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Abstract. This paper refers to the notion of minimal pattern in rela-
tional databases. We study the analogy between two concepts: a local
reduct, from the rough set theory, and a jumping emerging pattern, orig-
inally defined for transactional data. Their equivalence within a positive
region and similarities between eager and lazy classification methods
based on both ideas are demonstrated. Since pattern discovery ap-
proaches vary significantly, efficiency tests have been performed in order
to decide, which solution provides a better tool for the analysis of real
relational datasets.

1 Introduction

Many definitions of knowledge discovery emphasize the importance of patterns
in information modeling. There are at least three important reason for this. First
of all, patterns are a useful tool in many practical problems, mainly in classifica-
tion. Secondly, they can be easily understood by the human mind. Unlike neural
networks, support vector machines or Bayesian classifiers, the most expressive
patterns do not need any additional visualization to be comprehended and eval-
uated. Last but not least, the simple structure of a pattern and the intensive
development of concise representations make them a convenient and powerful
tool in knowledge processing and storing.

Many experiments demonstrated the accuracy of rule-based classifiers [1].
However, there are no criteria applicable to all types of data and different sorts
of patterns are still being proposed to produce better rules. Notwithstanding this
variety, we can figure out some common features, like their highly discriminative
power, not overfitting to training data or avoiding exponential result sets.

In this paper, we focus on patterns in relational databases. One of the most
elegant descriptions for this kind of data is provided by the rough set theory.
Basic concepts triggered intensive research which has brought many methods
suitable for practical application. The most accurate classifiers are based on the
notion of a local reduct, i.e. a minimal set of attributes capable of distinguish-
ing one particular object from objects belonging to other classes as well as the
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total set of attributes. This approach allows to induce minimal patterns and
corresponding rules that describe a class in a very general manner.

In contrast to these classic solutions, we observe a fast development of methods
for transaction databases. The most popular solutions make use of class asso-
ciation rules (CAR) and emerging patterns. Such classifiers as JEP-C, CAEP,
DeEP or EJEP-C have already proved their high accuracy in many experiments
[1]. Our study focuses on jumping emerging patterns (JEPs), the idea very simi-
lar to minimal patterns based on local reducts. A JEP is a pattern that is present
in one class and absent in others. In particular, the minimal ones give a possibly
general and concise description of each class in contrast to the rest.

As it was mentioned above, a JEP is originally defined by means of the tradi-
tional formal apparatus of transaction databases. Nevertheless, it is often used
to deal with relational data transformed to a transactional form [2]. Now, the
question emerges what the differences are between classification algorithms asso-
ciated with the concept of a local reduct and a JEP. Another question is which of
these approaches allows to discover the set of minimal patterns more efficiently,
when relational data is concerned. Our intuition is that algorithms which oper-
ate on this kind of data can take advantage of information held in attributes in
order to differentiate objects, whereas methods using the transactional approach
fail to account for the actual relation between items associated with the same
attribute. In addition, the space of attribute sets is often much smaller than
the respective space of itemsets, which also depends on attribute value domains.
For these reasons, we expect that, at least for large datasets, the efficiency of
methods from both streams will be significantly different.

The text is organized as follows. Section 2 provides a formal background for
the rough set theory, EPs and a relational-to-transactional transformation. In
Sect. 3, we prove the similarity between minimal patterns obtained from lo-
cal reducts and JEPs. Then, in Sect. 4 basic classification methods from both
streams are compared. We discuss popular eager and lazy methods, taking into
account differences in the way of selecting minimal patterns and aggregating
them in order to obtain a decision. Section 5 explains the main issues of the
two methods of minimal pattern discovery: the rough set approach and JEP-
Producer. Implementation remarks are discussed in Sect. 6. Our testing proce-
dure and results are presented in Sect. 7. The paper is summarized in Sect. 8.

2 Preliminaries

2.1 Elements of Rough Set Theory

Let a decision table be a triple (U , C, d), where U(universum) is a non-empty,
finite set of objects, C is a non-empty finite set of condition attributes and d
is a decision attribute. A set of all attributes is denoted by A = C ∪ {d}. The
domain of an attribute a ∈ A is denoted by Va and its value for an object u ∈ U
is denoted by a(u). In particular, Vd = {k1, .., k|Vd|} and the decision attribute
induces a partition of U into decision classes {Uk}k∈Vd

. Hereinafter, we use the
term attribute to denote a condition attribute.
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Consider B ⊆ A. An indiscernibility relation IND(B) is defined as follows:

IND(B) = {(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}

Since IND(B) is an equivalence relation, it induces a partition of U denoted
by U/IND(B). Let B(u) be a block of the partition containing u ∈ U . A B-lower
approximation of a set X ⊆ U is defined as follows: B∗(X) = {u ∈ U | B(u) ⊆
X}, and a B-positive region with respect to a decision attribute d is defined by:

POS(B, d) =
⋃

X∈U/IND({d})
B∗(X)

We say that a decision table is consistent or deterministic if POS(C, d) = U .
Otherwise, we call it inconsistent or non-deterministic. A local reduct for an
object u ∈ U (a reduct relative to an object and a decision) is a minimal attribute
set B ⊆ C such that ∀k∈Vd

(C(u) ∩ Uk = Ø =⇒ B(u) ∩ Uk = Ø). It means that
the object u can be differentiated by means of B from all the objects from other
classes as accurately as by the complete available description C. The set of all
local reducts for an object u is denoted by REDLOC(u, d).

Lemma 1 ([3]). B ∈ REDLOC(u, d) for u ∈ POS(C, d) ⇐⇒ B is a minimal
set such that B(u) ⊆ Ud(u).

2.2 Emerging Patterns

Let a decision transaction database be a tuple (D, N , I, Z), where D ⊆ {(n, t) ∈
N × 2I : ∀(n′,t′)∈N×2In = n′ =⇒ t = t′} is a set of transactions (database),
N is a non-empty set of transaction identifiers, I is a non-empty set of items
and Z is a function Z : D 	→ VZ , where VZ is the set of decision class labels.
The function Z splits the database D into decision classes Dk = Z−1(k), for
k ∈ VZ . In addition, for D ⊆ D, we define a complement database D′ = D − D.
An itemset X ∈ 2I is a set of items and its support in a database D ⊆ D
is defined as suppD(X) = |(n,t)∈D:X⊆t|

|D| . Given two databases D1, D2 ⊆ D, we
define a jumping emerging pattern (JEP) from D1 to D2 as an itemset X for
which suppD1(X) = 0 and suppD2(X) �= 0. A set of all JEPs from D1 to D2 is
called a JEP space and denoted by JEP (D1, D2).

2.3 Convexity of JEP Space

One of the most useful features of jumping emerging patterns is the possibility
to store a JEP space in a concise manner.

Consider a set S. A collection F ⊆ 2S is a convex space iff ∀X,Z∈F ∀Y ∈2S X ⊆
Y ⊆ Z ⇒ Y ∈ F . A border is an ordered pair < L, R > such that L, R ⊆ P (S)
are antichains and ∀X∈L∃Z∈RX ⊆ Z. L and R are called a left and a right
bound, respectively. A border < L, R > represents a set interval [L, R] = {Y ∈
P (S) : ∃X∈L∃Z∈RX ⊆ Y ⊆ Z}. The left and right bounds consist, respectively,
of minimal elements and maximal elements of a set, assuming inclusion relation.
It can be demonstrated [2] that every convex space has a unique border.
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Consider a decision transaction database (D, N , I, Z) and two databases
D1, D2 ⊆ D. According to [2] a collection JEP (D1, D2) is a convex space. Thus,
for k ∈ VZ , we use a border < Lk, Rk > to represent a JEP space JEP (D′

k, Dk).

Lemma 2 ([2]). ∀J∈2I J is minimal in JEP (D′
k, Dk) ⇐⇒ J ∈ Lk.

2.4 Relational to Transactional Transformation

One can analyze relational data by means of methods formulated for transaction
databases. In our study, we consider a decision transaction database build for a
given decision table. For brevity, we use the following notations introduced in
[4]: patt(u, B) = {(a, a(u))}a∈B, where u ∈ U and B ⊆ C, and attr(X) = {a ∈
C : (a, v) ∈ X ∧ v ∈ Va}, for an itemset X ⊂ {(a, v)}a∈C,v∈Va . Without loss of
generality, we assume that a universum can be linearly ordered U = {u1, .., u|U|}.

Definition 1. A decision transaction database for a decision table (U , C, d) is a
decision transaction database (D, N , I, Z), such that

– D = {ϕ(u)}u∈U , where ϕ : U 	→ D, ∀i∈{1..|U|}ϕ(ui) = (i, patt(ui, C))
– N = N (positive integers)
– I = {(a, v)}a∈C,v∈Va

– VZ = Vd and ∀u∈UZ(ϕ(u)) = d(u)

Notice that ϕ is a bijection, so it is possible to transform the result obtained by
some methods for transaction data back to relational form.

3 Relations Between Concepts

Hereinafter, we consider a decision table DT = (U , C, d) and a decision transac-
tion database RDDT = (D, N , I, Z) for DT . For u ∈ U , a set of all local reducts
for the object u is represented by REDLOC(u, d) and for k ∈ Vd a JEP space
JEP (D′

k, Dk) is represented by the border < Lk, Rk >.
Rough set reducts and emerging patterns are strongly related concepts. Our

previous paper [4] demonstrates the relations between global reducts and JEPs.
According to that work, every global reduct P generates with object u ∈ U a
pattern patt(u, P ) that belongs to JEP (D′

d(u), Dd(u)). The following theorem
considers a similar relation for local reducts. It says that every local reduct gen-
erates with object u ∈ POS(C, d) a jumping emerging pattern that is minimal,
i.e. it belongs to Ld(u), the left bound of the border of a space JEP (D′

d(u), Dd(u)).
Notice that for a consistent decision table this relation holds for each u ∈ U .

Thus, we can use algorithms originating in either rough set theory or emerging
patterns approach to compute the set of minimal patterns.

Theorem 1. Let DT = (U , C, d) be a decision table and RDDT = (D, N , I, Z)
a decision transaction database for DT .

∀u∈POS(C,d)∀P⊆CP ∈ REDLOC(u, d) ⇐⇒ patt(u, P ) ∈ Ld(u).
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Proof. Let P, B ∈ C, u ∈ POS(C, d) and k = d(u).
Consider first B(u) ⊆ Uk ⇐⇒ patt(u, B) ∈ JEP (D′

k, Dk) (1). We have
B(u) ⊆ Uk ⇐⇒ u ∈ B∗(Uk) ⇐⇒ u ∈ POS(B, d) ∩ Uk. But, according to
Theorem 1 from [4], we have: u ∈ POS(B, d) ∩ Uk ⇐⇒ patt(u, B) ∈ {J ∈
JEP (D′

k, Dk) : attr(J) = B} ⇐⇒ patt(u, B) ∈ JEP (D′
k, Dk).

Consider P ∈ REDLOC(u, d) =⇒ patt(u, P ) ∈ Lk. Let P ∈ REDLOC(u, d).
According to Lemma 1, we have: P ∈ REDLOC(u, d) ⇐⇒ P is minimal in
{B ⊆ C : B(u) ⊆ Uk}. Consider R ⊂ P . It means that R(u) �⊆ Uk, and,
according to (1), we obtain patt(u, R) �∈ JEP (D′

k, Dk). Summing up, according
to (1) we have patt(u, P ) ∈ JEP (D′

k, Dk) and for any J ⊂ patt(u, P ) we have
J �∈ JEP (D′

k, Dk). Thus, patt(u, P ) is minimal in JEP (D′
k, Dk) and, according

to Lemma 2, we have patt(u, P ) ∈ Lk.
Consider P ∈ REDLOC(u, d) ⇐= patt(u, P ) ∈ Lk. Let patt(u, P ) ∈ Lk.

According to Lemma 2, we have: patt(u, P ) ∈ Lk ⇐⇒ patt(u, P ) is minimal
in JEP (D′

k, Dk). Consider R ⊂ P . It means that patt(u, R) ⊂ patt(u, P ) =⇒
patt(u, R) �∈ JEP (D′

k, Dk), and, according to (1), we obtain R(u) �⊆ Uk. Sum-
ming up, according to (1) we have P ∈ {B ⊆ C : B(u) ⊆ Uk} and for any R ⊂ P
we have R(u) �⊆ Uk. Thus, P is minimal in {B ⊆ C : B(u) ⊆ Uk} and, according
to Lemma 1, we have P ∈ REDLOC(u, d).

4 Classification Based on Minimal Patterns

The rough set theory and emerging patterns are often used to build efficient
classifiers. Although both approaches use different formal apparatus, they often
employ similar algorithmic ideas.

A rough set is a convenient tool for representing approximate concepts. In
particular, one of its major applications is to express the classification hypothesis
provided by a decision table. Most of rough set classifiers are rule-based and make
use of the notion of a reduct and its derivatives. The rule set of a classifier results
from the set of reducts used against the objects in a decision table. On the other
hand, classifiers based on emerging patterns operate on sets of patterns induced
for each decision class. Patterns are discovered according to their characteristics
in a transaction database, e.g. minimal support in a positive or negative class,
minimal growth-rate, minimal chi-square test value etc.

A classification function is defined as a function f : U 	→ Vd, such that f(u) =
argmaxk∈Vd

score(u, k), for u ∈ U , where score is a class scoring function score :
U × Vd 	→ R. The form of the class scoring function depends on a particular
method. For a rule-based classifier, it is determined by the set of rules and the
way of aggregating their significance. In fact, a decision rule

∧
a∈P (a = va) =⇒

vd can be equivalently expressed by {(a, va)}a∈P =⇒ vd, for some P ⊆ C, va ∈ Va

for each a ∈ P and vd ∈ Vd. Thus, for the sake of this study, we assume that
a rule-based classifier operates on a collection of pattern sets {Pk}k∈Vd

induced
for respective classes. Moreover, we use two following notations analogical to
[5]. A set of all patterns assigned to a class k ∈ Vd and matching an object
u ∈ U is denoted by MatchPatterns(u, k) = {R ∈ Pk : R ⊆ patt(u, C)}. On



Local Reducts and Jumping Emerging Patterns in Relational Databases 363

the other hand, a set of all objects that supports a given pattern is represented
by SupportSet(R) = {u ∈ U : R ⊆ patt(u, C)}. Thanks to the two-way nature
of the relational-to-transactional transformation, these expressions remain true
also when we operate on a respective decision transaction database.

In this study, we limit our interest to classifiers based on minimal patterns.
The following sections provide a comparison of methods originating in both
families. Our purpose is to demonstrate the analogical solutions and point out
the main differences. Comparative accuracy tests can be found in [1,3].

4.1 Pattern Selection Methods

The rough set approach based on the concept of a local reduct is presented
in [3,6]. It discovers the set REDLOC(u, d) for each u ∈ U in the decision
table DT = (U , C, d) and then uses it to generate the pattern set collection
{Pk}k∈Vd

, where Pk = {patt(u, R) : u ∈ Uk ∧ R ∈ REDLOC(u, d)} for k ∈ Vd.
A similar idea can be found in JEP-C (e.g. [1]) which computes JEP spaces for
each class in the respective decision transaction database in order to obtain the
collection {Lk}k∈Vd

. According to Theorem 1, both collections are equal when
DT is consistent. Otherwise, every object from outside of the positive region
can generate emerging patterns that are not jumping and cannot be generalized
in order to obtain JEP. In fact, JEP-C induces patterns only from the positive
region of a decision data, i.e. it considers the decision transaction database for
the table (POS(U), C, d).

This difference remains true also for other propositions based on JEPs, like
DeEP or DeEP-NN [7]. The assumption about consistency holds for many real
data sets, especially with a large number of attributes; however, in general, the
inability to make inference from non-positive data can be a weakness of the
classifiers of this type. In particular, they are more prone to noisy data than
approaches based on local reducts or other types of patterns, e.g. EP, chi-EP.

One of the improvements of the local reduct-based method, described in [6],
is to decrease the size of a rule set by selecting the minimal set of patterns
that covers the universum. The main arguments behind this idea refer to the
minimum description length principle, classification efficiency and the possible
generality of a discovered subset of patterns. Since this step involves solving
a set covering problem, in many cases heuristic methods are employed to find
a suboptimal solution. As a matter of fact, there is no such proposition for
emerging patterns, however, this strategy can be applied in the similar manner.
Since, the sets of jumping emerging patterns Pk are exclusive, we can solve k set
covering problems, one for each class Uk, instead of dealing with U at once. It
also means that, for inconsistent decision tables, one can obtain a more concise
pattern set, when using an approach based on local reducts.

4.2 Class Scoring

Let us consider a pattern set collection {Pk}k∈Vd
, where Pk contains minimal

patterns chosen according to some criteria. In order to complete the picture of
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rule-based classifiers, popular scoring functions will be discussed. The approaches
are divided into two groups depending on what is aggregated to obtain a decision.

In the first group, the algorithm takes into account a set of training objects
that support any of the patterns matching a testing object. This approach is com-
monly used in lazy classifiers. The scoring function for lazy local reduct classifi-
cation has the form: strength(u, k) = |

⋃
R∈MatchPatterns(u,k) SupportSet(R)|. A

similar idea is proposed in DeEP classifier [7], however, the number of matching
objects is related to the cardinality of a respective class, i.e: compactScore(u, k) =
strength(u,k)

Dk
. The second formula seems to be more adequate in case of an object

disproportion within the classes Uk or pattern sets Pk, both for k ∈ Vd.
The second concept focuses on direct aggregation of patterns matching a

testing object. A good example is the scoring function used in JEP-C (e.g. [1])
defined as: collectiveImpact(u, k) =

∑
R∈MatchPatterns(u,k) suppDk

(R). On the
other hand, eager classifiers based on local reducts employ the notion of an ap-
proximation space in order to produce a classification result. In the beginning,
for a testing object u the algorithm finds a set of all patterns matching u, denoted
by R. Then, for each pattern R ∈ R, the objects of SupportSet(R) are analyzed
in order to obtain a partial decision for this pattern. Finally, the partial results
are aggregated to indicate a decision class. Although this approach is very gen-
eral, in the most common case, it becomes similar to collectiveImpact. In fact,
when we assume consistency, each pattern indicates only one class. Therefore,
for a frequency-wise aggregating strategy, both classifiers are equivalent.

In practice, the result of pattern aggregation can be strongly influenced by
a disproportion in the number of minimal patterns |Pk| in particular classes.
One of the solutions was proposed originally for CAEP (e.g. [1]) and involves
dividing a score by the base score for the respective class. The base score for a
class k ∈ Vd is a selected percentile of the distribution of scores for a training
data {score(u, k) : u ∈ Uk}, e.g. 50-80th within these scores. Last but not least,
when we sum the supports of selected patterns, we use the assumption of their
independent occurrence in data and ignore possible correlations that can be
observed in a training set. As a result, the score can be overestimated.

5 Minimal Pattern Discovery

Due to their generality and sharp discriminating power, minimal patterns are
a good basis to build accurate classifiers. However, discovering the collection of
all minimal patterns for each class of a decision table can be a time-consuming
task. In general, the resulting pattern sets might have an exponential cardinal-
ity, which suggests the non-polynomial complexity of any possible algorithm.
This opinion is also strengthened by the NP -hardness of finding the decision
rule of a minimal cardinality [3]. Moreover, even if the result is not large, there
is still a possibility that temporary collections involved in computation can be
exponentially large. To efficiently solve the problem for real data sets, much
attention should be dedicated to identifying and optimizing the most frequent
operations and to using economical data structures. In fact, there are many
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propositions concerning the discovery of minimal rules and patterns [8,5]. In
our study, we compare the efficiency of a local reduct approach with two dif-
ferent reduct computation methods [6,9] and JEP-Producer based on a border
differential operation [2].

The rough set algorithm consists of two stages. First, for each object u ∈ U ,
the set of local reducts REDLOC(u, d) is computed. Then, for each local reduct
R ∈ REDLOC(u, d), a minimal pattern patt(u, R) is added to the pattern set
Pd(u). Local reduct discovery determines a total time. For a wider view, we se-
lected two reduct computation algorithms. Both methods employ a discernibility
matrix [5], the structure that contains for each object pair a set of such attributes
that can individually discern these objects. Then, for efficiency, one computes
the discernibility vector of minimal attribute sets from this matrix. The first
tested algorithm is a classic approach (e.g. [6]), based on finding all prime impli-
cants of a monotonous boolean function. The elements of a discernibility vector
are examined successively and the set of reducts is updated in every iteration.
For comparison, we propose a novel apriori-based method [9]. In this approach,
the search space is traversed according to an apriori scheme and the notion of
attribute set dependence is used to form a pruning border.

As far as transaction databases are concerned, we study a JEP-based method.
In the beginning, a decision transaction database is computed for a given decision
table. Then, for each class k, we compute a space JEP (D′

k, Dk) by means of
JEP-Producer. Actually, the purpose is to find the left bound of this space, since,
according to Theorem 2 from [4], the right bound is trivially equal to {t : (n, t) ∈
Dk}. First, the spaces for both classes, referred to as a positive and negative
space, are equal to the respective horizontal spaces [2]. To obtain a resulting
space, a border differential procedure is performed. This routine is iterative, the
sets of the right bound of the positive space are examined successively. If the
considered set belongs to the negative space, a specific differential procedure,
named BORDER-DIFF, is called in order to correct the bounds of the positive
space [2]. Finally, the set of minimal patters is equal to the left bound of the
resulting space. The execution time depends mostly on the border computation.

6 Implementation Issues

One of major problems in comparing the efficiency of different algorithms is
to choose an adequate methodology. Generally, in sophisticated procedures it is
hard to describe the complexity in a theoretical manner. Even more troublesome
is to find operations common for different approaches so as to make a reliable
comparison. The algorithms studied in our paper operate on sets of attributes
or items and on collections and vectors of these sets. Thus, the crucial thing
is to base their implementation on the same data structures. Actually, many
set implementations have been studied [10], in particular: a byte array, a bit
array or a balanced tree. We tested algorithms using all these three approaches.
For the comparison, we chose the first one due to its simplicity, high efficiency
and absence of optimizations that can disturb the result. More specifically, the



366 P. Terlecki and K. Walczak

current size of a set is stored instead of being computed on-demand. It appears
important e.g. when a collection of sets is stored as cardinality-wise buckets [2].

Our implementation is coded in Java 1.5. In particular, the collection of sets is
represented by a balanced tree based on the class java.util.TreeSet and a vector
of sets by java.util.ArrayList. The local reduct computation is based on [6,5,9]
and JEP-Producer is implemented with optimization remarks described in [2].

7 Efficiency Tests

The algorithms have been tested against consistent decision tables from [11]. We
repeated executions for each data set and each method to obtain a reliable aver-
age execution time. Tests have been performed on Intel Pentium M 2.13GHz with
2GB of RAM, switched to a stable maximum performance, using the Windows
XP operating system and Sun JRE 1.5.0.06.

For small datasets (lymn, zoo) all methods have similar efficiency. The classic
approach scales worse than the apriori method with the number of attributes
(dna, lung, mushroom). On the other hand, JEP-Producer is slower for a high
number of items (dna, geo, lung, mushroom), which depends on attributes and
their domain values. The results for large universums (krkopt, mushroom, nurs-
ery) suggest that JEP-Producer tends to be significantly slower than rough set
approaches. Based on the tested datasets the apriori-like method [9] seems to be
more appropriate, when a large number of objects or attributes is concerned.

Table 1. Experimental results summary (time in ms)

Dataset Obj. Attr. Items Red. classic time Red. apriori time JEP-Producer time
car 1728 6 25 880 917 5276
dna 500 20 80 3682802 72109 468937
geo 402 10 78 369 338 1796

house 435 16 48 6120 3823 3224
krkopt 28056 6 43 355052 274593 2946906
lung 32 55 220 6653937 25453 2426344
lymn 148 18 59 2406 1301 1401

tic-tac-toe 958 9 27 2276 2729 2396
zoo 101 16 39 114 114 109

nursery 12960 8 27 102823 103750 516807
mushroom 8124 22 117 117568 81854 1180822

8 Conclusions

In the paper, we have discussed the concept of minimal patterns in relational
data. We have focused on two similar ideas: minimal patterns obtained from local
reducts and jumping emerging patterns. As far as relational data is concerned, we
have demonstrated the equivalence between both types of patterns in a positive
region. Moreover, similarities are present in classification methods originating in
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both streams. The pattern sets used in JEP-C and DeEP are equivalent to sets
induced for positive objects in respective eager and lazy local reduct methods.

On the contrary, results for methods of minimal pattern discovery vary signif-
icantly due to differences in the form of data. Efficiency tests performed for large
consistent decision tables confirmed the intuition that methods using the infor-
mation held in attributes outperform the solutions operating on a more general,
transactional form of data, like JEP-Producer. Nevertheless, all the methods be-
have similarly for small datasets and time differences are not unequivocal. The
results suggest that rough set methods seem more appropriate in the analysis
of large relational data. In particular, an apriori-like algorithm appears more
efficient than a classic method that minimizes an indiscernibility function.

In our opinion both modes of reasoning of thought bring a number of inter-
esting ideas that can be interchanged in order to develop more efficient methods
for the analysis of relational and transactional data.

References

1. H. Fan, Efficient Mining of Interesting Emerging Patterns and Their Effective Use
in Classification. University of Melbourne: PhD thesis, 2004.

2. G. Dong and J. Li, “Mining border descriptions of emerging patterns from dataset
pairs,” Knowl. Inf. Syst., vol. 8, no. 2, pp. 178–202, 2005.

3. J. Wroblewski, The Adaptive Methods for Object Classification. Warsaw University,
Institute of Informatics: PhD thesis, 2002.

4. P. Terlecki and K. Walczak, “On the relation between rough set reducts and jump-
ing emerging patterns,” Information Sciences, 2006 (to be published).

5. A. Skowron and C. Rauszer, “The discernibility matrices and functions in infor-
mation systems,” in Intelligent Decision Support (R. Slowinski, ed.), (Dordrecht,
The Netherlands), pp. 331–362, Kluwer Academic Publishers, 1992.

6. J. Bazan, H. S. Nguyen, S. H. Nguyen, P. Synak, and J. Wroblewski, “Rough set
algorithms in classification problem,” Rough set methods and applications: new
developments in knowl. disc. in inf. syst., pp. 49–88, 2000.

7. J. Li, G. Dong, K. Ramamohanarao, and L. Wong, “Deeps: A new instance-based
lazy discovery and classification system,” Mach. Learn., vol. 54, no. 2, pp. 99–124,
2004.

8. N. Shan and W. Ziarko, “An incremental learning algorithm for constructing deci-
sion rules,” in Rough Sets, Fuzzy Sets and Knowledge Discovery (W. Ziarko, ed.),
pp. 326–334, Springer Verlag, Berlin, 1994.

9. P. Terlecki and K. Walczak, “Attribute set dependence in apriori-like reduct com-
putation,” in Rough Sets and Knowl. Techn., 2006 (to be published).

10. M. Jürgens and H.-J. Lenz, “Tree based indexes vs. bitmap indexes - a performance
study.,” Int. Journal of Cooperative Inf. Syst., vol. 10, no. 3, pp. 355–376, 2001.

11. C. B. D.J. Newman, S. Hettich and C. Merz, “UCI repository of machine learning
databases,” 1998.


	Introduction
	Preliminaries
	Elements of Rough Set Theory
	Emerging Patterns
	Convexity of JEP Space
	Relational to Transactional Transformation

	Relations Between Concepts
	Classification Based on Minimal Patterns
	Pattern Selection Methods
	Class Scoring

	Minimal Pattern Discovery
	Implementation Issues
	Efficiency Tests
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




