants or exclusive to one of
them. Our intent is to also use RDF to express such unified comparison models.

− A specialized query language interpreter, able to direct the above engine to build a
comparison model from two given model variants, and further filter and process it
in a variety of ways. This language is also able to feed the (potentially filtered)
comparison model to other algorithms for further processing or visualization.

− A number of visualization and display algorithms intended to provide a high–level
view of the comparison results.

5 Related Work

Although no previous work we know about specifically deals with analyzing and
visualizing differences between process models, other research efforts are concerned
in one way or another with comparing model variants and providing an adequate rep-
resentation for the resulting differences.

[10] and [11] deal with the comparison of UML models representing diverse as-
pects of software systems. These works are generally oriented towards supporting
software development in the context of the Model Driven Architecture. Although
their basic comparison algorithms are applicable to our work, they are not concerned
with providing analysis or visualization for specific users.

[12] presents an extensive survey of approaches for software merging, many of
which involve comparison of program versions. Most program comparison, however,
occurs at a rather syntactic level, and cannot be easily generalized to work with more
abstract structures like process model graphs.

[13] provides an ontology and a set of basic formal definitions related to the com-
parison of RDF graphs. [14] and [15] describe two systems currently in development
that allow for efficiently storing a potentially large number of variants of an RDF
model by using a compact representation of the differences between them. These
works concentrate on space-efficient storage and transmission of difference sets, but
do not go into depth regarding how to use them to support higher-level tasks.

Finally, an extensive base of theoretical work is available from generic graph com-
parison research (see [16]), an area that is basically concerned with finding isomor-
phisms (or correspondences that approach isomorphisms according to some metric)
between arbitrary graphs whose nodes and edges cannot be directly matched by name.
This problem is analogous in many ways to the problem that interests us, but applies
to a separate range of practical situations. In our case, we analyze the differences

 Process Model Difference Analysis for Supporting Process Evolution 133

(and, of course, the similarities) between graphs whose nodes can be reliably matched
in a computationally inexpensive way.

6 Summary and Future Work

Process model difference analysis helps to determine the differences between two
variants of a process model, and offers flexible mechanisms to filter, analyze, and
display those differences in specific ways, with the intent of supporting software
process evolution. This type of analysis relies on the fact that the compared models
contain a sizable common portion that can be used as a base for the comparison.

We have described two process management oriented scenarios where difference
analysis can be used to support the tasks of many of the stakeholders involved in
process improvement. The analysis of these scenarios allowed us to identify a number
of concrete comparison operations that would arguably be useful while performing
many of the discussed tasks.

Taking the scenarios and the particular comparison operation types into account,
we discussed the main conceptual and technical challenges we think we have to over-
come in order to implement a practical difference analysis system. We also presented
a preliminary sketch of the software architecture for such a system.

Our aim is to completely implement a working difference analysis system, in order
to validate its utility in practical scenarios. The main objectives for the validation are
guaranteeing that our system allows us to specify a wide variety of useful compari-
sons with reasonable effort, and that the produced comparison results constitute useful
support for the process improvement tasks at which they are targeted.

Acknowledgments. We would like to thank Sonnhild Namingha from Fraunhofer
IESE for proofreading this paper. This work was supported in part by the German
Federal Ministry of Education and Research (V-Bench Project, No.01| SE 11 A).

References

1. Rombach, D.: Integrated Software Process and Product Lines: Unifying the Software
Process Spectrum. In: International Software Process Workshop, SPW 2005, Revised Se-
lected Papers (Mingshu Li, Barry Boehm, Leon J. Osterweil, eds.) LNCS 3840. Springer-
Verlag, (2006)

2. European Space Agency, Board for Software Standardisation and Control (BSSC): Tailor-
ing of ECSS Software Engineering Standards for Ground Segments in ESA. BSSC docu-
ment 2005(1) Issue 1.0. (2005)

3. European Cooperation for Space Standardization (ECSS), standards available at
http://www.ecss.nl (last checked 2006-03-31)

4. V-Modell XT. Available from http://www.v-modell.iabg.de/ (last checked 2006-03-31).
5. Ocampo, A., Boggio, D., Münch, J., Palladino, G.: Towards a Reference Process for Wire-

less Internet Services, IEEE Transactions on Software Engineering, vol. 29, no. 12 (2003)
1122-1134

134 M. Soto and J. Münch

6. Zettel, J., Maurer, F., Münch, J., Wong, L.: LIPE: A Lightweight Process for E-Business
Startup Companies Based on Extreme Programming. In: Proceedings of the 3rd Interna-
tional Conference on Product Focused Software Process Improvement (Profes 2001).
LNCS 2188, Springer-Verlag (2001) 255-270

7. Basili, V. R.; Caldiera, G.; Rombach, H. D.: Experience Factory. In: Marciniak, J. J. (Ed.):
Encyclopedia of Software Engineering. Volume 1. A-O. John Wiley & Sons (2002) 511-519

8. International Electrotechnical Commission (IEC): IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems .
http://www.iec.ch/zone/fsafety/ (last checked 2006-03-31)

9. Algorithms and Theory of Computation Handbook, CRC Press LLC: Longest Common
Subsequence. From Dictionary of Algorithms and Data Structures, Paul E. Black, ed.,
NIST (1999)

10. Alanen, M., Porres, I.: Difference and Union of Models. In: Proceedings of the UML Con-
ference, LNCS 2863Produktlinien. Springer-Verlag (2003) 2-17

11. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation
Testing and Version Control in Model Driven Software Development. In: OOPSLA Work-
shop on Best Practices for Model-Driven Software Development, Vancouver (2004)

12. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, Vol. 28, No. 5, (2002)

13. Berners-Lee, T., Connolly D.: Delta: An Ontology for the Distribution of Differences Be-
tween RDF Graphs. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL).
Online publication http://www.w3.org/DesignIssues/Diff (last checked 2006-03-30)

14. Völkel, M., Enguix, C. F., Ryszard-Kruk, S., Zhdanova, A. V., Stevens, R., Sure, Y.: Sem-
Version - Versioning RDF and Ontologies. Technical Report, University of Karlsruhe.
(2005)

15. Kiryakov, A., Ognyanov, D.: Tracking Changes in RDF(S) Repositories. In: Proceedings
of the Workshop on Knowledge Transformation for the Semantic Web, KTSW 2002.
(2002) Lyon, France.

16. Kobler, J., Schöning, U., Toran, J.: The Graph Isomorphism Problem: Its Structural Com-
plexity. Birkhäuser (1993)

17. Ocampo, A., Münch, J.: Process Evolution Supported by Rationale: An Empirical Investi-
gation of Process Changes. In: Proceedings of the 2nd Software Process Workshop and 7th
International Workshop on Software Process Simulation and Modeling, SPW/ProSim
2006. (2006)

18. Manola, F., Miller, E. (eds.): RDF Primer. W3C Recommendation, available from
http://www.w3.org/TR/rdf-primer/ (2004) (last checked 2006-03-31)

Changing Role of SPI – Opportunities and

Challenges of Process Modeling

Antero Järvi, Tuomas Mäkilä, and Harri Hakonen

University of Turku,
Department of Information Technology,
FI-20014 University of Turku, Finland

{antero.jarvi, tuomas.makila, harri.hakonen}@utu.fi

Abstract. Software process modeling is gaining acceptance because of
the evolving Software Process Engineering Metamodel (SPEM) language.
While carrying out empirical process research in software companies in
order to model reusable process components with SPEM, we have faced
issues that concern Software Process Improvement (SPI) more gener-
ally. To understand the general context we have structured these issues
into five important aspects of SPI. In this paper we present each as-
pect through its challenges and opportunities from the process modeling
point of view. Consequently, we claim that by overcoming the challenges,
process modeling will bring new concrete opportunities for SPI.1

1 Introduction

During the last year we have worked on modeling software process frameworks
into reusable process components using Software Process Engineering Meta-
model (SPEM) process modeling language [1]. The aim of this modeling task
has been to identify process content that can be encapsulated as process com-
ponents and to define guidelines for reusing and tailoring the components for
different process contexts. Although the modeling language has the needed ex-
pressive power, we constantly ran into situations where we faced many different
modeling alternatives, but could not find decisive arguments for choosing be-
tween them. This is evidently due to our narrow focus on the modeled process
framework as an isolated system; we lacked the software development context
where the modeled process framework would be used in. This inspired us to
conduct an empirical study on the process needs in different types of software
companies, aiming at defining the missing process modeling context. Especially,
we concentrated on the variation in processes within the software development
companies. We wanted to understand the extent of process variation, and how
the companies currently manage to provide process support for different types of
projects. It turned out that except for the largest companies, process variation
1 This paper is based on work done during the ReProCo research project (Sub-project

of the E!3320 project) in co-operation with Genestia Group Inc. - Neoxen Systems
and Devera Software Development Center.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 135–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 A. Järvi, T. Mäkilä, and H. Hakonen

had not been studied. Typically the companies had a single process that was
generic enough to fit any project.

Software process modeling has a long research history, but industrial adoption
has been slow [2]. The reason for this is twofold. First, SPI itself is complex
and evolving issue that still faces many improvement needs [3]. Second, process
modeling has a more comprehensive effect on SPI than is generally understood.
Process modeling does not simply enhance SPI by making process definition and
communication more efficient and increasing process presentation clarity, but it
also brings a qualitative change to SPI widening its role in the organization.

Based on our experience in process modeling and the empirical study, we have
identified areas that have an important role in realizing the potential of process
modeling. This paper is structured along these areas: (i) business, project and
process coherence, (ii) process frameworks, (iii) process definition, (iv) SPI cycle,
and (v) organization’s capability. For each area, we discuss the basic challenges
that must be overcome and present opportunities for process modeling technol-
ogy. The areas are illustrated in Figure 1.

SPI
process

frameworks
organization’s

capability

business, project and
process coherence

process
definitions

modern SPI
framework

process modeling
SPI cycle

results

requires

Fig. 1. The areas of concern in realizing the potential of process modeling in a successful
SPI function

2 Business, Project and Process Coherence

The fundamental task of the SPI function is to constantly take care of the soft-
ware processes so that they match the needs of the company’s current business
objectives. The relevant business goals are company specific and typically in-
volve a mixture of issues of profitability, time-to-market, market share, product
strategy, sufficient product and operations quality, and cost efficiency of soft-
ware development. Also, issues like organizational learning, skills management,
core competence and outsourcing management relate to the software develop-
ment processes. In order to meet the business goals, SPI typically targets process
structure and work practices, tooling, quality assurance, compliance to various
quality standards or maturity frameworks, software reuse for accumulating long
term value, and risk management.

Changing Role of SPI – Opportunities and Challenges of Process Modeling 137

While the fitness of specific processes or methodologies to a certain business
context is a common topic in SPI literature, we have found only few cases where
the discussion is brought down to practical level where business objectives, de-
scribed as business factors, are mapped to concrete software process properties.
The situation can be clarified by categorizing business factors with respect of
stability and volatility, as presented in Figure 2. Stable factors are those that re-
main unchanged across projects, e.g. organization structure, market situation or
product roadmap. Volatile factors vary from project to project including issues
like uncertainty of requirements, customer relationship, timeliness requirements,
and expected product life span. Traditionally, SPI focuses on stable business fac-
tors while volatile project dependent factors are summarized as typical project
factors of an average project. This is adequate with similar projects, but fails to
provide sufficient process support when the volatile factors vary substantially.

Organization’s
process needs

typical project
factors

process
support

empowered
SPI

traditional
SPI

stable business
factors

volatile business
factors

Business context

Process properties

Projects

Fig. 2. The stable and volatile business factors map differently to process properties
of a project

Coping with the volatile business factors requires empowering SPI with the
ability to customize processes for each project based on the project’s unique
needs. Many popular process frameworks include mechanism for this kind of
two-level process tailoring [4,5,6]. However, the frameworks do not explicitly
define any business factor taxonomies to guide process tailoring. The required
taxonomy consists of (i) business factors and process properties that are catego-
rized and (ii) a mapping from business factors to process properties.

Several business factors have been proposed as the basis for process selec-
tion and process customization. We present briefly the approaches of Cockburn
and Boehm&Turner. However, neither of these consider the stability of involved
factors, instead their work defines common project factor combinations.

Cockburn’s Crystal methodology family is adapted to a project in two steps
[7]. First a ‘methodology type’ is selected according to project size and criticality
of the developed system. Other factors are taken into account in the second
step as priorities that reflect the business objectives that the project faces, e.g.

138 A. Järvi, T. Mäkilä, and H. Hakonen

productivity, repeatability and correctness. The rationale for the first step is
that a larger crew needs a more formal methodology and that a more critical
system needs more publicly visible correctness in its construction. While this
kind of methodology family and selection framework can certainly support high
versatility of projects, it is fair to ask how much effort is needed to develop and
maintain possibly a few dozen separate processes. Also, the development team’s
capability to carry out this many methodologies is questionable. However, the
factors and priorities are expertly chosen and they certainly capture significant
causes of project specific process needs.

Boehm and Turner define two opposite home grounds; one where agile ap-
proach is likely to pay off, and another which favors plan-driven methods [8].
They present five critical factors that position a methodology or project with
respect to these two home grounds, and also a risk based tailorable method for
balancing between them. The positioning factors are system criticality, number
of project personnel, skills and capabilities, project dynamism, and organiza-
tion culture. These factors are used for analyzing the risks of employing agile or
plan-driven approach. The process is then tailored to mitigate the risks.

2.1 Challenges

It appears that there is no universal way of choosing which business factors to
use as the basis for process variation and the issue is organization and business
dependent. For example, the size of the project is generally an important factor,
but in some cases other factors like geographical distribution of the development
organization can dominate over mere project size.

Thus, the first challenge is to identify the stable and volatile business factors
by systematically analyzing the company’s business context and projects. Under-
standing which factors have high priority creates a basis for process design, and
is beneficial also for its own sake: The forces that are present can be balanced,
risks mitigated and long term business value secured.

The second challenge is supporting the relevant business factors with the soft-
ware process. This involves selection and adaptation of the process framework,
discussed in Section 3, and mapping the business factors to process properties to
provide the basis for process tailoring. Mapping the factors to software process
properties ties business factors together with development aspects so that they
can be resolved together.

2.2 Opportunities

The main opportunity lies in being able to take volatile project factors into ac-
count by creating a customized process for a particular project. This is clearly
the motivation behind the Crystal methodology family which aims at tailoring
a methodology for a project fast enough to get the benefits of customized pro-
cess before the project is over. Boehm and Turner propose that methods and
processes should be built-up, not tailored-down. This should be supported by
a repository of ‘plug-compatible’ process assets that could be quickly adopted,

Changing Role of SPI – Opportunities and Challenges of Process Modeling 139

arranged, and used to support specific projects. We share these views and be-
lieve that process modeling will provide mechanisms (i) for defining core process
structure and content that capture the stable business factors and (ii) for encap-
sulating the volatile project factors into process components or other reusable
or tailorable process assets.

3 Process Frameworks

From the process modeling viewpoint, a process framework describes what must
be managed when organizing work, work products, and teams in a given context.
The context allows us to have constraints from which, for example, best practices,
standardization, and cost-efficiency arise. The most crucial constraints are called
dominant assumptions because they define the fundamental characteristics of the
process framework. For example, in IBM Rational Unified Process (RUP) it is
assumed that Elaboration phase establishes and stabilizes the architecture of a
system, and this property is relied on the succeeding Construction phase [5]. In
Extreme Programming (XP) process it is assumed that a customer with proper
skills and knowledge is constantly available [9]. This is imperative since most of
the work in XP relies on instant customer feedback.

Incorporating a new process framework to a company has initiation and man-
aging phases. The initiation of the framework begins with determining and
adapting it from the perspective of the company’s organization and business
context. After this, the process framework is institutionalized to ensure that
the organization is able to run it: The skill sets of the company’s personnel
are supplemented so that the process’s practices become organizational process
capabilities. This gives concrete means to manage the institutionalized process
framework issues, such as project wise tailoring and co-existing frameworks.
Figure 3 illustrates the situation where a company initiates projects with agile,
RUP, and Microsoft Solution Framework (MSF) [10] process frameworks.

3.1 Challenges

A process framework should be initiated in steps, as described in [11]. In the
first step, the process framework is selected and in the second step this company
level process is institutionalized. These steps form the two principal challenges
of framework adoption.

The first challenge, selecting the framework to fit the company’s stable busi-
ness factors and context, requires understanding the dominant assumptions of
the framework under consideration. These assumptions set the limits for the
modification of the framework. For example, considering the modifiability, XP
is a more specific process than RUP. The applicability of XP is narrow with
specific demands, e.g. a single co-located team. Furthermore, the fundamental
rules and practices of XP are entwined so that they cannot be altered or re-
moved without in depth analysis of the consequences. On the other hand, the
standard RUP is more modifiable but can only be enacted with adaptation. The

140 A. Järvi, T. Mäkilä, and H. Hakonen

agile
framework

RUP
framework

MSF for CMMI
framework

project0

process0

project1

process0

project j

processi processm

projectn

0skill set

1skill set 2skill set 3skill set 4skill set
5skill set

Company

Fig. 3. Initiating process standard frameworks for projects. The projects can run in
sequence or in parallel.

goal should be the most specific process framework with respect to the dom-
inant assumptions and modifiability that does not cause foreseeable conflicts.
The second challenge in the initiation phase is to institutionalize the selected
process framework. This requires that SPI is able to model, manage and utilize
personnel skills and organizational capabilities.

A more serious challenge lies in project specific framework adaptation that
takes the volatile business factors into account. If the SPI cycle does not keep
up with the change rate of the main project factors, it is inevitable that either
the work in the project will not conform to the process or the process is used
to coerce the work to become inappropriate. This can be an indication of that
in terms of dominant assumptions and modifiability a more general or totally
different process framework should be used.

Adjusting, adapting, or tailoring an institutionalized process framework is
only rarely about including or excluding process elements. For example, it seems
unlikely that just removing artifacts, tasks, or roles from a complex framework
we get a simpler but still applicable process. If this kind of scalability is possible,
it should be defined as a feature in the framework itself. Thus, the SPI’s challenge
is to cope with the nontrivial management of the company’s process frameworks.

A company runs multiple projects in sequence or even in parallel. Because the
projects are highly cohesive but rather decoupled, this introduces the continuity
problem: How to handle process related know-how, learning, and innovation? It
is in the SPI’s domain to clarify relationships between the projects that utilize
different process frameworks. Process modeling can be used for providing con-
cepts to express explicitly the strategic in-house requirements that affect every
process. Process modeling should make SPI more cross-cutting to projects.

All of the preceding challenges call for common conceptualization of the
process frameworks. In order to manage multiple institutionalized process

Changing Role of SPI – Opportunities and Challenges of Process Modeling 141

frameworks at the same time there must be unifying vocabulary that can de-
scribe the processes’ similarities and differences. For example, see [12] for various
frameworks and [13] for framework attributes taxonomy.

3.2 Opportunities

In a complex problem domain the introduction of common understanding of
concepts, relationships, and terminology has often advanced both the research
and commercial use. We believe that process modeling will affect SPI similarly,
and it will benefit and widen the area where SPI operates successfully. The
following process modeling opportunities can contribute to more advanced SPI.

Process modeling separates the definition and use of the process. This means
that on one hand, process models can be structured from the perspective of
managing large process libraries with efficient tools and practices. On the other
hand, the defined processes can be presented in various formats and integrated
tightly to project work using tools that are independent of process management.

The opportunity of process management is to achieve specificity and gen-
erality at the same time. In practice, process definitions must be structured
according the stable and volatile factors using e.g. process components, compo-
sition and tailoring mechanisms. This opportunity is materializing rapidly with
the appearance of process authoring tools, e.g. Eclipse Process Framework [14]
that implements needed process management features.

The opportunity of process usage involves presentation media independence,
more interactive ways of presenting the processes, coupling process models to
project management for providing automated managerial instruments for plan-
ning, monitoring and control, and incorporating processes into integrated devel-
opment environments for offering a rich process support for the developers.

4 Process Definitions

In every organization a process exists that defines the daily work. In immature
or small organizations, the process can be implicitly defined by the culture,
tools, document templates and guidelines. This kind of process adapts to the
emerging problems in an ad hoc manner with unpredictable results. More mature
organizations have explicitly defined processes, forming the basis for continuous
process improvement. Process definitions offer a way to analyze the current state
of the processes and enable design and communication of process changes.

According to the Capability Maturity Model Integration (CMMI), defined
processes are tailored from the organization’s process assets [4]. These process as-
sets consist of process descriptions, process element descriptions, life-cycle model
descriptions, process tailoring guidelines, and process-related documentation and
data. The process elements can be further divided, for instance, into process
roles, work products, and applicable procedures. Every process definition should
include all of these elements.

There are various business process modeling languages available e.g. tradi-
tional flow chart notation, Business Process Modeling Notation (BPMN) [15],

142 A. Järvi, T. Mäkilä, and H. Hakonen

Integrated Definition Methods (IDEF) [16], or Event-Process Chains (EPC) [17].
However, software processes have slightly different characteristics than business
processes. Where business process modeling is more activity based, the software
processes emphasizes the work product flow between the activities. Although
there is no de facto standard for software process modeling available, the Soft-
ware Process Engineering Metamodel (SPEM) [1] is gaining support in the soft-
ware industry and academic world. With the introduction of SPEM 2.0 in the
near future and the ongoing Eclipse Process Framework project [14], we expect
to see an accelerated adoption of process modeling.

4.1 Challenges

The SPEM provides a fairly extensive notation for modeling software processes.
However, it does not give actual guidelines on how the software processes should
be modeled. A challenge is to find out the appropriate accuracy and level of
detail of the process definitions. Of course, this is somewhat dependent on the
actual purpose of the process modeling. Becker et al. define possible uses for
process models, e.g. continuous process management, and identify the required
modeling characteristics correspondingly [17].

Second challenge with the process modeling is the creation of models that
are equivalent to the actual process. This is not only a question of modeling
notation but also about supporting the process implementation with the process
definition. It can be argued if too much effort is usually put to the process
definition. Better results could be achieved by implementing simple processes
and improving them based on the appropriate measurement feedback [18].

Lack of the de facto standard of process modeling causes several challenges
to the process definition during the SPI: Tool development becomes slow and
expensive, and the absence of the “common language” between process model
users also makes maintaining and comparing the process definitions difficult.

All software development stakeholders should be taken into consideration dur-
ing all parts of the SPI cycle. Fulfilling the different needs of the stakeholders
poses a challenge to process definition practices and languages. This challenge
is further discussed in Section 6.

4.2 Opportunities

A standard process modeling language that is widely adopted in the software
industry and in the research community would yield many benefits. The SPEM
could become this kind of de facto process modeling standard. With common
process definition notation and guidelines, software process participants could
focus on the process definition and modeling itself. In addition the models would
be more comparable and interoperable. Reuse of processes within an organization
and even between organizations would become possible.

The common modeling notation would be a well-founded start but not suf-
ficient by itself. Process definition conventions should be developed as well. As
an example we have proposed a method for increasing re-usability of process
definitions by dividing process models into reusable process components [19]. It

Changing Role of SPI – Opportunities and Challenges of Process Modeling 143

should be noted that the underlying process framework defines the interfaces and
the feasible organization of the process components. Therefore, reuse of process
content seems to be restricted to a process framework — process content from
different process frameworks are not generally compatible.

5 SPI Cycle

There is a consensus on the basic steps and workflow of SPI cycle in the literature
[6, p.46] [20, p.2] [17, p.239] [5, p.253]. The terminology can vary, but basically
the continuous software improvement loop always contains the same steps. First
the current processes have to be assessed, then the improving changes have to be
designed, followed by the implementation of the processes into the organization,
and finally the effects of the changes have to be analyzed. The loop is repeated
at an appropriate pace.

5.1 Challenges

There are no actual challenges in the general structure of SPI cycle. The con-
sensus on the topic is very firm. The content of the various steps varies greatly,
i.e. there are several different methods for assessment of the current processes,
designing the changes, implementation of new processes, and analyzing of the
results. However, process modeling will affect these SPI steps, as discussed
throughout this paper.

5.2 Opportunities

With a proper use of the software process modeling, the SPI cycle could be-
come faster and more efficient. Notably the feedback from process enactment is
enhanced. The ideal situation would be that the SPI cycle would not pose any
extra overhead to the organization, instead SPI activities would be integrated
to other process related activities and to the project management.

6 Organization’s Capability

The organizational structure, management practices, culture, responsibility def-
initions and employees’ skills are all constituent elements of SPI. Adopting pro-
cess modeling techniques raises challenges in all these organizational areas.

6.1 Challenges

The first challenge is to get SPI related responsibilities clear and ensure that
SPI’s role is understood as a supportive function to operational activities. Dif-
ferent process stakeholders have varying motivators and de-motivators for SPI,
reflecting their dissimilar process interests [21,22]. To be successful, SPI should
take into account the needs of business management, offer the process as a tool
for the project management, and help the development teams to achieve and

144 A. Järvi, T. Mäkilä, and H. Hakonen

maintain the needed capabilities. If this is not understood, there is a danger
that SPI becomes too detached from the rest of the organization. The process
views of these key roles are illustrated in Figure 4. The business management’s
role is to define the strategic goal of SPI, to provide for the necessary resources,
and show managerial commitment to achieve the SPI goals. Process engineers
take care of process definition, tailoring, monitoring and improvement. Project
management executes projects using the defined processes, and operates as a
two way channel between the development teams and the process engineers, re-
laying feedback and instruction. The development teams’ main responsibility is
to develop and maintain capabilities required to carry out the process tasks.

Project
management

Business
context

Developers

business
needs

specification & realization
of capabilities

SPI personel

management of
 process content libraries

requirements for
process variation

tooling & enactment
support

development capabilities

process enactment

Fig. 4. The roles and relationships of the process stakeholders in a company

The second challenge is to analyze which SPI tasks require special expertise
and thus should be allocated to dedicated SPI roles, and which tasks should be
carried out by other roles, i.e. project managers, developers or business man-
agers. This can be seen as balancing between centralized and distributed SPI
work. The challenge of centralized SPI is its integration to development, whereas
the challenge of distributed SPI is to keep SPI coherently working towards the
business goals.

Many of the benefits attainable by the use of process modeling are due to
speeding up the SPI cycle and defining SPI cycles at various levels, e.g. main
SPI cycle for maintaining organization level process libraries, and project level
cycles for taking care of project variations. Defined and efficient communication
channels both within a cycle and between cycles in different levels are needed.

6.2 Opportunities

Role specific process views can be generated from formally defined process mod-
els. This supports the process work of all key roles in the organization. Process
modeling technology can be used to explicitly express the balance between cen-
tralized and distributed SPI and thus facilitate responsibility allocation in the

Changing Role of SPI – Opportunities and Challenges of Process Modeling 145

organization. For example, process components could be used to implement a
process variability point linked to a project specific variation. In this way the
volatile factors can be tailored locally in the project level without violating or-
ganizational level process requirements, such as quality goals. In addition, the
above organizational challenges must be considered in realizing any of the op-
portunities presented in this paper.

7 Discussion

Software process modeling technology is maturing; useful first generation mod-
eling language standard exists, first commercial tools based on the standard
language are available, as well as open source solutions. Process modeling is a
versatile technology that should not be taken only as a new tool for process
engineers. To release the full potential of process modeling, a comprehensive ap-
proach on software engineering is needed. In this paper we have discussed how
process modeling will affect five important areas of SPI.

The main findings can be summarized as follow. Process modeling enables
encapsulating fragments of process content and reusing it to efficiently create
customized processes. Identification of business and project factors and tax-
onomies of process properties are required in order to promote company’s busi-
ness goals with increased process capabilities. Process modeling, specifically a
standard modeling language, defines common concepts and terminology, and
therefore provides a unifying background for process frameworks. This makes it
possible to compare, select from and even deploy several process frameworks for
supporting projects with different dominant process assumptions.

The SPI cycle can be accelerated with the use of process modeling technology.
More importantly, SPI can be organized as several nested cycles, corresponding
to the different levels of process tailoring. Most of the attainable benefits of
process modeling require a decentralized SPI function. This requires a clear
definition of organizational roles and disseminated process responsibilities.

Both theoretical and applied research on process modeling is clearly needed.
As examples, further research should consider existing organizational issues,
structure of process libraries, and tooling for all stakeholders. Any research on
software process modeling should be tightly connected to practical software de-
velopment context to ensure pragmatic value. We believe that a comprehensive
approach is needed to make process modeling into a mainstream SPI practice in
software industry.

References

1. Object Management Group. Software Process Engineering Metamodel Specification
- Version 1.1, January 5 2005. formal/05-01-06.

2. Alfonso Fuggetta. Software process: A roadmap. In ICSE - Future of SE Track,
pages 25–34, 2000.

3. Reidar Conradi and Alfonso Fuggetta. Improving software process improvement.
IEEE Software, 19(4):2–9, 2002.

146 A. Järvi, T. Mäkilä, and H. Hakonen

4. CMMI Product Team. CMMI for systems engineering and software engineering
(cmmi-se/sw, v1.1) - staged representation. Technical Report CMU/SEI-2002-TR-
002, Software Engineering Institute, Pittsburgh, PA, USA, December 2001.

5. Philippe Kruchten. The Rational Unified Process: An Introduction (Second Edi-
tion). Addison-Wesley Professional, March 14 2000.

6. ISO/IEC, Geneva, Switzerland. ISO/IEC 12207, Information technology - Software
life cycle processes, August 1 1995. ISO/IEC 12207:1995.

7. Alistair Cockburn. Selecting a projects methodology. IEEE Software, pages 64–71,
July / August 2000.

8. Barry Boehm and Richard Turner. Balancing Agility and Discipline, A Guide for
the Perplexed. Addison-Wesley, 2003.

9. Don Wells. Extreme programming: A gentle introduction. http://www.

extremeprogramming.org/, 2006. Accessed on June 22 2006.
10. Msf homepage. http://msdn.microsoft.com/vstudio/teamsystem/msf/. Ac-

cessed on June 22 2006.
11. Backlund et al. Transfer of development process knowledge through method adap-

tation and implementation. In Proceedings of the 11th European Conference on
Information Systems (ECIS 2003), June 2003.

12. The frameworks quagmire. http://www.software.org/quagmire/. Accessed on
June 22 2006.

13. Christian Printzell Halvorsen and Reidar Conradi. A taxonomy to compare SPI
frameworks. Lecture Notes in Computer Science, 2077, 2001.

14. Eclipse process framework project homepage. http://www.eclipse.org/epf/. Ac-
cessed on June 22 2006.

15. Object Management Group. Business Process Modeling Notation Specification -
Final Adopted Specification, 2006. dtc/06-02-01.

16. Knowledge Based Systems Inc. Integrated definition methods home page.
http://www.idef.com/. Accessed on June 22 2006.

17. Becker et al., editor. Process Management - A Guide for the Design of Business
Processes. Springer, 2003.

18. John Davenport. Don’t write another process. Methods & Tools, 12(3):2–14, 2004.
19. Antero Järvi and Tuomas Mäkilä. Observations on modeling software processes

with SPEM process components. In Proceedings of The 9th Symposium on Pro-
gramming Languages and Software Tools, Tartu, Estonia, 2005.

20. Bob McFeeley. IDEAL: A Users Guide for Software Process Improvement. Software
Engineering Institute, Pittsburg, PA, February 1996. CMU/SEI-96-HB-001.

21. Nathan Baddoo and Tracy Hall. De-motivators for software process improvement:
an analysis of practitioners’ views. The Journal of Systems and Software, 66:23–33,
2003.

22. Nathan Baddoo and Tracy Hall. Motivators for software process improvement: an
analysis of practitioners’ views. The Journal of Systems and Software, 62:85–96,
2002.

Mentality Patterns: Capturing and Dealing
Explicitly with Recurring Turns of Mind

in Software Development

Georgios Koutsoukos1,2

1 ATX Software S.A, Rua Saraiva de Carvalho, 207C,
1350-300 Lisbon, Portugal

2 Department of Computer Science, University of Leicester,
Leicester LE1 7RH, UK

georgios.koutsoukos@atxsoftware.com

Abstract. The increasing adoption of agile methods for software development
is amplifying the message that people are one of the most critical success fac-
tors of any software project. This paper addresses two fundamental questions
that arise in that context: How can we capture, make explicit and effectively
communicate human attitudes, beliefs and ways of thinking that influence indi-
vidual and team work in projects? How can we supplement software process
methods and support tools in order to take into account such human factors ex-
plicitly, systematically and effectively?

1 Introduction

The importance of human factors for the success of software projects has been
historically emphasized by many authors: Weinberg in “Psychology of Computer
Programming” [16], DeMarco and Lister in “Peopleware” [7], Curtis et al with the
development of the People Capability Maturity Model [6], just to name a few. With
the advent of Agile Software Development Methodologies [1], [3] this message has
been significantly further amplified. As stated in [4]:

“People's characteristics are a first-order success driver, not a second-order one.
[…] Most of my experiences can be accounted for from just a few characteristics of
people. Applying these on recent projects, I have had much greater success at
predicting results and making successful recommendations. I believe the time has
come to, formally and officially, put a research emphasis on what are the
characteristics of people that affect software development, and what are their
implications on methodology design”

In this paper, we take stock of several years of experience of software development
and project management at ATX Software and make concrete proposals for making
certain characteristics first-class concerns of software development methods and sup-
port tools. First, we present the notion of mentality pattern as an abstraction through
which we can capture, systematise, communicate and reason about recurring human
attitudes, beliefs, ways of thinking and respective acting that can have a decisive im-
pact on the quality of work of individuals and the interactions within teams. These

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 147 – 158, 2006.
© Springer-Verlag Berlin Heidelberg 2006

148 G. Koutsoukos

patterns are formulated in a way that is independent of the development process that
is followed and the technical profile of the individuals. In a second stage, we use this
notion to define what we call the Mentality Innovation Sub-Process – an organized
way to supplement and enhance software development methods and processes with
means for “managing” such human-related factors explicitly and improving the effec-
tiveness of individual work and the way teams blend together.

Having these goals in mind, the paper proceeds as follows. In section 2, we expand
on and give examples of the proposed notion of mentality pattern. In section 3, we
explain how mentality patterns can be used to improve software development
methods and processes. Section 4 provides a justification for these proposals that
builds on the theory of cognitive dissonance and the theory of self-perception. We
review related work in software process methodology in section 5. Finally, in section
6, we summarise the lessons that we have learned in applying our innovation sub-
process in real projects and discuss lines for further research.

2 Mentality Patterns

The Oxford Advanced Learners Dictionary defines mentality as “the particular
attitude or way of thinking of a person or group”. Based on the previous definition,
we put forward the notion of mentality pattern as “a recurring attitude [state of mind
or predisposition to act], belief or way of thinking of a person or group, observed
independently of any specific project or technical context”.

An example is what we call “Fear to Admit Ignorance” – Many people do not like
to make known explicitly that they have only limited knowledge of the concepts,
technologies, solutions or other aspects that are essential for the work in which they
are engaged either individually or within a team. It is not difficult to imagine the
consequences that such an attitude can have on the output of a task on or the rest of
the team if that person is relied upon for his/her expertise.

In Table 1, we list some examples, applicable to both individuals and teams, which
we have identified during several years of experience. The goal is not to be exhaustive
but just to provide enough examples that illustrate the point. On the other hand, we
are not claiming any originality in identifying those patterns: some are probably as old
as mankind! In fact, many (if not all) of the patterns that we capture in Table 1 are not
necessarily specific to software engineering but can also be found in other human
activities as studied in the context of social sciences. However, we are not aware of
any work within social sciences that uses in a similar way the notions of “mentality”
and “pattern”. Nevertheless social and psychological studies have been extremely
useful for guiding our work and in section 4 we relate some of our arguments to
conclusions drawn in such studies.

In what concerns software engineering, we can find some justification for the
notion of mentality pattern on Weinberg’s observation and invention of the term
“egoless programming”: in [16], he stresses the importance of having programmers
that do not attach their ego to their code, what can be regarded as one of the first
“paradigmatic” mentality patterns in the history of software. In [8], DeMarco
identifies “can-do” attitudes as a major factor for escalating minor setback into true
disasters. In [13], McConnell states that many problems in software development boil

 Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind 149

Table 1. Examples of Mentality Patterns

Mentality Pattern Description
Fear To Admit
Ignorance

Not explicitly admitting of having limited or no knowledge of
something (theory, technology, solutions etc).

Better Is The Enemy Of
Good

Fear or resistance of further improving or modifying something
that already works.

Experience Driven
Optimism

Thinking that a problem is easy to solve because it seems similar
to something you have done in the past.

Subject Guru The belief of having incontestable expertise on a topic.
Legacy Person Mentality The belief that something cannot be done without you or the

desire that something cannot be done without you.
It Works! (but I do not
know why)

Accepting a result without having a solid explanation of how it
was reached.

I Will Do It My Own
Way!

Tendency to “reinvent the wheel” instead of using existing
solutions of others. Also known as the “Not Invented Here”
mentality.

Have The Right To
Make Assumptions

Making assumptions and not validating them with anybody
(colleague, user) or explicitly stating them in deliverables.

The Best Is The One I
(We) Am Comfortable
With

The attitude of trying to impose a solution that a person or team is
more comfortable with, for instance due to technical or other
background.

“Opportunistic”
Listening

The attitude of not paying attention to others words or work and
in particular defining the level of attention according to the
others’ position, age or experience.

It Is Not My Fault! The attitude of not admitting error or blaming others for failure.
Negativism The attitude of looking for any negative points on others’

approach, opinions or solutions instead of possible positive
aspects.

“Secretivism” Reluctance in sharing information or knowledge.
No Coding = Useless The belief that when people are doing non-coding work (e.g.

design, documentation, administration) they are contributing less
to the project.

down to what he calls “wishful-thinking” i.e. “hoping something works when you
have no reasonable basis for thinking it will”.

The existence of such recurring mentality is also known among software
development practitioners. Many colleagues from different organizations have
directly confirmed to us the existence of the patterns listed in Table 1. Similar
comments can also be found in discussions within the software community: copying
from a weblog discussion [15]: “Programmers, in general, are extremely secretive. I
remember one group had to kick out one of their members because he had like 12
pages of code and wouldn't let anyone else in the group see the printout. Otherwise,
this guy was talkative and open.” Unfortunately, such observations are currently
scattered in books, scientific papers, web pages, project notes and, mostly, people’s
minds. Moreover, they are often hidden in texts about project best or bad practices,
guidelines and recommendations, or they are discussed in redundant and inconsistent
ways. Our goal in putting forward the concept of mentality pattern is to provide a

150 G. Koutsoukos

systematic way of capturing such human factors and making them explicit through a
representation primitive that can be used as a common vocabulary to communicate
and share experiences accumulated within and across projects and organizations.

Therefore, for mentality patterns to be applied in practice there must be a way of
documenting and using them effectively. For this purpose we are developing a
representation language, an example of which is given in Table 2 for the “Fear to
Admit Ignorance” pattern. The proposed template is inspired on design patterns as
used for developing code [11]. Actually, references to design (anti-)patterns may be
included in the description of a mentality pattern as in the example below to describe
the impact that it can have on software development practice. A selective, but not
necessarily exhaustive, list of possible causes for a given pattern can also be included
in order to guide the actions to be taken when dealing with it. We are currently
developing a support system through which a repository of mentality patterns and
associated practices can be built and shared. This system will include heuristics, rules
of thumb, and guidelines for developers and project managers to share experiences
and make effective use of this knowledge in projects as discussed in section 3.

Table 2. The “Fear To Admit Ignorance” Mentality Pattern

Pattern Name Fear To Admit Ignorance
Other Names None Known
Related Patterns Subject Guru, It Works! (but I do not know why)
Symptoms - Silence when one should give an opinion.

- Talking about something else or moving the discussion to another
point when one should comment on something.

Representative Quotes “Is it X… that you mean by Y…?”
Consequences Programming practices according to the “TowerOfVoodoo” and

“VoodooChickenCoding” anti-patterns
Anecdotal Stories and
Examples

“In a project we were supposed to use an external API. Most of
the people knew very well its functionality. However, there was a
colleague that did not. He did not say anything even when the
manager asked if everybody was comfortable with the work or
there were anything to be taken care before we start. When the
team started working, our colleague was, apparently, trying to
understand what each piece of the API was doing judging by the
method names! Result: It was taking him ages to write a piece of
code that was working properly, not to mention the code that
seemed to be working but in fact was not.”

Possible Causes - Feeling of superiority e.g. due to position or experience
- A shy person reluctant to ask questions

We should make clear that mentality patterns are about recurring human attitudes,
beliefs and ways of thinking not to be confused with guidelines or good and bad
practices of software projects. For instance, statements such as “undermined
motivation” or “not sufficient automated source-code control” are bad practices that
may have their origins in mentality patterns but are not themselves mentality patterns.

 Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind 151

3 The Mentality Innovation Sub-process

In order to make effective use of the notion of mentality pattern, we propose what we
call the “Mentality Innovation Sub-Process” as a sub-process that can be incorporated
in but is independent of the specificities of any particular development method,
framework, or project management method. The sub-process was put together based
on our experience and has been refined over several development projects. It consists
of 3 elements: two phases and one continuous activity as outlined below.

3.1 Mentality Principles Setup Phase

This phase occurs typically during the team building activity at the start of the project.
It consists of a collective exercise whose basic structure is described below:

− The team manager or another team member prepares a list of mentality patterns of
his/her choice.

− For each mentality pattern in the list, each team member acknowledges whether
he/she has observed the pattern in his/her previous experience. If so, he/she ex-
plains in an anecdotal manner how the pattern contributed negatively or positively
in projects. If possible, such “contribution” of the pattern is considered both in the
context of individual work and team interaction.

− Team members are asked to communicate other mentality patterns they believe
they have identified in their past projects experience. If the team agrees that a pro-
posed pattern actually exists, the pattern is accepted, further discussed, analysed
and documented based on the template presented on Section 2, and added to the
initial list.

− After the list of patterns has been completed and evaluated, the team discusses and
prepares what we call the team’s Mentality Principles Manifesto. This is a descrip-
tion of the principles, directly derived from the list of mentality patterns, according
to which the team will operate during the project. For instance, a manifesto princi-
ple, derived from the “Fear to Admit Ignorance” mentality pattern, could state
something like:

“Whenever we are not confident that we have enough knowledge of a subject
of any nature (technical, project related or other) in order to perform our
work with the highest quality standards, we will ask whoever we feel
necessary until we are confident. All project participants commit to
answering the questions of fellows in the most comprehensive way possible”.

In general, the manifesto principles should be simple, straightforward, under-
standable and non-ambiguous. They may also include some implications on the
team’s actions. The manifesto itself should not be lengthy: as Cockburn puts it in
[3], “people can keep only a small amount in their heads”. Space limitations pre-
vent us from giving more details on the structure, guidelines for creating or the
specific content of such project manifestos.

152 G. Koutsoukos

3.2 Mentality Feedback Activity

During this activity, project team members provide evaluation and corrective
information to each other with respect to the mentality patterns and mentality
principles already established. This should occur regularly and definitely whenever
symptoms of patterns are observed that could lead to problematic situations.

Mentality feedback is also an important component between project phases and
milestones, especially if there exist aspects or deliverables of the project that are not
satisfactory. Moreover, feedback should always be provided in an organized way: that
is, with respect to the project mentality principles manifesto that everybody has agreed
on. Any other principles or individual impressions of mentality patterns that have not
being agreed a-priori should not be considered. If, however, throughout the project,
team members believe that new mentality patterns are being observed, the whole team
should update the manifesto in the same way it was created during the setup phase.

Finally, mentality feedback can be provided freely per individual or per team basis:
individuals can provide feedback to individuals, the team can provide feedback to
individuals or individuals can provide feedback to the team. However, the team
managers are responsible for dealing with specific situations of team members being
“sensitive” to specific forms of feedback and decide what is the most effective way of
providing mentality feedback to them.

3.3 Mentality Learning Phase

During this phase, the team learns from its experience by reflecting on the following:
− Have the mentality principles been followed during the project? If not, why?
− Have any (and which) mentality patterns been observed during the project? Was

feedback given on those patterns? Was it effective? If not, why? What could have
been done to make it more effective? What were the problematic aspects of the
project that could have their origins on those or other mentality patterns?

− Have any new mentality patterns being discovered? Which? How can they be in-
corporated in the initial list and on the manifesto?

− How can the whole sub-process be improved in future projects?

In order to be more constructive, the Learning Phase should preferably occur
whenever the project team is “relaxed”: that is, when there are no further project
details to be taken care of and people have already got some rest after the project
effort. This is because it is on relaxed conditions that people are more willing to
contribute to the learning task, discuss in an open manner, accept points of view or
even criticism from others and contribute new ideas.

4 Foundations and Rationale

In the previous section we have outlined the When, What and Who of the Mentality
Innovation Sub-Process. In this section we focus on its foundations – the Why. The
rationale behind the sub-process is in the realization, based on our many years of
experience, that in what concerns attitudes, beliefs and ways of thinking of persons or
groups, one can distinguish two different cases:

 Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind 153

1. There are individuals and groups that, in many occasions, are very conscious of
what attitude, belief or way of thinking will have a positive impact on the success
of projects in general, and specific tasks in particular. However, for several rea-
sons, the analysis of which is outside the scope of this paper, they choose not to
follow that particular “constructive” attitude or way of thinking. For instance,
many people are aware of the fact that they fear to admit ignorance but often
choose to continue operating and acting according to that state of mind.

2. There are cases in which people are not conscious of the particular attitudes or way
of thinking they follow, and just assume they are thinking in the “right way” or do-
ing the “right thing”. “Experience Driven Optimism” and “Have the Right to Make
Assumptions” are possible examples of this case.

Our objective is not to identify which mentality patterns belong to one or the other
case, but to explain why and how the sub-process deals effectively with both.

4.1 The Theory of Cognitive Dissonance

As far as the first case is concerned, we believe that this phenomenon should be
considered and can be explained by the widely accepted socio-psychological theory of
Cognitive Dissonance [10], [12] whose basic arguments are outlined as follows.

Humans dislike inconsistency between two cognitions (knowledge, belief, attitude,
way of thinking) or between a cognition and a behaviour. Such inconsistency causes
the arousal of an unpleasant psychological state, called cognitive dissonance.
According to Cooper and Fazio [5], the arousal of such a psychological state depends
on the degree of aversive consequences to us or those we like and the personal
responsibility we take for attitude-discrepant behaviours. Personal responsibility
consists of two factors: freedom of choice and the belief that potential negative
consequences of the actions were foreseeable. Humans need to reduce such
dissonance and there are 4 different available paths in order to do so:

i. When two cognitions are in conflict, change one or the other cognition.
ii. When two cognitions are in conflict, make one cognition more important or

reduce the importance of the other, possibly by adding new cognitions.
iii. When cognition is in conflict with behaviour, change behaviour.
iv. When cognition is in conflict with behaviour, change cognition.

The choice of moment and path to reduce dissonance has been a matter of
psychological debate [12]. As far as the choice of path is concerned, psychological
studies conclude that we tend to choose the path of least resistance. The degree of
such resistance is determined, among others, by factors such as threats to self-concept
(the perception we have for ourselves) or self-presentation (our concern for the
perception of others for us), possible rewards, the degree to which cognitions are
consonant with many other cognitions, the extent of pain or loss that must be endured
for changing a behaviour, and the satisfaction obtained from a behaviour.

Coming back to mentality patterns and the first case identified at the beginning of
this section, we believe that the previous discussion on Cognitive Dissonance explains
why people do not always follow constructive attitudes and ways of thinking even if
they are conscious of them:

154 G. Koutsoukos

− either they do not experience dissonance arousal, that is, based on Cooper and
Fazio remarks above, either the inconsistency between attitudes, beliefs and behav-
iour does not have aversive consequences for them or those who they like, or they
do not take personal responsibility for such inconsistency because they may feel
that they do not have freedom of choice or because they think that potential nega-
tive consequences of the actions were not foreseeable;

− or the “constructive” attitudes and ways of thinking that they are aware of have a
degree of low resistance, making it easier to reduce dissonance by following paths
(i), (ii) or (iv) (change cognition) than (iii) (change behaviour). In other words,
they tend to change or diminish the importance of the “constructive” cognition. For
instance, “Fear to Admit Ignorance is a problematic attitude” could become
“Sometimes it is good not to admit ignorance”. This is particularly true when such
a cognition change, altering or diminishing the importance of “constructive” men-
tality, does not impose a threat to self-concept, self-presentation or possible re-
wards. We are convinced that in the context of teamwork the self-presentation fac-
tor in particular has a very significant contribution to the degree of resistance of
“constructive” mentality.

Guided by the socio-psychological theories and observations above, the Mentality
Innovation Sub-Process is therefore designed to achieve the following goals. The
Mentality Patterns and Principles Setup phase and the associated manifesto stimulate
the experiencing of dissonance arousal: people agree to what constitutes
“constructive mentality” and commit to following it. This implies that they will take
personal responsibility for possible inconsistencies between what has been agreed and
how they may operate. Moreover, the power of the possible argument that they do not
have freedom of choice is diminished; they have participated on the principles setup
phase and the mentality principles manifesto was not imposed to them. Finally, they
cannot argue that potential negative consequences of actions were not foreseeable
because the use of anecdotal stories in mentality patterns implicitly forces individuals
to apply the story metaphors to their own situations, hence considering the gains or
pitfalls of following a certain mentality.

The Mentality Innovation Sub-Process also attempts to raise the resistance of
“constructive” mentality, thus making it more likely, when dissonance arouses, that a
choice be made for changing behaviour instead of changing or diminishing the
importance of “constructive” cognitions. This effect is achieved in two ways:

− people agree with and commit to the fact that mentality is an important factor for
the success of projects; this implies that the specific “constructive” attitudes and
ways of thinking identified during the setup phase become part of their system of
values and principles (the Manifesto), a fact that significantly raises the resistance
of such “constructive” attitudes and ways of thinking.

− people become aware that not following the agreed “constructive” mentality would
be a threat for their self-presentation: the team will constantly observe whether
“constructive” mentality is followed during the project and continuous feedback on
this matter will be provided.

 Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind 155

4.2 Self-perception Theory

As far as the second case is concerned, in which people are not conscious of particular
attitudes and ways of thinking, we need to consider another psychological paradigm –
Bem’s Self-Perception theory [2].

According to the Self-Perception theory, we develop our attitudes by observing our
own behaviour and concluding what attitudes must have caused them. For instance,
“if I often eat Indian food, I like Indian food”. In other words, people use inferential
processes to determine the attitudinal significance of their actions. It should be noted
that, for many years, this view seemed to challenge Cognitive Dissonance in the sense
that according to Self-Perception we do not necessarily change our attitudes in
response to our behaviour. However, more recent studies, for instance by Fazio et al
[9], concluded that both theories are right – it all depends on the circumstances:
inferential processes postulated by self-perception theory are especially likely to
influence attitudes that are not pre-existing and well-established, or when the
discrepancy between attitude-behaviour is fairly small. At the same time, there is
substantial evidence that larger attitude-discrepant actions do produce effects
described in the Cognitive Dissonance theory. Therefore, the use of Cognitive
Dissonance for Case 1 above – people conscious of constructive mentality but do not
follow it – is justified and supported; and so is the use of Self-Perception theory for
Case 2 – people with no pre-existing notion of attitude or way of thinking.

We still have to discuss how the Mentality Innovation Sub-Process, guided by the
Self-Perception Theory, deals with Case 2 of mentality patterns. In our view, when
people are not conscious that they follow a particular attitude or way of thinking, we
need to devise ways in order to explicitly stimulate and guide Bem’s inferential
processes that people apply to determine the attitudinal significance of their actions.
In other words, with respect to mentality patterns, we need to explicitly guide people
in order to become conscious of a particular mentality, and subsequently change it if it
leads to problematic practice or continue following it if proven to be constructive. For
instance, if people operate according to the “Have the Right to Make Assumptions”
mentality, we need to explicitly trigger the inference mechanism so that they can
become aware of the mentality of making assumptions without validating them. In our
view, there are mainly two ways in which this can be achieved.

The first consists in increasing the levels of what we call “self- enlightenment”:
stimulating people to look inside themselves, judge their own past and present
actions, the underlying attitude and way of thinking-related reasons for those actions,
and how those contribute to their personal development and work results. The Setup
Phase aims to explicitly serve this goal.

The second way is stimulating interpersonal communication: only when the people
around communicate with and alert individuals (and teams) on specific attitudes and
ways of thinking, can they become aware of possible problematic or constructive
attitudes, and adjust accordingly. It should be noted that interpersonal communication
is by itself a way of stimulating “self-enlightenment”. However, mere communication
exhibits a problem: often people are not willing to hear the comments and opinions of
others. The main cause is that people tend to judge comments from others as being
“their particular view” and, hence, tend to just ignore them. This is particularly true
for “ad-hoc” comments that come from fellows that people either do not know well or

156 G. Koutsoukos

on whom they do not have a positive opinion. Only when there is an agreed by all
basis on the established aspects upon which communication will be performed and
feedback will be given, can people be willing to accept more and think about the
views of others. The purpose of the mentality principles manifesto is, precisely, to act
as such a team-agreed, mentality-related communication and feedback basis.
 Similarly, the Feedback Activity and Learning Phase are also about
communication and “self-enlightenment”: stimulating individuals and teams to
consider their attitudes and ways of thinking, become aware of the current negative
and positive cases, improve their project-related practices, and use those experiences
in the future.

5 Relevance to Software Engineering

Our work is based on and guided by proven concepts, methods and sound
observations found either in the specific context of software process methodologies or
in software engineering and other human activities in general. In what follows we
outline some of the evidence that justifies the relevance of our proposal.

Although different in its nature and goals, the notion of mentality pattern
capitalizes on the proven expressive power and communication benefits of the design
pattern concept. Such power and benefits have been observed and realized for many
years and in various areas, the most notable of which probably being OO design [11].

In [3], Cockburn argues that a properly performed software team-building phase
and relevant exercises are very advantageous for achieving team morale and effective
communication. The PMBOK Guide [14] also refers to team-building activities as a
crucial component of effective project management. Sharing this view, we have
“injected” the Mentality Principles Setup to the team-building phase, but in a
narrower context and with different objectives in mind: to use the mentality patterns
in order to trigger a collective culture and commitment to mentality innovation.

As far as the Mentality Principles and Manifesto are concerned, one should
observe that the existence of principles is found implicitly or explicitly in all software
process methods and the notion of a manifesto is also found in Agile Process
Methodologies. Those principles form the basis upon which each process is explained
and organized, provide the rationale for prescribing certain practices and ruling out
others, and guide the way each process should be executed. Therefore, projects
adopting specific process methods implicitly adopt, at least to a good extent, the
principles defined by those methods. Being only complementary to and an
independent component of software process methods, the Mentality Innovation Sub-
Process adopts a project-specific, team-created and mentality-oriented notion of
principles that is more appropriate for the objectives it is designed to meet.

The Mentality Feedback Activity and the Mentality Learning Phase are also not
entirely novel: feedback, learning and effective communication are also important
components of Agile Process Methodologies. However, in those methods, the
importance of feedback is considered more in the sense of feedback given by users-
clients after deliverable portions of software. Moreover, the feedback, learning and
communication aspects of those methods do not target explicitly and in a systematic
way the mentality-related innovation as presented in our work.

 Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind 157

6 Results and Outlook

The Mentality Innovation Sub-Process has been applied in small to medium size
projects over several years with very encouraging results. The process was applied in
an “informal” way in the sense that the project team was not aware of it.

The sub-process proved to be simple and relatively straightforward to apply in the
sense that it does not impose any significant overhead to process methods already in
place. In our first view, it also seems to improve the way people think on problems
and on team cohesion and interaction. For instance, we have observed that after
applying the process people are more careful in making and stating assumptions, are
more willing to admit their ignorance and to accept responsibility for mistakes.

On the other hand, there exist mentality patterns, for instance “Opportunistic”
Listening and “Secretivism”, which tend to persist even after following the sub-
process with the same team in several projects. This leads to the conclusion that some
mentality patterns are more difficult to deal with. Moreover, as we were actually
expecting, the degree that specific persons exhibit a specific pattern varies. Therefore
for obtaining better results faster, the execution of the sub-process should sometimes
be adapted to account for specific persons and associated mentality pattern variations.
Providing “formal” support on how this can be done is part of our ongoing work.

Another lesson learned is what we call “mentality patterns interference”. That is,
people and their associated mentality patterns influence one another, either negatively or
positively. For instance, in the former case, the “Negativism” of one person tends to
amplify the “Secretivism” of others, whereas in the latter case, people that are willing to
admit ignorance affect in a positive way their peers that do not. This observation is of
high importance for guiding decisions on the way people should be distributed in teams
or perform tasks jointly, for instance pair programming. Moreover, even when certain
distributions are inevitable due to technical, team size or other constraints, being aware
of such interference is essential for a more effective team management.

Finally, our focus so far has been on obtaining qualitative rather than quantitative
results. The main obstacle for quantitative results is that the sub-process targets mentality
innovation, an aspect that is difficult to measure in a comprehensive way. However, to
this end, it is clear that a fair assessment of the impact of the sub-process in projects as
well as more reliable results can only be obtained once it is applied by other people and
in different organizations. We are currently looking for partners for a wider experiment.

Acknowledgements

The author would like to thank Prof. J.L Fiadeiro (Univ. of Leicester) for his
encouragement to pursue this research and his numerous comments and suggestions.

Prof. M. Holcombe (Univ. of Sheffield), L. Andrade and P. Dimenza (ATX
Software), Dr A. Lopes (Univ. of Lisbon), T. Kotridis (Credit Suisse First Boston, UK),
Dr J. Pissarra (ISCTE, Portugal) and D. Vallianos (KB Implus Hellas) have all provided
valuable insights that must be gratefully acknowledged. Finally, this work would not
have been possible without the many colleagues that over the last 10 years, with their
associated mentality patterns, have triggered the author’s interest in this matter.

158 G. Koutsoukos

References

1. Agile Alliance: http://www.agilealliance.org
2. Bem, D. J.: Self-perception theory. In L. Berkowitz (ed.): Advances in experimental social

psychology, Vol. 6. Academic Press, New York (1972)
3. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2002)
4. Cockburn, A.: Characterizing People as Non-Linear, First-Order Components in Software

Development. In 4th Int. Conf. on Systems, Cybernetics, and Informatics, June (2000)
5. Cooper, J., and Fazio, R. H.: A new look at dissonance theory. In: L.Berkowitz (ed.):

Advances in experimental social psychology, Hillsdale, NJ Erlbaum (1984) 229–262
6. Curtis, B., Hefley, B. and Miller, S.: The People Capability Maturity Model. Addison-

Wesley, Boston (2001)
7. DeMarco, T. and Lister, T.: Peopleware: Productive Projects and Teams. Dorset House,

New York (1999)
8. DeMarco, T.: Why Does Software Cost So Much. Dorset House, New York (1995)
9. Fazio R. H, Zanna, M. and Cooper, J.: Dissonance and Self-perception: An Integrative

View of Each Theory’s Proper Domain of Application. Journal of Experimental Social
Psychology, Vol. 13 (1977) 464–479

10. Festinger, L.: A Theory of Cognitive Dissonance. Stanford University Press, (1957)
11. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional (1995)
12. Harmon-Jones, E. and Mills, J. (eds.): Cognitive Dissonance: Progress on a pivotal theory

in social psychology. American Psychological Association (1999)
13. McConnell, S.: Rapid Development. Microsoft Press, (1996)
14. Project Management Institute: Guide to the Project Management Body of Knowledge, A

(PMBOK Guide). Project Management Institute (2004)
15. The Joel on Software Forum: Programmers Attack. http://discuss.fogcreek.com, May 2003
16. Weinberg, G.: The Psychology of Computer Programming. Van Nostrand Reinhold (1971)

Improving by Involving: A Case Study in a Small
Software Company

Nils Brede Moe and Tore Dybå

SINTEF ICT, NO-7465 Trondheim, Norway
{nils.b.moe, tore.dyba}@sintef.no

Abstract. One way of implementing Software Process Improvement (SPI) is to
empower employees to carry out decisions made by management. An
alternative way is to invite developers and project leaders to participate in all
phases of planning and implementing SPI projects. Such participation has
always been a central goal and one of the pillars of organization development
and change, and has also been shown to be one of the factors with the strongest
influence on SPI success. However, there are few studies reporting how
participation can be done in practice in software companies doing SPI. In this
paper, we describe how long-term participation can be realized in various SPI
initiatives using several participation techniques like search conferences, survey
feedback, autonomous work groups, quality circles, and learning meetings. The
research has been carried out in a small Norwegian software company called
Kongsberg Spacetec, over a period of eight years.

1 Introduction

Participation and involvement has been one of the most important foundations of
organization development and change, and has always been a central goal and one of
the pillars of organizational learning [12].

Employees should as a minimum be given a say in organizational decisions, since
they have much to gain and lose from organizational changes [30]. They should be
able to help create and shape changes as well as seeing the results of changes and
acting upon them. Participation involves sharing the difficulties and jointly
overcoming the barriers of change, as well as experiencing both its negative and
positive aspects. Participation should be offered and managed in such a way as to
allow all employees to improve their work and feel a sense of contribution to the
organization and its mission. Within the context of software process improvement
(SPI), Dybå [12] defined employee participation as the extent to which employees use
their knowledge and experience to decide, act, and take responsibility for SPI. When
members of an organization feel they are excluded from participation by the
leadership, they will find ways, often unhealthy, to express themselves [30]. As a
result of not being able to participate, employees may ultimately leave the company.
Therefore organizations need to provide a climate of participation if they are to
remain healthy. By doing so, they increase not only the learning capacity of employ-
yees, but also their ability to influence organizational outcomes. Another potential
effect of participation is increased emotional attachment to the organization, resulting

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 159 – 170, 2006.
© Springer-Verlag Berlin Heidelberg 2006

160 N.B. Moe and T. Dybå

in greater commitment, motivation to perform and desire for responsibility. As a
result, employees care more about their work, which may lead to greater creativity
and helping behavior, higher productivity and service quality [16].

Participation itself does not ensure that an organization will be successful in
achieving its goals, and participation includes some degree of risk, as seen by
management. For participation to be successful, however, organizational members
must know how to participate effectively [30].

The idea of SPI is to change work practices to become more effective or predictive,
or to develop software with higher quality. The underlying idea is that the way
software is developed affects the final product. When all key people and employees
actively take part in process improvement, the companies can more easily focus on
how things can be done better, faster or cheaper. There are several reasons why
involvement is of high importance for small software companies, especially in the
field of SPI:

• Small and medium-sized enterprises (SMEs) are often more vulnerable of people
leaving than large companies.

• SMEs seldom have the possibility of maintaining an SPI department of their own
or people dedicated to work with SPI. So to have a continuous SPI focus and to
have a possibility to succeed with SPI, they need to involve employees in
planning and executing SPI projects.

• Small software organizations have also shown that they can implement SPI at
least as effectively as their large counterparts by capitalizing on their relative
strengths in employee participation and exploration of new knowledge [11, 12].

So for small companies to be successful in SPI they need to focus on participation.
But how does an SME achieve participation? Everyone who uses the term
participation thinks of something different. There are several techniques available,
and which technique to choose is maybe not so important [28], as long as
participation is a long-term initiative. Cotton et al. [6] found that long-term forms of
participation appear to be more effective than short-term forms. For example search
conferences [24], survey feedback [5], autonomous work groups [18], quality circles
[18, 20], and learning meetings [13] are all predicated on the belief that increased
participation will lead to better solutions and an enhanced organizational problem-
solving capability.

In software engineering research, we find several frameworks aimed at (quality)
improvement, and past process improvement studies have concentrated on process
improvement frameworks. As a result, process maturity models like Capability
Maturity Model Integration (CMMI) [26] and Software Process Improvement and
Capability dEtermination (SPICE) have been developed. The use of such models for
improving the process can be viewed as part of a top-down approach to SPI. This
approach finds weak points in the organization by comparing its current process
against the maturity model and sets goals on the basis of its alignment with the model.
However these frameworks are not participation oriented because improvement is
defined as an adjustment towards a normative model, even though CMMI is supposed
to have its origin in Total Quality Management (TQM) [7] where participation is one
of the fundamental ideas.

 Improving by Involving: A Case Study in a Small Software Company 161

As opposed to a top-down, model-driven approach, a bottom-up approach assumes
that process change must be driven by the organization’s goals, characteristics,
product attributes, and experiences. Every development organization must first
understand its process, products, software characteristics, and goals before it can
select a set of changes that are meant to improve its process [21]. Therefore this
approach requires leadership and involvement by management, supported by the
knowledge and expertise of developers. The Quality Improvement Paradigm (QIP) [3]
and the Goal Question Metric (GQM) method [27] are examples of such bottom-up
approaches.

The work described in this paper is motivated by the growing evidence that long-
term participation in SPI is necessary for company success, especially for SMEs. To
the best of our knowledge there are no studies that describe how this can be done in
practice. Therefore our research question has been: How can an SME achieve
participation when doing SPI? In the next section we describe the research methods
that have been used. Then we describe how SPI initiatives have been implemented in
a Norwegian SME, focusing on long-term participation, followed by a discussion and
conclusions.

2 Research Method

2.1 Research Context

The work described in this paper has been carried out in a Norwegian software
company called Kongsberg Spacetec (“Spacetec”) from 1998-2005. Spacetec has
been involved in three large Norwegian SPI research projects in this period. In these
projects, Spacetec has cooperated with other companies, research institutions and
universities in improvement activities. The collaboration has been based on finding
common improvement and learning goals, and working together to achieve these
goals. TQM, GQM and QIP have been central in all these research projects.

Spacetec is one of the leading producers of receiving stations for data from
meteorological and Earth observation satellites. Spacetec has expertise in electronics,
software development and applications. 80% of the 50 employees in the company
have a master’s degree in physics or computer science. At the start in 1984 the main
task of the company was engineering through customer specific projects, and the main
customer was the European Space Agency [15]. Because of this, the ESA PSS-05 [15]
software engineering standard was adopted. This standard follows the traditional
waterfall approach. During the 1990s the market situation changed, and a new kind of
customer became increasingly important. These customers were not interested in how
the product was developed nor how the quality assurance was performed. Instead of
providing detailed requirements specifications, they expected off-the-shelf products
that could be delivered at short notice. In return for lack of uniqueness, the new
customers expected a much lower price, so it became impossible to charge enough for
a product to cover the complete development costs. This made it necessary to develop
generic products through internally financed and managed projects, but also to have a
continuous focus on SPI.

162 N.B. Moe and T. Dybå

2.2 Action Research

We have participated in collecting experience from Spacetec, and we used the
participative research method action research [2]. Action research has been described
as “a post-positivist social scientific research method, ideally suited to the study of
technology in its human context” [4](p.235). Action research merges research and
practice thus producing extremely relevant results. Together, the researchers and the
stakeholders define the problems to be examined, co-generate relevant knowledge
about them, learn and execute social research, take actions, and interpret the results of
action based on what they have learned [17]. In other words, the researchers have
assisted Spacetec by not only suggesting and planning the introduction of the various
participation techniques, but also assisted Spacetec in applying them. The cyclical
process model proposed by Susman and Evered [29] was central in this work:

• Diagnosing – identifying the present problems and their underlying causes and
formulating a working hypothesis.

• Action planning – specifying the actions that can improve the problem situation.
• Action taking – implementing the interventions specified
• Evaluating - jointly assessing the interventions by Spacetec and researchers.
• Specifying learning - documenting and summing up the learning outcomes of the

action research cycle.

These learning outcomes from a SPI initiative, like introduction of a technique,
gave knowledge contributions to both theory and practice, but also served as the
starting point for a new cycle. When we collected the data needed in the evaluating of
the various actions, we relied on several data sources to strengthen our case study.
Interviews, usage logs, participant-observation from workshops and document
inspection have all been important data sources.

3 Long-Term Participation in Spacetec

Spacetec has focused on improvement initiatives in projects as well as on a company
level. First we describe the framework Spacetec has used for organizing SPI-projects,
and then how participating techniques have been used in various SPI initiatives.

3.1 Organizing Process Improvement in Spacetec

The process improvement initiatives in Spacetec consist of three main phases:
initiating, executing and project closure. Executing was organized according to three
levels - plan, do, check - and was used to carry out continuous improvement on all
levels. A last step in the traditional improvement cycle is act [13] – describe the new
or improved process and make use of it. In Spacetec this corresponded to a new
improvement level including planning, doing and checking. These levels spanned
from simple activities or processes to iterations, releases or even to the project or
company as a whole. Spacetec has 2 people working partly with quality assurance.
These two persons are responsible for coordinating the SPI initiatives. In Table 1 we
have specified examples of various participation techniques used in SPI projects at
Spacetec.

 Improving by Involving: A Case Study in a Small Software Company 163

Table 1. Participation techniques used in initiation, execution and closing of different SPI
projects

Three phases of SPI projects in Spacetec

Initiation Execution Closing

Search

conference

Defining a strategy for
a new development
processes

Survey

feedback

Defining scope of a
process assessment,
and who to involve.

Developing, conducting
and evaluating the
assessment.

Initiating improvement
plan based on
assessment results

Learning

meeting

 After action review/
Postmortem review in
projects, feedback
meetings

Review of development
processes, Postmortem
review after projects

Quality

circle

 Planning, prioritizing
and execution of
improvement actions,
process workshop

Establishing the
project-closure
committee

Autonomous

workgroup

 Developing an
improvement plan

3.2 Search Conference

The search conference [24] is a method for participatory, strategic planning in
turbulent and uncertain environments, which makes it a method suited for small
software companies. All the work is conducted in self-managed teams that are
responsible for the entire planning process. The search conference process is based on
democratic participation, which gives those employees most affected by the change
more control. The intended result of the conference is to produce a committed group
of knowledgeable people who have a deep understanding of the challenges
confronting their organization, agreement about the ideals the strategy is supposed to
serve, action plans that are aligned with those ideals, a social method for participation,
and a process for engaging the whole system in the strategy implementation.

Spacetec possessed several meter of software lifecycle descriptions, and these
descriptions did not always correspond to the process that was actually performed
during development. Therefore, Spacetec decided to improve and document their
development methodology according to the new process approach of ISO 9001:2000
[19]. They arranged a search conference were the goal was to discuss the present
situation before looking into the future. Brainstorming was used to make sure that the
whole group (managers and project leaders) generated ideas, and to make it possible
for the group to free themselves from the old way of thinking. An important result
from the conference was the decision to define the new processes based on the
company’s existing best practices, and to publish them on the intranet through an
Electronic Process Guide [25]. This would include developing different tools that
would help carrying out the processes, and the possibility to tailor the process for each
project. A number of process workshops [9] (se section 3.4) were planned for

164 N.B. Moe and T. Dybå

involving marketing and sales personnel, developers and project managers, and for
defining best practice.

3.3 Survey Feedback

Survey feedback is a process of systematically collecting and feeding back data for
individuals and groups at all levels of the organization to diagnose, interpret
meanings, and design corrective action steps [5]. The process involves two major
components; the use of an attitude survey and the use of feedback workshops.

Because Spacetec wanted to discover potential improvement areas and the areas
they did not need to improve, they performed a survey feedback process consisting of
the following six steps: Assessment initiation, focus area delineation, criteria
development, assessment design, assessment implementation, and data analysis and
feedback. How this process was conducted is described in more detail in [14]. In the
initiation of the assessment Spacetec clarified the respective roles and the objectives
of the assessment, by answering the following questions:

• What are the purposes of performing software process assessment?
• Who are the users of the assessment, and how will the results be used?
• What is the scope of the assessment in terms of organizational units and

issues?
• To what extent is there a commitment to using scientific methods (e.g.

psychometric principles) to design and implement the assessment?
• Who should conduct the assessment, and what resources are available?

Three developers, three project leaders and three managers were invited to
participate in the process. This group was responsible for designing and conducting
the process including discussions of the results. For defining the assessment, a
standard questionnaire was used as a starting point for internal discussions and for the
development of the tailor-made questionnaires. The group was encouraged to edit the
questionnaire by both removing and adding questions, but only new questions were
added. Spacetec’s problem of focusing was probably caused by the fact that they had
experienced several challenges but had not been able to identify their causes. The
questionnaires were answered by the nine participants, and analyzed by the
researchers. The results were then presented to the participants, and discussed in the
form of a feedback meeting (se section 3.4). Findings regarding the scores on current
strengths and future importance were presented in terms of a gap analysis. After the
presentation of the results, the nine participants formed an autonomous group (see
section 3.6) for developing an improvement plan. Conducting an additional
assessment was also considered, but this was skipped since the discussions of the
results clearly revealed what the company needed to focus on (learning from
experiences) for the next period.

Spacetec also developed another survey were everybody participated, to examine
if the process guide offered the needed support in the different process areas. The
results were analyzed by the researchers and presented together with process guide
usage logs, in company plenary sessions for management, project leaders and
developers. The results were discussed in the form of a company feedback meeting
(se section 3.4).

 Improving by Involving: A Case Study in a Small Software Company 165

3.4 Learning Meeting

During execution of SPI projects, Spacetec used various forms of learning meetings
[13]. The purpose of such meetings is to learn from others in order to contribute to the
project. Spacetec arranged learning meetings in the form of so-called post Postmortem
review [8], After Action Reviews, and feedback meetings [13].

Postmortem reviews are originally intended to be used after the project is finished,
but Spacetec found them useful also after major activities and project milestones.
Everyone in the project was invited in addition to a person from outside the project to
chair the meetings – typically 4-10 people. The meetings lasted from 2-5 hours and
typically had the following steps:

• What has gone well so far in the project?
• What caused the success? The success factors were identified in order to be

repeated in the rest of the project.
• What has not gone well so far in the project?
• The problems where then identified, to avoid the same pitfalls and obstacles

in the rest of the project.
• Finally improvement actions where identified and documented. Without

action – no improvement. Typically, the actions involved incorporating the
new knowledge into updated processes, procedures, checklists and models.

After the postmortem review, the improvement actions where distributed to a
quality circle consisting of project participants, and the actions were conducted in
”live” projects.

Another way of learning from experience was to use GQM [27] to collect project
data, analyze them and present them in regular feedback meetings. The purpose of
these meetings was to present the data for those who collected them in order to get
their interpretations. Since Spacetec combined the participants’ knowledge and
understanding of the development process with the collected data, it was possible to
make better decisions based on less data than if they had only based the decision on
pure statistical analyses. The initial measurement plan was also presented to the
management-group.

A learning meeting was also initiated for revising the electronic process guide. The
process guide provided four different basic projects types, and for this learning
meeting two persons working with each project type were invited. In the beginning of
the meeting each pair revised the entire guide with the perspective of one of the
project types. They documented:

• What should be removed?
• What should be changed?
• What should be added?

In the next step, each pair presented its results to the other participants with a
subsequent discussion. Through enthusiastic discussions about best practices, the
participants found processes that were not perceived as necessary, created new
processes, clarified misunderstandings about the meaning of processes, and processes
where simplified. The learning meeting also identified several SPI actions, e.g.

166 N.B. Moe and T. Dybå

creating new checklists and the need for more training and knowledge sharing. The
whole process guide was revised in 7 hours, and after the meeting the results were
implemented by the persons responsible for the process guide.

Spacetec has institutionalized postmortem review as an activity performed at the
end of each project. As opposed to the learning meeting during the project, this type
of postmortem review focuses on reflecting on experiences that could be made
available to future projects.

3.5 Quality Circles

A quality circle is composed of volunteers who arrange regular meetings to look at
productivity and quality problems, and discuss work procedures [20]. The strength of
such circles is that they allow employees to deal with improvement issues that are not
dealt with in the regular organization. They generate solutions that may or may not be
implemented by the organization [18]. The quality circles used in Spacetec have all
been temporary, and created with a relatively well-bounded mandate to be fulfilled.
Once the task was accomplished, the circle was disbanded. The kind of quality circle
used at Spacetec is also known as “Task force” [18].

Quality circles have been important in the SPI work at Spacetec for detailed
planning, prioritizing and execution of improvement actions related to project work,
e.g. specifying an experience database (how to collect the experiences, how to use the
databases, tool requirements, and a plan for infusion). After the improvements actions
were resolved, the group was normally dissolved. New groups with new members
were formed when new improvement actions were suggested.

The quality circle in the form of a process workshop [9], was central in specifying
and developing Spacetec’s electronic process guide. During this work five main
processes were defined, and for each process one or two process workshops were
arranged. For Spacetec to achieve realistic descriptions with accurate detail as well as
company commitment in an efficient manner, all relevant employee groups
(developers, project leaders, sales and marketing personnel) were involved in defining
the processes. In the workshops the attendees discussed how they work, which
fostered learning even before the process guide was available on the intranet.
Participation also assured quality, since the process guide was developed by people
who actually perform the work; it did not describe how consultants or senior staff
imagined the development processes to be like. The workshops usually lasted half a
day, had 4-6 participants, and in total more than 20 persons participated in one or
more workshops.

Another more permanent quality circle has been the project-closure committee,
where all the project leaders participate. This forum discusses e.g. the postmortem
review reports from the projects. These discussions function as a learning meeting as
well as a foundation for improvement actions on a company level.

3.6 Autonomous Working Group

Autonomous working groups [18] are often used as a synonym for “self-managing
teams” and for “empowered teams.” These are teams of employees who typically
perform highly related or interdependent jobs, who are identified and identifiable as a

 Improving by Involving: A Case Study in a Small Software Company 167

social unit in an organization, and who are given significant authority and
responsibility for many aspects of their work, such as planning, scheduling, assigning
tasks to members, and making decisions.

In Spacetec such a group was used e.g. to produce a detailed improvement plan
from the results of the first process assessment. Their mandate included planning
improvement actions on a strategic company level, and presenting the plan to the
management before the group was disbanded. Important actions suggested from this
group were the foundation of the project-closure committee and an initiative for
learning from own experiences, resulting in the introduction of the postmortem
review and the development of the experience database.

4 Discussion

It is well documented that involvement is necessary for achieving success, and that
employee participation in SPI projects is particularly important for small companies.
Several studies report the benefit of such involvement [1, 11], but they do not
describe how the involvement was planned and executed in the companies
participating in the studies. There are however several case studies on different
involvement techniques, e.g., quality circles and learning meetings. These are mainly
single technique studies, mostly from large companies, few of them in the area of SPI.
As far as we now, there are no case studies reporting how involvement is done in SPI
work for small software companies.

We have shown how a small software company has used various techniques for
long-term participation in SPI projects over a period of eight years. Spacetec has also
conducted several other improvement initiatives with and without broad participation,
but we have focused on showing those initiatives that best illustrate how they have
used participation in their SPI strategy. Since the effect of involvement is well
documented (e.g. [11, 12]), it was not our goal to document this effect in the work
described here. However, when introducing the process guide in Spacetec, we found
that those involved in creating the EPG had a much higher usage level than those who
were not involved [22]. We also found this effect after two years, indicating a long
term effect. After introducing the postmortem review, the postmortem review reports
were compared with project experience reports (the traditional way of documenting
project experience). We found that the postmortem review report identified more
experience that was useful for future projects than experience reports that were
seldom read [10]. Several initiatives, e.g., the process assessment, identified the need
for collecting experiences and making them available, resulting in planning and
specifying an experience databases. Even though there was a strong need for this
experience database, this initiative failed since the tool was never implemented. The
reason for this was that Spacetec never allocated the necessary resources for
implementing it. Maybe the initiative was not strongly enough anchored among the
management, or those participating in specifying it never really believed in the idea.
However, when the EPG was implemented some years later, it was implemented in a
way that also made it an experience database [23].

168 N.B. Moe and T. Dybå

Involvement is not the only factor for achieving success in SPI. Another important
success factor is business orientation [12], and an SPI project needs to be aligned with
the companies' business goals and strategies if it is to succeed.

A high level of participation [1, 11] and a long-term focus are important [6].
Through the various techniques, Spacetec has involved a substantial share of the
employees. The improvement actions performed at Spacetec can be classified into:

1. Those that were terminated after achieving relatively short-term goals, e.g.,
development of an experience database and an electronic process guide, and
process assessment.

2. Those that were institutionalized, e.g. post mortem reviews and project-
closure committees.

Participation in SPI initiatives like 2) happens regularly and continuously as long
as the initiative is prioritized in the company. Since postmortem reviews are
performed frequently, almost every developer will participate in one or several
feedback meetings during a year. Participation in these initiatives is not voluntary
since they participate by virtue of their position (e.g. project participant, project leader
in project-closure committee). Participation in activities like 1) also had a high level
of participation among the employees. The development of the EPG involved 40% of
the employees, and feedback-meetings on EPG usage involved all of the 50
employees. It was voluntary to participate in the development of the EPG, but in the
feedback-meetings on the EPG usage everyone was asked to participate. Even though
SPI initiatives like 1) were ended after they reached their goals, they have been
considered long-time initiatives since they have consisted of several sub-activities and
been the starting point of other SPI meetings.

5 Conclusion and Further Work

Several studies show that participation is important for a company to be successful,
and especially when small companies are to succeed with implementing SPI. We have
given examples on how a small software company has used various techniques for
achieving long-term participation among a broad number of employees in SPI
projects. We will also continue to study how both new and old involvement
techniques are used in Spacetec. Spacetec is at the moment considering trying out
SCRUM, an agile method, which requires a high level of participation. We will also
study how large companies can achieve a higher level of involvement in SPI,
particularly at the team and project level.

Acknowledgement

This work was supported by the SPIKE project, partially funded by the Research
Council of Norway.

 Improving by Involving: A Case Study in a Small Software Company 169

References

1. Ahire, S. L. and Golhar, D. Y., "Quality management in large vs small firms - An
emperical investigation," Journal of Small Business Management, vol. 34, no. 2, (1996) 1-
13

2. Avison, D., Lau, F., Myers, M., and Nielsen, P. A., "Action research," Communications of
the ACM, vol. 42, no. 1, (1999) 94-97

3. Basili, V. R., "Quantitative Evaluation of Software Engineering Methodology," The First
Pan Pacific Computer Conference Melbourne, Australia, (1985)

4. Baskerville, R. L. and WoodHarper, A. T., "A critical perspective on action research as a
method for information systems research," Journal of Information Technology, vol. 11, no.
3, (1996) 235-246

5. Baumgartel, H., "Using employee questionnaire results for improving organizations: The
survey "feedback" experiment," Kansas Business Review, vol. 12 (1959) 2-6

6. Cotton, J. L., Vollrath, D. A., Froggatt, K. L., Lengnickhall, M. L., and Jennings, K. R.,
"Employee Participation - Diverse Forms and Different Outcomes," Academy of
Management Review, vol. 13, no. 1, (1988) 8-22

7. Deming, E. W., Out of the Crisis. Cambridge, Massachusetts: The MIT Press (2000).
8. Dingsøyr, T, "Postmortem reviews: purpose and approaches in software engineering,"

Information and Software Technology, vol.47, no.5,(2005) 293-303
9. Dingsøyr, T., Moe, N. B., Dybå, T., and Conradi, R., "A workshop-oriented approach for

defining electronic process guides - A case study," in Software Process Modelling, Kluwer
International Series on Software Engieering, S. T. Acuña and N. Juristo, Eds. Boston:
Kluwer, 2004, pp. 187-205.

10. Dingsøyr, T., Moe, N. B., and Nytrø, Ø., "Augmenting Experience Reports with
Lightweight Postmortem reviews," in Third International Conference on Product Focused
Software Process Improvement, LNCS 2188, F. Bomarius and S. Komi-Sirviö, Eds.
Kaiserslautern, Germany: Springer Verlag, 2001, pp. 167 - 181.

11. Dybå, T., "Factors of Software Process Improvement Success in Small and Large
Organizations: An Empirical Study in the Scandinavian Context," Proceedings of (ESEC)
and 11th SIGSOFT Symposium, Helsinki, Finland, (2003) 148-157

12. Dybå, T., "An empirical investigation of the key factors for success in software process
improvement," IEEE Transactions on Software Engineering, vol. 31, no. 5, (2005) 410-424

13. Dybå, T., Dingsøyr, T., and Moe, N. B., Process Improvement in Practice - A Handbook
for IT Companies. Boston: Kluwer, 2004.

14. Dybå, T. and Moe, N. B., "Rethinking the Concept of Software Process Assessment,"
Proceedings of the European Software Process Improvement Conference (EuroSPI), Pori,
Finland, (1999)

15. ESA, "ESA software engineering standard," European Space Agency 1991.
16. Fenton-O'Creevy, M., "Employee involvement and the middle manager: evidence from a

survey of organizations," Journal of Organizational Behavior, vol. 19, no. 1, (1998) 67-84
17. Greenwood, D. and Levin, M., Introduction to action research: social research for social

change. Thousand Oaks, Ca: Sage, 1998
18. Guzzo, R. A. and Dickson, M. W., "Teams in organizations: Recent research on

performance and effectiveness," Annual Review of Psychology, vol. 47 (1996) 307-338
19. ISO, "ISO 9001:2000 Quality management systems -- Requirements," 2000.
20. Lawler, E. E. and Mohrman, S. A., "Quality Circles - after the Honeymoon,"

Organizational Dynamics, vol. 15, no. 4, (1987) 42-54

170 N.B. Moe and T. Dybå

21. McGarry, F., "Process Improvement Is a Bottom-up Task," IEEE Software, vol. 11, no. 4,
(1994) 13-13

22. Moe, N. B. and Dingsøyr, T., "The Impact of Process Workshop Involvement on the Use
of an Electronic Process Guide: A Case Study," EuroMicro, Porto, Portugal, (2005) IEEE:
188-195

23. Moe, N. B., Dingsøyr, T., Nilsen, K. R., and Villmones, N. J., "Project Web and Electronic
Process Guide as Software Process Improvement," EuroSPI 2005, Budapest, Hungary,
(2005) LNCS 3792, pp. 175 – 186

24. Purser, R. E. and Cabana, S., "Involve employees at every level of strategic planning,"
Quality Progress, vol. 30, no. 5, (1997) 66-71

25. Scott, L., Carvalho, L., Jeffery, R., D'Ambra, J., and Becker-Kornstaedt, U.,
"Understanding the use of an electronic process guide," Information and Software
Technology, vol. 44, no. 10, (2002) 601-616

26. SEI, "Capability Maturity Model ® Integration (CMMI), Version 1.1," 2002.
27. Solingen, R. v. and Berghout, E., The Goal/Question/Metric Method - A practical Guide

for Quality Improvement of Software Development. London: McGraw-Hill 1999.
28. Stalhane, T., "Root cause analysis and gap analysis - A tale of two methods," in Software

Process Improvement, Proceedings, vol. 3281, Lecture Notes in Computer Science, 2004,
pp. 150-160.

29. Susman, G. and Evered, R., "An assessment of the scientific merits of action research,"
Administrative Science Quarterly, vol. 23, no. 4, (1978) 582-603

30. Zajac, G. and Bruhn, J. G., "The moral context of participation in planned organizational
change and learning," Administration & Society, vol. 30, no. 6, (1999) 706-733

Trust Facilitating Good Software Outsourcing
Relationships

Kerstin V. Siakas, Dimitri Maoutsidis, and Errikos Siakas

Alexander Technological Educational Institute of Thessaloniki,
Department of Informatics, P.O. Box 141, GR-57400 Thessaloniki, Greece

siaka@it.teithe.gr, dimao@it.teithe.gr, serik@mailbox.gr

Abstract. Offshore outsourcing and teams working across national borders
have become a fact. Management experiences difficulties when applying
traditional management approaches, because of the increased complexity of
global organizations and global partnerships and their dependency on people
with different underlying norms, values and beliefs. Cultural sensitivity is a
core issue. Trust, an issue embedded in culture, is utmost important for global
organizations and global outsourcing partnerships. In this paper we investigate
the phenomenon of trust by analyzing the characteristics, their interconnection
and identification in the software outsourcing context. Our findings reveal the
importance of trust in software outsourcing relationships and the recognition
that trust is culture bound and therefore prompts for special caution and cultural
awareness. The advantages gained in outsourcing relationships which could
demonstrate trust between partners were improved communication, efficiency
and output of Information Systems (IS) development projects, as well as
mitigation of opportunistic behavior.

Keywords: Trust, Outsourcing, Global Organizations.

1 Introduction, Motivation and Perspectives

Since the Industrial Revolution companies have struggled with how to exploit their
competitive advantage in order to increase profit and extend their markets. In today’s
rapidly changing and highly competitive global environment organisations face more
challenges than ever. The evolution of the internet has endorsed organisations to
establish business partnerships beyond geographical boundaries. Organisations
increasingly delegate Information Technology (IT) intensive business activities, such
as resource demanding operational tasks and projects, as well as critical strategic
business processes to external service providers outside the home country.

The countries involved as customers / clients are mainly North America and
Europe with Japan following [1]. The prevailing software service supplier is India,
dominating 80–90 percentage of the total offshore development revenue worldwide
[2]. Other software service provider countries are shown in table 1, classified by
status in the global market.

Offshore outsourcing can decrease some costs, but it usually adds expenses, such
as partner (service provider / customer) selection and the cost of transitioning work to

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 171 – 182, 2006.
© Springer-Verlag Berlin Heidelberg 2006

172 K.V. Siakas, D. Maoutsidis, and E. Siakas

Table 1. Outsourcing Software Service Provider Countries [1]

Leaders India

Challengers Canada, China, Czech Republic, Hungary, Ireland, Israel,
Mexico, Northern Ireland, Philippines, Poland,

Russia, South Africa

Up Comers Belarus, Brazil, Caribbean, Egypt, Estonia, Latvia,
Lithuania, New Zealand, Singapore, Ukraine, Venezuela

Beginners Bangladesh, Cuba, Ghana, Korea, Malaysia, Mauritius,
Nepal, Senegal, Sri Lanka, Taiwan, Thailand, Vietnam

outsourcing service providers. Additionally outsourcing creates challenges in cross-
cultural management including communication, cultural differences and a lack of
common internal processes [3].

According to a survey [4] including 101 IT professionals, the benefits of offshore
outsourcing were considered as following:

• Lower cost (78%);
• Increased IT department productivity (44%);
• Reduced project timeline (37%);
• Competitive advantage (30%);
• Internal customer satisfaction (20%).

On the other hand the challenges of offshore outsourcing were:

• Managing communication (67%);
• Cultural differences (51%);
• Lack of internal processes for specifying work (40%);
• Lack of internal customer management skills (32%);

The most striking findings from the above survey are cultural differences (51%)
and management of communication (67%), which both are important success factors
in outsourcing relationships. In outsourcing relationships, which usually include
virtual collaboration and virtual teams, the main difference found between collated
teams and virtual teams was within communications and trust [5]. Our interpretation
of these findings is that communication in virtual teams is much harder due to
constraints such as language, time and distance and this in turn leads to inadequate
communication and subsequently to difficulties in building trust.

2 Why Is Trust so Important in Outsourcing Relationships?

Globalisation expanding worldwide beyond domestic boundaries is a business fact,
which is creating an interconnected world economy, in which companies do their
business and compete with each other anywhere in the world, regardless of national
boundaries [6]. Saee [7] states that globalisation has been beneficial to nearly all
countries around the world. However, globalisation does not imply homogeneity of
cultures [8]; diverse cultures dependency on people with different underlying norms,

 Trust Facilitating Good Software Outsourcing Relationships 173

values and beliefs either favour or suppress different behaviours and cultural values [9].
Organisations are dependent on people with different work values norms and attitudes
and therefore cultural awareness in global organisations and outsourcing relationships is
of utmost importance for improving and sustaining competitive advantage.

All IT outsourcing relationships contain elements of cooperative agreement and
requirements of increasingly complex systems [10]. In order to effectively manage an
outsourcing contract in today's dynamic business environment, both the service
provider and the client must value and nurture the relationship. Recent research
undertaken by the Warwick Business School in the UK regarding 1200 outsourcing
contracts around the world, has found that outsourcing relationship can be either
power- or trust-based and that relationships based on mutual trust rather than punitive
service level agreements and penalties, benefit from a 'trust dividend' worth as much
as 40% of the contract's total value [11]. Real trust has to be nurtured and comes
from planning, structures, processes and measurement. Good relationships are
strategic assets and demand on-going management investment and attention. Ignoring
the value of outsourcing relationships will have a huge impact on return on
investment and the potential added business value gained from outsourcing. Only
management can ensure that the mechanisms, people and incentives are in place to
build the desired relationship and create an environment in which to foster the trust
relationship. Trust also mitigates perception of opportunistic behaviour between
outsourcing partners and thus enhances knowledge, resource and asset transfer [12].

Challenges for managers of distributed organisations and outsourcing relationships
are enquired to build trust though communication instead of controlling [13].
Integrity, the ability to build trust and keep promises [14], has to be cultivated. In
order to build trust and shared commitment personal contact time is needed [5]. Trust
contributes to the ability of team members to collaborate [15], which in turn leads to
easier adaptation of complexity and change [16, 17].

However, trust is culturally embedded and since offshore outsourcing involves
different national cultures we need to understand differences in cultures and to have
cultural awareness in order to build trust. Cooperation between outsourcing partners
and project team looms as an important factor for success. Trust is important for
cooperation and the slightest cultural misunderstanding can create serious cultural
damage [18]. Outsourcing companies are reluctant to transfer key knowledge to
outsourcing providers, because of the risk of the providers becoming competitors in
the future. Organisations may also have trade secrets or vital customer information
they want to protect. Some organisations have chosen to open subsidiaries, and thus
transferring the organisational culture into the local company (e.g. Siemens and Bosch
in India and China), whilst other organisations try to find the balance between the
portion of outsourcing, the context of outsourcing for the creation of added business
value. In all these case trust is an important factor and will be a facilitator for
increasing outsourcing relationships both in depth and breadth.

In the literature there is agreement that trust will develop only when there is some
kind of risk and interdependence between partners [19]. When contractual hazards
are high (easy to switch to another client) management of outsourcing relationships
become increasingly based on trust, because every future contingency can not be
known at the time the contract is signed [20] and trust develops over the course of a
relationship. Frequent direct contact through face-to-face meetings is a key factor to
developing trust between the client and the service provider [21].

174 K.V. Siakas, D. Maoutsidis, and E. Siakas

Hofstede [22] provided strong evidence that national cultural differences shape
organisational behaviour at a local level, and that differences in national and regional
cultures affect work values. He argued that culture is a collection of characteristics
possessed by people who have been conditioned by similar socialisation practices,
educational procedures and life experiences. Krishna et al. [23] affirm that major
differences in norms and values cannot be harmonised since they derive from deep-
rooted differences in cultural background, education and working life. In offshore
outsourcing relationships there is a customer / client and a service provider both from
a different national culture. Companies / customers may also have multiple sourcing
relationships in different countries and service providers may have their own service
providers. This is a very complex relationship and may involve many different
countries with different cultural values. The recognition of differences in national
cultures can be beneficial for progress in a variety of ways [24].

The organisation culture, in the form of assumptions, beliefs, attitudes and values
are shared by existing members and taught to new members of the organisation. By
promoting a strong organisational culture within global organisations, without
disproving and demolishing local converging values and attitudes, success is more
likely to occur. Organisational culture affects directly individual behaviour by
imposing guidelines and expectations for the members of the organisation. One of the
key issues for managers in global organisations is integration across geographic
distance and cultural diversity [25].

Organisational culture is mainly created and maintained in existing frameworks
by the founders and the leaders of an organisation through their value system [26, 27].
Three of the most important sources of organisational cultures are according to
Brown [28]:

• societal or national cultures within which an organisation is physically situated;
• the vision, management style and personality of the founder and other

dominant leaders of the organisation;
• the type of business an organisation conducts and the nature of its business

environment.

The challenges globalisation offers, originates from social, economical, legal,
political and technological differences between nations, together with cultural
differences regarding work values, attitudes and preferences both of employees and
customers. Shared stakeholder values are considered to be important for the success
of organisations that work in a global context [22, 27, 29]. Management of global
organisations that can take account of the cultural context of their endeavours
experiences better success. Even though the very act to deliberately create trust can
lead to mistrust, results from previous studies indicate that certain social mechanisms
can be used to create an environment in which trust can gain a foothold and flourish
[30, 31]. Evidence shows that from a cultural point of view Eastern cultures compared
to Western view trust as an important factor in any transactions and therefore choose
to have longer-term relationships built on basis of trust with the client. Contracts are
considered less important and are viewed with scepticism [32].

Regarding IT outsourcing there seems to be relative high awareness of cultural
issues in the literature, which seems to propose:

 Trust Facilitating Good Software Outsourcing Relationships 175

• Recognition of the fact that cross-cultural training is needed both in advance
and continuously [33];

• Use of ‘cultural bridging staff’ (people rooted in the country of the sourcing
service provider as well as in the country of the client) for informal sharing of
experiences [23];

• Use of common systems, common processes and common compatible
technologies [34];

• Recognition of the importance of the communication language [33];
• Use of trust-building mechanism [34].

All the above cultural issues are important for understanding and building trust in
different cultural settings. In the following section we investigate the phenomenon of
trust in more detail by unfolding the characteristics of trust.

3 The Notion of Trust

The notion of trust has been studied by a number of disciplines, each emphasizing
different aspects: “researchers in different disciplines have viewed trust along
different dimensions” [35]. Economists tend to view trust as calculative, psychologists
emphasize the personal attributes and sociologists stress the institutional properties
[19]. In this paper, ideas from all these three disciplines are drawn upon because
aspects from economics, sociology, and psychology are seen to be relevant in
software outsourcing relationships. All disciplines seem to agree that trust is a
complex phenomenon with many meanings, difficult to identify, and no widely
acknowledged definition of the term exists [1] and that the notion of trust generally is
associated with one party having confidence in another and an implication of
alignment between relevant value systems [15, 31].

Building a successful relationship with stakeholders in global outsourcing
relationships, where engagements often span several years, is a critical success factor
[36, 37, 38, 39]. This refers in particular to the global outsourcing partners, such as
the client and the service provider, but is also important to all other suppliers and
partners involved in the sourcing relationship. By managing expectations and
effectively responding to stakeholder needs both the client and the service provider
establishes trust with its stakeholders and help to sustain long term relationships and
to avoid internal resistance.

Handy [40] points on seven principles of trust to be kept in mind:

• Trust is not blind, which means that it is unwise to trust people whom you do
not know well;

• Trust needs boundaries and confidence in someone’s competence and
commitment to common goal;

• Trust demands learning. Every individual has to be capable of self renewal;
• Trust is tough. When trust proves misplaced people have to go;
• Trust needs bonding. The team must adhere to the organisational vision and

mission;

176 K.V. Siakas, D. Maoutsidis, and E. Siakas

• Trust needs touch. A shared commitment requires personal contact to make it
real;

• Trust requires leaders. Trust-based organisations hardly have to be managed,
but they do need a multiplicity of leaders.

In outsourcing relationships self-management in the distant location is needed in
order to get high performance. Self-management can only be realised in an
environment where the leader displays trust through delegation. On the other hand the
team members must trust that the leader is committed to support collaboration and
manage the team boundaries [5].

As people from different countries and organisations work together on project
teams and outsourcing relationships there will be a technology transfer through
personal and business interests which will also will create a closer relationship and
enhance trust levels [18]. Trust within organisations exist on three levels [41, 42],
namely deterrence-based trust (when both parties can be trusted to keep their word,
based on intuition), knowledge-based trust (is based on predictability of the other
party developed through knowledge of the other party) [1, 19, 42] and identification-
based trust (when one party has fully internalised the other’s performance [42]. The
longer the outsourcing relationship the better will the outsourcing partners know each
others advantages and disadvantages and thus the predictability rises together with
trust or eventually distrust. The three levels are believed to be linked in a sequential
iteration in that one level enables trust on the next level along with the evolvement
and maturity of the relationship [41].

In order to relate the attributes of trust to the software outsourcing context, some
factors about trust are considered important. The attributes are discussed below and in
the end the attributes are evaluated.

4 The Complexity of Trust

Because companies involved in outsourcing are geographically dispersed, a risk factor
stems from lack of information about what the distant partner is doing. In software
outsourcing relationships establishing trust is suggested to have several advantages,
such as mitigating opportunistic behaviour, improving communication, facilitating
knowledge transfer [12], improving efficiency and output quality of Information
Systems (IS) development projects [34].

In software outsourcing relationships trust is important within and between
organisations, and is different in these two settings [19]. Trust within the organisation
refers to differences in trust at the individual, group, and institutional level [19]. Trust
has been found to differ regarding which organisational level is studied [1]. The
setting within organisations is influenced by the organisational culture. The setting
between dispersed organisations is influenced by the national cultures in which the
organisations (client / service provider) are situated. This paper looks at trust in both
these settings (organisational and national environment) and will consider trust at
different levels too.

Trust has not only to do with relationships between humans, but also concerns
systems. While trust in humans stems from interaction, trust in abstract systems puts
its faith in the correctness of principles [43]. Both personal and system related trust is

 Trust Facilitating Good Software Outsourcing Relationships 177

addressed in this paper. Trust has been found to change over time. Usually, three
phases are identified: building, stability, and dissolution [19].

Trust is not a button switch but it exists in varying levels. The degree of trust in a
relationship may vary not only over time, but as well between different relationships.
Trust exaggerations (over- or under-investments in trust) are undesirable behaviours
both from a strategic and a moral point of view [16]. Because it is possible to trust
little or more, trust is considered to have a dynamic nature [19]. Trust cannot be
present in every aspect of a relationship, because some of motives of the partner can
be trusted and some may be questionable [44]. Especially in offshore outsourcing
relationships trust cannot be present in every aspect; a sceptical approach is required.
Since cultural awareness is difficult to create, we need to be cautious and critical to
our feelings of trust; independent of if they are based on intuition or on knowledge.
We also have to stress here that trust has to be present in both parties. The trustor
must trust the trustee and vice versa, it is a mutual relationship.

Finally, trust depends on social conditioning. In the World Value Survey (WVS)
[45], undertaken 1990-1993 across 43 societies covering around 60000 respondents
that completed a questionnaire with more than 360 questions. The responses to the
question: Generally speaking, would you say that most people can be trusted or that
you can't be too careful in dealing with people? showed variances from 7% in Brazil,
can be trusted, to 66% in Sweden.

5 Attributes of Trust

In order to understand trust its characteristics have to be analysed. These
characteristics can be identified by studying relevant literature. Imsland [1] proposes
seven identifiable attributes of trust, namely predictability, competence, structure,
calculation, goodwill, knowledge and betrayal, which we will analyse in more detail
below. A discussion of the attributes will help to provide a better understanding of
trust, and their interconnection for identification and visibility.

Predictability: The expectation of something from someone else is essential for the
existence of trust. Giddens [43] stresses the notion of trust as faith in predictability.
Trust is more likely to be established if an ability to predict another person's or
organization's behaviour exists. Predictability is achieved through monitoring and
influencing the behaviour of the partner. In the beginning of an outsourcing
relationship the partners know little or nothing about each other. They look for
indications that will enable them to build trust. Finding more information about the
future partner, such as studying web-pages, tracing history and reputation, as well as
observing how the organisation works (preferable over a period of time) will help in
determining the organisation's way of functioning. Control mechanisms can be
introduced to make the behaviour predictable. There is evidence that predictability is
considered to be an important trust-building mechanism [34]. However, trust is not
necessarily present when predictability is present, but as a general rule, trust is
difficult to build if one cannot predict behaviour [46].

Competence means having the ability to efficiently perform something that the
partner requires [44]. It also includes capacity to learn new tasks and technologies

178 K.V. Siakas, D. Maoutsidis, and E. Siakas

[34]. Competence is especially important in the IT outsourcing context. One key
argument for an organisation to outsource can be the lack of competence within its
own organisation [47]. A client that has chosen a service provider with good
competence reputation will feel more confident about the outcome of the project.
However, competence trust on its own does not ensure trust on all levels.

Structure is a way of formal control of the procedures used to achieve something.
Examples of structures can be written contracts, reporting mechanisms, and rules for
response time on written messages [12]. Also, the use of standards, such as ISO
9001:2000 [48] and Capability Maturity Models, such as CMMI (Capability Maturity
Model Integrated) [49, 50] and the eSourcing Capability Maturity Model eSCM –SP
for Service Providers [37, 38, 39] and eSCM-CL for Client Organisations [36] are
considered structural attributes [1]. In particular the practices of these frameworks are
well adaptable for any virtual organisation as the high capability level of outsourcing
cooperation of service clients and providers implement a real knowledge based virtual
organisation [51].

Considering predictability as an attribute of trust, and structure as a way of
achieving this, structure also has flaws, in respect to trust. Very tight structural control
harms performance, because much time has to be spent on reporting and providing
feedback to the controller [19]. Hofstede [22] found that Power Distance is a basic
cultural dimension related to power and control and Uncertainty Avoidance another
cultural dimension related to the degree societies want to create structures and rules to
protect them against ambiguous situations. The studies of these two dimensions in
depth will enable the client organisation to understand the degree of structures
suitable to be implemented in another country. Siakas and Hyvarinen [52] have
developed an on-line self-assessment tool that finds the fit between national and
organisational culture. The tool is based on Hofstede’s two dimensions, namely
Power Distance and Uncertainty Avoidance, and from the results the client will get an
indication about if more or less structures are desirable in a certain country context.

Calculation: The idea of calculation refers to the ability to predict whether the trustee
is capable to accomplish the requirements successfully [19]. If calculations show that
there is a risk factor of the trustee not being able to fulfil the requirements, there is no
reason for the relationship to begin. The company also has to compare the potential
risks with the possible advantages of the relationship. A distinction between objective
and subjective risk is valuable [53]. Objective risk is based upon the objectively
calculated consequences of different alternatives when making a decision. Subjective
risk is the decision makers’ estimate of objective risk. Every decision has both an
objective and a subjective risk, but because of complexity and lack of information,
only subjective risk is possible to determine.

Goodwill is trust based on intuition. In every new relationship people use their
intuition and experience to figure out if someone is trustworthy. It can be about any
characteristics of someone, whether personal characteristics like honesty and
benevolence, or more general attributes like competence and predictability [44]. Even
if trust in organizations, as opposed to trust in individuals, concerns faith in the
correctness of principles more than interaction [43], such trust is also dependent on a
general goodwill between the organizations.

 Trust Facilitating Good Software Outsourcing Relationships 179

Knowledge about the partner(s) in a relationship is seen to be important when
building trust. The most important outcome of such interaction is predictability. It is
important to notice that gaining rich knowledge about the partner is difficult to
achieve, and emerges only after longer-term interaction [19]. However, Hertzum [53]
identifies four ways of building knowledge-based trust: first-hand experience,
reputation, surface attributes (visible artefact, such as language, symbols, heroes,
behaviour patterns, rules and procedures), as well as stereotypes. The two last ones,
surface attributes and stereotypes are actually manifestations of cultures [25] and thus
training of outsourcing partners in each others cultures would make an important
input for understanding cultural differences and improving cultural awareness, which
also will be an important factor for building trust. Regarding reputation Lander et al.
[34] undertook a case study with four primary stakeholder groups, namely upper
management, project team members, users and employees of the client. Upper-level
management considered that reputation was an important determinant for trust
regarding selection of client and for employing team members into the projects, while
project team members and users were less focused on reputations since they assume
that upper-level management has exercised due diligence in this regard. Clients did
know little or anything of the service provider’s reputation and thus had not reporting
anything about its importance in creation of trust.

Since members of software outsourcing projects are dispersed geographically,
these four ways of building trust (first-hand-experience, reputation, surface attributes
and stereotypes) must be supported by bringing together key personnel [1]. We extend
by stating that face-to-face meetings and the use of ‘cultural bridging staff’ (people
rooted in the country of the sourcing service provider as well as in the country of the
client) improves communication, cultural understanding and knowledge about each
other, thus slowly facilitating creation and sustaining a trust relationship.

Betrayal: In every relationship exists a risk factor, of someone acting oppor-
tunistically and by so doing breaking the trust that has been built. This is called
betrayal, and is defined as “a voluntary violation of mutually known pivotal
expectations of the trustor by the trusted party (trustee), which has the potential to
threaten the well-being of the trustor” [55]. Examples of betrayal are theft, lying,
braking of contract and promises. In research regarding trust building mechanisms
Lander et al. [34] found that senior management and team members at the outsourcing
provider reported that the fulfilment of promises is crucial to the development of trust,
whilst the client did not share this view. For the client, fulfilment of promises is an
artefact of a contractual relationship. This result indicates that it would be valuable if
outsourcing partners appreciate what the other party value in trust-building processes
and in project related actions in order to find a mutual ground of commitment.

Each one of these seven attributes has its own important role in the software
outsourcing context. Some characteristics of the above attributes may be similar and
this brings the conclusion that the attributes of trust are interconnected together up to
a point and partially overlapping. If some of the above attributes exist up to a certain
degree that implies essentially that all of the attributes are present [1]. If for example
competence is present in a company, there will also be predictability, calculation and
knowledge based on the competence. Thus you can also have goodwill and not expect
betrayal.

180 K.V. Siakas, D. Maoutsidis, and E. Siakas

6 Conclusion

Globalisation today is a reality having created numerous of challenges for managers
worldwide. Increased and improved capabilities of ICT facilitate continuous
expansion of globalisation today’s IT outsourcing activities have shifted to involve
much greater range and depth of services than in the past and an increasing number of
IT functions are transferred to IT service providers. Outsourcing and virtual
collaborations prompt for cultural sensitivity, flexibility and adaptability, together
with high awareness of risks and dangers due to cultural differences. Globalisation is
a competitive advantage if handled in a right manner.

In this paper the emphasis was on trust, which was analysed in relation to the
software outsourcing context. Trust was found to be a complex phenomenon and a
critical success factor. Trust is slowly built through communication and experience of
attitudes and behaviours of stakeholders. Advantages of trust in outsourcing
relationships was found to be improved communication, efficiency and output of IS
development projects as well as the mitigation of opportunistic behaviour.

References

1. Imsland, V.: The Role of Trust in Global Outsourcing Relationships, Candidate Science
Thesis, Oslo University, Department of Informatics (2003)

2. Khan, N., Currie W. L., Weerakkody, V., Desai, B.: Evaluating Offshore IT Outsourcing
in India: Supplier and Customer Scenarios. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, January (2003) 239–248

3. Siakas, K. V., Balstrup, B.: Software Outsourcing Quality Achieved by Global Virtual
Collaboration, Software Process: Improvement and Practice (SPIP) Journal, John Wiley &
Sons, Vol. 11, no. 3 (May-June, 2006)

4. Ware, L.C.: Weighing the Benefits of Offshore Outsourcing, CIO Research Reports
(2003), retrieved at 23.03.2006 from http://www2.cio.com/research/surveyreport.
cfm?ID=62

5. Balstrup, B.: Leading by Detached Involvement – Success factors enabling leadership of
virtual teams, MBA Dissertation, Henley Management College, UK (2004)

6. Cullen, J. B.: Multinational Management: A strategic Approach, Cincinatti, Ohio, South
Western College Publishing (1999)

7. Saee, J.: Strategic Global management: Cross-Cultural Dimension, France, Normedia
Publishing House (2002)

8. Walsham, G.: Making a World of Difference: It in a Global Context, Wiley, Chichester
(2001)

9. Siakas, K.V, Berki, E., Georgiadou, E.: CODE for SQM: A Model for Cultural and
Organisational Diversity Evaluation, EuroSPI 2003 (European Software Process
Improvement Conference), Graz, Austria, 10-12.12.2003, IX 1-11

10. Willcocks, L., Choi, C. J.: Co-operative Partnership and “Total” IT Outsourcing: From
Contractual Obligation to Strategic Alliance? European Management Journal, March, Vol
13, No 1 (1995) 67 - 78

11. Willcocks, L. P., Cullen S.: The Outsourcing Enterprise, The power of relationships,
Warwick Business School white paper (2005), retrieved 26.03.2006 from http://www.
prnewswire.co.uk/cgi/news/release?id=159034

 Trust Facilitating Good Software Outsourcing Relationships 181

12. Sabherwal, R.: The role of trust in outsourced IS development projects, Communications
of the ACM, 42 (2) (1999) 80

13. Maguire, S.,Phillips, N., Hardy C.: When ‘silence= death’, keep talking: Trust, control and
the discursive construction of identity in the Canadian hiv/aids treatment domain.
Organization Studies 22(2) (2001) 285–310.

14. Yukl, G.: Leadership in Organisations, New Delhi, Pearson Education (2002)
15. Costigan, R. D, Ilter, S.S, Berman, J. J.: A multi- dimensional study of trust in

organizations, Journal of Managerial Issues, 10 (3) (1998) 303 -318
16. Wicks, A. C., Berman S. L, Jones T. M.: The structure of optimal trust: Moral and

strategic implications, The Academy of Management Review, 24(1), (1999) 99–116
17. Zaheer, A., McEvely, B., Perrone, V.: Does Trust Matter? Exploring the Effects of

Interorganisational and Interpersonal Trust on Performance, Organisational Science, 9 (2)
(1998) 141-159

18. Cleland, D. I, Gareis R.(eds): Global Project Management Handbook, McGraw-Hill, Inc.
US (1994)

19. Rousseau, D. M, Sitkin, S.B. Burt, R.S, and Camerer, C.: Not so different after all: A cross-
discipline view of trust. The Academy of Management Review 23(3), (1998) 393–404

20. Barthelemy, J.: The Hard and Soft Sides of IT Outsourcing Management, European
Management Journal, October, Vol. 21. No. 5, (2003) 539-548

21. Dyer, J. and Ouchi, W. (1993): Japanese-style partnerships: giving companies a
competitive edge, Sloan Management Review, 34, 51-63

22. Hofstede, G. (2001): Culture's consequences: comparing values, behaviours, institutions,
and organisations - 2nd Ed. - Thousand Oaks California, Sage Publications

23. Krishna, S., Sahay S., Walsham, G. (2004). Managing Cross-cultural Issues in Global
Software Outsourcing, Communications of the ACM, April Vol. 47, No 4

24. Biro, M., Feher, P.: Forces Affecting Offshore Software Development, EuroSPI 2005
(12th European Software Process Improvement Conference), Springer, Budapest, Hungary,
Nov. (2005) 187-201

25. Siakas, K.V.: SQM-CODE: Software Quality Management – Cultural and Organisational
Diversity Evaluation, PhD Thesis, London Metropolitan University, UK (2002)

26. Bryman, A.: Charisma and leadership in organisations, London, Sage Publications (1992)
27. Schein, E.: Organisational Culture and Leadership, London, Jossey-Bass Ltd. (1985)
28. Brown, A.D.: Organisational Culture, Financial Times Management, Pitman Publishing

(1998)
29. Land, F.F.: The Management of Change: Guidelines for the Successful implementation of

Information of Information Systems, in Brown, A. (eds): Creating a Business Based IT
Strategy, Chapman & Hall (1992)

30. Bigley, G.A, Pearce, J. L.: Straining for shared meaning in organizational science,
problems of trust and distrust, Academy of Management Review, 23 (3) (1998) 405-422

31. Blois, K.J.: Trust in business to business relationships: an evaluation of its status, Journal
of Management Studies, 36 (2), (1999) 197

32. Samaddar, S., Kadiyala, S.: Information systems outsourcing: Replication an existing
framework in a different cultural context, Journal of Operations Management, Nov,
(2005) 458-460

33. Foster, N.: Expatriates and the impact of Cross-Cultural Training, Human Resource
Management Journal, Vol. 10, No 3, (2000) 63-78

34. Lander, M. C., Purvis, R. L., McCray, G. E., Leigh, W.:Trust-building mechanisms
utilized in outsourced IS development projects: a case study, Information & Management,
41, (2003) 509-528

182 K.V. Siakas, D. Maoutsidis, and E. Siakas

35. Kim, K., Prabhakar, B.: Initial trust, perceived risk, and the adoption of internet banking.
In Proceedings of the twenty first international conference on Information systems,
Association for Information Systems (2000) 537–543

36. Hefley, W.E, Loesche, E.A.: The eSourcing Capability Model for Client Organisations
(eSCM-CL), Draft for public view, Working paper, 28, Feb, (2006)

37. Hyder, E.B, Heston, K.M, Paulk, M.C.: The eSourcing Capability Model for Service
Providers (eSCM-SP) v2, Part 1: Model Overview, CMU-ISRI-04-113, Pittsburg, PAL
Carnegie Mellon University (2004)

38. Hyder, E.B, Heston, K.M, Paulk, M.C.: The eSourcing Capability Model for Service
Providers (eSCM-SP) v2, Part 1: Practice Details, CMU-ISRI-04-114, Pittsburg, PAL
Carnegie Mellon University (2004)

39. Hyder, E.B, Kumar B., Mahendra V., Siegel J., Heston K.M, Gupta R., Mahaboob H.,
Subramanian P.: The e-Sourcing Capability Maturity Model (eSCM-SP) for IT enabled
Service Providers, v1.1, CMU-CS-02-155, School of Computer Science, Carnegie
University, Pittsburg (2002)

40. Handy, C.: Trust and the Virtual Organization, HBR OnPoint enhanced edition, OnPoint,
June (2000)

41. Lewicki, R. , Bunker, L.: Developing and Maintaining Trust in Work relationships, in R.
M., Kramer, T. R. Tyler, Frontiers of Research and Theory, Sage, Thousand Oaks, CA
(1996) 114-459

42. Sharipo, D.L., Sheppard B.H., Cheraskin, L.: Business on a Handshake, Negotiation
Journal 8 (4) (1992) 365-377

43. Giddens, A.: The Consequences of Modernity, Stanford University Press (1990)
44. McKnight, D. H., Chervany N.L.: Trust and distrust definitions: One bite at a time. Lecture

Notes in Computer Science 2246 (2001) 27–54.
45. Inglehart, R. Modernization and postmodernization: Cultural, economic, and political

change in 43 societies, Princeton, NJ: Princeton University Press (1997)
46. Brenkert, G. G.: Trust, Morality and International Business, Business Ethics Quarterly,

April 8(2) (1998) 293–317.
47. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software

Development. IEEE software 18(2), (2001) 22–29
48. ISO: Retrieved 26.3.2003, from http://www.iso.org/
49. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-Based

Software Process Improvement: Initial Results, Technical Report, CMU/SEI-94-TR-13,
August (1994)

50. CMMI: Retrieved at 26.03.2006 from http://www.sei.cmu.edu/cmmi/ems
51. Biro, M, Deak G, Ivanyos, J., Messnarz, R., Zamori, .: Using the eSourcing Capability

Model to improve IT enabled business process outsourcing services. EuroSPI 2003
(European Software Process Improvement Conference), Graz, Austria, 10-12.12.2003,
III.1-III.16

52. Siakas, K.V, Hyvarinen, J.: On-line Assessment of the Fit between National and
Organisational Culture; A new tool for Predicting Suitable Software Quality Management
System, The 14th Software Quality Management Conference, SQM 2006, April 2006,
Southampton, UK

53. Das, T.K., Teng, B-S.: Trust, Control, and Risk in Strategic Alliances: An Integrated
Framework. Organization Studies 22(2) (2001) 251–283.

54. Hertzum, M.: The importance of trust in software engineers’ assessment and choice of
information sources. Information and Organization, January, 12(1) (2002) 1–18

55. Elangovan, A.R., Shapiro D.L.: Betrayal of trust in organizations. The Academy of
Management Review 23(3), July (1998) 547–566

Assessing Software Replacement Success: An Industrial
Case Study Applying Four Approaches

Jussi Koskinen1, Henna Sivula1, Tero Tilus1,
Irja Kankaanpää1, Jarmo J. Ahonen2, and Päivi Juutilainen1

1 Information Technology Research Institute, University of Jyväskylä,
P.O. Box 35, 40014 Jyväskylä, Finland

firstname.surname@titu.jyu.fi
2 Department of Computer Science, University of Kuopio, P.O. Box 1627,

70211 Kuopio, Finland
jarmo.ahonen@uku.fi

Abstract. This paper describes an industrial case study assessing software re-
placement success and other effects. The target of assessments has been a large
commercial legacy system for customer register management. The success of its
replacement by its performed rewrite has been assessed via four approaches
concerning: user satisfaction, strengths and problems of the system, problem
surveillance and expert judgments. The approaches and metrics have been se-
lected in cooperation with industrial experts in order that they would meet the
needs of their organization. The assessments have been conducted by compar-
ing the situations before and after the rewrite. They have included quality as-
pects. The applied approaches have supplemented each other well and results
provided by them have been mainly consistent. The study has offered a wide
view of the system replacement effects and lessons for the replacement assess-
ment process improvement in industrial settings.

1 Introduction

Software maintenance and the related software evolution processes constitute the
most laborious and expensive phase of software lifecycle. The proportion of mainte-
nance costs of the total software lifecycle costs has traditionally been 50-75% in case
of successful systems with long lifetime [9,12]. These so-called legacy systems [8]
need to be evolved to reflect the typically changing technical and user requirements.
Software evolution activities may include modernizing or replacing a legacy system.
System evolution strategy choices related to these kind of large-scale changes often
have extensive technical and economical long-term effects. Consequently, there is a
need to improve the assessment processes concerning the success of these software
evolution processes. There is also a need to empirically study especially the evolution
of practically important legacy systems.

There are many general methods for evaluating economic success and benefits of
general IT-projects as listed e.g. in [3,17]. Prediction of success and benefits is obvi-
ously important but also very challenging due to the nature of benefits and problems
in having access to reliable input metrics. Especially early reliable estimation of the

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 183 – 194, 2006.
© Springer-Verlag Berlin Heidelberg 2006

184 J. Koskinen et al.

oncoming monetary success in industrial settings is typically difficult in practice even
despite good intentions and investing large effort to metrics programs.

Another complicating issue is that the total monetary modernization and replace-
ment success including the benefits has not been extensively studied in the past. There
are, however, many earlier studies on evaluating software maintenance and evolution,
including [1-2,6,11-12,14-15,18-19]. Most of the methods reported in those studies
have been evaluated [7]. Additionally, we have earlier developed two methods for
evaluating system evolution: ISEBA [5] for selection of proper IS evolution benefit
assessment measures, and MODEST [16] for supporting early estimation of system
modernization pressures.

The assessment approaches should meet the needs and possibilities of the industrial
organizations applying them. Due to the reasons presented above, it appears to be
convenient, in case of assessing industrial software replacement success, to first use
and improve approaches which support versatile but not too ambitious assessment of
the issues contributing to the replacement success and benefits. This includes viewing
the replacement success from relevant perspectives by assessing the effects. In this
study we refer by success to the achieved total benefits of the performed system re-
placement as measured in versatile but relatively uncomplicated ways. The success
includes the combined effect of the resultant positive and negative issues. This paper
presents the results of a case study applying four different approaches to the assess-
ment of the replacement success of a large-scale industrial legacy system. Section 2
describes the context and goals of the conducted case study. Section 3 describes the
approaches used in assessing the success of the performed system replacement, and
the received results. Section 4 summarizes the main results.

2 The Case Study

The case study was funded by National Technology Agency of Finland (TEKES) and
by the industrial partners of the assessment project. The total length of the project was
about 14 months. The assessment project group as such used about 200 work days of
its resources to the study. Both the system supplier and user organization participated
to the study. Central industrial participants included four experts: a manager, two
chiefs, and a maintainer. In addition about 100 persons from those organizations pro-
vided information regarding various aspects of the system and its use.

The target of the case study was a customer register management system (CRM).
It is a legacy system developed since the beginning of 1980s by a software company
specializing for providing solutions for supplier-chain management. It is in constant
industrial operational use within its user organizations operating on financial business
field. The user organization involved to this case study has over 90,000 customers,
whose information is stored, handled, and managed via CRM. The system uses a
major relational database management system. The data included into the managed
customer register concerns: customer identification, contacts, discounts, and delivered
documents. The system rewrite was performed by the system supplier in order to
further develop the quality of the system. It is the first large-scale change of the
system. The identified change pressures concerned: deteriorating accuracy of data
content, increased information needs of customers, new needs from sales and
marketing regarding the flexibility and versatility of the system, deteriorating system

 Assessing Software Replacement Success 185

maintainability, and technological obsolescence. Based on these pressures it was
decided that the system will be rewritten. The first phase of the rewrite project has
already been completed. The new system is implemented based on Java. The cus-
tomer register database content was decided to be reused. This paper deals with the
first part of the system rewrite due to the specified schedule.

The goal of the assessment project was set (timing: 1. month of the project) to list
the operational level benefits achieved via the system replacement in terms of system
quality aspects, cf. [15] and to gather other essential information for the further de-
velopment of the CRM. The suggestion of the set of aspects to be evaluated was pro-
vided by the project group. Measurements were planned based on the gathered data,
literature, and estimation methods developed earlier within the assessment project.
Nine system users were first interviewed as a basis for the planning of the assess-
ments including the selection of convenient metrics in the context of their organiza-
tion. The suggestion produced by the assessment project group was inspected and
refined by the representatives from the involved industrial organizations. The repre-
sentatives considered the nature of the benefits and applicability of the set of aspects
to be evaluated based on the metrics from the view point of their organizations. The
selected final set of assessment approaches included: user satisfaction, strengths and
problems of using CRM, problem surveillance, and expert judgments.

3 Assessing Software Replacement Success

There were both quantitative and qualitative assessments both regarding the system
pre-rewrite (initial assessment) and post-rewrite (final assessment) situations. Success
was estimated based on the comparison of the results of these assessments. There
were a total of 204 singular assessments (105 related to the initial assessments and 99
related to the final assessments). Assessments were made by system users and experts
mainly from the system user organization. The number of received answers for the
four used approaches (initial;final assessment) is as follows: user satisfaction (#1:
N=61;70), system strengths and problems (#2: N=9;10), problem surveillance (#3:
N=29;13), and expert judgments (#4: N=6;6). Also MODEST [16] was used (as a
fifth approach). For the sake of brevity, those results will be reported separately.

3.1 Survey of User Satisfaction

User satisfaction should be consistently kept at sufficiently high level, since it is espe-
cially hard to re-establish lost user satisfaction and customer trust [11]. Measurement
of end-user satisfaction has been discussed e.g. in [4,15]. User satisfaction survey was
the most central element of this study. It concerned user opinions, level of satisfac-
tion, factors affecting it, and its changes. Additionally, information was gathered
regarding training, and hopes of system changes. Data was gathered using a structured
questionnaire (with options to give free form comments) because this method requires
only limited effort both in terms of data gathering and analysis and enables focusing
on the issues which are deemed as essential based on the earlier knowledge. The sur-
vey was performed via a web-form through Digium's internet questionnaire service.
The questionnaire was sent to all 180 users of CRM related to both initial and final

186 J. Koskinen et al.

assessments. The initial assessment (3. month) produced 61 (34%) returned forms and
the final assessment (12. month) 70 (39%). Users were: customer servants (~50%),
financial applications' handlers (~20%), chiefs (~10%), and users in other roles
(~20%). Their average use experience of CRM was about 7.4 years. The gathered data
concerned general level quality (14 main questions), system views (6), transitions to
three other systems, customer support, and feedback.

Table 1 shows the changes on user satisfaction. It gives the initial and final level
of satisfaction, and the change due to the replacement. User satisfaction level of good
or better can generally be considered sufficient for the system supplier. Therefore, and
for the sake of brevity, the changes are here presented in terms of 'at least rather
strong agreement of the good level of system quality'. Positive change values indicate
increased satisfaction. The questions are listed in descending order based on that.
Main observations include the following. Average general satisfaction appears to have
somewhat increased. The replacement has significantly reduced the out-fashioned
nature of the system. Also, correspondence to the user needs has improved signifi-
cantly. Completeness of data has been considered to have increased, regardless that
the data content was actually almost the same. This notion probably is a result of the
possibility to register more customer data in the new version of the system. Similarly,
the data in the new version was considered to be more up-to-date. The most nega-
tively affected aspect was learnability – the functionalities of the new system were
considered harder to learn. Also the system's response time deteriorated. The new
system requires more powerful computers to run on the accustomed speed.

Table 1. General user satisfaction (%) in terms of 'at least rather strong agreement' (N=61;70)

Question Initial Final Change
Not out-fashioned? 11 63 +52
Corresponds to the current user needs? 13 49 +36
Data is complete? 22 44 +22
Data is up-to-date? 23 41 +18
Adding a customer is easy? 51 58 +7
Enables retrieval of the needed information in a sensible form? 16 22 +6
Flexible? 17 20 +3
Operates correctly? 11 11 0
Satisfied to the system as a whole? 30 29 -1
Enables high-quality customer service? 25 24 -1
Enables retrieval of the needed information in an easy way? 36 34 -2
Enables efficient work? 32 21 -11
Enables sufficiently quick retrieval of the needed information? 35 19 -16
Easily learnable? 44 26 -18
Average 26.1 32.9 +6.8

CRM was considered critical to the fulfillment of work tasks (initial: 80%;final
75%). Also the availability of and use of technical support was evaluated (N=58;67)
and six additional questions were asked and averages calculated. Availability in-
creased (initial: 43%;final 51%). Also the use of support increased (initial: 24%;final
39%). Further development was hoped especially related to (the number of answers
mentioning the hope is given in parentheses): connection to other registers (26), new
functionalities (13), improved usability (8), and instructions or training (8).

 Assessing Software Replacement Success 187

Use of six system views provided by the CRM were also studied more thoroughly.
The results of this user satisfaction query are presented in Table 2. The studied views
were: retrieval (V1), basic data (V2), documents (V3), comments (V4), account num-
bers (V5), and account data (V6). All views were evaluated in terms of the quality
attributes presented in the table. The study revealed large differences between the
views. Views V5 and V6 were clearly problematic: all attributes show a deteriorated
situation as a consequence of the system rewrite. Changes in the logic of use affected
most negatively the ease of use. In comparison views V4 and V3 were clearly im-
proved. Also, data content was mainly improved (except for V5). Amounts of the
used views varied significantly between the initial and final assessments. Table 3
shows the variation in percents calculated from the total amount of responses. The use
of views V2, V3, and V4 clearly decreased, and use of V6 increased. This analysis
has helped to identify significant use pattern changes: V4 became better, but is now
less used, and V6 became worse, but is now more used. This seems to reveal that the
rewrite effort was not optimally allocated.

Table 2. Changes (%) in user satisfaction of views between the initial (N=61) and final assess-
ments (N=70), in terms of the amount of 'satisfaction felt as good or better' (the most affected
categories are written in boldface)

Quality/
System view

General
satisfaction

Ease of
use

Functio-
nality

Data con-
tent

Clarity Total
average

V1 0 -2 +5 +25 -2 +5.2
V2 +7 -1 +2 +4 +5 +3.4
V3 +10 +13 +13 +10 +13 +11.8
V4 +9 +9 +24 +7 +18 +13.4
V5 -30 -30 -28 -12 -21 -24.2
V6 -16 -29 -20 0 -9 -14.8
Average -3.3 -6.7 -0.7 +5.7 +0.7 -0.86

Table 3. Changes (%) in system view use amounts between the initial (N=61) and final as-
sessments (N=70) (the most affected categories are written in boldface)

Use amount/
System view

Used several
times/day

Used daily Used weekly Used rarely Not used

V1 +5 0 -4 -2 +1
V2 -38 +14 +5 +14 +6
V3 -13 0 -12 -6 +32
V4 -18 +6 -18 -4 +35
V5 +1 +3 -8 -2 +6
V6 +26 0 0 -14 -14
Average -6 +4 -6 -2 +11

3.2 Identification of System Strengths and Problems

Understanding of the system replacement success was deepened by analyzing more
closely the system attributes affecting user satisfaction. This was achieved by charting
the strengths and problems of using CRM by semistructured interviews. Interview is a
more suitable method for gathering this kind of in-depth and sensitive information
than questionnaire [13]. Interview provides more degrees of freedom of expression

188 J. Koskinen et al.

and enables interactive seeking of the answers. The length of the interviews was in
average 1 h. Both strengths and weaknesses were charted since mere problem and
solution analysis would not produce reliable and full picture of the situation. Espe-
cially, investigation of the preservation of the strong sides needed to be included.
Qualitative studies do not require large number of interviewees since they focus on
revealing interesting phenomena instead of validating statistical significance of rela-
tions between the studied issues. The initial assessments (1.-2. months) incorporated 9
and the final assessments (12. month) 10 persons. Final interviews were conducted
about 2.5 months after the system replacement. The interviews were recorded and
later transcribed and analyzed. The gathered information included: interviewees'
background, type and frequency of use, use experience, system attributes, strengths,
criticality of the system, benefits and problems of rewriting, and attitude towards
change. Some of the answers were supplemented with a grade on scale 4-10. Addi-
tionally, a list of the possible problems was provided to the interviewees. The listed
problems were classified and weighted based on the information from the interview-
ees regarding their criticality: 1. rank = 3 points, 2. rank = 2 points, 3. rank = 1 point,
other mentioned problems = 0.25 points each.

Results concerning general system quality attributes and identified strengths are
shown in Table 4. CRM was considered critical to business processes. The initial
serviceability was good in terms of reliability, but there were deficiencies for fluent
use. The decreased serviceability was due to low level of user competence and insuf-
ficiency of training and instructions. The use competence of non-technical personnel
decreased even more. Table 5 shows the confronted problems in using the CRM. The
values are derived based on the above described method of weighting the criticality.
Problems related to the limited amount of data fields, and missing data fields were
eliminated by the rewrite. Problems related to new functionalities, lack of established
use practices, and user interface increased. Important affected individual problems
included: instruction/training (initial: 0.0;final 14.5), and change log (8.0;0.0).

Table 4. Changes in general system qualities and mentioned strengths (N=9;10)

Quality Critical-
ity

Service-
ability

Use
compe-
tence

Training Data
content

Clar-
ity

Spe-
ed

Input
flexibil-

ity

Ease
of use

Versatil-
ity

Visual
appear-

ance
Initial 9.6 7.8 9.2 7.2 4 3 3 2 4 1 1
Final 8.0 7.1 8.0 6.2 7 3 0 0 3 4 2
Change -1.6 -0.7 -1.2 -1.0 +3 0 -3 -2 -1 +3 +1
Table legend: Left-side columns: system attributes and their grades. Right-side columns: identified
strengths and the count of the answers having mentioned a strength.

Table 5. Changes in problems in system use weighted with their criticality (N=9;10)

Problem
types

Amount
of data
fields

Functiona-
lities

Missing
data

Missing
common
practices

Missing
data

fields

User
interface

Miscel-
laneous

Total
average

Initial 15.8 14.5 13.8 13.3 10.5 0 0 9.7
Final 0 19.8 6.8 20.3 0 5.8 12.2 9.3
Change -15.8 +5.3 -7.0 +7.0 -10.5 +5.8 +12.2 -0.4

 Assessing Software Replacement Success 189

The expected and the realized advantages of system replacement were surprisingly
very different as summarized into Table 6. Most interestingly, work efficiency was
expected to be improved but it was found to have decreased. This is mainly due to the
transition period, since the new system had not yet reached a level of routine use.

Table 6. Expected and realized advantages and drawbacks of the system replacement

Effect Expected (mentioned) Realized (mentioned)
Advantages Improved work efficiency

Problem elimination and error reduction
Improved customer satisfaction
Possibilities to business improvements
Possibilities to standardize practices

Improved maintainability
Improved system development
Improved data content
Improved parameterization
Improved reliability of data

Disadvan-
tages

Scattered use practices
Weak usability
Losses of data due to data migration
Functionalities not conforming to needs

Time needed to learning and testing
Inconvenient transition period
Decreased work efficiency
Weaknesses in system integration

Almost all users had a positive attitude towards the system change. The impor-
tance of the modernization was recognized. Initially replacement was supported by:
increase in the occurrence of problems, need for modernization, changes of the re-
quirements, and expectations of improved customer service. User experiences regard-
ing the conducted system replacement have mostly been positive. The general impres-
sion regarding CRM after the final assessment was that it is not yet fully satisfactory,
but it was believed that it will develop to be a good tool.

3.3 System Use Problem Surveillance

This part of the study aimed at more closely survey the situations related to the use of
CRM which cause problems in the work-flow. The frequency of appearance, duration,
and impacts of the identified problems in the users' actual working environment were
surveilled. Surveillance aimed at sampling the problem occurrences by selecting a
limited yet representative time period. This approach was selected since using an
information gathering method which requires remembering past events includes a risk
of reduced accuracy of data. The surveillance was planned based on a generalization
of the exception handling approach [10] of the identified problems. Problem was
defined as a situation related to the use of the CRM which either prevents or compli-
cates work tasks, and for which a more effective practice should be defined.

There were 29 users participating in the first problem surveillance of the initial as-
sessment (4. month). 14 of them reported a total of 27 problem cases. Similarly, the
same users involved to the final assessment (14. month). However, 12 of them re-
ported that they had not participated to the final assessment due to their busyness.
Seven users reported that there were no problems during the final assessment period.
Three users reported valid problem cases. A total of 36 problem cases were reported.
Since the use of the CRM was not cyclic, the period of observation could be selected
relatively freely. Since the occurrence of problems was frequent the period was se-
lected to be one week for both the initial and final surveillance. The following infor-
mation was registered for each identified problem: related functionality, description,

190 J. Koskinen et al.

criticality, solution, required time for solving the problem, and timing of occurrence.
The hierarchic structure of the used form was based on this division. For comparison
daily time of use and an estimate of the amount of used system functionalities were
also asked. Since analysis of some of the problems required industrial expertise, the
data was first critically checked and corrected when needed by an industrial expert.

The most commonly confronted problems concerned customer data and its use as
presented in Table 7. The table shows both the initial and final assessments. Almost
all of the problems confronted during the initial assessment were more or less
straightforwardly solved. 78% of the problems were solved by users themselves.
Since mere absolute counts do not suffice as a basis for evaluations without point of
comparison, the initial and final assessments were compared. Also the time needed in
solving the problems was estimated. Surprisingly, the total reported needed time to
solve all of the problems was only 59 minutes. Since it is likely that due to the busy
nature of their work, the respondents had not reported all the confronted problems, the
time estimate, however, is only a lower bound. By using this figure, the minimum
required time for the whole population of CRM users within the user organization
would be about 6 hours/week. So, the additional time needed to solve the problems
was small especially while taking into account the reported criticality of the problems.
22% of the problems were considered detrimental to the use of CRM. 48% slowed
down the work and 30% were more or less inconsequential problems.

Table 7. Problem counts during the surveillance periods related to customer data (N=29;13)

Problem
type

Retrieval:
awkward-

ness

Retrieval:
missing data

Modifica-
tion

Input: too
short data

fields

Input: too
few data

fields

Input:
miscella-

neous

Total

Initial 10 3 3 6 2 3 27
Final 0 0 19 0 0 16 35
Change -10 -3 +16 -6 -2 +13 +8

Many of the problems confronted during the final assessment were straightfor-
wardly solved. 53% of problems were solved by users themselves. 33% of the prob-
lems were solved by delegating them to the information processing unit or by using
an alternative practice. Three problems required help from a colleague. The total
reported time required to solve all of the problems was 143 minutes. The needed time
per problem varied from 1 to 15 minutes. The most elaborate were the problems re-
lated to the new multi-phase data input logic. 22% of the problems were considered
totally detrimental to the use of CRM. 59% of the problems were considered detri-
mental to the use of CRM. 11% were considered as somewhat slowing down the
work. 8% were more or less inconsequential problems. Problems which were consid-
ered totally detrimental were related to the lack of instructions, hard-to-understand
error messages, and input of the account identification numbers. The analysis suggests
that the system replacement have successfully and almost totally eliminated problems
related to the awkwardness of data retrieval, missing data, insufficient length of data
fields, and missing data fields. However, new problems have been identified related to
the data modifications and previously unclassified, miscellaneous problems, including
e.g. incapability of copying customer information, and awkwardness of customer

 Assessing Software Replacement Success 191

information input. These issues seem to be problems especially to a specific kind of
user group mainly related to the information input and modification. Since they seem
to be severe they should be taken seriously while further developing CRM. Part of
these problems may be due to the relative inexperience of using the new system and
problems in using the new system without adequate instructions.

3.4 Expert Judgments

Expert judgments were used to supplement the previously described assessment ap-
proaches by including the aspects of technical quality and business value of the sys-
tem. Planning of the evaluation framework was based on the system evolution strat-
egy selection criteria presented in [1]. The classification presented in [18] was used
for cost assessments, cf. [15]. Technical judgment focused on the maintainability,
reliability and obsolescence of the CRM. Judgment of the business value focused on
business value, value of the data content, and quality of use.

The data was gathered mainly via interviews. They were supplemented with a form
into which the interviewees filled in numeric values for the criteria. Initial assess-
ments (4. month) and final assessments (13. month) both included the same inter-
viewees: three technical experts from the system supplier (technical quality), and

Table 8. Expert judgments of the CRM's technical quality (N=3;3)

Quality Initial Final Change
General maintainability 2.0 4.0 +2.0
 Simplicity 1.7 3.3 +1.6
 Analyzability 2.0 3.7 +1.7
 Structuredness 1.5 4.0 +2.5
 Sufficiency of the OS-support 4.0 4.0 0
Reliability 4.0 4.0 0
General technological unobsolescence 2.3 4.3 +2.0
 Software unobsolescence 1.3 4.0 +2.7
 Database unobsolescence 1.7 4.3 +2.6
 Obsolescence of the software/hardware infrastructure 3.0 4.3 +1.3
Average 2.35 3.99 +1.64

Table 9. Expert judgments of the CRM's business value (N=3;3)

Quality Initial Final Change
General business value 2.0 4.0 +2.0
 Quality of the data content 2.0 3.7 +1.7
 Value of the data content 3.3 5.0 +1.7
 Independence of CRM on other systems 2.0 2.7 +0.7
 Dependency of other systems on CRM 5.0 5.0 0
General quality of use 2.0 3.7 +1.7
 Functionality 2.7 3.7 +1.0
 Accuracy 3.3 4.5 +1.2
 Interoperability 3.7 3.3 -0.4
 Usability 2.3 3.0 +0.7
 Data security 2.0 4.0 +2.0
 System efficiency 3.7 3.3 -0.4
 Data usability 3.3 4.0 +0.7
Average 2.87 3.84 +0.97

192 J. Koskinen et al.

three business experts from the system user organization (business value). Table 8
shows the results as averages calculated from the individual expert judgments for the
technical quality. All listed qualities are virtues. The scale used in the table is similar
to all qualities: e.g. 1 denotes extremely poor value, and 5 extremely good value.
Similarly, Table 9 shows the results for the business value. All judgments, except for
interoperability and system efficiency show positive change.

4 Summary and Conclusions

This paper described an industrial case study applying four approaches for assessing
the success of performed replacement of a large-scale legacy system (CRM). The
background, phases, and results of the case study were presented. The received results
have helped to understand the evolution of the CRM. The study offered a wide view
of the effects of the replacement, and revealed the changes in the system quality pro-
file. The applied different approaches, methods of data gathering and involved target
user groups contributed to this. The approaches supplemented each other. Table 10
gathers the identified main effects in terms of the studied qualities contributing to the
replacement success and the direction of the change. Generally, the replacement was
successful but some aspects were clearly problematic. The qualities are ordered in the
table roughly according to descending order of positive effects. Improvement was
detected in case of nine system qualities, disimprovement in case of five system quali-
ties, and results concerning four of the system qualities were more or less neutral. The
results provided by the four approaches were mainly consistent. The inconsistencies
mainly concerned easiness of system use and data retrieval, and partly clarity of data,
and changes in the quality of customer service. Possible reasons of the differences
include: the design process of the details of the selected approaches, different views
of the involved target user groups, and emphasis of specific user views. One impor-
tant result was that the interviews revealed many differences in the expected and
realized benefits of the replacement. Most importantly, the system replacement was
expected by the users to improve work efficiency, but that benefit remained not vali-
dated by them, although many quality aspects were clearly improved. Expert judg-
ments were generally more positive than the end user views. Moreover, the study
provided detailed information of the problems and revealed that solving the problems
confronted due to the system demanded unexpectedly small portion of the users'
work-time.

Assessments benefited especially from the successful composition of the group of
the four involved industrial experts. They had sufficient amount of power to make
decisions within their organizations which aided the fulfillment of the assessment
project. Moreover, they were committed and actively participated to the project. Due
to this the related decision making, inspections, and scheduling were fluent and easy.
Even better and more reliable results could have been received if initial assessments
would have been conducted somewhat earlier and the final assessments somewhat
later. Now the initial assessments were partly affected by the already ongoing system
rewrite and the final assessments by the yet somewhat unsteady situation after the
rewrite. In an ideal situation there would be a continued assessment program ongoing
through the whole lifecycle of a modernization project and its follow-up. Basing the

 Assessing Software Replacement Success 193

selection of the metrics on the earlier work increased its reliability. Selecting the met-
rics in cooperation with the persons participating to the measurements was considered
by the involved organizations essential to their fit to the user organizations' needs.
Generally, the assessments as such were successful. Problem surveillance was the
most challenging approach. Users felt that filling in the surveillance form was elabo-
rate and due to their busyness most of them could not fully commit themselves to the
surveillance. This problem was, however, largely only due to the strict schedule of the
project and the users. Additionally, lack of standard practices concerning CRM was a
significant problem during both initial and final assessments. Main reason to this was
lack of user training and instructions regarding the newer practices.

Table 10. Summary of the qualities affecting CRM's replacement success and the direction of
the change identified via the applied four approaches

Assessment approach/ Assessed quality A1 A2 A3 A4 Total
Data content and completeness ++ ++ + ++ ++
Unobsolescence ++ ++ ++
Maintainability + ++ ++
Ease of use, data retrieval +/- - ++ ++ +
Data reliability and currency + + +
Functionality and versatility + + +
Data retrieval form + + +/- +
Correspondence to user needs ++ +/- +
Accuracy, correctness +/- + +
Flexibility and parameterization +/- +/- +/-
General user satisfaction +/- +/-
Serviceability +/- +/- +/-
Reliability +/- +/-
System integration, interoperability - +/- -
Data modification -- -
Support for efficient work -- - --
Efficiency, speed of data retrieval -- -- - --
Learnability, training, use competence -- -- - - --
Total + +/- +/- ++ +

Table legend: A1: survey of user satisfaction, A2: identification of system strengths and problems, A3:
system use problem surveillance, A4: expert judgments. Effects: ++ very positive, + positive, +/- unclear or
neutral, - negative, -- very negative. Not studied issues are indicated by empty slots.

This study has its rightful place among the empirical case studies in this relatively
scarcely studied area. Each conducted case study helps in its part to form the bigger
picture of the issues which are relevant to software process improvement. The obser-
vations reported in this paper are useful in improving the application of different ap-
proaches for assessing software replacement and modernization success in industrial
settings. Especially the study exemplifies issues which are relevant to the assessment
of database-centric legacy systems. The generalization of the results in sense of iden-
tifying evolution patterns of system replacement and modernization projects is
obviously limited and was not aimed at since this is an individual case study. Further
studies conducted in some organizations replicating this study and a comparative
analysis would be useful in revealing those and other issues.

194 J. Koskinen et al.

References

1. Aversano, R., Esposito, R., Mallardo, T., Tortorella, M.: Supporting Decisions on the
Adoption of Re-engineering Technologies. In: The Eight European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2004) 95-104. IEEE Computer Soc.

2. Bennett, K., Ramage, M., Munro, M.: Decision Model for Legacy Systems. IEE Proceed-
ings - Software 146, 3 (1999) 153-159

3. Dehning, B., Richardson, V.: Returns on Investment in Information Technology: A Re-
search Synthesis. Journal of Information Systems 16, 1 (2002), 7-30

4. Doll, W., Torkzadeh, G.: The Measurement of End-User Computing Satisfaction. MIS
Quarterly 12, 2 (1988), 259-274

5. Kankaanpää, I., Sivula, H., Ahonen, J.J., Tilus, T., Koskinen, J., Juutilainen, P.: ISEBA -
A Framework for IS Evolution Benefit Assessment. In: Proc. of the 12th European Conf.
Inform. Technology Evaluation (ECITE 2005) 255-264. Academic Conferences

6. Koskinen, J., Ahonen, J.J., Sivula, H., Tilus, T., Lintinen, H., Kankaanpää, I.: Software
Modernization Decision Criteria: An Empirical Study. In: The Ninth European Conf. Soft-
ware Maintenance and Reengin. (CSMR 2005) 324-331. IEEE Computer Soc.

7. Koskinen, J., Lintinen, H., Sivula, H., Tilus, T.: Evaluation of Software Modernization Es-
timation Methods Using NIMSAD Meta Framework. Publ. of the Information Technology
Research Institute 15 (2004). ITRI, Univ. of Jyväskylä, Jyväskylä, Finland

8. Lehman, M., Perry, D., Ramil, J.: Implications of Evolution Metrics on Software Mainte-
nance. In: Proc. of the International Conference on Software Maintenance – 1998 (ICSM
1998) 208-217. IEEE Computer Soc.

9. Lientz, B., Swanson, E.: Problems in Application Software Maintenance. Communications
of the ACM 24, 11 (1981) 763-769

10. Saastamoinen, H.: On the Handling of Exceptions on Information Systems. Jyväskylä
Studies in Computer Science, Economics and Statistics, Vol. 28. University of Jyväskylä,
Jyväskylä, Finland (1995)

11. Sahin, I., Zahedi, M.: Policy Analysis for Warranty, Maintenance, and Upgrade of Soft-
ware Systems. Journal of Software Maintenance: Res. and Pract. 13, 6 (2001) 469-493

12. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems - Software Tech-
nologies, Engineering Processes, and Business Practices. Addison-Wesley (2003)

13. Seaman, C.B.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering 25, 4 (1999) 557–572

14. Sneed, H.: Estimating the Costs of Software Maintenance Tasks. In: International Confer-
ence on Software Maintenance (ICSM 1995) 168-181. IEEE Computer Soc.

15. Sneed, H., Brössler, P.: Critical Success Factors in Software Maintenance – A Case Study.
In: International Conference on Software Maintenance (ICSM 2003) 190-198

16. Tilus, T., Koskinen, J., Ahonen, J.J., Sivula, H., Lintinen, H., Kankaanpää, I.: MODEST:
A Method for Early System Modernization Pressure Estimation (2005), submitted (Univ.
of Jyväskylä, Jyväskylä, Finland)

17. Verhoef, C.: Quantitative IT Portfolio Management, Science of Computer Programming
45 (2002) 1-96

18. Visaggio, G.: Value-Based Decision Model for Renewal Processes in Software Mainte-
nance. Annals of Software Engineering 9 (2000) 215-233

19. Warren, I., Ransom, J.: Renaissance: A Method to Support Software System Evolution. In:
Proc. of the 26th Annual International Computer Software and Applications Conference
(COMPSAC 2002) 415-420. IEEE Computer Soc.

Leveraging Feedback on Processes in SOA Projects

Daniel Lübke and Kurt Schneider

Faculty of Electrical Engineering and Computer Science,
Software Engineering Group, University Hannover

{daniel.luebke, kurt.schneider}@inf.uni-hannover.de

Abstract. The development of large, business-critical software systems often
requires several improvement cycles. There are many users and stakeholders
involved, as well as a variety of large and complex business processes. How-
ever, such an iterative or evolutionary development process can be costly and
time-consuming, when problems are reported slowly and changes take time. We
propose a technical approach to generate user interfaces for SOA systems and
to weave an experience forum service into the system. By tightly integrating the
experience exchange mechanisms with the system itself, we benefit from SOA
being so closely related to business processes. We use lessons learned in build-
ing experience bases: Generating both user interfaces and experience forum
components provides opportunities to index and relate feedback automatically.
This has been a key to effective experience reuse. Improved feedback and more
effective communication can make SOA-based development of large software
systems faster and less costly.

1 Introduction

Information systems are designed to support a large number of users in process-
oriented applications. Due to the process-oriented nature, Information Systems have
to be flexibly designed and need extensive customization to optimally match the
processes of a company. Therefore, these projects are highly resource-intensive and
carry high risks.

But Information Systems not only need to match the processes, they need to sup-
port the users fulfilling their tasks within the processes. This means e.g. that the users
need to be guided through their tasks and get assistance if functionality is non-trivial.
Many factors, like screen design, flexibility and functionality of the business proc-
esses, and online assistance, like help systems, become very important in this regard.

However, designing these elements correctly is problematic due to the large and,
thus, inhomogeneous user base and the complexity formalized business processes
tend to have. Normally, the formal process is different from the lived one. Therefore,
communication becomes an essential success factor, especially under the above-
mentioned circumstances. This is the only way software and business process-related
problems can be easily found and fed back to the development organization, which
can fix the problems in one of the next iterations. Furthermore, user acceptance of the
final product will depend on involving them into the project.

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 195 – 206, 2006.
© Springer-Verlag Berlin Heidelberg 2006

196 D. Lübke and K. Schneider

2 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural style used for building and
combining large Information Systems. SOA aims to better support process-
oriented applications than traditional design methods by aligning the software
directly with the business process. The software system is, therefore, composed of
fine-grained and loosely-coupled software components, so-called services. Ser-
vices are normally remotely accessible. Each service offers functionality in a busi-
ness sense, e.g. “add customer”, which directly relates to business opportunities or
business functions.

These services are grouped by so-called compositions into running processes. The
composition describes a workflow which calls services as appropriate and resembles
the corporation’s business processes [1]. A particular composition corresponds to a
business process. It is more formalized and enriched by technical information.

Since SOA projects try to directly support a company’s processes the resulting
software and compositions are highly company specific. Because of this, SOA pro-
jects are normally customization or custom software development projects, like the
one described in [2].

The best known technology to realize SOAs is Web services. Web services are
software components accessible by the SOAP protocol [3] standardized by the W3C.
The Business Process Execution Language (BPEL) [4] is used to compose Web ser-
vices to running processes. These BPEL compositions are accessible via SOAP as
well, so that client applications or integration middleware are able to call them like a
normal Web service. All larger software manufacturers are offering Web service
interfaces to their Information Systems. For example, SAP embraces Web services in
their ERP software and the Netweaver Platform1. Development solutions and frame-
works are as well widely available for the Java and .Net platforms to offer service
interfaces by easily creating Web services on top of existing or newly-developed
applications.

3 Experience Feedback in Software Development

Development of complex software systems is a knowledge-intensive endeavor. De-
velopers do not only need technical skills, but also domain knowledge, user interface
design capabilities, and so forth. Whenever many roles and stakeholders are involved,
large projects will rarely meet all customer requirements at the first attempt. There is
usually a lengthy period of building, using, and improving the system.

With SOA, such a complex system is structured in a number of independently de-
veloped services that need to cooperate as an integrated system. There is an abun-
dance of aspects that developers need to consider when they create SOA systems or
services:

- Usefulness: Functionality of the services and options to choose from.
- Usability: Interface of an orchestrated (i.e., integrated) SOA system and how

well it supports tasks in their respective work contexts.

1 http://www.sap.com/solutions/netweaver/

 Leveraging Feedback on Processes in SOA Projects 197

- Process: The order of actions performed by the system or required by users
following a business processes.

Developers typically lack domain knowledge; they do not know what customers and
users may want. At the same time, customers and users do not know what could rea-
sonably be expected from such a system. Fischer has called this the “symmetry of
ignorance” [5]. Due to the wicked nature of the problem, and the symmetry of igno-
rance, several iterations and improvement steps will be needed to produce a satisfac-
tory SOA system [6].

Experience-based process improvement was established with a similar problem in
mind: Providing an ideal software process is a wicked problem, too [7]. It faces simi-
lar challenges as SOA system development: several roles and stakeholders need to
reconcile their views of the product and the underlying process, and no stakeholder
has a good understanding of the other positions: a multi-faceted symmetry of igno-
rance. Therefore, one should envisage an evolutionary improvement phase for both
SPI and SOA.

The core driver of evolution in both settings is experience: We define

experience =Def an observation in a real situation,

accompanied by an emotion
leading to a (more general) conclusion.

In the case of experience-based process improvement, Basili’s experience factory

and experience base concepts have initiated several other approaches [8]. At Daim-
lerChrysler, for example, a large-scale experience-based SPI project (SEC) was car-
ried out in the 1990ies [9]. Its intention was to reuse experience from actually doing
something (“observation” in software development) as a driving force for improve-
ment. In [10], a number of findings on realistic and unrealistic assumptions about
experience exploitation were reported. These findings have several concrete implica-
tions for the construction of a computer-based experience exchange mechanism (often
called “experience base”). Those implications were described in [11]. Experience was
found to be a fragile material that can be a catalyst for processes, but need to be han-
dled with care:

- Effort to write to an experience base must be strictly minimized in order to
lower the input threshold.

- Reported experiences must be compared and engineered, since raw experi-
ences will rarely be reused.

- Spreading experiences and best practices (as derived by experience engineer-
ing) needs to be actively supported. For example, “putting anything on the
web” is never sufficient for reuse.

- In fact, the entire cycle of identifying, collecting, engineering, and spreading
experiences needs to be actively pushed. This is the task of an organization
like the “experience factory”.

- Search machines are mostly inadequate for experience bases. Writers refuse
to attribute and describe their experiences sufficiently, and readers should be
allowed more associative access to experiences relevant to their task at hand.

198 D. Lübke and K. Schneider

Indexing experiences and derived material (best practices) by the process
steps in which they were encountered has shown to be an effective mean of
organizing an experience base [12].

- The ability to support easy feedback and fast evolution is crucial for the suc-
cess of experience-based evolution.

Since SOA shares several characteristics with SPI, it is rewarding to consider ex-
perience-based approaches to foster SOA evolution. By adopting the findings
(“meta-experiences”) from experience-based SPI, we take the above-mentioned
lessons seriously. We propose to support SOA evolution by adding experience ex-
ploitation mechanisms. Their usefulness has been demonstrated in the (similar)
realm of SPI [11].

4 Understanding Information Flows

Based on the above comparison of experience-based SPI and SOA evolution, the
situation of feedback in SOA evolution can be analyzed in more depth. Figure 1
depicts a typical situation in the FLOW notation for information flows [13]. FLOW
is a research project at the University of Hannover. FLOW addresses many aspects
of information flow optimization in software projects, such as quality technique
tailoring, flow catalyst techniques or tools [10]. In this paper, only the basic nota-
tional elements are used to illustrate how our approach can facilitate feedback in
SOA projects.

Stakeholder
Representatives

Development Team
User Community

Requirements/
Change Requests

Programm

Stakeholder
Representatives

Development Team
User Community

Requirements/
Change Requests

Programm

Fig. 1. Information Feedback Flows in SOA projects

Face symbols denote people or groups of people. Information coming from those
sources is denoted by a dashed arrow, indicating the fragile nature of this flow. It can
easily be interrupted, it is hard to repeat later (due to oblivion), but it can be fast when
one person simply talks to another. In most process models, “talking” relationships

 Leveraging Feedback on Processes in SOA Projects 199

are not denoted. As a consequence, those relationships depend on personal commit-
ment – and often never occur.

As figure 1 shows, feedback from SOA users reaches the development team only
after three problematic information transfer steps; the first flow requires people to
take the initiative and engage in communication; stakeholder representatives need to
remember this communication and invest effort in writing a change request. After
some time, the developers will need to invest some more effort to read and understand
the change request. There were three information flows: memorizing, writing, and
reading transformation operations are required. If one fails or is omitted (e.g., in order
to save effort), there is no flow reaching the development team. But even if it reaches
the team, the transformations often cause misunderstandings. Each flow is not en-
couraged, but rather discouraged by personal effort, time invested, and unclear re-
wards.

There are variants to overcome the problem:

− On-site customers try to bridge the gap between the user community and develop-
ers. This works if and only if on-site customers can represent the entire community
well enough. SOA systems are typically used by large and heterogeneous user
groups. In addition, one on-site customer can hardly address all usability and busi-
ness process, and system functionality issues at the same time. The spectrum is too
wide, and a single person cannot do as much work and also report it.

− The Microsoft Report Mechanism (see figure 5a) invites users to report problems
when and where they occur. This is definitely an interesting concept. In our per-
sonal environment, practically nobody ever reports a problem to Microsoft. We
heard concerns about reporting outside the own company, when you do not exactly
know what happens to the reports and what goes along with it. Those concerns can
kill a good concept.

We conclude that we need to offer all real users (not just one representative) a chance
to easily report experiences. They need to know who will see their contributions, and
they should receive fast responses and see improvement they have initiated. For that
purpose, we designed mechanisms to embed experience exchange with the tasks-at-
hand, index them by their respective position in the business process, and facilitate
fast feedback by automating orchestration, user interface generation, and experience
administration.

5 Integrated Experience Forum

To improve the communication it is essential to short-circuit the end-users and the
development team. Since all affected people are normally distributed through all
company’s locations, the communication needs to be technically supported. Nor-
mally, electronic media, like Intranets or email, are available at nearly all companies
and could be used for accelerating and improving the communication. However, the
separation of email clients and browsers from the actual Information System adds
hindrance and reduces the likelihood of user feedback. Therefore, it is necessary to

200 D. Lübke and K. Schneider

further reduce the effort necessary to provide feedback for improving the software
and the business processes.

In order to shorten the feedback cycle we propose an Experience Forum similar
to the Experience Base [8, 11]. The main difference between an Experience Forum
and an Experience Base is the target group: While an Experience Base is used for
sharing experiences within a development organization only, the Experience Forum
is meant to extract experiences from the user community and share it among all
users and the development organization. Consequently, the Experience Forum is a
communication platform supposed to connect the user community and the devel-
opment organization. Its integration into a project’s communication structure can be
seen in figure 2.

Stakeholder
RepresentativesUser Community

Requirements/
Change Requests

Programm

Experience Forum

Development Team

Community of Practice

Fig. 2. Integration of the Experience Forum into the SOA project

PM
too low

Approved Rejected

Make
decision

Edit
selected

Difference
visualized

Visualize
difference

Edit PM

X

Integrated
Experience Forum

Main Screen

Business Process
used for interface

generation

Fig. 3. Prototype screen of automatically generated user interfaces with Experience Forum

 Leveraging Feedback on Processes in SOA Projects 201

The Experience Forum is tightly integrated into the client application as can be
seen in figure 3.In our prototype application it is implemented as a sidebar, showing
context sensitive information about the current process step. Furthermore, the sidebar
allows the user to add new experiences, to submit bug reports and suggestions, and to
rate other users’ experiences. The rating of experiences can be used to sort them. This
is important if, as in our case the sidebar, the space available for displaying the ex-
periences is limited. The rating assures that the best and most interesting experiences
are displayed first and are therefore visible by default.

In many Experience Bases the user has to categorize his or her experiences. This is
done by either filling in the context information in the experience description or by
navigating in the Experience Base to the process step and submitting the experiences
there. The advantage of integrating the Experience Forum into the process-supporting
system is the availability of context information: The system uses the current process
step for automatically indexing all information and experiences. All information is
associated and linked to the current step. If the business process changes and the busi-
ness function is moved, all information is moved as well.

This greatly reduces the effort needed for experience management, especially if it
is combined with methods for automatically generating user interfaces from the same
business processes [14]. In this scenario the whole client software is based on busi-
ness process descriptions which it can use to display the user interface and retrieve all
information and experience available for the current user.

Seeding of experience instruments is a critical success factor [11]. In case of the
Experience Forum the initial seeding can be the user manual and the descriptions
extracted from the business processes. This information is valuable to the user and
can attract attention to the Experience Forum fostering user activity. This way the
Experience Forum becomes the single source for exchanging and retrieving informa-
tion and experiences about the Information System: User Documentation, experi-
ences, feature requests and bug reports are all handled within the system and are
directly accessible during the normal course of work.

All differences between Experience Bases and Experience Forums are illustrated in
table 1.

6 Experience Forum Prototype

At our department a prototype Experience Forum has been developed. Our aim was to
develop software which can easily be integrated into SOA-style applications. Since
Web services are the most dominant implementation technology for SOA, we decided
to offer the Experience Forum as Web services accessible by all applications. There-
fore, all software can access the Experience Forum and integrate its functionality and
profit from it.

As a foundation we used an existing Experience Base [15] which contained all
functionality needed by the Experience Forum: The users can submit and retrieve
experiences attached to a process description. While the process description originally
resembled a development process, it is used for describing business processes in the
Experience Forum. Experiences can be rated and commented on.

202 D. Lübke and K. Schneider

Table 1. Deriving concrete design recommendations for experience-based SOA

SPI/
Experience Base

SOA/
Experience Forum

Our conclusions for SOA

Minimize effort for
writing and organiz-
ing SPI experiences

(same) Offer experience editor integrated with
the SOA product: “no single click away”

Fast experience
engineering required

Experiences on differ-
ent aspects need to be
treated differently. Fast
reactions in all cases!

Desired reactions include:
- developers improve the system
- peer users report better ways to use

the system
- process problems get resolved by the

domain experts
Spread experience
and reactions actively

Improve the system or
respond to where the
users work on similar
tasks.

Embed experience display into all rele-
vant SOA system tasks. Show answers to
complaints, point to improvements made.

Experience factory
for software process
issues, with experi-
ence base

Community of users,
blackboards (e.g.
“wikis”) for developers
and domain experts

Different experience mechanisms are all
mapped to the SOA user interface

Development process
as index and search
mechanism

Underlying business
process for indexing
and searching

All experience input, all complaints, and
all kinds of experience output are indexed
by already modeled process steps and
displayed in their context. These process
steps allow finer indexing than the devel-
opment process phases.

Flexible experience
base design (generat-
ing parts [15])

Low-threshold design
for all changes

Generate user interface, add experience
portion, and manage references automati-
cally.

Focus group are a
limited number of
software developers

Focus group are a large
group of normal users

The Experience Forum for supporting
normal users must be very easy to use,
and the experiences and information must
be automatically indexed to manage a
large user base, e.g. by attaching them
automatically to the active process step.

Experience Base is
normally available
via the Intranet

Experience Forum is
directly integrated into
the Application

The direct integration into the application
reduces the threshold of experience feed-
back by the users.

Experience Base is
seeded with process
guidelines and tem-
plates.

Experience Forum is
seeded with user manu-
als.

The Experience Forum can utilize seeding
contents which has to be produced by the
project as well.

A wiki and a normal Forum are available for storing longer texts as well. The Ex-
perience Base is implemented as a J2EE application running on a JBoss application
server.

The Web services were added on top the internal business logic layer of the Ex-
perience Base, which was implemented using Session Beans. Thus no changes to the
old code base were needed.

 Leveraging Feedback on Processes in SOA Projects 203

Client Application

Application Server
(with BPEL engine)

Experience Forum

Business
Process

based on

attached to

call functionality
& send user

interface via
SOAP

Retrieve exp.
via SOAP

Fig. 4. Main Design of the Prototype System

The existing web interface was not changed and remained operational. However,
newer systems can access the Experience Forum by calling the corresponding Web
services. The number of systems accessing and supported by the Experience Forum is
not limited: Therefore, one installation can be integrated into many Information Sys-
tems. Figure 4 shows the overall system architecture.

7 Discussion

The basic premise – getting user feedback for improving a software product – in itself
is not new. The field of Requirements Engineering tries to get as much information
about the software from the user, and agile methods – like Extreme Programming [16]
– use very direct customer/user interaction by having an On-Site-Customer. However,
all these approaches reach their limits when confronted with a large user base: One
cannot interview all users of a system nor get feedback from them, and one On-Site-
Customer cannot represent the whole user community.

Software companies and open source communities face the same problem: Their
user base is probably distributed around the globe but feedback is necessary to further
improve the product and find bugs. One way of getting feedback of occurred errors is
the automatic collection of stack traces and error descriptions. If applications crash a
stack trace is produced and the user is offered to send it to the developers. For exam-
ple, Microsoft offers this functionality in Windows XP (see figure 5a) and the Mozilla
Foundation uses the Talkback Agent to do the same for their Firefox browser (see
figure 5b).

While such reports offer valuable information to the developers for fixing fatal
bugs causing program crashes no feedback is given on all other aspects like usability
or functional requirements

The KDE desktop environment has a crash assistant as well, offering the user to
copy a stack trace to the clipboard in order to send it to the developers. Furthermore,
each KDE application has a help menu entry for submitting bugs and wishes. This
entry opens a web browser for adding the information to the Bugzilla2 bug tracking
system. While Bugzilla allows many kinds of feedback, like bug reports and feature

2 http://bugs.kde.org/

204 D. Lübke and K. Schneider

requests, it is separated from the original application. The corresponding item in the
help menu of KDE’s applications is not prominent and direct access within the ap-
plication to other users’ experiences and comments is not possible.

Fig. 5. (a) Windows Crash Report and (b) Mozilla Firefox Quality Feedback Agent

Many tax software packages like T@x developed by Buhl3 are offering additional
information in a side-pane. This information contains the relevant tax laws and other
sections of the user’s manual. However, the user cannot edit these texts and conse-
quently no feedback can occur.

One problem common to all of these approaches is the communication of valuable
information and experiences to an external party. One cannot know what is done with
the stack trace or a memory dump possibly containing private data. Therefore, many
people hesitate to submit their information to unknown or anonymous parties. If
communicated in a right way to the users this can change with in-house projects, like
most SOA projects are: Because information is only exchanged within the same or-
ganization and its trusted partners, information exchange can be less restricted.

Because users cannot only submit experiences but also can read everything, the Ex-
perience Forum also becomes a means of establishing a Community of Practice [17]:
All users can share their experiences with each other. Because the Experience Forum is
tightly integrated, the threshold is minimized for communication. People using the same
functions and have access to them by means of the Information System are automati-
cally able to communicate with each other and exchange ideas and experiences.

Furthermore, no additional security policies have to be maintained in separate discus-
sion forums because the experiences can only be accessed using the Information System.

Besides these differences all approaches including our own share one challenge:
The information gathered by the user feedback need to be fed into the development
process. This is heavily dependent on the development methodologies used. For ex-
ample, in XP the On-site customer would be responsible to read the feedback and
form story cards out of them. These can be easily integrated into the Planning Game.
In process-oriented projects someone needs to be responsible to collect the feedback

3 http://onlineshop.buhl.de/buhl?art=207

 Leveraging Feedback on Processes in SOA Projects 205

and create the corresponding change requests. These change requests need to be ap-
proved by a change control board before they are passed to the development team.

The Experience Forum combines some existing approaches of user feedback and
experience exchange. It combines the advantages of these mechanisms by providing
information directly in the application and allows feedback to the developers as well
as experience exchange in the user community possibly fostering a Community of
Practice. Combined with the possibility to share information only in-house, the Ex-
perience Forums provides a very effective way of interacting with a large number of
users.

However, an Experience Forum can only supplement Requirements Engineering
practices. It is a mechanism for refining requirements and processes after the first
production release. It cannot replace elicitation of initial requirements.

Furthermore, there are some risks associated, if the Experience Forum is not well
embedded in the software project. For example, users submitting feedback expect that
their feedback will lead to changes. If this does not happen, submitters will become
unsatisfied and frustrated and will not provide further feedback – perhaps even in
interviews, surveys etc. Also, it can be possible to collect too much feedback, which
cannot be handled within the project’s team. Although this scenario is unlikely as
demonstrated by the user of Experience Bases, projects should plan how to handle
such cases. For holding such many experiences and comments per process step, the
Experience Forum needs to be extended: In such cases, search functionality and filter-
ing need to be implemented.

8 Conclusions and Outlook

Large software projects trying to support business processes can benefit by using
SOA as their design principle. SOA allows the direct support of business processes by
arranging software components along business processes. Such projects promise to
support business process more directly. For optimal support user feedback is neces-
sary – which is not easy due to the large and inhomogeneous user base.

Our proposed solution is an Experience Forum. We build upon the experiences
made with Experience Bases for improving the development process. Experience
Forums allow information and experience exchange directly from within the applica-
tion from the users to other users and the development project. By being available
whenever the software system is used, Experience Forums are a light-weight solution
for accessing and submitting information. By integrating the Experience Forum into
the SOA landscape and by binding all information items to the business process, ac-
cessing these items is easy and the manual management can be minimized. Providing
the Experience Forum functionality as yet another Web service, it is mechanism that
can be used by any application.

Future work will address the following problems:

− Mechanisms of adopting elicited feedback at the developer side. As Experience
Bases have shown, indexing feedback is crucial. We assume there is a potential for
supporting reuse further by optimizing change and maintenance processes,

− After finishing our feasibility study and using the approach in University, we are
now preparing to apply it in a large-scale Industrial environment.

206 D. Lübke and K. Schneider

Our current implementation demonstrates the feasibility of both generating user inter-
faces for SOA systems, and generating experience forum access along the way. Our
experience in using experience exploitation mechanisms in Industry showed us how
important it is to make feedback available at the developers’ task at hand. Using sys-
tem users’ work context in the system as an index to locate their feedback and experi-
ences offers a concrete and practical solution for many companies with large SOA
systems.

References

1. Henkel, M., J. Zdarvkovic, and P. Johannesson. Service-based Processes - Designfor Busi-
ness and Technology. in ICSOC'04. 2004. New York, USA: ACM.

2. Zimmermann, O., et al. Second Generation Web Services-Oriented Architecture in Pro-
duction in the Finance Industry. in OOPSLA'04. 2004. Vancouver, Canada: ACM.

3. Mitra, N., SOAP Version 1.2 Part 0: Primer, 2003, http://www.w3.org/TR/soap12-part0/.
4. OASIS, OASIS Web Services Business Process Execution Language (WSBPEL) TC, 2006,

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
5. Fischer, G., Social Creativity, Symmetry of Ignorance and Meta-Design. Knowledge-

Based Systems Journal, 2000 13(7-8): p. 527-537.
6. Rittel, W.J. and M.M. Webber, Planning Problems are Wicked Problems, in Developments

in Design Methodology, N. Cross, Editor. 1984, John Wiley & Sons, 135-144: New York.
p. 135-144.

7. Schneider, K. Experience Based Process Improvement. in European Conference on Soft-
ware Quality (ECSQ 2002. 2002. Helsinki, Finland: Springer.

8. Basili, V., G. Caldiera, and D.H. Rombach, The Experience Factory. Encyclopedia of
Software Engineering. 1994: John Wiley and Sons.

9. Houdek, F. and K. Schneider, Software Experience Center. The Evolution of the Experi-
ence Factory Concept., in International NASA-SEL Workshop. 1999.

10. Schneider, K. Realistic and Unrealistic Expectations about Experience Exploitation. in
Conquest 2001. 2001. Nürnberg, Germany: ASQF Erlangen.

11. Schneider, K. and T. Schwinn, Maturing Experience Base Concepts at DaimlerChrysler.
Software Process Improvement and Practice, 2001. 6: p. 85-96.

12. Schneider, K. and J.v. Hunnius. Effective Experience Repositories for Software Engineer-
ing. in International Conference on Software Engineering. 2003. Portland, Oregon.

13. Schneider, K. and D. Lübke. Systematic Tailoring of Quality Techniques. in World Con-
gress of Software Quality 2005. 2005. Munich, Germany.

14. Lübke, D. and T. Lüecke. Using Event-Driven Process Chains for Model-Driven Devel-
opment of Business Applications. in Multikonferenz Wirtschaftsinformatik 2006, Workshop
XML4BPM. 2006. Passau, Germany.

15. Buchloh, T., Erstellung eines Baukastens für Experience Bases (Creation of a Construc-
tion Kit for Experience Bases), in Software Engineering Group. 2005, University Han-
nover: Hannover.

16. Beck, K., Extreme Programming Explained. 2000: Addison-Wesley.
17. Wenger, E., Communities of Practice - Learning, Meaning, and Identity. 1998, Cambridge,

England: Cambridge University Press.

Taba Workstation: Supporting Software Process
Improvement Initiatives Based on Software Standards

and Maturity Models

Analia Irigoyen Ferreiro Ferreira1,2, Gleison Santos1, Roberta Cerqueira2,
Mariano Montoni1, Ahilton Barreto1, Ana Regina Rocha1, Sávio Figueiredo1,

Andrea Barreto1, Reinaldo C. Silva Filho1, Peter Lupo1, and Cristina Cerdeiral1

1 COPPE/UFRJ - Federal University of Rio de Janeiro
POBOX 68511 – ZIP 21945-970 – Rio de Janeiro, Brazil

{gleison, montoni, ahilton, darocha, figueiredo,
ansoares, cabral}@cos.ufrj.br

2 BL Informática Ltda.
Av. Visconde do Rio Branco 305/8th floor - Niterói - RJ - ZIP 24020-002

{analia, roberta}@blnet.com

Abstract. International software standards and maturity models play an impor-
tant role in Software Process Improvement initiatives defining best practices
and providing knowledge to the definition of software processes. Nevertheless,
the definition and deployment of software processes based on that standards and
models is an expensive and knowledge intensive task. This paper describes an
approach to the definition and deployment of software processes in small and
medium size Brazilian companies supported by a Process-centered Software
Engineering Environment named Taba Workstation. It also presents results re-
lated to a software process improvement initiative undertaken in a Brazilian or-
ganization that demonstrates the feasibility of the presented approach.

1 Introduction

Recent research efforts about quality in the software area demonstrate that a concen-
trated effort is imperative to improve software processes in software development
companies [1]. The ability to objectively improve the organization’s processes and
products within time and cost constraints in addition to the improvement deployment
itself is the differential that must be present in software organizations. Moreover,
focus on customer’s needs is very important to guarantee the success of improvement
projects since the success of an organization is totally related to customer’s satisfac-
tion. The increase of productivity and quality are tangible benefits that can be quanti-
fied and equated to a common measure, usually dollars. On the other hand, intangible
benefits such as better quality of work life, better organizational learning and commu-
nications are difficult to quantify and convert to a common measure. Nevertheless, it
is believed that intangible benefits in some cases can represent the biggest payoff to
an organization that invests on process improvement [15]. Hyde and Wilson [16]

I. Richardson, P. Runeson, and R. Messnarz (Eds.): EuroSPI 2006, LNCS 4257, pp. 207 – 218, 2006.
© Springer-Verlag Berlin Heidelberg 2006

208 A.I.F. Ferreira et al.

highlight the intangible benefits in software process improvement and suggest that the
realization of intangible benefits is important and should be factored into decisions to
undertake software improvement initiatives.

Mainly in Brazil, there is an urge to enhance software processes performance
aiming to improve the software products quality and to increase Brazilian compa-
nies’ competitiveness both in national and international markets. Since 1993, with
the foundation of PBQP Software (Subcommittee of Software of the Brazilian Pro-
gram for Software Quality and Productivity), Brazil invests on Software Quality
improvement [2].

One important characteristic of a software process deployment initiative is the se-
lection of an appropriate reference model to be used during the definition of the soft-
ware processes and appraisal of the organization. International standards like ISO/IEC
12207 [3] and ISO/IEC 15504 [4], and software process quality models like CMMI
(Capability Maturity Model Integration) [5] were developed aiming to define the
requirements of an ideal organization, i.e., a reference model to be used in order to
assess the maturity of the organization and its capability to develop software.

Based on these standards and models, Brazilian industry and research institutions
have worked together during the last two years to define the Reference Model for
Brazilian Software Process Improvement (MR-MPS.BR) [6, 7, 8]. Seven maturity
levels were established in the MR-MPS.BR: Level G (Partially Managed), Level F
(Managed), Level E (Partially Defined), Level D (Largely Defined), Level C (De-
fined), Level B (Quantitatively Managed) and Level A (Optimization). For each of
these maturity levels, processes were assigned based on the ISO/IEC 12207 interna-
tional standard and on the process areas of levels 2, 3, 4 and 5 of CMMI staged repre-
sentation. The difference of MR-MPS levels graduation compared to CMMI staged
representation aims to enable a more gradual and adequate software process deploy-
ment in small and medium size Brazilian companies. This model has been deployed
in many companies in Brazil and official appraisals were already conducted.

This paper describes an approach to the definition and deployment of software
processes in small and medium size Brazilian companies started in 2003. The use of
Taba Workstation, a Process-centered Software Engineering Environment (PSEE)
that supports software processes definition, deployment and enactment, is a key factor
of this approach whose goal is to increase the capability of organizations through the
adequate use of Software Engineering techniques in their software processes aiming
to enhance the software products quality and, thus, increase organizational competi-
tiveness. In order to evidence the benefits of this approach we describe its use in a
Brazilian organization, named BL Informática. As results from its quality program,
the company has obtained during this period the ISO 9001:2000 [9] certification, and
has been evaluated on MPS.BR Level F. BL Informática will be evaluated on CMMI
Level 3 process areas by an official SCAMPI appraisal scheduled to July 2006.

The next section describes the Taba Workstation. Section 3 presents how software
processes deployment is carried out with the Taba Workstation use. In section 4,
describes the software process improvement initiative at BL Informática. Section 5
presents the quantitative results of this initiative. Finally, section 6 presents some
lessons learned, and point out future directions and conclusions.

 Taba Workstation: Supporting Software Process Improvement Initiatives 209

2 Taba Workstation

Taba Workstation [17] is a Process-centered Software Engineering Environment
(PSEE) composed of several integrated CASE tools to support software processes
definition, deployment and enactment. Knowledge Management tools are also inte-
grated into the environment to facilitate the organizational knowledge preservation
and support activities execution. The Taba Workstation has been developed since
1990 in the context of an academic project and it is not commercialized. Nevertheless,
it is granted to small and medium size Brazilian organizations with no costs. During
the last years, the Taba Workstation evolved to comply with CMMI levels 2 and 3
processes areas and MPS.BR levels G, F, E, D and C processes.

2.1 Software Processes Definition Based on Software Standards and Maturity
Models in the Taba Workstation

The Software Processes definition approach adopted in the Taba Workstation estab-
lishes phases and intermediary products using the ISO/IEC 12207 as a basis for the
definition of standard software processes. Figure 1 depicts this approach.

Fig. 1. Software processes definition approach in the Taba Workstation

The standard processes and the specialized processes are considered to be organ-
izational level processes. The instantiated processes are project level processes. This
approach guarantees the implementation of some practices of CMMI Level 3 process
areas and MPS.BR Level E, for instance, the establishment of defined processes for
each process area and tailoring criteria of these processes to each project.

During the Standard Process definition phase it is also considered the organizational
software development characteristics related to the work environment, knowledge and
experiences of the teams involved and the organizational software development experi-
ence and culture. From the Standard Process, different software processes can be spe-
cialized according to different kinds of software produced by the organization, (e.g.,
specialists and information systems) and to development paradigms adopted (e.g., object

210 A.I.F. Ferreira et al.

oriented or structured). At this point practices required by the maturity models are in-
cluded in the organizational set of standard processes. The definition of the organiza-
tional standard process for a specific organization is done during the configuration of a
specific PSEE for the organization. The configured environment for the organization
contains not only the standard process and the specialized processes, but also specific
knowledge related to software development and maintenance. By using this environ-
ment, software engineers are able to generate instantiated environments to each of the
projects to be developed.

In order to be used in a specific project, the most adequate specialized process
must be instantiated to satisfy the characteristics of the project (e.g., size and com-
plexity of the product and relevant quality characteristics), development team charac-
teristics etc. At this time, the life cycle model, methods and tools are selected. Once
the software process for a specific project has been defined and a PSEE has been
instantiated, the basic means for software process deployment and enactment are
established. At this point, software engineers have access to several CASE tools de-
signed to support the activities in the instantiated software process of the project.

2.2 Taba Workstation CASE Tools

The CASE tools integrated in the environments offer automated support to: (i) defini-
tion of the organizational set of standard processes; (ii) execution of pilot project
aiming process improvement; (iii) tailoring of the organization standard processes for
a specific project; (iv) definition of the organizational structure [12]; (v) acquisition,
filtering, packaging and dissemination of organizational knowledge [13]; (vi) plan-
ning the organization of specific projects; (vii) time, costs, risks, human resources
planning, monitoring and control [12, 14]; (viii) planning and execution of Configura-
tion Management activities; (ix) identification of software product quality require-
ments; (x) documentation planning; (xi) supporting the planning and monitoring of
corrective actions; (xii) supporting measurement and analysis activities based on the
GQM method; (xiii) project monitoring through the generation of periodic reports and
measures; (xiv) controlling of the activities executed during a specific project; (xv)
requirements management; (xvi) supporting software technical solutions through the
use of design rationale; (xv) supporting software verification and validation planning
and execution; and (xvi) post mortem analysis.

3 Software Processes Deployment with the Taba Workstation

Since 2003 the Taba Workstation is been used by the Brazilian software industry.
The first organizations that used it were part of the Qualisoft Project [10], an initiative
of RioSoft (a non-governmental organization that integrates the Softex Program -
Society for the Support of Brazilian Software Production and Exportation) and the
Federal University of Rio de Janeiro. This ongoing project aims to form a pool of
small and medium size organizations with similar characteristics in order to decrease
the overall cost of processes deployment and increase the feasibility of their quality

 Taba Workstation: Supporting Software Process Improvement Initiatives 211

program. Since then, others organizations have used the Taba Workstation independ-
ently with good results.

Although the way software processes were deployed has evolved in order to cope
with characteristics and goals of each organization or pool of organizations, the fol-
lowing basic activities are always conducted:

(i) Understanding of the individual characteristics and main goals of the organi-
zations;

(ii) Definition of software development and maintenance processes adequate to
the organizational culture;

(iii) Training in Software Engineering methods and techniques and in the soft-
ware processes defined;

(iv) Use of Taba Workstation [11] environments and CASE tools; and
(v) Follow-up of the companies to support the deployment of the software proc-

esses through the execution of pilot projects.

In order to understand the individual characteristics and main goals of the organi-
zations, interviews to high managers are carried out by the process specialists. Alter-
natively, the high manager or the person responsible for the software quality initiative
in the organization is asked to fill out a form with questions related to the organiza-
tional culture, software process stages and quality management systems adopted,
common software development practices, main problems in the current software de-
velopment and maintenance processes, and organizational objectives related to soft-
ware process improvement. The following steps comprise the definition of software
development and maintenance standard processes adequate to the organization or the
pool organizations and configuration of a specific PSEE to each organization, as ex-
plained in section 2.1. In parallel to the processes definition activity, training in
Software Engineering methods and techniques are provided to the members of the
organizations. This training comprises lectures on topics such as Software Engineer-
ing, Software Process, Knowledge Management, Software Products Quality, Project
Management, Supplier Agreement, Risk Management, Configuration Management,
Measurement and Analysis, Requirements Engineering, Peer-review, Tests, Technical
Solution, Product Integration, Decision Analysis and Resolution. The training pro-
gram is adapted according to the organizations processes objectives, for example,
cover the process areas of CMMI Level 3 or MPS.BR Level G processes (Project
Management and Requirements Management). After the software engineering theo-
retical training, project managers and software developers are trained in the standard
software processes defined.

3.1 The Qualisoft Project Phases

The first phase of the Qualisoft Project started on August 2003 and addressed a pool
of 10 organizations. The second phase started on January 2004 addressing a second
pool of 9 organizations. The third phase started on January 2005 and addressed more
5 organizations. The next phase is about to start and will address at least 5 more
organizations.

The processes defined to the first phase were based only on the international standard
ISO/IEC 12207. For the second phase these processes were refined and adjusted to
comply with the practices defined in CMMI Level 2 process areas and the processes of

212 A.I.F. Ferreira et al.

its equivalent MPS.BR Level F. For the third phase, two companies decided to have
their processes adherent to the CMMI Level 3 processes areas and MPS.BR Level C
processes. All the processes maintained compliance with the ISO/IEC 12207. The fol-
lowing steps focused on the deployment of the processes and the configuration of a
PSEE to support the processes in the organizations. These steps were carried out indi-
vidually considering the particularities of each organization. Initially, the standard proc-
esses were adapted to each company characteristics, such as types of software devel-
oped, documents produced and software development paradigms adopted. A PSEE was
configured to each organization after the approval of the adaptations.

The next section presents the software processes improvement initiative at BL In-
formática which participates of the Qualisoft Project since its beginning.

4 Software Processes Improvement at BL Informática

BL Informática is a Brazilian organization founded in 1987 concerned with software
development, maintenance, deployment and integration. The major objective in its
quality policies is to focus on customers, team members and stockholders satisfaction
through implementation of solutions in information technology developed with de-
fined, controlled and continuously improved.

In order to demonstrate the feasibility of the approach presented, we discuss in this
section the three phases of the software process improvement initiative at BL Infor-
mática started in 2003 aiming to improve its products development quality. The next
section describes the quantitative results of this initiative.

4.1 First Phase: ISO 9001 Certification

BL Informática’s quality program started in 2003 when the company decided to be
ISO 9001:2000 certified until 2004. The definition of development and maintenance
processes consistent with this standard was the first step to accomplish this goal.
COPPE/UFRJ consulting was requested to support this activity since the company
had no experience in software process definition. When the QualiSoft Project was
created, BL Informática formalized the participation in its first phase.

To decrease the impact during the initial stages of its process deployment the
company decided not to use the Taba Workstation. At first, the development proc-
ess was executed without any management tool support during all the analysis
phase of the pilot project. But difficulties to manage the project pointed out that a
CASE tool was necessary to support the process utilization and, moreover, to sup-
port the planning, control and execution of the project. Due to this, Taba Work-
station utilization was reconsidered and from this moment on the environment
configured to the organization started to be used. In the beginning the environment
was used only to control the flow of the software process activities. Eventually all
Taba Workstation CASE tools started to be used to support each step of the proc-
ess enactment. In parallel the process’s adaptation to the organization culture pro-
ceeded maintaining its original characteristics.

 Taba Workstation: Supporting Software Process Improvement Initiatives 213

Despite the pilot project had not satisfied the schedule its execution has been con-
sidered successful. The clients have followed the project closer and were aware of all
artifacts produced and non-compliances detected and performed evaluations expected
at the end of each activity.

After one year the process was considered stabilized. The deployment required
more time and resources than estimated but produced better results than expected. The
success factors as pointed out by team members were: (i) high level management
support; (ii) trainings investments; (iii) the existence of a process group engaged with
the results and confidence in future benefits; (iv) the use of Taba Workstation CASE
tools and the internal CASE tools SGP (from the acronym in Portuguese for Process
Management System) and SGD (from the acronym in Portuguese for Document Man-
agement System).

The main benefits achieved during this phase were: (i) decrease of rework; (ii) pro-
duction of artifacts with better quality; (iii) better Software Engineering understand-
ing due to team members’ qualification; (iv) dissemination of “process culture” by the
organization; (v) maintenance of the knowledge on software engineering inside the
organization making the project team more independent. The main difficulties of this
initial phase were related to cultural changes needed by project teams and clients in
order to follow the processes.

4.2 Second Phase: MPS.BR Level F

Due to the great results accomplished, BL Informática decided to evolve its process
improvement initiative during 2004. The organizational intended to have its processes
evaluated as MPS.BR Level F compliant. A new version of software processes was
defined and deployed according to Qualisoft Project’s second phase schedule.

The main factors that have made this phase also a success were: (i) the constancy
of internal and external ISO 9001:2000 auditing; (ii) the commitment of project
teams; (iii) the knowledge about Project Management; (iv) high level management
support; (v) the use of Taba Workstation CASE tools and the internal CASE tools
and SFT (from the acronym in Portuguese for Workflow System).

The bigger accomplishment of this phase was the success of the Level F MPS-BR
evaluation which became an important motivation factor to the company continues its
quality program. The project teams’ confidence regarding the organization maturity,
the high management feeling of return of investment and the team motivation were
crucial for the quality program consolidation in the organization.

This phase required more resources than planed but the benefits achieved were
considered very important for the beginning of the next process improvement phase:
the CMMI Level 3 evaluation.

4.3 Third Phase: CMMI Level 3

This phase had more impact in the organization than the previous ones. The structure
of the quality team had to be changed and expanded in order to address the CMMI
Level 3 process areas requirements. The deployment of a MPS-BR Level F based
process requires more involvement of project managers; most team members perceive

214 A.I.F. Ferreira et al.

the results without significantly changing the way they execute theirs activities. As
CMMI Level 3 focuses mainly in engineering activities most developers’ activities
are also affected. Besides, as the process group only had strong experience in project
management techniques it was necessary more support to the definition and deploy-
ment of the new processes. The investments on training, consulting activities and
action plans to risks mitigation were the largest compared to the other phases.

The most important success factors of this phase until the moment are: (i) high
level management support and endorsement of critical risk mitigation actions (for
example, new resources hiring, training and investment on tools so project schedules
can be satisfied and clients satisfaction is not affected even if a new process version is
used by the first time); (ii) external consulting support and knowledge transfer; (iii)
improvement of communication mechanisms and systems to ease the information
exchange, appraisals of improvement proposals, lessons learned dissemination and
distribution of tasks; (iv) investment in external and internal trainings.

Among the main benefits of this ongoing phase we can highlight: (i) improvement
of the knowledge the company has about its capacity and productivity (for example,
know in how much time a requirement will be implemented); (ii) increase of lessons
learned regarding the technologies used and requirements development; (iii) decrease
of time spent on activities regarding testing and codification.

The most important lesson learned of this phase was the importance of the early
understanding of how new activities of the software process (like CMMI Level 3
practices related to engineering areas) affect each team member. The earlier the
changes are understood, the easier the process deployment.

5 Quantitative Analysis of Software Process Improvement
Initiative at BL Informática

Even before the beginning of its software process improvement initiative BL Infor-
mática gathers quantitative data related to the execution of its software projects. Ana-
lyzing this data we could observe that the distribution of time spent on software
development activities has significantly changed. In this section we present and dis-
cuss (i) the increase of the time expended during management activities, and (ii) the
relation between the adoption of specific software quality activities and time ex-
pended on rework1 along the project.

5.1 Project Management Activities Improvement

Table 1 and Figure 2 show the mean time spent during software projects at different
phases of processes enactment in the organization. “Construction and Tests” category
comprises activities like planning and execution of tests (e.g., unit tests or functional
tests) and peer reviews and codification activities. “Analysis and Design” category
comprises activities like requirements elicitation, use cases elaboration, architectural
design, database design etc. “Management” category comprises all activities related to

1 A rework activity is defined as any activity that comprises change or adjustment of artifacts

produced on early project phases, e.g., changes to ill defined requirements during codification.

 Taba Workstation: Supporting Software Process Improvement Initiatives 215

project planning and monitoring. “Others” comprises uncategorized activities (for
example, general purpose meetings).

Table 1. Evolution of time expended in software development activities

 Construction
and Tests

Analysis and
Design

Management Others

Before Process Adoption 19,1% 66,0% 11,5% 3,4%
1st Phase – ISO 9001 Process 34,9% 39,7% 14,9% 10,5%
2nd Phase – MPS.BR Level F 34,8% 50,5% 7,9% 6,8%
3rd Phase – CMMI Level 3 27,3% 51,8% 17,8% 3,1%

Before the process adoption the activities of project teams were not clearly defined
so project managers sometimes had to perform analysis and construction tasks deviat-
ing themselves from the execution of management tasks. Besides that, a large amount
of time was spent in rework during the construction and test of the software.

Distribution of Activities on Projects

0%

10%

20%

30%

40%

50%

60%

70%

Before Process
Adoption

1st Phase - ISO
9001

2nd Phase -
MPS.BR Level F

3rd Phase - CMMI
Level 3

Phases of the Improvement InitiatiativeConstruction and Tests Analysis and Design
Management Others

P
er

ce
n
ta

g
e

o
f
P
ro

je
ct

T
o
ta

l
T
im

e

Fig. 2. Time division by the project activities

Due to the definition of project management activities in the first version of the
process, manager had more time to plan and control its projects. Time spent by man-
agers decreased due to the use of appropriate case tools after the deployment of the
second version of the process. The effort to execute Analysis and Design activities
increased and quality evaluations of the artifacts produced were executed continu-
ously and not only during the construction phase. The evaluation of each artifact was
done using a generic checklist which evolved in order to reflect the organization char-
acteristics and its products. The third version of the process caused the increase of the
time elapsed with the management activities because the manager were, for the first
time, no longer responsible for analysis and design activities, only for project man-
agement activities.

5.2 Relation Between Software Quality and Rework

Table 2 and Figure 3 show the relation between quality related activities effort ex-
pended and rework during software projects.

216 A.I.F. Ferreira et al.

Table 2. Relation between time expended in rework and software quality related activities

 Rework Quality Activities
Before Process Adoption 44,0% 0,0%
1st Phase – ISO 9001 Process 26,7% 9,2%
2nd Phase – MPS.BR Level F 11,2% 3,0%
3rd Phase – CMMI Level 3 7,3% 10,8%

Quality activities were not conducted before the adoption of the first version of the
process. Due to that 44% of total time of the projects was spent in rework activities.
The adoption of quality assurance activities in the first version of the process caused
the decrease of time expended in rework activities.

Rework vs Quality Activities

0%

10%

20%

30%

40%

50%

Before
Process
Adoption

1st Phase -
ISO 9001

2nd Phase -
MPS.BR Level

F

3rd Phase -
CMMI Level 3

Phases of the Improviment InitiativeRework
Quality Activities

P
er

ce
n
ta

g
e

o
f
P
ro

je
ct

T
o
ta

l
T
im

e

Fig. 3. Software Quality Activities and Rework Relation

Along the Qualisoft Project’s second phase, time expended in rework has been
continuously reduced due to more rigorous artifacts evaluation. Finding errors in early
phases of the project caused the decrease of the number of evaluations of a specific
artifact and thus the reduction of the time expend in evaluations. The time spent on
quality activities increased after the adoption of the third version of the process due to
the larger number of artifacts being evaluated and to the necessity of involvement of
new roles in these evaluation activities. Besides, the checklists used to evaluate the
new artifacts of the process were evolving in the organization, forcing more and
longer evaluations.

6 Conclusions

This paper described an approach to the definition and deployment of software proc-
esses in small and medium size Brazilian companies with the support of Taba Work-
station, a Process-centered Software Engineering Environment. By applying this
approach to define and deploy software processes based on ISO/IEC 12207, CMMI and

 Taba Workstation: Supporting Software Process Improvement Initiatives 217

MPS.BR, organizations can significantly increase both competitiveness and software
products and services quality. The Taba Workstation is been used by the Brazilian
software industry since 2003, and was identified during three official SCAMPI apprais-
als as one of the greatest organizational strengths to facilitate the success of software
process deployment initiatives and to overcome the inherent difficulties. Moreover, it
was also identified as an important organizational asset to guarantee the quality of soft-
ware process and product quality in other three official MPS.BR appraisals.

The quantitative results of applying the presented approach in BL Informática are
significant: it has obtained ISO 9001:2000 certification, has been evaluated MPS.BR
Level F and is currently engaged in the CMMI Level 3 appraisal process. Further-
more, the processes and product’s quality have improved and costs and conflicts de-
creased. As a direct effect of these achievements we can point out high management
strong support to all software process improvement activities, great collaborators`
satisfaction and significant decrease of people turnover.

Nevertheless, the Taba Workstation is continuously evolving. The next steps com-
prises the evaluation of the adequacy of its CASE tools that support CMMI Level 3
process areas, and definition and integration of other tools to support CMMI Level 4
and 5 process areas which will support organizations to achieve even higher levels of
software development maturity.

Acknowledgement

Authors wish to thank Benito Diaz Paret, Riosoft coordinator, Márcio Pecegueiro Amaral,
Qualisoft Project and Towards CMMI Level 3 coordinator in Riosoft, BL Informática
board of directors and development team and TABA Project development team.

References

1. Fuggetta, A.: Software Process: A Roadmap, in Finkelstein, A. (ed.) The Future of Soft-
ware Engineering, ACM Press, (2002)

2. Weber, K. C., Pinheiro, M.: Software Quality in Brazil, In.: Quality World Magazine, The
Institute of Quality Assurance (IQA), London, UK, Vol. 21, Issue 1.1, Nov. (1995)

3. ISO/IEC 12207:2000 - Information technology – software process life cycle (2000)
4. ISO/IEC 15504 –1 Information Technology – Process Assessment, - Part 1: Concepts and

Vocabulary (2003)
5. Chrissis, M. B., Konrad, M, Shrum, S.: CMMI: Guidelines for Process Integration and

Product Improvement. Addison-Wesley (2003)
6. SOFTEX, MPS.BR – Melhoria de Processo do Software Brasileiro, Guia Geral (v. 1.1),

http://www.softex.br/mpsbr/ (in portuguese), (2006)
7. Rocha, A. R., Montoni, M., Santos, S., Mafra, S., Figueiredo, S., Albuquerque, A., Mian,

P.: Reference Model for Software Process Improvement: A Brazilian Experience. In.: Lec-
ture Notes of Computer Science (LNCS), ISBN 3-540-30286-7, pp. 130-141, presented at
the EuroSPI 2005, Budapest, Hungary (2005)

8. Weber, K.C., Araujo, E.R., Rocha, A.R., Machado, C., Scalet, D., Salviano, C.: Brazilian
Software Process Reference Model and Assessment Method. In.: Computer and Informa-
tion Sciences – ISCIS 2005, LNCS 3733, pp 403-411 (2005)

218 A.I.F. Ferreira et al.

9. ISO 9001:2000 - Quality management systems - Requirements, (2000)
10. Santos, G., Montoni, M., Rocha, A. R., Figueiredo, S., Mafra, S., Albuquerque, A., Paret,

B. D., Amaral, M.: Using a Software Development Environment with Knowledge Man-
agement to Support Deploying Software Processes in Small and Medium Size Companies,
In.: 3rd Conf. Professional Knowledge Management Experiences and Visions, Kaiserslau-
tern, Germany, April 10-13 (2005), 72-76

11. Montoni M., Santos G., Villela K., Rocha A. R., Travassos G. H., Figueiredo S., Mafra S.,
Albuquerque A., Mian P.: Enterprise-Oriented Software Development Environments to
Support Software Products and Process Quality Improvement. In.: Lecture Notes of Com-
puter Science (LNCS), ISBN 3-540-26200-8, pp. 370-384, presented at the 6th Int. Con-
ference on Product Focused Software Process Improvement, Oulu, Finland, June (2005)

12. Santos, G., Villela, K., Schnaider, L., Rocha, A. R.. Travassos, G. H., Building ontology
based tools for a software development environment, In: Workshop Learning Software Or-
ganization, Banff, Canada, 2004 (Lecture Notes in Computer Science, vol 3096, pp 19-30)

13. Montoni, M., Miranda, R., Rocha, A. R.. Travassos, G. H., Knowledge Acquisition and
Communities of Practice: an Approach to Convert Individual Knowledge into Multi-
Organizational Knowledge, In: Workshop Learning Software Organization, Banff, Canada,
2004. (Lecture Notes in Computer Science, vol 3096, pp 110-120)

14. Farias, L., Travassos, G. H., Rocha, A. R. C., Knowledge Management of Software Risks
In: Journal of Universal Computer Science, vol 9 n 7 (2003), 670- 681

15. Krasner, H., The Payoff for SPI: what it is and how to get it. Software Process Newsletter,
IEEE Computer Society 1:1-6 (1994)

16. Hyde, K., Wilson, D., Intangible Benefits of CMM-based Software Process Improvement,
In: Software Process Improvement and Practice, vol 9 n 4 (2004), 217-228

17. Oliveira, K, Zlot, F., Rocha, A. R., Travassos, G., Galotta, C., Menezes, C. Domain Ori-
ented Software Development Environment, Journal of Systems and Software, vol 72/2
(2004) pp 145-161

Author Index

Aho, Anne-Maria 62
Ahonen, Jarmo J. 62, 183
Anker, Tore Dyb̊a Geir 5

Barreto, Ahilton 207
Barreto, Andrea 207
Börjesson, Anna 74
Borzovs, Juris 50

Cahill, Brent 111
Carrington, David 111
Cerdeiral, Cristina 207
Cerqueira, Roberta 207
Coleman, Gerry 28

Demirörs, Onur 88
Dingsøyr, Torgeir 5
Dyb̊a, Tore 159

Ferreira, Analia Irigoyen Ferreiro 207
Figueiredo, Sávio 207
Filho, Reinaldo C. Silva 207

Hakonen, Harri 135
Hanssen, Geir Kjetil 5

Jäntti, Marko 40
Järvi, Antero 135
Juutilainen, Päivi 183

Kankaanpää, Irja 183
Kinnunen, Kari 40
Koskinen, Jussi 183
Koutsoukos, Georgios 147

Lübke, Daniel 195
Lupo, Peter 207

Mäkilä, Tuomas 135
Maoutsidis, Dimitri 171
Messnarz, R. 1
Moe, Nils Brede 159
Montoni, Mariano 207
Münch, Jürgen 123

Nygaard, Jens Olav 5

O’Connor, Rory 28

Richardson, I. 1
Rocha, Ana Regina 207
Runeson, P. 1

Santos, Gleison 207
Schneider, Kurt 195
Siakas, Errikos 171
Siakas, Kerstin V. 171
Sihvonen, Hanna-Miina 62
Sivula, Henna 183
Šmite, Darja 50
Soini, Jari 100
Song, Brian 111
Soto, Mart́ın 123
St̊alhane, Tor 16
Strooper, Paul 111

Tarhan, Ayça 88
Tenhunen, Vesa 100
Tilus, Tero 183
Tukiainen, Markku 100

	Frontmatter
	Introduction
	Software Process Improvement -- EuroSPI 2006 Conference

	SPI and Processes
	Developing Software with Scrum in a Small Cross-Organizational Project
	Implementing an ISO 9001 Certified Process
	Software Process in Practice: A Grounded Theory of the Irish Software Industry

	SPI and Problem/Risk Management
	Improving the Software Problem Management Process: A Case Study
	A Framework for Overcoming Supplier Related Threats in Global Projects
	Three Case-Studies on Common Software Process Problems in Software Company Acquisitions

	SPI Measurement
	Simple Indicators for Tracking Software Process Improvement Progress
	Investigating Suitability of Software Process and Metrics for Statistical Process Control
	Current Practices of Measuring Quality in Finnish Software Engineering Industry

	SPI and Process Modelling
	An Industry-Based Evaluation of Process Modeling Techniques
	Process Model Difference Analysis for Supporting Process Evolution
	Changing Role of SPI -- Opportunities and Challenges of Process Modeling

	SPI and Human Success Factors
	Mentality Patterns: Capturing and Dealing Explicitly with Recurring Turns of Mind in Software Development
	Improving by Involving: A Case Study in a Small Software Company
	Trust Facilitating Good Software Outsourcing Relationships

	SPI Implementation
	Assessing Software Replacement Success: An Industrial Case Study Applying Four Approaches
	Leveraging Feedback on Processes in SOA Projects
	Taba Workstation: Supporting Software Process Improvement Initiatives Based on Software Standards and Maturity Models

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

