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Abstract. A new method for estimation of attributes’ importance for
supervised classification, based on the random forest approach, is pre-
sented. Essentially, an iterative scheme is applied, with each step consist-
ing of several runs of the random forest program. Each run is performed
on a suitably modified data set: values of each attribute found unimpor-
tant at earlier steps are randomly permuted between objects. At each
step, apparent importance of an attribute is calculated and the attribute
is declared unimportant if its importance is not uniformly better than
that of the attributes earlier found unimportant. The procedure is re-
peated until only attributes scoring better than the randomized ones are
retained. Statistical significance of the results so obtained is verified. This
method has been applied to 12 data sets of biological origin. The method
was shown to be more reliable than that based on standard application
of a random forest to assess attributes’ importance.

1 Introduction

Application of computer programs to decision support or classification of data
dates back to the 1970’s. Such problems can be formally presented in the form of
a decision system which consists of a set of objects O, each of the objects being
described by P different attributes, X1, X2, . . . , XP , and a decision attribute Y
not equal to any of the attributes whose value may be unknown.

An expert system or, more narrowly, a classifier can be defined as a function
F (X1, . . . , XP ) → Y .

The first generation of expert systems was designed by human experts whose
knowledge was explicitly coded by the if A then B rules [1]. The systems
could cope with all examples whose decision attribute value could have been
predicted by the experts, but were unable to cope with new (unseen) examples
with properties not earlier predicted by the experts. Applicability of such systems
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was limited to simple cases with a small number of attributes. Multi-dimensional
problems with complex properties based on uncertain data could not be handled
by this rational approach. For a detailed discussion see [1].

Starting in the 1980-ies, machine learning and statistical methods, such as
neural networks,decision trees, and many others, were popularized with the aim
to address several of the limitations of expert systems [2,3,4,5]. These methods,
often collectively called inductive learning, generate models from examples with
known Y , which can then be applied to unseen cases. They can successfully cope
with high-dimensional problems, albeit the achieved improvement comes with a
price.

While the first generation expert systems were hardly tractable for anything
but simple and small domains, the newer methods are often even less amenable to
human understanding. Some of them are more or less like a black box, where one
throws in the description of the object and by a process that is hidden to human
inspection the outcome decision comes out automatically. Neural networks are
most notorious in this respect, but even several rule-based methods, such as
Bayesian networks [6] and in certain circumstances methods based on rough
set theory [7,8,9,10], generate decision functions which are not easy to analyse.
Such functions may be comprised of thousands, if not hundreds of thousands,
of simple rules which are connected by complex, non-linear logical relations.
Although the problems that are very complex are often likely to be described
by very complex models, we should not give up the possibility of gaining insight
into the structure of the generated model. There exist several approaches to
obtaining a better legibility of the models. One well-known idea is to make
models less exact (cf. Ziarko’s approach and approximate attributes in rough
sets), which avoids over-fitting and generates simpler models with often higher
performance of the model on the unseen examples. A similar idea is to use
dynamic reducts that sample the space of examples and allow finding the most
important attributes. Another approach to obtaining legible models from large
rule sets is rule tuning (see e.g. Ågotnes et al [11,12] which often provides a
very significant reduction of the cardinality of the rule set and, sometimes, an
improvement of the classification quality due to a generalization algorithm used
in rule tuning. Yet another approach is the use of templates to discover local
models [13,14]. Finally, in the rough set model approach of Kowalczyk, a small
subset of attributes is selected using various heuristics and user knowledge to
generate simple models.

Unfortunately, for problems with a very high dimension where domain knowl-
edge is not yet available, for instance in functional genomics and other areas of
modern molecular biology and medicine, other approaches have to be applied.
Interestingly, biomedical researchers are often interested in learning which of the
attributes are the important ones. Only later, the researchers investigate classi-
fiers that may be generated using these attributes. Thus, within such a frame-
work, the first task is to identify the most important attributes. This problem
is particularly acute for high-dimensional data of biological origin, where the
number of attributes Xi can be of order of thousands.
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Recently, a new classifier, actually comprised of an ensemble of decision trees,
the so-called random forest (RF) has been proposed by Breiman [15]. The RF’s
classification ability is comparable to, if not better than that of the best methods
available, e.g. boosting [16]. In addition, RF offers two features which improve
significantly, and in a very natural way, our understanding of a classification
problem under scrutiny. These are:

– the assessment of the importance of the contributions of the attributes to
the final prediction,

– the assessment of the interactions between the attributes.

In the present study, we show the limits of the importance estimation as
originally proposed by Breiman and present a method that aims at discerning
the truly most important attributes for classification and in this respect improves
significantly upon the original approach of Breiman.

2 The Method

The process of determining whether a given attribute contributes significantly
to the final prediction or not, is based on multiple application of RFs, and
utilization of the estimate of importance generated by each RF.

Random Forests. Random forest is a classification method that combines re-
sults from an ensemble of many, say M , decision trees built on bootstrap samples
drawn with replacement from the original training sample. Each bootstrap sam-
ple is of the same size, say N , as the original sample. Drawing with replacement
guarantees that roughly 1/3 of elements from the original sample are not used
in each bootstrap sample (indeed, note that the probability of not drawing a
particular element is (1 − 1/N)N ≈ e−1). For each tree in the forest, elements
of the original sample not used to grow this tree are called out-of-bag or oob
elements for the tree.

Assume that each element (object) in the training sample is given as a vector
of P attributes. At each stage of tree building, i.e. for each node of any particular
tree in the forest, p attributes out of all P attributes are randomly selected, where
p << P (say, p =

√
P ), and the best split on these p attributes is used to split

the data in the node. Each tree is grown to the largest extent possible, i.e. there
is no pruning. In this way, RF consisting of M trees is constructed. Classification
of each (new) object is made by simple voting of all trees.

Estimation of Attribute Importance. For any k-th attribute, proceed in the
following way. In every tree in the forest, put down its oob objects and count the
number of votes cast for the correct class. Then randomly permute the values
of attribute k in the oob objects, put these objects down the tree and count the
number of votes cast for the correct class. Subtract the latter number of votes
from that obtained for the original oob data. The average of this difference over
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all trees in the forest constitutes the raw importance score for attribute k. The
normalized score, i.e. the so-called z-score by reference to the standard normal
case, is obtained as usual, by dividing the raw score by its standard error.

Apparent Importance of Noisy Attributes. Applying the standard nor-
mal theory when calculating p-values corresponding to z-scores obtained is well
justified by the observed low correlations between scores for individual trees for
a number of data sets (cf. [15]). At the same time, however, we have observed
that even if all the attributes are completely random and therefore by design
not related to the decision attribute, relatively strong correlations between some
attributes and the decision attribute may appear by chance. Such attributes
are then singled out by the RF and the classifier effectively based on them is
built. As a result, these noisy attributes get z-scores which suggest strong, non-
random correlation with the decision attribute. The simulation experiment was
performed, that indeed confirmed this hypothesis.

Highest z-score of Permuted Attribute. In order to discern properties
which significantly and truly, not by chance, contribute to correct predictions,
we propose to find by simulation means how high a z-score of a noisy attribute
can get on the average. This can be done by estimating the mean and variance
of the distribution of the Highest z-score of Permuted Attribute (HZPA). To
this end, we introduce controlled noise into the system by randomly permuting
values of the selected attributes, retaining the other attributes untouched and
generating bootstrap samples of objects modified in the way described.

The Algorithm. We apply this idea in an iterative ’self-consistent’ way into
the algorithm which generates statistically validated set of important attributes,
with average z-score higher than the average z-score of the HZPA.

Our method is coded as a bash script, which calls RandomForest program
and two additonal C programs used to generate permuted data sets and perform
statistical computations and selection of the variables. The pseudocode of the
algorithm is as follows:

RunRandomForests() // Initial run
SetZlimit() // Set the z-score which will be

// considered provisionally important
BuildNonRandomList() // build an initial list of provisionally

// important attributes
while ( !Glob_Self_Cons )
do // Main Loop
while ( !Loc_Self_Cons )
do // Loop for current Zlimit

for (i=1;i<=NSTEP;i++) // NSTEP repetitions
do
ShuffleAttributes // Create data set with permuted

// unimportant attributes
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RunRandomForests // single Random Forest run
done
ComputeStatistics // Computes z-score for all

// important attributes
// and finds AvHZPA

BuildNewNonRandomList // Only attributes with
// z-score higher than current
// Zlimit are on the list

Loc_Self_Cons=CompLists() // CompLists() returns TRUE
// if old and new list of important
// attributes are identical

done
Glob_Self_Cons=ChckGlobCon() // ChckGlobCon() returns TRUE

// when AvHZPA is lower than current
// Zlimit

Zlimit=Zlimit+Delta // Increase current Zlimit
done

At the first step, the classifier is used with input vectors consisting of all
attributes; z-scores are computed for all attributes, and attributes which have
z-score higher than some predefined level are provisionally considered as impor-
tant, while the remaining ones are considered unimportant. We start with the
threshold level equal to 1.0.

The second step consists in running several random forests. Each time the
values of the attributes identified in the previous step as unimportant are ran-
domly permuted and values of the important attributes remain unchanged. For
each run of RF and all attributes, z-scores are computed, and the average (over
all RFs) z-scores for all important attributes are obtained as well. Moreover,
for each run of RF, the highest z-score is found among those for the permuted
attributes (i.e. HZPA is found), and its average over all RF runs, AvHZPA, is
determined for later use. Note that the permuted attribute with the highest z-
score can prove different for different RF runs, since they are run on different
bootstrap samples.

Attributes which have average scores higher than the current threshold are
considered to be temporarily important, and attributes which have average scores
lower than the threshold are irreversibly considered to be unimportant. This
second step is repeated at each fixed threshold level until all the attributes
considered temporarily important have average z-scores higher than the current
threshold. After this condition is satisfied, we have a set of temporarily important
attributes which we consider ”self-consistent at the current threshold level”.

Once the self-consistence at a given level has been achieved, in the third step
of the procedure, the check is performed if the current threshold level allows
one to distinguish the attributes that carry real information from those that do
not. If the threshold level is higher than AvHZPA, we conclude that full self-
consistence has been reached and the iterative procedure is finished. Otherwise,
the threshold is increased and the procedure for reaching self-consistence at this
higher threshold level is repeated.
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Finally (this step is not included in the pseudocode above), once full self-
consistence has been reached, a statistical test of significance is performed for
conclusive importance of attributes found important in the third step of the
procedure. This test rests on repeating the second step of the procedure, but
with a much higher number of iterations (actually, we increase the number of
iterations to 1000, while NSTEP was set at 40).

Note that the average score of the non-permuted attributes and the average
of the HZPA are obtained from sums of conditionally independent variables,
where independence comes from random permutations of the attributes deemed
unimportant (the experiment is conditioned on the sample and the fixed values
of the attributes deemed important). Therefore, if the number of iterations is
sufficiently large, the averages can be assumed to be normally distributed. As
the test of significance, a simple one-sided t-test is used, namely the test for
equality of two means against the alternative that the mean of z-scores of an at-
tribute tested for importance is higher than the mean of HZPA. We consider the
attribute conclusively important if the null hypothesis is rejected at 0.001 sig-
nificance level. A large number of iterations makes the test sufficiently powerful.

Summarizing, it is indeed a tall order for an attribute to be designated con-
clusively important. First, full self-consistence requires that the candidates for
such designation have average z-scores higher than AvHZPA. And second, an
even more stringent requirement is placed in the procedure’s final step, namely
that the final significance test can be passed by only these attributes whose true
average z-score has a chance to be lower than AvHZPA with probability only
0.001, the AvHZPA being obtained on the basis of all attributes conclusively
designated unimportant and comprised of the highest scores for each run in the
final step.

Additionally, given, say, I attributes designated conlusively important, we
generate the distribution of the classification error for the system built on I
randomly selected attributes, not including any of the I important attributes
determined by the algorithm. We then check if the classification result obtained
for the conlusively important attributes is likely to be drawn from the generated
distribution.

Computational Complexity. Our algorithm is an overlay superimposed on
the original random forest, which calls the original program several times in the
iterative fashion. Therefore the computational complexity of the whole algorithm
depends both on the computational complexity of the random forest and that
of our extension.

Two aspects of the computational complexity should be taken into account -
dependence of the number of elementary operations on the number of samples
and that on the number of attributes.

Obviously, the complexity of the random forest is of the same order as the
complexity of building an individual tree, which is P 1/2Nlog(N).

Regarding our extension, it is easily seen that its complexity is indepen-
dent of the number of samples. On the other hand, dependence of the number
of elementary operations on the number of attributes depends on data under
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scrutiny. Indeed, the number of iterations depends on the observed importance
of attributes. For two limit cases - when an attribute is finally important or is
deemed conclusively unimportant in the initial run - the number of iterations
of the feature selection algorithm is not affected by the number of attrubutes.
However, in the worst case scenario, when an attribute is deemed provisionally
important, an additional round of iterations may be necessary to find that it is
conclusively unimportant. Therefore, while in the best case the whole algorithm’s
complexity due to the number of attributes is that of the random forest, i.e., it
is of order P 1/2, in the worst case it is of order P 3/2. Consequently, the overall
complexity of the whole algorithm achieves order P 1/2N log N or P 3/2N log N
in the worst case.

3 Data

The algorithm presented in the previous section was applied to twelve data
sets of biological origin. The number of objects in the data sets varies between
319 and 820, and the number of attributes for all datasets is 202 including
two-valued decision attribute, with the exception of dataset No. 8, where the
number of all attributes is 183. Each attribute can take up to twenty categorical
values, but usually this number is smaller. For categorical attributes, the device
suggested by Theorem 4.5 of [3] was applied to ensure high performance of the
classifier. Biologically, each object is a sequence of the HIV protein, and the
decision attribute tells, whether virus carrying protein coded with this sequence
is, or isn’t, resistant to one of the antiviral drugs. Biological implications of our
findings will be published elswhere. The data can be accessed at the following
URL: http://www.icm.edu.pl/˜rudnicki/RoughSets/data/

4 Results and Discussion

The algorithm described is used to find the attributes that contribute signifi-
cantly to the final prediction. In Table 1, results of the algorithm are compared
with those obtained by direct application of the Breiman’s approach to finding
important attributes. In that approach the random forest is run first with all
the attributes, then only the attributes with ’high’ z-scores are retained, and fi-
nally the forest is run again using only these attributes. In our implementation,
z-scores larger than 3 were considered ’high’. Consequently, the attributes with
z-scores higher than 3 in the second run are conclusively declared important
when using the Breiman’s approach.

In the majority of cases classification error is low, and in all cases it is signif-
icantly lower than percent error of the random classifier (data not shown).

One may notice that in all cases we found less attributes than suggested by
the application of the Breiman algorithm and the assumption that z-score higher
than 3 implies importance of an attribute. Interestingly, in all cases, the AvHZPA
is significantly higher than 3 and varies considerably between data sets; indeed,
it varies between 5.3 and 8.7. Therefore it is impossible to build an ’a priori’
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Table 1. Summary of results for all datasets. The following entries are in the succesive
rows: number of objects in each data set (OB), number of important attributes using
the method developed in the current study IA (C), number of important attributes
obtained using the Breiman approach IA (B), AvHZPA for each data set (AvHZPA)
and percent error of the classifier (%ERR).

Data 1 2 3 4 5 6 7 8 9 10 11 12
OB 356 354 353 355 319 354 749 675 820 721 737 767

IA (C) 7 14 20 19 14 15 17 23 30 6 7 7
IA (B) 21 32 39 31 24 23 52 42 59 49 48 58

AvHZPA 8.1 8.3 6.4 5.6 7.0 5.2 6.8 7.3 6.7 8.0 8.7 7.6
%ERR 4.4 11.0 13.9 8.7 24.5 11.6 4.9 18.8 13.9 15.6 26.0 22.6

analytical model of the HZPA distribution and inference has to be based on
Monte Carlo-like approach, e.g. as presented in this report.

Accordingly, in Table 2, example results for the final t-test are summarized.
Two variables which passed the initial test, have the value of the t-statistic lower
than the threshold, set at 3, and consequently they fail the verification test.

It is interesting to note that only two variables had z-scores higher than HZPA
for all 1000 iterations. Even rather highly scoring attributes had in some itera-
tions scores smaller than HZPA. For example, attribute # 112 had score lower
than HZPA in 7 cases out of 1000, despite that its average z-score was almost
two times as high as the average of the HZPA.

The results of our study suggest that a single run of the RF classifier, and
in particular the attribute importance analysis, may be subject to siginficant
random fluctuations generated by spurious correlations between important and
unimportant attributes.

Within our approach, this issue has been addressed by multiple application
of RFs with randomly permuted values of attributes found unimportant, proper
use of the estimates of attributes’ importance generated by each RF, and a
final test of significance of the results. When looking for important attributes,
neither arbitrary selection of the limiting z-score, above which the attribute is
considered important, nor (even more artificial) a priori selection of the number
of important attributes is needed. Such arbitrary decisions have been replaced by
an objective statistical procedure based on comparisons of z-scores for original
attributes with the HZPA. Only the attributes which in many bootstrap samples
score significantly higher than any attribute which is unimportant by design, can
be conjectured to be important.

A related problem has been studied by Gediga and Duentsch within the rough
set framework [17,18] several years ago. They have shown limited applicability
of statistical methods in assesing the rule importance. Instead, they introduce
the notion of casual dependencies in information systems and provide arguments
that approximate reducts cannot be applied to measure quality of a model in
certain cases.

Their results do not apply to our approach, since the methodology presented
here is developed towards minimizing, to any desirable level, the error of the
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Table 2. The results for the final step of the algorithm. Sixteen provisionally important
attributes were tested using one thousand replications. Subsequent columns represent
attribute number (Attribute), average z-score (Z) over 1000 iterations, standard devi-
ation (SDev(Z)) of the mean z-score, average rank (Rank) in the importance ranking,
standard deviation of the rank (SDev(R)), value of t-statistic (t) and the number of
instances, when given attribute had higher score than an AvHZPA (Inst), respectively.

Attribute Z SDev(Z) Rank SDev(R) t Inst
2 29.11 0.05 2.000 0.000 60.7 1000
4 11.01 0.04 10.20 0.07 8.3 874

28 10.66 0.05 11.04 0.1 6.8 824
35 9.57 0.04 13.42 0.07 3.9 735
36 14.24 0.03 4.58 0.03 18.7 974
38 9.28 0.03 14.16 0.06 3.2 702
67 8.40 0.03 15.62 0.05 0.4 578
77 12.16 0.03 7.71 0.05 12.3 918
79 11.48 0.04 9.22 0.08 9.6 896

112 16.52 0.03 3.05 0.007 25.8 993
145 64.50 0.09 1.000 0.000 141.4 1000
169 13.40 0.03 5.50 0.04 15.8 959
171 11.10 0.04 10.05 0.08 8.4 858
176 13.09 0.05 6.35 0.07 13.8 945

179 9.03 0.04 14.48 0.07 2.2 661
189 11.02 0.04 10.22 0.07 8.4 867

AvHZPA 8.28 0.08 14.78 0.11 – –

second kind (that is to minimize the number of false positives), whereas the
approach of Gediga and Duentsch pertains to minimization of the error of the
first kind (minimizing the number of false negatives).
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