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Roman Słowiński (Eds.)

Rough Sets
and Current Trends
in Computing

5th International Conference, RSCTC 2006
Kobe, Japan, November 6-8, 2006
Proceedings

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Salvatore Greco
University of Catania, Faculty of Economics, Italy
E-mail: salgreco@unict.it

Yutaka Hata
University of Hyogo, Graduate School of Engineering, Japan
E-mail: hata@ieee.org

Shoji Hirano
Shimane University, School of Medicine, Japan
E-mail: hirano@ieee.org

Masahiro Inuiguchi
Osaka University, Graduate School of Engineering Science, Japan
E-mail: inuiguti@sys.es.osaka-u.ac.jp

Sadaaki Miyamoto
University of Tsukuba, Faculty of Systems and Information Engineering, Japan
E-mail: miyamoto@risk.tsukuba.ac.jp

Hung Son Nguyen
Warsaw University, Institute of Mathematics, Poland
E-mail: son@mimuw.edu.pl

Roman Słowiński
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In Memoriam

This volume is dedicated to Professor Zdzis�law Pawlak, a father of rough sets,
who passed away on April 7, 2006.



Preface

This volume contains the papers selected for presentation at the 5th International
Conference on Rough Sets and Current Trends in Computing (RSCTC 2006)
held in Kobe, Japan, November 6–8, 2006. There were 332 online submissions
to RSCTC 2006 as well as two keynote papers, three plenary papers and two
commemorative papers. Each submitted paper was reviewed by two or three
referees. After a rigorous review process, the three PC chairs checked all the
referees’ comments and reviewed the papers again. As a result, 91 papers were
selected for publication in this volume. The acceptance rate was only 27.4%.

RSCTC is an outgrowth of a series of annual International Workshops devoted
to the subject of rough sets, started in Poznan, Poland in 1992, and then held in
Canada, the USA, Japan and China (RSKD, RSSC, RSFDGrC, RSGrC series).
The first RSCTC conference was held in Warsaw, Poland in 1998. It was followed
by successful RSCTC conferences in Banff, Canada (2000), in Malvern, USA
(2002) and in Uppsala, Sweden (2004).

Rough set theory, proposed by Zdzis�law Pawlak in 1982, has been attract-
ing researchers and practitioners in various fields of science and technology. The
interest in rough set theory and applications has been remarkable since the be-
ginning, and it is still growing. The ingenious concepts of rough sets have been
a base for original developments in both theoretical research, including logics,
algebra and topology, and applied research, including knowledge discovery, data
mining, decision theory, artificial intelligence and approximate reasoning. The
latter led to many real life applications in diversified areas such as medicine,
bioinformatics, economy, finance, political analysis, chemistry, engineering, en-
vironment, and even art and culture. Since the rough set concept handles a
specific type of data “imperfection” related to granularity of information, it is
complementary to other concepts used for handling data “imperfection” such as
fuzzy sets, Bayesian reasoning, neural networks, evolutionary algorithms, sta-
tistics and logical analysis of data. This complementarity is exploited in hybrid
approaches improving the performance of data analysis tools.

In accordance with its motto “toward new paradigms in reasoning about
data”, the aim of RSCTC 2006 was to provide researchers and practitioners in-
terested in new information technologies an opportunity to highlight innovative
research directions, novel applications, and a growing number of relationships
between rough sets and such areas as computational intelligence, knowledge dis-
covery and data mining, intelligent information systems, web mining, synthesis
and analysis of complex objects and non-conventional models of computation.
Relevant topics included, but were not limited to:

-Rough set theory and applications
-Fuzzy set theory and applications
-Fuzzy-rough, rough-fuzzy and beyond
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-Knowledge discovery and data mining
-Machine learning
-Hybrid and integrated intelligent systems
-Intelligent information systems
-Kansei engineering
-Logical aspects of soft computing
-Multi-agent systems
-Approximate and uncertain reasoning
-Bioinformatics
-Case-based reasoning
-Complexity aspects of soft computing
-Computational intelligence
-Computing with words
-Decision support systems
-Evolutionary computing
-Granular computing
-Multi-criteria decision support
-Neural networks
-Non-classical logic
-Pattern recognition and image processing
-Petri nets and concurrency
-Soft computing
-Spatial reasoning
-Statistical inference
-Web intelligence

It is our great pleasure to dedicate this volume to the father of rough set
theory, Zdzis�law Pawlak who passed away in April 2006. One of the last papers
written by him is included in this volume. We would also like to dedicate this
volume to the father of fuzzy set theory, Lotfi A. Zadeh, who proposed many
new methods and paradigms related to rough sets including granular computing,
which is strongly related to rough sets.

We would like to express our gratitude to Zdzis�law Pawlak and Lotfi A.
Zadeh, who kindly accepted our invitation to serve as honorary chairs and to
deliver keynote speeches for the conference. We also wish to thank Didier Dubois,
Mitsuo Nagamachi and Wojciech Ziarko for accepting our invitation to be ple-
nary speakers at RSCTC 2006. Moreover, we would like to express our thanks to
Andrzej Skowron and Shusaku Tsumoto for presenting speeches in the memorial
session of Zdzis�law Pawlak.

We wish to express our appreciation to all Advisory Board members and
Program Committee members, who reviewed many papers, as well as to
non-committee reviewers. Without their contributions, we could not have se-
lected high-quality papers.

We also want to thank all the authors who submitted valuable papers and all
conference participants.
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This conference was partially supported by the Kayamori Foundation of Infor-
mational Science Advancement, by the “MEET IN KOBE 21st Century” Program
of Kobe Convention & Visitors Association, by the Tsutomu Nakauchi Founda-
tion, and by MDAI 2005. Shimane University Faculty of Medicine provided confer-
ence Web hosting support. All the submissions and reviews were made through the
Cyberchair system (URL: http://www.cyberchair.org). We express our thanks to
those organizations and the Cyberchair system development team.

Our special thanks go to Tsuneo Okura, Mika Kuroda, Daisuke Toyama,
Namiko Sugimoto, and Masahiro Kagawa for their help in organizing the con-
ference and registrations.

Finally, we wish to express our thanks to Alfred Hofmann at Springer for his
support and cooperation.

November 2006 Salvatore Greco Yutaka Hata
Shoji Hirano Masahiro Inuiguchi
Sadaaki Miyamoto Hung Son Nguyen
Roman S�lowiński
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Abstract. We consider association of decision trees and flow graphs,
resulting in a new method of decision rule generation from data, and
giving a better insight in data structure. The introduced flow graphs can
also give a new look at the conception of probability. We show that in
some cases the conception of probability can be eliminated and replaced
by a study of deterministic flows in a flow network.

1 Introduction

Decision tree is a very useful concept in computer science [7,9], decision science
[2], probability [11] and others.

In this paper, we propose to associate with a decision tree another kind of
graph, called flow graph, which gives better insight in data structure than the
corresponding decision tree and reveals very interesting novel properties of de-
cision trees, not visible directly from the tree. They can be used in many ways
and, particularly, enable an efficient generation of decision rules from data.

Besides, the introduced flow graphs can also be used as a new look at the
conception of probability. �Lukasiewicz [6] claimed that probability defined by
Laplace [5] and used today, is not a well defined concept and he proposed to base
probability calculus on logical ground, which gives to probability sound mathe-
matical foundations. Similar ideas have been proposed independently many years
after �Lukasiewicz by Carnap [3], Adams [1], Reichebach [10] and others.

We go a little bit farther and intend to show that in some cases the conception
of probability can be eliminated and replaced by a study of deterministic flows
in a flow network. The proposed approach gives a new method of decision rule
generation from data, and permits to study data structure in a new way.

The paper is a continuation of some author’s ideas presented in [8].

2 An Example

First, we explain our basic ideas by means of a simple example. Consider the set
U of play blocks having various shapes (e.g., square, round), sizes (e.g., large,

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 1–11, 2006.
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2 Z. Pawlak

small) and colors (e.g., black, white). Assume that the relation between different
play blocks is given by a decision tree as shown in Fig.1. We will use standard
terminology concerning decision trees, like root, branches, paths, etc.

Fig. 1. Decision tree showing relations between different play blocks

The decision tree reveals statistical relationship between various types of play
blocks. For example, the decision tree shows that there are 70% round and 30%
square blocks in the set and among round blocks there are 70% large and 30%
small blocks, whereas square blocks consist of 80% large and 20% small blocks.
Moreover, the set of round and large blocks consists of 20% white and 80% black
blocks, etc. In other words, the decision tree can be understood as a statistical
data structure representation of the set U .

With every decision tree we can associate uniquely another graph, called a
flow graph. The flow graph is an oriented graph obtained from a decision tree
by removing the root and merging nodes labeled by the same “attribute”, e.g.
small, large, etc., as shown in Fig. 2.

The resulting flow graph is given in Fig. 3.
The flow graph reveals the relational structure among objects of the universe.

For example, if the branch (square, small) is labeled by the number 0.06 it
means that there are 6% objects in the universe which are square and small -
the number 0.06 is computed from the data given in the decision tree.

Each path in the flow graph determines an “if ..., then...” decision rule. E.g.,
the path (square, large, white) determines a decision rule “if square and large,
then white”. In our approach, the number (percentage) associated with every
branch can be interpreted as a flow intensity through the branch and used to
study properties of decision rules. We can also interpret the flow graph in terms
of probability, but we will refrain from this interpretation here and we claim that
deterministic interpretation is more natural than the probabilistic one.
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Fig. 2. Merging nodes labeled by the same “attribute”

In order to solve our problem we will analyze the structure of the flow graph
in detail in the next section.

3 Flow Graphs – Basic Concepts

3.1 Flow Graphs

In this section we recall after [8] the fundamental concept of the proposed ap-
proach – a flow graph.

Flow graph is a directed, acyclic, finite graph G = (N,B, σ), where N is a set
of nodes, B ⊆ N × N is a set of directed branches and σ : B → 〈0, 1〉 is a flow
function of (x, y) such that σ(x, y) is a strength of (x, y). The strength of the
branch expresses simply the percentage of a total flow through the branch.

Input of a node x ∈ N is the set I(x) = {y ∈ N : (y, x) ∈ B}; output of a node
x ∈ N is defined as O(x) = {y ∈ N : (x, y) ∈ B}.

We will also need the concept of input and output of a graph G, defined,
respectively, as: I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.

Inputs and outputs of G are external nodes of G; other nodes are internal
nodes of G.

If a flow graph G has only one input and every internal node of G has one
input then such a flow graph with be called a decision tree.

Input of the decision tree will be referred to as root, whereas outputs - as
leaves of the decision tree.

With every node x of a flow graph G we associate its inflow and outflow
defined as

σ+(x) =
∑

y∈I(x)

σ(y, x) (1)
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Fig. 3. Flow graph resulting from the decision tree

and

σ−(x) =
∑

y∈O(x)

σ(y, x). (2)

For any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x) is a
throughflow of x. Moreover, let

σ+(G) =
∑

x∈I(G)

σ−(x) (3)

and

σ−(G) =
∑

x∈O(G)

σ+(x). (4)

Let us assume that σ+(G) = 1, then σ+(G) = σ−(G) = σ(G).
If we invert direction of all branches in G, then the resulting graph G =

(N,B′, σ′) will be called an inverted graph of G. Of course, the inverted graph
G′ is also a flow graph and all inputs and outputs of G become inputs and
outputs of G′ , respectively.

3.2 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the
coverage factors.

The certainty and the coverage of (x, y) are defined as

cer(x, y) =
σ(x, y)
σ(x)

, (5)
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and

cer(x, y) =
σ(x, y)
σ(y)

. (6)

respectively.
Evidently, cer(x, y) = cov(y, x), where (x, y) ∈ B and (y, x) ∈ B′.
Certainty and coverage factors for the flow graph shown in Fig. 3 are presented

in Fig. 4.

Fig. 4. Certainty and coverage factors

For every branch (x, y) of a decision tree cov(x, y) = 1.
Below, some properties, which are immediate consequences of definitions given

above, are presented: ∑
y∈O(x)

cer(x, y) = 1, (7)

∑
x∈I(y)

cov(x, y) = 1, (8)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (9)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (10)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (11)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (12)
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Obviously, the above properties have a probabilistic flavor, e.g., equations (9)
and (10) have a form of total probability theorem, whereas formulas (11) and
(12) are Bayes’ rules. However, these properties in our approach are interpreted
in a deterministic way and they describe flow distribution among branches in
the network.

3.3 Paths, Connections and Fusion

A (directed) path from x to y, x �= y in G is a sequence of nodes x1, . . . , xn such
that x1 = x, xn = y and (xi, xi1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path from x
to y is denoted by [x . . . y] and n − 1 is called length of the path.

A flow graph is linear if all paths from node x to node y have the same length,
for every pair of nodes x, y.

A set of nodes of a linear flow graph is called a k-layer if it consists of the set
of all nodes of this graph linked by a path of the length k with some input node.

The set of all inputs of a flow graph will be called the input layer of the flow
graph, whereas the set of all outputs of the flow graph is the output layer of the
flow graph. For any input node x and output node y of a linear graph the length
of the path [x . . . y] is the same. The layers different from the input layer and
the output layer will be referred to as hidden layers.

In what follows we will interpret layers as attributes in an information system;
input and hidden layers are interpreted as condition attributes, whereas output
layer is interpreted as decision attribute.

The certainty of the path [x1 . . . xn] is defined as

cer[x1 . . . xn] =
n−1∏
i=1

cer(xi, xi+1), (13)

the coverage of the path [x1 . . . xn] is

cov[x1 . . . xn] =
n−1∏
i=1

cov(xi, xi+1), (14)

and the strength of the path [x . . . y] is

σ[x . . . y] = σ(x)cer[x . . . y] = σ(y)cov[x . . . y]. (15)

The set of all paths from x to y(x �= y) in G, denoted by 〈x, y〉, will be called
a connection from x to y in G. In other words, connection 〈x, y〉 is a sub-graph
of G determined by nodes x and y (see Fig. 5).

The certainty of the connection 〈x, y〉 is

cer〈x, y〉 =
∑

[x...y]∈〈x,y〉
cer[x . . . y], (16)

the coverage of the connection 〈x, y〉 is

cov〈x, y〉 =
∑

[x...y]∈〈x,y〉
cov[x . . . y], (17)
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and the strength of the connection 〈x, y〉 is

σ〈x, y〉 =
∑

[x...y]∈〈x,y〉
σ[x . . . y] = σ(x)cer〈x, y〉 = σ(y)cov〈x, y〉. (18)

If we substitute simultaneously for every sub-graph 〈x, y〉 of a given flow graph
G, where x is an input node and y an output node of G, a single branch (x, y)
such that σ(x, y) = σ〈x, y〉, then in the resulting graph G′, called the fusion of
G, we have cer(x, y) = cer〈x, y〉, cov(x, y) = cov〈x, y〉 and σ(G) = σ(G′).

Fig. 5. Connection between x0 and z0

Thus fusion of a flow graph can be understood as a simplification of the graph
and can be used to get a general picture of relationships in the flow graph (see
Fig. 6).

3.4 Dependencies in Flow Graphs

Let x and y be nodes in a flow graph G = (N,B, σ), such that (x, y) ∈ B.
Nodes x and y are independent in G if

σ(x, y) = σ(x)σ(y). (19)

From (19) we get

σ(x, y)
σ(x)

= cer(x, y) = σ(y), (20)

and

σ(x, y)
σ(y)

= cov(x, y) = σ(x). (21)

If

cer(x, y) > σ(y), (22)
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or

cov(x, y) > σ(x), (23)

x and y are positively dependent in G.
Similarly, if

cer(x, y) < σ(y), (24)

or

cov(x, y) < σ(x), (25)

then x and y are negatively dependent in G.
Relations of independency and dependencies are symmetric ones, and are

analogous to those used in statistics.
For every branch (x, y) ∈ B we define a dependency (correlation) factor η(x, y)

defined as

η(x, y) =
cer(x, y) − σ(y)
cer(x, y) + σ(y)

=
cov(x, y) − σ(x)
cov(x, y) + σ(x)

. (26)

Obviously, −1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y) = σ(y) and
cov(x, y) = σ(x); η(x, y) = −1 if and only if cer(x, y) = cov(x, y) = 0 ; η(x, y) =
1 if and only if σ(y) = σ(x) = 0. Evidently, if η(x, y) = 0, then x and y are

Fig. 6. Fusion of the flow graph

independent, if −1 ≤ η(x, y) < 0, then x and y are negatively dependent, and
if 0 < η(x, y) ≤ 1, then x and y are positively dependent (see Fig. 7). Thus,
the dependency factor expresses a degree of dependency, and can be seen as a
counterpart of correlation coefficient used in statistics.
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4 Flow Graphs and Decision Algorithms

Flow graphs can be interpreted as decision algorithms. The most general case of
this correspondence has been considered in [4].

Let us assume that the set of nodes of a flow graph is interpreted as a set of
logical formulas. The formulas are understood as propositional functions and if
x is a formula, then σ(x) is to be interpreted as a truth value of the formula. Let
us observe that the truth values are numbers from the closed interval < 0, 1 >,
i.e., 0 ≤ σ(x) ≤ 1.

These truth values can be also interpreted as probabilities. Thus σ(x) can be
understood as flow distribution ratio (percentage), truth value, or probability.
We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x → y, read as “if x,
then y”; x will be referred to as condition, whereas y – decision of the rule. Such
a rule is characterized by three numbers, σ(x, y), cer(x, y) and cov(x, y).

Thus, every path [x1 . . . xn] determines a sequence of decision rules x1 → x2,
x2 → x3, . . . , xn−1 → xn.

From previous considerations it follows that this sequence of decision rules can
be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short x∗ → xn,
where x∗ = x1x2 . . . xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)

σ(x∗)
, (27)

cov(x∗, xn) =
σ(x∗, xn)

σ(xn)
, (28)

and

σ(x∗, xn) = σ(x∗)cer(xn−1, xn), σ(x∗) = σ[x1, . . . , xn−1]. (29)

Fig. 7. Dependencies in the flow graph
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The set of all decision rules xi1xi2 . . . xin−1 → xin associated with all paths
[xin . . . xin ], such that xi1 and xin are input and output of the flow graph, re-
spectively, will be called a decision algorithm induced by the flow graph.

The decision algorithm induced by the flow graph shown in Fig. 4 is shown in
Table 1. The corresponding flow graph, and the dependency between conditions

Table 1. The decision algorithm induced by the flow graph

certainty coverage strength
if square and small, then black 0.50 0.08 0.03
if square and small, then white 0.50 0.05 0.03
if square and large, then black 0.29 0.19 0.07
if square and large, then white 0.71 0.27 0.17
if round and small, then black 0.57 0.32 0.12
if round and small, then white 0.43 0.14 0.09
if round and large, then black 0.31 0.41 0.15
if round and large, then white 0.69 0.54 0.34

and decision in each decision rule are shown in Fig. 8.
It is interesting to compare diagrams shown in Fig. 1 and Fig. 8. Both dia-

grams show internal structure (relations) between various groups of play blocks.
The decision tree reveals simple statistical structure of the relationship, whereas
the flow graph gives much deeper insight into the relationship, and enables simple
decision rule generation.

Fig. 8. Flow graph for the decision algorithm
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5 Conclusions

Decision tree is an important concept, widely used in computer science, knowl-
edge discovery from data, decision analysis, probability and others. In this paper,
with every decision tree we associate another kind of graph, called a flow graph,
which reveals deeper insight in data structure associated with a decision tree.
This leads to novel methods of decision rule generation from data, and gives bet-
ter look into decision process analysis. Besides, the proposed approach throws
new light on the conception of probability.
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Basically, granular computing is a mode of computing in which the objects of
computation are granular variables. Let X be a variable which takes values in a
universe of discourse, U . Informally, a granule is a clump of elements of U which
are drawn together by indistinguishability, similarity or proximity. For example,
an interval is a granule; so is a fuzzy interval; so is a gaussian distribution; and
so is a cluster of elements of U . A granular variable is a variable which takes
granules as values. If G is value of X , then G is referred to as a granular value
of X . If G is a singleton, then G is a singular value of X . A linguistic variable
is a granular variable whose values are labeled with words drawn from a natural
language. For example, if X is temperature, then 101.3 is a singular value of
temperature, while “high” is a granular (linguistic) value of temperature.

A granular value of X may be interpreted as a representation of one’s state of
imprecise knowledge about the true value of X . In this sense, granular comput-
ing may be viewed as a system of concepts and techniques for computing with
variables whose values are not known precisely.

A concept which serves to precisiate the concept of a granule is that of a
generalized constraint. The concept of a generalized constraint is the centerpiece
of granular computing.

A generalized constraint is an expression of the form X isr R, where X is the
constrained variable, R is the constraining relation, and r is an indexical variable
whose values define the modalities of constraints. The principal modalities are:
possibilistic (r = blank); veristic (r = v); probabilistic (r = p); usuality (r = u);
random set (r = rs); fuzzy graph (r = fg); bimodal (r = bm); and group
(r = g). The primary constraints are possibilistic, veristic and probabilistic. The
standard constraints are bivalent possibilistic, bivalent veristic and probabilistic.
Standard constraints have a position of centrality in existing scientific theories.

A generalized constraint, GC(X), is open if X is a free variable, and is closed
(grounded) if X is instantiated. A proposition is a closed generalized constraint.
For example, “Lily is young,” is a closed possibilistic constraint in which X =
Age(Lily); r = blank; and R = young is a fuzzy set. Unless indicated to the
contrary, a generalized constraint is assumed to be closed.

A generalized constraint may be generated by combining, projecting, qualify-
ing, propagating and counterpropagating other generalized constraints. The set
of all generalized constraints together with the rules governing combination,

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 12–14, 2006.
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projection, qualification, propagation and counterpropagation constitute the
Generalized Constraint Language (GCL).

In granular computing, computation or equivalently deduction, is viewed as a
sequence of operations involving combination, projection, qualification, propaga-
tion and counterpropagation of generalized constraints. An instance of projection
is deduction of GC(X) from GC(X, Y ); an instance of propagation is deduction
of GC(f(X)) from GC(X), where f is a function or a functional; an instance of
counterpropagation is deduction of GC(X) from GC(f(X)); an instance of com-
bination is deduction of GC(f(X, Y )) from GC(X) and GC(Y ); and an instance
of qualification is computation of X isr R when X is a generalized constraint.
An example of probability qualification is (X is small) is likely. An example of
veristic (truth) qualification is (X is small) is not very true.

The principal deduction rule in granular computing is the possibilistic exten-
sion principle: f(X) is A −→ g(X) is B, where A and B are fuzzy sets, and B
is given by μB(v) = supu(μA(f(u))), subject to v = g(u). μA and μB are the
membership functions of A and B, respectively.

A key idea in granular computing may be expressed as the fundamental thesis:
information is expressible as a generalized constraint. The traditional view that
information is statistical in nature may be viewed as a special, albeit important,
case of the fundamental thesis.

A proposition is a carrier of information. As a consequence of the fundamental
thesis, the meaning of a proposition is expressible as a generalized constraint.
This meaning postulate serves as a bridge between granular computing and NL-
Computation, that is, computation with information described in a natural lan-
guage. The point of departure in NL-Computation is (a) an input dataset which
consists of a collection of propositions described in a natural language; and (b)
a query, q, described in a natural language. To compute an answer to the query,
the given propositions are precisiated through translation into the Generalized
Constraint Language (GCL). The translates which express the meanings of given
propositions are generalized constraints. Once the input dataset is expressed as
a system of generalized constraints, granular computing is employed to compute
the answer to the query.

As a simple illustration assume that the input dataset consists of the propo-
sition “Most Swedes are tall,” and the query is “What is the average height of
Swedes?” Let h be the height density function, meaning that h(u)du is the frac-
tion of Swedes whose height lies in the interval [u, u + du]. The given proposi-
tion “Most Swedes are tall,” translates into a generalized constraint on h, and so
does the translate of the query “What is the average height of Swedes?” Employ-
ing the extension principle, the generalized constraint on h propagates to a gen-
eralized constraint on the answer to q. Computation of the answer to q reduces
to solution of a variational problem. A concomitant of the close relationship be-
tween granular computing and NL-Computation is a close relationship between
granular computing and the computational theory of perceptions. More specifi-
cally, a natural language may be viewed as a system for describing perceptions.
This observation suggests a way of computing with perceptions by reducing the
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problem of computation with perceptions to that of computation with their nat-
ural language descriptions, that is, to NL-Computation. In turn, NL-Computation
is reduced to granular computing through translation/precisiation into the Gen-
eralized Constraint Language (GCL).

An interesting application of the relationship between granular computing and
the computational theory of perceptions involves what may be called perception-
based arithmetic. In this arithmetic, the objects of arithmetic operations are
perceptions of numbers rather than numbers themselves. More specifically, a
perception of a number, a, is expressed as usually (∗a), where ∗a denotes “ap-
proximately a.” For concreteness, ∗a is defined as a fuzzy interval centering on a,
and usually is defined as a fuzzy probability. In this setting, a basic question is:
What is the sum of usually (∗a) and usually (∗b)? Granular computing and, more
particularly, granular arithmetic, provide a machinery for dealing with questions
of this type.

Imprecision, uncertainty and partiality of truth are pervasive characteristics
of the real world. As we move further into the age of machine intelligence and
automated reasoning, the need for an enhancement of our ability to deal with
imprecision, uncertainty and partiality of truth is certain to grow in visibility
and importance. It is this need that motivated the genesis of granular com-
puting and is driving its progress. In coming years, granular computing and
NL-Computation are likely to become a part of the mainstream of computation
and machine intelligence.
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Abstract. This paper surveys various areas in information engineering
where an explicit handling of positive and negative sides of information is
appropriate. Three forms of bipolarity are laid bare. They can be instru-
mental in logical representations of incompleteness, rule representation
and extraction, argumentation, and decision analysis.

1 Introduction

Bipolarity refers to the propensity of the human mind to reason and make de-
cisions on the basis of positive and negative affects. It expresses the fact that
beyond ranking pieces of information or acts in terms of plausibility, utility and
so on, the human mind also relies on absolute landmarks with positive and
negative flavor, plus a third landmark expressing neutrality or indifference, cor-
responding to the boundary between positive and negative zones. For instance
people make choices by checking the good sides and the bad sides of alternatives
separately. Then they choose according to whether the good or the bad sides
are stronger. Results in cognitive psychology have pointed out the importance of
bipolar reasoning in human cognitive activities [19] [6] [22]. It even seems that
positive and negative affects are not processed in the same area of the brain.

The presence of absolute landmarks in the way humans apprehend informa-
tion creates limitations in some well-established theories of knowledge repre-
sentation and reasoning. For instance, probability theory handles certainty and
impossibility in a very rigid manner, leaving no room for the state of ignorance.
Classical (Von-Neumann-Savage) utility theory builds interval scales for utilities
regardless of positive and negative values, since a utility function is invariant
with respect to increasing affine transformations. More generally ranking alter-
natives in a purely ordinal way cannot account for bipolarity in a straightforward
manner. In decision theory, the first formal account of bipolarity is Cumulative
Prospect Theory [23]. In quite a different matter, the fact that material impli-
cation does not provide a good model of if-then rules can be explained in terms
of neglecting the bipolar nature of such rules, which have both examples and
counter-examples.

The aim of this paper is to briefly survey some areas where bipolarity seems
to be present and play a major role. The first section lays bare three forms

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



16 D. Dubois and H. Prade

of bipolarity. The subsequent sections are devoted to various cognitive tasks
that naturally involve bipolar ingredients: uncertainty representations, conjointly
exploiting knowledge and data, learning, expressing conditional information, and
finally decision-making.

2 A Typology of Bipolarity

There are several forms of bipolarity according to the strength of the link between
the positive and the negative aspects; in the most constrained form, the positive
is just the mirror image of the negative and they are mutually exclusive. A
looser form of bipolarity considers a possible coexistence between positive and
negative evaluations, while a duality relation between them is maintained. In the
loosest form, the positive and the negative sides express pieces of information of
a different nature.

2.1 Bipolar Scales

A bipolar scale (L, >) is a totally ordered set with a prescribed interior element
0 called neutral, separating the positive evaluations λ > 0 from the negative
ones λ < 0. Mathematically, if the scale is equipped with a binary operation �
(an aggregation operator), 0 is an idempotent element for �, possibly acting as
an identity.

Examples:

– The most obvious quantitative bipolar scale is the (completed) real line
equipped with the standard addition, where 0 is the neutral level. Isomor-
phic to it is the unit interval equipped with an associative uninorm like

xy
xy+(1−x)(1−y) . Then the neutral point is 0.5, 0 plays the same role as −∞
and 1 as +∞ in the real line. Also the interval [−1, 1] is often used as a
bipolar scale;

– The simplest qualitative bipolar scale contains three elements: {−,0, +}.

In such a bipolar scale, the negative side of the scale is the inverse mirror of
the positive one. An object is evaluated on such a bipolar scale as being either
positive or negative or neutral. It cannot be positive and negative at the same
time. This is called a univariate bipolar framework.

Another type of bipolar framework uses two distinct totally ordered scales
L+ and L− for separately evaluating the positive and the negative information.
This is the bivariate unipolar framework. Here each scale is unipolar in the sense
that the neutral level is at one end of the scale. In a positive scale the bottom
element is neutral. In a negative scale the top element is neutral. A bipolar
scale can be viewed as the union of a positive and a negative scale L+ ∪ L−

extending the ordering relations on each scale so ∀λ+ ∈ L+, λ− ∈ L−, λ+ > λ−.
The symmetrisation of finite unipolar scales is incompatible with associative
operations [14] : only infinite bipolar scales seem to support such operations!
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2.2 Symmetric, Dual and Loose Variants of Bipolarity

Three forms of bipolarity can be found at work in the literature, we call types
I, II, III for simplicity.

– Type I: Symmetric bipolarity. It relies on the use of bipolar scales. Gen-
erally, positive and negative evaluations are comparable and sometimes can
even add. Of course, the two truth-values true and false of classical logic
offer a basic view of bipolarity. However, the neutral value only appears in
three-valued logics. Note that the neutral truth value must be interpreted as
half-true, and not as modalities such as unknown or possible. Probability the-
ory exhibits a type I bipolarity as the probability of an event is clearly living
on a bipolar scale [0, 1] whose top means totally sure and bottom impossible
(not to be confused with true and false). The neutral value is 0.5 and refers
to the total uncertainty about whether an event or its contrary occurs (not
to be confused with half-true). In decision theory, utility theory does not
exhibit bipolarity as utility functions only encode an ordering relation be-
tween decisions. On the contrary, Tverski-Kahneman’s Cumulative Prospect
Theory uses the real line as a bipolar scale. It is numerical, additive, and
bipolar. It measures the importance of positive affects and negative affects
separately, by two monotonic set functions σ+, σ− and finally computes a
net predisposition N = σ+ − σ−.

– Type II: Homogeneous bivariate bipolarity. It works with two sepa-
rate positive and negative scales related via a duality relation. Here, an item
is judged according to two independent evaluations : a positive one (in favor
of the item), a negative one (in disfavor of the item). However positive and
negative strengths are computed similarly on the basis of the same data. The
point is here that the positive and the negative sides do not exhaust all pos-
sibilities. Part of the data may neither favor nor disfavor the evaluated item.
Well-known examples of such a bipolarity can be found in formal frameworks
for argumentation where reasons for asserting a proposition and reasons for
refuting it are collected. In decision theory, one may compare decisions using
pairs of positive and negative evaluations according to several criteria.

Apart from the positive evaluation, a weak positive evaluation, gathering
data not in disfavor of the item can be used. For instance, working with
intervals on a (type I) bipolar univariate scale (in the case of an ill-known
evaluation) comes down to a type II bipolarity. There is a duality relation
relating the weak evaluation and the strong positive evaluation, if each item
has a “contrary” : the weak evaluation of an item is the complement of the
positive evaluation of the “contrary” item when the latter makes sense. This
is typical of uncertainty theories leaving room for incomplete information.
Namely, the confidence in some event A is evaluated by two set functions
C(A) and Π(A) reflecting their certainty and plausibility respectively. They
are related by the inequality C(A) ≤ Π(A), so that the certainty of A is
expressed by C(A) = Π(A) = 1, the impossibility of A by C(A) = Π(A) = 0
while the neutral state of ignorance is when C(A) = 0; Π(A) = 1. Clearly,
C(A) lives on a positive scale, while Π(A) lives on a negative one. The duality
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relation expresses that C(A) = 1 − Π(Ac) where Ac is the complement
of A. A good example of certainty/plausibility pairs displaying this kind
of bipolarity are belief and plausibility functions of Shafer. In the case of
possibility/necessity measures, type II bipolarity is also present in the sense
that necessity degrees live on a positive scale while possibility degrees live on
a negative scale. However, the two scales are tightly related by the constraint
stating that positive necessity degree implies a maximal possibility degree
for a given event. So in this case the bivariate setting is degenerated and the
pair (C(A), Π(A)) can be mapped in a one-to-one way to a symmetric type
I bipolar scale.

– Type III: Heterogeneous bipolarity. In this form of bipolarity, the neg-
ative part of the information does not refer to the same kind of source as
as the positive part. So positive and negative information are of a different
nature, while in type II bipolarity only the polarity is different. Especially, in
the case of information merging, negative and positive pieces of information
will not be aggregated using the same principles. The positive side is not a
mirror image of the negative side either. Nevertheless, positive and negative
information cannot be completely unrelated. They must obey minimal con-
sistency requirements. In uncertainty modeling or knowledge representation
heterogeneous bipolarity corresponds to the pair (knowledge, data). Knowl-
edge is negative information in the sense that it expresses constraints on
how the world behaves, by ruling out impossible or unlikely relations: laws
of physics, common sense background knowledge (claims like “birds fly”).
On the contrary, data represent positive information because it represents
examples, actual observations on the world. A not yet observed event is not
judged impossible; observing it is a positive token of support. Accumulating
negative information leads to ruling out more possible states of the world
(the more constraints, the less possible worlds). Accumulating positive in-
formation enlarges the set of possibilities as being guaranteed by empirical
observation. In decision making, heterogeneous bipolarity concerns the oppo-
sition between constraints (possibly flexible ones) that state which solutions
to a problem are unfeasible, and goals or criteria, that state which solutions
are preferred.

3 Bipolarity in Logical Representations of Belief

As said above, bipolarity appears in logic in two forms, one pertaining to the
truth or the falsity of propositions, and the other pertaining to a (sincere) agent’s
capability to assert a proposition or its contrary. It is important to notice the
existence of two scales: one that measures truth, one that measures belief. A
truth- scale is type I bipolar and, when many-valued, it enables propositional
variables and propositions whose truth is a matter of degree to be modelled. The
neutral point in the scale is half-true. Working with Boolean or non-Boolean
propositions is a matter of modelling convention, not a matter of how much
knowledge is available. So [0, 1]-valued membership functions of fuzzy sets are
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type I bipolar (non-membership 0 being negative, 0.5 being neutral). In the
Boolean case, the truth-scale is reduced to the pair {0, 1}.

Another issue is the belief scale. It is positive unipolar in the sense that while
believing p is a positive piece of information, not believing p is non-committal,
because it differs from believing ¬p, the negation of p. There is a companion neg-
ative unipolar plausibility scale whose bottom expresses impossibility and whose
top has a neutral value for expressing non-committal statements of the form p is
possible. In classical logic, beliefs are represented by propositions assumed true
and forming a belief base K. Belief is Boolean : either p is believed (when K � p)
or not. Moreover p is believed if and only if ¬p is impossible, indicating that this
is type II bipolarity. Clearly in the case of incomplete belief bases, the epistemic
state of a proposition is ternary in classical logic even if truth is 2-valued: one
may either believe p, believe ¬p, or believe neither due to ignorance.

There are temptations to use belief states or belief values as truth values (a
set of the form {True, Unknown, False}) and build a 3-valued logic on it. This
is basically what the so-called “partial logic” [5] does. Its truth-tables use an
implicit order whereby Unknown is less true than True, more true than False.
But this approach runs into paradoxes related to the excluded-middle law [11].
Adopting truth-tables for conjunction and disjunction, one must assign a truth-
value to p∨q when p and q are both unknown, which clearly depends on whether
p and q are logically independent or not. The point is that ultimately, in the
Boolean framework p is true or false, so that p∨¬p must be a tautology, even if
the truth-value of p is not known. So Unknown is not a truth-value in the usual
sense: it does not prevent 0 and 1 from being exhaustive and mutually exclusive
as truth-values. Unknown lives on the belief /plausibility bivariate scale. Just like
Unknown, True and False, understood as above, are not truth-values, they are
epistemic states because they stand for certainly 1, and certainly 0, respectively.
They can be modelled as disjunctive subsets of the truth scale: Unknown =
{0, 1}, True = {1}, False = {0}. Belnap so-called “4-valued logic” [3] supposedly
adds a fourth “truth-value” expressing the contradiction to {True, Unknown,
False}. However it is subject to the same criticism as above, as to what this
4-valued logic means, regardless of the fact that a multivalued logic based on
such a kind of truth-set (a bilattice) can be devised and enjoys nice properties.

One reason for this confusion between truth and certainty of truth is that the
language of classical logic does not support the expression of unknown propo-
sitions: only believed propositions can be written in the knowledge base. It be-
comes clearer when prefixing each believed proposition in K with a necessity-like
belief modality C. Then a possibility-like modality Π , such that Πp may stand
for ¬C¬p. It can be shown that the proper logic here is the KD45 modal logic.
Then True can be interpreted, in some sense, as a truth-value of Cp, not of p.
Unknown is encoded as Πp∧Π¬p. It applies when Cp∨C¬p is false, as clearly
Cp is not the negation of C¬p. So, the presence of the epistemic state Unknown
does not question the excluded middle law at all. Casting propositional logic
into an epistemic modal logic lays bare the type II bipolarity of reasoning in
classical logic. In fact it can be proved [8] that, denoting CK = {Cp, p ∈ K},
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K � p in classical logic if and only if CK � Cp in KD45. Note that this kind of
embedding is not the usual one of propositional logic into modal logic: it says
that the fragment of KD45 made of classical propositions prefixed by C behaves
like classical logic, which justifies the name “belief base” for a set of classical
propositions.

Rough set theory [20] also displays a form of type II (symbolic) homoge-
neous bipolarity, since a set is approximated by a pair of subsets, respectively
containing elements surely belonging to it (lower approximation), and elements
surely not belonging to it. The so-called upper approximation of the set is again
the complement of the lower approximation of its complement. This can be
represented using ordered pairs of truth-values from {0, 1}, viewed as an ele-
mentary unipolar scale, assigning (1, 1) to elements surely belonging to A, (0, 0)
to elements surely belonging to Ac, and (0, 1) to elements whose membership is
unknown. However, it does not lead to a truth-functional three-valued logic on
a (type I) bipolar scale, since the lower (resp. upper) approximation of a union
(resp. intersection) of sets is not the union (resp. intersection) of their lower
(resp. upper) approximations. Yet, links between three-valued logics and rough
sets have been explored in the literature (e.g. Banerjee [2]).

4 Heterogeneous Bipolar Information: Knowledge vs.
Data, and Learning

In the previous section, bipolarity in knowledge representation was due to in-
complete information. There is a very different kind of bipolarity, this time het-
erogeneous, opposing background knowledge and empirical data. Background
knowledge takes the form of generic statements, integrity constraints, laws, nec-
essary conditions, and point out what cannot be possibly observed. On the con-
trary, data is made of observed cases that are positive pieces of information.
Beware that positive knowledge may not just mirror what is not impossible.
Indeed what is not impossible, not forbidden, does not coincide with what is
explicitly possible or permitted. So, a situation that is not impossible (i.e., pos-
sible) is not necessarily guaranteed possible (i.e., positive) if it is not explicitly
permitted, observed or given as an example.

Possibility theory is a suitable framework for modelling and reasoning about
this kind of bipolar information[12][8]. Negative and positive information is rep-
resented by two separate possibility distributions, denoted by π and δ, yielding
possibility and guaranteed possibility measures respectively. A possibility distri-
bution π encodes a total pre-order on a set S of interpretations or possible states.
It associates to each interpretation s a real number π(s) ∈ [0, 1], which represents
the compatibility of the interpretation s with the available knowledge on the real
world (in case of uncertain knowledge), or equivalently to what extent s is not
impossible. The less π(s), the more impossible s is. The second possibility dis-
tribution δ should be understood differently. The degree δ(s) ∈ [0, 1] estimates
to what extent the presence of s is supported by evidence, and δ(s) = 0 just
means that s has not been observed yet. In the crisp case, the set I of impossible
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situations is I = {s ∈ S, π(s) = 0}, and the set GP of guaranteed possible situ-
ations is GP = {s ∈ S, δ(s) = 1}.

A characteristic property of heterogeneous bipolarity is the fact that the sets
of guaranteed possible (the support GP of δ) and impossible (I) situations should
be disjoint and generally do not cover all the referential. This is expressed by
the coherence condition GP ⊆ Ic. This condition means that what is guaranteed
possible should be not impossible. When uncertainty is graded, this coherence
condition now reads: δ ≤ π.

Example: Assume for instance one has some information about the opening
hours and prices of a museum M. We may know that museum M is open from
2 pm to 4 pm, and certainly closed at night (from 9 pm to 9 am). Note that
nothing forbids museum M to be open in the morning although there is no
positive evidence supporting it. Its ticket fare is neither less than 2 euros nor
more than 8 euros (following legal regulations), prices between 4 and 5 euros are
guaranteed to be possible (they are prices actually proposed by the museum).

Since observations accumulate, while increasing background knowledge elimi-
nate new possible worlds, positive information aggregate disjunctively, and neg-
ative information aggregate conjunctively. This can be understood in our setting
in the following way. A constraint like the value of X is restricted by Ai is en-
coded by a possibility distribution π s. t. π ≤ μAi . Several such constraints
are thus equivalent to π ≤ mini μAi . By the principle of minimal commitment
(anything not declared impossible is possible), it leads to choose the greatest
possibility distribution π = mini μAi compatible with the constraints. Hence a
conjunctive combination. In the case of positive information X is Ai is equivalent
to δ ≥ μAi , since it reflects empirical support. Then several such observations
are equivalent to δ ≥ maxi μAi . By closed world assumption (anything not ob-
served as actually possible is not considered), one gets δ = maxi μAi . Hence a
disjunctive combination.

Given a pair of possibility distributions (π, δ), we can define: the possibility
degree of an event A, Π(A) = max{π(s) : s ∈ A}, the dual necessity degree
N(A) = 1−Π(Ac) and the guaranteed possibility degree Δ(A) = min{δ(s) : s ∈
A} (let alone the dual degree of potential necessity 1 − Δ(Ac)). Note that set
function Π underlies an existential quantifier since Π(A) is high as soon as some
s ∈ A is plausible enough. It agrees with the negative nature of information,
since A is impossible, i. e. Π(A) = 0 ⇐⇒ N(Ac) = 1, corresponds to the
non-existence of an interpretation s ∈ A having a non-zero degree of possibility
π(s). In contrast, Δ underlies a universal quantifier since Δ(A) is high as soon
as all s ∈ A be supported by evidence. It agrees with the positive nature of
information encoded by δ, since Δ(A) = 1 requires that all states where A
occurs be maximally supported by evidence. The duality between N and Δ
(Δ(A) = N c(Ac) where N c is the necessity measure based on πc = 1 − δ) is
different from the one (characteristic of type II bipolarity) between N and Π .

Merging bipolar information [12], by disjunctive (resp. conjunctive) combi-
nation of positive (resp. negative) information, may create inconsistency when
the upper and lower possibility distributions, which represent the negative part
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and the positive part of the information respectively, fail to satisfy the consis-
tency condition π ≥ δ. Then, since empirical observations are generally regarded
as more solid information than prior knowledge, the latter must be revised for
instance as π′ = max(π, δ), so as to account for unexpected evidence.

Learning processes turn data into knowledge, hence positive into negative in-
formation in the sense of type III bipolarity: situations that are often observed
are eventually considered as normal and those never observed are considered as
impossible. Recently [21], it has been shown that Mitchell’s version space con-
cept learning, based on an explicit set of examples and counterexamples, can be
reformulated in the language of possibility theory under heterogeneous bipolar-
ity. Distributions π (induced by counterexamples) and δ (induced by examples)
respectively become the most general and the most specific hypotheses explain-
ing the data. The theory also explains how these hypotheses are progressed as
new data come in.

5 Bipolarity and If-Then Rules

An if-then rule is not a two-valued entity, it is a three valued one. To see it,
consider a database containing descriptions of items in a set S. If a rule if A
then B is to be evaluated in the face of this database, it clearly creates a 3-
partition of S, namely:

1. the set of examples of the rule: A ∩ B,
2. its set of counter-examples: A ∩ Bc,
3. the set of irrelevant items for the rule: Ac.

Each situation should be encoded by means of a different truth-value. This view
of a rule is at odds with the logical tradition, for which it is a material implication.
The two first situations corresponding to the usual truth-values 1 (true) and 0
(false) respectively. The third case corresponds to a third truth-value that must
be be interpreted as irrelevant as the rule does not apply. This idea of a rule
as a tri-event actually goes back to De Finetti in the 1930’s. This framework
for modelling a rule produces a precise bipolar mathematical model: a rule is
modeled as a pair of disjoint sets representing the examples and the counter-
examples of a rule, namely (A ∩ B, A ∩ Bc).

This definition has several consequences. First, it justifies the claim made by
De Finetti that a conditional probability P (B | A) is the probability of a partic-
ular entity denoted by B | A that can be called a conditional event. Indeed it is
obvious to see that the probability P (B | A) is entirely defined by P (A ∩ B) and
P (A ∩ Bc). Moreover it precisely shows that material implication only partially
captures the intended meaning of an if-then rule. It is obvious that the set of
items where the material implication Ac ∪ B is true is the complement of the set
of counter-examples of a rule. Hence the usual logical view only emphasizes the
negative side of the rule. It does not single out its examples. This is clearly in
agreement with the fact that propositions in classical logic represent negative in-
formation. On the other hand, the set of examples of a rule is A ∩ B and clearly
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represents positive information. Thus, the three-valued representation of an if-
then rule also strongly suggests that a rule contains both positive and negative
information. Note that in data mining, the merit of an association rule A ⇒ B
extracted from a database is evaluated by two indices: the support and the con-
fidence degrees, respectively corresponding to the probability P (A ∩ B) and the
conditional probability P (B | A) = P (A∩B)

P (A∩B)+P (A∩Bc) . This proposal may sound
ad hoc. However the deep reason why two indices are necessary to evaluate the
quality of a rule is because the rule generates a 3-partition of the database, and
two evaluations are needed to picture their relative importance. In fact the prim-
itive quality indices of an association rule are the proportion of its examples and
the proportion of its counter-examples. All other indices derive from these basic
evaluations.

It is intuitively satisfying to consider that a rule R1 = “if A then B” entails
a rule R2 = “if C then D”, if R2 has more examples and less counterexamples
than R1 (in the sense of inclusion). R2 is safer than R1. This entailment relation
(denoted |=) can be formally written as

B | A |= D | C if and only if A ∩ B ⊆ C ∩ D and C ∩ Dc ⊆ A ∩ Bc.

It is non-monotonic. Indeed, it has been shown [10] that the three-valued se-
mantics of rules provide a representation for the calculus of conditional assertions
of Kraus, Lehmann and Magidor [17], which is the main principled approach to
nonmonotonic reasoning.

Lastly, the bipolar view has been also applied to fuzzy rules “‘if A then B”
(when A and/or B are fuzzy sets). It is clear that the usual modeling of fuzzy
rules in fuzzy control, based on the fuzzy conjunction of A and B corresponds to
the positive information contained in rules, while the less usual approach based
on many-valued implications views rules as constraints and better fits classical
logic. The bipolar view can be exploited for building a typology of fuzzy if-
then rules, based on multivalued implications or conjunctions, where each type
of fuzzy rules serves a specific purpose [13]. It emphasizes the advantages of
using conjointly implicative rules (encoding negative information) and conjunc-
tive rules (encoding positive information) in the same rule-based system. Finally
the bipolar view is instrumental in rigourously extending the support and the
confidence degrees to fuzzy association rules [9].

6 Bipolarity and Decision

Decision processes are pervaded with bipolar notions. All types of bipolarity are
involved. Type I bipolar decision-making stems from evaluating decision on a
bipolar scale, thus providing an explicit account of whether a decision is good
or bad. An automatic procedure ranking decisions from the best to the worst
does not prevent the best ranked decision from being bad (the other ones being
worse), nor, for another case, the worst decision from still being reasonably good.
It is useful to propose absolute evaluations, at least a qualitative advice about
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what is good and what is bad. Using a bipolar scale is clearly instrumental, due
to the presence of the neutral point separating good grades from bad ones. This
type of bipolarity is especially used in Cumulative Prospect Theory and more
recently by Grabisch and Labreuche [18].

Type II bipolarity occurs when faced with several criteria, and evaluating
separately the criteria where the ratings of a decision are good and the criteria
where the ratings are bad. Each criterion can be evaluated on a type I bipolar
scale and the global evaluation on a bivariate unipolar scale, hence pairs (how
good, how bad) of evaluations are compared. Or, in a more complex and more
expressive setting, each criterion can be itself rated on a bivariate unipolar scale,
as done by Greco et al. [16].

In the bipolar setting the importance of criteria cannot be assessed as usual
using set functions g like capacities, g(C) evaluating the importance of the group
C of criteria. So-called bicapacities [15] are of the form g(C+, C−) where C+

(resp. C−) is a set of criteria where the decision performance is good (resp.
bad). If criteria are rated individually on a bipolar scale, C+ ∩ C− = ∅. The
overall evaluation is performed using a variant of Choquet integral adapted to
bicapacities. In the more expressive model, criteria importance is evaluated by
so-called bipolar capacities[16]. The idea is to use two measures, a measure of
positiveness (that increases with the addition of positive arguments and the
deletion of negative arguments) and a measure of negativeness (that increases
with the addition of negative arguments and the deletion of positive arguments),
without combining them.

A purely ordinal setting for bipolar decision-making was recently proposed by
Dubois and Fargier [7]. Each criterion is rated on the basic qualitative bipolar
scale {−,0, +}. The set C of criteria is mapped on a unipolar positive scale, for
instance [0, 1], where 0 indicates no importance. Let π(c) be the importance of
criterion c. The weight of a subset C of criteria is supposed to be Π(A), using
a possibility measure; the idea is to focus on the most important affect when
making a choice. For a decision a, the evaluation of criterion c is either positive
or negative or zero. Let A+ = {c, c(a) = +}, and A− = {c, c(a) = −} be the
positive reasons for a and the negative reasons against a, respectively. Comparing
decisions a and b in the type II bipolar framework is based on evaluations Π(A−),
Π(A+), Π(B−), and Π(B+). Several decision rules can be proposed. The first
one is a Pareto-based comparison of pairs (N((A−)c), Π(A+)) and (N((B−)c),
Π(B+)). It is a transitive partial ordering. It is perhaps too partial: for instance,
when Π(A−) > Π(A+), it concludes that a is incomparable with b where B+ =
B− = ∅. In this case, one would rather say that a is worse than an indifferent
b. Another drawback is observed when Π(A+) > Π(B+) and Π(A−) = Π(B−):
this enforces preference of a over b, even if Π(A+) is very weak w.r.t the order
of magnitude of the negative arguments — in the latter case, a rational decider
would examine the negative arguments in details before concluding.

The other decision rule is a complete preorder that assumes commensurability
between positive and negative evaluations, counting a reason against b as a reason
for a:
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a �Biposs b ⇔ max(Π(A+), Π(B−)) ≥ max(Π(B+), Π(A−))

Only the strict part of the generated ordering is transitive. This rule focuses
on the most salient affects pertaining to a and b. a �Pareto b implies a �Biposs b.
It is also clear that �Biposs is a bipolar generalisation of a possibility measure.
However, �Biposs and Pareto are very rough rules that may be not decisive
enough. Lexicographic refinements of �Biposs offer more decisive and actually
realistic decision rules. One such rule checks how many reasons for a and for b
there are at each importance level and decides on the basis of the most important
such discriminating level. It can be simulated by Cumulative Prospect Theory.
This kind of qualitative bipolar setting can be useful in formal argumentation
for the evaluation and comparison of arguments[1].

Quite another form of bipolarity in decision refers to the (in some sense more
classical) opposition between constraints and goals. It is a form of heteroge-
neous bipolarity. A decision problem on a solution space is then modelled by
two possibility-like distributions π and δ [4]. However, now π(s) evaluates to
what extent a solution s is feasible, not rejected. It is a matter of degree in
the face of soft constraints. On the contrary δ is an objective function and δ(s)
evaluates the extent to which s is fully satisfactory. All formal considerations
pertaining to type III bipolarity apply here, especially the consistency condi-
tion between π and δ. Distribution π is generally the conjunctive aggregation
of local soft constraints. Distribution δ is generally the disjunctive or additive
aggregation of several objective functions. This approach can be expressed in
possibilistic logic using a constraint base (containing negative information as
in classical logic) and a goal base (containing positive information and behav-
ing like in a data-driven logic [8]). Several strategies for defining best solutions
can be devised. The most natural scheme is to first check consistency between
constraints and goals, possibly modifying goals if necessary, then define a set
of feasible solutions that achieves a compromise between soft constraints, and
finally finding the best feasible solutions according to δ inside this set.

7 Conclusion

This paper suggests that bipolarity is naturally present in cognitive and decision
processes. Bipolarity lays bare the presence of absolute landmarks in evaluation
scales, having positive or negative flavor, thus revealing a cognitive limitation
of purely ordinal representations. Modelling bipolarity in an explicit manner
is useful in many areas of information engineering such as knowledge repre-
sentation, learning, decision analysis, inconsistency handling, argumentation,
question-answering systems.
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Kansei Engineering and Rough Sets Model

Mitsuo Nagamachi
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Abstract. M. Nagamachi founded Kansei Engineering at Hiroshima
University about 30 years ago and it has spread out in the world as
an ergonomic consumer-oriented product development. The aim of the
kansei engineering is to develop a new product by translating a cus-
tomer’s psychological needs and feeling (kansei) concerning it into design
specifications. The kansei data are analyzed by a multivariate statistical
analysis to create the new products so far, but the kansei data not al-
ways have linear features assumed under the normal distribution. Rough
sets theory is able to deal with any kind of data, irrespective of linear or
non-linear characteristics of the data. We compare the results based on
statistical analysis and on Rough Sets Theory.

1 Introduction

The trend of product development is becoming toward the consumer-oriented,
namely the consumer’s feeling and needs are recognized as invaluable in product
development for manufacturers.

The kansei engineering was founded by M. Nagamachi at Hiroshima University
about 30 years ago [1,2,3,4] and the kansei engineering aims at the implementa-
tion of the customer’s feeling and demands in the product function and design.
When a customer wants to purchase some thing, for instance to buy a passenger
car, TV cumcorder or a costume etc., he/she will have a kind of feeling such as
“graceful and looks intelligent, but not so expensivec” This feeling is called as
“kansei” in Japanese. The kansei means the customer’s psychological feeling as
well as the physiological issues. For instance, if the developmental target will be
a sophisticated room air-conditioner which is able to control room temperature
automatically comfortable to person(s) working in the room, the mechanical
function of the air-conditioner should be developed based on psychological feel-
ing as well as dependent on physiological basis using control engineering. The
kansei engineering is defined as “translating the customer’s kansei into the prod-
uct design domain”. If the user’s target would be an passenger car, all kansei
concerning exterior, interior, engine, etc. are implemented in those designs. In
this case, the surveyed kansei are transferred to physical traits first and these
are transformed to the design domain. If it is concerned with urban planning
and if what people want to design in terms of the kansei engineering is the com-
munity, the kansei included in the district culture and history as well as people’s
demands of kansei should be implemented in the urban redesign.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 27–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Kansei Engineering is powerful to develop new products in any design domain
fit to customer’s needs and feeling, and then it has spread out over the world.
Especially, all countries in EU have much interested recently in the kansei en-
gineering or the affective engineering, and a lot of researchers engage in kansei
research under the EU research fund.

Manufacturers introduced successfully the kansei engineering are Mazda
(Sports-car, Miata), Wacaol (Brassiere, Good-Up Bra), Sharp (TV camcorder,
Licked Crystal Viewcam), Matsusita (Sitting shower, The Shower), Milbon
(Shampoo and treatment, Deesse’s), Mizuno (Golf club, IntageX3) and others.
All kansei products have sold very well in the market so far, because they are
well fit to the customer’s feeling.

2 Methodology of Kansei Engineering

2.1 Category Classification

We survey a customer’s behavior when using a product and name his/her feel-
ing to write down on a keyword on a card one by one. Then we construct a
tree structure from a top event (a top category) to the bottoms (subconcepts)
with expressing all keywords. From subconcepts we choose the most important
subconcepts concerning the coming new product and the selected subconcepts
are examined in ergonomic experiments in order to specify the design specifica-
tions. Miata, a sports-car made by Mazda was made followed by the category
classification.

First, Mazda researchers took many pictures of young drivers when driving a
car and collected about 600 keywords expressing the young driver’s observation.
Then a tree structure was constructed of a top category to subconcepts using
these keywords. The most related and important subconcepts were selected to
lead to the final design specifications, which included an engine reformation,
interior and exterior design as well.

2.2 Kansei Engineering Type I

Kansei words related the ongoing product domain are chosen in reference to
magazines, customer conversation, and salesmen’s words in the number of 30-40
words and then these words are in the scale of 5-point or 7point SD method.
On the other side, many products are collected from the same design domain of
the ongoing product and these selected products are evaluated using the kansei
SD scaling. The evaluated data are analyzed by the multivariate analysis such
as Factor Analysis, Regression Analysis or Quantification Theory Type I, Type
II and Type III.

These kansei engineering methods are very effective and efficient to find out
the relationship between customer’s kansei and product design specifications.
Good-Up Bra made by Wacoal and Deesse’s (Figure 1) made by Milbon are
successful followed this technique.
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Fig. 1. Shampoo and treatment named “Deesse’s”

2.3 Kansei Engineering System and Hybrid Kansei Engineering
System

The system means a computerized assisting system to assist the designer activity
or to help a customer’s product choice fit to his/her feeling. The Kansei Systems
consists of kansei word database, knowledge base, an inference engine, product
parts database and system control. In Kansei Engineering System a kansei word
is inputted into the computer and it recognizes the kansei which is transferred
to design segmentation. Finally a selected candidate of products is displayed on
the screen.

Hybrid Kansei Engineering System has the kansei engineering system which
is called “forward kansei engineering”, from kansei inputting to a candidate
display. The system has so called “backward kansei engineering”, which starts
from a candidate. A designer watches a candidate and changes it with his/her
idea based on inferred kansei result and the hybrid kansei system is able to
assess the designer’s decision with the kansei database. Nissan’s steering wheel
was designed using the hybrid kansei system.

2.4 Virtual Kansei Engineering System

Nagamachi collaborated with Matsusita Electric Works to create a new com-
puterized design system which is able to design a kitchen in a virtual space.
It is called ViVA system, which is able to display a kitchen design according
to a house wife’s kansei. The system consists of two subsystems, one of design
decision system based on the kansei engineering system with 10,000 house wives
database, and another of virtual reality system which displays on the screen kan-
sei kitchen design based on her kansei. A house wife inputs her image of kitchen
life such as “I want to invite my friends on Saturday to cook and chatter with
them”. And then the system can show the kitchen image on the screen decided
by the kansei system (see Figure 2 and 3).
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Fig. 2. ViVA System for kitchen design

Fig. 3. An example of kitchen design decided by ViVA system

The shell of ViVA system was extended to whole house design system, “Hous-
Mall”, which is able to deal with the designs of the exterior house, the front door,
the western room, the Japanese room, the kitchen, the bath room, and the bed
room as well. A customer inputs his/her kansei on each part, and the system
displays each candidate image on the screen decided by the kansei engineering
system. All customs participated in the system were surprised when watching
the screen, since they were feel much fit to their image in mind.
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2.5 Collaborate Kansei Design System

We attempted to construct “groupware designing system” using the Web which
has an intelligent design system and kansei databases. The system is very use-
ful to do a joint work for designing a new product by several designers in the
separated position, for instance working in separate countries. The system has
a server implemented an intelligent software which supports collaborate design-
ing, since the designers can use voice and see the other colleagues’ work on the
screen with each other. Talking with other persons, a designer can make the de-
sign or correct it instantly using the kansei databases and the kansei engineering
systems. Figure 4 illustrates a scene of collaborative kansei designing.

Fig. 4. A schema of Collaborative Kansei Designing System

2.6 Rough Sets Theory

We have produced many kansei products so far using the kansei engineering.
However, some of kansei have the linear characteristics, but others have non-
linear features. For instance, the length on design side increases linearly with
“small-large” kansei, but the evaluated kansei score for “beautiful-not beautiful”
shows non-linear feature compared with the horizontal numerical change. If the
kansei has in general non-linear characteristics, it is not correct to apply the
statistical analysis, since it has hypothesis of normal distribution on the basis.

However, Rough Sets Theory extended by Pawlak [8] can treat rough and
ambiguous data like kansei, irrespective of linear or non-linear data character-
istics. The theory consists of seeking lower and upper approximation based on
the decision rules of rough kansei data, the former approximation to get the
crisp solution about kansei design, but the latter of getting more ambiguous and
uncertain solution including quite a new design idea [6,7].
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3 Comparison Between Kansei Engineering and Rough
Sets Model

In this section, we attempt to compare the calculated results of kansei designs by
the kansei engineering and by Rough Sets Model. First, we describe the standard
kansei engineering procedure and then Rough Sets Model procedure.

3.1 Principal Component Analysis of Toddler Shoes Design

Our kansei research is related to Kansei Engineering Type I technique [1], which
aims at finding the relationship between the kansei and design specifications

In this case, we attempted to create very good kid shoes (toddler shoes)
design in terms of Kansei Engineering. The experimental procedure of Kansei
Engineering is as follows;

(1) Collection of toddler shoes from several different makers – We collected 29
different shoes from 5 manufacturers.

(2) Shoes design attributes – We defined design attributes concerning each shoes
design, namely size, weight, surface design, sole, color and so on. We call
these design elements as Item/Category.

(3) Collection of Kansei words – We collected 31 kansei words, mostly adjec-
tives, from young mothers. For instance, they talk with their friends when
purchasing shoes, cute, light, easy to wear, soft sole and so on. These kansei
words are illustrated on 5-point SD scale for easy evaluation.

(4) Execution of kansei evaluation experiments. Twenty-six young mothers who
have kindergarten’s children were asked to evaluate their feeling on each
shoes design with the 5-point kansei SD scale.

(5) After the experiments, all mother subjects discussed together about what at-
tributes were good design for easy-to wear, safe running, comfortable usage,
easy wash, and inexpensive as well.

(6) Calculation of evaluated data by Principal Component Analysis and Quan-
tification Theory Type I

3.2 Data Analysis Using Principal Component Analysis

The evaluated data on 29 toddler shoes design were analyzed first by Princi-
pal Component Analysis. The cumulative contribution is shown in Table 1.As
illustrated in Table 1, Component 1 and 2 explain 50%.

We are able to show the PCA charts which illustrate each factor graphic.
Figure 7 illustrates the kansei word chart which shows the region surrounded
by Component 1 and Component 2. In the chart, the horizontal axis implies
Component 1 and the vertical one Component 2. The resulted three components
lead to a new shoes product and accordingly the designer is able to develop a
new product applying these design points.

Component 1 is grouped by the kansei “easy to move”, “easy to put on”,
“easy to make put on” and others. Accordingly Component 1 is named “easy
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Fig. 5. A scene of kansei experiment

Fig. 6. A sample of 29 toddler shoes

to use” component. Component 2 is grouped by the kansei “attractive”, “good
design” and other, and then this is named “good design” component. Figure 8
illustrates the positions of shoes sample on the kansei component map. It shows
which samples are closer to what kansei. If we have a company strategy of the
kansei about the next development project, we may choose the specific kansei.
We constructed the new product of company strategy about a kansei product
development.

3.3 Quantification Theory Type 1 Analysis of Toddler Shoes Design

Quantification Theory Type 1(QT1) was founded by DR. Mikio Hayashi for
treating with qualitative data, which is similar with multiple regression analysis.
It seeks a relation between kansei and design attributes. We can obtain using
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Table 1. Cumulative Contribution of Principal Component Analysis

Principal Eigen Contribution Cumulative
Component Value Contribution

No.1 4.771 30.48% 30.48%
No.2 3.189 20.38% 50.85%
No.3 1.923 12.29% 63.14%
No.4 1.749 11.17% 74.31%
No.5 1.107 7.08% 81.39%

Fig. 7. A chart of Component 1 and 2

Fig. 8. PCA vector chart of Component 1 and 2
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QT1 the relational function of design elements like size, width, color, and other
categories fit to the specific kansei.

Since Component 2 was named “a good design”, we try to get the design
attributes concerning the kansei “a good design”. Applying QT1 to the kansei,
we obtained the following results. The analyzed results tell that the design of “a
good design” should consist of red and blue or soft rubber or lower heel. Each
design element is independent with the mathematical meaning of Quantification
Theory.

3.4 Comparison with Rough Sets Model

One of problems in kansei is that people’s kansei does not always have linear
characteristics in statistical meaning. For instance, the kansei [big–small] has
linearity in continuity axis, but the kansei [beautiful–not beautiful] has curved
feature in physiological axis. In general we have used statistical analysis like
cluster analysis and multiple regression analysis. If these kansei have non-linear
characteristics, it is not appropriate to apply a multiple variate analysis. There-
fore, we have used to Neural Networks, Genetic Algorithm and others so far.

Rough Sets Theory was founded by Pawlak [8] and it consists of Lower and
Upper Approximation. We used three equations for deriving Lower and Upper
approximation decision rules in terms of Rough sets model based on Nishino’s
model [7].

POSβ(Dj) =
⋃

{Ei | gpos(i, j) ≥ β}

=
⋃{

Ei

∣∣∣∣∣ P (Dj |Ei) ≥
P (Dj)
1 − β

}
,

NEGβ(Dj) = =
⋃{

Ei

∣∣∣∣∣ P (Dj |Ei) ≤
P (Dj) − β

1 − β

}
,

BNDβ(Dj) =
⋃{

Ei

∣∣∣∣∣ P (Dj |Ei) ∈
(

P (Dj) − β

1 − β
,
P (Dj)
1 − β

)}
.

The following table is one of derived comparison by QT 1 (right) and by
Rough sets model (left). In terms of QT1, each design element was derived inde-
pendently. To the contrary, Rough Sets Model can derive the design speculations
as a group. Lower approximation means a crisp solution which almost the same
as the solution by QT1, but upper approximation means rough and ambiguous
features which leads sometime inventive hints.

Table 2. The comparison of Rough sets model and QT1

Rough sets model QT1
· sneaker type red or blue
· a magic tape solt rubber

· weak solt ;ower heel
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Remarks

Kansei Engineering is a translating technology of kansei, namely customer’s psy-
chological feeling into design elements. The kansei is related to words, attitude,
behavior or physiological measurement of EEG, EMG, Heart rate, GSR and
other ergonomic measurement. Accordingly, it is very important and successful
from the beginning to choose how to measure the kansei.

Secondly, the measured kansei is analyzed by statistical methods of multivari-
ate analysis. We always use factor analysis, multiple regression analysis, cluster
analysis and others. Quantification Theory I, II, III, IV are very well known as
the excellent method for treating with qualitative data, especially like kansei
data. Computer-assisted kansei systems with artificial intelligent system are also
very effective for customers to select the appropriate goods and for designers to
develop new products due to his/her own idea. In Japan, Nagamachi has devel-
oped a lot of new kansei products, automobile, construction machine, costume,
cosmetics, lamp, golf club, toilet, bath and so many other products. All kansei
products developed in terms of Kansei Engineering have been sold very well in
the market and the manufacturers requested to support my effort have got a lot
of profit through the kansei products.

Some of kansei have linear characteristics, but others don’t. For instance, the
kansei “large–small” has decrease feature according to data characteristics. But
the kansei “beautiful–not beautiful” does not always linear characteristics, on the
other hand it has curved function. In the latter cases, an application of statistical
method to the kansei data is not correct. However, Pawlak’s Rough Sets Theory
does not have matter of linearity or non-linearity. Rather, it has very analytical
power for rough, uncertain and ambiguous data. Therefore, it is very powerful
analysis to the kansei data. We tried here to apply Rough Sets Model [5] for
comparison with Quantification Theory Type 1. As our expectation, Rough Sets
Model derived group wise solution to lead “the good design” toddler shoes. Our
next research matter will find more useful and easy technique to lead solution
in terms of sophisticated Rough Sets Model.
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Abstract. The presentation introduces the basic ideas and investigates
the stochastic approach to rough set theory. The major aspects of the
stochastic approach to rough set theory to be explored during the pre-
sentation are: the probabilistic view of the approximation space, the
probabilistic approximations of sets, as expressed via variable precision
and Bayesian rough set models, and probabilistic dependencies between
sets and multi-valued attributes, as expressed by the absolute certainty
gain and expected certainty gain measures, respectively. The measures
allow for more comprehensive evaluation of rules computed from data
and for computation of attribute reduct, core and significance factors in
probabilistic decision tables.

1 Introduction

The original rough set theory [1-2] was developed within the framework of set
theory, algebra and logic. It was restricted to finite universes, which allowed the
use of the set cardinality as a basis for the measures of quality of approxima-
tion, inter-attribute dependency etc. The natural extension of the cardinality
measure, in the context of rough set theory applications to data analysis and
modelling from data drawn from infinite or very high cardinality universes, is the
adoption of the probability function. The probability function can be used to es-
timate the relative ”sizes” of subsets of an infinite universe by properly designed
sampling procedure. It turns out that the extended theory of rough sets can be
developed around the notion of the probability function while preserving the
basic properties of the original approach proposed by Zdzislaw Pawlak [1-2]. In
addition, connections can be established with some of the well-known results of
probability theory, such as Bayes theorem and the notion of event independence.

The attempts to generalize rough set theory based on probabilistic ideas were
initiated soon after the introduction of rough sets [3-6]. In this article, the sum-
mary of basic results of the probabilistic approach to rough sets is presented.
Due to space restrictions, the proofs of theorems are omitted. In brief, the re-
sults are the effect of the evolution of the early variable precision rough set
model [3] and its merge with probability theory and Bayesian reasoning. The
central notions of the probabilistic approach to rough sets are the prior and the
conditional probabilities of an event (set)[4,13-14]. The probabilities are used to
define information gain function, which in turn serves as a basis to define set

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 38–48, 2006.
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Table 1. Multivalued Classification Table

P a b c d
0.10 1 1 2 1
0.05 1 1 2 1
0.20 1 0 1 1
0.13 1 0 1 2
0.02 2 2 1 2
0.01 2 2 1 2
0.01 2 0 2 1
0.08 1 1 2 1
0.30 0 2 1 3
0.07 2 2 1 2
0.01 2 2 1 2
0.02 0 2 1 1

approximations in the style of the variable precision model of rough sets. It is
also used to generalize the Pawlak’s notion of attribute dependency (functional
or partial functional dependency) by linking it with the idea of probabilistic de-
pendence (independence). The generalized gain function-based dependency mea-
sure is able to capture subtle probabilistic dependencies, which are not visible to
other measures. The measure has been demonstrated to exhibit the important
monotonicity property [12], which allows for the extension of the notion of the
relative reduct of attributes [2] to the probabilistic domain and for the applica-
tion of existing algorithms for reduct computation. It also allows for the analysis
of importance of individual attributes through computation of probabilistic sig-
nificance factors. The comprehensive review of related probabilistic measures in
the context of rough set theory is presented in [7].

2 Attribute-Based Classifications

In this section, we briefly review the essential assumptions and definitions of the
rough set theory in the context of probability theory.

One of the prime notions is the universe of interest U , a set of objects e ∈ U
about which observations are acquired. The existence of probabilistic measure
P over σ-algebra of measurable subsets of U is also assumed. We will assume
here that the universe is infinite in general, but that we have access to a finite
sample S ⊆ U , as represented by the available data. It is assumed that all subsets
X ⊆ U under consideration are measurable with 0 < P (X) < 1. That is, from
the probabilistic perspective, they are likely to occur but their occurrence is
not certain. The probability of a set X , P (X) can be estimated from data by
calculating its frequency in the sample S. That is, P (X) � card(X∩S)

card(S) , where
card denotes set cardinality. However, to simplify the notation in the rest of
the paper, we will not be making any notational distinction between available
sample S ⊆ U and the universe U .
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We also assume that observations about objects are expressed through values
of functions, referred to as attributes, belonging to a finite set C ∪ D, such
that C ∩ D = ∅ . The functions belonging to the set C are called condition
attributes, whereas functions in D are referred to as decision attributes. We can
assume, without loss of generality, that there is only one decision attribute, that
is D = {d}. Each attribute a belonging to C ∪ D is a mapping a : U → Va,
where Va is a finite set of values called the domain of the attribute a. In many
applications, attributes are functions obtained by discretizing values of real-
valued variables representing measurements taken on objects e ∈ U .

Each subset of attributes B ⊆ C ∪ D defines a mapping denoted as B : U →
B(U) ⊆ ⊗a∈BVa, where ⊗ denotes Cartesian product operator of all domains of
attributes in B. The elements of the set B(U) ⊆ ⊗a∈BVa will be referred to as
tuples.

For a tuple z ∈ C ∪ D(U) and a subset of attributes B ⊆ C ∪ D, let z.B
denote the projection of the tuple z on the collection of attributes B, as defined
in the in the theory of relational databases. The projection z.B corresponds
to a set of objects whose values of attributes in B match z.B, that is to the
set B−1(z) = {e ∈ U : B(e) = z}. Clearly, the sets B−1(z) form a partition
of the universe U , i.e. they are disjoint for different restricted tuples z.B and
cover the universe U . The partition will be denoted as U/B and its classes will
be called B-elementary sets. In particular, the C ∪ D-elementary sets, denoted
as G ∈ U/C ∪ D, will be referred to as atoms. For traditional reasons, the C -
elementary sets E ∈ U/C will be referred to just as elementary sets and the
D -elementary sets F ∈ U/D will be called decision categories. Each elementary
set E ∈ U/C and each decision category F ∈ U/D is a union of some atoms.
That is, E = ∪{G ∈ U/C ∪ D : G ⊆ E} and F = ∪{G ∈ U/C ∪ D : G ⊆ F}.

Each atom G ∈ U/C∪D is assigned a joint probability P (G), which is normally
estimated from collected data. The mapping C ∪ D : U → C ∪D(U) can be rep-
resented by a multivalued classification table consisting of tuples z ∈ C ∪ D(U)
corresponding to atoms along with their associated joint probabilities. The multi-
valued classification table summarizes the relationship between classes of objects
and attribute values. An example classification table with C = {a, b, c}, D = {d}
and joint probabilities P , is shown in Table 1.

¿From our initial assumption and from the basic properties of the probability
measure P , follows that for all atoms G ∈ U/C ∪ D, we have 0 < P (G) < 1
and

∑
G∈U/C∪D P (G) = 1. Based on the joint probabilities of atoms, probabil-

ities of elementary sets E and decision categories F can be calculated from the
classification table by

P (E) =
∑
G⊆E

P (G). (1)

The probability P (F ) of the decision category F will be referred to as prior
probability of the category F . In the context of the analysis of probabilistic de-
pendencies between attributes, the conditional probability of a decision category
F , P (F |E) = P (F∩E)

P (E) , conditioned on the occurrence of the elementary set E,
is of interest as well. It represents the degree of confidence in the occurrence
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of the decision category F, given information indicating that E occurred. The
conditional probability can be expressed in terms of probabilities of atoms by

P (F |E) =

∑
G⊆F∩E P (G)∑

G⊆E P (G)
. (2)

This makes it possible for simple computation of the conditional probabilities
from the classification table.

3 Basics of the Variable Precision Rough Set Model

One of the main objectives of rough set theory is the formation and analysis
of approximate definitions of otherwise undefinable sets [2]. The approximate or
rough definitions, in the form of lower approximation and boundary area of a set,
allow for determination of an object’s membership in a set with varying degrees
of certainty. The lower approximation permits for uncertainty-free membership
determination, whereas the boundary defines an area of objects which are not
certain, but possible, members of the set. The variable precision model of rough
sets (VPRSM)[3] extends upon these ideas by parametrically defining the posi-
tive region as an area where the certainty degree of an object’s membership in a
set is relatively high, the negative region as an area where the certainty degree of
an object’s membership in a set is relatively low, and by defining the boundary
as an area where the certainty of an object’s membership in a set is neither high
nor low.

The defining criteria in the VPRSM are expressed in terms of conditional
probabilities and of the prior probability P (X) of the set X in the universe
U . In the context the attribute-value representation of sets of the universe U ,
as described in the previous section, we will assume that the sets of interest
are decision categories X ∈ U/D. Two precision control parameters are used as
follows.

The first parameter, referred to as the lower limit l, satisfying the constraint
0 ≤ l < P (X) < 1, represents the highest acceptable degree of the conditional
probability P (X |E) to include the elementary set E in the negative region of the
set X . In other words, the l-negative region of the set X, denoted as NEGl(X)
is defined by:

NEGl(X) = ∪{E : P (X |E) ≤ l} (3)

The l-negative region of the set X is a collection of objects for which the proba-
bility of membership in the set X is deemed to be significantly lower than the
prior probability P (X), the probability of an object’s membership in the set X
in the absence of any information about objects of the universe U .

The second parameter, referred to as the upper limit u, satisfying the con-
straint 0 < P (X) < u ≤ 1, defines the u-positive region of the set X. The upper
limit reflects the least acceptable degree of the conditional probability P (X |E)
to include the elementary set E in the positive region, or u-lower approximation
of the set X . The u-positive region of the set X , POSu(X) is defined as

POSu(X) = ∪{E : P (X |E) ≥ u}. (4)
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The u-positive region of the set X is a collection of objects for which the proba-
bility of membership in the set X is deemed to be significantly higher than the
prior probability P (X).

The objects which are not classified as being in the u-positive region nor in the
l-negative region belong to the (l, u)-boundary region of the decision category
X , denoted as

BNRl,u(X) = ∪{E : l < P (X |E) < u}. (5)

The boundary is a specification of objects about which it is known that their
conditional associated probability with respect to the set X , is not significantly
different from the prior probability of the set P (X). In the VPRSM symmetric
case, i.e. if β = u = 1 − l [3][13], the negative and positive regions of the
set X, are defined respectively by NEGβ(X) = ∪{E : P (¬X |E) ≥ β} and
POSβ(X) = ∪{E : P (X |E) ≥ β}. The related application-oriented results are
reported in [10].

4 Basics of the Bayesian Rough Set Model

The Bayesian rough set model [13] [12] (BRS) can be perceived as the extreme
limit model of a series of VPRS models when the parameters l and u approach
the prior probability P (X). That is, the BRS positive region POS∗(X) defines
an area of the universe where the probability of X is higher than the prior prob-
ability. It is an area of certainty improvement or gain with respect to predicting
the occurrence of X .

POS∗(X) =
⋃

{E : P (X |E) > P (X)} (6)

The BRS negative region NEG∗(X) defines an area of the universe where the
probability of X is lower than the prior probability. It is an area of certainty
decrease with respect to predicting the occurrence of X .

NEG∗(X) =
⋃

{E : P (X |E) < P (X)} (7)

The BRS boundary region is an area characterized by the lack of certainty change
with respect to predicting X .

BND∗(X) =
⋃

{E : P (X |E) = P (X)} (8)

Information defining the boundary area is unrelated to X , which leads to the
same probabilistic distribution of objects belonging to X as in the whole uni-
verse U , i.e. P (X |BND) = P (X). This follows from the fact that in the BRS
boundary region the target event X is independent, in stochastic sense, with all
the elementary events in BND∗(X), that is, for all E ⊆ BND∗(X) we have
P (X ∩ E) = P (X)P (E).
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Table 2. Probabilistic decision table for u=0.8 and l=0.1

a b c P (E) P (X|E) Region
1 1 2 0.23 1.00 POS
1 0 1 0.33 0.61 BND
2 2 1 0.11 0.27 BND
2 0 2 0.01 1.00 POS
0 2 1 0.32 0.06 NEG

5 Decision Tables Acquired from Data

To describe functional or partial functional connections between attributes of
objects of the universe U , Pawlak introduced the idea of decision table acquired
from data [2]. The probabilistic decision tables extend this idea into probabilistic
domain by forming representations of probabilistic relations between attributes.
The extended notion of decision table in case of multiple tables has been studied
in depth in [9].

For the given decision category X ∈ U/D and the set values of the VPRSM
lower and upper limit parameters l and u, we define the probabilistic decision
table DT C,D

l,u as a mapping C(U) → {POS, NEG, BND} derived from the
classification table as follows:

The mapping is assigning each tuple of values of condition attribute values
t ∈ C(U) to its unique designation of one of VPRSM approximation regions
POSu(X), NEGl(X) or BNDl,u(X), the corresponding elementary set Et is
included in, along with associated elementary set probabilities P (Et) and con-
ditional probabilities P (X |Et):

DT C,D
l,u (t) =

⎧⎨⎩
(P (Et), P (X |Et), POS) ⇔ Et ⊆ POSu(X)
(P (Et), P (X |Et), NEG) ⇔ Et ⊆ NEGl(X)
(P (Et), P (X |Et), BND) ⇔ Et ⊆ BNDl,u(X)

(9)

The probabilistic decision table is an approximate representation of the prob-
abilistic relation between condition and decision attributes via a collection of
uniform size probabilistic rules corresponding to rows of the table. An example
probabilistic decision table derived from the classification Table 1 is shown in
Table 2. The probabilistic decision tables are most useful for decision making or
prediction when the relation between condition and decision attributes is largely
non-deterministic.

6 Probabilistic Dependencies Between Sets

In the presence of probabilistic information, as given by the joint probabilities of
atoms, it is possible to evaluate the degree of probabilistic dependency between
any elementary set and a decision category.

The adopted dependency measure, called absolute certainty gain [14] (gabs)
is concerned with quantifying the degree of influence the occurrence of an
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elementary set E has on the likelihood of occurrence of the decision category
F . The occurrence of E can increase, decrease, or have no effect on the proba-
bility of occurrence of F , which is initially given by its prior probability P (F ).
The relative degree of variation of the probability of F , due to occurrence of
E, is represented by the absolute gain function as

gabs(F |E) = |P (F |E) − P (F )|, (10)

where | ∗ | denotes absolute value function. The values of the absolute gain
function fall in the range 0 ≤ gabs(F |E) ≤ max(P (¬F ), P (F )) < 1. In addition,
let us note that if sets F and E are independent in the probabilistic sense, that
is, if P (F ∩ E) = P (F )P (E) then gabs(F |E) = 0, which is consistent with the
intuitive meaning of the independence.

The absolute certainty gain gabs(F |E) can be computed directly from the
multivalued classification table because all the prior and conditional probabilities
appearing in (10) can be computed from the joint probabilities of tuples. The
definition of the absolute certainty gain provides a basis for the definition of the
probabilistic dependency measure between attributes, as proposed in the next
section.

7 Probabilistic Dependencies Between Attributes

The absolute certainty gain represents the degree of change of the occurrence
certainty of a specific decision category in response to an occurrence of a given
elementary set. The average degree of change of occurrence certainty of a given
decision category due to occurrence of any elementary set is given by the ex-
pected gain function [14]:

egabs(F |C) =
∑

E∈U/C

P (E)gabs(F |E) (11)

The natural extension of this idea, to measure the degree of connection between
condition and decision attributes, is to quantify the average, or expected change
of the occurrence certainty of any decision category as a result of an occurrence
of any elementary set. The degree of change can be quantified by the expected
value mgabs(D|C) of the expected gain functions over all decision categories
F ∈ U/D:

mgabs(D|C) =
∑

F∈U/D

P (F )egabs(F |C) (12)

The multivalued expected gain function, as defined by (12), measures the average
degree of increase of the occurrence probability of the decision category F ∈
U/D, or of its complement ¬F , relative to its prior probability P (F ), as a result
of occurrence of an elementary set E ∈ U/C.

The multivalued expected gain function mgabs can also be seen as the measure
of the degree of probabilistic dependency between partition U/C of the universe,
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corresponding to condition attributes, and the partition U/D, corresponding to
decision attributes. This follows from the following proposition:

Proposition 1: The expected gain function mgabs(D|C) can be expressed as:

mgabs(D|C) =
∑

F∈U/D

∑
E∈U/C

|P (F ∩ E) − P (F )P (E)| (13)

The formula (13) indicates that mgabs is a measure of average deviation from
probabilistic independence between elementary sets and decision categories. The
measure can be also expressed in an alternative form, as demonstrated by the
following Proposition 2.

Proposition 2: The expected gain function mgabs(D|C) can be expressed as:

mgabs(D|C) =
∑

F∈U/D

P (F )
∑

E∈U/C

gabs(E|F ) (14)

For the purpose of normalization of the expected gain function, the following
Proposition 3 is useful.

Proposition 3: The multivalued expected gain function falls in the range 0 ≤
mgabs(D|C) ≤ 2

∑
F∈U/D P (F )2(1 − P (F )).

Because the strongest dependency occurs when each decision category F is de-
finable, that is when the dependency is functional, this would suggest to use the
degree of expected gain in the functional dependency case as a normalization
factor to make dependency grades comparable across different classification ta-
bles. For that purpose, the λ inter-attribute dependency measure was defined in
[14]. Here, it is extended to non-binary decision categories by:

λ(D|C) =
mgabs(D|C)

2
∑

F∈U/D P (F )2(1 − P (F ))
, (15)

to become a normalized measure of dependency between condition attributes
C and the decision attributes D. The function reaches its maximum λ(D|C) = 1
only if the dependency is deterministic (functional). The value of the λ(D|C)
dependency function can be easily computed from the multivalued classification
table since the expected gain and all prior probabilities are directly computable
from the table, as demonstrated earlier.

8 Characterization of Independence

The decision category F and the condition attributes C are independent if
egabs(F |C) = 0. The independence can occur only if P (F ∩ E) = P (F )P (E),
for all elementary sets E ∈ U/C and for all decision categories, F ∈ U/D. That
is, for the independence between the partition U/D and the partition U/C to
hold, all decision categories F must be independent with each elementary set E,
which means that λ(D|C) = 0 in such case.



46 W. Ziarko

An interesting question is the characterization attributes that are neutral with
respect to the relation between attributes C and D. Such attributes, when added
to the collection of condition attributes, would have no effect on dependency with
the decision attribute. The following Theorem 1 provides partial characterization
of such attributes.

Theorem 1: If an attribute a is independent with C∪D i.e. if λ(C∪D|{a}) = 0,
then λ(D|C ∪ {a}) = λ(D|C).

The above theorem suggests that for a new attribute ”a”, to contribute to the
increase of dependency λ(D|C), it should be connected, in the stochastic sense,
either with condition attributes C or decision attributes D. We also note that
the independence is a two-way property, that is, λ(C|D) = 0 if and only if
λ(D|C) = 0. In particular, λ(C ∪ D|{a}) = 0 if and only if λ({a}|C ∪ D) = 0.

9 Reduction of Attributes

The application of the idea of relative reduct of attributes, as introduced by
Pawlak [2], allows for optimization of representation of classification information
by providing a systematic technique for removal of redundant attributes. The
notion of reduct is also applicable to the optimization of representation of proba-
bilistic dependencies between attributes in multivalued classification tables. The
following theorem demonstrates that the probabilistic dependency measure λ be-
tween attributes is monotonic, which means that expanding condition attributes
C by an extra attribute would never result in the decrease of the degree of
dependency with the decision attributes D.

Theorem 2: The λ-dependency is monotonic, that is, for condition attributes
C and an attribute a, the following relation holds:

λ(D|C) ≤ λ(D|C ∪ {a}) (16)

Based on the Theorem 2, the notion of the probabilistic reduct of attributes
RED ⊆ C can be defined as a minimal subset of attributes preserving the
probabilistic dependency with the decision attributes D. Precisely, the reduct
satisfies the following two properties:

1. λ(D|RED) = λ(D|C);
2. For any attribute a ∈ RED, λ(D|RED − {a}) < λ(D|RED).

The probabilistic reducts can be computed using any methods available for
reduct computation in the framework of the original rough set approach (eg.
see [2]). The probabilistic reduct provides a method for computing combinations
of fundamental factors in a probabilistic relationship.

10 Evaluation of Attributes

Groups of attributes appearing in a reduct can be evaluated with respect to their
contribution to the dependency with the target attribute by defining the notion of
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the probabilistic significance factor. The probabilistic significance factor, denoted
as sigRED(B), of attribute collection B ⊆ RED, represents the relative decrease
of the dependency λ(D|RED) due to removal of the subset B from the reduct:

sigRED(B) =
λ(D|RED) − λ(D|RED − B)

λ(D|RED)
(17)

Finally, as in the original rough set approach, one can define the probabilistic
core set of attributes as the ones which form the intersection of all reducts of
C, if the intersection is not empty. After [2], any core attribute a satisfies the
following inequality:

λ(D|C) > λ(D|C − {a}), (18)

which leads to a simple method of core computation.

11 Final Remarks

The article summarizes the basic results of the stochastic approach to rough set
theory. The approach generalizes the original Pawlak’s theory. The main results
of the original theory are preserved whereas the scope of possible applications of
the theory is expanded. The generalized model of rough sets benefits from some
key results of the probability theory and contributes original, specifically rough
set-oriented results. The merge of rough set and probability theory methods cre-
ates a novel computational paradigm for data analysis and modelling from data.
In applications, the paradigm relies on availability of large databases as data
sources and high speed computers to process the data. These two main factors
were absent when the probability theory and statistics were originally created.
The lack of powerful computation means lead to the development of statisti-
cal methods based on assumed or estimated probability distribution functions
falling into a number of standard categories, not necessarily closely reflecting the
actual data.

The stochastic rough set-based methods, on the other hand, rely entirely on
the distributions present in the data and avoid approximate fitting of standard
distributions to data. This makes it possible to deal with problems in which
distributions are unknown or not matching any standard functions. The benefits
of such an approach are the expanded applicability of the analytical methods
and perfect accuracy of analytical results and models in relation to data.
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Zdzis�law Pawlak
Commemorating His Life and Work�

Zdzis�law Pawlak will be remembered as a great human being with exceptional
humility, wit and kindness as well as an extraordinarily innovative researcher
with exceptional stature. His research contributions have had far-reaching impli-
cations inasmuch as his works are fundamental in establishing new perspectives
for scientific research in a wide spectrum of fields.

Professor Pawlak’s most widely recognized contribution is his brilliant ap-
proach to classifying objects with their attributes (features) and his introduction
of approximation spaces, which establish the foundations of granular computing
and provide frameworks for perception and knowledge discovery in many areas.

Zdzis�law Pawlak was born on 10 November 1926 in �Lódź, 130 km south-west
from Warsaw, Poland1. In 1947, Pawlak began his studies in the Faculty of Elec-
trical Engineering at �Lódź University of Technology, and in 1949 continued his
studies in the Telecommunication Faculty at Warsaw University of Technology.
In 1950, he presented in Poland the first project of a computer called GAM 1. He
completed his M.Sc. in Telecommunication Engineering in 1951. His publication
in 1956 on a new method for random number generation was the first publication
abroad in informatics by a researcher from Poland2. In 1958, Pawlak completed
his doctoral degree from the Institute of Fundamental Technological Research at
the Polish Academy of Science with a Thesis on Applications of Graph Theory to
Decoder Synthesis. During 1957-1959, Pawlak was also a member of a research
team that constructed one of the first computers in Poland called UMC 1. The
original arithmetic of this computer with the base “-2” was due to Pawlak. He
received his habilitation from the Institute of Mathematics at the Polish Acad-
emy of Sciences in 1963. In his habilitation entitled Organization of Address-Less
Machines, Pawlak proposed and investigated parenthesis-free languages, a gen-
eralization of polish notation introduced by Jan �Lukasiewicz3.

During succeeding years, Pawlak also worked at the Institute of Mathemat-
ics at Warsaw University and, in 1965, introduced the foundations for modeling
DNA and what has come to be known as molecular computing4. He was searching

� Professor Zdzis�law Pawlak, Member of the Polish Academy of Sciences, passed away
on 7 April 2006.

1 Wikipedia summary of the life and work of Z. Pawlak:
http://pl.wikipedia.org/wiki/Zdzislaw Pawlak

2 Pawlak, Z.: Flip Flop as Generator of Random Binary Digits. Mathematical Tables
and Other Aids to Computation 20(53) (1956) 28-30.

3 Pawlak, Z.: Organization of Address-Less Computers Working in Parenthesis Nota-
tion. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 3 (1965)
243-262; Pawlak, Z.: Organization of Address Less Computers. Polish Scientific Pub-
lisher, Warsaw (1965) (the book is in Polish).

4 Pawlak, Z.: Grammar and Mathematics. (in Polish), PZWS, Warsaw (1965); Gheo-
rghe, M., Mitrana, V.: A formal Language-Based Approach in Biology. Comparative
and Functional Genomics 5(1) (2004) 91-94.
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for grammars generating compound biological structures from simpler ones, e.g.,
proteins from amino acids. He proposed a generalization of traditional grammars
used in formal language theory. For example, he considered the construction of
mosaics on a plane from some elementary mosaics by using some production
rules for the composition. He also presented a language for linear representation
of mosaic structures. It was thought that by introducing such grammars, one
might better understand protein structure and the processes of their synthesis.
Such grammars would give birth to real-life languages to characterize the devel-
opment of living organisms. Pawlak was interested in developing a formal model
of deoxyribonucleic acid (DNA), and he proposed a formal model for the genetic
code discovered by Crick and Watson. Pawlak’s model is regarded by many as
the first formal model of DNA. This work on DNA has been cited by others.

Zdzis�law Pawlak also proposed a new formal model of a computing machine
known as the Pawlak machine5 that is different from the Turing machine and
from the von Neumann machine. In 1973, he introduced knowledge representa-
tion systems as part of his work on the mathematical foundations of information
retrieval 6. During the early 1980s, he was the head of a research group at
the Institute of Computer Science at the Polish Academy of Sciences, where
he introduced rough sets and the idea of classifying objects by means of their
attributes7. Rough set theory has its roots in Zdzis�law Pawlak’s research on
knowledge representation systems during the early 1970s. Rather than attempt
exact classification of objects with attributes (features), Pawlak considered an
approach to solving the object classification problem in a number of novel ways.
First, in 1973, he introduced knowledge representation systems. Then, in 1981,

5 Pawlak, Z.: On the Notion of a Computer. Logic, Methodology and Philosophy of
Science 12, North Holland, Amsterdam (1968) 225-242; Pawlak, Z.: Theory of Digital
Computers. Mathematical Machines 10 (1969) 4-31; Pawlak, Z.: A Mathematical
Model of Digital Computers. Automatentheorie und Formale Sprachen 1973: 16-
22; Pawlak, Z., Rozenberg, G., Savitch, W. J.: Programs for Instruction Machines.
Information and Control 41(1) (1979) 9-28.

6 Pawlak, Z.: Mathematical Foundations of Information Retrieval. Proceedings of Sym-
posium of Mathematical Foundations of Computer Science, September 3-8, 1973,
High Tartras, 135-136; Pawlak, Z.: Mathematical Foundations of Information Re-
trieval. Computation Center, Polish Academy of Sciences, Research Report CC PAS
Report 101 (1973); Pawlak, Z.: Information Systems Theoretical Foundations. Infor-
mation Systems 6(3) (1981) 205-218; Pawlak, Z.: Information Systems: Theoretical
Foundations. WNT, Warsaw (1983) (the book in Polish); Marek, W., Pawlak, Z.:
Information Storage and Retrieval Systems: Mathematical Foundations. Theoretical
Computer Science 1 (1976) 331-354.

7 Pawlak, Z.: Rough Sets. Research Report PAS 431, Institute of Computer Science,
Polish Academy of Sciences (1981); Pawlak, Z.: Classification of Objects by Means of
Attributes. Research Report PAS 429, Institute of Computer Science, Polish Acad-
emy of Sciences, ISSN 138-0648, January (1981); Pawlak, Z.: Rough Sets. Interna-
tional J. Comp. Inform. Science 11 (1982) 341-356; Konrad, E., Or�lowska, E., Pawlak,
Z.: On Approximate Concept Learning. Report 81-07, Fachbereich Informatik, TU
Berlin, Berlin 1981; short version in: Collected Talks, European Conference on Ar-
tificial Intelligence 11/5, Orsay/Paris (1982) 17-19.
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he introduced approximate descriptions of objects and considered knowledge rep-
resentation systems in the context of upper and lower classification of objects
relative to their attribute values. During the succeeding years, Pawlak refined
and amplified the foundations of rough sets and their applications8 and nurtured
worldwide research in rough sets that has led to over 4000 publications9. The
consequences of this approach to the classification of objects relative to their fea-
ture values have been quite remarkable and far-reaching. The work on knowledge
representation systems and the notion of elementary sets have profound impli-
cations when one considers the problem of approximate reasoning and concept
approximation.

Zdzis�law Pawlak also invented a new approach to conflict analysis10.
He has published over 220 scientific papers and supervised over 30 PhD

Theses.
For many years, Zdzis�law Pawlak had an intense interest in philosophy, espe-

cially relative to the connections between rough sets and other forms of sets. It
was his venerable habit to point to connections between his own work in rough
sets and the works of others in philosophy and mathematics. This is especially
true relative to two cardinal notions, namely, sets and vagueness. For the notion
of a set, Pawlak calls attention to works by Georg Cantor, Gottlob Frege and
Bertrand Russell. Pawlak points out that the notion of a set is not only funda-
mental for the whole of mathematics but also for natural language, where it is
commonplace to speak in terms of collections of such things as books, paintings,
people, and their vague properties. In his reflections on structured objects, he
points to the work on mereology by Stanis�law Leśniewski, where the relation
being a part replaces the membership relation ∈11. For many years, Pawlak also
was interested in vagueness and Gottlob Frege’s notion of the boundary of a
concept12. For Frege, the definition of a concept must unambiguously determine
whether or not an object falls under the concept. For a concept without a sharp
boundary, one is faced with the problem of determining how close an object must
be before it can be said to belong to a concept. Zdzis�law Pawlak also points out
that mathematics must use crisp, not vague concepts. Hence, mathematics makes

8 see, e.g., Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht (1991).

9 see, e.g., Rough Set Database System, http://rsds.wsiz.rzeszow.pl/pomoc9.html
10 Pawlak, Z.: On Conflicts. International Journal of Man Machine Studies 21 (1984)

127-134; Pawlak, Z.: Anatomy of Conflict. Bulletin of the European Association
for Theoretical Computer Science 50 (1993) 234-247; Pawlak, Z.: An Inquiry into
Anatomy of Conflicts. Journal of Information Sciences 109 (1998) 65-78; Pawlak, Z.:
On Conflicts. Polish Sci. Publ., Warsaw (1987) (the book is in Polish).

11 In 1996, the study of Leśniewski’s work has led to rough mereology and the relation
being a part to a degree (see, e.g., Polkowski, L., Skowron, A.: Rough Mereology: A
New Paradigm for Approximate Reasoning. International J. of Approximate Rea-
soning 15(4) (1996) 333-365).

12 Frege, G.: Grundgesetzen der Arithmetik, vol. II. Verlag von Hermann Pohle, Jena
(1903).
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1.1: Treeline Painting by Pawlak 1.2: 1999 Watercape by Pawlak

Fig. 1. Paintings by Zdzis�law Pawlak

it possible to reason precisely about approximations of vague concepts. These
approximations are temporal and subjective.

Starting in the early 1950s and continuing throughout his life, Zdzis�law Pawlak
painted the places he visited, especially landscapes and waterscapes of the places
he visited in Poland and other parts of the world. A common motif in Pawlak’s
paintings is the somewhat indefinite separation between objects such as the outer
edges of trees and sky (see Fig. 1.1), the outer edges of tree shadows reflected in
water and the water itself, and the separation between water and the surrounding
land (see Fig. 1.2).

In more recent years, he wrote poems, which are remarkably succinct and very
close to his interest in painting. Remarkably, one can find in his theoretical work
on rough sets as well as in molecular computing, painting and poetry a common
thread, namely, his interest in the border regions of objects that are delineated
by considering the attributes (features) of an object.

Professor Zdzis�law Pawlak was with us only for a short time and, yet, when
we look back at his accomplishments, we realize how greatly he has influenced us
with his generous spirit and creative work in many areas such as approximate
reasoning, intelligent systems research, computing models, mathematics (espe-
cially, rough set theory), molecular computing, pattern recognition, philosophy,
art, and poetry.

Zdzis�law Pawlak gave generously of his time and energy to help others. His
spirit and insights have influenced many researchers worldwide. During his life,
he manifested an extraordinary talent for inspiring his students and colleagues
as well as many others outside his immediate circle13.

Andrzej Skowron and James F. Peters

13 The authors wish to thank all colleagues who, at various times in the past, have
contributed information that has made it possible to write this article.
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Abstract. This paper overviews the following two important issues on
the correspondence between Pawlak’s rough set model and medical rea-
soning. The first main idea of rough sets is that a given concept can be
approximated by partition-based knowledge as upper and lower approx-
imation. Interestingly, thes approximations correspond to the focusing
mechanism of differential medical diagnosis; upper approximation as se-
lection of candidates and lower approximation as concluding a final di-
agnosis. The second idea of rough sets is that a concept, observations
can be represented as partitions in a given data set, where rough sets
provides a rule induction method from a given data. Thus, this model
can be used to extract rule-based knowledge from medical databases.
Especially, rule induction based on the focusing mechanism is obtained
in a natural way.

1 Introduction

Pawlak shows that knowledge can be captured by data partition and proposes
a rough set method where comparison between data partition gives knowledge
about classification [1].

Although I thought that Pawlak hit on this concept after the discussion with
medical experts from his talk, Pawlak told me that it took a long time for him to
reach the idea on rough sets. He had an intuition that an equivalence relation can
be applied to computer science, but he had not got the idea on how to achieve
it for a long time. I did not ask how long he needs during the conversation,
and it was a pity that I cannot ask him again. The discussions with medical
experts may be a trigger to rough sets, but the most important turing point is
that he captured the idea that an equivalence relation can be regarded as a data
partition in a date set, which cannot be overemphasized.

As dedicated to late Professor Pawlak, written for a commemorative session,
this paper overviews the following two important issues on the correspondence
between Pawlak’s rough set model and medical reasoning. The first main idea
of rough sets is that a given concept can be approximated by partition-based
knowledge as upper and lower approximation. The upper approximation is given
by a region which covers all the positive examples, equivalent to the region

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 53–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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whose sensitivity of knowledge is equal to 1.0. On the other hand, the lower
approximation is given by a region whose accuracy is equal to 1.0, a full positive
predictive value. Interestingly, thes approximations correspond to the focusing
mechanism of differential medical diagnosis; upper approximation as selection of
candidates and lower approximation as concluding a final diagnosis.

The second idea of rough sets is that a concept, observations can be repre-
sented as partitions in a given data set, where rough sets provides a rule induction
method from a given data. Thus, this model can be used to extract rule-based
knowledge from medical databases. Especially, rule induction based on the fo-
cusing mechanism is obtained in a natural way. Since the degree of upper and
lower approximation can be measured by accuracy and coverage, rule induc-
tion method can be achieved by a heuristic search algorithm with two indices,
accuracy and coverage.

The paper is organized as follows: Section 2 shows my story, how I encountered
rough sets where I met Professor Pawlak. Section 3 provides the brief overview
of RHINOS and focusing mechanism. Section 4 presents how rough set gives
a framework for automated induction of rules from a given dataset. Section 5
gives an algorithm for mining rules of two diagnosis procedures. Finally, Section
6 concludes this paper.

2 My Story

When I visited a book store Yaesu Book Center, which is located near the Tokyo
station in 1991, my relationship with rough sets started. I found a Pawlak’s book
in the bookshelf of foreign books at the 5th floor (In European Style, 6th floor).
At a first glance, I feel it very strange, because the subtitle of this book is
Theoretical Aspects of Reasoning About Data, but the latter half of the book
describe many figures and many if-then rules. However, since the title intersts
me, I bought Pawlak’s book and put it on my desk.

In 1991, I was a neurologist in emergency department of Matsudo City Hos-
pital [2]. Although I had finished my resident course in Chiba University Hos-
pital (one year and half) and Matsudo city hospital and started my career as
a neurologist, my mind was occupied by automated knowledge acquisition of
if-then rules from data, because I was involved with the project on medical ex-
pert system, called RHINOS when I was a student of Osaka University, School
of Medicine [3] from 1983 to 1989. During this period, I experienced two big
movements in Japan. One was the fifth generation computing [4], where logic
programming and its programming language, PROLOG, is booming in Japan.
We were developing an expert system supporting two-stage differential diagnosis,
or focusing mechanism shown in the later section, called RHINOS by using this
language, and presented in the conference called Logic Programming Conference
1985 [5]. During a knowledge acquisition process, interview with an expert of
headache, we realized that the differential diagnosis is closely related with set-
based reasoning. It suggests that acquisition process should be formalized by
using set-theoretical based process. However, we did not have much knowledge
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at that time. The other one is a rapid progress in hospital information system.
When I presented my work on RHINOS at the Jointed conference of Japanese
Association of Medical Informatics from 1986 to 1988 , I recognized that all
the information in a hospital would be stored as a large database in the near
future. Now, twenty years later, this observation came true. Then, I felt that
all the knowledge about a hospital can be extracted from the database. Since
a database theory is supported by algebra and logic, I thought that knowledge
extraction could be achived by using these formal concepts.

On October in 1991, I moved to Division of Medical Informatics, Chiba Uni-
versity Hospital and stated my research on automated knowledge acquisition,
which was called rule induction method. Compared with my life in Matsudo
City Hospital, I had enough time to read books and started to read Pawlak’s
book in 1992. When I was reading his book, I was surprised that the theory has
a strong concept with the concepts of RHINOS. What an expert on headache
had learned from his experience was completely supported by a set-theoretical
idea. Moreover, since rough sets give the way how to extract rules from a data,
I discovered that this theory can be used to extract RHINOS-based rules from
a given datasets. After I read his book, I started to implement my intuition as
a PROLOG program, called PRIMEROSE and presented my work to the staff
of my division in Chiba University Hospital. However, no one showed his/her
interest.

On May in 1993, I moved to Medical Research Institute, Tokyo Medical and
Dental University and continued my research on PRIMEROSE [6]. Accidentally,
I had found a CFP on RSKD 1993 and sent an email to Dr. Ziarko. He gave
me a quick response to my email and encouraged me to send a paper to him,
although the deadline had already gone. After he read my paper, he accepted
my paper and asked me to come to RSKD in Banff. This conference was very
interesting and fruitful, and I really started my career as a rough setter.

These communications were my turning point, the most productive one and
is still the basis of my research. I met many people: Profs Pawlak, Skowron,
Ziarko, Zytkow, Slowinski, Stefanowski, Cercone, Han, T.Y. Lin, Y.Y. Yao and
Tony Hu. Without RSKD and Dr. Ziarko’s hospitality, my research would have
not been so successful; maybe I would neither have received a PhD degree in
computer science nor have become a professor of medical informatics. Here,
in this opportunity I would like to thank all of my friends for their support,
especially, late Professor Z. Pawlak.

3 RHINOS and Focusing Mechanism

3.1 RHINOS

RHINOS is an expert system which diagnoses clinical cases on headache or facial
pain from manifestations. In this system, a diagnostic model proposed by Mat-
sumura [3] is applied to the domain, which consists of the following three kinds
of reasoning processes: exclusive reasoning, inclusive reasoning, and reasoning
about complications.



56 S. Tsumoto

First, exclusive reasoning excludes a disease from candidates when a patient
does not have a symptom which is necessary to diagnose. Secondly, inclusive
reasoning suspects a disease in the output of the exclusive process when a pa-
tient has symptoms specific to a disease. Finally, reasoning about complications
suspects complications of other diseases when some symptoms which cannot be
explained by the diagnostic conclusion obtained.

Each reasoning is rule-based, and all the rules needed for diagnostic processes
are acquired from medical experts in the following way.

(1)Exclusive Rules. This rule corresponds to exclusive reasoning. In other
words, the premise of this rule is equivalent to the necessity condition of a
diagnostic conclusion. From the discussion with medical experts, we select the
following six basic attributes which are minimally indispensable to defining the
necessity condition: 1. Age, 2. Pain location, 3. Nature of the pain, 4. Severity
of the pain, 5. History since onset, 6. Existence of jolt headache. For example,
the exclusive rule of common migraine is defined as:

In order to suspect common migraine,
the following symptoms are required:
pain location: not eyes,
nature :throbbing or persistent or radiating,
history: paroxysmal or sudden and
jolt headache: positive.

One of the reason why we select the six attributes is to solve the interface
problem of expert systems: if the whole attributes are considered, we also have
to input all the symptoms which are not needed for diagnosis. To make exclusive
reasoning compact, the only minimal requirements are chosen. It is notable that
this kind of selection can be viewed as the ordering of given attributes, and it is
expected that such ordering can be induced from databases. Therefore we intend
to formulate induction of exclusive rules by using the whole given attributes. It
is because we can acquire the minimal requirements for describing exclusive rules
after all the exclusive rules are induced.

(2)Inclusive Rules. The premises of inclusive rules are composed of a set of
manifestations specific to a disease to be included. If a patient satisfies one set,
we suspect this disease with some probability. This rule is derived by asking the
following items for each disease to the medical experts: 1. a set of manifestations
by which we strongly suspect a disease. 2. the probability that a patient has the
disease with this set of manifestations:SI(Satisfactory Index) 3. the ratio of the
patients who satisfy the set to all the patients of this disease:CI(Covering Index)
4. If the total sum of the derived CI(tCI) is equal to 1.0 then end. Otherwise,
goto 5. 5. For the patients of this disease who do not satisfy all the collected set
of manifestations, goto 1. Therefore a positive rule is described by a set of man-
ifestations, its satisfactory index (SI), which corresponds to accuracy measure,
and its covering index (CI), which corresponds to total positive rate. Note that
SI and CI are given empirically by medical experts.
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For example, one of three positive rules for common migraine is given as
follows.

If history: paroxysmal, jolt headache: yes,
nature: throbbing or persistent,
prodrome: no, intermittent symptom: no,
persistent time: more than 6 hours,
and location: not eye,
then common migraine is suspected with
accuracy 0.9 (SI=0.9) and this rule covers
60 percent of the total cases (CI=0.6).

3.2 Focusing Mechanism

One of the characteristics in medical reasoning is a focusing mechanism, which is
used to select the final diagnosis from many candidates [7, 8]. For example, in dif-
ferential diagnosis of headache, more than 60 diseases will be checked by present
history, physical examinations and laboratory examinations. In diagnostic proce-
dures, a candidate is excluded if a symptom necessary to diagnose is not observed.

This style of reasoning consists of the following two kinds of reasoning processes:
exclusive reasoning and inclusive reasoning. Relations of this diagnostic model
with another diagnostic model are discussed in [9]. The diagnostic procedure will
proceed as follows (Figure 1): first, exclusive reasoning excludes a disease from
candidates when a patient does not have a symptom which is necessary to diag-
nose that disease. Secondly, inclusive reasoning suspects a disease in the output of
the exclusive process when a patient has symptoms specific to a disease. These two
steps are modelled as usage of two kinds of rules, negative rules (or exclusive rules)
and positive rules, the former of which corresponds to exclusive reasoning and the
latter of which corresponds to inclusive reasoning. In the next two subsections,
these two rules are represented as special kinds of probabilistic rules.

4 Definition of Rules

4.1 Rough Sets

In the following sections, we use the following notations introduced by Grzymala-
Busse and Skowron [10], which are based on rough set theory [1]. These notations
are illustrated by a small dataset shown in Table 1, which includes symptoms
exhibited by six patients who complained of headache.

Let U denote a nonempty, finite set called the universe and A denote a non-
empty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively.Then, a decision table is defined as an information
system, A = (U, A ∪ {d}). For example, Table 1 is an information system with
U = {1, 2, 3, 4, 5, 6} and A = {age, location, nature, prodrome, nausea, M1} and
d = class. For location ∈ A, Vlocation is defined as {occular, lateral, whole}.

The atomic formulae over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
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Focusing Mechanism
(Selection of Candidates) Characterization

(Negative Rules)

Differential Diagnosis Discrimination
(Positive Rules)

Detection of Complications Complications

Fig. 1. Illustration of Focusing Mechanism

Table 1. An Example of Dataset

No. age location nature prodrome nausea M1 class
1 50-59 occular persistent no no yes m.c.h.
2 40-49 whole persistent no no yes m.c.h.
3 40-49 lateral throbbing no yes no migra
4 40-49 whole throbbing yes yes no migra
5 40-49 whole radiating no no yes m.c.h.
6 50-59 whole persistent no yes yes psycho

Definitions. M1: tenderness of M1, m.c.h.: muscle
contraction headache, migra: migraine, psycho:
psychological pain.

formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation. For example, [location =
occular] is a descriptor of B.

For each f ∈ F (B, V ), fA denote the meaning of f in A, i.e., the set of all
objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

For example, f = [location = whole] and fA = {2, 4, 5, 6}. As an example of a
conjunctive formula, g = [location = whole] ∧ [nausea = no] is a descriptor of
U and fA is equal to glocation,nausea = {2, 5}.

4.2 Classification Accuracy and Coverage

Definition of Accuracy and Coverage. By the use of the framework above,
classification accuracy and coverage, or true positive rate is defined as
follows.
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Definition 1. Let R and D denote a formula in F (B, V ) and a set of objects
which belong to a decision d. Classification accuracy and coverage(true positive
rate) for R → d is defined as:

αR(D) =
|RA ∩ D|
|RA|

(= P (D|R)), and

κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |S|, αR(D), κR(D) and P(S) denote the cardinality of a set S, a classifi-
cation accuracy of R as to classification of D and coverage (a true positive rate
of R to D), and probability of S, respectively.

Figure 2 depicts the Venn diagram of relations between accuracy and coverage.
Accuracy views the overlapped region |RA ∩ D| from the meaning of a relation
R. On the other hand, coverage views the overlapped region from the meaning
of a concept D.

RA

D
Relation

Class

Accuracy:
Overlap/ RA

Overlap Coverage:
Overlap/ D

Fig. 2. Venn Diagram of Accuracy and Coverage

In the above example, when R and D are set to [nau = yes] and [class =
migraine], αR(D) = 2/3 = 0.67 and κR(D) = 2/2 = 1.0.

It is notable that αR(D) measures the degree of the sufficiency of a proposi-
tion, R → D, and that κR(D) measures the degree of its necessity. For example,
if αR(D) is equal to 1.0, then R → D is true. On the other hand, if κR(D) is
equal to 1.0, then D → R is true. Thus, if both measures are 1.0, then R ↔ D.

4.3 Probabilistic Rules

By the use of accuracy and coverage, a probabilistic rule is defined as:

R
α,κ→ d s.t. R = ∧j [aj = vk], αR(D) ≥ δα

and κR(D) ≥ δκ,
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If the thresholds for accuracy and coverage are set to high values, the mean-
ing of the conditional part of probabilistic rules corresponds the highly over-
lapped region. Figure 3 depicts the Venn diagram of probabilistic rules with
highly overlapped region. This rule is a kind of probabilistic proposition with

Fig. 3. Venn Diagram for Probabilistic Rules

two statistical measures, which is an extension of Ziarko’s variable precision
model(VPRS) [11].1

It is also notable that both a positive rule and a negative rule are defined as
special cases of this rule, as shown in the next subsections.

4.4 Positive Rules

A positive rule is defined as a rule supported by only positive examples, the clas-
sification accuracy of which is equal to 1.0. It is notable that the set supporting
this rule corresponds to a subset of the lower approximation of a target concept,
which is introduced in rough sets [1]. Thus, a positive rule is represented as:

R → d s.t. R = ∧j [aj = vk], αR(D) = 1.0

Figure 4 shows the Venn diagram of a positive rule. As shown in this figure,
the meaning of R is a subset of that of D. This diagram is exactly equivalent
to the classic proposition R → d. In the above example, one positive rule of
“m.c.h.” (muscle contraction headache) is:

[nausea = no] → m.c.h. α = 3/3 = 1.0.

This positive rule is often called a deterministic rule. However, in this paper,
we use a term, positive (deterministic) rules, because a deterministic rule which

1 This probabilistic rule is also a kind of Rough Modus Ponens [12].
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RA

D

Fig. 4. Venn Diagram of Positive Rules

is supported only by negative examples, called a negative rule, is introduced as
in the next subsection.

4.5 Negative Rules

Before defining a negative rule, let us first introduce an exclusive rule, the con-
trapositive of a negative rule [7]. An exclusive rule is defined as a rule supported
by all the positive examples, the coverage of which is equal to 1.0. That is, an
exclusive rule represents the necessity condition of a decision. It is notable that
the set supporting an exclusive rule corresponds to the upper approximation of
a target concept, which is introduced in rough sets [1]. Thus, an exclusive rule
is represented as:

R → d s.t. R = ∨j [aj = vk], κR(D) = 1.0.

Figure 4 shows the Venn diagram of a exclusive rule. As shown in this figure,
the meaning of R is a superset of that of D. This diagram is exactly equivalent
to the classic proposition d → R. In the above example, the exclusive rule of
“m.c.h.” is:

[M1 = yes] ∨ [nau = no] → m.c.h. κ = 1.0,

From the viewpoint of propositional logic, an exclusive rule should be represented
as:

d → ∨j [aj = vk],

because the condition of an exclusive rule corresponds to the necessity condition
of conclusion d. Thus, it is easy to see that a negative rule is defined as the
contrapositive of an exclusive rule:

∧j¬[aj = vk] → ¬d,
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RAD

Fig. 5. Venn Diagram of Exclusive Rules

which means that if a case does not satisfy any attribute value pairs in the
condition of a negative rules, then we can exclude a decision d from candidates.
For example, the negative rule of m.c.h. is:

¬[M1 = yes] ∧ ¬[nausea = no] → ¬m.c.h.

In summary, a negative rule is defined as:

∧j¬[aj = vk] → ¬d s.t. ∀[aj = vk] κ[aj=vk](D) = 1.0,

where D denotes a set of samples which belong to a class d. Figure 6 shows the
Venn diagram of a negative rule. As shown in this figure, it is notable that this
negative region is the “positive region” of “negative concept”.

Fig. 6. Venn Diagram of Negative Rules
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Negative rules should be also included in a category of deterministic rules,
since their coverage, a measure of negative concepts is equal to 1.0. It is also no-
table that the set supporting a negative rule corresponds to a subset of negative
region, which is introduced in rough sets [1].

In summary, positive and negative rules corresponds to positive and negative
regions defined in rough sets. Figure 7 shows the Venn diagram of those rules.

5 Algorithms for Rule Induction

The contrapositive of a negative rule, an exclusive rule is induced as an exclusive
rule by the modification of the algorithm introduced in PRIMEROSE-REX [7],
as shown in Figure 8. This algorithm will work as follows. (1)First, it selects
a descriptor [ai = vj ] from the list of attribute-value pairs, denoted by L. (2)
Then, it checks whether this descriptor overlaps with a set of positive examples,
denoted by D. (3) If so, this descriptor is included into a list of candidates for
positive rules and the algorithm checks whether its coverage is equal to 1.0 or
not. If the coverage is equal to 1.0, then this descriptor is added to Rer, the
formula for the conditional part of the exclusive rule of D. (4) Then, [ai = vj ] is
deleted from the list L. This procedure, from (1) to (4) will continue unless L is
empty. (5) Finally, when L is empty, this algorithm generates negative rules by
taking the contrapositive of induced exclusive rules.

On the other hand, positive rules are induced as inclusive rules by the algo-
rithm introduced in PRIMEROSE-REX [7], as shown in Figure 9. For induction
of positive rules, the threshold of accuracy and coverage is set to 1.0 and 0.0,
respectively.

Fig. 7. Positive and Negative Rules as Overview
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This algorithm works in the following way. (1) First, it substitutes L1, which
denotes a list of formula composed of only one descriptor, with the list Ler gener-
ated by the former algorithm shown in Fig. 1. (2) Then, until L1 becomes empty,
the following procedures will continue: (a) A formula [ai = vj ] is removed from
L1. (b) Then, the algorithm checks whether αR(D) is larger than the threshold
or not. (For induction of positive rules, this is equal to checking whether αR(D)
is equal to 1.0 or not.) If so, then this formula is included a list of the conditional
part of positive rules. Otherwise, it will be included into M , which is used for
making conjunction. (3) When L1 is empty, the next list L2 is generated from
the list M .

6 From the Empirical Results: Hierarchical Rules for
Decision Support

6.1 Sec: Extension

Empirical validations of rule induction methods are shown in [9]. However, these
empirical results are not sufficient to extract “plausible” rules.

For example, rule induction methods introduced in this paper induce the
following common rule for muscle contraction headache from databases on dif-
ferential diagnosis of headache:

[location = whole] ∧[Jolt Headache = no] ∧[Tenderness of M1 = yes]
→ muscle contraction headache.

This rule is shorter than the following rule given by medical experts.

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨ [Tenderness of M1 = yes]

∨[Tenderness of M2 = yes])
∧[Tenderness of B1 = no] ∧ [Tenderness of B2 = no] ∧ [Tenderness of B3 = no]
∧[Tenderness of C1 = no] ∧ [Tenderness of C2 = no] ∧ [Tenderness of C3 = no]
∧[Tenderness of C4 = no]

→ muscle contraction headache

These results suggest that conventional rule induction methods do not reflect a
mechanism of knowledge acquisition of medical experts.

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨ [Tenderness of M1 = yes]

∨[Tenderness of M2 = yes])
∧[Tenderness of B1 = no] ∧ [Tenderness of B2 = no]

∧[Tenderness of B3 = no]
∧[Tenderness of C1 = no] ∧ [Tenderness of C2 = no]
∧[Tenderness of C3 = no] ∧[Tenderness of C4 = no]

→ muscle contraction headache

This rule is very similar to the following classification rule for disease of cervical
spine:
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procedure Exclusive and Negative Rules;
var

L : List;
/* A list of elementary attribute-value pairs */

begin
L := P0;
/* P0: A list of elementary attribute-value pairs given in a database */
while (L �= {}) do

begin
Select one pair [ai = vj ] from L;
if ([ai = vj ]A∩D �=φ) then do /* D: positive examples of a target class d */

begin
Lir := Lir + [ai = vj ]; /* Candidates for Positive Rules */
if (κ[ai=vj ](D) = 1.0)
then Rer := Rer ∧ [ai = vj ];

/* Include [ai = vj ] into the formula of Exclusive Rule */
end

L := L − [ai = vj ];
end

Construct Negative Rules:
Take the contrapositive of Rer.

end {Exclusive and Negative Rules};

Fig. 8. Induction of Exclusive and Negative Rules

procedure Positive Rules;
var

i : integer; M, Li : List;
begin

L1 := Lir;
/* Lir: A list of candidates generated by induction of exclusive rules */
i := 1; M := {};
for i := 1 to n do
/* n: Total number of attributes given

in a database */
begin

while ( Li �= {} ) do
begin

Select one pair R = ∧[ai = vj ] from Li;
Li := Li − {R};
if (αR(D) > δα)

then do Sir := Sir + {R};
/* Include R in a list of the Positive Rules */

else M := M + {R};
end

Li+1 := (A list of the whole combination of the conjunction formulae in M);
end

end {Positive Rules};

Fig. 9. Induction of Positive Rules
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[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨ [Tenderness of M1 = yes]

∨[Tenderness of M2 = yes])
∧([Tenderness of B1 = yes] ∨ [Tenderness of B2 = yes]

∨[Tenderness of B3 = yes]
∨[Tenderness of C1 = yes] ∨ [Tenderness of C2 = yes]
∨[Tenderness of C3 = yes] ∨[Tenderness of C4 = yes])

→ disease of cervical spine

As shown in [9], rules acquired from medical experts are much longer than
those induced from databases the decision attributes of which are given by the
same experts. This is because rule induction methods generally search for shorter
rules, compared with decision tree induction. In the case of decision tree induc-
tion, the induced trees are sometimes too deep and in order for the trees to
be learningful, pruning and examination by experts are required. One of the
main reasons why rules are short and decision trees are sometimes long is that
these patterns are generated only by one criteria, such as high accuracy or high
information gain. The comparative study in this section suggests that experts
should acquire rules not only by one criteria but by the usage of several mea-
sures. Those characteristics of medical experts’ rules are fully examined not by
comparing between those rules for the same class, but by comparing experts’
rules with those for another class. For example, a classification rule for muscle
contraction headache is given by:

The differences between these two rules are attribute-value pairs, from ten-
derness of B1 to C4. Thus, these two rules are composed of the following three
blocks:

A1 ∧ A2 ∧ ¬A3 → muscle contraction headache
A1 ∧ A2 ∧ A3 → disease of cervical spine,

where A1, A2 and A3 are given as the following formulae:
A1 = [Jolt Headache = no], A2 = [Tenderness of M0 = yes] ∨ [Tenderness of
M1 = yes] ∨ [Tenderness of M2 = yes], and A3 = [Tenderness of C1 = no] ∧
[Tenderness of C2 = no] ∧ [Tenderness of C3 = no] ∧ [Tenderness of C4 = no].
The first two blocks ( A1 and A2 ) and the third one ( A3 ) represent the different
types of differential diagnosis. The first one A1 shows the discrimination between
muscular type and vascular type of headache. Then, the second part shows that
between headache caused by neck and head muscles. Finally, the third formula
A3 is used to make a differential diagnosis between muscle contraction headache
and disease of cervical spine. Thus, medical experts first select several diagnostic
candidates, which are very similar to each other, from many diseases and then
make a final diagnosis from those candidates.

This problem has been solved and reported in [13, 14], where Tsumoto intr-
douced as induction of hierarchical decision rules.

In [14], the characteristics of experts’ rules are closely examined from the
viewpoint of hiearchical decision steps. Then, extraction of diagnostic taxonomoy
from medical datasets is introduced, which consists of the following three pro-
cedures. First, the characterization set of each decision attribute (a given class)
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is extracted from databases. Then, similarities between characterization sets are
calculated. Finally, the concept hierarchy for given classes is calculated from the
similarity values.

6.2 Rule Induction with Diagnostic Taxonomy

Intuitive Ideas. When the coverage of R for a target concept D is equal to
1.0, R is a necessity condition of D. That is, a proposition D → R holds and
its contrapositive ¬R → ¬D holds. Thus, if R is not observed, D cannot be
a candidate of a target concept. Thus, if two target concepts have a common
formula R whose coverage is equal to 1.0, then ¬R supports the negation of
two concepts, which means these two concepts belong to the same group. Fur-
thermore, if two target concepts have similar formulae Ri, Rj ∈ L1.0(D), they
are very close to each other with respect to the negation of two concepts. In
this case, the attribute-value pairs in the intersection of L1.0(Di) and L1.0(Dj)
give a characterization set of the concept that unifies Di and Dj, Dk. Then,
compared with Dk and other target concepts, classification rules for Dk can be

procedure Grouping ;
var inputs

Lc : List; /* A list of Characterization Sets */
Lid : List; /* A list of Intersection */
Ls : List; /* A list of Similarity */

var outputs
Lgr : List; /* A list of Grouping */

var
k : integer; Lg, Lgr : List;

begin
Lg := {} ;
k := n
/* n: A number of Target Concepts*/
Sort Ls with respect to similarities;

Take a set of (Di, Dj), Lmax with maximum similarity values;
k:= k+1;
forall (Di, Dj) ∈ Lmax do

begin
Group Di and Dj into Dk;

Lc := Lc − {(Di, L1.0(Di)};
Lc := Lc − {(Dj , L1.0(Dj)};
Lc := Lc + {(Dk, L1.0(Dk)};
Update Lid for DDk;
Update Ls;

Lgr := (Grouping for Lc, Lid, and Ls) ;
Lg := Lg + {{(Dk, Di, Dj), Lg}};

end
return Lg;

end {Grouping}
Fig. 10. An Algorithm for Grouping
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obtained. When we have a sequence of grouping, classification rules for a given
target concepts are defined as a sequence of subrules.

Algorithms. From these ideas, a rule induction algorithm with grouping target
concepts can be described as a combination of grouping (Figure 10) and rule
induction(Figure 11).

procedure RuleInduction ;
var inputs

Lc : List; /* A list of Characterization Sets */
Lid : List; /* A list of Intersection */
Lg : List; /* A list of grouping*/ /* {{(Dn+1,Di,Dj),{(DDn+2,.)...}}} */
/* n: A number of Target Concepts */

var
Q, Lr : List;

begin
Q := Lg; Lr := {};
if (Q �= ∅) then do

begin
Q := Q − first(Q);
Lr := Rule Induction (Lc, Lid, Q);

end
(DDk, Di, Dj) := first(Q);
if (Di ∈ Lc and Dj ∈ Lc) then do

begin
Induce a Rule r which discriminate between Di and Dj ;
r = {Ri → Di, Rj → Dj};

end
else do

begin
Search for L1.0(Di) from Lc;
Search for L1.0(Dj) from Lc;
if (i < j) then do
begin

r(Di) := ∨Rl∈L1.0(Dj)¬Rl → ¬Dj ;
r(Dj) := ∧Rl∈L1.0(Dj)Rl → Dj ;

end
r := {r(Di), r(Dj)};

end
return Lr := {r, Lr} ;

end {Rule Induction}

Fig. 11. An Algorithm for Rule Induction

Pawlak’s rough set model corresponds to two-stage differential diagnosis.
Then, do we have a model corresponding to multi-stage differential diagnosis ?
It will be my future work.
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7 Conclusions

This paper discusses the correspondence between Pawlak’s rough set model and
medical reasoning (two-stage differential diagnosis) and how this idea extends
to multi-stage differential diagnosis.

Interestingly, upper and lower approximaiton correspond to the focusing mech-
anism of differential medical diagnosis; the former approximation as selection of
candidates, called characterization and the latter approximation as concluding
a final diagnosis, called differentiation. Furthermore, since rough sets provides a
rule induction method from a given data, it can be used to extract rule-based
knowledge from medical databases. Especially, rule induction based on the focus-
ing mechanism is obtained in a natural way. Since the degree of upper and lower
approximation can be measured by accuracy and coverage, rule induction method
can be achieved by a heuristic search algorithm with two indices, accuracy and
coverage.

From empirical validations of this algorithms and comparison with experts’
knowledge, we discovered that expert’s reasoning is not two-stage, but multi-
stage differential diagnosis. This leads to the extension of rule induction method,
called rule induction with diagnostic taxonomy.

Although empirical validations give sufficient performance of the extended
algorithms, a corresponding formal model for diagnosis has not been obtained. It
will be my future work to investigate the formalization of multi-stage differential
diagnosis from set-theoretical viewpoint.

This paper is dedicated to late Professor Pawlak, which overviews my research
from 1992 to 2004.
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Algebras of Terms
in Pawlak’s Information Systems

J.A. Pomyka�la

WSM, Warsaw, Poland

Abstract. The notion of information system can be seen as a semantic
system, but essentially algebraical in the nature. We show in this note,
that it can be treated as a many sorted algebra and that the algebra of
terms can be useful in describing and analysing the data in the system.

1 Many Sorted Algebra

In this chapter we recall some basic algebraic notions. We follow Mainke, Tuc-
ker [1] and Pomyka�la [3]. Let me recall first that information system (in the sense
of Pawlak) is the following 4-tuple: (O, A, V, f), where O is a set of objects, A is a
set of attributes, V is a set of values of attributes, f is a function f : O×A → V .
V = {Va : a ∈ A} where Va is a set of values of the attribute a. By the
extended system we mean the 3-sorted algebra (O, A, V, f1 . . . fn), where each
fi : O × A → V .

With every system we can connect approximation algebra

Apr = (O, E1, . . . , Em)(Op)

where Ei are families of sets of objects and Op is a set of operations defined
using families Ei and which can be interpreted as an approximation operations.

If the operation Fi is defined only by using elements from the family Ek, we
use the symbol F

(k)
i or F Ek

i . If the operation Fi ∈ Op is defined on the base of
families Ei1 , . . . , Eim , then we shall write Fi ∈ Op and Fi = F

(i1,...,im)
i .

Example 1.1. Let E1 be a partition of the family of objects O. Let E1 and
E1 be lover and upper approximation operations in the sense of Pawlak. Then
(O, E1, E1) is approximation space and the development of the algebra of terms
in the respective algebra can be seen as a way to the definition of rough sets.

Example 1.2. Let E1 be a cover of the family of objects ϑ. Let me recall that I
have defined the following operations (cf. [2]) related to E1: I1, E1,ϑ1, C1 which
are called lower operations related to Kernels, covers, similarity neighbourhoods
and connectivity sets, and I1, E1,ϑ1, C1 which are upper operations (defined
dually to lower operations).

In this context the term algebra gives the possibility to find all subsets of the
family of objects O, which are in some sense regular or well described. It shows
also that the family of rough sets is a special case of this algebra, namely when
Ei are partitions of O.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 71–76, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Algebras of Information Systems

Let the system (O,A,V,F) be given. We connect with it the following algebra A;
but first we define the signature Σ:

i) A non-empty set S = {O, A, V }, the elements of which are called sorts.
ii) An S∗ × S indexed family 〈

Σw,s

∣∣w ∈ S∗, s ∈ S
〉

of sets, where for the empty word λ ∈ S∗ and any sort s ∈ S, each element
c ∈ Σλ,s is called a constant symbol of sort s; and for each non-empty word
w = s(1), . . . , s(n) ∈ S+ and sort s ∈ S, each element σ ∈ Σw,s is called
an operation or function symbol of type (w, s), sometimes we term w the
domain type and n the arity of σ.

Thus we define Σ to be the pair

(S, 〈Σw,s : w ∈ S∗, s ∈ S〉) .

In the sequel we often assume the simple case: w ∈ O × A and s ∈ V .

Definition 1.1. B is said to be a Σ subalgebra of A if,and only if, for each
sort s ∈ S, Bs ⊆ As; for each sort s ∈ S and each constant symbol c ∈ Σλ,s,
cB = cA; and for each sort s ∈ S, and non-empty word w = s(1), . . . , s(n) ∈ S+,
and function symbol σ ∈ Σw,s and any (b1, b2, . . . , bn) ∈ Bw σB(b1, . . . , bn) =
σA(b1, . . . , bn).

We write B ≤ A, if B is a proper subalgebra we write B < A.

Definition 1.2. A class K of Σ algebras is said to be closed under the formation
of subalgebras iff, whenever A ∈ K and B ≤ A then B ∈ K.

Definition 1.3. Let A be any Σ algebra and X ⊆ A be any subset of A. The
subset 〈X〉A of A generated by X is the set 〈X〉A =

⋂
{B : X ⊆ B and B ≤ A}

(one-sorted case).

Let me assume that direct product of algebras is defined in the standard way.
We recall also that with A, B we associate families of projection functions:

UA =
〈
UA

s : (A × B)s → As, s ∈ S
〉

UB =
〈
UB

s : (A × B)s → Bs, s ∈ S
〉

defined by
UA

s (a, b) = a, UB
s (a, b) = b

for each sort s ∈ S and each pair (a, b). The families UA, UB are Σ homomor-
phisms.
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Definition 1.4. Let ≡φ, ≡θ be any Σ congruences on a Σ algebra A such that
≡θ⊆≡φ. We define the factor congruence ≡φ/θ denoted by ≡φ / ≡θ on A/ ≡θ

to be the binary relation given by

[a]θ ≡φ/θ [b]θ ⇔ a ≡φ b (see [].

Theorem 1.5. Let≡φ, ≡θ be any Σ congruences on a Σ algebra A such that
≡θ⊆≡φ. Then the map Ψ :

(
A/ ≡θ

)
/ ≡φ/θ→ A/ ≡φ defined by

Ψ
(
[[a]θ]φ/θ

)
= [a]φ

is a Σ isomorphism.

Lemma 1.6. Factor congruence is indeed a congruence.

2 Algebras of Terms

Let F0 be a non-empty set of constant symbols for data of sort S, and let Fn

for n ≥ 1 be a set of n-argument function or operator symbols; in particular, if
f ∈ Fn then f has domain type s × . . . × s (n times) and codomain type s.

Let X be a set of variable symbols of sort s. We assume X and the set F0
of constant symbols are disjoint. The set T (Σ, X) of all terms or expressions of
sort s is inductively defined by:

(i) each constant c ∈ F0 is a term of sort s;
(ii) each variable x ∈ X is a term of sort s;
(iii) if t1, . . . , tn are terms of sort s and f ∈ Fn then f(t1t2 . . . tn) is a term of

sort s;
(iv) nothing else is a term.

The set T (Σ, X) is the carrier (if non-empty) for an algebra of terms. The
constants of this algebra are the constant symbols c ∈ F0. The operations of this
algebra are the mappings that apply function symbols to terms: for each f ∈ Fn

there is an operation
F : T (Σ, X)n → T (Σ, X)

defined by
F (t1, . . . , tn) = f (t1, . . . , tn)

for t1, . . . , tn ∈ T (Σ, X). We denote this algebra by T (Σ, X).
The semantics of terms is given by a set A and a map υ : T (Σ, X) → A,

where υ(t) is the value of term t.

3 Applications

Let us relax in this section the condition that fi : O×A → V and let us assume
that we have 3 arbitrary sets ϑ, A, V and some functions ”working” on these 3
sorts. For example let it be possible that
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f1 : O × V → A, f2 : O × A → V,

f3 : O × O → O, fn : V → A, etc.

We define: every set which can be obtained as a term in the term algebra will
be called exact. The other sets shall be called not-exact, not describable or not
expressible in the given term algebra. In particular we can have exact sets of
objects, exact sets of attributes or exact sets of values of attributes in the given
algebra of terms. So we can obtain as a terms eg. all red cars in the factory, all
blue cars in the database, all attributes which describe fixed family of objects,
or as one more example, we can get the term (vi) which is equal to all (objects,
attributes) pairs such that

term (vi) = {(o, a) : fk(o, a) = vi, for a function fk} .

If the algebra considered uses undefined values (null values) then terms con-
taining those values(denoted by special symbols), will be called rough terms.
Let me finally propose, for the memory of prof. Z. I. Pawlak, to call sets, which
are not exact in the given term algebra T , T -rough sets. In other words we can
speak about terms and rough terms is the algebra of terms.

4 On the Notion of Homomorphism

In the many sorted algebras the notion of a homomorphism may be generalized.
Here a notion of bidirectional morphism is introduced and an analogon of the
first homomorphism theorem is formulated. The considerations of this chapter
are inspired by the notion of twisted morphism introduced by Wiweger [5].

4.1 Bidirectional Morphism (cf. [3])

Let us assume that A = 〈As : s ∈ S〉 and B = 〈Bs : s ∈ S〉, are many sorted
algebras. Let us assume also that S = I ∪J , I∩J = ∅ and for every i ∈ I, j ∈ J
Φi : Ai → Bi, Φj : Bj → Aj . Let f be an operation symbol from the signature of
the algebras considered, and let fA and fB denote the fundamental operations
in the algebras A and B, respectively i.e.

fA : Ai1 × . . . × Ain × Aj1 × . . . × Ajk → AS0

fB : Bi1 × . . . × Bin × Bj1 × . . . × Bjk → BS0

where i1, . . . , in ∈ I, j1, . . . , jk ∈ J , so ∈ S.
We shall say that f is preserved by Φ = 〈ΦS : s ∈ S〉 if the following

conditions are satisfied:



Algebras of Terms in Pawlak’s Information Systems 75

for all a1 ∈ Ai1, . . . , an ∈ Ain, b1 ∈ Bj1, . . . , bk ∈ Bjk:

a) if s0 ∈ I then ΦS0(fA(a1, . . . , an, Φj1(b1), . . . , Φjk(bk)) =

fB(Φi1(a1), . . . , Φin(an), b1, . . . , bk),

b) if sO ∈ J then fA(a1, . . . , an, Φj1(b1), . . . , Φjk(bk)) =

Φsof
b(Φi1(a1), . . . , Φin(an), b1, . . . , bk).

We shall also say that Φ preserves f or that Φ is compatible with f . The fam-
ily of mappings Φ = 〈Φs : s ∈ S〉 will be called a bidirectional (symmetric,
or switching) morphism if, and only if, it is compatible with all the operation
symbols, more precisely-with all fundamental operations fA, fB in the algebras
A, B, respectively. We recall here the convention that fA, fB correspond to the
same operation symbol f in the signature Σ of the many sorted algebras A, B
under consideration. For fixed sets I, J ⊆ S, I ∪ J = S, I ∩ J = ∅ and the
algebras A, B of the same signature Φ (over the set of sorts S) we shall denote
the family of all bidirectional morphisms with respect to I, J by Homs I,J(A, B).
If Φ is a bidirectional morphism w.r.t. (with respect to) I, J and between A, B
then we shall write:

Φ : A I=J B or equivalently Φ : B J=I A, sometimes we shall write also
A I=J B.

4.2 Kernel

We modify the notion of kernel in many sorted algebra in the following way. Let
A and B be Σ algebras and Φ : A I=J B be a bidirectional homomorphism.

An A-kernel of Φ is the binary relation ≡AΦ on A defined by

a1 ≡AΦ a2 iff Φi(a1) = Φi(a2)

whenever a1, a2 ∈ Ai, i ∈ I, or

a1 ≡AΦ a2 iff a1 = a2

in case a1, a2 ∈ Aj , j ∈ J . In the similar way the notion of B-kernel of Φ is
defined. Namely, for all b1, b2 ∈ B

b1 ≡BΦ b2 iff (b1 = b2 if b1, b2 ∈ Bi, i ∈ I,

or Φj(b1) = Φj(b2) if b1, b2 ∈ Bj , j ∈ J) .

It is easy to check that:

Lemma 4.1. Let Φ : A I=J B be a Σ-bidirectional epimorphism. The kernel
≡AΦ is a Σ congruence on A and the kernel ≡BΦ is a Σ congruence on B.
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4.3 First Homomorphism Theorem

Given any Σ congruence ≡AΦ on a Σ algebra A it is possible to construct a Σ
homomorphism nat : A → A/ ≡AΦ in the following way:

nat (a) = [a]≡

nat is called the natural map of the congruence. Now we are prepared to show
the generalization of the First Homomorphism Theorem:

Theorem 4.2. If Φ : AI=JB is a ΣI,J -bidirectional epimorphism then the
algebras A/ ≡AΦ and B/ ≡BΦ are isomorphic.
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Abstract. Traditionally, rough sets build upon relations based on ordinary sets,
i.e. relations on X as subsets of X × X. A starting point of this paper is the
equivalent view on relations as mappings from X to the (ordinary) power set PX.
Categorically, P is a set functor, and even more so, it can in fact be extended to a
monad (P, η, μ). This is still not enough and we need to consider the partial order
(PX, ≤). Given this partial order, the ordinary power set monad can be extended
to a partially ordered monad. The partially ordered ordinary power set monad
turns out to contain sufficient structure in order to provide rough set operations.
However, the motivation of this paper goes far beyond ordinary relations as we
show how more general power sets, i.e. partially ordered monads built upon a
wide range of set functors, can be used to provide what we call rough monads.

1 Introduction

Partially ordered monads are monads [9], where the underlying endofunctor is equipped
with an order structure. Some additional structure is imposed. Partially ordered monads
are useful for various generalized topologies and convergence spaces [3,4], and have
also been used for generalisation of Kleene algebras [12,7,2].

Partially ordered monads over the category Set of sets are defined by means of func-
tors from Set to the category acSLAT of almost complete semilattices1. A partially
ordered monad is a quadruple (ϕ,≤, η, μ), where (ϕ,≤, η) is a basic triple2, (ϕ, η, μ)
is a monad3 (over Set), and further, for all mappings f, g : Y → ϕX , f ≤ g implies
μX ◦ϕf ≤ μX ◦ϕg, where ≤ is defined argumentwise with respect to the partial order-
ing of ϕX . We also require that for each set X , μX : (ϕϕX,≤) → (ϕX,≤) preserves
non-empty suprema.

The classical example of a partially ordered monad is the power set partially ordered
monad (P,≤, η, μ), where PX is the ordinary power set of X and ≤ its set inclusion ⊆
� Partially supported by Spanish projects TIC2003-09001-C02-01 and TIN2006-15455-C03-01.
1 An almost complete semilattice is a partially ordered sets (X, ≤) such that the suprema sup M

of all non-empty subsets M of X exists.
2 A basic triple ([3]) is a triple (ϕ, ≤, η), where (ϕ, ≤) : Set → acSLAT, X 
→ (ϕX, ≤) is

a covariant functor, with ϕ : Set → Set as the underlying set functor, and η : id → ϕ is a
natural transformation.

3 A monad (ϕ, η, μ) over a category C consists of a covariant functor ϕ : C → C, together with
natural transformations η : id → ϕ and μ : ϕ◦ϕ → ϕ fulfilling the conditions μ◦ϕμ = μ◦μϕ
and μ ◦ ϕη = μ ◦ ηϕ = idϕ.
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making (PX,≤) a partially ordered set. The unit η : X → PX is given by η(x) = {x}
and the multiplication μ : PPX → PX by μ(B) = ∪B.

In this paper we will show that partially ordered monads contain sufficient struc-
ture for modelling rough sets [10] in a generalized setting with set functors. Even for
the ordinary relations, the adaptations through partially ordered monads open up av-
enues towards an understanding of rough sets in a basic many-valued logic [5] setting.
However, the motivation of this paper goes far beyond ordinary relations, and indeed
we show how various set functors extendable to partially ordered monads establish the
notion of rough monads.

2 Ordinary Relations and Rough Sets

Let R be a relation on X , i.e. R ⊆ X × X . We represent the relation as a mapping
ρX : X → PX , where ρX(x) = {y ∈ X |xRy}. The corresponding inverse relation
R−1 is represented as ρ−1

X (x) = {y ∈ X |xR−1y}.
Based on indistinguishable relations, rough sets are introduced by defining the upper

and lower approximation of sets. These approximations represent uncertain or impre-
cise knowledge. To be more formal, given a subset A of X , the lower approximation
of A correspond to the objects that surely (with respect to an indistinguishable relation)
are in A.

The lower approximation of A is obtained by

A↓ = {x ∈ X |ρ(x) ⊆ A}

and the upper approximation by

A↑ = {x ∈ X |ρ(x) ∩ A �= ∅}.

In what follows we will assume that the underlying almost complete semilattice has
finite infima, i.e. is a join complete lattice.

Considering P as the functor in its corresponding partially ordered monad we then
immediately have

Proposition 1. The upper and lower approximations of a subset A of X are given by

A↑ =
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

and
A↓ =

∨
ρX (x)≤A

ηX(x),

respectively.

Proof. For the upper approximation,

μX ◦ Pρ−1
X (A) =

∨
Pρ−1

X (A)
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=
∨

{ρ−1
X (y) | y ∈ A}

= {x ∈ X |xRy, y ∈ A}
=

∨
ρX (x)∧A>0

ηX(x) = A↑.

And for the lower approximation, since ηX(x) = {x}, we immediately obtain:

A↓ = {x ∈ X |ρ(x) ⊆ A}
=

∨
ρX (x)≤A

ηX(x).

The corresponding R-weakened and R-substantiated sets of a subset A of X are
given by

A⇓ = {x ∈ X |ρ−1(x) ⊆ A}
and

A⇑ = {x ∈ X |ρ−1
X (x) ∩ A �= ∅}.

Proposition 2. The R-weakened and R-substantiated sets of a subset A of X are given
by

A⇑ = μX ◦ PρX(A)

and
A⇓ =

∨
ρ−1

X (x)≤A

ηX(x),

respectively.

Proof. Similarly as Proposition 1.

The upper and lower approximations, as well as the R-weakened and R-substantiated
sets, can be viewed as ↑X , ↓X ,⇑X ,⇓X : PX → PX with ↑X (A) = A↑, ↓X (A) =
A↓, ⇑X (A) = A⇑ and ⇓X (A) = A⇓.

3 Inverse Relations

Inverse relations in the ordinary case means to mirror pairs around the diagonal. The fol-
lowing propositions relate inverses to the multiplication of the corresponding
monads.

Proposition 3. In the case of P ,∨
ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

if and only if

ρ−1
X (x) =

⋃
ηX (x)≤ρX(y)

ηX(y).
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Proof. To see =⇒, let us consider the one element set, A = {x}. Renaming the vari-
ables, by hypothesis we have that ρX(y) ∧ A > 0, e.g. x ∈ ρX(y), therefore,∨

ρX (y)∧A>0

ηX(y) =
⋃

x∈ρX (y)

ηX(y) =
⋃

ηX (x)≤ρX (y)

ηX(y).

On the other hand, since A contains only one element, μX ◦ Pρ−1
X (A) = ρ−1

X (x).
The other implication, ⇐=, holds by Proposition 1.

The many-valued extension of P is as follows. Let L be a completely distributive
lattice. For L = {0, 1} we write L = 2. The functor Lid is obtained by LidX = LX ,
i.e. the set of mappings A : X → L. These mappings are usually called fuzzy sets (over
L). The partial order ≤ on LidX is given pointwise. Morphism f : X → Y in Set are
mapped according to

Lidf(A)(y) =
∨

f(x)=y

A(x).

Finally ηX : X → LidX is given by

ηX(x)(x′) =
{

1 if x′ ≤ x
0 otherwise

and μX : LidX ◦ LidX → LidX by

μX(M)(x) =
∨

A∈LidX

A(x) ∧M(A).

Concerning inverse relations, in the case of ϕ = Lid we would accordingly define
ρ−1

X (x)(x′) = ρX(x′)(x).

Proposition 4. [1] Lid = (Lid,≤, η, μ) is a partially ordered monad.

Note that 2id is the usual partially ordered power set monad (P,≤, η, μ).

Proposition 5. In the case of Lid,

μX ◦ Lidρ
−1
X (A)(x) =

∨
x′∈X

(ρX(x) ∧ A)(x′).

Proof. We have

μX ◦ Lidρ
−1
X (A)(x) =

∨
B∈LidX

B(x) ∧ Lidρ
−1
X (A)(B)

=
∨

B∈LidX

B(x) ∧
( ∨

ρ−1
X (x′)=B

A(x′)
)

=
∨

B∈LidX

∨
ρ−1

X (x′)=B

B(x) ∧ A(x′)

=
∨

x′∈X

ρ−1
X (x′)(x) ∧ A(x′)

=
∨

x′∈X

(ρX(x) ∧ A)(x′).
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The generalization from the ordinary power set monad to involving a wide range of
set functors and their corresponding partially ordered monads requires an appropriate
management of relational inverses and complement. Obviously, for more complicated
set functors, the corresponding relational views no longer rest upon ’mirroring over the
diagonal’. The general representation of inverses is still an open question and for the the
purpose of this paper we specify inverses in casu. Inverses and complements in the end
need to build upon logic operators in particular concerning negation as derived from
implication operators used within basic many-valued logic [5].

4 Monadic Relations and Rough Monads

Let Φ = (ϕ,≤, η, μ) be a partially ordered monad. We say that ρX : X → ϕX is a
Φ-relation on X , and by ρ−1

X : X → ϕX we denote its inverse. The inverse must be
specified for the given set functor ϕ.

For any f : X → ϕX , the following condition is required:

ϕf(
∨
i

ai) =
∨
i

ϕf(ai)

This condition is valid both for P as well as for Lid.

Remark 1. Let ρX and ρY be relations on X and Y , respectively. Then the mapping
f : X → Y is a congruence, i.e. x′ ∈ ρX(x) implies f(x′) ∈ ρY (f(x)), if and only if
Pf ◦ ρX ≤ ρY ◦ f . Thus, congruence is related to kind of weak naturality.

Let ρX : X → ϕX be a Φ-relation and let a ∈ ϕX . The Φ-ρ-upper and Φ-ρ-lower
approximations, and further the Φ-ρ-weakened and Φ-ρ-substantiated sets, now define
rough monads using the following monadic instrumentation:

⇑X (a) = μX ◦ ϕρX(a)

↓X (a) =
∨

ρX (x)≤a

ηX(x)

↑X (a) = μX ◦ ϕρ−1
X (a)

⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Proposition 6. If a ≤ b, then ⇑X a ≤⇑X b, ↓X a ≤↓X b, ↑X a ≤↑X b, ⇓X a ≤⇓X b.

Proof. The proof is straighforward as e.g.

↓X (a) =
∨

ρX (x)≤a

ηX(x) ≤
∨

ρX (x)≤b

ηX(x) =↓X (b)

and
↑X (a) = μX ◦ ϕρ−1

X (a) ≤ μX ◦ ϕρ−1
X (b) =↑X (b).

Definition 1. ρX : X → ϕX is reflexive if ηX ≤ ρX , and symmetric if ρ = ρ−1.
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Proposition 7. If ρ is reflexive, a ≤⇑X (a).

Proof. By one of the monads conditions wrt multiplication and the fact that for all
mappings f, g : Y → ϕX , f ≤ g implies μX ◦ ϕf ≤ μX ◦ ϕg, we have:

a = idϕ(a)
= μX ◦ ϕηX(a)
≤ μX ◦ ϕρX(a)
= ⇑X (a)

Proposition 8. ρ is reflexive iff ↓X (a) ≤ a.

Proof. If ρ is reflexive, then

↓X (a) =
∨

ρX (x)≤a

ηX(x)

≤
∨

ρX (x)≤a

ρX(x)

≤ a

and, conversely, if ↓X (a) ≤ a, then we have

ηX(x) ≤
∨

ρX (x′)≤ρX (x)

ηX(x′)

= ↓X (ρX(x))
≤ ρX(x).

Proposition 9. ρ−1
X is reflexive iff a ≤↑X (a).

Proof. If ρ−1
X is reflexive, then ηX ≤ ρ−1

X . Therefore, by using monads conditions and
properties of the underlying lattice, we obtain

a = μX ◦ ϕηX(a) ≤ μX ◦ ϕρ−1
X (a) =↑X (a).

Conversely, we have that ηX(x) ≤↑X (ηX(x)). Further, by naturality of ηX with re-
spect to ρ−1

X , and by using one of the monad conditions, we have

μX ◦ ϕρ−1
X (ηX(x)) = μX ◦ ηϕX(ρ−1

X (x)) = ρ−1
X (x).

Therefore,
ηX(x) ≤↑X (ηX(x)) = μX ◦ ϕρ−1

X (ηX(x)) = ρ−1
X (x)

which yields the reflexivity of ρ−1
X .

Note that in the case of relations for P and Lid, if the relations are reflexive, so are their
inverses.

Proposition 10. If ρ is symmetric, then ↑X (↓X (a)) ≤ a.
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Proof. We have

↑X (↓X (a)) = μX ◦ ϕρ−1
X (↓X (a))

= μX ◦ ϕρ−1
X (

∨
ρX (x)≤a

ηX(x))

=
∨

ρX (x)≤a

μX ◦ ϕρ−1
X (ηX(x))

=
∨

ρX (x)≤a

ρ−1
X (x)

=
∨

ρX (x)≤a

ρX(x)

≤ a.

In the particular case of a = ηX(x) we have a ≤↓X ◦ ↑X (a). Indeed, by naturality of
ηX , and symmetry, we have

ρX(x) = μX ◦ ϕρ−1
X (a).

Therefore,

a = ηX(x) ≤
∨

ρX (x′)≤μX◦ϕρ−1
X (a)

ηX(x′) =↓X (↑X (a)).

5 Future Work

Algebraic structures of rough sets [6] will be further investigated, both in direction
towards topological notions as well as involving logical structures. For instance, re-
lations to topological approaches based on modal-like operators [8] need to be better
understood. Concerning algebras, it is important to note that the power set based rough
monad, i.e. the ordinary rough sets, fulfill conditions of Boolean algebras where cal-
culi e.g. on inverses are natural and well understood. Going beyond Boolean algebras
means dropping complements and the recovery of the notion of complement needs to
take other routes, such as those provided by implications in many-valued logic. Further,
substructures of partially ordered monads are important for the provision of more ex-
amples. It is also interesting to observe how rough sets and their algebraic structures
resemble operations on images as found with morphological analysis [11]. Images seen
not just as matrices of pixels but, more general, as being placed on a canvas based on
rather elaborate set functors which are far more complex than the ordinary power set
functor.
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Abstract. This paper provides a new algorithm for testing membership
to maximal consistent extensions of information systems. A maximal
consistent extension of a given information system includes all objects
corresponding to known attribute values which are consistent with all
true and realizable rules extracted from the original information system.
An algorithm presented here does not involve computing any rules, and
has polynomial time complexity. This algorithm is based on a simpler
criterion for membership testing than the algorithm described in [4].
The criterion under consideration is convenient for theoretical analysis
of maximal consistent extensions of information systems.

Keywords: rough sets, information systems, maximal consistent exten-
sions.

1 Introduction

Information systems can be used to represent knowledge about the behavior of
concurrent systems. The idea of a concurrent system representation by infor-
mation systems is due to Zdzis�law Pawlak [3]. In this approach, an information
system represented by a data table encodes the knowledge about global states of
a given concurrent system. Columns of the table are labeled with names of at-
tributes (interpreted as local processes of a given concurrent system). Each row
labeled with an object (interpreted as a global state of a given concurrent system)
includes a record of attribute values (interpreted as states of local processes).
We assume that a given data table includes only a part of possible global
states of a concurrent system, i.e., only those which have been observed by us
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so far. In other words, it contains partial knowledge about a possible system
behavior. Such an approach is called the Open World Assumption. This par-
tial knowledge encoded in a data table can be represented by means of rules
which can be extracted from the data table. Such knowledge is sufficient to
construct a system model of the high quality. The remaining knowledge can be
discovered from the constructed model. New knowledge derived from the model
encompasses new global states of the system which have not been observed be-
fore. Such new states are consistent with the knowledge expressed by the rules
extracted from the given data table.

The above approach has been motivation for introducing a notion of consistent
extensions of information systems in [5]. A given information system S defines an
extension S′ of S created by adding to S all new objects including combinations
of only known attribute-value pairs, i.e., those pairs which have occurred in S.
Among all extensions of a given information system S, the so-called consistent
extensions of S play a significant role. A consistent extension S′ of S includes
only objects, which satisfy all rules true and realizable in S. If the consistent
extension S′ with the above property is the largest extension of S (with respect
to the number of objects) then S′ is called a maximal consistent extension of S.

If an information system S describes a concurrent system, the maximal con-
sistent extension of S represents the largest set of global states of the concurrent
system consistent with all rules true and realizable in S. This set may include
new global states not observed until now. It is – in a certain sense – new knowl-
edge about the concurrent system behavior described by S which is discovered
by us.

A crucial problem concerning maximal consistent extensions of information
systems is computing such extensions. This problem has been considered in the
literature, among others, in [4], [7] and [8]. In [1], [5], [6] some approaches have
been presented, where maximal consistent extensions are generated by classical
Petri net or colored Petri net models built on the basis of information systems
describing concurrent systems. Majority of methods for determining maximal
consistent extensions of information systems presented until now in the literature
(with the exception of [4]) requires computing all minimal rules (or only a part
of them) true and realizable in information systems. Such algorithms character-
ize exponential complexity. Therefore, elaborating efficient methods became an
important research problem. In this paper, some theoretical background for the
method of computing maximal consistent extensions of information systems not
involving computing any rules in information systems is presented. The method
considered in this paper is slightly different from the one considered in [4]. Our
method is based on a simpler criterion than the method presented in [4] and is
more appropriate for theoretical analysis.

The remaining part of the paper is organized as follows. Main notions are
presented in Section 2. Section 3 describes a new algorithm for testing member-
ship to maximal consistent extensions of information systems. Finally, Section 4
consists of some conclusions.
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2 Main Notions

Let S = (U, A) be an information system [2] where U is a finite set of objects
and A is a set of attributes (functions defined on U). For any a ∈ A, by Va we
denote the set {a(u) : u ∈ U} and we assume that |Va| ≥ 2.

We define an information system S∗ = (U∗, A∗), where U∗ is equal to the
Cartesian product ×a∈AVa and A∗ = {a∗ : a ∈ A}, where a∗(f) = f(a) for
f ∈ ×a∈AVa.

Assuming that for any u, u′ ∈ U if u �= u′ then InfA(u) �= InfA(u′), where
InfA(u) = {(a, a(u)) : a ∈ A} we can identify any object u ∈ U with the object
InfA(u) ∈ U∗ and any attribute a ∈ A with the attribute a∗ ∈ A∗ defined by
a∗(InfA(u)) = a(u). Hence, the information system S = (U, A) can be treated
as a subsystem of the information system S∗ = (U∗, A∗). In the sequel we write
a instead a∗.

For any information system S = (U, A) it is defined the set of boolean com-
binations of descriptors over S [2]. Any descriptor over S is an expression a = v
where a ∈ A and v ∈ Va. Boolean combinations of descriptors are defined from
descriptors using propositional connectives. For any boolean combination of de-
scriptors α it is defined its semantics, i.e., the set ‖α‖S ⊆ U consisting of all
objects satisfying α [2]. For example, if α is a formula

∧
a∈B(a = va), where

B ⊆ A, a ∈ B, and va ∈ Va then ‖α‖S = {u ∈ U : a(u) = va for any a ∈ B}.
A rule r (over S) is any expression of the form∧

a∈B

(a = va) −→ a′ = va′ , (1)

where B ⊆ A, va ∈ Va for a ∈ B, a′ ∈ A, and va′ ∈ Va′ .
The rule r (see (1)) is true for u ∈ U∗ if for some a ∈ B we have a(u) �= va

or a′(u) = va′ . The rule r (see (1)) is S-true if ‖
∧

a∈B(a = va)‖S ⊆ ‖a′ = va′‖S

and it is S-realizable if ‖
∧

a∈B(a = va)‖S ∩ ‖a′ = va′‖S �= ∅.
The set of all S-true and S-realizable rules is denoted by Rule(S).
Now, we can introduce the main concept of this paper, i.e., the maximal

extension of S. The maximal extension of S, in symbols Ext(S), is defined by

Ext(S) = {u ∈ U∗ : any rule from Rule(S) is true in u}. (2)

Let us consider an information system S = (U, A) and u, u′ ∈ U . The set of
attributes on which u, u′ are indiscernible in S is defined by

INDA(u, u′) = {a ∈ A : a(u) = a(u′)}. (3)

Such a set INDA(u, u′) defines a pattern, i.e., the following boolean combination
of descriptors over S:

TA(u, u′) =
∧

a∈INDA(u,u′)

(a = a(u)). (4)
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Now, for a given information system S and any u∗ ∈ U∗ \ U we define an
important for our considerations family of sets F(u∗, S) by

F(u∗, S) = {a(‖TA(u, u∗)‖S) : a ∈ A \ INDA(u, u∗) & u ∈ U}, (5)

where a(‖TA(u, u∗)‖S) = {a(x) : x ∈ ‖TA(u, u∗)‖S}, i.e., a(‖TA(u, u∗)‖S) is the
image under a of the set ‖TA(u, u∗)‖S .

3 Testing Membership to Ext(S)

In [4] a polynomial algorithm has been considered, which for a given informa-
tion system S = (U, A) and a given object u from U∗ \ U recognizes whether
this object belongs to Ext(S) or not. This algorithm is based on a criterion of
membership to maximal consistent extension of information system which uses
comparison of sets of reducts of a special kind (reducts related to a fixed object
and attribute) to a given set of objects and to its one-element extension.

We consider the following problem:

Membership Problem (MP)

INPUT: S = (U, A) and u∗ ∈ U∗ − U
OUTPUT: 1 if u∗ ∈ Ext(S)

0 if u∗ /∈ Ext(S).

We now present a polynomial algorithm A for solving the MP problem. Our
algorithm is based on a simpler criterion than that presented in [4].

Algorithm A

for all u ∈ U
for all a ∈ A \ INDA(u, u∗)

begin
compute a(‖TA(u, u∗)‖S);
if |a(‖TA(u, u∗)‖S)| = 1 then

begin
return(0);
Stop

end
end

return(1)

The correctness of the algorithm A follows from the following proposition:

Proposition 1. Let S = (U, A) be an information system and let u∗ ∈ U∗ \ U .
Then the following conditions are equivalent:

(i) u∗ /∈ Ext(S),
(ii) there exists X ∈ F(u∗, S) such that |X | = 1.
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Proof.
(ii) ⇒ (i)

Let us assume that for some one element set X we have X ∈ F(u∗, S). Then
the following equality holds: X = a(‖TA(u, u∗)‖S) for some a ∈ A\INDA(u, u∗)
and u ∈ U . Hence, the rule r defined by

TA(u, u∗) −→ a = a(u)

is S-true, because |X | = 1. We also have a(u) �= a(u∗) because a /∈ INDA(u, u∗).
Hence, r is not true for u∗, so u∗ /∈ Ext(S).
(i) ⇒ (ii)

Let us assume u∗ /∈ Ext(S). It means that there exists a rule r of the form
α −→ a = v, where α is a boolean combination of descriptors over S, which is
not true for u∗ but is S-true and S-realizable. Hence, u∗ ∈ ‖α‖S∗ and a(u∗) �=
v. The rule r is S-realizable. Hence, for some u ∈ U we have u ∈ ‖α‖S and
a(u) = v. From the definition of TA(u, u∗) we obtain that TA(u, u∗) consists of
all descriptors from α. Hence, ‖TA(u, u∗)‖S ⊆ ‖α‖S and in S is true the following
rule:

TA(u, u∗) −→ a = a(u).

Let us now consider the set a(‖TA(u, u∗)‖S). Since ‖TA(u, u∗)‖S ⊆ ‖α‖S and
|a(‖α‖S)| = 1 we also have |a(‖TA(u, u∗)‖S)| = 1. The last equality follows from
the fact that |a(‖TA(u, u∗)‖S)| ≥ 1 if the set ‖TA(u, u∗)‖S is non-empty.

Let us consider an example.

Example 1. Let S = (U, A), A = {a1, a2} and U = {(0, 1), (1, 0), (0, 2), (2, 0)}.
The application of the considered algorithm to each object u from {0, 1, 2}2 \U
allows to find the set Ext(S) which is equal to {(0, 1), (1, 0), (0, 2), (2, 0), (0, 0)}.

4 Conclusions

In this paper, a new method for testing membership to maximal consistent ex-
tensions of information systems is proposed. This method significantly differs
from the majority of methods presented in the literature, as it does not involve
computing any rules. Moreover, the presented method is useful for theoretical
analysis of maximal consistent extensions of information systems.

We also plan to extend the presented approach to the case of nondeterministic
or probabilistic rules used in the definition of the extension of a given information
system. Moreover, filtration methods can be used for selecting relevant rules in
constructing models, analogously to methods used for constructing of rule based
classifiers.

One of the problem we would like to study is a decision problem for checking
if a given information system has consistent extension consisting of at least k
new states, where k is a given positive integer.
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Abstract. As a new mathematical theory, rough sets have been applied
to process imprecise, uncertain and incomplete data. The research of
rough sets has been fruitful in finite and non-empty sets. Rough sets,
however, only serve as a theoretic tool to discretize the real function. As
far as the real function research is concerned, the research work to define
rough sets in the real function is infrequent. In this paper, we exploit a
new method to define rough sets in normed linear space. We put forward
an upper and lower approximation definition, and make preliminary re-
search in the properties of rough sets. A new theoretical tool is provided
to study the approximation solutions to differential equation and func-
tional variation in normed linear space.This research is significant in that
it extends the application of rough sets to a new field.

Keywords: rough sets, normed linear space, upper and lower approxi-
mation.

1 Introduction

Rough sets that are applied to process imprecise, uncertain and incomplete data
were put forward by Polish mathematician Z.Pawlak in 1982[10]. Rough sets are
based on the partition mechanism, according to which, partition means equiv-
alence relation in a given space and equivalence relation means the partition
of the space elements. In rough sets, knowledge is interpreted as the partition
of the data and the set of each partition is called a concept. The key think-
ing of the rough set theory is to make use of the known knowledge database,
and depict roughly the imprecise or uncertain knowledge with the help of the
known knowledge in the knowledge database. This theory differentiates from
other theories dealing with uncertain and imprecise data in that it doesn’t in-
volve any transcendental information that is beyond the data set. Therefore, it is
comparatively objective to depict or deal with the impreciseness of the problem
[6, 7, 10, 11, 12, 14]. In recent years,rough set methodology provides a new idea
for studying granular computing, thus the scope of our study has been expanded
[3, 4, 8, 15, 16, 17, 18, 19, 20].
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In classical mathematical application, we always attempt to get the exact
solution to a problem. If an exact solution is not available, we try to find an
approximate one. But in fact, many so-called exact solutions are not accurate
whatsoever, for they are nothing but the model solution. The actual problem
is always complex, so it is always simplified into some models which are easier
to approach. In this sense, some approximate solutions from model are closer
to the real situation than the exact solution. For instance, the exact solution to
the deformation of simply supported beam with load is not exact. As is known
to all, it is not likely that the beam is simply supported in an ideal way on
both ends, for there exists somewhat moments on the both ends of the beam.
As a result, the displacement of the real situation is always smaller than that
of a model. And the model solution to the deformation of the fixed-end beam
is always larger than that of the real situation. Thus it is safe to argue that the
exact solution from the model is not exact.

Rough sets are a powerful mathematical tool that is applied to deal with
uncertain problems. If rough sets are used to deal with the problem of uncertainty
between the exact solution and the model solution, the relationship between the
exact solution and the model solution can be studied from a new perspective.
But heretofore, the research in rough sets mainly concentrates on the discrete set
and their extension, even though rough sets are sometimes introduced in the real
function studies [5, 6, 12, 13]. But rough sets simply serve as the theoretic tool of
function discretization, far from being applied to approach the real situation. The
solutions to differential equation and functional variation are mainly in normed
linear space. In this paper, we exploit a new method to extend the rough sets
to normed linear space. Thus the rough set theory can be applied to study the
function in normed linear space, especially that of the approximate solution to
problems.

2 The Construction of Rough Sets in Normed Linear
Space

Definition 1. Let U be the normed linear space where there is a basis, E ⊆ U
and E �= Ø. The set M , composed of all the elements of linear combinations in
E, is called subspace spanned from [2].

Definition 2. Let the elements in set E ⊆ U be linearly independent. The set
that consists of the elements of linear combination under special requirement is
called the deduced space of E, which is marked as U ′.

In fact,U ′ is the linear space spanned from the basis that is linearly independent
and U ′ ⊆ M ⊆ U . Sometimes E is called as basis space, U ′ as approximate
solution space, and U as the exact solution space for the sake of convenience.

Note: As far as normed linear space is concerned, what is discussed here is
the basis space. In fact, there are good basis sets in the general subspaces of the
normed linear space [1].
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Definition 3. Let ‖‖p be the Lp norm of U in normed linear space. For function
f ∈ U, g ∈ U ′ ,∀ε > 0 , if ‖ f − g ‖p< ε , then function g is considered to
approximate to f in a way of Lp norm, with ε the given tolerance.

As for U ′ , it is difficult to define the equivalence relation directly. So the com-
bination of basis space and solution space are applied to define the equivalence
relation R.

Definition 4. Let U ′ be the deduced space of E ⊆ U , and U ′
i ⊆ U ′the subspace

spanned by some linearly independent basis Ei from E. We define that every
multi-dimensional subspace U ′

i doesn’t include low dimensional subspace, so we
have U ′

i ∩ U ′
j = Ø, i �= j and ∪U ′

i = U ′.

Note: if U ′
i ⊆ U ′ is not a one-dimensional space, U ′

i is an open set, or linear
manifold, as what is referred by some literatures [2].

Now we would like to make a further explanation for Definition 4. Supposing
a basis space be E = {a, x, x2} , it is obvious that {a, x, x2} is the linearly
independent basis from U , from which a three-dimensional linear space can be
spanned. According to Definition 4, the subspaces are as follows

U ′
1 = {a}, U ′

2 = {a1x}, U ′
3 = {a2x

2}, U ′
4 = {a + a3x}

U ′
5 = {a + a4x

2}, U ′
6 = {a5x + a6x

2}, U ′
7 = {a + a7x + a8x

2}
a, a1, a2, a3, a4, a5, a6, a7, a8 �= 0

U ′
1 = {a} is a one-dimensional space, and it is on axis a.

U ′
4 = {a + a3x} is a two-dimentional space spanned by basis a and x,but the

subspaces {a} and {a3x} are excluded.
U ′

7 = {a + a7x + a8x
2} is a three-dimensional space spanned by basis a, x

and x2,but the three two-dimentional and three one-dimentional subspaces are
excluded.

Theorem 1. The relationship R in U ′ that is defined by Definition 4 is an
equivalence relation.

Proof. Different class belongs to different subspace, so their elements -functions
include different basic functions. As a result, the intersection of different spatial
elements is an empty set. In fact, U ′

i ∩U ′
j = Ø, i �= j results in [ui]R ∩ [uj ]R = Ø.

Therefore, relation R is equivalence relation.

Example 1. Suppose that E = {a, x, x2} , in which a is a constant and x is the
variable in definition domain. All elements are linearly independent, and compose
a basis space. U ′ that derived from the basis in E is U ′ = {a0, a1x, a2x

2, a3 +
a4x, a5 + a6x

2, a7x + a8x
2, a9 + a10x + a11x

2}, and ai �= 0, i = 0, 1, 2, ..., 11.

Obviously, the function in U ′ is the linear combination of basis in E, and they
are located in different subspace. They disjoint from each other. The function
in U ′ is required to meet the given requirements. For instance, if the function
value is 0 when x = 0, then U ′ = {a1x, a2x

2, a7x + a8x
2}.
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Definition 5. In a random set X ⊆ E ⊆ U , U ′ is the deduced space of E, and
the deduced space of X is X ′(X ′ ⊆ U ′); X ′is the linear space spanned by the basis
of X; R is equivalence relation defined by Definition 4. In subspace X ′ of the
normed linear space U ′, R-lower approximations and R-upper approximations
are defined as:

R∗(X ′) = ∪{Y ∈ U ′/R : Y ⊆ X ′} (1)

R∗(X ′) = ∪{Y ∈ U ′/R : Y ∩ (E − X)′ = Ø} (2)

Then R boundary region of X ′ is:

BNR(X ′) = R∗(X ′) − R∗(X ′) (3)

Lower approximation is the set composed of the subspaces in space X ′. Up-
per approximation is composed of the union of the subspaces which consists of
disjoint elements in (E−X)′. It is not difficult to prove R∗(X ′) ⊆ X ′ ⊆ R∗(X ′).

If the set is discrete, the lower approximation defined by expression (2) can
be easily confirmed to equivalent to that in [10].

Upper approximation means that its function contains the basis in X , as well
as that out of X .

3 Example of Rough Sets in Normed Linear Space

In order to have a further understanding of rough sets in normed linear space,
here we use an example to illustrate it.

Example 2. Let us consider a mechanics problem [9]. There is a simply supported
beam subjected to concentrated force P shown in Fig.1. Let the length of the
beam be l, and the displacement curve be f(x). The displacement restriction of
the simply supported beam is that there is no displacement at each end.

Fig. 1. Two-end simply supported beam subjected to concentrated load

The displacement which satisfies the restriction is called the possible dis-
placement field. Let the accurate solution be f(x), which obviously satisfies the
displacement restriction at each end–when x = 0, x = l, there is no displacement,
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that is, f(0) = f(l) = 0. If an approximate solution g(x) is used to approximate
to the accurate solution, the approximate solution has to satisfy the displacement
restriction of the beam, that is

g(0) = g(l) = 0 (4)

Supposing a polynomial function be used to approximate the accurate solu-
tion. Let the basis space be E = {x, x2, x3, x4} , which forms the approximate
solution. The basis in the basis space makes up the space U ′, and the function
cluster are as follows:

U ′={{a1x}, {a2x
2}, {a3x

3}, {a4x
4}, {a5x+a6x

2}, {a7x+a8x
3}, {a9x+a10x

4},
{a11x

2+a12x
3}, {a13x

2+a14x
4}, {a15x

3+a16x
4}, {a17x+a18x

2+a19x
3}, {a20x+

a21x
2 +a22x

4}, {a23x+a24x
3 +a25x

4}, {a26x
2 +a27x

3 +a28x
4}, {a29x+a30x

2 +
a31x

3 + a32x
4}}

Each function is of a sort in its responding subspace and must satisfies the
given requirement. Since the function cluster {a1x}, {a2x

2}, {a3x
3}, {a4x

4} given
in this example can not satisfy the requirement, the function cluster should be
as following ones to satisfy the requirement:

U ′/R ={{a5x + a6x
2}, {a7x + a8x

3}, {a9x + a10x
4}, {a11x

2 + a12x
3},

{a13x
2 + a14x

4}, {a15x
3 + a16x

4}, {a17x + a18x
2 + a19x

3},
{a20x + a21x

2 + a22x
4}, {a23x + a24x

3 + a25x
4},

{a26x
2 + a27x

3 + a28x
4}, {a29x + a30x

2 + a31x
3 + a32x

4}}

(5)

Let X = {x, x2}, then the space satisfying the given requirement derived from
X = {x, x2} is X ′ = {{a5x + a6x

2}}. According to the lower approximation
expression (1), we can get

R∗(X ′) = ∪{Y ∈ U ′/R : Y ⊆ X ′} = {{a5x + a6x
2}} (6)

Because of (E − X) = {x3, x4}, (E − X)′ = {a15x
3 + a16x

4}, we can also get
the R-upper approximation according to the upper approximation expression
(2):

R∗(X ′) = ∪ {Y ∈ U ′/R : Y ∩ (E − X)′ = Ø} =

{{a5x + a6x
2}, {a7x + a8x

3}, {a9x + a10x
4}, {a11x

2 + a12x
3},

{a13x
2 + a14x

4}, {a17x + a18x
2 + a19x

3}, {a20x + a21x
2+

a22x
4}, {a23x + a24x

3 + a25x
4}, {a26x

2 + a27x
3 + a28x

4},
{a29x + a30x

2 + a31x
3 + a32x

4}}

(7)

Then R boundary region of X ′ is
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BNR(X ′) =R∗(X ′) − R∗(X ′) =

{{a7x + a8x
3}, {a9x + a10x

4}, {a11x
2 + a12x

3}, {a13x
2+

a14x
4}, {a17x + a18x

2 + a19x
3}, {a20x + a21x

2 + a22x
4},

{a23x + a24x
3 + a25x

4}, {a26x
2 + a27x

3 + a28x
4},

{a29x + a30x
2 + a31x

3 + a32x
4}}

(8)

Through observation, it is not difficult to find out that the lower approxima-
tion is the satisfying given requirement function cluster derived from a specified
primary function and the upper approximation is the function cluster, in which
the functions contain the basis in X space. The function cluster of upper approx-
imation contain more function clusters, because besides the basis in X space, it
also contains basis in other spaces.

4 Results of Rough Sets in Normed Linear Space

Theorem 2. Let E ⊆ U be a known basis space. If the upper approximation
equals to the lower approximation, then the basis given by X ⊆ U is the maximum
basis satisfying the given requirement and error.

This theorem shows when the upper approximation equals to the lower approx-
imation, X ⊆ U is the maximum basis satisfying the given requirement. And
any other basis in E doesn’t accord with the given requirement.

If the lower approximation is null, no basis in X ⊆ U satisfying the require-
ment exists.

In basis space, the procedure to figure out the minimum basis space according
to the given requirement is called reduction.

Reduction can eliminate redundant basis, facilitate constructing approximate
solution and reduce the computational work in getting the approximate solution.

When the minimum basis is found, we can construct the approximate solution
with lesser amount of parameters, which reduces computational cost.

Example 3. Let the displacement curve of simply supported beam under even
load be quadruple polynomial [9]. If the basis space is E = {a, x, x2, x3, x4, x5,
sin(πx/l), sin(2(πx/l))} and error ε = 0.02 is given, what is the minimum basis?

Obviously, the linear combination of basis E = {x, x2, x3, x4} may compose the
solutions satisfying the given error and requirement and so may E = {x, x2, x3}.
But the minimum basis in this example is E = {sin(2(πx/l))}, namely, we can
get the proper solution by using only one basis [9].

The approximation computation theory shows that continuous function can
be expanded in form of polynomial basis or orthogonal trigonometric function. In
general, the front several items in the expansion series plays the most important
roles, which means the front several items will meet the needs, especially for the
series which converges pretty fast.
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Definition 6. The union of all the reduced minimum basis in the basis space is
called the base basis.

The base basis is the necessary basis when composing the approximate solution.
Observing the basis space E = {a, x, x2, x3, x4, x5, sin(πx/l), sin(2(πx/l))},

we get two sorts of basis. One is in type of polynomial functions and the other
is in type of orthogonal trigonometric functions. Either type of functions can be
used to compose the solution satisfying the given requirement. When polynomial
functions are used , the basis {x, x2} is necessary and when orthogonal trigono-
metric functions are used, the basis {sin(πx/l) is necessary as well. According to
definition 6, we know that the base basis of E = {a, x, x2, x3, x4, x5, sin(πx/l),
sin(2(πx/l))} in example 3 is B = {x, x2, sin(πx/l)}.

Besides the two sorts of basis above, in fact, we can use wavelet basis to com-
pose the solution to example 3. Through rough set method, we can investigate
the structure of approximation solution basis space comprehensively so as to
make the investigation of the structure of approximation solution more easily.
Traditional methods detach the basis of approximation solution. As for the exam-
ple 3, traditional methods deal with polynomial functions basis and orthogonal
trigonometric functions basis and the wavelet basis individually, but have not
put them together. In view of rough sets, more comprehensive and systematic
research may be done for the basis of certain problems. Thus, we may get more
information of the approximation solution, and provide theoretical direction for
composing approximation solution more efficiently.

5 Conclusion

It is a creative attempt to establish rough sets in normed linear space, which
has provided a platform and laid a foundation for introducing rough sets to
continuous function space. Therefore, the application field for rough sets has
been expanded.

There is much work to be done for the further research in rough sets in normed
linear space,such as the more properties of rough sets, granular computing on
rough sets in normed linear space and so on.
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Abstract. Many researchers study rough sets from the point of view of
description of the rough set pairs(a rough set pair is also called a rough
set), i.e. <lower approximation set, upper approximation set>. Comer [4]
showed that all the rough sets in an approximation space constructed a
regular double Stone algebra. The constructed algebra is called the rough
double Stone algebra in this paper. Pagliani [19] interpreted Rough Set
System (all the rough sets in an approximation space in disjoint repre-
sentation) as a Nelson algebra. The constructed Nelson algebra from an
approximation space is called the rough Nelson algebra in this paper. It
is showed that a rough double Stone algebra is a Brouwer-Zadeh lattice,
and a rough Nelson algebra is a Brouwer-Zadeh lattice also.

1 Introduction

Rough set theory was introduced by Pawlak [21] to account for the definability
of a concept with an approximation in an approximation space (U, R), where
U is a set, and R is an equivalence relation on U. It captures and formalizes
the basic phenomenon of information granulation. The finer the granulation is,
the more concepts are definable in it. For those concepts not definable in an
approximation space, their lower and upper approximations can be defined.

There have been extensive studies on rough set by algebraic methods
[1-20,22,23]. Lin and Liu [18] replaced equivalence relation with arbitrary bi-
nary relation, and the equivalence classes are replaced by neighborhood at the
same time. By means of the two replacements, they defined more general ap-
proximation operators. Yao [23] interpreted Rough set theory as an extension
of set theory with two additional unary set-theoretic operators referred to as
approximation operators. Such an interpretation is consistent with interpreting
modal logic as an extension of classical two-valued logic with two added unary
operators. Cattaneo et al.[3] constructed two modal-like unary operators in the
frame of de Morgan BZMV algebras. The two operators give rise to rough ap-
proximation. In [4], Cattaneo and Ciucci obtianed a de Morgan Brouwer-Zadeh
distributive lattice from a Heyting Wajsberg algebra. Modal-like operators were
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defined generating a rough approximation space. Dai [5,6]introduced molecu-
lar lattices into the research on rough sets and constructed structure of rough
approximations based on molecular lattices. In [8], Dai et al. also studied the
axiomatization of generalized rough set model, i.e. rough set on quasi-ordering.

At the same time, researchers also study rough sets from the point of view
of description of the rough set pairs, i.e. <lower approximation set, upper ap-
proximation set>. Iwiński [16] suggested a lattice theoretical approach. Iwiński’s
aim, which was extended by J. Pomykala and J. A. Pomykala [22] later, was to
endow the rough seubsets of U with a natural algebraic structure. J. Pomykala
and J. A. Pomykala’s work was also improved by Comer [4] who noticed that
the collection of rough sets of an approximation space is in fact a regular double
Stone algebra when one introduced another unary operator, i.e. the dual pseudo-
complement operator.In [19], Pagliani investigated rough set systems within the
framework Nelson algebras under the assumption of a finite universe. All these
algebras have rough sets as their models. They can be called rough algebras.

In this paper, we intend to study the relationships between two kinds of rough
algebras, constructed by Comer [4] and Pagliani [19] respectively, and Brouwer-
Zadeh algebras.

2 Preliminaries

Let (U, R) be an approximation space, where U is the universe and R is an
equivalence relation on U. With each approximation space (U, R), two operators
on P(U) can be defined. For any X ⊆ U , then the lower approximation of X
and the upper approximation of X are defined as:

R−(X) =
⋃

{[X ]R|[X ]R ⊆ X} (1)

R−(X) =
⋃

{[X ]R|[X ]R ∩ X �= ∅} (2)

The pair < R−(X), R−(X) > is called a rough set. X is termed definable set(also
termed exact set) in approximation space (U, R) if and only if R−(X) = R−(X).
For the sake of simplicity, the lower approximation and upper approximation are
also denoted as X and X respectively. In this paper, we denote the collection of
all rough sets of an approximation (U, R) as RS(U).

Definition 1. [3]A structure (
∑

,∨,∧,¬,∼, 0) is a distributive Brouwer-Zadeh
lattice if

1. (
∑

,∨,∧, 0) is a (nonempty) distributive lattice with minimum element 0 ;
2. The mapping ¬ :

∑
→
∑

is a Kleene orthocomplementation, that is
(a) ¬(¬a) = a,
(b) ¬(a ∨ b) = ¬a ∧ ¬b,
(c) a ∧ ¬a ≤ b ∨ ¬b.

3. The mapping ∼:
∑

→
∑

is a Brouwer orthocomplementation, that is
(a) a∧ ∼∼ a = a,
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(b) ∼ (a ∨ b) =∼ a∧ ∼ b,
(c) a∧ ∼ a = 0.

4. The two orthocomplementations are linked by the following interconnection
rule:

¬ ∼ a =∼∼ a.

The mapping ¬ is also called the �Lukasiewicz (or fuzzy, Zadeh) orthocomplemen-
tation while the mapping ∼ is an intuitionistic-like orthocomplementation. The
element 1 :=∼ 0 = ¬0 is the greatest element of

∑
.

3 Rough Double Stone Algebras and Brouwer-Zadeh
Lattices

Now we study the relationship between the rough double Stone algebra induced
from an approximation space (U, R).

Definition 2. A structure (L,∨,∧,∗ ,+ , 0, 1) is a regular double Stone algebra
if

1. (L,∨,∧,∗ ,+ 0, 1) is a lattice with least element 0 and greatest element 1;
2. ∀x ∈ L there is an element x∗, for any y ∈ L satisfying

x ∧ y = 0 iff y ≤ x∗;

3. ∀x ∈ L there is an element x, for any y ∈ L satisfying

x ∨ y = 1 iff x+ ≤ y;

4. ∀x ∈ L, x∗ ∨ x∗∗ = 1, x+ ∧ x++ = 0;
5. x∗ = y∗ and x+ = y+ imply x = y.

The element x∗ is termed pseudo-complement of x, x+ is termed dual pseudo-
complement of x. The structure L satisfying the conditions 1-4 is called a double
Stone algebra. It is called regular, if it additionally satisfies the condition 5. In
fact,the condition 5 is equivalent to

x ∧ x+ ≤ x ∨ x∗.

It was shown by J. Pomykala and J. A. Pomykala [22] that the collection of
all rough sets of (U, R), denoted as RS(U), can be made into a Stone algebra
expressed as (RS(U),⊕,⊗,∗ , < ∅, ∅ >, < U, U >). The work of J. Pomykala and
J. A. Pomykala was improved by Comer [4] who noticed that RS(U) is in fact
a regular double Stone algebra expressed as:

(RS(U),⊕,⊗,∗ ,+ , < ∅, ∅ >, < U, U >),

where < ∅, ∅ > is the least element and < U, U > is the greatest element. The
union operator ⊕, join operator ⊗, pseudo-complement operator ∗ and the dual
pseudo-complement operator + are defined as following:

< X, X > ⊕ < Y , Y >=< X ∪ Y , X ∪ Y > (3)
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< X, X > ⊗ < Y , Y >=< X ∩ Y , X ∩ Y > (4)

< X, X >∗=< U − X, U − X >=< (X)c, (X)c > (5)

< X, X >+=< U − X, U − X >=< (X)c, (X)c > (6)

Definition 3. Let (U, R) be an approximation space. The algebra (RS(U),⊕,⊗,
∗,+ , < ∅, ∅ >, < U, U >) constructed by the approach taken above is called the
rough double Stone algebra induced from the approximation space (U, R).

Proposition 1. [4] A rough double Stone algebra (RS(U),⊕,⊗,∗ ,+ , < ∅, ∅ >,
< U, U >)is a regular double Stone algebra. Conversely, each regular double
Stone algebra is isomorphic to subalgebra of RS(U) for some approximation
space (U, R).

Theorem 1. A rough double Stone algebra (RS(U),⊕,⊗,∗ ,+ , < ∅, ∅ >,
< U, U >)is a distributive Brouwer-Zadeh lattice (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >)
The Kleene orthocomplementation ¬ is defined by

∀a ∈ RS(U),¬a = a+ ⊗ (a ⊕ a∗),

and the Brouwer orthocomplementation is defined by

∀a ∈ RS(U),∼ a = a∗.

Proof. (1). It is obvious that (RS(U),⊕,⊗, < ∅, ∅ >) is a distributive lattice
with minimum element < ∅, ∅ >.

(2). We now prove that ¬a = a+∧(a∨a∗) is the Kleene orthocomplementation.
Let a =< A, B >∈ RS(U), then ¬a = a+ ⊗ (a ⊕ a∗) =< Ac, Ac > ⊗(< A, B >
⊕ < Bc, Bc >) =< Ac ∩ (A ∪ Bc), Ac ∩ (B ∪ Bc) >=< Ac ∩ Bc, Ac >. Since
A ⊆ B, it follows that Bc ⊆ Ac. Hence,¬a =< Bc, Ac >.

(a)Let a =< A, B >∈ RS(U), then¬¬a = ¬ < Bc, Ac >=< A, B >= a.
(b)Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then¬(a ⊕ b) = ¬ <

A ∪ C, B ∪ D >=< Bc ∩ Dc, Ac ∩ Cc >=< Bc, Ac > ⊗ < Dc, Cc >= ¬a ⊗ ¬b.
(c)Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, thena ⊗ ¬a =< A, B >

⊗ < Bc, Ac >=< A ∩ Bc, B ∩ Ac >.Since A ⊆ B, it follows that Bc ⊆ Ac.
Hence,A ∩ Bc = ∅,i.e.,a ⊗ ¬a =< ∅, B ∩ Ac >. At the same time,b ⊕ ¬b =<
C, D > ⊕ < Dc, Cc >=< C ∪ Dc, D ∪ Cc >. Since C ⊆ D, it follows that
Dc ⊆ Cc. Hence,D ∪ Cc = U ,i.e.,b ⊕ ¬b =< C ∪ Dc, U >. It is obvious that
< ∅, B ∩ Ac >≤< C ∪ Dc, U >, i.e.,a ⊗ ¬a ≤ b ⊕ ¬b.

(3). We now prove that ∼ is the Brouwer orthocomplementation. Let a =<
A, B >∈ RS(U), then we get ∼ a =< A, B >∗=< Bc, Bc > by Equation (5).

(a)Let a =< A, B >∈ RS(U), then∼∼ a =∼< Bc, Bc >=< B, B >. It
follows that a⊗ ∼∼ a =< A, B > ⊗ < B, B >=< A, B >= a.

(b)Let a, b ∈ RS(U), a =< A, B >, b =< C, D >, then∼ (a ⊕ b) =∼<
A ∪ C, B ∪ D >=< Bc ∩ Dc, Bc ∩ Dc >=< Bc, Bc > ⊗ < Dc, Dc >=∼ a⊗ ∼ b.
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(c)Let a =< A, B >∈ RS(U), thena⊗ ∼ a =< A, B > ⊗ < Bc, Bc >=<
A ∩ Bc, ∅ >. Since,A ⊆ B, it follows that Bc ⊆ Ac, i.e., A ∩ Bc = ∅. Hence,
a⊗ ∼ a =< ∅, ∅ >= 0.

(4). We now consider the relationship between the two orthocomplementa-
tions. that ∼ is the Brouwer orthocomplementation. Let a, b ∈ RS(U), a =<
A, B >, b =< C, D >, then¬ ∼ a = ¬ < Bc, Bc >=< B, B >. On the other
hand, ∼∼ a =∼< Bc, Bc >=< B, B >. It is obvious that ¬ ∼ a =∼∼ a.

From the above (1)-(4), together with Definition 1, we can prove this theorem.
#$

4 Rough Nelson Algebras and Brouwer-Zadeh Lattices

Pagliani [19] proposed the disjoint representation of rough sets. Given an ap-
proximation space (U, R), let X ⊆ U , then the pair < X, X

c
> is called a rough

set.

Definition 4. Let (U, R) be an approximation space, then

RSS(U) = {< X, X
c

> |X ⊆ U}

is called the Rough Set System induced by (U, R).

Definition 5. A structure (L,∨,∧,¬,→, 0, 1) is a Nelson algebra if

1. (L,∨,∧, 0, 1) is a distributive lattice with least element 0 and greatest element
1;

2. ¬(x ∨ y) = ¬x ∧ ¬y,
3. ¬¬x = x,
4. x ∧ ¬y ≤ y ∨ ¬y,
5. x ∧ z ≤ ¬x ∨ y iff z ≤ x → y,
6. x → (y → z) = (x ∧ y) → z.

It was shown by Pagliani that the Rough Set System RSS(U) induced by an
approximation space (U, R) can be made into a Nelson algebra expressed as .

(RSS(U),⊕,⊗,¬,→, < ∅, U >, < ∅, U >),

where < ∅, U > is the least element and < ∅, U > is the greatest element.
The union operator ⊕, join operator ⊗, pseudo-complement operator ¬,→ are
defined as following:

< X, X
c

> ⊕ < Y , Y
c

>=< X ∪ Y , X
c ∩ Y

c
> (7)

< X, X
c

> ⊗ < Y , Y
c

>=< X ∩ Y , X
c ∪ Y

c
> (8)

< X, X
c

>→< Y , Y
c

>=< (X)c ∪ Y , X ∩ Y
c

> (9)

¬ < X, X
c

>=< X
c
, X > (10)
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Definition 6. Let (U, R) be an approximation space. The algebra (RSS(U),⊕,
⊗,¬,→, < ∅, U >, < ∅, U >) constructed by the approach taken above is called
the rough Nelson algebra induced from the approximation space (U, R).

Proposition 2. [19] A rough Nelson algebra (RSS(U),⊕,⊗,¬,→, < ∅, U >, <
∅, U >)is a Nelson algebra.

Theorem 2. A rough Nelson algebra (RSS(U),⊕,⊗,¬,→, < ∅, U >, < ∅, U >
)is a distributive Brouwer-Zadeh lattice (RS(U),⊕,⊗,¬,∼, < ∅, ∅ >). ¬ is the
Kleene orthocomplementation. The Brouwer orthocomplementation is defined by

∀a ∈ RSS(U),∼ a = a → ¬a.

Proof. (1). It is obvious that (RSS(U) is a distributive lattice with minimum
element < ∅, U >.

(2). It is obvious that ¬ is the Kleene orthocomplementation.

(3). We now prove that ∼ is the Brouwer orthocomplementation. Let a =<
A, B >∈ RSS(U), then we get ∼ a =< A, B >→ ¬ < A, B >=< A, B >→<
B, A >=< Ac ∪ B, A ∩ A >. Since A ⊆ Bc, it follows that B ⊆ Ac. Hence,
∼ a =< Ac, A >.

(a)Let a =< A, B >∈ RSS(U), then∼∼ a =∼< Ac, A >=< A, Ac >. It
follows that a⊗ ∼∼ a =< A, B > ⊗ < A, Ac >=< A, B ∩ Ac >. Since A ⊆ Bc,
it follows that B ⊆ Ac. Hence,a⊗ ∼∼ a =< A, B >= a.

(b)Let a, b ∈ RSS(U), a =< A, B >, b =< C, D >, then∼ (a ⊕ b) =∼<
A ∪ C, B ∩ D >=< Ac ∩ Cc, A ∪ C >=< Ac, A > ⊗ < Cc, C >=∼ a⊗ ∼ b.

(c)Let a =< A, B >∈ RSS(U), thena⊗ ∼ a =< A, B > ⊗ < Ac, A >=<
∅, B∪A >. Since,A ⊆ Bc, it follows thatB∪A = U . Hence, a⊗ ∼ a =< ∅, U >= 0.

(4). We now consider the relationship between the two orthocomplementa-
tions. Let a, b ∈ RSS(U), a =< A, B >, then¬ ∼ a = ¬ < Ac, A >=< A, Ac >.
On the other hand, ∼∼ a =∼< Ac, A >=< A, Ac >. It is obvious that ¬ ∼
a =∼∼ a.

From the above (1)-(4), together with Definition 1, we can prove this theorem.
#$

5 Conclusion

In this paper, we study the relationship between two kinds of rough algebras
and Brouwer-Zadeh lattices. It is showed that a rough double Stone algebra con-
structed by Comer [4] is a distributive Brouwer-Zadeh lattice, and a rough Nelson
algebra constructed by Pagliani [19] is a distributive Brouwer-Zadeh lattice too.

In [7,9], logic systems for rough sets with rough algebraic semantics were
studied. In our future work, we will try to construct logic for rough sets in the
framework of Brouwer-Zadeh lattices.
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Abstract. In this paper, we introduce and study a new concept of bal-
anced fuzzy gates. The idea itself is based upon the balanced fuzzy sets
forming an essential extension of the generic theory of fuzzy sets. We
discuss the topology of the gates and elaborate on several fundamental
models of logic connectives. A particular focus is on the two categories
of the gates realizing a certain and and or type of processing. In the
sequel presented are architectures of networks built with the use of the
logical gates. We offer some design guidelines of the development of the
networks and elaborate on the nature of the structural construction.

1 Introduction

In fuzzy sets, and information granules in general, we are concerned with the
fundamental concept of membership. More precisely, in fuzzy sets we quantify a
degree of membership of a certain element by using numeric values coming from
the unit interval. Traditionally, higher membership degrees (located closer to
1) indicate stronger belongingness (membership) of the element to the concept
captured by the given fuzzy set. Lower membership degrees assuming values close
to zero quantify the fact of a lack of membership. Interestingly enough, there is
no generally accepted concept of exclusion neither a suitable mechanism of the
quantification of this exclusion itself. With this regard, the previous studies [6,7]
have raised this point and offered a concept of the balanced fuzzy sets whose
primary intent was to introduce the concept of exclusion and propose some ways
of quantification of such effect. The objective of this study is to proceed along
this line and develop a collection of generic processing units - balanced gates
whose processing exploits the principles of the theory of balanced fuzzy sets.
� Support from the State Committee for Scientific Research Grant no 3T11C00926,

years 2004-2007 and the Natural Sciences and Engineering Research Council of
Canada (NSERC) is gratefully acknowledged.
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We discuss essential properties of the balanced gates and come up with a sound
interpretation of the underlying processing linking those gates to some other
existing constructs including digital gates encountered in digital systems and
fuzzy gates formed on a basis of fuzzy sets.

The paper is organized as follows. We start with a rationale outlining how
the main issues arising around the concept of positive (excitatory), negative
(inhibitory) and neutral information. In Section 2, we discuss fuzzy logic gates by
presenting the main feature of processing information with the aid of triangular
norms. In the sequel, we elaborate on a new category of balanced gates whose
processing is governed by extended models of triangular norms. The discussion
is augmented by a variety of illustrative material highlighting the performance of
the gates. We also elaborate on further buildups coming in the form of networks
of balanced gates and augmentations of the gates themselves that result in so-
called balanced neurons. Concluding comments are offered in Section 5.

1.1 A Rationale

Logical gates perform discrete information with regard to input, internal and
output signal. Such a model of information processing is desired for its simplicity,
but it could be applied only for certain information processing. This means
that continuous signal/information (say, analog signal, uncertain information)
must be turned to discrete information (where we refer to the idea of a certain
unit of information or consider digital signal) prior to any processing realized
by a system of logical gates. Therefore, any system of logical gates, if applied
to uncertain information processing, should come with a meaningful analog-to-
discrete conversion mechanism. Such a limitation significantly reduces potential
benefits that are associated with the processing of uncertain information.

It would be therefore highly desirable to overcome this limitation by expanding
a system of logical gates in such a way so that they could handle continuous
signals and then turn output signals into discrete form. The direct and natural
way of such expansion could be realized by expanding discrete logical functions,
which govern logical gates, to their continuous counterparts. The well known
fuzzy extensions of classical fuzzy sets and classical logic are natural candidates
for such an expansion. In other words, building continuous versions of logical
gates, called fuzzy logic gates, which perform fuzzy connectives max, min and
not as well as their generalized counterparts in the form of t − conorms and
t − norms. Therefore, signal processing would be done based on continuous
signals and, after that, output of the system of fuzzy gates would be turned into
the required discrete format. Of course, such a system of fuzzy logic gates must
include some analogons of classical logical gates and include some extra fuzzy
gates which turn continuous signal to the required discrete form.

Both classical logical gates and fuzzy logic gates operate on unipolar model of
information processing. Classical logical gates operate only on two truth (logic)
values {0, 1} which could be interpreted in terms of information processing as
certainty of dissatisfaction or satisfaction of some condition, Fuzzy logic gates
operate on continuous signals assuming values in the unit interval [0, 1]. The
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scale of the unit interval could be seen as two certainty points with the whole
scale of uncertainty of satisfaction of some condition. The scale of uncertainty
of satisfaction is represented by the inside (0, 1) of the unit interval. However,
the fuzzy extension becomes inadequate in real life applications e.g. [7,14,15]. As
pointed out in [7] asymmetry of fuzziness and a lack of negative information in
uncertainty modelling (lack of modelling of dissatisfaction of a condition) lead
to several expansions of fuzziness, cf. [1,2,3,5].

In this paper, we focus our discussion on a certain generalized model referred
to as balanced fuzzy sets. In essence, balanced fuzzy sets form an extension of
classical fuzzy sets from the unit interval [0, 1] to the symmetric interval around 0,
that is [−1, 1]. This expansion is distinguished from other generalizations of fuzzy
sets in a special treatment of discrete dissatisfaction. It assumes that fuzziness
is a dispersion of discrete satisfaction represented by the value 1 onto the left
opened interval (0, 1]. It also assumes that discrete dissatisfaction represented
by the value 0 is not changed. Balanced expansion of fuzziness keeps fuzziness
as dispersed discrete satisfaction and disperses dissatisfaction - still bunch and
represented as the value 0 - onto the right opened interval [−1, 0). The value 0
represents a lack of information either about satisfaction or about satisfaction.
The balanced extension of fuzziness includes the state of no information and full
scale of negative information and brings full symmetry of the model, cf. [5]

The discussion in this paper is aimed at building a model of logical gates
formed on a basis of balanced fuzzy sets. Balanced fuzzy gates should subsume
fuzzy logic gates as their special cases. In balanced fuzzy gates, signal processing
is similar to fuzzy logic gates. Input, internal and output signals of a system of
balanced fuzzy gates are positioned in the interval [−1, 1]. Then output signals of
fuzzy gates are presented to a gate which turns continuous signal to discrete val-
ues from the set of {−1, 0, 1}: certain dissatisfaction, certain lack of information
on dissatisfaction/satisfaction and certain satisfaction.

2 Fuzzy Logic Gates

In this section, we briefly recall the essence of fuzzy connectives commonly used
in fuzzy sets and then move on to the concept of fuzzy logic gates and elaborate
on the idea of the discretizing gates. The discretization of continuous signals is
solely based on limit formulas for strong triangular norms.

2.1 Fuzzy Connectives

The fuzzy logic connectives discussed in this paper constitute a formal system in
the following form F = ([0, 1], s, t, n). The mapping n : [0, 1] → [0, 1], n(x) = 1−x
is referred to as negation. In this paper we will not consider generalizations of the
negation operator, cf. [8,13]. Connectives s and t are called triangular norms or
t-conorm and t-norm, respectively. They are mappings p : [0, 1] × [0, 1] → [0, 1]
satisfying well known set of axioms: associativity - p(a, p(b, c)) = p(p(a, b), c);
commutativity - p(a, b) = p(b, a); monotonicity - p(a, b) ≤ p(c, d) for a ≤ c and
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b ≤ d; boundary conditions - s(0, a) = 0, t(0, a) for a ∈ [0, 1] - where p stands
form both t-conorm and t-norm.

In this paper, we concentrate on so called strong triangular norms which
are generated by additive generators. Let us recall that an additive generator
of t-conorm is a function f : [0, 1] → [0,∞] which is strictly increasing and
continuous. Of course, such conditions guarantee existence of inverse function
f−1. For a given additive generator we can define t-conorm as follows: s(x, y) =
f−1(f(x) + f(y)). Dual t-norm is defined using the De Morgan triple that is
t(x, y) = n(s(n(x), n(y))).

Likewise strong triangular norms exhibit interesting limit properties

s(x, s(x, . . . , s(x, x))) = sn(x) −→n→+∞

{
0 x = 0
1 x > 0

t(x, t(x, . . . , t(x, x))) = tn(x) −→n→+∞

{
0 x < 1
1 x = 1

2.2 Fuzzy Logic Gates

A fuzzy logic gate is a generic computing unit which realizes one of the clas-
sical connectives encountered in fuzzy systems, that is negation, t-norm, and
t-conorm. From now on, we will consider strong t-norms, strong t-conorms and
linear negation.

Example 1. Here we look at the examples of the logical connectives based on
the additive generators realized with the aid of the atanh function. To retain
some level of uniformity, we will be using this form of the generator throughout
all illustrative examples presented in this study (obviously, one could have used
some other generator). Thus we have

F OR(x, y) = s(x, y) = tanh(atanh(x) + atanh(y))

F AND(x, y) = n(F OR(n(x), n(y)))

Fuzzy logic gates carry our computing on a basis of continuous inputs and
outputs. Fuzzy negation forms a straightforward inversion of the input. The
resulting characteristics of the fuzzy logic gates are included in Figure 1.

2.3 Discretizing Continuous Signals

We can easily construct fuzzy gates which turn continuous signal to its discrete
equivalents. First of all, we can observe that fuzzy logic gates F NOT , F OR
and F AND, if restricted to discrete inputs 0 and 1, behave exactly like logical
gates NOT , OR and AND:

Secondly, we can build the following two fuzzy logic gates turning analog
signal to discrete one. The design of analog-to-discrete fuzzy logic gates involves
limit formulas of the strong triangular norms.
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Fig. 1. Contour plots and 3D graphs of the fuzzy logic gates

0 ↗ 1
D OR 0 1 1

0 ↗ 1
D AND 0 0 1

The performance of such gates is illustrated by an iterative process of aggre-
gation of the input signal and the output signal which is presented to the input
of the gate by a feedback mechanism. We assume that at starting point such a
gate presents input signal to both its inputs. This assumption allows producing
an output which - in turn - will be presented to the input of the gate using
feedback mechanism. Let us stress that this illustration does not pretend to give
technical details of the ensuing hardware realization.

3 Balanced Fuzzy Gates

In this section, we introduce the concept of balanced fuzzy sets and balanced
fuzzy connectives. The concept of balanced fuzzy sets will be utilized in construc-
tion of balanced fuzzy gates. By analogy to fuzzy logic gates we will discretize
continuous signal using limit formulas for strong balanced triangular norms to
build respective balanced dicretizing gates.

3.1 Balanced Fuzzy Connectives

Balanced negation, balanced t-conorms and balanced t-norms form an interesting
extension of the classical operators of, t-conorms, t-norms and negation. Besides
these three operators, we introduce an extra operator which will be referred to
as a balanced inversion. Thus, balanced connectives for a formal system BF =
([−1, 1], N, V, S, T ), compare Section 2.1. In general, the balanced operators take
their arguments from the interval [−1, 1] and produce values in the same interval.
Let us stress that the classical operators take their arguments form and produce
their values in the unit interval [0, 1]. The fuzzy system F is immersed in the
balanced system G. This means that balanced connectives restricted to the unit
interval are equal to classical connectives.
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Balanced negation N and balanced inversion V are mappings:

N : [−1, 1] → [−1, 1] N(x) = −x

V : [−1, 1] → [−1, 1] V (x) =
{

1 − x x ≥ 0
−1 − x x < 0

The balanced inversion has its ”irregular point” for the value 0. Inversion
of the value 0 can be assumed either as 1 or as −1. Alternatively, it could be
assumed as undefined. None of these assumptions violate properties of balanced
connectives. In this discussion we assume the inversion of 0 to be equal to 1 what
ensures full immersion of the fuzzy system F into balanced system G, also cf.
[6].

The mappings T : [−1, 1]× [−1, 1] → [−1, 1] and S : [−1, 1]× [−1, 1] → [−1, 1]
are balanced t-norm and balanced t-conorm, respectively, assuming that they
satisfy the following axioms in the whole domain [−1, 1]× [−1, 1] unless defined
explicitly:

1., 2., 3. associativity, commutativity and monotonicity
4. T (1, a) = a, S(0, a) = a for a ∈ [0, 1] boundary, conditions
5. T (x, y) = N(T (N(x), N(y))) S(x, y) = N(S(N(x), N(y))) symmetry

As in the case of fuzzy logic connectives, we will consider strong balanced
triangular norms. An additive generator of strong balanced t-conorm is a func-
tion f : [−1, 1] → [−∞, +∞] which is strictly increasing and continuous. Strong
balanced t-conorm is defined by the formula: S(x, y) = f−1(f(x) + f(y)). For
arguments equal to −1 and 1 we either can assume the value of the balanced
t-conorm to be undefined, to be equal to −1 or to be equal to 1. Dual t-norm is
defined by applying the De Morgan triple, that is:

T (x, y) =
{

V (S(V (x), V (y))) x ∗ y ≥ 0
0 otherwise

The essential limit properties of balanced triangular norms come in the form:

S(x, S(x, . . . , S(x, x))) = Sn(x) −→n→+∞

⎧⎨⎩
−1 x < 0

0 x = 0
1 x > 0

T (x, T (x, . . . , T (x, x))) = T n(x) −→n→+∞

⎧⎨⎩
−1 x = −1

0 −1 < x < 1
1 x = 1

3.2 Balanced Fuzzy Gates

A fuzzy logic gate is a generic computing unit which realizes one of the clas-
sical connectives encountered in fuzzy systems, that is negation, t-norm, and
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Fig. 2. Contour plots and 3D graphs of the balanced fuzzy gates

t-conorm. From now on, we will consider strong t-norms, strong t-conorms and
linear negation.

A balanced fuzzy gate is a computing unit which computes one of the balanced
fuzzy connective encountered in the system of balanced fuzzy system that is
balanced negation, balanced inversion, balanced t-conorm or balanced t-norm,
cf. 3.1. As in the case of fuzzy logic gate, computation of balanced fuzzy gates is
analogous to those completed so far, i.e. its inputs and output assume continuous
values coming from the interval [−1, 1].

Example 2. As in case of Example 1 we look at the examples of the balanced
fuzzy connectives based on the additive generators realized with the aid of the
atanh function. Thus we have

BF OR(x, y) = S(x, y) = tanh(atanh(x) + atanh(y))

BF AND(x, y) = V (F OR(V (x), V (y)))

The characteristics of the balanced fuzzy gates BF OR and BF AND, are
displayed in Figure 2.

By analogy to classical logical gates the balanced fuzzy gates for the values
−1, 0, and 1 produce the results

−1 0 1
BF NOT 1 0 −1

−1 0 1
BF INV 0 1 0

BF AND −1 0 1
−1 −1 0 0
0 0 0 0
1 0 0 1

BF OR −1 0 1
−1 −1 −1 1
0 −1 0 1
1 1 1 1

In this case we have assumed that inversion of 0 (neutral information) is defined
as 1. Choosing 1 as the value of inversion of 0 pledges satisfaction of properties in-
cluding associativity. This assumptions guarantees also that balanced fuzzy gates
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cast on the unit interval [0, 1] will be equal to fuzzy gates and - in discrete points
of 0 and 1 - will be equivalent to logical gates.

Similarly, −1 regarded as an inversion of 0 maintains all properties, but breaks
equivalence of the balanced fuzzy gates at discrete points of 0 and 1 with logical
gates.

Considering the inversion of the logic value of 0 as a nondeterministic choice
between −1 and 1 leads to an interesting solution, which might be interpreted
as lack of choice between −1 and 1, i.e. lack of choice between certain nega-
tive/positive information. This interpretation leads to natural value of inversion
of inversion of 0, which is just 0.

By analogy to fuzzy logic gates we build balanced discretizing gates based on
limit formulas. These gates allow for converting continuous signal to its discrete
value of −1, 0 or 1.

The discrete balanced fuzzy gates based on limit formulas produce the results
as presented here:

−1 ↗ 0 ↗ 1
BD OR −1 −1 0 1 1

−1 ↗ 0 ↗ 1
BD AND −1 0 0 0 1

And, as in case of fuzzy logic gates, we do not pretend to give technical details
of hardware realization of such gates.

By analogy with the classical gates we get values of balanced fuzzy gates for
discrete arguments:
BF NAND(x, y) = BF NOT (BF AND(x, y)),
BF IAND(x, y) = BF INV (BF AND(x, y)),
BF NOR(x, y) = BF NOT (BF OR(x, y)) and
BF IOR(x, y) = BF INV (BF OR(x, y))
assuming that the inversion of 0 becomes equal to 1.

BF NAND −1 0 1
−1 1 0 0
0 0 0 0
1 0 0 −1

BF IAND −1 0 1
−1 0 1 1
0 1 1 1
1 1 1 0

BF NOR −1 0 1
−1 1 1 −1
0 1 0 −1
1 −1 −1 1

BF IOR −1 0 1
−1 0 0 0
0 0 1 0
1 0 0 0

The characteristics of systems of the balanced fuzzy gates are included in
Figures 3 and 4.

Note that in this case gates BF-IAND and BF-IOR cast on the unit interval
[0, 1] are equivalent to the classical gates NAND and NOR, as indicated in the
tables above.
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Fig. 3. Contour plots and 3D graphs of the BF NAND and BF IAND gates

Fig. 4. Contour plots and 3D graphs of the BF NOR and BF IOR gates

4 Networks of Balanced Fuzzy Gates and Balanced
Neurons: Architectures and Their Developments

The balanced fuzzy gates can be conveniently used as some generic building
blocks of architectures of logic networks. Following the fundamental representa-
tion result offered by the Shannon theorem being applied to the construction of
Boolean functions, we consider here a network composed of two layers of gates.
The first layer is formed by the AND gates. In the second layer we consider the
use of the OR gates. Here the number of such AND gates depends upon the
character of some experimental data we need to capture. Its choice has to be
realized experimentally.

In contrast to neurons encountered in ”standard” neural networks or neural
networks based on logic [4,9], fuzzy logic [10,10] or knowledge [12], the logic
gates studied here are not endowed with any connections. Hence the learning
of the networks of this category is focused on the selection of the inputs for
the individual AND gates located in the first layer of the network. Since such
selection is positioned in the realm of combinatorial optimization, one has to
confine himself to techniques of evolutionary optimization.

We could move one step forward by developing balanced neurons and form the
ensuing structures of the networks composed by them. The difference between
the gates and neurons lies in the flexibility of the connections of the neurons. We
distinguish between the two categories of the neurons. The OR neurons aggregate
or-wise the inputs of the neuron being weighted and-wise by the corresponding
connections. For the AND neuron the arrangement of the logic operators is done
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in a reverse order: each input is combined or-wise with the corresponding weight
(connection) and in the sequel these partial results are combined and-wise.

5 Conclusions

In this study, we have introduced the principles of balanced fuzzy gates oper-
ating in the framework of the balanced theory of fuzzy sets in which we clearly
distinguish between the logic truth values of −1, 0 and 1. The motivation behind
this type of membership values helps us develop a sound insight into the nature
of processing with the concept of logic inhibition. The generic logic gates (AND
and OR) based on this system of logic truth values are essential to support
any computing carried out in the presence of inhibitory, neutral and excitatory
information. Through detailed visualization of the characteristics of the gates
we are able to emphasize the properties of the logic operators. Furthermore we
discussed some architectures of the networks composed of logical gates as well
as studied some generalizations of the gates in the form of logic neurons.
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Abstract. In this paper, we present triangle algebras: residuated lat-
tices equipped with two modal, or approximation, operators and with a
third angular point u, different from 0 (false) and 1 (true), intuitively
denoting ignorance about a formula’s truth value. We prove that these
constructs, which bear a close relationship to several other algebraic
structures including rough approximation spaces, provide an equational
representation of interval-valued residuated lattices; as an important case
in point, we consider LI , the lattice of closed intervals of [0, 1]. As we will
argue, the representation by triangle algebras serves as a crucial stepping
stone to the construction of formal interval-valued fuzzy logics, and in
particular to the axiomatic formalization of residuated t-norm based log-
ics on LI , in a similar way as was done for formal fuzzy logics on the
unit interval.

1 Introduction and Preliminaries

Formal fuzzy logics (also: fuzzy logics in the narrow sense) are generalizations
of classical logic that allow us to reason gradually. Indeed, in the scope of these
logics, formulas can be assigned not only 0 and 1 as truth values, but also
elements of [0,1], or, more generally, of a bounded lattice L. The partial ordering
of L then serves to compare the truth values of formulas which can be true
to some extent. The best-known examples of formal fuzzy logics are probably
Monoidal T-norm based Logic (MTL, Esteva and Godo [10]), Basic Logic (BL,
Hájek [13]), Gödel logic (G, [12]) and �Lukasiewicz logic (�L, [15]). For all of these
logics, which are fully described in terms of axioms, with the modus ponens
as deduction rule, soundness and completeness with respect to a corresponding
variety1 can be proved. For instance, a formula can be deduced in MTL iff it is
true (i.e., has truth value 1) in every prelinear residuated lattice; recall that a
residuated lattice is a structure L = (L,#,$, ∗,⇒,0, 1) in which #,$, ∗ and ⇒
are binary operators on L and

1 Recall that a class K of structures is a variety [13] if there is a set T of identities
such that K is the class of structures in which all identities from T are true.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 117–126, 2006.
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Fig. 1. The lattice LI

– (L,#,$) is a bounded lattice with 0 as smallest and 1 as greatest element,
– ∗ is commutative and associative, with 1 as neutral element, and
– x ∗ y ≤ z iff x ≤ (y ⇒ z) for all x, y and z in L (residuation principle),

and that prelinearity means that (x ⇒ y) $ (y ⇒ x) = 1 for all x and y in L. A
prelinear residuated lattice is called an MTL-algebra. The other logics emerge
by adding axioms to MTL, and are sound and complete w.r.t. subvarieties of
MTL-algebras. For a comprehensive overview of the state-of-the-art on formal
fuzzy logics, we refer to [11].

Research on formal fuzzy logics has centered on prelinear residuated struc-
tures; indeed, all of the above-mentioned logics presuppose prelinearity. How-
ever, while in every residuated lattice ([0, 1], min, max, ∗,⇒, 0, 1) the property
holds2, it is not necessarily preserved for closed intervals of a bounded lattice
L; for example, it was shown in [6] that no MTL-algebra exists on the lattice
LI = (LI , ⊔,⊔), shown graphically in Figure 1 and defined by

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2}
and
[x1, x2] ⊔[y1, y2] = [min(x1, y1), min(x2, y2)]
[x1, x2]

⊔
[y1, y2] = [max(x1, y1), max(x2, y2)],

for all [x1, x2] and [y1, y2] in LI ; and whose partial ordering ≤LI is given by
componentwise extension of ≤,

[x1, x2] ≤LI [y1, y2] ⇐⇒ x1 ≤ y1 and x2 ≤ y2.

This is not to say that such structures are of no significance for logical purposes.
Indeed, note that elements drawn from LI , or more generally from the lattice
of closed intervals of a bounded lattice L, which in this paper we shall call
the triangularization of L, carry an attractive and straightforward semantical
interpretation as partial, or incomplete, truth values, i.e. they exhibit a lack of
2 Recall that ([0, 1], min, max, ∗, ⇒, 0, 1) is a residuated lattice iff ∗ is a left-continuous

t-norm on [0, 1] with residuum ⇒.
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knowledge about a formula’s exact truth value; the wider the interval, the greater
the uncertainty. Note that the angular point [0, 1] in Figure 1 corresponds to “ig-
norance”, or total uncertainty about the exact truth value. This interpretation,
together with the relative efficiency of operations defined on them, accounts
for the widespread adoption and application of interval-valued truth degrees in
knowledge-based systems (see e.g. [16,17]). Moreover, residuated lattices can be
constructed on top of triangularizations quite easily, and as extensive research
in the context of LI (see e.g. [5]) has pointed out, some of them rival their
counterparts on [0,1] for the properties they satisfy.

The goal of this paper is to characterize interval-valued residuated lattices
(which are residuated lattices on triangularizations) as a variety, i.e. by a set of
identities that capture their triangular structure (depicted in Figure 1). This is
not only interesting from a purely mathematical stance, it also paves the way
for the development of formal interval-valued fuzzy logics, since identities are
much more readily axiomatizable than the structural description as triangular-
izations. A natural and convenient way to obtain this algebraic characterization
is the introduction of modal, or approximation, operators. Such operators have
been studied from various angles [1,3,13,19] and serve well to describe the in-
completeness facet of interval-valued residuated lattices. They give rise to the
introduction of triangle algebras in Section 2. In Section 3 we review some related
algebraic structures. In Section 4, we prove that every triangle algebra uniquely
determines an interval-valued residuated lattice, and vice versa. To illustrate the
relevance of these concepts, we relate them to existing work about residuated
t-norms (Section 5) on LI . Finally, Section 6 offers a conclusion and discusses
future work.

2 Triangle Algebras

As mentioned in the previous section, we want to construct an algebra that
captures the triangular structure of interval-valued residuated lattices (see Defi-
nition 3 in Section 4) by a set of appropriate conditions. To this end, we extend
the definition of a residuated lattice with a new constant u (“uncertainty”) and
two new unary connectives ν (“necessity”) and μ (“possibility”); intuitively, the
elements of a triangle algebra may be thought of as intervals; the formal link
with interval-valued residuated lattices will be established in Section 4.

Definition 1. A triangle algebra is a structure A = (A,#,$, ∗,⇒, ν, μ, 0, u, 1),
in which (A,#,$, ∗,⇒, 0, 1) is a residuated lattice, and in which the following
17 conditions hold (x ⇔ y is a shorthand notation for (x ⇒ y) # (y ⇒ x)):

T.1 νx ≤ x T.1′ x ≤ μx
T.2 νx ≤ ννx T.2′ μμx ≤ μx
T.3 ν(x # y) = νx # νy T.3′ μ(x # y) = μx # μy
T.4 ν(x $ y) = νx $ νy T.4′ μ(x $ y) = μx $ μy
T.5 ν1 = 1 T.5′ μ0 = 0
T.6 νu = 0 T.6′ μu = 1
T.7 νμx = μx T.7′ μνx = νx
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T.8 ν(x ⇒ y) ≤ νx ⇒ νy
T.9 (νx ⇔ νy) ∗ (μx ⇔ μy) ≤ (x ⇔ y)
T.10 νx ⇒ νy ≤ ν(νx ⇒ νy)

Remark 1. Suppose (A,#,$, ∗,⇒, 0, 1) is a residuated lattice such that the nega-
tion ¬, defined by ¬x = x ⇒ 0, is involutive (i.e., ¬¬x = x for every x in A). If
there exists an element u in A such that ¬u = u, if ν is a unary operator on A
that satisfies (T.1–T.6, T.8, T.10), and if (νx ⇔ νy) ∗ (ν¬x ⇔ ν¬y) ≤ (x ⇔ y),
then (A,#,$, ∗,⇒, ν, μ, 0, u, 1) is a triangle algebra if we define μx = ¬ν¬x.
In general, however, there need not be a link between ν and μ.

Denote the set of exact elements of a triangle algebra A by E(A) = {x ∈ A |
νx = x}. By the fact that the following statements are equivalent for all x in A:

1. x = νy for some y in A
2. x = μy for some y in A
3. x = νx
4. x = μx
5. νx = μx

it is clear that E(A) is the direct image of A under ν, as well as under μ.
Moreover, this set is invariant under ν and μ, and contains 0 and 1, but not
u. It is closed under #, $, ∗ and ⇒, and hence it also holds that E(A) =
(E(A),#,$, ∗,⇒, 0, 1) is a residuated lattice.

3 Connections to Other Algebraic Structures

The idea of introducing modal-like operators in residuated lattices and other
algebraic structures has also been adopted by other authors, for several purposes.

– Belohlávek and Vychodil [1] defined a so-called “truth stresser” ν for a resid-
uated lattice (L,#,$, ∗,⇒, 0, 1) as a unary operator on L that satisfies T.1,
T.5 and T.8. They used it to model the (truth function of a) unary connective
“very true”.

– Ono [19] defined modal residuated lattices as structures (L,#,$, ∗,⇒,ν, 0, 1),
in which (L,#,$, ∗,⇒, 0, 1) is a residuated lattice and ν a unary operator
on L that satisfies T.1, T.2, T.5, and, for all x and y in L, ν(x#y) ≤ νx and
νx∗νy ≤ ν(x∗y). We can prove, by the residuation principle, that the latter
two properties are equivalent to T.8. Hence, in a modal residuated lattice, ν is
a truth stresser additionally satisfying T.2; and if (A,#,$, ∗,⇒, ν, μ, 0, u, 1)
is a triangle algebra, then (A,#,$, ∗,⇒, ν, 0, 1) is a modal residuated lattice.

– A Hájek [13] truth stresser for a residuated lattice (L,#,$, ∗,⇒, 0, 1) is a
unary operator ν on L that satisfies T.1, T.2, T.5, T.8, ν(x $ y) ≤ νx $ νy
(which is in this case equivalent to T.4) and νx$¬νx = 1 (weakened law of
excluded middle, WLEM) for every x and y in L. Hence, (L,#,$, ∗,⇒, ν, 0, 1)
is a modal residuated lattice in which T.4 and WLEM are satisfied. Hájek
used this truth stresser to establish a faithful imbedding of Boolean logic
into his BL� (Basic Logic BL extended with a Hájek truth stresser &).
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Triangle algebras do not maintain WLEM as, in many cases, it would imply
that νx = 0 whenever x �= 1. This is not compatible with our interpretation of
“necessity of an interval”: for example (on LI), the necessity of [0.9, 0.9] should
be greater than the necessity of [0.2, 0.5], it should not be the case that both are
[0, 0]. However, we do impose several other conditions. T.1’–T.5’ are conditions
for possibility, dual to T.1–T.5 (in general, we do not require dependency of μ on
ν; an example in which this holds is considered in Remark 1). The conditions T.6
and T.6’ express the complete lack of knowledge about u: its necessity is 0, but
its possibility is 1; T.7 and T.7’ are known in modal logics as the S5-principles
[18]. Condition T.9 implies that an element of a triangle algebra is completely
defined by its necessity and possibility. Indeed: if νx = νy and μx = μy, then
νx ⇔ νy = 1 and μx ⇔ μy = 1, so 1 = 1 ∗ 1 ≤ x ⇔ y, which implies x = y.
Finally T.10 is a technical condition needed to ensure that triangle algebras
correspond to interval-valued residuated lattices.

We adopted the notations ν and μ from Cattaneo and Ciucci [3], who defined
these operators on so-called weak Brouwer de Morgan lattices (wBD lattices). A
wBD lattice (L,#,$,′ ,∼, 0, 1) is a bounded distributive lattice (L,#,$) equipped
with two complementations:

– a de Morgan complementation ′, which is defined as an involutive unary
operator on L that satisfies3 (x $ y)′ = x′ # y′, for all x and y in L, and

– a weak Brouwer complementation ∼, which is defined as a unary operator
satisfying x ≤ x∼∼ and (x $ y)∼ = x∼ # y∼ for all x and y in L,

for which x∼′ = x∼∼ (interconnection rule).
They defined νx as x′∼ and μx as x∼′. In this structure, T.1, T.1’, T.2, T.2’,

T.3, T.4’, T.5, T.5’, T.7 and T.7’ are always fulfilled, as well as μx = (νx′)′. Note
that T.3’ and T.4 are not always satisfied, because (x # y)∼ is not necessarily
equal to x∼ $ y∼.

Some triangle algebras can be seen as wBD lattices:

Proposition 1. If A = (A,#,$, ∗,⇒, ν, μ, 0, u, 1) is a distributive triangle al-
gebra, if ′ is a de Morgan complementation on A such that μx = (νx′)′ and if
we define ∼ by x∼ = (μx)′, then (A,#,$,′ ,∼, 0, 1) is a wBD lattice.

Finally, it can be seen that a triangle algebra A = (A,#,$, ∗,⇒, ν, μ, 0, u, 1) in-
duces a rough approximation space R = (A, E(A), ν, μ) (in the sense of Cattaneo
[2]) in which

– A is the set of approximable elements,
– E(A) is the set of exact or ‘definable’ elements,
– ν: A → E(A) is the inner approximation map, satisfying

(∀x ∈ E(A))(∀y ∈ A)(x ≤ y iff x ≤ νy),
– μ: A → E(A) is the outer approximation map, satisfying

(∀x ∈ A)(∀y ∈ E(A))(x ≤ y iff μx ≤ y),

and in which for any element x in A, its rough approximation is defined by
(νx, μx). In this case, T.9 ensures that no two different elements have the same
rough approximation.
3 In this case, also (x � y)′ = x′ � y′ holds for every x and y in L.
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4 Connection with Interval-Valued Residuated Lattices

Definition 2. Given a lattice L = (L,#,$), its triangularization is the structure
T (L) = (T (L), ⊔,⊔) defined by

– T (L) = {[x1, x2] | (x1, x2) ∈ L2 and x1 ≤ x2}

and

– [x1, x2] ⊔[y1, y2] = [x1 # y1, x2 # y2]
– [x1, x2]

⊔
[y1, y2] = [x1 $ y1, x2 $ y2]

for all [x1, x2] and [y1, y2] in T (L). The set D = {[x, x] | x ∈ L} is called the
diagonal of T (L), and can be seen as a ‘copy’ of L inside T (L). As an example,
note that LI is the triangularization of ([0, 1], min, max).

It is easy to verify that T (L) is again a lattice. If L contains a smallest element
0 (resp. a greatest element 1), then T (L) has [0, 0] as smallest element (resp.
[1, 1] as greatest element). Moreover, if L = (L,#,$, ∗,⇒, 0, 1) is a residuated
lattice, then it is always possible to construct a residuated lattice on T (L); in
particular, if we define

[x1, x2] ' [y1, y2] = [x1 ∗ y1, x2 ∗ y2] (1)
[x1, x2] ⇒� [y1, y2] = [(x1 ⇒ y1) # (x2 ⇒ y2), x2 ⇒ y2] (2)

then the structure (T (L), ⊔,⊔,',⇒�, [0, 0], [1, 1]) is a residuated lattice. It is
not the only possible way of defining residuated lattices on T (L); Section 5 inves-
tigates other possibilities, on LI . In general, we consider the following construct:

Definition 3. An interval-valued residuated lattice is a residuated lattice (T (L),⊔,⊔,',⇒�, [0, 0], [1, 1]) on the triangularization T (L) of a bounded lattice L, in
which D is closed under ' and ⇒�, i.e., [x1, x1] ' [y1, y1] ∈ D and [x1, x1] ⇒�
[y1, y1] ∈ D for x1, y1 in L.

Remark 2. Note that, under our assumptions, (L,#,$, ∗,⇒, 0, 1), with ∗ and ⇒
the restrictions of ' and ⇒� to D, is always a residuated lattice. Our definition
of interval-valued residuated lattice excludes those cases, in which ' and ⇒�
do not extend corresponding connectives on L.

Proposition 2. If (T (L), ⊔,⊔,',⇒�, ν, μ, [0, 0], [0, 1], [1, 1]) is a triangle alge-
bra on a triangularization (T (L), ⊔,⊔) of a bounded lattice, then ν[x1, x2] =
[x1, x1] and μ[x1, x2] = [x2, x2] for every [x1, x2] in T (L).

Proposition 2 makes clear the intended meaning of ‘necessity’ and ‘possibility’ of
an interval: if x = [x1, x2] is the incompletely specified truth value of a formula,
then νx = [x1, x1] and μx = [x2, x2] represent the minimum, resp. maximum,
exact truth value that emerges when the uncertainty is resolved. The next im-
portant theorem establishes triangle algebras as the equational representation of
interval-valued residuated lattices.
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Theorem 1.
If (A,#,$, ∗,⇒, ν, μ, 0, u, 1) is a triangle algebra, then (A,#,$, ∗,⇒, 0, 1) is iso-
morphic to an interval-valued residuated lattice.
Conversely, if (A, ⊔,⊔, ∗,⇒, [0, 0], [1, 1]) is an interval-valued residuated lattice
and ν and μ are defined by ν[x1, x2] = [x1, x1] and μ[x1, x2] = [x2, x2], then
(A, ⊔,⊔, ∗,⇒, ν, μ, [0, 0], [0, 1], [1, 1]) is a triangle algebra.

We give a sketch of the proof.
For any triangle algebra A, we can define the mapping φ: A −→ T (E(A)) as
φ(x) = [νx, μx]. This mapping is an injection because of condition T.9. Be-
cause of conditions T.3,T.3’,T.4 and T.4’ it is a homomorphism from (A,#,$)
to (T (E(A)), ⊔,⊔): φ(x # y) = [ν(x # y), μ(x # y)] = [νx # νy, μx # μy] =
[νx, μx] ⊔[νy, μy] = φ(x) ⊔φ(y) and analogously φ(x $ y) = φ(x)

⊔
φ(y). It

turns out that φ is also a surjection: for every [x, y] in T (E(A)), νx = x = μx
and νy = y = μy; so

[x, y] = [νx, μx]
⊔

[0, μy]

= [νx, μx]
⊔

([0, 1] ⊔[νy, μy])

= φ(x)
⊔

(φ(u) ⊔φ(y))

= φ(x $ (u # y)).

We define on T (E(A)) the binary operation ' as φ(x) ' φ(y) = φ(x ∗ y). It
follows immediately from this definition that φ is a homomorphism from (A, ∗)
to (T (E(A)),'). Since (A,#,$, ∗,⇒, 0, 1) is a residuated lattice, we know that
x ⇒ y = sup{z ∈ A | z ∗ x ≤ y}, so if we define x ⇒� y as sup{z ∈ T (E(A)) |
z 'x ≤ y}, φ is also a homomorphism from (A,⇒) to (T (E(A)),⇒�). Thus the
structure (T (E(A)), ⊔,⊔,',⇒�, [0, 0], [1, 1]) is a residuated lattice, isomorphic
to (A,#,$, ∗,⇒, 0, 1). This means that every triangle algebra A has the structure
of the set of intervals of a residuated lattice (its exact elements).

For the second part of the proof, assume that (T (L), ⊔,⊔,',⇒�, [0, 0], [1, 1])
is an interval-valued residuated lattice and that ν and μ are defined by ν[x1, x2] =
[x1, x1] and μ[x1, x2] = [x2, x2]. Then it can be proven that (T (L), ⊔,⊔,',
⇒�, ν, μ, [0, 0], [0, 1], [1, 1]) satisfies T.1-T.10 and T.1’-T.7’.

5 The Case of LI

By extension of the corresponding notion on [0, 1], t-norms on a bounded lat-
tice (L,#,$, 0, 1) are defined as increasing, associative, commutative mappings
T that satisfy T (1, x) = x for x in L. Recall that such a t-norm T is called
residuated if it induces a residuated lattice on L, that is, if (L,#,$, T , IT , 0, 1)
is a residuated lattice with IT (x, y) = sup{z | z ∈ L and T (x, z) ≤ y}. As men-
tioned in the introduction, a t-norm on [0,1] is residuated iff it is left-continuous;
this property however does not extend to LI [8]. While a general characterization
of residuated t-norms on LI has not yet been found, it was shown in [7] that if
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T induces a residuated lattice on [0, 1], then for each α in [0, 1], TT,α defined by,
for x = [x1, x2] and y = [y1, y2] in LI ,

TT,α(x, y) = [T (x1, y1), max(T (α, T (x2, y2)), T (x1, y2), T (x2, y1))], (3)

induces a residuated lattice on LI . As the diagonal of LI is closed under TT,α

and ITT,α , Theorem 1 implies that (LI ,#,$, TT,α, ITT,α , ν, μ, [0, 0], [0, 1], [1, 1]) is
a triangle algebra.

Two important values of α can be distinguished in Formula (3):

– If α = 1, we obtain t-representable t-norms on LI :
TT,1(x, y) = [T (x1, y1), T (x2, y2)], which can be seen as the straightforward
(and most commonly used) extension of T to LI .

– If α = 0, we obtain pseudo t-representable t-norms on LI :
TT,0(x, y) = [T (x1, y1), max(T (x1, y2), T (x2, y1))]. These t-norms are inher-
ently more complex than their t-representable counterparts, but as we shall
see below satisfy more relevant properties.

Just like on the unit interval, we can study particular subclasses of residuated
t-norms on LI . To this end, recall that a t-norm T on (L,#,$, 0, 1) is called
divisible if T (x, IT (x, y)) = x#y and involutive if IT (IT (x, 0), 0) = x for x, y in
L, that a BL-algebra is a divisible residuated lattice, and that an MV-algebra is
an involutive BL-algebra. On the unit interval, a t-norm induces a BL-algebra iff
it is continuous, and an MV-algebra iff it is isomorphic to the �Lukasiewicz t-norm
TW defined by TW (x, y) = max(0, x + y − 1) for x, y in [0, 1]. On LI , neither a
BL-algebra nor an MV-algebra exists (as they are subclasses of MTL-algebras),
yet in [21], it was proven that, for a t-norm T on [0,1]:

– T is divisible iff for each α in [0,1], TT,α is weakly divisible, that is, for x, y
in LI ,

T (x, IT (x, y))
⊔

T (y, IT (y, x)) = x ⊔y
– T is involutive iff TT,0 is involutive, hence iff the pseudo t-representable t-

norm corresponding to T is involutive; for α > 0, TT,α is never involutive.
– ([0, 1], min, max, T, IT , 0, 1) is an MV-algebra iff (LI , ⊔,⊔, TT,0, ITT,0 , [0, 0],

[1, 1]) is an involutive, weakly divisible residuated lattice.

BL-algebras and MV-algebras are quintessential in formal fuzzy logics as the
algebraic counterparts to Basic Logic BL and �Lukasiewicz logic �L (see Section
1). The above results suggest that, in refining the conditions of triangle algebras
(which play the same role for LI as MTL-algebras do for ([0, 1], min, max), i.e.
they characterize the residuated t-norms) to obtain more powerful structures,
we should replace divisibility by weak divisibility.

Note also that the t-norm TTW ,0 on LI , which seems to satisfy the most useful
properties (residuated, weakly divisible, involutive) is not t-representable. At this
point, it remains an open question whether every weakly divisible, involutive
triangle algebra on LI is isomorphic to the triangle algebra induced by TTW ,0.
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6 Conclusion and Future Work

In this paper, we established triangle algebras as the variety of interval-valued
residuated lattices, in a similar way as MTL-algebras are the variety of prelinear
residuated lattices. For our future work, we will use this crucial result to chart the
landscape of fuzzy formal logics beyond prelinearity, and, more specifically, to
develop a logic that formally characterizes tautologies (true formulas) in interval-
valued residuated lattices. Concretely, a follow-up paper introducing “Triangle
Logic” (TL) and proving its soundness and completeness w.r.t. triangle algebras
is in preparation. Later on, new properties will be imposed on triangle algebras
(and corresponding new axioms added to TL) to obtain more specific structures.
The intention of these new properties is, amongst others, to characterize (a part
of) the class of t-norms on LI defined by Formula (3).

Another challenge for the future is to find out if TL (possibly enriched with
more axioms) is standard complete, i.e. complete with respect to the correspond-
ing triangle algebras on LI . In combination with a characterization of these tri-
angle algebras, this would establish a logical calculus for interval truth values
that is easy to handle and suitable for use in practical applications.
Furthermore also the links with other, comparable theories (see e.g. [4,9,14,20])
will be the subject of further research.
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Abstract. This paper proposes a concept of parameterized approxima-
tion of crisp and fuzzy sets, basing on the notion of rough and fuzzy rough
inclusion function. A definition of a single ε-approximation is given. It
is suitable for expressing the lower and upper approximations defined in
the rough set theory and the variable precision rough set model. A uni-
fied form of approximation is especially advantageous in the case of fuzzy
information systems. It helps to avoid problems caused by different forms
of fuzzy connectives used in the original definition of fuzzy rough sets.
The presented parameterized approach to approximation constitutes an
easy to implement, straightforward generalization of the variable preci-
sion crisp and fuzzy rough set model.

1 Introduction

Rough set theory founded by Pawlak [14] is an effective tool for analysis of deci-
sion systems. However, the quality of data obtained from real decision processes
is not always sufficient for a successful application of rough sets. Therefore, many
extensions of the basic rough set concept have been proposed, by relaxing strong
inclusion requirement and admitting of tolerance. It is possible to encompass var-
ious extensions of rough sets by a generalized theory. One example is the rough
mereology of Polkowski and Skowron [15], based on the mereology of Leśniewski.

Variable precision rough set (VPRS) model, introduced by Ziarko [24], is one
of the most significant parameterized extensions of the crisp rough set theory. It
has become a starting-point for parameterized probabilistic approaches to rough
sets, see e.g., [8,20,25].

Another independent paradigm of imperfect knowledge, originated by Zadeh
[23], is the theory of fuzzy sets. Rough sets and fuzzy sets have been found
complementary to each other, as they focus on different aspects of uncertainty.
Thus, it is an useful idea to combine fuzzy sets with rough sets. The well-known
concept of fuzzy rough sets was introduced by Dubois and Prade [5] and devel-
oped by many researchers (see, e.g., [7,9,16]). Application of the relaxation idea
to fuzzy rough sets was considered in [6,22].

Our previous work [12] aimed at extending the crisp VPRS model to enable
analysis of dynamic processes. We also proposed an extensions of the crisp VPRS
model in the form of variable precision fuzzy rough set (VPFRS) model [13].
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The main goal of this paper is to introduce a unified parameterized approach
to variable precision crisp and rough set models. We present a different point of
view on approximating of sets. Basing on the notion of rough and fuzzy rough
inclusion function, a definition of a single ε-approximation is proposed.

Prior to discussing our approach to parameterized crisp and fuzzy approxi-
mations, it is necessary to recall crucial notions of the rough set theory and the
variable precision rough set model (VPRS).

2 Rough Sets

The idea of rough sets, given by Pawlak [14], introduces two basic notions: the
lower and upper approximation of sets. Any crisp subset of an universe U can
be approximated by means of an indiscernibility relation R ⊆ U × U .

The lower approximation R(A) and upper approximation R(A) of a crisp set
A are defined as follows

R(A) = {x ∈ U : [x]R ⊆ A} , (1)

R(A) = {x ∈ U : [x]R ∩ A �= ∅} , (2)
where [x]R denotes an indiscernibility (equivalence) class which contains the
element x ∈ U .

It is possible to define the lower and upper approximations, utilizing solely
the notion of set inclusion.

Definition 1. Given an indiscernibility relation R, the lower approximation
R(A) and upper approximation R(A) of a crisp set A are defined as follows

R(A) = {x ∈ U : ∀S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} , (3)
R(A) = {x ∈ U : ∃S ⊆ [x]R ∧ S �= ∅ , S ⊆ A} . (4)

The only difference between (3) and (4) is the quantifier used, emphasizing two
extreme (ideal) cases of approximation obtained by applying the indiscernibility
relation R.

We can also define the lower and upper approximations in a similar way, using
only the notion of membership in a set.

Definition 2. Given an indiscernibility relation R, the lower approximation
R(A) and upper approximation R(A) of a crisp set A are defined as follows

R(A) = {x ∈ U : ∀ y ∈ [x]R , y ∈ A} , (5)
R(A) = {x ∈ U : ∃ y ∈ [x]R , y ∈ A} . (6)

The formulae (3), (4) and (5), (6) emphasize the contrast between all needed
elements and some sufficient element in the case of the lower and upper approx-
imations, respectively.

A unified form of the lower and upper approximations is especially important
in the case of fuzzy sets. This is because there is no single method of performing
basic operations on fuzzy sets. Many fuzzy rough set generalizations are possible,
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depending on the form of rough set definition which we try to generalize. We
extend this idea further in sections 4 and 5.

3 Variable Precision Rough Sets

Inconsistency of information systems, caused by noise and errors, is one of the
problems in applications of the rough set theory to analysis of real data. There-
fore, it is necessary to admit of some level of misclassification, especially in the
case of large information systems.

The idea of relaxation of strong inclusion requirements was introduced by
Ziarko [24] with the help of a modified relation of set inclusion. It can be ex-
plained using the notion of inclusion degree, incl(A, B), of a nonempty (crisp)
set A in a (crisp) set B, defined as follows

incl(A, B) =
card(A ∩ B)

card(A)
. (7)

To limit the inclusion degree, we can apply a lower limit l and an upper limit u,
introduced in the extended version of VPRS [10], which satisfy the requirement

0 ≤ l < u ≤ 1 . (8)

The crisp VPRS model was generalized recently to a probabilistic rough set
approach [18,25], which is based on conditional probability of inclusion.

We retain in our further consideration a non-probabilistic interpretation of
VPRS. Basing on the limits l and u which satisfy the constraint (8), one can
define the u-lower and the l-upper approximation of any subset A of the universe
U by an indiscernibility relation R.

The u-lower approximation of A by R is a set

Ru(A) = {x ∈ U : incl([x]R, A) ≥ u} , (9)

where [x]R denotes an indiscernibility class of R containing the element x.
The l-upper approximation of A by R is a set

Rl(A) = {x ∈ U : incl([x]R, A) > l} . (10)

The definitions (9) and (10) use the same notion of inclusion degree and
can be interpreted as a weakened form of (3) and (4). Not all subsets of an
indiscernibility class need to be included in the approximated set, and no subset
of the indiscernibility class included in the set is sufficient for the acceptance of
the class in the lower and upper approximations, respectively. In this way, we
give up the ideals of approximation and admit of some level of misclassification.

In the following discussion, we extend the crisp VPRS model to a parameter-
ized rough set and fuzzy rough set model. The crucial element, upon which our
approach will be based, is the degree of set inclusion.
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4 Parameterized Approximation of Crisp Sets

In [17], Skowron and Stepaniuk proposed a generalized definition of approxi-
mation spaces. They introduced a notion of rough inclusion function, which is
defined on the Cartesian product of the powersets P(U) of the universe U

ν : P(U) × P(U) → [0, 1] . (11)

Let us adapt the notion of rough inclusion function in order to obtain a
new form of parameterized rough set model. We assume that the first parameter
represents a nonempty set, and the rough inclusion function should be monotonic
with respect to the second parameter

ν(X, Y ) ≤ ν(X, Z) for any Y ⊆ Z, where X, Y, Z ⊆ U .

Using the rough inclusion function ν, the lower and upper approximations of
a crisp set A can be defined by

R(A) = {x ∈ U : ν([x]R, A) = 1} , (12)

R(A) = {x ∈ U : ν([x]R, A) > 0} . (13)

The measure of inclusion degree (7), used in the framework of the VPRS
model, is an example of rough inclusion function.

Now, we go one step further and propose a parameterized single form of
approximation of crisp sets.

Definition 3. Given an indiscernibility relation R, the ε-approximation Rε(A)
of a crisp set A is defined as follows

Rε(A) = {x ∈ U : ν([x]R, A) ≥ ε} , (14)

where ε ∈ (0, 1].

The ε-approximation Rε has the following properties:

(P1) Rε(A) = R(A) for ε = 1 ,

(P2) Rε(A) = R(A) for ε = 0+ ,

(P3) Rε(A) = Ru(A) for ε = u ,

(P4) Rε(A) = Rl(A) for ε = l+ .

Furthermore, we can apply the rough inclusion function to introduce a notion
called the exactness level of a crisp set.

Definition 4. The exactness level exl(A) of a crisp set A is defined by

exl(A) = sup{ε ∈ (0, 1] : A ⊆ Rε(A)} . (15)

Any crisp set A is exact (R(A) = R(A)), if and only if exl(A) = 1.
In contrast to the classical rough sets theory, we apply a single definition of

approximation. However, it is still possible to determine the lower and upper
approximations by using a pair of appropriate values of the ε parameter.
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The lower approximation (9) turns out to be the most important notion used
for reasoning about data. This is because we are interested in determining the
consistent part of the analyzed information system.

The notion of upper approximation has rather a theoretical significance. In
fact, if we get a “ poor” lower approximation of indiscernibility classes in a given
information systems, the approximation quality becomes small. In such a case,
the analyzed information system is useless, regardless of the obtained upper ap-
proximation. Conversely, in a high quality information system, we can find many
exact indiscernibility classes, for which the lower and upper approximations are
equal or similar.

The introduced notion (14) is suitable for every case of approximation, de-
pending on the value of the parameter ε used. Basing on our experience [12]
from applications of the rough set theory to analysis of process data, we can
confirm the need for relaxation of a strong inclusion requirement. It is necessary
to repeat the determination of the u-lower approximation (9) for various values
of the parameter u. For a series of n ε-approximations of a set A, we have

Rε1(A) ⊆ Rε2(A) ⊆ . . . ⊆ Rεn(A) for ε1 ≥ ε2 ≥ . . . ≥ εn . (16)

This property is satisfied due to monotonicity of the inclusion function.

5 Parameterized Approximation of Fuzzy Sets

An extension of the original rough set theory is necessary, if we want to analyze
information systems with fuzzy attributes. The notion of fuzzy rough set was
proposed by Dubois and Prade [5].

For a given fuzzy set A and a fuzzy partition Φ = {F1, F2, . . . , Fn} on the
universe U , the membership functions of the lower and upper approximations of
A by Φ are defined by

μΦ(A)(Fi) = inf
x∈U

I(μFi(x), μA(x)) , (17)

μΦ(A)(Fi) = sup
x∈U

T(μFi(x), μA(x)) , (18)

where T and I denote a T-norm operator and an implicator, respectively.
The pair of sets (ΦF, ΦF ) is called a fuzzy rough set.
Approximating a fuzzy set A by the family Φ involves the problem of deter-

mining the degree of inclusion of one fuzzy set into another. This problem has
been widely discussed in the framework of the fuzzy set theory. Many differ-
ent measures of fuzzy sets inclusion were considered (see, e.g., [4,6,11]). Bandler
and Kohout [1,2] applied implication operators for determination of inclusion.
An axiomatic approach, given by Sinha-Dougherty [3], can also be based on the
generalized Łukasiewicz implicators.

In contrast to various measures, given in the literature, we want to describe
inclusion of fuzzy set in a different manner. Instead of using a single value,
which expresses the inclusion degree of one fuzzy set into another, we determine
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inclusion with respect to particular elements of sets. This way we get a fuzzy
set rather than a number. This method is particulary helpful in elaborating a
variable precision fuzzy rough set model.

Before introducing the details of our approach, we need to recall three basic
notions defined in the framework of the fuzzy set theory: support, power, and
α-cut of a fuzzy set.

For a given a finite fuzzy subset A of the universe U , with n elements:
power(A) denotes the cardinality of the set A

power(A) =
n∑

i=1

μA(xi) , (19)

support of A, denoted by supp(A), is a crisp set defined as follows

supp(A) = {x : μA(xi) > 0} , (20)

α-cut of A, denoted by Aα, is a crisp set defined as follows

Aα = {x ∈ U : μA(x) ≥ α} for α ∈ [0, 1] . (21)

The basic notion of our VPFRS model is a fuzzy set which describes the
inclusion of a fuzzy set A in a fuzzy set B, determined with respect to particular
elements (or singletons) of the set A. The obtained fuzzy set will be called the
fuzzy inclusion set of A in B, and denoted by INCL(A, B).

There are many possibilities to define such an inclusion set. According to
the above remarks, we apply to this end an implication operator denoted by I.
The implication-based inclusion set of a nonempty fuzzy set A in a fuzzy set B,
denoted by INCLI(A, B), is defined as follows

μINCLI(A,B)(x) =
{

I(μA(x), μB(x)) if μA(x) > 0 ,
0 otherwise .

(22)

By assuming that μInclI(A,B)(x) = 0, for μA(x) = 0, we take into account the
support of the set A. It is useless to consider inclusion for all elements of the
universe, because elements form outside of the support of A will do not influence
the results of the method presented below.

Another form of the inclusion set definition is obtained, when we use a T-norm
operator (e.g. min). A T-norm-based inclusion set INCLT(A, B) of a nonempty
fuzzy set A in a fuzzy set B is defined as follows

μINCLT(A,B)(x) = T(μA(x), μB(x)) . (23)

When using fuzzy implication, we require that the degree of inclusion with
respect to x should be equal to 1, if the inequality μA(x) ≤ μB(x) for that x is
satisfied

I(μA(x), μB(x)) = 1, if μA(x) ≤ μB(x) . (24)
The requirement (24) is always satisfied by residual implicators.

Basing on the notion of inclusion set and applying the notion of α-cut (21), we
are able to give a fuzzy counterpart of the rough inclusion function (11), which
is defined on the Cartesian product of the families F(U) of all fuzzy subsets of
the universe U
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να : F(U) × F(U) → [0, 1] . (25)

Definition 5. The fuzzy rough α-inclusion function να(A, B) of any nonempty
fuzzy set A in a fuzzy set B is defined as follows

να(A, B) =
power(A ∩ INCL(A, B)α)

power(A)
, (26)

For a given α, the value να(A, B) expresses how many elements of the
nonempty fuzzy set A belong, a least to the degree α, to the fuzzy set B.

It can be shown that the rough inclusion function used in (9) and (10) is a spe-
cial case of the fuzzy rough inclusion function (26), when we use the implication-
based or T-norm-based inclusion set.

Theorem 1. For any nonempty crisp set A, any crisp set B, and α ∈ (0, 1],
it holds that να(A, B) = incl(A, B), when the inclusion set INCLI(A, B) or
INCLT(A, B) is used.

Furthermore, we can prove monotonicity of the proposed fuzzy rough inclusion
functions.

Theorem 2. Implication-based or T-norm-based fuzzy rough inclusion function
να is monotonic with respect to the second parameter.

In order to get a general form of fuzzy rough approximation, we introduce a
function called res, defined on the Cartesian product P(U) × F(U), where P(U)
denotes the powerset of the universe U , and F(U) the family of all fuzzy subsets
of the universe U , respectively

res : P(U) × F(U) → [0, 1] . (27)

We require that

res(∅, Y ) = 0 ,
res(X, Y ) ∈ {0, 1}, if Y is a crisp set ,
res(X, Y ) ≤ res(X, Z) for any Y ⊆ Z, where X ∈ P(U), and Y, Z ∈ F(U) .

For a given crisp set X and fuzzy set Y , the value of function res(X, Y ) should
express the resulting membership degree in the set Y , taking into account not
all elements of the universe, but only the elements of the set X . We assume,
according to the limit-based approach of Dubois and Prade, the following form
of the function res

res(X, Y ) = inf
x∈X

μY (x) . (28)

The drawback of the above definition of res consists in regarding only one (limit)
value of membership degree of elements in the set Y . It is possible to give another
definitions, in which many values of membership degree are taken into account.

Definition 6. For ε ∈ (0, 1], the ε-approximation Φε(A) of a fuzzy set A, by
a fuzzy partition Φ = {F1, F2, . . . , Fn}, is a fuzzy set on the domain Φ with
membership function expressed by



134 A. Mieszkowicz-Rolka and L. Rolka

μΦε(A)(Fi) = res(Sε(Fi, A), INCL(Fi, A)) , (29)

where
Sε(Fi, A) = supp(Fi ∩ INCL(Fi, A)αε) ,

αε = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} .

The set Sε(Fi, A) is equal to support of the intersection of the class Fi with the
part of INCL(Fi, A), which contains those elements of the approximating class
Fi that are included in A at least to the degree αε. The resulting membership
μΦε(A)(Fi) is determined using only elements from Sε(Fi, A) instead of the whole
class Fi. This is accomplished by applying the function res.

It can be shown that applying the definition (28) of the function res leads to
a simple form of (29)

μΦε(A)(Fi) = sup{α ∈ [0, 1] : να(Fi, A) ≥ ε} . (30)

In contrast to the approximations (17) and (18), which use two different fuzzy
connectives, we have a single unified definition of fuzzy rough approximation.
This is important for obtaining a consistent variable precision fuzzy rough set
model. Thus, we are able to compare approximations determined for various
values of the parameter ε.

To obtain fuzzy rough approximation on the domain of the universe U , we
need a fuzzy extension ω, defined by Dubois and Prade [5], which is a mapping
from the domain Φ into the domain of the universe U . For any fuzzy set A, the
extension ω(A) is given by

μω(A)(x) = μA(Fi), if μFi(x) = 1 . (31)

Example 1. We have a fuzzy set A defined on the universe U

A = {0.2/x1, 0.1/x2, 0.3/x3, 1.0/x4, 1.0/x5, 0.1/x6, 0.0/x7, 1.0/x8,
1.0/x9, 0.1/x10},

and a fuzzy partition Φ = {F1, F2, . . . , Fn} with the following similarity class F1

F1 = {0.0/x1, 0.2/x2, 0.2/x3, 0.1/x4, 1.0/x5, 0.0/x6, 1.0/x7, 0.2/x8,
1.0/x9, 0.2/x10}.

Let us determine the membership value of the similarity class F1 in the fuzzy
rough ε-approximation of A by Φ.

We get the implication-based inclusion set INCL(F1, A) using the Łukasiewicz
implication operator: I(x, y) = min(1, 1 − x + y)

INCL(F1, A) = {1.0/x1, 0.9/x2, 1.0/x3, 1.0/x4, 1.0/x5, 1.0/x6, 0.0/x7,
1.0/x8, 1.0/x9, 0.9/x10}.

Now, we can determine the membership degree of F1 in the ε-approximation
of A, for different values of ε. We start with the limit value of ε equal to 1. It
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that case, no relaxation of inclusion requirement is allowed. Therefore, we seek
for the biggest α ∈ [0, 1], denoted by αε, for which

να(F1, A) =
power(F1 ∩ INCL(F1, A)α)

power(F1)
≥ 1 .

We obtain αε = 0. This means that we cannot omit any element from the
inclusion set INCL(F1, A). The membership degree μΦε(A)(F1) = 0.

Assume now that ε = 0.70. We get αε = 0.9.
INCL(F1, A)0.9 = {x1, x2, x3, x4, x5, x6, x8, x9, x10},
να(F1, A) = 2.9/3.9 = 0.744, the membership degree μΦε(A)(F1) = 0.9.
Discarding x7 from INCL(F1, A) leads to an increase (from 0.0 to 0.9) of the
membership degree of F1 in the ε-approximation of A.

Similarly, for ε = 0.60, we find that αε = 1.
INCL(F1, A)1 = {x1, x3, x4, x5, x6, x8, x9},
να(F1, A) = 2.5/3.9 = 0.641. The membership degree μΦε(A)(F1) = 1.

The parameterized fuzzy rough set model presented in this section can be adapted
to different needs. This can be done by specifying the form of fuzzy rough inclu-
sion function (26) or changing the way of determining the resulting membership
degree (27).

6 Conclusions

Parameterized approximation of crisp and fuzzy sets can be done by applying a
single notion of ε-approximation. It is defined using rough or fuzzy rough inclu-
sion function. A unified way of approximation of sets is particulary important in
the case of variable precision fuzzy rough set model. It is still possible to retain
previous forms of rough sets by using a pair of ε values for obtaining lower and
upper approximations of sets. The presented approach can be easy implemented
in the form of a computer algorithm. It constitutes a universal tool for appli-
cations to analysis of crisp and fuzzy information systems. In future research,
the possibility of application of the proposed method in other parameterized
approaches to rough sets should be investigated.
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Abstract. In the paper, we introduce a new kind of fuzzy formal con-
cept derived from an adjoint pair of operations. Based on the discussed
fuzzy formal concepts, a pair of rough fuzzy set approximations in fuzzy
formal contexts is introduced. The properties of the proposed approxi-
mation operators are examined in details.
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rough sets.

1 Introduction

The theory of rough sets, proposed by Pawlak [13], as a method of set approxi-
mation, it has continued to flourish as a tool for data mining and data analysis.
The basic operators in rough set theory are approximations. Using the concepts
of lower and upper approximations, knowledge hidden in information tables may
be unraveled and expressed in the form of decision rules. Many authors have gen-
eralized the rough set model to rough fuzzy sets and fuzzy rough sets models
(see [6,12,15,22,25]).

The theory of formal concept analysis (FCA) proposed by Wille [7,20] have
been studied intensively, and obtained results have played an important role in
conceptual data analysis and knowledge processing. A formal concept is defined
by an (objects, attributes) pair. The set of objects is referred to as the extension,
and the set of attributes as the intension, of the formal concept. They uniquely
determine each other [7,20]. FCA is based on a formal context, which is a binary
relation between a set of objects and a set of attributes with the value 0 and 1.
However, in many practical applications, the binary relations are with real values.
Burusco [4,5] generalized the model of FCA based on fuzzy formal context.
And Belohlavek [1,2,3] proposed fuzzy concepts in fuzzy formal context based
on residuated lattice. Moreover, Popescu, Georgescu and Popescu discussed a
general approach to fuzzy FCA (see [14,9]).

The combination of formal concept analysis and rough set theory provide
more approaches for data analysis. The notions of formal concept and formal
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concept lattice can be introduced into rough set theory by constructing differ-
ent types of formal concepts [8,23,24]. Rough set approximation operators can
be introduced into formal concept analysis by considering different types of de-
finability [26]. Many efforts have been made to compare and combine the two
theories [8,10,11,16,21,23,24]. In [17], we defined a pair of rough set approxi-
mations within formal contexts based on the notions of the attribute oriented
concepts and the object oriented concepts.

In this paper we discussed two kinds of fuzzy concepts, ie. the object oriented
fuzzy concept and the attribute oriented fuzzy concept, which are natural gener-
alization to the object oriented concept and the attribute oriented concept in the
L-fuzzy formal contexts. Based on the discussed fuzzy formal concepts, a pair
of rough fuzzy set approximations in fuzzy formal contexts is introduced. The
properties of the proposed approximation operators are examined in details.

2 L-Fuzzy Formal Contexts

The notion of residuated lattice provides a very general truth structure for
fuzzy logic and fuzzy set theory. In the following, we list its definition and basic
properties.

Definition 1. A residuated lattice is a structure (L,∨,∧,⊗,→, 0, 1) such that
(1) (L,∨,∧, 0, 1) is a lattice with the least element 0 and the greatest element 1;
(2) (L,⊗, 1) is a commutative monoid;
(3) for all a, b, c ∈ L, a ≤ b → c iff a ⊗ b ≤ c.

Residuated lattice L is called complete if (L,∨,∧) is a complete lattice. A
complete residuated lattice (L,∨,∧,⊗,→, 0, 1) is called involutive if it satis-
fies a = a∼∼ ( where the negation ∼ is defined by a∼ = a → 0 and we don’t
distinguish the denotations between a∼ and ∼ a ).

Lemma 1. The following hold in any complete residuated lattice:
(1) a → 1 = 1; 1 → a = a; a → b = 1 iff a ≤ b; 0 ⊗ a = a ⊗ 0 = 0;
(2) → is antitone in the first and isotone in the second argument; a ≤ (a →
b) → b;
(3) a → b ≤ (b → c) → (a → c); a → b ≤ (c → a) → (c → b); a → (b → c) =
b → (a → c);
(4) (

∨
i∈I ai) → a =

∧
i∈I(ai → a); a → (

∧
i∈I ai) =

∧
i∈I(a → ai);

(5)
∧

i∈I(ai → bi) ≤ (
∧

i∈I ai) → (
∧

i∈I bi);
∧

i∈I(ai → bi) ≤ (
∨

i∈I ai) →
(
∨

i∈I bi);
(6) ⊗ is isotone in both arguments; a ⊗ b ≤ a; a ⊗ b ≤ b;
(7) b ≤ a → (a ⊗ b); (a → b) ⊗ a ≤ b; (a ⊗ b) → c = a → (b → c);
(8) a → b ≤ (a ⊗ c) → (b ⊗ c); (a → b) ⊗ (b → c) ≤ (a → c);
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(9) (
∨

i∈I ai) ⊗ a =
∨

i∈I(ai ⊗ a); (
∧

i∈I ai) ⊗ a ≤
∧

i∈I(ai ⊗ a);
(10) a ≤ a∼∼; a → b ≤ b∼ → a∼; a → b∼ = b → a∼.
(11) (a ⊗ b)∼ = a → b∼ = b → a∼.

Let L be a residuated lattice. An L − set A in an universe set U is any map A:
U → L, A(x) being interpreted as the truth degree of the fact “ x belongs to A”.
By LU denote the set of all L − set in U . The empty set ∅ and the universe set
U in LU is denoted by 0U and 1U . For all X1, X2 ∈ LU , X1 ⊆ X2 if and only if
X1(x) ≤ X2(x) (∀ x ∈ U). Operations ∨ and ∧ on LU are defined by:

(X1∨X2)(x) = X1(x)∨X2(x), (X1∧X2)(x) = X1(x)∧X2(x), ∀X1, X2 ∈ LU .

A L-fuzzy formal context is defined as a tuple (L, U, M, R), where L is a
complete residuated lattice, U and M are the object and attribute sets, R ∈
LU×M is a L-fuzzy relation between U and M . A L-fuzzy formal context is
called involutive if L is an involutive residuated lattice.

Example 1. [4] Let ([0, 1], U, M, R) be a fuzzy formal context with U = {1, 2, 3}
and M = {a, b, c}, the fuzzy relation R defined as Table 1. Let → be the R0
implication (see [19]), ie.

x → y =
{ 1, x ≤ y

(1 − x) ∨ y x > y

x ⊗ y =
{ 0, x + y ≤ 1

x ∧ y, x + y > 1

Table 1.

R a b c
x1 0.6 0.6 0.0
x2 0.9 0.5 0.3
x3 1.0 0.2 0.7

It can be easily checked that (L, U, M, R) defined in the Example 1 is an
involutive L-fuzzy formal context.

3 The Two Kinds of Generalized Fuzzy Concept Lattices

In this section, we show two kinds of fuzzy concepts, ie. the object oriented fuzzy
concept and the attribute oriented fuzzy concept, which are the generalizations
to the object oriented concept and the attribute oriented concept in the L-fuzzy
formal contexts.
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Let (L, U, M, R) be a L-fuzzy formal context, X ∈ LU , a pair of approximation
operators, ♦, � : LU −→ LM defined by:

X♦(a) =
∨

x∈U (X(x) ⊗ R(x, a)),
X�(a) =

∧
x∈U (R(x, a) → X(x)).

Analogously, for any B ⊆ LM , a pair of approximation operators, ♦, � :
LM −→ LU defined by:

B♦(x) =
∨

a∈M (B(a) ⊗ R(x, a)),
B�(x) =

∧
a∈M (R(x, a) → B(a)).

The operators ♦, � are relatede by X∼�∼ = X♦, X∼♦∼ = X�, B∼�∼ = B♦

and B∼♦∼ = B� [18].

Theorem 1. For any X, X1, X2, approximation operators ♦, � have the follow-
ing properties:
(i) X1 ⊆ X2 =⇒ X♦

1 ⊆ X♦
2 , X�

1 ⊆ X�
2 ;

(ii) X�♦ ⊆ X ⊆ X♦�;
(iii) X♦�♦ = X♦, X�♦� = X�;
(iv) (X1 ∩ X2)� = X�

1 ∩ X�
2 , (X1 ∪ X2)♦ = X♦

1 ∪ X♦
2 .

Proof. (i) From X1 ⊆ X2, we have

X1(x) ⊗ R(x, a) ≤ X2(x) ⊗ R(x, a),
R(x, a) → X1(x) ≤ R(x, a) → X2(x).

Then, it is evident that X♦
1 ⊆ X♦

2 , X�
1 ⊆ X�

2 .
(ii) On one hand,

∀x ∈ U, X�♦(x) =
∨

a∈M (X�(a) ⊗ R(x, a))
=
∨

a∈M ((
∧

y∈U (R(y, a) → X(y)) ⊗ R(x, a))
≤
∨

a∈M ((R(x, a) → X(x)) ⊗ R(x, a))
≤
∨

a∈M X(x)
= X(x);

on the other hand,

∀x ∈ U, X♦�(x) =
∧

a∈M (R(x, a) → X♦(a))
=
∧

a∈M (R(x, a) → (
∨

y∈U (X(y) ⊗ R(y, a))
≥
∧

a∈M (R(x, a) → (X(x) ⊗ R(x, a))
≥
∧

a∈M (X(x))
= X(x).

(iii) From (ii) we have (X♦)�♦ ⊆ (X♦); on the other hand, from (i) and (ii) we
have X♦ ⊆ X♦�♦. Thus, X♦�♦ = X♦. And X�♦� = X� can be obtained by
the similar proof.
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(iv) For any x ∈ U we have

(X1 ∩ X2)�(a) =
∧

x∈U (R(x, a) → (X1 ∩ X2)(x))
=
∧

x∈U (
∧

i=1,2 R(x, a) → Xi(x))
=
∧

i=1,2(
∧

x∈U R(x, a) → Xi(x))
= X�

1 (a)
∧

X�
2 (a)

= (X�
1 ∩ X�

2 )(a)

The proof of (X1 ∪ X2)♦ = X♦
1 ∪ X♦

2 is analogous.

Theorem 2. For any B, B1, B2, approximation operators ♦, � have the follow-
ing properties:
(i) B1 ⊆ B2 =⇒ B♦

1 ⊆ B♦
2 , B�

1 ⊆ B�
2 ;

(ii) B�♦ ⊆ B ⊆ B♦�;
(iii) B♦�♦ = B♦, B�♦� = B�;
(iv) (B1 ∩ B2)� = B�

1 ∩ B�
2 , (B1 ∪ B2)♦ = B♦

1 ∪ B♦
2 .

Proof. It is similar to the proof of Theorem 1.

The object oriented fuzzy concept lattice derived from an adjoint pair of opera-
tions was introduced by Georgescu and Popescu [9]. A pair (X, B), X ⊆ LU , B ⊆
LM , is called an object oriented fuzzy concept if X = B♦ and B = X�. For two
object oriented fuzzy concepts (X1, B1) and (X2, B2), (X1, B1) ≤ (X2, B2), if
and only if X1 ⊆ X2 (which is equivalent to B1 ⊆ B2). For a fuzzy set X ⊆ LU ,
since (X�♦)� = X�, then (X�♦, X�) is an object oriented fuzzy concept. For
a fuzzy set B ⊆ LM , we have another object oriented fuzzy concept (B♦, B♦�).

All the object oriented fuzzy concepts of (L, U, M, R) forms a complete lattice
in which infimum and supremum are defined by:

(X1, B1) ∨ (X2, B2) = (X1 ∪ X2, (B1 ∪ B2)♦�),
(X1, B1) ∧ (X2, B2) = ((X1 ∩ X2)�♦, B1 ∩ B2).

In the following, we introduce a new kind of fuzzy concept lattice.
A pair (X, B), X ⊆ LU , B ⊆ LM , is called an attribute oriented fuzzy concept

if X = B� and B = X♦. For two attribute oriented fuzzy concepts (X1, B1) and
(X2, B2), (X1, B1) ≤ (X2, B2), if and only if X1 ⊆ X2 (which is equivalent to
B1 ⊆ B2). For a fuzzy set X ⊆ LU , since (X♦�)♦ = X♦, then (X♦�, X♦) is
an attribute oriented fuzzy concept. For a fuzzy set B ⊆ LM , we have another
attribute oriented fuzzy concept (B�, B�♦).

All the attribute oriented fuzzy concepts of (L, U, M, R) forms a complete
lattice in which infimum and supremum are defined by:

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)♦�, B1 ∪ B2),
(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∩ B2)�♦.
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4 Rough Fuzzy Approximation Operators

In this section, based on above discussed approximation operators we introduced
a pair of lower and upper fuzzy approximation operators, which are the gener-
alization to the results presented in [17].

Definition 2. Let (L, U, M, R) be a L-fuzzy formal context. For any set X ∈
LU , a pair of lower and upper approximations, Apr(X) and Apr(X), is defined
by

Apr(X) = X�♦, Apr(X) = X♦�.

Operators, �♦, ♦� : LU −→ LU , are referred to as the lower and upper fuzzy
approximation operators for fuzzy object sets, and the pair (Apr(X), Apr(X)) is
referred to as a generalized rough fuzzy object set.

Theorem 3. Let (L, U, M, R) be an involutive L-fuzzy formal context. The
lower and upper fuzzy approximation satisfy the following properties: for any
X, Y ∈ LU ,

(FL1) Apr(X) =∼ (Apr(∼ X)),

(FU1) Apr(X) =∼ (Apr(∼ X));

(FL2) Apr(∅) = Apr(∅) = ∅,

(FU2) Apr(U) = Apr(U) = U ;

(FL3) Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y ),

(FU3) Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y );

(FL4) X ⊆ Y =⇒ Apr(X) ⊆ Apr(Y ),

(FU4) X ⊆ Y =⇒ Apr(X) ⊆ Apr(Y );

(FL5) Apr(X ∪ Y ) ⊇ Apr(X) ∪ Apr(Y ),

(FU5) Apr(X ∩ Y ) ⊆ Apr(X) ∩ Apr(Y );

(FL6) Apr(X) ⊆ X,

(FU6) X ⊆ Apr(X);

(FL7) Apr(Apr(X)) = Apr(X),

(FU7) Apr(Apr(X)) = Apr(X).

Proof. Properties (FL1) and (FU1) show that approximation operators Apr and
Apr are dual to each other. Properties with the same number may be regarded
as dual properties. Thus, we only need to prove one of dual properties with the
same number.
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For any X ⊆ U , we have

∼ (Apr(∼ X)) =∼ (∼ X)♦� =∼ ((∼ X)∼�∼)�

=∼ (X)�∼� = (X)�∼�∼

= (X�)∼�∼ = X�♦

= Apr(X).

Thus, (FU1) follows. And (FL1) can be directly induced by (FU1).
For any x ∈ U , we have

Apr(∅)(x) = ∅♦�(x)
=
∧

a∈M (R(x, a) → ∅♦(a))
=
∧

a∈M (R(x, a) → (
∨

y∈U (∅(y) ⊗ R(y, a))
=
∧

a∈M (R(x, a) → 0)
= 0.

From Theorem 1 (ii) we have Apr(∅) = ∅. Then, (FL2) follows.
For any X, Y ⊆ U , from Theorem 1 (iv) we have (X ∩ Y )�♦ = (X� ∩ Y �)♦.

Since
X� ∩ Y � ⊆ X�, X� ∩ Y � ⊆ Y �

then
(X� ∩ Y �)♦ ⊆ X�♦, (X� ∩ Y �)♦ ⊆ Y �♦

which implies (FL3).
Properties (FL4) follows directly from Theorem 1 (i).
From Theorem 1 (i) we have

X� ⊆ (X ∪ Y )�, Y � ⊆ (X ∪ Y )�.

And from Theorem 2 (i) we have

X�♦ ⊆ (X ∪ Y )�♦, Y �♦ ⊆ (X ∪ Y )�♦.

Thus, Property (FL5) holds.
Properties (FL6) follows directly from Theorem 1 (ii).
Since Apri(Apri(X)) = (X�♦)�♦ = X�♦�♦, by Theorem 1 (iii) we conclude

that (FL7) holds.

Definition 3. Let (L, U, M, R) be a L-fuzzy formal context. For any set B ∈
LM , another pair of lower and upper approximations, Apr(B) and Apr(B), is
defined by

Apr(B) = B�♦, Apr(B) = B♦�.

Operators, �♦, ♦� : LM −→ LM , are referred to as the lower and upper ap-
proximation operators for fuzzy attribute sets, and the pair (Apr(B), Apr(B)) is
referred to as a generalized rough fuzzy attribute set.
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Theorem 4. Let (L, U, M, R) be a involutive L-fuzzy formal context. The lower
and upper approximation satisfy the following properties: for any B, C ∈ LM ,

(FL
′
1) Apr(B) =∼ (Apr(∼ B)),

(FU
′
1) Apr(B) =∼ (Apr(∼ B));

(FL
′
2) Apr(∅) = Apr(∅) = ∅,

(FU
′
2) Apr(M) = Apr(M) = M ;

(FL
′
3) Apr(B ∩ C) ⊆ Apr(B) ∩ Apr(C),

(FU
′
3) Apr(B ∪ C) ⊇ Apr(B) ∪ Apr(C);

(FL
′
4) B ⊆ C =⇒ Apr(B) ⊆ Apr(C),

(FU
′
4) B ⊆ C =⇒ Apr(B) ⊆ Apr(C);

(FL
′
5) Apr(B ∪ C) ⊇ Apr(B) ∪ Apr(C),

(FU
′
5) Apr(B ∩ C) ⊆ Apr(B) ∩ Apr(C);

(FL
′
6) Apr(B) ⊆ B,

(FU
′
6) B ⊆ Apr(B);

(FL
′
7) Apr(Apr(B)) = Apr(B),

(FU
′
7) Apr(Apr(B)) = Apr(B).

Proof. It is similar to the proof of Theorem 3.

By the definition of Apr(X) and Apr(X), we notice that Apr(X) is the extent
of the object oriented fuzzy concept derived from X , and Apr(X) is the extent
of the attribute oriented fuzzy concept derived from X . Similarity, Apr(B) is
the intent of the attribute oriented fuzzy concept derived from B, and Apr(B)
is the intent of the object oriented fuzzy concept derived from B.

Example 2. In Example 1, let X = (0.3, 0.6, 0.5) and B = (0.5, 0.4, 0.7). By
calculation we have that

Apr(X) = X�♦ = (0.0, 0.4, 0.5), Apr(X) = X♦� = (0.5, 0.6, 0.5);
Apr(B) = B�♦ = (0.4, 0.0, 0.5), Apr(B) = B♦� = (0.5, 0.5, 1.0).

Theorem 5. Let (L, U, M, R) be a L-fuzzy formal context, X ∈ LU , then
(1) Apr(X) = X iff X is the extent of an object oriented fuzzy concept;

(2) Apr(X) = X iff X is the extent of an attribute oriented fuzzy concept.

Proof. Straightforward.
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Theorem 6. Let (L, U, M, R) be a L-fuzzy formal context, B ∈ LA, then
(1) Apr(B) = B iff A is the intent of an attribute oriented fuzzy concept;

(2) Apr(B) = B iff A is the intent of an object oriented fuzzy concept.

Proof. Straightforward.

5 Conclusions

In this paper we discussed two kinds of fuzzy concepts, ie. the object oriented
fuzzy concept and the attribute oriented fuzzy concept, which are the general-
ization to the object oriented concept and the attribute oriented concept in the
L-fuzzy formal contexts. The approximation of sets is an important issues in
rough set theory. Based on the discussed two kinds of fuzzy concepts, we defined
a pair of rough fuzzy set approximations in L-fuzzy formal contexts. The rela-
tionship between the proposed approximation operators and model logic is our
future research.
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Abstract. Due to the explosive growth of electronically stored informa-
tion, automatic methods must be developed to aid users in maintaining
and using this abundance of information effectively. In particular, the
sheer volume of redundancy present must be dealt with, leaving only the
information-rich data to be processed. This paper presents an approach,
based on an integrated use of fuzzy-rough sets and Ant Colony Opti-
mization (ACO), to greatly reduce this data redundancy. The work is
applied to the problem of webpage categorization, considerably reducing
dimensionality with minimal loss of information.

1 Introduction

The World Wide Web (WWW) is an information resource, whose full potential
may not be realised unless its content is adequately organised and described.
However, due to the immense size and dynamicity of the web, manual catego-
rization is not a practical solution to this problem. There is a clear need for
automated classification of web content.

Many classification problems involve high dimensional descriptions of input
features. It is therefore not surprising that much research has been done on
dimensionality reduction [4]. However, existing work tends to destroy the un-
derlying semantics of the features after reduction (e.g. transformation-based ap-
proaches) or require additional information about the given data set for thresh-
olding (e.g. entropy-based approaches). A technique that can reduce dimension-
ality using information contained within the data set and preserving the meaning
of the features is clearly desirable. Rough set theory (RST) can be used as such a
tool to discover data dependencies and reduce the number of features contained
in a dataset by purely structural methods [9]. Given a dataset with discretized
attribute values, it is possible to find a subset (termed a reduct) of the original
attributes using RST that are the most informative; all other attributes can be
removed from the dataset with minimal information loss.

Although this is useful, it is more often the case that data is real-valued, and this
is where traditional rough set theory encounters a problem. In the theory, it is not
possible to saywhether two attribute values are similar and to what extent they are
the same; for example, two close values may only differ as a result of noise, but in
RST they are considered to be as different as two values of a different order of mag-
nitude. It is, therefore, desirable to develop these techniques to provide the means
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of data reduction for crisp and real-value attributed datasets which utilises the ex-
tent towhich values are similar.This canbe achieved through the use of fuzzy-rough
sets. Fuzzy-rough sets encapsulate the related but distinct concepts of vagueness
(for fuzzy sets [17]) and indiscernibility (for rough sets [9]), both of which occur as
a result of imprecision, incompleteness and/or uncertainty in knowledge [5].

Ant Colony Optimization (ACO) techniques are based on the behaviour of real
ant colonies used to solve discrete optimization problems [1]. These have been
successfully applied to a large number of difficult combinatorial problems such
as the quadratic assignment and the traveling salesman problems. This method
is particularly attractive for feature selection as there seems to be no heuristic
that can guide search to the optimal minimal subset (of features) every time.
Additionally, it can be the case that ants discover the best feature combinations
as they proceed throughout the search space. This paper investigates how ant
colony optimization may be applied to the difficult problem of finding optimal
feature subsets, using fuzzy-rough sets, for the classification of web content.

The rest of this paper is structured as follows. The second section describes
the theory of fuzzy-rough set feature selection. Section 3 introduces the main
concepts in ACO and details how this may be applied to the problem of feature
selection in general, and fuzzy-rough feature selection in particular. The fourth
section describes the system components and experimentation carried out for
the purposes of web content classification. Section 5 concludes the paper, and
proposes further work in this area.

2 Fuzzy-Rough Feature Selection

The reliance on discrete data for the successful operation of rough set-based
feature selection methods such as [2,6,16] can be seen as a significant drawback
of the approach. Indeed, this requirement implies an objectivity in the data that
is simply not present. For example, in a medical dataset, values such as Yes
or No cannot be considered objective for a Headache attribute as it may not
be straightforward to decide whether a person has a headache or not to a high
degree of accuracy. Again, consider an attribute Blood Pressure. In the real world,
this is a real-valued measurement but for the purposes of rough set theory must
be discretised into a small set of labels such as Normal, High, etc. Subjective
judgments are required for establishing boundaries for objective measurements.

A better way of handling this problem is the use of fuzzy-rough sets [8]. Sub-
jective judgments are not entirely removed as fuzzy set membership functions
still need to be defined. However, the method offers a high degree of flexibil-
ity when dealing with real-valued data, enabling the vagueness and imprecision
present to be modelled effectively. By employing fuzzy-rough sets, it is possible
to use this information to better guide feature selection.

2.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to rough sets, fuzzy
equivalence classes are central to the fuzzy-rough set approach [5]. For typical
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applications, this means that the decision values and the conditional values may
all be fuzzy. The family of normal fuzzy sets produced by a fuzzy partitioning
of the universe of discourse can play the role of fuzzy equivalence classes [5].

2.2 Fuzzy Lower and Upper Approximations

The fuzzy lower and upper approximations are fuzzy extensions of their crisp
counterparts. Informally, in crisp rough set theory, the lower approximation of a
set contains those objects that belong to it with certainty. The upper approxima-
tion of a set contains the objects that possibly belong. The definitions given in
[5] diverge a little from the crisp upper and lower approximations, as the mem-
berships of individual objects to the approximations are not explicitly available.
As a result of this, the fuzzy lower and upper approximations are redefined as:

μPX(x) = sup
F∈U/P

min(μF (x), inf
y∈U

max{1 − μF (y), μX(y)}) (1)

μP X(x) = sup
F∈U/P

min(μF (x), sup
y∈U

min{μF (y), μX(y)}) (2)

The tuple < PX, PX > is called a fuzzy-rough set.
For an individual feature, a, the partition of the universe by {a} (denoted

U/IND({a})) is considered to be the set of those fuzzy equivalence classes for
that feature. For subsets of feature, the following is used:

U/P = ⊗{a ∈ P : U/IND({a})} (3)

Each set in U/P denotes an equivalence class. The extent to which an ob-
ject belongs to such an equivalence class is therefore calculated by using the
conjunction of constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

μF1∩...∩Fn(x) = min(μF1(x), μF2 (x), ..., μFn(x)) (4)

2.3 Fuzzy-Rough Reduction Process

Fuzzy-Rough Feature Selection (FRFS) [7] builds on the notion of the fuzzy lower
approximation to enable reduction of datasets containing real-valued features.
The process becomes identical to the crisp approach when dealing with nominal
well-defined features.

The crisp positive region in the standard RST is defined as the union of the
lower approximations. By the extension principle, the membership of an object
x ∈ U, belonging to the fuzzy positive region can be defined by

μPOSP (Q)(x) = sup
X∈U/Q

μPX(x) (5)

Using the definition of the fuzzy positive region, a new dependency function
between a set of features Q and another set P can be defined as follows:

γ′
P (Q) =

|μPOSP (Q)(x)|
|U| =

∑
x∈U

μPOSP (Q)(x)
|U| (6)
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As with crisp rough sets, the dependency of Q on P is the proportion of
objects that are discernible out of the entire dataset. In the present approach,
this corresponds to determining the fuzzy cardinality of μPOSP (Q)(x) divided by
the total number of objects in the universe.

A new QuickReduct algorithm, based on the crisp version [2], has been
developed [7]. It employs the new dependency function γ′ to choose which fea-
tures to add to the current reduct candidate. The algorithm terminates when
the addition of any remaining feature does not increase the dependency.

Conventional hill-climbing approaches to feature selection often fail to find
maximal data reductions or minimal reducts. Some guiding heuristics are better
than others for this, but as no perfect heuristic exists there can be no guarantee
of optimality. When maximal data reductions are required, other search mecha-
nisms must be employed. Although these methods also cannot ensure optimality,
they provide a means by which the best feature subsets might be found. This
motivates the development of feature selection based on ant colony optimization.

3 Ant Colony Optimization-Based Feature Selection

3.1 Swarm Intelligence

Swarm Intelligence (SI) is the property of a system whereby the collective behav-
iours of simple agents interacting locally with their environment cause coherent
functional global patterns to emerge [1]. SI provides a basis with which it is
possible to explore collective (or distributed) problem solving without central-
ized control or the provision of a global model. For example, ants are capable
of finding the shortest route between a food source and their nest without the
use of visual information and hence possess no global world model, adapting to
changes in the environment. Those SI techniques based on the behaviour of ant
colonies used to solve discrete optimization problems are classed as Ant Colony
Optimization (ACO) techniques [1].

The ability of real ants to find shortest routes is mainly due to their depositing
of pheromone as they travel; each ant probabilistically prefers to follow a direc-
tion rich in this chemical. The pheromone decays over time, resulting in much
less pheromone on less popular paths. Given that over time the shortest route
will have the higher rate of ant traversal, this path will be reinforced and the
others diminished until all ants follow the same, shortest path (the “system” has
converged to a single solution). It is also possible that there are many equally
short paths.

ACO is particularly attractive for feature selection as there seems to be no
heuristic that can guide search to the optimal minimal subset every time. Addi-
tionally, it can be the case that ants discover the best feature combinations as
they proceed throughout the search space.

3.2 Feature Selection

The feature selection task may be reformulated into an ACO-suitable problem.
ACO requires a problem to be represented as a graph - here nodes represent
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features, with the edges between them denoting the choice of the next feature.
The search for the optimal feature subset is then an ant traversal through the
graph where a minimum number of nodes are visited that satisfies the traversal
stopping criterion.

A suitable heuristic desirability of traversing between features could be any
subset evaluation function - for example, an entropy-based measure [10] or the
fuzzy-rough set dependency measure. Depending on how optimality is defined
for the particular application, the pheromone may be updated accordingly. For
instance, subset minimality and “goodness” are two key factors so the pheromone
update should be proportional to “goodness” and inversely proportional to size.
How “goodness” is determined will also depend on the application. In some cases,
this may be a heuristic evaluation of the subset, in others it may be based on
the resulting classification accuracy of a classifier produced using the subset.

The heuristic desirability and pheromone factors are combined to form the
so-called probabilistic transition rule, denoting the probability of an ant k at
feature i choosing to move to feature j at time t:

pk
ij(t) =

[τij(t)]α.[ηij ]β∑
l∈Jk

i
[τil(t)]α.[ηil]β

(7)

where Jk
i is the set of ant k’s unvisited features, ηij is the heuristic desirability of

choosing feature j when at feature i and τij(t) is the amount of virtual pheromone
on edge (i, j).

Two types of information are available to ants during their graph traver-
sal, local and global, controlled by the parameters β and α respectively. Local
information is obtained through a problem-specific heuristic measure. For the
purposes of this paper, the fuzzy-rough dependency measure defined in equa-
tion (6) is used for this. The extent to which the measure influences an ant’s
decision to traverse an edge is controlled by the parameter β. This will guide
ants towards paths that are likely to result in good solutions. Global knowledge
is also available to ants through the deposition of artificial pheromone on the
graph edges by their predecessors over time. The impact of this knowledge on
an ant’s traversal decision is determined by the parameter α. Good paths dis-
covered by past ants will have a higher amount of associated pheromone. How
much pheromone is deposited, and when, is dependent on the characteristics of
the problem. No other local or global knowledge is available to the ants in the
standard ACO model, though the inclusion of such information by extending the
ACO framework has been investigated [1]. The choice of α and β is determined
experimentally.

Selection Process. The ACO feature selection process begins with the gen-
eration of a number of ants, k, which are then placed randomly on the graph
(i.e. each ant starts with one random feature). Alternatively, the number of ants
to place on the graph may be set equal to the number of features within the
data; each ant starts path construction at a different feature. From these initial
positions, they traverse edges probabilistically until a traversal stopping crite-
rion is satisfied. The resulting subsets are gathered and then evaluated. If an
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optimal subset has been found or the algorithm has executed a certain number
of times, then the process halts and outputs the best feature subset encountered.
If neither condition holds, then the pheromone is updated, a new set of ants are
created and the process iterates once more.

Complexity Analysis. The time complexity of the ant-based approach to
feature selection is O(IAk), where I is the number of iterations, A the number
of original features, and k the number of ants. In the worst case, each ant selects
all the features. As the heuristic is evaluated after each feature is added to the
reduct candidate, this will result in A evaluations per ant. After one iteration in
this scenario, Ak evaluations will have been performed. After I iterations, the
heuristic will be evaluated IAk times.

Pheromone Update. Depending on how optimality is defined for the par-
ticular application, the pheromone may be updated accordingly. To tailor this
mechanism to find fuzzy-rough set reducts, it is necessary to use the fuzzy-rough
dependency measure as the stopping criterion. This means that an ant will stop
building its feature subset when the dependency of the subset reaches the max-
imum for the dataset. The pheromone on each edge is then updated according
to the following formula:

τij(t + 1) = (1 − ρ).τij(t) + Δτij(t) (8)

where

Δτij(t) =
n∑

k=1

(γ′(Sk)/|Sk|) (9)

This is the case if the edge (i, j) has been traversed; Δτij(t) is 0 otherwise. The
value ρ is a decay constant used to simulate the evaporation of the pheromone,
Sk is the feature subset found by ant k. The pheromone is updated according
to both the fuzzy-rough measure of the “goodness” of the ant’s feature subset
(γ′) and the size of the subset itself. By this definition, all ants update the
pheromone. Alternative strategies may be used for this, such as allowing only
the ants with the currently best feature subsets to proportionally increase the
pheromone.

To show the utility of fuzzy-rough feature selection and to compare the hill-
climbing and ant-based fuzzy-rough approaches, the two methods are applied as
pre-processors within a webpage classification system. Both methods preserve
the semantics of the surviving features after removing redundant ones. This is
essential in satisfying the requirement of user readability of the generated knowl-
edge model, as well as ensuring the understandability of the pattern classification
process.

4 Web Classification

There are an estimated 1 billion webpages available on the WWW with around
1.5 million webpages being added every day. The task to find a particular web-
page, which satisfies a user’s requirements by traversing hyper-links, is very
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difficult. To aid this process, many web directories have been developed - some
rely on manual categorization whilst others make decisions automatically. How-
ever, as webpage content is vast and dynamic, manual categorization is becoming
increasingly impractical. Automatic web content categorization is therefore re-
quired to deal with these problems.

Information can be structured within a webpage that may indicate a relatively
higher or lower importance of the contained text. For example, terms appearing
within a <TITLE> tag would be expected to be more informative than the
majority of those appearing within the document body at large. Because of
this, keywords are weighted not only according to their statistical occurrence
but also to their location within the document itself. These weights are almost
always real-valued, which can be a problem for most feature selectors unless
data discretization takes place (a source of information loss). This motivates the
application of FRFS techniques to this domain.

Initial investigations have been carried out in this area [7], however these
employed simplistic methods for classification - the vector space model and the
boolean inexact model. The work presented here investigates the utility of more
powerful approaches for this task, with the novel use of ACO-assisted feature
selection.

4.1 System Overview

A key issue in the design of the system was that of modularity; it should be able
to integrate with existing (or new) techniques. The current implementations
allow this flexibility by dividing the overall process into several independent
sub-modules:

• Keyword Acquisition. From the collected webpages, keywords/terms are ex-
tracted and weighted according to their perceived importance, resulting in
a new dataset of weight-term pairs. These weights are almost always real-
valued, hence the problem serves well to test the present work. For this, the
TF-IDF metric [12] is used.

• Keyword Selection. As the newly generated datasets are too large, mainly
due to keyword redundancy, a dimensionality reduction step is carried out
using the techniques described previously.

• Keyword Filtering. Employed only in testing, this simple module filters the
keywords obtained during acquisition, using the reduct generated in the key-
word selection module.

• Classification. This final module uses the reduced dataset to perform the
actual categorization of the test data. Four classifiers were used for compar-
ison, namely C4.5 [10], JRip [3], PART [13] and a fuzzy rule inducer, QSBA
[11]. Both JRip and PART are available from [14].

C4.5 creates decision trees by choosing the most informative features and
recursively partitioning the data into subtables based on their values. Each
node in the tree represents a feature with branches from a node represent-
ing the alternative values this feature can take according to the current
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subtable. Partitioning stops when all data items in the subtable have the
same classification. A leaf node is then created, and this classification as-
signed.

JRip learns propositional rules by repeatedly growing rules and pruning
them. During the growth phase, antecedents are added greedily until a termi-
nation condition is satisfied. Antecedents are then pruned in the next phase
subject to a pruning metric. Once the ruleset is generated, a further opti-
mization is performed where rules are evaluated and deleted based on their
performance on randomized data.

PART generates rules by means of repeatedly creating partial decision
trees from data. The algorithm adopts a separate-and-conquer strategy in
that it removes instances covered by the current ruleset during processing.
Essentially, a rule is created by building a pruned tree for the current set of
instances; the leaf with the highest coverage is made into a rule.

QSBA induces fuzzy rules by calculating the fuzzy subsethood of lin-
guistic terms and the corresponding decision variables. These values are also
weighted by the use of fuzzy quantifiers. This method utilises the same fuzzy
sets as those involved in the fuzzy-rough reduction methods.

4.2 Experimentation and Results

Initially, datasets were generated from large textual corpora collected from Ya-
hoo [15] and separated randomly into training and testing sets, maintaining class
distributions. Each dataset is a collection of web documents. Five classification
categories were used, namely Art & Humanity, Entertainment, Computers &
Internet, Health, Business & Economy. A total of 280 web sites were collected
from Yahoo categories and classified into these categories. From this collection
of data, the keywords, weights and corresponding classifications were collated
into a single dataset.

Table 1 shows the resulting degree of dimensionality reduction, performed via
selecting informative keywords, by the standard fuzzy-rough method (FRFS)
and the ACO-based approach (AntFRFS). AntFRFS is run several times, and
the results averaged both for classification accuracy and number of features
selected. It can be seen that both methods drastically reduce the number of
original features. AntFRFS performs the highest degree of reduction, with an
average of 14.1 features occurring in the reducts it locates.

Table 1. Extent of feature reduction

Original FRFS AntFRFS
2557 17 14.10

To see the effect of dimensionality reduction on classification accuracy, the
system was tested on the original training data and a test dataset. The re-
sults are summarised in table 2. Clearly, the fuzzy-rough methods exhibit better
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resultant accuracies for the test data than the unreduced method for all classi-
fiers. This demonstrates that feature selection using either FRFS or AntFRFS
can greatly aid classification tasks. It is of additional benefit to rule inducers
as the induction time is decreased and the generated rules involve significantly
fewer features. AntFRFS improves on FRFS in terms of the size of subsets found
and resulting testing accuracy for QSBA and PART, but not for C4.5 and JRip.
The challenging nature of this particular task can be seen in the overall low
accuracies produced by the classifiers (perhaps due to overfitting), though im-
proved somewhat after feature selection. Both fuzzy-rough approaches require
a reasonable fuzzification of the input data, whilst the fuzzy sets are herein
generated by simple statistical analysis of the dataset with no attempt made
at optimizing these sets. A fine-tuned fuzzification will certainly improve the
performance of FRFS-based systems. Finally, it is worth noting that the classi-
fications were checked automatically. Many webpages can be classified to more
than one category, however only the designated category is considered to be
correct here.

Table 2. Classification performance

Original FRFS AntFRFS
Classifier Train Test Train Test Train Test

C4.5 95.89 44.74 86.30 57.89 81.27 48.39
QSBA 100.0 39.47 82.19 46.05 69.86 50.44

JRip 72.60 56.58 78.08 60.53 64.84 51.75
PART 95.89 42.11 86.30 48.68 82.65 48.83

5 Conclusion

This paper has presented an ACO-based method for feature selection, with par-
ticular emphasis on fuzzy-rough feature selection. This novel approach has been
applied to aid classification of web content, with very promising results. In all
experimental studies there has been no attempt to optimize the fuzzifications or
the classifiers employed. It can be expected that the results obtained with such
optimization would be even better than those already observed.

There are many issues to be explored in the area of ACO-based feature selec-
tion. The impact of parameter settings should be investigated - how the values
of α, β and others influence the search process. Other important factors to be
considered include how the pheromone is updated and how it decays. There is
also the possibility of using different static heuristic measures to determine the
desirability of edges. A further extension would be the use of dynamic heuris-
tic measures which would change over the course of feature selection to provide
more search information. Future work will inlcude experimental investigations
comparing current rough set-based methods (such as [6,16]) with the proposed
approach on benchmark data.
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Abstract. We investigate association reducts, which extend previously
studied information and decision reducts in capability of expressing de-
pendencies between groups of attributes in data. We formulate opti-
mization problems related to the most informative associations between
groups of attributes. We provide heuristic mechanisms for addressing
those problems. We also discuss at more general level how to express
approximate dependencies between groups of attributes.

Keywords: Attributes, Reducts, Associations, Approximations.

1 Introduction

Association rules [1] are useful in deriving and representing data-based knowl-
edge. There are many algorithms extracting (in)exact association rules [3], also
including methods based on the theory of rough sets [4]. In many applications,
however, patterns expressed as combinations of descriptors are too specific and
should be reconsidered more globally, at the level of average, approximate rela-
tionships between groups of attributes (cf. [2]). Among approaches to such global
dependencies [3], there are rough set-based information and decision reducts –
irreducible subsets of attributes providing information about other, optionally
preset attributes [6,7]. We extend those notions toward association reducts, which
represent (approximate) determinism between the pairs of subsets of attributes
[11,12]. In this way, we formulate analogy for association rules at more global
level of groups of attributes instead of specific combinations of their values.

An association reduct is a non-improvable pair (Bl, Br) of subsets of attributes
such that the values of attributes in Br are determined by those in Bl. Non-
improvability means that Bl cannot be reduced and Br cannot be extended
without losing determination of Br by Bl. Association reducts correspond to
families of association rules generated using the values of attributes Bl (Br) at
their left (right) sides. The processes of representation and extraction of most
valuable association reducts are, however, conducted at the level of attributes,
like in case of information and decision reducts [6,7,8]. In this paper, we adapt
theoretical apparatus developed in [9,10] to study complexity, as well as the
attribute reduction heuristics developed in [13,14] to deal with that complex-
ity in case of association reducts. It complements [11,12] with regards to solid
foundations for multi-attribute dependencies modeled by association reducts.
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2 Reducts in Information Systems

The theory of rough sets [6] handles data as information systems A = (U, A),
where U consists of objects and A consists of attributes. Every a ∈ A corre-
sponds to the function a : U → Va where Va is a’s value set. For illustration, the
following A = (U, A) has 6 binary attributes and 7 objects (cf. [12]):

A a b c d e f
u1 1 1 1 1 1 1
u2 0 0 0 1 1 1
u3 1 0 1 1 0 1
u4 0 1 0 0 0 0
u5 1 0 0 0 0 1
u6 1 1 1 1 1 0
u7 0 1 1 0 1 0

Definition 1. [6] Let information system A = (U, A) be given. For every subset
B ⊆ A, we define the binary B-indiscernibility relation

IND(B) = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y)} (1)

For every B, C ⊆ A, we say that B determines C in A, denoted by B � C, iff

IND(B) = IND(B ∪ C) (2)

Condition (2) corresponds to a concept of functional dependency widely applied
in databases. In rough set methodology, it is used for an important construction
related to attribute selection/reduction, as one of the steps of KDD [3].

Definition 2. [6] Let A = (U, A) be given. For every B ⊆ A, we say that B is
an information reduct in A, if and only if IND(B) = IND(A) (that is B � A)
and there is no proper B′ � B, for which analogous condition holds.

Example 1. For A = (U, A) illustrated above, we have the following information
reducts: (we omit brackets for simplicity) abcf , acef , adef , bcdf , bdef , cdef .

A question is whether such reducts represent complete knowledge about de-
pendencies. Consider adef � bc. Note that (2) is also satisfied for ade � bc
and aef � b. The first of them seems to be stronger than adef � bc because
less attributes determine the same at the right side. Further, aef � b is not
weaker or stronger than adef � bc – it provides complementary information.
Consequently, we need a more specific tool to deal with attribute dependencies.

Definition 3. [11] Let A = (U, A) be given. For every Bl, Br ⊆ A, Bl ∩Br = ∅,
we say that the pair (Bl, Br) forms an association reduct, iff we have Bl � Br

and there is neither proper B′
l � Bl nor proper B′

r � Br, Bl ∩B′
r = ∅, for which

B′
l � Br or Bl � B′

r would hold.

Example 2. For A = (U, A) illustrated above, we have the following associa-
tion reducts: (abc, de), (ace, bd), (acf, d), (ade, bc), (aef, b), (bcd, ae), (bde, ac),
(cdef, ab), (cdf, a), (cef, b), (∅, ∅). The pair (∅, ∅) means that A has no constant
attributes a ∈ A, i.e. such that IND({a}) = IND(∅) = U × U (cf. [12]).
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3 Approximate Dependencies

Criterion (2) can be approximated to better adjust methodology to real world
data, where exact functional dependencies occur very rarely because of noise and
uncertainty. We can imagine a family of approximation thresholds θ ∈ Θ, which
correspond to inexact, parameterized θ-dependencies of the form

B �θ C B, C ⊆ A, θ ∈ Θ (3)
For every θ ∈ Θ, it should be assumed that θ-dependencies satisfy some reason-
able laws, like the following monotonicity properties:

IF X �θ Y ∪ Z THEN X �θ Y
IF X �θ Y THEN X ∪ Z �θ Y

(4)

In particular, properties (4) imply that X �θ ∅, as well as IF X �θ Y ∪ Z
THEN X ∪ Z �θ Y , which is an analogy to the association rules.1 It may also
happen that for some X ⊆ A there is ∅ �θ X . This means that attributes in X
are θ-approximately constant over U . (Compare with Example 2.)

In applications, a choice of approximation threshold can be crucial. It is helpful
to consider an ordering * over Θ, with the following property:

IF θ * ϑ THEN X �θ Y ⇒ X �ϑ Y (5)
It is also good to have O ∈ Θ, which corresponds to exact dependency (2):2

O * θ AND X �O Y ⇔ X � Y (6)

Example 3. Consider Θ = {0, 1, 2, . . .}, O = 0. Consider the following definition:

X �θ Y ⇔ |IND(X)| − |IND(X ∪ Y )| ≤ θ (7)

where |IND(X)| denotes the number of X-indiscernible pairs of objects. Surely,
properties (4-6) are satisfied. Analogous condition was used e.g. in [4].

Example 4. Consider Θ = [0, +∞), O = 0. Consider the following definition:

X �θ Y ⇔ H(X ∪ Y ) − H(X) ≤ θ (8)
where H(X) denotes the information entropy of X in A. This condition was used
in the original formulation of an association reduct in [11], given that H(X ∪
Y ) − H(X) is inversely proportional to the geometric average of confidences of
association rules with the values of X (Y ) at their left (right) sides. Properties
(4-6) are satisfied here as well. Statement ∅ �θ X ∪ Y means that H(X ∪
Y ) ≤ θ, which reflects the average of supports of above-mentioned association
rules. The same type of θ-dependency was previously used to define approximate
information and decision reducts based on entropy [10].
1 Note that the first property in (4) is not true for association rules for non-trivial

confidence thresholds. It is reasonable to use it only at the level of global attribute
dependencies, and only if the approximation criteria are appropriately defined.

2 One can claim that equivalence X �O Y ⇔ X � Y makes sense only for nominal
attributes. However, preserving maximum (in)discernibility of values while formu-
lating exact functional dependencies can be extended onto other data types too.
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4 Complexity of Reduction

The problems of optimal attribute reduction were studied extensively in the
rough set literature (cf. [6,7,8,9,14]). Here, we focus on approximate types:

Definition 4. Let Θ and A = (U, A) be given. For every θ ∈ Θ and B ⊆ A, we
say that B is a θ-information reduct in A, iff B �θ A and there is no proper
subset B′ � B, for which B′ �θ A would hold. For every θ ∈ Θ and Bl, Br ⊆ A,
Bl ∩ Br = ∅, we say that (Bl, Br) is a θ-association reduct in A, iff Bl �θ Br,
there is no proper subset B′

l � Bl for which B′
l �θ Br would hold, and there is

no proper superset B′
r � Br, Bl ∩ B′

r = ∅, for which Bl �θ B′
r would hold.

Similarly, one can consider various θ-decision reducts (cf. [10,13,15]). Now, the
task is to extract from data optimal, most-informative reducts of various types.

Definition 5. Minimal Θ-Information Reduct Problem (MΘIRP). INPUT: θ ∈
Θ and A = (U, A). OUTPUT: θ-information reduct of the least cardinality in A.

Theorem 1. Let Θ satisfy (6). Then MΘIRP is NP-hard.3

Proof. The search for minimal information reducts was proved to be NP-hard in
[9]. Information reducts are identical with O-information reducts. So the problem
reported in [9] can be polynomially reduced to MΘIRP using θ = O.

In [12], we discussed representation of all association reducts, extending Boolean
characteristics [9]. Indeed, only a full set of association reducts gives complete
knowledge about attribute dependencies, derivable using (4). On the other hand,
if we need to focus only on reducts providing maximum information, we should
reconsider MΘIRP. Namely, we should notice that the smaller Bl and larger Br

we can find, the larger amount of information encoded by (Bl, Br) is.

Definition 6. Consider arbitrary function F : N × N → R such that

n1 < n2 ⇒ F (n1, m) > F (n2, m) AND m1 < m2 ⇒ F (n, m1) < F (n, m2)
(9)

F -Optimal Θ-Association Reduct Problem (FΘARP). INPUT: θ ∈ Θ and A =
(U, A). OUTPUT: θ-association reduct (Bl, Br) maximizing F (|Bl|, |Br|) in A,
different from (∅, ∅) if there are any other association reducts in A.

The choice of F , e.g. F (n, m) = m−n or F (n, m) = m/(n+1), surely influences
the search results. This is a case also in other areas, e.g. in pattern optimization
[5] or multi-criteria decision reduct optimization (see Footnote 3). Similarly to
[5], we analyze complexity of FΘARP at universal level, for arbitrary F .

Theorem 2. Let Θ satisfy (6). Let F satisfy (9). Then FΘARP is NP-hard.

Proof. See the next section. Refer also to Footnote 2.
3 NP-hardness becomes more complicated to prove when θ is not a part of input but,

instead, parameterizes the problem’s definition [10]. On the other hand, having θ as
input better shows the need of adaptive tuning of θ. One can go even further and
involve a degree of determinism of the whole A by B ⊆ A into optimization criteria,
together with cardinality or any other quality function of B [15].
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5 Proof of Theorem 2

We proceed analogously to [9]. We reduce the Minimal Dominating Set Problem
(MDSP) to FΘARP. MDSP, widely known as NP-hard, is defined by INPUT
as undirected graph G = (A, E), and OUTPUT as the smallest B ⊆ A such
that CovG(B) = A, where CovG(B) = B ∪ {a ∈ A : ∃b∈B(a, b) ∈ E}. To reduce
MDSP to FΘARP, we construct information system AG = (UG , AG), UG =
{u1, . . . , un, o1, . . . , on, u∗}, AG = {a1, . . . , an, a∗}, n = |A|, as follows:

ai(uj) = 1 ⇔ i = j ∨ (i, j) ∈ E ai(uj) = 0 otherwise
ai(oj) = 1 ⇔ i = j ai(oj) = 2 otherwise
ai(u∗) = 0 , a∗(uj) = 0 a∗(oj) = 0 , a∗(u∗) = 1

(10)

1 2

4 3

5 6

8 7

Fig. 1. G = (A, E) with 8 nodes and
AG = (UG , AG) constructed using (10)

UG a1 a2 a3 a4 a5 a6 a7 a8 a∗
u1 1 1 0 1 1 0 0 0 0
u2 1 1 1 0 0 1 0 0 0
u3 0 1 1 1 0 0 1 0 0
u4 1 0 1 1 0 0 0 1 0
u5 1 0 0 0 1 1 0 1 0
u6 0 1 0 0 1 1 1 0 0
u7 0 0 1 0 0 1 1 1 0
u8 0 0 0 1 1 0 1 1 0
o1 1 2 2 2 2 2 2 2 0
...

...
o8 2 2 2 2 2 2 2 1 0
u∗ 0 0 0 0 0 0 0 0 1

Lemma 1. For any B ⊆ {a1, . . . , an}, B � {a∗} holds in AG iff CovG(B) = A.

Proof. Analogous to [9]. See also [10].

Lemma 2. For any X, Y ⊆ AG , X ∩ Y = ∅, (X, Y ) is an association reduct in
AG iff X = Y = ∅ or Y = {a∗} and X is an irreducible dominating set in G,
i.e. CovG(X) = A and CovG(X ′) �= A for every X ′ � X.4

Proof. Values over o1, . . . , on imply that for any X ⊆ AG and Y ⊆ {a1, . . . , an},
X ∩ Y = ∅, there is no IND(X) = IND(X ∪ Y ), unless Y = ∅. Hence, the only
way to get association reduct (X, Y ) �= (∅, ∅) is to put Y = {a∗}. Then, due to
Lemma 1, X needs to satisfy CovG(X) = A. Finally, since (X, {a∗}) is expected
to be an association reduct, X must be irreducible.

Now, to complete the proof of Theorem 2, the following observations are enough:

1. Each F satisfying (9), after disregarding (∅, ∅), reaches its maximum for the
smallest dominating sets. This is because the lower n, the higher F (n, 1).

2. As in Theorem 1, we can consider θ = O as input FΘARP. Then the solution
(Bl, Br) of FΘARP for AG yields Bl as the solution of MDSP for G.

4 Note that for every graph there is always at least one non-empty dominating set.
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6 Algorithm for Information Reducts

There are numerous approaches to searching for information and decision reducts
(cf. [7,8]). In [13], a simple strategy for entropy-based approximate reducts was
suggested. It works on permutations of the sets of attributes, generated randomly
or conducted by the order-based genetic algorithms (o-GA) (cf. [14]). Every
permutation (individual in o-GA) τ is used as input to a fast procedure resulting
with a reduct Bτ . The quality of Bτ (e.g. inversely proportional to |Bτ |) is used
to evaluate τ . It is commonly expected (see also Section 8) that valuable reducts
are obtained for more permutations. Here, we adapt that method to searching
for θ-information reducts, without any special requirements for A or Θ, just
assuming that validity of statements of the form X �θ Y can be verified against
A in polynomial time with respect to their size.

Algorithm 1. θ-information reduct calculation (cf. [13,14])
Input: A = (U,A), τ : {1, ..., n} → {1, ..., n}, n = |A|
Output: Attribute subset Bτ ⊆ A

Bτ = A
for i = 0 to n − 1 do

if Bτ \ {aτ(n−i)} �θ A then
Bτ = Bτ \ {aτ(n−i)}

end if
end for
return Bτ

Proposition 1. (cf. [13]) Let A = (U, A) and θ ∈ Θ satisfying (4) be given.
For every τ , the result Bτ ⊆ A of Algorithm 1, is a θ-information reduct. On
the other hand, for every θ-information reduct B ⊆ A, there exists permutation
τ such that the result of Algorithm 1 for τ equals to B.

Proof. Let τ be given. Bτ �θ A is obvious. Assume that there is B � Bτ such
that B �θ A. We will show that it contradicts the fact that Bτ is the output
for τ . Choose the lowest j such that aτ(n−j) ∈ Bτ \ B. Denote by Bj

τ ⊆ A
the intermediate form of Bτ right before the j-th iteration of Algorithm 1. We
have surely aτ(n−j) ∈ Bj

τ . We can also assume Bj
τ ⊇ Bτ . Otherwise, if any

element of Bτ has been already removed before, it would immediately negate
Bτ as the output for τ . Since aτ(n−j) ∈ Bτ \ B, there is also Bj

τ \ aτ(n−j) ⊇ B.
Given B �θ A, we get also Bj

τ \ {aτ(n−j)} �θ A. Consequently, aτ(n−j) will be
removed during the j-th iteration and Bτ will not be the output.

Now, consider θ-information reduct B ⊆ A. Put m = |B|. Consider τ such
that for every i ≤ m there is aτ(i) ∈ B.5 Then, during first n − m iterations,
Algorithm 1 keeps removing attributes because intermediate forms of Bτ still
contain B, so Bτ �θ A. After the n−m’th iteration we get B. We cannot remove
any more attributes, for B is a θ-information reduct. Hence, B is the output.
5 B may be empty. This is the case if ∅ �θ A, which was discussed below equations

(4). Then B = ∅ is the only θ-information reduct and Proposition 1 is true anyway.
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7 Algorithm for Association Reducts

The following procedure enables to use permutations to search for association
reducts, analogously to the previously known algorithms [13,14,15]. The main
difference here is that each τ yields a pair of attribute subsets (Bτ,l, Bτ,r), which
can be evaluated by F (|Bτ,l|, |Bτ,r|) while approximating solutions of FΘARP.

Algorithm 2. θ-association reduct calculation
Input: A = (U,A), τ : {1, ..., n} → {1, ..., n}, n = |A|
Output: The pair of subsets (Bτ,l, Bτ,r) ⊆ A×A, Bτ,l ∩Bτ,r = ∅

Bτ,l = A, Bτ,r = ∅
for i = 0 to n do

if Bτ,l \ {aτ(n−i)} �θ Bτ,r then
Bτ,l = Bτ,l \ {aτ(n−i)}
if Bτ,l �θ Bτ,r ∪ {aτ(n−i)} then

Bτ,r = Bτ,r ∪ {aτ(n−i)}
end if

end if
end for
return (Bτ,l, Bτ,r)

Proposition 2. Let A = (U, A) and θ ∈ Θ satisfying (4) be given. For every
τ , the result (Bτ,l, Bτ,r) ⊆ A × A of Algorithm 2, is a θ-association reduct. On
the other hand, for every θ-association reduct (Bl, Br) ⊆ A × A, there exists
permutation τ such that the result of Algorithm 2 for τ equals to (Bl, Br).

Proof. Let τ be given. Bτ,l �θ Bτ,r is obvious. The proof that Bτ,l cannot be
reduced is analogous to the corresponding part of Proposition 1, so we omit it.

Given no Bl � Bτ,l such that Bl �θ Bτ,r, assume that there is Br � Bτ,r

such that Bτ,l �θ Br, Bτ,l ∩ Br = ∅. We show that it contradicts the fact
that (Bτ,l, Bτ,r) is the output for τ . Take lowest j such that aτ(n−j) ∈ Br \Bτ,r.
Note that aτ(n−j) /∈ Bτ,l. Denote by (Bj

τ,l, B
j
τ,r) intermediate form of (Bτ,l, Bτ,r)

right before j-th iteration. We have aτ(n−j) /∈ Bj
τ,r and Bj

τ,r ⊆ Bτ,r. Otherwise,
if any element not in Bτ,r has been already added to the right side, it would
immediately negate (Bτ,l, Bτ,r) as the output. Since aτ(n−j) ∈ Br, there is Bj

τ,r∪
{aτ(n−j)} ⊆ Br. Given Bτ,l �θ Br, we get Bτ,l �θ Bj

τ,r ∪ aτ(n−j). So, aτ(n−j)
will be added to Bτ,r and (Bτ,l, Bτ,r) will not be the output.

Now, consider θ-association reduct (Bl, Br), Bl ∩ Br = ∅. Put ml = |Bl|,
mr = |Br|, ml +mr ≤ n. Consider τ such that for each i ≤ ml there is aτ(i) ∈ Bl

and for each i > n − mr there is aτ(i) ∈ Br.6 In first mr iterations, attributes
move from Bτ,l ⊇ Bl to Bτ,r ⊆ Br, which results in A \ Br �θ Br. During next
n−ml −mr iterations, attributes are not moved to Bτ,r because Br is assumed
non-extendible. However, they will be removed from Bτ,l ⊇ Bl, so after n − ml

steps all together, we get Bl �θ Br. The remaining ml steps do not change
anything because Bl is assumed irreducible. Hence, (Bl, Br) is the output.
6 As previously, we may have some special cases, like Bl = ∅ or even Bl = Br = ∅.
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8 Conclusions

We discussed the problems of searching for optimal approximate association
reducts. We continued our work on comparison of association reducts and rules
[11], as well as association, decision, and information reducts [12]. Given the cur-
rent need of analyzing data with huge amounts of attributes, association reducts
seem to be well-suited. Still, the proposed heuristics should be implemented and
integrated with, e.g., the o-GA framework [14], for experimental verification.

Among challenges, there is analysis of relationships between quality of reducts
and amounts of permutations leading to them. In the area of applications, a
promising direction is unsupervised analysis of, e.g., gene expression data, in
combination with entropy-based methods for grouping numeric attributes [2].

Acknowledgements. Research reported in this paper was supported by the re-
search grant from Natural Sciences and Engineering Research Council of Canada.
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Abstract. We consider the problem of reasoning about information
changes in the context of complex concepts approximated hierarchically
and actions that can be triggered to change properties of investigated
objects. A given object can be in an unwanted state, where some con-
cept is not satisfied to the required degree. We would like to find a
plan (sequence of actions to be executed) of object’s transformation to a
new state which is acceptable. Presented approach is based on reasoning
about changes.
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1 Introduction

We consider the problem of reasoning about information changes in the con-
text of complex concepts approximated hierarchically and actions that can be
triggered to change properties of investigated objects. The problem of complex
concepts approximation has been already intensively studied in the literature
[19,1,14,15,16,2,20,4,10,11,3]. Hierarchical reasoning seems to be crucial espe-
cially in the case when there is a big gap between description of objects and the
concept. For example, it is very difficult to directly reason about the concept
“safe situation on the road” just from the low-level sensor measurements. Thus,
some methods of hierarchical reasoning using the domain knowledge, e.g., in the
form of ontology of concepts, must be adapted to obtain satisfactory approxi-
mation of complex concepts (see, e.g., [1,19]). In addition, we consider the case
when some set of actions is additionally available. An action can be triggered for
a given object to change its properties. We assume to use actions if we detect
that the investigated object satisfies a given concept to unsatisfactory degree or
it satisfies some unwanted concept. As an example, let us consider an action as
some medicine that can be applied to a patient having some disease. We want
to apply such medicines that the concept of having disease is not satisfied any
longer. Execution of some action corresponds to an application of some transition
relation. A sequence of actions defines some kind of a plan.

Let us present some examples of the key problems. We can consider the prob-
lem of rules induction. Let x be an investigated object satisfying concept C1
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and R be a transition relation that moves/changes x from C1 to, say, C2. From
the approximation of concept C1, e.g, by means of AR schemes [13,7,18], and
approximation of relation R we obtain approximation of C1R. On the other
hand, from C1R we can extract approximation of C2. Let us note, that from
approximations of C1 and R we obtain approximate rules for C1, ¬C1 and R,
¬R, respectively. Thus, finally we also get rules for C2 and ¬C2.

Next problem is related to the induction of rules of changes. Let x satisfy a
given concept C to a degree at least δ. If we apply to x some transition relation R
we obtain x′ satisfying C to a degree at least δ+Δδ. A basic question is how can
we induce rules predicting changes of inclusion degree. We can generalise this
problem to the case when we consider not only one particular concept but k-class
classification, i.e, {C1, . . . , Ck}, where for a given object we obtain a vector of
inclusion degrees (δ1, . . . , δk). Then, how can we induce decision rules describing
changes of a vector of inclusion degrees?

2 Hierarchical Reasoning on Complex Concepts

2.1 From Structured Objects to Complex Concepts

One of the fundamental concepts in reasoning is the notion of an object. Objects
are some real entities that can be described by some physical observations or
measurements. An object can be though identified with some information about
it, i.e., with some vector of measurements. From this interpretation it follows that
one vector of measurements can describe several objects. From the point of view
of this information only, such objects are indiscernible although in fact they can
be different. This way of understanding objects is used in the rough set theory
[5,6,12], where for a given information system A = (U, A), the information about
an object x ∈ U is given by means of some attributes from A, i.e., an object x
can be identified with the so-called signature of x: Inf(x) = {a(x) : a ∈ A}.

In a more complex case, we can consider some structure of an object. Struc-
tured or complex objects can consist of some parts which can be constrained
by some relations of different nature, e.g., spatial ones. The parts can be built
from yet simpler parts and therefore the structure can be hierarchical with many
different levels. The relation object–part corresponds in most cases to some spa-
tial or spatio-temporal relation [10]. These problems are considered in rough-
mereological approach [8,9] representing some patterns relevant for concept ap-
proximation.

For each part of a structured object we can consider some concepts describing
its properties. Thus, concepts form also a hierarchical structure and for one
structured object we can have several ontologies of concepts [17]. The concepts
from the lowest level of such hierarchy describe properties of simple parts. The
high-level or complex concepts describe properties of complex objects.

2.2 Structured Reasoning Schemes

Properties of structured (complex) objects can be approximated by means of
approximate reasoning schemes (AR schemes) [13,7,18]. Such schemes usually
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have a tree structure with the root labelled by the satisfiability degree of some
feature by a complex object and leaves labelled by the satisfiability degrees of
some other features by primitive objects (i.e., the most simple parts of a complex
object). An AR scheme can have many levels. Then, from properties of basic
parts and relations among them we conclude the properties of more complex
parts, and after some levels, the properties of the complex target object.

Any AR scheme is constructed from labelled approximate rules, called pro-
ductions. Productions can be extracted from data using domain knowledge. We
define productions as parameterised implications with premises and conclusions
built from patterns sufficiently included in the approximated concept.

Fig. 1. An example of production as a collection of three production rules

In Figure 1, we present an example of production for some concepts C1, C2,
and C3 approximated by three linearly ordered layers small, medium, and large.
This production is a collection of three simpler rules, called production rules,
with the following interpretation: (1) if inclusion degree to a concept C1 is at
least medium and to a concept C2 at least large then the inclusion degree to
a concept C3 is at least large; (2) if the inclusion degree to a concept C1 is at
least small and to a concept C2 at least medium then the inclusion degree to
a concept C3 is at least medium; (3) if the inclusion degree to a concept C1 is
at least small and to a concept C2 at least small then the inclusion degree to a
concept C3 is at least small.

The concept from the highest level of production is called the target concept
of production, whilst the concepts from the lowest level of production are called
the source concepts of production. For example, in the case of production from
Figure 1, C3 is the target concept and C1, C2 are the source concepts.

One can construct an AR scheme by composing single production rules cho-
sen from different productions from a family of productions for various target
concepts. In Figure 2, we have two productions. The target concept of the first
production is C5 and the target concept of the second production is the concept
C3. We select one production rule from the first production and one produc-
tion rule from the second production. These production rules are composed and
then a simple AR scheme is obtained that can be treated as a new two-level
production rule. Notice that the target pattern of lower production rule in this
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 Fig. 2. Synthesis of approximate reasoning scheme

AR scheme is the same as one of the source patterns from the higher production
rule. In this case, the common pattern is described as follows: inclusion degree
(of some pattern) to a concept C3 is at least medium.

In this way, we can compose AR schemes into hierarchical and multi-level
structures using productions constructed for various concepts.

3 Reasoning Based on Changes

3.1 General Scheme of Reasoning

In this section let us present some general scheme of reasoning about complex
concepts that are satisfied to an unsatisfactory degree. Such a case can be a
result of some changes of the situation in time and may be required to undertake
appropriate actions. Let U be a universe of objects and C be a given concept.
For example, we can consider a set of patients as U and a concept of having
given disease as C. Let us also denote by ¬C the complementary concept to C
– in our example the concept of not having given disease. Now, we can consider
some set X ⊆ U of objects included into ¬C to a satisfactory degree, as well as
Y ⊆ U – the set of objects well included into C.

A given situation can dynamically be changing in time what we can refer to
by states of an object. We can observe that in some states the concept C is
satisfied whilst in some other states is ¬C. It means that there is additionally
some transition relation R ⊆ U×U responsible for the process of transformation
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C

C1 C2 C3

Concept

Pattern

Pattern

Concept

Fig. 3. Approximation of complex concept C by using patterns constructed from pat-
terns approximating low-level concepts C1, C2, C3

of objects from the set X to the set Y . Thus, we can say that Y = XR = {y ∈
U : ∃x ∈ X xRy}.

Let us recall that the reasoning about concepts related to X , here ¬C, is
performed in a hierarchical manner by means of some patterns (see Fig. 3), and
classifiers constructed using language of those patterns. In a similar way, one
would have to construct a hierarchical classifier for approximation of a concept
related to relation R, namely a concept satisfied by relation R to a satisfactory
degree. Such a classifier, for a given pair of objects (x, y), where x ∈ X, y ∈
Y, must take into account: (1) properties of x by means of relevant patterns
constructed for X , (2) properties of y by means of relevant patterns constructed
for Y , (3) properties of the pair (x, y) by means of relevant patterns constructed
for R (note that those patterns can be defined in a language much different from
those in the other two cases, e.g., we can consider a closeness between x and y).

Let us emphasise that in general the situation can be much more complex.
It can be impossible to approximate such a relation R that directly moves us
from set X to Y . We can rather expect to be able to approximate a relation
that moves us into “the right direction”, i.e., to the state where the change of
satisfaction degree of some concept is desired. It means that being in the state
where satisfaction degree of concept ¬C is high we have transition that moves
us to the state where this degree is lower, i.e, change of degree is negative. We
iteratively use several such transition to move in a direction of low satisfiability
of ¬C and high satisfiability of C.

The considered problem is related to the following situation: the reasoning
about an investigated object leads us to the conclusion that the object does
not satisfy a given concept to a satisfactory degree. We would like to impose
such a changes that the concept is satisfied. What comes handy is a set of
available actions that we can perform to change some properties of an object.
The actions are given in the form of rules where premise describes objects to
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which given action can be applied, and conclusion specifies what will be changed
after the action is triggered. In our example we can consider a patient having
some disease (thus, satisfying ¬C). We would like to undertake some actions
to treat the patient so it satisfies C into satisfactory degree. An action could
correspond in this case to application of some medicine. A set of action is then
a plan of therapy.

We can easily see that there can be induced several transition relations (sev-
eral paths) that some of their compositions lead a given object from set X to set
Y . Let us emphasise, that in each step from the pattern matched by the object
and the pattern approximating transition relation we can decode the pattern
matched by the transformed object. In this way, we obtain an input pattern for
the next step. In each step, an object is transformed to a new state in which
the satisfaction degree of a considered concept is better. However, it can appear
that one or more steps of one path leads to a worse state. This can be neces-
sary due to necessity of avoiding locally optimal states. Some heuristic search
engines, including Genetic Algorithms and Simulated Annealing methods, can
be utilised to generate optimal paths. Each path obtained should be additionally
verified whether it is feasible. In particular, each step of a path should be verified
if there are available actions making possible to realise this step. There should
be also considered costs of performing actions realising all steps of a given path.
Thus, the cost of a path and the quality of destination (by means of satisfaction
degree of considered concept) of state should be evaluated while choosing the
optimal path.

3.2 Some Detailed Issues

In this section, let us explain some details related to the possible realisations
of the presented ideas. We assume that the investigated objects define some
information system A = (U, A). The considered concept and its complement is
denoted by C and ¬C, respectively.

Training data and training process. Each object from the training in-
formation system contains information about inclusion degrees to concepts C
and ¬C. There are induced several hierarchical approximate reasoning schemes
{ARi} = {ARC

i } ∪ {AR¬C
i }. The input nodes of the schemes are corresponding

to the low-level concepts approximated by means of patterns {ri}. The set of
patterns used in a given AR scheme depends on the low-level concept used in
this scheme, however, any object from U can be tested against any pattern.

Actions and transition relation approximation. One of our assumptions
is that we can have an influence on the properties of objects by means of some
actions {aci} we can undertake. Each action can have a cost associated with
its execution. In the simplest case, an action can be precisely defined in terms
of descriptors over the set of attributes A. Thus, each action can have a form
of implication where the premise describes the properties of objects for which
the action can be triggered whilst the conclusion defines the changes of object’s
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properties. An example of such action is: “a1 = 5 and a5 < 7 ⇒ a1 > 10 and
Δa8 < 5”, where ai ∈ A.

In a more complex case, we don’t know precise definitions of actions but have
some training data describing objects before and after action’s execution (for
example, we have characteristics of patients before and after application of some
medicine). Thus, we also need to induce an AR scheme AR0 approximating the
concept that a given action ac is triggered. AR0 is then a kind of approximation
of transition relation between states of an object where the transition is forced
by action ac. The low-level (input) concepts of obtained AR scheme AR0 are ap-
proximated by patterns Rac

l and Rac
r describing properties of objects before and

after execution of ac, respectively. Let us also emphasise that some of the low-
level concepts can describe properties of pair of objects (x, x′). Those concepts
are approximated by yet another set of patterns Rac

lr .
In consequence, for a given object x matching patterns Rac

l we can use scheme
AR0 to decode patterns matched by x after we apply action ac. In this way we
have some approximation of an action in the language of patterns over the set
of attributes A.

Reasoning process. Let x be an investigated object which has been evaluated
by induced AR schemes {ARi} as satisfying ¬C. It means that it could be
recognised by some schemes from {AR¬C

i } (let us denote them by AR¬C) but
also by schemes ARC ⊆ {ARC

i } (in such a case conflict resolving strategies
should be involved). The main problem is to find a sequence of actions that
should be undertaken in order to transform object x to x′ such that x′ satisfies
C to a satisfactory degree.

One possible way of reasoning is as follows. By examining schemes AR¬C

and {ARC
i } \ ARC , as well as the conflict resolving strategy, we can select (1)

key schemes that recognised and evaluated x as matching ¬C, (2) schemes that
could strongly “vote” for C but some of the input concepts were not matched
by x good enough. Then, we can decide the way we want to change x. In the
first case, we may force x not to match some patterns previously matched, so
we can eliminate some schemes from AR¬C . In the second case, we may force x
to match some patterns previously not matched, so we can add some “strong”
schemes to ARC .

In either cases, we have some patterns matched by x and some target patterns
we would like to be matched by transformed x. Thus, we can try to iteratively
combine AR schemes approximating available actions (or combine just actions
in the simpler case), starting from patterns matched by x and going forward.
Alternatively, we can go backward starting from the target patterns.

Let us denote a very important fact, that approximation of actions can be
performed on different levels of generalisation. This is possible because the AR
schemes used for approximation are hierarchical structures. Thus, by considering
patterns from different levels of AR schemes we can obtain approximation of
actions in the language of those patterns, and we can talk about actions as well
as meta-actions.
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4 Conclusions and Directions for Further Research

In the paper we discussed some problems related to reasoning about information
changes in the context of complex concepts approximated hierarchically. Main
issue discussed was finding a plan (sequence of actions) of which execution moves
an object from some unwanted state to a satisfactory one.

There are several issues that still have to be investigated. One of them is
the problem of finding execution plan in the case of classification problem where
several decision classes are defined. In such a case we consider a vector of concepts
and a vector of inclusion degrees. High number of different combinations of
inclusion degree changes (exponential w.r.t. the number of classes) makes the
training process not feasible. Some additional techniques, e.g., granulation of
the space of inclusion degrees, should be adopted.

Acknowledgements

The research has been supported by the grant 8 T11C 025 19 from the Ministry
of Scientific Research and Information Technology of the Republic of Poland
and by the Research Center at the Polish-Japanese Institute of Information
Technology, Warsaw, Poland.

References

1. Jan G. Bazan, Hoa S. Nguyen, Son H. Nguyen, and Andrzej Skowron. Rough
set methods in approximation of hierarchical concepts. In Shusaku Tsumoto,
Roman W. Slowinski, Jan Komorowski, and Jerzy W. Grzymala-Busse, editors,
Fourth International Conference on Rough Sets and Current Trends in Computing
RSCTC, volume 3066 of Lecture Notes in Artificial Intelligence, pages 346–355,
Uppsala, Sweden, June 1-5 2004. Springer-Verlag.

2. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Elsevier, Morgan Kaufmann, Cambridge, USA, 2004.

3. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. pages 26–45, 1987.

4. Sinh Hoa Nguyen, Jan Bazan, Hung Son Nguyen, and Andrzej Skowron. Lay-
ered learning for concept synthesis. LNCS Transactions on Rough Sets, 1 (LNCS
3100):193–214, 2004.

5. Zdzis�law Pawlak. Information systems - theoretical foundations. Information Sys-
tems, 6:205–218, 1981.

6. Zdzis�law Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data, vol-
ume 9 of D: System Theory, Knowledge Engineering and Problem Solving. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1991.

7. Lech Polkowski and Andrzej Skowron. Rough mereological approach to knowledge-
based distributed AI. In J. K. Lee, J. Liebowitz, and J. M. Chae, editors, Third
World Congress on Expert Systems, pages 774–781, Soeul, Korea, February 5-9
1996. Cognizant Communication Corporation.

8. Lech Polkowski and Andrzej Skowron. Rough mereology: A new paradigm for ap-
proximate reasoning. International Journal of Approximate Reasoning, 15(4):333–
365, 1996.



Planning Based on Reasoning About Information Changes 173

9. Lech Polkowski and Andrzej Skowron. Rough mereology in information systems.
A case study: Qualitative spatial reasoning. In Lech Polkowski, Tsau Young Lin,
and Shusaku Tsumoto, editors, Rough Set Methods and Applications: New Devel-
opments in Knowledge Discovery in Information Systems, volume 56 of Studies in
Fuzziness and Soft Computing, chapter 3, pages 89–135. Springer-Verlag/Physica-
Verlag, Heidelberg, Germany, 2000.

10. John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. YABTSSTDMR -
yet another bibliography of temporal, spatial and spatio-temporal data mining
research. In K. P. Unnikrishnan and R. Uthurusamy, editors, SIGKDD Temporal
Data Mining Workshop, pages 167–175, San Francisco, CA, 2001. ACM Press.

11. Yoav Shoham. Reasoning about change: time and causation from the standpoint of
artificial intelligence. MIT Press, Cambridge, MA, USA, 1988.

12. Andrzej Skowron and Cecylia Rauszer. The discernibility matrices and functions
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Abstract. In this paper, we focus on the study of covering based rough
sets in covering approximation spaces. Firstly, two pairs of covering ap-
proximation operators are reviewed, their properties are investigated.
Secondly, Based on the covering of the covering approximation space,
two new coverings of the universe are induced, by which two new pairs
of covering approximation operators are constructed. Furthermore, the
properties of these operators are examined. Finally, by a comparison of
these approximation operators, some conditions are gained under which
some or all of these approximation operators are equivalent.

Keywords: Approximation operators, coverings, partitions, rough sets.

1 Introduction

The theory of rough sets is proposed by Pawlak in 1982 [6,7], it is a new math-
ematical approach to deal with intelligent systems characterized by insufficient
and incomplete information, and has been found very successful in many do-
mains.

In the theory of rough sets, based on the knowledge about the universe, a
pair of the lower and the upper approximation operators are constructed, with
which every subset of the universe can be described. In Pawlak rough set model,
the knowledge is determined by an equivalence relation or, equivalently, by a
partition of the universe. In order to extend the Pawlak rough set model, many
authors replace equivalence relations with general binary relations [4,10,12,16], or
replace partitions of the universe with its coverings or its neighborhood systems
[1,2,5,8,11,13,15]. If we define a pair of approximation operators by replacing the
equivalence classes in Pawlak rough set model with the subsets in a covering,
then the lower and the upper approximation operators are not necessarily dual
operators. To resolve this problem, Pomykala [8,9] put forward a suggestion, and
obtained two pairs of dual approximation operators. In addition, Yao [13,14] dis-
cussed this kind of extension by the notion of neighborhood and with granulated
view respectively.

Actually, in an approximation space determined by a covering, there are a
lot of connections between the objects of the universe, which be hidden in the
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approximation space. In this paper, by inducing two new coverings from the
original covering of the universe, two pairs of new covering lower and upper
approximation operators are constructed, Furthermore, we investigate these ap-
proximation operators’ properties. The relationships among these new operators
and the existing covering approximation operators are examined. Finally, we
obtain some necessary and sufficient conditions for their equivalence.

2 Review of Covering Approximation Operators

Let U be a finite and nonempty set called the universe, and C a finite family of
nonempty subsets of U . C is called a covering of U if it satisfies

⋃
C∈C

C = U , the

ordered pair (U, C) is called a covering approximation space. The covering C is
called a partition of U if it consists of pairwise disjoint subsets of U , then (U, C)
is a Pawlak approximation space.

The covering approximation operators is an extension of Pawlak approxima-
tion operators. It can be obtained by replacing the equivalence classes with the
elements of a covering in granule-oriented definition of Pawlak approximation
operators. In order to ensure that the extended lower and upper approximation
operators are dual operators, either the lower or the upper approximation oper-
ators are extended, and the other one is defined by duality [13,14]. As a result,
two pairs of dual approximation operators can be obtained.

(I) aprC(X) = ∪{C ∈ C : C ⊆ X}
= {x ∈ U : ∃C ∈ C(x ∈ C, C ⊆ X)},

aprC(X) =∼ apr′C(∼ X)
= {x ∈ U : ∀C ∈ C(x ∈ C ⇒ C ∩ X �= ∅)}.

(II) apr′C(X) =∼ apr′C(∼ X)
= {x ∈ U : ∀C ∈ C(x ∈ C ⇒ C ⊆ X)},

apr′C(X) = ∪{C ∈ C : C ∩ X �= ∅}
= {x ∈ U : ∃C ∈ C(x ∈ C, C ∩ X �= ∅)}.

The approximation operators aprC and aprC satisfy the following properties:

(L0) aprC(X) =∼ aprC(∼ X), (U0) aprC(X) =∼ aprC(∼ X);
(L1) aprC(U) = U, (U1) aprC(∅) = ∅;
(L1′) aprC(∅) = ∅, (U1′) aprC(U) = U ;
(L2) X ⊆ Y ⇒ aprC(X) ⊆ aprC(Y ), (U2) X ⊆ Y ⇒ aprC(X) ⊆ aprC(Y );

(L3′) aprC(X ∩ Y ) ⊆ aprC(Y ) ∩ aprC(Y ),

(U3′) aprC(X ∪ Y ) ⊇ aprC(Y ) ∪ aprC(Y );
(L4) aprC(X ∪ Y ) ⊇ aprC(X) ∪ aprC(Y ),
(U4) aprC(X ∩ Y ) ⊆ aprC(X) ∩ aprC(Y );
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(L5) aprC(X) ⊆ X, (U5) X ⊆ aprC(X);
(L7) aprC(X) ⊆ aprC(aprC(X)), (U7) aprC(aprC(X)) ⊂ aprC(X).

Note that aprC and aprC may not satisfy the properties (L3) and (U3):

(L3) aprC(X ∩ Y ) = aprC(X) ∩ aprC(Y ),
(U3) aprC(X ∪ Y ) = aprC(X) ∪ aprC(Y ).

Some conditions will be given in section 4, under which aprC and aprC satisfy
the properties (L3) and (U3).

Besides the properties (L0)–(L5), (U0)–(U5), (L1′) and (U1′), the approxi-
mation operators apr′C and apr′C also satisfy the following properties:

(L6) X ⊆ apr′C(apr′C(X)), (U6) apr′C(apr′C(X)) ⊆ X.

The following two theorems follows from [13, Theorem 7 and Theorem 8].

Theorem 1. Let (U, C) be a covering approximation space. Then for all X ⊆ U ,

apr′C(X) ⊆ aprC(X) ⊆ X ⊆ aprC(X) ⊆ apr′C(X).

Theorem 2. The two pair of lower and upper approximation operators defined
by (I) and (II) are equivalent if and only if the covering C is a partition of U.

Let FC(U) denote the set of all coverings of U . A relation * on FC(U) can be
defined as follows, for C1, C2 ∈ FC(U), C1 * C2 if and only if for all C′ ∈ C2, there

exist C1, · · · , Ck ∈ C1 such that C′ =
k⋃

i=1
Ci. the covering C1 is finer than C2, or

C2 is coarser than C1. It can easily be verified that * is reflexive and translative.
Corresponding the relation *, the covering approximation operators w.r.t. the
coverings in FC(U) have the following properties.

Theorem 3. Let (U, C1) and (U, C2) be two covering approximation spaces. Then
for any X ⊆ U , aprC2

(X) ⊆ aprC1
(X) and aprC1

(X) ⊆ aprC2
(X) if and only if

C1 * C2. In special, aprC2
= aprC1

and aprC1
= aprC2

if and only if C1 * C2 and
C2 * C1.

Proof. If C1 * C2, then it immediately follows from Definition (I) that aprC2
(X)

⊆ aprC1
(X) and aprC1

(X) ⊆ aprC2
(X) for all X ⊆ U . Conversely, if aprC2

(X) ⊆
aprC1

(X) and aprC1
(X) ⊆ aprC2

(X) for all X ⊆ U , then for any C ∈ C2,

C = aprC2
(C) ⊆ aprC1

(C) = ∪{A ∈ C1 : A ⊆ C} ⊆ C,

thus, C = ∪{A ∈ C1 : A ⊆ C}. We can conclude C1 * C2.
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3 New Covering Approximation Operators

Let (U, C) be a covering approximation space. In (U, C), every element x of U can
be related to some elements of U by different way. here, by using two relations
hidden in approximation space (U, C), two coverings of U are constructed as
follows.

C∗ = {x∗ : x ∈ U}, C∗∗ = {x∗∗ : x ∈ U},
where

x∗ = {y ∈ U : ∀C ∈ C(x ∈ C ⇒ y ∈ C)},
x∗∗ = {y ∈ U : ∀C ∈ C(x ∈ C ⇔ y ∈ C)}.

Example 1. Let U and W be two universes, and R a binary relation from U to
W . They are given as follows:

U = {1, 2, 3, 4, 5}, W = {a, b, c}, R =

⎛⎜⎜⎜⎜⎝
1 1 0
0 1 0
0 0 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎠ .

Then Ra = {x ∈ U : xRa} = {1, 4, 5}, similarly we have Rb = {1, 2, 5}, Rc =
{3, 4}. We can verify that CR = {Ra, Rb, Rc} is a covering of U , thus (U, CR) is
a covering approximation space. We can also figure out:

1∗ = {1, 5}, 2∗ = {1, 2, 5}, 3∗ = {3, 4}, 4∗ = {4}, 5∗ = {1, 5},
and

1∗∗ = {1, 5}, 2∗∗ = {2}, 3∗∗ = {3}, 4∗∗ = {4}, 5∗∗ = {1, 5}.
If we treat the elements in U and W as objects and properties (attributes)

respectively, then, for example, the intension of 1Ra is that object 1 has property
a. Thus x∗(x ∈ U) consists of all objects having the properties which x has, and
x∗∗ all objects having the same attributes as x.

It is easy to prove that the following proposition holds.

Proposition 1. Let (U, C) be a covering approximation space. Then

(1) for every x ∈ U , x ∈ x∗,
(2) for any x, y ∈ U , y ∈ x∗ ⇒ y∗ ⊆ x∗,
(3) C∗ is a covering of U ,
(4) C∗∗ is a partition of U ,
(5) C∗∗ * C∗ * C.

By definitions (I) and (II) we can construct four pairs of covering lower and upper
approximation operators w.r.t the covering C∗ and C∗∗ respectively. By means
of Proposition 1 and Theorem 2 the following two theorems can be verified.
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Theorem 4. For all X ⊆ U ,

aprC∗(X) = {x ∈ U : x∗ ⊆ X}, aprC∗(X) = {x ∈ U : x∗ ∩ X �= ∅}.

Theorem 5. For all X ⊆ U ,

aprC∗∗(X) = apr′C∗∗(X) = {x ∈ U : x∗∗ ⊆ X},
aprC∗∗(X) = apr′C∗∗(X) = {x ∈ U : x∗∗ ∩ X �= ∅}.

Theorem 6. Approximation operators aprC∗ and aprC∗ satisfy (L0)–(L5),
(U0)–(U5), (L1′), (U1′), (L7) and (U7). Approximation operators aprC∗∗ and
aprC∗∗ satisfy (L0)–(L7), (U0)–(U7), (L1′), (U1′), and the following (L8) and
(U8):

(L8) aprC∗∗(X) ⊆ aprC∗∗(aprC∗∗(X)),
(U8) aprC∗∗(aprC∗∗(X)) ⊆ aprC∗∗(X).

4 Connections Among Covering Approximation
Operators

Theorem 7. Let (U, C) be a covering approximation space. For any X ⊆ U ,

apr′C(X) ⊆ aprC(X) ⊆ aprC∗(X) ⊆ aprC∗∗(X) ⊆ X

⊆ aprC∗∗(X) ⊆ aprC∗(X) ⊆ aprC(X) ⊆ apr′C(X).

Proof. For any X ⊆ U , by Theorem 1 we have

apr′C(X) ⊆ aprC(X).

By using Proposition 1 (5), Theorems 3 and 6, we obtain

aprC(X) ⊆ aprC∗(X) ⊆ aprC∗∗(X) ⊆ X.

By the duality of these operators, we also have

X ⊆ aprC∗∗(X) ⊆ aprC∗(X) ⊆ aprC(X) ⊆ apr′C(X).

Theorem 7 shows that among the two pairs of approximation operators, aprC∗∗
and aprC∗∗ , aprC∗ and aprC∗ , aprC and aprC , and apr′C and apr′C , the former
give tighter approximations than that of the latter. Moreover, these operators
may be pairwise unequal. On account of the restriction of pages, the illustrating
examples are omitted.

Let (U, C) be a covering approximation space. Let

Is(C) = {∩C0 : C0 ⊆ C}.

Then Is(C) is called closure system generated by C, where closure system means
a class of subsets of U , and satisfies that the intersection of any its subclass
belongs to it [3].
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Theorem 8. The following statements are equivalent:

(1) aprC and aprC satisfy (L3) and (U3) respectively,
(2) aprC = aprC∗ , aprC = aprC∗,
(3) C * C∗,
(4) C∗ ⊆ C,
(5) For any x ∈ U , the minimum element of the family C(x) = {C ∈ C : x ∈ C}
exists,
(6) C * Is(C).

Proof. (1) ⇒ (2) : Assume that aprC and aprC satisfy (L3) and (U3). Then for
any X ⊆ U ,

aprC(X) =
⋃

x∈X

aprC({x}).

Since aprC∗ satisfies (U3), we also have that for any X ⊆ U ,

aprC∗(X) =
⋃

x∈X

aprC∗({x}).

By Definition (I) and Theorem 4 we have that for any x ∈ U ,

aprC({x}) = {y ∈ U : ∀C ∈ C(y ∈ C ⇒ C ∩ {x} �= ∅)}
= {y ∈ U : ∀C ∈ C(y ∈ C ⇒ x ∈ C)}
= {y ∈ U : x ∈ y∗}
= {y ∈ U : y∗ ∩ {x} �= ∅}
= aprC∗({x}).

Thus, we can conclude

aprC(X) = aprC∗(X), ∀X ⊆ U.

Similarly, by the duality,

aprC(X) = aprC∗(X), ∀X ⊆ U.

(2) ⇒ (3) : It follows from Theorem 3.
(3) ⇒ (4) : Assume that the covering C be finer than the covering C∗. For any

x ∈ U , x∗ ∈ C∗. By the assumption, we have x∗ =
⋃

C∈C,C⊆x∗
C. By x ∈ x∗, there

exists a C ∈ C such that x ∈ C ⊆ x∗. From the definition of x∗, we can deduce
x∗ ⊆ C. Noticing C ⊆ x∗ we have x∗ = C, thus, x∗ ∈ C. We conclude C∗ ⊆ C.

(4) ⇒ (5) : Suppose C∗ ⊆ C. Then for any x ∈ U , by x ∈ x∗ we have x∗ ∈ C(x).
It is evident that x∗ is included in every set in C(x). Therefore, we conclude that
x∗ is the minimum set in C(x).

(5) ⇒ (6) : For any x ∈ U , assume that the family C(x) have the minimum
element. ∀X ∈ Is(C), for simplicity, we suppose X = C1 ∩ C2, C1, C2 ∈ C. For



180 T.-J. Li

any x ∈ X = C1 ∩ C2, C1, C2 ∈ C(x). By the assumption there exists a Cx ∈ C
such that x ∈ Cx ⊆ C1 ∩ C2 = X . Thus, X =

⋃
x∈X

Cx. We conclude C * Is(C).

(6) ⇒ (1) : Assume that C be finer than Is(C). For any X, Y ⊆ U , if x ∈
aprC(X) ∩ aprC(Y ), then x ∈ aprC(X) and x ∈ aprC(Y ). By Definition (I)
there exist C1, C2 ∈ C such that x ∈ C1 ⊆ X and x ∈ C2 ⊆ Y , that is,
x ∈ C1 ∩ C2 ⊆ X ∩ Y . Since C1 ∩ C2 ∈ Is(C), by the assumption, there exists a
C ∈ C such that x ∈ C ⊆ C1 ∩ C2 ⊆ X ∩ Y . So, x ∈ aprC(X ∩ Y ). Thus

aprC(X) ∩ aprC(Y ) ⊆ aprC(X ∩ Y ).

Noticing aprC satisfies (L3′), we conclude

aprC(X ∩ Y ) = aprC(X) ∩ aprC(Y ).

By the duality, we also have

aprC(X ∪ Y ) = aprC(X) ∪ aprC(Y ).

Theorem 9. The following statements are equivalent:

(1) aprC∗ = aprC∗∗ and aprC∗ = aprC∗∗,
(2) C∗ * C∗∗,
(3) C∗∗ ⊆ C∗.

Proof. The equivalence of (1) and (2) follows from Theorems 3 and 7. With the
equivalence of (2) and (3), it is evident that (3) implies (2). Therefore, It is only
to prove that (2) implies (3).

Assume that C∗ * C∗∗. For any x∗∗ ∈ C∗∗, by x ∈ x∗∗ and the assumption,
there exists a y ∈ U such that x ∈ y∗ ⊆ x∗∗. As y ∈ y∗ ⊆ x∗∗, we have that for
any C ∈ C, x ∈ C is equivalent to y ∈ C. For any z ∈ x∗∗, it is evident that for
any C ∈ C, x ∈ C is equivalent to z ∈ C. Thus y ∈ C is equivalent to z ∈ C
for all C ∈ C, from which we have that y ∈ C implies z ∈ C for all C ∈ C,
that is, z ∈ y∗. Thus, x∗∗ ⊆ y∗. Consequently, by using y∗ ⊆ x∗∗ we obtain that
x∗∗ = y∗. Therefore, C∗∗ ⊆ C∗.

Theorem 10. The following statements are equivalent:

(1) aprC = aprC∗∗ and aprC = aprC∗∗

(2) C * C∗∗,

(3) C∗∗ ⊆ C.

Proof. The equivalence of (1) and (2) follows from Theorems 3 and 7. With the
equivalence of (2) and (3), it is evident that (3) implies (2). Therefore, It is only
to prove that (2) implies (3).

Suppose that C * C∗∗. For any x∗∗ ∈ C∗∗, by x ∈ x∗∗ and the assumption,
there exists a Cx ∈ C such that x ∈ Cx ⊆ x∗∗. For any y ∈ x∗∗ we have that
x ∈ C and y ∈ C are equivalent for all C ∈ C. Specially, by Cx ∈ C and x ∈ Cx,
we have y ∈ Cx. Thus, x∗∗ ⊆ Cx. Noticing that Cx ⊆ x∗∗ we have x∗∗ = Cx. We
conclude x∗∗ ∈ C, which implies C∗∗ ⊆ C.



Rough Approximation Operators in Covering Approximation Spaces 181

Theorem 11. The following statements are equivalent:

(1) apr′C = aprC = aprC∗ = aprC∗∗ , apr′C = aprC = aprC∗ = aprC∗∗ ,

(2) apr′C = aprC , apr′C = aprC,
(3) C is a partition of U .

Proof. It directly follows from Theorem 2 that (2) and (3) are equivalent. It is
evident that (1) implies (2). It is only to prove that (2) implies (1).

Assume apr′C = aprC and apr′C = aprC . Then by Theorem 2, C is a partition
of U , by which it is easy to verify that C = C∗ = C∗∗. Consequently, by the
assumption and Definition (I) we conclude that (1) holds.

5 Conclusions

The covering rough set theory is the improvement of Pawlak rough set, and has
promising potential for applications to data mining. In this paper, we mainly
construct two covering of the universe from the original covering of approxima-
tion space, by which we define two pairs of covering lower and upper approx-
imation operators. Furthermore, we investigate their properties, by comparing
these operators and the existing covering approximation operators, it is showed
that the new approximation operators give tighter approximations than the lat-
ter. Finally, some conditions are gained under which some or all of covering
approximation operators are equivalent. Naturally, it is interesting to consider
possible practical applications of new covering approximation operators, and
reliant problems in fuzzy environments are worthy of further research
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Abstract. A new method for discretization of continuous features based
on the Variable Precision Rough Set theory is proposed and tested in
the process of inducing decision trees. Through rectifying error ratio, the
generalization capability of decision trees is enhanced by enlarging or
reducing the sizes of positive regions. Two ways of computing frequency
and width are deployed to calculate the misclassifying rate of the data,
and thus the negative effect on decision trees is reduced, by which the
discretization points are determined. In the paper, we use some open data
sets to testify the method. The results are compared with that obtained
by C4.5, which shows that the presented method is a feasible way to
discretization of continuous features in applications.

1 Introduction

Discrete values have important roles in AI and machine learning. For example,
in the process of inducing decision trees, the target or decision attribute whose
value is predicted by the learned tree must be discrete value. Besides, the at-
tributes tested for the branch nodes of the tree must be discrete-valued too.
Furthermore, rules with discrete values are normally shorter and more under-
standable[1]. Continuous data are ordinal data with orders among the values.
Therefore it is certainly not wise to use continuous values to split a node. It is
needed to discretize continuous features either before the decision tree induction
or during the process of the tree building. This can be accomplished by dynam-
ically finding some values of an attribute that partition the continuous value
into a discrete set of intervals. Widely used systems such as C4.5 and CART
deploy various ways to avoid using continuous values directly[2,3]. Vast amounts
of works have been reported regarding discretization of continuous attributes
[4,5,6]. In [4], the author discussed how to handle continuous attributes in large
data bases. In [5], the authors described Chi2, a simple and general algorithm
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that used the chi-square statistic to discretize numeric attributes repeatedly un-
til some inconsistencies were found in the data, and achieve feature selection
via discretization. The empirical results demonstrated that Chi2 is effective in
feature selection and discretization of numeric and ordinal attributes. In [6], the
authors analyzed the characteristics of the traditional techniques, which makes
use of feature merits based on either the information theoretic, or the statisti-
cal correlation between each feature and the class. Instead, they assigned mer-
its to features by finding each feature’s ’obligation’ to the class discrimination
in the context of other features. The merits were then used to rank the fea-
tures, select a feature subset, and discretize the numeric variables. Example sets
demonstrated that their approach is an alternative to the traditional methods.
Rough Set theory, proposed by Poland mathematician Pawlak in 1982, is a new
mathematic tool to deal with vagueness and uncertainty[7]. Rough Set theory is
widely used in many applications[8,9]. Some researchers and practitioners have
studied discretization methods based on the Rough Set model and got some
meaningful results[10,11]. However, the universe U is supposed to be known in
the basic Rough Set model. Conclusions induced from the universe only apply
to the objects among the universe. Thus, W.Ziarko proposed the Variable Preci-
sion Rough Set model(VPRSM) and presented a classification strategy[12]. It is
used to make decisions if the error rate is lower than the given threshold. Based
on the VPRSM, a method for partitioning continuous attributes is proposed in
this paper. It adjusts error ratio parameter in the VPRSM to realize partition.
Two ways of computing frequency(numbers of records) and width(value ranges
of intervals) are deployed to calculate the misclassification rate of the data. The
classification and generalization capabilities of decision trees are both taken into
account. Experiments were conducted on some open data sets from the UCI
and MLC data repositories. The results are compared with that obtained by the
methods of C4.5 and that in paper[11]. It shows that the method proposed in this
paper is an effective and simple way to discretization of continuous attributes.

2 Basic Concepts in VPRSM

Given an information system I = (U, Q, V, f), q ∈ Q. U denotes the universe. Q
denotes the set of attributes. It is usually divided into two subsets, i.e. C and D,
which denote the set of condition attributes and the set of decision attributes
respectively. V =

⋃
q∈Q Vq denotes the domain of attributes’ value, and f is

an information function which associates a unique value of each attribute with
every object belonging to U .

Definition 1[10]: Let U denote the universe to be learned, and X and Y denote
the non-empty subsets of U . Let:

c(X, Y ) =

{
1 − |X Y |

|X| , |X | > 0
0, |X | = 0

(1)

Where |X | is the cardinality of X and c(X, Y ) is the relative classification error
of the set X with respect to set Y . That is to say, if all elements of set X
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were partitioned into set Y then in c(X, Y )× 100% of the cases we would make
a classification error. Generally, the admissible classification error β must be
within the range 0 ≤ β < 0.5.

Let (U, R̃) be an approximation space, and R∗ = {E1, E2, · · · , En} denote the
set containing the equivalence classes of the equivalence relation R̃.

For any subset X ⊆ U , the β lower approximation of X with respect to R̃ is
defined as:

RβX =
⋃

{Ei ∈ R∗|C(Ei, X) ≤ β} (2)

The β lower approximation of X is also called the β positive region of X ,
denoted as POSβ(X).

The β upper approximation of X with respect to R̃ is defined as:

RβX =
⋃

{Ei ∈ R∗|C(Ei, X) < 1 − β} (3)

The β boundary of X with respect to R̃ is defined as:

bnrβX =
⋃

{Ei ∈ R∗|β < C(Ei, X) < 1 − β} (4)

The β negative region of X with respect to R̃ is defined as:

negrβX =
⋃

{Ei ∈ R∗|C(Ei, X) ≥ 1 − β} (5)

Comparing the VPRSM with the initial Rough Set model, we can easily get
that the VPRSM will turn to be the Rough Set model when β = 0.

3 Discretization of Continuous Attributes Based on
VPRS

Given A ⊆ Q, an equivalence relation Ã can be induced. In the context, the set
{c} and {d} are simply referred to as attribute c and d. The induced equivalence
relations are referred to as c̃ and d̃. Let X = {x1, x2, . . . , xk}, x1 ≤ x2 ≤ . . . ≤ xk,
be the sorted value set of continuous attribute c. Each xi corresponds to a
unique record in U . Hereunder, we will refer to the ith record as xi. An ordered
partition of X with respect to decision attribute d can be obtained. Denote the
partition as c∗ = {X1, X2, · · · , Xl}. For each xm ∈ Xi and xn ∈ Xi+1, we have
xm < xn and f(xm, d) �= f(xn, d). For each xm ∈ Xi and xn ∈ Xi, m �= n,
we have f(xm, d) = f(xn, d). The decision attribute value set corresponding
to X is W = {d1, d2, . . . , dl}, where di ∈ Vd. It should be noted that c∗ also
corresponds to a partition of U . From d1 to dl we can also obtain a partition
of U , which is denoted as Y = {Y1, Y2, · · · , Yl′}, l′ ≤ l. For each xm ∈ Yj and
xn ∈ Yj , we have f(xm, d) = f(xn, d). In fact, l′ is the number of the possible
values of decision attribute. Apparently, Y also corresponds to a partition of the
continuous attribute c. It is easy to understand that the partition c∗ tends to
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discretize continuous attribute c into many narrow intervals and hence reduce
the generalization ability. The rationale for discretizing continuous attribute c is
as follows.

From Y1 to Yl′ , we compute the β positive region POSβ(Yj) of Yj in terms of
Xi, that is POSβ(Yj) =

⋃
β

Xi. Then all of the involved Xis will form an interval

ranging from the minimum value to the maximum value, which can be easily
determined from the ordered subsets in POSβ(Yj). The above process can be
expressed as:

Given X and Y , we are to classify all elements of set Xi into POSβ(Yj) one
by one, then in C(Xi, Yj) × 100% = βi, (i = 1, 2, . . . , l) of the cases we would
make a classification error. Based on the computation of misclassification rate
we have:

Xi ⊆βi Yj , ifβi ≤ β (6)

Hence, c is divided into some intervals which are denoted as S1, S2, . . . , SM ,
M ≤ k.

In applications, there are some cases that have to be considered:
1): If the decision attribute values d1, d2, . . . , dt with respect to xr = xr+1 =
. . . = xr+t−1, (1 ≤ r ≤ k) are different, the most frequent value dmax out of all
the values of the decision attribute is taken as the decision attribute value with
respect to these data.
2): If the decision attribute value corresponding to Sj is the same as that to
Sj+1, the two intervals are merged.
3): If the obtained intervals still overfit the data, or in other words, M is not
smaller enough than k, the generalization capability would be lower than ex-
pected. To further solve this problem, we introduce another parameter 0 ≤ α ≤
0.5. If the decision attribute value corresponding to Sj is different from that to
Sj+1, we calculate the classification error ratio αj of interval Sj+1 with respect
to interval Sj , that is C(Sj , Sj+1). As these intervals are successive, we use the
width of these intervals in stead of the frequency to calculate αj . If αj ≤ α, the
two intervals are merged.

The number of intervals can be changed by adjusting the values of α and β.
Based on the above discussion, discretization of continuous features involves two
steps as follows:

Frequency Step
Calculate classification error ratio βi of the value set Xi if it is included in

POSβ(Yj).
Width Step
Merge the divisiory intervals by calculating classification error ratio αj .

The first step guarantees that the system has good distinguishing ability. The
second step aims at reducing the number of intervals, when overfitting occurs,
in order to enhance the robustness to noise data. The algorithm for discretizing
continuous attributes is:
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DiscretVPRS
Input: A group of records with continuous attribute c. The items of the data
are numbered from Lp to Tp. The ith record’s value of attribute c is xi, the
corresponding decision attribute value is di. Ydi = {xr|f(xr,d)=di

}. The positive
region is POSβ(Ydi). The error ratio α, β are assigned.
1: Initialize i = Lp;
2: Partition the ith record into the positive region;
3: Compare xi with xi+1. If xi is equal to xi+1, i + +, goto 3; else find dmax by
comparing the decision attribute values;
4: Calculate the partition error ratio βi. If i < Tp, goto 3; else goto 5;
5: Find βmin. If βmin ≤ β, xr corresponding to βmin is adopted as the cut
point, and it will partition the whole range under consideration into two discrete
intervals Sj , Sj+1.
6: Calculate αj . If αj < α or the value of the decision attribute corresponding to
Sj is the same as that to Sj+1, the two intervals are merged into one. If r = Tp,
goto 7, else assign r + 1 to i, goto 2;
7: Number these intervals with 0,1,2,. . . . and return.

Continuous attributes are discretized dynamically according to the decision
attribute in this paper. In the aforementioned discretization process, βi and αj

are calculated in terms of frequency and width respectively. The time consumed
in discretization mostly depends on how many discrete intervals are obtained.
In the worst situation, m = k, and the maximal degree of time cost is O(k2).
The intervals or the number of discrete values can be changed by adjusting the
values of parameter α and β in order to reduce the complexity and enhance the
prediction accuracy of the trees. The discrete intervals can also be changed by
choosing the values of α and β according to actual needs.

4 Experimental Comparisons of the Methods for
Discretizing Continuous Attributes

The proposed method is tested on some databases below. The results are com-
pared with that obtained by C4.5. The methods for building and pruning [13]
decision trees are the same as that in C4.5. The databases used in this paper are
listed in Table 1 and Table 2(Tr denotes the size of the train set. Te denotes
the size of the test set. NCA denotes the number of continuous attributes. NDA
denotes the number of decision attribute values).

Firstly, we use the databases in Table 1 (MLC) to test the method proposed
in this paper. Assume that the values of α and β are 0.15, 0.5 respectively. The
results are listed in Table 3. It shows that the sizes of the decision trees generated
by DiscretVPRS are smaller than that by C4.5(Fig. 1) and the estimate accuracy
is higher than that by C4.5 (Fig. 2) with respect to most databases. We use
the databases in Table 2 and compare the results of DiscretVPRS with that
of the method in paper[11]. The results are listed in Table 4. It shows that
the classification accuracy of the decision trees built by the proposed method is
higher than that reported in paper[11].
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Table 1. Databases for experiment 1(MLC)

Name Tr Te NCA NDA

iris 150 50 4 3
crx 490 200 6 2
wine 118 60 13 3
Cars 261 131 7 3
breast 466 233 10 2
Australian 460 230 6 2
EchoCardiogram 87 44 6 2

Table 2. Databases for experiment 2(UCI)

Name Tr NCA NDA

iris 150 4 3
glass 214 9 7
ecoli 336 7 8

Table 3. Comparison results of 1(MLC)

C4.5 DiscretVPRS
size errors size errors

iris Tr 9 3 (2.0%) 7 3 (2.0%)
Te 9 1 (2.0%) 7 2 (4.0%)

crx Tr 58 24 (4.9%) 44 46 (9.4%)
Te 58 35 (17.5%) 44 32 (16.0%)

wine Tr 9 1 (0.8%) 11 1 (0.8%)
Te 9 9 (15.0%) 11 3 (5.0%)

cars Tr 35 1 (0.4%) 35 1 (0.4%)
Te 35 3 (2.3%) 35 2 (1.5%)

breast Tr 29 6 (1.3%) 11 18 (3.9%)
Te 29 15 (6.4%) 11 12 (5.2%)

Australian Tr 58 30 (6.5%) 56 42 (9.1%)
Te 58 30 (13.0%) 56 30 (13.0%)

Echoca- Tr 9 15 (17.2%) 9 20 (23.0%)
diogram Te 9 19 (43.2%) 9 14 (31.8%)

Table 4. Comparison results of 2(UCI)

Name Error (DiscretVPRS) Error(method in paper[11])

iris 2.0% 5.5%
glass 15.4% 34.1%
ecoli 16.1% 18.4%
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Fig. 1. The sizes of decision trees generated by DiscretVPRS and C4.5

Fig. 2. The estimate accuracy of decision trees generated by DiscretVPRS and C4.5

5 Conclusions

A new method for discretizing continuous attributes based on the Variable Pre-
cision Rough Set model is introduced in this paper. The process of discretization
involves two steps that first concern the number of records in an interval, called
frequency, then the value range of an interval, called width. Both of the steps
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are based on the concept of β positive region in the VPRSM. No pre-determined
M is needed. The classification and generalization capabilities can be promoted
by adjusting the values of α and β. Compared to the previous methods for
discretization of continuous attributes, the presented approach is easy to be im-
plemented, for it simply needs to count how many records have been included
in the positive intervals. Besides, this method is easy to understand from the
Rough Set theory point of view, for the goal of classification is to obtain as
much explicit information as possible. Experiments show that it is an effective
method for discretizing continuous attributes.
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Abstract. We consider different variants of Variable Consistency Domi-
nance-based Rough Set Approach (VC-DRSA). These variants produce
more general (extended) lower approximations than those computed by
Dominance-based Rough Set Approach (DRSA), (i.e., lower approxima-
tions that are supersets of those computed by DRSA). They define lower
approximations that contain objects characterized by a strong but not
necessarily certain relation with approximated sets. This is achieved by
introduction of parameters that control consistency of objects included
in lower approximations. We show that lower approximations generalized
in this way enable us to observe dependencies that remain undiscovered
by DRSA. Extended lower approximations are also a better basis for
rule generation. In the paper, we focus our considerations on different
definitions of generalized lower approximations. We also show definitions
of VC-DRSA decision rules, as well as their application to classifica-
tion/sorting and ranking/choice problems.

1 Introduction

In this paper we consider different variants of the rough set approach, called
Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA). We
relate these variants to other approaches presented so far that tend to relax the
classical definition of the lower approximation. Lower approximation of set X is
a set of objects x which certainly belong to X . Because of the required certainty
of the membership of x to X , the condition of inclusion of x to the lower approx-
imation of X is very strict. Upper approximation of X is a set of objects x that
possibly belong to X . This means that any object x for which we can detect a
relation to X is included in the upper approximation of X . Thus, classical defi-
nitions can lead to small lower approximations and large upper approximations.
This is why approaches that detect objects having strong but not necessarily
certain relation to X have been proposed. Such objects are included into an
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extended lower approximation. Historically, the first approach that involves ex-
tension of lower approximation was introduced by Ziarko [19] and called Variable
Precision Rough Set (VPRS) approach. This approach extends classical rough
set approach [9] that employs indifference relation to build granules of knowl-
edge. The first definition that followed a similar intuition for Dominance-based
Rough Set Approach (DRSA) [4] was presented by Greco et al. [5]. In both
these approaches a test based on rough membership function [10] is performed
to include objects into an extended lower approximation. Other approaches that
extend classical rough set approach are based on the use of the Bayes factor [11]
or the confirmation measure [7]. In this paper, however, we focus on approaches
that extend DRSA and use different variants of the rough membership func-
tion. We present advantages and disadvantages of different variable consistency
dominance-based approaches used so far and propose some new variants. Fur-
thermore, we relate the approaches presented here to VPRS. We also show how
rules are induced in VC-DRSA.

The paper is organized as follows. In section 2 we introduce elementary notions
that are used in DRSA. Section 3 includes presentation of different variable
consistency dominance-based approaches proposed so far and new definitions of
VC-DRSA that have some desired properties. In section 4 we present decision
rules from VC-DRSA perspective. We conclude the paper with a discussion.

2 Information Table, Pairwise Comparison Table and
Approximated Sets

One of the basic concepts in DRSA is the information table, defined as a set
of objects U , described by a set G = {g1, g2, . . . , gn} of criteria and regular
attributes. By a criterion we understand an attribute for which values are ordered
according to a scale of preference. In a specific case, scale of preference may be
given by a decision maker (DM). Otherwise, it can be interpreted as an order
in the domain of attribute introduced into the problem as a part of domain
knowledge. We distinguish gain and cost criteria. For gain criterion (e.g. comfort
of a car) the greater the value of the criterion, the greater the preference of the
DM. For cost criterion (e.g. price of a car) preference of the DM increases along
with decrease of the value of such criterion. We distinguish cardinal and ordinal
criteria. In case of cardinal criterion (defined on ratio or interval scale) it is
possible to specify the degree of the intensity of preference for each difference of
evaluations. For ordinal criteria we can only consider order of evaluations, since
differences of evaluations are meaningless. By a regular attribute we understand
an attribute for which values are not ordered according to preference.

If the set of attributes of the information table is divided into set of condition
attributes C and set of decision attributes D, where C ∪ D = G, then such
a table is called decision table. Decision attributes introduce partition of the
original set of objects U into decision classes. In order to analyze decision table
within DRSA context, we need at least one condition criterion and at least one
decision criterion. This requirement is necessary in order to build dominance
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cones in condition and decision evaluation space. Without loss of generality we
will further assume that decision table includes only one decision criterion. Each
value of this criterion, appearing in a decision table, represents assignment of an
object to a single decision class.

Within DRSA three classes of problems are considered. These are classification
(also called sorting), ranking and choice problems. When we solve a classifica-
tion problem, our goal is to obtain a classifier that will enable us to interpret
dependencies observed in analyzed data and to classify new objects. In case of
ranking and choice problems, our goal is to obtain a ranking method. However,
when the decision problem involves preferences of the DM, then the main goal
of all three problems is to induce a preference model of the DM. In DRSA,
the preference model is induced from preference information provided by the
DM and stored in a decision table. For classification problems decision table is
composed of objects assigned to pre-defined, preference-ordered decision classes
Cl1, Cl2, . . . , Clm. Order of decision classes results from complete order in the
domain of decision criterion. For ranking or choice problems we start with deci-
sion table composed of pairwise comparisons of reference objects. This decision
table is called pairwise comparison table (PCT). Each row of PCT corresponds
to one pair of objects. Every pair is evaluated on the set of condition attributes.
For cardinal criteria, pairs of objects may be characterized by either degrees of
the intensity of preference (given by the DM) or simply differences of evalua-
tions (which does not require involvement of the DM). For ordinal criteria and
for regular attributes, ordered pairs of values are stored directly in PCT. We
consider, in general, that each pair of objects is described by a graded compre-
hensive preference relation ,h, where h ∈ H . H being a set of numbercoded
degrees of intensity of preference, such that H ≡ (H− ∪ {0} ∪ H+), H ⊂ [−1, 1]
and h ∈ H+ if and only if (iff) −h ∈ H− ([3]).

Let us now introduce some basic DRSA notions. Upward (downward) union
of decision classes composed of class Clt and more (less) preferred classes will
be denoted by Cl≥t (Cl≤t ). Upward (downward) union of graded comprehensive
preference relations composed of relation ,h and relations with higher (lower)
grades of comprehensive preference will be denoted by ,≥h (,≤h). Since we
want to present general VC-DRSA, that can be applied both to classification
and ranking/choice problems, we use symbol Xi, i ∈ {1, 2, . . . , m} to refer to a
single decision class or a single graded comprehensive preference relation, and
symbol X≥

i (X≤
i ) to refer to upward (downward) union of decision classes or

upward (downward) union of graded comprehensive preference relations. With
respect to (w.r.t.) single criterion we will use symbols � and * to indicate weak
preference and inverse weak preference, respectively. If gi ∈ G is a gain (cost)
criterion, then gi(x) � gi(y) means that gi(x) is greater (smaller) than gi(y).

In order to define rough approximations of unions X≥
i and X≤

i , we need the
concept of dominance relation w.r.t. a subset of condition attributes (criteria
and regular attributes) P ⊆ C. In case of classification problems, object x is
said to dominate object y w.r.t. P ⊆ C (xDP y) iff for each criterion gi ∈ P
there is gi(x) � gi(y) and for each regular attribute gi ∈ P there is gi(x) = gi(y).
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For ranking and choice problems dominance is defined between pairs of objects
(x, y) and (w, z). Furthermore, set P is seen as a union of three sets: PN , PO

and PA. These sets are composed of cardinal criteria, ordinal criteria and regular
attributes, respectively. Pair (x, y) is said to dominate pair (w, z) w.r.t. P ⊆ C iff
at the same time dominance occurs w.r.t. PN and PO and indiscernibility occurs
w.r.t PA. For cardinal criteria two situations are possible. Firstly, if differences
of evaluations are stored in PCT, then we have (x, y) DP N (w, z) iff for each
gi ∈ PN there is δi(x, y) � δi(w, z), where δi(x, y) = gi(x) − gi(y). Secondly, if
the DM expresses his/her preferences w.r.t. PN in terms of the degrees of the
intensity of preference, then we have (x, y) DP N (w, z) iff for each gi ∈ PN x
is preferred to y at least as strongly as w is preferred to z. Precisely, "at least
as strongly" means "in at least the same degree", i.e., for each gi ∈ PN x is
preferred to y in degree hi, w is preferred to z in degree ki and hi ≥ ki. For the
set of ordinal criteria PO ⊆ C, dominance relation (x, y) DP O (w, z) occurs iff
for each gi ∈ PO there is gi(x) � gi(w) and gi(y) * gi(z). For the set of regular
attributes PA ⊆ C, indifference relation (x, y) =P A (w, z) occurs iff for each
gi ∈ PA there is gi(x) = gi(w) and gi(y) = gi(z).

We use dominance relation to define dominance cones in the space of condition
attributes. For classification problem, given a set of condition attributes P ⊆ C
and object x, P -dominating set (positive dominance cone) is defined as D+

P (x) =
{y ∈ U : y DP x}, while P -dominated set (negative dominance cone) is defined as
D−

P (x) = {y ∈ U : xDP y}. For ranking or choice problem, we consider pairs of
objects in analogous definitions: D+

P (x, y) = {(w, z) ∈ U × U : (w, z)DP (x, y)}
and D−

P (x, y) = {(w, z) ∈ U × U : (x, y)DP (w, z)}.
Dominance cones are building blocks used to define rough approximations of

unions X≥
i and X≤

i , which is described in the next section.

3 Variable Consistency Model of DRSA

One of the most important features of rough set approach is separation of certain
and possible knowledge. In (VC-)DRSA this is achieved by defining lower and
upper approximations of unions of decision classes Cl≥t and Cl≤t or unions of
graded comprehensive preference relations ,≥h and ,≤h. As mentioned before,
these unions are denoted by X≥

i and X≤
i . To unify the notation for classification

and ranking/choice problems, we use symbols x and y to denote either single
objects from simple decision table (classification) or pairs of objects from PCT
(ranking/choice). This is done because both single objects and pairs of objects
are points in multidimensional attribute space. The set of all objects from a
simple decision table and the set of all pairs of objects from a PCT are denoted
by U . Furthermore, in definitions presented in this section, P ⊆ C is a subset
of condition attributes and | · | denotes cardinality of a set. We also use sym-
bol X≤

i−1 (X≥
i+1) to denote union composed of decision classes (classification)

or comprehensive preference relations (ranking/choice), which are less (more)
preferred than Xi.
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Classical definitions of P -lower approximations, P -upper approximations and
P -boundaries of X≥

i and X≤
i are the following:

P (X≥
i ) =

{
x ∈ U : D+

P (x) ⊆ X≥
i

}
, P (X≤

i ) =

{
x ∈ U : D−

P (x) ⊆ X≤
i

}
(1)

P (X≥
i ) =

⋃
x∈X≥

i

D+
P (x), P (X≤

i ) =
⋃

x∈X≤
i

D−
P (x) (2)

BnP (X≥
i ) = P (X≥

i ) − P (X≥
i ), BnP (X≤

i ) = P (X≤
i ) − P (X≤

i ) (3)

In VC-DRSA conditions of inclusion to lower approximations are softened by
introduction of consistency level parameter l ∈ (0, 1], which controls consistency
of approximations. In this way lower approximations are extended, because they
can include objects which according to the classical definition would not enter
the lower approximations. Below we present a survey of variable consistency ap-
proaches proposed so far and we analyze their advantages and disadvantages.
Finally, we propose new definitions of lower approximations, which solve prob-
lems pointed out during analysis. We concentrate only on extended P -lower
approximations P l(X≥

i ) and P l(X≤
i ). For each presented approach P -upper

approximations and P -boundaries are defined in the same way:

P
l
(X≥

i ) = U − P l(X≤
i−1), P

l
(X≤

i ) = U − P l(X≥
i+1) (4)

Bn l
P (X≥

i ) = P
l
(X≥

i ) − P l(X≥
i ), Bn l

P (X≤
i ) = P

l
(X≤

i ) − P l(X≤
i ) (5)

The first variable consistency approach was presented in [5]. It involves the
following definitions of P -lower approximations of X≥

i and X≤
i :

P l(X≥
i ) =

{
x ∈ X≥

i :
|D+

P (x) ∩ X≥
i |

|D+
P (x)|

≥ l

}
(6)

P l(X≤
i ) =

{
x ∈ X≤

i :
|D−

P (x) ∩ X≤
i |

|D−
P (x)|

≥ l

}
(7)

According to the above definitions, extended P -lower approximation of consid-
ered union consists of those objects x from that union, for which consistency of
dominance cone is sufficient (not smaller than l). Definitions (6) and (7) have the
advantage that lower approximation of a union is composed of objects from that
union only. The disadvantage of these definitions is that it is possible that some
object x belongs to extended lower approximation of union X≥

i , while another
object y ∈ X≥

i , dominating object x, does not belong to P l(X≥
i ) (analogical

situation is possible for P l(X≤
i )). We call such a situation: lack of monotonicity

of membership to lower approximation. It is presented in Fig. 1a. As we may
see, P 0.75(X≥

i ) includes object b only, while P 0.75(X≤
i−1) includes object g only.
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a) Extended P -lower approximations concordant
with definitions (6) and (7).

b) Extended P -lower approximations concordant
with definitions (6) and (7), with conditions x ∈
X≥

i and x ∈ X≤
i replaced by condition x ∈ U .

Fig. 1. Exemplary data sets described by two condition gain criteria g1 and g2. Filled
figures correspond to objects from extended P -lower approximations (for P = C).

Objects c and d (e and f) do not belong to extended P -lower approximation,
although they dominate (are dominated by) object b (object g), because there
is object h (object a) which is inconsistent with objects b, c, d (e, f , g).

Slightly different definitions of extended lower approximations were presented
in [3,14,16]. The only difference with respect to (6) and (7) is that conditions
x ∈ X≥

i and x ∈ X≤
i are replaced by condition x ∈ U . Unfortunately, such defin-

itions of extended lower approximations also suffer from the lack of monotonicity
of membership to lower approximation. Moreover, it is possible that extended
lower approximation of some union X≥

i or X≤
i includes (only) objects which are

not from the approximated union. This problem is shown in Fig. 1b. As we may
observe, lower approximation of union X≥

i (X≤
i−1) is composed only of object e

(object b), which does not belong to union X≥
i (X≤

i−1).

a) Extended P -lower approximations concordant
with definition (9), used with definition (8).

b) Extended P -lower approximations concordant
with definition (9), used with definition (10).

Fig. 2. Exemplary data sets described by two condition gain criteria g1 and g2. Filled
figures correspond to objects from extended P -lower approximations (for P = C).

The next variable consistency approach was introduced in [15]. This approach

involves auxiliary definitions of coefficients ε
X≥

i

P (x) and ε
X≤

i

P (x), which we call
robust consistency coefficients. When considering union X≥

i (X≤
i ), for each ob-

ject x ∈ X≥
i (x ∈ X≤

i ) robust consistency coefficient ε
X≥

i

P (x) (εX≤
i

P (x)) is defined
as follows:
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ε
X≥

i

P (x) = max
y∈D−

P (x)

|D+
P (y) ∩ X≥

i |
|D+

P (y)|
, ε

X≤
i

P (x) = max
y∈D+

P (x)

|D−
P (y) ∩ X≤

i |
|D−

P (y)|
(8)

According to [15], extended P -lower approximations of unions X≥
i and X≤

i are
defined as:

P l(X≥
i ) =

{
x ∈ X≥

i : ε
X≥

i

P (x) ≥ l
}
, P l(X≤

i ) =
{

x ∈ X≤
i : ε

X≤
i

P (x) ≥ l
}

(9)

The main advantage of the approach proposed in [15] is the monotonicity of
membership to lower approximation, which means that if an object x ∈ X≥

i

belongs to P l(X≥
i ), then each object y ∈ X≥

i dominating x also belongs to
P l(X≥

i ). However, further analysis of the definition from [15] allows us to ob-
serve, that it is possible that some objects x ∈ X≥

i belong to P l(X≥
i ) only

because they dominate other objects y ∈ X≤
i−1, for which consistency of positive

dominance cone D+
P (y) is sufficiently large (not smaller than l). This is the case

in Fig. 2a, for object d (dominating object g). Such situation should be avoided,
as it may cause problems during rule induction process. In our example we can
see that object g, causing inclusion of d to P l(X≥

i ), does not belong to P l(X≥
i )

and consistency of dominance cone D+
P (d) is not sufficient (only equal to 0.5).

In order to reduce drawbacks of variable consistency approaches presented
so far, we introduce a new approach. It is in fact a modification of approach
presented in [15]. We keep definition (9) of extended P -lower approximations of

unions X≥
i and X≤

i , but change auxiliary definition (8) for ε
X≥

i

P (x) and ε
X≤

i

P (x)
into the following:

ε
X

≥
i

P (x) = max
y∈D−

P (x)∩X≥
i

|D+
P (y) ∩ X≥

i |
|D+

P (y)|
, ε

X
≤
i

P (x) = max
y∈D+

P (x)∩X≤
i

|D−
P (y) ∩ X≤

i |
|D−

P (y)|
(10)

As in [15], our new approach assures monotonicity of membership to lower ap-
proximation with respect to objects belonging to X≥

i and X≤
i , respectively. It

also guarantees that extended P -lower approximation of a union X≥
i (X≤

i ) will
include objects belonging to that union only. Moreover, we solved the problem
mentioned during analysis of the approach presented in [15], which is shown in
Fig. 2b - now object d does not belong to the extended P -lower approximation
of union X≥

i , while objects a, b and c still belong to this approximation.
To complete the review, let us remind three basic properties of set approxi-

mations defined for rough sets in [9].

1. Rough inclusion P (X) ⊆ X ⊆ P (X)
2. Complementarity ∀X⊆U P (X) = U − P (U − X)
3. Monotonicity of the accuracy of approximation

∀X⊆U∀P,R⊆C,P⊆R P (X) ⊆ R(X) and R(X) ⊆ P (X)

Within DRSA [4] above properties hold considering unions X≥
i and X≤

i as set
X . Presented here approaches satisfy property 1 (apart from approach presented
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in [3,14,16]) and 2 (according to definition 4). Property 3 does not hold in any
of these approaches. However, this is also the case for other rough set models
such as those presented in [7], [11], [12] and [19]. Property 3 requires that with
the finer granularity resulting from enlarging the set of considered attributes,
lower approximations are not reduced and upper approximations are not en-
larged. In VC-DRSA, lower approximations are extended by objects that are
strongly related to approximated sets but we are not necessarily certain about
their membership to these sets. Required certainty of membership to approxi-
mated set is controlled by consistency level l. In approaches discussed here, the
certainty of membership is expressed as rough membership function [10], that is
not monotone with respect to finer granularity. The value of membership func-
tion could decrease when the set of attributes is enlarged. The consequence is
that, with a finer granularity, an object previously assigned to the lower ap-
proximation could be excluded or an object, previously excluded from the upper
approximation, could be included. To satisfy property 3 one can consider the

following definition of ε
X≥

i

P (x) and ε
X≤

i

P (x):

ε
X≥

i

P = max
y∈D−

T (x)∩X≥
i ,T⊆P

|D+
T (y) ∩ X≥

i |
|D+

T (y)|
, ε

X≤
i

P = max
y∈D+

T (x)∩X≤
i ,T⊆P

|D−
T (y) ∩ X≤

i |
|D−

T (y)|
(11)

However, computation of extended lower approximations according to defini-
tion (9), used together with definition (11), is an NP-hard problem, similar to
induction of a set of decision rules or computation of reducts.

4 Induction of Decision Rules in VC-DRSA

Computation of approximations of unions X≥
i and X≤

i constitutes the first step
of dominance-based rough set analysis of a problem. The next step in this process
is induction of decision rules. In this step information that is contained in ap-
proximations is generalized and thus transformed into knowledge. We define a
decision rule for classification/sorting problem and ranking/choice problem. De-
cision rule is a logical statement of a simple form "if conditions then decision".
It has different syntax depending on the mentioned above problems that it is
defined for. The difference lies in how conditions and decision are defined. Thus,
we define a classification decision rule and a ranking decision rule. However, to
define decision rules consistently in the context of VC-DRSA, we need additional
notions that are derived from approximations. Let us first note that each union
X≥

i has its complement X≤
i−1 and each union X≤

i has its complement X≥
i+1.

P -positive regions of unions X≥
i and X≤

i are defined as:

POS l
P (X≥

i ) =
⋃

x∈P l(X≥
i )

D+
P (x), POS l

P (X≤
i ) =

⋃
x∈P l(X≤

i )

D−
P (x) (12)

When considering object x, all objects belonging to granule of knowledge D+
P (x)

(D−
P (x)) are comparable (in the sense of dominance relation) to x. According to
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definition (12), positive region POS l
P (X≥

i ) (POS l
P (X≤

i )) is composed of all ob-
jects that are comparable to objects that belong to P l(X≥

i ) (P l(X≤
i )). In DRSA,

rules are induced from three types of approximated sets: lower approximations
(certain rules), upper approximations (possible rules) and boundaries (approxi-
mate rules). In the approach presented here, objects belonging to positive region
POS l

P (X≥
i ) (POS l

P (X≤
i )) are basis for induction of VC-DRSA decision rules

for union X≥
i (X≤

i ). Let us note that the concept of positive region used here is
similar to positive region proposed by Ślęzak and Ziarko [12]. Ślęzak and Ziarko
define positive region as extended lower approximation in Variable Precision
Rough Sets and Bayesian Rough Sets.

Basing on the definition of positive regions, we also define P -negative and
P -boundary regions of approximated sets as the following:

NEG l
P (X≥

i ) = POS l
P (X≤

i−1) − POS l
P (X≥

i ) (13)

NEG l
P (X≤

i ) = POS l
P (X≥

i+1) − POS l
P (X≤

i ) (14)

BND l
P (X≥

i ) = U − POS l
P (X≥

i ) − NEG l
P (X≥

i ) (15)

BND l
P (X≤

i ) = U − POS l
P (X≤

i ) − NEG l
P (X≤

i ) (16)

A VC-DRSA decision rule r
X≥

i

j assigning objects to union X≥
i is meant to

cover primarily examples from P l(X≥
i ). Thus examples from P l(X≥

i ) are the

support of rule r
X≥

i

j , denoted by supp(rX≥
i

j ). Support of rule r
X≤

i

j is defined

analogously. Due to the properties of extended lower approximations, rule r
X≥

i

j

will probably also cover other objects from POS l
P (X≥

i ). Objects that are covered

by rule r
X≥

i

j but do not belong to P l(X≥
i ) do not support the rule. Objects

from the negative region NEG l
P (X≥

i ) can’t be covered by rule r
X

≥
i

j . We are
certain that objects from NEG l

P (X≥
i ) have nothing in common with union X≥

i .
Boundary region BND l

P (X≥
i ) is composed of objects for which we have failed

to find enough evidence to include them in either P l(X≥
i ) or P l(X≤

i−1). Objects
from the boundary region, in general, also shouldn’t be covered by the rule.
However, in some cases, this constraint can be softened.

We have shown that positive, negative and boundary regions are important
concepts from the perspective of VC-DRSA rules induction. Let us notice, that
the following properties hold for these regions of unions X≥

i , X≤
i and their

complements X≤
i−1, X≥

i+1:

BND l
P (X≥

i ) = BND l
P (X≤

i−1), BND l
P (X≤

i ) = BND l
P (X≥

i+1) (17)

NEG l
P (X≥

i ) ∩ NEG l
P (X≤

i−1) = ∅, NEG l
P (X≤

i ) ∩ NEG l
P (X≥

i+1) = ∅ (18)

The boundary region of approximated union and the boundary region of its com-
plement are equal. This property seems natural since boundary regions consist
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of objects that we are uncertain to assign either to extended lower approxima-
tion of considered union or to extended lower approximation of its complement.
Intersection of negative region of approximated union and negative region of its
complement is an empty set. This is an important property from both rough set
theory perspective and rule induction perspective. The negative region contains
objects for which we are sure that they don’t belong to considered union. It
seems natural that negative regions of complementary unions should not have
any common part.

Let us now define decision rules, first for classification/sorting problem and
then for ranking/choice problem. In definition of decision rules, we use coefficient
α that measures credibility of a rule. Credibility is defined as a ratio of objects
that support given rule to all objects that are covered by this rule. We define
VC-DRSA decision rules that assign objects to union X≥

i or X≤
i , with credibility

α, l ≤ α ≤ 1.

if gi1(x) � ri1 ∧ . . . ∧ gip(x) � rip ∧ gip+1(x) = rip+1 ∧ . . . ∧ giz(x) = riz

then x ∈ X≥
i with credibility α (19)

if gi1(x) * ri1 ∧ . . . ∧ gip(x) * rip ∧ gip+1(x) = rip+1 ∧ . . . ∧ giz(x) = riz

then x ∈ X≤
i with credibility α (20)

if δi1(x, y) � ri1 ∧ . . . ∧ δik(x, y) � rik ∧
gik+1(x) � rik+1 ∧ gik+1(y) * sik+1 ∧ . . . ∧ gip(x) � rip ∧ gip(y) * sip ∧

gip+1(x) = rip+1 ∧ gip+1(y) = sip+1 ∧ . . . ∧ giz(x) = riz ∧ giz(y) = siz

then (x, y) ∈ X≥
i with credibility α (21)

if δi1(x, y) * ri1 ∧ . . . ∧ δik(x, y) * rik ∧
gik+1(x) * rik+1 ∧ gik+1(y) � sik+1 ∧ . . . ∧ gip(x) * rip ∧ gip(y) � sip ∧

gip+1(x) = rip+1 ∧ gip+1(y) = sip+1 ∧ . . . ∧ giz(x) = riz ∧ giz(y) = siz

then (x, y) ∈ X≤
i with credibility α (22)

In order to clarify the description, we distinguish two subsets of C. Namely,
subset CC composed of criteria and subset CA composed of regular attributes.
Furthermore, let us distinguish two subsets of CC : CN that includes cardinal
criteria and CO including ordinal criteria. Attributes gj, j ∈ {i1, i2, . . . , ip} be-
long to CC . Criteria gj , j ∈ {i1, i2, . . . , ik} belong to CN , while criteria gj , j ∈
{ik + 1, ik + 2, . . . , ip} belong to CO. Attributes gj , j ∈ {ip + 1, ip + 2, . . . , iz}
belong to CA. Moreover, ri and si are values from the domain of attribute gi.
Finally, δi(x, y) denotes either difference of evaluations or degree of the intensity
of preference on criterion gi, depending on problem formulation.

Induction of decision rules is a complex problem and many algorithms have
been introduced to solve it. Examples of rule induction algorithms that were
presented in the context of the rough set analysis are: by Grzymała-Busse [8],
by Skowron [17], by Słowiński and Stefanowski [13], by Stefanowski [18]. Algo-
rithms defined for dominance-based rough set approach are the following: by



On Variable Consistency Dominance-Based Rough Set Approaches 201

Greco et al. [6], by Błaszczyński and Słowiński [1] and by Dembczyński et al.
[2]. All these algorithms can be divided into three categories that reflect different
induction strategies: generation of a minimal set of decision rules, generation of
an exhaustive set of decision rules, generation of a satisfactory set of decision
rules. Algorithms from the first category focus on describing objects from ap-
proximations by minimal number of minimal rules that are necessary to cover
all the objects from the decision table. Algorithms from the second category
generate all possible minimal decision rules. The third category includes algo-
rithms that generate all possible minimal rules that satisfy some a priori defined
requirements (e.g. maximal rule length).

5 Conclusions

In this paper we have presented several variants of variable consistency
dominance-based rough set approach and analyzed their advantages and dis-
advantages. Among them there are some existing approaches and some new
proposals which try to overcome drawbacks of the former ones. We have used
notions of positive, negative and boundary regions of unions of decision classes
Cl≥t , Cl≤t or unions of graded comprehensive preference relations ,≥h, ,≤h.
Further, we have investigated properties of defined regions. We have shown that
extended lower approximations allows us to discover strong but not necessarily
certain dependencies in the analyzed data. Finally, we defined decision rules for
classification/sorting and ranking/choice problems that are induced from posi-
tive regions, created on the basis of extended lower approximations.
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Abstract. In order to treat the ordinality and the monotonicity between
condition and decision attributes in decision tables, the dominance-based
rough set approach (DRSA) has been developed. Moreover, to treat the
hesitation in evaluation, the variable-consistency dominance-based rough
set approach (VC-DRSA) has been proposed. However, the VC-DRSA is
not always suitable to treat errors and outliers. In this paper, we propose
a new approach called a variable-precision dominance-based approach
(VP-DRSA) to be suitable for accommodating errors and outliers.

1 Introduction

Rough sets proposed by Pawlak [1] provide useful tools for reasoning from data.
It is applied to various fields such as medicine, engineering, management, econ-
omy and so on. It is also useful in decision problems [2,3,4]. When the monotonic-
ity between condition attributes and decision attributes is assumed and some
inconsistency is included in the given data, results by the classical rough set
approach are often inconsistent with the monotonicity. This is because the nom-
inality of all condition and decision attributes are assumed in the classical rough
set approach.

In order to overcome this inexpedience, the dominance-based rough set ap-
proach (DRSA) has been proposed by Greco et al. [3,4]. DRSA can treat ordinal
condition and decision attributes as well as nominal ones so that the results are
inconsistent with the monotonicity. Nevertheless, when a given data includes
strong inconsistency, lower approximations become very small and then, we may
not obtain useful results.

Some sources of the inconsistency are conceivable: (1) hesitation in evalua-
tion of decision attribute values, (2) errors in recording, measurement and ob-
servation, (3) missing condition attributes related to the evaluation of decision
attribute values, and so on. To treat the hesitation, the variable-consistency
dominance-based rough set approach (VC-DRSA) [5,4] has been proposed. How-
ever, to treat errors and missing condition attributes, as far as the authors know,
no approach has proposed, so far.

In this paper, we propose an approach to treat errors and missing condi-
tion attributes in the frame work of DRSA. For this purpose, we introduce the

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. A decision table of student evaluation

Student Mathematics Literature Passing Status
S1 Excellent Very Good Yes
S2 Excellent Medium Yes
S3 Very Good Very Good No
S4 Very good Good Yes
S5 Very Good Bad Yes
S6 Very Good Utterly Bad No
S7 Good Excellent Yes
S8 Medium Excellent Yes
S9 Medium Bad Yes
S10 Bad Medium No
S11 Bad Very Bad No
S12 Very Bad Very Bad No
S13 Very Bad Utterly Bad No
S14 Utterly Bad Medium No
S15 Utterly Bad Bad No
S16 Utterly Bad Very Bad No
S17 Utterly Bad Utterly Bad No

idea of variable precision rough set approach proposed by Ziarko [6]. Therefore,
the proposed approach is called the variable-precision dominance-based rough
set approach (VP-DRSA). Corresponding to lower and upper approximations,
positive and non-negative regions are defined. Then we define variable-precision
dominance-based rough sets as pairs of positive and non-negative regions and ex-
amine their properties. Moreover, we show differences among DRSA, VC-DRSA
and VP-DRSA using a simple numerical example.

This paper is organized as follows. In Section 2, we review DRSA and VC-
DRSA. Using a simple example, we show the inexpediences of DRSA and VC-
DRSA. We emphasize that DRSA and VC-DRSA do not always work well when
given decision tables include outliers. In order to treat outliers properly, we
propose VP-DRSA in Section 3. The properties of positive and non-negative
regions in VP-DRSA are investigated. The proposed VP-DRSA is applied to
the simple example to show how it analyzes the example appropriately. Finally
concluding remarks are given in Section 4.

2 Dominance-Based Rough Set Approach

2.1 Decision Table with Dominance Relations

Consider a decision table T = 〈U, C∪{d}, V, ρ〉 shown in Table 1. A decision table
T is characterized by an object set U , a condition attribute set C and a decision
attribute d, an attribute value set V =

⋃
a∈C∪{d} Va (Va is a set of all values

of attribute a) and an information function ρ : U × C ∪ {d} → V . In Table 1,
we have U = {S1, S2, . . . ,S17}, C = {Mathematics (Math), Literature (Lit)},
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d = Passing Status (PS) and V = {Utterly Bad (UB), Very Bad (VB), Bad (B),
Medium (M), Good (G), Very Good (VG), Excellent (E), Yes (Y), No (N)}. The
information function ρ is characterized by the table so that we know, for
example, ρ(S2, Math) = E and ρ(S11, PS) = N.

In cases such as Table 1, we assume that the better condition attribute values
are, the better the decision value is. Namely, in Table 1, we assume a student
having better evaluations in Math and Lit, he/she can have a better value in
PS. However, an inconsistency with this monotonicity is found in Table 1. For
example, an inconsistency is found in evaluation between S3 and S9. S3 takes
much better evaluations in Math and Lit but a worse result in PS than S9. In
cases when inconsistencies are included in given decision tables, the results of the
classical rough set approach are often inconsistent with the monotonicity, too. To
overcome this inexpedience, the dominance-based rough set approach (DRSA)
has been proposed by Greco et al. [3,4]. In DRSA, we can treat nominal and
ordinal condition attributes at the same time but in this paper, for the sake of
simplicity, we consider a case that all condition attributes are ordinal. By this
simplification, we do not loose the essence of the proposed approach.

2.2 DRSA

Let Clk, k = 1, 2, . . . , n be decision classes. Namely, to each decision attribute
value vdk

, we define Clk = {x ∈ U : ρ(x, d) = vdk
}. We assume a total order for

decision attribute values such that vd1 ≺ vd2 ≺ · · · ≺ vdn , where vdk
≺ vdj means

that vdj is better than vdk
. According to this total order we write Cl1 ≺ Cl2 ≺

· · · ≺ Cln. We also assume a dominance relation on condition attribute values.
A dominance relation with respect to condition attribute p is denoted by ,p and
“v1 ,p v2” means that v1 dominates (is better than) v2. In Table 1, we have
N ≺ Y for decision attribute and E ,p VG ,p G ,p M ,p B ,p VB ,p UB
(p = Math, Lit) for condition attributes.

In order to reflect the weak order and dominance relations, the following
upward and downward unions of decision classes are considered:

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls. (1)

Then, we have

Cl≥1 = Cl≤n = U, Cl≤1 = Cl1, Cl≥n = Cln, (2)

Cl≥t = U − Cl≤t−1, Cl≤t = U − Cl≥t+1, (3)

where we define Cl≤0 = Cl≥n+1 = ∅ so that the second equalities are valid for
t = 1, 2, . . . , n.

On the other hand, using dominance relations on condition attribute values, a
dominance relation between objects with respect to a set of condition attributes
P ⊆ C is defined by

xDP y ⇔ ρ(x, p) �p ρ(y, p) for all p ∈ P , (4)
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where v1 �p v2 if and only if v1 ,p v2 or v1 = v2. Then, given P ⊆ C and x ∈ U ,
we define

D+
P (x) = {y ∈ U : yDpx}, D−

P (x) = {y ∈ U : xDpy}. (5)

Given P ⊆ C, P -lower and P -upper approximations of Cl≥t and Cl≤t are
defined as follows:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t }, P (Cl≥t ) =

⋃
{D+

p (x) : x ∈ Cl≥t }, (6)

P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t }, P (Cl≤t ) =

⋃
{D−

p (x) : x ∈ Cl≤t }. (7)

Using those upper and lower approximations, decision tables with dominance
relations can be analyzed in the same way as the classical rough set approach.
The properties of P -upper and P -lower approximations are shown in Greco
et al. [3,4]. Some of them are shown as follows:

P (Cl≥t ) ⊆ Cl≥t ⊆ P (Cl≥t ), P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl≤t ). (8)

Moreover, when Dp is reflexive and transitive, we have

P (Cl≥t ) =
⋃

{D+
P (x) : D+

P (x) ⊆ Cl≥t }, (9)

P (Cl≤t ) =
⋃

{D−
P (x) : D−

P (x) ⊆ Cl≤t }. (10)

By definition, upper approximations P (Cl≥t ) and P (Cl≤t ) can be represented by
unions of D+

P (x) and D−
P (x), respectively. When Dp is reflexive and transitive,

lower approximations P (Cl≥t ) and P (Cl≤t ) can be also represented by unions of
D+

P (x) and D−
P (x), respectively, as shown in (9) and (10).

2.3 VC-DRSA

The inconsistency with the monotonicity can be understood as the decision
maker’s hesitation in evaluation. In order to treat the hesitation, Greco et al. [4,5]
proposed the variable-consistency dominance-based rough set approach.

The degree of consistency of a fact that an object x ∈ U belongs to Cl≥t with
respect to P ⊆ C is defined by

α =
|D+

P (x) ∩ Cl≥t |
|D+

P (x)|
, (11)

where |X | stands for the cardinality of a set X . Then, given a consistency level
l ∈ [0, 1], a P -lower approximation of Cl≥t with respect to P ⊆ C is defined as a
set of objects x ∈ Cl≥t whose consistency degrees are not less than l, i.e.,

P l(Cl≥t ) =

{
x ∈ Cl≥t :

|D+
P (x) ∩ Cl≥t |
|D+

P (x)|
≥ l

}
. (12)
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Similarly, a P -lower approximation of Cl≤t with respect to P ⊆ C is defined by

P l(Cl≤t ) =

{
x ∈ Cl≤t :

|D−
P (x) ∩ Cl≤t |
|D−

P (x)|
≥ l

}
. (13)

By using the duality, P -upper approximations of Cl≥t and Cl≤t with respect
to P ⊆ C can be defined by

P
l
(Cl≥t ) = U − P l(U − Cl≥t ) = U − P l(Cl≤t−1)

= Cl≥t ∪
{

x ∈ Cl≤t :
|D−

P (x) ∩ Cl≥t |
|D−

P (x)|
> 1 − l

}
, (14)

P
l
(Cl≤t ) = U − P l(U − Cl≤t ) = U − P l(Cl≥t+1)

= Cl≤t ∪
{

x ∈ Cl≥t :
|D+

P (x) ∩ Cl≤t |
|D+

P (x)|
> 1 − l

}
. (15)

P -lower and P -upper approximations in VC-DRSA satisfy

P l(Cl≥t ) ⊆ Cl≥t ⊆ P
l
(Cl≥t ), P l(Cl≤t ) ⊆ Cl≤t ⊆ P

l
(Cl≤t ). (16)

This equation corresponds to (8). However, P -lower and upper approximations
in VC-DRSA do not have properties corresponding to (9) and (10). Namely,
P -lower and P -upper approximations are not always represented by unions of
D+

P (x) and D−
P (x).

2.4 Inexpediences of DRSA and VC-DRSA

The following example demonstrates the inexpediences of DRSA and VC-DRSA.
We show only P -lower approximations since P -upper approximations can be
obtained as the complements of P -lower approximations (see Greco et al. [3,4]).

Example 1. Consider a decision table given in Table 1. As described already,
this decision table include inconsistencies. The data of S3 can be regarded as
an outlier. This inconsistency may be caused by some error in recording or
observation. Let us see what inexpediences can happen in such cases.

From Table 1, we have Cl≥Y = {S1, S2, S4, S5, S7, S8, S9} and Cl≤N = {S3, S6,
S10, S11, . . . ,S17}. Let P = C then we obtain

P (Cl≥Y) = {S1, S2, S7, S8}, P (Cl≤N) = {S6, S10, S11, . . . ,S17}.

Based on these results, we can induce the following decision rules:

– if ρ(x, Math) �M E then ρ(x, PS) �PS Y,
– if ρ(x, Lit) �L E then ρ(x, PS) �PS Y,
– if ρ(x, Math) *M B then ρ(x, PS) *PS N,
– if ρ(x, Lit) *L VB then ρ(x, PS) *PS N.
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Fig. 1. Decision rules in DRSA Fig. 2. Decision rules in VC-DRSA

where �M , �L, *M and *L denote �Math, �Lit, *Math and *Lit, respectively.
The obtained rules can be illustrated on the Math-Lit coordinate as in Figure 1.
By the existence of an outlier, the P -lower approximation of Cl≥Y becomes small.
Thus decision rules induced from P (Cl≥Y) covers only small areas. A relatively
big area on the Math-Lit coordinate has no estimated values of PS.

Now let us apply VC-DRSA with l = 0.75. We have

P l(Cl≥Y) = {S1, S2, S5, S7, S8, S9}, P l(Cl≤N) = {S3, S6, S10, S11, . . . ,S17}.

Based on these results, we can induce the following decision rules with consis-
tency degrees (see Greco et al. [5] for reference):

– if ρ(x, Math) �M E then ρ(x, PS) �PS Y [α = 1],
– if ρ(x, Math) �M VG and ρ(x, Lit) �L B then ρ(x, PS) �PS Y [α = 0.8],
– if ρ(x, Lit) �L E then ρ(x, PS) �PS Y [α = 1],
– if ρ(x, Math) �M M and ρ(x, Lit) �L B then ρ(x, PS) �PS Y [α = 0.875],
– if ρ(x, Math) *M VG and ρ(x, Lit) *L VG then ρ(x, PS) *PS N

[α = 0.769],
– if ρ(x, Math) *M B then ρ(x, PS) *PS N [α = 1],
– if ρ(x, Lit) *L VB then ρ(x, PS) *PS N [α = 1].

These rules are illustrated in Figure 2. By VC-DRSA, we obtained more decision
rules which covers large area on the Math-Lit coordinate. The conflictions occur
in the shaded box with bold edges in Figure 2. This area implies the hesitant area
for the decision maker in VC-DRSA. It is large because of the outlier. Moreover,
note that S4 ∈ Cl≥Y which takes better values in both Math and Lit than S5 and
S9 is not included in P l(Cl≥Y) but S5 and S9 are. A similar strange result can be
also found in the obtained decision rules. Namely, the second rule obtained from
S5 has stronger condition than the forth rule obtained from S9 but the second
takes smaller consistency level than the forth. Such strange results can happen
in VC-DRSA applications to decision tables including outliers.
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Finally, we note that, under the policy inducing only rules with stronger con-
sistency, this strange result will never appear. This kind of modification in de-
finitions of P -lower and upper approximations can be found in S�lowiński and
Greco [7]. At any rate, VC-DRSA is applicable to cases when the inconsistency
comes from the hesitation in evaluation.

3 VP-DRSA

3.1 Definitions and Properties

In order to treat the inconsistency caused by errors in recording, measurement,
observation, and so on, we propose a variable-precision dominance-based rough
set approach (VP-DRSA). As a counterpart of consistency degree in VC-DRSA,
we define the precision of x ∈ Cl≥t by

β =
|D−

P (x) ∩ Cl≥t |
|D−

P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

. (17)

Let us interpret the precision β. For any y ∈ D−
P (x), from the dominance

relation DP , we may infer that ρ(x, d) �d ρ(y, d), i.e., x is included in a decision
class not worse than the decision class to which y belongs. Thus for any y ∈
D−

P (x) ∩ Cl≥t , we may infer x ∈ Cl≥t . Hence |D−
P (x) ∩ Cl≥t | is the number of

objects which endorses x ∈ Cl≥t . On the contrary, by the same consideration, for
any z ∈ D+

P (x)∩Cl≤t−1, we may infer x ∈ Cl≤t−1 = U−Cl≥t . Hence |D+
P (x)∩Cl≤t−1|

is the number of objects which endorses x�∈Cl≥t . Other objects endorse neither
x ∈ Cl≥t nor x �∈ Cl≥t . Therefore, β is the ratio of objects endorsing x ∈ Cl≥t to
all objects endorsing x ∈ Cl≥t or x �∈ Cl≥t .

Then, given a precision level l ∈ [0, 1], corresponding to the P -lower approxi-
mation of Cl≥t , a P -positive region of Cl≥t with respect to P ⊆ C is defined as
a set of objects x ∈ U whose degrees of precision are not less than l, i.e.,

POSl
P (Cl≥t ) =

{
x ∈ U :

|D−
P (x) ∩ Cl≥t |

|D−
P (x) ∩ Cl≥t | + |D+

P (x) ∩ Cl≤t−1|
≥ l

}
. (18)

Similarly, a P -positive region of Cl≤t with respect to P ⊆ C is defined by

POSl
P (Cl≤t ) =

{
x ∈ U :

|D+
P (x) ∩ Cl≤t |

|D+
P (x) ∩ Cl≤t | + |D−

P (x) ∩ Cl≥t+1|
≥ l

}
. (19)

By using the duality, corresponding to P -upper approximations, P -non-
negative regions of Cl≥t and Cl≤t with respect to P ⊆ C can be defined by

NNGl
P (Cl≥t ) = U − POSl

P (U − Cl≥t ) = U − POSl
P (Cl≤t−1)

=

{
x ∈ U :

|D−
P (x) ∩ Cl≥t |

|D−
P (x) ∩ Cl≥t | + |D+

P (x) ∩ Cl≤t−1|
> 1 − l

}
, (20)
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NNGl
P (Cl≤t ) = U − POSl

P (U − Cl≤t ) = U − POSl
P (Cl≥t+1)

=

{
x ∈ U

∣∣∣∣ |D+
P (x) ∩ Cl≤t |

|D+
P (x) ∩ Cl≤t | + |D−

P (x) ∩ Cl≥t+1|
> 1 − l

}
.(21)

We can prove that P -positive and P -non-negative regions satisfy

POSl
P (Cl≥t ) ⊆ NNGl

P (Cl≥t ), POSl
P (Cl≤t ) ⊆ NNGl

P (Cl≤t ). (22)

However, POSl
P (Cl≥t ) ⊆ Cl≥t , Cl≥t ⊆ NNGl

P (Cl≥t ), POSl
P (Cl≤t ) ⊆ Cl≤t and

Cl≤t ⊆ NNGl
P (Cl≤t ) are not always valid. This property is same as the classical

variable precision rough sets [6].
When Dp is reflexive and transitive, we have

POSl
P (Cl≥t ) =

⋃{
D+

P (x)
∣∣∣∣ |D−

P (x) ∩ Cl≥t |
|D−

P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

≥ l

}
, (23)

POSl
P (Cl≤t ) =

⋃{
D−

P (x)
∣∣∣∣ |D+

P (x) ∩ Cl≤t |
|D+

P (x) ∩ Cl≤t | + |D−
P (x) ∩ Cl≥t+1|

≥ l

}
, (24)

NNGl
P (Cl≥t ) =

⋃{
D+

P (x)
∣∣∣∣ |D−

P (x) ∩ Cl≥t |
|D−

P (x) ∩ Cl≥t | + |D+
P (x) ∩ Cl≤t−1|

> 1 − l

}
, (25)

NNGl
P (Cl≤t ) =

⋃{
D−

P (x)
∣∣∣∣ |D+

P (x) ∩ Cl≤t |
|D+

P (x) ∩ Cl≤t | + |D−
P (x) ∩ Cl≥t+1|

> 1 − l

}
. (26)

These properties correspond to (9) and (10) in DRSA. These properties are
important to obtain decision rules with fewer conflictions.

Moreover when Dp is reflexive and transitive, we have

POSl
P (POSl

P (Cl≥t )) = NNGl
P (POSl

P (Cl≥t )) = POSl
P (Cl≥t ), (27)

POSl
P (POSl

P (Cl≤t )) = NNGl
P (POSl

P (Cl≤t )) = POSl
P (Cl≤t ), (28)

NNGl
P (NNGl

P (Cl≥t )) = POSl
P (NNGl

P (Cl≥t )) = NNGl
P (Cl≥t ), (29)

NNGl
P (NNGl

P (Cl≤t )) = POSl
P (NNGl

P (Cl≤t )) = NNGl
P (Cl≤t ). (30)

These properties are not always satisfied with P -lower and P -upper approxima-
tions in VC-DRSA but with P -lower and P -upper approximations in DRSA.

3.2 Application to Example 1

Let us apply VP-DRSA to Table 1 which is treated in Example 1. As discussed
in Example 1, applications of DRSA and VC-DRSA to decision tables including
outliers were not very successful. We will see how Table 1 is analyzed appropri-
ately by the proposed VP-DRSA.

Let l = 0.75. Then we have

POSl
P (Cl≥Y) = {S1, S2, S3, S4, S7, S8}, POSl

P (Cl≤N) = {S6, S10, S11, . . . ,S17}.
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Fig. 3. Decision rules in VP-DRSA

Based on these results, we can induce the following decision rules with degrees
of precision:

– if ρ(x, Math) �M E then ρ(x, PS) �PS Y [β = 1],
– if ρ(x, Math) �M VG and ρ(x, Lit) �L G then ρ(x, PS) �PS Y [β = 0.75],
– if ρ(x, Lit) �L E then ρ(x, PS) �PS Y [β = 1],
– ρ(x, Math) *M B then ρ(x, PS) *PS N [β = 1],
– ρ(x, Lit) *L VB then ρ(x, PS) *PS N [β = 1].

These rules are illustrated in Figure 3. In VP-DRSA, the decision attribute value
of the outlier S3 which can be regarded as error data is changed to PS =Y by
endorsements based on S4, S5 and S9. P -lower approximations in VP-DRSA
become larger than that in DRSA. By the change of decision attribute value of
S3, an additional decision rule with 0.75 precision is obtained from decision rules
in DRSA.

By reduction of l to 0.6, S5 is included in the P -positive region of Cl≤Y in VP-
DRSA and another additional decision rule with 0.67 precision, “if ρ(x, Math)
�M VG and ρ(x, Lit) �L G then ρ(x, PS) �PS Y [β = 0.67]” is obtained. Even
if S5 is added to the P -positive region of Cl≤Y , no strange result is obtained.
Namely, the precision of S4 is larger than that of S5. On the other hand, by
augmentation of l to 0.8, the P -positive region of Cl≤Y in VP-DRSA degenerates
to that in DRSA.

4 Concluding Remarks

In this paper, we have proposed a variable-precision dominance-based approach
(VP-DRSA) in order to treat inconsistent data caused by errors in recording,
measurement, observation and so on. The properties of P -positive and P -non-
negative regions are investigated. Inexpediences of DRSA and VC-DRSA are
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demonstrated using an example. We showed that these inexpediences may be
solved by the proposed VP-DRSA.

As the classical variable precision rough set approach [6] is applied to cases
when a condition attribute somewhat related to the decision attribute is miss-
ing, the proposed VP-DRSA may be applied to the same cases with dominance
relations. As DOM-LEM [8], a dominance-based rule induction algorithm is pro-
posed based on DRSA, an extended DOM-LEM algorithm can be designed based
on VP-DRSA. Moreover, as the consistency degree used in VC-DRSA is useful
for inducing a decision tree (see Giove et al. [9]), the precision used in VP-DRSA
may be useful, too.
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2. Pawlak, Z., S�lowiński, R.: Rough set approach to multi-attribute decision analysis,

Eur. J. Oper. Res. 72(3) (1994) 443–459.
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Abstract. Rough sets are applied to data tables containing imprecise
information under probabilistic interpretation. A family of weighted
equivalence classes is obtained, in which each equivalence class is ac-
companied by the probabilistic degree to which it is an actual one. By
using the family of weighted equivalence classes we can derive a lower
approximation and an upper approximation. The lower approximation
and the upper approximation coincide with those obtained from methods
of possible worlds.

Keywords: Rough sets, Imprecise information, Lower and upper ap-
proximations.

1 Introduction

Rough sets proposed by Pawlak [15] play a significant role in the field of knowl-
edge discovery and data mining. The framework of rough sets has the premise
that data tables consist of perfect information. However, there ubiquitously exists
imperfect information containing imprecision and uncertainty in the real world
[14]. Under these circumstances, it has been investigated to apply rough sets to
data tables containing imprecise information represented by a missing value, an
or-set, a possibility distribution etc [1,2,3,6,7,8,9,10,11,12,16,17,18,19,20]. The
methods are broadly separated into three ways. The first method is one based on
possible worlds [16,17]. In the method, a data table is divided into possible tables
that consist of precise values. Each possible table is dealt with in terms of the con-
ventional methods of rough sets to data tables consisting of precise information
and then the results from the possible tables are aggregated. The second method
is to use assumptions on indiscernibility of missing values [1, 2, 6, 7, 8, 9, 19, 20].
Under the assumptions, we can obtain a binary relation for indiscernibility of
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objects. To the binary relation the conventional methods of rough sets are ap-
plied. The third method directly deals with imprecise values under extending
the conventional method of rough sets [10, 11, 12, 20]. In the method, imprecise
values are dealt with probabilistically or possibilistically [10, 11, 12, 20] and the
conventional methods are probabilistically or possibilistically extended. A degree
for indiscernibility between any values is calculated.

For the first method, the conventional methods that are already established
are applied to each possible table. Therefore, there is no doubt for correctness
of the treatment. However, the method has difficulties for knowledge discov-
ery at the level of a set of possible values, although it is suitable for finding
knowledge at the level of possible values. This is because the number of possi-
ble tables exponentially increases as the number of imprecise attribute values
increases.

For the second method, assumptions are used for indiscernibility between a
missing value and an exact value and between missing values. One assumption
is that a missing value and an exact value are indiscernible with each other
[6, 7, 8, 9]. Another assumption is that indiscernibility is directional [1, 2, 19, 20].
Each missing value is discernible with any exact values, whereas each exact value
is indiscernible with any missing value, under indiscernibility or discernibility
between missing values. In the method, it is not clarified why the assumptions
are compromise.

For the third method, first using implication operators, an inclusion degree
was calculated between indiscernible sets, which are not an equivalence class,
for objects [20]. The correctness criterion is that any extended method must
give the same results as the method of possible worlds at the level of possible
values [10]. This criterion is commonly used in the field of databases handling
imprecise information [5,4,21]. Nakata and Sakai have shown that the results in
terms of implication operators do not satisfy the correctness criterion and has
proposed the method that satisfies the correctness criterion [10,11,12]. However,
the proposed method has difficulties for definability, because approximations are
defined by constructing sets from singletons, where equivalence classes are not
used. To overcome the difficulties, the concept of equivalence classes must be ex-
tended probabilistically. We introduce weighted equivalence classes in this paper
and show how weighted equivalence classes are used to data tables containing
imprecise information under probabilistic interpretation1.

In Section 2, we briefly address the conventional methods of rough sets to
data tables containing precise information. In Section 3, methods of possible
worlds are mentioned. In the methods, a data table containing imprecise val-
ues is divided into possible tables. The conventional methods of rough sets to
precise information are applied to each possible table and then the results from
the possible tables are aggregated. In Section 4, an extended method of rough
sets to data tables containing imprecise values probabilistically interpreted are
described in terms of weighted equivalence classes. In Section 5, we present
conclusions.

1 See [13] for possibilistic treatment.
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2 Rough Sets to Precise Information

In data table t consisting of set of attributes A(= {A1, . . . , An}), indiscernibility
relation IND(X) on subset X ⊆ A of attributes is,

IND(X) = {(o, o′) ∈ t × t | ∀Ai ∈ X o[Ai] = o′[Ai]},

where o[Ai] and o′[Ai] denote values of attribute Ai for objects o and o′, respec-
tively. Obviously, IND(X) is an equivalence relation. Family E(X) (= {E(X)o |
o ∈ t}) of equivalence classes is obtained from the indiscernibility relation,
where E(X)o is the equivalence class containing object o and is expressed in
E(X)o = {o′ | (o, o′) ∈ IND(X)}. All equivalence classes obtained from the in-
discernibility relation do not cover with each other. This means that the objects
are uniquely partitioned.

Using equivalence classes, lower approximation Apr(Y, X) and upper approx-
imation Apr(Y, X) of E(Y ) by E(X) are,

Apr(Y, X) = {E(X) | ∃E(Y ) E(X) ⊆ E(Y )},

Apr(Y, X) = {E(X) | ∃E(Y ) E(X) ∩ E(Y ) �= ∅},

where E(X) ∈ E(X) and E(Y ) ∈ E(Y ) are equivalence classes on sets X and Y
of attributes, respectively. These formulas express approximations in terms of a
family of equivalence classes. When we express the approximations in terms of
a set of objects, the following expressions are used:

apr(Y, X) = {o | o ∈ E(X) ∧ ∃E(Y ) E(X) ⊆ E(Y )},

apr(Y, X) = {o | o ∈ E(X) ∧ ∃E(Y ) E(X) ∩ E(Y ) �= ∅}.

3 Methods of Possible Worlds

In methods of possible worlds, a table is divided into possible tables, the con-
ventional ways addressed in the previous section are applied to each possible
table, and then the results from the possible tables are aggregated. When an
imprecise value expressed in an or-set is contained in a data table, the or-set is
probabilistically interpreted such that each element in the or-set has an equal
probabilistic degree to which it is the actual value. In other words, every or-set
is expressed in a uniform probability distribution over the elements contained
in the or-set. This leads to that the data table can be expressed in terms of a
probability distribution of possible tables pt.

t = {(pt1, p(pt1)), . . . , (ptn, p(ptn))}p,

p(pti) = 1/n,

where subscript p denotes a probability distribution, p(pti) denotes the proba-
bilistic degree to which possible table pti is the actual one, n is equal to Πi=1,mli,
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m is the number of imprecise attribute values, and each of them is expressed in
an or-set having li(i = 1, m)) elements.

Each possible table consists of precise values. A family of equivalence classes is
obtained from each possible table pt on set X of attributes. This is possible family
PE(X)pt accompanied by probabilistic degree p(pt). Using possible families of
equivalence classes, family EE(X) of equivalence classes is obtained.

EE(X) = {(PE(X)pt, p(pt)) | p(pt) > 0}
= {(PE(X), κ(PE(X) ∈ EE(X))) | κ(PE(X) ∈ EE(X)) > 0},

where the probabilistic degrees are summed when the same possible family of
equivalence classes is obtained from plural possible tables, so probabilistic degree
κ(PE(X) ∈ EE(X)) to which PE(X) belongs to EE(X) is:

κ(PE(X) ∈ EE(X)) =
∑

PE(X)pt=PE(X)

p(pt).

EE(X) has the property:∑
PE(X)

κ(PE(X) ∈ EE(X)) = 1.

Thus, EE(X) is considered as a probability distribution over PE(X).
Equivalence classes consisting of PE(X)pt in possible table pt are possible

equivalence classes on set X of attributes and have probabilistic degree p(pt) to
which they are an actual equivalence class. Thus, a family of possible equiva-
lence classes accompanied by a probabilistic degree is obtained for each possible
table. The expression for the family of equivalence classes in terms of possible
equivalence classes is:

E(X) = {(E(X), p(pt)) | E(X) ∈ PE(X)pt ∧ p(pt) > 0}
= {(E(X), κ(PE(X)∈EE(X))) | E(X)∈PE(X)∧κ(PE(X) ∈ EE(X))>0}
= {(E(X), κ(E(X) ∈ E(X))) | κ(E(X) ∈ E(X)) > 0},

where the probabilistic degrees are summed when the same possible equivalence
class is obtained from plural possible tables, so probabilistic degree κ(E(X) ∈
E(X)) to which E(X) belongs to E(X) is:

κ(E(X) ∈ E(X)) =
∑

E(X)∈PE(X)pt

p(pt) =
∑

E(X)∈PE(X)

κ(PE(X) ∈ EE(X)).

E(X) has the property: ∑
E(X)

κ(E(X) ∈ E(X)) ≥ 1.

Thus, E(X) has not properties as a probability distribution and is the family
of weighted equivalence classes such that its element is a weighted equivalence
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classes (E(X), κ(E(X) ∈ E(X))). When a table has no imprecise value, all the
elements in E(X) have the same weight equal to 1.

The methods addressed in the previous section are applied to each possi-
ble table. Let Apr(Y, X)

pti
and Apr(Y, X)pti

denote the lower approximation
and the upper approximation of E(Y )pti by E(X)pti in possible table pti hav-
ing probabilistic degree p(pti). Probabilistic degrees κ(E(X) ∈ Apr(Y, X))pti

and κ(E(X) ∈ Apr(Y, X))pti to which equivalence class E(X) is contained in
Apr(Y, X) and Apr(Y, X) for each possible table pti are obtained, respectively,
as follows:

κ(E(X) ∈ Apr(Y, X))pti =

{
p(pti) if E(X) ∈ Apr(Y, X)

pti
,

0 otherwise.

This shows that the probabilistic degree to which equivalence class E(X) is
contained in Apr(Y, X) is equal to p(pti) for possible table pti, if the equivalence
class is an element in Apr(Y, X)

pti
. Similarly,

κ(E(X) ∈ Apr(Y, X))pti =
{

p(pti) if E(X) ∈ Apr(Y, X)pti
,

0 otherwise.

Lower approximation Apr(Y, X) and upper approximation Apr(Y, X) are:

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0},

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0},

where probabilistic degrees κ(E(X) ∈ Apr(Y, X)) and κ(E(X) ∈ Apr(Y, X)) to
which equivalence class E(X) is contained in Apr(Y, X) and Apr(Y, X) are:

κ(E(X) ∈ Apr(Y, X)) =
∑

i=1,n

κ(E(X) ∈ Apr(Y, X))pti ,

κ(E(X) ∈ Apr(Y, X)) =
∑

i=1,n

κ(E(X) ∈ Apr(Y, X))pti .

These formulas show that the summation of the probabilistic degrees obtained
from the possible tables is equal to the probabilistic degree for equivalence class
E(X).

When the lower approximation and the upper approximation are expressed
in terms of a set of objects,

apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0},
apr(Y, X) = {(o, κ(o ∈ apr(Y, X))) | κ(o ∈ apr(Y, X)) > 0},

where probabilistic degrees κ(o ∈ apr(Y, X)) and κ(o ∈ apr(Y, X)) to which
object o is contained in apr(Y, X) and apr(Y, X) are:

κ(o ∈ apr(Y, X)) =
∑

E(X)�o

κ(E(X) ∈ Apr(Y, X)),
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κ(o ∈ apr(Y, X)) =
∑

E(X)�o

κ(E(X) ∈ Apr(Y, X)).

We adopt results from the method of possible worlds as a correctness criterion
of extended methods of rough sets to imprecise information. This is commonly
used in the field of databases handling imprecise information [5, 4, 21].

Correctness criterion
Results obtained from applying an extended method to a data table containing
imprecise information are the same as ones obtained from applying the corre-
sponding conventional method to every possible table derived from that data table
and aggregating the results created in the possible tables.

4 Rough Sets to Imprecise Information

When object o takes imprecise values for attributes, we can calculate a degree
to which the attribute values are the same as another object o′. The degree is
the indiscernibility degree of objects o and o′ on the attributes. In this case, a
binary relation for indiscernibility between objects is,

IND(X) = {((o, o′), κ(o[X ] = o′[X ])) |
(κ(o[X ] = o′[X ]) �= 0) ∧ (o �= o′)} ∪ {((o, o), 1)},

where κ(o[X ] = o′[X ]) denotes the indiscernibility degree of objects o and o′ on
set X of attributes and is equal to κ((o, o′) ∈ IND(X)),

κ(o[X ] = o′[X ]) =
⊗

Ai∈X

κ(o[Ai] = o′[Ai]),

where operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are probabilistically interpreted, the operator is
the product denoted by ×.

Unfortunately, we cannot directly obtain the family of equivalence classes
from IND(X). This is because any transitivity laws do not hold on IND(X).
Therefore, we show another method to obtain the family of equivalence classes
on set X of attributes in a table.

Among the elements of IND(X), indiscernible set S(X)o of objects that are
paired with an object o is,

S(X)o = {o′ | κ((o, o′) ∈ IND(X)) > 0}.

S(X)o is the greatest possible equivalence class among possible equivalence
classes containing objects o. Let PS(X)o denote the power set of S(X)o. From
PS(X)o, family PossE(X)o of possible equivalence classes containing object o
is obtained:

PossE(X)o = {E(X) | E(X) ∈ PS(X)o ∧ o ∈ E(X)}.
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Whole family PossE(X) of possible equivalence classes is,

PossE(X) = ∪oPossE(X)o.

For every possible equivalence class E(X) ∈ PossE(X), probabilistic degree
κ(E(X) ∈ E(X)) to which E(X) is an actual one is,

κ(E(X) ∈ E(X)) = κ(∧o∈E(X) and o′∈E(X)(o[X ] = o′[X ])
∧o∈E(X) and o′ �∈E(X)(o[X ] �= o′[X ])),

where o �= o′, κ(f) is the probabilistic degree to which formula f is satisfied, and
κ(f) = 1 when there exists no f . Family E(X) of weighted equivalence classes
consists of E(X) having κ(E(X) ∈ E(X)) > 0, i.e.,

E(X) = {(E(X), κ(E(X) ∈ E(X))) | κ(E(X) ∈ E(X)) > 0}.

Proposition 1
When (E(X), κ(E(X) ∈ E(X))) is an element of E(X) in table t, there ex-
ist possible tables where the families of equivalence classes contain E(X) and
the summation of probabilistic degrees that the possible tables have is equal to
κ(E(X) ∈ E(X)).

Proposition 2
E(X) in a table is equal to the union of the families of possible equivalence classes
accompanied by a probabilistic degree, where each family of possible equivalence
classes is obtained from a possible table created from the table.

Note that the summation of probabilistic degrees is adopted if there exists the
same equivalence class accompanied by a probabilistic degree in different possi-
ble tables in the union.

Proposition 3
For any object o, ∑

E(X)�o

κ(E(X) ∈ E(X)) = 1.

Using families of weighted equivalence classes, we can obtain lower approx-
imation Apr(Y, X) and upper approximation Apr(Y, X) of E(Y ) by E(X). For
the lower approximation,

Apr(Y, X) = {(E(X), κ(E(X) ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0},

κ(E(X) ∈ Apr(Y, X)) =
∑
E(Y )

((κ(E(X) ⊆ E(Y )) ×

κ(E(X) ∈ E(X)) × κ(E(Y ) ∈ E(Y ))),

where

κ(E(X) ⊆ E(Y )) =
{

1 if E(X) ⊆ E(Y ),
0 otherwise.
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Proposition 4
If (E(X), κ(E(X) ∈ Apr(Y, X))) in table t is an element of Apr(Y, X), there
exist possible tables where the lower approximations contain E(X) and the
summation of probabilistic degrees that the possible tables have is equal to
κ(E(X) ∈ Apr(Y, X)).

Similarly for the upper approximation,

Apr(Y, X) = {(E(X), κ(o ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0},
κ(E(X) ∈ Apr(Y, X)) =

∑
E(Y )

(κ(E(X) ∩ E(Y ) �= ∅) ×

κ(E(X) ∈ E(X)) × κ(E(Y ) ∈ E(Y ))),

where

κ(E(X) ∩ E(Y ) �= ∅) =
{

1 if E(X) ∩ E(Y ) �= ∅,
0 otherwise.

This formula still requires consideration, however, because probabilistic degrees
are duplicately added for intersection. This comes from E(Y ) being not a prob-
ability distribution. Thus, using family EE(Y ) of equivalence classes on set Y of
attributes, which is a probability distribution expressed in terms of possible fam-
ilies of equivalence classes, the formula of the upper approximation is corrected
as follows:

Apr(Y, X) = {(E(X), κ(o ∈ Apr(Y, X))) | κ(E(X) ∈ Apr(Y, X)) > 0},
κ(E(X) ∈ Apr(Y, X)) =

∑
PE(Y )

(κ(E(X) ∩ (∪E(Y )∈PE(Y )E(Y )) �= ∅) ×

κ(E(X) ∈ E(X)) × κ(PE(Y ) ∈ EE(Y ))),

where

κ(E(X) ∩ (∪E(Y )∈PE(Y )E(Y )) �= ∅) =
{

1 if E(X) ∩ (∪E(Y )∈PE(Y )E(Y )) �= ∅,
0 otherwise,

where PE(Y ) is a possible family of equivalence classes, which is accompanied by
probabilistic degree κ(PE(Y ) ∈ EE(Y )) to which PE(Y ) is an element of EE(Y ).
The upper approximation is easily obtained, because the following proposition
holds.

Proposition 5
For the upper approximation, Apr(Y, X) = E(X).

Note that this proposition is valid only for sets X and Y of attributes in the
same table.



Applying Rough Sets to Data Tables Containing Imprecise Information 221

Proposition 6
If (E(X), κ(E(X) ∈ Apr(Y, X))) in table t is an element of Apr(Y, X), there
exist possible tables where the upper approximations contain E(X) and the
summation of probabilistic degrees that the possible tables have is equal to
κ(E(X) ∈ Apr(Y, X)).

For expressions in terms of a set of objects, the same expressions as in Section
3 are used.

Using families of weighted equivalence classes, we can obtain the lower ap-
proximation and the upper approximation for two sets Φ and Ψ . We suppose
that families E(Ψ) and E(Φ) of weighted equivalence classes are obtained for sets
Ψ and Φ, respectively. Let (E(Ψ), κ(E(Ψ) ∈ E(Ψ))) denote an element of E(Ψ)
and (E(Φ), κ(E(Φ) ∈ E(Φ))) denote an element of E(Φ). Lower approximation
Apr(Φ, Ψ) and Upper approximation Apr(Φ, Ψ) of E(Φ) by E(Ψ) are,

Apr(Φ, Ψ) = {(E(Ψ), κ(E(Ψ) ∈ Apr(Φ, Ψ))) | κ(E(Ψ) ∈ Apr(Φ, Ψ)) > 0},

κ(E(Ψ) ∈ Apr(Φ, Ψ)) =
∑
E(Φ)

(κ(E(Ψ) ⊆ E(Φ)) × κ(E(Ψ) ∈ E(Ψ)) ×

κ(E(Φ) ∈ E(Φ))),

where

κ(E(Ψ) ⊆ E(Φ)) =
{

1 if E(Ψ) ⊆ E(Φ),
0 otherwise.

Apr(Φ, Ψ) = {(E(Ψ), κ(E(Ψ) ∈ Apr(Φ, Ψ))) | κ(E(Ψ) ∈ Apr(Φ, Ψ)) > 0},
κ(E(Ψ) ∈ Apr(Φ, Ψ)) =

∑
PE(Φ)

(κ(E(Ψ) ∩ (∪E(Φ)∈PE(Φ)E(Φ))) �= ∅) ×

κ(E(Ψ) ∈ E(Ψ)) × κ(PE(Φ) ∈ EE(Φ))),

where

κ(E(Ψ) ∩ (∪E(Φ)∈PE(Φ)E(Φ)) �= ∅) =
{

1 if E(Ψ) ∩ (∪E(Φ)∈PE(Φ)E(Φ)) �= ∅,
0 otherwise.

For expressions in terms of a set of objects,

apr(Φ, Ψ) = {(o, κ(o ∈ apr(Φ, Ψ))) | κ(o ∈ apr(Φ, Ψ)) > 0}.
κ(o ∈ apr(Φ, Ψ)) = max

E(Ψ)�o
κ(E(Ψ) ∈ Apr(Φ, Ψ)),

apr(Φ, Ψ) = {(o, κ(o ∈ apr(Φ, Ψ))) | κ(o ∈ apr(Φ, Ψ)) > 0}.
κ(o ∈ apr(Φ, Ψ)) =

∑
E(Ψ)�o

κ(E(Ψ) ∈ Apr(Φ, Ψ)),

Proposition 7
The lower approximation and the upper approximation that are obtained by the
method of weighted equivalence classes coincide ones obtained by the method of
possible worlds.
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5 Conclusions

We have proposed a method, where weighted equivalence classes are used, to deal
with imprecise information expressed in an or-set. The lower approximation and
the upper approximation by the method of weighted equivalence classes coincide
ones by the method of possible worlds. In other words, this method satisfies the
correctness criterion that is used in the field of incomplete databases. This is
justification of the method of weighted equivalence classes.
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Abstract. In this paper, we consider an algorithm that generates an
ensemble of decision rules. A single rule is treated as a specific subsidiary,
base classifier in the ensemble that indicates only one of the decision
classes. Experimental results have shown that the ensemble of decision
rules is as efficient as other machine learning methods. In this paper
we concentrate on a common problem appearing in real-life data that is
a presence of missing attributes values. To deal with this problem, we
experimented with different approaches inspired by rough set approach
to knowledge discovery. Results of those experiments are presented and
discussed in the paper.

1 Introduction

Decision rule is a logical expression in the form: if [conditions], then [decision].
If an object satisfies conditions of the rule, then it is assigned to the recommended
class. Otherwise the object remains unassigned. Decision rules were common in
the early machine learning approaches [1,6], widely considered in the rough set
approaches to knowledge discovery (see for example, [20,15,23,24]), and within
Logical Analysis of Data [3] where they are called patterns. The algorithm de-
scribed here follows a specific approach to decision rule generation. It treats a
single rule as a subsidiary, base classifier in the ensemble that indicates only one
of the decision classes.
Ensemble methods became a very popular approach to classification problems.

These methods consist in forming an ensemble of classifiers that are simple learn-
ing and classification procedures often referred to as base (or weak) learners. The
ensemble members (i.e., base learners or classifiers) are applied to a classification
task and their individual outputs are then aggregated to one output of the whole
ensemble. The aggregation is computed as a linear combination of outputs. The
most popular methods that are used as base learners are decision trees, for ex-
ample C4.5 [21] or CART [5], and decision stumps (that are one level decision

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 224–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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trees). There are several approaches to construction of the ensemble, the most
popular are bagging [4] and boosting [22,9]. These algorithms have proven to be
effective in reducing classification error of a base learner. In other words, a com-
mittee of low performance learners creates a powerful and quite simple solution
for the classification problem. That is why these methods are often treated as
off-the-shelf methods-of-choice.
In our approach, the ensemble of decision rules is constructed using a variation

of forward stagewise additive modeling [10]. Similar technique is also used by
Friedman and Popescu [13]. However, one can observe substantial differences
between their algorithm and the one presented in this paper. In Friedman and
Popescu’s algorithm, the decision trees are used as base classifiers, and then each
node (interior and terminal) of each resulting tree produces a rule. It is setup
by the conjunction of conditions associated with all of the edges on the path
from the root to that node. Rule ensemble is then fitted by gradient directed
regularization [12]. The algorithm presented here generates rules directly. Single
rule is created in each iteration of forward stagewise additive modeling. This
simpler way is as efficient as other main machine learning methods [2]. Usually,
it is enough to generate around 50 rules to achieve satisfying accuracy and,
moreover, the rules are easy in interpretation. Our algorithm is also similar to
SLIPPER introduced by Cohen and Singer [7]. The difference is that SLIPPER
uses AdaBoost [22] schema to produce an ensemble of decision rules. Let us notice
that AdaBoost is a specific case of the forward stagewise additive modeling, so
the latter is a more general approach [10].
In this paper, we concentrate on a common problem of data analysis. The

real-life data has often missing attributes values. There are several approaches
to deal with this problem. One of them is to discard objects having missing
values, but this could lead to serious depletion of the training data. Another
possibility is to replace missing values with the mean, median or mode over
non-missing values of objects on a given attribute. The approach adopted here
is inspired by rough set theory, within which the problem of missing values were
studied in many places (see, for example [14,16,17,18]). There are two problems
to be solved. The first one is the way, in which a single rule is generated in the
presence of missing values. The second one is the way, in which an unseen object
having missing values is classified by a rule. According to [14] and [18] generated
rules should remain true when all or some missing values will be replaced by
arbitrary values. Such an approach is compatible with knowledge discovery from
incomplete information systems. We tried to adapt it to the ensemble of decision
rules. In classification procedure, it seems reasonable that only universal selector
on a given attribute covers an unseen object with missing value on this attribute.
It is so, because, the true value of the object on this attribute is unknown, and
we are certain that only universal selector will cover it.
The goal of this paper is to verify experimentally several approaches to deal

with missing values that are inspired by rough set theory. The paper is organized
as follows. In Section 2, the problem is formulated. Section 3 presents the algo-
rithm for construction of an ensemble of decision rules. In Section 4, approaches
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taken to deal with missing values are presented. Section 5 contains experimental
results. The last section concludes the paper.

2 Problem Statement

Let us define the classification problem in a similar way as in [11,13]. The aim
is to predict the unknown value of an attribute y (sometimes called output, re-
sponse variable or decision attribute) of an object using the known joint values
of other attributes (sometimes called predictors, condition attributes or inde-
pendent variables) x = (x1, x2, . . . , xn), where some of values may be missing.
We consider binary classification problem, and we assume that y ∈ {−1, 1}. In
other words, all objects for which y = −1 constitute decision class Cl−1, and all
objects for which y = 1 constitute decision class Cl1. The goal of a learning task
is to find a function F (x) using a set of training examples {yi,xi}N

1 that clas-
sifies accurately objects to these classes. The optimal classification procedure is
given by:

F ∗(x) = arg min
F (x)

EyxL(y, F (x))

where the expected value Eyx is over joint distribution of all variables (y,x) for
the data to be predicted. L(y, F (x)) is a loss or cost for predicting F (x) when
the actual value is y. The typical loss in classification tasks is:

L(y, F (x)) =
{

0 y = F (x),
1 y �= F (x). (1)

The learning procedure tries to construct F (x) to be the best possible approxi-
mation of F ∗(x).

3 Ensembles of Decision Rules

Condition part of a decision rule is represented by a complex Φ = φ∝
1 ∧ φ∝

2 ∧
. . . ∧ φ∝

t , where φ∝ is a selector and t is a number of selectors in the complex,
also referred to as a length of the rule. Selector φ∝ is defined as xj ∝ vj , where
vj is a single value or a subset of values from the domain of the j-th attribute;
and ∝ is specified as =,∈,≥ or ≤, depending on the characteristic of the j-th
attribute. In other words, complex Φ is a set of selectors that allows to select
a subset of objects. Objects covered by complex Φ are denoted by cov(Φ) and
referred to as cover of a complex Φ. Decision part of a rule indicates one of the
decision classes and is denoted by d(x) = −1 or d(x) = 1. Let as denote a rule by
r(x, c), where c represents both complex and decision of the rule, c = (Φ, d(x)).
Then, the output of the rule may be defined as follows:

r(x, c) =
{

d(x) x ∈ cov(Φ),
0 x �∈ cov(Φ). (2)
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Algorithm 1. Ensemble of decision rules

input : set of training examples {yi,xi}N
1 ,

M – number of decision rules to be generated.
output: ensemble of decision rules {rm(x)}M

1 .
F0(x) := arg minα∈{−1,1}

N
i=1 L(yi, α); or F0(x) := 0; //default rule

F0(x) := ν · F0(x);
for m = 1 to M do

c := arg minc i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c));
rm(x) = r(x, c);
Fm(x) = Fm−1(x) + ν · rm(x);

end
ensemble = {rm(x)}M

1 ;

The loss of a single decision rule takes a specific form:

L(y, r(x, c)) =

⎧⎨⎩
0 y · r(x, c) = 1,
1 y · r(x, c) = −1,
l r(x, c) = 0,

(3)

where 0 ≥ l ≥ 1 is a penalty for specificity of the rule. It means, the lower
the value of l, the smaller the number of objects covered by the rule from the
opposite class.
Forward stagewise additive modeling [10] is a general schema that constructs

an ensemble. This schema may be suited to the problem of decision rules gen-
eration. We have used a variation of it that was also applied by Friedman and
Popescu [13]. In their approach, however, base classifiers are decision trees, from
which decision rules are produced. Here, the rule is generated directly in each
step of Algorithm 1. In this procedure, L(yi, F (x)) is a loss function, rm(x, c)
is a decision rule characterized by a set of parameters c and M is a number
of rules to be generated. Sm(η) represents a different subsample of size η ≤ N
randomly drawn with or without replacement from the original training data. ν
is so called “shrinkage” parameter, usually 0 ≤ ν ≤ 1. Values of ν determine the
degree to which previously generated decision rules rk(x, c), k = 1, . . . , m, affect
the generation of the successive one in the sequence, i.e., rm+1(x, c).
In the algorithm, in each consecutive iteration m we augment the function

Fm−1(x) by one additional rule rm(x) weighted by shrinkage parameter ν. This
gives a linear combination of rules Fm(x). The additional rule rm(x) = r(x, c)
is chosen to minimize

∑
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c)). F0(x) corresponds

to the default rule in the ensemble generation process. It is set to F0(x) :=
argminα∈{−1,1}

∑N
i L(yi, α) (i.e., it corresponds to the default rule indicating

the majority class) or there is no default rule (then F0(x) := 0). The default rule
is taken with the same “shrinkage” parameter ν as all other rules.
The loss of the linear combination of rules Fm(x) takes the following form in

the simplest case:
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L(y, Fm(x)) =

⎧⎨⎩
0 y · Fm(x) > 0,
1 y · Fm(x) < 0,
l y · Fm(x) = 0.

(4)

Nevertheless, the interpretation of l in the above definition is not as easy as in
the case of a single rule. It depends on all other parameters used in Algorithm 1.
L(y, Fm(x)) takes value equal to l in two cases. The first case is, when F0(x) is
set to zero (there is no default rule) and no rule generated in m iterations covers
object x. The second case is when rules covering object x indicate equally two
classes Cl−1 and Cl1. The interpretation of l is similar to the case of a single
rule, when F0(x) is set to zero and ν = 1/M , for example. Note that ν = 1/M
means that each next rule is more important than all previously generated.
Classification procedure is performed according to:

F (x) = sign(a0 +
M∑

m=1

amrm(x, c)). (5)

In other words, it is a linear classifier in a very high dimensional space of de-
rived decision rules that are highly nonlinear functions of the original predictor
variables x. Parameters {am}M

0 can be obtained in many ways. For example,
they can be set to fixed values (for example, a0=0 and {am = 1/M}M

1 ), com-
puted by some optimization techniques, fitted in cross-validation experiments or
estimated in a process of constructing the ensemble (like in AdaBoost [22]).
To perform our experiment, we have used a simple greedy heuristic to con-

struct a single decision rule. It consists in searching for c such that Lm =∑
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c)) is minimal. At the beginning, the complex
contains an universal selector (i.e., selector that covers all objects). In the next
step, a new selector is added to the complex and the decision of the rule is set.
The selector and the decision are chosen to give the minimal value of Lm. This
step is repeated until Lm is minimized. Remaining settings of the algorithm
are as follows. We have decided to generate default rule indicating the majority
class. Besides (4), we have tried several formulas for the loss function. The best
results were obtained, when we used sigmoidal function:

L(y, Fm(x)) =
1

1 − exp(y · Fm(x))
, (6)

and this formulation was used in the experiment (for a wide discussion on dif-
ferent formulas for loss function see [10]). The “shrinkage” parameter was set
to ν = 0.5. Each rule is generated using subsample of size η = N drawn with
replacement. The classification is performed according to (5), where a0 = F0(x)
and {a}M

1 are set to 1.

4 Missing Values

Decision rule models are well-suited to problems where objects have missing
values. A single decision rule involves only a part of attributes. So, the algorithm
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can seek for such selectors on attributes that “avoid” missing values. In this
paper, we have performed the experiment in which we have compared simple,
but also effective methods to deal with missing values inspired by rough set
approach to knowledge discovery. We assume here that the missing value is
interpreted in such a way that its true value is one of all possible values from the
domain of the considered attribute. This is consistent with the disjunctive and
exclusive interpretation of multi-valued information systems given in [8]. While
the problem considered in this paper is different from knowledge discovery from
incomplete information systems for which rough set approaches are well-suited,
there may be observed some similarities. In particular, the linear combination of
rules from the ensemble implies a partition of the space of all joint values of the
attributes x to some regions that might be interpreted as granules of knowledge
considered in rough set approaches. These granules contain mainly objects from
one class. An object with missing value may belong or not to such a granule,
depending on the true value of the attribute with the missing value. It is also
possible that the implied granule includes a whole domain of an attribute. Then,
objects with missing values on this attribute only are contained in this granule.
There are two problems to be solved. The first one is the way, in which a

single rule is generated in the presence of missing values. The second one is the
way, in which an unseen object having missing values is classified by a rule. The
first problem can be solved in one of the following ways:

(1) objects with missing values are discarded from the further analysis (this is
the simplest solution; we implemented it to have comparison with further
approaches),

(2) an object with missing values satisfies all selectors built on attributes on
which this object has no value,

(3) an object with missing values does not satisfy selectors built on attributes
on which this object has no value,

(4) for the rules indicating the same class as the class of an object with missing
values: this object does not satisfy selectors build on attributes whose val-
ues are missing for it; for the rules indicating an opposite class: this object
satisfies the above selectors.

The second problem can be solved in one of the following ways:

(a) an unseen object with missing values satisfies selectors built on attributes
on which this object has no value,

(b) an unseen object with missing values does not satisfy selectors built on at-
tributes on which this object has no value.

Approaches (2) and (a) are motivated by the fact that an object having a
missing value on an attribute may be treated as indiscernible with other object
on this attribute. So, any selector on this attribute is satisfied by this object.
One may also take another definition of indiscernibility, where only an universal
selector (i.e. selector that covers all objects) on the given attribute covers an
object with missing value on this attribute. This definition is used in approaches
(3) and (b).
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Table 1. Approaches to missing values that were used

Training phase Testing phase Abbrev. Training phase Testing phase Abbrev.
(1) (a) 1-a (3) (a) 3-a
(1) (b) 1-b (3) (b) 3-b
(2) (a) 2-a (4) (a) 4-a
(2) (b) 2-b (4) (b) 4-b

Another possible approach is as follows. If a rule contains a selector built on
attribute on which an object has a missing value, one may penalize, when this
object belongs to opposite class than the class indicated by the rule. Analogously,
one may not reward when this object belongs to the class indicated by the rule.
This is implemented as described in (4). Then, the loss of the rule increases
when covering an object with missing value from the opposite class, and do not
decrease when covering an object with missing value from the same class as the
decision of the rule.
Let us notice, that in classification procedure, it seems reasonable to proceed

according to (b), i.e., only universal selectors on a given attribute covers an
object with missing value on this attribute. It is so, because, the true value of
the object on the attribute is unknown, and we are certain that only universal
selector will cover it.

5 Experimental Results

We designed an experiment to compare performance of the ensemble of decision
rules with different approaches to missing values. To conduct this experiment we
implemented the method using Weka package [25]. We have decided to compare
all combinations of approaches described in Section 4 (see also Table 1).
For purpose of the experiment, we used four data sets taken from UCI [19]

repository of machine learning data sets. These sets contain two-class classifica-
tion problems that have large number of objects with missing values. The data
sets that we chosen are presented in Table 2. Hepatitis problem is highly unbal-
anced, but we have not used any technique to deal with this problem. Labor data
contains a relatively small number of objects. We have decided to generate 15, 30,
and 60 rules and compare the performance of the algorithm for different number
of rules. To estimate classifiers error rates, we used 10-fold cross-validation that
we repeated 30 times. Results of the experiment are presented in Tables 3–4. In
those tables we show performance of classifiers on factors (given as percents):
correctly classified examples (C), true positive in class +1 (TP +1), precision in
class +1 (P +1), true positive in class -1 (TP -1), precision in class -1 (P -1).
It is easy to observe that discarding objects with missing values in the case

of colic and labor data sets is unacceptable technique. However, for vote and
hepatitis problem, where the number of objects with missing values is relatively
small, the difference to more advanced techniques is not so visible. For colic
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Table 2. Number of attributes and objects for data sets included in the experiment

Data set Attributes Objects Objects Objects Objects with
from Cl1 from Cl−1 missing values

colic 23 368 232 136 361
vote 17 435 267 168 203
labor 17 57 20 37 56
hepatitis 20 155 32 123 75

Table 3. Classification results in percents [%], part 1; C indicates correctly classified
examples, TP +1 true positive in class +1, TP -1 true positive in class -1, P +1 precision
in class +1, P -1 precision in class -1

Classifier colic vote
C TP +1 TP -1 P +1 P -1 C TP +1 TP -1 P +1 P -1

15 rules, 1-a 63.04 100.00 0.00 63.04 0.00 94.89 92.52 98.66 99.11 89.22
15 rules, 1-b 63.04 100.00 0.00 63.04 0.00 95.63 94.80 97.00 98.10 92.10
15 rules, 2-a 84.92 91.78 73.22 85.39 83.97 95.57 94.13 97.84 98.56 91.32
15 rules, 2-b 79.58 95.29 52.80 77.54 86.85 95.59 94.80 96.90 98.03 92.09
15 rules, 3-a 84.86 92.03 72.63 85.16 84.29 94.97 92.78 98.42 98.95 89.57
15 rules, 3-b 84.98 92.01 72.99 85.33 84.29 95.63 94.80 97.00 98.10 92.10
15 rules, 4-a 85.57 93.90 71.35 84.84 87.30 95.49 93.92 97.96 98.65 91.05
15 rules, 4-b 85.52 93.76 71.46 84.86 87.06 95.59 94.80 96.90 98.03 92.09
30 rules, 1-a 63.04 100.00 0.00 63.04 0.00 95.26 93.75 97.66 98.45 90.76
30 rules, 1-b 63.04 100.00 0.00 63.04 0.00 95.62 94.80 96.98 98.09 92.10
30 rules, 2-a 85.08 91.67 73.83 85.67 83.91 95.51 94.70 96.82 97.97 91.95
30 rules, 2-b 79.59 94.25 54.58 78.01 84.80 95.54 94.85 96.66 97.87 92.14
30 rules, 3-a 85.14 92.25 73.02 85.37 84.71 95.57 94.52 97.26 98.22 91.75
30 rules, 3-b 85.64 92.14 74.56 86.06 84.78 95.58 94.80 96.86 98.01 92.08
30 rules, 4-a 85.51 93.62 71.67 84.94 86.82 95.39 94.72 96.46 97.74 91.95
30 rules, 4-b 85.69 93.78 71.89 85.06 87.14 95.48 94.90 96.40 97.70 92.21
60 rules, 1-a 63.04 100.00 0.00 63.04 0.00 95.57 94.70 96.96 98.05 91.99
60 rules, 1-b 63.04 100.00 0.00 63.04 0.00 95.56 94.86 96.68 97.89 92.16
60 rules, 2-a 84.64 90.86 74.02 85.65 82.64 95.63 95.35 96.04 97.47 92.87
60 rules, 2-b 80.17 93.65 57.18 78.89 84.11 95.66 95.34 96.14 97.53 92.85
60 rules, 3-a 84.72 92.25 71.87 84.84 84.50 95.61 95.29 96.08 97.50 92.78
60 rules, 3-b 85.76 91.94 75.20 86.35 84.58 95.54 95.09 96.24 97.60 92.49
60 rules, 4-a 85.34 92.5 73.11 85.44 85.12 95.90 95.77 96.10 97.51 93.44
60 rules, 4-b 85.91 93.29 73.31 85.64 86.53 95.74 95.65 95.86 97.36 93.27

problem technique 2-b seems to be the worst. One may see a slight superiority
of the 4-b approach. The higher number of rules in this case do not improve
the results significantly. It is hard to indicate the best technique in the case
of vote data. Also, the performance is good regardless for the number of rules
and chosen approach to missing values. We expect that there are some easy to
discover general patterns in this problem. The best performance for hepatitis
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Table 4. Classification results in percents [%], part 1; C indicates correctly classified
examples, TP +1 true positive in class +1, TP -1 true positive in class -1, P +1 precision
in class +1, P -1 precision in class -1

Classifier hepatitis labor
C TP +1 TP -1 P +1 P -1 C TP +1 TP -1 P +1 P -1

15 rules, 1-a 81.74 15.94 98.87 77.40 81.90 38.13 90.00 10.08 35.11 64.91
15 rules, 1-b 81.51 16.68 98.39 74.30 81.96 37.72 90.00 9.45 34.95 63.35
15 rules, 2-a 83.01 29.07 97.04 72.29 84.02 84.21 63.50 95.41 88.19 82.93
15 rules, 2-b 82.82 25.63 97.70 75.74 83.47 74.56 31.83 97.66 89.05 72.71
15 rules, 3-a 82.92 27.10 97.46 73.94 83.71 79.82 66.50 87.04 73.92 82.94
15 rules, 3-b 82.86 25.85 97.71 74.73 83.51 84.39 64.00 95.41 88.44 83.21
15 rules, 4-a 81.81 19.09 98.14 73.52 82.34 81.17 58.83 93.25 82.57 80.77
15 rules, 4-b 81.57 17.72 98.20 72.16 82.10 82.75 58.83 95.68 88.07 81.19
30 rules, 1-a 82.95 27.20 97.46 74.39 83.73 38.13 90.00 10.08 35.11 64.91
30 rules, 1-b 82.99 31.05 96.49 70.99 84.33 38.25 90.00 10.26 35.16 65.36
30 rules, 2-a 83.72 40.02 95.08 68.24 85.92 88.66 76.33 95.32 89.96 88.23
30 rules, 2-b 82.60 34.28 95.16 65.12 84.79 79.59 47.67 96.85 89.60 77.54
30 rules, 3-a 84.37 46.36 94.25 67.99 87.12 82.81 77.83 85.51 74.71 87.75
30 rules, 3-b 82.65 38.13 94.22 63.36 85.43 87.95 74.17 95.41 89.90 87.31
30 rules, 4-a 82.06 29.49 95.72 64.49 83.94 84.39 69.17 92.62 83.59 84.83
30 rules, 4-b 82.13 29.81 95.72 64.84 84.00 84.15 66.33 93.79 85.56 83.84
60 rules, 1-a 83.81 33.98 96.76 74.59 84.93 38.13 90.00 10.08 35.11 64.91
60 rules, 1-b 83.25 33.66 96.13 69.57 84.80 38.13 90.00 10.08 35.11 64.91
60 rules, 2-a 83.03 42.93 93.47 63.18 86.30 90.82 83.50 94.78 89.75 91.45
60 rules, 2-b 83.01 37.62 94.81 65.77 85.40 83.28 60.00 95.86 88.94 81.67
60 rules, 3-a 84.52 55.22 92.15 64.78 88.78 86.14 80.33 89.29 80.58 89.40
60 rules, 3-b 83.23 41.89 93.98 64.46 86.15 90.58 81.67 95.41 90.59 90.62
60 rules, 4-a 81.81 33.34 94.41 60.93 84.50 86.37 74.50 92.80 84.97 87.11
60 rules, 4-b 81.59 31.68 94.57 60.46 84.19 86.78 73.83 93.79 86.58 86.99

problem is achieved by the 3-a technique (particularly, the true positive ratio for
class 1 has an acceptable high level). The number of rules in this case plays an
important role. For 60 rules the true positive ratio is the highest. In our opinion,
it is caused by unbalanced number of objects in decision classes. For the labor
problem that contains relatively small number of objects, one may see that the
higher the number of rules than the performance is better. The best results for
labor are obtained by 2-a and 3-b techniques.
Concluding the above results, for sure, it is not a good idea to discard objects

with missing values from the analysis. In some cases, it can lead to unacceptable
results. It seems that among the more advanced techniques, we get the worst
results for 2-b. When concerning the rest of more advanced techniques, it is hard
to point out the best approach. The standard deviations over 30 10-fold cross-
validations are relatively small (for colic problem the highest standard deviation
was 1.25, for vote problem it is 0.4, for hepatitis problem it is 1.69 and for labor
problem it is 3.72). The increase of number of rules, certainly, does not lead to
worse results. However, in some cases, it does not improve results significantly,
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but the cost of computations is higher. Some further investigations are still
required.

6 Conclusions and Future Plans

We have described a general algorithm constructing an ensemble of decision
rules, for which we have experimented with different methods to deal with miss-
ing values. These methods were inspired by rough set approaches to knowledge
discovery. It seems that it is hard to point out the best approach. Let us under-
line that the decision rule models are well-suited to problems where objects have
missing values. We plan to use another techniques that deal with missing values.
These might be, for example, surrogate selectors by similarity to surrogate splits
in CART [5] and the approach used in C4.5 [21].
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Abstract. Based on tolerance relation, this paper proposes three knowledge 
representation systems and then discusses their properties from a new 
prospective of cores of maximal compatible blocks. It also discusses the 
relationships of the three knowledge representation systems with the other two 
proposed by Kryszkiewicz M. and Wanli C. respectively. It considers the 
measurements such as the accuracy measurements, the rough entropies of 
knowledge. It also defines and studies rough entropies of set about knowledge 
in the three systems and obtains several meaningful theorems. 

Keywords: rough set model, incomplete information system, knowledge 
represented system, entropy. 

1   Introduction 

Rough Set Theory (RST)[6,7,8] was suggested by Pawlak Z. in 1980s. As an efficient 
mathematical tool in processing non-deterministic, vagueness, and uncertainty, it has 
been widely used in the research fields of data mining [1,2], pattern recognition[9], 
knowledge discovery[5], machine learning[11] ,expert systems and so on. RST , 
introduced originally by Pawlak Z. is based on the assumption that all objects have 
deterministic values in each attribute in a complete information system and 
classifications are made by indiscernibility relations (or called equivalence relations) 
defined by Pawlak Z. But in incomplete information systems, it is not always possible 
to form indiscernibility relations due to null values. So the original RST may not be 
applicable in incomplete information systems in some real applications. Therefore 
many researchers propose new expanded RST models to transact with, primarily in 
expanding indiscernibility relation to non-indiscernibility relation such as tolerance 
relation [4], similarity relation [10], limited tolerance relation, etc. [3,12,14]. 
Unfortunately, in these expanding models, the result of classification of the universe 
based on tolerance relation, similarity relation, or limited tolerance relation does not 
guarantee that any two elements in a class commonly called tolerance class or 
similarity class are mutually compatible.  
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2   Terminology and Newly Expanded RST Models 

We first introduce and define some terms and concepts and then propose some new 
tolerance RST models, combining several existing work. 

Definition 1.  An incomplete information system(IIS) is a quadruple  S =< U, AT, V, f 
>, where U is a non-empty finite set of objects and AT is a non-empty finite set of 
attributes, such that for any a AT: U Va  where Va is called the value set of 
attribute a. Attribute domain Va may contain a null value, meaning unknown or 

uncertain, denoted by special symbol”*”.  V = a
a AT

V
∈
∪  represents the value set of all 

attributes in S. a(x) represents the value of x at attribute a.      

Definition 2.[4]  In an incomplete information system S =<U, AT, V, f >, each subset 
of attributes A ⊆ AT determines a binary relation SIM(A) on U: 

SIM(A)={ (x, y) U2 : a(x)= a(y) a(x)=* a(y)= * for any a A } . (1) 

It is called a tolerance relation on U. 
It is not difficult to prove that for any A ⊆ AT, 

SIM(A) =
a A∈
∩ SIM({a}) . (2) 

SIM(A) is not necessarily an equivalence relation on U. 

Definition 3.[4]  Let A ⊆ AT, x U.  SA(x) ={y U : (x, y) SIM(A)}  (3) 

represents those objects which are possible indiscernible to x in terms of A. SA(x) is 
called a tolerance class.  

Definition 4.[4]  Let A ⊆ AT, x U . U/SIM(A)= {SA(x): x U}  (4) 

is called the set of tolerance classes according to the tolerance relation SIM(A). 
U/SIM(A) may not be a partition on U but a covering. It is easy to find that any two 

elements in SA(x) are not always compatible. In this sense, we may define another 
covering on the universe U to overcome that drawback of U/SIM(A).  

Definition 5.  Let S be an incomplete information system and A ⊆ AT, then  

U//SIM(A)=max{X ⊆ U :  X×X ⊆ SIM(A)}  (5) 

where max is the maximal subsets of U under the partial order of ⊆ .  

Definition 6.  Let S be an incomplete information system, A ⊆AT, then 

SS A(x)=X(X U//SIM (A), x X).  (6) 

SUA(x)= X(X U//SIM (A), x X). (7) 

SLA(x)= X( X U//SIM (A), x X). (8) 
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COREA (x)= SA(y)(x SA(y), y U). (9) 

SS A(x) is actually a maximal compatible block randomly selecting from U//SIM(A) 
which contains x in it. SLA(x) is called the compatible core of x under the meaning of 
U//SIM(A) and COREA (x), denoted by <x> in [13], is called the tolerance core of x 
with the meaning of U/SIM(A).{SUA(x): x U}, U//SIM(A)={X: X U//SIM(A)}=  
{SS A(x): x U}, {SLA(x): x U} and {COREA (x): x U} are all different knowledge 
representation systems at different granular levels on U, in addition to U/SIM(A).  

Theorem 1. Let S be an incomplete information system and A be a subset of attributes 
AT, i.e.  A⊆ AT, then SUA(x)=SA(x).  

Proof. i) Assume that for any y SUA(x), then (x, y) SIM(A). By section 2, SA(x)= 

{y U: (x,y) SIM(A)}, there will be y SA(x). Since y is arbitrary, SUA(x) ⊆ SA(x). 

ii) Suppose that for any y SA(x), then (x, y) SIM(A) holds. That is to say, there is an 
X such that (x,y) X2(X U//SIM(A)), then y X(X U//SIM(A), x X)=SUA(x). 

Similarly, since y is arbitrary, then SA(x) ⊆ X ( X U//SIM(A), x X) = SUA(x). 
From what have been discussed above, there will be SUA(x )= SA(x).  

Theorem 2. For any UXATA ⊆⊆ , , X U//SIM(A) if and only if  X= 

( )A
y X

S y
∈
∩ . 

Proof. Suppose that X U//SIM(A). Then for )(),(,, ASIMyxXyx ∈∈∀ . That 

is, for x X∈  and y X∀ ∈ , ( )A
y X

x S y
∈

∈ ∩ .  So ( )A
x X

X S x
∈

⊆ ∩ . Assume that 

( )A
y X

y S x
∈

∈ ∩ . Then ( )Ay S x∈  for any x X∈ , i.e. y is compatible to any 

element in X. Because X U//SIM(A) and any two elements in X are compatible, 
2( { }) ( )X x SIM A∪ ⊆ . Because X U//SIM(A), y X∈ . Therefore 

( )A
y X

S x
∈
∩ X⊆ . Synthesizing the above two cases, if X U//SIM(A) then 

( )A
y X

X S y
∈

= ∩ . 

Conversely, assume that ( )A
y X

X S y
∈

= ∩ .Then for any ,y z X∈ , we must have 

( , ) ( )y z SIM A∈  because ( )Ay S z∈  and ( )Az S y∈ . So 2 ( )X SIM A⊆ . 

Now that we prove that X is maximal. Otherwise, there is an object o X∉ such 

that 2( { }) ( )X o SIM A∪ ⊆ . This means for any , ( ).Ax X o S x∈ ∈ So  

( )A
y X

o S x X
∈

∈ ∩ = . It contradicts to o X∉ . Therefore, X is maximal and X

U//SIM(A).  
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Theorem 3.  SLA(x)= 
( // ( ) )

( )A
y X X U SIM A x X

S y
∈∪ ∈ ∧ ∈

∩  

Proof.  Suppose SLA(x)=X1 X2 … Xm, where Xi U//SIM(A) and x Xi (i=1,2,…, 

m). Then Xi= ( )
i

A
y X

S y
∈
∩  according to Theorem 2.  So SLA(x)=X1 X2 … Xm 

=
1

( )A
y X

S y
∈
∩

2

( )A
y X

S y
∈
∩ ... ( )

m
A

y X
S y

∈
∩ = 

( // ( ) )
( )A

y X X U SIM A x X
S y

∈∪ ∈ ∧ ∈
∩ . 

Theorem 4.  COREA (x)= 
( )

( )
A

A
y S x

S y
∈
∩   

Proof.  Because COREA(x)= SA(y)(x SA(y), y U) , we need only to proof that 

SA(y)(x SA(y), y U)
( )

( )
A

A
y S x

S y
∈

= ∩ . For any given z SA(y)(x SA(y), y U), 

we have z SA(y), x SA(y), y U. It means (z, y) SIM(A), (x, y) SIM(A). So z

SA(y), y SA(x) ,  and then z
( )

( )
A

A
y S x

S y
∈
∩ . Therefore, COREA(x)= SA(y)(x SA(y), 

y U) 
( )

( )
A

A
y S x

S y
∈

⊆ ∩ . Conversely, 
( )

( )
A

A
y S x

S y
∈
∩ ⊆ SA(y)(x SA(y), y U) is 

also valid. 

Theorem 5.  SLA(x) =COREA (x). 

Proof. Suppose SLA(x)=X1 X2 … Xm, where Xi U//SIM(A), and x Xi 

(i=1,2,…,m). Then  SA(x)= SUA(x) =X1 X2 … Xm. According to Theorem 3, 

SLA(x)= 
( // ( ) )

( )A
y X X U SIM A x X

S y
∈∪ ∈ ∧ ∈

∩ =
1 2 ...

( )
m

A
y X X X

S y
∈ ∪ ∪ ∪

∩ =
( )

( )
A

A
y S x

S y
∈
∩ = 

COREA (x). 

Theorem 6. U//SIM(A)={X ⊆ U: X2 ⊆ SIM(A), ( ∀ x U x ∉ X (X ∪ {x})2 

⊄ SIM(A))} ={X ⊆ U: X2 ⊆ SIM(A), (∀ x X ∃ y U-X ∧ (x, y)∉SIM(A))}.  

Although SUA(x)=SA(x) and SLA(x)=CORE(x), their construction methods are different 
and the finding algorithms (see a following paper ) vary accordingly.  

Definition 7.  Let S be an incomplete information system, X ⊆U, A⊆AT, then for 
knowledge representation systems mentioned above, upper and lower approximations 
are defined as follows:  

  SS A(X)={ x U: SSA(x) X ≠ ∅ }} . (10) 

SU A(X)={x U: SUA(x) X ≠ ∅ } (11) 

SL A(X)= {x U: SLA(x) X ≠ ∅ } (12) 

      CORE A(X)={x U: COREA (x) X ≠ ∅ } (13) 
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SS A(X)= {x U : SSA(x) ⊆ X} (14) 

SU A(X)= {x U : SUA(x) ⊆ X} (15) 

SL A(X) ={x U : SLA(x) ⊆ X} (16) 

       CORE A(X) ={x U : COREA(x) ⊆ X} (17) 

We can also introduce the upper approximation and the lower approximation to the 
tolerance relation in [4] as follows: 

    S A(X)={x U : SA(x) X ≠ ∅ } (18) 

S A(X)= {x U : SA(x) ⊆ X} (19) 

Theorem 7. SU A(X)= S A(X), SU A(X)= S A(X), SL A(X)= CORE A(X), SL A(X)= 

CORE A(X).   

Proof.  According to Theorem 1 and Theorem 2, the equations in Theorem 7 can be 
proved straightforward. 

Property 1.  Let S be an incomplete information system, X ⊆U, A ⊆AT.  Then 

i)  SUA(X) ⊆SLA(X) (20) 

ii) SL A(X) ⊆ SU A(X) (21) 

Proof.  i) According to Definition 7, we have SLA(x) ⊆SUA(x),   that is to say, if 

SUA(x) ⊆X, there must hold SLA(x) ⊆X  by contradiction, SLA(x) ⊆X does not 

mean SUA(x) ⊆X, so  SUA(X) ⊆ SLA(X) is affirmed.  

ii) Similarly, if SLA(x) X ≠ ∅ , there must be SUA(x) X ≠ ∅ ; by contrary,  

SUA(x) X ≠ ∅  does not mean SLA(x) X ≠ ∅ , so SL A(X) ⊆ SU A(X). That 
completes the proof.  

Similar to the properties in the original RST model proposed by Palwak Z. we can 
obtain the following properties:   

Property 2.  SUA(X) ⊆X ⊆ SU A(X) (22) 

A ⊂ B SUA(X) ⊆SUB(X) (23) 

 A ⊂ B SU A(X) ⊇ SU B(X)   (24) 
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Property 3.  SLA(X) ⊆X ⊆ SL A(X) (25) 

A ⊂ B SLA(X) ⊆SLB(X) (26) 

A ⊂ B SL A(X) ⊇ SL B(X)   (27) 

Property 4.  SA (X) ⊆SSA(X) (28) 

S A (X) ⊇ SS A(X) (29) 

All these properties can be proved similar to those in the original RST model 
proposed by Palwak Z.. Owing to the space limitation, the proofs of them are omitted.  

3   Accuracy Measurements and Entropies 

Definition 8.  Let S be an incomplete information system and 1, 2 be two coverings 
on the universe U. If  for any 1, ∃ 2 holds that ⊆  and if  for any 2, 

∃ 1 holds  ⊇ , then covering 1 is a refinement of 2, or equivalently 
speaking, 2 is a coarsening of 1, denoted by 1 2. 

Given two coverings 1 and 2, their meet 1 2 is the largest covering which is a 
refinement of both 1 and 2, and their join 1 2 is the smallest covering which is a 
coarsening of both 1 and 2.  Covering 2 has smaller level of granulation for 
problem solving than covering 1.  

Let π 1= {SUA(x): x U}={SA(x): x U} , π 2 ={SSA(x): x U) and π 3 
={SLA(x):x U }={COREA (x): x U}.Then they form three different levels of 
granularity of the universe in the incomplete information system S, named as 1, 2, 

3 after eliminating repeated elements, respectively.  

Theorem 8.  For 1, 2, 3 as mentioned in the above, 3 2 1 holds. 

Definition 9.  Let S be an incomplete information system,  be a covering on the 

universe U, that is to say, = {C1, C2, … , Cm} and 1
m
i iC U=∪ = , then the accuracy 

measurement of subset X ⊆U is defined as follows:  

| ( ) |

| ( ) |

apr X

apr X
ψ

ψ
ψ

α =  ,  (30) 

where apr (X)= {Ci : Ci ⊆X, 1 i m}, apr (X)= {Ci : Ci X ≠ ∅ , 1 i m}.  

Theorem 9.  Let S be an incomplete information system and 1, 2  be two coverings 

on the universe U,  if  1 2,  then 
1 2ψ ψα α≥ .  
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Proof.  Suppose that 1 ={C1,C2, …,Cm}, 2 ={D1,D2,…,Dn}. 

i) For 
1 2ψ ψα α≤ , then for any j, Dj X ≠ ∅ (1 j n), ∃ Ci ⊆Dj(1 i m) and 

for any i, Ci X ≠ ∅ . According to Definition 8, it is clear that 

1 2
( ) ( )apr X apr Xψ ψ⊆ . 

ii) It is easy to prove that ( ) ( ( )c capr X apr Xψψ
=  where cX represents the 

complementation of set X. From this property of rough set theory, 

1 2

( ) ( )apr X apr X
ψ ψ

⊇ .  

According to  i) and ii), 
1 2ψ ψα α≥ . That completes the proof.  

Theorem 9 implies that the accuracy measurement of rough set is monotonously 
increasing if the level of granularity is decreasing in incomplete information systems. 

In an incomplete information system S, for knowledge representation system π 1, 

the accuracy measurement of the rough set is 
1ψα (X)=| SU A(X)|/ SU A(X)|; for 

knowledge representation system π 2, the accuracy measurement of the rough set is 

2ψα (X)=| SS A(X)|/ | SS A(X)| and for knowledge representation system π 3, the 

accuracy measure of the rough set is 
3ψα (X)= | SL A(X)|/ | SL A(X)|. It is easy to prove 

the following theorem. 

Theorem 10. 
1ψα (X)

2ψα (X)
3ψα (X).   (31) 

Proof.  According to Theorem 9, it is obvious  that 
1ψα (X)

2ψα (X) and 
2ψα (X)  

3ψα (X). So 
1ψα (X)

2ψα (X)
3ψα (X) must be held. 

Definition 10.  Let S be an incomplete information system, A( ⊆AT ) be a subset of 
attributes and  be a covering on the universe U, that is to say,  = {C1,C2,…,Cm} and 

1
m
i iC U=∪ = . Then the rough entropy of the knowledge A is defined as follows:  

1

| | 1
( ) log

| | | |

m
i

i i

C
E A

U Cψ
=

= − .   (32) 

Theorem 11.  Let S be an incomplete information system, φ 1={C1,C2,…,Cm} , 

φ 2 = {D1,D2, …, Dn }  two coverings on the universe U, A ⊆AT , if φ 1 φ 2, then  

1 2
( ) ( )E A E Aφ φ≤ .   (33) 

Proof.  According to definition 10, for  any Ci 1 (1 i m), there must be Dj φ 2 

(1 j n) such that Ci ⊆Dj. Then | || | 1 1
lo g lo g

| | | | | | | |
ji

i j

DC

U C U D
− ≤ − .  
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It is easy to extend the right of this inequation for the reason that for any Dj there is a 

Ci which satisfies Dj ⊆Ci.  So   
1 1

| || | 1 1
lo g lo g

| | | | | | | |

m n
ji

i ji j

DC

U C U D= =

− ≤ − ,  

because Ci is marked only once when it appears repeatedly. That completes the proof.  
Obviously, π 1, π 2 and π 3 can define different rough entropies of the relative 

knowledge, such as 
1 2 3
( ), ( ), ( )E A E A E Aψ ψ ψ  respectively. From Theorem 8, the 

rough entropy of knowledge is monotonously decreasing when the level of granularity 
of the covering is decreasing. Therefore, we obtain the following theorem:  

Theorem 12. 
1 2 3
( ) ( ) ( )E A E A E Aψ ψ ψ≤ ≤ .   (34) 

Proof.  By Theorem 11, 
1 2
( ) ( )E A E Aψ ψ≤  and 

2 3
( ) ( )E A E Aψ ψ≤ are held. So 

It is obvious to have
1 2 3
( ) ( ) ( )E A E A E Aψ ψ ψ≤ ≤ . 

Definition 11.  Let S be an incomplete information system, A ⊆AT and  be a 

covering on the universe U.  Then the rough entropy of X ⊆U about knowledge A is 
defined as follows:  

( ) ( ) (1 )AE X E Aψ
ψ α= + − ,  (35) 

where  is the accuracy measurement of X according to covering .  

In this way, 31 2( ), ( ), ( )A A AE X E X E Xψψ ψ , as different rough entropies of  

X ⊆U according to knowledge π 1, π 2 and π 3 , respectively, can also be defined.   

Theorem 13. 3 2 1( ) ( ) ( ).A A AE X E X E Xψ ψ ψ≤ ≤    (36) 

Proof.  Because ( )AE Xψ  is an increasing function on  and 3 2 1, we can 

immediately obtain 3 2 1( ) ( ) ( ).A A AE X E X E Xψ ψ ψ≤ ≤  

4   Conclusions 

As one of the important formal framework of Granule Computing (GrC),  RST and its 
various expanded models are essential in so many fields of scientific researches. 
Different levels of granularity have their different use. Five knowledge representation 
systems {SA(x): x U}, {SUA(x): x U}, {SSA(x): x U} {SLA(x): x U}, {COREA 
(x): x U} are discussed. Two of them, {SA(x): x U} and {COREA (x): x U} are 
directly based on the tolerance classes to the tolerance relation in the incomplete 
information system S. The other three, {SUA(x): x U},{SSA(x): x U} and {SLA(x):x

U}, proposed in this paper, are based on the compatible classes to the compatible 
relation(a tolerance relation is also a compatible relation). We have proved {SUA(x):  x

U}={SA(x): x U} and {SLA(x): x U }={COREA (x): x U}. Therefore only three 
of the five are really different, having different levels of granularity and are 
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investigated deeply in the paper. Furthermore, measurements such as accuracy 
measurements, rough entropies of knowledge and rough entropies of set about 
knowledge to the three different systems are defined and relationships between those 
measurements are also explored.  
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Abstract. For completely specified decision tables, where lower and up-
per approximations are unique, the lower approximation is the largest
definable set contained in the approximated set X and the upper ap-
proximation of X is the smallest definable set containing X. For incom-
plete decision tables the existing definitions of upper approximations
provide sets that, in general, are not minimal definable sets. The same
is true for approximations based on relations that are generalizations of
the equivalence relation. In this paper we introduce two definitions of
approximations, local and global, such that the corresponding upper ap-
proximations are minimal. Local approximations are more precise than
global approximations. Global lower approximations may be determined
by a polynomial algorithm. However, algorithms to find both local ap-
proximations and global upper approximations are NP-hard.

1 Introduction

Recently we observed intensive research activity in two areas: rough set ap-
proaches to handle incomplete data, mostly in the form of decision tables with
missing attribute values, and attempts to study generalizations of the standard
indiscernibility relation. In the latter area concerned relations are not equivalence
relations. Our paper contributes to both research areas.

Initially rough set theory was applied to complete data sets (with all attribute
values specified). Recently rough set theory was extended to handle incomplete
data sets (with missing attribute values) [1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 18, 19, 20].

We will distinguish two types of missing attribute values. The first type of
missing attribute value will be called lost. A missing attribute value is lost when
for some case (example, object) the corresponding attribute value was mistak-
enly erased or not entered into the data set.

The second type of missing attribute values, called ”do not care” conditions,
are based on an assumption that missing attribute values were initially, when
� This research has been partially supported by the Ministry of Scientific Research

and Information Technology of the Republic of Poland, grant 3 T11C 005 28.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 244–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Local and Global Approximations for Incomplete Data 245

the data set was created, irrelevant. The corresponding cases were classified even
though the values of these attribute were not known. A missing attribute value
of this type may be potentially replaced by any value typical for that attribute.

For incomplete decision tables there are two special cases: in the first case, all
missing attribute values are lost, in the second case, all missing attribute values
are ”do not care” conditions. Incomplete decision tables in which all attribute
values are lost, from the viewpoint of rough set theory, were studied for the first
time in [6], where two algorithms for rule induction, modified to handle lost at-
tribute values, were presented. This approach was studied later, e.g., in [18,19],
where the indiscernibility relation was generalized to describe such incomplete
data. Furthermore, an approach to incomplete data based on relative frequencies
was presented in [19]. Another approach, using fuzzy set ideas, was presented
in [1].

On the other hand, incomplete decision tables in which all missing attribute
values are ”do not care” conditions, from the view point of rough set theory,
were studied for the first time in [2], where a method for rule induction was
introduced in which each missing attribute value was replaced by all values from
the domain of the attribute. Originally such values were replaced by all values
from the entire domain of the attribute, later, by attribute values restricted to
the same concept to which a case with a missing attribute value belongs. Such
incomplete decision tables, with all missing attribute values being ”do not care
conditions”, were extensively studied in [8, 9], including extending the idea of
the indiscernibility relation to describe such incomplete decision tables.

In general, incomplete decision tables are described by characteristic relations,
in a similar way as complete decision tables are described by indiscernibility re-
lations [3, 4, 5].

In rough set theory, one of the basic notions is the idea of lower and upper
approximations. For complete decision tables, once the indiscernibility relation
is fixed and the concept (a set of cases) is given, the lower and upper approxi-
mations are unique.

For incomplete decision tables, for a given characteristic relation and concept,
there are three important and different possibilities to define lower and upper
approximations, called singleton, subset, and concept approximations [3]. Sin-
gleton lower and upper approximations were studied in [8, 9, 16, 18, 19]. Note
that similar three definitions of lower and upper approximations, though not for
incomplete decision tables, were studied in [10, 11, 12, 21, 22, 23, 24].

Our main objective is to study two novel kinds of approximations: local and
global. The local approximations are defined using sets of attribute-value pairs
called complexes, while the global approximations are formed from characteris-
tic sets. Additionally, lower approximations, local and global, are the maximal
sets that are locally and globally definable, respectively, and contained in the
approximated set X . Similarly, upper approximations, local and global, are the
minimal sets that are locally and globally definable, respectively, containing the
approximated set X .
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Note that some other rough-set approaches to missing attribute values were
presented in [1, 2] as well.

2 Blocks of Attribute-Value Pairs

We assume that the input data sets are presented in the form of a decision table.
An example of a decision table is shown in Table 1. Rows of the decision table

Table 1. An incomplete decision table

Attributes Decision

Case Temperature Headache Nausea Flu

1 high ? no yes
2 very high yes yes yes
3 ? no no yes
4 high yes yes yes
5 high ? yes yes
6 normal yes no yes
7 normal no yes no
8 * yes * no

represent cases, while columns are labeled by variables. The set of all cases
will be denoted by U . In Table 1, U = {1, 2, ..., 8}. Independent variables
are called attributes and a dependent variable is called a decision and is de-
noted by d. The set of all attributes will be denoted by A. In Table 1, A =
{Temperature, Headache, Nausea}. Any decision table defines a function ρ that
maps the direct product of U and A into the set of all values. For example,
in Table 1, ρ(1, T emperature) = high. A decision table with completely speci-
fied function ρ will be called completely specified, or, for the sake of simplicity,
complete. In practice, input data for data mining are frequently affected by
missing attribute values. In other words, the corresponding function ρ is incom-
pletely specified (partial). A decision table with an incompletely specified func-
tion ρ will be called incomplete. Function ρ describing Table 1 is incompletely
specified.

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. Also, we will assume that lost values will be denoted
by ”?” and ”do not care” conditions by ”*”. Additionally, we will assume that
for each case at least one attribute value is specified.

An important tool to analyze complete decision tables is a block of the
attribute-value pair. Let a be an attribute, i.e., a ∈ A and let v be a value
of a for some case. For complete decision tables if t = (a, v) is an attribute-value
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pair then a block of t, denoted [t], is a set of all cases from U that for attribute
a have value v. For incomplete decision tables, a block of an attribute-value pair
must be modified in the following way:

– If for an attribute a there exists a case x such that ρ(x, a) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition, i.e., ρ(x, a) = ∗, then the case x should be
included in blocks [(a, v)] for all specified values v of attribute a.

Thus,

[(Temperature, high)] = {1, 4, 5, 8},
[(Temperature, very high)] = {2, 8},
[(Temperature, normal)] = {6, 7, 8},
[(Headache, yes)] = {2, 4, 6, 8},
[(Headache, no)] = {3, 7},
[(Nausea, no)] = {1, 3, 6, 8},
[(Nausea, yes)] = {2, 4, 5, 7, 8}.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

– If ρ(x, a) is specified, then K(x, a) is the block [(a, ρ(x, a)] of attribute a and
its value ρ(x, a),

– If ρ(x, a) =? or ρ(x, a) = ∗ then the set K(x, a) = U .

For Table 1 and B = A,

KA(1) = {1, 4, 5, 8} ∩ U ∩ {1, 3, 6, 8} = {1, 8},
KA(2) = {2, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8},
KA(3) = U ∩ {3, 7} ∩ {1, 3, 6, 8} = {3},
KA(4) = {1, 4, 5, 8} ∩ {2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8},
KA(5) = {1, 4, 5, 8} ∩ U ∩ {2, 4, 5, 7, 8} = {4, 5, 8},
KA(6) = {6, 7, 8} ∩ {2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6, 8},
KA(7) = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, and
KA(8) = U ∩ {2, 4, 6, 8} ∩ U = {2, 4, 6, 8}.
Characteristic set KB(x) may be interpreted as the set of cases that are indis-

tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values. Thus, KA(x) is the set of all cases that cannot be
distinguished from x using all attributes. In [22] KA(x) was called a successor
neighborhood of x, see also [10, 11, 12, 16, 21, 23, 24].

The characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows

(x, y) ∈ R(B) if and only if y ∈ KB(x).
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The characteristic relation R(B) is reflexive but—in general—does not need
to be symmetric or transitive. Also, the characteristic relation R(B) is known if
we know characteristic sets KB(x) for all x ∈ U . In our example, R(A)={(1, 1),
(1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), (7, 7),
(8, 2), (8, 4), (8, 6), (8, 8)}. The most convenient way to define the characteristic
relation is through the characteristic sets.

For decision tables, in which all missing attribute values are lost, a special
characteristic relation was defined in [18], see also, e.g., [17, 19].

For decision tables where all missing attribute values are ”do not care” con-
ditions a special characteristic relation was defined in [8], see also, e.g., [9].

3 Definability

Let B ⊆ A. For completely specified decision tables, any union of elementary
sets of B is called a B-definable set [14]. Definability for completely specified
decision tables should be modified to fit into incomplete decision tables. For
incomplete decision tables, a union of some intersections of attribute-value pair
blocks, in any such intersection all attributes should be different and attributes
are members of B, will be called B-locally definable sets. A union of characteristic
sets KB(x), where x ∈ X ⊆ U will be called a B-globally definable set. Any set
X that is B -globally definable is B -locally definable, the converse is not true.
In the example of Table 1, the set {7, 8} is A-locally-definable since it is equal
to the intersection of [(Temperature, normal)] and [(Nausea, yes)]. Nevertheless,
{7, 8} is not A-globally-definable.

Obviously, if a set is not B-locally definable then it cannot be expressed by
rule sets using attributes from B. This is why it is so important to distinguish
between B-locally definable sets and those that are not B-locally definable.

4 Local Approximations

Let X be any subset of the set U of all cases. The set X is called a concept
and is usually defined as the set of all cases defined by a specific value of the
decision. In general, X is not a B-definable set, locally or globally. A set T of
attribute-value pairs, where all attributes are distinct, will be called a complex.
For a set T of attribute-value pairs, the intersection of blocks for all t from T
will be denoted by [T ].

For incomplete decision tables lower and upper approximations may be defined
in a few different ways, see, e.g., [3, 4, 5]. In this paper we introduce a new idea
of optimal approximations that are B-locally definable. Let B ⊆ A. The B-local
lower approximation of the concept X , denoted by LBX , is defined as follows

∪{[T ] | T is a complex of X , [T ] ⊆ X }.

The B-local upper approximation of the concept X , denoted by LBX , is a
set with the minimal cardinality containing X and defined in the following way

∪{[T ] | T is a complex of X , [T ] ∩ X �= ∅}.
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Obviously, the B-local lower approximation of X is unique and it is the max-
imal B-locally definable set contained in X . Any B-local upper approximation
of X is B-locally definable, it contains X , and is, by definition, minimal.

For Table 1

LA{1, 2, 3, 4, 5, 6} = [(Headache, no)] ∩ [(Nausea, no)] = {3},

so one complex, {(Headache, no), (Nausea, no)}, is sufficient to describe
LA{1, 2, 3, 4, 5, 6},

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8},

so again, one complex, {(Temperature, normal), (Nausea, yes)}, describes
LA{7, 8},

LA{1, 2, 3, 4, 5, 6} =
[(Temperature, high)]∪ [(Headache, yes)] ∪ [(Nausea, no)] =

{1, 2, 3, 4, 5, 6, 8},

therefore, to describe LA{1, 2, 3, 4, 5, 6} three complexes are necessary:
{(Temperature, high)}, {(Headache, yes)}, and {(Nausea, no)}. Finally,

LA{7, 8} = [(Temperature, normal)] ∩ [(Nausea, yes)] = {7, 8}.

For the incomplete decision table from Table 1 the local lower approximations
for both concepts, {1, 2, 3, 4, 5, 6} and {7, 8}, as well as the upper local approx-
imations for these concepts, are unique. Though the local lower approximations
are always unique, the local upper approximations, in general, are not unique.
For example, let us consider an incomplete decision table from Table 2.

For Table 2

[(Age, <25)] = {1, 4, 6},
[(Age, 25..35)] = {1, 4, 7},
[(Age, >35)] = {1, 2, 3, 4, 5},
[(Complications, alcoholism)] = {1},
[(Complications, obesity)] = {2, 3},
[(Complications, none)] = {4, 5, 6, 7},
[(Hypertension, mild)] = {1}.
[(Hypertension, severe)] = {2}.
[(Hypertension, no)] = {4, 5, 6, 7}.
Moreover, for Table 2

LA{1, 2, 3, 4} =
[(Complications, alcoholism)]∪ [(Complications, obesity)] =

{1, 2, 3},

LA{5, 6, 7} = ∅,
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Table 2. An incomplete decision table

Attributes Decision

Case Age Complications Hypertension Delivery

1 * alcoholism mild pre-term
2 >35 obesity severe pre-term
3 >35 obesity ? pre-term
4 * none none pre-term
5 >35 none none full-term
6 <25 none none full-term
7 25..35 none none full-term

However,

LA{1, 2, 3, 4}

is not unique, any of the following sets

[(Age, > 35)] = {1, 2, 3, 4, 5},

[(Age, < 25)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 6},

or

[(Age, 26..35)] ∪ [(Complications, obesity)] = {1, 2, 3, 4, 7}.

may serve as local upper approximations of {1, 2, 3, 4}.
Lastly,

LA{5, 6, 7} = [(Complications, none)] = {4, 5, 6, 7}.

Algorithms to compute local lower or upper approximations are NP-hard,
since the corresponding problems may be presented in terms of prime implicants,
monotone functions, and minimization. A similar result for reducts of complete
decision tables is well known [15].

5 Global Approximations

Again, let B ⊆ A. Then B-global lower approximation of the concept X , denoted
by GBX , is defined as follows

∪{KB(x) | x ∈ X, KB(x) ⊆ X}.
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Note that the definition of global lower approximation is identical with the
definition of subset (or concept) lower approximation [3,4,5]. The B-global upper
approximation of the concept X , denoted by GBX , is a set with the minimal
cardinality containing X and defined in the following way

∪{KB(x) | x ∈ U, KB(x) ∩ X �= ∅}.

Similarly as for local approximations, a global lower approximation for any
concept X is unique. Additionally, both B-global approximations, lower and
upper, are B-globally definable. On the other hand, global upper approximations
do not need to be unique. For Table 1,

GA{1, 2, 3, 4, 5, 6} = KA(3) = {3},

GA{7, 8} = KA(7) = {7},

GA{1, 2, 3, 4, 5, 6} =
KA(1) ∪ KA(2) ∪ KA(3) ∪ KA(5) ∪ KA(6) = {1, 2, 3, 4, 5, 6, 8}.

Furthermore,

GA{7, 8}

may be computed in four different ways:

(1) as KA(1) ∪ KA(7) = {1, 7, 8},

(2) as KA(2) ∪ KA(7) = {2, 7, 8},

(3) as KA(4) ∪ KA(7) = {4, 7, 8},

(4) or as KA(6) ∪ KA(7) = {6, 7, 8},

all four sets are global upper approximations of the concept {7, 8}.
In general, local approximations are more precise than global approximations.

For any concept X and a subset B of A,

LBX ⊇ GBX

and

LBX ⊆ GBX.

It is not difficult to find a simple algorithm to compute global lower approx-
imations in polynomial time. Nevertheless, algorithms to compute global upper
approximations are NP-hard as well.
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6 Conclusions

In this paper we introduced two new kinds of approximations: local and global.
These approximations describe optimally approximated sets (lower approxima-
tions are maximal, upper approximations are minimal and, at the same time,
local approximations are locally definable while global approximations are glob-
ally definable).

Note that our global approximations may be used to describe behavior of
systems defined by relations that are not equivalence relations, as in [10, 11, 12,
16, 21, 22, 23, 24].

As a final point, optimality comes with the price: algorithms to compute both
local upper approximations and global upper approximations are NP-hard.
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Abstract. We describe a method of dealing with sets that contain miss-
ing information in case of classification task. The described method uses
multi-stage scheme that induces and combines classifiers for complete
parts of the original data. The principles of the proposed Missing Tem-
plate Decomposition Method are presented together with general expla-
nation of the implementation within the RSES framework. The intro-
duced ideas are illustrated with an example of classification experiment
on a real data set.

1 Introduction

The hard task of dealing with data imperfection in inductive learning methods
was addressed in the area of data impreciseness by Pawlak in early 80’s [9]. He
proposed a Rough Set approach that made possible to precisely express facts
about imprecise data in a formal way. The main concept of rough sets, the
indiscernibility relation, proved to be very useful for analysis of decision problems
concerning objects described in a data table by a set of conditional attributes
and a decision attribute [10,11]. However, original definition of the rough set
theory does not capture the situation where some of the attribute values are
missing. In last twenty years a great research effort has been made in the area of
data incompleteness in order to develop methods for inducing classifiers for data
with missing attribute values. Some approaches that make handling of missing
attribute values possible have been developed within the rough sets framework,
see [5,6,14].

One can identify three major approaches to the issue of handling missing data
in classification tasks. These are:

– Modification of indiscernibility relation by adopting it to handle missing
attribute values (see [6,14]).
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– Modification of classifier induction algorithms like, e.g., in case of LEM1 and
LEM2 (see [5]).

– Imputation — replacement of missing values with regular ones (see [3,4]).

The Missing Template Decomposition method (MTD) represents an approach
that cannot be strictly classified to any of the three streams of research listed
above. It is devised to make it possible to reason on the basis of data with missing
attribute values without modification of the inductive learning algorithm itself.
The empirical evaluation of core MTD method has been already presented in,
e.g, [7] showing that MTD can improve not only the reasoning quality, but also
it can reduce complexity of classifier.

In this paper we present a brief description of the principles of Missing Tem-
plate Decomposition classifier that has been implemented with use of previous
experiences (see [7]) and added to the collection of methods that are available
within the framework of Rough Set Exploration System (RSES).

The Rough Set Exploration System (RSES) is a free software tool for analy-
sis and exploration of data with use of methods originating in the Rough Set
theory. It is being developed for several years and provides a stable platform for
experiments with data (see [2]). It can be downloaded from [16].

This paper first presents the general concepts about data, missing values, and
templates. Then we introduce the principles of MTD method and the classifi-
cation method based upon it. The method and its implementation in RSES are
illustrated with an example of experiment on head injury (hin) data.

2 Basic Notions

As usual in Rough Set approach, we start with data set represented in the form
of information system or, more precisely, the special case of information system
called decision table.

Information system is a pair of the form A = (U, A) where U is a universe
of objects and A = {a1, ..., am} is a set of attributes i.e. mappings of the form
ai : U → Va ∪{?} , where Va is called value set of the attribute ai and ? denotes
missing value. The decision table is also a pair of the form A = (U, A∪{d}) with
distinguished attribute d. In case of decision table the attributes belonging to A
are called conditional attributes or simply conditions while d is called decision.
We will further assume that the set of decision values is finite. The i-th decision
class is a set of objects Ci = {o ∈ U : d(o) = di}, where di is the i-th decision
value taken from decision value set Vd = {d1, ..., d|Vd|}.

For any subset of attributes B ⊂ A indiscernibility relation IND(B) for
x, y ∈ U is defined as follows:

x IND(B) y ⇐⇒ ∀a∈B a(x) = a(y). (1)

The indiscernibility relation, as an equivalence relation, induces decomposition of
objects into indiscernibility classes in which all objects are identically described
on attributes from subset B. The above, classical definition of indiscernibility
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relation is capable of handling missing attribute values only in exactly the same
way as regular values. We will use K to denote a number of all indiscernibility
classes [x1]IND(B), . . . , [xK ]IND(B), and M ≤ K to denote a number of inconsis-
tent indiscernibility classes [xj1 ]IND(B), . . . , [xjM ]IND(B), where an inconsistent
indiscernibility class [xjm ]IND(B) contains objects from more than one decision
class (i.e., card({d(x) : x ∈ [xjm ]IND(B)}) > 1).

Decision rule is a formula of the form (ai1 = v1) ∧ ... ∧ (aik
= vk) ⇒ d = vd,

where 1≤ i1 < ... < ik ≤ m, vi ∈ Vai . Atomic subformulae (ai1 = v1) are called
conditions. We say that rule r is applicable to an object, or alternatively, the
object matches rule, if its attribute values satisfy the premise of the rule. With
the rule we can connect some numerical characteristics such as matching and
support (see [1]).

Missing template t (also called total template) of A is a propositional formula∧
(ai �=?) where ai ∈ A. An object satisfies (matches) a template if for every

attribute ai occurring in the missing template the value of this attribute on con-
sidered object is defined (i.e., different from ?). A width of template t denoted as
w(t) is the number of attributes occurring in the template. A height of template
t denoted as h(t) is the number of objects satisfying the template. The missing
template t induces in natural way a subtable St = (Ut, At ∪ {d}) of original in-
formation system A = (U, A∪{d}) consisting of set of objects Ut that satisfy the
missing template t and set of attributes At occurring in the template (c.f. [7]).
Obviously, h(t) = card(Ut), w(t) = card(At) and the subtable St is complete,
i.e. totally described, while all objects satisfying a template are described on
attributes occurring in the template.

We will also use a normalization factor ρ = card(U)
card(Ut)

= card(U)
h(t) to normalize

heuristic measures of different missing templates, D to denote a number of de-
cision classes occurring in subtable St, and Di to denote the number of decision
classes occurring in i-th indiscernibility class [xi]IND(At) of St.

3 Missing Template Decomposition

The Missing Template Decomposition method (MTD), as it was indicated in
introduction, differs from main streams of research on reasoning with incomplete
object description. It is meant to meet two requirements. The first one is to adapt
many well-known classifier induction methods, that are initially not capable
of handling missing attribute values, to the case of incomplete data. In other
words, MTD makes it possible to analyze incomplete information systems by
previously known and implemented classification methods without the need for
their modification. The second requirement is that MTD shall be able to cope
with the problem of incomplete data without making an additional assumption
of independent random distribution of missing values and without using data
imputation methods [3,4]. The second requirement comes from the fact that
many real world applications have shown that appearance of missing values
may be governed by very complicated dependencies. Missing attribute values
are frequently not uniformly distributed, but their distribution is determined by
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the hidden nature of investigated phenomenon, just like in the case of regular
values. Hence, the application of an arbitrary method for data imputation can
reduce accuracy of a classifier.

3.1 Classifier Induction

The MTD tries to avoid the necessity of reasoning on data with missing attribute
values. The original incomplete data is decomposed into data subsets which
contain no missing values. Next, methods for classifier induction are applied to
these complete subsets. Finally, a conflict resolving method is used to obtain
final solution from partial classifiers constructed on subtables.

In the data decomposition phase the original decision table with missing at-
tribute values is partitioned into a number of decision subtables, which contain
no missing values. This data decomposition should reveal patterns in distribution
of missing attribute values. Ideally, the complete subtables that are result of the
decomposition should correspond to natural subproblems of the whole problem
domain. With the help of the concept of total template introduced earlier, we
can define data decomposition phase as generation of set of total templates t1,
. . . , tT and extraction of subtables St1 , . . . , StT that satisfy these templates (see
Fig. 1).

Decision table
A = (U,A {d})

Subtable for 
template t2

St2
= (Ut2

,At2
{d})

Classifier for St2 Conflict Resolving

Subtable for 
template t1

St1
= (Ut1

,At1
{d})

Subtable for 

template t3
St3

= (Ut3
,At3

{d})

Classifier for St1

Classifier for St3

Fig. 1. Missing Template Decomposition Method

Once we have data decomposed into complete decision subtables, we perform
classifier induction from these subtables and classifier fusion (refer to figure Fig.
1). For classifier induction one can apply arbitrary method of inductive learning.
In our current implementation it is possible to utilize decision tree or decision
rules’ classifier. For decision tree classifier we can play with two parameters:
minimal required confidence (purity) of each leaf and minimal nonterminal node
size. For decision rule classifier we can select between optimal exhaustive decision
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rules (all rules, see [2,12]) and LEM2 rules (see [13]). For classifier fusion we
could apply any method for conflict resolution. Current implementation provides
standard voting method and decision tree method for this purpose.

The decision subtables {St = (Ut, At∪{d})} contain exactly the same decision
attribute as the original decision table A = (U, A ∪ {d}). This fact determines
the course of classifier induction. All classifiers induced for decision subtables are
classifying objects into the same decision classes, but for a given object some of
these classifiers may not be applicable. Note, that during classification process
the (subtable-induced) classifier is applicable to an object only if this object
satisfies total template related to the considered classifier. On the other hand,
there may be objects for which more than one classifier is applicable. That is
why after classifier induction we need a mechanism for conflict resolution.

Conflict resolving shall result in creation of the final answer. In case of stan-
dard voting this answer, depending of requirements, may be obtained in one
of two ways. First approach to conflict resolving takes into account only one
final decision value (definite decision class assignment) for each partial classifier
on the examined object. The object is assigned a decision value that has been
selected by majority of partial classifiers. In the second approach, conflict resolv-
ing is done on vector of decision class assignment probabilities. The final result
(class assignment) is reached by taking the decision with highest cumulative
probability.

In the case of conflict resolving with use of decision tree, the tree is induced
from a virtual decision table that consist of all classifier answers for objects from
training table. Once decision tree is constructed, it is utilized to merge answers
from all partial classifiers.

We can briefly summarize the missing template decomposition method as
follows:

– Create set of templates t1, . . . ,tT for missing values in the following way:
• Create a temporary set of objects U ′ := U from the original decision

table and repeat two following steps until the temporary set U ′ becomes
empty:

• Generate the best missing template ti for objects U ′ according to a
chosen criterion;

• Remove from the temporary set U ′ objects that are covered by missing
template ti;

– Create complete decision subtables St1 , . . . , StT that correspond to previ-
ously generated set of templates;

– Induce classifiers over complete decision subtables;
– Select a conflict resolving method (or learn a conflict resolving strategy) to

get the final answer.

3.2 Data Decomposition Criteria

Subsets St of original decision table A must satisfy some requirements in order
to achieve good quality of inductive reasoning as well as applicability in case of
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methods that cannot deal with missing attribute values. We expect the decision
subtables to exhaustively cover the input table (at least in the terms of objects,
i.e.,

⋃T
i=1 Uti = U). They should contain no missing values. It is also obvious

that the quality of inductive reasoning depends on a particular partition and
some partitions are better than others.

In current implementation of MTD the search for promising set of total tem-
plates t1, . . . , tT is done with help of heuristic functions and genetic algorithm
with variable population size. The library utilized by RSES software provides sev-
eral heuristic functions for total template evaluation. These heuristic functions
join properties of standard template evaluation measures with feature selection
measures, especially measures based on rough sets. The implemented heuristic
functions are of the form q(t) = w(t)α · h(t) · f(t)β , where q(t) is considered
heuristic function, called also quality function of template, f(t) is an additional
template evaluation measure, and α, β are exponents for controlling the impact
of different components of quality function. Currently there are 8 template eval-
uation measures implemented in RSES and ready to be used for this purpose.
These are:

– S — size measure only, f(t) = 1, the template quality function has form
q(t) = w(t)α · h(t),

– C — conflict measure that counts conflicts in inconsistent indiscernibil-
ity classes, f(t) = maxc(t)−c(t)

maxc(t) , where c(t) is a function similar to conflict

c(t) = ρ ·
∑M

i=1
∏Di

d=1 card({x ∈ [xji ]IND(At) : d(x) = d})) and maxc(t) =
ρ ·
∏D

d=1 card({x ∈ Ut : d(x) = d}) is a function that estimates maximal
possible c(t) value from the top,

– I — inconsistency measure, f(t) = h(t)−i(t)
h(t) , where h(t) estimates i(t) value

from the top and i(t) = ρ ·
∑M

i=1
∑Di

d=1 card({x ∈ [xji ]IND(At) : d(x) = d}),
– D — average ratio of maximal purity within indiscernibility classes, f(t) =

1
K

∑K
i=1

maxd∈Vd
card({x∈[xi]IND(At):d(x)=d})

card({x∈[xi]IND(At)}) ,
– E — proportion of maximal purity within indiscernibility classes to template

size, f(t) =
∑K

i=1
maxd∈Vd

card({x∈[xi]IND:d(x)=d})
h(t) ,

– F — f(t) = 1
max(1,c(t)) , where c(t) is defined above,

– G — f(t) =
∑K

i=1
maxd∈Vd

card({x∈[xi]IND(At):d(x)=d})
card([xi]IND(At))

(i.e., G = K · D),

– H — f(t) = 1
K

∑K
i=1

maxd∈Vd
card({x∈[xi]IND:d(x)=d})

h(t) (i.e., E = K · H),
– P — predictive measure, f(t) is an accuracy of decision tree classifier trained

and tested on table St.

4 Example of Experiment with MTD

To bring the functionality of MTD closer to reader’s intuition we present an
experiment performed with the RSES’ implementation of MTD. Our experiment
is carried out with use of hin data. It is a set of data describing head injuries data
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with three possible decision values (moderate disability or good recovery, severe
disability, dead or vegetative), 6 conditional attributes and 1000 observations.
This dataset was selected because of the quantity of missing information. In the
hin data table 40.5% of all objects are incomplete (contain at least one ?) and
9.8% of all values are missing. This data was originally split into ten separate
train&test pairs for ten fold cross-validation (c.f. [8]), but for simplicity we use
only the first pair of train&test datasets.

To begin with, we have to load the training and test data tables into the
RSES system (see Fig. 2). Once we have data loaded we can start experiments.
In particular we can induce Missing Template Decomposition Classifier (MTD-
C). This is easily done by selecting appropriate option from context menu for
an icon representing training table.

Fig. 2. Simple project diagram of RSES system with decision tables for training and
testing, MTD induced from train table and classification results of MTD over test table

Selecting this option causes the RSES system to show the dialog box with
settings for MTD, as presented in Fig. 3. Most of these settings were described
in the previous section, so here we just briefly point at their location. In the
top left part a checkbox for selecting the type of answers gathered from sub-
classifiers is located. If it is unchecked, then each classifier outputs only one
decision value for an object. Checking it causes RSES to use decision probability
vectors. Most of the left part of the dialog is related to parameters for missing
template generation method. The user can select an additional evaluation func-
tion as described previously as well as exponent factors for selecting importance
of different components in the the template quality function. There are also set-
tings for genetic algorithm with variable population size that may be used to
search for templates. The user can adjust the number of genetic algorithm iter-
ations, probability of including each attribute in initial randomized population,
and minimal and maximal population sizes. In the field placed at the bottom left
corner the user can select a name for our MTD, which will be used to identify
it in RSES project diagram.

The right side of the dialog is devoted to settings for classifiers and conflict
resolving method. In the upper part the user can select the algorithm for induc-
tion of classifiers for subtables (decision tree, all rules or LEM2 rules) and their
settings. Below classifier selection menu there is a section that controls some
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basic settings for internal discretization algorithms. The internal discretization
is required if some attributes in data are numeric and is done automatically for
each subtable before rule induction. In our example the head injury data contains
no numeric attributes, so discretization is not required. In RSES we have also
option of discretizing the entire data table with appropriate algorithm before in-
voking the MTD module. Finally, the bottom-right part of the dialog is related
to selection of conflict resolving method. The user has choice between voting and
decision tree learning methods. For decision tree conflict resolution method the
user can also specify parameters such as confidence level and minimal size of a
leaf.

Fig. 3. Configuration dialog of RSES system for Missing Template Decomposition
Method

Let us assume that we would like to construct a MTD using the parameter
choice presented in Fig. 3. These settings assume no additional template evalu-
ation function (S = w(h) ·h(t)), LEM2 1 rule induction algorithm with required
coverage factor of 0.01 (1%) for classifier induction and decision tree used for
conflict resolving. After clicking OK the RSES system will induce MTD which
which will be accessible via a newly created icon within RSES project interface.
By double clicking on the MTD icon the user may open the results window and
see the “machinery” for constructed MTD classifier. It is possible to display the
1 Please note, that RSES implementation of LEM2 algorithm does not reflect its cur-

rent status and most recent developements. It is based on description from [13].
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set of missing templates as well as induced rule sets and decision tree used for
conflict resolving. We can test the accuracy of our MTD model on a test ta-
ble. The easiest way to do that is by choosing the “Classify/Test table using
MTD-C” option from the context menu associated with the previously loaded
test table and selecting the name of MTD to be used. The classification results
are then stored in the standard RSES object that makes it possible to examine
and analyze classification quality.

In the table below we present results of several experiments carried out on hin
data with use of various classification algorithms available in the RSES system.
These results exemplify usefulness of the MTD, at least for this data set. More
results of MTD application, as well as more thorough explanation of underlying
algorithms can be found in [7].

Description Accuracy Precision Coverage Classifier Complexity
All rules on original table 0.535 0.581 0.921 734 rules
LEM2 rules on original table 0.426 0.614 0.693 392 rules
All rules on table imputed with
most common value

0.475 0.822 0.578 824 rules

LEM2 rules on table imputed
with most common value

0.257 0.650 0.396 323 rules

All rules on table imputed with
most common value w.r.t. deci-
sion class (*)

0.554 0.622 0.891 898 rules

LEM2 rules on table imputed
with most common value w.r.t.
decision class

0.268 0.628 0.426 289 rules

All Rules (*) shortened with fac-
tor 0.7

0.673 0.708 0.950 259 rules

MTD q = w · h, All rules, voting 0.554 0.554 1.000 352 rules/4 classifiers
MTD q = w ·h, All rules, decision
trees

0.663 0.663 1.000 352 rules/4 classifiers
+ 155 tree nodes

MTD q = w ·h, LEM2 rules (1%),
decision tree

0.782 0.782 1.000 8 rules/4 classifiers +
61 nodes
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Abstract. A framework of rule generation in Non-deterministic
Infor- mation Systems (NISs), which follows rough sets based rule
generation in Deterministic Information Systems (DISs), is pre-
sented. We have already coped with certain rules and minimal certain
rules, which are characterized by the concept of consistency, in NISs.
We also introduced discernibility functions into NISs. In this paper,
possible rules in NISs are focused on. Because of the information in-
completeness, huge number of possible rules may exist, and we introduce
Min-Max strategy and Max-Max strategy into possible rule generation
in NISs. Possible rules based on these strategies are characterized by
the criteria minimum support, maximum support, minimum accuracy
and maximum accuracy, and Apriori based algorithm is applied.

Keywords: Rough sets, Non-deterministic information, Possible rules,
Apriori algorithm, Min-Max strategy, Max-Max strategy.

1 Introduction

Rough set theory is seen as a mathematical foundation of soft computing. This
theory usually handles tables with deterministic information. Many applications
of this theory to rule generation, machine learning and knowledge discovery have
been presented [1,2,3,4].

We follow rule generation in DISs [1,2,3,4] and propose rule generation in
NISs. NISs were proposed by Pawlak, Or�lowska and Lipski in order to handle
information incompleteness in DISs, like null values, unknown values, missing
values. From the beginning of the research on incomplete information, NISs
have been recognized to be the most important framework for handling infor-
mation incompleteness [5,6]. Therefore, rule generation in NISs will also be an
important framework for rule generation from incomplete information.

However, very few work deals with rule generation from incomplete informa-
tion on computers. In [6], Lipski showed a question-answering system besides
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an axiomatization of logic. Grzymala-Busse developed a system named LERS,
which depends upon LEM1 and LEM2 algorithms [7,8]. Kryszkiewicz proposed
a framework of rules in incomplete information systems [9]. As far as authors
know, these are the most important work for handling incomplete information,
especially missing values, on computers.

In this paper, we briefly survey a framework of rule generation in NISs, and
develop possible rule generation in NISs.

2 Basic Definitions and Background of This Work

This section summarizes basic definitions and the background of this work.

2.1 Basic Framework

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V ALA|
A ∈ AT }, f). Let us consider two sets CON ⊆ AT which we call condition
attributes and DEC ⊆ AT which we call decision attributes. An object x ∈ OB
is consistent (with any distinct object y ∈ OB), if f(x, A)=f(y, A) for every
A ∈ CON implies f(x, A)=f(y, A) for every A ∈ DEC.

A Non-deterministic Information System (NIS) is also a quadruplet
(OB, AT, {V ALA|A ∈ AT }, g), where g : OB×AT → P (∪A∈AT V ALA) (a power
set of ∪A∈AT V ALA). Every set g(x, A) is interpreted as that there is an actual
value in this set but this value is not known. For a NIS=(OB, AT, {V ALA| A ∈
AT }, g) and a set ATR ⊆ AT , we name a DIS=(OB, ATR, {V ALA|A ∈ ATR},
h) satisfying h(x, A) ∈ g(x, A) a derived DIS (for ATR) from NIS. For a set
ATR={A1, · · · , An} ⊆ AT and any x ∈ OB, let PT (x, ATR) denote the Carte-
sian product g(x, A1) × · · · × g(x, An). We name every element a possible tuple
(for ATR) of x. For a possible tuple ζ=(ζ1, · · ·, ζn) ∈ PT (x, ATR), let [ATR, ζ]
denote a formula

∧
1≤i≤n[Ai, ζi]. Let PI(x, CON, DEC) (x ∈ OB) denote a set

{[CON, ζ] ⇒ [DEC, η]|ζ ∈ PT (x, CON), η ∈ PT (x, DEC)}. We name an ele-
ment of PI(x, CON, DEC) a possible implication (from CON to DEC) of x.

Now, we define six classes of possible implications, certain rules and possi-
ble rules. For any τ ∈ PI(x, CON, DEC), let DD(τ, x, CON, DEC) denote a
set {ϕ| ϕ is such a derived DIS for CON ∪ DEC that an implication from
x in ϕ is equal to τ}. If PI(x, CON, DEC) is a singleton set {τ}, we say
τ (from x) is definite. Otherwise we say τ (from x) is indefinite. If a set
{ϕ ∈ DD(τ, x, CON , DEC)| x is consistent in ϕ} is equal to DD(τ, x, CON ,
DEC), we say τ is globally consistent (GC). If this set is equal to {}, we say
τ is globally inconsistent (GI). Otherwise, we say τ is marginal (MA). By
combining two cases, i.e., ‘D(efinite) or I(ndefinite)’ and ‘GC, MA or GI’,
we define six classes, DGC, DMA, DGI, IGC, IMA, IGI in Table 1, for possi-
ble implications. A possible implication τ belonging to DGC class is consistent
in all derived DISs, and this τ is not influenced by the information incom-
pleteness, therefore we name τ a certain rule. A possible implication τ ′ (from
object x) belonging to either IGC, DMA or IMA class is consistent in some
ϕ ∈ DD(τ ′, x, CON, DEC). Therefore, we name τ ′ a possible rule.
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Table 1. Six classes of possible implications in NISs

GC MA GI

Definite DGC DMA DGI

Indefinite IGC IMA IGI

Now, we give necessary and sufficient conditions for characterizing GC, MA
and GI classes. For any ζ ∈ PT (x, ATR), we fix the tuple of x to ζ, and define
two sets inf(x, ATR, ζ)={y ∈ OB|PT (y, ATR)={ζ}} and sup(x, ATR, ζ)={y ∈
OB|ζ ∈ PT (y, ATR)}. Intuitively, inf(x, ATR, ζ) implies a set of objects whose
tuples are ζ and definite. A set sup(x, ATR, ζ) implies a set of objects whose
tuples may be ζ. In DISs, [x]ATR=inf(x, ATR, ζ)=sup(x, ATR, ζ) holds, and
{x} ⊆ inf(x, ATR, ζ) ⊆ [x]ATR ⊆ sup(x, ATR, ζ) holds in NISs.

Theorem 1 [10]. For a NIS, let us consider a possible implication τ :[CON, ζ] ⇒
[DEC, η] ∈ PI(x, CON, DEC). Then, the following holds.
(1) τ belongs to GC class if and only if sup(x, CON, ζ) ⊆ inf(x, DEC, η).
(2) τ belongs to MA class if and only if inf(x, CON, ζ) ⊆ sup(x, DEC, η).

Proposition 2 [10]. For any NIS, let ATR ⊆ AT be {A1, · · · , An}, and let a
possible tuple ζ ∈ PT (x, ATR) be (ζ1, · · · , ζn). Then, the following holds.
(1) inf(x, ATR, ζ)=∩iinf(x, {Ai}, (ζi)).
(2) sup(x, ATR, ζ)=∩isup(x, {Ai}, (ζi)).

For an implication τ in a DIS, criteria support(τ) and accuracy(τ) are applied to
defining rules. They are extended to minimum support minsupp(τ), maximum
support maxsupp(τ), minimum accuracy minacc(τ) and maximum accuracy
maxacc(τ) in a NIS. These criteria depend upon all derived DISs, however we
developed an effective method to obtain these criterion values.

Theorem 3 [10]. For a NIS, let us consider a possible implication τ :[CON, ζ] ⇒
[DEC, η] ∈ PI(x, CON, DEC). Let INACC denote a set [sup(x, CON, ζ) −
inf(x, CON, ζ)]∩ sup(x, DEC, η), and let OUTACC denote a set [sup(x, CON ,
ζ) − inf(x, CON, ζ)] − inf(x, DEC, η). Then, the following holds.
(1) minsupp(τ)=|inf(x, CON, ζ) ∩ inf(x, DEC, η)|/|OB|.
(2) maxsupp(τ)=|sup(x, CON, ζ) ∩ sup(x, DEC, η)|/|OB|.
(3) minacc(τ)= |inf(x,CON,ζ)∩inf(x,DEC,η)|

|inf(x,CON,ζ)|+|OUTACC| .

(4) maxacc(τ)= |inf(x,CON,ζ)∩sup(x,DEC,η)|+|INACC|
|inf(x,CON,ζ)|+|INACC| .

In minacc(τ), the numerator inf(x, CON, ζ) ∩ inf(x, DEC, η) and the de-
nominator inf(x, CON, ζ) are fixed. We adjust every y ∈ [sup(x, CON, ζ) −
inf(x, CON, ζ)] for minimizing accuracy. For every y ∈ [sup(x, CON, ζ) −
inf(x, CON, ζ)]− inf(x, DEC, η), it is possible to obtain a possible implication
[CON, ζ] ⇒ [DEC, η′] (η′ �= η). This implication is just counted in the denom-
inator, and it is not counted in the numerator. As for maxacc(τ), it is possible
to obtain τ from every y ∈ [sup(x, CON, ζ)− inf(x, CON, ζ)]∩sup(x, DEC, η),
This implication is counted both in the denominator and the numerator. Since
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Table 2. A Table of NIS1

OB P Q R S T

1 {3} {1, 3} {3} {2} {3}
2 {2} {2, 3} {1, 3} {1, 3} {2}
3 {1, 2} {2} {1, 2} {3} {1}
4 {1} {3} {3} {2, 3} {1, 2, 3}
5 {3} {1} {1, 2} {3} {3}

m/n ≤ (m + k)/(n + k) (0 ≤ m ≤ n, n �= 0, k > 0) holds, we obtain (4) in
Theorem 3.

2.2 Certain Rule Generation in NISs

For certain rule generation, we dealt with the following problem.

Problem 1. For a NIS, let DEC be decision attributes and let η be a tuple
of decision attributes values for DEC. Then, find minimal certain rules in the
form of [CON, ζ] ⇒ [DEC, η].

According to Theorem 1, Problem 1 is reduced to find minimal set of descriptors
[CON, ζ] satisfying sup(x, CON, ζ) ⊆ inf(x, DEC, η). For solving this problem,
we followed a discernibility function based method in DISs [11]. We also intro-
duced a revised discernibility function into NISs, and realized tool programs [12].

2.3 An Example

An example is picked up in this subsection. This will clarify the rolls of theorems.
In order to clarify object x, which an implication τ is extracted from, we employ
τx, τx

1 , τx
2 , · · · τx

n instead of τ from now on.

Example 1. Let us consider NIS1 in Table 2. There are 768 derived DISs
for all attributes. For CON={P, Q} and DEC={T }, there are 24(=23 ×
3) derived DISs. Here, PT (1, {P, Q})={(3, 1), (3, 3)}, PT (1, {T })={(3)} and
PI(1, {P, Q}, {T }) consists of two possible implications τ1

1 : [P, 3] ∧ [Q, 1] ⇒
[T, 3], [P, 3] ∧ [Q, 3] ⇒ [T, 3]. Since sup(1, {P, Q}, (3, 1))=sup(1, {P}, (3)) ∩
sup(1, {Q}, (1))= {1, 5} and inf(1, {T }, (3))={1, 5}, sup(1, {P, Q}, (3, 1)) ⊆
inf(1, {T }, (3)) holds. Thus, we know τ1

1 belongs to IGC class. In object
1, sup(1, {P, R, S}, (3, 3, 2))= {1} ⊆ inf(1, {T }, (3)) also holds. Therefore,
it is possible to obtain a minimal certain rule from object 1. The dis-
cernibility function DF (1)=DISC(1, 2) ∧ DISC(1, 3) ∧ DISC(1, 4) =([P, 3] ∨
[S, 2]) ∧ ([P, 3] ∨ [R, 3] ∨ [S, 2]) ∧ ([P, 3])=[P, 3]. Here, DISC(x, y)={[A, ζ]|y �∈
sup(x, {A}, (ζ))}. In this way, [P, 3] ⇒ [T, 3] is the unique minimal certain rule
from object 1. Now, let us consider criterion values of τ1

2 : [Q, 3] ⇒ [T, 3]
from object 1. minsupp(τ1

2 )=|inf(1, {Q}, (3)) ∩ inf(1, {T }, (3))|/5=|{1, 4} ∩
{1, 5}|/5= |{1}|/5=0.2, and similarly maxsupp(τ1

2 )= |{1, 2, 4} ∩ {1, 4, 5}|/5=
|{1, 4}|/5=0.4. Furthermore, INACC=({1, 2, 4} − {1, 4}) ∩{1, 4, 5}={} and
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OUTACC={2}−{1, 5}={2} hold, so minacc(τ1
2 )=|{1}|/(|{1, 4}|+|{2}|)=0.333,

and maxacc(τ1
2 )=(|{1, 4}∩{1, 4, 5}|+ |{}|)/(|{1, 4}|+ |{}|)= |{1, 4}|/|{1, 4}|=1.

2.4 Rules in DISs and Apriori Algorithm

In DISs, rule generation may be defined as the problem below.

Problem 2. Find every implication τ , whose accuracy(τ) is maximum under
the condition support(τ) ≥ α for a fixed value α (0 < α ≤ 1).

For solving this problem, an algorithm named Apriori was proposed by Agrawal
[13]. In this framework, association rules in transaction data are obtained. The
application of the large itemset is the key point in Apriori algorithm.

3 Possible Rule Generation in NISs

Now, let us cope with possible rule generation in NISs. In this case, there may be
huge number of possible implications satisfying condition (2) in Theorem 1. There-
fore, we employ criteria minsupp(τ), maxsupp(τ), minacc(τ) and maxacc(τ) for
defining rules, and we follow the method based on Apriori algorithm.

3.1 Two Problems for Possible Rule Generation in NISs

We employ two strategies in the following.

(1) Min-Max Strategy: We obtain every possible rule which surely holds in
the worst case of a NIS.
(2) Max-Max Strategy: We obtain every possible rule which is the most de-
sirable in the best case of a NIS.

In Min-Max strategy, we try to obtain every possible rule, which is credible
under the information incompleteness in a NIS. On the other hand, in Max-Max
strategy we try to obtain every ideal rule.

Now, we give two problems in this paper.

Problem 3 (Rule generation based on Min-Max Strategy). Find every
possible implication τ , whose minacc(τ) is maximum under the condition
minsupp(τ) ≥ α for a fixed value α (0 < α ≤ 1).

Problem 4 (Rule generation based on Max-Max Strategy). Find every
possible implication τ , whose maxacc(τ) is maximum under the condition
maxsupp(τ) ≥ α for a fixed value α (0 < α ≤ 1).

Example 2. Let us consider NIS1 in Table 2 and τ1
2 : [Q, 3] ⇒ [T, 3] from object

1, again. Here, 0.2 ≤ support(τ1
2 ) ≤ 0.4 and 0.333 ≤ accuracy(τ1

2 ) ≤ 1 hold. Let
us fix α=0.3. In Min-Max strategy, τ1

2 does not satisfy minsupp(τ1
2 ) ≥ 0.3, there-

fore we do not pick up τ1
2 . In Max-Max strategy, τ1

2 satisfies maxsupp(τ1
2 ) ≥ 0.3,

and maxacc(τ1
2 )=1 (the maximum value) holds. Therefore, we pick up τ1

2 . In this
case, Max-Max strategy implicitly relies on a derived DIS∗ as follows: A derived
DIS∗ from NIS1 such that g(1, Q)={1, 3} is replaced with 3, g(2, Q)={2, 3} is
replaced with 2 and g(4, T )={1, 2, 3} is replaced with 3.
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3.2 A Computational Issue for Solving Problem 3 and 4

According to Theorem 3, the calculation of minsupp(τ), minacc(τ), maxsupp(τ)
and maxacc(τ) for a fixed τ is easy. However, τ depends upon the number of de-
rived DISs, and furthermore τ depends upon condition attributes CON (CON ⊆
2AT−DEC). Therefore, it is hard to apply Theorem 3 to every τ sequentially.

For solving this issue, we focus on descriptors [A, ζ] (A ∈ AT , ζ ∈ V ALA).
The number of all descriptors is pretty small.

Definition 1. For every descriptor [A, ζ] (A ∈ AT , ζ ∈ V ALA) in a NIS, we
define the following.
(1) descinf([A, ζ])={x ∈ OB| g(x, A)={ζ}}.
(2) descinf(∧i[Ai, ζi])=∩idescinf([Ai, ζi]).
(3) descsup([A, ζ])={x ∈ OB| ζ ∈ g(x, A)}.
(4) descsup(∧i[Ai, ζi])=∩idescsup([Ai, ζi]).

Proposition 4. In a NIS, let us suppose CON={A1, · · · , An}, ζ={ζ1, · · ·, ζn}
and ζ ∈ PT (x, CON). Then, the following holds.
(1) inf(x, CON, ζ)=descinf(∧i[Ai, ζi]) holds, if PT (x, CON)={ζ}.
(2) inf(x, CON, ζ)=descinf(∧i[Ai, ζi]) ∪ {x} holds, if PT (x, CON) �= {ζ}.
(3) sup(x, CON, ζ)=descsup(∧i[Ai, ζi]) holds.

The definition of inf(x, CON, ζ) and descinf([CON, ζ]) is almost the same,
however they are not the same. Because, inf(x, CON, ζ) depends upon object
x, but descinf([CON, ζ]) just depends upon the descriptor [CON, ζ]. There-
fore, the manipulation on descinf([CON, ζ]) is much simpler than that of
inf(x, CON , ζ). As for sup(x, CON, ζ) and descsup([CON, ζ]), they define
the same set for every x. In correspondence with descinf([CON, ζ]), we define
descsup([CON, ζ]).

3.3 Calculation of Minsupp and Minacc Based on Descinf and
Descsup Information

In this subsection, we show an effective method to calculate minsupp(τ) and
minacc(τ) based on descinf and descsup. This calculation is necessary for solv-
ing Problem 3.

Proposition 5. Let [CON, ζ] be ∧A∈CON [A, ζA] and [DEC, η] be ∧B∈DEC [B,
ηB], and let us suppose x ∈ descsup([CON, ζ] ∧ [DEC, η]).
(1) If x ∈ descinf([CON, ζ] ∧ [DEC, η]), it is possible to obtain a possible
implication τx : [CON, ζ] ⇒ [DEC, η] from object x, which satisfies

minsupp(τx)= |descinf([CON,ζ]∧[DEC,η])|
|OB| .

(2) If x ∈ descsup([CON, ζ] ∧ [DEC, η]) − descinf([CON, ζ] ∧ [DEC, η]), it is
possible to obtain a possible implication τx : [CON, ζ] ⇒ [DEC, η] from object
x, which satisfies

minsupp(τx)= |descinf([CON,ζ]∧[DEC,η])|+1
|OB| .

Proposition 5 shows us that minsupp(τ) can be calculated by descinf . In Proposi-
tion 5, if x �∈ descsup([CON, ζ]∧ [DEC, η]), it is impossible to obtain any possible
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Table 3. Descinf and descsup information in Table 2

[P, 1] [P, 2] [P, 3] [Q, 1] [Q, 2] [Q, 3] [R, 1] [R, 2] [R, 3]
descinf {4} {2} {1, 5} {5} {3} {4} {} {} {1, 4}
descsup {3, 4} {2, 3} {1, 5} {1, 5} {2, 3} {1, 2, 4} {2, 3, 5} {3, 5} {1, 2, 4}

[S, 1] [S, 2] [S, 3] [T, 1] [T, 2] [T, 3]
descinf {} {1} {3, 5} {3} {2} {1, 5}
descsup {2} {1, 4} {2, 3, 4, 5} {3, 4} {2, 4} {1, 4, 5}

Table 4. Conjunction of descriptors satisfying either CASE 1 or CASE 2 in Table 3

[P, 3] ∧ [T, 3] [Q, 1] ∧ [T, 3] [R, 3] ∧ [T, 3] [S, 2] ∧ [T, 3] [S, 3] ∧ [T, 1] [S, 3] ∧ [T, 3]
descinf {1, 5} {5} {1} {1} {3} {5}
descsup {1, 5} {1, 5} {1, 4} {1, 4} {3, 4} {4, 5}

implication [CON, ζ] ⇒ [DEC, η] from object x. Therefore, we employed such a
condition that x ∈ descsup([CON, ζ] ∧ [DEC, η]). According to Proposition 5, it
is possible to obtain every object, from which we can extract a possible implication
satisfying the condition of minsupp(τ) ≥ α.

Example 3. Let us consider descinf and descsup, which are obtained in NIS1,
in Table 3, and let us consider Problem 3. We set α=0.3, condition attribute
CON ⊆ {P, Q, R, S} and decision attribute DEC={T }. Since |OB|=5 and
minsupp(τ)=|SET |/5 ≥ 0.3, |SET | ≥ 2 must hold. According to Table 3, we
generate Table 4 satisfying either of the following.
(CASE 1) |descinf([A, ζA] ∧ [T, ηT ])| ≥ 2 (A ∈ {P, Q, R, S}).
(CASE 2) |descinf([A, ζA] ∧ [T, ηT ])|=1 and descsup([A, ζA] ∧ [T, ηT ])−

descinf([A, ζA] ∧ [T, ηT ]) �= {} (A ∈ {P, Q, R, S}).
The conjunction [P, 3] ∧ [T, 3] in Table 4 means an implication τ1

3 , τ5
3 : [P, 3] ⇒

[T, 3]. Because descsup([P, 3]∧ [T, 3])={1, 5} holds, τ1
3 and τ5

3 come from object
1 and 5, respectively. Since 1, 5 ∈ descinf([P, 3] ∧ [T, 3]) holds, minsupp(τ1

3 )=
minsupp(τ5

3 )=|{1, 5}|/5=0.4 holds. Then, the conjunction [Q, 1]∧ [T, 3] in Table
4 means an implication τ1

4 , τ5
4 : [Q, 1] ⇒ [T, 3]. Since 5 ∈ descinf([Q, 1] ∧ [T, 3])

holds, minsupp(τ5
4 )=|{5}|/5=0.2 holds. On the other hand, 1 ∈ descsup([Q, 1]∧

[T, 3]) − descinf([Q, 1] ∧ [T, 3]) holds, so minsupp(τ1
4 )=(|{5}|+ 1)/5=0.4 holds

in object 1.
Now, let us discuss the calculation of minacc(τ).

Proposition 6. Let us suppose the same condition as in Proposition 5, and let
OUTMINACC denote a set [descsup([CON, ζ])−descinf([CON, ζ])]−descinf
([DEC, η]). Then, the following holds.
(1) If x ∈ descinf([CON, ζ] ∧ [DEC, η]), it is possible to obtain a possible
implication τx : [CON, ζ] ⇒ [DEC, η] from object x, which satisfies

minacc(τx)= |descinf([CON,ζ]∧[DEC,η])|
|descinf([CON,ζ])|+|OUTMINACC| .
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(2) If x ∈ descsup([CON, ζ]∧ [DEC, η])−descinf([CON, ζ]∧ [DEC, η]), it is
possible to obtain a possible implication τx : [CON, ζ] ⇒ [DEC, η] from object
x, which satisfies

minacc(τx)= |descinf([CON,ζ]∧[DEC,η])|+1
|descinf([CON,ζ])∪{x}|+|OUTMINACC−{x}| .

Example 4. Let us continue Example 3. For τ1
3 and τ5

3 , descsup([P, 3])={1, 5},
descinf([P, 3])={1, 5}, descinf([P, 3]∧ [T, 3])={1, 5} and OUTMINACC=[{1,
5}− {1, 5}]− {1, 5}={}. Since 1, 5 ∈ descinf([P, 3]∧ [T, 3]) holds, minacc(τ1

3 )=
minacc(τ5

3 )=|{1, 5}|/(|{1, 5}| + |{}|)=1 is derived. For τ3
4 , τ4

4 : [S, 3] ⇒ [T, 1],
OUTMINACC=[{2, 3, 4, 5} − {3, 5}] − {3}={2, 4} holds. For τ3

4 from object
3, minacc(τ3

4 )=|{3}|/(|{3, 5}|+ |{2, 4}|)=0.25 is derived. As for τ4
4 from object

4, minacc(τ4
4 )=(|{3}| + 1)/(|{3, 5} ∪ {4}|+ |{2, 4} − {4}|)=0.5 is derived. Since

τ4
4 just satisfies minsupp(τ) ≥ 0.3, it is enough to consider minacc(τ4

4 ) for an
implication [S, 3] ⇒ [T, 1].

According to the above consideration, we obtain three possible rules, whose
minacc is maximum under minsupp ≥ 0.3, in the following.

[P, 3] ⇒ [T, 3] (minsupp=0.4, minacc=1) from objects 1 and 5.
[Q, 1] ⇒ [T, 3] (minsupp=0.4, minacc=1) from object 1.
[S, 2] ⇒ [T, 3] (minsupp=0.4, minacc=1) from object 4.

In the above procedure, every calculation just depends upon descinf and
descsup, and the calculation is very simple. The most time-consuming part is to
generate conjunctions of descriptors in Table 4.

3.4 Calculation of Maxsupp and Maxacc Based on Descinf and
Descsup Information

In this subsection, we show an effective method to calculate maxsupp(τ) and
maxacc(τ) based on descinf and descsup. This calculation is necessary for solv-
ing Problem 4. As we have shown, sup(x, CON, ζ)= descsup([CON, ζ]) holds
for every x.

Proposition 7. Let us suppose the same condition as in Proposition 5.
(1) If x ∈ descsup([CON, ζ] ∧ [DEC, η]), it is possible to obtain a possible
implication τx : [CON, ζ] ⇒ [DEC, η] from object x, which satisfies

maxsupp(τx)= |descsup([CON,ζ]∧[DEC,η])|
|OB| .

Proposition 8. Let us suppose the same condition as in Proposition 5, and let
INMAXACC denote a set [descsup([CON, ζ])− descinf([CON, ζ])]∩ descsup
([DEC, η]).
(1) If x ∈ descinf([CON, ζ] ∧ [DEC, η]), it is possible to obtain a possible
implication τx : [CON, ζ] ⇒ [DEC, η] from object x, which satisfies

maxacc(τx)= |descinf([CON,ζ])∩descsup([DEC,η])|+|INMAXACC|
|descinf([CON,ζ])|+|INMAXACC| .

(2) If x ∈ descsup([CON, ζ] ∧ [DEC, η]) − descinf([CON, ζ] ∧ [DEC, η]), it is
possible to obtain a possible implication τx : [CON, ζ] ⇒ [DEC, η] from object
x, which satisfies

maxacc(τx)= |descinf([CON,ζ])∩descsup([DEC,η])−{x}|+|INMAXACC−{x}|+1
|descinf([CON,ζ])∪{x}|+|INMAXACC−{x}| .
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Example 5. Let us continue Example 3. For τ1
3 : [P, 3] ⇒ [T, 3]. maxsupp(τ1

3 )=
|{1, 5}|/5=0.4, and INMAXACC=[{1, 5} − {1, 5}] ∩ {1, 4, 5}={}. Therefore,
maxacc(τ1

3 )=(|{1, 5} ∩ {1, 4, 5}| + |{}|)/(|{1, 5}| + |{}|)=1. As for τ4
4 : [S, 3] ⇒

[T, 1], maxsupp(τ4
4 )=|{3, 4}|/5=0.4, and INMAXACC=[{2, 3, 4, 5}− {3, 5}]∩

{3, 4}={4}. Since 4 ∈ descsup([S, 3]∧ [T 1])−descinf([S, 3]∧ [T 1]), condition (2)
in Proposition 8 is applied. maxacc(τ4

4 )=(|{3, 5} ∩ {3, 4} − {4}|+ |{4} − {4}|+
1)/(|{3, 5} ∪ {4}|+ |{4} − {4}|)=(|{3}|+ 1)/(|{3, 4, 5}|)=0.666 is derived.

According to the above consideration, we obtain four possible rules, whose
maxacc is maximum under maxsupp ≥ 0.3, in the following.

[P, 3] ⇒ [T, 3] (maxsupp=0.4, maxacc=1) from objects 1 and 5.
[Q, 1] ⇒ [T, 3] (maxsupp=0.4, maxacc=1) from object 1 and 5.
[R, 3] ⇒ [T, 3] (maxsupp=0.4, maxacc=1) from object 1 and 4.
[S, 2] ⇒ [T, 3] (maxsupp=0.4, maxacc=1) from object 1 and 4.

3.5 Possible Rule Generation in Two Strategies

In the previous subsection, we showed calculation methods based on descinf
and descsup. We are now realizing possible rule generation, which depends upon
criteria minsupp, minacc, maxsupp and maxacc, below.

An Overview of Possible Rule Generation in Min-Max Strategy
(1) For condition minsupp(τ)=|SET |/|OB| ≥ α, obtain the number NUM of
elements in SET satisfying this condition.
(2) Generate conjunctions of descriptors like Table 3 and 4 until |descsup([CON ,
ζ]∧[DEC, η])| is smaller than NUM . If |descsup([CON, ζ]∧[DEC, η])| < NUM ,
minsupp(τ) < α holds. Therefore, it is meaningless to generate the next con-
junction.
(3) For every conjunction of descriptors [CON, ζ] ∧ [DEC, η] (τ : [CON, ζ] ⇒
[DEC, η]), apply Proposition 5 to calculating minsupp(τ). If minsupp(τ) ≥ α,
apply Proposition 6 to calculating minacc(τ).

As for Max-Max strategy based possible rule generation is also like the above
procedure.

We have already proposed a method to calculate minsupp(τ), · · ·, maxacc(τ)
in Theorem 3. However, this method can be applicable to the fixed τ . In order
to apply Theorem 3 to Problem 3 or Problem 4, it is necessary to pick up all τ
in a NIS. As we have shown, τ depends upon the number of derived DISs, and
furthermore τ depends upon condition attributes CON (CON ⊆ 2AT−DEC).
Therefore, it is hard to pick every τ sequentially. On the other hand, proposed
possible rule generation in this paper depends upon the number of conjunctions
of descriptors, therefore proposed rule generation will be more effective.

4 Concluding Remarks

We proposed a framework of possible rule generation based on Min-Max and
Max-Max strategies in NISs. These strategies are usually applied to decision
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making under the uncertain situation, and we are now including these strategies
into RNIA (Rough Non-deterministic Information Analysis) [10].

We employed descinf and descsup information and the concept of large
itemset in Apriori algorithm. In the current situation, we have not realized tool
programs. Toward realizing tool programs, at least it is necessary to consider
the following.
(1) To examine the details of rule generation in two strategies.
(2) To examine algorithms for generating conjunctions of descriptors.
(3) To examine the computational complexity of algorithms.
(4) To examine data structure for realizing tool programs.
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Abstract. This paper considers the problem of a generalized model for
conflict analysis and resolution. Such a model would be helpful in analyz-
ing and resolving conflict in disputes in both government and industry,
where disputes and negotiations about various issues are the norm. The
issue here is how to model a combination of situations among agents i)
where there are disagreements leading to a conflict situation ii) need for
an acceptable set of agreements. The solution to this problem stems from
pioneering work on this subject by Zdzis�law Pawlak, which provides a
basis for a generalized model encapsulating a decision system with com-
plex decisions and an approximation space-based conflict resolution using
rough coverage. An example of a requirements scope negotiation for an
automated lighting system is presented. The contribution of this paper
is a rough set based requirements scope determination model using a
generalized conflict model with approximation spaces.

Keywords: Approximation space, conflict analysis, conflict resolution,
rough sets, requirements engineering, scope negotiation.

1 Introduction

Conflict analysis and resolution play an important role in government and indus-
try where disputes and negotiations about various issues are the norm. To this
end, many mathematical formal models of conflict situations have been proposed
and studied, e.g., [4,5,6,11,12,15]. The approach used in this paper, is based on a
different kind of relationship in the data. This relationship is not a dependency,
but a conflict [16]. Formally, a conflict relation can be viewed as a special kind of
discernibility, i.e., negation (not necessarily, classical) of indiscernibility relation
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which is the basis of rough set theory [14]. Thus indiscernibility and conflict are
closely related from logical point of view. It is also interesting to note that almost
all mathematical models of conflict situations are strongly domain dependent.

Cost effective engineering of complex software systems involves a collabora-
tive process of requirements identification through negotiation. This is one of
the key ideas of the Win-Win 1 approach [3] used in requirements engineering.
This approach also includes a decision model where a minimal set of conceptual
elements, such as win conditions, issues, options and agreements, serves as an
agreed upon ontology for collaboration and negotiation defined by the Win-Win
process. System requirements (goals) are viewed as conditions. Conflicts arising
during system requirements gathering is especially acute due to the nature of
the intense collaboration between project stakeholders involved in the process. In
particular, determining the scope or the extent of functionality to be developed
is crucial.

Recent work in the application of rough sets to handling uncertainty in soft-
ware engineering can be found in [10,18,19]. However, the basic assumption in all
of these papers, is that requirements have already been decided and the analysis
of gathered requirements data is then performed. This paper extends the earlier
work involving the high-level requirements negotiation based on winning condi-
tions [21]. In this paper, the focus is on achieving consensus on detailed set of
requirements for each high level requirement that was agreed by all stakeholders.
This process is also known as scope negotiation.

The contribution of this paper is a rough set based requirements scope deter-
mination model using a generalized conflict model with approximation spaces.
Conflict graphs are used to analyze conflict situations, reason about the degree
of conflict and explore coalitions. A rough coverage function is used to measure
the degree of conformity of sets of similar requirements to negotiation standards.
We illustrate our approach in determining scope of a complex engineering system
requirements through negotiation.

This paper is organized as follows. An introduction to basic concepts of con-
flict theory is given Sect. 2. Conflicts, information systems and rough sets are
discussed in Sect. 3. A complex conflict model is given in Sect. 4 followed by
an illustration of requirements scope negotiation for a home lighting automation
system (HLAS) in Sections 5 and 5.1. A generalized conflict model for con-
flict analysis and conflict resolution considered in the context of approximation
spaces is given Sect. 5.2.

2 Basic Concepts of Conflict Theory

The basic concepts of conflict theory that we use in this paper are due to [16].
Let us assume that we are given a finite, non-empty set Ag called the universe.
Elements of Ag will be referred to as agents. Let a voting function v : Ag →
{−1, 0, 1}, or in short {−, 0, +}, be a number representing his/her voting re-
sult about some issue under negotiation, to be interpreted as against,neutral
1 See http://sunset.usc.edu/research/WINWIN
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and favorable, respectively. The pair CS = (Ag, V ), where V is a set of voting
functions, will be called a conflict situation.

In order to express relations between agents, we define three basic binary
relations on the universe: agreement, neutrality, and disagreement. To this end,
for a given voting function v, we first define the following auxiliary function:

φv(ag, ag′) =

⎧⎨⎩
1, if v(ag)v(ag′) = 1 or v(ag) = v(ag′) = 0
0, if v(ag)v(ag′) = 0 and non(v(ag) = v(ag′) = 0)

−1, if v(ag)v(ag′) = −1.
(1)

This means that, if φv(ag, ag′) = 1, agents ag and ag′ have the same opin-
ion about an issue v (agree on issue v); if φv(ag, ag′) = 0 means that at least
one agent ag or ag′ has no opinion about an issue v (is neutral on v), and if
φv(ag, ag′) = −1, means that both agents have different opinions about an issue
v (are in conflict on issue v). In what follows, we will define three basic re-
lations R+

v ,R0
v and R−

v on Ag2 called agreement, neutrality and disagreement
relations respectively, and defined by (i) R+

v (ag, ag′) iff φv(ag, ag′) = 1; (ii)
R0

v(ag, ag′) iff φv(ag, ag′) = 0; (iii) R−
v (ag, ag′) iff φv(ag, ag′) = −1. It is eas-

ily seen that the agreement relation is an equivalence relation. Each equivalence
class of the agreement relation will be called a coalition with respect to v. For the
conflict or disagreement relation we have: (i) not R−

v (ag, ag); (ii) if R−
v (ag, ag′)

then R−
v (ag′, ag); (iii) if R−

v (ag, ag′) and R+
v (ag′, ag′′) then R−

v (ag, ag′′). For the
neutrality relation we have: (i) not R0

v(ag, ag); (ii) R0
v(ag, ag′) = R0

v(ag′, ag).
In the conflict and neutrality relations there are no coalitions. In addition,
R+

v ∪ R0
v ∪ R−

v = Ag2. All the three relations R+
v , R0

v , R−
v are pairwise dis-

joint. With every conflict situation cs = (Ag, v) relative to a voting function v,
we will associate a conflict graph CGv. Examples of conflict graphs are shown
in Figure 1. In Figure 1(a), solid lines denote conflicts, dotted line denote agree-
ments, and for simplicity, neutrality is not shown explicitly in the graph.
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(b) Requirement Conflict (see r1.1 in Table 2)

Fig. 1. Sample Conflict Graphs

As one can see B, C, and D form a coalition. A conflict degree Con(cs)
(or Conv(cs)) of the conflict situation cs = (Ag, v) (we write also CSv instead
of cs) is defined by
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Con(cs) =

∑
{(ag,ag′): φv(ag,ag′)=−1} |φv(ag, ag′)|

2/n
2 0 × (n − /n

2 0)
(2)

where n = Card(ag). Observe that Con(cs) is a measure of discernibility between
agents from Ag relative to the voting function v. For a more general conflict
situation CS = (Ag, V ) where V = {v1, . . . , vk} is a finite set of voting functions
each for a different issues the conflict degree in CS (tension generated by V ) can
be defined by

Con(CS) =
k∑

i=1

Con(csi)/k (3)

where csi = (Ag, vi) for i = 1, . . . , k.

3 Conflicts, Information Systems, and Rough Sets

There are strong relationships between the approach to conflicts and informa-
tion systems as well as rough sets. In this section, we discuss examples of such
relationships. The presented approach in this section seems to be promising for
solving problems related to conflict resolution and negotiations (see, e.g.,[24]).

An information system is a table of rows which are labeled by objects (agents),
columns by attributes (issues) and entries of the table are values of attributes
(votes), which are uniquely assigned to each agent and attribute, i.e. each entry
corresponding to row x and column a represents opinion of an agent x about
issue a. Formally, an information system can be defined as a pair S = (U, A),
where U is a nonempty, finite set called the universe; elements of U will be called
objects and A is a nonempty, finite set of attributes [14]. Every attribute a ∈ A is
a total function a : U → Va, where Va is the set of values of a, called the domain
of a; elements of Va will be referred to as opinions, and a(x) is opinion of agent x
about issue a. The above given definition is general, but for conflict analysis we
will need its simplified version, where the domain of each attribute is restricted
to three values only, i.e. Va = {−1, 0, 1}, for every a, meaning disagreement,
neutral and agreement respectively. For the sake of simplicity we will assume
Va = {−, 0, +}. Every information system with the above mentioned restriction
will be referred to as a situation.

We now observe that any conflict situation CS = (Ag, V ) can be treated as
an information system where Ag = {ag1, . . . , agn} and V = {v1, . . . , vk} with
the set of objects Ag (agents) and the set V of attributes (issues).

The discernibility degree between agents ag and ag′ in CS can be defined by

discCS(ag, ag′) =

∑
{i: φvi

(ag,ag′)=−1} |φvi(ag, ag′)|
k

, (4)

where ag, ag′ ∈ Ag. Now, one can consider reducts of CS relative to the discerni-
bility degree defined by discCS. For example, one can consider agents ag, ag′ as
discernible if

discCS(ag, ag′) ≥ tr,
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where tr a given threshold.2 Any reduct R ⊆ V of CS is a minimal set of vot-
ing functions preserving all discernibility in voting between agents that are at
least equal to tr. All voting functions from V − R are dispensable with respect
to preserving such discernibility between objects. In an analogous way, one can
consider reducts of the information system CST with the universe of objects
equal to {v1, . . . , vk} and attributes defined by agents and voting functions by
ag(v) = v(ag) for ag ∈ Ag and v ∈ V . The discernibility between voting func-
tions can be defined, e.g., by

discCST (v, v′) = |Con(CSv) − Con(CSv′ |, (5)

and makes it possible to measure the difference between voting functions v and
v′, respectively. Any reduct R of CST is a minimal set of agents that pre-
serves the differences between voting functions that are at least equal to a given
threshold tr.

4 Complex Conflict Model

In this section, we present an extension of the conflict model and we outline an
approach to conflict resolution based on such a model. We assume that agents
in the complex conflict model are represented by conflict situations cs = (Ag, v),
where Ag is the set of lower level agents and v is a voting function defined on
Ag for v ∈ V . Hence, agents in the complex conflict model are related to groups
of lower level agents linked by a voting function. The voting functions in the
complex conflict models are defined on such conflict situations. The set of the
voting functions for the complex conflict model is denoted by A. In this, way we
obtain an information system (U, A), where U is the set of situations. Observe
that any situation cs = (Ag, v) can be represented by a matrix

[v(ag)]ag∈Ag , (6)

where v(ag) is the result of voting by the agent ag ∈ Ag. We can extend
the information system (U, A) to the decision system (U, A, d) assuming, that
d(cs) = Conv(cs) for any cs = (Ag, v). For the constructed decision system
(U, A, d) one can use, e.g., the above function(2) to measure the discernibility
between compound decision values which correspond to conflict situations in the
constructed decision table. The reducts of this decision table relative to decision
have a natural interpretation with respect to conflicts. An illustration of conflict
analysis with similarity relation can be found in [22].

5 Systems Requirements Identification and Negotiation

A typical system requirements engineering process leads to conflicts between
project stakeholders. A stakeholder is one who has a share or an interest in the
2 To compute such reducts one can follow a method presented in [23] assuming that any

entry of the discernibility matrix corresponding to (ag, ag′) with discCS(ag, ag′) < tr
is empty and the remaining entries are families of all subsets of V on which the
discernibility between (ag, ag′) is at least equal to tr [6].
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requirements for a systems engineering project. Let Ag be represented by the
set SH (stakeholders). Let V denote the set of requirements. Let CS = (SH, V )
where SH = {sh1, . . . , shn} and V = {v1, . . . , vk}. A complete example of the
problem of achieving agreement on high-level system requirements for a home
lighting automation system described in [9] can be found in [21]. In this paper,
the focus is on achieving consensus on detailed set of requirements for each high
level requirement that was agreed by all stakeholders. This is a crucial step as
it determines the scope of the project. In other words, the team needs to know
the extent of functionality that needs to be implemented. In fact, no serious
requirements analysis can begin until the scope of project has been determined.

5.1 Example: Determining Scope of System Requirements

As a part of scope negotiation, several parameters need to be determined: level
of effort, importance of a requirement, stability, risk, testability to name a few.
In this paper, we consider the following negotiation parameters: Level of Effort
which is a rough estimate of development effort (High, Medium, Low),
Importance which determines whether a requirement is essential to the project
(High, Medium, Low), Stability of a requirement which indicates its volatility
(Yes, Perhaps, No), Risk which indicates whether the requirement is technically
achievable (High, Medium, Low) Testability indicating whether a requirement
is testable (Yes, No). Let R1, E, I, S, R, T denote requirement 1, Effort, Im-
portance, Stability, Risk, and Testability, respectively. Specifically, the example
illustrates the high level functionality(R1) of Custom Lighting Scene[21] to be
included in release of V1.0 of HLAS System. The negotiation parameter values
(attributes) assessed by the development team for R1 are given in Table 1.

Table 1. Scope Negotiation

Negotiation Parameters

R1 E I S R T Conflict Degree

r1.1 M H N L Y L
r1.2 M H N L Y M
r1.3 H M N M Y L
r1.4 L H Y L Y L
r1.5 M L P H Y M
r1.6 L H Y H N H

Assume that R1 includes the following specifications (objects): r1.1 - ability to
control up to a maximum of 20 custom lighting scenes throughout the residence,
r1.2 - each scene provides a preset level of illumination (max. of 3) for each
lighting bank, r1.3 - maximum range of a scene is 20 meters, r1.4 - activated
using Control Switch, r1.5 - activated using Central Control Unit, and r1.6
- Ability to control an additional 2 lighting scenes in the yard. The decision
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attribute is a compound decision denoting the conflict degree which is a result
of a matrix given in Table 2.

The voting results of the members drawn from a stakeholders list SH is given
in Table 2. The stakeholder list is comprised of builders, electrical contractors
and the marketers. Every stakeholder votes on each of the requirements. An
algorithm for determining win agreements can be found in [21]. The conflict
graph CGr1.1 = (SH, r1.1) can be presented in a simplified form as a graph
with nodes represented by coalitions and edges representing conflicts between
coalitions as shown in Fig. 1(b). From this graph, one can compute the conflict
degree using using Eqn. 2 where Conr1.1(cs) = 0.3. The degree of conflict for the
remaining requirements are Conr1.2(cs) = 0.44, Conr1.3(cs) = 0.2, Conr1.4(cs)
= 0, Conr1.5(cs) = 0.67, and Conr1.6(cs) = 0.89.

Table 2. Voting Results for R1

Voting Results

Stakeholder r1.1 r1.2 r1.3 r1.4 r1.5 r1.6

sh1 0 1 -1 0 -1 -1
sh2 0 1 0 0 -1 -1
sh3 1 -1 0 1 1 -1
sh4 1 1 0 1 1 -1
sh5 -1 0 1 1 1 1
sh6 1 1 -1 1 0 1

5.2 Generalized Conflict Model with Approximation Spaces

This section introduces a generalized model for conflict analysis and conflict
resolution that combines earlier work on modeling conflict with approximation
spaces. Conflict degree Conv(cs) for any cs = (Ag, v) plays the role of a decision
in Table 1. Conv(cs) is a subjective value that is a result of voting with the
following levels: L (conflict degree ≤ 0.3), M (0.3 ≤ conflict degree ≤ 0.7) and H
(conflict degree > 0.7). For example, to determine which requirements should be
included in product release version V1.0, negotiation must occur at two levels,
namely, voting and table. At the voting level (lower level), the basic conflict
model is used. At the decision table level, conflicts are evaluated within an
approximation space [20], which is the approach used in [17].

Let DS = (Ureq, A, d), where Ureq, A, d denote a non-empty set of require-
ments, a non-empty set of scope negotiation parameters, and an estimated de-
gree of conflict, respectively (see Table 1). Let Di denote the ith decision, i.e.,
Di = {u ∈ Ureq : d(u) = i}, which is set of requirements from Ureg with conflict
level i. For any boolean combination of descriptors over DS and α, the semantics
of α in DS is denoted by ‖α‖DS , i.e., the set of all objects from U satisfying α [14].
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In what follows, i = L and DL denotes a decision class representing a low
degree of conflict between stakeholders. Now, we can define a generalized ap-
proximation space GAS = (Ureq, NB, νB), where for any objects r ∈ U the
neighborhood NB(r) is defined by

NB(r) = ‖
∧

a∈B

(a = a(r))‖DS , (7)

and the coverage function νB is defined by

νB(X, Y ) =

{
|X∩Y |
|Y | , if Y �= ∅,
1, if Y = ∅,

(8)

where X, Y ⊆ U . This form of specialization of a GAS is called a lower approx-
imation space [17]. Assuming that the lower approximation B∗Di represents an
acceptable (standard) level of conflict during negotiation, we are interested in
the values

νB(NB(r), B∗DL), (9)

of the coverage function specialized in the context of a decision system DS for
the neighborhoods NB(r) and the standard B∗DL for conflict negotiation.

Computing the rough coverage value for negotiation parameters extracted
from a table such as Table 1 implicitly measures the extent to which standards
for release parameters have been followed. What follows is a simple example of
how to set up a lower approximation space relative to a scope negotiation table
based on the effort (E), risk (R) and testability (T ) paramters:

B = {E, R, T }, DL = {r ∈ U : d(r) = L} = {r1.1, r1.3, r1.4},
B∗DL = {r1.3, r1.4}, NB(r1.1) = {r1.1, r1.2}, NB(r1.3) = {r1.3},
NB(r1.4) = {r1.4}, NB(r1.5) = {r1.5}, NB(r1.6) = {r1.6},
νB(NB(r1.1), B∗DL) = 0, νB(NB(r1.3), B∗DL) = 0.5, νB(NB(r1.4), B∗DL) =
0.5, νB(NB(r1.5), B∗DL) = 0, νB(NB(r1.6), B∗DL) = 0.

Based on the experimental rough coverage values, we can set a threshold for
acceptance. In this case, let νB ≥ 0.5. Consequently, for the first release version
V1.0 of the HLAS, requirements r1.3 and r1.4 would be included. On the other
hand, if negotiation parameters effort (E), importance (I) and stability (S)
are considered, with the same threshold of acceptance, only requirement r1.3
would be included in release version V1.0 as the following calculations show:

B = {E, I, S}, DL = {r ∈ U : d(r) = L} = {r1.1, r1.3, r1.4}, B∗DL = {r1.3}
NB(r1.1) = {r1.1, r1.2}, NB(r1.3) = {r1.3}, NB(r1.4) = {r1.4, r1.6},
NB(r1.5) = {r1.5},
νB(NB(r1.1), B∗DL) = 0, νB(NB(r1.3), B∗DL) = 1, νB(NB(r1.4), B∗DL) = 0,
νB(NB(r1.5), B∗DL) = 0.

The proposed attempt to assess negotiation offers deeper insight into conflict
dynamics whereby one can observe changes to the requirements set based on
coverage and level of conflict when different negotiation parameters are selected.
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The risk analysis can also be performed using reducts preserving conflicts to
a degree and their approximations. It should also be noted that the conflict
model discussed in Sect. 4 is more general where any situation will correspond
to a set of stakeholders. Analogous to the approach in Sect. 4, we can compute
for any such situations conflict degrees and continue with the conflict resolution
process. In this situation, we can consider issues for negotiation relative to groups
of stakeholders.

6 Conclusion

This paper introduces rough set-based requirements scope determination using a
generalized conflict model with approximation spaces. In other words, the gener-
alized conflict model with approximation spaces provides the ability to (i) define a
level of conflict that is acceptable, (ii) determine the equivalent set of requirements
based on a specified set of negotiation parameters tailored to a specific project, and
(iii) select requirements to be included in the system with a measure indicating the
extent that standards for release parameters have been followed. The application
of rough sets can bring new results in the area related to conflict resolution and ne-
gotiations between agents because this make it possible to introduce approximate
reasoning about vague concepts into the area.
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Abstract. Customer satisfaction analysis has become a hot issue in
strategic management. The basis of any decision in this field is the analy-
sis of the answers of a sample of customers to a specific questionnaire.
Traditionally, using a methodology called conjoint analysis, the data ob-
tained from the questionnaires are used to build a collective utility func-
tion representing customer preferences. This utility function permits to
measure the satisfaction of the customers and to determine the most
critical features relevant for the appreciation of the considered products
or services. In this paper, we propose an alternative methodology to an-
alyze the data from the questionnaire. Our approach is based on the
rough set methodology and represents the preferences of the customers
by means of simple decision rules such as “if feature α is considered
good and feature β is considered sufficient, then the overall evaluation of
the product is medium”. The interpretation of the decision rules is sim-
pler and more direct than the interpretation of the utility function given
by conjoint analysis. Moreover, the capacity of representing customer
preferences in terms of easily understandable “if ..., then...” statements
expressed in the natural language makes our approach particularly in-
teresting for Kansei Engineering. The proposed methodology gives also
some indications relative to strategic interventions aimed at improving
the quality of the offered products and services. The expected efficiency
of these interventions is measured, which is very useful for the defini-
tion of proper customer satisfaction strategies. Our approach supplies
an integrated support to customer satisfaction oriented management.

1 Introduction

Customer satisfaction analysis aims at determining customer preferences in order
to optimize entrepreneurial decisions about strategies for launching new prod-
ucts or about improving the image of existing products. Differently from usual
approaches to customer satisfaction analysis [6], we do not represent customer
preferences in terms of a utility function expressed in mathematical terms but
rather in terms of decision rules expressed in a natural language, such as “if the
product is considered good and the purchase process is considered medium, then
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the global satisfaction is medium”. This is obtained by an analysis of the cus-
tomer satisfaction survey conducted not in usual terms of statistical analysis, but
rather in terms of a specific data mining analysis based on a rough set approach.
More precisely, we shall use the Dominance-based Rough Set Approach (DRSA)
[2,3,10], an extension of the Classical Rough Set Approach (CRSA) [9], in order
to handle attributes with preference ordered scales (domains). The preference
order is, obviously, of fundamental importance in customer satisfaction analysis.
In fact, consider two customers, A and B, and suppose that the evaluations of
a (given) product with respect to a set of relevant features (attributes) given by
A are better than the evaluations given by B. In this case, it is reasonable to
expect that also the comprehensive evaluation of this product by customer A is
better (or at least not worse) than the evaluation made by customer B. Thus,
we can state a general dominance principle which says that better (or, at least,
not worse) evaluations on single features of the considered product should imply
a better (or, at least, not worse) comprehensive evaluation of the product. This
means that if in the above example customer A gives a comprehensive evalua-
tion of the considered product worse than customer B, this can be considered as
an inconsistency with the dominance principle. However, within CRSA the two
evaluations will be considered as just discernible and no inconsistency will be
stated. Motivated by the above considerations, we propose to apply the DRSA
to customer satisfaction analysis. Moreover, we propose a methodology to eval-
uate proper strategies to improve customer satisfaction. This is based on the
application of a new class of interestingness measures, which evaluate the effi-
ciency of intervention based on rules induced from data [1]. Let us also observe
that our rough set approach to analysis of customer preferences can become very
useful for Kansei Engineering. Kansei Engineering is a “translating technology
of consumer’s feeling and image for a product into design elements” [8]. Since
Kansei Engineering uses verbal language for requirement elicitation, an impor-
tant characteristic of our approach is the representation of customer preferences
in terms of “if..., then ...” statements in a natural language.

The article is organized as follows. In the next section we recall basic concepts
of DRSA. In the third section we remember the intervention measures. In the
fourth section, we propose the main steps of a customer satisfaction analysis
based on the use of DRSA and intervention measures. The last section contains
conclusions.

2 Dominance-Based Rough Set Approach

For algorithmic reasons, information about objects is represented in the form
of an information table. The rows of the table are labelled by objects, whereas
columns are labelled by attributes and entries of the table are attribute-values.
Formally, by an information table we understand the 4-tuple S =< U, Q, V, f >,
where U is a finite set of objects, Q is a finite set of attributes, and V is a
domain of the attribute q, and f : U × Q → V is a total function such that
f(x, q) → Vq for every q ∈ Q, x ∈ U , called an information function [9]. The set
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Q is, in general, divided into set C of condition attributes and set D of decision
attributes. Assuming that all condition attributes q ∈ C are criteria, let �q be
a weak preference relation on U with respect to criterion q such that x �q y
means “x is at least as good as y with respect to criterion q”. We suppose that
�q is a complete preorder, i.e. a strongly complete and transitive binary relation,
defined on U on the basis of evaluations f(·, q). Furthermore, assuming that the
set of decision attributes D (possibly a singleton {d}) makes a partition of U
into a finite number of decision classes, let Cl = {Clt, t ∈ T }, T = {1, ..., n}, be
a set of these classes such that each x ∈ U belongs to one and only one class
Clt ∈ Cl. We suppose that the classes are preference ordered, i.e. for all r, s ∈ T ,
such that r > s, the objects from Clr are preferred to the objects from Cls.
More formally, if � is a comprehensive weak preference relation on U , i.e. if for
all x, y ∈ U , x � y means “x is at least as good as y”, we suppose:

[x ∈ Clr, y ∈ Cls, r > s] ⇒ [x � y and not y � x]

The above assumptions are typical for consideration of a multiple-criteria sorting
problem. The sets to be approximated are called upward union and downward
union of classes, respectively:

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls, t = 1, ..., n.

The statement x ∈ Cl≥t means “x belongs to at least class Cl t”, while x ∈ Cl≤t
means “x belongs to at most class Cl t”.

Let us remark that Cl≥1 = Cl≤n = U , Cl≥n =Cln and Cl≤1 =Cl1. Furthermore,
for t=2,...,n, we have:

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

In the following, in order to gain some more flexibility, we present the variable
consistency DRSA model [4] which has its counterpart within the CRSA in the
variable precision rough set approach [12,13]. Let us define now the dominance
relation. We say that “x dominates y with respect to P ⊆ C”, denoted by xDP y,
if x �q y for all q ∈ P .

Given a set of criteria P ⊆ C and x ∈ U , the “granules of knowledge” used
for approximation in DRSA are:

– a set of objects dominating x, called P -dominating set,

D+
P (x) = {y ∈ U : yDP x},

– a set of objects dominated by x, called P -dominated set,

D−
P (x) = {y ∈ U : xDP y}.

For any P ⊆ C we say that x ∈ U belongs to Cl≥t with no ambiguity at
consistency level l ∈ (0, 1], if x ∈ Cl≥t and at least l × 100% of all objects y ∈ U

dominating x with respect to P also belong to Cl≥t , i.e.
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card(D+
P (x) ∩ Cl≥t )

card(D+
P (x))

The level l is called consistency level because it controls the degree of consis-
tency between objects qualified as belonging to without any ambiguity. In other
words, if l < 1, then (1 − l) × 100% of all objects y ∈ U dominating x with
respect to P do not belong to Cl≥t and thus contradict the inclusion of x in
Cl≥t . Analogously, for any P ⊆ C we say that x ∈ U belongs to Cl≤t with no
ambiguity at consistency level l ∈ (0, 1], if x ∈ Cl≤t and at least l × 100% of all
objects y ∈ U dominated by x with respect to P also belong to Cl≤t , i.e.

card(D−
P (x) ∩ Cl≤t )

card(D−
P (x))

Thus, for any P ⊆ C, each object x ∈ U is either ambiguous or non-ambiguous
at consistency level l with respect to the upward union Cl≥t (t = 2, ..., n) or with
respect to the downward union Cl≤t (t = 1, ..., n − 1). The concept of non-
ambiguous objects at some consistency level l leads naturally to the definition
of P -lower approximations of the unions of classes Cl≥t and Cl≤t

P l(Cl≥t ) =

{
x ∈ Cl≥t :

card(D+
P (x) ∩ Cl≥t )

card(D+
P (x))

≥ l

}
,

P l(Cl≤t ) =

{
x ∈ Cl≤t :

card(D−
P (x) ∩ Cl≤t )

card(D−
P (x))

≥ l

}
.

Given P ⊆ C and consistency level l, we can define the P -upper approximations
of Cl≥t and Cl≤t , denoted by P

l
(Cl≥t ) and P

l
(Cl≤t ), by complementation of

P l(Cl≥t ) and P l(Cl≤t ) with respect to U:

P
l
(Cl≥t ) = U − P l(Cl≤t−1),

P
l
(Cl≤t ) = U − P l(Cl≥t+1).

P
l
(Cl≥t ) can be interpreted as the set of all the objects belonging to Cl≥t , possibly

ambiguous at consistency level l. Analogously, P
l
(Cl≤t ) can be interpreted as

the set of all the objects belonging to Cl≤t , possibly ambiguous at consistency
level l.

The dominance-based rough approximations of upward and downward unions
of classes can serve to induce a generalized description of objects contained in
the information table in terms of “if..., then...” decision rules. Assuming that
for each q ∈ C, Vq ⊆ R (i.e. Vq is quantitative) and that for each x, y ∈ U ,
f(x, q) ≥ f(y, q) implies x �q y (i.e. Vq is preference ordered), the following two
basic types of variable-consistency decision rules can be considered:
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1. D≥-decision rules with the following syntax:
“if f(x, q1) ≥ rq1 and f(x, q2) ≥ rq2 and ... f(x, qp) ≥ rqp, then x ∈ Cl≥t
with confidence α (i.e. in fraction α of considered cases),
where P = {q1, ..., qp} ⊆ C, (rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp and t ∈ T ;

2. D≤-decision rules with the following syntax:
“if f(x, q1) ≤ rq1 and f(x, q2) ≤ rq2 and ... f(x, qp) ≤ rqp, then x ∈ Cl≤t
with confidence α,
where P = {q1, ..., qp} ⊆ C, (rq1,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp and t ∈ T .

3 Efficiency Measures for Interventions Based on
Decision Rules

We are considering decision rules induced from data organized in a decision table.
The decision table is composed of a finite set U of objects described by a finite
set Q of attributes used for object description. The attributes are divided into
condition attributes (independent variables) and decision attribute (dependent
variable). Formally, let DT be a decision table represented as follows:

DT = 〈U, C ∪ {d}〉

where U is a set of objects, C is a set of condition attributes q such that
q : U → Vq for every q ∈ C. Set Vq is a domain of q. d /∈ C is a decision
attribute that partitions objects from U into a set of decision classes (concepts)
D = {Ψj : j = 1, ..., k}. A decision rule r expresses the relationship between
condition attribute(s) and a decision class Ψ ∈ D. It can be represented in the
form of consequence relation:

Φ → Ψ

where Φ = Φ1∧Φ2∧ ...∧Φm is a condition part and Ψ a decision part of the rule,
Φ1 ∈ Vq1, Φ2 ∈ Vq2, ..., Φm ∈ Vqm, q1, q2, ...,qm ∈ C, Ψ ∈ D. Several different
measures are associated with the rule, quantifying various properties of the rule.
To define these measures, we take into account the set-theoretic interpretation
of rules. Let m(Φ) denote the set of objects of U that satisfy the conditions
expressed by Φ. Similarly, the set m(Ψ) consists of objects belonging to decision
class Ψ . Then, one can define an index, called confidence (or certainty) of the
rule, represented as follows:

conf (r, U) =
|m(Φ) ∩ m(Ψ)|

|m(Φ)|

where |·| denotes the cardinality of a set, i.e. |m(Φ) ∩ m(Ψ)| denotes the number
of objects satisfying both parts Φ and Ψ , and |m(Φ)| is the number of objects
satisfying the condition part only. The range of this measure is 0 ≤ conf (r, U) ≤
1: it shows the degree to which Ψ is related to Φ and can be interpreted as the
probability of assignment to decision class Ψ when condition Φ holds. Moreover,
each decision rule is characterized by its strength, defined by the number of
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objects satisfying condition and decision part of the rule, i.e. the absolute number
of objects supporting the rule:

strength(r) = |m(Φ) ∩ m(Ψ)| .

Intervention is a modification (manipulation) of a universe made with the aim
of getting a desired result. For example, in the customer satisfaction context,
the universe is a set of customers and the intervention is a strategy (promotion
campaign) modifying perception of a product’s feature so as to increase customer
satisfaction. Decision rules can help in setting up efficient interventions. Decision
rules and their measures (confidence and support) can be used, moreover, to
estimate the expected effects of an intervention. The idea is the following [1]. Let
us consider decision rule r ≡ Φ → Ψ with confidence conf (r, U) and suppose that
we want to make an intervention to increase the number of objects in universe U ′

satisfying Ψ . An example in the customer satisfaction context is the following. Let
Φ be the condition “satisfaction at least good with respect to feature i” and Φ be
the decision “comprehensive satisfaction at least medium”. Then, Φ → Ψ is the
decision rule r ≡“if the satisfaction of customer x is at least good with respect to
feature i, then comprehensive satisfaction of customer x is at least medium”, with
confidence conf (r, U). Suppose to pursue a strategy Str ≡“obtain a satisfaction
at least good with respect to feature i by customer satisfaction x if x has not
it and she has not a comprehensive satisfaction at least medium”. The question
is: what is the expected increase (in %) of the population of customers with
a satisfaction at least medium after application of treatment Str? U ′ is the
universe (possibly, U ′ �= U) where the strategy is activated. The set of objects
having property Γ in universe U ′ is denoted by m′(Γ ). Therefore, m′(Φ) is
the set of objects having property Φ in universe U ′. Analogous interpretation
holds for m′(¬Φ), m′(Ψ), m′(¬Ψ), m′(Φ∧Ψ), and so on. After applying strategy
Str, universe U ′ will be transformed to universe U ′′. The set of objects having
property Γ in universe U ′′ is denoted by m′′(Γ ). Therefore, m′′(Φ) is the set
of objects having property Φ in universe U ′′. Analogous interpretation holds for
m′′(¬Φ), m′′(Ψ), m′′(¬Ψ), m′′(Φ ∧ Ψ), and so on. We suppose that universe U ′

and U ′′ are homogeneous with universe U . This means that the decision rule
r ≡ Φ → Ψ holding in U with confidence conf (r, U), holds also in the transition
from U ′ to U ′′ in the following sense: if we modify condition ¬Φ to condition Φ in
the set m′(¬Φ∧¬Ψ), we may reasonably expect that conf (r, U)×|m′(¬Φ ∧ ¬Ψ |
elements from m′(¬Φ ∧ ¬Ψ) will enter decision class Ψ in universe U ′′. With
respect to our example, this means that in universe U ′′ the number of customers
with a satisfaction at least medium after activation of strategy Str is

|m′′(Ψ)| = |m′(Ψ)| + |m′(¬Φ ∧ ¬Ψ)| × conf (r, U)

=

|m′(Ψ)| + |m′(¬Φ ∧ ¬Ψ)| × |m(Φ ∧ Ψ |
|m(Φ| .



290 S. Greco, B. Matarazzo, and R. S�lowiński

The increment of the number of customers with a satisfaction at least medium
due to activation of strategy Str on U ′ is

Δ(Ψ) = |m′′(Ψ)| − |m′(Ψ)| = |m′(¬Φ ∧ ¬Ψ)| × |m(Φ ∧ Ψ |
|m(Φ| .

Therefore, the expected relative increment of satisfied customers due to strategy
Str is given by:

δ(Ψ) =
|m′′(Ψ)|
|U ′| − |m′(Ψ)|

|U ′| =
|m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × conf(r, U).

Let us remark that there has been a rich discussion about interestingness
measures for decision rules in data mining (see e.g. [7,11,5]). These measures are
defined, however, in terms of characteristics of the universe U where the rules
come from. If we consider an intervention in universe U ′, which may be different
from U , then we need an interestingness measure expressed not only in terms
of characteristics of U but also in terms of characteristics of U ′. This proposal
aims at satisfying this requirement.

4 Customer Satisfaction Analysis Using DRSA

The main steps of an exhaustive customer satisfaction analysis based on the
rough set approach are the following. First of all, one have to select a proper set of
features F = {f1, ..., fn} of the considered product. With respect to each feature
fi ∈ F , the customers in a sample Cust = {cust1, ..., custm} are asked to express
their level of satisfaction choosing this level from a set Sat = {sat1, ..., satn},
such that sati > satj means that the level of satisfaction denoted by sati is
greater than the level of satisfaction denoted by satj. Generally, satisfaction is
expressed on a five level scale, such that sat1 = very bad, sat2 = bad, sat3 =
medium, sat4 = good, sat5 = very good. The customers in the sample are
also requested to express a level of their comprehensive satisfaction cs on the
same scale of the satisfaction as for single features. Thus, we have a function
ϕ : Cust × F ∪ {cs} → Sat such that for each custh ∈ Cust and for each
feature fi ∈ F , ϕ(custh, fi) expresses the level of satisfaction of customer custh
with respect to feature fi and ϕ(custh, cs) expresses the level of comprehensive
satisfaction cs. In this context, the DRSA can be applied for building a decision
table using the following correspondence:

– the universe is the sample of customers, such that U = Cust,
– the set of condition attributes corresponds to the set of features, and the

comprehensive satisfaction is the decision attribute, such that C = F , D = cs
and Q = F ∪ {cs},

– the domain of each attribute, both condition attribute and decision attribute,
is the set of satisfaction levels, such that V = Sat,

– the total information function f corresponds to function ϕ,



Rough Set Approach to Customer Satisfaction Analysis 291

– the set of decision classes Cl = {Clt, t ∈ T }, T = {1, ..., n}, corresponds to
the set of satisfaction levels of the decision attribute, such that Cl = Sat.

Let us remark that all features fi ∈ F are criteria, and the weak relation �i

on Cust with respect to feature fi is a preorder on Cust having the following
semantics: for all custh, custk ∈ Cust, custh �i custk means “with respect to
feature fi, the level of satisfaction of custh is at least as good as the level of
satisfaction of custk”. Let us observe that

custh �i custk ⇔ ϕ(custh, fi) ≥ ϕ(custk, fi).

Moreover, the comprehensive preference relation � on Cust is defined as fol-
lows: for all custh, custk ∈ Cust, custh � custk means “with respect to compre-
hensive satisfaction, the level of satisfaction of custh is at least as good as the
level of satisfaction of custk”. Let us observe that

custh � custk ⇔ ϕ(custh, cs) ≥ ϕ(custk, cs).

The data of the questionnaires so interpreted can be analyzed using DRSA,
giving rough approximations and decision rules. The following types of decision
rules are considered:

1. D≥-decision rules having the following syntax
if ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ... ϕ(cust, fq2) ≥ rqp, then
ϕ(cust, cs) ≥ rcs with confidence α, where P = {fq1, ..., fqp} ⊆ F and
(rq1, ..., rqp, rcs) ∈ Satp+1,
and the following semantics
“if the satisfaction with respect to feature fq1 is at least of level rq1 and
the satisfaction with respect to feature fq2 is at least of level rq2 and ...
the satisfaction with respect to feature fqp is at least of level rqp, then the
comprehensive evaluation is at least of level rcs in the (α × 100)% of the
cases”;

2. D≤-decision rules having the following syntax
if ϕ(cust, fq1) ≤ rq1 and ϕ(cust, fq2) ≤ rq2 and ... ϕ(cust, fq2) ≤ rqp, then
ϕ(cust, cs) ≤ rcs with confidence α, where P = {fq1, ..., fqp} ⊆ F and
(rq1, ..., rqp, rcs) ∈ Satp+1,
and the following semantics
“if the satisfaction with respect to feature fq1 is at most of level rq1 and
the satisfaction with respect to feature fq2 is at most of level rq2 and ...
the satisfaction with respect to feature fqp is at most of level rqp, then the
comprehensive evaluation is at most of level rcs in the (α × 100)% of the
cases”.

The set of rules so obtained can be selected as the basis of a marketing strat-
egy, aiming at improving or not deteriorating the customer satisfaction as follows:

1. An aggressive strategy aiming at improving customer satisfaction, can be
based on the D≥-decision rules
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if ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ... ϕ(cust, fq2) ≥ rqp, then
ϕ(cust, cs) ≥ rcs with confidence α;

this strategy has as target all such customers that ϕ(cust, fq1) < rq1 or
ϕ(cust, fq2) < rq2 or ... ϕ(cust, fqp) < rqp and ϕ(cust, cs) < rcs and aims at
obtaining ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ... ϕ(cust, fqp) ≥ rqp,
such that the final goal of obtaining ϕ(cust, cs) ≥ rcs is reached;

2. A defensive strategy aiming at not deteriorating customer satisfaction, can
be based on the D≤-decision rules

if ϕ(cust, fq1) ≤ rq1 and ϕ(cust, fq2) ≤ rq2 and ... ϕ(cust, fq2) ≤ rqp, then
ϕ(cust, cs) ≤ rcs with confidence α;

this strategy has as target all such customers that ϕ(cust, fq1) > rq1 or
ϕ(cust, fq2) > rq2 or ... ϕ(cust, fqp) > rqp and ϕ(cust, cs) > rcs and aims at
mantaining ϕ(cust, fq1) > rq1 or ϕ(cust, fq2) > rq2 or ... ϕ(cust, fqp) > rqp,
such that the final goal of mantaining ϕ(cust, cs) > rcs is reached.

In a first step, the rules on which the marketing strategy should be based are
chosen, using the efficiency measures for interventions recalled in the previous
section. In the specific context of customer satisfaction analysis, these efficiency
measures have the following interpretation:

1. In case of an aggressive strategy based on the D≥-decision rules

if ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ... ϕ(cust, fq2) ≥ rqp, then
ϕ(cust, cs) ≥ rcs with confidence α,

we have that

– U is the sample of customers where the analysis was performed and U ′

is the whole market
– Φ is the condition “ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ...

ϕ(cust, fq2) ≥ rqp” and Ψ is the consequence “ϕ(cust, cs) ≥ rcs”
– m(Φ) and m′(Φ) are the sets of customers satisfying condition Φ in the

sample and in the whole market, respectively,
– m(Ψ) and m′(Ψ) are the sets of customers for which consequence Ψ holds

in the sample and in the whole market, respectively,
such that the efficiency measure

δ(Ψ) =
|m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| =

|m′(¬Φ) ∩ m′(¬Ψ)|
|U ′| × α

represents the percentage of customers in the whole market whose satisfac-
tion could reach at least level rcs as effect of the strategy at hand;

2. In case of a defensive strategy based on the D≤-decision rules
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if ϕ(cust, fq1) ≤ rq1 and ϕ(cust, fq2) ≤ rq2 and ... ϕ(cust, fq2) ≤ rqp, then
ϕ(cust, cs) ≤ rcs with confidence α,

we have that
– Φ is the condition “ϕ(cust, fq1) ≤ rq1 and ϕ(cust, fq2) ≤ rq2 and ...

ϕ(cust, fq2) ≤ rqp” and Ψ is the consequence “ϕ(cust, cs) ≤ rcs”
– U , U ′, m(Φ) and m′(Φ), m(Ψ) and m′(Ψ), have the same meanong as in

above point 1)
such that the efficiency measure δ(Ψ), formulated as in above point 1) rep-
resents the percentage of customers in the whole market whose satisfaction
could reach at most level rcs if the strategy at hand was not realized.

The percentages given by the efficiency measure δ(Ψ), both in case of an
aggressive strategy and in case of a defensive strategy, constitute a first step of
the analysis. We explain this point for the case of an aggressive strategy. We
have

δ(Ψ) =
|m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| ,

but the percentage increase δ(Ψ) can be obtained only under condition that all
the customers in the set m′(¬Φ)∩m′(¬Ψ) are transformed, due to the strategy, in
such customers that condition Φ holds for them. In simpler terms, the hypothesis
is that all the customers for whom ϕ(cust, fq1) < rq1 or ϕ(cust, fq2) < rq2 or
... ϕ(cust, fq2) < rqp, after application of the strategy become customers for
whom ϕ(cust, fq1) ≥ rq1 and ϕ(cust, fq2) ≥ rq2 and ... ϕ(cust, fq2) ≥ rqp. Very
often, this is not realistic. For example, if one considers rule r∗ ≡ Φ → Ψ , where
rule condition Φ is “satisfaction with respect to feature fi1 is at least good and
satisfaction with respect to feature fi2 is at least medium”, one has that among
the customers for whom condition Φ does not hold, there are customers for
whom satisfaction with respect to features fi1 and fi2 is very bad. Therefore, it
is questionable that for those customers a strategy can change so radically their
evaluations such that at the end condition Φ holds for all of them. In this case, it
would rather be reasonable to address the strategy not to all the customers for
whom condition Φ does not hold, but to a subset of these customers who are not
far from satisfying condition Φ. These customers can be characterized by initial
closeness conditions consisting in satisfaction profiles such as “ϕ(cust, ft1) ≥
r′t1 and ϕ(cust, ft2) ≥ r′t2 and ... ϕ(cust, fth) ≥ r′th” where {ft1, ..., fth} ⊆ F
with r′ti ≥ rti but close each other, for all fti ∈ {fq1, ..., fqp}. Let us remark
that not necessarily {ft1, ..., fth} ⊆ {fq1, ..., fqp}, that is features not considered
in the decision rule on which the strategy is based can be considered in the
initial closeness condition. Considering the above rule r∗, one initial closeness
condition can be Φ1=“satisfaction with respect to feature fi1 is at least medium
and satisfaction with respect to feature fi2 is at least medium”. In this case, the
efficiency measure should be modified to take into account the initial closeness
condition, and in this way we obtain

δ(Ψ) =
|m′(Φ1) ∩ m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| ,
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One can consider also multiple initial closeness conditions. For example, consid-
ering the above rule r∗, another initial closeness condition could be Φ2=“satis-
faction with respect to feature fi2 is at least medium and satisfaction with re-
spect to feature fi4 is at least medium”. When we have multiple initial closeness
conditions Φ1, ... ,Φv, the efficiency measure becomes

δ(Ψ) =
|[∪v

i=1m
′(Φi)] ∩ m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| .

There is another important aspect to be taken into account to make more realistic
the efficiency measure δ(Ψ). In fact, even considering the initial conditions, it
is reasonable to expect that the strategy does not give the expected results for
all the customers to whom the strategy is directed. Thus, it is convenient to
introduce a parameter λ expressing the percentage of customers in the set to
whom the strategy is addressed, i.e. the set [∪v

i=1m
′(Φi)] ∩ m′(¬Φ), for which

the strategy is expected to modify the condition. Thus, if m′′(Φ) represents the
set of customers satisfying condition Φ in the universe U ′′, being the universe
U ′ transformed by application of the strategy, the parameter λ should give a

reasonable estimation of the ratio |m′′(Φ)−m′(Φ)|
|[∪v

i=1m′(Φi)]∩m′(¬Φ)| (verifiable ex post only).

Thus, the definitive efficiency measure should be:

δ(Ψ) =
|[∪v

i=1m
′(Φi)] ∩ m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| × λ.

such that, if λ is correctly estimated, one have

δ(Ψ)=
|[∪v

i=1m
′(Φi)] ∩ m′(¬Φ) ∩ m′(¬Ψ)|

|U ′| × |m(Φ) ∩ m(Ψ)|
|m(Φ| × |m′′(Φ) − m′(Φ)|

|[∪v
i=1m

′(Φi)] ∩ m′(¬Φ)| .

5 Conclusions

We presented a rough set approach to customer satisfaction analysis. This ap-
proach aims at representing customer preferences expressed on a questionnaire
in terms of simple decision rules such as “if feature fi is considered good and
feature fj is considered sufficient, then the overall evaluation of the product is
medium”. The interpretation of the decision rules is simpler and more direct
than the interpretation of the utility function that is supplied by usual customer
satisfaction analysis based on conjoint analysis. Moreover, our approach permits
to evaluate the expected efficiency of some strategies based on the induced de-
cision rules. Thus, strategic intervention related to rules with higher expected
efficiency can be recommended as the most promising for improving the quality
of the offered products and services. In this perspective, our approach supplies an
integrated support to customer satisfaction oriented management. Finally, the
capacity of representing customer preferences in terms of easily understandable
“if ..., then...” statements expressed in the natural language makes our approach
particularly interesting for Kansei Engineering.



Rough Set Approach to Customer Satisfaction Analysis 295

Acknowledgements. The research of the first two authors has been supported
by the Italian Ministry of Education, University and Scientific Research (MIUR).
The third author wishes to acknowledge financial support from the Polish Min-
istry of Education and Science (grant no. 3T11F 02127).

References

1. Greco, S., Matarazzo, B., Pappalardo, N., S�lowiński, R., Measuring expected effects
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Abstract. It is widely accepted that a common precept for the choice
under uncertainty is to use the expected utility maximization princi-
ple, which was established axiomatically. Recently, a formal equivalence
between this principle of choice and the target-based principle, that sug-
gests that one should select an action which maximizes the (expected)
probability of meeting a (probabilistic) uncertain target, has been estab-
lished and extensively discussed. In this paper, we discuss the issue of
how to bring fuzzy targets within the reach of the target-based model for
a class of decision making under uncertainty problems. Two methods for
inducing utility functions from fuzzy targets are discussed and illustrated
with an example taken from the literature.

1 Introduction

A classical problem in decision analysis under uncertainty is to rank a set of
acts defined on a state space S, where, due to the uncertainty in the state of
nature, each act a may lead to different outcomes taking from a set of outcomes
D, usually associated with a random outcome Xa : S → D. The decision maker
(DM) must then use some ranking procedure over acts for making decisions.
The most commonly-used ranking procedure is based on the expected utility
model. The DM defines a utility function U over D and then ranks an act a by
its expected utility EU(Xa). Note that the utility function U is bounded and
unique up to increasing affine transformations (or cardinal, for short) [13].

Another ranking procedure is the DM establishes some target t and then
ranks an act a by the probability P (Xa � t) that it meets the target [11].
Although simple and appealing from this target-based point of view, the DM
may not know for sure which target he should select. Then he could define some
random variable T as his uncertain target (or, benchmark) instead and rank
an act a by the probability P (Xa � T ) that it meets the uncertain target T
(or, it outperforms the benchmark), provided that the target T is stochastically
independent of the random outcomes to be evaluated. We call this procedure
target-based or benchmarking.

Interestingly, these two different procedures are shown to be both mathe-
matically and observationally equivalent [10]. In particular, Castagnoli and Li-
Calzi [4] discussed a formal equivalence of von Neumann and Morgenstern’s

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 296–305, 2006.
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expected utility model and the target-based model with reference to preferences
over lotteries. Later, a similar result for Savage’s expected utility model with
reference to preferences over acts was established by Bordley and LiCalzi [2]. De-
spite the differences in approach and interpretation, both target-based procedure
and utility-based procedure essentially lead to only one basic model for decision
making. It should be worth, however, emphasizing that while both target-based
and utility-based decision making demand an understanding of probabilities, the
utility-based model additionally requires a comprehension of cardinal utilities.
More details on the formal connection between the utility-based approach and
the target-based approach in decision analysis with uncertainty can be referred
to, e.g., [3,5,10].

In this paper, we study the problem of how to transform fuzzy targets so as
to allow the application of the target-based decision model for a class of deci-
sion making under uncertainty problems. Note that while assessing probabilistic
uncertain targets may require statistical evidence, fuzzy targets can be assessed
according to feelings or attitude of the DM. In many situations, where due to a
lack of information, defining fuzzy targets is much easier and intuitively natural
than directly defining random targets. We will discuss two methods for inducing
utility functions from fuzzy targets and illustrate with an example taken from
the literature. Different attitudes of the DM on target will be also discussed in
relation to the concept of risk attitude.

2 Target-Based Interpretation of Expected Utility Value

In this paper we discuss the problem of decision making under uncertainty
(DMUU) which is described using the decision matrix shown in Table 1. In
this matrix, Ai(i = 1, . . . , n) represent the acts available to a decision maker,
one of which must be selected. The elements Sj(j = 1, . . . , m) correspond to
the possible values/states associated with the so-called state of nature S. Each
element cij of the matrix is the payoff the DM receives if the act Ai is selected
and state Sj occurs. The uncertainty associated with this problem is generally
a result of the fact that the value of S is unknown before the DM must choose
an act Ai. Let us consider the decision problem as described in Table 1 with
assuming a probability distribution PS over S = {S1, . . . , Sm}. Here, we restrict
ourselves to a bounded domain of the payoff variable that D = [cmin, cmax].

As is well-known, the most commonly used method for valuating acts Ai to
solve the DMUU problem described by Table 1 is to use the expected utility
value:

v(Ai) � EUi =
m∑

j=1

PS(Sj)U(cij) (1)

where U is a utility function defined over D.
On the other hand, each act Ai can be formally considered as a random

payoff having the probability distribution Pi defined, with an abuse of notation,
as follows:

Pi(Ai = x) = PS({Sj : cij = x}) (2)
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Table 1. Decision Matrix

Acts
State of Nature

S1 S2 . . . Sm

A1 c11 c12 . . . c1m

A2 c21 c22 . . . c2m

...
...

...
. . .

...

An cn1 cn2 . . . cnm

Then, the target-based model [2] suggests using the following value function

v(Ai) � P (Ai � T )

=
∑

x

P (x � T )Pi(Ai = x)

=
m∑

j=1

PS(Sj)P (cij � T ) (3)

where the random target T is stochastically independent of any random payoffs
Ai, and P (x � T ) is the cumulative distribution function (c.d.f., for short) of
the target T .

Recall that the utility function U is bounded and increasing. Thus, after
having normalized its range to the unit interval [0, 1], U has all the properties of
a cumulative distribution function over the payoff domain D. As shown in [2],
by a standard probability-theoretic argument, one can associate to the c.d.f. U
a random payoff T stochastically independent of Ai and then view U(x) as the
probability that x meets the target T , i.e. U(x) = P (x � T ). This makes (1)
and (3) formally identical. In other words, the target-based decision model with
decision function v(Ai) in (3) above is equivalent to the expected utility model
defined by (1).

In the next section, we will discuss how to develop the assessment proce-
dure for U(x) in the case that the DM can only assess his target in terms of a
possibility distribution instead.

3 Utility Functions Induced from Fuzzy Targets

Before discussing about the problem of decision making using fuzzy targets, it
is necessary to recall that when expressing the value of a variable as a fuzzy set,
we are inducing a possibility distribution [18] over the domain of the variable.
Formally, the soft constraint imposed on a variable V in the statement “V is F”,
where F is a fuzzy set, can be considered as inducing a possibility distribution
Π on the domain of V such that F (x) = Π(x), for each x. Here, by a fuzzy
target we mean a possibility variable T over the payoff domain D represented
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by a possibility distribution μT : D → [0, 1]. For simplicity, we also assume
further that T is normal, convex and has a piecewise continuous function with
supp(T ) = [cmin, cmax], where supp(T ) denotes the support of T .

Let us turn back to the DMUU problem described in Table 1. In a target-
based decision model, assume now that the DM establishes a fuzzy target T
which reflects his attitude. Then, according to the optimizing principle, after
assessed the target the DM would select an act as the best that maximizes the
expected probability of meeting the target defined by

v(Ai) =
m∑

j=1

PS(Sj)P(cij � T ) (4)

where P(cij � T ) is a formal notation indicating the probability of meeting the
target of value cij or, equivalently, the utility U(cij) � P(cij � T ) in the utility-
based language.

3.1 Simple Normalization

A direct and simple way to define P(cij � T ) is making use of Yager’s method [16]
for converting a possibility distribution into an associated probability distribu-
tion via the simple normalization. Particularly, the possibility distribution μT

of the target T is first converted into its associated probability distribution,
denoted by PT , as follows

PT (t) =
μT (t)∫ cmax

cmin
μT (t)dt

Then P(cij � T ) is defined as the c.d.f. as usual by

P(cij � T ) � UT
1 (cij) =

∫ cij

cmin

PT (t)dt (5)

It should be noted that this definition of P(cij � T ) is also formally used,
but without a probabilistic interpretation, for the so-called satisfaction function
S(T < cij) in [9] for the comparison between a fuzzy number T with a crisp
number cij . A formulation of DMUU using fuzzy targets based on this approach
has been discussed in [7].

3.2 α-Cut Based Method

Here we propose another method for inducing the utility function associated with
P(cij � T ) based on the α-cut representation. In fuzzy set theory, the concept
of α-cuts plays an important role in establishing the relationship between fuzzy
sets and crisp sets. As is well known, each fuzzy set can be uniquely represented
by the family of all of its α-cuts. Intuitively, each α-cut Aα of a fuzzy set A can
be viewed as a crisp approximation of A at the level α ∈ (0, 1].
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It is necessary to recall here that in the case where a fuzzy set A has a discrete
membership function, i.e.

A = {(xi, μA(xi))}, for xi ∈ R and i = 1, . . . , N

with N being a finite positive integer, Dubois and Prade [6] pointed out that the
family of its α-cuts forms a nested family of focal elements in terms of Dempster-
Shafer theory [14]. In particular, assuming the range of the membership function
μA, denoted by rng(μA), is rng(μA) = {α1, . . . , αk}, where αi > αi+1 > 0, for
i = 1, . . . , k − 1, then the body of evidence induced from A with the basic
probability assignment, denoted by mA, is defined as

mA(X) =
{

αi − αi+1, if X = Aαi

0, otherwise

with αk+1 = 0 by convention. In this case the normalization assumption of A
insures the body of evidence does not contain the empty set. Interestingly, this
view of fuzzy sets has been used by Baldwin in [1] to introduce the so-called mass
assignment of a fuzzy set, and to provide a probabilistic semantics for fuzzy sets.

From the perspective of this interpretation of fuzzy sets, we now consider a
finite approximation of the fuzzy target T having a continuous-type membership
function as above. Assuming uniform sampling and that sample values are taken
at membership grades α1 = 1 > α2 > . . . > αk−1 > αk > αk+1 = 0, we can
approximately represent T as a body of evidence (equivalently, a random set)

FT = {(Tαi : αi − αi+1)}k
i=1 (6)

where Tαi are intervals, denoted by Tαi = [tl(αi), tr(αi)], as T is convex.
According to the probabilistic interpretation of (6), we can now approximate

P(x � T ) by

P(x � T ) ∼= Δα

k∑
i=1

P (x � Tαi) (7)

where Δα is the separation between any two adjacent levels, and

P (x � Tαi) =

⎧⎨⎩
0, if x ≤ tl(αi)

x−tl(αi)
tr(αi)−tl(αi)

, if tr(αi) ≤ x ≤ tr(αi)
1, if x ≥ tr(αi)

i.e. the c.d.f. of the random variable having a uniform distribution over Tαi that
is viewed as an approximation of T at level αi.

Clearly, the right side of the expression (7) is the Riemann sum of the function
f(α) = P (x � Tα) over [0, 1] with respect to the partition α1, . . . , αk+1. Thus,
we now generally define P(x � T ) as

P(x � T ) =
∫ 1

0
P (x � Tα)dα (8)
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The approximation in (7) of the integral in (8) improves the finer the sample of
membership grades.

Returning to our DMUU problem described as above we obtain the following
utility function induced from the fuzzy target T :

P(cij � T ) � UT
2 (cij) =

∫ 1

0
P (cij � Tα)dα (9)

3.3 Example of Fuzzy Targets and Risk Attitude

Let us now consider four fuzzy targets which correspond to prototypical attitudes
of DM on target assessment. The first one expresses a neutral behavior of the
DM on target and is represented by the possibility distribution Tneutral(x) = 1
for cmin ≤ x ≤ cmax, and Tneutral(x) = 0 otherwise. Then, it is easily shown
that both methods for inducing utility yield the same value function for (4):

v(Ai) =
m∑

j=1

cij − cmin

cmax − cmin
PS(Sj)

which is equivalent to the expected value model.
The second is called the optimistic target. This target would be set by a DM

who has an aspiration towards the maximal payoff. Formally, the optimistic fuzzy
target, denoted by Topt, is defined as follows

Topt(x) =
{ x−cmin

cmax−cmin
, if cmin ≤ x ≤ cmax

0, otherwise

Fig. 1 graphically depicts the membership function Topt(x) along with the utility
functions U

Topt

1 (x) and U
Topt

2 (x) corresponding to this target.
The third target is called the pessimistic target. This target is characterized by

a DM who believes bad things may happen and has a conservative assessment of
the target, which correspond to ascribing high possibility to the uncertain target
being a low payoff. The membership function of this target is defined by

Tpess(x) =
{ cmax−x

cmax−cmin
, if cmin ≤ x ≤ cmax

0, otherwise

The portraits of related functions corresponding to the pessimistic target is
shown in Fig. 2.

Consider now the fourth target linguistically represented as “about c0” whose
membership function is defined by

Tc0(x) =

⎧⎨⎩
x−cmin

c0−cmin
, cmin ≤ x ≤ c0

cmax−x
cmax−c0

, c0 ≤ x ≤ cmax

0, otherwise

where cmin < c0 < cmax. This fuzzy target characterizes the situation at which
the DM establishes a modal value c0 as the most likely target and assesses the
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Fig. 2. Pessimistic target

possibilistic uncertain target as distributed around it. We call this target the
unimodal. Fig. 3 graphically illustrates for this situation.

Looking at Figs. 1–3, we see that the portraits of the utility functions UT
1 (x)

and UT
2 (x) have similar shapes for each corresponding target. However, the be-

havior of the utility function UT
1 (x) is steeper towards the modal value of the

corresponding targets than that of the utility function UT
2 (x). This practically

implies that the value function v(·) defined with utility function UT
2 (x) reflects

a stronger decision attitude towards the target than that defined with utility
function UT

1 (x) as shown in the example below.
As we have seen from Fig. 1, the optimistic target Topt leads to the convex util-

ity functions and therefore, exhibits a risk-seeking behavior. This is because of
having an aspiration towards the maximal payoff, the DM always feels loss over
the whole domain except the maximum, which would produce more risk-seeking
behavior globally. By contrast, Fig. 2 shows that the pessimistic target induces
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the concave utility functions and thus equivalently corresponds to global risk-
aversion behavior. More interestingly, the unimodal target induces the utility
functions that are equivalent to the S-shape utility function of Kahneman and
Tversky’s prospect theory [8], according to which people tend to be risk averse
over gains and risk seeking over losses. In the fuzzy target-based language, as
the DM assesses his uncertain target as distributed around the modal value,
he feels loss (respectively, gain) over payoff values that are coded as negative
(respectively, positive) changes with respect to the modal value. This would
lead to the behavior consistent with that described in the prospect theory. A
link of this behavior to unimodal probabilistic targets has been established by
LiCalzi in [10]. Further, it has been also suggested in the literature that this sort
of target be the most natural one to occur.

4 An Illustrated Example

Let us consider the following example from Samson [12] to illustrate the point
discussed above. In this example, payoffs are shown in thousands of dollars for
a problem with three acts and four states as described in Table 2. It is also
assumed [12] a proper prior over the four possible states of p1 = 0.2, p2 = 0.4,
p3 = 0.3, p4 = 0.1.

Table 3 shows the computational results of two value functions with different
fuzzy targets for acts, where

v1(Ai) =
m∑

j=1

pjU
T
1 (cij) and v2(Ai) =

m∑
j=1

pjU
T
2 (cij)

From the result shown in Table 3, we see that both value functions v1(·) and
v2(·) suggest the same solution for the selection problem. That is, the act A2
is the preferred choice according to a DM who has a neutral (equivalently, who
abides by the expected value) or optimistic-oriented behavior about targets, a
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Table 2. The Payoff Matrix

Acts
States

1 2 3 4

A1 400 320 540 600

A2 250 350 700 550

A3 600 280 150 400

Table 3. The Target-Based Value Functions

Targets

Value Functions

v1() v2()

A1 A2 A3 A1 A2 A3

Neutral 0.51 0.55 0.30 0.51 0.55 0.30

Optimist 0.3 0.41 0.18 0.20 0.37 0.13

Pessimist 0.72 0.7 0.43 0.82 0.79 0.51

300 0.62 0.59 0.33 0.69 0.63 0.33

425 0.50 0.50 0.27 0.48 0.47 0.25

550 0.40 0.45 0.23 0.35 0.42 0.22

DM having pessimistic-oriented behavior about targets selects A1 as his preferred
choice. Especially, in the case of symmetrical unimodal target 4̃25, the acts A1
and A2 are almost indifferent to a DM who use v1(·), while A1 slightly dominates
A2 if using v2(·). In addition, though the act A3 is not selected in all cases, its
value is much improved with respect to a pessimistic-oriented decision maker.
However, the computational results of these two functions are different except,
obviously, for the case of the neutral target. Especially, it is of interest to see that
the spread of the difference of the value function v2(·) between opposite-oriented
targets is much larger than that of the value function v1(·). This illustrates that
the target-based decision model using UT

2 (·) reflects a stronger decision attitude
towards the target than that using UT

1 (·).

5 Conclusion

In this paper, we have discussed two methods for inducing utility functions
from fuzzy targets for DMUU using a target-based language. It should be noted
that the target-based approach has some appealing features because thinking
of targets is quite natural in many situations. We have also related different
attitudes of the DM on target with the corresponding attitudes towards risk
in decision analysis with uncertainty. For further research, we are planning to
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study a target-based framework of attitudinal decision making with uncertainty
as developed recently by Yager [17]. Moreover, the target-based formulation for
the problem of decision making in the face of uncertainty about the state of
nature and imprecision about payoffs are being also considered.
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Abstract. In this paper we present a rough set approach to decisions
with multiple decision makers. Since preference order is a crucial feature
of data concerning decision situations, and classical rough set approach
is not able to deal with it, we are using Dominance-based Rough Set Ap-
proach (DRSA) where indiscernibility relation of the classical approach
has been substituted by dominance relation. To deal with decision of
multiple decision makers we extend DRSA by introducing specific con-
cepts related to dominance with respect to minimal profiles of evaluations
given by multiple decision makers. This extension provides also a general
methodology for rough approximations of partial preorders.

1 Introduction

In many real-life decision problems, potential actions described by multiple crite-
ria are evaluated by multiple decision makers. Then, it is important to character-
ize conditions for a consensus between the decision makers. Different approaches
were considered within this context, however, they were concentrated on con-
verging toward a consensus defined as an output minimizing dissimilarities (or
maximizing similarities) between decision makers, using a particular metric in
the space of evaluations (see e.g. [5], [6], [4]). For this reason, the research in this
field has been focused on supporting negotiations between decision makers. In-
stead of this, we propose to define conditions for a given scenario of a consensus,
expressed in terms of decision rules induced from examples of evaluations pro-
vided by multiple decision makers. The decision rules are logical “if. . . , then. . .”
statements relating conditions defined in multiple criteria space with decisions
defined in multiple decision makers evaluation space.

For example, consider a multiple criteria decision problem concerning students
described by scores (from 0 to 20) in such subjects (criteria) as mathematics (M),
physics (Ph) and literature (L), and evaluated by a committee composed of three
professors (decision makers), P1, P2, P3. Suppose that each professor is giving
a comprehensive evaluation of each student on three-level scale {Bad, Medium,
Good}, taking into account the scores gained by the students in M, Ph and L.
Suppose, moreover, that decisions of P1, P2, P3 have to be aggregated so as

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 306–317, 2006.
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to designate students which will be finally accepted for a higher-level program.
The aggregate decision represents a consensus between professors. Let us con-
sider a possible consensus which is reached when at least two of three professors
evaluate a student as comprehensively at least Medium, and the remaining pro-
fessor evaluates this student as comprehensively Good. Thus, the corresponding
minimal profiles [E1, E2, E3] of comprehensive evaluations given, respectively,
by P1, P2 and P3 are: [Medium, Medium, Good], [Medium, Good, Medium],
[Good, Medium, Medium]. Characterization of this consensus in terms of scores
obtained by students in M, Ph and L can be made by means of rules of the type:
“if student x gained at least 15 in M, and at least 18 in L, then x is accepted”,
or “if student x gained at most 10 in M, and at most 13 in Ph, then x is not ac-
cepted”. These rules are induced from a decision table including both the scores
in M, Ph, L, and the comprehensive evaluations by P1, P2 and P3.

Remark that data used for induction of decision rules characterizing a sup-
posed consensus are preference ordered. For this reason we cannot apply the
classical rough set approach based on indiscernibility (see [7]), but rather the
Dominance-based Rough Set Approach (DRSA) which we proposed (see e.g.
[1],[2], [3], [8] ) for analysis of preference ordered data. To deal with decision
involving multiple decision makers, we have to extend DRSA by introducing
specific concepts related to dominance with respect to minimal profiles of eval-
uations given by multiple decision makers.

The paper is organized as follows. In section 2, we recall main elements of
DRSA. In section 3, we introduce definitions extending DRSA to the case of
multiple decision makers. In section 4, we investigate some properties of the
proposed approach, in particular, properties of dominance between sets of vectors
of comprehensive evaluations. The paper ends with conclusions.

2 Reminder of Dominance-Based Rough Set Approach

Let us recall some main elements of DRSA. For algorithmic reasons, information
about objects of the decision (also called actions) is represented in the form of
an information table. The rows of the table are labelled by objects, whereas
columns are labelled by attributes and entries of the table are attribute-values.
Formally, by an information table we understand the 4-tuple S=< U ,Q,V ,f >,
where U is a finite set of objects, Q is a finite set of attributes, V =

⋃
q∈Q

Vq

and Vq is a domain of the attribute q, and f : U × Q → V is a total function
such that f(x, q) ∈ Vq for every q ∈ Q, x ∈ U , called an information function.
The set Q is, in general, divided into set C of condition attributes and set D of
decision attributes. Information table for which condition and decision attributes
are distinguished is called decision table.

We are considering condition attributes with domains (scales) ordered accord-
ing to decreasing or increasing preference – such attributes are called criteria.
For criterion q ∈ Q, �q is a weak preference relation (also called outranking
relation) on U such that x �qy means “x is at least as good as y with respect
to criterion q”. We suppose that �q is a total preorder, i.e. a strongly complete
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and transitive binary relation, defined on U on the basis of evaluations f(·,q).
We assume, without loss of generality, that the preference is increasing with the
value of f(·,q) for every criterion q ∈ C.

Furthermore, we assume that the set of decision attributes D is a singleton
{d}. Decision attribute d makes a partition of U into a finite number of decision
classes, Cl={Clt, t ∈ T }, T = {1, ..., n}, such that each x ∈ U belongs to one
and only one class Cl t ∈Cl . We suppose that the classes are preference-ordered,
i.e. for all r,s ∈ T , such that r > s, the objects from Clr are preferred to
the objects from Cls. More formally, if � is a comprehensive weak preference
relation on U , i.e. if for all x,y ∈ U , x�y means “x is at least as good as y”, we
suppose: [x∈Clr, y∈Cls, r>s] ⇒ [x�y and not y�x]. The above assumptions are
typical for consideration of a multiple-criteria classification problem (also called
multiple-criteria sorting problem).

The sets to be approximated are called upward union and downward union
of classes, respectively:

Cl≥t =
⋃
s≥t

Cls, Cl≤t =
⋃
s≤t

Cls, t = 1, ..., n.

The statement x ∈ Cl≥t means “x belongs to at least class Cl t”, while x ∈ Cl≤t
means “x belongs to at most class Cl t”.

The key idea of the rough set approach is representation (approximation) of
knowledge generated by decision attributes, by “granules of knowledge” gener-
ated by condition attributes.

In DRSA, where condition attributes are criteria and decision classes are
preference ordered, the represented knowledge is a collection of upward and
downward unions of classes and the “granules of knowledge” are sets of objects
defined using a dominance relation.

We say that x dominates y with respect to P ⊆ C (shortly, x P-dominates y),
denoted by xDP y, if for every criterion q ∈ P , f(x, q) ≥ f(y, q). P -dominance is
reflexive.

Given a set of criteria P ⊆ C and x ∈ U , the “granules of knowledge” used
for approximation in DRSA are:

– a set of objects dominating x, called P -dominating set,
D+

P (x)={y ∈ U : yDP x},
– a set of objects dominated by x, called P -dominated set,

D−
P (x)={y ∈ U : xDP y}.

Let us recall that the dominance principle (or Pareto principle) requires that
an object x dominating object y on all considered criteria (i.e. x having evalua-
tions at least as good as y on all considered criteria) should also dominate y on
the decision (i.e. x should be assigned to at least as good decision class as y).
This principle is the only objective principle that is widely agreed upon in the
multicriteria comparisons of objects.
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The P -lower approximation of Cl≥t , denoted by P Cl≥t , and the P -upper ap-
proximation of Cl≥t , denoted by P (Cl≥t ), are defined as follows (t=1,...,n):

P ( Cl≥t ) = {x ∈ U : D
+
P (x) ⊆ Cl≥t },

P ( Cl≥t ) = {x ∈ U : D
−
P (x) ∩ Cl≥t �= ∅} =

⋃
x∈Cl

≥
t

D+(x),

Analogously, one can define the P -lower approximation and the P -upper ap-
proximation of Cl≤t as follows (t=1,...,n):

P ( Cl≤t ) = {x ∈ U : D
−
P (x) ⊆ Cl≤t },

P ( Cl≤t ) = {x ∈ U : D
+
P (x) ∩ Cl≤t �= ∅} =

⋃
x∈Cl≤t

D−(x),

The P -lower and P -upper approximations so defined satisfy the following
inclusion properties for each t ∈{1,. . . ,n} and for all P ⊆ C:

P ( Cl≥t ) ⊆ Cl≥t ⊆ P (Cl≥t ), P (Cl≤t ) ⊆ Cl≤t ⊆ P (Cl≤t ).

The P−lower and P−upper approximations of Cl≥t and Cl≤t have an im-
portant complementarity property, according to which, P (Cl≥t ) = U–P (Cl≤t−1),
t=2,...,n.

The dominance-based rough approximations of upward and downward unions
of classes can serve to induce “if..., then...” decision rules. It is meaningful to
consider the following five types of decision rules:

1. Certain D≥-decision rules: if xq1�q1rq1 and x q2 �q2rq2 and . . . x qp �qprqp,
then x ∈ Cl≥t , where for each wq,zq ∈ Xq, “wq �qzq” means “wq is at least
as good as zq”

2. Possible D≥-decision rules: if xq1�q1rq1 and x q2�q2rq2 and . . . x qp�qprqp,
then x possibly belongs to Cl≥t

3. Certain D≤-decision rules: if xq1 *q1rq1 and xq2 *q2rq2 and . . . x qp *qprqp,
then x ∈ Cl≤t , where for each wq,zq ∈ Xq, “wq *qzq” means “wq is at most
as good as zq”

4. Possible D≤-decision rules: if xq1 *q1rq1 and x q2 *q2rq2 and . . . x qp *qprqp,
then x possibly belongs to Cl≤t

5. Approximate D≥≤-decision rules: if x q1�q1rq1 and... xqk�qkrqk and xqk+1

*qk+1rqk+1 and ... xqp *qprqp, then x ∈ Cl≥s ∩Cl≤t .

3 DRSA for Multiple Decision Makers – Definitions

We are considering a decision table with a finite set of objects U={a,b,. . . ,x,y,. . . },
called universe, a finite set of criteria C={1,. . . , q,. . . ,m}, and a finite set of de-
cision makers H={1,. . . ,i,. . . ,h}, corresponding to h decision attributes.

We suppose that each decision maker i ∈ H has a preference order on the uni-
verse U and that this preference order is represented by a finite set of preference
ordered classes
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Cl i={Cl t,i, t ∈ Ti}, Ti ={1,...,ni},

such that
ni⋃

t=1

Clt,i = U, Clt,i ∩ Clr,i = ∅ for all r, t ∈ Ti,

and if x ∈Clr,i, y ∈Cls,i and r > s, then x is better than y for decision maker i.
For a single decision maker i ∈H, the sets to be approximated are the upward

and downward unions of decision classes (t=1,...,ni):

Cl≥t,i =
⋃

s≥t

Cls,i (at least class Clt,i), Cl≤t,i =
⋃

s≤t

Cls,i (at most class Cl t,i).

Thus, considering a single decision maker, DRSA does not need any exten-
sion, because the only difference is that instead of considering only one set of
preference ordered classes, we have multiple sets of preference ordered classes
such that one set corresponds to one decision maker.

If we want to consider the set of decision makers H as a whole, we need to
introduce some new concepts:

– upward multi-union with respect to one configuration
[t(1), . . . , t(h)], (t(i) ∈ Ti, for all i ∈ H):

Cl≥[t(1),...t(h)] =
⋂
i∈H

Cl≥t(i),i,

– downward multi-union with respect to one configuration
[t(1), . . . , t(h)], (t(i) ∈ Ti, for all i ∈ H):

Cl≤[t(1),...,t(h)] =
⋂
i∈H

Cl≤t(i),i

– upward mega-union with respect to a set of k configurations

{[t1(1),. . . ,t1(h)],. . . , [tk(1),. . . ,tk(h)]}, k=1,. . . ,
h∏

i=1
ni

Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} =
k⋃

r=1

Cl≥[tr(1),...,tr(h)],

– downward mega-union with respect to a set of k configurations

{[t1(1),. . . ,t1(h)],. . . , [tk(1),. . . ,tk(h)]}, k=1,. . . ,
h∏

i=1
ni

Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} =
k⋃

r=1

Cl≤[tr(1),...,tr(h)].

In the above concepts, configuration means an evaluation profile, which is a
vector of names of decision classes used by particular decision makers; e.g. [Bad,
Medium, Average] is a configuration of class names of three decision makers.
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The meaning of an upward multi-union is such that it includes objects which
were assigned by particular decision makers to at least as good decision classes
as those indicated in the corresponding configuration; e.g. for configuration [Bad,
Medium, Average], the upward multi-union includes all those objects which were
qualified as at least Bad by the first decision maker, as at least Medium by the
second decision maker, and as at least Average by the third decision maker. The
meaning of a downward multi-union is analogous, i.e. it includes objects which
were assigned by particular decision makers to at most as good decision classes
as those indicated in the corresponding configuration.

While the maximum number of all possible configurations is equal to the
number of all possible combinations of class names by particular decision makers,

i.e.
h∏

i=1
ni, the number k of configurations considered in mega-unions can be, of

course, smaller.
Given k configurations, an upward mega-union is a sum of upward multi-

unions corresponding to the k configurations; e.g. for 2 configurations [Bad,
Medium, Average] and [Medium, Bad, Average], the upward mega-union in-
cludes all those objects which were qualified as at least Bad by the first decision
maker, as at least Medium by the second decision maker, and as at least Aver-
age by the third decision maker, plus all those objects which were qualified as at
least Medium by the first decision maker, as at least Bad by the second decision
maker, and as at least Average by the third decision maker. The meaning of a
downward mega-union is analogous, i.e. it is a sum of downward multi-unions
corresponding to the k configurations.

Using the concept of a mega-union, one can model a collective decision of
majority type. E.g., in a simple case of three decision makers and YES/NO
voting decisions for the objects, a “majority” mega-union is a set of objects such
that at least two decision makers voted YES for them.

With respect to approximations of multi-unions, the following principle of
coherence can be stated: for any P ⊆ C,

– x ∈ U belongs to Cl≥[t(1),...t(h)] without any inconsistency if x ∈ Cl≥[t(1),...t(h)]

and, for all y ∈ U dominating x on P , also y belongs to Cl≥[t(1),...t(h)], i.e.

D
+
P (x) ⊆ Cl≥[t(1),...t(h)],

– x∈U could belong to Cl≥[t(1),...t(h)] if there existed at least one y∈Cl≥[t(1),...t(h)]

such that x dominates y on P , i.e. x ∈ D
+
P (y).

For any P ⊆ C, the set of all objects belonging to Cl≥[t(1),...t(h)] without
any inconsistency constitutes the P -lower approximation of upward multi-union
Cl≥[t(1),...t(h)],

P
(
Cl≥[t(1),...,t(h)]

)
=
{
x ∈ U : D+

P (x) ⊆ Cl≥[t(1),...t(h)]

}
.

The set of all objects that could belong to Cl≥t,i constitutes the P -upper ap-
proximation of upward multi-union Cl≥[t(1),...t(h)],
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P
(
Cl≥[t(1),...t(h)]

)
=

⋃
x∈Cl≥[t(1),...t(h)]

D
+
P (x).

The definitions of P -lower approximation and P -upper approximation of down-
ward multi-union Cl≤[t(1),...t(h)] can be obtained following the same reasoning and,
therefore, we have

P
(
Cl≤[t(1),...,t(h)]

)
=
{
x ∈ U : D−

P (x) ⊆ Cl≤[t(1),...t(h)]

}
,

P
(
Cl≤[t(1),...t(h)]

)
=

⋃
x∈Cl≤[t(1),...t(h)]

D
−
P (x).

Theorem 1. For all P ⊆ C and for any configuration [t(1), . . . , t(h)], (t(i) ∈
Ti, for all i ∈ H),

P
(
Cl≥[t(1),...,t(h)]

)
=

h⋂
i=1

P
(
Cl≥t(i),i

)
, P

(
Cl≥[t(1),...t(h)]

)
⊆

h⋃
i=1

P
(
Cl≥t(i),i

)
,

P
(
Cl≤[t(1),...,t(h)]

)
=

h⋂
i=1

P
(
Cl≤t(i),i

)
, P

(
Cl≤[t(1),...t(h)]

)
⊆

h⋃
i=1

P
(
Cl≤t(i),i

)
.

Similarly to multi-unions, we can express the following principle of coherence
with respect to mega-unions: for any P ⊆ C,

– x ∈ U belongs to upward mega-union Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} with-

out any inconsistency if x ∈ Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} and for all y ∈ U

dominating x on P , also y belongs to Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}, i.e.

D
+
P (x) ⊆ Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]},

– x ∈ U could belong to Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} if there existed at

least one y ∈ Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} such that x dominates y on P ,
i.e. x ∈ D

+
P (y).

Now, we can define rough approximations of mega-unions. For any P ⊆ C,
the set of all objects belonging to Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} without any
inconsistency constitutes the P -lower approximation of the upward mega-union,

P
(
Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
={

x ∈ U : D
+
P (x) ⊆ Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

}
.

The set of all objects that could belong to Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}
constitutes the P -upper approximation of the upward mega-union,

P
(
Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
=

⋃
x∈Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

D
+
P (x).
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The definitions of P -lower approximation and P -upper approximation of down-
ward mega-union Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} can be obtained following the
same reasoning and, therefore, we have

P
(
Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
={

x ∈ U : D−
P (x) ⊆ Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

}
,

P
(
Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
=

⋃
x∈Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

D
−
P (x).

Theorem 2. For all P ⊆ C and for all mega-unions {[t1(1), . . . , t1(h)], . . . ,
[tk(1), . . . , tk(h)]}, (tr(i) ∈ Ti for all r = 1, . . . , k)

P
(
Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
⊇

k⋃
r=1

P
(
Cl≥[tr(1),...,tr(h)]

)
,

P
(
Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
=

k⋃
r=1

P
(
Cl≥[tr(1),...,tr(h)]

)
,

P
(
Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
⊇

k⋃
r=1

P
(
Cl≤[tr(1),...,tr(h)]

)
,

P
(
Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]}

)
=

k⋃
r=1

P
(
Cl≤[tr(1),...,tr(h)]

)
.

In the case of DRSA for multiple decision makers, the syntax of the five types
of decision rules presented in section 2 does not change in the condition part,
however, in the decision part there are, in general, upward or downward mega-
unions.

4 DRSA for Multiple Decision Makers – Properties

In this section we investigate some fundamental properties of DRSA adapted to
the presence of multiple decision makers.

Let us point out the following remarks:

1. Each upward union Cl≥t,i can be seen as an upward multi-union:
Cl≥t,i = Cl≥[1,...,t(i),...,1].

2. Each downward union Cl≤t,i can be seen as a downward multi-union:
Cl≤t,i = Cl≤[m1,...,t(i),...,mh].

3. Each upward multi-union Cl≥[t(1),...,t(h)] can be seen as an upward

mega-union: Cl≥[t(1),...,t(h)] = Cl≥{[t(1),...,t(h)]}.
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4. Each downward multi-union Cl≤[t(1),...,t(h)] can be seen as a downward

mega-union: Cl≤[t(1),...,t(h)] = Cl≤{[t(1),...,t(h)]}.
5. For above 1)-4), we can consider only mega-unions, because all results hold-

ing for mega-unions hold also for multi-unions and single decision makers.

Let us consider the property of inclusion and the associated order relation
between upward or downward unions, multi-unions and mega-unions.

Let us start with simple upward unions. There is an isomorphism between
inclusion relation ⊆ on the set of all upward unions Cl≥ =

{
Cl≥t , t ∈ T

}
, and

order relation ≥ on the set of class indices T = {1, .., n}, expressed as follows:
for each r,s ∈ T ,

Cl≥r ⊆ Cl≥s ⇔ r ≥ s.

Observe that inclusion relation ⊆ on Cl≥ is a complete preorder, i.e. it is
strongly complete (for each r,s ∈ T , Cl≥r ⊆ Cl≥s or Cl≥s ⊆ Cl≥r ) and transitive
(for each r,s,t ∈ T , Cl≥r ⊆ Cl≥s and Cl≥s ⊆ Cl≥t imply Cl≥r ⊆ Cl≥t ).

An analogous isomorphism holds for inclusion relation ⊆ on the set of all
downward unions Cl≤ =

{
Cl≤t , t ∈ T

}
, and order relation ≤ on the set of class

indices T = {1, .., n}, expressed as follows: for each r,s ∈ T ,

Cl≤r ⊆ Cl≤s ⇔ r ≤ s.

Obviously, inclusion relation ⊆ on Cl≤ is again a complete preorder.
There is also an isomorphism between inclusion relation ⊆ on the set of all up-

ward multi-unions Cl≥ =
{

Cl≥[t(1),...t(h)], [t (1) , ..., t (h)] ∈
h∏

i=1
Ti

}
, and order

relation � on the Cartesian product of class indices
h∏

i=1
Ti, expressed as follows:

for each t1 =
[
t1 (1) , ..., t1 (h)

]
, t2 =

[
t2 (1) , ..., t2 (h)

]
∈

h∏
i=1

Ti,

Cl≥t1 ⊆ Cl≥t2 ⇔ t1 � t2.

In the multiple criteria context (criteria correspond to decision makers’ eval-
uations), the order relation � is the dominance relation.

Observe that inclusion relation ⊆ on Cl≥ is a partial preorder, i.e. it is

reflexive (for each t = [t (1) , ..., t (h)] ∈
h∏

i=1
Ti, Cl≥t ⊆ Cl≥t ) and transitive.

An analogous isomorphism holds for inclusion relation ⊆ on the set of all

downward multi-unions Cl≤ =
{

Cl≤[t(1),...t(h)], [t (1) , ..., t (h)] ∈
h∏

i=1
Ti

}
, and

order relation � on the Cartesian product of class indices
h∏

i=1
Ti, expressed as

follows: for each t1 =
[
t1 (1) , ..., t1 (h)

]
, t2 =

[
t2 (1) , ..., t2 (h)

]
∈

h∏
i=1

Ti,

Cl≤t1 ⊆ Cl≤t2 ⇔ t1 � t2.
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Obviously, inclusion relation ⊆ on Cl≤ is again a partial preorder.

Observe that for all t1, t2 ∈
h∏

i=1
Ti, t1�t2 ⇔ t2�t1. This implies that

Cl≥t1 ⊆ Cl≥t2 ⇔ Cl≤t2 ⊆ Cl≤t1 .

Let us finally pass to upward mega-unions. In this case, it is useful to consider
another type of order relations, denoted by 〈�〉 and 〈�〉, defined in the power set of
h-dimensional real space 2Rh

. For all 〈x1〉=
{[

x1,1
1 , ..., x1,1

h

]
, ...,
[
x1,k1

1 , ..., x1,k1
h

]}
,

〈x2〉 =
{[

x2,1
1 , ..., x2,1

h

]
, ...,
[
x2,k2

1 , ..., x2,k2
h

]}
∈ 2Rh

,

〈x1〉 〈�〉 〈x2〉 ⇔ ∀
[
x1,i

1 , ..., x1,i
h

]
∈ 〈x1〉 ∃

[
x2,j

1 , ..., x2,j
h

]
∈ 〈x2〉,

such that
[
x1,i

1 , ..., x1,i
h

]
�
[
x2,j

1 , ..., x2,j
h

]
, i = 1, ..., k1, j = 1, ..., k2, as well as

〈x2〉 〈�〉 〈x1〉 ⇔ ∀
[
x2,j

1 , ..., x2,j
h

]
∈ 〈x2〉 ∃

[
x1,i

1 , ..., x1,i
h

]
∈ 〈x1〉,

such that
[
x2,j

1 , ..., x2,j
h

]
�
[
x1,i

1 , ..., x1,i
h

]
, i = 1, ..., k1, j = 1, ..., k2.

Let us observe that order relations 〈�〉 and 〈�〉 on 2Rh

are independent
in the sense that for all 〈x1〉, 〈x2〉 ∈ 2Rh

, 〈x1〉 〈�〉 〈x2〉 is not equivalent to
〈x2〉 〈�〉 〈x1〉. Consider, for example, the case where h=2, 〈x1〉 = {[3,3]} and
〈x2〉 = {[1,2] , [4, 1]}; then 〈x1〉 〈�〉 〈x2〉 because for [3,3] in 〈x1〉 there exists
[1,2] in 〈x2〉 such that [3, 3] � [1,2], but 〈x2〉 〈�〉 〈x1〉 does not hold because
for [4,1] in 〈x2〉 there is no vector x1,i ∈ 〈x1〉 such that [4, 1] � x1,i (in fact,
[4, 1] � [3,3] is not true).

We can define now an isomorphism between inclusion relation ⊆ in the set of
all upward mega-unions

Cl≥2 =
{

Cl≥{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]},

[t1 (1) , ..., t1 (h)] , ..., [tk (1) , ..., tk (h)] ∈
h∏

i=1

Ti

}
,

and order relation 〈�〉 in the power set of Cartesian product of class indices

2
h

i=1
Ti

, expressed as follows: for each

〈t1〉 =
{[

t11 (1) , ..., t11 (h)
]
, ...,
[
t1k1

(1) , ..., t1k1
(h)
]}

,

〈t2〉 =
{[

t21 (1) , ..., t21 (h)
]
, ...,
[
t2k2

(1) , ..., t2k2
(h)
]}

∈ 2
h

i=1
Ti

,

Cl≥〈t1〉 ⊆ Cl≥〈t2〉 ⇔ 〈t1〉 〈�〉 〈t2〉.
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Observe that inclusion relation ⊆ in Cl≥2 is a partial preorder, i.e. it is
reflexive and transitive.

An analogous isomorphism holds for inclusion relation ⊆ on the set of all
downward mega-unions

Cl≤2 =
{
Cl≤{[t1(1),...,t1(h)],...,[tk(1),...,tk(h)]} ,

[t1 (1) , ..., t1 (h)] , ..., [tk (1) , ..., tk (h)] ∈
h∏

i=1

Ti

}
,

and order relation 〈�〉 in the power set of Cartesian product of class indices

2
h

i=1
Ti

, expressed as follows: for each

〈t1〉 =
{[

t11 (1) , ..., t11 (h)
]
, ...,
[
t1k1

(1) , ..., t1k1
(h)
]}

,

〈t2〉 =
{[

t21 (1) , ..., t21 (h)
]
, ...,
[
t2k2

(1) , ..., t2k2
(h)
]}

∈ 2
h

i=1
Ti

,

Cl≤〈t1〉 ⊆ Cl≤〈t2〉 ⇔ 〈t1〉 〈�〉 〈t2〉.

Obviously, inclusion relation ⊆ in Cl≤2 is again a partial preorder, how-
ever, according to observation made above, Cl≥〈t1〉 ⊆ Cl≥〈t2〉 is not equivalent to

Cl≤〈t2〉 ⊆ Cl≤〈t1〉.
The rough approximations defined within DRSA adapted to the presence of

multiple decision makers satisfy all basic properties of classical rough approxi-

mations, e.g. for upward mega-unions: for all P ⊆ R ⊆ C and for all 〈t〉 ∈ 2
h

i=1
Ti

,

– rough inclusion: P
(
Cl≥〈t〉

)
⊆ Cl≥〈t〉 ⊆ P

(
Cl≥〈t〉

)
,

– complementarity: P
(
Cl≥〈t〉

)
= U − P

(
Cl≤〈t′〉

)
, where Cl≤〈t′〉 = U − Cl≥〈t〉,

– monotonicity: P
(
Cl≥〈t〉

)
⊆ R

(
Cl≥〈t〉

)
, P

(
Cl≥〈t〉

)
⊇ R

(
Cl≥〈t〉

)
.

5 Conclusions

We presented an extension of DRSA to the case of multiple decision makers. It
required a new definition of dominance with respect to profiles of evaluations
made by the multiple decision makers. The approach can be used to support de-
cision of multiple decision makers because it permits to characterize conditions
for reaching a consensus. These conditions are expressed in terms of decision
rules. Premises of these rules are formulated in original multiple criteria eval-
uation space, and conclusions in the space of evaluations by multiple decision
makers. Our approach differs from existing approaches to decision involving mul-
tiple decision makers, because we are not searching for concordant decision rules
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of multiple decision makers, considered as individuals (see [4]), but we rather
characterize conditions for a consensus attainable by multiple decision makers
considered as a whole. Such a perspective permits to handle interactions between
decision makers.

Let us finally remark that the presented extension of DRSA can be used to
solve a more general problem of data analysis, requiring rough approximation of
partial preorders.

Acknowledgements. The research of the first two authors has been supported
by the Italian Ministry of Education, University and Scientific Research (MIUR).
The third author wishes to acknowledge financial support from the Polish Min-
istry of Science and Higher Education (grant no. 3T11F 02127).

References
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to deal with multi-criteria classification problems, where data
may be inconsistent with respect to the dominance principle. In this
paper, we consider different measures of the quality of approximation,
which is the value indicating how much inconsistent the decision table is.
We begin with the classical definition, based on the relative number of
inconsistent objects. Since this measure appears to be too restrictive in
some cases, a new approach based on the concept of generalized decision
is proposed. Finally, motivated by emerging problems in the presence
of noisy data, the third measure based on the object reassignment is
introduced. Properties of these measures are analysed in light of rough
set theory.

1 Introduction

The multi-criteria classification problem consists in assignment of objects from
a set A to pre-defined decision classes Clt, t ∈ T = {1, . . . , n}. It is assumed
that the classes are preference-ordered according to an increasing order of class
indices, i.e. for all r, s ∈ T , such that r > s, the objects from Clr are strictly
preferred to the objects from Cls. The objects are evaluated on a set of condition
criteria (i.e., attributes with preference-ordered domains). It is assumed that
there exists a semantic correlation between evaluation of objects on criteria and
their assignment to decision classes, i.e. a better evaluation of an object on a
criterion with other evaluations being fixed should not worsen its assignment to
a decision class.

In order to support multi-criteria classification, one must construct a pref-
erence model of the Decision Maker (DM). The construction of the preference
model requires some preference information from the DM. One possible way is
to induce the preference model from a set of exemplary decisions (assignments
of objects to decision classes) made on a set of selected objects called reference
objects. The reference objects are those relatively well-known to the DM who

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 318–327, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is able to assign them to pre-defined classes. In other words, the preference in-
formation comes from observation of DM’s acts (comprehensive decisions). It is
concordant with a paradigm of artificial intelligence and, in particular, of in-
ductive learning. Moreover, the induced model can be represented in intelligible
way, for example as a set of decision rules.

The reference objects and their evaluations and assignments are often pre-
sented in a decision table S = 〈U, C, D〉, where U ⊆ A is a finite, non-empty set
of reference objects, C is a set of condition criteria, and D is a set of decision
criteria that contain information on assignment of objects to decision classes. D
is often a singleton (D = {d}), where d is shortly called decision. C and D are
disjoint, finite and non-empty sets that jointly constitute a set of all criteria Q.
It is assumed, without loss of generality, that the domain of each criterion q ∈ Q,
denoted by Vq, is numerically coded with an increasing order of preference. The
domains of criteria may correspond to cardinal or ordinal scales, however, we
are exploiting the ordinal information (the weakest) only, whatever is the scale.
The domain of decision d is a finite set (T = {1, . . . , n}) due to a finite num-
ber of decision classes. Evaluations and assignments of objects on any criterion
(q ∈ Q) are defined by an information function f(x, q), f : U × Q → V , where
V =

⋃
q∈Q Vq.

There is, however, a problem with inconsistency often present in the set of
decision examples. Two decision examples are inconsistent with respect to, so-
called, dominance principle, if there exists an object not worse than another ob-
ject on all considered criteria, however, it has been assigned to a worse decision
class than the other. To deal with these inconsistencies, it has been proposed to
construct the preference model in the form of a set of decision rules, after adapt-
ing rough set theory [7,8,9] to preference ordered data. Such an adaptation has
been made by Greco, Matarazzo and S�lowiński [4,5,6]; it consists in substitut-
ing the classical indiscernibility relation by a dominance relation, which permits
taking into account the preference order in domains (scales) of criteria. The
extended rough set approach is called Dominance-based Rough Set Approach
(DRSA) - a complete overview of this methodology is presented in [10].

Using the rough set approach to the analysis of preference information, we
obtain the lower and the upper (rough) approximations of unions of decision
classes. The difference between upper and lower approximations shows inconsis-
tent objects with respect to the dominance principle. The rough approximations
are then used in induction of decision rules representing, respectively, certain
and possible patterns of DM’s preferences. The preference model in the form of
decision rules explains a decision policy of the DM and permits to classify new
objects in line of the DM’s preferences.

The ratio of the cardinality of all consistent objects to the cardinality of all
reference objects is called quality of approximation. This ratio is very restrictive,
because in the extreme case, if there existed one object having better evaluations
on condition criteria than all the other objects from U and if it was assigned to
the worst class being a singleton, this ratio would decrease to 0. In the paper,
we consider two other measures of the quality of approximation. The first, based
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on the generalized decision, is more resistant to local inconsistencies, but still
in the extreme case described above, its value would decrease to 0. The second,
motivated by emerging problems in the presence of noisy data, is free of this
disadvantage and is resistant to local inconsistencies. Its definition is based on
the concept of object reassignment. All these measures are monotonically non-
decreasing with the number of condition criteria considered.

The article is organized in the following way. Section 2 describes main elements
of Dominance-based Rough Set Approach. Section 3 describes the classical ra-
tio of quality of approximation and the ratio based on generalized decision. In
Section 4, the third measure and its properties are presented. The last section
concludes the paper.

2 Dominance-Based Rough Set Approach

Within DRSA, the notions of weak preference (or outranking) relation �q and
P -dominance relation DP are defined as follows. For any x, y ∈ U and q ∈ Q,
x �q y means that x is at least as good as (is weakly preferred to) y with
respect to criterion q. With respect to assumptions taken in the previous section,
it is x �q y ⇔ f(x, q) ≥ f(y, q). Moreover, taking into account more than
one criterion, we say that x dominates y with respect to P ⊆ Q (shortly x
P -dominates y), if x �q y for all q ∈ P . The weak preference relation �q is
supposed to be a complete pre-order and, therefore, the P -dominance relation
DP , being the intersection of complete pre-orders �q, q ∈ P , is a partial pre-
order in the set of reference objects. The dominance principle can be expressed
as follows, for x, y ∈ U , and P ⊆ C:

xDP y ⇒ xD{d}y, i.e., (∀q∈P f(x, q) ≥ f(y, q)) ⇒ f(x, d) ≥ f(y, d). (1)

The rough approximations concern granules resulting from information car-
ried out by the decision criterion. The approximation is made using granules
resulting from information carried out by condition criteria. These granules are
called decision and condition granules, respectively. The decision granules can
be expressed by unions of decision classes:

Cl≥t = {y ∈ U : f(y, d) ≥ t} (2)

Cl≤t = {y ∈ U : f(y, d) ≤ t}. (3)

The condition granules are P -dominating and P -dominated sets defined, respec-
tively, as:

D+
P (x) = {y ∈ U : yDP x} (4)

D−
P (x) = {y ∈ U : xDP y}. (5)

Let us remark that both decision and condition granules are cones in decision
and condition spaces, respectively. The origin of a decision cone is a class index
t ∈ T , while the origin of a condition cone is an object x ∈ U . The dominating
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cones are open towards increasing preferences, and the dominated cones are open
towards decreasing preferences.

P -lower dominance-based rough approximations of Cl≥t and Cl≤t are defined
for P ⊆ C and t ∈ T , respectively, as follows:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t }, (6)

P (Cl≤t ) = {x ∈ U : D−
P (x) ⊆ Cl≤t }. (7)

P -upper dominance-based rough approximations of Cl≥t and Cl≤t are defined for
P ⊆ C and t ∈ T , respectively, as follows:

P (Cl≥t ) = {x ∈ U : D−
P (x) ∩ Cl≥t �= ∅}, (8)

P (Cl≤t ) = {x ∈ U : D+
P (x) ∩ Cl≤t �= ∅}, (9)

Consider the following definition of P -generalized decision for object x ∈ U :

δP (x) = 〈lP (x), uP (x)〉, where, (10)

lP (x) = min{f(y, d) : yDP x, y ∈ U}, (11)
uP (x) = max{f(y, d) : xDP y, y ∈ U}. (12)

In other words, the P -generalized decision reflects an interval of decision classes
to which an object may belong due to inconsistencies with the dominance prin-
ciple caused by this object. lP (x) is the lowest decision class, to which belong
an object P -dominating x; uP (x) is the highest decision class, to which belong
an object P -dominated by x. Obviously, lP (x) ≤ uP (x) for every P ⊆ C, x ∈ U
and if lP (x) = uP (x), then object x is consistent with respect to the dominance
principle in the decision table.

Let us remark that the dominance-based rough approximations may be ex-
pressed using P -generalized decision:

P (Cl≥t ) = {x ∈ U : lP (x) ≥ t}, (13)

P (Cl≥t ) = {x ∈ U : uP (x) ≥ t}, (14)

P (Cl≤t ) = {x ∈ U : uP (x) ≤ t}, (15)

P (Cl≤t ) = {x ∈ U : lP (x) ≤ t}. (16)

The lower and the upper rough approximations are then used in induction of
decision rules representing, respectively, certain and possible patterns of DM’s
preferences. These rules are used in classification of new objects. In general, a
new object is covered by several rules indicating rough approximations of upward
and downward unions of decision classes. Intersection of the outputs of the rules
gives an interval of decision classes to which an object is assigned. In many cases
the object is assigned to only one class resulting from the intersection of the
matching rules.
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3 Quality of Approximation

Let us begin with very restrictive definition of the quality of approximation. The
quality of approximation is defined as a ratio of the number of objects from the
decision table that are consistent with respect to the dominance principle, to the
number of all objects from this decision table. A set of consistent objects can be
defined in the following way, for any P ⊆ C:

{x ∈ U : uP (x) = lP (x)}. (17)

The same may be expressed, equivalently, by:⋃
t∈T {x ∈ U : D−

P (x) ⊆ Cl≤t ∧ D+
P (x) ⊆ Cl≥t } =

= U −
(⋃

t∈T Bn≥t
P

)
= U −

(⋃
t∈T Bn≤t

P

)
,

where Bn≥t
P = P (Cl≥t )−P (Cl≥t ), and Bn≤t

P = P (Cl≤t )−P (Cl≤t ), are, so-called,
boundary regions.

The quality of approximation can be defined as:

γ(P ) =
card ({x ∈ U : uP (x) = lP (x)})

card (U)
. (18)

This definition is very restrictive, because in the extreme case, if there existed
one object dominating all the other objects from U while being assigned to the
lowest possible class, and if the lowest possible class was a singleton including this
object, γ(P ) would decrease to 0, even if the other objects from U were perfectly
consistent. It is not true, however, that γ(P ) does not count the relative number
of objects which can be captured by deterministic rules (i.e., induced from the
lower approximations of unions of decision classes), what was pointed by Düntsch
and Gediga in [3]. This is in fact, the relative number of objects that are covered
by these rules in the following way. When deterministic rules induced from lower
approximations of upward and downward unions of decision classes are applied
to an object, then the object is assigned by these rules to an interval of decision
classes to which it may belong. For a consistent object this interval boils down
to a single class. The relative number of these objects is just shown by γ(P ).

It is easy to show that, for any P ⊆ R ⊆ C, there holds:

γ(P ) ≤ γ(R). (19)

In other words, γ(P ) possesses a monotonicity property well-known in rough set
theory.

An improved ratio of the quality of approximation can be based on P -
generalized decision. The quality of approximation based on P -generalized deci-
sion is defined as:

η(P ) = 1 −
∑

x∈U (uP (x) − lP (x))
(n − 1) · card(U)

, (20)
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where n is the number of decision classes, and it is assumed that the domain of
decision criterion is numbercoded and class indices are consecutive.

It is easy to see that η(P ) ∈ [0, 1]. The ratio expresses an average relative
width of P -generalized decisions of reference objects. It is resistant to local in-
consistencies, i.e. inconsistencies appearing between objects with similar evalu-
ations and assignments. In fact, this ratio is equivalent to the formulation given
by Düntsch and Gediga [3], however, differently motivated.

Theorem 1. η(P ) is equivalent to the quality of approximation

γOO(P ) =
∑n

t=2 card(P (Cl≥t )) +
∑n−1

t=1 card(P (Cl≤t ))∑n
t=2 card(Cl≥t ) +

∑n−1
t=1 card(Cl≤t )

, (21)

defined in [3].

Proof. Taking into account that U = Cl≥t +Cl≤t−1, t = 2, . . . , n, γOO(P ) may be
expressed as follows:

γOO(P ) =
∑n

t=2(card(P (Cl≥t )) + card(P (Cl≤t−1)))
(n − 1) · card(U)

. (22)

Further, we have:

γOO(P ) =
∑n

t=2 (card({x ∈ U : lP (x) ≥ t}) + card({x ∈ U : uP (x) ≤ t − 1}))
(n − 1) · card(U)

=
∑

x∈U (lP (x) − 1 + n − uP (x))
(n − 1) · card(U)

=
∑

x∈U ((n − 1) − (uP (x) − lP (x)))
(n − 1) · card(U)

=
(n − 1) · card(U) −

∑
x∈U (uP (x) − lP (x))

(n − 1) · card(U)
= 1 −

∑
x∈U (uP (x) − lP (x))
(n − 1) · card(U)

�

An interesting interpretation of (22) is that this ratio is also the average of the
quality of approximations for n−1 binary classification problems for consecutive
unions of decision classes (Cl≤1 against Cl≥2 , Cl≤2 against Cl≥3 , . . ., Cl≤n−1 against
Cl≥n ).

It is easy to see that for any P ⊆ R ⊆ C, there holds:

η(P ) ≤ η(R).

4 Quality of Approximation Based on Reassignment of
Objects

The measures of approximation described above were based on the notions of
lower and upper approximations of the unions of classes. The common idea
behind these definitions was the fact that a decision interval for a given object
x ∈ U is calculated taking into account all the other objects from U , dominating
or being dominated by x. The problem is that it is enough to introduce one more
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object dominating x, with the class assignment lower than x (alternatively, being
dominated by x, with higher class assignment) to enlarge the decision interval,
thus lowering the measures of approximation.

The key idea of the new measure is the following. The quality of approximation
based on reassignment of objects is the minimal number of objects in U that must
be reassigned to make the reference objects from U consistent, i.e. satisfying the
dominance principle (1). Formally, it is defined as:

ζ(P ) =
m − L

m
(23)

where L is the minimal number of objects from U that have to be reassigned
consistently and m = card(U). It is easy to see that ζ(P ) ∈ [0, 1], but one can
give tighter lower bound: ζ(P ) ≥ mmax

m , where mmax is the number of objects
belonging to the largest class. Notice that ζ(P ) = 1 iff set U is consistent for
P ⊆ C.

To compute L one can formulate a linear programming problem. Similar prob-
lem was considered in [1] in the context of specific binary classification that has
much in common with multi-criteria classification. The method presented in [1]
is called isotonic separation. Here we formulate more general problem, used for
different goal (measuring the quality of approximation), however the idea behind
the algorithm for finding the optimal solution remains similar.

To formulate the problem in a linear form, for each object xi, i ∈ {1, . . . , m},
we introduce n − 1 binary variables dit, t ∈ {1, . . . , n}, with the following inter-
pretation: dit = 1 iff object xi ∈ Cl≥t . Such interpretation implies the following
conditions:

if t′ > t then dit′ ≤ dit (24)
for all i ∈ {1, . . .m} (otherwise it would be possible that there exists object xi

belonging to the Cl≥t′ , but not belonging to Cl≥t , where t′ > t). Moreover, we give
a new value of decision f∗

i to object xi according to the rule: f∗
i = maxdit=1{t}

(the highest t, for which we know that xi belongs to Cl≥t ).
Then, for each object xi ∈ U with the initial class assignment fi = f(xi, d),

the cost function can be formulated as below:

L(xi) = (1 − di,fi) + di,fi+1 (25)

Indeed, for t = fi +1, dit = 1 means wrong assignment (to the class higher than
fi). For t = fi, dit = 0 means also wrong assignment, to the class lower than
fi. Moreover, according to (24), only one of those conditions can appear at the
same time and one of those conditions is necessary for xi to be wrongly assigned.
Thus the value of decision for xi changes iff L(xi) = 1.

According to (1), the following conditions must be satisfied for U to be con-
sistent:

dit ≥ djt ∀i, j: xiDP xj 1 ≤ t ≤ n (26)
Finally we can formulate the problem in terms of integer linear programming:

minimize L =
m∑

i=1

L(xi) =
m∑

i=1

(1 − di,fi + di,fi+1)) (27)
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subject to dit′ ≤ dit 1 ≤ i ≤ m, 1 ≤ t < t′ ≤ n

dit ≥ djt 1 ≤ i, j ≤ m, xiDP xj , 1 ≤ t ≤ n

dit ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ t ≤ n

The matrix of constraints in this case is totally unimodular, because it contains
in each row either two values 1 and -1 or one value 1, and the right hand sides
of the constraints are integer. Thus, we can relax the integer condition:

0 ≤ dit ≤ 1 1 ≤ i ≤ m, 1 ≤ t ≤ n (28)

and get a linear programming problem. This property was previously applied in
isotonic separation method for two class problems [1]. In this paper, the authors
give also a way for further reduction of the problem size. Here we prove a more
general result using the language of DRSA.

Theorem 2. There always exists an optimal solution of (27), f∗
i =maxdit=1{t},

for which the following condition holds: lP (xi) ≤ f∗
i ≤ uP (xi), 1 ≤ i ≤ m.

Proof. First, notice that all the constraints in (27) are equivalent to introducing
a new (optimal) class assignment variable f∗

i = maxdit=1{t} and constraints
f∗

i ≥ f∗
j for all xi, xj such that xiDP xj .

Now, assume we have an optimal solution f∗
i , i ∈ {1, . . . , m}. Assume also,

that for some I ⊆ {1, . . . , m}, f∗
i < lP (xi), i ∈ I, and for some J ⊆ {1, . . . , m},

f∗
i > uP (xi), j ∈ J , holds. The solution can be modified to obtain new solution

f∗∗
i = lP (xi) for i ∈ I, f∗∗

i = uP (xi) for i ∈ J and f∗∗
i = f∗

i , i /∈ I ∪ J , which
will not have higher cost than f∗. We will prove that the new solution f∗∗ is
also feasible (i.e. satisfies all the constraints), therefore, being optimal solution
of the problem (27).

Thus, we must prove that for each xi, xj ∈ U , the following condition holds:

xiDP xj ⇒ f∗∗
i ≥ f∗∗

j (29)

The proof consist of three parts. First, we consider object xi, where i ∈ I. Then,
we take into account i ∈ J . Finally, we check the consistency for i /∈ I ∪ J .

First, notice that for all i ∈ I, f∗∗
i > f∗

i , and for all i ∈ J , f∗∗
i < f∗

i .
Consider i ∈ I. Then, (29) holds for all j ∈ {1, . . . , m}, since if j ∈ I, then

f∗∗
i = lP (xi), f∗∗

j = lP (xj), and according to the definition of lP (x) it holds that
lP (xi) ≥ lP (xj) for xiDP xj . If j /∈ I, then f∗∗

i > f∗
i ≥ f∗

j ≥ f∗∗
j .

Now, consider i ∈ J . Then, (29) holds for all j ∈ {1, . . . , m}, since f∗∗
i =

uP (xi), f∗∗
j ≤ uP (xj), and according to the definition of uP (x), it holds that

uP (xi) ≥ uP (xj) for xiDP xj , so f∗∗
i = uP (xi) ≥ uP (xj) ≥ f∗∗

j .
Finally, consider i /∈ I ∪ J . Then, (29) holds for all j ∈ {1, . . . , m}, since if

j ∈ I, then f∗∗
i ≥ lP (xi) ≥ lP (xj) = f∗∗

j . If j /∈ I, then f∗∗
i = f∗

i ≥ f∗
j = f∗∗

j .
Thus, we proved the theorem. �

Theorem 2 enables a strong reduction of the number of variables. For each object
xi, variables dit can be set to 1 for t ≤ lP (xi), and to 0 for t > uP (xi), since
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Table 1. Example of decision table; q1, q2 are criteria, d is decision criterion

U q1 q2 d U q1 q2 d

x1 23 48 4 x7 16 10 1
x2 44 48 4 x8 20 30 2
x3 45 44 2 x9 6 14 1
x4 26 28 3 x10 9 16 1
x5 30 26 3 x11 5 9 2
x6 24 33 3 x12 15 11 1

there exists an optimal solution with such values of the variables. In particular,
if an object x is consistent (i.e. lP (x) = uP (x)), the class assignment for this
object remains the same.

The introduced ratio of the quality of approximation ζ(P ) satisfies also the
monotonicity property, as stated by the following theorem.

Theorem 3. For any P ⊆ R ⊆ C, it holds:

ζ(P ) ≤ ζ(R)

Proof. It results from the fact that for any P ⊆ R ⊆ C and any x, y ∈ U ,
xDRy ⇒ xDP y. Thus, any constraint in the optimization problem (27) for set
R must also appear in the optimization problem for set P , so the feasible region
(set of solutions satisfying all the constraints) for R includes the feasible region
for P . Thus, the minimum of L for R cannot be greater than the minimum of L
for P . �

Finally, we should notice that the measure ζ(P ) is more robust to the noise than
γ(P ) and η(P ). Randomly changing an assignment of an object in the decision
table will not change ζ(P ) by more than 1

m .
In Table 1, there is an example of decision table. If we consider set U1 =

{x1, x2, x3, x4, x5, x6} with classes {Cl2, Cl3, Cl4} then we have γ(P )= 1
3 , η(P ) =

2
3 , ζ(P ) = 5

6 . However, for the set U2 = {x7, x8, x9, x10, x11, x12} and classes
{Cl1, Cl2} we have γ(P ) = 1

6 , η(P ) = 1
6 , but ζ(P ) = 5

6 . Taking into account the
whole decision table U = U1 ∪ U2, we obtain γ(P ) = 1

4 , η(P ) = 3
4 , ζ(P ) = 5

6 .

5 Conclusions

The paper discusses different measures of the quality of approximation in the
multi-criteria classification problem. There seems to be no one best way of calcu-
lating such a coefficient from the dataset. However, each measure can be charac-
terized by showing its advantages and drawbacks. The classical measure is simple
and intuitively clear, however, for real-life data it might be too restrictive in use.
The second one, based on the generalized decision concept, measures the width
of decision ranges, thus allowing some local inconsistencies with small decrease
of quality of approximation. However, both may boil down to 0 only because
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of one object being maximally inconsistent with the rest of reference objects.
The third measure based on the objects reassignment, is more robust to noise,
unfortunately the coefficient cannot be given explicitly, but has to be found in
result of solving an optimization problem. All the proposed measures satisfy the
monotonicity property typical for rough set theory.
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Abstract. Multiple-criteria ABC (MCABC) analysis is conducted us-
ing a dominance-based rough set approach. ABC analysis, a well-known
technique for inventory planning and control, divides stock-keeping units
(SKUs) into three classes according to annual dollar usage. But MCABC
analysis offers more managerial flexibility by including other criteria,
such as lead time and criticality, in the classification of SKUs. The ob-
jective of this paper is to propose an MCABC method that uses the
dominance-based rough set approach to generate linguistic rules that
represent a decision-maker’s preferences based on the classification of a
test data set. These linguistic rules are then used to classify all SKUs. A
case study demonstrates that the procedure is feasible.

1 Introduction

In response to demands for mass customization, firms tend to increase inventories
of components, work-in-progress, and spare parts [18]. The different items in an
inventory system, referred to as stock-keeping units (SKUs), typically number
in the thousands. Corner convenience stores, for instance, often have several
thousand SKUs. In such a large inventory system, specific control schemes for
individual SKUs are simply not practical, as they would leave no resources for
other management activities [4]. Instead, a general practice in industry is to
aggregate SKUs into several groups and apply control policies that are uniform
across each group [1].

One commonly used approach to classifying SKUs is ABC analysis. In the
traditional ABC analysis, SKUs are ranked in descending order of annual dollar
usage, the product of unit price and annual demand. The top few SKUs, with
the highest annual dollar usage, are placed in group A, which will receive the
most management attention; the SKUs with least annual dollar usage are placed

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 328–337, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in group C and will receive the least management attention; and the remain-
ing SKUs are placed in group B. Traditional ABC analysis can be seen as an
implementation of Pareto’s famous observation about the uneven distribution
of national wealth [12]: the majority of national wealth is controlled by a few,
and the majority of the population controls only a small portion of the wealth.
Applications similar to ABC analysis are found in many managerial areas [19];
for instance, in marketing it is often observed that the majority of sales come
from a few important customers, while a significant proportion of total sales is
due to a large number of very small customers.

Classical ABC analysis has been criticized because of the amount of attention
management pays to an SKU depends on only one criterion, the annual dollar
usage of the SKU at the time of classification, [8]. However, other attributes of
an SKU should sometimes play a significant role in prioritization. For instance,
suppose that two SKUs are virtually identical except that one is easy to replace
while the other is unique and has only one specific supplier. Surely the SKU with
higher substitutability should receive less management attention. Other criteria
that could be accounted for include obsolescence, reparability, criticality, and
lead time [6], [7]. To carry out multiple criteria classification of SKUs, a variety
of approaches has been proposed, including a bi-criteria matrix approach [6], [7],
the analytic hierarchical process (AHP) [8], [14], artificial neural networks [13],
and a case-based distance model [2]. This article shows how rough sets can be
applied to multiple-criteria ABC analysis (MCABC). Specifically, the dominance
approach, a recent advance in rough set theory [9], can extract information about
a decision-maker’s preferences from the classification of test data and generate
a set of decision rules to classify other SKUs consistently.

The rest of the paper is organized as follows. Section 2 provides background
pertaining to multiple criteria decision analysis, while Section 3 describes the
rough set approach to MCABC. An illustrative example is furnished in Section
4, followed by some concluding remarks in Section 5.

2 Multiple Criteria Decision Analysis

Multiple criteria decision analysis (MCDA) is a set of techniques to assist a single
decision maker (DM) to choose, rank, or sort a finite set of alternatives accord-
ing to two or more criteria [16]. The first step of MCDA is to establish the basic
structure of the decision problem: define the objectives, arrange them into criteria,
identify all possible alternatives, and measure the consequences of each alternative
on each criterion. A consequence is a direct measurement of the success of an alter-
native against a criterion (e.g. cost in dollars). Note that a consequence is usually a
physical measurement or estimate; it should not include preferential information.

Figure 1 shows the basic structure of an MCDA problem. In this figure, N =
{N1, N2, · · · , N i, · · · , Nn} is the set of alternatives, and Q = {1, 2, · · · , j, · · · , q}
is the set of criteria. The consequence of alternative N i over criterion j is denoted
cj(N i), which can be shortened to ci

j when there is no possibility of confusion.
Note that there are n > 1 alternatives and q > 1 criteria.
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Fig. 1. The structure of MCDA, adapted from [3]

There are several approaches that a DM may take to the decision structure
represented by Figure 1. Roy [16] suggested that MCDA can be organized into
three problématiques, or fundamental problems, as follows:

• α, Choice problématique. Choose the best alternative from N.
• β, Sorting problématique. Sort the alternatives of N into predefined,

relatively homogeneous groups, arranged in preference order.
• γ, Ranking problématique. Rank the alternatives of N from best to

worst.

MCABC is a special kind of sorting problématique: the alternatives are SKUs,
and they are to be arranged into three groups, A, B or C. The preference order
A , B , C signifies that an SKU in A is to receive more management attention
than an SKU in B, for instance. It is understood that SKUs in the same group
are to receive equal management attention, in this sense, they are indifferent.

The DM’s preferences are crucial to the solution of any MCDA problem;
moreover, different ways of expressing them may lead to different results. Pareto-
Superiority [12] may be used to identify some inferior alternatives, but almost
always a more elaborate preference construction is needed to carry out any of
the problématiques. Generally speaking, there are two kinds of preference ex-
pressions: values, which are preferences on consequences, and weights, which
are preferences on criteria.

After the structure of an MCDA problem has been determined and the DM’s
preferences acquired, a model must be constructed that aggregates preferences
and thereby permits the chosen problématique to be implemented. Some meth-
ods, such as multiattribute utility theory (MAUT) [11], are explicit models which
can be analyzed directly; others, including Outranking methods [16], allow analy-
ses to be based in part on explicit functions; still others, such as rough set theory
[9], address the problem using implicit linguistic rules.

3 A Rough Set Approach to MCABC

Pawlak [15] introduced Rough Sets as a tool to describe dependencies among
attributes and to evaluate the significance of individual attributes. Because of
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its ability to handle the inherent uncertainty or vagueness of data, rough set
theory complements probability theory, evidence theory, fuzzy set theory, and
other approaches. Recent advances in rough set theory have made it a powerful
tool for data mining, pattern recognition, and information representation.

An important principle of rough sets is that all relevant information about
alternatives, which may include both condition and decision attributes, can be
expressed in a data set [15]. Condition attributes refer to the characteristics of the
alternatives; for instance, condition attributes describing a firm can include size,
financial characteristics (profitability, solvency, liquidity ratios), market position,
and so on. Decision attributes define a partition of the alternatives into groups
reflecting the condition attributes in some way. In terms of MCDA, condition
and decision attributes are regarded as criteria and decision choices, respectively.

3.1 A Dominance-Based Rough Set Theory for MCABC

As pointed out in [9], the original rough set approach cannot efficiently extract
knowledge from the analysis of a case set. In MCDA problems, preferences over
groups and indiscernibility or similarity must be replaced by the dominance
relation.

To apply rough set theory to MCABC, we treat SKUs as alternatives and
relevant data about SKUs as criteria (conditions). We select a non-empty case
set T ⊆ N and ask the DM to decide how to partition the case set into three
non-overlapping classes A′, B′ and C′, with preference order A′ , B′ , C′.
(Typically, T is much smaller than N. For convenience, we assume that T =
{N1, . . . , Nm}.) Then we use rough set theory to extract a set of linguistic rules
R that capture preferential information in the case set classification, and apply
R to all of N to extend A′ to A, B′ to B, and C′ to C. Thus, N is sorted into
three classes A, B, and C with preference order A , B , C. The classification
produced by the DM is shown in Figure 2.

... Ni ... Nm

2
...

...
Condition 

Case Set T

1

j

q

icj

N1 N2

Decision q+1 ,     or

Attributes

A0A0B0B0 C0C0

Case set T Linguistic rules R Alternative set N

Fig. 2. The structure of the case set
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Let Sj be preference with respect to criterion j ∈ Q, such that N iSjN
l means

“N i is at least as good as N l with respect to criterion j”, where N i, N l ∈ T are
alternatives. We assume that Sj is a complete preorder, i.e. a strongly complete
and transitive binary relation, and that S = (S1, S2, . . . , Sq) is a comprehensive
preference relation on N, i.e. N iSN l means N iSjN

l for every criterion j ∈ Q,
for N i, N l ∈ N.

The upward union and downward union with respect to the classes in the test
set is defined next. Upward unions are denoted by subscript “≥”, and downward
unions by subscript “≤”.

• C′
≥ = C′ ∪ B′ ∪ A′; C′

≤ = C′.
• B′

≥ = B′ ∪ C′; B′
≤ = C′ ∪ B′.

• A′
≥ = A′; A′

≤ = C′ ∪ B′ ∪ A′.

For example, C′
≥ consists of those test items that at least belong to group C′,

and C′
≤ those test items that at most belong to group C′.

N i dominates N l with respect to criterion set P ⊆ Q and written as N iDPN l,
iff N iSjN

l for all j ∈ P. Relative to N i, the P-dominating set is defined by

D+
P(N i) = {N l ∈ T : N lDPN i},

and the P-dominated set by

D−
P(N i) = {N l ∈ T : N iDPN l}.

With respect to P ⊆ Q, we say that N i belongs to G′
≥ unambiguously, where

G′ = A′, B′ or C′, iff N i ∈ G′
≥ and, for any N l ∈ D+

P(N i), N l ∈ G′
≥. More

generally, the P-lower approximation to G′
≥ is

P(G′
≥) =

{
N i ∈ T : D+

P(N l) ⊆ G′
≥
}
,

and the P-upper approximation to G′
≥ is

P(G′
≥) =

⋃
Al∈G′

≥
D+

P(N l).

Similarly, the P-lower approximation to G′
≤ is

P(G′
≤) =

{
N l ∈ N′ : D−

P(N l) ⊆ G′
≤
}
,

and the P-upper approximation to G′
≤ is

P(G′
≤) =

⋃
N l∈G′

≤
D−

P(N l).

The P-boundaries (P-doubtful regions) of G′
≤ and G′

≥ are

BNP(G′
≤) = P(G′

≤) − P(G′
≤),

BNP(G′
≥) = P(G′

≥) − P(G′
≥).

The quality of the sorting of the case set T with respect to P ⊆ Q is



Rough-Set Multiple-Criteria ABC Analysis 333

γP(G′) =
N−
{(

I′=A′,B′,C′ BNP(I′
≤)
) (

I′=A′,B′,C′ BNP(I′
≥)
)}

m ,

where m is the size (cardinality) of the case set T. Thus, γP(G′) represents the
proportion of alternatives in the case set T that are accurately sorted using only
the criteria in P.

Each minimal subset P ⊆ Q such that γP(T) = γQ(T) is called a reduct of
Q. A case set T can have more than one reduct; the intersection of all reducts
is called the core.

3.2 Decision Rules for MCABC

The approximations obtained through dominance can be used to construct de-
cision rules capturing preference information contained in the classification of a
case set [9]. Assume that all criteria are benefit criteria, i.e. that cj(N i) ≥ cj(N l)
implies N iSjN

l for all j ∈ Q and N i, N l ∈ N. Then three types of decision rule
can be generated from a non-empty set of criteria P ⊆ Q and used to sort N
into G and H, respectively, where G,H ∈ {A,B,C}, as required.

• R≥ decision rules, which have the syntax

If cj(N i) ≥ rj for all j ∈ P, then N i ∈ G≥,

where, for each j ∈ P, rj ∈ R is a consequence threshold for criterion
j. Rules of this form are supported only by alternatives from the P-lower
approximations of class G′

≥.
• R≤ decision rules, which have the syntax

If cj(N i) ≤ rj for all j ∈ P, then N i ∈ G≤,

where, for each j ∈ P, rj ∈ R is a consequence threshold for criterion
j. Rules of this form are supported only by alternatives from the P-lower
approximations of class G′

≤.
• R≥≤ decision rules, which have the syntax

If cj(N i) ≥ rj for all j ∈ O and cj(N i) ≤ rj for all j ∈ P − O,

then N i ∈ G′ ∪ H′,

where O ⊆ P such that both O and P − O are non-empty, and rj ∈ R is a
consequence threshold for criterion j for each j ∈ P. Rules of this form are
supported only by alternatives from the P-boundaries of the unions of the
classes G′

≥ and H′
≤.

A set of decision rules is complete if, when it is applied to all alternatives in the
case set T, consistent alternatives are re-classified to their original groups and
inconsistent alternatives are classified to groups referring to this inconsistency. A
set of decision rules is minimal if it is complete and non-redundant, i.e. exclusion
of any rule makes the set incomplete [9]. Fortunately, software is available (see
below) that produces sets of minimal decision rules.
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4 Application

4.1 Background

We now use a case study on a hospital inventory system, based on data in [8], to
demonstrate the proposed procedure. In the reference, 47 disposable SKUs used
in a respiratory therapy unit are classified using AHP [17] for MCABC analysis.
Table 1 lists data on the SKUs, referred to as S1 through S47. Four criteria
are considered to be relevant to the MCABC analysis: (1) average unit cost ($),
ranging from $5.12 to $210.00; (2) annual dollar usage ($), ranging from $25.38 to
$5840.64; (3) criticality, described by a linguistic variable, which can equal h, for
high or very critical), m, for moderate or important, and l, for low or non-critical;
(4) lead time (weeks), the normal time to receive replenishment after an order
is placed, ranging from 1 to 7 weeks. We employ the dominance-based rough
set approach described above to analyze these results obtained by AHP and
generate linguistic rules to demonstrate the DM’s subjective judgement. These
rules can then be used to classify remaining SKUs in the inventory system.

4.2 Analysis Procedures

The software 4eMka2 [10] was employed to carry out the calculations and the
analysis procedures, as follows:

(1) Criteria Specification: All criteria were interpreted to be benefit criteria.
For a product buyer such as a hospital, lead time is a gain criterion since the
greater the lead time, the higher the level of management attention required.
Average unit cost and annual dollar usage were identified as continuous criteria,
while criticality and lead time were identified as discrete criteria.
(2) Input Data: All data in Table 1 were input into the software for training.
(3) Calculation of Unions: All upward unions, downward unions, and bound-
aries for each class, A′, B′, and C′, were calculated by the software. There were
no cases in each group boundary, indicating that the case set had been classified
consistently.
(4) Rule Generation: As shown in Figure 3, 17 rules were generated based
on the algorithm to construct a minimal cover. These rules can help a DM to
identify and explain his or her preferences using natural language. The DM
can check and update them as necessary and then apply them to classify any
remaining SKUs.
(5) Classification Precision: All items in the case set were re-classified using
the rules generated. The reclassification results were used to assess classification
precision. The rules generated successfully re-classified all items in the case study
into the “correct” group. Therefore, the DM’s is likely to be satisfied that the
rules represent preferences accurately.

The original rough set approach is also applied to the problem, resulting in
the generation of 54 rules. The number of rules obtained by the original method
is much larger than the number generated by our proposed method, since many
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Table 1. Listing of SKUs with multiple criteria, adapted from [8]

SKUs Criteria
Average unit cost ($) Annual dollar usage ($) Critical factor Lead time (week) Group

S1 49.92 5840.64 h 2 A
S2 210.00 5670.00 h 5 A
S3 23.76 5037.12 h 4 A
S4 27.73 4769.56 l 1 C
S5 57.98 3478.80 m 3 B
S6 31.24 2936.67 m 3 C
S7 28.20 2820.00 m 3 C
S8 55.00 2640.00 l 4 C
S9 73.44 2423.52 h 6 A
S10 160.50 2407.50 m 4 B
S11 5.12 1075.20 h 2 B
S12 20.87 1043.50 m 5 B
S13 86.50 1038.00 h 7 A
S14 110.40 883.20 m 5 B
S15 71.20 854.40 h 3 A
S16 45.00 810.00 m 3 C
S17 14.66 703.68 m 4 B
S18 49.50 594.00 m 6 A
S19 47.50 570.00 m 5 B
S20 58.45 467.60 m 4 B
S21 24.40 463.60 h 4 A
S22 65.00 455.00 m 4 B
S23 86.50 432.50 h 4 A
S24 33.20 398.40 h 3 A
S25 37.05 370.50 l 1 C
S26 33.84 338.40 l 3 C
S27 84.03 336.12 l 1 C
S28 78.40 313.60 l 6 C
S29 134.34 268.68 l 7 B
S30 56.00 224.00 l 1 C
S31 72.00 216.00 m 5 B
S32 53.02 212.08 h 2 B
S33 49.48 197.92 l 5 C
S34 7.07 190.89 l 7 C
S35 60.60 181.80 l 3 C
S36 40.82 163.28 h 3 B
S37 30.00 150.00 l 5 C
S38 67.40 134.80 m 3 C
S39 59.60 119.20 l 5 C
S40 51.68 103.36 l 6 C
S41 19.80 79.20 l 2 C
S42 37.70 75.40 l 2 C
S43 29.89 59.78 l 5 C
S44 48.30 48.30 l 3 C
S45 34.40 34.40 l 7 B
S46 28.80 28.80 l 3 C
S47 8.46 25.38 l 5 C
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Fig. 3. The rules generated by 4eMka2

of the rules can be merged under the dominance relationships. This indicates
that the dominance-based rough set approach is more efficient than the original
method to handle problems involving DMs’ preferences.

5 Conclusions

Classical ABC analysis is a straightforward technique to achieve cost-effective
inventory management by categorizing SKUs into three groups according to
annual dollar usage and then applying similar inventory management procedures
throughout each group. However, management can often be made more effective
by making the classification of SKUs reflect additional criteria, such as lead time
and criticality. MCABC furnishes an inventory manager with the flexibility to
account for more factors in classifying SKUs. In this paper a dominance-based
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rough set approach is proposed to solve MCABC problems, under the umbrella
of MCDA theory. A case study is used to demonstrate the procedure; it is shown
that the results are comparable with those obtained using the AHP method,
confirming the applicability of this approach. Future research could be executed
to compare the sorting abilities of this method with other sorting methods, such
as methods described by Doumpos and Zopounidis [5].
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Abstract. We propose a method of decision rule generation in object–
oriented rough set models proposed by Kudo and Murai. The object–
oriented rough set model is an extension of the “traditional” rough set
theory by introducing object–oriented paradigm used in computer sci-
ence. The object–oriented rough set model treats objects as instances of
some classes, and illustrate structural hierarchies among objects based on
is-a relationship and has-a relationship. In this paper, we introduce deci-
sion rules in the object–oriented rough set model, and revise discernibility
matrices proposed by Skowron and Rauser to generate decision rules in
the object–oriented rough set model.

1 Introduction

Rough set theory [1,2] provides a basis of approximation and reasoning about
data. In the aspect of approximation, the basic concepts are lower and upper
approximations by indiscernibility relations, which illustrate set-theoretic ap-
proximations of any given subsets of objects. On the other hand, in the aspect
of reasoning about data, the basic concepts are reducts and decision rules based
on a given decision tables which represent data by combination of attributes and
its values. In the given decision table, the set of attributes are divided into the set
of condition attributes and the set of decision attributes that provide decision
classes. Decision rules are “if–then” rules that describe certain characteristics
of combination between values of condition attributes and decision attributes.
Reducts are minimal sets of condition attributes to classify all objects into deci-
sion classes correctly. Reducts also provide antecedents of decision rules. many
methods have been proposed to calculate reducts (for detail, see [2]).

Kudo and Murai have proposed object–oriented rough set models [3], and have
extended the object–oriented rough set models to treat incomplete information
[4]. The object–oriented rough set model is an extension of the “traditional”
rough set theory by introducing object–oriented paradigm (cf. [5]) used in com-
puter science, and the object–oriented rough set model illustrates hierarchical
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structures between classes, names and objects based on is-a and has-a relation-
ships. However, in the previous papers [3,4], formulation of the object–oriented
rough set model was concentrated to the aspect of approximation, and reasoning
about objects has not been discussed.

In this paper, we consider reasoning about objects in the object–oriented
rough set model. Thus, we introduce decision rules in the object–oriented rough
set model, and revise discernibility matrices proposed by Skowron and Rauser
[6] to generate decision rules in the object–oriented rough set model. Moreover,
we illustrate an example of decision rule generation.

2 The Object–Oriented Rough Set Model

We briefly review the object–oriented rough set model. First, we describe the
concept of class, name and object. Next, we illustrate well-defined structures as a
basic framework of the object–oriented rough set model. Moreover, we introduce
equivalence relations based on “equivalence as instances”. Note that the contents
of this section are entirely based on the authors’ previous papers [3,4].

2.1 Class, Name, Object

Formally, a class structure C, a name structure N and a object structure O are
defined by the following triples, respectively:

C = (C,1C ,2C), N = (N,1N ,2N), O = (O,1O,2O),

where C, N and O are finite and disjoint non-empty sets such that |C| ≤ |N |
(|X | is the cardinality of X). Each element c ∈ C is called a class. Similarly,
each n ∈ N is called a name, and each o ∈ O is called an object. The relation
1X (X ∈ {C, N, O}) is an acyclic binary relation on X , and the relation 2X is
a reflexive, transitive, and asymmetric binary relation on X . Moreover, 1X and
2X satisfy the following property:

∀xi, xj , xk ∈ X, xi 2X xj , xj 1X xk ⇒ xi 1X xk. (1)

The class, name and object structures have the following characteristics, re-
spectively:

– The class structure illustrates abstract data forms and those hierarchical
structures based on part / whole relationship (has-a relation) and specialized
/ generalized relationship (is-a relation).

– The name structure introduces numerical constraint of objects and those
identification, which provide concrete design of objects.

– The object structure illustrates actual combination of objects.

Two relations 1X and 2X on X ∈ {C, N, O} illustrate hierarchical structures
among elements in X . The relation 1X is called a has-a relation, which illustrates
part / whole relationship. xi 1X xj means “xi has-a xj”, or “xj is a part of xi”.
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For example, ci 1C cj means that “the class ci has a class cj”, or “cj is a part of
ci”. On the other hand, the relation 2X is called an is-a relation, which illustrates
specialized / generalized relationship. xi 2X xj means that “xi is-a xj”. For
example, 2C illustrates relationship between superclasses and subclasses, and
ci 2C cj means that “ci is a superclass of cj”, or “cj is a subclass of ci”.

2.2 Well–Defined Structures

Each object o ∈ O is defined as an instance of some class c ∈ C, and the class
of o is identified by the class identifier function. The class identifier idC is a
p-morphism between O and C (cf. [7], p.142), that is, the function idC : O −→ C
satisfies the following conditions:

1. ∀oi, oj ∈ O, oi 1O oj ⇒ idC(oi) 1C idC(oj).
2. ∀oi ∈ O, ∀cj ∈ C, idC(oi) 1C cj ⇒ ∃oj ∈ O s.t. oi 1O oj and idC(oj) = cj ,

and the same conditions are also satisfied for 2O and 2C . idC(o) = c means
that the object o is an instance of the class c.

The object structure O and the class structure C are also connected through
the name structure N by the naming function nf : N −→ C and the name
assignment na : O −→ N . The naming function provides names to each class,
which enable us to use plural instances of the same class simultaneously. On the
other hand, the name assignment provides names to every objects, which enable
us to identify objects by names.

Formally, the naming function nf : N −→ C is a surjective p-morphism
between N and C, and satisfies the following name preservation constraint:

– For any ni, nj ∈ N , if nf(ni) = nf(nj), then HN (c|ni) = HN (c|nj) is satisfied
for all c ∈ C,

where HN (c|n) = {nj ∈ N | n 1N nj , f(nj) = c} is the set of names of c that n
has. The requirement that nf is a surjective p-morphism means that there is at
least one name for each class, and structures between names reflect all structural
characteristics between classes. The name preservation constraint requires that,
for any class ci, cj ∈ C such that ci 1C cj , and any name n ∈ N with nf(n) = ci,
all names of the parts of c are uniquely determined. Thus, the number of names
of cj is fixed as m = |HN (cj |n)|, and we can simply say that “the class ci has m
objects of the class cj”.

On the other hand, the name assignment na : O −→ N is a p-morphism
between O and N , and satisfies the following uniqueness condition:

– For any x ∈ O, if HO(x) �= ∅, the restriction of na into HO(x):
na|HO(x) : HO(x) −→ N is injective,

where HO(x) = {y ∈ O | x 1O y} is the set of objects that x has. na(x) = n
means that the name of the object x is n. The uniqueness condition requires
that all distinct parts y ∈ HO(x) have different names.
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We say that C, N and O are well-defined if and only if there exist a naming
function nf : N −→ C and a name assignment na : O −→ N such that

idC = nf ◦ na, (2)

that is, idC(x) = nf(na(x)) for all x ∈ O.
In this paper, we concentrate well-defined class, name and object structures.

In well-defined structures, if a class ci has m objects of a class cj , then any
instance oi of the class ci has exactly m instances oj1, · · · , ojm of the class cj [3].
This good property enables us the following description for clear representation
of objects. Suppose we have o1, o2 ∈ O, n1, n2 ∈ N , and c1, c2 ∈ C such that
o1 1O o2, and na(oi) = ni, nf(ni) = ci for i ∈ {1, 2}. We denote o1.n2 instead
of o2 by means of “the instance of c2 named n2 as a part of o1”.

Example 1. We use the same settings with examples of the object–oriented rough
set model in [3]. Let C = (C,1C ,2C) be a class structure with C = {PC,
DeskTopPC, 2CPU − DTPC, CPU, Memory, HDD, Clock, MSize, HSize}, and we
have the following relationships:

Is-a relation: Has-a relation:
DeskTopPC 2C PC, PC 1C CPU, PC 1C Memory,
2CPU − DTPC 2C DeskTopPC, DeskTopPC 1C HDD, CPU 1C Clock,
2CPU − DTPC 2C PC, Memory 1C MSize, HDD 1C HSize,
· · · . · · · .

By the property (1), these relations illustrate connections between classes, for
example, “2CPU-DTPC is-a PC” and “PC has-a CPU” imply “2CPU-DTPC has-a
CPU”.

Next, let N = (N,1N ,2N ) is a name structure with N = {pc, desk top pc,
2cpu dtpc, cpu, cpu2, memory, hdd, clock, msize, hsize} and the following rela-
tionships:

Is-a relation: Has-a relation:
desk top pc 2N pc, desk top pc 1N cpu
2cpu dtpc 2N desk top pc, 2cpu dtpc 1N cpu, 2cpu dtpc 1N cpu2,
· · · . cpu 1N clock, memory 1N msize,

· · · .
Moreover, suppose we have a naming function nf : N −→ C such that

nf(pc) = PC, nf(desk top pc) = DeskTopPC,
nf(2cpu dtpc) = 2CPU − DTPC, nf(cpu) = nf(cpu2) = CPU,
nf(memory) = Memory, nf(hdd) = HDD,
nf(clock) = Clock, nf(msize) = MSize, nf(hsize) = HSize.

Note that we have HN (CPU|2cpu dtpc) = {cpu, cpu2}, and HN (Clock|cpu) =
HN (Clock|cpu2) = {clock}. Thus, for example, 2CPU-DTPC class has two ob-
jects of the CPU class, called “cpu” and “cpu2”, respectively, one object “mem-
ory” of the Memory class, and one object “hdd” of the HDD class.
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Finally, let O = (O,1O,2O) be an object structure with the following is-a
and relationships:

Is-a relation: Has-a relation:
x 2O x, ∀x ∈ O, and pci 1O ci, pci 1O mi, pci 1O hi, i ∈ {1, 2, 3},
pc3 2O pc1, pc3 2O pc2. pc3 1O c4,

ci 1O 2.4GHz, i ∈ {1, 3, 4}, c2 1O 3.0GHz,
m1 1O 512MB, mi 1O 1GB, i ∈ {2, 3},
hi 1O 40GB, i ∈ {1, 2}, h3 1O 80GB.

Moreover, let na : O −→ N be the following name assignment:

na(pc1) = na(pc2) = desk top pc, na(pc3) = 2cpu dtpc,
na(c1) = na(c2) = na(c3) = cpu, na(c4) = cpu2,
na(m1) = na(m2) = na(m3) = memory,
na(h1) = na(h2) = na(h3) = hdd,
na(2.4GHz) = na(3.0GHz) = clock,
na(512MB) = na(1GB) = msize, na(40GB) = na(80GB) = hsize.

We define the class identifier idC : O −→ C by idC = nf ◦ na.
This object structure O illustrates the following situation: There are three

objects pc1, pc2 and pc3. pc1 and pc2 are instances of the DeskTopPC class, and
pc3 is an instance of the the 2CPU-DTPC class. pc1 and pc2 have one instance
of the CPU class, c1 = pc1.cpu and c2 = pc2.cpu, respectively. On the other
hand, pc3 has two instances of the CPU class, c3 = pc3.cpu and c4 = pc3.cpu2,
respectively. Moreover, each pci (i = 1, 2, 3) has just one instance mi of the
Memory class, and just one instance hi of the HDD class. Each cpu has its clock
(2.4GHz or 3.0GHz), each memory has its size (512MB or 1GB), and each hard
disk drive has its size (40GB or 80GB).

2.3 Indiscernibility Relations in the Object – Oriented Rough Set
Model

All equivalence relations in object–oriented rough set models are based on the
concept of equivalence as instances. In [3], to evaluate equivalence of instances,
an equivalence relation ∼ on O are recursively defined as follows:

x ∼ y ⇐⇒

x and y satisfy the following two conditions:
1. idC(x) = idC(y), and,

2.

{
x.n ∼ y.n, ∀n ∈ HN (na(x)) if HN (na(x)) �= ∅,
V al(x) = V al(y) otherwise,

(3)

where HN (na(x)) is the set of names that na(x) has. V al(x) is the “value” of
the “value object” x. Because C is a finite non-empty set and 1C is acyclic,
there is at least one class c such that c has no other class c′, that is, c �1C c′ for
any c′ ∈ C. We call such class c an attribute, and denote the set of attributes by
AT . For any object x, if idC(x) = a and a ∈ AT , we call such object x a value
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object of the attribute a. The value object x as an instance of the attribute a
represents a “value” of the attribute.

x ∼ y means that the object x is equivalent to the object y as an instance of
the class idC(x). Using the equivalence relation ∼, an equivalence relation ∼B

with respect to a given subset B ⊆ N of names is defined as follows:

x ∼B y ⇐⇒
x and y satisfy the following two conditions:
1 B ∩ HN (na(x)) = B ∩ HN (na(y)), and,
2. ∀n[n ∈ B ∩ HN (na(x)) ⇒ x.n ∼ y.n].

(4)

x ∼B y means that x and y are equivalent as instances of the class idC(x) in
the sense that, for all n ∈ B ∩ HN (na(x)), x and y have equivalent instances of
the class idC(x.n). Equivalence classes [x]∼B by ∼B are usually defined. Note
that, in the “traditional” rough set theory, all equivalence classes concern the
same attributes. On the other hand, each equivalence class of the object–oriented
rough set model may concern different classes. In particular, if B∩HN (na(x)) =
∅, the equivalence class [x]∼B is the set of objects that are not concerned any
class nf(n), n ∈ B at all.

Example 2. This example is continuation of example 1, and has used in [4]. Sup-
pose B = {cpu}. Using the equivalence relation ∼ defined by (3), we construct
the equivalence relation ∼B by (4), and the resulted equivalence classes by ∼B

are as follows:

[pc1]∼B
= {pc1,pc3}, [pc2]∼B

= {pc2}, [c1]∼B
= O − {pc1, pc2, pc3}.

The equivalence classes [pc1]∼B
and [pc3]∼B

correspond to the set of personal
computers that have “2.4GHz CPU” and the singleton set of the personal com-
puter that has “3.0GHz CPU”, respectively. On the other hand, [c1]∼ represents
the set of objects that have no CPU.

3 Decision Rules and Discernibility Matrices in the
Object–Oriented Rough Set Model

3.1 Decision Rule

We extend decision rules in “traditional” rough set theory into the object–
oriented rough set model. Suppose C = (C,1C ,2C), N = (N,1N ,2N ), and
O = (O,1O ,2O) be the well-defined class, name and object structures, respec-
tively. Similar to the decision table in rough set theory, we divide the set of names
N into the following two parts: the set of names that may appear in antecedents
of decision rules (called condition names) NCON , and the set of names that may
appear in conclusions of decision rules (called decision names) NDEC . Note that
N = NCON ∪ NDEC and NCON ∩ NDEC = ∅. The decision names provide de-
cision classes as equivalence classes [x]∼NDEC

based on the equivalence relation
∼NDEC by (4). Decision rules in the object–oriented rough set model are defined
as follows.
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Definition 1. A decision rule in the object–oriented rough set model has the
following form:

c ∧ c.n1 ∼ o.n1 ∧ · · · ∧ c.ni ∼ o.ni ⇒ c.m1 ∼ o.m1 ∧ · · · ∧ c.mj ∼ o.mj , (5)

where c ∈ C, o ∈ O such that idC(o) = c, n1, · · · , ni ∈ NCON ∩ HN (na(o))
(i ≥ 0) and m1, · · · , mj ∈ NDEC ∩ HN (na(o)) (j ≥ 1). We call this rule a
decision rule of the class c by the object o, and denote DR(c; o).

The decision rule DR(c; o) means that, for any object o′ ∈ O, if o′ is an instance
of c and each part o′.nk is equivalent to o.nk (k ≤ i), then all parts o′.ml are
also equivalent to o.ml (l ≤ j), respectively. Thus, DR(c; o) describes a certain
property about combination of objects as an instance of the class c.

As a special case, we allow rules that have no condition names, that is, the
case of i = 0 in (5) as follows:

c ⇒ c.m1 ∼ o.m1 ∧ · · · ∧ c.mj ∼ o.mj .

This rule illustrates that all instances o′ of the class c have some parts o′.mk

(1 ≤ k ≤ j) that are equivalent to o.mk, respectively. On the other hand, we
require that there is at least one name m ∈ NDEC such that m ∈ HN (na(o)).
This means that any object that has no decision name are not the target of
decision rule generation.

3.2 Discernibility Matrix

To generate decision rules in the object–oriented rough set model, we need to de-
termine classes and names that appear actually in antecedents of decision rules.
In “traditional” rough set theory, antecedents of decision rules are constructed
from reducts which are minimal sets of attributes to approximate all decision
classes. Here, to construct all “reducts” in the object–oriented rough set model,
we revise the discernibility matrix for “traditional” rough set theory proposed
by Skowron and Rauser [6].

Definition 2. A discernibility matrix of the object–oriented rough set model is
a k × k matrix whose element δij at the i-th row and the j-th column is defined
as follows:

δij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{idC(oi)}
if idC(oi) �= idC(oj) and
∃m ∈ NDEC ∩ HN (na(oi))
s. t. oi.m �∼ oj .m,⎧⎨⎩ idC(oi).n

n ∈ HN (na(oi)),
n ∈ NCON ,
oi.n �∼ oj .n

⎫⎬⎭
if idC(oi) = idC(oj) and
∃m ∈ NDEC ∩ HN (na(oi))
s. t. oi.m �∼ oj .m,

∅ otherwise,

(6)

where k is the number of objects, that is, |O| = k. oi.n �∼ oj .n means that oi.n
is not equivalent to oj .n.



A Method of Generating Decision Rules 345

The element δij is the set of classes that we should check to distinguish the
object oi and the object oj . Thus, when we need to distinguish oi and oj , we
check the class idC(oi) and idC(oj) firstly, and if these classes are not equal, we
can distinguish these objects. Otherwise, we need to compare parts oi.n and oj .n
such that n ∈ NCON ∩ HN (na(oi)). Note that, different from the “traditional”
discernibility matrix, we have generally δij �= δji in the revised discernibility
matrix.

Similar to the case of calculating reducts by the “traditional” discernibility
matrix, we construct reducts of the object–oriented rough set model. First, for
each element δij in the revised discernibility matrix, we construct the following
formula L(δij):

L(δij) ≡

⎧⎨⎩
c if δij = {c},
c.n1 ∨ · · · ∨ c.nl if δij = {c.n1, · · · , c.nl},
3 if δij = ∅.

(7)

The intention of L(δij) is that, for example the case of L(δij) ≡ c.n1 ∨ · · · ∨ c.nl,
we can distinguish oi and oj by checking at least one of c.ns (1 ≤ s ≤ l).

Next, connecting all formulas L(δij) by the logical product, we get a formula∧k
i=1
∧k

j=1 L(δij). This formula is the conjunctive normal form. Thus, finally, we
transform this formula to the disjunctive normal form that is logically equivalent
to
∧k

i=1
∧k

j=1 L(δij) with no redundant expression as follows:

k∧
i=1

k∧
j=1

L(δij) ≡
m∨

s=1

st∧
t=1

cst,

where each conjunction
∧st

t=1 clt describes a reduct of the object–oriented rough
set model R = {cl1, · · · , clst}. This is because, for each element δij of the revised
discernibility matrix, R contains at least one expression c or c.n such that c ∈ δij

or c.n ∈ δij .

3.3 A Method of Generating Decision Rules

Let R be a reduct of the object–oriented rough set model. We construct decision
rules from the reduct and each object in decision classes. However, for each
object o in any decision class [x]∼NDEC

, not all classes c ∈ R and c.n ∈ R are
concerned with o. Thus, for each object o ∈ [x]∼NDEC

such that idC(o) = c,
we construct a decision rule DR(c; o) in the object–oriented rough set model as
follows:

1. Select the class c such that idC(o) = c and all classes c.ns from the reduct R.
2. Construct an expression c.ns ∼ o.ns for each selected c.ns and the object o,

and connect the class c and these expressions by ∧ as follows:
(Antecedents) c ∧ c.n1 ∼ o.n1 ∧ · · · ∧ c.nl ∼ o.nl

3. Construct an expression c.mt ∼ o.mt for each c.mt such that mt ∈ NDEC ∩
HN (na(o)), and connect the class c and these expressions by ∧ as follows:
(Conclusions) c ∧ c.m1 ∼ o.m1 ∧ · · · ∧ c.mu ∼ o.mu
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4. Construct the decision rule DR(c : o) by connecting antecedents and con-
clusions by ⇒ as follows:
c ∧ c.n1 ∼ o.n1 ∧ · · · ∧ c.nl ∼ o.nl ⇒ c ∧ c.m1 ∼ o.m1 ∧ · · · ∧ c.mu ∼ o.mu

Example 3. Suppose we have NDEC = {cpu} and NCON = N − {cpu}. Thus,
similar to example 2, we have three decision classes by the equivalence relation
∼NDEC : [pc1] = {pc1, pc3} as the set of objects with “2.4GHz CPU”, [pc2] =
{pc2} as the set of object with “3.0GHz CPU”, and [c1] as the set of objects
that have no CPU. We consider to generate decision rules for [pc1] and [pc2].
First, we construct a discernibility matrix to distinguish members of [pc1] and
[pc2]. Table 1 illustrates the discernibility matrix to distinguish [pc1] and [pc2].

Table 1. Discernibility matrix in the object–oriented rough set model

pc1 pc2 pc3
pc1 ∅ {DeskTopPC.memory} ∅
pc2 {DeskTopPC.memory} ∅ {DeskTopPC}
pc3 ∅ {2CPU-DTPC} ∅

We omit any objects that are not the instances of either DeskTopPC or 2CPU-
DTPC. This is because we have δij = ∅ for such objects oi and oj .

Next, we construct reducts for decision classes. By this discernibility matrix,
we have one reduct {DeskTopPC, 2CPU-DTPC, DeskTopPC.memory}.

Finally, using the reducts, we generate decision rules DR(DeskTopPC; pci)
(i ∈ {1, 3}) and DR(2CPU-DTPC; pc2). as follows:

1. DeskTopPC∧ DeskTopPC.memory ∼ m1 ⇒ DeskTopPC.cpu ∼ c1.
2. 2CPU-DTPC ⇒ 2CPU-DTPC.cpu ∼ c2.
3. DeskTopPC∧ DeskTopPC.memory ∼ m3 ⇒ DeskTopPC.cpu ∼ c3,

where mi=pci.memory and ci=pci.cpu.
These three rules illustrate certain characteristics about combination of ob-

jects in the given object structure O. For example, the rule 1 means that if an
object is an instance of the DeskTopPC class, and its memory is equivalent to
the object m1, that is, the size of memory is 512MB, then the CPU of the object
is equivalent to c1, that is, the clock of the CPU is 2.4GHz. The other rules are
also interpreted similarly.

4 Discussion and Conclusion

In this paper, we have proposed a method to generate decision rules in the
framework of object–oriented rough set model [3]. First, we have introduced
decision rules in the object–oriented rough set model, and revised discernibility
matrices proposed by Skowron and Rauser [6] to generate decision rules in the
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object–oriented rough set model. Moreover, we have illustrated an example of
decision rule generation.

As introduction of the object–orientation into rough set theory, in the previous
papers [3,4] and this paper, we have only treated the aspects of data of objects
as representation of hierarchical structures, however we have not treated the
concepts of methods of objects. According to [5], an object is an encapsulation
of state (data values) and behavior (operations), and an object will exhibit its
behavior by invoking a method (similar to executing a procedure) in response
to a message (cf. [5], p.22). We think that methods in the object–oriented rough
set model will correspond to manipulation of objects, which is one of the most
interesting improvement of the object–oriented rough set model.

We also consider the following future issues: More refinement of theoretical
aspects of the proposed method, application of the proposed method to actual
object–oriented databases, and development of rule generation systems in the
object–oriented rough set model based on the proposed method.
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Abstract. Reduction is one of the key problem in rough set theory
due to its applications in data mining, rule induction, classification, etc..
In this paper the reductions for a set-valued decision information sys-
tem(DIS) are studied. The judgment theorem and the discernibility ma-
trix of the generalized decision reduct in a set-valued DIS are given, and
the relationships among the generalized decision reduct and alternative
types of knowledge reduction in set-valued DIS are investigated. It is
proved that the reduct in the consistent set-valued DIS is equivalent to
the generalized decision reduct, and the possible reduct in the incon-
sistent set-valued DIS is equivalent to the generalized decision reduct.
The judgment theorem and the discernibility matrix associated with the
possible reduct are also established.

1 Introduction

Rough Set theory(see [7]), a new mathematical approach to deal with inexact,
uncertain or vague knowledge, has recently received wide attention on the re-
search areas in both of the real-life applications and the theory itself.

The rough set theory that based on the conventional indiscernibility relation is
not useful for analyzing incomplete information. When the precise values of some
of the attributes in an information system are not known, i.e., missing or known
partially, then such a system is called an incomplete information system(IIS).
Such a situation can be described by a set-valued information system in which
the attribute value function fa is defined as a mapping from U to the power set
of Va, i.e., fa : U −→ 2Va , called a set-valued function. The missing values can
be represented by the set of all possible values for the attribute. In this paper,
we discuss the incomplete information systems in which the attribute value for
an object is the subset of the attribute’s domains.

Reduction is one of the hot research topics of rough set. Many useful results
had been reported (see [1-6],[8-11]). In [11], Variable Precision Rough Set Model
(VPRS) was presented, in which concept approximations are parameterized. The
VPRS model was meant to overcome the problem of noise in data. In [4], two

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 348–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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new types of attribute reduction based on VPRS, β lower distribution reduct and
β upper distribution reduct, are introduced. It has been proved that for certain
parameter β, the β lower distribution reduct is equivalent to the maximum
distribution reduct, whereas the β upper distribution reduct is equivalent to the
possible reduct. In [6] the notions of α-reduct and α-relative reduct for decision
tables were defined. The α-reduct allows occurrence of additional inconsistency
that is controlled by means of α parameter. The notion of dynamic reducts
was distributed and tested experimentally in [1]. In [2], generalized decision
and generalized decision reduct was taken into account by M.Kryszkiewicz, it
provides a decision maker with more flexible selection of decision behavior.

The main objective of the paper was to discuss the reductions of a set-valued
decision information system(DIS) and find the relationships of these knowledge
reductions in set-valued DIS. The judgment theorem and the discernibility ma-
trix of the generalized decision reduct in a set-valued DIS are given. It is proved
that both of the reduction in the consistent set-valued DIS and the possible
reduction in the inconsistent set-valued DIS are equivalent to the generalized
decision reduct. The judgment theorem and the discernibility matrix associated
with the possible reduct are also established.

The paper is organized as follows. Section 2 presents basic notions of a set-
valued information system. In section 3 the generalized decision reduct in a
set-valued DIS is discussed, the judgment theorem and the discernibility matrix
associated with the generalized decision reduct are given. In section 4 we discuss
the consistent set-valued DIS. The properties and the approach to reduction for
a consistent set-valued DIS are given. In section 5 the inconsistent set-valued DIS
is discussed, and the relationship between the possible reduct and the generalized
decision reduct is given. A final section contains conclusions.

2 Set-Valued Decision Information System

A set-valued decision information system (DIS) (see [10]) is a quinary ϕ =
(U, A, F, d, gd), where U = {x1, x2, · · · , xn} is a nonempty finite set of objects
called universe and A = {a1, a2, · · · , am} is a nonempty finite set of attributes,
are called condition attributes, d /∈ A is a decision attribute, F = {fl : l ≤
m}, where fl : U −→ P0(Vl)(l ≤ m) is an attribute value function, Vl is a do-
main of attribute al, P0(Vl) is the whole nonempty subset of Vl, gd : U −→ Vd

is a specific attribute value function, Vd = {1, 2, · · · , r} is a finite domain of gd.
Let (U, A, F, d, gd) be a set-valued DIS, ∀B ⊆ A, define a relation as follow:

R∩
B = {(x, y) ∈ U × U : fa(x) ∩ fa(y) �= ∅ (∀a ∈ B)}.

The relation is called a similarity relation or a tolerance relation ,and note

[x]∩B = {y ∈ U : (x, y) ∈ R∩
B} = {y ∈ U : fa(x) ∩ fa(y) �= ∅ (∀a ∈ B)}

called tolerance class.
Let

Rd = {(x, y) ∈ U × U : gd(x) = gd(y)}.
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Obviously, R∩
B is reflexive and symmetric, but not transitive, so it is not an

equivalence relation, we call it a tolerance relation; Rd is an equivalence relation.
We can easily proof if objects x and y have Kryszkiewicz’s tolerance relation

SIM(B), i.e.,

SIM(B) = {(x, y) ∈ U × U : ∀a ∈ B, fa(x) = fa(y) or fa(x) = ∗ or fa(y) = ∗},

then x and y are also possess the relation R∩
B. This shows R∩

B is an extension to
Kryszkiewicz’s tolerance relation SIM(B).

Proposition 1. Let (U, A, F, d, gd) be a set-valued DIS, ∀B ⊆ A, R∩
B is a

similarity relation defined as above, then we have:
(1) if B1 ⊆ B2 ⊆ A, then R∩

B1
⊇ R∩

B2
⊇ R∩

A ;
(2) if B1 ⊆ B2 ⊆ A, then [x]∩B1

⊇ [x]∩B2
⊇ [x]∩A ;

(3) I= {[x]∩B : x ∈ U} constitute a covering of U ,
Let U/R∩

B denote classification, which is the family set {[x]∩B | x ∈ U}. Any
element from U/R∩

B will be called a tolerance class.

Example 1. A set-valued DIS is presented in Table 1.

Table 1. A Set-Valued Decision Information System

U a1 a2 a3 a4 d

x1 {1} {1} {0} {0} 1
x2 {0} {1,2} {0} {0} 1
x3 {1,0} {1,2} {1} {0} 0
x4 {1} {1,2} {0} {1} 1
x5 {1,0} {1,2} {0} {1} 2
x6 {0} {2} {0} {1,0} 1

From Table 1, one can obtain:

[x1]∩A = {x1}, [x2]∩A = {x2, x6}, [x3]∩A = {x3},

[x4]∩A = {x4, x5}, [x5]∩A = {x4, x5, x6}, [x6]∩A = {x2, x5, x6};

U/Rd = {D1, D2, D3}, where D1 = {x1, x2, x4, x6}, D2 = {x3}, D3 = {x5}.

3 Generalized Decision Reduct

Let (U, A, F, d, gd) be a set-valued DIS, ∀B ⊆ A, R∩
B is a similarity relation

defined as above.
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The generalized decision function in a set-valued DIS ∂∩
B : U → P(Vd), B ⊆ A,

is definied as follows:

∂∩
B(x) = {i | i = d(y) and y ∈ [x]∩B}

If card(∂∩
A(x)) = 1 for any x ∈ U then DIS is consistent, otherwise it is

inconsistent.
Reduction of knowledge that preserves generalized decision for all objects in

DIS is lossless from the point of making decision.

Definition 1. A set B ⊆ A is a generalized decision consistent set of the set-
valued DIS if ∂∩

B = ∂∩
Afor all x ∈ U . If B is a generalized decision consistent set,

and no proper subset of B is generalized decision consistent, then B is referred
to as a generalized decision reduct of the set-valued DIS.

We denote D∩
∂ = {D∩

∂ (xi, xj), xi, xj ∈ U}, where

D∩
∂ (xi,xj) =

{
{a ∈ A| (xi,xj) �∈ R∩

a } = {a ∈ A| fa(xi) ∩ fa(xj) = ∅}, d(xj) �∈ ∂∩
A(xi),

∅, d(xj) ∈ ∂∩
A(xi).

D∩
∂ is called the discernibility matrix of set-valued DIS with respect to ∂∩

A.

Proposition 2. Let ϕ = (U, A, F, d, gd) be a Set-valued DIS, B ⊆ A, and
D∩

∂ = {D∩
∂ (xi, xj), xi, xj ∈ U} be the discernibility matrix of set-valued DIS

with respect to R∩
A, then

B ∩ D∩
∂ (xi, xj) �= ∅ (D∩

∂ (xi, xj) �= ∅) iff ∂∩
B = ∂∩

A.

Proof: Since [x]∩B ⊇ [x]∩A for any B ⊆ A, so we have ∂∩
B(xi) ⊇ ∂∩

A(xi).
Hence we only need to prove

B ∩ D∩
∂ (xi, xj) �= ∅ (D∩

∂ (xi, xj) �= ∅) iff ∂∩
B ⊆ ∂∩

A.

(⇒) Suppose B ∩ D∩
∂ (xi, xj) �= ∅ (D∩

∂ (xi, xj) �= ∅).
If for any x′

i ∈ [xi]∩B and x′
i /∈ [xi]∩A, d(x′

i) /∈ ∂∩
A(xi), then we have D∩

∂ (xi, x
′
i) �=∅.

So B ∩ D∩
∂ (xi, x

′
i) �= ∅. However, according to x′

i ∈ [xi]∩B we can get (xi, x
′
i) ∈

R∩
B, that is fb(xi) ∩ fb(x′

i) �= ∅(∀b ∈ B). Then B ∩ D∩
∂ (xi, x

′
i) = ∅. This is a

contradiction.
Hence, for B ∩ D∩

∂ (xi, xj) �= ∅ (D∩
∂ (xi, xj) �= ∅), if x′

i ∈ [xi]∩B and x′
i /∈ [xi]∩A,

then d(x′
i) ∈ ∂∩

A(xi). So ∂∩
B(xi) ⊆ ∂∩

A(xj).
(⇐) Suppose ∂∩

B ⊆ ∂∩
A. If d(xj) /∈ ∂∩

A(xi), then d(xj) /∈ ∂∩
B(xi), that is xj /∈

[xi]∩B. Thus there exists b ∈ B such that (xi, xj) /∈ R∩
b , we have b ∈ D∩

∂ (xi, xj).
Therefore B ∩ D∩

∂ (xi, xj) �= ∅ (D∩
∂ (xi, xj) �= ∅).

Let ∨D∩
∂ (xi, xj) be a Boolean expression that is equal to 1 if D∩

∂ (xi, xj) = ∅.
Otherwise, ∨D∩

∂ (xi, xj) is a disjunction of variables corresponding to attributes
contained in D∩

∂ (xi, xj).
Let Δ = ∧(xi,xj)∈U×U ∨ D∩

∂ (xi, xj), Δ is referred to the generalized decision
discernibility function for a set-valued DIS.

Discernibility function is monotonic Boolean function and its prime implica-
tion determine reductions uniquely.
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Example 2. In Table 2 we place the values of generalized decision function
based on the set-valued DIS described by Table 1.

Table 2. The values of generalized decision function

U a1 a2 a3 a4 d ∂∩
A

x1 {1} {1} {0} {0} 1 {1}
x2 {0} {1,2} {0} {0} 1 {1}
x3 {1,0} {1,2} {1} {0} 0 {0}
x4 {1} {1,2} {0} {1} 1 {1,2}
x5 {1,0} {1,2} {0} {1} 2 {1,2}
x6 {0} {2} {0} {1,0} 1 {1,2}

From Table 2, we can obtain the set-valued DIS described by Table 1 is in-
consistent.

Table 3 is the discernibility matrix of the set-valued DIS described by Table 1:

Table 3. The discernibility matrix of set-valued DIS described by Table 1

x\y x1 x2 x3 x4 x5 x6

x1 a3 a4

x2 a3 a4

x3 a3 a3 a3a4 a3a4 a3

x4 a3a4

x5 a3a4

x6 a3

From Table 3, we have

Δ = a3 ∧ a4 ∧ (a3 ∨ a4) = a3 ∧ a4.

Thus, B={a3, a4} is a reduction for the set-valued DIS presented by Table 1.
From Table 1, we have:

[x1]∩B = {x1, x2, x6}, [x2]∩B = {x1, x2, x6}, [x3]∩B = {x3},

[x4]∩B = {x4, x5, x6}, [x5]∩B = {x4, x5, x6}, [x6]∩B = {x1, x2, x4, x5, x6}.
One can easily obtain ∂∩

B = ∂∩
A.

4 The Reduct in a Consistent Set-Valued DIS

If card(∂∩
A(x)) = 1 for any x ∈ U then a set-valued DIS is called a consistent

set-valued DIS.
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Proposition 3. Let (U, A, F, d, gd) be a set-valued DIS, then

card(∂∩
A(x)) = 1(∀x ∈ U) iff R∩

A ⊆ Rd.

Proof: R∩
A ⊆ Rd ⇔ [x]∩A ⊆ [x]∩d ⇔ card(∂∩

A(x)) = 1(∀x ∈ U).

Definition 2. A set B ⊆ A is a consistent set of the consistent set-valued DIS
if R∩

B ⊆ Rd, and in addition ∀B′ ⊂ A, R∩
B′ �⊆ Rd, B is called the reduct of the

consistent set-valued DIS. Thus, a reduction of the consistent set-valued DIS is
a minimal attribute subset satisfying R∩

B ⊆ Rd.
We denote D∩

d = {D∩
d (xi, xj), xi, xj ∈ U}, where

D∩
d (xi, xj) =

{
{a ∈ A : fa(xi) ∩ fa(xj) = ∅}, d(xi) �= d(xj),
∅, d(xi) = d(xj).

D∩
d is called the discernibility matrix of the consistent set-valued DIS with re-

spect to R∩
A.

Proposition 4. Let ϕ = (U, A, F, d, gd) be a consistent Set-valued DIS, B ⊆ A,
and D∩

d = {D∩
d (xi, xj), xi, xj ∈ U} is the discernibility matrix of consistent

set-valued DIS, then

B ∩ D∩
d (xi, xj) �= ∅ (D∩

d (xi, xj) �= ∅) iff R∩
B ⊆ Rd.

Proof:R∩
B ⊆ Rd ⇔ if (xi, xj) �∈ R∩

d then (xi, xj) �∈ R∩
B ⇔ if D∩

d (xi, xj) �=
∅ then (xi, xj) �∈ R∩

B , that is ∃al ∈ B such that al ∈ D∩
d (xi, xj) ⇔ B ∩

D∩
d (xi, xj) �= ∅ when D∩

d (xi, xj) �= ∅.

Proposition 5. Let ϕ = (U, A, F, d, gd) be a consistent Set-valued DIS, i.e.,
card(∂∩

A(x)) = 1 (∀x ∈ U ), B ⊆ A, then

R∩
B ⊆ Rd iff ∂∩

B(x) = ∂∩
A(x) (∀x ∈ U).

Proof:(⇐) Suppose ∂∩
B(x) = ∂∩

A(x). So card(∂∩
B(x)) = 1. By Proposition 3,

we conclude that R∩
B ⊆ Rd.

(⇒) Suppose R∩
B ⊆ Rd, then we obtain card(∂∩

B(x)) = card(∂∩
A(x)) = 1.

On the other hand, [x]∩A ⊆ [x]∩B for B ⊆ A, so ∂∩
B(x) ⊇ ∂∩

A(x).Therefore
∂∩

B(x) = ∂∩
A(x).

From Proposition 5, we can obtain Definition 2 is equivalent to Definition 1 for
a consistent set-valued DIS.

Let Δ′ = ∧(xi,xj)∈U×U ∨ D∩
d (xi, xj), Δ′ is referred to the discernibility func-

tion for a consistent set-valued DIS. Δ′ determines reductions uniquely for the
consistent set-valued DIS. .
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Table 4. A Consistent Set-Valued DIS

U a1 a2 a3 a4 d

x1 {1} {1} {0} {0} 2
x2 {0} {1,2} {0} {0} 1
x3 {1,0} {1,2} {1} {0} 0
x4 {1} {1,2} {0} {1} 1
x5 {1,0} {1,2} {0} {1} 1
x6 {0} {2} {0} {1,0} 1

Example 3. Table 4 describes a consistent set-valued DIS.
From Table 4, one can obtain:

[x1]∩A = {x1}, [x2]∩A = {x2, x6}, [x3]∩A = {x3},

[x4]∩A = {x4, x5}, [x5]∩A = {x4, x5, x6}, [x6]∩A = {x2, x5, x6};
U/Rd = {D1, D2, D3}, where D1 = {x1}, D2 = {x3}, D3 = {x2, x4, x5, x6}.

So we have card(∂∩
A(x)) = 1 (∀x ∈ U).

Table 5 is the discernibility matrix of the consistent set-valued DIS described
by Table 4.

Table 5. The discernibility matrix of the set-valued DIS described by Table 4

x\y x1 x2 x3 x4 x5 x6

x1 a1 a3 a4 a4 a1a2

x2 a1 a3

x3 a3 a3 a3 a3a4 a3

x4 a4 a3a4

x5 a4 a3a4

x6 a1a2 a3

From Table 5, we have

Δ′ = a1 ∧ a3 ∧ a4 ∧ (a1 ∨ a2) ∧ (a3 ∨ a4) = a1 ∧ a3 ∧ a4.

Thus, B={a1, a3, a4} is a reduct for the consistent set-valued DIS presented
by Table 4.

From Table 4, we have:

[x1]∩B = {x1}, [x2]∩B = {x2, x6}, [x3]∩B = {x3}, [x4]∩B = {x4, x5},

[x5]∩B = {x4, x5, x6}, [x6]∩B = {x2, x5, x6}.
One can easily observe R∩

B ⊆ Rd.
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5 The Reduction in an Inconsistent Set-Valued DIS

If card(∂∩
A(x)) �= 1 for any x ∈ U then a set-valued DIS is called an inconsistent

set-valued DIS.

Definition 3. Let ϕ = (U, A, F, d, gd) be an inconsistent Set-valued DIS, Vd =
{1, 2, · · · , r} is a finite domain of the condition attribute d, Rd is an equivalence
relation, U/Rd = {D1, D2, · · · , Dr}. Note

δ∩B(xi) = {Dj ; [xi]∩B ∩ Dj �= ∅ (xi ∈ U)}.

A set B ⊆ A is a possible consistent set of the inconsistent set-valued DIS if
δ∩B = δ∩A for all x ∈ U . If B is a possible consistent set, and no proper subset of B
is possible consistent, then B is referred to as a possible reduct of the inconsistent
set-valued DIS. A possible consistent set of the set-valued DIS preserves all
possible decision classes.

Lemma 6. Let ϕ = (U, A, F, d, gd) be an inconsistent Set-valued DIS, define a
map as follow:

g : U/Rd → Vd, g(Di) = d(xj), ∀xj ∈ Di,

then ∂∩
A(xi) = g(δ∩A(xi)), where δ∩A(xi) = {D1, D2, · · · , Dl}, g(D1, D2, · · · , Dl) =

(g(D1), g(D2), · · · , g(Dl)).
Proof:Let d(y) ∈ ∂∩

A(xi), then ∃xj ∈ [xi]∩A, such that d(xj) = d(y). For xj ∈
[xi]∩A ⊆ U , ∃ unique Dj , such that xj ∈ Dj , then Dj ∩ [xi]∩A �= ∅, so Dj ∈
δ∩A(xi). That is d(y) = d(xj) = g(Dj) and g(Dj) ∈ g(δ∩A(xi)).Therefore ∂∩

A(xi) ⊆
g(δ∩A(xi))

On the other hand, let xi ∈ U , ∀Dj ∈ δ∩A(xi), Dj ∩ [xi]∩A �= ∅ . So ∃y ∈
[xi]∩A and y ∈ Dj . Hence g(Dj) = d(y) and d(y) ∈ ∂∩

A(xi). That is g(δ∩A(xi)) ⊆
∂∩

A(xi)
Therefore ∂∩

A(xi) = g(δ∩A(xi)).

We denote D∩
δ = {D∩

δ (xi, xj), xi, xj ∈ U}, where

D∩
δ (xi,xj) =

{
{a ∈ A : (xi,xj) �∈ R∩

a } = {a ∈ A : fa(xi) ∩ fa(xj) = ∅}, d(xj) �∈ g(δ∩A(xi)),
∅, d(xj) ∈ g(δ∩A(xi)).

D∩
δ is called the discernibility matrix of an inconsistent set-valued DIS with re-

spect to δ∩A.

Proposition 7. Let ϕ = (U, A, F, d, gd) be an inconsistent Set-valued DIS,
B ⊆ A, and D∩

δ = {D∩
δ (xi, xj), xi, xj ∈ U} is the discernibility matrix of set-

valued DIS, then

B ∩ D∩
δ (xi, xj) �= ∅ (D∩

δ (xi, xj) �= ∅) iff δ∩B = δ∩A.

Proof: It is immediately from lemma 6 and Proposition 2.
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Remark. From Lemma 6, Proposition 7 and Proposition 2, we can immediately
conclude that the possible consistent set of an inconsistent set-valued DIS is
equivalent to the generalized decision consistent set of the inconsistent set-valued
DIS.

Example 4. The values of ∂∩
A and δ∩A based on the set-valued DIS described by

Table 1 is given as Table 6, where D1 = {x1, x2, x4, x6}, D2 = {x3}, D3 = {x5}.

Table 6. The values of ∂∩
A and δ∩

A from Table 1

U ∂∩
A δ∩

A

x1 {1} D1

x2 {1} D1

x3 {0} D2

x4 {1,2} D1, D3

x5 {1,2} D1, D3

x6 {1,2} D1, D3

Obviously, g(D1) = 1, g(D2) = 0, g(D3) = 2. So we have g(δ∩A(xi)) = ∂∩
A(xi)

(∀xi ∈ U).

6 Conclusion

One fundamental aspect of rough set theory involves the searching for some
particular subsets of condition attributes. The information for classification or
decision making provided by such one subset is the same as the information
provided by the condition attribute set. Such subsets are called reducts. To ac-
quire brief decision rules from the decision table, knowledge reduction is needed.
However, much study on reduction was based on complete information system
or consistent information system.

In this paper we discuss the reductions of a set-valued decision information
system(DIS). The judgment theorem and the discernibility matrix of alternative
types of knowledge reduction in set-valued DIS are given. The relationships of
the various knowledge reduction in set-valued DIS are investigated. It is proved
that the reduct in the consistent set-valued DIS is equivalent to the generalized
decision reduct, and the possible reduct in the inconsistent set-valued DIS is
equivalent to the generalized decision reduct.
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Abstract. This paper refers to the notion of minimal pattern in rela-
tional databases. We study the analogy between two concepts: a local
reduct, from the rough set theory, and a jumping emerging pattern, orig-
inally defined for transactional data. Their equivalence within a positive
region and similarities between eager and lazy classification methods
based on both ideas are demonstrated. Since pattern discovery ap-
proaches vary significantly, efficiency tests have been performed in order
to decide, which solution provides a better tool for the analysis of real
relational datasets.

1 Introduction

Many definitions of knowledge discovery emphasize the importance of patterns
in information modeling. There are at least three important reason for this. First
of all, patterns are a useful tool in many practical problems, mainly in classifica-
tion. Secondly, they can be easily understood by the human mind. Unlike neural
networks, support vector machines or Bayesian classifiers, the most expressive
patterns do not need any additional visualization to be comprehended and eval-
uated. Last but not least, the simple structure of a pattern and the intensive
development of concise representations make them a convenient and powerful
tool in knowledge processing and storing.

Many experiments demonstrated the accuracy of rule-based classifiers [1].
However, there are no criteria applicable to all types of data and different sorts
of patterns are still being proposed to produce better rules. Notwithstanding this
variety, we can figure out some common features, like their highly discriminative
power, not overfitting to training data or avoiding exponential result sets.

In this paper, we focus on patterns in relational databases. One of the most
elegant descriptions for this kind of data is provided by the rough set theory.
Basic concepts triggered intensive research which has brought many methods
suitable for practical application. The most accurate classifiers are based on the
notion of a local reduct, i.e. a minimal set of attributes capable of distinguish-
ing one particular object from objects belonging to other classes as well as the
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total set of attributes. This approach allows to induce minimal patterns and
corresponding rules that describe a class in a very general manner.

In contrast to these classic solutions, we observe a fast development of methods
for transaction databases. The most popular solutions make use of class asso-
ciation rules (CAR) and emerging patterns. Such classifiers as JEP-C, CAEP,
DeEP or EJEP-C have already proved their high accuracy in many experiments
[1]. Our study focuses on jumping emerging patterns (JEPs), the idea very simi-
lar to minimal patterns based on local reducts. A JEP is a pattern that is present
in one class and absent in others. In particular, the minimal ones give a possibly
general and concise description of each class in contrast to the rest.

As it was mentioned above, a JEP is originally defined by means of the tradi-
tional formal apparatus of transaction databases. Nevertheless, it is often used
to deal with relational data transformed to a transactional form [2]. Now, the
question emerges what the differences are between classification algorithms asso-
ciated with the concept of a local reduct and a JEP. Another question is which of
these approaches allows to discover the set of minimal patterns more efficiently,
when relational data is concerned. Our intuition is that algorithms which oper-
ate on this kind of data can take advantage of information held in attributes in
order to differentiate objects, whereas methods using the transactional approach
fail to account for the actual relation between items associated with the same
attribute. In addition, the space of attribute sets is often much smaller than
the respective space of itemsets, which also depends on attribute value domains.
For these reasons, we expect that, at least for large datasets, the efficiency of
methods from both streams will be significantly different.

The text is organized as follows. Section 2 provides a formal background for
the rough set theory, EPs and a relational-to-transactional transformation. In
Sect. 3, we prove the similarity between minimal patterns obtained from lo-
cal reducts and JEPs. Then, in Sect. 4 basic classification methods from both
streams are compared. We discuss popular eager and lazy methods, taking into
account differences in the way of selecting minimal patterns and aggregating
them in order to obtain a decision. Section 5 explains the main issues of the
two methods of minimal pattern discovery: the rough set approach and JEP-
Producer. Implementation remarks are discussed in Sect. 6. Our testing proce-
dure and results are presented in Sect. 7. The paper is summarized in Sect. 8.

2 Preliminaries

2.1 Elements of Rough Set Theory

Let a decision table be a triple (U , C, d), where U(universum) is a non-empty,
finite set of objects, C is a non-empty finite set of condition attributes and d
is a decision attribute. A set of all attributes is denoted by A = C ∪ {d}. The
domain of an attribute a ∈ A is denoted by Va and its value for an object u ∈ U
is denoted by a(u). In particular, Vd = {k1, .., k|Vd|} and the decision attribute
induces a partition of U into decision classes {Uk}k∈Vd

. Hereinafter, we use the
term attribute to denote a condition attribute.
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Consider B ⊆ A. An indiscernibility relation IND(B) is defined as follows:

IND(B) = {(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}

Since IND(B) is an equivalence relation, it induces a partition of U denoted
by U/IND(B). Let B(u) be a block of the partition containing u ∈ U . A B-lower
approximation of a set X ⊆ U is defined as follows: B∗(X) = {u ∈ U | B(u) ⊆
X}, and a B-positive region with respect to a decision attribute d is defined by:

POS(B, d) =
⋃

X∈U/IND({d})
B∗(X)

We say that a decision table is consistent or deterministic if POS(C, d) = U .
Otherwise, we call it inconsistent or non-deterministic. A local reduct for an
object u ∈ U (a reduct relative to an object and a decision) is a minimal attribute
set B ⊆ C such that ∀k∈Vd

(C(u) ∩ Uk = Ø =⇒ B(u) ∩ Uk = Ø). It means that
the object u can be differentiated by means of B from all the objects from other
classes as accurately as by the complete available description C. The set of all
local reducts for an object u is denoted by REDLOC(u, d).

Lemma 1 ([3]). B ∈ REDLOC(u, d) for u ∈ POS(C, d) ⇐⇒ B is a minimal
set such that B(u) ⊆ Ud(u).

2.2 Emerging Patterns

Let a decision transaction database be a tuple (D,N , I,Z), where D ⊆ {(n, t) ∈
N × 2I : ∀(n′,t′)∈N×2In = n′ =⇒ t = t′} is a set of transactions (database),
N is a non-empty set of transaction identifiers, I is a non-empty set of items
and Z is a function Z : D 4→ VZ , where VZ is the set of decision class labels.
The function Z splits the database D into decision classes Dk = Z−1(k), for
k ∈ VZ . In addition, for D ⊆ D, we define a complement database D′ = D − D.
An itemset X ∈ 2I is a set of items and its support in a database D ⊆ D
is defined as suppD(X) = |(n,t)∈D:X⊆t|

|D| . Given two databases D1, D2 ⊆ D, we
define a jumping emerging pattern (JEP) from D1 to D2 as an itemset X for
which suppD1(X) = 0 and suppD2(X) �= 0. A set of all JEPs from D1 to D2 is
called a JEP space and denoted by JEP (D1, D2).

2.3 Convexity of JEP Space

One of the most useful features of jumping emerging patterns is the possibility
to store a JEP space in a concise manner.

Consider a set S. A collection F ⊆ 2S is a convex space iff ∀X,Z∈F∀Y ∈2S X ⊆
Y ⊆ Z ⇒ Y ∈ F . A border is an ordered pair < L,R > such that L,R ⊆ P (S)
are antichains and ∀X∈L∃Z∈RX ⊆ Z. L and R are called a left and a right
bound, respectively. A border < L,R > represents a set interval [L,R] = {Y ∈
P (S) : ∃X∈L∃Z∈RX ⊆ Y ⊆ Z}. The left and right bounds consist, respectively,
of minimal elements and maximal elements of a set, assuming inclusion relation.
It can be demonstrated [2] that every convex space has a unique border.
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Consider a decision transaction database (D,N , I,Z) and two databases
D1, D2 ⊆ D. According to [2] a collection JEP (D1, D2) is a convex space. Thus,
for k ∈ VZ , we use a border < Lk,Rk > to represent a JEP space JEP (D′

k, Dk).

Lemma 2 ([2]). ∀J∈2I J is minimal in JEP (D′
k, Dk) ⇐⇒ J ∈ Lk.

2.4 Relational to Transactional Transformation

One can analyze relational data by means of methods formulated for transaction
databases. In our study, we consider a decision transaction database build for a
given decision table. For brevity, we use the following notations introduced in
[4]: patt(u, B) = {(a, a(u))}a∈B, where u ∈ U and B ⊆ C, and attr(X) = {a ∈
C : (a, v) ∈ X ∧ v ∈ Va}, for an itemset X ⊂ {(a, v)}a∈C,v∈Va . Without loss of
generality, we assume that a universum can be linearly ordered U = {u1, .., u|U|}.

Definition 1. A decision transaction database for a decision table (U , C, d) is a
decision transaction database (D,N , I,Z), such that

– D = {ϕ(u)}u∈U , where ϕ : U 4→ D, ∀i∈{1..|U|}ϕ(ui) = (i, patt(ui, C))
– N = N (positive integers)
– I = {(a, v)}a∈C,v∈Va

– VZ = Vd and ∀u∈UZ(ϕ(u)) = d(u)

Notice that ϕ is a bijection, so it is possible to transform the result obtained by
some methods for transaction data back to relational form.

3 Relations Between Concepts

Hereinafter, we consider a decision table DT = (U , C, d) and a decision transac-
tion database RDDT = (D,N , I,Z) for DT . For u ∈ U , a set of all local reducts
for the object u is represented by REDLOC(u, d) and for k ∈ Vd a JEP space
JEP (D′

k, Dk) is represented by the border < Lk,Rk >.
Rough set reducts and emerging patterns are strongly related concepts. Our

previous paper [4] demonstrates the relations between global reducts and JEPs.
According to that work, every global reduct P generates with object u ∈ U a
pattern patt(u, P ) that belongs to JEP (D′

d(u), Dd(u)). The following theorem
considers a similar relation for local reducts. It says that every local reduct gen-
erates with object u ∈ POS(C, d) a jumping emerging pattern that is minimal,
i.e. it belongs to Ld(u), the left bound of the border of a space JEP (D′

d(u), Dd(u)).
Notice that for a consistent decision table this relation holds for each u ∈ U .

Thus, we can use algorithms originating in either rough set theory or emerging
patterns approach to compute the set of minimal patterns.

Theorem 1. Let DT = (U , C, d) be a decision table and RDDT = (D,N , I,Z)
a decision transaction database for DT .

∀u∈POS(C,d)∀P⊆CP ∈ REDLOC(u, d) ⇐⇒ patt(u, P ) ∈ Ld(u).
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Proof. Let P, B ∈ C, u ∈ POS(C, d) and k = d(u).
Consider first B(u) ⊆ Uk ⇐⇒ patt(u, B) ∈ JEP (D′

k, Dk) (1). We have
B(u) ⊆ Uk ⇐⇒ u ∈ B∗(Uk) ⇐⇒ u ∈ POS(B, d) ∩ Uk. But, according to
Theorem 1 from [4], we have: u ∈ POS(B, d) ∩ Uk ⇐⇒ patt(u, B) ∈ {J ∈
JEP (D′

k, Dk) : attr(J) = B} ⇐⇒ patt(u, B) ∈ JEP (D′
k, Dk).

Consider P ∈ REDLOC(u, d) =⇒ patt(u, P ) ∈ Lk. Let P ∈ REDLOC(u, d).
According to Lemma 1, we have: P ∈ REDLOC(u, d) ⇐⇒ P is minimal in
{B ⊆ C : B(u) ⊆ Uk}. Consider R ⊂ P . It means that R(u) �⊆ Uk, and,
according to (1), we obtain patt(u, R) �∈ JEP (D′

k, Dk). Summing up, according
to (1) we have patt(u, P ) ∈ JEP (D′

k, Dk) and for any J ⊂ patt(u, P ) we have
J �∈ JEP (D′

k, Dk). Thus, patt(u, P ) is minimal in JEP (D′
k, Dk) and, according

to Lemma 2, we have patt(u, P ) ∈ Lk.
Consider P ∈ REDLOC(u, d) ⇐= patt(u, P ) ∈ Lk. Let patt(u, P ) ∈ Lk.

According to Lemma 2, we have: patt(u, P ) ∈ Lk ⇐⇒ patt(u, P ) is minimal
in JEP (D′

k, Dk). Consider R ⊂ P . It means that patt(u, R) ⊂ patt(u, P ) =⇒
patt(u, R) �∈ JEP (D′

k, Dk), and, according to (1), we obtain R(u) �⊆ Uk. Sum-
ming up, according to (1) we have P ∈ {B ⊆ C : B(u) ⊆ Uk} and for any R ⊂ P
we have R(u) �⊆ Uk. Thus, P is minimal in {B ⊆ C : B(u) ⊆ Uk} and, according
to Lemma 1, we have P ∈ REDLOC(u, d).

4 Classification Based on Minimal Patterns

The rough set theory and emerging patterns are often used to build efficient
classifiers. Although both approaches use different formal apparatus, they often
employ similar algorithmic ideas.

A rough set is a convenient tool for representing approximate concepts. In
particular, one of its major applications is to express the classification hypothesis
provided by a decision table. Most of rough set classifiers are rule-based and make
use of the notion of a reduct and its derivatives. The rule set of a classifier results
from the set of reducts used against the objects in a decision table. On the other
hand, classifiers based on emerging patterns operate on sets of patterns induced
for each decision class. Patterns are discovered according to their characteristics
in a transaction database, e.g. minimal support in a positive or negative class,
minimal growth-rate, minimal chi-square test value etc.

A classification function is defined as a function f : U 4→ Vd, such that f(u) =
argmaxk∈Vd

score(u, k), for u ∈ U , where score is a class scoring function score :
U × Vd 4→ R. The form of the class scoring function depends on a particular
method. For a rule-based classifier, it is determined by the set of rules and the
way of aggregating their significance. In fact, a decision rule

∧
a∈P (a = va) =⇒

vd can be equivalently expressed by {(a, va)}a∈P =⇒ vd, for some P ⊆ C, va ∈ Va

for each a ∈ P and vd ∈ Vd. Thus, for the sake of this study, we assume that
a rule-based classifier operates on a collection of pattern sets {Pk}k∈Vd

induced
for respective classes. Moreover, we use two following notations analogical to
[5]. A set of all patterns assigned to a class k ∈ Vd and matching an object
u ∈ U is denoted by MatchPatterns(u, k) = {R ∈ Pk : R ⊆ patt(u, C)}. On
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the other hand, a set of all objects that supports a given pattern is represented
by SupportSet(R) = {u ∈ U : R ⊆ patt(u, C)}. Thanks to the two-way nature
of the relational-to-transactional transformation, these expressions remain true
also when we operate on a respective decision transaction database.

In this study, we limit our interest to classifiers based on minimal patterns.
The following sections provide a comparison of methods originating in both
families. Our purpose is to demonstrate the analogical solutions and point out
the main differences. Comparative accuracy tests can be found in [1,3].

4.1 Pattern Selection Methods

The rough set approach based on the concept of a local reduct is presented
in [3,6]. It discovers the set REDLOC(u, d) for each u ∈ U in the decision
table DT = (U , C, d) and then uses it to generate the pattern set collection
{Pk}k∈Vd

, where Pk = {patt(u, R) : u ∈ Uk ∧ R ∈ REDLOC(u, d)} for k ∈ Vd.
A similar idea can be found in JEP-C (e.g. [1]) which computes JEP spaces for
each class in the respective decision transaction database in order to obtain the
collection {Lk}k∈Vd

. According to Theorem 1, both collections are equal when
DT is consistent. Otherwise, every object from outside of the positive region
can generate emerging patterns that are not jumping and cannot be generalized
in order to obtain JEP. In fact, JEP-C induces patterns only from the positive
region of a decision data, i.e. it considers the decision transaction database for
the table (POS(U), C, d).

This difference remains true also for other propositions based on JEPs, like
DeEP or DeEP-NN [7]. The assumption about consistency holds for many real
data sets, especially with a large number of attributes; however, in general, the
inability to make inference from non-positive data can be a weakness of the
classifiers of this type. In particular, they are more prone to noisy data than
approaches based on local reducts or other types of patterns, e.g. EP, chi-EP.

One of the improvements of the local reduct-based method, described in [6],
is to decrease the size of a rule set by selecting the minimal set of patterns
that covers the universum. The main arguments behind this idea refer to the
minimum description length principle, classification efficiency and the possible
generality of a discovered subset of patterns. Since this step involves solving
a set covering problem, in many cases heuristic methods are employed to find
a suboptimal solution. As a matter of fact, there is no such proposition for
emerging patterns, however, this strategy can be applied in the similar manner.
Since, the sets of jumping emerging patterns Pk are exclusive, we can solve k set
covering problems, one for each class Uk, instead of dealing with U at once. It
also means that, for inconsistent decision tables, one can obtain a more concise
pattern set, when using an approach based on local reducts.

4.2 Class Scoring

Let us consider a pattern set collection {Pk}k∈Vd
, where Pk contains minimal

patterns chosen according to some criteria. In order to complete the picture of
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rule-based classifiers, popular scoring functions will be discussed. The approaches
are divided into two groups depending on what is aggregated to obtain a decision.

In the first group, the algorithm takes into account a set of training objects
that support any of the patterns matching a testing object. This approach is com-
monly used in lazy classifiers. The scoring function for lazy local reduct classifi-
cation has the form: strength(u, k) = |

⋃
R∈MatchPatterns(u,k) SupportSet(R)|. A

similar idea is proposed in DeEP classifier [7], however, the number of matching
objects is related to the cardinality of a respective class, i.e: compactScore(u, k) =
strength(u,k)

Dk
. The second formula seems to be more adequate in case of an object

disproportion within the classes Uk or pattern sets Pk, both for k ∈ Vd.
The second concept focuses on direct aggregation of patterns matching a

testing object. A good example is the scoring function used in JEP-C (e.g. [1])
defined as: collectiveImpact(u, k) =

∑
R∈MatchPatterns(u,k) suppDk

(R). On the
other hand, eager classifiers based on local reducts employ the notion of an ap-
proximation space in order to produce a classification result. In the beginning,
for a testing object u the algorithm finds a set of all patterns matching u, denoted
by R. Then, for each pattern R ∈ R, the objects of SupportSet(R) are analyzed
in order to obtain a partial decision for this pattern. Finally, the partial results
are aggregated to indicate a decision class. Although this approach is very gen-
eral, in the most common case, it becomes similar to collectiveImpact. In fact,
when we assume consistency, each pattern indicates only one class. Therefore,
for a frequency-wise aggregating strategy, both classifiers are equivalent.

In practice, the result of pattern aggregation can be strongly influenced by
a disproportion in the number of minimal patterns |Pk| in particular classes.
One of the solutions was proposed originally for CAEP (e.g. [1]) and involves
dividing a score by the base score for the respective class. The base score for a
class k ∈ Vd is a selected percentile of the distribution of scores for a training
data {score(u, k) : u ∈ Uk}, e.g. 50-80th within these scores. Last but not least,
when we sum the supports of selected patterns, we use the assumption of their
independent occurrence in data and ignore possible correlations that can be
observed in a training set. As a result, the score can be overestimated.

5 Minimal Pattern Discovery

Due to their generality and sharp discriminating power, minimal patterns are
a good basis to build accurate classifiers. However, discovering the collection of
all minimal patterns for each class of a decision table can be a time-consuming
task. In general, the resulting pattern sets might have an exponential cardinal-
ity, which suggests the non-polynomial complexity of any possible algorithm.
This opinion is also strengthened by the NP -hardness of finding the decision
rule of a minimal cardinality [3]. Moreover, even if the result is not large, there
is still a possibility that temporary collections involved in computation can be
exponentially large. To efficiently solve the problem for real data sets, much
attention should be dedicated to identifying and optimizing the most frequent
operations and to using economical data structures. In fact, there are many
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propositions concerning the discovery of minimal rules and patterns [8,5]. In
our study, we compare the efficiency of a local reduct approach with two dif-
ferent reduct computation methods [6,9] and JEP-Producer based on a border
differential operation [2].

The rough set algorithm consists of two stages. First, for each object u ∈ U ,
the set of local reducts REDLOC(u, d) is computed. Then, for each local reduct
R ∈ REDLOC(u, d), a minimal pattern patt(u, R) is added to the pattern set
Pd(u). Local reduct discovery determines a total time. For a wider view, we se-
lected two reduct computation algorithms. Both methods employ a discernibility
matrix [5], the structure that contains for each object pair a set of such attributes
that can individually discern these objects. Then, for efficiency, one computes
the discernibility vector of minimal attribute sets from this matrix. The first
tested algorithm is a classic approach (e.g. [6]), based on finding all prime impli-
cants of a monotonous boolean function. The elements of a discernibility vector
are examined successively and the set of reducts is updated in every iteration.
For comparison, we propose a novel apriori-based method [9]. In this approach,
the search space is traversed according to an apriori scheme and the notion of
attribute set dependence is used to form a pruning border.

As far as transaction databases are concerned, we study a JEP-based method.
In the beginning, a decision transaction database is computed for a given decision
table. Then, for each class k, we compute a space JEP (D′

k, Dk) by means of
JEP-Producer. Actually, the purpose is to find the left bound of this space, since,
according to Theorem 2 from [4], the right bound is trivially equal to {t : (n, t) ∈
Dk}. First, the spaces for both classes, referred to as a positive and negative
space, are equal to the respective horizontal spaces [2]. To obtain a resulting
space, a border differential procedure is performed. This routine is iterative, the
sets of the right bound of the positive space are examined successively. If the
considered set belongs to the negative space, a specific differential procedure,
named BORDER-DIFF, is called in order to correct the bounds of the positive
space [2]. Finally, the set of minimal patters is equal to the left bound of the
resulting space. The execution time depends mostly on the border computation.

6 Implementation Issues

One of major problems in comparing the efficiency of different algorithms is
to choose an adequate methodology. Generally, in sophisticated procedures it is
hard to describe the complexity in a theoretical manner. Even more troublesome
is to find operations common for different approaches so as to make a reliable
comparison. The algorithms studied in our paper operate on sets of attributes
or items and on collections and vectors of these sets. Thus, the crucial thing
is to base their implementation on the same data structures. Actually, many
set implementations have been studied [10], in particular: a byte array, a bit
array or a balanced tree. We tested algorithms using all these three approaches.
For the comparison, we chose the first one due to its simplicity, high efficiency
and absence of optimizations that can disturb the result. More specifically, the
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current size of a set is stored instead of being computed on-demand. It appears
important e.g. when a collection of sets is stored as cardinality-wise buckets [2].

Our implementation is coded in Java 1.5. In particular, the collection of sets is
represented by a balanced tree based on the class java.util.TreeSet and a vector
of sets by java.util.ArrayList. The local reduct computation is based on [6,5,9]
and JEP-Producer is implemented with optimization remarks described in [2].

7 Efficiency Tests

The algorithms have been tested against consistent decision tables from [11]. We
repeated executions for each data set and each method to obtain a reliable aver-
age execution time. Tests have been performed on Intel Pentium M 2.13GHz with
2GB of RAM, switched to a stable maximum performance, using the Windows
XP operating system and Sun JRE 1.5.0.06.

For small datasets (lymn, zoo) all methods have similar efficiency. The classic
approach scales worse than the apriori method with the number of attributes
(dna, lung, mushroom). On the other hand, JEP-Producer is slower for a high
number of items (dna, geo, lung, mushroom), which depends on attributes and
their domain values. The results for large universums (krkopt, mushroom, nurs-
ery) suggest that JEP-Producer tends to be significantly slower than rough set
approaches. Based on the tested datasets the apriori-like method [9] seems to be
more appropriate, when a large number of objects or attributes is concerned.

Table 1. Experimental results summary (time in ms)

Dataset Obj. Attr. Items Red. classic time Red. apriori time JEP-Producer time
car 1728 6 25 880 917 5276
dna 500 20 80 3682802 72109 468937
geo 402 10 78 369 338 1796

house 435 16 48 6120 3823 3224
krkopt 28056 6 43 355052 274593 2946906
lung 32 55 220 6653937 25453 2426344
lymn 148 18 59 2406 1301 1401

tic-tac-toe 958 9 27 2276 2729 2396
zoo 101 16 39 114 114 109

nursery 12960 8 27 102823 103750 516807
mushroom 8124 22 117 117568 81854 1180822

8 Conclusions

In the paper, we have discussed the concept of minimal patterns in relational
data. We have focused on two similar ideas: minimal patterns obtained from local
reducts and jumping emerging patterns. As far as relational data is concerned, we
have demonstrated the equivalence between both types of patterns in a positive
region. Moreover, similarities are present in classification methods originating in
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both streams. The pattern sets used in JEP-C and DeEP are equivalent to sets
induced for positive objects in respective eager and lazy local reduct methods.

On the contrary, results for methods of minimal pattern discovery vary signif-
icantly due to differences in the form of data. Efficiency tests performed for large
consistent decision tables confirmed the intuition that methods using the infor-
mation held in attributes outperform the solutions operating on a more general,
transactional form of data, like JEP-Producer. Nevertheless, all the methods be-
have similarly for small datasets and time differences are not unequivocal. The
results suggest that rough set methods seem more appropriate in the analysis
of large relational data. In particular, an apriori-like algorithm appears more
efficient than a classic method that minimizes an indiscernibility function.

In our opinion both modes of reasoning of thought bring a number of inter-
esting ideas that can be interchanged in order to develop more efficient methods
for the analysis of relational and transactional data.
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Abstract. It is a big challenge to guarantee the quality of association rules in 
some application areas (e.g., in Web information gathering) since duplications 
and ambiguities of data values (e.g., terms). This paper presents a novel concept 
of rough association rules to improve the quality of discovered knowledge in 
these application areas. The premise of a rough association rule consists of a set 
of terms (items) and a weight distribution of terms (items). The distinct 
advantage of rough association rules is that they contain more specific 
information than normal association rules. It is also feasible to update rough 
association rules dynamically to produce effective results.  The experimental 
results also verify that the proposed approach is promising. 

1   Introduction 

One of the important issues for Web information gathering is to apply data mining 
techniques within Web documents to discover some interesting patterns for user 
information needs. The motivation arises while we determine the interesting and 
useful Web pages or text documents to a specified topic. It is easier for users to 
answer which of Web pages or documents are relevant to the specified topic rather 
than describe what the specified topic they want. The challenging issue is how to use 
the discovered patterns effectively for such problem. 

Data mining has been used in Web text mining, which refers to the process of 
searching through unstructured data on the Web and deriving meaning from it [6] [8] 
[12]. One of main purposes of text mining is association discovery [3], where the 
association between a set of terms and a category (e.g., a term or a set of terms) can 
be described as association rules. The current association discovery approaches 
include maximal patterns [7] [11], sequential patterns [22] and closed sequential 
patterns [23] [24]. 

The association discovery approaches only discuss relationship between terms in a 
broad-spectrum level. They pay no attention to the duplications of terms in a 
transaction (e.g., a document) and labeled information in the training set. The 
consequential result is that the effectiveness of the systems is worse than the 
traditional information retrieval. The objective of this paper is to improve the 
effectiveness of association discovery by presenting the concept of rough association 
rules, where the premise (antecedent) of a rough association rule consists of a set of 
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terms and a weight distribution of terms, which normalizes frequencies in documents. 
We also present a mining algorithm for discovery of the rough association rules in this 
paper.  

The distinct advantage of rough association rules is that we can take away 
uncertainties from discovered knowledge through updating supports and weight 
distributions of association rules. We also establish a method for updating rough 
association rules according to negative association discovery. This research is 
significant since it takes one more step further to association discovery for text 
mining.  

2   Information Table 

Formally the association discovery can be described as an information table (D, VD ), 
where D is a set of documents in which each document is a set of terms (may include 
duplicate terms); and VD = {t1, t2, …, tn} is a set of selected terms from D.  

A set of terms X is referred to as a termset if X ⊆ VD. Let X be a termset, we use [X] 
to denote the covering set of X, which includes all documents d such that X ⊆ d, i.e., 
[X] = {d | d∈ D, X ⊆ d}. 

If we view each document as a transaction, an association rule between termset X 
and termset Y is a rule of the form X → Y. Its support degree is |[X∪Y]|, and its 
confidence is |[X∪Y]|/ |[X]|, where |A| denotes the number of elements in A.  

3   Decision Rules 

Two important factors are missed in the information table: the duplications of terms in 
a document and labeled information. To consider both factors, we use a decision table 
to replace the information table.  

We now assume that D consists of a set of positive documents, D+; and a set of 
negative documents, D-. For example, Table 1 depicts a set of labeled documents that 
frequently citied (min_sup = 20) for a specified topic “Economic espionage”.  

Table 1. An example of labeled documents 

Document Termset POS Nd 

d1 GERMAN VW  GERMAN yes 80 
d2 US US ECONOM ESPIONAG yes 140 
d3 US BILL ECONOM ECONOM  ESPIONAG ECONOM yes 40 
d4 US ECONOM ESPIONAG BILL yes 450 
d5 GERMAN MAN VW ESPIONAG yes 20 
d6 GERMAN GERMAN MAN VW ESPIONAG yes 200 
d7 GERMAN VW GERMAN VM no 20 
d8 US ECONOM no 50 

In this example, D+ = {d1, d2, d3, d4, d5, d6}; D- = {d7, d8}; VD = {t1, t2, t3, t4, t5, t6, 
t7} = {GERMAN, VW, US, ECONOM, BILL, ESPIONAG, MAN}; Nd is the 
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frequency of the document citied for the specified topic; and POS=yes denotes the 
document positive, otherwise negative. 

Table 2 demonstrates the corresponding decision table (D, AC, AD), where the set of 
objects D = {d1, d2, d3, d4, d5, d6, d7, d8}; the set of condition attributes AC = {t1, t2, t3, 
t4, t5, t6, t7}, and the set of decision attributes AD = {POS}.   

Table 2. An example of labeled documents 

Doc t1 t2 t3 t4 t5 t6 t7 POS 
d1 2 1 0 0 0 0 0 yes 
d2 0 0 2 1 0 1 0 yes 
d3 0 0 3 1 1 1 0 yes 
d4 0 0 1 1 1 1 0 yes 
d5 1 1 0 0 0 1 1 yes 
d6 2 1 0 0 0 1 1 yes 
d7 2 2 0 0 0 0 0 no 
d8 0 0 1 1 0 0 0 no 

Every object (document) in the decision table can be mapped into a decision rule (a 
sort of association rules) [19]: either a positive decision rule (POS=yes) or a negative 
decision rule (POS=no). So we can obtain eight decision rules, e.g., d1 in Table 2 can 
be read as the following rule: 

(GERMAN, 2) ^ (VW, 1) → yes 
where each pair (term, frequency) denotes a term frequency pair.  

Let termset(d) = {t1, …, tk}, formally every document d determines a sequence: 
(t1, f(t1, d)), …,  (tk, f(tk, d)), POS(d). 

The sequence can determine a decision rule: 
(t1, f(t1, d)) ^ … ^ (tk, f(tk, d)) → POS(d) 

or in short d(AC )→ d(AD ).  
Algorithm 3.1 describes Pawlak’s idea for the discovery of decision rules ([19] or 

[16]). If we assume the basic operation is the comparison between two objects (i.e., 
d(AC) = d´ (AC) ), then the time complexity is (n-1) × n = O(n2), where n is the number 
of objects in the decision table. It also needs a similar algorithm to determine 
interesting rules for Pawlak’s method. 

Algorithm 3.1 (Pawlak’s Method) 
Input parameters: D, AC, AD and VD. 
Output: Decision rules. 
Method: 

1. let UN = 0; 
2. for (each d∈ D )  UN = UN + Nd; 
3. for (each d∈ D ) 

                    { strength(d) = Nd/UN, CN = Nd; 
                       for (each d´∈ D and d´≠d ) 
                                if (d(AC) = d´ (AC))  CN = CN + Nd´; 
                       certainty_factor(d) = Nd/CN; }. 
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We can obtain a lot of decision rules as showed in the above example. However 
there exists ambiguities whist we use the decision rules for determining other 
relevance information for the specified topic.  For example, give an instance of a 
piece of information that contains only four terms t3, t4, t5 and t6; but we can found 
two rules’ premises (d3 and d4) match this instance.  

To remove such ambiguities, we present the concept of rough association rules in 
next section.  

4   Rough Association Rules 

For every attribute a∈AC, its domain is denoted as Va; especially in the above 
example, Va is the set of all natural numbers. Also AC determines a binary relation 
I(AC) on D such that (di,dj) ∈ I(AC) if and only if a(di)>0 and a(dj)>0 for every a∈ AC, 
where a(di) denotes the value of attribute a for object di∈D.  

It is easy to prove that I(AC) is an equivalence relation, and the family of all 
equivalence classes of I(AC), that is a partition determined by AC, is denoted by D/AC. 
The classes in D/AC are referred to AC-granules (or called the set of condition 
granules). The class which contains di is called AC-granule induced by di, and is 
denoted by AC (di). We also can obtain an AD-granules D/AD (or called the set of 
decision granules) in parallel.    

For example, using Table 2, we can get the set of condition granules, D/AC = {{d1, 
d7}, {d2}, {d3, d4}, {d5, d6}, {d8}}, and the set of decision granules, D/AD = {POS = 
yes, POS = no} = {{d1, d2, d3, d4, d5, d6}, {d7, d8}}, respectively. In the following we 
let D/AC = {cd1, cd2, cd3, cd4, cd5} and D/AD = {dc1, dc2}.  

We also need to consider the weight distributions of terms for the condition 
granules in order to consider the factor of duplications of terms in documents. Let cdi 

be {di1, di2, …, dim}, we can obtain a weigh distribution about the terms in these 
documents for granule cdi using the following equation:  

                  

∈

=

CAa i

ij
j

cda

cda
aweight

)(

)(
)(      (4.1) 

where we use a merge operation to assign a value to condition granules’ attributes:  
a(cdi) = a(di1) + a(di2) + ... + a(dim) 

for all a∈AC.  
Table 3 illustrates a set of condition granules we obtain from Table 2 according to 

the above definitions, where each condition granule consists of a termset and a weight 
distribution. For example, cd1 = <{t1, t2}, (4/7, 3/7, 0, 0, 0, 0, 0)> or in short cd1 =  
{(t1, 4/7),  (t2, 3/7)}.  

Using the associations between condition granules and decision granules, we can 
rewrite the eight decision rules in Table 2 (see Nd in Table 1) as follows:  

cd1 → {(POS=yes, 80/100), (POS=no, 20/100)};  cd2 → {(POS=yes, 140/140)} 
cd3 → {(POS=yes, 490/490)};  cd4 → {(POS=yes, 220/220)} 
cd5 → {(POS=no, 50/50)}. 
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Table 3. Condition granules 

Condition granule t1 t2 t3 t4 t5 t6 t7 
cd1 4/7 3/7      
cd2   1/2 1/4  1/4  
cd3   2/5 1/5 1/5 1/5  
cd4 1/3 2/9    2/9 2/9 
cd5   1/2 1/2    

Formally the associations can be represented as the following mapping: 
]1,0[)/(2/: ×→Γ DA

CA DD , where Γ(cdi) is the set of conclusions for premise cdi (i = 1, 

…, |D/AC|), which satisfies 1
)(),(

=
Γ∈

snd
icdsndfst

 for all cdi∈ D/AC. 

Now we consider the support degree for each condition granule. The obvious way 
is to use the cited numbers in the decision table, that is, 

∈
=
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Given a condition granule cdi, let )}(,),,{()( |)(|,|)(|,1,1, ii cdicdiiii snd,fst ...  sndfstcd ΓΓ=Γ  

We call “  fst  cd jii ,→ ” a rough association rule, its strength is sup(cdi)×sndi,j and its 

certainty factor is sndi,j, where 1≤ j ≤|Γ(cdi)|. 

From the above definitions, we have
||

|| ,
,

i
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ji cd

fstcd
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∩
=  that proves the above 

definitions about strengths and certainty factors are the generalization of Pawlak’s 
definitions about decision rules. Fig. 1 illustrates the data structure for the 
representation of associations between condition granules and decision granules. 

sup D/AC  Γ(cdi) 

0.10 cd1 → (dc1, 0.8) (dc2, 0.2) 

0.14 cd2 → (dc1, 1)  

0.49 cd3 → (dc1, 1)  

0.22 cd4 → (dc1, 1)  

0.05 cd5 → (dc2, 1)  

Fig. 1. The data structure for associations between condition granules and decision granules 

5   Mining Algorithms 

In this section, we first present an algorithm (see Algorithm 5.1) to find the set of 
rough association rules. We also analyse the proposed algorithm and compare it with 
Pawlak’s Method.  
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The time complexity of Algorithm 5.1 is determined by step 3 since steps 4, 5, and 
6 all traverse the data structure, where  |D/AC |  n; the number of pairs in all Γ(cdi)  
(i = 1, …, |D/AC |) is just n; and  n is the number of objects in the decision table.  

In step 3, checking if (∃cd∈D/AC such that termset(d) =termset(cd)) takes 
O(|D/AC|), so the time complexity of the algorithm is O(n×|D/AC|), where the basic 
operation is still the comparison between objects. Algorithm 5.1 is better than 
Algorithm 3.1 in time complexity since |D/AC|  n. 

A decision rule “ jii fst  cd ,→ ” is an interesting rule if )()|( ,, jiiji fstPcdfstP −  is 

greater than a suitable constant.  
From the definition of mapping Γ, we have jiiji sndcdfstP ,, )|( = . To decide the 

probability on the set of decision granules, we present the following function:   

P: D/AD  → [0,1]  such that 
Γ∈∈

×=
)(),(),/(

)()(
iCi cdsndfst ADcd i sndcdsupdcP  

We can prove that P is a probability function on D/AD. The algorithm of 
determining P is only to traverse the data structure as showed in Figure 1. 

Algorithm 5.1 (Rough Association Mining Approach) 
Input parameters: D, AC, AD and VD. 
Output: Rough association rules. 
Method: 

1. let UN  = 0, D/AC = ∅;   
2. for (each d∈ D)  UN = UN + Nd; 
3. for each d∈ D // create the data structure as shown in Figure 1. 
               if (∃ cd∈D/AC  such that termset(d) = termset(cd))  
                         { merge d(AC) to cd,  insert d(AD) to Γ(cd); } 
               else  
                         { add(d(AC)) into D/AC ,  Γ(d(AC)) = d(AD); } 

4. for (i = 1 to |D/AC |)  
              { sup(cdi) = (1/UN ) × ( snd

icdsndfst Γ∈ )(),(
);  

                 calculate weights for cdi using Eq. (4.1); } 
5. for (i = 1 to |D/AC |)  // normalization 
              { temp = 0; 
                 for (j = 1 to |Γ(cdi)|)   temp = temp + sndi,j; 
                 for (j = 1 to |Γ(cdi)|)   sndi,j = sndi,j ÷temp; } 

6. for (i = 1 to |D/AC |) // calculate rule strengths and certainty factors 
                 for (j = 1 to |Γ(ci)|) 
                           { strength(cdi→fsti,j) = sup(cdi) × sndi,j;  

                              certainty_factor(cdi→fsti,j) = sndi,j; }. 

6   Updating Rough Association Rules 

Indeed not all association rules are useful for a particular application. For example, 
most people usually use positive decision rules to determine documents’ relevance. 
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However, the consequential result of using the positive rules is that many irrelevant 
documents may be marked in relevance [15]. That guides us to refine positive decision 
rules through considering negative decision rules. 

Give a negative rule “cd → (dc2, x)”, let termset(cd) =  {t1, t2 , …, tm}. We use the 
following procedure to update positive rough association rules in our experiments: 

for (i = 1 to |D/AC |)   
 if (termset(cdi) ⊆ termset(cd))  
  deduct half support from cdi; 
 else if  (termset(cdi) ∩ termset(cd) ≠∅) 
  shift half weight from all terms in the intersection to cdi’s rest terms; 

For example, “cd5 → (dc2, 1)” is a negative rule in Figure 1 and it does not include 
any condition granules but we have 

termset(cd2) ∩ termset(cd5) = termset(cd3) ∩ termset(cd5) = {t3, t4 } ≠ ∅. 

The shifting operation includes two steps: 

1. take half weight from every term in termset(cdi) ∩ termset(cd); 
2. distribute the total of the half weighs to all terms in termset(cdi)-termset(cd); 

For example, we have cd3  = {(t3, 2/5), (t4, 1/5), (t5, 1/5), (t6, 1/5)} and cd5  =  {(t3, 
1/2), (t4, 1/2)} in Table 3. To implement the shifting operation, we firstly take half 
weight from t3 and t4 in cd3 respectively, and the total is (2/10 + 1/10) = 3/10. We also 
distribute the total to t5 and t6 as follows:  

weight(t5) = weight(t6) =1/5 + { [(3/10)*(1/5)]÷(1/5 + 1/5)} = 7/20. 

The shifting operation can be used to update the weight distributions of cd2 and cd3 
in Table 3. Table 4 illustrates the result of shifting weights for condition granules cd2 
and cd3, where cd5 is the negative rule. 

Table 4. Shifting weights in some condition granules 

7   Evaluations 

In this section, we evaluate the proposed method. We use a standard data collection, 
TREC2002 (filtering track) data collection (Text REtrieval Conference, see 
http://trec.nist.gov/), which included Reuters Corpus articles from 1996-08-20 to 
1997-08-19. In the experiment, we test 20 topics: R101, 102, …, to R120, which 
include about ten thousands different XML documents. 

Condition granule t1 t2 t3 t4  t5 t6 t7 
cd1 4/7 3/7       
cd2   1/4 1/8   5/8  
cd3   1/5 1/10  7/20 7/20  
cd4 1/3 2/9     2/9 2/9 
cd5   1/2 1/2     
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The proposed testing is compared to normal association rule mining that discards 
information about the frequency of the terms in the document and decision rule 
mining. We use both top 25 precision and breakeven point which are two methods 
used in Web mining for testing effectiveness, where a breakeven point is a point in 
the precision and recall curve with the same x coordinate and y coordinate. The 
greater both the top 25 precision and the breakeven point, the more effective the 
model is.  

The selected terms VD were chosen by removing stop words, stemming the 
documents using the porter stemming algorithm and then taking the top 150 terms 
chosen by tf*idf weights.  

Given a testing document, d, we use the following equation to determine its 
relevance:  

),()()( dtermtermweightdrel
DVterm
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Fig. 2. Difference between models 

Figure 2 shows the difference of rough association mining and association rule 
mining in Break Even Point and Top 25 Precision for the 20 topics. The positive 
values (the bars above the horizontal axis) mean the rough association mining 
performed better than association mining. The negative values (the bars below the 
horizontal axis) mean the association mining performed better than rough association 
mining.  

It is no less impressed by the performance of the rough association rule mining 
since both top 25 precision and breakeven points gain a significant increase. On 
average the rough association rule mining increased the Break Even Point and Top 25 
Precision by 13.9% = (0.49-0.43)/0.43 and 10.2% = (0.54-0.49)/0.49, respectively.  
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8   Related Works 

Web information gathering (IG) systems tend to find useful information from the 
huge size of Web related data sources to meet their user information needs. The key 
issue regarding the effectiveness of IG is automatic acquiring of knowledge from text 
documents for describing user profiles [14] [17]. It is also a fundamental issue in Web 
personalization [4]. 

Traditional information retrieval (IR) techniques can be used to provide simple 
solutions for this problem. We can classify the methods into two categories: single-
vector models and multi-vector models. The former models produce one term-weight 
vector to represent the relevant information for the topic [2] [10] [5] [21]. The later 
models produce more than one vector [18] [13]. IR based techniques can be used to 
obtain efficient systems. This is the distinct merit of IR-based techniques. However, 
the main drawback of IR-based models is that it is hard to interpret the meaning of 
vectors, and hence the correlation between vectors cannot be explained using user 
acceptable concepts.  

Text mining tries to derive meaning from documents. Association mining has been 
used in Web text mining for such purpose for association discovery, trends discovery, 
event discovery, and text classification [6] [9] [12]. To compare with IR-based models, 
data mining-based Web text mining models do not use term independent assumption 
[1].  Also, Web mining models try to discover some unexpected useful data [3]. The 
disadvantage of association rule mining is that the discovered knowledge is very 
general that makes the performance of text mining systems ineffectively [24].  

Rough set based decision rule mining [19] [16] [20] could be a promising method 
for association rule generation. However, there exists ambiguities whist we use the 
decision rules for determining other relevance information for specified topics. Rough 
association rule mining can be used to overcome these disadvantages. 

9   Conclusions 

In this paper, we present a new concept of rough association rules to improve of the 
quality of association discovery for text mining. To compare with the traditional 
association mining, the rough association rules include more specific information and 
can be updated dynamically to produce more effective results.  

We have verified that the new algorithm is faster than Pawlak’s decision rules 
mining algorithm. We also show that the proposed approach gains a better 
performance on both precision and recall. This research is significant since it takes 
one more step further to the development of association rule mining. 
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Abstract. The internet service NetTRS that enable to induction, eval-
uation, and postprocessing of decision rules is presented in the paper.
The TRS library is the main part of the service. The TRS library makes
possible, among others, induction of decision rules by means of tolerance
rough sets model.

1 Introduction

Tolerance Rough Sets (TRS) library was created as a tool for data analysis,
using tolerance rough sets model [12]. The final result of data analysis is a
set of rules, that describes patterns discovered in analysed data. Sets of rules,
obtained as a results of not trivial data sets analysis, are rather big, that causes
some difficulties in interpretation and adapting those rules in practice. Hence
TRS library offers many heuristic algorithms implemented in, which allow to
reduce the number of generated rules. Most of them can be found in literature
described in detail [7],[8],[10], therefore only short descriptions of algorithms are
written below.

Library is equipped with a simple script interpreter. Script is a set of com-
mands written in special ,,language” and allows to execute experiments (analy-
sis) faster. The results of those experiments are stored in text files and contains:
obtained sets of rules (with their quality measure value) and classification re-
sults. The library - for the sake of its experimental nature - accepts train, test
and tune data sets in specific text format.

NetTRS environment (service) makes TRS library accessible via Internet. New
data analysis task (also called an ,,experiment”) defining consists in uploading
train, test and tune data files to service and setting parameters of available
algorithms. On the basis of their parameters the controlling script is generated,
that later is interpreted by the library. The results of analysis are stored in text
files and can be viewed in web browser window or can be downloaded to a local
computer.

In the following chapters service functionality and technical aspects are briefly
described.
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2 System Functionality

2.1 Tolerance Thresholds

TRS library allows to generate decision rules from relative reducts [13] or us-
ing one of two algorithms: MODLEM [14] or RMatrix [8]. In the case of rules
induction form relative reducts it is necessary to determine tolerance thresholds.
There are two ways of tolerance threshold vector searching, implemented in TRS
library:

– searching by a genetic algorithm [15]; in this case, for conditional attributes
set {a1, . . . , am}, tolerance threshold vector (εa1, . . . , εam) is searched, that
for every i �= j tolerance thresholds εai, εaj can be different

– using a climbing strategy; in this case, for a set of conditional attributes
{a1, .., am}, tolerance threshold vector (εa1, . . . , εam) is searched, that for
every i �= j, εai = εaj ; optimal vector searching starts with vector (0, . . . , 0),
thresholds are increased by user defined value (0.1 by default), after increas-
ing the new vector is evaluated and the vector with highest evaluation is
admitted as the optimal one

In each case user can choose one from various criteria of threshold optimality,
applying standard criterion given by Stepaniuk [15] or criteria adapted from
decision rules quality measures.

For a given decision table DT = (U, A∪{d}), where U is a set of objects, and
A is a set of conditional attributes, standard tolerance threshold vector quality
measure is defined in the following way:

wγ(d) + (1 − w)νSRI(Rd, RIA) (1)

where γ = |POS(d)|
|U| , POS(d) is a positive region of the decision table DT ,

Rd = {< x, y >∈ U × U : d(x) = d(y)}, RIA = {< x, y >∈ U × U : y ∈ IA(x)},
νSRI(X, Y ) is a standard rough inclusion [6] and IA(x) is a set of objects similar
to x in given tolerance threshold vector.

We expect from tolerance thresholds vector, that most of all objects from the
same decision class (Rd) will be admitted as similar (RIA). Then, for a given
tolerance thresholds vector, Rd, ¬Rd, RIA, and ¬RIA can be determined. On
the basis of them quality measures that evaluate tolerance thresholds vector
can be built, similarly as it takes place in the case of rule quality measures
[9]. TRS library has some adapted measures for evaluation of tolerance thresh-
old vector (WS, Pearson, Cohen, Coleman, IKIB, Gain, J-measure, Brazdil,
IREP).

Distance between attributes values is calculated in two ways: using the diff
measure [15] for a numeric attributes and the vdm measure [15] for a symbolic
ones. Standard rough set model can be obtained by setting all threshold values
εai = 0.



380 M. Sikora and M. Michalak

2.2 Rules

TRS library generates decision rules in the following form (2):

IF a1 ∈ Va1 and . . . and ak ∈ Vak THEN d = vd (2)

where {a1, . . . , ak} ⊆ A, d is the decision attribute, Vai ⊆ Dai, νd ⊆ Dd, where
Da is the domain of an attribute a ∈ A. Expression a ∈ V is called a conditional
descriptor and a set of objects with the same value of decision attribute is called
decision class (denoted as Xv = {x ∈ U : d(x) = v}).

Decision rules, given in the form (2), can be inducted in a few ways:

– by the local relative reducts [13]; in this case, decision rules are generated on
the basis of discernibility matrix; there are three different algorithm variants:
all rules (from each objects all relative reducts are generated and from each
reduct one decision rule is obtained), one rule (from each object only one
relative reduct is generated - the shortest one - that is used for the rule cre-
ation, the shortest reduct is determined by the modified Johnson algorithm
[5]); from each object given by the user rules number is generated, in this
case the randomized algorithm is used [5];

– by the RMatrix algorithm, that also uses discernibility matrix, but takes
into consideration rule quality measure to control rules induction process;
each decision rule is built around the object–generator, that has assigned
one row (column) in the discernibility matrix; the algorithm uses attributes
ranking, in the consideration of their appearance frequency in analysed row
(column) cells; rule induction starts from the first attribute (first conditional
descriptor) in the ranking, adding next conditional description makes the
rule more accurate but also decreases its coverage; each time the descriptor
is added the new rule is evaluated by the rule quality measure; the final rule
is the one with the highest value of that measure; the detailed description
of this algorithm can be found in [8];

– by the MODLEM algorithm; in this case the tolerance thresholds searching
is not needed, because this algorithm uses non discretized data; the standard
version of the MODLEM algorithm rules induction is finished by getting the
maximal possible accuracy that can be achieved in given decision table; it
usually leads to creation quite a big number of decision rules; TRS library
limits number of decision rules by using rule quality measures during rule
induction; the rule is evaluated after every descriptor adding/modifying; the
final rule is the one with the best evaluation; rule induction process ends
in the moment, when the rule quality decreases; the detailed description of
the MODLEM algorithm can be found in [14], the modification is described
in [11].

2.3 Rules Generalization and Filtration

Apart from the number of generated rules (either all minimal rules are obtained
or the heuristic algorithm is used) it is common, that the set of generated deci-
sion rules is large, what decreases its describing ability. TRS library owns some
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algorithms implemented in, that are responsible for the generated rules set post-
processing. The main target of postprocessing is to limit the number of decision
rules (in other words: to increase their describing ability) but with keeping their
good classification quality simultaneously.

TRS library developed postprocessing in two ways: rules generalization (rules
shortening and rules joining) and rules filtering (rules, that are not needed in
view of certain criterion, are removed from the final rules set).

Shortening a decision rule consists in removing some conditional descriptors
from the conditional part of the rule. Every unshortened decision rule has an
assigned quality measure value. The shortening process takes time as long as the
new rule quality decreases below defined by the user threshold. The threshold
of quality is defined for each decision class separately. The order of descriptors
removing is set in accordance with a climbing strategy.

Rules joining consists in obtaining one more general rule from two (or more)
less general rules. The joining algorithm implemented in TRS library bases on
following assumptions: only rules from the same decision class can be joined, two
rules can be joined if their conditional parts are built from the same conditional
attributes or if one rule conditional attributes set is a subset of the second rule.

Rules joining process consists in joining sets of values of corresponding condi-
tional descriptors. If conditional descriptor (a, V 1

a ) occurs in the conditional part
of ϕ1 → ψ rule and descriptor (a, V 2

a ) occurs in the conditional part of ϕ2 → ψ
rule, then - as the result of joining process - the final conditional descriptor
(a, Va) has the following properties: V 1

a ⊆ Va and V 2
a ⊆ Va .

Controlling of the rules joining process bases on the following rules: the ,,ba-
sis” one, to which the other rule is joined, is the rule with higher value of the
quality measure; conditional descriptors are joined sequentially; the order of de-
scriptors joining is determined by the value of new rule r quality measure; the
best descriptor to be joined is determined by the climbing strategy; the process
stops when the new rule recognizes all positive training examples, recognized by
rules r1 and r2.

The new decision rule replaces two joined rules in the description of the deci-
sion class, if its quality is not less than the quality of the basis rule. The detailed
description of this algorithm can be found in [7].

Decision rules filtration process consists in removing some rules from a deci-
sion class description, that are useless according to defined criterion. There are
two kinds of algorithms implemented in the TRS library: not considering and
considering classification accuracy of filtered rules set.

First approach is represented by the ,,From coverage” algorithm. The first
step of this algorithm is to generate a rules ranking, then the train set coverage
building starts from the best rule. The following rules are added according to
their position in ranking. When the final rules set covers all train examples, all
remaining rules are rejected.

The second approach is represented by two algorithms: ,,Forward” and ,,Back-
ward”. Both of them, besides the rules ranking generated in the basis of selected
rule quality measure, take into consideration the result of all rules classification
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accuracy. To guarantee the independence of the filtration result the separate
tuning set of examples is applied.

In the case of ,,Forward” algorithm, each decision class initial description
contains only one decision rule - the best one. Then, to each decision class de-
scription single rules are added. If the decision class accuracy increases, the
added rule remains in this description, otherwise next decision rule is consid-
ered. The order of rules is defined by the rule quality measure. The process of
adding rules to the decision class description stops when the obtained rules set
has the same classification accuracy as the initial, or when all rules have been
already considered.

The ,,Backward” algorithm is based on the opposite conception. From each
decision class description decision rules are removed, with effect from the weakest
ones. The order of rules removing is given by the rule quality measure. Keeping
the difference between accuracy of the most and the least decision class guaran-
tees, that the filtered rules set keeps the same sensitivity as the initial.

Also a simple algorithm, that removes rule, which quality is less then de-
fined by user threshold, is implemented in TRS library. All mentioned filtration
algorithms are described in [10].

2.4 Classification

Classification is considered as a process of assigning objects to corresponding
decision classes.

TRS library uses a ,,voting mechanism” to perform objects classification
process. Each decision rule has an assigned kind of confidence grade (simply: this
is a value of the rule quality measure). The TRS library classification process
consists in summing up confidence grades of all rules from each decision class,
that recognize a test object (3). Test object is assigned to the decision class, that
has the highest value of mentioned sum. Sometimes it happens, that object is
not recognized by any rule from given decision classes descriptions. In case of
that, it is possible to calculate a distance between the object and the rule, and
admit that rules close enough to the object recognizes it.

conf(Xv, u) =
∑

r∈RULXv (DT ),dist(r,u)≤ε

(1 − dist(r, u)) · q(r) (3)

In the formula (3) dist(r, u) is a distance between the test object u and the
rule r (Euclidean or Hamming), ε is a maximal acceptable distance between
the object and the rule (especially when ε = 0 classification takes place only by
the rules, that accurately recognizes the test object), q(r) is voice strength of
the rule.

2.5 Rule Quality Measures

Most of mentioned algorithms use rule quality measures. They make possible to
evaluate rules quality, joining the evaluation of its accuracy and coverage. From
the theory of probability point of view the dependence presented by the decision
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rule, that is accurate and is characterized by the large coverage, describes a
general regularity extracted from data.

It is common to use measures, that are based on the contingency table. The
contingency table for the rule ϕ → ψ is usually shown as a square matrix as
follows:

nϕψ nϕ¬ψ nϕ

n¬ϕψ n¬ϕ¬ψ n¬ϕ

nψ n¬ψ

where:
nϕ = nϕψ + nϕ¬ψ = |Uϕ| — number of objects recognizing the rule ϕ → ψ,
n¬ϕ = n¬ϕψ + n¬ϕ¬ψ — number of objects not recognizing the rule ϕ → ψ,
nψ = nϕψ + n¬ϕψ = |Uψ| — number of objects from decision class, described
by the rule ϕ → ψ, n¬ψ = nϕ¬ψ + n¬ϕ¬ψ — number of objects form another
decision classes, nϕψ = |Uϕ ∪ Uψ|, nϕ¬ψ = |Uϕ ∪ U¬ψ|, n¬ϕψ = |U¬ϕ ∪ Uψ|,
n¬ϕ¬ψ = |U¬ϕ ∪ U¬ψ|.

TRS library has the following popular quality measures implemented in: Ac-
curacy, Coverage, WS (proposed by Michalski), Brazdil, Cohen, Coleman, Gain,
IKIB, Pearson, IREP. Those measures properties are described in details in [4],
[1], [10], so no measure formulas are presented in this paper.

TRS library gives a possibility to calculate values of above measures for ob-
jects that are uniquely covered by the rule. There is also the other measure
implemented in the library, called ,,mixed measure” and defined in the following
way:

q(r)new = q(r)unique/q(r)normal (4)

where: q(r)unique — q measure value, that takes into consideration only ob-
jects, that uniquely recognizes r rule, q(r)normal — q measure value calculated
typically.

The number of conditional descriptors, contained in the conditional part of
the decision rule, is very important from the interpretation of dependencies (de-
scribed by the rule) point of view. The library allows to evaluate the decision
rule from the point of view of its conditional descriptors number; the evaluation
is higher as the number of conditional descriptors decreases. It is also possible
to evaluate a decision rules, considering both of them: rule quality and length.

TRS library makes possible, besides applying rules quality measures to rules
induction and postprocessing, to create a ranking of a given rules set get by a
given rule quality measure.

3 Technical Aspects and System Overview

System NetTRS is implemented with ASP.NET technology. At present, only by
the Internet Explorer web browser window the system is available.

User interface consists of a web sites set. Some of them are responsible for a
new data analysis task defining (Fig. 1) and some of them show the user results of
previous experiments and make possible to download them to the local computer.
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The separate system layer is responsible for a consecutive realization of all
data analysis tasks, defined by all users. This layer deals with transferring data
analysis results to the user interface layer. When the data analysis process
reaches the end, all files (data and result) are compressed to one file, that is
transferred to the mentioned layer.

3.1 Data Analysis Tasks Defining and Setting Parameters

The system web pages set has a ,,tabbed” structure. On the first tab Analysis
(Fig. 1) user defines a type of new experiment (one of three common known
testing methodologies are available: train and test, 5 – fold CV and 10 – fold
CV). After Files upload option selecting, the website that makes possible to
select train, test and tune files is shown.

The following options on the Analysis tab setting (Reducts and rules generat-
ing; Rules generalization and so on) gives the user a possibility to set all parame-
ters of all indicated algorithms, that are used during data analysis process. Fig.
2 shows a configuration website that sets parameters of shortening and joining
rules algorithms.

When all required data files are uploaded, Script tab becomes enable, that
contains parameters of all defined algorithms within the framework of one ex-
periment. The task becomes queued when user presses the button Upload on the
Script tab.

Since user can defined more than one data analysis, the Current state tab
allows to monitor which tasks remain still in queue.

All user defined experiments are executed by the TRSExecutor program on the
server side, that cyclically reads them from the database, which stores all data
about users, their experiments and results of those experiments. The TRSEx-
ecutor program starts the executable version of TRS library and transmits the
control script describing the current experiment. When all calculations connected
with an experiment are finished, all result files and data files are compressed to
the one archive, that is available for the user on the Results tab.

As user defined consecutive experiments are finished, their results appears
on the Results tab. User can view them in the web browser window or down-
load them as the compressed archive file and analyse them on the local com-
puter.

The primary result file, generated by TRS library, is a text file with a default
name out.txt. It contains, depending on algorithms chosen during data analysis
definition, originally generated decision rules, rules after shortening process, rules
after joining, rules after filtering and classification results. The content of this
file can be viewed after the View button click, on the Results tab. TRS library
generates also some auxiliary files, that contain rules rankings and rules with
their quality measure values. As it was mentioned above, all files connected with
a single experiment (both: data and results) are compressed to the one file and
made available for the user.



NetTRS Induction and Postprocessing of Decision Rules 385

Fig. 1. New experiment labelling

Fig. 2. Rules generalization algorithms side
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4 Conclusions

This paper describes web application, that makes possible to use some of algo-
rithms that are implemented in TRS library. Both, the library and the system,
still have experimental character only. At present, the system has a poor user
interface there is no possibility for data management but it is one of the first
systems, by means of which user can perform experiments (analyse data) with
no need of their implementation. The functionality of the service differs from
other known tools for rules induction (RSES [2], WEKA, Rosetta).

The further works, that take into consideration functionality of mentioned
tools, will focus on user interface development, implementation of scattering
functions (similar as in the DIXER system [3]) and parallel computing. The
scattering and paralleling functionality will be added to TRS library, the NetTRS
system will work as today with a new module, that will distribute experiments
between servers.

It is necessary to have an account to log into the server:

www.nettrs.polsl.pl/nettrs (http://157.158.55.79/nettrs)

It can be obtained, after contact to service administrator:

Marcin.Michalak@polsl.pl
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Abstract. In recent years, much attention has been given to the prob-
lem of outlier detection, whose aim is to detect outliers — individuals
who behave in an unexpected way or have abnormal properties. Outlier
detection is critically important in the information-based society. In this
paper, we propose a new definition for outliers in rough set theory which
exploits the rough membership function. An algorithm to find such out-
liers in rough set theory is also given. The effectiveness of our method
for outlier detection is demonstrated on two publicly available databases.

Keywords: Outlier detection, rough sets, rough membership function.

1 Introduction

Usually, knowledge discovery tasks can be classified into four general categories:
(a) dependency detection, (b) class identification, (c) class description, and (d)
outlier/exception detection [1]. In contrast to most KDD tasks, such as clustering
and classification, outlier detection aims to find small groups of data objects that
are exceptional when compared with the rest large amount of data, in terms of
certain sets of properties. For many applications, such as fraud detection in E-
commerce, it is more interesting to find the rare events than to find the common
ones, from a knowledge discovery standpoint. While there is no single, generally
accepted, formal definition of an outlier, Hawkins’ definition captures the spirit:
“an outlier is an observation that deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism” [1, 2]. With
increasing awareness on outlier detection in literatures, more concrete meanings
of outliers are defined for solving problems in specific domains [1, 6-13].

Rough set theory introduced by Z. Pawlak [3-5], as an extension of naive set
theory, is for the study of intelligent systems characterized by insufficient and
incomplete information. It is motivated by practical needs in classification and
concept formation. In recent years, there has been a fast growing interest in
rough set theory.

In this paper, we aim to use the rough membership function of rough set theory
for outlier detection. The rough membership function expresses how strongly an
object belongs to a given set of objects in view of available information about the

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 388–397, 2006.
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object expressed by indiscernibility relations. Our basic idea is that objects whose
degrees of membership wrt a given set of objects are small have more likelihood
of being an outlier. Our definition for outliers follows the spirit of Hawkins’
definition. That is, given an information system and a set of indiscernibility
relations in it, if the values of rough membership function of an object wrt a
given subset of universe under these indiscernibility relations are always small,
then we consider that object as not behaving normally and call it an outlier wrt
the given subset of universe.

The paper is organized as follows. In the next section, we introduce some pre-
liminaries that are relevant to this paper. In section 3 we give some definitions
concerning RMF(rough membership function)-based outliers in information sys-
tems of rough set theory. An algorithm to find RMF-based outliers is also given.
Experimental results are given in section 4 and section 5 concludes the paper.

2 Preliminaries

In rough sets, an information system is a quadruple IS = (U, A, V, f), where:
(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) V is the union of attribute domains, i.e., V =

⋃
a∈A Va, where Va denotes

the domain of attribute a;
(4) f : U × A → V is an information function such that for any a ∈ A and

x ∈ U , f(x, a) ∈ Va.
Each subset B ⊆ A of attributes determines a binary relation IND(B), called

indiscernibility relation, defined as follows:

IND(B) = {(x, y) ∈ U × U : ∀a ∈ B (f(x, a) = f(y, a))} (1)

Given any B ⊆ A, relation IND(B) induces a partition of U , which is denoted
by U/IND(B), where an element from U/IND(B) is called an equivalence class
or elementary set. For every element x of U , let [x]B denote the equivalence class
of relation IND(B) that contains element x.

Let B ⊆ A and X ⊆ U , the B-lower and B-upper approximation of X is
defined respectively as follows

XB =
⋃

{[x]B ∈ U/IND(B) : [x]B ⊆ X} (2)

XB =
⋃

{[x]B ∈ U/IND(B) : [x]B ∩ X �= ∅} (3)

The pair (XB, XB) is called the rough set with respect to X . The set BNB(X) =
XB − XB is called the B-boundary region of X .

In classical set theory, either an element belongs to a set or it does not. In the
case of rough sets, the notion of membership is different. A rough membership
function is usually defined as follows [5].
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Definition 2.1. Let IS = (U, A, V, f) be an information system, B ⊆ A, X ⊆ U .
The function μB

X : U → [0, 1] such that for any x ∈ U

μB
X(x) =

|[x]B ∩ X |
|[x]B | (4)

is called a rough membership function (RMF), where [x]B denotes the indis-
cernibility class of relation IND(B) that contains element x, |M | denotes the
cardinality of set M .

The following proposition collects the basic properties for the rough membership
function of definition 2.1 [5].

Proposition 2.2. The rough membership function μB
X of definition 2.1 has the

following properties
(1) μB

X(x) = 1 iff x ∈ XB ;
(2) μB

X(x) = 0 iff x ∈ U − XB;
(3) 0 < μB

X(x) < 1 iff x ∈ BNB(X);
(4) if (x, y) ∈ IND(B) then μB

X(x) = μB
X(y);

(5) μB
X(x) = 1 − μB

U−X(x);
(6) μB

X∪Y (x) ≥ max{μB
X(x), μB

Y (x)};
(7) μB

X∩Y (x) ≤ min{μB
X(x), μB

Y (x)};
(8) If X is a family of pair wise disjoint sets of U , then for any x ∈ U ,

μB
∪X(x) =

∑
x∈X

μB
X(x).

In definition 2.1, the domain of the rough membership function is the universe
U . In this paper, in order to be used in outlier detection, a slightly different defi-
nition for rough membership function is taken. That is, the domain of the rough
membership function is a given subset X of the universe U , not the universe U
itself. Correspondingly, the basic properties for the rough membership function
will differ from those in proposition 2.2. We use another proposition to represent
them.

Proposition 2.3. The rough membership function μB
X has the following prop-

erties
(1) μB

X(x) = 1 iff x ∈ XB ;
(2) μB

X(x) > 0;
(3) μB

X(x) < 1 iff x ∈ X − XB;
(4) if (x, y) ∈ IND(B) then μB

X(x) = μB
X(y);

(5) if IND(B) ∩ (X × (U − X)) = ∅ then μB
X(x) = 1;

(6) given X, Y ⊆ U, for any x ∈ X ∩ Y,

μB
X∪Y (x) = μB

X(x) + μB
Y (x) − |[x]B ∩ X ∩ Y |

|[x]B | ;

(7) given X, Y ⊆ U, for any x ∈ X ∩ Y,

μB
X∩Y (x) = μB

X(x) + μB
Y (x) − |[x]B ∩ (X ∪ Y )|

|[x]B | ;

(8) given X1, X2 ⊆ U and X1 ⊆ X2, for any x ∈ X1, μB
X1

(x) ≤ μB
X2

(x).
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3 RMF-Based Outlier Detection

3.1 Degree of Outlierness

Most current methods for outlier detection give a binary classification of objects:
is or is not an outlier, e.g. the distance-based outlier detection. However, for many
scenarios, it is more meaningful to assign to each object a degree of being an
outlier. Given a degree of outlierness for every object, the objects can be ranked
according to this degree, giving the data mining analyst a sequence in which to
analyze the outliers.

Therefore, Breunig et al. introduced a novel notion of local outlier in which
the degree to which an object is outlying is dependent on the density of its local
neighborhood, and each object can be assigned a Local Outlier Factor (LOF)
which represents the likelihood of that object being an outlier [6]. LOF is local
in that the degree depends on how isolated the object is with respect to the
surrounding neighborhood.

3.2 Definition of RMF-Based Outliers

It should be noted that our definition for RMF-based outliers has a characteristic
that is ignored by most current definitions for outliers. That is, for a given data
set (universe) U , we do not have to detect outliers just in U by checking all
elements of U . In fact we may consider detecting outliers wrt any subset X of U ,
where X maybe a particular subset of U which we are interested in or anything
else which we are willing to separate from other elements of U .

Similar to Breunig’s method, we define a rough outlier factor (ROF), which
indicates the degree of outlierness for every object wrt a given subset of universe.

Definition 3.1 [Rough Outlier Factor]. Let IS = (U, A, V, f) be an infor-
mation system, X ⊆ U and X �= ∅. For any x ∈ X , the rough outlier factor of x
wrt X in IS is defined as

ROFX(x) = 1 −

∑
a∈A

(
μ
{a}
X (x) × W

{a}
X (x)

)
|A| (5)

where μ
{a}
X : X → (0, 1] is a rough membership function whose domain is

set X , for every singleton subset {a} of A; and for every singleton subset
{a} of A, W

{a}
X : X → (0, 1] is a weight function such that for any x ∈ X ,

W
{a}
X (x) = |[x]{a} ∩ X | / |X |. [x]{a} = {u ∈ U : f(u, a) = f(x, a)} denotes

the indiscernibility class of relation IND({a}) that contains element x and |M |
denotes the cardinality of set M .

The weight function W
{a}
X in the above definition expresses such an idea that

outlier detection always concerns the minority of objects in the data set and the
minority of objects are more likely to be outliers than the majority of objects.
Since from the above definition, we can see that the less the weight, the more
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the rough outlier factor, the minority of objects should have less weight than the
majority of objects. Therefore if the objects in X that are indiscernible with x
under relation IND({a}) are few, that is, the percentage of objects in X that
are indiscernible with x is small, then we consider x belonging to the minority
of objects in X , and assign a small weight (i.e. that percentage) to x.

Actually, definition 3.1 is an example of using inverse (Bayesian) probabilities
in rough sets. In a series of papers, Slezak and Ziarko introduced inverse proba-
bilities to rough sets, and proposed the Rough Bayesian model and the Variable
Precision Bayesian Rough Set (VPBRS) model, respectively [14, 15].

In definition 3.1, we only consider every singleton subset {a} of A. Since if
all subsets of A are used for defining the rough outlier factor, then the time
complexity of our method may be too expensive.

Definition 3.2 [Rough Membership Function-based Outliers]. Let IS =
(U, A, V, f) be an information system, X ⊆ U and X �= ∅. Let μ be a given
threshold value, for any x ∈ X , if ROFX(x) > μ then x is called a rough
membership function(RMF)-based outlier wrt X in IS, where ROFX(x) is the
rough outlier factor of x wrt X in IS.

Algorithm 3.1

Input: information system IS = (U, A, V, f) and a subset X of U , where
|U | = n, |X | = nX and |A| = m; threshold value μ

Output: a set E of RMF-based outliers wrt X in IS

(1) For every a ∈ A
(2) {
(3) Sort all objects from U and X according to a given order ( e.g. the
(4) lexicographical order) on domain Va of attribute a [14];
(5) For every x ∈ X
(6) {
(7) Determine the indiscernibility class [x]{a};
(8) Calculate μ

{a}
X (x), the value of rough membership function of

(9) x wrt X under indiscernibility relation IND({a});
(10) Assign a weight W

{a}
X (x) to x

(11) }
(12) }
(13) For every x ∈ X
(14) {
(15) Calculate ROFX(x), the rough outlier factor of x wrt X ;
(16) If ROFX(x) > μ then E = E ∪ {x}
(17) }
(18) Return E.
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In algorithm 3.1, we use a method proposed by Nguyen et al. [16] to calculate
the partition induced by an indiscernibility relation in an information system.

In the worst case, the time complexity of algorithm 3.1 is O(m× nlogn), and
its space complexity is O(m × n), where m and n are the cardinalities of A and
U respectively.

4 Experimental Results

4.1 Experiment Design

In our previous papers [7, 8], we have proposed two different methods for outlier
detection in rough set theory. In our experiment, we compare the performance of
RMF-based outlier detection with these two methods on identifying true outliers.

In [8], we introduced distance-based outlier detection to rough set theory.
Since in distance-based outlier detection, being an outlier is regarded as a bi-
nary property, we revise the definition of distance-based outlier detection by
introducing a distance outlier factor (DOF) to indicate the degree of outlierness
for every object wrt a given subset of universe in an information system.

Definition 4.1 [Distance Outlier Factor]. Given an information system
IS = (U, A, V, f) and X ⊆ U . For any object x ∈ X , the percentage of the
objects in X lie greater than d from x is called the distance outlier factor of x
wrt X in IS, denoted by

DOFX(x) =
|{y ∈ X : dist(x, y) > d}|

|X | (6)

where dist(x, y) denotes the distance between object x and y under a given dis-
tance metric in rough set theory (In our experiment, the overlap metric in rough
set theory is adopted [8]), d is a given parameter (In our experiment, we set
d = |A| /2 ), and |X | denotes the cardinality of set X .

In [7], we firstly defined the notions of inner boundary and boundary degree.
Then we defined the notion of exceptional degree for every object in a given data
set. Similar to ROF and DOF, the exceptional degree of an object indicates the
degree of outlierness. Here we call the method in [7] boundary-based outlier de-
tection. And in order to compare boundary-based method with other methods,
we revise the definition for boundary degree in [7].

Definition 4.2 [Boundary Degree]. Given an information system IS =
(U, A, V, f) and X ⊆ U (X �= ∅), where A = {a1, ..., am}. Let IB = {IB1, IB2, ...,
IBm} be the set of all inner boundaries of X under each relation IND({ai}),
1 ≤ i ≤ m. For every object x ∈ X , the boundary degree of x wrt X in IS is
defined as:

BDX(x) =
m∑

i=1

(
f(x, IBi) × W

{ai}
X

)
(7)
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where f is a characteristic function for set IBi; W
{ai}
X : X → [0, 1) is a weight

function such that for any x ∈ X , W
{ai}
X (x) = 1 − (|[x]{ai} ∩ X | / |X |), 1 ≤ i ≤

m. |M | denotes the cardinality of set M .

4.2 Lymphography Data

Next we demonstrate the effectiveness of RMF-based method against distance-
based and boundary-based methods on two data sets. The first is the lymphog-
raphy data set, which can be found in the UCI machine learning repository [9].
It contains 148 instances (or objects) with 19 attributes (including the class at-
tribute). The 148 instances are partitioned into 4 classes: “normal find” (1.35%),
“metastases” (54.73%), “malign lymph” (41.22%) and “fibrosis” (2.7%). Classes
1 and 4 (“normal find” and “fibrosis”) are regarded as rare classes.

Aggarwal et. al. proposed a practicable way to test the effectiveness of an
outlier detection method [10, 13]. That is, we can run the outlier detection
method on a given data set and test the percentage of points which belonged
to one of the rare classes (Aggarwal considered those kinds of class labels which
occurred in less than 5 % of the data set as rare labels [10]). Points belonged
to the rare class are considered as outliers. If the method works well, we expect
that such abnormal classes would be over-represented in the set of points found.

In our experiment, data in the lymphography data set is input into an in-
formation system ISL = (U, A, V, f), where U contains all the 148 instances of
lymphography data set and A contains 18 attributes of lymphography data set
(not including the class attribute). We consider detecting outliers (rare classes)
wrt four subsets X1, ..., X4 of U , respectively, where

(1) X1 = {x ∈ U : f(x, bl affere) = 1};
(2) X2 = {x ∈ U : f(x, early uptake) = 1 ∨ f(x, bl affere) = 2};
(3) X3 = {x ∈ U : f(x, spec froms) = 3 ∨ f(x, dislocation) = 1};
(4) X4 = {x ∈ U : f(x, changes lym) = 2 ∨ f(x, exclusion) = 2}.
X1 contains those objects of U whose values on attribute “bl affere” equal 1;

. . . Moreover, we use RXi to denote the set of all objects in Xi that belong to
one of the rare classes (class 1 or 4), 1 ≤ i ≤ 4.

The experimental results are summarized in table 1 and table 2.
In table 1 and table 2, “RMF”, “RBD”, “DIS” denote RMF-based, boundary-

based and distance-based outlier detection methods, respectively. For every ob-
jects in Xi, the degree of outlierness wrt Xi is calculated by using the three
outlier detection methods, respectively. For each outlier detection method, the
“Top Ratio (Number of Objects)” denotes the percentage (number) of the ob-
jects selected from Xi whose degrees of outlierness wrt Xi calculated by the
method are higher than those of other objects in Xi. And if we use Yi ⊆ Xi to
contain all those objects selected from Xi, then the “Number of Rare Classes In-
cluded” is the number of objects in Yi that belong to one of the rare classes. The
“Coverage” is the ratio of the “Number of Rare Classes Included” to the number
of objects in Xi that belong to one of the rare classes (i.e. |RXi |), 1 ≤ i ≤ 4 [13].
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Table 1. Experimental Results wrt X1, X2 in ISL

X1 : |X1| = 66, |RX1 |= 4 X2 : |X2| = 102, |RX2 |= 5
Top Ratio Number of Rare Classes Top Ratio Number of Rare Classes
(Number of Included (Coverage) (Number of Included (Coverage)
Objects) RMF RBD DIS Objects) RMF RBD DIS
2%(1) 1(25%) 1(25%) 1(25%) 2%(2) 2(40%) 1(20%) 2(40%)
4%(3) 2(50%) 2(50%) 3(75%) 3%(3) 3(60%) 1(20%) 3(60%)
6%(4) 3(75%) 2(50%) 4(100%) 4%(4) 4(80%) 2(40%) 4(80%)
9%(6) 4(100%) 2(50%) 4(100%) 5%(5) 4(80%) 3(60%) 5(100%)

15%(10) 4(100%) 2(50%) 4(100%) 6%(6) 5(100%) 3(60%) 5(100%)
20%(13) 4(100%) 3(75%) 4(100%) 9%(9) 5(100%) 4(80%) 5(100%)
65%(43) 4(100%) 4(100%) 4(100%) 15%(15) 5(100%) 5(100%) 5(100%)

Table 2. Experimental Results wrt X3, X4 in ISL

X3 : |X3| = 105, |RX3 |= 5 X4 : |X4| = 132, |RX4 |= 4
Top Ratio Number of Rare Classes Top Ratio Number of Rare Classes
(Number of Included (Coverage) (Number of Included (Coverage)
Objects) RMF RBD DIS Objects) RMF RBD DIS
3%(3) 3(60%) 3(60%) 3(60%) 1%(1) 1(25%) 1(25%) 1(25%)
4%(4) 3(60%) 3(60%) 4(80%) 2%(3) 3(75%) 2(50%) 3(75%)
5%(5) 4(80%) 3(60%) 4(80%) 3%(4) 3(75%) 2(50%) 3(75%)
8%(8) 5(100%) 3(60%) 5(100%) 4%(5) 3(75%) 3(75%) 3(75%)

11%(12) 5(100%) 4(80%) 5(100%) 5%(7) 4(100%) 4(100%) 4(100%)
24%(25) 5(100%) 5(100%) 5(100%)

From table 1 and table 2, we can see that for the lymphography data set, RMF-
based and distance-based methods perform markedly better than boundary-
based method. And the performances of RMF-based and distance-based methods
are very close, though the former performs a little worse than the latter.

4.3 Wisconsin Breast Cancer Data

The Wisconsin breast cancer data set is found in the UCI machine learning
repository [9]. The data set contains 699 instances with 9 continuous attributes.
Here we follow the experimental technique of Harkins et al. by removing some
of the malignant instances to form a very unbalanced distribution [11-13]. The
resultant data set had 39 (8%) malignant instances and 444 (92%) benign in-
stances. Moreover, the 9 continuous attributes in the data set are transformed
into categorical attributes, respectively1 [13].

Data in the Wisconsin breast cancer data set is also input into an information
system ISW = (U ′, A′, V ′, f ′), where U ′ contains all the 483 instances of the
data set and A′ contains 9 categorical attributes of the data set (not including

1 The resultant data set is public available at:
http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/
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the class attribute). We consider detecting outliers (malignant instances) wrt
four subsets X ′

1, ..., X
′
4 of U ′, respectively, where

(1) X ′
1 = {x ∈ U ′ : f ′(x, Clump thickness) = 5};

(2) X ′
2 = {x ∈ U ′ : f ′(x, Unif Cell Shape) = 3};

(3) X ′
3 = {x ∈ U ′ : f ′(x, Clump thickness) = 1 ∨ f ′(x, Bland Chromatine) = 3};

(4) X ′
4 = {x ∈ U ′ : f ′(x, Mitoses) = 1}.

We use RX′
i

to denote the set of objects in X ′
i that are malignant, 1 ≤ i ≤ 4.

The experimental results are summarized in table 3 and table 4.

Table 3. Experimental Results wrt X ′
1, X ′

2 in ISW

X ′
1 : |X ′

1| = 87, |RX′
1
|= 4 X ′

2 : |X ′
2| = 34, |RX′

2
|= 4

Top Ratio Number of Malignant Inst- Top Ratio Number of Malignant Inst-
(Number of ances Included (Coverage) (Number of ances Included(Coverage)
Objects) RMF RBD DIS Objects) RMF RBD DIS
2%(2) 2(50%) 2(50%) 2(50%) 5%(2) 2(50%) 1(25%) 2(50%)
3%(3) 3(75%) 3(75%) 2(50%) 10%(3) 3(75%) 2(50%) 3(75%)
5%(4) 3(75%) 3(75%) 3(75%) 12%(4) 4(100%) 3(75%) 3(75%)
7%(6) 4(100%) 3(75%) 4(100%) 15%(5) 4(100%) 4(100%) 4(100%)
8%(7) 4(100%) 4(100%) 4(100%)

Table 4. Experimental Results wrt X ′
3, X ′

4 in ISW

X ′
3 : |X ′

3| = 232, |RX′
3
|= 9 X ′

4 : |X ′
4| = 454, |RX′

4
|= 23

Top Ratio Number of Malignant Inst- Top Ratio Number of Malignant Inst-
(Number of ances Included (Coverage) (Number of ances Included (Coverage)
Objects) RMF RBD DIS Objects) RMF RBD DIS
1%(2) 2(22%) 2(22%) 2(22%) 1%(5) 4(17%) 4(17%) 4(17%)
2%(5) 4(44%) 4(44%) 3(33%) 2%(9) 8(35%) 7(30%) 6(26%)
3%(7) 6(67%) 6(67%) 5(56%) 3%(14) 12(52%) 11(48%) 10(43%)
4%(9) 7(78%) 6(67%) 6(67%) 4%(18) 14(61%) 13(57%) 12(52%)
5%(12) 8(89%) 7(78%) 8(89%) 5%(23) 17(74%) 18(78%) 15(65%)
6%(14) 9(100%) 7(78%) 9(100%) 6%(27) 20(87%) 20(87%) 18(78%)
7%(16) 9(100%) 9(100%) 9(100%) 7%(32) 22(96%) 21(91%) 23(100%)

8%(36) 23(100%) 21(91%) 23(100%)
10%(45) 23(100%) 22(96%) 23(100%)
12%(54) 23(100%) 23(100%) 23(100%)

Table 3 and table 4 are similar to table 1 and table 2. From table 3 and table
4, we can see that for the Wisconsin breast cancer data set, RMF-based method
always performs the best among the three outlier detection methods, except in
the case when “Top Ratio” is 7% for X ′

4. And the performances of RMF-based
and distance-based methods are very close.
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5 Conclusion

Finding outliers is an important task for many KDD applications. In this paper,
we present a new method for outlier definition and outlier detection, which
exploits the rough membership function of rough set theory. The main idea
is that objects whose degrees of membership wrt a given subset of universe are
small have more likelihood of being an outlier. Experimental results on real data
sets demonstrate the effectiveness of our method for outlier detection.

Acknowledgements. This work is supported by the Natural Science Founda-
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Abstract. An inference engine for classification of ECG signals is developed 
with the help of a rule based rough set decision system. For this purpose an 
automated ECG data extraction system from ECG strips is being developed by 
using few image processing techniques. Filtering techniques are used for 
removal of noises from recorded ECG. A knowledge base is developed after 
consultation of different medical books and feedback of reputed cardiologists 
regarding ECG interpretation and selection of essential time-plane features of 
ECG signal. An algorithm for extraction of different time domain features is 
also developed with the help of differentiation techniques and syntactic 
approaches. Finally, a rule-based roughest decision system is generated from 
these time-plane features for the development of an inference engine for disease 
classification. 

Keywords: Rough set, rule based, decision system, electrocardiogram (ECG). 

1   Introduction 

In past, there have been many approaches to generate automatic diagnostic ECG 
classification based on the 12-lead electrocardiogram.  The morphological diagnosis 
of ECGs is a pattern recognition procedure. The way the clinician does this is not 
clearly elucidated. Nevertheless, several models aimed at achieving identical results 
by automatic means are employed. While in the doctor's case this is not exactly so, the 
computer task for ECG interpretation comprises two distinct and sequential phases: 
feature extraction and classification. A set of signal measurements containing 
information for the characterization of the waveform is first obtained. These 
waveform descriptors are then used to allocate the ECG to one or more diagnostic 
classes in the classification phase. The classifier can embody rules-of-thumb used by 
the clinician to decide between conflicting ECG diagnosis and formal or fuzzy logic 
as a reasoning tool (heuristic classifiers). On the other hand, it can use complex and 
even abstract signal features as waveform descriptors and different discriminant 
function models for class allocation (statistical classifiers). More recently, artificial 
neural network techniques have also been used for signal classification [1,5,6,7].  
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The biological variability, the lack of standards in the definition of measurements 
and diagnostic criteria make the classification problem a complex task. Two basic 
methods of the diagnostic process are described: the statistical model and the 
deterministic approach. In particular, a model for ECG classification is illustrated 
where the imprecise knowledge of the state of cardiac system and the vague definition 
of the pathological classes are taken care of by means of the fuzzy set formalism [3]. 
Fuzzy adaptive resonance theory mapping (ARTMAP) is also used to classify cardiac 
arrhythmias[2]. A classifier is developed based on  wavelet transforms for extracting 
features and then using a radial basis function neural network (RBFNN) to classify 
the arrhythmia[4]. A hybrid neuro-fuzzy system was used for ECG classification of 
myocardial infarction [8].  

For the past few years, rough set theory[10,11] and granular computation has 
proven to be another soft computing tool which, in various synergetic combination 
with fuzzy logic, artificial neural networks and genetic algorithms provides a stronger 
frame work to achieve tractability, low cost solution, robustness and close resembles 
with human like decision making. For example, rough-fuzzy integration forms the 
basis of the computational theory of perceptions (CPT), recently explained by Zadeh, 
where perceptions are considered to have fuzzy boundaries and granular attribute 
values. Similarly to describe different concept or classes, crude domain knowledge in 
the form of rules are extracted with the help of rough neural synergistic integration 
and encoded them as network parameters. Hence the initial knowledge base network 
for efficient learning is built. As the methodology has matured, several interesting 
applications of the theory have surfaced, also in medicine. Pawlak [12] used rough set 
theory in Bayes’ theorem and showed that it can apply for generating rule base to 
identify the presence or absence of disease. Discrete Wavelet Transform and rough set 
theory were used for classification of arrhythmia[9]. So, rough set theory is now 
becoming the most useful tool for soft computing and decision making. For this 
reason a rule-based roughest decision system is generated for the development of an 
inference engine for disease identification from the time-plane features analysis of 
ECG signals.   

2   Materials and Methods 

The block diagram of the developed system is given in fig.1. The detail 
methodologies are given below in step by step. 

2.1   Development of ECG Data Extraction System 

For development of the off-line data extraction system[GUI based], those paper 
records are scanned by flat-bed scanner (HP Scanjet 2300C) to form TIFF formatted 
image database. Those images are then processed by some image processing tech-
niques which are applied by a new manner by us. These TIFF formatted gray tone 
images are converted into two tone binary images with the help of a global 
thresholding technique. This method almost remove the background noise i.e, the grid 
lines of ECG papers from the actual ECG signal. The rest dotted portion of the  
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Fig. 1. Block Diagram of the Proposed System 

background noise are removed by using component leveling[13]. Then the thinning 
algorithm is applied to avoid repetition of co-ordinate information in the dataset 
(fig.2). The pixel to pixel co-ordinate information is extracted and calibrated 
according to the electrocardiographic paper to form ASCII datafile. A Time (in sec.) 
Vs. mili volt data-file is obtained for each of 12 lead ECG signal after each 
processing. The present database contains 70 normal and 75 diseased subjects out of 
which 40 patients have acute myocardial infarction (MI) and rest 35 patients have 
Myocardial Ischemia.  

2.2   Removal of Noises from ECG Signals 

Electrocardiographic signals may be corrupted by different types of noises [23]. 
Typical examples are: 1. power line Interference, 2. electrode contact noise, 3. motion 
artifacts, 4. muscle contraction (electrmyographic,EMG), 5. baseline drift and ECG 
amplitude modulation with respiration, and 6. electrosurgical noise.  

All the noises are simulated by a software package Cool Edit Pro offered by 
Syntrillium Software Corporation. This is done to get a realistic situation for the 
algorithm. The EMG is simulated by adding random noise(white noise) to the ECG. 
An FIR filter depending upon Savitzky-Golay algorithm is developed to remove EMG 
like white noises from the ECG signals. 50Hz sinusoid is modeled as power line 
interference and added with ECG. The base line drift due to respiration was modeled 
as a sinusoid of frequency 0.15 to 0.4 Hz. A 50 Hz Notch filter is designed for 
rejection of  frequency band due to power line oscillation. Then a high pass filter of 
critical frequency 0.6 Hz is developed to block the low frequency noise signal that 
causes the base line shift. Both these FIR filters are designed by the Cool Edit Pro 
software. The abrupt base line shift is simulated by adding a dc bias for a given 
segment of the ECG. This noise can be blocked with the help of the high pass filter 
described above.  
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Since, motion artifact is similar as baseline drift in respiration, it was not 
specifically modeled. All of these noises are added to the ECG signal to simulate the 
composite noise. This ECG signal corrupted by composite noise is passed through all 
the filters described above to get almost noise free ECG signal. All types of noise 
levels are varied from 10% to 30% and the generated filters gave good response in all 
the cases.  

 

Fig. 2. Original ECG Image [upper], ECG Signal after Removal of Background Noise[middle], 
ECG signal after thinning[lower] 

2.3   Time-Plane Features Extraction  

To extract the time based features from ECG signals the accurate detection of  the R-
R interval between two consecutive ECG waves is very much important. For this 
purpose, the 2nd order derivative of the captured signal is being computed by using 5-
point Lagrangian interpolation formulas for differentiation [14]. The formula is given 
below : 

0f =
h12

1
 ( f-2  - 8f-1 + 8f1 - f2 )  + 

30

4h
 f  v ( )

 

 
(1) 

 lies between the extreme values of the abscissas involved in the formula. After 
squaring the values of 2nd order derivative, a square-derivative curve having only high 
positive peaks of small width at the QRS complex region can be obtained (fig. 5). A 
small window of length (say W) was taken to detect the area of this curve and we 
obtained maximum area at those peak regions. 
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The local maxima of these 
peak regions are considered 
as R-peak. For this 
experiment the W is set as 
~0.07 sec. The system was 
tested for both noise free and 
noisy signals. The levels of 
all type of noises are 
increased from 0% to 30%  
and still we achieved  99.4% 
accuracy in detection of QRS 
complexes. 

In order to accurate 
detection of P wave and ST 
segments, isoelectric line 
must be correctly identified. 
Most methods are based upon 
the assumption that the 
isoelectric level of the signal 
lies on the area ~80 ms left of 
the R-peak, where the first 
derivative becomes equal.  

In particular let y1,y2, ..., yn 
be the samples of a beat,  

y1′,  y2′, ..., yn′-1 be their 
first differences and yr the 
sample where the R-peak 

occurs. The isoelectric level samples yb are then defined if either of the two  following 
criteria is satisfied: 

              ⏐y′r-j-int(0.08f) ⏐= 0, j=1,2,….,0.01f    or                       
⏐y′r-j-int(0.08f) ⏐≤ ⏐y′r-i-int(0.08f) ⏐,  i, j = 1,2,….,0.02f             

 

 
(2) 

where f is the sampling frequency.  
After detection of baseline the location of P wave is determined from the first 

derivative of the samples.   
The R wave can be detected very reliably and for this reason, it is used as the 

starting point  for ST segment processing, and for T wave detection. In most 
algorithms dealing with ST  segment processing it is assumed that the ST segment 
begins at 60 ms after the R-peak in normal sinus rhythm. In the case of tachycardia 
(RR-interval <600 ms), the beginning of the ST segment is marked at 40 ms after the 
R peak. The ST-segment duration has beat-to-beat variability, but since this is not 
easily determined, many algorithms assume that ST has a predefined length of 160 ms 
(this means that the end point is 220 ms after R-peak in the normal case and 200 ms 
otherwise). 

Other algorithms follow the Bazzet formula, that links the ST segment duration 
with the RR  interval duration. The above mentioned ST segment limits are in general 
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agreement with the recommendation the European ST-T database and with the 
observations in [15,16,17]. 

Our algorithm adopted the first assumption and once getting the beginning it 
computes the slope of the ST segments and also detects the zero crossings. Depending 
on the zero crossings and shape of the each wave a syntactic approach is developed 
for detection of P, Q, R ,S and T waves. For getting QRS complex we achieved 99.4% 
accuracy, for T waves the accuracy is 96.7% and for P waves the accuracy obtained 
92.2%. 

2.4   Development of Knowledgebase 

A knowledge base regarding ECG interpretation is also developed from the opinion of 
the reputed cardiologists of different hospitals and clinical centers. For this purpose 
we select 20 doctors and gave them different sample questions about ECG 
interpretation. From their feedback and after consultation of different medical 
books[20,21,22] we have selected 12 time plane features for disease identification. 
They are listed below: 

1.Heart Rate, 2. PR interval, 3.P wave height, 4. P wave width, 5. QRS width, 6. 
QRS voltage, 7..QTc= (QT interval/ Sqrt RR interval), 8. Abnormal Q wave, 9. R 
wave Progression, 10. ST segment, 11. Reciprocity in T wave, and 12. T wave.  

2.5   Development of Inference Engine 

A rule-based roughest decision system is generated for the development of an inference 
engine for disease identification from the time-plane features analysis of ECG signals. 
The most popular and widely used rough-set software tool box is ROSETTA[18,19,the 
URL for downloading is http://www.idi.ntnu.no/~aleks/rosetta/rosetta.html]. This 
software supports different options of generating decision tables, reducts, discretization 
techniques, decision algorithms and classifications. For this reason we used this 
software for our experiment. Learning samples are processed in the following way. First 
a knowledge base is acquired for the data set. Knowledge base consists of objects, 
which are represented using conditional attributes and decision parameters. All the time 
plane features described above are get their specific attributes according to 
knowledgebase and used as the input parameters of the Decision table, a portion of 
which is given in table 1. 

Consequently, the acquired data are quantized to convert real attribute values into 
discretized form allowing further rule processing. Based on the discrete values, 
attributes are analyzed in terms of discernibility investigation. Sets of attributes 
allowing partition of object classes are then revealed. These sets are called reducts. 

The ROSETTA system supports a variety of quantization as well as reduct and rule 
generation procedures however the details of these lie beyond the scope of this report. 
For the purpose of our experiments the following processing parameters were used: 

• Equal frequency binning using 3 intervals is used for discretization. 
• Object related genetic algorithm producing a set of rules via minimal 

attribute subsets that discern object classes; reducts and rules are generated 
upon analysis of all learning patterns. 
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These processing parameters were chosen during a preliminary research aimed at 
optimizing the system efficiency and generation ability. 

3   Result 

In this experiment total 23 rules [fig.4] are generated. Intuitively a “strong” rule is 
both accurate and has a high coverage. The accuracy of a rule reflects how 
trustworthy its consequent is. A portion of the generated rule set and the confusion 
matrix which is generated using standard voting classifier are given below in the 
figures 4 & 5. We consider both LHS and RHS coverage factor for the selection of the 
optimum ruleset. For example the rule 1 of fig.4 gives the decision according to LHS 
coverage factor that only 31.4% patients having ECG where Abnormal Q wave 
present(P) are suffering from the disease Myocardial Infarction(MI). Whereas from 
the inverse decision rule, considering RHS coverage factor it can be conclude that 
100% patients suffering from MI having ECG where abnormal Q wave present. So, 
inverse decision rule give more strong explanation of the generated decision. 
Obviously, rule 4 having highest LHS and RHS coverage factor will be the  strongest. 
The  first  7  rule sets  with  high  accuracy  and  coverage factor (both LHS and RHS) 
are taken for the generation of rule based classifier of disease. Both trained and 
untrained samples for all the three sets of dataset (e.g. Normal, Ischemia and 
Myocardial Infarction) are fed to the Inference system and the result obtained is given 
in table 2. The numbers given in brackets in table 2 represent the number of properly 
classified samples versus all tested samples. The confusion matrix, generated by using 
the standard voting classifier offered by the ROSETTA software toolbox, predicts 
cent percent accuracy for all the three set of trained data. Table 2 supports this  
 

ECG signals. So different techniques are adopted for making those signals almost
noise free. We use Cool Edit Pro software for simulating different noises and

 

Fig. 4. A Portion of Generated Rule Set 
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Fig. 5. Confusion Matrix Output for Standard Voting Classifier 

Table 1. A portion of decision table 
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prediction. Only one untrained ischemic dataset is wrongly classified to unrecognized 
set since the PR interval of that data was abnormal. Still, the present system is tested 
by three types of ECG data samples and encouraging result is obtained. In future the 
system will be tested by more number of samples and few other types of diseases. 

4   Conclusion 

The suitability of rough set theory in ECG analysis  has been tested in this paper. To 
do so, an automated off-line data acquisition package is developed to extract the ECG 
signals from paper records. Six different types of noises may corrupt those extracted 
ECG signals. So different techniques are adopted for making those signals almost 
noise free. We use Cool Edit Pro software for simulating different noises and then  
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Table 2. Result obtained from rule based rough set decision system 

Type of 
Samples 

No. of 
Trained 
Samples 

No. of  
Untrained 
Samples 

Accuracy for 
Trained Samples 

Accuracy for 
Untrained 
Samples 

Normal 38 32 100% (38/38) 100% (32/32) 
Ischemia 21 14 100% (21/21) 93% (13/14) 

MI 27 13 100%(27/27) 100% (13/13) 

generated the appropriate filters to remove them. A knowledge base about the time 
plane features and ECG interpretation is developed from various medical books and 
from the feed back of different reputed cardiologists. The time-plane features of ECG 
signals are extracted from each of  the 12 lead ECG signals with the help of syntactic 
approaches. A rule-based rough set decision system is developed from these time-
plane features to make an inference engine for disease identification. At present, the 
system is tested with three types of ECG data- Normal, Myocardial  Ischemia and 
Myocardial Infarction. An accuracy of 100% is obtained for both trained and 
untrained dataset for Normal and Myocardial Infarction whereas for Ischemia 100% 
accuracy is obtained for trained dataset and 93% for untrained sample is obtained. In 
future the system will be tested with large number and different types of dataset.    

Acknowledgement. The present paper is part of the research work on Digital Time 
Database Generation and Disease Identification from Paper ECG Records funded by 
Council of Scientific and Industrial Research(CSIR), Govt. of India. 
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Abstract. This paper describes the application of rough sets and neural
network models for classification of electroencephalogram (EEG) signals
from two patient classes: normal and epileptic. First, the wavelet trans-
form (WT) was applied to the EEG time series in order to reduce the
dimensionality and highlight important features in the data. Statistical
measures of the resulting wavelet coefficients were used for the classifi-
cation task. Employing rough sets, we sought to determine which of the
acquired attributes were necessary/informative as predictors of the deci-
sion classes. The results indicate that rough sets was able to accurately
classify the datasets with an accuracy of almost 100%. The resulting
rule sets were small, with an average cardinality of 6. These results were
confirmed using standard neural network based classifiers.

1 Introduction

Electroencephalography (EEG) provides a direct measure of cortical activity
with millisecond temporal resolution in a non-invasive manner. The technique is
widely used in clinical neurophysiological settings and has provided a wealth of
diagnostic information for a wide range of neurological deficits [5,7]. Although
the underlying technology has not radically changed since its introduction by
Hans Berger in 1924, the amount of data that is generated by EEG studies
has increased exponentially. Laboratories routinely use 100-electrode arrays and
record for more than 24 hours at a sampling rate of over 100 Hz. In response
to this wealth of important data generated by EEG studies, many laboratories
around the world have developed various techniques for automating the extrac-
tion of diagnostically relevant information.

The current trend in EEG analysis employs a multi-stage process: in the first
stage, Discrete Wavelet Transforms (DWT) are used as a pre-processing step to
decompose the time series into a number of subbands through a process that is

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 408–417, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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essentially a series of low and high pass filters. This pre-processing step effectively
performs a dimensionality reduction of the data in preparation for subsequent
analysis. In the next phase, a series of attributes are generated from the DWT
processed dataset, which is used as input to a classification system. In the present
case, we are seeking to produce a classifier that is capable of distinguishing a nor-
mal EEG recording from one containing an epileptic seizure segment. This is not
a novel task, as many literature reports have presented a variety of techniques.
Neural networks and statistical pattern recognition methods have been applied
to EEG analysis. Neural Network (NN) detection systems have been proposed
by a number of researchers. Pradhan et al. [10] used the raw EEG as an input
to a neural network while Weng and Khorasani [11] used an adaptive structure
neural network, but his results show a poor false detection rate. Petrosian et al.
[9] showed that the ability of specifically designed and trained recurrent neural
networks (RNN) combined with wavelet pre-processing, to predict the onset of
epileptic seizures both on scalp and intracranial recordings only one-channel of
electroencephalogram. In order to provide faster and efficient algorithm, Folk-
ers et al. [4] proposed a versatile signal processing and analysis framework for
bioelectrical data and in particular for neural recordings and 128-channel EEG.

In our approach, we are using rough sets to determine which attributes are
the most relevant for the classification task. Ningler et al. [8] have applied rough
sets to classify EEG-signals with respect to intraoperative awareness, with a rea-
sonable degree of success (90% classification accuracy). They did not however
relate these resulting attributes to any underlying phenomenon, as is evidenced
by their very large rule set (475 for the crisp and 13,424 for the fuzzy dis-
cretisation methods respectively). We applied rough sets to a set of attributes
(measures of dispersion from the DWT pre-processing step) in order to deter-
mine which attributes were critical in the classification process. We validated
the results using 5-fold cross validation, as well as through three neural network
classifiers – the feed-forward error back-propagation network, the Radial Basis
Function (RBF) network, and the Local Transfer Function Classifier (LTF-C).
This validation was performed in a two-stage process (for Multi Layered Percep-
tron (MLP) only). We first trained and tested the neural networks on the full
dataset (containing 20 attributes), we then performed attribute dimensionality
reduction using rough sets, and then tested the neural networks with the remain-
ing attributes generated from the rough sets analysis. We used the LTF-C neural
network and a modified k-NN classifier as independent measures of the accuracy
of the results we obtained with rough sets. To our knowledge, this is the first
paper reporting this type of analysis within the context of EEG analysis.

2 Data Acquisition and Pre-processing

We have used publicly available datasets described in Andrzejak et al. [1]. The
complete data set consists of five sets (denoted A–E) each containing 100 single-
channel (100 electrodes) EEG recordings of 5 separate patient classes. For this
study we focused on sets labelled A and E in [1]: the normal and epileptic
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seizure session recordings. These segments were selected and cut out from con-
tinuous multi-channel EEG recordings (i.e. 23.6 seconds of recording time) after
visual inspection for artifacts, e.g., due to muscle activity or eye movements. In
Figure 2, the panel labelled ‘Set A’ corresponded to the normal class and panel
‘Set E’ is an example of epileptic seizure class. All EEG signals were recorded
with the same 128-channel amplifier system, using an average common refer-
ence. The data were digitised at 173.61 Hz using 12-bit resolution. The data
was band-pass filtered at 0.53–40 Hz (12dB/oct). Each EEG dataset consisted
of 4,096 data points and a rectangular window of 256 discrete data points (16
windows per electrode) was selected.

Fig. 1. Examples of five different sets of EEG signals taken from different subjects

Selection of suitable wavelet and the number of decomposition levels is very
important in analysis of signals using the DWT. The number of decomposition
levels is chosen based on the dominant frequency components of the signal. The
levels are chosen such that those parts of the signal that correlate well with the
frequencies necessary for classification of the signal are retained in the wavelet
coefficients. In the present study, since the EEG signals do not have any useful
frequency components above 30 Hz, the number of decomposition levels was
chosen to be 4. Thus, the EEG signals were decomposed into details D1–D4
and one final approximation, A4. Usually, tests are performed with different
types of wavelets and the one which gives maximum efficiency is selected for the
particular application. The smoothing feature of the Daubechies wavelet of order
2 (db2) made it more appropriate to detect changes of EEG signals. Hence, the
wavelet coefficients were computed using the db2 in the present study. Figure 2
shows approximation (A1–A4) and details (D1–D4) of an epileptic EEG signal.

The detail wavelet coefficients (D1–D4) at the first, second, third, and fourth
levels (129+66+34+18 coefficients) and the approximation wavelet coefficients
(A4) at the fourth level (18 coefficients) were generated. We have 100 electrodes
and 16 windows per electrode, yielding a total of 1,600 segments per class.
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Fig. 2. Approximate and detailed coefficients of EEG signals taken from epileptic subject

The extracted wavelet coefficients provide a compact representation that shows
the energy distribution of the EEG signal in time and frequency. For each set of de-
tail coefficients (D1-D4) and the approximation wavelet coefficients (A4) we calcu-
late four values: maximum, minimum, mean and standard deviation. That yields
a final set of 20 real valued attributes for each class (following the ideas from [6]).

3 Classification Methods

In this study, we employed a combination of neural network based classification
algorithms in conjunction with rough sets. Initially, we trained an MLP and RBF
neural network to classify the 2 EEG classes (A and E). This was accomplished
through the standard back-propagation learning algorithm and the orthogonal
least squares algorithm was used to train the RBF network. The LTF-C al-
gorithm uses a modified version of the RBF algorithm, which is explained in
detail below. We next briefly describe the rough sets and neural network based
classifier, before presenting the main results of this study.

3.1 Rough Sets

Rough Set (RS) theory is a main topic of this conference and that our study uses
only some very basic and well known RS tools we restrict ourselves to introducing
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only these RS notions that we further make use of. As the capacity of this paper
is very limited, we make only a basic description of these concepts.

The first step in the process of mining any dataset using rough sets is to
transform the data into a decision table. In a decision table (DT), each row
consists of an observation (also called an object) and each column is an attribute,
one of which is the decision attribute for the observation. In our case the decision
table consists of 8000 rows and each row contains a vector of 20 numbers (values
of 20 numerical conditional attributes) labelled with one of 5 decision values (A-
E). Objects that share the same decision value are said to belong to one decision
class. Attributes other than decision will be referred to as conditional attributes
or simply conditions.

Luckily enough, thanks to the fact that data table is generated by a controlled
pre-processing algorithm, we have no missing values and no errors which is not
commonplace in medical data sets. The table is consistent, i.e. there are no two
rows that have the same conditional part and different decisions.

One of most characteristic features of our data set is that all conditional
attributes are numeric (floating point numbers). In order to apply some of the
RS methods to such data table one have to perform discretisation.

Discretisation refers to partitioning attributes into intervals – tantamount to
searching for “cuts” in the range of attribute. All values that lie within a given
range (between two cuts) are mapped onto the same value, transforming inter-
val into categorical data. In this study we apply discretisation method based
on Maximal Discernibility (MD) heuristics that makes use of the core RS no-
tion of discernibility between decision classes. Details of this method and its
implementation in RSES are given in [2,3].

The ultimate goal we want to achieve with our RS toolkit is to construct a
classifier – that is a procedure which when given an unlabelled object is capa-
ble of assigning a proper decision value. In particular, we will be dealing with
classifiers that are based on decision rules, i.e., formulae of the form:

(ai = vi) ∧ . . . ∧ (ai = vi) ⇒ (d = v)

where atomic sub-formula (ai = vi) is called descriptor or condition. We say
that rule r is applicable to an object, or alternatively, the object matches rule,
if its attribute values satisfy the premise of this rule. With the rule we can
associate some numerical characteristics derived from the underlying data table
DT. Supp(r) is equal to the number of objects from table for which rule r applies
correctly, i.e., the premise of rule is satisfied and the decision given by rule is
similar to the one preset in decision table. Match(r) is the number of objects in
the table for which rule r applies in general. Analogously the notion of matching
set for a rule or collection of rules may be introduced (see [3]).

The notions of matching and supporting set are common to all classifiers,
not only decision rules. For a classifier Cl we will denote by Supp(Cl) the set of
objects that support classifier, i.e., the set of objects for which classifier gives the
answer (decision) identical to that we already have. Similarly, Match(Cl) is the
set of objects that are recognized by Cl. Support and matching make it possible



Attribute Selection for EEG Signal Classification Using RS and ANN 413

to introduce two measures that are used in our study for classifier scoring. These
are Accuracy and Coverage, defined as follows:

AccuracyDT (Cl) =
|Supp(Cl)|

|DT | ; CoverageDT (Cl) =
|Match(Cl)|

|DT |

where |DT | denotes number of objects in our data table.

3.2 MLP, RBF, and LTF-C Networks

The Multilayer Perceptron Network (MLP), which has the ability to learn and
generalise, smaller training set requirements, fast operation, ease of implementa-
tion and therefore most commonly used neural network architectures, have been
adapted for describing the alertness level of arbitrary subject. We have used in
this case, the classic gradient descent learning scheme for the training of this
particular network.

The second classification scheme utilised here is a Radial Basis Function Net-
work (RBF) scheme. RBF networks train rapidly, usually orders of magnitude
faster than MLP, while exhibiting none of its training pathologies such as paralysis
or local minima problems. Such a system consists of three layers (input, hidden,
output). The activation of a hidden neuron is determined in two steps: The first is
computing the distance (usually by using the Euclidean norm) between the input
vector and a centre ci that represents the ith hidden neuron. Second, a function h
that is usually bell-shaped is applied, using the obtained distance to get the final
activation of the hidden neuron. In this case the Gaussian function G(x) was used.
The parameter σ is called unit width and is determined using the heuristic rule
“global first nearest-neighbour”. The activation of a neuron in the output layer
is determined by a linear combination of the fixed nonlinear basis functions, i.e.
here φi(x) = G(‖x − ci‖) and wi are the adjustable weights that link the output
nodes with the appropriate hidden neurons. The orthogonal least squares (OLS)
method has been employed as a forward selection procedure that constructs RBF
networks in a rational way. The algorithm chooses appropriate RBF centres one
by one from training data points until a satisfactory network is obtained.

The last classification scheme utilised in this study was based on the Lin-
ear Transfer Function Classifier (LTF-C) scheme in the version implemented in
RSES. LTF-C (cf. [12]) is a neural network solving classification problems. Its
architecture is very similar to this of RBF – the network has a hidden layer
with Gaussian neurons connected to an output layer of linear units. The number
of inputs corresponds to the number of attributes while the number of linear
neurons in output layers equals the number of decision classes. There are some
additional restrictions on values of output weights that enable to use an en-
tirely different training algorithm and to obtain very high accuracy in real-world
problems. The training algorithm of LTF-C comprises four types of modifica-
tions of the network, performed after every presentation of a training object.
Namely the network can: change positions (means) of Gaussians in hidden layer,
change widths (deviations) of Gaussians separately for each hidden neuron and
attribute, insert new hidden neurons, and remove unnecessary hidden neurons.
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As one can see, the LTF-C structure is dynamical. The training process starts
with an empty hidden layer, adding new hidden neurons when the accuracy
is insufficient and removing the units which do not positively contribute to the
calculation of correct network decisions. This feature of LTF-C enables automatic
choice of the best network size, which is much easier than setting the number of
hidden neurons manually.

4 Results

As previously indicated, we initially trained the MLP, RBF, and LTF-C net-
works to classify the two EEG time series using 20 inputs and a binary decision
class (either A or E) for the output. We used a 50/50 rule where 50% of the
data (half of 3,200 objects in total) were used for training and the rest was used
for testing. This train-and-test scheme was selected for the sake of obtaining re-
sults that are directly comparable with those existing before. More sophisticated
testing schemes are planned for the follow-up of the currently presented study.
The results in Table 1 represent the training and testing accuracy of the neural
network classifiers.

Table 1. The classification accuracy of the MLP, RBF and LTF-C on the 2 classes
EEG testing data. The values in parentheses represent training accuracy.

MLP RBF LTF-C
Class A (95.1) 94.3% (96.1)95.2% (100) 99.8%
Class E (96.5) 93.8% (97.3)96.8% (100) 99.8%

Relatively high quality obtained by neural network models without any spe-
cial fine-tuning was an indicator that they may exist a simple regularity in the
data that makes it possible to discern between classes A and E. To find out what
kind of regularity may that be and what possible use we may have of it for our
study, we turned to rough set methodology. Using some typical rough set based
algorithm implemented in the Rough set Exploration System (RSES, see [11])
we started to search for a set of simple description rules discriminating between
classes A and E. Since the considered data set has all conditional attributes
represented numerically, the discretisation procedure has been applied. The use
of discretisation, reduct and rule calculation has resulted in a very interesting
and somehow surprising results. Since rough set methods we have used concen-
trate on maximising discernibility and minimising (reducing) the dimensionality
of derived model, they tend to provide a concise description. In our case this
these descriptions have in fact become ultra-compact. As it turns out the DWT
data contains several attributes that have very high discriminative abilities with
regard to classes A and E. Some attributes make it possible to construct a set
of rules with only a single condition (on this attribute) and almost perfect accu-
racy on the entire data set. The table below presents a simple summary of the
identified attributes.
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Table 2. Qualities of selected single-attribute rule sets for classes A and E

Attribute No. of rules Accuracy Attribute No. of rules Accuracy
Max. D2 2 99.8% Min. D4 2 99.9%
Min. D2 10 99.6% Max D4 2 100%
St. dev. D2 14 99.2% Min. A4 6 99.9%
Min D3 8 99.9% Max A4 10 99.7%
Max D3 2 99.9% St. dev. A4 2 99.9%
St. dev. D3 2 99.8%

Note that a single attribute Max D4 is sufficient to create a perfect classifier
if we only discern between classes A and E. Such classifier would consist of only
two 100% correct decision rules:

If Max D4 < 173.1838 then Decision = A;
If Max D4 > 173.1838 then Decision = E;

Also, the results in table show that basically for all listed attribute there is
only a handful of outliers that prevents each of them from being 100% correct.
These errors are in fact almost entirely dependant on the random split. Inasmuch
as experiments have shown that classes A and E are easily discernible we decided
to investigate how different is the situation if we not only focus on these two
classes. In the more realistic setting we will not know in advance whether the
given measurement comes from the patient from class A/E or any of the other
(B,C,D). Therefore, even if we focus on A and E, we still have to be able to
discern between A, E and the rest. If it proves possible to do so, then we may
attempt to construct a decision support system that at the same time tells us
whether a given data example is in our focus group (A+E) or not and whether
it is a healthy (A) or epileptic (E) patient.

We have staged an experiment with use of various classifiers implemented in
RSES in order to verify how well can we differentiate classes A and E from the
rest. The training and verification in this experiment was performed on the entire
8000 rows (all classes). As in the previous experiments the data was randomly
halved in order to create training and test samples. Once again we have used
LTF-C and a rule-based RS classifier from RSES (see see [11] for details). For
reference we have also applied a modified k-Nearest Neighbours (k-NN) classifier
from RSES. The k-NN classifier is known to provide very good results, however,
without giving an explanation. The results were rather encouraging. Classes
A and E are not only well discernable from each other, but also significantly
different from the rest of data set (B+C+D). Table 3 presents overview of the
results. Since the methods used are always 100% accurate on training sample we
only show average results on test cases.

We have also performed an initial attempt to construct classifier for all 5 types
of patients. As expected, the performance of such classifier is significantly lower
(on average more than 10%). Rule based methods tend to have problems with
unseen cases (low coverage). It is quite visible that the three sets B, C, and D
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Table 3. Classification results for classes A, B+C+D, and E on test set

Classifier Classifier details Avg. accuracy Avg. coverage
Modified k-NN Reference result 99.4% 100%
LTF-C Neural network 98% 100%
Decision rules (all) Up to 13000 rules 97.2% 99%
Decision rules (LEM) 200-220 rules 98.7% 95.2%
Decision rules (LEM) 270-290 rules 98.5% 96.5%

are more complicated and vague than A and E. Constructing a proper classifier
for the entire dataset is on our task list for next stage of this study.

Notice: All the experimental results presented in this section have been averaged
over several repetitions in order to avoid presentation of random, insignificant
and non-replicable outputs.

5 Conclusions

In this study, we examined the difference(s) between normal and epileptic EEG
time series. After extracting the DWT coefficients, we used four measures of dis-
persion to as attributes for subsequent classification. The results of the neural
network (MLP and RBF) classification were high, comparable to other published
results on similar datasets. We then sought to perform dimensionality reduction
through the rough sets paradigm. The results from this analysis indicated that
the statistical attributes (20 in all) contained a considerable amount of redun-
dancy. Rough sets was able to reduce the dimensionality of the attributes to a
single one – Max D4 (see Table 2). With this single attribute, only 2 rules were
generated which provided 100% classification accuracy. This result was confirmed
with independent methods such as a modified k-NN and the LTF-C. We also
used this single attribute to re-test the original MLP network that were trained
on the full dataset and the resulting classification accuracy was not reduced us-
ing the single attribute (Max D4). The resulting classification accuracy was in
fact somewhat higher (98%) than when trained on the full set of attributes.

These results indicate that there is the potential for considerable redundancy
with attribute selection in this particular domain. Our results indicate that pre-
processing the data using rough sets is an effective way of eliminating this po-
tential redundancy in attribute selection. With a minimal attribute set, one can
then begin to find more exacting correlations between the behaviour of attributes
and the underlying phenomenon. In this particular case, Max D4 was the pri-
mary attribute for distinguishing normal from epileptic EEG recordings. The
4th level represents the most refined sampling performed on this data. We are
planning to investigate this result in future work – but in this instance one can
hypothesise that the increased sampling rate provides significant information.
The ‘Max’ represents the maximal value within the window – and one could
reasonably explain this result in terms of the reported spiking that occurs in
epileptic seizures.
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The results from this preliminary study will be expanded to include a more
complete range of pathologies. In this work, we focused on the extremes that
are found within the EEG spectrum – normal and epileptic time series. These
two series were chosen as they would more than likely lead to the maximal
dispersion between the 2 signals and be amenable for training of the classifiers.
In the next stage of this research, we have datasets that are intermediate in the
signal changes they present. This will provide a more challenging set of data to
work with – and will allow us to refine our learning algorithms and/or approaches
to the problem of EEG analysis.
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Abstract. We discuss an application of rough set tools for modeling
networks of classifiers induced from data and ontology of concepts de-
livered by experts. Such networks allow us to develop strategies for au-
tomated planning of a treatment of infants with respiratory illness. We
report results of experiments with the networks of classifiers used in
automated planning of the treatment of newborn infants with respira-
tory failure. The reported experiments were performed on medical data
obtained from the Neonatal Intensive Care Unit in the Department of
Pediatrics, Collegium Medicum, Jagiellonian University.
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1 Introduction

This paper investigates medical planning in the context of a complex dynam-
ical system (see, e.g., [1,3,6,2,4]). A complex dynamical system (also called as
an autonomous multiagent system [2] or swarm [9]) is a system of complex ob-
jects that are changing (adapting), interacting, and learning over time. Such
objects are usually linked by some dependencies, sometimes can cooperate be-
tween themselves and are able to perform flexible autonomous complex actions
(operations, changes). For example, one can consider road traffic as a complex
dynamical system represented by a road simulator (see e.g. [2]). Another ex-
ample can be taken from medical practice. This second example concerns the
treatment of infants with respiratory failure, where a given patient is treated as
a complex dynamical system, while diseases of a patient are treated as complex
objects changing and interacting over time (see [4] and Section 2).
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The prediction of behaviors of a complex object evaluated over time is usually
based on some historical knowledge representation used to store information
about changes in relevant features or parameters. This information is usually
represented as a data set and has to be collected during long-term observation
of a complex dynamic system. For example, in case of the treatment of the
infants with respiratory failure, we associate the object parameters mainly with
values of arterial blood gases measurements and the X-ray lung examination.
A single action is often not sufficient for changing the complex object in the
expected direction. Therefore a sequence of actions need to be used instead of a
single action during medical treatment. Hence, methods of automated planning
are necessary during monitoring of a given complex dynamic system (see [7,10]).

This paper is organized as follows. In Section 2, some medical knowledge
about the treatment of the infants with respiratory failure is given. The basic
concept of a planning rule is given in Section 3. The automated planning of
actions for groups of complex objects realized using planning graphs for a group
of objects is considered in Section 4. Experimental results using the proposed
tools for automated planning, are presented in Section 5.

2 Neonatal Respiratory Failure

The new possibilities in medical intensive care have appeared during last decades
thanks to the progress in medical and technical sciences. This progress allowed us
to save the live of prematurely born infants including the smallest born between
20th and 24th week of gestation with the birth weight above 500g.

Prematurely born infants demonstrate numerous abnormalities in their first
weeks of life. Their survival, especially without severe multiorgan complications
is possible with appropriate treatment. Prematurity can be characterized as
inappropriate maturity of systems and organs leading to their dysfunction after
birth.

The respiratory system dysfunction appearing in the first hours of life and
leading to respiratory failure is the most important single factor limiting sur-
vival of our smallest patients. The respiratory failure is defined as inappropriate
blood oxygenation and accumulation of carbon dioxide and is diagnosed based
on arterial blood gases measurements. Clinical symptoms - increased rate of
breathing, accessory respiratory muscles use as well as X-ray lung examination
are also included in assessment of the severity of respiratory failure.

The most important cause of respiratory failure in prematurely born infants
is RDS (respiratory distress syndrome). RDS results from lung immaturity and
surfactant deficiency. The other co-existing abnormalities such as PDA (patent
ductus arteriosus), sepsis (generalized reaction on infection leading to multior-
gan failure) and Ureaplasma lung infection (acquired during pregnancy or birth)
may exacerbate the course of respiratory failure. Each of these conditions can
be treated as an unrelated disease requiring separate treatment. However, these
abnormalities very often co-exist, so it is sometimes necessary to treat combi-
nations such as RDS + PDA + sepsis. In a holistic, therapeutic approach, it is
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important to synchronize the treatment of co-existing abnormalities in an effort
to combat respiratory failure.

Effective care of prematurely born infants entails consideration of all co-
existing abnormalities such as infections (both congenital and acquired), water-
electrolyte and acid-base imbalance, circulatory, kidney problems. All of these
factors are related and influence one another. The care of prematurely born
infants during their first days of life requires continuous analysis of many para-
meters. These parameters can be divided into stationary (e.g., gestational age,
birth weight, Apgar score) and continuous (changing over time). Parameter val-
ues can be obtained from various monitoring devices (e.g., oxygen hemoglobin
saturation (SAT), blood pressure, temperature, lung mechanics) either on a dis-
crete (e.g. blood gases) or continuous basis. Neonatal care includes assessment
of a number of sources of information such as ultrasound scans of the brain,
echocardiography and chest X-ray. Global analysis should also include current
methods of treatment used for particular patients. These methods may have
qualitative (e.g., administration of medication) or quantitative (e.g., respiratory
settings) characteristics. It should also be observed that assessment of a patient’s
state is very often performed hurriedly under stress conditions.

Computerized data analysis may provide support for a physician during daily
diagnostic-therapeutic processes both in collecting and storing patient data using
a number of tools (e.g., Neonatal Information System) and as a means of quick,
automatic and intelligent analysis of patient data. This approach might allow
for computer presentation of some information based on the observed patterns,
which might be helpful in automating the planning of treatment.

The aim of this paper is to present some computer tools for automated plan-
ning of the treatment (see, e.g., [7,10]). In this approach, a given patient is treated
as a complex dynamical system, while patient diseases (e.g., RDS, PDA, sepsis,
Ureaplasma and respiratory failure) are treated as complex objects changing and
interacting over time (see Section 4). Respiratory failure is very complex because
it is a consequence of RDS, PDA, sepsis or Ureaplasma. Our task is to facilitate
automatic planning for sequences of medical actions required to treat a given
patient.

3 The Automatic Planning for Complex Objects

In this research, we discuss some rough set [8] tools for automated planning as
part of a system for modeling networks of classifiers. Such networks are con-
structed using an ontology of concepts delivered by experts1.

The basic concept we use is a planning rule. Let sl, sr1 . . . srk
denote states

of a complex object and a denotes an action that causes a transition to some
another state. A planning rule proposed by a human expert such as a medical
doctor has the following simplified form: (sl, a) → sr1 |sr2 . . . |srk

. Such rule can
be used to change the state sl of a complex object, using the action a to some
state from the right hand side of a rule. But the result of applying such a rule is
1 The ontology focuses on bases for concept approximation (see, e.g., [5]).
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nondeterministic, because there are usually many states on the right hand side
of a planning rule.

A set of planning rules can be represented by a planning graph. There are two
kinds of nodes in planning graphs: state nodes represented by ovals and action
nodes represented by rectangles (see, e.g., Figure 1). The connections between
nodes represent temporal dependencies, e.g., the connection between the state
node s1 and the action node a1 says that in state s1 of a complex object, action
a1 can be performed while the connection between a1 and state node s2 means
that after performing action a1 in s1 the status of the complex object can be
changed from s1 to s2. Figure 1 shows how planning rules can be joined to obtain
a planning graph.

Mechanical ventilation
MAP1 mode

RDS with severe
hypoxemia

RDS with severe
hypoxemia

RDS with severe
hypoxemia

RDS with very severe
hypoxemia

Mechanical ventilation
MAP1 mode

Surfactant administration
and mechanical

ventilation MAP1 mode

Surfactant administration
and mechanical

ventilation MAP1 mode
RDS with very severe

hypoxemia

RDS with very severe
hypoxemia

RDS with severe
hypoxemia

RDS with very severe hypoxemia

 

Fig. 1. Planning Rules in a Planning Graph

Notice, that any state from the planning graph can be treated as a complex
concept specified by a human expert in natural language. Such concepts can be
approximated by approximate reasoning schemes (AR-schemes, for short) using
data sets and domain knowledge accumulated for a given complex dynamical sys-
tem (see [1,2,4]). Hence, it is possible to identify the initial state at the beginning
of planning for a particular complex object.

The output for the planing problem for a single complex object is a path
in the planning graph from the initial node-state to the expected (target) node-
state. Such a path can be treated as a plan of action that should be performed
beginning from the given complex object in order to change its state to the
expected status.
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In practice, it is often the case that a generated plan must be compatible
with the plan proposed by a human expert (e.g., the treatment plan should be
compatible with the plan suggested by human experts from a medical clinic). It
is strongly recommended that the method of the verification and evaluation of
generated plans should be based on the similarity between the generated plan
and the plan proposed by human experts (see Section 5). Hence, the usage of
special tools that make it possible to resolve conflicts (nondeterminism) of ac-
tions in planning rules is needed. Therefore, in this paper we propose a family of
classifiers constructed for all state-nodes from a planning graph. These classifiers
are constructed on the basis of decision rules computed for a special decision ta-
ble called a resolving table. The resolving table is constructed for any state-nodes
from the planning graph and stores information about objects of a given complex
dynamical system satisfying the concept from the current state-node. Any row of
this table represents information about parameters of a single object registered
at a given time. Condition attributes (features) from this table are defined by
human experts and have to be computed on the basis of information included in
the description of the current state of a complex object as well on some previous
states or actions obtained from the near or far history of an object. It should be
emphasized that the definition of such condition attributes should facilitate easy
update of attribute values during the construction of a given plan according to
performed actions and new states of a complex object. The proposed approach
should be accompanied by some kind of simulation during plan construction.
The decision attribute of the resolving table is defined as the action that has
been performed for a given training object combined with the real effect of this
action for an object. Next, we construct rule based classifiers for all states, i.e.,
for all associated resolving tables. In addition, these classifiers make it possible
to obtain a list of actions and states after usage of actions with their weights
in descending order. This is very important in generating plans for groups of
objects (see Section 4).

4 Automatic Planning for Groups of Complex Objects

In this section, we present a generalization of the method for automated plan-
ning described in Section 3. For a group of objects, we define a graph that we call
a planning graph for a group of objects. This new graph is similar to a planning
graph for a single object (see Section 3). There are two kinds of nodes in this
graph, namely, states nodes (denoted by ovals) that represent the current state
of a group of objects specified as complex concepts by a human expert in nat-
ural language, and action nodes (denoted by rectangles) that represent so-called
meta actions defined for groups of objects by a human expert. Meta actions are
performed over a longer period called a time window [2].

In Figure 2, we present an exemplary planning graph for a group of four
diseases: sepsis, Ureaplasma, RDS and PDA, related to the planning of the
treatment of the infant during the respiratory failure. This graph was created on



Automatic Planning of Treatment of Infants with Respiratory Failure 423

Maintenance of efficient
respiratory system

Effacement of
mild respiratory

failure

Maintenance of mild
respiratory  failure

Improvement of respiratory  failure  from
moderate  to  mild

Maintenance of moderate
respiratory  failure

Effacement of
severe respiratory  failure

Effacement of moderate
respiratory  failure

Improvement of respiratory  failure
from severe to moderate

Improvement of
respiratory

failure  from
severe to mild

Efficient respiratory
system

Mild respiratory  failure

Moderate respiratory  failure

Severe respiratory  failure
Maintenance of severe

respiratory  failure

 

Fig. 2. A planning graph for the treatment of infants during the respiratory failure

the basis of observation of medical data sets (see Section 5) and with support of
human experts.

Notice that any state-node from a planning graph for groups of objects can
be treated as a complex concept that is specified by a human expert in natural
language. Such concepts can be approximated by AR-schemes using data sets
and the domain knowledge accumulated for a given complex dynamical system
(see [1,2,4]). As a result, it is possibly to recognize an initial state at the beginning
of planning for a particular group of complex objects.

At the beginning of planning for a group of objects, we assign the current state
of a group of objects. As mentioned earlier, this can be done by AR-schemes that
have been constructed for all states from the planning graph. Next, we plan a
sequence of actions that can transform a group of objects from the current state
to the target state (more expected, safer or more comfortable). For example,
in the case of the treatment of infants with respiratory failure, if the infant is
suffering from severe respiratory failure, we try to change the patient status using
some methods of treatment to change its status to moderate or mild respiratory
failure (see Figure 2).

So, our system can propose many plans on the basis of connections in a
planning graph for groups of objects starting from the current state. Next, the
proposed system chooses a plan that seems to be the most effective. However, it
is necessary to make sure that the proposed plan can be realized on the level of
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any object belonging to a group. In other words, for any object from the group
a specific plan should be constructed that leads to a given meta action from the
level of the group. Besides, all constructed plans for objects belonging to a group
should be compatible.

Therefore, during planning a meta action for a group of objects, we use a
special tool for verifying the compatibility of plans generated for all members
of a group. This verification can be performed by using some special decision
rules that we call elimination rules. Such rules make it possible to eliminate
combination of plans that are not compatible relative to domain knowledge. This
is possible because elimination rules describe all important dependencies between
plans that are joined together. If any combination of plans is not consistent with
any elimination rule, then it is eliminated. A set of elimination rules can be
specified by human experts or can be computed from data sets. In both of these
cases, we need a set of attributes (features) defined for a single plan that are
used for the explaining elimination rules. Such attributes are specified by human
experts on the basis of domain knowledge and they describe some important
features of the plan (generated for single complex object) with respect to proper
joining a plan with plans generated for other members of a group.

These features are used as a set of attributes in the special table that we
call an elimination table. Any row of an elimination table represents information
about features of plans assigned for complex objects belonging to an exemplary
group of objects from the training data. We propose the following method of
calculation the set of elimination rules on the basis of the elimination table.

For any attribute from an elimination table, we compute the set of rules
treating this attribute as a decision attribute. In this way, we obtain a set of
dependencies in the elimination table explained by decision rules. In practice, it
is necessary to filter elimination rules to remove the rules with low support be-
cause such rules can be too strongly matched to the training data. The resulting
set of elimination rules can be used as a filter of inconsistent combinations of
plans generated for members of groups. Any combination of plans is eliminated
when there exists an elimination rule that is not supported by features of a
combination while the combination matches a predecessor of this rule. In other
words, a combination of plans is eliminated when the combination matches to
the predecessor of some elimination rule and does not match the successor of a
rule.

If the combination of plans for members of the group is consistent (it was
not eliminated by elimination rules), we should check if the execution of this
combination allow us to achieve the expected meta action from the level of group
of objects. This can be done by a special classifier constructed for a table called
as an action table. The structure of an action table is similar to the structure
of an elimination table, i.e., attributes are defined by human experts, where
rows represent information about features of plans assigned for complex objects
belonging to exemplary groups of objects from the training data. In addition,
we add to this table a decision attribute. Values of decision attributes represent
names of meta actions which will be realized as an effect of the execution of
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plans described in the current row of a training table. The classifier computed
for an action table makes it possible to predict the name of a meta action for a
given combination of plans from the level of members of a group. The last step
is the selection of combinations of plans that makes it possible to obtain a target
meta action with respect to a group of objects.

It was mentioned in Section 3 that the resolving classifier used for the gener-
ation of a next action during the planning for a single object, gives us the list of
actions (and states after usage of action) with their weights in descending order.
This makes it possible to generate many alternative plans for any single object
and many alternative combinations of plans for a group of objects. Therefore,
the chance of finding an expected combination of plans from a lower level to
realize a given meta action (from the higher level) is relatively high.

After planning the selected meta action from the path of action from the
planning graph (for a group of objects), the system begins the planning of the
next meta action from this path. The planning is stopped, when the planning of
the last meta action from this path is finished.

5 Experimental Results

To verify the effectiveness of the proposed methods of automated planning, we
have implemented algorithms in a Automated Planning library (AP-lib), which
is an extension of the RSES-lib 2.1 library forming the computational kernel of
the RSES system2.

Experiments have been performed on medical data sets obtained from Neona-
tal Intensive Care Unit in Department of Pediatrics, Collegium Medicum, Jagiel-
lonian University, Cracow. The data were collected between 2002 and 2004 using
computer database NIS (Neonatal Information System). Detailed information
about treatment of 340 newborns are available in the data set that includes
perinatal history, birth weight, gestational age, lab tests results, imagine tech-
niques results, detailed diagnoses during hospitalization, procedures and medica-
tion were recorded for the each patient. The study group included prematurely
born infants with the birth weight ≤ 1500g, admitted to the hospital before
the end of 2 days of life. Additionally, children suffering from respiratory failure
but without diagnosis of RDS, PDA, sepsis or ureaplasma infection during their
entire clinical course, were excluded from the study group.

In our experiments we used one data table extracted from the NIS system,
that consists of 11099 objects. Each object of this table describes parameters
of one patient in single time point. There were prepared 7022 situations on the
basis of this data table, when the plan of treatment has been proposed be human
experts during the realistic clinical treatment.

As a measure of planning success (or failure) in our experiments, we use a
special hierarchical classifier that can predict the similarity between two plans
as a number between 0.0 and 1.0. This classifier has been constructed on the
basis of a special ontology specified by human experts (see Figure 3) and data
2 See RSES Homepage at logic.mimuw.edu.pl/∼rses
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Fig. 3. An Ontology of Similarity between Plans

sets. It is important to mention that besides the ontology, experts provided ex-
emplary data (values of attributes) for the purpose of concept approximation
from the ontology. The methods of construction of such classifiers are based on
AR schemes and were described in [1]. We use this classifier to determine the
similarity between plans generated by our methods of automated planning and
plans proposed be human experts during realistic clinical treatment. A training
set consists of 4052 situations (when plans of treatment have been assigned),
whereas a testing set consists of 2970 situations when plans have been generated
by an automated method and comparable expert plans were known. The aver-
age similarity between plans for all tested situations was about 0.82, while the
coverage of tested situations by generated plans was about 88 percent.

6 Conclusion

In this paper, we discussed some rough set tools for automated planning that
are developed for a system for modeling networks of classifiers. The performed
experiments show that the similarity between the plan of treatment generated
automatically and the plan proposed by human experts during the real clinical
treatment is sufficiently high. Therefore, we conclude that our methods have
promise as useful tools in medical practice. In our further work, we would like to
increase the recognition of similarity between plans of the treatment (generated
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automatically and proposed by human experts) and to improve the coverage of
tested situations by the generated plans.
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Abstract. The paper describes the development of a clinical decision
model to help Emergency Department physicians assess the severity of
pediatric asthma exacerbations. The model should support an early iden-
tification (at 2 hours) of those patients who are having a mild attack and
those who are having a moderate/severe attack. A comprehensive ap-
proach combining rough sets and expert-driven manual feature selection
was applied to develop a rule-based decision model from retrospective
data that described asthmatic patients visiting the Emergency Depart-
ment. The experiment involved creating the following four potential deci-
sion models differentiated by the subsets of clinical attributes that were
considered: Model A using all attributes collected in the retrospective
chart study; Model B using only attributes describing the patient’s his-
tory; Model C using only attributes describing the triage and repeated
assessments; and Model D using attributes from Model C expanded with
some of the attributes from Model B identified by expert clinical knowl-
edge. Model D offered the highest assessment accuracy when tested on
an independent retrospective data set and was selected as the decision
model for asthma exacerbations.

Keywords: rough sets; asthma exacerbations; decision rules; manual
feature selection; decision model.

1 Introduction

Asthma exacerbations are one of most common reasons for children to be brought
to the Emergency Department (ED). These visits, and the subsequent hospital-
izations required by a large proportion of these patients, account for nearly 65%
of all direct costs of asthma care. Children with asthma, compared to their non-
asthmatic counterparts, use more prescriptions and require more ambulatory
care visits, ED visits and hospitalizations [1].

Management guidelines for children with asthma exacerbations coming to the
ED are aimed at three levels of attack severity: mild, moderate, and severe [2].

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 428–437, 2006.
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Early identification of the severity of an asthma exacerbation has implications
for the child’s management in the ED. Patients with a mild attack are usually
discharged home following a brief course of treatment (less than 4 hours) and
resolution of symptoms, patients with a moderate attack receive more aggressive
treatment over an extended observation in the ED (up to 12 hours), and patients
with a severe attack receive maximal therapy before ultimately being transferred
to an in-patient hospital bed for ongoing treatment (after about 16 hours in the
ED).

In clinical practice, a decision on the severity and subsequent disposition of
an attack is ideally made as soon as possible after arrival of the patient to the
ED to ensure key therapies have been instituted. Underestimation of severity
may result in inadequate treatment, premature discharge and a possible return
visit, while overestimation of severity may result in an extended ED stay and
unnecessary utilization of hospital resources. As information available on arrival
is not sufficient for accurate disposition [3], disposition decisions are made later
in the management process – usually between 1 and 4 hours. In our research
we assumed the decision would be made at 2 hours [4]. One the one hand, is
early enough to provide adequate therapies, and on the other hand, clinical
information available at that time allows for accurate dispositions.

There have been many attempts to identify pertinent risk factors associated
with pediatric asthma [5] and to develop prediction models [6] or severity scores
[7] for asthma exacerbations. However, to date, no clear clinical decision model
or widely used asthma score exists. In this paper, we discuss the development
of a decision model to support physicians in making early disposition decisions
about asthma exacerbations and discerning between two groups of patients: those
with mild attacks and those with moderate/severe attacks. We dichotomized the
original severity categories into two outcomes because of the importance of early
identification of patients with a mild attack that can be safely discharged home
while ensure that patients with moderate or severe attacks are identified to re-
ceive maximum therapy (e.g., systemic steroids). We used data transcribed from
the ED charts in a retrospective study to construct four rule-based decision mod-
els using clinical attributes suggested by a medical expert and clinical practice
guidelines. Models were verified on an independent testing data set acquired
through the same retrospective chart study.

The paper is organized as follows. We start with a description of the retro-
spective chart data. Then we present our approach to developing decision models
that combines rough sets with manual feature selection driven by expert clinical
knowledge. This is followed by a description of considered models and the results
of their preliminary evaluation leading to the selection of the best one. Finally,
we conclude with a discussion.

2 Retrospective Chart Study

The data used to develop the decision model were collected through a retrospec-
tive chart review of patients presenting to the ED of the Children’s Hospital of



430 K. Farion, W. Michalowski, and S. Wilk

Eastern Ontario (CHEO) between November 2000 and September 2003. This
clinical center appropriately represents a potential sample of pediatric patients
with asthma, and the collected data can be considered a representative picture
of the asthma exacerbations amongst the pediatric population.

The processed pediatric asthma workflow is as follows. First, when child with
asthma exacerbation arrives at the ED, a triage nurse gathers basic information
on the patient’s presenting complaint and evaluates the child’s general condi-
tion. At this point the patient’s breathing is also assessed for the first time (the
first assessment is labeled as the triage assessment). After this first assessment
the patient is registered, and then awaits a physician evaluation. During this
physician-led evaluation, more information about child’s condition is collected,
including the patient’s history, social environment, presence of known risk fac-
tors signifying more serious disease, outcomes of previous exacerbations, and
the length and severity of symptoms during this exacerbation. At this point, the
physician begins management of the asthma exacerbation, including repeated
bronchodilator treatments at intervals from every few minutes (continuous) to
every few hours, along with systemic corticosteroids for most patients. All man-
agement decisions are recorded in patient’s ED chart. Moreover, throughout the
patient’s ED stay, he/she is reassessed by the physician or by the ED nurse to
check response to treatments. Depending on a variety of external factors (pa-
tient’s condition, clinicians’ workload, etc), these re-assessments are performed
at irregular intervals and they are partially or completely recorded in the chart.

Table 1 lists commonly evaluated and documented clinical attributes asso-
ciated with asthma exacerbations that could be transcribed from ED charts.
Attributes #1–#22 were collected during registration and physician evaluation
and they describe patient’s history, attributes #23–#32 were collected during
the triage assessment and repeated assessments. We considered two sets of these
attributes – the first set characterizes the state of the patient on arrival and
it was collected during the triage assessment, and the other set presents the
patient’s most complete picture recorded in a repeated assessment within an in-
terval of 100 and 140 minutes from arrival. Finally, attribute #33 was calculated
as the number of bronchodilator treatments (i.e., masks) provided to the patient
between the triage and repeated assessment being considered.

Each patient’s data was reviewed and a patient was assigned to one of the
two groups using asthma exacerbation severity category documented in the ED
chart and confirmed later by lack of a subsequent visit to the ED. This procedure
allowed us to identify those patients where the initial ED visit resulted in a
premature discharge and subsequent readmission to the ED. In this sense we
considered the confirmed severity group as a gold standard during development
of decision models.

A final sample of 239 ED patient visits for asthma exacerbations was identified
during the study period. Basic characteristics of this population are given in
Table 2. Although the distribution of visits between both decision groups is fairly
well balanced, it can be seen that more patients treated in the ED experienced
moderate/severe attacks.
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Table 1. Clinical attributes

# Attribute Domain

Registration and physician evaluation
1 Patient age < 3 years, 3 – 7 years, ≥ 7 years
2 Primary care family doctor, pediatrician, other, none
3 Chest clinic yes, no
4 Current inhaled steroids < 1 week, 1 – 4 weeks, ≥ 4 weeks,

as necessary, none
5 Age of first symptoms < 1 year, 1 – 3 years, ≥ 3 years
6 Previous oral steroids < 1 month, 1 – 3 months, 3 – 12 months,

≥ 12 months
7 Previous ED last year 1 visit, 2 visits, 3 visits, ≥ 4 visits, none
8 Previous admission floor, ICU, none
9 Smokers in environment yes, no
10 Dander in environment yes, no
11 Carpets in environment yes, no
12 Allergies to environment yes, no
13 Allergies to pets yes, no
14 Allergies to food yes, no
15 History of atopy yes, no
16 Family history of asthma yes, no
17 Allergy exposure yes, no
18 URTI symptoms yes, no
19 Fever yes, no
20 Duration of symptoms < 12 hours, 12 – 48 hours, ≥ 48 hours
21 Bronchodilators in last 24h 1 – 3, 3 – 6, ≥ 6, none
22 Arrival to the ED ambulance, parents

Triage assessment/Repeated assessment
23 Temperature < 38 C, 38 – 39 C, ≥ 39 C
24 Respiratory rate normal, mild abnormal, abnormal
25 Heart rate normal, mild abnormal, abnormal
26 Oxygen saturation < 88, 88 – 93, 93 – 95, ≥ 95
27 Air entry good, reduced
28 Distress none, mild, moderate, severe
29 Skin color pink, pale, dusky
30 Expiratory wheeze present, absent
31 Inspiratory wheeze present, absent
32 Retractions present, absent

Treatment summary
33 Number of treatments received number

As expected, the majority of charts had incomplete data. Only three clinical
attributes (all describing demographics and history) were specified on all charts
– they were #1, #2, and #3 (also attribute #33 was provided for all visits,
however, it was calculated from information available in charts). Moreover, nine
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Table 2. Characteristic of the learning data

Characteristics Value

Mean age 5.7 years
% of visits in the mild group 41.0%
% of visits in the moderate/severe group 59.0%

attributes (#9–#11 and #17 for the registration and physician evaluation; #30–
#32 for the triage assessment; #23 and #28 for the repeated assessment) had
missing values for more than 60% of collected visits. We excluded these attributes
from the analysis.

3 Development of a Decision Model

In order to develop potential decision models we used a rough set approach
with cumulative indiscernibility relation [8] that allows dealing with incomplete
data without prior preprocessing (e.g., replacing missing values of attributes by
known ones or removing incomplete cases). This approach supports evidence-
based medical decision making [9] since data used for constructing the decision
model are not changed.

Cumulative indiscernibility relation assumes that a missing value of an at-
tribute is equivalent to any other value of this attribute. This simplification does
not distinguish between situations where values were collected but not recorded
and where values were not collected as it was deemed unnecessary by the physi-
cian. However, this distinction can be rarely inferred from retrospective chart
study, making this approach suitable for analyzing clinical data transcribed from
charts (written medical records are rarely standardized in format and content).
It has been also successfully applied in other clinical studies [10,11].

Rough set theory offers a methodology for finding important attributes in the
form of a core and reducts. However, for data described by a large number of
attributes, also the number of reducts may be very large making selection of at-
tributes difficult and ambiguous [12]. Therefore, we decided against automated
feature selection as an approach that does not consider knowledge about a prob-
lem domain, and instead used expert-driven manual selection. This approach
has proved successful for other clinical problems [13].

The experiment involved using the entire set of clinical attributes transcribed
from charts and three subsets of attributes selected according to clinical knowl-
edge. For each of the sets of attributes, we induced decision rules using the mod-
ified LEM2 algorithm that ensured robustness of created rules (each rule had to
cover at least one case with known values of attributes in the rule’s conditions).
Generated sets of rules were then coupled with a distance-based classification
strategy [14] to form rule-based decision models. Finally, we obtained the fol-
lowing four potential decision models:
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1. Model A using all clinical attributes included in the analysis (a baseline
model),

2. Model B using clinical attributes collected during registration and physician
evaluation (attributes #1–#22),

3. Model C using clinical attributes collected during triage and repeated as-
sessment together with the number of bronchodilator treatments (two sets
of attributes #23–#32 and attribute #33),

4. Model D using clinical attributes from Model C and extended by the at-
tributes from Model B as per asthma guidelines [2] . Specifically we included
the following additional attributes:
– Age of first symptoms (attribute #5),
– Duration of symptoms (attribute #20),
– Timing since last oral steroids (attribute #6),
– Possible allergens (attributes #12–#14),
– Family history of asthma (attribute #16),
– Social status of the patient (attributes #2 and #22) - patients coming

from poorer families would likely not have a family physician and would
be brought to the ED by ambulance).

4 Evaluation of Decision Models

In order to evaluate the quality of the four decision models, we conducted an
experiment that compared their performance on new retrospective chart data.
Data transcribed from the ED charts were used as input to a decision model, and
the suggested dichotomized evaluation of a severity of asthma exacerbation was
considered as an output and compared to the gold standard (verified severity
group).

The potential decision models were evaluated on an independent data set de-
scribing 123 visits to the ED of CHEO between October 2003 and July 2004.
The transcription process followed the same regimen as described for the retro-
spective learning data. General characteristics of the testing data are given in
Table 3. Compared to the learning data (see Table 2), the percentage of patients
with moderate/severe attacks decreased and the distribution of visits between
groups became almost even (with slightly greater number of patients with mild
attacks).

Results of the evaluation are presented in Table 4. Compared to the base-
line Model A, Model B exhibited decreased accuracies for both dichotomized
groups, thus suggesting that the corresponding set of attributes did not include
information required for reliable prediction of severity. Model C was found to be
much more accurate – it preserved accuracy in the moderate/severe group and
significantly increased accuracy for the mild group (increase of 20%). Overall
accuracy for Model C was also higher than for the baseline model. This implies
that the attributes characterizing assessments and treatment allowed us to iden-
tify relatively well patients with mild asthma exacerbation, while there was still
not enough information to identify patients from the other group (this group
was underestimated).
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Table 3. Characteristic of the testing data

Characteristics Value

Mean age 6.0 years
% of visits in the mild group 52.8%
% of visits in the moderate/severe group 47.2%

Table 4. Accuracy of classification for considered decision models

Model

Group A B C D

Mild 60.0% 43.1% 81.5% 78.5%
Moderate/severe 63.8% 58.6% 62.1% 74.1%

Overall 61.8% 50.4% 72.4% 76.4%

Finally, Model D improved accuracy in the moderate/severe group (increase
of 12%) and only slightly lowered accuracy for the mild group (decrease of 3%).
Overall accuracy of this model was the highest, proving the importance of ex-
panding the triage and repeated assessment set of the attributes with those
suggested in the guidelines.

To further validate the results, we used McNemar’s test [15] to verify statisti-
cal significance of differences in performance of potential models. The McNemar’s
test is often used in clinical problems to compare individual outcomes before and
after intervention and in our experiment we used the test to compare classifica-
tion outcomes of paired models associated with the same patient records from
the testing set. The results of the McNemar’s statistic are given in Table 5 and
they show that statistically significant classification differences were obtained for
all pairs except Model A and B and Model C and D (significance 0.95, threshold
3.841), and the largest values of McNemar’s statistic were obtained for Model B
and C and for Model B and D pairwise comparisons. Considering the best predic-
tion accuracy of Model D, McNemar statistic provided additional argument for
selecting this decision model for predicting the severity of asthma exacerbations.

Table 5. McNemar’s statistics

Model B Model C Model D

Model A 2.817 3.892 6.881
Model B – 10.090 16.569
Model C – – 0.552
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5 Discussion

Data transcribed retrospectively from patient charts is usually characterized by
a large number of clinical attributes with many of them being considered by
the physician in a specific context (e.g., when a severe problem is suspected). It
means that values of these attributes are evaluated and recorded only for spe-
cific patients and appear only on a fraction of charts. Moreover, some attributes
may be checked by the physician during examination, but as they were deemed
unnecessary (e.g., their values would not contribute to a decision), they might
be not recorded either. A fact that there is a large number of attributes and that
many charts include incomplete information, makes development of a decision
model a difficult and challenging task [16] as a model may be prone to super-
fluous information and offer poor performance in clinical practice. Therefore,
the development of a decision model should start with identification of those at-
tributes that are the most explanatory but also that make the most sense from
a clinical perspective. Values of selected attributes may still be incomplete, so
methods employed to develop a decision model should be capable to handle such
a situation.

The rough set approach with cumulative indiscernibility relation [8] used in
this study handles incomplete data in a manner that is consistent with those
reported in literature [17] that suggest that the most promising results in terms
of accuracy of prediction are obtained when missing values are handled directly
or when incomplete cases are removed from the analysis (the latter approach is
rarely feasible for medical data sets transcribed from charts as it would result in
excluding a significant number of available cases).

Direct processing of missing values is also in line with principles of evidence-
based decision making, where clinical decisions have to be made using the best
available knowledge. Modifications of clinical data, where missing values are re-
placed by automatically selected known values, could result in creating artificial
patterns that might be captured by a decision model developed from such data,
thus significantly limiting its clinical reliability. The approach we have used al-
lowed us to avoid this trap, and it also ensured robustness of discovered patterns
(each rule was supported by at least one case with known values of attributes
referenced by this rule, thus it was supported by a complete evidence).

Rough sets offer techniques and evaluation measures for automatic selection
of attributes, but we argue that whenever it is possible, attributes should be
evaluated and selected according to expert knowledge and clinical experience. As
physicians often tend to consider too many clinical attributes, it is reasonable to
compare their selection against practice guidelines to possibly limit the number of
selected attributes. Even if an automatic feature selection is used and a created
decision model provides good predictive performance, the selected attributes
should be verified by an expert in order to ensure that they are appropriate
from a clinical perspective. Otherwise, the clinical applicability of a developed
model may be very limited.

Our study demonstrated that rough sets combined with manual feature selec-
tion based on expert knowledge proved to be a valid methodology for developing
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a rule-based decision model for asthma exacerbations. The model that offered the
highest predictive accuracy and thus was finally selected, was based on attributes
characterizing assessments and treatments combined with those describing pa-
tient’s history and identified in the practice guideline reflecting expert knowledge.
The study confirmed that data transcribed retrospectively from charts often in-
cludes superfluous information that may result in less accurate decision models,
and thus prior selection of attributes is of high importance. It also demonstrated
that manual feature selection based on expert knowledge is an important success
factor.

The decision model for asthma exacerbations has not been validated in clini-
cal practice, however, we plan to embed it in a decision support module for the
MET (Mobile Emergency Triage) system [18]. MET with a module for triaging
pediatric abdominal pain successfully underwent a 7-month clinical trial in the
ED at CHEO [19]. The decision model in the abdominal pain module was de-
veloped using the rough set approach with cumulative indiscernibility relation.
Results from the prospective clinical trial demonstrated that our model has clas-
sification accuracy similar to the accuracy of physicians. We plan to conduct a
similar clinical trial of the MET system with the asthma module.

Acknowledgments

The research reported in this paper was supported by the grants from the Natural
Sciences and Engineering Research Council of Canada, Canadian Institutes of
Health Research and the State Committee for Scientific Research of Poland.

References

1. Lozano, P., Sullivan, S., Smith, D., Weiss, K.: The economic burden of asthma in
us children: Estimates from the national medical expenditure survey. Journal of
Allergy and Clinical Immunology 104 (1999) 957–63

2. National Asthma Education and Prevention Program: Guidelines for the diagnosis
and management of asthma. NIH publication no. 97-4051, National Heart, Lung
and Blood Institute (2002)

3. Kelly, A., Kerr, D., Powell, C.: Is severity assessment after one hour of treatment
better for predicting the need for admission in acute asthma? Respiratory Medicine
98(8) (2004) 777–781

4. Schuh, S., Johnson, D., Stephens, D., Callahan, S., Canny, G.: Hospitalization
patterns in severe acute asthma in children. Pediatric Pulmonology 23(3) (1997)
184–92

5. Gaspar, A., Morais-Almeida, M., Pires, G., Prates, S., Camara, R., Godinho, N.,
Arede, C., Rosado-Pinto, J.: Risk factors for asthma admissions in children. Allergy
and Asthma Proceedings 23 (2002) 295–301

6. Keogh, K.A., Macarthur, C., Parkin, P.C., Stephens, D., Arseneault, R., Tennis, O.,
Bacal, L., Schuh, S.: Predictors of hospitalization in children with acute asthma.
Journal of Pediatrics 139 (2001) 273–277



Developing a Decision Model for Asthma Exacerbations 437

7. Ortega, A., Belanger, K., Bracken, M., Leaderer, B.: A childhood asthma severity
scale: symptoms, medications, and health care visits. Annuals of Allergy, Asthma
and Immunology 86 (2001) 405–413

8. Greco, S., Matarazzo, B., Slowinski, R.: Dealing with missing data in rough set
analysis of multi-attribute and multi-criteria decision problems. In Zanakis, S.,
Doukidis, G., Zopounidis, C., eds.: Decision Making: Recent Developments and
Worldwide Applications. Kluwer Academic Publishers (2000) 295–316

9. Sackett, D., Rosenberg, W., Gray, J., Haynes, R., Richardson, W.: Evidence based
medicine: what it is and what it isn’t. British Medical Journal 312 (1996) 7–12

10. Wilk, S., Slowinski, R., Michalowski, W., Greco, S.: Supporting triage of children
with abdominal pain in the emergency room. European Journal of Operational
Research 160(3) (2005) 696–709

11. Michalowski, W., Wilk, S., Farion, K., Pike, J., Rubin, S., Slowinski, R.: Develop-
ment of a decision algorithm to support emergency triage of scrotal pain and its
implementation in the MET system. INFOR 43(4) (2005) 287–301

12. Flinkman, M., Michalowski, W., Nilsson, S., Slowinski, R., Susmaga, R., Wilk, S.:
Use of rough sets analysis to classify siberian forest ecosystems according to net
primary production of phytomass: Siberian forest case study. INFOR 3(38) (2000)
145–161

13. Wang, J., Bo, T., Jonassen, I., Myklebost, O., Hovig, E.: Tumor classification and
marker gene prediction by feature selection and fuzzy c-means clustering using
microarray data. BMC Bioinformatics 4 (2003) 60 (electronic)

14. Stefanowski, J.: Classification support based on the rough sets. Foundations of
Computing and Decision Sciences 18(3-4) (1993) 371–380

15. Everitt, B.: The analysis of contingency tables. Chapman and Hall, London (1977)
16. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection pro-

blem. In: Proceedings of the 11th International Conference on Machine Learning.
(1994) 121–129

17. Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing
attribute values in data mining. In Ziarko, W., Yao, Y.Y., eds.: Rough Sets and
Current Trends in Computing. Volume 2005 of Lecture Notes in Computer Science.,
Springer (2000) 378–385

18. Michalowski, W., Slowinski, R., Wilk, S.: MET system: A new approach to m-
health in emergency triage. Journal on Information Technology in Healthcare 2(4)
(2004) 237–249

19. Farion, K., Michalowski, W., Slowinski, R., Wilk, S., Rubin, S.: Rough set method-
ology in clinical practice: Controlled hospital trial of the MET system. In Tsumoto,
S., Slowinski, R., Komorowski, J., Grzymala-Busse, J., eds.: Rough Sets and Cur-
rent Trends in Computing. 4th International Conference, RSCTC 2004. Volume
3066 of LNAI., Uppsala, Sweden, Springer-Verlag (2004) 805–814



A GrC-Based Approach to Social Network Data
Protection�

Da-Wei Wang, Churn-Jung Liau, and Tsan-sheng Hsu

Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
{wdw, liaucj, tshsu}@iis.sinica.edu.tw

Abstract. Social network analysis is an important methodology in so-
ciological research. Although social network data is very useful to re-
searchers and policy makers, releasing it to the public may cause an
invasion of privacy. In this paper, we generalize the techniques used to
protect private information in tabulated data, and propose some safety
criteria for assessing the risk of breaching confidentiality by releasing so-
cial network data. We assume a situation of data linking, where data is
released to a particular user who has some knowledge about individual
nodes of a social network. We adopt description logic as the underlying
knowledge representation formalism and consider the safety criteria in
both open-world and closed-world contexts.

1 Introduction

Social network analysis (SNA) is a methodology used extensively in social and
behavioral sciences, as well as in political science, economics, organization the-
ory, and industrial engineering[6]. Though the analysis of social network data is
valuable to researchers and policy makers, there may be a risk of privacy inva-
sion. In SNA, researchers usually collect data by social surveys. Respondents to
the surveys are typically anonymous; however, previous research on tabulated
data has shown that simply ensuring the anonymity of respondents may not be
sufficient to protect their privacy. The key point is that respondents could be re-
identified by linking the anonymous data with some publicly available databases
[2,3,4,8,9].

While each data record in a data table is completely defined by the attribute
values of an individual1, a social network also contains relational data between
individuals. In this sense, a social network is more general than a data table. In
this paper, we provide a formal model of a situation where personal information
not only contains attribute values, but also relational links to other individuals.

Several methods have been developed for tabulated data protection [8,4,9].
The main idea is to group the individuals with the same combination of pub-
lic attribute values into a bin, or an information granule. Some qualitative and
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1 An individual refers to a person whose privacy should be protected.
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quantitative safety criteria are then defined, according to the distribution of the
confidential attribute values of individuals in the same information granule. In a
social network, two individuals with the same public attribute values may still be
distinguishable by their relationship with other individuals. Thus, to formulate
information granules for social networks, we have to consider the attributes of
individuals and the relationships between individuals. By generalizing the defi-
nition of information granules, we can extend the analysis for tabulated data to
social network data.

The remainder of the paper is organized as follows. In the next section, we
review a basic description logic. In Section 3, we discuss the representation of
a social network with description logic languages. In such a representation, the
social network data is transformed into an ABox, or an interpretation of the
description logic based on the open-world or closed-world assumption. In Sec-
tion 4, the transformations are described in detail and some safety criteria are
defined. Finally, in Section 5, we present our conclusions.

2 Description Logic—A Review

Description logic (DL) was originally a subset of first-order logic specially de-
signed for knowledge representation2. In this section, we introduce a basic DL
called AL (attributive language).

2.1 Basic Syntax and Semantics

The language AL was first introduced in [5]. The alphabets of AL consist of two
disjoint sets, the elements of which are called concept names (atomic concepts)
and role names (atomic roles) respectively. Following the notations in [1], we
use the letters A and B for atomic concepts, the letter R for atomic roles, and
the letters C and D for concept terms. The concept terms of AL are formed
according to the following syntactic rule:

C ::= A | 3 | ⊥ | ¬A | C # D | ∀R : C | ∃R : 3.

Note that, in AL, negation can only be applied to atomic concepts, and only the
top concept is allowed in the scope of an existential quantification.

The Tarskian semantics for AL assigns sets to concept names and binary
relations to role names. Formally, an interpretation of AL is a pair I = (ΔI , [|·|]I),
where ΔI is a non-empty set called the domain of the interpretation and [| · |]I is
an interpretation function that assigns to each concept name a subset of ΔI and
to each role name a subset of ΔI ×ΔI . For brevity, we usually drop the subscript
and superscript I. The domain of [| · |] can then be extended to all concept terms
by induction as usual. In particular, we have

[|∀R : C|] = {x ∈ Δ | ∀y((x, y) ∈ [|R|] ⇒ y ∈ [|C|])}.
2 Most of the notations and definitions in this section follow those introduced in [1].
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2.2 Knowledge Representation by DL

Within a knowledge base one can distinguish between intensional knowledge
(i.e., general knowledge about the problem domain) and extensional knowledge,
which is specific to a particular problem. A DL knowledge base is similarly
comprised of two components — a “TBox” and an “ABox”. The TBox consists
of terminological axioms 3 that have the form

C 6 D (R 6 S) or C ≡ D (R ≡ S),

where C, D are concepts (and R, S are roles). An equality whose left-hand side
is an atomic concept is called a definition, which is used to introduce a symbolic
name for a complex description. An atomic concept not occurring on the left-
hand side of an axiom is called primitive. A finite set of Definitions Σ is called a
terminology, or TBox, if no symbolic name is defined more than once; that is, if
for every atomic concept A, there is at most one axiom in Σ whose left-hand side
is A. An interpretation I = 〈Δ, [| · |]〉 satisfies the axiom C ≡ D (resp. C 6 D)
iff [|C|] = [|D|] (resp. [|C|] ⊆ [|D|]).

An ABox contains the world description in the form of assertional axioms

C(a) or R(a, b),

where C is a concept term , R is a role name, and a, b are constants for naming
the individuals in the world. The domain of the interpretation function [| · |] is ex-
tended to the constants occurring in an ABox such that [|a|] ∈ Δ for any constant
a. We assume that distinct individual names denote distinct objects (the unique
name assumption). For the purpose of distinction, an extended interpretation is
used to give a full assignment of meanings to constants, concepts, and roles. An
extended interpretation I = 〈Δ, [| · |]〉 satisfies an assertion C(a) (resp. R(a, b))
iff [|a|] ∈ [|C|] (resp. ([|a|], [|b|]) ∈ [|R|]). I satisfies the ABox Φ if it satisfies each
assertion in Φ. It is also said that I is a model of the assertion or the ABox. An
assertion ϕ is a logical consequence of an ABox Φ, written as Φ |= ϕ, if for every
interpretation I, I |= Φ implies I |= ϕ.

3 DL-Based Representation of Social Network Data

To represent social network data, we partition the atomic concepts (resp. roles)
into two disjoint sets. The first set contains the easily-known (EK) atomic con-
cepts (resp. roles), and the second consists of the sensitive atomic concepts
(resp. roles). Let L be a DL language4. We use Le to denote the sub-language
of concept terms, which is composed of EK atomic concepts and roles only. The
sub-language of other concept terms, i.e., L− Le is denoted by Ls.

3 For this reason, DL is also known as terminological logic or concept logic.
4 Though we have only exemplified a DL language in the AL family, the results in

this paper do not depend on the choice of any particular DL language.
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In this paper, we assume that there is a set of actual individuals {a1, a2, · · · , am}
whose data is available in the data center and represented as an actual social net-
work. For privacy reasons, the data center must mask off the identities of the actual
individuals, so it is assumed that the actual individuals are replaced by nominal
constants u1, u2, · · · , um in the released network data. The data center would like
to release an anonymous network, obtained from a part or the whole of the actual
social network by masking off the identities of the actual individuals.

Formally, an anonymous social network (based on a DL language L) is defined
as a labeled graph G = (V, E, l), where V is a set of nodes, E ⊆ V × V is a set
of edges between the nodes, and l assigns a subset of atomic concepts to each
node and a subset of atomic roles to each edge. We can mark each vertex of G
distinctly with a nominal constant ui. Without loss of generality, and by slightly
abusing the notation, we can identify V by {u1, u2, · · · , um}.

The basic assumption is that a particular user5 may know (though perhaps
only partially) some information about the actual individuals before the anony-
mous network is released, and wants to obtain the private data of these individ-
uals by linking his a priori knowledge to the released social network data. The
data administrator needs to assess the possibility that the user could link his a
priori knowledge to the released social network data to discover any individual’s
private information. Thus, it is important to model the user’s a priori knowledge.
However, the data administrator may not know the user’s a priori knowledge.
In such cases, the data administrator makes the worst-case assumption that all
easily known information about the individuals is known to the user. Therefore,
from the data administrator’s perspective, the user’s knowledge is represented
as an ABox in which only concepts and roles from Le and actual individuals
appear. In addition, we assume that both the user and the data administrator
use a common ontology, i.e., a TBox, to represent the background knowledge of
the problem domain.

4 Privacy Protection in Data Linking

We now consider the DL-based representation of the released anonymous net-
work, and formulate the notion of information granules based on that representa-
tion. There are two possible interpretations of the released anonymous network.
One is based on the closed-world assumption (CWA) and the other on the open-
world assumption (OWA). By CWA, we mean that the anonymous network
G = (V, E, l) is complete in the sense that if C �∈ l(u), then u has the property
¬C; and if R �∈ l(u, v), u is not R-related to v. Thus, from the anonymous net-
work G = (V, E, l), we can obtain an interpretation IG. In OWA, on the other
hand, the anonymous network G = (V, E, l) may be incomplete, so if C �∈ l(u),
then u may have the property C or ¬C, and analogously for the roles. Thus, the
social network can only be represented as an ABox, since DL typically adopts
open-world semantics for the interpretation of an ABox.
5 In this paper, “user” or “users” refers to anyone receiving social network data and

having the potential to breach the privacy of individuals.
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In general, DL-based social network representations adopt the open-world
assumption. However, in some special cases when only primitive concepts are
considered, the CWA enables a more efficient representation of knowledge, since
only positive information is needed.

In the following, we first present the safety criteria for CWA and then those
for OWA. We also have to represent the user’s knowledge available to the data
administrator. In practice, the user’s knowledge is rarely complete, so we always
represent it by an ABox. Let Φ denote such an ABox throughout this section.
The individual constants occurring in the ABox for the user’s knowledge are the
actual ones. It is assumed that the concepts and roles appearing in the ABox are
all from Le, and the set of actual individuals occurring in the ABox is A. Note
that it is possible that the cardinality of A is less than the number of anonymous
individuals in the social network, since the user may not have information about
all actual individuals.

4.1 Social Networks in a Closed World

CWA has been adopted in much of the database literature. It is efficient for
data representation, since only positive information is explicitly represented.
However, due to an obvious technical reason, CWA is only applicable when the
social network G = (V, E, l) is restricted to a special form, where each element
of l(u) is primitive for all u ∈ V 6. In this subsection, we assume that the released
social network meets this special restriction.

With CWA, an anonymous network can be transformed into an interpretation
of DL. Formally, given a social network G = (V, E, l) based on a DL language
L, we construct an interpretation IG = (V, [| · |]IG) such that

1. the domain of the interpretation is the set of anonymous individuals V
2. u ∈ [|A|]IG iff A ∈ l(u) for each primitive concept A

3. (u, v) ∈ [|R|]IG iff R ∈ l((u, v)) for each atomic role R
4. the interpretation of other non-primitive atomic concepts is determined by

the axioms in the TBox of our problem domain.

Let Φ be an ABox representing the user’s knowledge. Then, an extended
interpretation I = (V, [| · |]I) for Φ is said to be an extension of the interpretation
IG, written as IG�I, if [|A|]I = [|A|]IG for each concept name A and [|R|]I = [|R|]IG

for each role name R. The set of G-based models for Φ is defined as

Mod(Φ, G) = {I | IG � I and I |= Φ}. (1)

Note that a G-based model maps each actual individual appearing in Φ to a
nominal constant in G. Such a mapping provides the user with a possible re-
identification of these individuals in the anonymous network.

6 If B ≡ C ∪ D is an axiom in the background TBox and B ∈ l(u), but C, D �∈ l(u),
then we obviously can not assume ¬C ∈ l(u) and ¬D ∈ l(u) simultaneously without
contradiction.
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4.2 Safety Criteria Under CWA

Once the G-based models for the user’s knowledge Φ are available, we can define
different criteria to safeguard confidentiality when releasing an anonymous social
network to a particular user.

The first safety criterion is the granule size (bin size) criterion, which was
proposed in some pioneering works [4,8]. First, we define a granule for each actual
individual a ∈ A as the set of possible anonymous individuals corresponding to
a. Thus, the granule (or bin) for an actual individual a ∈ A with respect to G
and Φ is formally defined as

[a]ΦG = {[|a|]I | I ∈ Mod(Φ, G)}. (2)

The pair (Φ, G) is said to satisfy the k-anonymity criterion if for each a ∈ A,
|[a]ΦG| ≥ k, where | · | denotes the cardinality of a set. The rationale behind the
criterion is that the more individuals there are in a granule, the less likely it is
that the user can re-identify to whom the anonymous individuals correspond.

It is shown in [3] that the granule size criterion may be not sufficient for
privacy protection. Even though the user can not re-identify the anonymous
individuals, he can sometimes deduce the sensitive information common to all
individuals in a granule. To formulate a safety criterion for this situation, we
assume SC ⊆ Ls to be a set of sensitive concepts that we would like to pre-
vent users from knowing. Because the G-based models for Φ in fact determine
all possible correspondence between the actual individuals and the anonymous
individuals, an actual individual a is known to have the property C if I |= C(a)
for all I ∈ Mod(Φ, G). Hence, (Φ, G) satisfies the epistemic safety criterion if for
every a ∈ A and C ∈ SC, there exists I ∈ Mod(Φ, G) such that I �|= C(a). It can
be easily shown that (Φ, G) satisfies the epistemic safety criterion if [a]ΦG �⊆ [|a|]IG

for every a ∈ A and C ∈ SC.
The two above-mentioned criteria are purely qualitative. Two quantitative

criteria, called the average benefit and the total cost criteria, have been proposed
for tabulated data[9]. These criteria can also be generalized to the current setting.
In the average benefit model, we measure a privacy breach by estimating the
average benefit the user can gain after receiving the anonymous social network.
This is based on the assumption that the individuals’ private information is
valuable to the user; therefore, from the privacy protection viewpoint, the larger
the average benefit, the less safe the social network data will be. On the other
hand, the total cost model measures data safety by estimating the effort the user
must expend to find the private information of every individual after receiving
the anonymous social network. Thus, the higher the total cost, the harder it is
for the user to find the individuals’ private information.

The average benefit model is based on the information-theoretic measure of
entropy[7]. For each sensitive concept C ∈ SC, the a priori probability of an
arbitrary individual satisfying C is denoted by Pr(C). It is sometimes assumed
that value of Pr(C) can be obtained from some external knowledge sources, and
is therefore available to both the user and the data center. If the assumption
fails, the value of Pr(C) can be estimated by
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Pr(C) =
|{u ∈ V | C ∈ l(u)}|

m
. (3)

After receiving the released anonymous network data, the user knows the a
posteriori probability of an actual individual a satisfying a sensitive concept C.
This is defined by

Pra(C) =
|{I ∈ Mod(Φ, G) | I |= C(a)}|

|(Mod(Φ, G)| . (4)

The user’s information gain about a regarding the sensitive concept C is thus

IGa(C) = max(
log Pr(C) − log Pra(C)

log Pr(C)
, 0). (5)

Hence, the user’s average information gain regarding C is defined as

IG(C) =
∑

a∈A IGa(C)
|A| . (6)

Let us further assume bef : SC → 7+ ∪ {0} is a function that maps each
sensitive concept C to the corresponding benefit the user can gain when he
obtains some information about C. The value bef(C) can also be seen as the
degree of damage caused to an individual if it becomes known that he has the
property C. Then, the average benefit to a user by receiving the social network
data is B =

∑
C∈SC bef(C) · IG(C). The larger the value of B, the greater the

amount of private information that is leaked.
Let us now turn to the total cost model, which estimates the cost to the user

for completely knowing the private information of all individuals. It is assumed
that the user can conduct an investigation of the actual individuals to deter-
mine whether any of them have the property C. If the user does not have any
knowledge about these individuals, he has to investigate all of them. However, by
utilizing the knowledge deduced from the released anonymous network, he could
discover the private information of all individuals without investigating all of
them. The total cost is based on the number of individuals he has to investigate
in order to discover the private information of all individuals.

A constructive procedure is used to determine the total cost. Since each model
in Mod(Φ, G) stands for a possible correspondence between the actual and the
anonymous individuals, the user can increase his knowledge by eliminating the
impossible models via investigation.

Let us first fix a sensitive concept C. Then, for each actual individual a ∈ A
and class of interpretations M, define M+

a = {I ∈ M | I |= C(a)} and M−
a =

{I ∈ M | I �|= C(a)}.
Next, we enumerate all possible investigation sequences by using the inves-

tigation tree. Each node of the investigation tree denotes a string of actual
individuals, which represents a sequence of individuals who have been investi-
gated on that node. Thus, the root node is denoted by the empty string ε. Let
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us define Mε = Mod(Φ, G), Aε = A, and pε = 1. Then, for each node denoted
by λ = λ′ · a such that a ∈ Aλ′ , define

Mλ =
{

(Mλ′)+a , if C(a) holds
(Mλ′)−a , if C(a) does not hold,

Aλ = {a ∈ Aλ′ | (Mλ)+a �= ∅ ∧ (Mλ)−a �= ∅},

and
pλ = pλ′ · 1

|Aλ′ | .

Intuitively, Mλ and Aλ respectively denote the set of remaining possible models
and the set of individuals whose C-membership is not yet known; and pλ denotes
the probability that the actual investigation sequence is λ. On each internal node
λ, we assume that the next individual to be investigated is chosen uniformly from
Aλ.

A node denoted by λ is a leaf node if Aλ = ∅. Let P denote the set of all leaf
nodes. Then, the expected number of investigations by the user is

IVC =
∑
λ∈P

pλ · len(λ), (7)

where len(λ) denotes the length of the string λ.
The rationale for taking the cost as a safety criterion is to prevent the user

substantially reducing his investigation costs after receiving the released network
data. To measure the extent of privacy leakage, we should consider the minimal
effort the user must expend to find some private information; therefore, the ex-
pected total cost for the user to discover some private information after receiving
the social network data should be D = minC∈SC IVC . The larger the value of D,
the harder it is to breach privacy.

4.3 Social Networks in an Open World

An anonymous social network G = (V, E, l) under OWA can be transformed into
an ABox ΦG as follows:

ΦG = {A(u) | A ∈ l(u), u ∈ V }
∪ {R(u, v) | R ∈ l((u, v)), (u, v) ∈ E}.

Consequently, we have an ABox, Φ, for the user’s knowledge and an ABox,
ΦG, for the anonymous social network G. The user seeks a mapping from A to
V = {u1, · · · , um}. Let ι : A → V be a 1-1 mapping; then ι(ΦG) is the resultant
ABox obtained from ΦG by replacing each anonymous individual u occurring
in ΦG with ι−1(u). The mapping ι is said to be a (Φ, G)-possible matching if
ι(ΦG) ∪ Φ is consistent with respect to the background TBox. Sometimes, we
simply call it a possible matching.
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4.4 Safety Criteria for OWA

Once the notion of possible matchings is given, the definition of the granule size
criterion is analogous to that under CWA. In fact, each G-based model corre-
sponds exactly to a 1-1 mapping between A and V , which makes all assertions
in Φ true. Under OWA, the granule (or bin) for an actual individual a ∈ A with
respect to G and Φ is formally defined as

[a]ΦG = {ι(a) | ι is a possible matching}. (8)

The pair (Φ, G) is said to satisfy the k-anonymity criterion if for each a ∈ A,
|[a]ΦG| ≥ k.

It is easy to define the epistemic safety criterion. Formally, (Φ, G) satisfies the
epistemic safety criterion if for every a ∈ A and C ∈ SC, there exists a possible
matching ι such that ι(ΦG) ∪ Φ �|= C(a).

For the average benefit model, the a priori probability Pr(C) may be still
estimated by (3) or obtained from some external source. However, the a posteriori
probability of an actual individual a satisfying a sensitive concept C is changed
to

Pra(C) =
|{ι | ι(ΦG) ∪ Φ |= C(a)}|

the number of possible matchings
. (9)

The definitions of IGa(C) and IG(C) are then exactly same as those given in
(5) and (6) respectively.

We still use the investigation tree for the total cost model. For the root node,
let Mε denote the set of all possible matchings, Φε be the empty set, and Aε

and pε be defined as above. Then, for each node denoted by λ = λ′ · a such that
a ∈ Aλ′ , let

Mλ =
{
Mλ′ − (Mλ′)−a , if C(a) holds
Mλ′ − (Mλ′)+a , if C(a) does not hold,

where (Mλ′)+a = {ι ∈ Mλ′ | ι(ΦG)∪Φ∪Φλ′ |= C(a)} and (Mλ′)−a = {ι ∈ Mλ′ |
ι(ΦG) ∪ Φ ∪ Φλ′ |= ¬C(a)},

Φλ =
{

Φλ′ ∪ {C(a)}, if C(a) holds
Φλ′ ∪ {¬C(a)}, if C(a) does not hold,

Aλ = Aλ′ − {b ∈ Aλ′ | Mλ = (Mλ)+b ∨Mλ = (Mλ)−b },

and pλ be defined as above. The intuitive meanings of Mλ, Aλ, and pλ are
analogous to those of the CWA case, except that possible models are replaced
by possible matchings. Note that Mλ = (Mλ)+b ∨Mλ = (Mλ)−b means that the
C-membership of b can be inferred from the known facts, so the investigation of
b is not necessary. In addition, Φλ contains the known facts discovered through
the investigation of individuals in λ. The definitions of IVC and D then follow
exactly the same form as above.
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5 Conclusion

In this paper, we generalize the privacy protection problem of microdata re-
lease in tabulated form to the social network form. A social network not only
contains the attribute data of each individual, but also relational data between
individuals. Therefore, the problem is more complicated than that encountered
in tabulated data protection. We resolve it by employing a DL-based represen-
tation for social network data.

The safety criteria proposed in this paper enable a data center to assess the
risk of breaching confidentiality by releasing social network data. However, some
preventive action should be taken when the assessment shows that the direct
release of the data is not safe. For tabulated data, some techniques such as gen-
eralization, suppression, and random perturbation have been studied extensively
[4,3,9]. In our future work, we will explore how to apply these techniques to social
network data.

Another research problem is how to protect sensitive roles. In this paper, the
safety criteria are mainly defined with respect to the protection of sensitive con-
cepts. The protection of sensitive roles can be achieved indirectly. For example,
if the data center wants to prevent the user from knowing R(a, b), then it is suffi-
cient to protect the sensitive concept ∃R : 3 for a. However, the criteria may be
unnecessarily strict if it does not matter whether a is R-related to anyone else
apart from the particular b; therefore, the safety criteria can be further relaxed
if defined with respect to the protection of roles directly.
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Abstract. Flow graph (FG) is a unique approach in data mining and
data analysis mainly in virtue of its well-structural characteristics of
network, which is naturally consistent with granular computing (GrC).
Meanwhile, GrC provides us with both structured thinking at the philo-
sophical level and structured problem solving at the practical level. The
main objective of the present paper is to develop a simple and more
concrete model for flow graph using GrC. At first, FG will be mainly
discussed in three aspects under GrC, namely, granulation of FG, some
relationships and operations of granules. Moreover, as one of advantages
of this interpretation, an efficient approximation reduction algorithm of
flow graph is given under the framework of GrC.

Keywords: Flow graph, granular computing, data mining.

1 Introduction

Since flow graph(shortly, FG) has been proposed by Pawlak is his initiated pa-
per [8], series of related papers, such as [4,5,6,7,9,10,11], continuously have been
put forward to place emphasis upon its importance in data analysis. As a new
mathematical model of finding and mining knowledge, FG has some characteris-
tics, such as intuitional representation, straightforward computation, explicit re-
lations and parallel processing. Moreover, FG has tight relationships with Bayes’
theorem, rough sets and decision systems in theory aspects and these works pave
the way for its application in many field [7]. For example, Palwak first discuss
the relations between probability theory and FG in [9]. Butz et al. [1] have shown
that flow graph inference algorithm has exponential complexity. Then, FG was
linked up with decision systems in [4,5] and [6], and tied up with rough sets in
his recent paper [10].

Although FG has some merits in data mining, some undesirable effects also
exist in it. For example, it can not exactly or precisely depict the relationships

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 448–457, 2006.
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among nodes in network account for the fact that FG is only based on informa-
tion flow distribution and represents relationships among nodes in quantity of
flow. Therefore, Sun et al. introduced an extension of flow graph(in short, EFG)
in [15] to tackle with this problem.

Due to its well-structural network, EFG is consistent with granular comput-
ing(GrC) in nature. Meanwhile, GrC, which is motivated by the practical needs
for simplification, clarity, low cost, approximation, and tolerance of uncertainty,
is more about a philosophical way of thinking and a practical methodology of
problem solving deeply rooted in human mind. By effectively using levels of
granularity, GrC provides a systematic, natural way to analyze, understand,
represent, and solve real world problems [18]. In this paper, we will investigate
to joint EFG with GrC. However, granulation of the universe, relationships of
granules and computing with granules are three fundamental issues of granu-
lar computing [19]. Without loss of generality, we will first discuss granulation
of EFG in details, and then involve some relationships of granules and GrC
methods describe its ability to switch among different granularities in problem
solving. What’s more, an approximation reduction algorithm about EFG based
on the model of GrC will be represented after decomposition and composition of
granules are introduced in order to prove its utility values of the interpretation.

The structure of the rest is organized as follows. Section 2 briefly introduces
necessary notions of flow graph and its extension. In Section 3, granulation of
EFG will be proposed. Section 4 presents decomposition and composition op-
erations on granules and an approximation reduction algorithms about EFG
under the framework of GrC will be given in Section 5. Finally, some concluding
remarks are shown in Section 6.

2 Flow Graphs

In this section, some concepts of flow graph and its extension will be recalled
briefly. More notations can be consulted [11] and [15].

A flow graph (FG) is a directed, acyclic, finite graph G = (N, B, ϕ), where N
is a set of nodes, B ⊆ N ×N is a set of directed branches, ϕ : B → R+ is a flow
function and R+ is the set of non-negative reals [11]. If (ni, nj) ∈ B then ni is
an input of nj and nj is an output of ni. ϕ(ni, nj) is the throughflow from ni to
nj . I(ni), O(ni) are the sets of all inputs or outputs of ni, respectively.

However, FG is a quantificational graph, that is, it represents simple relations
among nodes using information flow distribution. As a result, FG can not exactly
determine the nature of relationships among nodes. Therefore, we have proposed
an extension of FG in [15] according to the information or objects flowing in the
network.

An extension of flow graph (EFG) is a directed, acyclic, finite graph G=(E, N,
B, ϕ, α, β), where E is the set of objects flowing in the graph, N is a set of
nodes, B ⊆ N × N is a set of directed branches, ϕ : B → 2E is the set of objects
which flow through branches and α, β : B → [0, 1] are threshold of certainty
and decision, respectively. If (ni, nj) ∈ B then ni is input(father) of nj and nj
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is output(child) of ni. and I(ni), O(ni) are respectively the sets of fathers and
children of node ni. Node ni is called a root if I(ni) = ∅ holds. Similarly, ni is a
leaf if O(ni) = ∅ holds. The inflow and outflow of node are respectively defined
as

ϕ+(ni) =
⋃

nj∈I(ni)
ϕ(nj , ni) and ϕ−(ni) =

⋃
nj∈O(ni)

ϕ(ni, nj). (1)

Moreover, we assume that for any internal node ni, ϕ(ni) = ϕ+(ni) = ϕ−(ni).
Input and output of G are defined I(G) = {ni ∈ N |I(ni) = ∅}, O(G) = {ni ∈
N |O(ni) = ∅}.

Let G be an EFG, the certainty and coverage factors of (ni, nj) ∈ B are

cer(ni, nj) = |ϕ(ni, nj)|/|ϕ(ni)| and cov(ni, nj) = |ϕ(ni, nj)|/|ϕ(nj)|. (2)

respectively, where |X | is the cardinality of X , ϕ(ni) �= ∅ and ϕ(nj) �= ∅.
In EFG, an sequence of nodes n1, ..., nm will be called a directed path from

n1 to nm, denoted by [n1...nm], if (ni, ni+1) ∈ B for 1 ≤ i ≤ m − 1 and⋂m
i=1 ϕ(ni, ni+1) �= ∅. Furthermore, the support, certainty and coverage of the

path [n1...nm] are ϕ(n1...nm) =
⋂m

i=1 ϕ(ni, ni+1),

cer(n1...nm) =
|ϕ(n1...nm)|

|ϕ(n1...nm−1)|
and cov(n1...nm) =

|ϕ(n1...nm)|
|ϕ(nm)| (3)

respectively, where ϕ(n1...nm−1) �= ∅ and ϕ(nm) �= ∅.
For an EFG G, if we only cast our lights on quantity of objects flowing through

branches in G rather than concrete objects, i.e. |ϕ(ni, nj)|/|E|, and α = 0, β = 0,
the EFG can be transformed into an FG and, what’s more, an approximate
FG [11] can be obtained from the EFG by adjusting the value of α or β.

For the sake of simplicity, in this paper, we assume that nodes with same
attribute form a layer and an EFG are arranged in several layers, denoted by a
set L, where L = CL∪ {O(G)} and CL, {O(G)} are condition and decision lay-
ers(output of EFG), respectively. In each layer, there does not exist any branch
among nodes and one object only belongs to one node. What’s more, the through-
flow of (ni, nj) is not empty if (ni, nj) ∈ B in EFG, namely, ϕ(ni, nj) �= ∅.
Example 1. Let us consider an EFG G = (E, N, B, ϕ, α, β) presented in Fig. 1,
where E = {p1, p2, p3, p4, p5, p6}, N = {n01, n11, n12, n13, n21, n22, n31, n32} ∪
{n41, n42}, α = 0, β = 0, CL = {l0, l1, l2, l3}, O(G) = l4 and B, ϕ as shown
in Fig. 1.

In Fig. 1, the root of G is n01 and leaves are n41 and n42. The throughflow
of branch (n21, n32) and node n21 are ϕ(n21, n32) = {p3}, ϕ+(n21) = ϕ−(n21) =
ϕ(n21) = {p2, p3, p5}. In addition, the sequence of n01, n12, n21, n32 is a path and
its degrees of certainty and coverage are cer(n01, n12, n21, n32) = 1, cov(n01, n12,
n21, n32) = 1/4, respectively. #$

3 Granulation of EFG

As a tool of data analysis in data mining, FG has been interpreted by decision al-
gorithms, probability and rough sets [10]. However, we will investigate EFG with
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Fig. 1. An EFG G

GrC in this paper, for EFG has an excellent construction features in describing
information flow. The first step is granulation of EFG illustrated as follows.

With respect to a layer l ∈ L in EFG, two objects x, y may flow through
the same node n, i.e.,x, y ∈ ϕ(n). In this case, one can not distinguish x and y
according to n in l. This means that x, y can be grouped into a granule, that
is, a granule g(n) in EFG is formally represented as a pair (n, m(n)) [11], where
n is a descriptor (node) and m(n) denotes the meanings of g(n). Moreover, one
can get

m(n) = {x ∈ E|x ∈ ϕ(n)} = ϕ(n) (4)

for n ∈ N , namely, the meanings of the granule g(n) consist of all objects flowing
through n. Hereafter, we simply denote m(n) as ϕ(n). In addition, the family of
granules F ({l}) = {g(n)|m(n) �= ∅, ∀n ∈ l} forms a partition of E, denoted by
E/l. The corresponding equivalence relation Rl on E is

xRly ⇔ x ∈ m(n) ∧ y ∈ m(n) ∧ n ∈ l. (5)

Thus, the equivalence class of x with reference to Rl is [x]Rl
= {y ∈ E|xRly}

and each [x]Rl
is a granule, i.e.,g(n) = (n, [x]n), where n ∈ Rl.

A granule g(n) will be called an element granule if n is an single node in EFG.
According to (1), we know that

m(n ∧ n′) ⇔ ϕ(n ∧ n′) ⇔ ϕ(n) ∩ ϕ(n′) ⇔ m(n) ∩ m(n′). (6)

Hence, a granule can also be comprised of several granules or element granules
in a manner of

g(n ∧ n′) = (n ∧ n′, m(n ∧ n′)) = (n ∧ n′, m(n) ∩ m(n′)) = g(n) ∩ g(n′) (7)

where l, l′ ∈ L and n ∈ l, n′ ∈ l′. Moreover, the family of granules F ({l, l′}) =
{g(n∧ n′) |m(n∧ n′) �= ∅, ∀n ∈ l, n′ ∈ l′} is a partition of E. The corresponding
equivalence relation is R{l,l′} = Rl ∩ Rl′ , namely, xR{l,l′}y ⇔ x ∈ m(n) ∧ y ∈
m(n) ∧ n ∈ l ∧ x ∈ m(n′) ∧ y ∈ m(n′) ∧ n′ ∈ l′. Hence, granules in the partition
F ({l, l′}) are smaller than granules in F ({l}) and F ({l′}), that is, granules in
F ({l, l′}) are finer than those in F ({l}) and F ({l′}). Generally, for a subset of
layers L′ ⊆ L, the equivalence relation is RL′ =

⋂
l∈L′ Rl such that xRL′y ⇔

∧l∈L′ x ∈ m(n) ∧ y ∈ m(n) ∧ n ∈ l, and each granule is g(∧ni∈l,l∈L′ ni), whose
meanings is m(∧ni∈l,l∈L′ ni) =

⋂
ni∈l,l∈L′ m(ni).
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In terms of the definition of directed path in EFG, we observe the fact that
for each path [n1, ..., n, n′], the throughflow is

ϕ(n1, ..., n, n′) = ϕ(n1, ..., n) ∩ ϕ(n, n′) = ϕ(n1, ..., n) ∩ ϕ(n′), (8)

that is, the longer of the path, the less of its throughflow. Consequently, one can
obtained that a path is a granule from (7) and (8) in nature. In other words, a
granule can be denoted by a path starting from the root. Furthermore, all paths
with the same length form a partition of E if their first nodes are the root of
EFG.

Example 2. (cont.) In Fig.1, the partitions or granules of E by l0, l1, l2, l3, l4 are
l0 : g(n01) = {p1, p2, p3, p4, p5, p6}
l1 : g(n11) = {p1, p2, p5}, g(n12) = {p4}, g(n13) = {p3, p6}
l2 : g(n21) = {p2, p3, p5}, g(n22) = {p1, p4, p6}
l3 : g(n31) = {p2, p5}, g(n32) = {p1, p3, p4, p6}
l4 : g(n41) = {p1, p2, p3, p6}, g(n42) = {p4, p5}
Let L′ = {l1, l2}, L′′ = {l1, l2, l3}, then the granules with respect to L′ and L′′

are
L′ : g(n11 ∧ n21) = {p2, p5}, g(n11 ∧ n22) = {p1}, g(n12 ∧ n22) = {p4},

g(n13 ∧ n21) = {p3}, g(n13 ∧ n22) = {p6}
L′′ : g(n11 ∧ n21 ∧ n31) = {p2, p5}, g(n11 ∧ n22 ∧ n32) = {p1},

g(n12 ∧ n22 ∧ n32) = {p4}, g(n13 ∧ n21 ∧ n32) = {p3},
g(n13 ∧ n22 ∧ n32) = {p6}. #$

4 Decomposition and Composition of Granules

In GrC, granules must have the capabilities of decomposition and composition in
problem-solving which can traverse views among different levels of granularity.
However, there is no exception to the granules in EFG.

Granule decomposition deals with the change from a coarse granularity to a
fine granularity to provide more details to further classified objects into a group,
whereas granule composition deals with the shift from a fine granularity to a
coarse granularity to discard certain details and make distinct objects no longer
differentiable [18]. In other words, the meaning of granules decomposition is that
the problem has been divided into a sequence of more manageable and smaller
subtasks to reduce an overall computing effort, while combination integrate sub-
problems into a whole to provide with a better insight into its essence rather than
get buried in all unnecessary details where granulation serves as an abstraction
mechanism that omits irrelevant details of the problem.

According to the analysis in section 3, we notice the fact that the granule
model of EFG is a partition one [17] and operations can be attained under the
framework of quotient space theory [20]. In the granule model of EFG, a directed
path represents a granule and the longer the path, the finer the granule. Thus
a nested granulations hierarchy is constituted by all granularities corresponding
to paths originating from the root. In this hierarchy, the granules (or the paths)
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from the root to each levels form a partition of E. Furthermore, the granules
in the i-th level are finer than those in j-th level in the light of (7) and (8),
where i > j. Based on this principle, granules decomposition (or composition)
can be implemented in top-down (or bottom-up) method. For convenience, we
only involve the granularities corresponding to paths stemming from the root in
this paper.

Definition 1. [17] In GrC model of EFG, granules decomposition is a mapping
Dec : 2E/l → 2E/l′ , such that Dec([x]Rl

) =
⋃

y∈[x]Rl
{[y]Rl′} and Dec(X) =⋃

[x]Rl
∈X Dec([x]Rl

) for X ⊆ E/l, where E is the set of objects, [x]Rl
is the

equivalence class (or a granule) of x with reference to Rl and l′ is the next level
of l.

By the decomposition function, a granule in high levels can be split into several
disjoint finer granules in the next levels, that is, more details can be obtained
about the granule. Reversely, a coarser granule can be built in a higher abstract
level regardless of some inessential information by a combination operation which
converses a granule or equivalence class into a point in higher level.

Definition 2. In GrC model of EFG, granules composition is a mapping Com :
2E/l′→2E/l, such that Com([x]Rl′ ) =

⋃
y∈[x]R

l′
{[y]Rl

} and Com(X) =
⋃

[x]R
l′ ∈X

Com([x]Rl′ ) for X ⊆ E/l′, where E is the set of objects, [x]Rl
is the equivalence

class (or a granule) of x with reference to Rl and l′ is the next level of l.

However, Dec and Com are work under a partition of granule model, so they
are the special cases of binary neighborhood relation [2]. What’s more, we im-
mediately have [x]Rl

∈ Dec(Com([x]Rl
)), [x]Rl

= Com(Dec([x]Rl
)) in terms of

the Def. 1, 2 and (7), (8).

5 Reduction of EFG

An simplification of EFG can bring some predominance, such as low costs and
rapid reasoning, in data analysis. In this section, we will present an EFG reduc-
tion algorithm based on GrC. Above all, some definitions about reductions of
EFG and path will be given as follows.

Definition 3. Let [n1, ..., nk] be a path in an EFG, we will say ni is dispensable
with respect to O(G) if ϕ(n1, ..., nk) = ϕ(n1, ..., ni−1, ni+1, ..., nk), where 1≤ i ≤
k, otherwise ni is indispensable. If there is no dispensable nodes in [n1, ..., nk],
then [n1, ..., nk] is called a minimal reduction path.

Definition 4. Let G be an EFG, we will say G is a minimal reduction EFG if
all paths in G are minimal reduction paths.

Before giving the algorithm, we retrospect some conception about rule. The
relation between flow graphs and decision algorithms is first given by Pawlak
in [6] where every branches (n, n′) ∈ B is interpreted as a decision rule n → n′
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Algorithm 1. Approximation reduction algorithm of EFG (ARAEFG)
Input : An EFG G = (E, N, B, ϕ, α, β).
Output: An approximation reduction of EFG G′ = (E, N ′, B′, ϕ, α, β).
GS = {g(I(G))};DGS = {g(O(G))}; B′ = ∅; N ′ = I(G) ∪ O(G);
for ∀g(n1 ∧ ... ∧ ni) ∈ GS do

IsExistDispensableNode = False; //whether exists a dispensable node
if ∃g(n) ∈ DGS and |m(n1∧...∧nj) ∩ m(n)|/|m(n1∧...∧nj)| ≥ β then

// g(n1 ∧ ... ∧ ni) → g(n) is an approximation rule
B′ = B′ ∪ {(ni, n)};

else
for ∀(ni, nj) ∈ B and m(n1∧...∧ni) ∩ m(nj) �= ∅ do

if m(n1∧...∧ni) ∩ m(nj) = m(n1∧...∧ni) then
IsExistDispensable = True; // nj is dispensable
for ∀(nj , nt) ∈ B do

B = B ∪ (ni, nt);
end

else
B′ = B′ ∪ {(ni, nj)}; N ′ = N ′ ∪ {nj};
if nj /∈ O(G) then

m(n1∧...∧ni ∧ nj) = m(n1∧...∧ni) ∩ m(nj);
GS = GS ∪ g(n1 ∧ ... ∧ ni ∧ nj);

end
end

end
end
if IsExistDispensableNode = False then

GS = GS − {g(n1 ∧ ... ∧ ni)};
end

end

and each paths [n1,..,nk] is a sequence of decision rules n1 → n2, .., nk−1 → nk, in
short n1, .., nk−1 → nk. However, the rules in this paper will be slightly different
from those in [6] on the measurement.

In the framework of GrC, a granule represents a path from the root to one
node such that each element in the granule is an object flowing through the
path. We will say an object x satisfy a granule g(n), if x flow through the
corresponding path n, namely, x ∈ ϕ(n). Under this interpretation, the meaning
of granule g(n1∧..∧nk) is the throughflow of the path [n1, .., nk] determining a
rule n1, .., nk−1 → nk, that is, the set of support of n1, .., nk−1 → nk is ϕ(n1..nk).
What’s more, the certainty and coverage coefficients of n1, .., nk−1 → nk are
certainty and coverage degrees of the path [n1, .., nk], i.e.
cer(n1...nk−1→nk)= |m(n1∧...∧nk−1)∩m(nk)|

|m(n1∧...∧nk−1)| = |ϕ(n1...nk−1)∩ϕ(nk)|
|ϕ(n1...nk−1)| = cer(n1...nk),

cov(n1...nk−1→nk)= |m(n1∧...∧nk−1)∩m(nk)|
|m(nk)| = |ϕ(n1...nk−1)∩ϕ(nk)|

|ϕ(nk)| = cov(n1...nk),
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respectively, where ϕ(n1...nk−1) �= ∅ and ϕ(nk) �= ∅. However, these quantities
consistent with those in [19]. A rule n → n′ is certainty if cer(n → n′)=1,
namely, ϕ(n) ⊆ ϕ(n′). However, it is too rigid to the real-life world filled
with noise data. So an variable degree of certainty rule will be introduced
naturally.

Definition 5. [21] A rule n → n′ is approximation certainty if cer(n → n′) ≥
β, where 0< β ≤1.

Based on this principle, an approximation reduction algorithm about EFG
(ARAEFG) is shown as Alg. 1. In ARAEFG, notions of GS, DGS denote the set
of granules of paths originating from the roots and the set of element granules
of leaves, respectively.

The time complexity of ARAEFG is O(ML) which is lower than those in [15]
where the time complexity of nodes reduction algorithm of EFG is O(M2L),
where L = |CL| and M is the maximal number of branches among layers. To
improve the performance, some heuristic strategies, such as the priority of layers
with most nodes [3], can also be employed.

Example 3. (cont.) Let G be an EFG depicted in Fig. 1 and β = 1, the steps of
the algorithm are shown in Table 1 and the result, namely, the approximation
reduction EFG G′ of G, is illustrated in Fig. 2, after the ARAEFG has been
used. #$

Table 1. The steps of the Algorithm 1

Loop State

0 GS={g(n01)}; N ′={n01, n41, n42}; B′={};
1 GS={g(n01∧n13), g(n01∧n12), g(n01∧n11)};

N ′ = {n01, n41, n42, n13, n12, n11}; B′={(n01, n13), (n01, n12), (n01, n11)};
2 GS={g(n01∧n12), g(n01∧n11)}; N ′={n01, n41, n42, n13, n12, n11};

B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41)};
3 GS={g(n01∧n11)}; N ′={n01, n41, n42, n13, n12, n11};

B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41),(n12, n42)};
4 GS={g(n01∧n11∧n22), g(n01∧n11∧n21)};

N ′={n01, n41, n42, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41),(n12, n42),(n11, n22),(n11, n21)};

5 GS={g(n01∧n11∧n21)}; N ′={n01, n41, n42, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41),(n12, n42),(n11, n22),(n11, n21),
(n22, n42)};

6 GS={g(n01∧n11∧n21)}; N ′={n01, n41, n42, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41),(n12, n42),(n11, n22),(n11, n21),
(n22, n42)};

7 GS={}; N ′={n01, n41, n42, n13, n12, n11, n22, n21};
B′={(n01, n13),(n01, n12),(n01, n11),(n13, n41),(n12, n42),(n11, n22),(n11, n21),
(n22, n42),(n21, n42),(n21, n42)};
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6 Conclusion

The main purpose of this paper can be described as providing an interpretation
of flow graphs using GrC. This is done in two steps: First, a model of GrC in
the context of the extension of flow graph is proposed. In this framework, nodes
have been interpreted as element granules and a path denotes a granule. Besides
the meaning of granule is presented by the throughflow of the path correspond-
ing to the granule, the dependency of granules can measured by certainty and
coverage degree of paths. Under this interpretation, a partition model has been
built. Moreover, the operations of decomposition and composition about gran-
ules, which can transform granules from one view to another easily, have been
given. To illustrate its availabilities which this interpretation brings forth, an ap-
proximation reduction algorithm of EFG, based on granular computing, has also
been introduced at the end of this paper. This algorithm has higher performance
than the nodes reduction approach which we have proposed before.

However, some more virtues under this model are still in their early states of
research and our future works will be carried on exploring them.
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1 Introduction

Attribute reduction is a very important issue in data mining and machine learn-
ing. It can reduce redundant attributes, simplify the structure of an informa-
tion system, speed up the following process of rule induction, reduce the cost
of instance classification, and even improve the performance of the generated
rule systems. There are many methods for attribute reduction in rough set the-
ory. Rough set theory was developed by Pawlak in 1982[1]. For its ability to
process inconsistent and imperfect information, it has been applied successfully
in many fields in the past years. A lot of attribute reduction algorithms based on
rough set theory have been developed in the last decades, which can be classified
into two categories: (1)attribute reduction from the view of algebra[2][3]; (2)at-
tribute reduction from the view of information[4][5]. The challenging issues of
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these methods are multiple computation for equivalent classes and huge number
of objects. The major objective of this paper is to design an encoding method
for granules based on bitmap, and develop an efficient method for attribute
reduction.

The rest of this paper is organized as follows: basic concepts of granular com-
puting are introduced in section 2. In section 3, an encoding method for granules
using bitmap technique is developed. A new method for attribute reduction based
on granular computing is proposed in section 4. Then section 5 try to prove the
efficiency of this method by a simple simulation. At last this paper is concluded
in section 6.

2 Basic Concepts of Granular Computing

In many cases, it is impossible or unnecessary to distinguish individual objects or
elements in a universe, which force us to think of a subset of the universe as one
unit, instead of many individuals. In other words, one has to consider groups,
classes, or clusters of elements. They are referred to as granules. The concept
of information granule was first introduced by Zadeh in 1979[6]. Information
granules arise in the process of abstraction of data and derivation of knowledge
from information[7].

Granular Computing (GrC) is an emerging conceptual and computing para-
digm of information processing. As the name stipulates, GrC concerns process-
ing with information granules. Ever since the introduction of the term of GrC
by T.Y Lin in 1997[8], a rapid development of this topic has been observed.
Many models and methods for granular computing have been proposed and
studied[9][10][11].

Although there does not exist a general agreement about what is GrC, nor is
there a unified model, the basic notions and principles are the same. Granular
computing focuses on problem solving based on the commonsense concepts of
granule, granularity, granulated view, and hierarchy. The objective of granular
computing is to translate problems into a hierarchy structure, and search the
solution by order relations. This method is also consistent with human problem
solving experiences. It is a method simulating human problem solving.

3 Encoding Granules with Bitmap Technique

The construction of granular computing and computation with granules are
the two basic issues of GrC. The former deals with the formation, represen-
tation, and interpretation of granules, while the later deals with the utilization
of granules in problem solving[12]. The bitmap technique was proposed in the
1960’s[13] and has been used by a variety of products since then. Recently, many
attempts have been paid to applying bitmap techniques in knowledge discovery
algorithms[14][15], for bitmaps improve the performance and reduce the storage
requirement. In this section, we will introduce a method for encoding granules
using bitmap.
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3.1 Partition Matrix

It is convenient to describe a finite set of objects called the universe by a finite
set of attributes in an information table[16]. Formally, an information table can
be expressed as: S(U, At, L, {Va | a ∈ At}, {Ia | a ∈ At}), where U is a finite
nonempty set of objects, At is a finite nonempty set of attributes, L is a language
defined using attributes in At, Va is a nonempty set of values for a ∈ At, Ia : U →
Va is an information function. Each information function Ia is a total function
that maps an object of U to exactly one value in Va[17]. An information table
could be encoded using bitmap, called encoding information table.

Table 1 is an example of information table.

Table 1. An information table

Object Height Hair Eyes Class
O1 short blond blue +
O2 short blond brown -
O3 tall red blue +
O4 tall dark blue -
O5 tall dark blue -
O6 tall blond blue +
O7 tall dark brown -
O8 short blond brown -

The encoding rule is as follows:

1. For every attribute a ∈ At, the code length of a is equal to the cardinality
of Va;

2. Every bit of the code denotes a value in Va;
3. For every attribute value, its code can be represented by a | Va |-length

bitmap, in which the corresponding bit is set to be 1, other bits 0.

For example, the cardinality of Height is 2, so the length of its code is two.
Let the first bit denote short and the second bit tall. The attribute value tall
will be encoded as 01, and short as 10. According to this rule, the information
table shown in Table 1 could be encoded like Table 2.

Each subset A of At determines an equivalent relation on U , in which two
objects are equivalent iff they have exact the same values under A[18]. An equiv-
alence relation divides a universal set into a family of pair-wise disjoint subsets,
called the partition of the universe. Here we use a matrix to represent a partition
induced by an attribute. For an attribute a ∈ At in an information system S,
the partition matrix can be defined as P (a) = {Pa(i, j)}n×n, 1 ≤ i, j ≤ n =| U |,
where

Pa(i, j) =
{

1, Ia(i) = Ia(j)
0, else

(1)

To generate the partition matrix on an attribute, the traditional way, accord-
ing to above definition, is to compare the attribute values and Pa(i, j) is set to



Attribute Reduction Based on Granular Computing 461

Table 2. Encoded information table

Object Height Hair Eyes Class
O1 10 100 10 10
O2 10 100 01 01
O3 01 010 10 10
O4 01 001 10 01
O5 01 001 10 01
O6 01 100 10 10
O7 01 001 01 01
O8 10 100 01 01

be 1 if the object i and j have the same value on attribute a, otherwise Pa(i, j)
is set to be 0. Here we could have another way using bitmap. In terms of the
definition of the encoded information table, if two objects have the same value
on an attribute, then they have the same code value on this attribute. To judge
whether two objects have the same code value, the logic operation AND can be
applied, i.e. Pa(i, j) is set to be 1 for the result of non-zero, otherwise is set to
be 0. Because the partition is symmetrical, it can be simplified to reduce the
storage. For example, Table 3 is the partition matrix on Height, and Table 4 is
the partition matrix on Eyes.

Table 3. Partition matrix on Height

PHeight O1 O2 O3 O4 O5 O6 O7 O8

O1 1
O2 1 1
O3 0 0 1
O4 0 0 1 1
O5 0 0 1 1 1
O6 0 0 1 1 1 1
O7 0 0 1 1 1 1 1
O8 1 1 0 0 0 0 0 1

Table 4. Partition matrix on Eyes

PEyes O1 O2 O3 O4 O5 O6 O7 O8

O1 1
O2 0 1
O3 1 0 1
O4 1 0 1 1
O5 1 0 1 1 1
O6 1 0 1 1 1 1
O7 0 1 0 0 0 0 1
O8 0 1 0 0 0 0 1 1

Having the partition matrix on each attribute, the partition matrix on a subset
of At can be further computed. For a subset A of At, the partition matrix
P (A) = {PA(i, j)}n×n, 1 ≤ i, j ≤ n =| U |, can be computed using the following
formula:

PA(i, j) = Pa1(i, j)ANDPa2(i, j)AND...AND Pam(i, j), a1, a2...am ∈ A (2)

For instance, we can get the partition on {Height, Eyes} based on the above
two partition matrixes. It is shown in Table 5.

For convenience, we complement the partition matrix by symmetry. A parti-
tion matrix represents the equivalence relation holding between all the objects. In
each line or column of a partition matrix, the subset consists of all objects which
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Table 5. Partition matrix on {Height, Eyes}

P{Height,Eyes} O1 O2 O3 O4 O5 O6 O7 O8

O1 1 0 0 0 0 0 0 0
O2 0 1 0 0 0 0 0 1
O3 0 0 1 1 1 1 0 0
O4 0 0 1 1 1 1 0 0
O5 0 0 1 1 1 1 0 0
O6 0 0 1 1 1 1 0 0
O7 0 0 0 0 0 0 1 0
O8 0 1 0 0 0 0 0 1

are equivalent to the object denoted by the line. In other words, every line or col-
umn represents an equivalence class. Using partition matrix, we can easily get all
equivalent classes, for example, U/{Height, Eyes} = {{O1}, {O2, O8}, {O3, O4,
O5, O6}, {O7}}. Moreover, the computing process is incremental, that is, we can
get the partition on {Height, Eyes} step by step.

3.2 Computation with Encoded Granules

In the partition model, a granule is a subset of the universe. The objects in a
granule are gathered together by indiscernibility. On the other hand, a formula
put the objects satisfying the formula in a granule. Therefore, we have a formal
description of a granule. A definable granule in an information table is a pair
(φ, m(φ)), where φ ∈ L, and m(φ) is the set of all objects having the property
expressed by the formula φ. In other words, φ can be viewed as the description
of the set of objects m(φ). For φ, ψ ∈ L, the following properties hold[16]:

(1) m(¬φ) = ¬m(φ)
(2) m(φ ∧ ψ) = m(φ) ∩ m(ψ)
(3) m(φ ∨ ψ) = m(φ) ∪ m(ψ)

Suppose the cardinalities of m(φ), m(ψ) and U are p, q and n respectively. The
time complexities for calculating m(φ), m(φ∧ψ) and m(φ∨ψ) are O(pn), O(pq)
and O(pq) respectively using traditional set operation. In the following para-
graph, an encoding method for granules will be introduced. The time complexi-
ties of the above three computations will be reduced obviously with it.

Suppose the number of objects in the universe is n, then the length of code is
n, and every bit denotes an object in the universe. Given a granule, if an object
of the universe belongs to the granule, then the corresponding bit is set to be
1, otherwise, 0. A granule encoded by this rule is called as an encoded granule.
According to the definition, the empty set is encoded by 00...0︸ ︷︷ ︸

n

, and the universe

11...1︸ ︷︷ ︸
n

, labeled as Gφ and GU respectively.

Using encoded granules, the set operation of granules can be translated into
logic operation (AND, OR, NOT , XOR) on codes of encoded granules.
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Let (φ, m(φ)) and (ψ, m(ψ)) be two granules, and their codes is a1a2...an,
b1b2...bn, where n is the cardinality of the universe. The complement, intersection
and union are defined as:

(1) m(¬φ) = NOT a1a2...an

(2) m(φ ∧ ψ) = a1a2...an AND b1b2...bn

(3) m(φ ∨ ψ) = a1a2...an OR b1b2...bn

Based on the above analysis, if we use set operation, the time complexity of
complement, intersection and union are O(np), O(pq) and O(pq), while the time
complexity is O(p),O(p + q) and O(p + q) respectively using logic operation.

We often need to determine whether a granule is included in another granule.
If we check every object one by one, the complexity is O(pq). Here we can
get a simplified method with encoded granules, and its complexity is O(p + q).
If ((φ, m(φ)) AND (ψ, m(ψ))) XOR (φ, m(φ)) = 0, (φ, m(φ)) is included in
(ψ, m(ψ)). For example, {O2, O4} and {O2, O4, O5} are encoded as 01010000
and 01011000 respectively. Because (01010000 AND 01011000) XOR 01010000
= 0, we can conclude that {O2, O4} is included in {O2, O4, O5}, while needn’t
to check every object one by one. So, this method is more efficient than the
traditional way.

Each equivalent class is a subset of the universe. It is a granule also. Therefore,
every equivalent class can be encoded using the method developed in the last
section. For example, {10000000, 01000001, 00111100, 00000010} is the code of
U/{Height, Eyes}. Comparing these codes with Table 5, we can find that each
line or column of a partition matrix is a code of an equivalent class.

In conclusion, the partition matrix not only describes the relationship between
objects, but also gives the codes of equivalent classes. In this way, the challenging
issues of attribute reduction can be solved by partition matrix and encoded
granules.

4 Attribute Reduction Based on Granular Computing

Attribute reduction aims to find minimal subsets of attributes, each of which
has the same discrimination power as the entire attributes. A minimal subset of
attributes is called a reduction if it cannot be further reduced without affecting
the essential information. Owning to the limitation of space, the basic concepts
about attribute reduction is omitted here, but one can consult them in [19].

Attribute reductions based on algebra and information views were discussed
in [18]. Although their definitions are different, both of them need to compute
equivalent classes, so we can use the methods developed in the last section.
Moreover, the set operation can be replaced by logic operation, which could
improve the performance.

Let S be an information system. Using partition matrix we can get the codes of
equivalent classes on condition attributes and decision attributes. Suppose they
are {C1, C2, ..., Ci} and {D1, D2, ..., Dj}, we can develop the following algorithm
to compute the positive region of C with respect to D.
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Algorithm 1 (Computing Positive region of C with respect to D)
Input: IND(C) = {C1, C2, ..., Ci} and IND(D) = {D1, D2, ..., Dj}
Output: The positive region of C with respect to D, POSC(D)
Step 1: Let POSC(D) = Gφ

Step 2: If IND(C) �= φ, then select an element Cm from IND(C), let IND(C) =
IND(C) − {Cm}, T = IND(D). Otherwise go to Step 5
Step 3: If T �= φ, then select an element Dn from IND(D), let T = T − {Dn},
t = Cm AND Dn

Step 4: If t = 0, then go to Step 3. Otherwise if t XOR Cm = 0, then let
POSC(D) = POSC(D) OR Cm. Go to Step 2
Step 5: End

According to the definition of attribute reduction in the algebra view, here
we can develop a new attribute reduction algorithm.

Algorithm 2 (Attribute Reduction Based on Granular Computing,
ARBGrC )
Input: An information system S
Output: A reduction of condition attribute C, RED(C)
Step 1: Let RED(C) = φ, A = C, compute the significance of each attribute
a ∈ A, and sort the set of attributes based on significance
Step 2: Compute POSC(D) with Algorithm 1
Step 3: Compute POSRED(C)(D) with Algorithm 1
Step 4: If (POSRED(C)(D) XOR POSC(D))=0, then let A = RED(C), go to
Step 6
Step 5: Select an attribute a from A with the highest significant value, RED(C) =
RED(C) ∪ {a}, A = A − {a}, go to Step 3
Step 6: If A = φ, then go to Step 8. Otherwise, select an attribute a from A,
A = A − {a}
Step 7: Compute POSRED(C)−{a}(D) with Algorithm 1, if POSC(D) XOR
POSRED(C)−{a}(D) = 0, then let RED(C) = RED(C) − {a}. go to Step 6
Step 8: End

The time complexity of ARBGrC is O(mn2), where n is the number of objects
and m is the number of attributes.

5 Simulation Result

In order to test the efficiency of ARBGrC algorithm, we compare it with other
two algorithms. One is the algorithm introduced in [19] whose time complexity is
O(m2n2), the other is the algorithm developed in [20] whose time complexity is
O(m2nlogn). These two algorithms are labeled as Algorithm 3 and Algorithm 4
respectively in Table 6. We implement all algorithms using Visual C++6.0. Some
classical data sets from UCI used by many other researchers are used in our ex-
periment. To make the test result more validity, every algorithm on each data set
was tested 100 times, and the time consuming is their average. For the reason of
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simplification, we might suppose NI is the number of instances, NOA is the num-
ber of original attributes, NAR is the number of attributes after reduction and TC
is the time consuming. The experiment results are shown in Table 6.

Table 6. Test result for different algorithms

Algorithm 3 Algorithm 4 ARBGrC
Data set NI NOA NAR TC(s) NAR TC(s) NAR TC(s)

Zoo 101 16 5 0.0745323 5 0.0236871 5 0.0199314
Glass 214 9 8 0.1363940 8 0.0436963 8 0.0439632
Wine 178 13 2 0.1882960 2 0.1238230 2 0.0251350
Bupa 345 6 3 0.3069120 3 0.1986720 3 0.0435812

Letter-recognition 5000 16 9 202.7750 10 138.4930 9 58.9536

From the experiment, we can find that the results are almost the same in NAR,
while different in TC. More concretely, these three algorithms have the same NAR,
except that Algorithm 4 got 10 attributes on Letter-recognition, while the other
two algorithms got 9 attributes. Moreover, Algorithm 4 has higher speed than Al-
gorithm 3, and ARBGrC consumes less time than Algorithm 4 except on Glass.
From the view of time complexity, Algorithm 4 and ARBGrC are better than Al-
gorithm 3, but it is difficult to say which one is better than the other of these two
algorithms. Theoretically, Algorithm 4 is better than ARBGrC when n/ log2 n
is greater than m, while ARBGrC is better than Algorithm 4 when m is greater
than n/ log2 n. However, from the view of computing method, bitmap technique
is applied in ARBGrC, which is machine oriented, and makes the computing pos-
itive region process incremental, avoiding computing repeatedly. For this reason,
ARBGrC is more effective than the other two algorithms in time consuming.

6 Conclusion

As a new general computation theory, granular computing has appeared in many
related fields. Granule is everywhere, such as classes, clusters, subsets, groups and
intervals. Computing with granules can improve the performance, and reduce the
time complexity, etc. An encoding method for granules using bitmap is proposed
in this paper. Based on it, a new method of attribute reduction is developed. Com-
pared with former methods, this method translates the set operation into logic op-
eration, which improves the performance. This method can be also used in other
fields, such as distributed data processing, and this will be our future work.
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Abstract. In this study, we introduce an information granules-based fuzzy sys-
tems and a methodological identification by means of genetic optimization to 
carry out the model identification of complex and nonlinear systems. Informa-
tion granulation realized with Hard C-Means clustering help determine the ini-
tial parameters of fuzzy model such as the initial apexes of the membership 
functions in the premise part and the initial values of polynomial functions in 
the consequence part of the fuzzy rules. And the initial parameters are tuned ef-
fectively with the aid of the genetic algorithms and the least square method. The 
design methodology emerges as a hybrid structural optimization and parametric 
optimization. Especially, genetic algorithms (GAs) and HCM clustering are 
used to generate the structurally as well as parametrically optimized fuzzy 
model. To identify the structure and parameters of fuzzy model we exploit the 
methodologies of a respective and consecutive identification by means of ge-
netic algorithms. The proposed model is contrasted with the performance of the 
conventional fuzzy models in the literature. 

1   Introduction 

Fuzzy modeling has been a focal point of the technology of fuzzy sets from its very 
inception. Fuzzy modeling has been studied to deal with complex, ill-defined, and 
uncertain systems in many other avenues. The researches on the process have been 
exploited for a long time. Linguistic modeling [2], [3] and fuzzy relation equation-
based approach [4], [5] were proposed as primordial identification methods for fuzzy 
models. The general class of Sugeno-Takagi models [6] gave rise to more 
sophisticated rule-based systems where the rules come with conclusions forming local 
regression models. While appealing with respect to the basic topology (a modular 
fuzzy model composed of a series of rules) [7], [8], these models still await formal 
solutions as far as the structure optimization of the model is concerned, say a 
construction of the underlying fuzzy sets—information granules being viewed as 
basic building blocks of any fuzzy model. Some enhancements to the model have 
been proposed by Oh and Pedrycz [9], yet the problem of finding “good” initial 
parameters of the fuzzy sets in the rules remains open. 
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This study concentrates on the central problem of fuzzy modeling that is a 
development of information granules-fuzzy sets. Taking into consideration the essence 
of the granulation process, we propose to cast the problem in the setting of clustering 
techniques and genetic algorithms. The design methodology emerges as a hybrid 
structural optimization (based on Hard C-Means (HCM) clustering and genetic 
optimization) and parametric optimization (based on least square method (LSM), as 
well as HCM clustering and genetic optimization). Information granulation with the aid 
of HCM clustering help determine the initial parameters of fuzzy model such as the 
initial apexes of the membership functions and the initial values of polynomial function 
being used in the premise and consequence part of the fuzzy rules. And the initial 
parameters are tuned (adjusted) effectively by means of the genetic algorithms and the 
least square method. And to identify the structure and parameters of fuzzy model we 
exploit two methodologies of a respective and consecutive identification by means of 
genetic algorithms. The proposed model is through intensive numeric experimentation. 

2   Information Granules 

Roughly speaking, information granules (IG) [10], [11] are viewed as related 
collections of objects (data point, in particular) drawn together by the criteria of 
proximity, similarity, or functionality. Granulation of information is an inherent and 
omnipresent activity of human beings carried out with intent of gaining a better 
insight into a problem under consideration and arriving at its efficient solution. In 
particular, granulation of information is aimed at transforming the problem at hand 
into several smaller and therefore manageable tasks. In this way, we partition this 
problem into a series of well-defined subproblems (modules) of a far lower 
computational complexity than the original one. The form of information granulation 
themselves becomes an important design feature of the fuzzy model, which are geared 
toward capturing relationships between information granules.  

It is worth emphasizing that the HCM clustering has been used extensively not 
only to organize and categorize data, but it becomes useful in data compression and 
model identification. For the sake of completeness of the entire discussion, let us 
briefly recall the essence of the HCM algorithm [12]. 

We obtain the matrix representation for hard c-partition, defined as follows.  

1 1

U | {0,1}, 1, 0
c m

C gi gi gi
g i

M u u u m
= =

= ∈ = < <  (1) 

[Step 1] Fix the number of clusters (2 )c c m≤ <  and initialize the partition matrix 

CM∈)0(U  

[Step 2] Calculate the center vectors vg of each cluster:  
( )

1 2v { , , , , , }r
g g g gk glv v v v=  (2) 

( ) ( ) ( )

1 1

m m
r r r

gi ik gigk
i i

v u x u
= =

= ⋅  (3) 

Where, [ugi]= U(r), g = 1, 2, …,c, k=1, 2, …,l. 
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[Step 3] Update the partition matrix U(r); these modifications are based on the 
standard Euclidean distance function between the data points and the prototypes, 

1/ 2

2

1

(x v ) x v ( )
l

gi i g i g ik gk
k

d d x v
=

= − = − = −  (4) 

( ) ( )
( 1) 1 min{ }  for  all  

0 otherwise

r r
r gi ki

gi

d d k c
u

+ = ∈
=  (5) 

[Step 4] Check a termination criterion. If 

|| U(r+1) − U(r)|| level)(tolerance≤  (6) 

Stop ; otherwise set 1+= rr  and return to [Step 2] 

3   Information Granules-Based Fuzzy Systems 

The identification procedure for fuzzy models is usually split into the identification 
activities dealing with the premise and consequence parts of the rules. The 
identification completed at the premise level consists of two main steps. First, we 
select the input variables x1, x2, …, xk of the rules. Second, we form fuzzy partitions of 
the spaces over which these individual variables are defined. The identification of the 
consequence part of the rules embraces two phases, namely 1) a selection of the 
consequence variables of the fuzzy rules, and 2) determination of the parameters of 
the consequence (conclusion part). And the least square error method used at the 
parametric optimization of the consequence parts of the successive rules. 

input-output
 data set

x1 x2 y

[Vj1, Vj2, Mj]

Rj : If  x1 is A1c and  x2 is A2c Then yj-Mj=aj0+aj1(x1-Vj1)+aj2(x2-Vj2)
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Fig. 1. IG-based fuzzy systems; illustrate is a case of the two-input single-output system 

In this study, we carry out the modeling using characteristics of experimental data. 
The HCM clustering addresses this issue. Subsequently we design the fuzzy model by 
considering the centers (prototypes) of clusters. In this manner the clustering help us 
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determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions in the premise and the initial values of polynomial function in 
the consequence part of the fuzzy rules. The design process of fuzzy model based on 
information granules for two-input single-output system is visualized in figure 1. 
Here, Vjk and Mj is a center value of the input and output data, respectively. 

3.1   Premise Identification 

In the premise part of the rules, we confine ourselves to a triangular type of 
membership functions whose parameters are subject to some optimization. The HCM 
clustering helps us organize the data into cluster so in this way we capture the 
characteristics of the experimental data. In the regions where some clusters of data 
have been identified, we end up with some fuzzy sets that help reflect the specificity 
of the data set. In the sequel, the modal values of the clusters are refined (optimized) 
using genetic optimization, and genetic algorithms (GAs), in particular. 

xk

y

vk1 vk2

mk2

mk1

                   

x2

A12

x1

A11

A21

A22

μ

μ

v22

v21

v11 v12

 
(a) Clusters formed by HCM             (b) Fuzzy partition and resulting MFs 

Fig. 2. Identification of the premise part of the rules of the system 

The identification of the premise part is completed in the following manner. 
Given is a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, xmk]

T, y =[y1, …, 
ym]T, l is the number of variables and , m is the number of data. 

[Step 1] Arrange a set of data U into data set Xk composed of respective input data 
and output data. 

Xk=[xk ; y] (7) 

[Step 2] Complete the HCM clustering to determine the centers (prototypes) vkg with 
data set Xk. 

[Step 2-1] Categorize data set Xk into c-clusters (in essence this is effectively the 
granulation of information) 
[Step 2-2] Calculate the center vectors vkg of each cluster. 

1 2v { , , , }kg k k kcv v v=  (8) 

[Step 3] Partition the corresponding input space using the prototypes of the clusters 
vkg.  Associate each cluster with some meaning (semantics), say Small, Big, etc. 
[Step 4] Set the initial apexes of the membership functions using the prototypes vkg. 
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3.2   Consequence Identification 

We identify the structure considering the initial values of polynomial functions based 
upon the information granulation realized for the consequence and antecedents parts. 

[Step 1] Find a set of data included in the fuzzy space of the j-th rule. 
[Step 2] Compute the prototypes Vj of the data set by taking the arithmetic mean of 
each rule. 

1 2V { , , , ; }j j j kj jV V V M=  (9) 

[Step 3] Set the initial values of polynomial functions with the center vectors Vj. 

The identification of the conclusion parts of the rules deals with a selection of their 
structure that is followed by the determination of the respective parameters of the 
local functions occurring there.  
The conclusion is expressed as follows. 

1 1 1: ( , , )j
c k kc j j j kR If x is A and and x is A then y M f x x− =  (10) 

Type 1 (Simplified Inference): 0j jf a=  

Type 2 (Linear Inference): 0 1 1 1( ) ( )j j j j jk k jkf a a x V a x V= + − + + −  

Type 3 (Quadratic Inference):  
2 2
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Type 4 (Modified Quadratic Inference):  
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(11) 

The calculations of the numeric output of the model, based on the activation 
(matching) levels of the rules there, rely on the expression 

1

1 1*
1

1

1 1

( ( , , ) )

ˆ ( ( , , ) )

n n

ji i ji j k j n
j j

ji j k jn n
j

ji ji

j j

w y w f x x M

y w f x x M

w w

= =

=

= =

+

= = = +  (12) 

Here, as the normalized value of wji, we use an abbreviated notation to describe an 

activation level of rule jR  to be in the form 

1

ˆ ji
ji n

ji

j

w
w

w
=

=  
(13) 

If the input variables of the premise and parameters are given in consequence 
parameter identification, the optimal consequence parameters that minimize the 
assumed performance index can be determined. In what follows, we define the 
performance index as the root mean squared error (RMSE).  
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* 2

1

1
PI ( )

m

i i
i

y y
m =

= −  (14) 

The minimal value produced by the least-squares method is governed by the 
following expression: 

-1ˆ ( )T T=a X X X Y  (15) 

4   Optimization of IG-Based FIS 

The need to solve optimization problems arises in many fields and is especially 
dominant in the engineering environment. There are several analytic and numerical 
optimization techniques, but there are still large classes of functions that are fully 
addressed by these techniques. Especially, the standard gradient-based optimization 
techniques that are being used mostly at the present time are augmented by a 
differential method of solving search problems for optimization processes. Therefore, 
the optimization of fuzzy models may not be fully supported by the standard gradient-
based optimization techniques, because of the nonlinearity of fuzzy models 
represented by rules based on linguistic levels. This forces us to explore other 
optimization techniques such as genetic algorithms. It has been demonstrated that 
genetic algorithms [13] are useful in a global optimization of such problems given 
their ability to efficiently use historical information to produce new improved 
solutions with enhanced performance. 
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(a) Data structure for structure or parameters identification in respective method  
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(b) Data structure for structure and parameters identification in consecutive method 

Fig. 3. Data structure of genetic algorithms used for the optimization of the fuzzy model 
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In this study, in order to identify the fuzzy model we determine such a structure as 
the number of input variables, input variables being selected and the number of the 
membership functions standing in the premise part and the order of polynomial 
(Type) in conclusion. The membership parameters of the premise are genetically 
optimized. For the identification of the system we conduct two methods as a 
respective and a consecutive method. The former is that the structure of the system is 
identified first and then the parameters are identified later. And the latter is that the 
structure and parameters is simultaneously identified in the consecutive chromosomes 
arrangement. Figure 3 shows an arrangement of the content of the string to be used in 
genetic optimization. Here, parentheses denote the number of chromosomes allocated 
to each parameter. For the optimization of the fuzzy model, genetic algorithms use the 
serial method of binary type, roulette-wheel in the selection operator, one-point 
crossover in the crossover operator, and invert in the mutation operator. In the case of 
respective method we use 150 generations and run the GA of a size of 100 individuals 
for structure identification and GA was run for 300 generations and the population 
was of size 100. In the other case we use 300 generations and run the GA of a size of 
150 individuals. We set up the crossover rate and mutation probability to be equal to 
0.6, and 0.1, respectively (the choice of these specific values of the parameters is a 
result of intensive experimentation; as a matter of fact, those are quite similar to the 
values reported in the literature).  

5   Experimental Studies 

This section includes comprehensive numeric study illustrating the design of the 
proposed fuzzy model. We illustrate the performance of the model and elaborate on 
its development by experimenting with data coming from the gas furnace process. 
The time series data (296 input-output pairs) resulting from the gas furnace process 
has been intensively studied in the previous literatures [9,16,17]. The delayed terms of 
methane gas flow rate u(t) and carbon dioxide density y(t) are used as six input 
variables with vector formats such as [u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), y(t-1)]. And 
as output variable y(t) is used. The first one (consisting of 148 pairs) was used for 
training. The remaining part of the series serves as a testing set. We consider the MSE 
(14) being regarded here as a performance index. 

We carried out the identification on a basis of the experimental data using GAs to 
design Max_Min-based and IG-based fuzzy model. The maximal number of input 
variables was set to be equal to 2 from above the type of vector format. In the case of 
the fuzzy model by the respective identification, the input variables were picked up to 
be y(t-2), y(t-1) for Max_Min-based fuzzy model and u(t-3), y(t-1) for IG-based fuzzy 
model. To evaluate the proposed model we designed the Max_Min-based and IG-
based fuzzy model for each model. In case of input variables of y(t-2), y(t-1), the 
number of membership functions assigned to each input was set up to be 3, 2 and the 
other was set up to be 3 for each input. At the conclusion part, each model comes with 
the consequence Type 2 and Type 4, respectively. For each fuzzy model, we 
conducted the optimization of the parameters of the premise membership functions.  
In the case of the fuzzy model by the consecutive identification, the input variables 
were picked up to be u(t-3), y(t-1) for both of fuzzy models. The number of 
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membership functions assigned to each input was set up to be 3, 2 and 2,3 for each 
input, respectively. At the conclusion part, each model comes with the consequence 
Type 3. Table 1 summarizes the performance index for Max_Min-based and IG-based 
fuzzy model by means of two methodologies. From the Table 1 we know that the 
performance of IG-based fuzzy model is better than the Max_Min-based fuzzy model. 

Table 1. Performance index of Max_Min-based and IG-based fuzzy model 

Model 
Identification  
Method 

Input 
variable 

No. Of 
MFs 

Type PI E_PI 

S* 0.092 0.212 Max/Min_FIS 
P* 0.090 0.204 
S 0.085 0.218 

IG_FIS 
respective 

P 

y(t-2) 
y(t-1) 

3x2 Type 2 

0.087 0.197 
S 0.017 0.297 Max/Min_FIS 
P 0.016 0.270 
S* 0.015 0.281 

IG_FIS 
respective 

P* 

u(t-3) 
y(t-1) 

3x3 Type 4 

0.015 0.256 

Max/Min_FIS consecutive S+P 
u(t-3) 
y(t-1) 

3x2 Type 3 0.016 0.268 

IG_FIS consecutive S+P 
u(t-3) 
y(t-1) 

2x3 Type 3 0.014 0.266 

* identified structure by Gas, S: Structure identification, P: Parameters identification respective and 
consecutive  mean respective and consecutive tuning respectively 

Figure 4 and 5 depict the values of the performance index produced in successive 
generation of the GAs. It is obvious that the performance of an IG-based fuzzy model 
is good from initial generation due to the characteristics of input-output data. 

The identification error (performance index) of the proposed model is also 
compared to the performance of some other models in Table 2. The performance of 
the proposed model is better in the sense of its approximation and prediction abilities 
than other works studied in the literatures as shown in Table 2. 
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Fig. 4. Optimal convergence process of performance index for Max_Min-based and IG-based 
fuzzy model by means of the respective identification (u(t-3),  y(t-1)) 
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Fig. 5. Optimal convergence process of performance index for Max_Min-based and IG-based 
fuzzy model by means of the consecutive identification (u(t-3),  y(t-1)) 

Table 2. Comparison of identification error with previous models 

Model PIt PI E_PI No. of rules 
Tong’s model[14] 0.469   19 

Pedrycz’s model[2] 0.776   20 
Xu’s model[15] 0.328   25 

Sugeno’s model[7] 0.355   6 
Simplified  0.024 0.328 4 

 0.022 0.326 4 
Oh et al.’s 
Model[9,16] Linear 

 0.021 0.364 6 
 0.035 0.289 4 

Simplified 
 0.022 0.333 6 
 0.026 0.272 4 

HCM+GA[17] 
Linear 

 0.020 0.264 6 
respective Type 4  0.015 0.256 9 Our 

model Consecutive Type 3  0.014 0.266 6 

6   Conclusions 

In this paper, we have introduced a comprehensive identification framework for 
information granules-based fuzzy systems and methodologies identification by means 
of genetic optimization. The underlying idea deals with an optimization of 
information granules by exploiting techniques of clustering and genetic algorithms. 
Information granulation realized with HCM clustering help determine the initial 
parameters of fuzzy model such as the initial apexes of the membership functions and 
the initial values of polynomial function of the fuzzy rules. The initial parameters are 
tuned (adjusted) effectively by means of the genetic algorithms and the least square 
method. And we exploited the methodologies identification by means of genetic 
algorithms. The experimental studies showed that the model is compact, and its 
performance is better than some other previous models. The proposed model is 
effective for nonlinear complex systems, so we can construct a well-organized model.  
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While the detailed discussion was focused on triangular fuzzy sets, the developed 
methodology applies equally well to any other class of fuzzy sets as well as a type of 
nonlinear local model. 
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Abstract. In this study, we introduce the hybrid optimization of fuzzy inference 
systems that is based on information granulation and Hierarchical Fair 
Competition-based Parallel Genetic Algorithms (HFCGA). The granulation is 
realized with the aid of the Hard C-means clustering and HFCGA is a kind of 
multi-populations of Parallel Genetic Algorithms (PGA), and it is used for 
structure optimization and parameter identification of fuzzy set model. It 
concerns the fuzzy model-related parameters as the number of input variables, a 
collection of specific subset of input variables, the number of membership 
functions, and the apexes of the membership function. In the hybrid 
optimization process, two general optimization mechanisms are explored. The 
structural optimization is realized via HFCGA and HCM method whereas in 
case of the parametric optimization we proceed with a standard least square 
method as well as HFCGA and HCM method as well. A comparative analysis 
demonstrates that the proposed algorithm is superior to the conventional 
methods.   

Keywords: fuzzy set model, information granulation, genetic algorithms, 
hierarchical fair competition (HFC), HCM, multi-population. 

1   Introduction 

In the early 1980s, linguistic modeling [1] and fuzzy relation equation-based approach 
[2] were proposed as primordial identification methods for fuzzy models. The general 
class of Sugeno-Takagi models [3] gave rise to more sophisticated rule-based systems 
where the rules come with conclusions forming local regression models. While 
appealing with respect to the basic topology (a modular fuzzy model composed of a 
series of rules) [4], these models still await formal solutions as far as the structure 
optimization of the model is concerned, say a construction of the underlying fuzzy 
sets—information granules being viewed as basic building blocks of any fuzzy model.  

Some enhancements to the model have been proposed by Oh and Pedrycz [5]. As 
one of the enhanced fuzzy model, information granulation based fuzzy set fuzzy 
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model was introduced. Over there, binary-coded genetic algorithm was used to 
optimize structure and premise parameters of fuzzy model, yet the problem of finding 
“good” initial parameters of the fuzzy sets in the rules remains open. 

This study concentrates on optimization of information granulation-oriented fuzzy 
set model. Also, we propose to use hierarchical fair competition-based parallel genetic 
algorithm (HFCGA) for optimization of fuzzy model. GAs is well known as an 
optimization algorithm which can be searched global solution. It has been shown to 
be very successful in many applications and in very different domains. However it 
may get trapped in a sub-optimal region of the search space thus becoming unable to 
find better quality solutions, especially for very large search space. The parallel 
genetic algorithm (PGA) is developed with the aid of global search and retard 
premature convergence [8]. In particular, as one of the PGA model, HFCGA has an 
effect on a problem having very large search space [9].  

In the sequel, the design methodology emerges as two phases of structural 
optimization (based on Hard C-Means (HCM) clustering and HFCGA) and 
parametric identification (based on least square method (LSM), as well as HCM 
clustering and HFCGA). Information granulation with the aid of HCM clustering 
helps determine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial function being used in the 
premise and consequence part of the fuzzy rules. And the initial parameters are 
adjusted effectively with the aid of the HFCGA and the LSM. 

2   Information Granulation (IG) 

Roughly speaking, information granules [6] are viewed as related collections of 
objects (data point, in particular) drawn together by the criteria of proximity, 
similarity, or functionality. Granulation of information is an inherent and omnipresent 
activity of human beings carried out with intent of gaining a better insight into a 
problem under consideration and arriving at its efficient solution. In particular, 
granulation of information is aimed at transforming the problem at hand into several 
smaller and therefore manageable tasks. In this way, we partition this problem into a 
series of well-defined subproblems (modules) of a far lower computational 
complexity than the original one. The form of information granulation (IG) 
themselves becomes an important design feature of the fuzzy model, which are geared 
toward capturing relationships between information granules.  

It is worth emphasizing that the HCM clustering has been used extensively not 
only to organize and categorize data, but it becomes useful in data compression and 
model identification [7]. For the sake of completeness of the entire discussion, let us 
briefly recall the essence of the HCM algorithm. 

We obtain the matrix representation for hard c-partition, defined as follows.  

1 1

U | {0,1}, 1, 0
c m

C gi gi gi
g i

M u u u m
= =

= ∈ = < <  (1) 

[Step 1] Fix the number of clusters (2 )c c m≤ <  and initialize the partition matrix 

CM∈)0(U  
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[Step 2] Calculate the center vectors vg of each cluster:  
( )

1 2v { , , , , , }r
g g g gk glv v v v=  (2) 

( ) ( ) ( )

1 1

m m
r r r

gi ik gigk
i i

v u x u
= =

= ⋅  (3) 

Where, [ugi]= U(r), g = 1, 2, …,c, k=1, 2, …,l. 
[Step 3] Update the partition matrix U(r); these modifications are based on the 
standard Euclidean distance function between the data points and the prototypes, 

1/ 2

2

1

(x v ) x v ( )
l

gi i g i g ik gk
k

d d x v
=

= − = − = −  (4) 

( ) ( )
( 1) 1 min{ }  for  all  

0 otherwise

r r
r gi ki

gi

d d k c
u

+ = ∈
=  (5) 

[Step 4] Check a termination criterion. If 

|| U(r+1) − U(r)|| level)(tolerance≤  (6) 

Stop ; otherwise set 1+= rr  and return to [Step 2] 

3   Design of Fuzzy Set Fuzzy Model with the Aid of IG 

The identification procedure for fuzzy models is usually split into the identification 
activities dealing with the premise and consequence parts of the rules. The 
identification completed at the premise level consists of two main steps. First, we 
select the input variables x1, x2, …, xk of the rules. Second, we form fuzzy partitions of 
the spaces over which these individual variables are defined. The identification of the 
consequence part of the rules embraces two phases, namely 1) a selection of the 
consequence variables of the fuzzy rules, and 2) determination of the parameters of 
the consequence (conclusion part). And the least square error (LSE) method used at 
the parametric optimization of the consequence parts of the successive rules. 

In this study, we use the isolated input space of each input variable and carry out 
the modeling using characteristics of input-output data set. Therefore, it is important 
to understand the nature of data. The HCM clustering addresses this issue. 
Subsequently, we design the fuzzy model by considering the centers (prototypes) of 
clusters. In this manner the clustering help us determining the initial parameters of 
fuzzy model such as the initial apexes of the membership functions and the initial 
values of polynomial function being used in the premise and consequence part of the 
fuzzy rules.  

3.1   Premise Identification 

In the premise part of the rules, we confine ourselves to a triangular type of 
membership functions whose parameters are subject to some optimization. The HCM 
clustering helps us organize the data into cluster so in this way we capture the 
characteristics of the experimental data. In the regions where some clusters of data 
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have been identified, we end up with some fuzzy sets that help reflect the specificity 
of the data set. In the sequel, the modal values of the clusters are refined (optimized) 
using HFCGA.                              

xk

y

vk1 vk2

mk2

mk1

         

v12

μ
v11 v22v21

x1

A11 A12
μ

x2

A21 A22

 
(a) Clusters formed by HCM        (b) Fuzzy partition and resulting MFs 

Fig. 1. Identification of the premise part of the rules of the system 

The identification of the premise part is completed in the following manner. 
Given is a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, xmk]

T, y =[y1, …, 
ym]T, l is the number of variables and , m is the number of data. 

[Step 1] Arrange a set of data U into data set Xk composed of respective input data 
and output data. 

Xk=[xk ; y] (7) 

Xk is data set of k-th input data and output data, where, xk =[x1k, …, xmk]
T, y =[y1, …, 

ym]T, and k=1, 2, …, l. 
[Step 2] Complete the HCM clustering to determine the centers (prototypes) vkg with 
data set Xk. 

[Step 2-1] Classify data set Xk into c-clusters, which in essence leads to the 
granulation of information. 
We can find the data pairs included in each cluster based on the partition matrix 

giu  by (5) and use these to identify the structure in conclusion part. 

[Step 2-2] Calculate the center vectors vkg of each cluster. 

1 2v { , , , }kg k k kcv v v=  (8) 

Where, k=1, 2, …, l, g = 1, 2, …, c. 
[Step 3] Partition the corresponding isolated input space using the prototypes of the 
clusters vkg.  Associate each clusters with some meaning (semantics), say Small, Big, 
etc. 
[Step 4] Set the initial apexes of the membership functions using the prototypes vkg. 

3.2   Consequence Identification 

We identify the structure considering the initial values of polynomial functions based 
upon the information granulation realized for the consequence and antecedents parts. 

[Step 1] Find a set of data included in the isolated fuzzy space of the j-th rule. 
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[Step 1-1] Find the input data included in each cluster (information granule) from 
the partition matrix giu  of each input variable by (5). 

[Step 1-2] Find the input data pairs included in the isolated fuzzy space of the j-th 
rule. 
[Step 1-3] Determine the corresponding output data from above input data pairs. 

[Step 2] Compute the prototypes Vj of the data set by taking the arithmetic mean of 
each rule. 

1 2V { , , , ; }j j j kj jV V V M=  (9) 

Where, k=1, 2, …, l. j=1, 2, …, n. Vkj and Mj are prototypes of input and output data, 
respectively. 
[Step 3] Set the initial values of polynomial functions with the center vectors Vj. 

The identification of the conclusion parts of the rules deals with a selection of their 
structure that is followed by the determination of the respective parameters of the 
local functions occurring there.  

In case of Type 2: linear Inference (linear conclusion) 
The consequence part of the simplified inference mechanism is a constant. The rules 
come in the following form 

1: ( , , )j
k kc j j j kR If x is A then y M f x x− =  (10) 

The calculations of the numeric output of the model, based on the activation 
(matching) levels of the rules there, rely on the expression 

1

1 1*
0 1 1 1

1

1 1

( ( , , ) )

ˆ ( ( ) ( ) )

n n

ji i ji j k j n
j j

ji j j j jk k jk jn n
j

ji ji

j j

w y w f x x M

y w a a x V a x V M

w w

= =

=

= =

+

= = = + − + + − +  
(11) 

Here, as the normalized value of wji, we use an abbreviated notation to describe an 

activation level of rule jR  to be in the form 

1

ˆ ji
ji n

ji

j

w
w

w
=

=  
(12) 

where jR is the j-th fuzzy rule, xk represents the input variables, Akc is a membership 
function of fuzzy sets, aj0 is a constant, Mj is a center value of output data, n is the 
number of fuzzy rules, y* is the inferred output value, wji is the premise fitness 

matching jR  (activation level).  
Once the input variables of the premise and parameters have been already 

specified, the optimal consequence parameters that minimize the assumed 
performance index can be determined. In what follows, we define the performance 
index as the mean squared error (MSE).  

* 2

1

1
PI ( )

m

i i
i

y y
m =

= −  (13) 
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where y* is the output of the fuzzy model, m is the total number of data, and i is the 
data number. The minimal value produced by the least-squares method is governed by 
the following expression: 

-1ˆ ( )T T=a X X X Y  (14) 

where 
T
i =x [ 1ˆ iw ˆniw  1 11 1ˆ( )i ix V w− 1 1 ˆ( )i n nix V w− 1 1ˆ( )ki k ix V w− ˆ( )ki kn nix V w− ], 

10 0 11 1 1ˆ [ ]Tn n k nka a a a a a=a , 

1 1 2 2
1 1 1

T
n n n

j j j j m j jm
j j j

y M w y M w y M w
= = =

= − − −Y  

1 2[ ]Ti m=X x x x x . 

4   Optimization by Means of HFCGA 

The premature convergence of genetic algorithms is a problem to be overcome. The 
convergence is desirable, but must be controlled in order that the population does not 
get trapped in local optima. Even in dynamic-sized populations, the high-fitness 
individuals supplant the low-fitness or are favorites to be selected, dominating the 
evolutionary process. Fuzzy model has many parameters to be optimized, and it has 
very large search space. So HFCGA may find out a solution better than GAs. 

Intermediary deme
(Subpopulation 2)

Access Deme
(subpopulation 1)

...

Elite deme(subpopulation i)

Level 1

Level 2

Level i-1

Level i

Fitness Minimum

Fitness Maximum

Initialize population 
randomly

Fitness Level 2
(buffer)

Fitness Level i-1
(buffer)

Fitness Level i
(buffer)

.

.

.

Intermediary deme
(Subpopulation i-1)

 

Fig. 2. HFCGA topology 

In HFCGA, multiple demes(subpopulation) are organized in a hierarchy, in which 
each deme can only accommodate individuals within a specified range of fitness. The 
universe of fitness values must have a deme correspondence. Each deme has an 
admission threshold that determines the profile of the fitness in each deme. 
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Individuals are moved from low-fitness to higher-fitness subpopulations if and only if 
they exceed the fitness-based admission threshold of the receiving subpopulations. 
Thus, one can note that HFCGA adopts a unidirectional migration operator, where 
individuals can move to superior levels, but not to inferior ones. 

The figure 2 illustrates the topology of HFCGA. The arrows indicate the moving 
direction possibilities. The access deme (primary level) can send individuals to all 
other demes and the elite deme only can receive individuals from the others. One can 
note that, with respect to topology, HFCGA is a specific case of island model, where 
only some moves are allowed. 

HFCGA is implemented as shown in Fig. 2. It is real-coded type, and use five 
demes (subpopulation), Size of demes is 100, 80, 80, 80, and 60 respectively, where 
elite deme is given as the least size. And we use linear ranking based selection, 
modified simple crossover, and dynamic mutation algorithm for each deme. 

Identification procedure of fuzzy model consists of two phase, structural 
identification and parametric identification. HFCGA is used in each phase. At first, in 
structural identification, we find the number of input variables, input variables being 
selected and the number of membership functions standing in the premise and the 
type of polynomial in conclusion. And then, in parametric identification, we adjust 
apexes of the membership functions of premise part of fuzzy rules. Figure 3 shows an 
arrangement of chromosomes to be used in HFCGA. 
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Fig. 3. Arrangement of chromosomes for identification of structure and parameter identification 

5   Experimental Studies 

In this section we consider comprehensive numeric studies illustrating the design of 
the fuzzy model. We demonstrate how IG-based FIS can be utilized to predict future 
values of a chaotic time series. The performance of the proposed model is also 
contrasted with some other models existing in the literature. The time series is 
generated by the chaotic Mackey–Glass differential delay equation [10] of the form: 
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0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

x t

τ
τ

• −= −
+ −

 (15) 
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The prediction of future values of this series arises is a benchmark problem that has 
been used and reported by a number of researchers. From the Mackey–Glass time 
series x(t), we extracted 1000 input–output data pairs for the type from the following 
the type of vector format such as: [x(t-30), x(t-24), x(t-18), x(t-12), x(t-6), x(t); x(t +6)] 
where t = 118–1117. The first 500 pairs were used as the training data set while the 
remaining 500 pairs were the testing data set for assessing the predictive performance. 
We consider the MSE being regarded here as a performance index. We carried out the 
structure and parameters identification on a basis of the experimental data using 
HFCGA and real-coded GA (single population) to design IG-based fuzzy model. 

y(
t)

x(t-30)  

y(
t)

x(t-18)  
                 (a) First variable vs. y(t)                     (b) Second variable vs. y(t) 

y(
t)

x(t-12)  

y(
t)

x(t)  
                 (c) Third variable vs. y(t)                      (d) Fourth variable vs. y(t) 

Fig. 4. Groups and central values through HCM for each input variable 

Figure 4 depicts groups and central values through HCM for each input variable. 
Where, the number of input variables and number of groups (membership function) to 
be divided are obtained from structural optimization procedure. Clustering results are 
used for information granulation. Table 1 summarizes the performance index for real-
coded GA and HFCGA. It shows that the performance of the HFCGA based fuzzy 
model is better than real-coded GA based one for premise identification. However, for 
structure identification, same structure is selected. To compare real-coded GA with 
HFCGA, show the performance index for the Type 2 (linear inference). Figure 5 show 
variation of the performance index for real-coded GA and HFCGA in premise 
identification phase.  



 Optimization of Information Granulation-Oriented Fuzzy Set Model Using HFCGA 485 

Table 1. Performance index of IG-based fuzzy model by means of Real-coded GA and HFCGA 

 Structure   Premise parameter Evolutionar
y algorithm  

Input 
variables 

No. of 
MFs 

Type PI E_PI  PI E_PI 

Real-coded GA   0.00019 0.00021 
HFCGA  

Type 3 
(Quadratic)

0.00027 0.00036
 0.00017 0.00017 

Real-coded GA   0.00184 0.00159 
HFCGA  

x(t-30) 
x(t-18) 
x(t-12) 

x(t) 

5 
5 
4 
5 

Type 2 
(Linear) 

0.00266 0.00251
 0.00135 0.00121 
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x
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   (a) Type 2                        (b) Type 3  

Fig. 5. Convergence process of performance index for real-coded GA and HFCGA 

The identification error (performance index) of the proposed model is also 
compared with the performance of some other models; refer to Table 2. Here the non-
dimensional error index (NDEI) is defined as the root mean square errors divided by 
the standard deviation of the target series. 

Table 2. Comparison of identification error with previous models 

Model No. of rules PIt PI E_PI NDEI 
7 0.004    

23 0.013    Wang’s model [10] 
31 0.010    

Cascaded-correlation NN [11]     0.06 
Backpropagation MLP [11]     0.02 
6th-order polynomial [11]     0.04 

ANFIS [12] 16  0.0016 0.0015 0.007 
FNN model [13]   0.014 0.009  

Recurrent neural network [14]  0.0138    
Our model 19  0.00019 0.00021 0.00075 

6   Conclusions 

In this paper, we have developed a comprehensive hybrid identification frame- 
work for information granulation-oriented fuzzy set model using hierarchical fair 
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competition–based parallel genetic algorithm. The underlying idea deals with an 
optimization of information granules by exploiting techniques of clustering and 
genetic algorithms. We used the isolated input space for each input variable and 
defined the fuzzy space by information granule. Information granulation with the aid 
of HCM clustering help determine the initial parameters of fuzzy model such as the 
initial apexes of the membership functions and the initial values of polynomial 
function being used in the premise and consequence part of the fuzzy rules. The initial 
parameters are fine-tuned (adjusted) effectively with the aid of HFCGA and the least 
square method. The experimental studies showed that the model is compact, and its 
performance is better than some other previous models. The proposed model is 
effective for nonlinear complex systems, so we can construct a well-organized model. 
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Abstract. The suppliers selection problem is one of the most important
components in supply chain management. In recent years, rough set the-
ory has emerged as a powerful tool for suppliers selection problem. In this
paper, we proposed a grey-based rough set approach to resolve suppliers
selection problem. The work is motivated by the following observations:
First, in the decision table of rough set theory, attribute values must be
known precisely. Generally, decision makers’ judgments on attribute of-
ten cannot be estimated by the exact numerical value. Second, in rough
set theory, the alternatives of ideal suppliers are decided by lower ap-
proximation, so the ranks of each ideal supplier is equal. Therefore it is
difficult to select the best ideal supplier. The work procedure is shown as
follows briefly: First, the attribute values of rough set decision table for
all alternatives are decided by linguistic variables that can be expressed
in grey number. Second, ideal suppliers are decided by the lower approx-
imation of grey-based rough set theory. Third, the best ideal supplier
is decided by grey relational analysis based on grey number. Finally,
an example of selection problem of suppliers was used to illustrate the
proposed approach.

1 Introduction

With the globalization of economic market and the development of information
technology, suppliers selection problem become one of the most important com-
ponents in supply chain management [1],[2]. The suppliers selection is a multiple
attribute decision making (MADM) problem. The decision maker (DM)s always
express their preferences on alternatives or on attributes of suppliers, which can
be used to help ranking the suppliers or selecting the most desirable one. The
preference information on alternatives of suppliers and on attributes belongs to
DMs’ subjective judgments. Generally, DMs’ judgment are often uncertain and
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cannot be estimated by the exact numerical value. Thus the selection problem
of suppliers has many uncertainties and becomes more difficult.

Rough set theory [3]-[5] is a widely used tool in data mining and knowledge
discovery. Up to present, the rough set approach has been also proposed to deal
with the suppliers selection problem under uncertainty [6]. However, in the de-
cision table of rough set theory, attribute values must be known precisely. In
addition, the alternatives of ideal suppliers are decided by the lower approxima-
tion, so the rank of each ideal supplier is equal. Therefore it is difficult to select
the most ideal supplier.

Grey system theory [7],[8] is one of the methods that are used to study un-
certainty, it is superior in mathematical analysis of systems with uncertain in-
formation. Up to present, fuzzy-based approach has been proposed to deal with
the suppliers selection problem under uncertainty [9]. The advantage of grey sys-
tem theory over fuzzy theory [10], [11] is that grey system theory considers the
condition of the fuzziness. That is, grey system theory can flexibly deal with the
fuzziness situation [12]. In this paper, we proposed a new grey-based rough set
approach to deal with selection problem of suppliers under uncertainty environ-
ment. The new approach can overcome above mentioned shortcomings of rough
set theory. The work procedure is shown as follows briefly: First, the attribute
values of decision table for all alternatives are decided by linguistic variables
that can be expressed in grey number. Second, ideal suppliers are decided by
the lower approximation of rough set theory. Third, the most ideal supplier is
decided by grey relational analysis based on grey number. Finally, an example
of selection problem of suppliers was used to illustrate the proposed approach.
The experimental result shows that the effectiveness of proposed approach.

This paper is organized as follows: Section 2 describes rough set theory. Section
3 describes grey system theory which include some basic definitions. Section 4
introduces the proposed approach by grey-based rough set. In Section 5, the
application and analysis of proposed approach is introduced by an example of
suppliers selection. Finally, conclusions are described in Section 6.

2 Rough Set Theory

Rough set theory [3] which is proposed by Pawlak in 1982, is an extension of
conventional set theory that supports approximations in decision making. The
rough set itself is the approximation of a vague concept set by a pair of precise
concepts, called lower and upper approximations, which are a classification of
the domain of interest into disjoint categories. The lower approximation is a
description of the domain objects which are known with certainty to belong to
the subset of interest, whereas the upper approximation is a description of the
objects which possibly belong to the subset.

Definition 1. Let U be the universe and let R be an equivalence relation on U .
For any subset X ⊆ U , the pair T = (U, R) is called an approximation space.
The two subsets

RX = {x ∈ U |[x]R ⊆ X} (1)
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RX = {x ∈ U |[x]R ∩ X �= φ} (2)

are called the R-lower and R-upper approximation of X, respectively. R(X) =<
RX, RX > is called the rough set of X in T . The rough set R(X) denotes the
description of X under the present knowledge, i.e., the classification of U .

We use POSR(X) = RX to denote R-positive region of X , NEGR(X) = U−RX
to denote R-negative region of X , and BNR(X) = RX − RX to denote the R-
borderline region of X . The positive region POSR(X) or RX is the collection
of those objects which can be classified with full certainty as members of the
set X , using knowledge R. The negative region NEGR(X) is the collection of
objects which can be determined without any ambiguity, employing knowledge
R, that they do not belong to the set X .

3 Grey System Theory

Grey system theory [8], originally developed by Deng in 1982, has become a
very effective method of solving uncertainty problems under discrete data and
incomplete information. The theory includes five major parts, which include grey
prediction, grey relation, grey decision, grey programming and grey control. In
recent years, grey system theory has now been applied to various areas such as
forecasting, system control, decision making and computer graphics.

3.1 Grey System, Grey Set and Grey Number Operation

Definition 2. A grey system is defined as a system containing uncertain infor-
mation presented by grey number and grey variables.

Definition 3. Let X be the universal set. Then a grey set G of X is defined by
its two mappings μG(x) and μ

G
(x).{

μG(x) : x −→ [0, 1]
μ

G
(x) : x −→ [0, 1] (3)

where μG(x) ≥ μ
G

(x), x ∈ X, X = R, (R: Real number set), μG(x) and μ
G

(x)
are the upper and lower membership functions in G respectively. When μG(x) =
μ

G
(x), the grey set G becomes a fuzzy set. It shows that grey theory considers

the condition of the fuzziness and can flexibly deal with the fuzziness situation.

Definition 4. A grey number is one of which the exact value is unknown, while
the upper and/or the lower limits can be estimated. Generally grey number is
written as ⊗x, (⊗x = x|μμ).

Definition 5. If only the lower limit of x can be possibly estimated and x is
defined as lower limit grey number.

⊗ x = [x,∞) (4)
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Definition 6. If only the upper limit of x can be possibly estimated and x is
defined as lower limit grey number.

⊗ x = (−∞, x] (5)

Definition 7. If the lower and upper limits of x can be estimated and x is defined
as interval grey number.

⊗ x = [x, x] (6)

Definition 8. The basic operation laws of grey numbers ⊗x1 = [x1, x1] and
⊗x2 = [x2, x2] can be expressed as follows:

⊗ x1 + ⊗x2 = [x1 + x2, x1 + x2] (7)

⊗ x1 −⊗x2 = [x1 − x2, x1 − x2] (8)

⊗ x1 ×⊗x2 = [min(x1x2, x1x2, x1x2, x1x2),
max(x1x2, x1x2, x1x2, x1x2)] (9)

⊗ x1 ÷⊗x2 = [x1, x1] × [
1
x2

,
1
x2

] (10)

Definition 9. The Minkowski space distance of two grey numbers ⊗x1 and ⊗x2
is defined as

L(⊗x1,⊗x2) = [(x1 − x2)
p + (x1 − x2)p]

1
p (11)

In our study, p = 2 is used. It represents Euclidean grey space distance.

3.2 Grey Relational Analysis Based on Grey Number

The grey relational analysis (GRA) is an important approach of grey system
theory in the application of evaluating a set of alternatives in terms of deci-
sion criteria. In GRA, the data that contain same features are regarded as a
sequence. As a tool of quantitative analysis, the GRA can be used to measure
the relationship between two sequences by calculation their correlative degrees,
which is called grey relational grade (GRG). The GRG is expressed by a scalar
between 0 and 1. Up to now, the method has been used successfully in many
fields. However, in conventional GRA, the data of sequences which are used as
real numbers. We use a new GRA based on grey number to more flexibly analyze
the uncertain relationship of system factors.

Definition 10. Considering a reference sequence⊗x={⊗x(1),⊗x(2), . . .,⊗x(n)}
and m comparative sequences ⊗xi ={⊗xi(1),⊗xi(2), . . . ,⊗xi(n)}, i=1, 2, . . . , m,
where ⊗xi(k) represents the kth attribute in ⊗xi, k = 1, 2, . . . , n. The grey rela-
tional coefficient (GRC) of⊗xi with respect to⊗x0 at the kth attribute is calculated
as [13]

γ(⊗x0(k),⊗xi(k)) =
Δmax − Δ0i(k)
Δmax − Δmin

(12)
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Table 1. The scale of attribute ratings ⊗v

Scale ⊗v

Very poor (VP) 　　　　　　　 　 [0,1]　
Poor (P) 　 [1,3] 　
Medium poor (MP) 　 [3,4]　
Fair (F) 　 [4,5]　
Medium good (MG) 　 [5,6]　
Good (G) 　 [6,9] 　
Very good (VG) 　 [9,10]　

where
Δmax = maxmax

∀i,∀k
L(⊗x0(k),⊗xi(k)) (13)

Δmin = min min
∀i,∀k

L(⊗x0(k),⊗xi(k)) (14)

Δ0i(k) = L(⊗x0(k),⊗xi(k)) (15)

L(⊗x0(k),⊗xi(k)) is the Euclidean space distance of ⊗x0(k) and ⊗xi(k) which
is calculated by Eq. (11). The GRG between each comparative sequence ⊗xi and
the reference sequence ⊗x0 can be derived from the average of GRC, which is
denoted as

Γ0i =
n∑

k=1

1
n

γ(⊗x0(k),⊗xi(k)) (16)

where Γ0i represents the degree of relation between each comparative sequence and
the reference sequence. The higher degree of relation means that the comparative
sequence is more similar to the reference sequence than comparative sequences.

4 Proposed Approach by Grey-Based Rough Set

A new grey-based rough set approach is proposed to make the most ideal sup-
plier. This approach is very suitable for solving the group decision-making prob-
lem under uncertainty environment.

Assume that an grey information system of selection suppliers is defined by
T = (U, A, V, f⊗), where U = {S1, S2, . . . , Sm} is a set of m suppliers alternatives
called the universe. A = {a1, a2, . . . , an} is a set of n attributes of suppliers.
f⊗ : U × A → V is grey description function. T = (U, A ∪ D, f⊗) is called grey
decision table, where D is a distinguished attribute called decision. The elements
of A are called conditions. The attribute ratings ⊗v can be also expressed in grey
numbers [14] by 1-7 scale shown in Table 1. The procedures are summarized as
follows:

Step 1: Form a committee of decision-maker and identify attribute values
of suppliers. Assume that a decision group has K persons, then the values of
attribute vij can be calculated as

⊗ vij =
1
K

[⊗v1
ij + ⊗v2

ij + · · · + ⊗vK
ij ] (17)
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Table 2. The grey decision table

Alternatives Conditional attributes Decision
a1 a2 · · · an D

S1 ⊗v11 ⊗v12 · · · ⊗v1n d1

S2 ⊗v21 ⊗v22 · · · ⊗v2n d2

...
...

...
...

...
...

Sm ⊗vm1 ⊗vm2 · · · ⊗vmn dm

Table 3. The normalized grey decision table

Alternatives Conditional attributes Decision
a∗
1 a∗

2 · · · a∗
n D

S1 ⊗v∗
11 ⊗v∗

12 · · · ⊗v∗
1n d1

S2 ⊗v∗
21 ⊗v∗

22 · · · ⊗v∗
2n d2

...
...

...
...

...
...

Sm ⊗v∗
m1 ⊗v∗

m2 · · · ⊗v∗
mn dm

where ⊗vK
ij (i = 1, 2, · · · , m; j = 1, 2, · · · , n) is the attribute rating value of Kth

DM and can be described by grey number ⊗vK
ij = [vK

ij , vK
ij ].

Step 2: Establishment of grey decision table.
The attribute valuses of ⊗vij are linguistic variables based on grey number.

It is shown in Table 2.
Step 3: Normalization grey decision table.
For benefit attribute, ⊗v∗ij is expressed as

⊗ v∗ij =
[ vij

vmax
j

,
vij

vmax
j

]
(18)

vmax
j = max1≤i≤m{vij}

For cost attribute, ⊗v∗ij is expressed as

⊗ v∗ij =
[vmin

j

vij
,
vmin

j

vij

]
(19)

vmin
j = min1≤i≤m{vij}.

The normalization method mentioned above is to preserve the property that
the ranges of normalized grey number belong to [0, 1]. It is shown in Table 3.

Step 4: Selection ideal suppliers by grey-based rough set lower approximation
[15]. The decision values di, i = 1, 2, · · · , m from MDs are given by {yes, yes or
no, no} three types. The final values are decided by most of MDs’ judgments. The
real numbers of {yes, yes or no, no} are given as {2, 1, 0} by the important degree
of suppliers. The lower approximation of ideal suppliers S∗ are calculated as

RS∗ = {Si ∈ U |[Si]R ⊆ S∗} (20)

where S∗ = {Si|di = yes}.
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Table 4. Attribute rating values for suppliers

aj Si D1 D2 D3 D4 ⊗vij

a1

S1 G MG G G [5.75, 8.25]
S2 MG G F MG [5.00, 6.50]
S3 F F MG G [4.75, 6.25]
S4 F MG MG F [4.50, 5.50]
S5 MG F F MG [4.50, 5.50]
S6 G MG MG MG [5.25, 6.75]
S7 F MG MG F [4.50, 5.50]

a2

S1 G G MG MG [5.50, 7.50]
S2 G MG MG G [5.50, 7.50]
S3 F F P F [3.25, 4.50]
S4 P MP MP P [2.00, 3.50]
S5 MP MP M MP [2.50, 3.75]
S6 MP P P MP [2.00, 3.50]
S7 P MP MP P [2.00, 3.50]

a3

S1 G MG MG G [5.50, 7.50]
S2 MG G G G [5.75, 8.25]
S3 G G F MG [5.25, 7.25]
S4 G MG MG G [5.50, 7.50]
S5 MG F F MG [4.50, 5.50]
S6 F F MG F [4.25, 5.25]
S7 G MG MG G [5.50, 7.50]

a4

S1 F G G G [5.50, 8.00]
S2 G G F MG [5.75, 8.25]
S3 VG VG G G [7.50, 9.50]
S4 G MG G G [5.75, 8.25]
S5 MG MG G MG [5.25, 6.75]
S6 G VG VG G [7.50, 9.50]
S7 G MG G G [5.75, 8.25]

Step 5: For RS∗, we used GRA based on grey number to select the most
ideal supplier.

– Making most ideal referential supplier S0 against RS∗ by

S0 =
{
[max∀i v∗

i1, max∀i v∗i1], [max∀i v∗
i2, max∀i v∗i2], . . . ,

[max∀i v∗im, max∀i v∗
im]
} (21)

– Calculation of GRG between comparative sequences RS∗ with reference se-
quence S0.
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Table 5. The grey decision table

Alternatives Conditional attributes Decision
a∗
1 a∗

2 a∗
3 a∗

4 D

S1 [0.697, 1.000] [0.733, 1.000] [0.667, 0.909] [0.656, 0.955] 2
S2 [0.606, 0.788] [0.733, 1.000] [0.697, 1.000 [0.724, 1.000] 2
S3 [0.576, 0.758] [0.433, 0.600] [0.636, 0.879] [0.553 0.700] 1
S4 [0.545, 0.667] [0.267, 0.467] [0.667, 0.909] [0.636, 0.913] 2
S5 [0.545, 0.667] [0.333, 0.500] [0.545, 0.545] [0.778, 1.000] 1
S6 [0.636, 0.818] [0.267, 0.467] [0.515, 0.636] [0.553, 0.700] 0
S7 [0.545, 0.667] [0.267, 0.467] [0.667, 0.909] [0.636, 0.913] 1

5 Application and Analysis

In this section, we present the case study based on proposed grey-based rough
set approach, and the consideration is also discribed.

5.1 Case Study

There is a grey information system T = (U, A, V, f⊗) of suppliers selection. The
grey decision table is expressed by T = (U, A ∪ D, f⊗). U = {Si, i = 1, 2, · · · , 7}
are as selected seven suppliers alternatives against four attributes A = {aj , j =
1, 2, 3, 4}. The four attributes are product quality, service quality, delivery time
and price respectively [6]. a1, a2 and a3 are benefit attributes, the larger values
are better. a4 is cost attributes, the smaller values are better. The calculation
procedures are shown as follows:

Step 1: Making attribute rating values for tem suppliers alternatives. A com-
mittee of four DMs, D1, D2, D3 and D4 has been formed to express their pref-
erences and to select the most ideal suppliers. The results of attribute rating
values are shown in Table 4.

Step 2: Establishment of grey decision table.
Step 3: Normalization grey decision table. The grey normalized decision table

is shown in Table 5.
Step 4: Selection ideal suppliers by grey-based rough set lower approximation.

We use R to denote the partition generated by condition attributes A. Here,
[Si]R = {{S1}, {S2}, {S3}, {S4, S7}, {S5}, {S6}} are obtained.

The subset S∗ ⊆ U = {Si|di = yes} for ideal suppliers is used. Then S∗ =
{{S1}, {S2}, {S4}} is obtained. The lower approximation of S∗ are obtained by
RS∗ = {Si ∈ U |[Si]R ⊆ S∗}. Then RS∗ = {{S1}, {S2}} are obtained. Therefore
S1 and S2 can be viewed as the ideal suppliers.

Step 5: For ideal suppliers S1 and S2, we used GRA based on grey number
to select the most ideal supplier. The calculation method is shown as follows.

– Making most ideal referential supplier S0 against S1 and S2. According to
Eq. (21), S0 is obtained as

S0 = Smax =
{
[0.697, 1.000], [0.733, 1.000], [0.697, 1.000], [0.724, 1.000]

}
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– Calculation of GRG between comparative sequences S1 and S2 with reference
sequence S0. The values of GRG are Γ01(S0, S1) = 0.8077, Γ02(S0, S2) =
0.7500.

We can say that the supplier S1 is the most ideal supplier in seven suppliers.
S1 should be as an important alternative for company.

5.2 Consideration

The selection problem of suppliers is a MADM problem. In conventional MADM
methods, the ratings of the attribute must be known precisely. But, DMs’ judg-
ment are often uncertain and cannot be estimated by the exact numerical value.
Thus, the selection problem of suppliers has many uncertainties and becomes
more difficult. Grey system theory is one of new mathematical fields that was
born by the concept of grey set. It is one of the methods that are used to study
uncertainty of system. The uncertain information can be analyzed by grey set
consist of grey number, thus, it become possible for the analysis of uncertain
system. Grey system theory over fuzzy theory is that grey system theory con-
siders the condition of the fuzziness. That is, grey system theory can flexibly
deal with the fuzziness situation. Grey system theory expand the range of mem-
bership function of fuzzy theory to analyze uncertain problem. When the upper
membership is same to lower membership, the grey set become fuzzy set. It is
obvious that fuzzy set is a special type of grey set. About the analysis method
of rough set theory, it is a good tool in data mining and knowledge discovery.
However, the attribute values must be known precisely. In addition, the alterna-
tives of ideal suppliers are decided by lower approximation, so the rank of each
ideal supplier is equal. Therefore it is difficult to select the most ideal supplier.
In this paper, we combine grey system theory with rough set they and proposed
grey-based rough set approach to resolve the selection suppliers problem. Fur-
thermore, we introduced grey relational analysis based on grey number to decide
the most supplier. Through a verify example, we obtained the effectiveness of
proposed approach.

6 Conclusions

In this paper, we proposed a new grey-based rough set approach to deal with
selection problem of suppliers under uncertainty environment. An example of
selection problem of suppliers was used to illustrate the proposed approach. The
experimental result shows that proposed approach is reliable and reasonable.
This proposed approach can help in more accurate selection problem, such as
management and economic fields etc..
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Abstract. In this paper, we propose a hybrid grey-based dynamic model,
then it is applied to the prediction problem of international airlines amount
increase in China. The work is motivated by the following observations:
First, a system of international airlines is an uncertain dynamic system,
and the effects of other systems on the system being monitored are also un-
clear. Thus it is difficult for us to predict next annual airlines amount from
the system. Second, grey system theory is one of the methods that used
to study uncertainty, and it is superior in mathematical analysis of sys-
tems with uncertain information. The system of international airlines can
be viewed a grey dynamic system, therefore grey dynamic model GM(1,1)
which is a single variable first order differential prediction model based on
grey system theory can be used to solve the prediction problem. Third,
since the development trend of international airlines amount is affected by
variant random factors, it is difficult to obtain high predicted accuracy by
single grey dynamic model. The work procedure is shown as follows briefly:
First, the Markov-chain is integrated into GM(1,1) to enhance the pre-
dicted accuracy. Second, we present Taylor approximation method based
on grey interval analysis for obtaining high accuracy furthermore. Finally,
the statistics data of international airlines amount from 1985 to 2003 in
China is used to verify the effectiveness of proposed model.

1 Introduction

The prediction for international airlines amount increase has become one of the
most important research topics in airline management system with the economic
development in China. A system of international airlines is an uncertain dynamic
system, and the effects of other systems on the system being monitored are also
unclear. Thus it is difficult for us to predict next annual airlines amount from the
system. In 1982, Deng proposed grey system theory [1] to study uncertainty, and
it is superior in mathematical analysis of systems with uncertain information.
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The system of international airlines can be viewed a grey dynamic system. And
grey dynamic model GM(1,1), which stands for the first order with one variable
based on grey system theory as a prediction model can be used in the prediction
problem of international airlines amount increase.

Since the increase trend of international airlines amount is affected by vari-
ant random factors, such as economic development, social chance and industrial
policy etc., it is not realistic to establish a single grey prediction dynamic model,
which can take all the affecting factors into account. As we know, every predic-
tion model is designed with the hope to obtain the characteristics of the system.
The more the factors which relate to the system dynamics are considered, the
better the prediction will be. Statistics method, on the other hand, becomes a
good choice. In this paper, Markov-chain based on statistical method is incor-
porated with the original grey dynamic model GM(1,1) to further enhance the
predicted accuracy. Markov-chain [2] requires the prediction object a stationary
process. It was found from the statistics data of international airlines amount of
China in past years. Since the change of international airlines amount is a non-
stationary process, so it is necessary to combine the two models in prediction.
The proposed GM(1,1) model which combines with Markov-chain is defined as
MGM(1,1). Furthermore, we present grey interval analysis based on the divi-
sion state of Markov-chain, then Taylor approximation method is proposed to
whiten the grey intervals and obtain the optimal predicted value. The generated
model is defined as T-MGM(1,1). The statistics data of international airlines
amount from 1985 to 2003 is used to verify the effectiveness of proposed model.
The experimental results show that the proposed T-MGM(1,1) dynamic model
has proved an effective tool in international airlines amount increase prediction
problem.

2 Grey System Theory

In recent years, grey system theory [3] has become a very effective method of
solving uncertainty problems under discrete data and incomplete information.
The theory includes five major parts, which include grey prediction, grey re-
lation, grey decision, grey programming and grey control. In this section, we
describes grey system theory which include basic definitions, 1-AGO, 1-IAGO
and GM(1,1) model.

2.1 Basic Definitions

Definition 1. A grey system is defined as a system containing uncertain infor-
mation presented by grey intervals and grey variables.

Definition 2. In grey system, when a prediction model uses an observed data
set, there will be a numerical interval accompanying it. This numerical interval
will contain the accuracy and the other sources of uncertainty that are associated
with the observed values in the data set. The numerical interval is defined as grey
interval.
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Definition 3. The number of grey interval is defined as grey number. Grey num-
ber means that the certain value is unknown, but the rough range is known. The
grey interval can be taken as a special grey number ⊗Xg, with bound values Xd

and Xu:
⊗Xg = [Xd, Xu] (1)

where Xd is the lower limit and Xu is upper limit.

Definition 4. The whitening method for the grey number is given as

Xg = (1 − λ)Xd + λXu (2)

where λ ∈ [0, 1], λ is called whitening coefficient.

2.2 Grey 1-AGO

The most critical feature of GM(1,1) is the use of grey generating approaches
to reduce the variation of the original data series by transforming the data
series linearly. The most commonly seen and applied grey generating approaches
are the accumulative generating operation (AGO) and the inverse accumulative
generating operation (IAGO).

Assume that x(0) = {x(0)(1), x(0)(2), . . . , x(0)(n)} is original series of real num-
bers with irregular distribution.

Then x(1) is viewed as 1-AGO generation series for x(0), if ∀x(1)(j) ∈ x(1) can
satisfy

x(1)(j) =
j∑

i=1

x(0)(i) (3)

x(0)(i) ∈ x(0)

Then x(1) = {
∑1

i=1 x(0)(i),
∑2

i=1 x(0)(i), . . . ,
∑n

i=1 x(0)(i)}, which is the first
order AGO series obtained from x(0).

2.3 Grey 1-IAGO

From Eq. (3), it is obvious that the original data x(0)(i) can be easily recovered
from x(1)(i) as

x(0)(i) = x(1)(i) − x(1)(i − 1) (4)

where x(0)(1) = x(1)(1), x(1)(i) ∈ x(1). This operation is called first order IAGO.

2.4 Grey Dynamic Model GM(1,1)

If we have n ≥ 4, x(0), x(1) ∈ R+, and can satisfy the precondition:

σ(1)(i) ∈ (e−
2

n+1 , e+ 2
n+1 )

σ(1)(i) = x(1)(i−1)
x(1)(i)

}
(5)

where σ(1)(i) is called class ratio.
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The grey dynamic prediction model GM(1,1) can be expressed by one variable,
and first order differential equation.

dx(1)

dt
+ ax(1) = b (6)

The solution for Eq. (6) is

x̂(1)(i + 1) =
(
x(0)(1) − b

a

)
e−ai +

b

a
(7)

where the coefficients a and b are called development and grey input coefficient,
respectively. Then, by least-square method, the coefficients a and b can be ob-
tained as [

a
b

]
= (AT A)−1AT Xn (8)

A =

⎡⎢⎢⎢⎣
− 1

2

(
x(1)(1) + x(1)(2)

)
1

− 1
2

(
x(1)(2) + x(1)(3)

)
1

...
...

− 1
2

(
x(1)(n − 1) + x(1)(n)

)
1

⎤⎥⎥⎥⎦ (9)

Xn =

⎡⎢⎢⎢⎣
x(0)(2)
x(0)(3)

...
x(0)(n)

⎤⎥⎥⎥⎦ (10)

By 1-IAGO, the predicted equation is,

x̂(0)(i + 1) = x̂(1)(i + 1) − x̂(1)(i)

=
(
x(0)(1) − b

a

)
(1 − ea)e−ai (11)

where x(0)(1) = x(1)(1).
From Eq. (11), the predicted data series x̂(0) = {x̂(0)(1), x̂(0)(2), . . . , x̂(0)(n +

m)}, m ≥ 1 are obtained for original data series x(0) ={x(0)(1), x(0)(2), . . ., x(0)(n)}.

3 MGM(1,1) Model

In this paper, we present Markov-chain to enhance predicted accuracy of GM(1,1).
The new generated model is defined as MGM(1,1). The original data are first
modeled by the GM(1,1), then the residual errors between the predicted values
and the actual values for all previous time steps are obtained. The idea of
the MGM(1,1) is to establish the transition behavior of those residual errors
by Markov transition matrices, then possible correction for the predicted value
can be made from those Markov matrices. The detailed procedure is shown as
follows.
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– Step 1: The division of state
• Establishment of GM(1,1) model

For original data series x(0)(i), use GM(1,1) model to obtain predicted
value x̂(0)(i). Then the residual errors e(i) = x(0)(i)− x̂(0)(i) can be also
obtained.

• Division state by Markov-chain
Assume that there exists some regular information in the residual errors
series of GM(1,1). We can establish Markov state transition matrices, r
states are defined for each time step. Thus the dimension of the transition
matrix is r × r. The residual errors are partitioned into r equal portions
called states. Each state is an interval whose width is equal to a fixed
portion of the range between the maximum and the minimum of the
whole residual errors. Then, the actual error can be classified into those
states.

Let Sij be the jth state of the ith time step

Sij ∈
[
Lij , Uij

]
, j = 1, 2, . . . , r (12)

where Lij and Uij are the lower boundary and upper boundary of the
jth state for the ith time step of the residual errors series.

Lij = min e(i) +
j − 1

r

(
max e(i) − min e(i)

)
(13)

Uij = min e(i) +
j

r

(
max e(i) − min e(i)

)
(14)

e(i) is residual errors of GM(1,1).

– Setp 2: Establishment of transition probability matrix of state
If the transition probability of state is written as

P
(m)
ij =

M
(m)
ij

Mi
, j = 1, 2, . . . , r (15)

where P
(m)
ij is the probability of transition from state i to j by m steps.

M
(m)
ij is the transition times from state i to j by m steps and Mi is the

number of data belonging to the ith state. Because the transition for the
last m entries of the series is indefinable, Mi should be counted by the first
as n−m entries, n is the quantity of entries of the original series. Then, the
transition probability matrix of state can be written as

R(m) =

⎡⎢⎢⎢⎢⎣
P

(m)
11 P

(m)
12 · · · P

(m)
1r

P
(m)
21 P

(m)
22 · · · P

(m)
2r

...
...

. . .
...

P
(m)
r1 P

(m)
r2 · · · P

(m)
rr

⎤⎥⎥⎥⎥⎦ (16)
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The transition probability matrix of states R(m) reflects the transition rules
of the system. The transition probability of states P

(m)
ij reflects the proba-

bility of transition from initial state i to probable state j by m steps. It is
the foundation of prediction by the Markov probability matrix. For example,
consider m=1 and the maximum transition step is 1. Then, R(1) can be ob-
tained. If the predicted original data is located in the ith state, the predicted
data of next step is calculated by the row vector of transition probability
states P

(1)
ij .

– Step 3: Obtaining the predicted value
The residual error series e(i) is divided into r states, then there is r transition
probability vectors. The possibilities of a certain error state for the next
step are obtained by the probabilities in r vectors, denoted as {ai(T ), i =
1, 2, . . . , r} at time step T . Define the centers of r states as {vi, i=1, 2,. . ., r}.
Then, the predicted value for the next step is

x̃(0)(T + 1) = x̂(0)(T + 1) +
r∑

i=1

ai(T )vi (17)

where
a(T ) = [a1(T ), a2(T ), . . . , ar(T )] = a(T−1)R(m) (18)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(T+1) = a(T )R(m)

a(T+2) = a(T+1)R(m)

...
a(T+k) = a(T+k−1)R(m)

(19)

where m = 1.

4 T-MGM(1,1) Model

4.1 Grey Interval Analysis

In Eq. (17), the predicted value x̃(0)(T + 1) of MGM(1,1) is calculated by the
centers of r states as {vi, i = 1, 2, . . . , r}. Actually, these states intervals consist
of uncertain grey set which including non-precise information. Only using each
center value, thus it will disregard the existences of grey information in the states
intervals [4]. According to Definitions 2 and 3, the division states shown in Eq.
(12) can be viewed as grey intervals, then jth state of the ith time step can be
expressed as

⊗Sij =
[
Lij , Uij

]
, j = 1, 2, . . . , r (20)

The whitening method for the grey state Sij is given as

Sij = (1 − λj)Lij + λjUij (21)

where λj ∈ [0, 1], λj is called whitening coefficient. When λj = 0.5, the value
from Eq. (21), become the centers value of r states shown in Eq. (17).
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4.2 T-MGM(1,1)

The predicted value of T-MGM(1,1) model based on grey interval analysis can
be expressed as

x̌(0)(T + 1) = x̂(0)(T + 1) +
r∑

i=1

ai(T ) ⊗ vi (22)

where
⊗vi = [Li, Ui] (23)

The whiten method of ⊗vi is shown as

vi = (1 − λi)Li + λiUi (24)

where λi ∈ [0, 1], for i = 1, 2, . . . , r.
In this paper, we propose Taylor approximation method to optimize the values

of {λi, i = 1, 2, . . . , r}. Taylor approximation method [5] which combines the
Taylor development with the least squares method is an approximate calculation
method of multi-times to obtain the optimal coefficients values and makes the
convergent error reduce to the minimum. Therefore, the whitening coefficients
of MGM(1,1) can be optimized by Taylor approximation method [6]. By the
optimization process, the coefficients values of λ

(K)
i are updated for K times, we

can obtain the optimal predicted value.

5 Case Study

The three criteria are used for evaluating proposed model. They are the mean
square error (MSE), absolute mean error (AME) and absolute error (AE) which
are calculated as

MSE =
1
n

n∑
i=1

e2(i) (25)

AME =
1
n

n∑
i=1

|e(i)| (26)

AE = |e(i)| (27)

where e(i) = x(0) − x̌(0).
In this paper, according the statistics data of international airlines amount

increase from 1985 to 2003 in China [7], we predict the international airlines
amount from 2004 to 2010. The predicted procedures are described below:

– Step 1: Input data
The statistics annual data of international airlines amount from 1985 to 2003
are used to establish model.
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Fig. 1. The predicted values and absolute error AE by GM(1,1) for international air-
lines amount from 1985 to 2003

– Setp 2: Establishment of prediction model GM(1,1)
According to the original data series {x(0)(i), i = 1, 2, . . . , n}, we establish
the prediction model GM(1,1) by Eq. (7). As the results, the predicted gen-
erated data series {x̂(0)(i), i = 1, 2, . . . , n} and original data are plotted in
Fig. 1. The absolute error (AE) is also plotted in Fig. 1. We can see that
the AE is still very big for GM(1,1) and it cannot exactly match the inter-
national airlines system dynamics.

– Setp 3: Establishment of prediction model MGM(1,1)
• The division of state

According to the predicted data series {x̂(0)(i), i=1, 2,. . ., n} by GM(1,1),
we can obtain its residual error series e(i). From the obtained residual
errors, the corresponding intervals are divided into four states for this
study. The four states are [-20.58, -11.35], [-11.35, -2.13], [-2.13, 7.10] and
[7.10, 16.32]. The four states based on their residual errors are defined.

• Establishment of transition probability matrix of state
By the state of each entry, the transition probability matrices of state
R(m), m = 1 can be evaluated as

R(1) =

⎡⎢⎢⎣
0.000 1.000 0.000 0.000
0.111 0.556 0.333 0.000
0.000 0.286 0.571 0.143
0.000 0.000 0.000 1.000

⎤⎥⎥⎦
• Obtaining predicted values

According to the four states, we can calculate their centers values. Then
v1 = −15.97, v2 = −6.74, v3 = 2.48 and v4 = 11.71 are obtained. The
model predicted values by MGM(1,1), and the experimental original data



A Hybrid Grey-Based Dynamic Model 505

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1984  1986  1988  1990  1992  1994  1996  1998  2000  2002  2004

In
te

rn
at

io
na

l a
ir

lin
es

 a
m

ou
nt

Year    (a)

Original data
MGM(1,1) model

AE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1984  1986  1988  1990  1992  1994  1996  1998  2000  2002  2004

In
te

rn
at

io
na

l a
ir

lin
es

 a
m

ou
nt

Year   (b)

Original data
T-MGM(1,1) model

AE

Fig. 2. The predicted values and absolute error AE by (a) MGM(1,1) (b) T-MGM(1,1)
for international airlines amount from 1985 to 2003

are plotted in Fig. 2 (a). The AE is also plotted in Fig. 2 (a). It is obvious
that the extreme-effect has been somewhat removed and the fitted and
predicted curves are on the right track.

– Setp 4: Establishment of prediction model T-MGM(1,1)
• The state division by grey interval analysis

According to the four states, we can view them as grey interval states.
When whitening coefficients λi is introduced to whiten the grey inter-
vals, then we use Taylor approximation method to optimize the whiten
coefficients and obtain the best high predicted accuracy.

• Obtaining predicted values
According to 1 step probability transition matrices R(1) and four grey in-
terval states, for predicted data {x̌(0)(i), i = 1, 2, . . . , n} from MGM(1,1),
we establish T-MGM(1,1) model to enhance predicted accuracy. We
present Taylor approximation method to optimize these whitening coef-
ficients {λi, i = 1, 2, 3, 4}. The updated times K=300 is set, The evalu-
ation function is convergent. The values {λi, i = 1, 2, 3, 4} are obtained
as 0.85, 0.76, 0.04 and 0.96 respectively. The model predicted values by
T-MGM(1,1), and the experimental original data are plotted in Fig. 2
(b). The AE is also plotted in Fig. 2 (b). It is obvious that the predicted
result is moved a step toward the actual one. The accuracy comparison
of three models are listed in Table. 1.

• Obtaining the predicted value by T-MGM(1,1) model from 2004 to 2010
By T-MGM(1,1) model, we predict the international airlines amount
from 2004 to 2010. The predicted results are listed in Table 2.

Prediction is through obtaining the relation of already-known data to analyze
the development tendency of system in the future. We use the already-known
airlines data from 1985 to 2003 to establish prediction model GM(1,1). In order to
enhance predicted accuracy, the Markov chain and Taylor approximation method
based on grey interval analysis are presented to incorporate with GM(1,1). From
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Table 1. The accuracy comparison of three models for international airlines amount
from 1985 to 2003

Models MSE AME Updated times K Training Time(sec) Testing Time(sec)
GM(1,1) 63.32 6.15 0 0 0.5
MGM(1,1) 50.32 5.67 0 0 0.8
T-MGM(1,1) 44.82 5.24 300 1.5 0.8

Table 2. The predicted value of international airlines amount by TMGM(1,1) model
from 2004 to 2010

Year 2004 2005 2006 2007 2008 2009 2010

Interational airlines 210.7 231.1 255.0 281.8 311.5 344.4 380.6

the results of accuracy comparison, the T-MGM(1,1) obtained the best accuracy,
AME and MSE are 44.82 and 5.24 respectively. We obtained the effectiveness of
proposed model. Then by T-MGM(1,1) model, we predicted the airlines amount
increase from 2004 to 2010.

6 Conclusions

The major purpose of this paper is to develop the prediction model of inter-
national airlines amount increase in China. Through using the statistics data
of international airlines amount from 1985 to 2003, we verified the effectiveness
of proposed model. The effects are achieved more than conventional GM(1,1)
model. And we predicted the international airlines amount from 2004 to 2010
by proposed GM(1,1). For airline management system, the proposed grey-based
dynamic model is very useful.
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Abstract. A new rough set named grey-rough set based on the grey
lattice operation in grey system theory is proposed in this paper. In-
formation systems records not only categorical data but also numerical
data including a range of interval. In order to handle interval data in such
information systems, we describe two sorts of new rough approximation
after introduced grey lattice operations: a special grey-rough set based on
the equivalence relation of interval coincidence, and a general grey-rough
set based on the meet operation and the inclusion relation instead of the
equivalence relation. The special grey-rough set is applicable to categor-
ical data and numerical discrete data like the traditional rough set. The
general grey-rough set is applicable to numerical interval data, which
means that the proposal is an advanced method for non-deterministic
information systems. The proposal is illustrated with several examples.

1 Introduction

Rough set theory (rough sets) proposed by Pawlak [1,2,3] is a useful mathemat-
ical tool to handle uncertainly. Rough set theory is used in many fields: Data
classification, Feature extraction, Inference, Machine learning and Rule induction
and so on. A lot of methods based on rough set theory are developed and applied.
Pawlak proposed the minimal decision rule induction from the indiscernibly re-
lation, and proposed two rough approximations: the upper approximation which
handles possibility, the lower approximation which handles certainly or neces-
sity. The traditional rough sets deal with categorical data or numerical discrete
data. However, information systems records not only categorical data but also
numerical data including a range of interval.

Grey system theory [4,5,6,7,8] proposed by Deng first handles uncertainly of
grey number. In recent years, a combination of grey system theory and rough set
theory is reported by Zhang [9] and Wu [10], in order to handle uncertainly more
flexibly. Zhang’s rough grey set includes new rough approximations based on grey
sets and whitening functions. Wu’s grey rough set is that a rough approximation
is defined for the range set.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 507–516, 2006.
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A new combination of rough set theory and grey system theory based on the
grey lattice operation [11,12] is proposed in this paper. Two sorts of new rough
set named grey-rough set including a rough approximation are proposed: a spe-
cial grey-rough set is based on the equivalence relation of the interval coincidence,
and a general grey-rough set which replaces the equivalence class condition with
the grey lattice operation. The grey lattice operation is one of the operations
for grey number which modify a range of a given interval of grey number. The
proposal does not only deal with categorical data, but also numerical interval
data. The proposal expands the treatable value.

2 Grey Lattice Operations

Grey numbers are expanded or contracted their own boundaries of interval by the
grey lattice operation. In this section, we summaries these operations, and some
of new definitions according to interval analysis [13, 14, 15, 16, 17, 18, 19, 20, 21],
interval algebra [22] and lattice theory [23] are added.

Let U denote an universal set, x an element of U(x ∈ U), R a real number
set, and X a set of value range that x may hold respectively.

Definition 1. Let G be a grey set of U defined by two mappings of the upper
membership function μG(x) and the lower membership function μ

G
(x) as follows:

μG(x) : x → [0, 1]
μ

G
(x) : x → [0, 1]

}
(1)

where μ
G

(x) ≤ μG(x), x ∈ U. When μ
G

(x) = μG(x), the grey set G becomes a
fuzzy set, which means grey system theory deals with flexibly fuzziness situation.

Definition 2. When two values x, x(x = inf X, x = sup X) are given in x, then
x is defined using a symbol ⊗x = x|μμ as follows:

1. If x → −∞, x → +∞, then ⊗x is called black number
2. If x = x, ⊗x is called white number or whitened value, and denoted by ⊗̃x
3. Otherwise ⊗x � [x, x] is called grey number

Definition 3. Let ‘�’ denote that two grey numbers ⊗x and ⊗y are coincidence
each other, described by

⊗x � ⊗y if x = y and x = y (2)

where ⊗x � [x, x] and ⊗y � [y, y].

Definition 4. There are two elements x and y. The notion that x is included
by y is denoted by

⊗x → ⊗y if y ≤ x and x ≤ y (3)

If any real number a(a ∈ R) or ⊗̃x are included by ⊗y, this notion is described
by

a → ⊗y if y ≤ a and a ≤ y (4)

⊗̃x → ⊗y if y ≤ ⊗̃x and ⊗̃x ≤ y (5)
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Definition 5. The relation ‘→’ is consistent with the order relation for three
grey numbers ⊗x,⊗y and ⊗z as follows:

1. ⊗x → ⊗x
2. ⊗x → ⊗y,⊗y → ⊗x ⇔ ⊗x � ⊗y
3. ⊗x → ⊗y,⊗y → ⊗z ⇒ ⊗x → ⊗z

Definition 6. The relation ‘�’ is consistent with the equivalence relation for
three grey numbers ⊗x,⊗y and ⊗z as follows:

1. ⊗x � ⊗x
2. ⊗x � ⊗y ⇔ ⊗y � ⊗x
3. ⊗x � ⊗y,⊗y � ⊗z ⇒ ⊗x � ⊗z

Definition 7. The following grey lattice operations are defined for two grey
numbers ⊗x of x and ⊗y of y:

1. Join (x ∪ y):

⊗ x ∨ ⊗y � [min(x, y), max(x, y)] (6)

⊗̃x ∨ ⊗̃y � [min(⊗̃x, ⊗̃y), max(⊗̃x, ⊗̃y)] (7)

2. Meet (x ∩ y):

⊗x ∧⊗y �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[x, x] if ⊗ x → ⊗y
[y, y] if ⊗ y → ⊗x
[x, y] if x → ⊗y and y → ⊗x
[y, x] if y → ⊗x and x → ⊗y

∅ otherwise

(8)

⊗̃x ∧ ⊗̃y �
{
⊗̃x if ⊗̃x = ⊗̃y
∅ else (9)

3. Complimentary:

⊗xc = {x ∈ Xc|x < x, x < x} (10)

4. Exclusive Join (x ⊕ y):

⊗x ⊕⊗y =
{

(⊗x ∨ ⊗y) ∧ (⊗xc ∨ ⊗yc)
(⊗x ∨ ⊗y) ∧ (⊗x ∧ ⊗y)c (11)

Theorem 1. The following laws are satisfied refer to [22,23]:

Idempotent: ⊗x ∨ ⊗x � ⊗x; ⊗x ∧ ⊗x � ⊗x
Commutative: ⊗x ∨ ⊗y � ⊗y ∨ ⊗x; ⊗x ∧⊗y � ⊗y ∧⊗x
Associative: (⊗x ∨ ⊗y) ∨ ⊗z � ⊗x ∨ (⊗y ∨ ⊗z);

(⊗x ∧ ⊗y) ∧⊗z � ⊗x ∧ (⊗y ∧⊗z)
Distributive: ⊗x ∧ (⊗y ∨ ⊗z) � (⊗x ∧⊗y) ∨ (⊗x ∧ ⊗z);

⊗x ∨ (⊗y ∧ ⊗z) � (⊗x ∨ ⊗y) ∧ (⊗x ∨ ⊗z)
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Absorption: (⊗x ∨ ⊗y) ∧ ⊗x � ⊗x; (⊗x ∧ ⊗y) ∨⊗x � ⊗x
Complement: ⊗x ∧ ⊗xc � ∅; ⊗x ∨ ⊗xc � R
Double Complimentary: (⊗xc)c � ⊗x
De Morgen’s law: (⊗x ∨ ⊗y)c � ⊗xc ∧⊗yc; (⊗x ∧ ⊗y)c � ⊗xc ∨ ⊗yc

Definition 8. Some of the whitening functions [11,12] which compute a whitened
value from a grey number according to [14,21] are defined as follows:

Midpoint mid(⊗x) = (x + x)/2 Size size(⊗x) = (|x| + |x|)/2
Diameter dia(⊗x) = x − x Radius rad(⊗x) = (x − x)/2
Magnitude mag(⊗x) = max(|x|, |x|) Mignitude mig(⊗x) = min(|x|, |x|)

Sign sign(⊗x) =

⎧⎨⎩
1 if 0 < x
0 if 0 → ⊗x
−1 if x < 0

Heaviside hv(⊗x) =
{

1 if 0 ≤ x
0 if x < 0

Absolute abs(⊗x) = mag(⊗x) − mig(⊗x)
Pivot piv(⊗x) =

√
mag(⊗x) · mig(⊗x)

Overlap ξ(⊗x,⊗y) = dia(⊗x∧⊗y)
dia(⊗x∨⊗y)

where ⊗x ∧ ⊗y � ∅ ⇔ ξ(⊗x,⊗y) = 0; ⊗x � ⊗y ⇔ ξ(⊗x,⊗y) = 1

3 Special Grey-Rough Sets

3.1 Combination of Rough Set Theory and Grey System Theory

The traditional rough set is based on the equivalence class of given information
table. We describe that a rough approximation can be obtained by the equiva-
lence class of the relation ‘�’ in grey system theory.

Definition 9. Let [x]GR denote an equivalence class of the relation ‘�’, which
is defined as follows:

[x]GR = {y ∈ U|x � y} (12)

and [x]GR holds the following properties:

1. x ∈ [x]GR for any x
2. x � y, then [x]GR = [y]GR

3. [x]GR �= [y]GR, then [x]GR ∩ [y]GR = ∅

Definition 10. Let A(U, �) denote an approximation space and U/ � be a
partition of U in A.

Definition 11. Let S be a subset of U, GR∗(S) an upper approximation of
S, GR∗(S) a lower approximation of S, and BND(S) a boundary respectively,
which is defined as follows:

GR∗(S) = {x ∈ U|[x]GR ∩ S �= ∅} (13)
GR∗(S) = {x ∈ U|[x]GR ⊆ S} (14)

BND(S) = GR∗(S) − GR∗(S) (15)

We define that a pair 〈GR∗(S), GR∗(S)〉 is a special grey-rough set.



On the Combination of Rough Set Theory 511

Theorem 2. A special grey-rough set holds the following properties:

1. GR∗(S) ⊆ S ⊆ GR∗(S)
2. GR∗(∅) = GR∗(∅) = ∅; GR∗(U) = GR∗(U) = U

3. GR∗(S ∩ T ) = GR∗(S) ∩ GR∗(T ); GR∗(S ∪ T ) = GR∗(S) ∪ GR∗(T )
4. S ⊆ T implies GR∗(S) ⊆ GR∗(T ); S ⊆ T implies GR∗(S) ⊆ GR∗(T )
5. GR∗(S ∪ T ) ⊇ GR∗(S) ∪ GR∗(T ); GR∗(S ∩ T ) ⊆ GR∗(S) ∩ GR∗(T )
6. GR∗(U − S) = U − GR∗(S); GR∗(U − S) = U − GR∗(S)
7. GR∗(GR∗(S)) = GR∗(GR∗(S)) = GR∗(S);

GR∗(GR∗(S)) = GR∗(GR∗(S)) = GR∗(S)

Proof. The relation ‘�’ is included by the relation R suggested by Pawlak [1,2],
and then every property is consistent. #$

A special grey-rough set is a combination of grey system theory and rough set
theory, because this proposal is a new rough approximation for interval data
based on the grey lattice operation.

3.2 Illustrative Examples

Example 1 (for categorical data). Table 1 is a sample information table by Pawlak
[24] constructed from 6 patients and 4 attributes. The traditional rough set theory
deals with such categorical data.

We are able to transfer the given values except Flu from the left-side of Table
1 to the right-side, from {yes, no} to {1, 0}, and from {very high, high, normal}
to {2, 1, 0}. A partition by [p]GR on the attributes Headache, Muscle-pain and
Temperature is given as follows:

{{p1}, {p2, p5}, {p3}, {p4}, {p6}}

where {p2, p5} becomes an equivalence class, because ⊗p2 � ⊗p5 ⇔ ⊗̃p2 = ⊗̃p5
on each attribute. This example is a special case of grey number.

Let S1 = {p|Flu = yes} = {p1, p2, p3, p6} be a patient set, and then the upper
and the lower approximations of S1 are given as follows:

GR∗(S1) = {p1, p2, p3, p5, p6}, GR∗(S1) = {p1, p3, p6}, BND(S1) = {p2, p5}

Let S2 = {p|Flu = no} = {p4, p5} be another patient set, and then the upper
and the lower approximations of S2 are given as follows:

GR∗(S2) = {p2, p4, p5}, GR∗(S2) = {p4}, BND(S2) = {p2, p5}

Thus a special grey-rough set is compatible with the traditional rough set,
because categorical data equals to the numerical discrete data as a whitened
value of grey number in grey system theory.
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Table 1. Sample information table by Pawlak [24]

Patient Headache Muscle-pain Temperature Flu Headache Muscle-pain Temperature Flu
p1 no yes high yes 0 1 1 yes
p2 yes no high yes 1 0 1 yes
p3 yes yes very high yes 1 1 2 yes
p4 no yes normal no 0 1 0 no
p5 yes no high no 1 0 1 no
p6 no yes very high yes 0 1 2 yes

Table 2. Recomposed AUTO-MPG data set (original data from UCI repository [25])

No. Manufacturer M.P.G. Cylinders Displacement Horsepower Weight Acceleration Model-year Country
1 Audi [20,36.4] [4,5] [97,131] [67,103] [2.19,2.95] [14,19.9] [70,80] Germany
2 BMW [21.5,26] [4,4] [121,121] [110,113] [2.23,2.60] [12.5,12.8] [70,77] Germany
3 Cadillac [16.5,23] [8,8] [350,350] [125,180] [3.90,4.38] [12.1,17.4] [76,79] USA
4 Ford [15,36.1] [4,6] [98,250] [65,98] [1.80,3.57] [13.6,21] [70,81] USA
5 Honda [24,44.6] [4,4] [81,120] [53,97] [1.76,2.49] [13.8,18.5] [74,82] Japan
6 Mazda [18,46.6] [3,4] [70,120] [52,110] [1.97,2.72] [12.5,19.4] [72,82] Japan
7 Subaru [26,33.8] [4,4] [97,108] [67,93] [1.99,2.39] [15.5,18] [74,81] Japan
8 Toyota [19,39.1] [4,6] [71,168] [52,122] [1.65,2.93] [12.6,21] [70,81] Japan
9 Volkswargen [25,43.1] [4,4] [79,105] [48,78] [1.83,2.22] [12.2,21.5] [74,82] Germany
10 Volvo [17,30.7] [4,6] [121,163] [76,125] [2.87,3.16] [13.6,19.6] [72,81] Sweden

Example 2 (for interval data). Auto-MPG data set from UCI Repository [25] is
used in this example; Table 2 constructed from 8 attributes including Manufac-
turer is recomposed from the original data by the authors. 108 automobiles of
391 in the original data are classified into 10 manufacturers. In order to evalu-
ate a difference among manufacturers in specifications, maximum and minimum
values of those 7 attributes are obtained by the join operation because each
automobile model has deferent specifications even the same manufacturer.

Table 3 shows one of the extracted tables on the attributes Cylinders and
Model-year. A partition by [x]GR based on the equivalence class of interval is:

{{1}, {2}, {3}, {4, 8}, {5, 9}, {6}, {7}, {10}}
where each number equals to ‘No.’ of Table 2. Let S1 ={No.| Country = Japan}
= {5, 6, 7, 8}, S2 ={No.|Country = Germany} = {1, 2, 9}, S3 ={No.| Country
= USA} = {3, 4} and S4 ={No.|Country = Sweden} = {10} be sample sets
respectively, and then the proposal rough approximations are given as follows:

GR∗(S1) = {4, 5, 6, 7, 8, 9}, GR∗(S1) = {6, 7}, BND(S1) = {4, 5, 8, 9}
GR∗(S2) = {1, 2, 5, 9}, GR∗(S2) = {1, 2}, BND(S2) = {5, 9}
GR∗(S3) = {3, 4, 8}, GR∗(S3) = {3}, BND(S3) = {4, 8}
GR∗(S4) = {10}, GR∗(S4) = {10}, BND(S4) = ∅

Thus the special grey-rough set is possible to apply interval data. The grey-
rough set extends a treatable value into interval data.

4 General Grey-Rough Sets

4.1 General Grey-Rough Sets on One Attribute

A general grey-rough set deals with the inclusion and the meet operation of
the grey lattice operation instead of the equivalence class, in order to handle
uncertainly, possibility and necessity more flexibly for interval data.



On the Combination of Rough Set Theory 513

Table 3. Extracted AUTO-MPG data set

No. Manufacturer Cylinders Model-year Country
1 Audi [4,5] [70,80] Germany
2 BMW [4,4] [70,77] Germany
3 Cadillac [8,8] [76,79] USA
4 Ford [4,6] [70,81] USA
5 Honda [4,4] [74,82] Japan
6 Mazda [3,4] [72,82] Japan
7 Subaru [4,4] [74,81] Japan
8 Toyota [4,6] [70,81] Japan
9 Volkswargen [4,4] [74,82] Germany
10 Volvo [4,6] [72,81] Sweden

Definition 12. Let IS = (O, A, V, ρ) denote an information system in grey
system, where

– O: set of objects (instances) in IS
– A: set of attributes
– V : set of values, V = R in this paper
– ρ: information function as ρ : O × A → V

Definition 13. Let x be an object of O, a be an attribute of A, and ⊗(x, a) ∈
V be a value which x holds on a respectively, where (x, a) ∈ O × A. Let ⊗s
be a value on a, GL∗(⊗s) be an upper approximation of ⊗s, GL∗(⊗s) be a
lower approximation of ⊗s, and BND(⊗s) be a boundary respectively. These
approximations are defined as follows:

GL∗(⊗s) = {x ∈ O| ⊗ (x, a) ∧ ⊗s �� ∅} (16)
GL∗(⊗s) = {x ∈ O| ⊗ (x, a) → ⊗s} (17)

BND(⊗s) = GL∗(⊗s) − GL∗(⊗s) (18)

GL(⊗s) is a single-attribute approximation on the attribute a of A.

4.2 General Grey-Rough Sets of Every Attribute

Definition 14. Let A = {a1, a2, · · · , an} be a set with n attributes, S = {⊗s1,
⊗ s2, · · · ,⊗sn} be a set containing n values. The object x has n values as
{⊗(x, a1),⊗(x, a2), · · · ,⊗(x, an)}, then the upper approximation GW ∗(S) and
the lower approximation GW∗(S) are defined as follows:

GW ∗(S) � [GW ∗(S), GW
∗
(S)] (19)

GW∗(S) � [GW ∗(S), GW ∗(S)] (20)
GW ∗(S) =

⋂n
i=1 GL∗(⊗si) (21)

GW
∗
(S) =

⋃n
i=1 GL∗(⊗si) (22)

GW ∗(S) =
⋂n

i=1 GL∗(⊗si) (23)
GW ∗(S) =

⋃n
i=1 GL∗(⊗si) (24)

A pair of interval sets 〈GW ∗(S), GW∗(S)〉 is a general grey-rough set of S, where
GW ∗(S) ⊆ GW ∗(S), GW ∗(S) ⊆ GW

∗
(S).
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GW (S) is a multi-attributes approximation based on GL(⊗s). Compared with
Yao’s [26] model and Wu’s [10] model, their models of R∗ and R∗ each have
only one solution however the proposal GW∗ and GW ∗ each have two solutions
a minimum GW and a maximum GW . GW is a set of objects which satisfied
with every attribute of A and GW is also a set of objects satisfying at least one
attribute of A.

Theorem 3. A general grey-rough set holds the following properties:
1. GW∗(S) ⊆ GW ∗(S)
2. GW∗(R) = GW ∗(R) = O; GW∗(∅) = GW ∗(∅) = ∅
3. GW ∗(S ∪ T ) ⊇ GW ∗(S) ∪ GW ∗(T ); GW∗(S ∩ T ) ⊆ GW∗(S) ∩ GW∗(T )
4. GW∗(S ∪ T ) ⊇ GW∗(S) ∪ GW∗(T ); GW ∗(S ∩ T ) ⊆ GW ∗(S) ∩ GW ∗(T )
5. S ⊆ T implies GW∗(S) ⊆ GW∗(T ); S ⊆ T implies GW ∗(S) ⊆ GW ∗(T )
6. GW∗(Sc) = O − GW ∗(S); GW ∗(Sc) = O − GW∗(S)

where Sc = {⊗sc
1,⊗sc

2, · · · ,⊗sc
n}, S∪T � ⊗si∨⊗ti for all i, S∩T � ⊗si∧⊗ti

for all i.

Definition 15. The accuracy of approximation α(S) and the quality of approx-
imation γ(S) are defined as follows:

α(S) =
card{GW∗(S)}
card{GW ∗(S)} (25)

γ(S) =
card{GW∗(S)}

card{O} (26)

Definition 16. Let Ξ be a grey relational overlap grade for x of GW ∗(S) and
GW∗(S) as follows:

Ξ(S, x) =
1
n

n∑
i=1

ξ(⊗(x, ai),⊗si) (27)

and the order relation of Ξ is consisntent as follows:
1. Ξ(S, xj) ≤ Ξ(S, xj)
2. Ξ(S, xj) ≤ Ξ(S, xk), Ξ(S, xk) ≤ Ξ(S, xj) ⇔ Ξ(S, xk) = Ξ(S, xj), j �= k
3. Ξ(S, xj) ≤ Ξ(S, xk), Ξ(S, xk) ≤ Ξ(S, xl) ⇒ Ξ(S, xj) ≤ Ξ(S, xl), j �= k �= l

4.3 Illastrative Examples

Example 3 (for extracted Auto-MPG data set). A sample information system IS
of Table 3 is given as follows:

O = {Audi, BMW, · · · , Volvo}, A = {Cylinder, Model year}, card{O} = 10

Assume that a set of Japanese manufacturers and its values are given as
follows: Japanese = {Honda, Mazda, Subaru, Toyota}

⊗ (Japanese, Cylinder) �
∨

x∈Japanese ⊗(x, Cylinder) � [3, 6] (28)
⊗(Japanese, Model year) �

∨
x∈Japanese ⊗(x, Model year) � [70, 82] (29)

Then the general grey-rough approximation results are shown in Table 4. This
table includes the accuracy and the quality of approximations, and also includes
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Table 4. Grey-rough approximation result of extracted Auto-MPG data set

S GW ∗(S) GW ∗(S) GW ∗(S) − GW ∗(S) α(S) γ(S)
American 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 7, 8, 10 5, 6, 9 0.7 0.7
German 1, 2, 4, 5, 6, 7, 8, 9, 10 1, 2, 5, 7, 9 4, 6, 8, 10 0.556 0.5
Japanese 1, 2, 4, 5, 6, 7, 8, 9, 10 1, 2, 4, 5, 6, 7, 8, 9, 10 ∅ 1 0.9
Swedish 1, 2, 4, 5, 6, 7, 8, 9, 10 7, 10 1, 2, 4, 5, 6, 8, 9 0.222 0.2

Table 5. Grey-rough approximation result of recomposed Auto-MPG data set

S GW ∗(S) GW ∗(S) GW ∗(S) − GW ∗(S) α(S) γ(S)
American 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 2, 3, 4, 10 1, 5, 6, 7, 8, 9 0.4 0.4
German 1, 2, 4, 5, 6, 7, 8, 9, 10 1, 2, 7, 9 4, 5, 6, 8, 10 0.444 0.4
Japanese 1, 2, 4, 5, 6, 7, 8, 9, 10 2, 5, 6, 7, 8 1, 4, 9, 10 0.556 0.5
Swedish 1, 4, 8, 10 10 1, 4, 8 0.25 0.1

the general grey-rough approximation results of German, American and Swedish
manufacturers whose values are obtained through the same way of Japanese.

Example 4 (for recomposed Auto-MPG data set). In the sample information sys-
tem of Table 2, the all attribute values of Japanse are given as follows:

⊗(Japanese, MPG) � [18, 46.6] ⊗(Japanese, Displacement) � [70, 168]
⊗(Japanese, Horsepower) � [52, 122] ⊗(Japanese, Weight) � [1.65, 2.9]
⊗(Japanese, Acceleration) � [12.5, 21]

where the values Cylinder and Model-year are the same with Eqs. (28) and (29).
The approximation results are shown in Table 5. The objects of GW ∗ have

relevance to the approximation subject in specifications. According to Table 5,
Cadillac (No. 3) is a unique manufacture comes from USA. The objects of GW∗
are parts of the approximation subject in specifications: for example BMW (No.
2) is similar to American, Japanese and German automobiles.

5 Conclusion

A new rough set approach based on grey system theory is proposed in this paper.
One of the practical applications of the special grey-rough set to decision making
is reported by Li [27]. Conclude this paper as follows:

– The special grey-rough set based on the equivalence class of interval is pro-
posed, which is a combination of rough set theory and grey system theory.

– The general grey-rough set based on the inclusion and the meet operation
of the grey lattice operation is proposed.

– The special grey-rough set is compatible with the traditional rough set as
a special case. The general grey-rough set expands a treatable value into
interval data.
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Abstract. First-order modal logic is not just propositional modal logic
plus classical quantifier machinery. The situation is much subtler than
that. The addition of quantifiers to propositional modal logic may lead
to many difficulties. In this paper we aim to solve one of them — the
problem of rigidity versus non-rigidity for variables, that is, how to deter-
mine the denotations for each variable in different possible worlds or the
connections among the denotations of each variable in different possible
worlds. Since all the currently proposed semantics for first-order modal
logic are not suitable to solve this problem, we proposed an ontology-
based first-order modal semantics, in which ontologies are introduced to
restrain the modal logic frames and models. An ontology-based coun-
terpart relation S is introduced into each model. By requiring that the
assignments of each variable in different possible worlds must accord with
the relation S, we can correctly characterize the connections among the
denotations of each variable in different worlds.

Keywords: First-order modal logic, rigidity, ontology, counterpart.

1 Introduction

Modal logic is a logic developed firstly in the category of nonclassical logics [1],
and has been now widely used as a formalism for knowledge representation in
artificial intelligence and an analysis tool in computer science [2],[3]. Along with
the study of the modal logic, it has been found that the modal logic has a close
relationship with many other knowledge representation theories. The result is
the connection of the possible world semantics for the modal epistemic logic S5
with the approximation space in rough set theory [4], where the system S5 has
been shown to be useful in the analysis of knowledge in various areas [5].

Propositional modal logic is now a standard tool in many disciplines, but first-
order modal logic is not. The addition of quantifiers, however, opens the door to
a labyrinth full of twists and problems. For example, the problems with constant
domains versus varying domains, the problems with rigidity versus non-rigidity,
and the problems with transworld identity [6]. In this paper, we shall mainly
discuss the problem of rigidity versus non-rigidity for variables in first-order
modal logic.

In Kripke’s semantics for first-order modal logic, assignments of variables to
individual objects are treated as independent from the possible worlds, that is,

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 517–526, 2006.
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assignments do not vary across possible worlds [7]. Variables are interpreted
as having the same denotation in all possible worlds, in other words, as rigid
designators. While this is natural for many purposes — natural numbers are
certainly rigid. Rigid assignment also leads to difficulties in expressing certain
things that we may want to say. For instance, in a Kripke’s model, the following
two wffs are both valid.

LI x = y → �(x = y). (1)

and
LNI x ��= y → �(x ��= y). (2)

Now, the morning star and the evening star are in fact identical objects, so
if x and y refer to the object that the phrases ‘morning star’ and ‘evening star’
designate (in the real world), certainly �(x = y) is the case, since there is only
one object involved. But then, how do we express the very natural thought
that the morning and evening stars might have been distinct, as the ancient
Babylonians believed to be the case? There is simply no way we can do it [8].

Moreover, the authors ([9, 10]) gave three reasons for considering world-
dependent assignments to variables. Therefore, Hughes and Cresswell ([10]) pro-
posed Contingent Identity (CI) systems, based on the framework of first-order
modal logic. In CI systems, the above LI and LNI do not hold. This result
is obtained by letting variables range over all individual concepts, where every
individual concept is a total function from possible worlds in W to objects in D
(the domain of the model). Since individual concepts have different extensions in
different worlds, variables also take different values in different worlds. However,
it is easy to show that CI systems would make the following schema valid:

�∃xα → ∃x�α. (3)

But (3) is not intuitively plausible. For example, assume that α = ϕ(x) and
ϕ(x) denotes that ‘x is the number of the planets’. Then the antecedent is true,
for there must be some number which is the number of the planets (even if
there were no planets at all there would still be such a number, viz. 0); but
the consequent is false, for since it is a contingent matter how many planets
there are, there is no number which must be the number of the planets [10].
The counterintuitive characteristic of (3) depends on the extreme liberty of CI
systems. In CI systems we do not put any constraint on individual concepts.
This means that any collection of elements from different worlds - ‘David Lewis’
in w, ‘a rock’ in w′, and ‘a blade of grass’ in w′′ - can be considered as an
individual concept [11].

By now, we face adverse conditions. How could we determine the appropriate
denotations for each variable in different possible worlds? What are the con-
nections among the denotations of a given variable in different possible worlds?
Obviously, both of the two semantics mentioned above are not suitable to do
that. Since on the one hand, Kripke’s semantics is too stringent, for it requires
that variables have the same denotations in all possible worlds. That is, the
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denotations of a given variable in different possible worlds must be the same
object. This kind of connection among the denotations of a given variable in
different worlds is obviously unreasonable. For example, assume that W is the
set of snapshots of the real world under the temporal relation. Let w0 be the
current snapshot of the real world in which I exist and I am the denotation of
variable x in w0. Then, I exist in any future world by the requirement that x
has the same denotation in all possible worlds. On the other hand, CI systems
are too liberal since they allow arbitrary objects in each possible world to be
the denotations of a given variable in that world. That is, there may be no con-
nections among the denotations of a given variable in different possible worlds.
This is also unacceptable.

Through careful analysis, we can find that the issue on how to correctly char-
acterize the connections among the denotations of a given variable in different
possible worlds is outside of the logic. Modal logic itself can not characterize
these connections since they go beyond the scope of the logic. Hence we should
appeal to other tools to solve this problem. In [12], Guarino introduced the notion
of the ontological level, intermediate between the epistemological level and the
conceptual level discussed by Brachman [13], as a way to characterize a knowl-
edge representation formalism taking into account the intended meaning of its
primitives. In contrast to the abstract and content-independent logic level, the
ontological level is more close to the knowledge that we want to represent. There-
fore, in order to solve the above problem, we should descend from the logic level
to the ontological level. Then ontologies come into our sight. Within the sharing
and reuse effort, ontologies have been widely proposed as a means to alleviate
model mismatches at the knowledge level. Many definitions of ontologies have
been offered in the last decade, but the one that best characterizes the essence
of an ontology is based on the related definitions by Gruber [14]: An ontology is
a formal, explicit specification of a shared conceptualization. As an attempt to
describe all entities within an area of reality and all relationships between those
entities, an ontology comprises a set of well-defined terms with well-defined re-
lationships. In general, ontologies provide a shared and common understanding
of a domain that can be communicated between people and heterogeneous and
distributed application systems [15].

In this paper, we aim to propose an ontology-based first-order modal seman-
tics, which can solve the problem of how to correctly characterize the connections
among the denotations of each variable in different possible worlds. The basic
idea is as follows. We use a given ontology to restrain the modal logic frames
and models since we can represent all concepts and the subsumption relations
between concepts in the ontology by a set of first-order logic wffs and these wffs
can easily be used in our modal system. In addition, an ontology-based counter-
part relation S is introduced into each model, which is similar to the counterpart
relation of counterpart theory proposed by David Lewis [16]. Then by requiring
that the denotations of a given variable in different worlds must accord with the
counterpart relation S, we can correctly characterize the connections among the
denotations of a given variable in different possible worlds. The remainder of
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this paper is organized as follows. In the next section, we introduce some pre-
liminaries. In section 3, we propose an ontology-based first-order modal logic.
And section 4 concludes the paper.

2 Preliminaries

In general, first-order modal logic will have its alphabet of symbols: a set of vari-
able symbols, denoted by V S = {x1, x2, ...}; a set of relation symbols, denoted
by PS = {Pn

i : n, i = 1, 2, ...}, where Pn
i is the ith n-place relation symbol; the

logical symbols, ¬ (negation), ∧ (and), ∨ (or), ⊃ (material implication); quanti-
fier ∀ (for all) and ∃ (exists); the modal operator symbols � (necessity operator)
and � (possibility operator) [17, 18].

Definition 1. An atomic formula of first-order modal logic is any expression of
the form P (x1, ..., xn), where P is an n-place relation symbol and x1, ..., xn are
variables.

Definition 2. The set of first-order formulas of first-order modal logic is the
smallest set satisfying the following conditions: Every atomic formula is a for-
mula; if ϕ is a formula, so are ¬ϕ, �ϕ, �ϕ, ∀xϕ and ∃xϕ; if ϕ and ψ are
formulas and ◦ is a binary connective, then ϕ ◦ ψ is a formula.

The modal logic formal system contains the following axioms and inference rules:

– Axioms:

Ap1 (ϕ ⊃ (ψ ⊃ ϕ));
Ap2 ((ϕ ⊃ (ψ ⊃ γ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ γ)));
Ap3 ((¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ));
Ap4 (∀xϕ(x) ⊃ ϕ(y)), where y is any variable for x in ϕ(x);
Ap5 (∀x(ϕ ⊃ ψ) ⊃ (∀xϕ ⊃ ∀xψ));
K (�(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ));
T (�ϕ ⊃ ϕ);
E (¬�¬ϕ ⊃ �¬�¬ϕ).

– Inference rules:

N (necessity rule) if � ϕ then � �ϕ;
UG (universal generalization) if � ϕ then � ∀xϕ;
MP (modus ponens) if � ϕ ⊃ ψ and � ϕ then � ψ.

Since constant domain semantics can be simulated using varying domain se-
mantics and relativized quantifiers [19], in this paper we shall mainly discuss
varying domain semantics. A varying domain semantics (or model) for first-
order modal logic is a structure M = 〈W, R, D, I〉, where W is a non-empty set
of possible worlds; R is a binary relation on W, called the accessibility relation;
D is a domain function from W to non-empty sets. For w ∈ W , D(w) is the
domain of world w and the domain of model M is D(M) =

⋃
w∈W D(w); I is
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an interpretation in the frame F = 〈W, R, D〉, which assigns to each n-place
relation symbol P and to each possible world w ∈ W , some n-place relation on
the domain D(F ) =

⋃
w∈W D(w) of frame F . Note that here a predicate can be

interpreted in a world w as a relation between objects that may not exist in w.
In fact, we often refer to something that may not actually exist in real world.
For example, George Washington does not exist in the current world, but we can
still talk about him. We can say that George Washington is the first president of
the United States and George Washington is a man, etc. In addition, I is a non-
rigid interpretation since I assigns different n-place relati ons to each n-place
relation symbol in different possible worlds. This is the case with every seman-
tics proposed for quantified modal logic; after all, if relation symbols behave the
same way in all worlds, the semantics essentially collapses since worlds can not
be distinguished. Furthermore, notice that in the varying domain semantics, the
domains of quantification in different possible worlds are different.

Let M = 〈W, R, D, I〉 be a model, a rigid assignment to variables in M is
defined as follows.

Definition 3. A valuation in model M is a mapping ν that assigns to each
variable x some member ν(x) of domain D(M).

Definition 4. Let M = 〈W, R, D, I〉 be a model and ϕ be a formula. For each
w ∈ W and each valuation ν in M , the notion that ϕ is true at possible world w
of M with respect to valuation ν, denoted by M, w |=ν ϕ, is defined as follows.
(1) If ϕ is an atomic formula P (x1, ..., xn), then M, w |=ν P (x1, ..., xn) provided
〈ν(x1), ..., ν(xn)〉 ∈ I(P, w);
(2) M, w |=ν ¬ϕ ⇔ M, w �|=ν ϕ;
(3) M, w |=ν ϕ ⊃ ψ ⇔ M, w |=ν ¬ϕ or M, w |=ν ψ;
(4) M, w |=ν �ϕ ⇔ for every w′ ∈ W , if wRw′ then M, w′ |=ν ϕ;
(5) M, w |=ν ∀xϕ ⇔ for every x-variant ν′ of ν at w in M , M, w |=ν′ ϕ, where
ν′ is an x-variant of ν at w, i.e. ν′ and ν agree on all variables except possibly
variable x and ν′(x) ∈ D(w).

3 Ontology-Based First-Order Modal Semantics

Our first-order modal system will have the same alphabet of symbols and set
of formulas as in the first-order modal logic mentioned in section 2. And the
semantics of our first-order modal system will be different from that of the
system in section 2, in that the assignments to variables are non-rigid. But these
assignments are not completely arbitrary since we shall introduce ontologies to
restrain them. We may call them restrictedly non-rigid assignments.

Definition 5. Let LO be an ontological language, which is based on the first-
order logic, e.g. the KIF language [20]. A knowledge frame kf in LO consists of
a set of statements in LO, and a set of axioms about the basic meta-properties
of the symbols in LO.
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Definition 6. Given an ontological language LO, an ontology O is a quadruple
〈C,6, f, τ〉, where
(1) C = {α1, α2, ..., αn} is a set of concepts;
(2) 6 is a binary relation on C, called the subsumption relation or is-a relation.
(3) f is a mapping from C to KF, where KF is a set of knowledge frames in LO.
(4) transformation τ is a mapping from C to 2C satisfying the following condi-
tions.

• For any α, β ∈ C, if α 6 β then τ(α) ⊆ τ(β);
• For any α ∈ C, α ∈ τ(α);
• For any α ∈ C, if τ(α) = {α1, ..., αm} then τ(τ(α)) =

⋃m
i=1 τ(αi). And

there is an n such that τn(α) = τn−1(α), where τ0(α) = α, τ1(α) = τ(α) and
τn(α) = τ(τn−1(α)). We shall use τ�(α) to denote τn(α) for the least such n.

The transformation τ in the above definition stipulates the transforming prin-
ciples between concepts in ontology O. For example, a concept persons can
transform into two concepts persons and deadpersons. Furthermore, by virtue
of the mapping f in the above definition, we can represent all concepts and the
subsumption relations between concepts using a set of knowledge frames in LO.
Since LO is based on the first order logic, every knowledge frame contains some
first-order logic wffs. Therefore, we can use these wffs in our first-order modal
logic system since first-order modal logic is an extension of first-order logic.

Definition 7. Let O = 〈C,6, f, τ〉 be an ontology. Given a first-order modal
logic model M = 〈W, R, D, I〉 and a valuation ν in M . Let D(M) =

⋃
w∈W D(w)

denote the domain of model M . For any w ∈ W and any non-empty concept α ∈
C (i.e. f(α) �= ∅), if there is an object d ∈ D(M) such that for any ψ(x) ∈ f(α),
M, w |=ν ψ(x) and ν(x) = d, where ψ is a formula that contains at least one free
variable x, then d is called the instance of concept α in w, denoted by αw(d). In
other words, object d instantiates concept α in w. Let Dα(w) denote the set of all
objects in D(M) that instantiate α in w, that is, Dα(w) = {d ∈ D(M) : αw(d)}.

Notice that in the above definition, an object d that instantiates a concept α
in w may not actually exist in w. Since in the current world, we may consider
‘George Washington’ as an instance of concept presidents, even if he died a long
time ago. Furthermore, there is no constraint on the model M in the above
definition. It may be a model of Kripke’s style, or others. Certainly, it may also
be a model of our semantics that will be introduced in the following.

Definition 8. Given an ontology O = 〈C,6, f, τ〉 and a first-order modal logic
model M = 〈W, R, D, I〉. A possible world w ∈ W is compatible with ontology O
if for any object d ∈ D(M), if d is an instance of concept α in w (i.e. αw(d)),
then for any β ∈ C with α 6 β, d is also an instance of concept β in w.

For example, assume that ontology O = 〈C,6, f, τ〉 and C contains two concepts
students and persons such that students 6 persons. Then, for any possible
world w that is compatible with O and any object d ∈ D(M), if d is a student
in w then d must be a person in w.
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Definition 9. Given an ontology O = 〈C,6, f, τ〉, a first-order modal logic
frame based on ontology O is a structure FO = 〈W, R, D〉, where W is a non-
empty set of possible worlds such that each possible world w ∈ W is compatible
with ontology O; R is a binary relation on W, called the accessibility relation;
D is a domain function from W to non-empty sets such that for each w ∈ W ,
D(w) is the domain of world w.

We use D(FO) =
⋃

w∈W D(w) to denote the domain of frame FO which is based
on ontology O.

Definition 10. Given a frame FO = 〈W, R, D〉 that is based on an ontology
O, we define a distance function ∗ on W × W such that for any w, w′ ∈ W,
∗(w, w′) is the number of the possible worlds between w and w′ (including w and
w′ themselves) if there is a maximal sequence 〈w1, ..., wn〉 such that w1 = w,
wn = w′, any two possible worlds in the sequence are different and for every
1 ≤ i ≤ n − 1, wiRwi+1; otherwise, ∗(w, w′) = ∞. We call ∗(w, w′) the distance
between w and w′ in frame FO.

Definition 11. Given an ontology O = 〈C,6, f, τ〉, a first-order modal logic
model based on ontology O is a structure MO = 〈W, R, D, I, S〉, where FO =
〈W, R, D〉 is a frame based on ontology O; I is an interpretation in the frame
FO such that for any n-place relation symbol P and w ∈ W , I(P, w) ⊆ D(FO)n

(D(FO) is the domain of frame FO); S is a binary relation on W ×D(FO), such
that for any possible worlds w, w′ ∈ W and objects d, d′ ∈ D(FO),

(1) if ∗(w, w′) = ∞ then 〈〈w, d〉, 〈w′, d′〉〉 �∈ S;
(2) if ∗(w, w′) = n and 〈〈w, d〉, 〈w′, d′〉〉 ∈ S then
• for each concept α ∈ C such that d ∈ Dα(w), there is a concept β ∈ τn−1(α)

such that d′ ∈ Dβ(w′);
• for each concept β ∈ C such that d′ ∈ Dβ(w′), there is a concept α ∈ C

such that β ∈ τn−1(α) and d ∈ Dα(w).

The binary relation S in the above definition is similar to the counterpart rela-
tions of counterpart theory proposed by David Lewis [16]. Lewis argued against
rigid semantics because it requires that objects always have being and be identi-
fiable across possible worlds. He proposed a looser notion: an object in a possible
world may have counterparts in other worlds, rather than itself being in other
worlds as well. An object of one world could have multiple counterparts in an-
other, or multiple objects of one world could have a single counterpart in another
world [8]. This provides much greater flexibility in the semantics than Kripke’s
system. Therefore, in the above definition, for any 〈w, d〉, 〈w′, d′〉 ∈ W ×D(FO),
〈〈w, d〉, 〈w′, d′〉〉 ∈ S means that d′ in w′ is a counterpart of d in w, denoted by

d
ww′
= d′. Since in the above definition, relation S is restricted by ontology O, we

may call S an ontology-based counterpart relation.
Our ontology-based semantics of first-order modal logic differs from the coun-

terpart theory in the following two points:
(1) In the counterpart theory, there is no restriction on the counterpart rela-

tion, except the requirement that the counterpart relation is a kind of similarity
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relation, which is reflexive. The counterpart relation is indeterminate because
similarity in general is indeterminate. But in our semantics, ontologies are used
to restrain the objects and their counterparts in other possible worlds. Therefore,
our semantics can avoid the above problem about the counterpart theory.

(2) In the counterpart theory, the domains of different possible worlds are
disjoint, therefore, an object can only exist in one world. In our semantics, an
object can actually exist in more than one worlds. Therefore, given an object of
one world, its counterpart in another world may be itself.

Definition 12. Given an ontology O and a model MO = 〈W, R, D, I, S〉 based
on O. A valuation in model MO is a mapping ν such that for each variable x
and w ∈ W , ν(x, w) ∈ D(MO), and for any w, w′ ∈ W , if ∗(w, w′) = n then
〈〈w, ν(x, w)〉, 〈w′ , ν(x, w′)〉〉 ∈ S, where D(MO) is the domain of model MO.

Since the values assigned to a variable depend on worlds, the above valuation
is non-rigid. By now, we can see that although ontologies are used to restrain
the counterpart relation S of model MO, through requiring that the denotations
of a given variable in any two worlds whose distance equals n must satisfy the
relation S, ontologies are indirectly used to characterize the connections among
the denotations of a given variable in different worlds.

Definition 13. Given an ontology O and a model MO = 〈W, R, D, I, S〉 based
on O. Let ν and ω be two valuations in model MO. Given any possible world
w ∈ W , we call ω an x-variant of ν at possible world w if ν and ω satisfy the
following conditions.
(1) For all variables y, y �= x and every w′ ∈ W , ν(y, w′) = ω(y, w′);
(2) For every w′ ∈ W , ω(x, w′) possibly differs from ν(x, w′) and ω(x, w) ∈
D(w).

Definition 14. Given an ontology O, let MO = 〈W, R, D, I, S〉 be a model based
on O and ϕ be a formula. For each w ∈ W and each valuation ν in MO, the
notion that ϕ is true at possible world w of model MO with respect to valuation
ν, denoted by MO, w |=ν ϕ, is defined as follows.
(1) If ϕ is an atomic formula P (x1, ..., xn), then MO, w |=ν P (x1, ..., xn) provided
〈ν(x1, w), ..., ν(xn, w)〉 ∈ I(P, w);
(2) MO, w |=ν ¬ϕ ⇔ MO, w �|=ν ϕ;
(3) MO, w |=ν ϕ ⊃ ψ ⇔ MO, w |=ν ¬ϕ or MO, w |=ν ψ;
(4) MO, w |=ν �ϕ ⇔ for every w′ ∈ W , if wRw′ then MO, w′ |=ν ϕ;
(5) MO, w |=ν ∀xϕ ⇔ for every x-variant ω of ν at w in MO, MO, w |=ω ϕ.

Definition 15. Given an ontology O, let MO = 〈W, R, D, I, S〉 be a model based
on O and ϕ be a formula. For each w ∈ W , we say that ϕ is true at possible
worlds w of model MO, denoted by MO, w |= ϕ, if MO, w |=ν ϕ for every val-
uation ν in MO; we say that ϕ is true in model MO, denoted by MO |= ϕ, if
MO, w |= ϕ for every possible world w of MO.

Example 1. Given an ontology O = 〈C,6, f, τ〉, where C = {wood, charcoal,
persons, deadpersons}. We do not assume that deadpersons 6 persons. A per-
son has some properties of the physical, biological, functional and social aspects,
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and a dead person has only some properties of the social aspects. In addition,
charcoal �6 wood and wood �6 charcoal. Transformation τ is defined as follows.

τ (wood) = {wood, charcoal}, τ(charcoal) = {charcoal};
τ (persons) = {persons, deadpersons}, τ(deadpersons) = {deadpersons}.

Assume the modal is temporal, and MO = 〈W, R, D, I, S〉 is a model based on
the ontology O, where W = {w, w′}, wRw′, and D(w) = {a, b}, D(w′) = {a′, b′}.
Let

Dwood(w) = {a}, Dcharcoal(w) = ∅, Dpersons(w) = {b}, Ddeadpersons(w) = ∅;
Dwood(w′) = ∅, Dcharcoal(w′) = {a′}, Dpersons(w′) = ∅, Ddeadpersons(w′) = {b′}.

Since MO is a model based on the ontology O, from definition 11, there are
at most two elements in S, that is, it is possible that 〈〈w, a〉, 〈w′, a′〉〉 ∈ S and
〈〈w, b〉, 〈w′, b′〉〉 ∈ S.

Therefore, for any variable x, there are only two possible valuations ν, that
is, ν(x, w) = a; ν(x, w′) = a′ or ν(x, w) = b; ν(x, w′) = b′.

However, in CI systems, a valuation ν can be

ν(x)(w) = a a a a b b b b a′ a′ a′ a′ b′ b′ b′ b′

ν(x)(w′) = a b a′ b′ a b a′ b′ a b a′ b′ a b a′ b′.

�

4 Conclusion and Further Works

In this paper we discussed the problem of rigidity versus non-rigidity for variables
in first-order modal logic, and proposed an ontology-based first-order modal
logic, which can effectively solve that problem. Our further work is to analyze
the soundness and completeness of our ontology-based first-order modal logic.
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Abstract. In this paper we investigate the problem of enriching an existing bio-
logical concept ontology into a fuzzy relational ontology structure using generic 
biological relations and their strengths mined from tagged biological text 
documents. Though biological relations in a text are defined between a pair of 
entities, the entities are usually tagged by their concept names in a tagged cor-
pus. Since the tags themselves are related taxonomically, as given in the ontol-
ogy, the mined relations have to be properly characterized before entering them 
into the ontology. We have proposed a mechanism to generalize each relation to 
be defined at the most appropriate level of specificity, before it can be added to 
the ontology. Since the mined relations have varying degrees of associations 
with various biological concepts, an appropriate fuzzy membership generation 
mechanism is proposed to fuzzify the strengths of the relations. Extensive ex-
perimentation has been conducted over the entire GENIA corpus and the results 
of enhancing the GENIA ontology are presented in the paper. 

Keywords: Generic biological relation, Biological ontology enhancement, 
Fuzzy relational ontology. 

1   Introduction 

The field of Molecular Biology has witnessed a phenomenal growth in research ac-
tivities in the recent past. Consequently to aid the process of organizing this large 
repository of knowledge, there has been a considerable effort towards building struc-
tured biological ontologies. Gene Ontology (GO) and GENIA ontology are two of the 
most popular ones. While the GENIA ontology stores only a set of concepts and the 
structural semantic relations, GO contains a large collection of biological processes 
along with biological concepts defined manually. Since manually identification of 
biological relations and their characterization is a labor-intensive task, several ap-
proaches have taken place to automate the process.    

Generic biological relations can be characterized based on their occurrence patterns 
within text. The initial approaches focused on identifying a pre-defined set of verbs 
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representing these relations within text. Thomas et al. [7] modified a pre-existing 
parser based on cascaded finite state machines to fill templates with information on 
protein interactions for three verbs – interact with, associate with, bind to. Sekimizu 
et al. [6] have proposed mechanisms for locating a pre-defined collection of seven 
verbs activate, bind, interact, regulate, encode, signal and function. However since it 
is expensive and labour-intensive to pre-define all such relations exhaustively, Rinaldi 
et al. [5] proposed an automated Literature Based Discovery (LBD) method to charac-
terize these seven relations in terms of the participating entities. Ono et al. [4] reports 
a method for extraction of protein-protein interactions using a dictionary look-up 
approach. After identifying the dictionary-based proteins within the document to 
analyze, sentences that contain at least two proteins are selected, which are then 
parsed with Parts-Of-Speech (POS) matching rules. The rules are triggered by a set of 
keywords, which are frequently used to name protein interactions like associate, bind 
etc. Ciaramita et al. [2] have proposed an unsupervised model for learning arbitrary 
relations between concepts of a molecular biology ontology from the GENIA corpus 
[3] for the purpose of supporting text-mining and manual ontology building.  

In this paper, we present a method for characterizing biological relations mined 
from a tagged corpus using an ontology-based text-mining approach to extend the 
underlying ontology into a fuzzy relational ontology. Since biological relations occur-
ring within a text can be directly associated to participating entities, locating only 
these relations does not provide the true character of the biological relation as an 
interaction between two biological entities. While it is straightforward to propagate 
these relations along the ontology tree, consolidating them at the most appropriate 
level requires significance analysis. For example, analyzing 170 instances out of a 
total of 219 instances of “expressed in” occurring in the GENIA corpus a break-up 
reveals that 48 associations are between the concept-pair <protein_molecule, 
cell_type>; 22 instances occur between <protein_family_or_group, cell_type>; 21 
instances occur between <protein_molecule, cell_line>; 10 between < pro-
tein_family_or_group, cell_line>; 9 between <DNA_domain_or_region, cell_type>; 7 
between <RNA_molecule, cell_type>; 6 between <DNA_family_or_group, cell_type>; 
5 between <RNA_molecule, cell_line>; 4 each between <RNA_family_or_group, 
cell_type> and between <protein_molecule, tissue>; 3 each between pairs  <pro-
tein_molecule, body_part> and <protein_molecule, mono_cell>; 2 each between pairs 
<DNA_domain_or_region, cell_line>, <protein_domain_or_region, cell_type>, 
<DNA_domain_or_region, tissue>, and <DNA_domain_or_region, body_part>; 1 
instance each between 20 other concept-pairs. While it may not be significant to keep 
track of the single, dual or triple occurrences, it will also not be appropriate to club all 
these relations together and state that “expressed in” occurs between concepts sub-
stance and source, which is correct but a case of over-generalization. An appropriate 
characterization should take into account the proportion of instances reaching at a 
particular concept-pair against the total occurrences at its parent concept-pair. Thus 
characterized, the relations can be used to enhance the underlying ontology. We have 
provided experimental validation of the approach over the GENIA corpus [3]. 
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2   Analyzing Frequently Occurring Biological Relations Extracted 
from GENIA Corpus  

The GENIA ontology is a taxonomy of 47 biologically relevant nominal categories in 
which the top three concepts are biological source, biological substance and 
other_name. The other-name refers to all biological concepts that are not identified 
with any other known concept in the ontology. The sub-tree rooted at source contains 
13 nominal categories and the other rooted at substance, contains 34 nominal catego-
ries. The GENIA corpus contains 2000 tagged MEDLINE abstracts. Tags are leaf 
concepts in GENIA ontology. Tags may be nested whereby a tagged Biological entity 
in conjunction with other entities or processes may be tagged as a different leaf con-
cept. A biological relation is expressed as a binary relation between two biological 
concepts [4]. Following this definition, while mining for biological relations, we  
define a relation as an activity co-occurring with a pair of tags within the GENIA 
corpus. In [1] we had identified a set of 24 root verbs and their 246 variants, which 
represent biological relations occurring in the GENIA corpus. A complete list of all 
feasible biological relations and their morphological variants extracted from the 
GENIA corpus is available on http://www.geocities.com/mdabulaish/BIEQA/. We 
can enhance the GENIA ontology with these relations. 

Since the GENIA corpus is tagged with leaf-level concepts, all relations are de-
fined between entities or between leaf-level concept pairs. However keeping track of 
all instances may not be useful from the aspect of domain knowledge consolidation. 
This was illustrated through an example in section 1. Hence our aim is to generalize a 
relation at an appropriate level of specificity before including it in the ontology. This 
reduces over-specialization and noise.  

All molecular biology concepts in the GENIA ontology are classified into two 
broad categorirs, source and substance. Hence the entity pairs occurring with each 
relation can be broadly classified as belonging to one of the following four categories 
(i) <source, source> (ii) <source, substance> (iii) <substance, source> and (iv) <sub-
stance, substance>. Every instance of a relation belongs to one of these categories and 
the total number of instances associated to any category can be obtained with appro-
priate summation. Since a generic concept can represent multiple specific concepts, 
hence the first step towards characterizing relations is to consolidate the total number 
of relations belonging to each category, identify the pathways through which they are 
assigned to a category and then find the most appropriate generalization of the rela-
tion in that category.  

In order to achieve this, we define a concept-pair tree to represent each category. 
The root node of a concept-pair tree denoted by (Lr, Rr) contains one of the four ge-
neric concept-pairs defined earlier. Each node N in a concept-pair tree has two con-
stituent concepts >< ji CC ,  denoted as the LEFT and the RIGHT concepts. The 

LEFT and RIGHT concepts are specializations of Lr and Rr respectively, as obtained 
from the underlying ontology. Each concept-pair tree stores all possible ordered con-
cept-pairs that match the root concept-pair (Lr, Rr) and is generated using a recursive 
algorithm, described in the next section. 
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3   Generating Concept-Pair Trees 

The concept-pair tree is represented as an AND-OR tree, where each node has links to 
two sets of children, denoted by L1 and L2. L1 and L2 each contain a set of concept-pair 
nodes. The two sets L1 and L2 are themselves connected by the OR operator, while the 
nodes within each of them are connected with each other through an AND operator. For 
every node N, the two sets of child nodes L1 and L2 are created as follows: 

• L1 consists of concept pairs created by expanding the LEFT concept to consider 
all its child nodes in the concept ontology, while keeping the RIGHT concept un-
changed.  

• L2 is created by keeping the LEFT concept unchanged while considering all chil-
dren of the RIGHT concept in the concept ontology. 

• When any of the concepts LEFT or RIGHT is a leaf-level ontology concept, the 
corresponding set L1 or L2 respectively is NULL. 

 

Fig. 1. Sample AND-OR concept-pair tree 

Starting from a root concept pair <Lr, Rr>, the complete concept-pair tree is created 
recursively as follows: 

OR [AND [<children of Lr, Rr >], AND [<Lr, children of Rr >]] 

Let us suppose ‘a’ and ‘d’ represent two root concepts in a concept ontology, at each 
of which an ontology sub-tree is rooted, as shown in Fig. 1. The sets L1 and L2 for the 
root node of the concept pair tree, <a, d>, are determined as L1: <b, d>, <c,d>; L2: <a, 
e>, <a, f>. Fig. 1 shows the resulting AND-OR tree. AND is represented by ‘∪’, OR 
is represented using the symbol ‘∨’.  It may be noted that leaf-level pairs occur more 
than once in the tree. Each occurrence defines a path through which relations between 
that pair may be propagated up for generalization. Two sets of relations converging at 
a parent node, could be viewed as alternative models for generalization or could be 
viewed as complementing each other to form the total set at the parent level, depend-
ing on whether they are coming via the AND path or the OR path. This is further 
explained in the next section.  
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3.1   Mapping the Relation Instances over a Concept-Pair Tree  

After creating the four different concept-pair trees for the GENIA ontology, the most 
feasible representation of a relation for each of these categories is obtained using 
these. Suppose there are N instances of a relation rg observed over the corpus. Each of 
these instances is defined for a pair of leaf-level concepts. Based on the generic cate-
gory of the leaf-level concepts, each relation instance can be mapped to a leaf node in 
one of the four concept-pair trees. 

For each concept-pair tree TG, all instances that can be mapped to leaf-level nodes 
of TG are mapped at the appropriate nodes. These counts are propagated up in the tree 
exploiting its AND-OR property. Since each leaf-level node has multiple occurrences 
in a concept-pair tree, each relation instance is mapped to all such leaf-level nodes. 
For each non-leaf node in the concept-pair tree, the total number of relations is equal 
to the number of instances propagated up through all its children in either L1 or L2.   In 
order to derive the most appropriate levels for describing a relation, the concept-pair 
tree is traversed top-down. Starting from the most generic level description at the root 
level, an information loss function based on set-theoretic approach is applied at each 
node to determine the appropriateness of defining the relation at that level. 

4   Characterizing Relations at Appropriate Levels of Specificity 

The process of determining the most specific concept pairs for relations follows a top-
down scanning of the AND-OR tree. Starting from the root node, the aim is to deter-
mine those branches and thereby those nodes which can account for sufficiently large 
number of relation instances. When the frequency of a relation drops to an insignifi-
cant value at a node the node and all its descendents need not be considered for the 
relation conceptualization, and may be pruned off without further consideration. The 
lowest un-pruned node becomes a leaf and is labeled as the most specific concept-pair 
for defining a relation.  

)1()(
NP

NP

ICIC

ICIC
NLossnInformatio

+
−

=  

where, ICN = Count of instances of relation rg at N, ICP = count of instances of rg at 
parent P of N. 

Equation 1 defines a loss-function that is applied at every node N to determine the 
loss of information incurred if this node is pruned off. The loss function is computed 
as a symmetric difference between the number of instances that reach the node and 
the number of relation instances that were defined at its parent. Equation 1 states that 
if the information loss at a node N is above a threshold, it is obvious that the node N 
accounts for a very small percentage of the relation instances that are defined for its 
parent. Hence any sub-tree rooted at this node may be pruned off from further consid-
eration while deciding the appropriate level of concept pair association for a relation. 
For our implementation this threshold has been kept at 10%. 

Since a parent node has two alternative paths denoted by the expansion of LEFT 
and RIGHT respectively, along which a relation may be further specialized, the choice 
of appropriate level is based on the collective significance of the path composed of 
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retained nodes. For each ANDed set of retained nodes, total information loss for the set 
is computed as the average information loss for each retained child. The decision to 
prune off a set of nodes rooted at N is taken as follows: Let information loss for nodes 
retained at L1 is E1 and that for nodes retained at L2 is E2.  

• If E1 = 0, then L1 is retained and L2 is pruned off, otherwise, if E2 = 0 then L2 is 
retained and L1 is pruned off.  

• Otherwise, if E1 ≈ E2, i.e., 995.0),(),( 2121 ≥EEMaxEEMin  then both the sub-

trees are pruned off, and the node N serves as the appropriate level of specifica-
tion. 

• Otherwise, if E1 < E2, then L1 is retained and L2 is pruned off. If E2 < E1 then L2 
is retained while L1 is pruned off.  

The set of concept-pairs retained are used for conceptualizing the relations.  

5   Fuzzification of Relations  

Since all relations are not equally frequent in the corpus, hence we associate with each 
relation a strength S which is computed in terms of relative frequency. Equation 2 
computes this strength, where G denotes the category of concept-pairs: source-
substance, source-source, substance-substance and substance-source. |TG| denotes 
the total count of all relations that are defined between ordered concept pairs defined 
in the tree TG, and G

gr
N  denotes the total number of relation instances of type rg 

mapped to TG .  
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Since exact numeric values of strength do not convey much information, hence we 
choose a fuzzy representation to store the relations. The feasible biological relations 
are converted into fuzzy relations based on the membership of their strength values to 
a fuzzy quantifier term set {weak, moderate, strong}. The membership functions for 
determining the values to each of these categories are derived after analyzing the 
graphs displaying the distributions of strength. Fig. 2 shows the percentage of feasible 
relations of each category against the strengths of the relations.  

The fuzzy membership functions are derived after analyzing the graphs shown in 
Fig. 2. Each curve shows only one valley, and this common valley for all trees is 
observed at strength 0.4. Hence 0.4 is selected for defining the intermediate class 
“moderate”. The membership functions for the categories “weak”, and “strong” for 
each category are obtained through curve-fitting on different sides of the valley, while 
the membership function for class “moderate” is obtained by using the values sur-
rounding 0.4.  The fuzzy membership functions for categories “moderate” and 
“strong” are always characterized by Gaussian functions, whereas for the category 
“weak”, different types of functions are derived. 



 Enhancing a Biological Concept Ontology to Fuzzy Relational Ontology 533 

0.00

0.10

0.20

0.30

0.40

0.50

0.1 0.2 0.3 0.4 0.5 0.6

Relation Strength

R
el

at
io

n
 C

ou
n

t 
(N

or
m

al
iz

ed
)

substance-source

substance-substance

source-source

source-substance

 

Fig. 2. A plot of relation strengths and their %age counts for all four categories of trees 

Table 1. Biological relations and associated generic concept-pairs along with their fuzzy strength 

Generic concept-pairs and their strengths 
Relation 

Substance-Source Substance-Substance Source-Source Source-Substance 

Induce (<OC, Nat>, S) 
(<OC, Art, W>)  

(<OC, AA>, S) 
(<OC, NA>), W) (<Src, Src>, S) ------- 

Inhibits 

(<Lip, CT>, W) 
(<PFG, CT>, W) 
(<PM, CT>, M) 
(<DNADR, CT>, W) 

(<Sbs, Cmp>, S)  (<CT, Art>, S) 
(<CT, Nat>, S) 

(<Nat, AA>, S) 
(<Nat, NA>, M) 

Activate (<OC, Nat>, S) (<Pr, AA>, S) 
(<Pr, NA>, W) 

(<CL, CT>, W) 
(<CT, CT>, S) 
(<MC, CT>, W) 

(<Src, OC>, S) 

Expressed in (<OC, Src>, S) 

(<DNA, OC>, W) 
(<Pr, AA>, M) 
(<Pr, NA>, M) 
(<RNA, OOC >, W) 

(<Nat, Org>, W) 
(<Nat, Tis>, W) 
(<Nat, CT>, S) 

------- 

Legend: 
OC: Organic compound;    AA: Amino_acid;    NA: Nuclic_acid;    OOC: Other_organic_compound;    Sbs: 
Substance; Nat: Natural source;    Org: Organism;    CT: Cell_type;    Pr: Protein;    Src: Source;    Tis: Tissue;    
MC: Mono_cell;   PFG: Protein_family_or_group;    Lip: Lipid;    DNADR: DNA_domain_or_region;    Art: 
Artificial source;    Cmp: Compound;    PM: Protein_molecule;    S: Strong; M: Moderate; W: Weak 
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Sample fuzzy membership functions derived for the category substance-substance 
(shown through dashed line in Fig. 2) is shown below. The membership functions for 
the fuzzy sets “weak”, “moderate” and “strong” are defined in equations 3, 4 and 5 
respectively. Table 1 shows the top 5 relations along with their associated concept 
pairs and strengths identified for enhancing the GENIA ontology. 
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6   Enhancing GENIA to a Fuzzy Relational Ontology  

We now explain how we propose to extend the GENIA ontology by adding the ge-
neric relations to it. Since the relations have variable strengths, hence we propose to 
maintain a Fuzzy Relational Ontology rather than a crisp ontology structure. In this 
model there are two categories of relations – structural and generic. While structural 
relations are crisp, generic relations have associated fuzzy strengths. We define the 
Fuzzy Relational Ontology Model as follows:  

Definition (Fuzzy Relational Ontology Model) – A Fuzzy Relational Ontology Model 
Θf is a 5-tuple of the form 

Θf = (C, P, ℜs , ℜg, S), where, 

• C is a set of concepts 

• P is a set of properties. A property p ∈ P is defined as a unary relation of 
the form p(c), where c ∈ C is the concept associated to the property. 

• ℜs = {is-a, kind-of, part-of, has-part} is a set of structural semantic rela-
tions between concepts. A structural semantic relation rs ∈ ℜs is defined as 
a binary relation of the form rs(Ci, Cj), where Ci, Cj ∈ C are the concepts 
related through rs.  

• ℜg is a set of feasible generic relations between concepts. Like structural 
semantic relations, a generic relation rg ∈ ℜg can be defined as a binary re-
lation of the form rg(Ci, Cj), where Ci, Cj ∈ C are the concepts related 
through rg. 

• S = {weak, moderate, strong}, is a term set to represent the strength of the 
generic biological relations in terms of linguistic qualifiers. A linguistic 
qualifier ξ ∈ S is defined as a unary relation of the form ξ(rg), where rg ∈ 
ℜg is a feasible generic relation 

To accommodate generic relations and their strengths, in addition to existing 
GENIA ontology classes, the fuzzy GENIA relational ontology structure contains 
three generic classes - a “ConcetPair” class, a “FuzzyStrength” class and a 
“GenericRelation” class, where the last one multiply inherits from the earlier two 
classes. The ConceptPair class consists of HasLeftConcept and HasRightConcept 
properties whose values are the instances of the GENIA concept classes. Fuz-
zyStrength class has been defined to store the fuzzy quantifiers that can be associated 
with the generic relations to represent their strength. This class consists of a single 
property TermSet which is defined as a symbol and contains the fuzzy quantifiers 
“weak”, “moderate” and “strong”. The GenericRelation class has two properties – 
LeftRightActors and Strength. The LeftRightActors property is a kind of OWL object 
property which range is bound to the ConceptPair class. The Strength property is also 
a kind of OWL object property for which the range is bound to the FuzzyStrength 
class. All mined generic relations are defined as instances of the class GenericRela-
tion. Fig. 3. shows a snapshot of a portion of the enhanced Fuzzy GENIA relational 
ontology structure. A total of 280 strong, 38 moderate and 576 weak relational links 
were identified for adding to GENIA. It is observed that each instance of relation has 
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a strong or moderate co-occurrence with a maximum of 4 different pairs. However, 
the maximum number of weak co-occurrences could go up to 17.  For example, Table 
1 shows 3 strong and 2 weak instances of the relation “induce”. In our implementation 
we have restricted the enhancement to include only strong and moderate relations, to 
keep the ontology comprehendible.   

 

Fig. 3. A snapshot of the Fuzzy Relational GENIA ontology structure 

7   Conclusions 

In this paper we propose a fuzzy relational ontology model to accommodate generic 
biological relations into an existing biological ontology. The relations are mined from 
the GENIA corpus, which contains tagged MEDLINE abstracts. The mined relations 
which are always defined between a pair of leaf level concepts in the GENIA corpus 
are generalized using a novel technique. The generalization task is framed as an opti-
mization problem over a AND-OR concept-pair tree. Since the relations occur with 
varying strengths, the enhanced ontology is modeled as a fuzzy ontology structure. 
The derivation of the fuzzy membership functions have also been addressed in detail. 
A glimpse of the experimental results has been provided. Extension of the ontology 
structure into a rough-fuzzy ontology is being currently studied.  
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Software
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Abstract. The Basic Mereology framework of [8] is enriched by adding colimit
construction from Category Theory. The new framework is then used to model
component-based software architecture.

Keywords: mereology, software components, “part of” relation, software archi-
tecture, theory of composition and decomposition.

1 Introduction

Component-based software development focuses on building a large software system
by composing pre-existing parts such as software components. This paradigm arises in
respons to the disadvantages of the object-oriented paradigm which does not have an ar-
chitectural method to separate the computational and compositional aspects. However,
despite a lot of effort spent on defining architecture description languages (ADLs),
component based software engineering is still lacking a universally accepted architec-
tural framework. Besides, due to the number of ADLs available in industry, an archi-
tectural framework should also be ADL independent so that it can be widely adopted.
These reasons led to the development of a simple mathematical framework that is pow-
erful enough to manipulate and (de)compose component parts. We propose MereoCat,
an architectural framework based on Basic Mereology (i.e. theory of “part-whole” rela-
tions) of [8] enriched by some simple Category Theory constructions [3,13].

Additional motivation for applying Mereology to Component-based Software (CBS)
was provided by the fact that the sense of parthood in CBS is much fuzzier than one
might think. While “part-whole” relationships are considered to be one of the most im-
portant UML modeling concepts within Object Oriented Modeling (due to the notions
of aggregation, composition [14,17], as well as within Component Based Modeling
through the UML notion of “structure classifiers” [6]), o the authors’ knowledge, no
formal and complete parthood model exists.

Even when a mathematical framework, eg. Set Theory or Category Theory, is used
to model software architecture, components and subsystems (as mathematical objects)
are treated somewhat uniformly, which in our opinion should not be the case due to the
nature of parthood within a software system. We argue that preservation of the parthood
structures can support different architectural views, the improvement of component-
based modeling foundations and even practicals aspect like propagation of operations
[16] on parts.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 537–546, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Attempts to formalize the concepts of “part of” and “fusion” (composition) of parts
go back to S. Leśniewski [21], and H. Leonard, N. Goodman [5,12]. Leśniewski in-
vented Mereology (also called Classical Mereology) as an alternative to what is now
called “Set Theory”, but translation of his ideas into Set Theory is not obvious and often
problematic [19,21]. Leonard and Goodman formulated Mereology within Set Theory,
which makes the theory more accessible to applications [2,5,19]. Although both mod-
els have been substantially extended, applications outside philosophy, cognitive science
and pure logic [2,19,21] are rare (Rough Mereology [15] is a distinct exception). Only
recently, a version of Mereology more suitable for software engineering and motivated
by the semantics of Parnas’ tabular expressions [9] was proposed by Janicki1 in [8,7,9]
and has been applied to tabular expressions [7,9], and to detect formal discrepancies
between two requirement scenarios [11].

In Leśniewski’s Mereology, it is assumed that all topological properties like connect-
edness are implicit. In other words, Leśniewski assumes that when parts are composed,
according to their characteristics, they “naturally” connect with one another to produce
a whole. This leads to a lot of controversy around the composition of parts and the
uniqueness of mereological sum in Extensional Mereology [2,4]. For example, the sen-
tences “Jane loves Tom” and “Tom loves Jane” are made of the same parts, but they
are obviously not the same. Within the domain of software engineering, more than ever,
these controversies need to be settled down, since the same set of components can be
used to create different software systems. As a result, the Basic Mereology of [8] and
powerful Mereotopology of [2,20,18] do not make such assumptions. In [7] an opera-
tional algebraic version of Mereology was created where parts are (de)composed using
mereological constructors and destructors instead of the usual mereological sum.

This paper provides a more refined version of Mereology of [7,8] by using a com-
bination of both Mereology and Category Theory to create a more expressive frame-
work for component software. Instead of axiomatizing the connectedness properties
like in [2,20,18], we use morphisms to describe the connection, and the colimit in Cate-
gory Theory to describe the mereological construction and the part-of relations are built
on top of these. We call the resulting framework MereoCat, which stands for Mereo-
Category.

2 Basic Mereology

In this section we provide some necessary knowledge of Basic Mereology [8], the mere-
ology which we argue is the most suitable for Software Components. To make the paper
self-sufficient, we start with a survey on the theory of partial orders.

Let X be a set. A relation *⊆ X ×X is called a partial order iff it is reflexive (x * x),
anti-symmetric (x * y∧y * x ⇒ x = y), and transitive (x * y∧y * z ⇒ x * z). If * is a
partial order then the pair (X ,*) is called a partially ordered set or poset. A relation ≺
defined as x ≺ y ⇐⇒ x * y∧ x �= y is called a strict partial order. The element ⊥ ∈ X
satisfying ∀x ∈ X . ⊥ * x is called the bottom of X . An element a ∈ A is a minimal
(maximal) element of A iff ∀x ∈ A.¬(x ≺ a) (∀x ∈ A.¬(a ≺ x)). The set of all minimal

1 It was the late Zdzisław Pawlak who suggested in 1999 that Leśniewski’s ideas might help in
solving the problem of defining formally the concept “part-of” for relations and tables.



On a Parthood Specification Method for Component Software 539

(maximal) elements of A will be denoted by min(A) (max(A)). The minimal elements
of the set X \{⊥} are called atoms of the poset (X ,*), and Atoms denotes the set of all
atoms of X.

The relation ≺̂ defined as: x≺̂y ⇐⇒ x ≺ y ∧¬(∃z.x ≺ z ≺ y) is called the cover
relation for *.

Now we will begin with mereological axioms, but to do so we need some definitions.
Let (X ,*) be a poset (with or without ⊥). The relation * is now interpreted as “part
of”; a is a part of b iff a * b, and a is a proper part of b iff a ≺ b. Notice that “a is a
part of b” is equivalent to saying that “b is a whole of a”. The element ⊥ is interpreted
as an empty part. The relation ◦, † and 9 on X \ {⊥} defined as

x◦ y ⇐⇒∃z ∈ X \ {⊥}. z * x∧ z * y (overlap)

c † y ⇐⇒¬(x◦ y) (disjoint)

x9 y ⇐⇒∃z ∈ X \ {⊥}. x * z∧ y * z (underlap)

are called overlapping, disjointness and underlapping respectively. Two elements x and
y overlap iff they have a common non-empty part, they are disjoint iff they do not have
a common non-empty part, and they underlap if they are both parts of another element
(see [2,19] for more properties).

We will now introduce the set of axioms which helps us to define Basic Mereology.

x ≺ y ⇒ (∃z ∈ X . z ≺ y∧ x † z)∨ x = ⊥ (WSP)

∀x ∈ X \ {⊥}. ∃y ∈ Atoms.y * x (ATM)

⊥ ∈ X (BOT)

x * y ⇐⇒ x(≺̂)∗y (CCL)

∀x ∈ X . ∃y ∈ max(X). x * y (WUB)

where (≺̂)∗ is the reflexive and transitive closure of ≺̂, i.e. (≺̂)∗ = ∞
i=0(≺̂)i.

The axiom WSP, called Weak Supplementation Principle, is a part of all known mere-
ologies. Among others, it guarantees that if an element has a proper non-empty part, it
has more than one. It is widely believed that any reasonable mereology must conform
this axiom [19]. The Axiom ATM says that all objects (except the empty part) are built
from elementary elements called atoms. The axiom BOT simply says that the empty
part does exist, while CCL states that the part-of relation is the reflexive and transitive
closure of the cover relation for *. The final axiom WUB (Weakly Upper Bounded)
in principle means that the set max(X) is a roof that cover the whole set. This axiom
is crucial when the concept of equivalent parts is introduced (Equivalent parts are not
discussed in this paper, but we will keep the axioms consistent with [8]).

Definition 1 ([8]). A poset (X ,*) will be called a Basic Mereology if it satisfies BOT,
WSP, CCL, WUB and ATM.

Basic Mereology is the mereology that we are going to use in the rest of this paper. For
more details on Basic Mereology the reader is referred to [8].
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3 Categorical Connector Framework

We assume that the reader is familiar with the basic concepts of elementary Category
Theory [3]. In this paper we adopt CommUnity, the architectural design framework in-
vented by Fiadeiro et al. in [13,3] because of its flexibility and generality, which does
not restrict us to any specific ADL, and its ability to model different aspects of paral-
lel design and especially its categorical power. To keep the paper as self-sufficient as
possible we will give a brief overview of CommUnity’s three architectural elements:
components, configurations and connectors.

Components, which can be thought in a sense of CBS, are the model entities that per-
form computations and are able to synchronize with their environments and exchange
information through channels. Hence, components are given in terms of their channels
and actions in terms of “designs”. For example, component design print consists of in-
put channel i, output channel po and private channel rd. The actions of print are given
in CommUnity as a special form of “guarded commands”, except satisfying the guards
only means the actions can be executed but does not force them to be executed right
away. In print, if rd=false then print is allowed to be executed and changes rd to true.
Action prod of print does the “opposite” of action print and also assigns input i to out-
put po. The convert component does the task of of a conversion module which converts
a MSWord document to a PS document.

design print design convert
in i:ps out o:ps
out po:ps prv w:MSWord
prv rd:bool do to ps[o]: true, false → o:=ps(w)
do print[rd]: ¬rd → po:=i ‖ rd:= true
[] prod[rd]: rd → rd:= false

Configurations are diagrams in a category of designs where objects are designs and
morphisms are superpositions, also called design morphisms. A design morphism σ :
P1 →P2 identifies that P2 can be obtained from P1 by “augmenting” additional behaviors
to P1 while still preserving properties of P1 in P2.

From a meaningful configuration (e.g. an output channel is not connected to other
output channels) [13], a new design can be constructed using the colimit construction.
For example, we want to build a new useful design from the previous designs print and
convert, using the configuration in the diagram below where cable, convert, and print
are objects and each arrow represents a morphism between them.

Notice that explicit names are not given to the action and channel of cable used for
interconnection, but • symbols are used instead [13,3]. The reason is the interconnection
does not correspond to the global naming but rather to associations (name binding), for
examples, we need to explicitly specify that o, to ps are bound to i and prod respectively.

cable
o←•→i

to ps→•←prod

convert print
o ← i

to ps → prod
user
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design user
out o,po:ps
prv rd:bool, w: MSWord
do print[rd]: ¬rd → po:=o ‖rd:= true
[] to ps[o,rd]: rd → o:=ps(w)‖ rd:= false



On a Parthood Specification Method for Component Software 541

Using the colimit construction, the new object user and two arrows from convert and
print to user are introduced into the diagram. Here the colimit, as the amalgamated sum
(“module sum”), will return the minimal single design representing the whole configu-
ration. The design objects and design morphisms constitute category C-DSGN.

Connectors are model entities independent from components whose purpose is to
coordinate interactions between components as in the spirit of [1]. Connectors are given
in CommUnity in terms of a “glue” design and collection of “role” designs. Since the
formal concept of connectors is quite lengthy, readers are referred to [13].

4 MereoCat for Software Component

4.1 Architectural Views

In the real world, Component Based Software Development for complex systems is
more than just composing a system from pre-existing components together using con-
nectors. When a system becomes larger and larger, it helps to understand the architec-
tural structure of the system better by analyzing different architectural views, which are
the different abstractions of the same software system. One view is to partition a system
vertically into subsystems, which aggregate modules implementing related function
functionalities. A different view is by looking at the horizontal sections that may have
different scope within the system. Layers may belongs to a single subsystem, a part of
subsystem or across different subsystems [10].

The categorical framework discussed previously is designed to support composition
of subsystems from component designs. However, it is not quite obvious how the frame-
work supports the layer and subsystem views of software architecture. Their approach
treats all the designs as categorical objects and strongly emphasizes the properties pre-
served by morphisms, but also “flattens” down the whole architectural structure. Our
goal is to complement their framework by bringing back the depth to the architectural
structure using part-of relation. We will first start by constructing a suitable part-of re-
lation for software component.

4.2 Construction of Part-of Relation

One of the controversies which is usually discussed within mereology is its transitivity.
This can be expressed in term of software component concept as follows. Suppose a
component x was used to build a subsystem y and y is again used to build a software
system s. Is x is a part of s, since by the rule of encapsulation x is hidden from s by y.
Again, such confusion comes from ambiguity in the meaning of “part”, because natural
language uses the same word “part” for different kinds of part/whole relationships.
However, from a more abstract point of view, transitivity does hold [2]. If x is defective,
s will not work anymore, since x does contribute to s indirectly.

Hence, due to encapsulation, there should exist (at least) two different kinds of parts.
The first kind is when a whole can directly access the service provided by a part, and
the second kind is when a part indirectly contributes the service to the whole by being
hidden in another part. We will now characterize the direct part-of relation denoted by
≺d , which describe the part-of relation between a whole and its direct parts, as follows:
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Definition 2. Assume that a design S, which can be a software system or subsystem, is
constructed using colimit construction from a pair (C,C-DSGN) where: (1) C is a set of
designs which includes the glue, component and subsystem designs; and (2) C-DSGN
is the design category with respect to C. Then we define ≺d on C as:

∀P ∈C. P ≺d S

Definition 2 describes a view of parts and wholes at a single level of composition
where encapsulation is preserved such that the designs in C will appear to be “atomic”
with respect to the system (or subsystem). In the previous example, we can now say
convert ≺d user and print ≺d user, but not cable ≺d user, since cable is precisely used
for “name-bindings” but is not really a part which constitutes subsystem user.

To have a “multi-level” part-of relation we get the reflexive transitive closure of ≺d :

Definition 3
* df= (≺d)∗

Next, let us consider the poset (X ,*), where X is the component domain which contains
all the designs (components, subsystems, glue and software systems) and the empty
design ⊥. Let Atoms be the set of all component designs. We have to show that (X ,*)
is actually a Basic Mereology. Hence, * is a correct “part of” relation for CBS.

Proposition 1. If (X ,*) satisfies WUB then (X ,*) is a Basic Mereology.

The proof of Proposition 1 is rather simple. Basically it has to be shown that (X ,*)
satisfies BOT, WSP, CCL and ATM. We cannot prove that WUB is satisfied in each
case here. At this point we are not sure if we always need WUB when equivalent parts
are not an issue.

Definition 3 presents the proper definition of the parthood relation in CBS. Besides,
the preceding part-of relation construction also shows how closely part-whole relations
and encapsulation concept are related. To say some part x is encapsulated, we need the
information of what whole hides it, which is equivalent to knowing what whole x is a
part of. Therefore, without being able to formalize the part-of relations, it is difficult to
formalize the visibility in CBS.

4.3 Naı̈ve MereoCat

We are ready to give a formal definition the MereoCat System.

Definition 4. A MereoCat System is a tuple MC =(X ,Atoms,⊥,Θ,*,C-DSGN) where
X, Atoms, ⊥,*, C-DSGN as defined previously and
- (X ,*) is a Basic Mereology,
- Θ is the set of constructors, each θ ∈ Θ is a partial function θ : XI → X, for some I,
- The semantic of each θ is the colimit construction which constitutes designs from
meaningful categorical diagrams of elements in XI with respect to C-DSGN.

As we can see, the MereoCat System is the Basic Mereology (X ,*) conjuncted with the
design morphisms in C-DSGN. Connectedness properties are the result of the graph-
based semantics of Category Theory, but more than that the connections here embed the
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abstraction of complex interaction or communication protocols between designs. It can
be proven that the MereoCat system is a Mereological System in the sense of [7] with
the empty set of destructors and a set of constructors defined in categorical style. It can
also be proven that MereoCat has all the expressive power of Ground Mereotopology
[2]. We will not explore these subjects due to lack of space.

We took advantage of the semantics of design morphisms to describe the part-of
relationship in Definitions 2, 3 and 4, since according to [13,3], a design morphism
σ : P1 → P2 identifies a way in which P1 is “augmented” to become P2 through the in-
terconnection of one or more components (the superposition of additional behavior).
Hence, the design of the categorical approach implicitly assumes some of the part-
whole relationship in mind, except they have not made it as formal and clear as we do in
this paper, since it takes a lot of work to describe a precise definition of a part-of relation.

However, we still call this MereoCat System “Naı̈ve MereoCat” since it still requires
axioms for connectedness and some formal concept of consistency.

5 An Example

Using the previous components convert and print, we can design a User-Printer appli-
cation where, a user application send a PS document to a “printing server” component
printer to print the document. All the communication is done through a bounded buffer
buffer, which prevents user from sending a new document when there is no space and
prevents printer from reading a new message when no new message has been sent. The
designs of buffer and printer are given as follows:

design buffer design printer
in ci:ps in i:ps
out co:ps prv busy:bool
prv rd: bool; q:queue do rec: ¬busy → busy:=true
do put: ¬full(q) → q:= enqueue (i,q) [] end print:busy → busy:=false
[]prv next: ¬empty(q) ∧¬ rd

→ o:=head(q) ‖ q:= tail(q) ‖ rd:=true
[] get: rd → rd:= false

We can specify the configuration of the situation in two different ways.
The first method is to specify the architectural configuration as in the diagram in the

following figure.

Notice that instead of drawing the categorical diagram as in previous section, we use the
“syntactic sugar” of name-binding to associate the correspondent methods and channels
of designs. According to the name-binding method of [13], we bind print component
with the input of buffer.
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The second method, using MereoCat, is to specify the part-of relation as a way to
“modularize” the configuration as in the following figure.

We connect the resulting subsystem user= θ(convert,print) to buffer where θ denotes the
constructor that constructs user from two components convert and print. The semantics
of θ is the colimit construction (amalgamated sum) as previously discussed in Section 3.
As a result, we have a more hierarchical view of the whole User-Printer system.

Obviously, we can recursively apply this method to different parts of the system when
the system grows larger and larger. Notice that buffer (the “glue” design) and its asso-
ciations (name-bindings) constitute a connector according to the connector definition
in [13].

6 Other Applications of MereoCat

As previously mentioned the first kind of application is to describe different architec-
tural views of a software system. The subsystem view comes straight from the part-
whole relation since component aggregation is nothing but a whole that consists of
closely related functionalities. Unfortunately, the aggregation concept is usually intro-
duced intuitively rather than formally. However, using the axioms of Basic Mereology
in MereoCat, one has a means to validate if a relation is aggregation or association.
The approach we use in MereoCat is to keep the information about the part-of relation
when modeling composition and stepwise development of a system as a part of the ar-
chitectural specification. It saves a lot of effort when recovering the part-of relationship
in the resulting product. For example, we can see right away that user is a subsystem of
User-Printer. The process of partitioning a software system into layers will also benefit
from the resulting multi-level hierarchy produced by the ≺d relation restricted to the
the system’s parts.

The second kind of application is to use MereoCat to produce part-whole based mod-
eling method for systems. A part-whole based architecture model of a software system
is usually more intuitive and helpful in understanding the architectural structures than
that of a non part-whole one. This advantage is concluded in [14] using a case study
which analyzes a part-whole and a non part-whole based model of a weather moni-
toring system within Object Oriented concepts. However, the rational behind that case
study does also apply to component-based software as our User-Printer. When design-
ing a large software system, in order to reuse as many pre-existing parts as possible,
designers are usually more concerned with the detailed interconnection and communi-
cation protocols (horizontal relationships) between parts than the hierarchy of design
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resulting from the grouping of modules into subsystem or layers based on their func-
tionalities. Thus, the resultant designs usually consist of too many vertical dependencies
between modules to recover any subsystem or layer architectural view. A good design
method should enforce designers to group the system modules into multi-level trees of
composition like we did with the User-Printer application using MereoCat.

Last but not least, MereoCat can help formalize the propagation (triggering) of oper-
ations, for which there is a “pervasive” need in both software and database communities
as emphasized in Rumbaugh’s works [16,17]. Propagation is defined to be the automatic
application of an operation to a network of parts. The part-of relations have a great im-
pact on such operations because, for example, the moving/copying/deleting of a whole
also moves/copies/deletes all the parts, which are part-of the whole but not the parts
referenced by the wholes. Hence, without a precise part-of relation, it is very hard to
define the formal semantics of propagation. For instance, in the previously discussed
example, suppose we need to create a new instance of the client subsystem because a
new user is added to the network. In the non part-whole based model of User-Printer, it
is not so clear whether it is necessary to create new instances of both convert and print
or not. However, in the model of User-Printer using MereoCat it is rather obvious we
need to create the new instances for the parts convert and print of user since we cannot
create a new instance of user without the parts which are used to construct it. We plan
to discuss these topics in detail in a journal version of this paper.

7 Conclusion

This paper presents a preliminary formalization of parthood relations in CBS by intro-
ducing the MereoCat System. The lesson learnt is that by considering the part-whole
(vertical) relations separately from the interconnection (horizontal) relations, the view
of a component system becomes much more transparent. The task of specifying the
part-whole relation is more natural than one might think. According to an experiment
by Tversky and Hemenway [22], by considering attributes of biological and artificial
concepts, they found 58 percent of artificial objects and 42.7 percent of biological ob-
jects were parts! This proves how important the part-of relation is as an abstraction
underlying the organization of human knowledge.

The paper contributions can be characterized as follows. Firstly, we are able to cre-
ate MereoCat to model component software, and by having such a rich philosophical
and mathematical foundation from Mereology and Category Theory, we can discuss
“parts” and use the phrase “part of” in a more formal and precise manner. Secondly, we
were able to explicitly introduce the topological connectedness properties into Mereol-
ogy using the rich structure of categorical morphism, which according to the authors’
knowledge has not ever been done before. Thirdly, we not only use the connector spec-
ification framework from [13] to take advantage of its categorical power for the future
proofs of our concepts, but also complement it by providing the “depth” into it using
our parthood relations.

We are currently working on a mereological refinement notion for MereoCat. With
the parthood formalism, we believe the system parts will become much easier to be
refined or substituted than a flattened architecture style in [13,3]. For example, we can
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substitute not just one of components convert or print but the whole subsystem user
in the evolution of the system User-Printer. It is also important to adopt the mereolog-
ical equivalence relations from [8] into component software as a way to partition the
component domain into classes of equivalent parts, which creates the very theoretical
interesting effect of having a “hierarchy of types” in the component domain.
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Abstract. This paper investigates the concept approximation problem
using ontology as an domain knowledge representation model and rough
set theory. In [7] [8], we have presented a rough set based multi-layered
learning framework for approximation of complex concepts assuming the
existence of a simple concept hierarchy. The proposed methodology uti-
lizes the ontology structure to learn compound concepts using the rough
approximations of the primitive concepts as input attributes. In this pa-
per we consider the extended model for knowledge representation where
the concept hierarchies are embedded with additional knowledge in a
form of relations or constrains among sub-concepts. We present an ex-
tended multi-layered learning scheme that can incorporate the additional
knowledge and propose some classes of such relations that assure an im-
provement of the learning algorithm as well as a convenience of the knowl-
edge modeling process. We illustrate the proposed method and present
some results of experiment with data from sunspot recognition problem.

Keywords: ontology, concept hierarchy, rough sets, classification.

1 Introduction

In AI, approximate reasoning is a crucial problem occurring, e.g., during an inter-
action between two intelligent (human/machine) beings which are using different
languages to talk about objects from the same universe. The intelligence skill of
those beings (also called agents) is measured by the ability of understanding the
other agents. This skill appears in different ways, e.g., as a learning or classifi-
cation in machine learning and pattern recognition theory, or as an adaptation
in evolutionary computation theory. A great effort of researchers in machine
learning and data mining has been made to develop efficient methods for ap-
proximation of concepts from data [6]. Nevertheless, there exist many problems
that are still unsolvable for existing state of the art methods, because of the high
complexity of learning algorithms or even unlearnability of hypothesis spaces.

Utilization of domain knowledge into learning process becomes a big challenge
for improving and developing more efficient concept approximation methods. In
previous papers we have assumed that the domain knowledge was given in form
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of a concept hierarchy [7] [8]. The concept hierarchy, the simplest form of on-
tology, is a treelike structure with the target concept located at the root, with
attributes located at leaves, and with some additional concepts located in in-
ternal nodes. We have adopt the layered learning approach [13], and rough set
methods to proposed a multi-layered algorithm for induction of “multi-layer
rough classifier” (MLRC) from data [7]. We have shown that MLRC has signif-
icantly better classification accuracy and shorter classification time comparing
with the traditional rough classifiers. Nevertheless, many problems still remain
in this research. The problem is related to the choice of the appropriate learn-
ing algorithm and the corresponding decision table for approximation of each
concept in the hierarchy. Moreover, during experiment execution, we observed a
noticeable worsening of accuracy of classifiers in the consecutive layers. This is
because, except the own approximation error, the compound classifier can have
a mistake even when only one of its component classifiers fails, e.g., it has a
misclassification or returns no answer.

The mentioned above problems are probably caused by the simplification of
the knowledge representation model, where the only structure of concept ontol-
ogy was utilized in the learning algorithm. In this paper we consider an extended
knowledge representation model, where except the concept hierarchy, we assume
that there are some constraints between concepts on the same level. We will
present a modified layered learning algorithm that utilizes those constraints as
the additional domain knowledge.

The paper is organized as follows. Section 2.2 provides some basic notions of
concept ontology, some important classes of concept relations and some basic
ideas of rough set theory and the problem of concept approximation. Section 3
presents a multi-layered learning algorithm driven by ontology for the concept
approximation problem. Section 4 is devoted to illustration and analyzing the
accuracy of the proposed method for the sunspot recognition problem. The paper
finishes with summarized conclusions and discussion on possible feature works.

2 Preliminaries

Concepts can be understood as definable sets of objects. Formally, any subset
X of a given universe U which can be described by a formula of L is called
the concept in L. The concept approximation problem can be understood as
searching for approximate description – using formulas of a predefined language
L – of concepts that are definable in other language L∗. Inductive learning is the
concept approximation method that searches for description of unknown concept
using finite set U ⊂ U of training examples.

2.1 The Role of Ontology in Inductive Learning

Ontology is defined in literature as a formal description of concept names and
relation types organized in a partial ordering by the concept-subconcept relation
[12]. Syntactically, given a logical languageL, an ontology is a tuple 〈V, A〉, where
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the vocabulary V is a subset of the predicate symbols of L and the axioms A
are a subset of the well-formed formulas of L [5]. The set V is interpreted as a
set of concepts and the set A is a set of relations among concepts present in the
set V . A taxonomy is the most commonly used form of ontologies. It is usually
a hierarchical classification of concepts in the domain, therefore we would draw
it in the form of tree and call it a concept hierarchy.

Nowadays, ontology is used as an alternative knowledge representation model,
and it becomes a hot topic in many research areas including (1) ontological
specification for software development (2) ontology driven information systems
(3) ontology-based semantic search (4) ontology-based knowledge discovery and
acquisition [3] [4]. Many applications in data mining make use of taxonomies
to describe different levels of generalization of concepts defined within attribute
domains [5]. The role of taxonomies is to guide a pattern extraction process to
induce patterns in different levels of abstractions.

Ontologies are also useful for concept approximation problems in another con-
text. One can utilized the concept hierarchy describing the relationship between
the target concept (defined by decision attribute) and conditional attributes
(through additional concepts if necessary) in the induction process. Such hier-
archy can be exploited as a guide to decomposition of complex concept approx-
imation problem into simpler ones and to construction of compound classifiers
for the target concept from the classifiers for primitive concepts [15].

2.2 Rough Sets and Rough Classifiers

Rough set theory has been introduced by Professor Z. Pawlak [9] as a tool for
approximation of concepts under uncertainty. The theory is featured by operat-
ing on two definable subsets, i.e., a lower approximation and upper approxima-
tion. The first definition, so called the “standard rough sets”, was introduced by
Pawlak in his pioneering book on rough set theory [9].

Given an information system S = (U, A), where U is the set of training objects,
A is the set of attributes and a concept X ⊂ U . Assuming at the moment that
only some attributes from B ⊂ A are accessible, then this problem can be also
described by appropriate decision table S = (U, B∪{decX}), where decX(u) = 1
for u ∈ X , and decX(u) = 0 for u /∈ X .

First one can define called the B-indiscernibility relation IND(B) ⊂ U × U
in such a way that x IND(B) y if and only if x, y are indiscernible by attributes
from B, i.e., infB(x) = infB(y). Let [x]IND(B) = {u ∈ U : (x, u) ∈ IND (B)}
denote the equivalence class of IND (B) defined by x. The lower and upper
approximations of X (using attributes from B) are defined by:

LB(X) =
{
x : [x]IND(B) ⊆ X

}
; UB(X) =

{
x : [x]IND(B) ∩ X �= ∅

}
Let us point out that there are many extensions of the standard definition of
rough sets, e.g., variable rough set model [14] or tolerance approximation space
[11]. In these methods, rough approximations of concepts can be also defined by
rough membership function, i.e., a mapping μX : U → [0, 1] such that LμX =
{x ∈ U : μC(x) = 1} and UμX = {x ∈ U : μX(x) > 0} are lower and upper
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approximation of a given concept X . In case of the classical rough set theory,

the rough membership function is defined by μB
X(x) = |X∩[x]IND(B)|

|[x]IND(B)| .

The inductive learning approach to rough approximations of concepts we as-
sume that U is a finite sample of objects from a universe U and X = C ∩U is the
representation of a unknown concept C ⊂ U in U . The problem can be under-
stood as searching for an extended rough membership function μC : U → [0, 1]
for C ⊂ U such that the corresponding rough approximations defined by μC are
the good approximations of C.

U - - - - ��	 μX : U → [0, 1]
∩ ⇓
U - - - - ��	 μC : U → [0, 1]

The algorithm that calculates the value μC(x) of extended rough membership
function for each new unseen object x ∈ U is called the rough classifier. In fact,
rough classifiers can be constructed by fuzzification of other classifiers [1]. The
specification of each algorithm for induction of rough classifiers is as follows:

Input: Given a decision table SC = (U, AC , decC)
Output: Approximation of C in form of a hypothetical classifier hC = {μC , μC}

indicating the membership μC(x) of any object x ∈ U to the concept C or
the membership μC(x) to its complement C.

Rule-based, kNN-based and decision tree based rough classifiers are examples of
rough classifier types that will be used in next sections. These methods will be
used as building blocks for construction of compound classifiers.

3 Ontology Driven Construction of Rough Classifiers

Induction of rough classifiers is the most important step in many applications of
rough set theory in the process of knowledge discovery from databases. We have
presented a multi-layered learning scheme for approximation of complex concept
assuming that a hierarchy of concepts is given. The main idea is to gradually
synthesize the target concept from the simpler ones. At the lowest layer, basic
concepts are approximated using input features available from the data set.
At the next layers, the approximations of compound concepts are synthesized
using rough approximations of concepts from the previous layer. This process
is repeated for successive layers and it results in the creation of a multi-layer
rough classifier (MLRC). The advantages of MLRC have been recognized and
confirmed by many experiments over different concept approximation problems
[7] [8]. But in case of poor quality (incomplete, noisy) data sets, this learning
scheme gives approximations with unsatisfactory accuracy because of the high
sensitiveness of compound rough classifiers.

In this paper, except the concept hierarchy, we propose to extend the knowl-
edge representation model by some constraints between concepts on the same
level. We show that such constraints can improve the quality of classifiers.
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3.1 Knowledge Representation Model with Constraints

Recall that taxonomy, or concept hierarchy, represents a set of concepts and a
binary relation which connects a ”child” concept with its ”parent”. The most
important relation types are the subsumption relations (written as ”is-a” or ”is-
part-of”) defining which objects (or concepts) are members (or parts) of another
concepts in the ontology. This model facilitates the user to represent his/her
knowledge about relationships between input attributes and target concepts.
If no such information available, one can assume the flat hierarchy with the
target concept on top and all attributes in the downstairs layer. Besides the
”child-parent” relations, we proposed to associate with each parent concept a
set of ”domain-specific” constraints. We consider two types of constraints: (1)
constraints describing relationships between a concept and its sub-concepts; and
(2) constraints connecting the “sibling” concepts (having the same parent).

Formally, the extended concept hierarchy is a triple H = (C, R, Constr), where
C = {C1, ..., Cn} is a finite set of concepts including basic concepts (attributes),
intermediated concepts and target concept; R ⊆ C × C is child-parent relation
in the hierarchy; and Constr is a set of constraints. In this paper, we consider
constraints expressed by association rules of the form P →α Q, where

– P,Q are boolean formulas over the set {c1, ..., cn, c1, ..., cn} of boolean vari-
ables corresponding to concepts from C and their complements;

– α ∈ [0, 1] is the confidence of this rule;

In next sections, we will consider only two types of constraints, i.e., the
”children-parent” type of constraints connecting some ”child” concepts with their
common parent, and the ”siblings-sibling” type of constraints connecting some
sibling concepts with another sibling.

3.2 Learning Algorithm for Concept Approximation

Let us assume that an extended concept hierarchy H = (C, R, Constr) is given.
For compound concepts in the hierarchy, we can use the rough classifiers as a
building blocks to develop a multi-layered classifier. More precisely, let prev(C)=
{C1,..., Cm} be the set of concepts, which are connected with C in the hierarchy.
The rough approximation of the concept C can be determined by performing
two steps: (1) construct a decision table SC = (U, AC , decC) relevant for the
concept C; and (2) induce a rough classifier for C using decision table SC . In
[7], the training table SC = (U, AC , decC) is constructed as follows:

– The set of objects U is common for all concepts in the hierarchy.
– AC = hC1 ∪ hC2 ∪ ... ∪ hCm , where hCi is the output of the hypothetical

classifier for the concept Ci ∈ prev(C). If Ci is an input attribute a ∈ A
then hCi(x) = {a(x)}, otherwise hCi(x) = {μCi(x), μCi

(x)}.

Repeating those steps for each concept through the bottom to the top layer
we obtain a “hybrid classifier” for the target concept, which is a combination of
classifiers of various types. In the second step, the learning algorithm should use
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the decision table SC = (U, AC , decC) to “resolve conflicts” between classifiers of
its children. One can observe that, if sibling concepts C1, ..., Cm are independent,
the membership function values of these concepts are “sent” to the “parent”
C, without any correction. Thus the membership value of weak classifiers may
disturb the training table for the parent concept and cause the misclassification
when testing new unseen objects. We present two techniques that enable the
expert to improve the quality of hybrid classifiers by embeding their domain
knowledge into learning process.

1. Using Constraints to Refine Weak Classifiers: Let R := c1 ∧ c2... ∧ ck →α c0
be a siblings-sibling constraint connecting concepts C1, ..., Ck with the concept
C0.We say that the constraint R fires for C0 if

– Classifiers for concepts C1, ..., Ck are strong (of a high quality).
– Classifier of concepts C0 is weak (of a low quality).

The refining algorithm always starts with the weakest classifier for which there
exist a constraint that fires (see Algorithm 1).

Algorithm 1. Classifier Refining
Input: classifier h(C0), constraint R := c1 ∧ c2... ∧ ck →α c0

Output: Refined classifier h(C0)
1: for each object x ∈ U do
2: if x are recognized by classifiers of C1, ..., Ck with high degree then
3: if c0 is a positive literal then
4: μC0(x) := α · min{μC1(x), μC2(x), ..., μCk (x)}; μC0

(x) := 1 − μC0(x);
5: else {c0 is a negative literal}
6: μC0

(x) := α · min{μC1(x), μC2(x), ..., μCk (x)}; μC0(x) := 1 − μCi
(x)

7: h′(Cj) := μC0 , μC0
;

2. Using Constraints to Select Learning Algorithm: Another problem is how to
assign a suitable approximation algorithm for an individual concept in the con-
cept hierarchy? In the previous papers [7] the type of approximation algorithm
(knn, decision tree or rule set) for each concept was settled by the user. In this
paper we show that the constraints can be treated as a guide to semi-automatic
selection of best learning algorithms for concepts in the hierarchy.

Assume that there is a ”children-parent” constraints:
∧

i ci →α p (or
∧

i ci →α

p) for a concept P ∈ C. The idea is to choose the learning algorithm that
maximizes the confidence of constraints connecting P ′s children with himself.
Let RS ALG be a set of available parameterized learning algorithms, we define
an objective function ΨP : RS ALG → 7+ to evaluate the quality of algorithms.
For each algorithm L ∈ RS ALG the value of ΨP (L) is depended on two factors:

– Classification quality of L(SP ) on a validation set of objects;
– Confidence of the constraints

∧
i ci →α p
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The function ΨP (L) should be increasing w.r.t. quality of the classifier L(SP )
for the concept P (induced by L) and the closeness between the real confidence
of the association rule

∧
i ci → p and the parameter α. The function Ψ can be

used as an objective function to evaluate a quality of approximation algorithm.

Algorithm 2. Induction of multi-layered rough classifier using constraints
Input: Decision system S = (U, A, d), extended concept hierarchy H = (C, R, Constr);

a set RS ALG of available approximation algorithms
Output: Schema for concept composition
1: for l := 0 to max level do
2: for (any concept Ck at the level l in H) do
3: if l = 0 then
4: Uk := U ;
5: Ak := B, where B ⊆ A is a set relevant to define Ck

6: else
7: Uk := U
8: Ak = Oi, for all Ci ∈ prev(Ck), where Oi is the output vector of Ci;
9: Choose the best learning algorithm L ∈ RS ALG with a maximal objective

function ΨCk (L)
10: Generate a classifier H(Ck) of concept Ck;
11: Refine a classifier H(Ck) using a constraint set Constr.
12: Send output signals Ok = {μC(x), μC(x)} to the parent to the next level.

A complete scheme of multi-layered learning algorithm with concept con-
strains is presented in Algorithm 2.

4 Example and Experimental Results

Sunspots are the subject of interest to many astronomers and solar physicists.
Sunspot observation, analysis and classification form an important part of fur-
thering the knowledge about the Sun. Sunspot classification is a manual and
very labor intensive process that could be automated if successfully learned by a
machine. The main goal of the first attempt to sunspot classification problem is
to classify sunspots into one of the seven classes {A, B, C, D, E, F, H}, which are
defined according to the McIntosh/Zurich Sunspot Classification Scheme. More
detailed description of this problem can be found in [8].

The data was obtained by processing NASA SOHO/MDI satellite images to
extract individual sunspots and their attributes characterizing their visual prop-
erties like size, shape, positions. The data set consists of 2589 observations from
the period of September 2001 to November 2001. The main difficulty in cor-
rectly determining sunspot groups concerns the interpretation of the classifica-
tion scheme itself. There is a wide allowable margin for each class (see Figure 1).
Therefore, classification results may differ between different astronomers doing
the classification.

Now, we will present the application of the proposed approach to the prob-
lem of sunspot classification. In [8], we have presented a method for automatic
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Fig. 1. Possible visual appearances for each class. There is a wide allowable margin in
the interpretation of the classification rules making automatic classification difficult.

modeling the domain knowledge about sunspots concept hierarchy. The main
part of this ontology is presented in Figure 2.

�

�

�

�

A → ¬D

A → ¬E

A → ¬F

A → ¬EF

A → ¬DE

A → ¬DF

Fig. 2. The concept hierarchy for sunspot recognition problem

We have shown that rough membership function can be induced using different
classifiers, e.g., k-NN, decision tree or decision rule set. The problem is to chose
the proper type of classifiers for every node of the hierarchy. In experiments with
sunspot data, we applied the rule based approach for concepts in the lowest level,
decision tree based approach for the concepts in the intermediate levels and the
nearest neighbor based approach the target concept.

Figure 3 (left) presents the classification accuracy of ”hybrid classifier” ob-
tained by composition of different types of classifiers and ”homogenous classifier”
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obtained by composition of one type of classifiers. The first three bars show
qualities of homogenous classifiers obtained by composition of k-NN classifiers,
decision tree classifiers and rule based classifiers, respectively. The fourth bar
(the gray one) of the histogram displays the accuracy of the hybrid classifier.

The use of constraints also give a profit. In our experiment, these constraints
are defined for concepts at the second layer to define the training table for the
target concept AllClasses. It is because the noticeable breakdown of accuracy
have been observed during experiments. We use the strategy proposed in Section
3 to settle the final rough membership values obtained from its children A-H-
B-C-DEF, D-EF, E-DF, F-DE (see the concept hierarchy). One can observe
that using constraints we can promote good classifiers in a composition step.
A better classifier has higher priority in a conflict situation. The experiment
results are shown in Figure 3. The gray bar of the histogram displays the quality
of the classifier induced without concept constraints and the black bar shows the
quality of the classifier generated using additional constraints.

Fig. 3. Accuracy comparison of different layered learning methods

Another approach to manage with sunspot recognition problem is related
to temporal features. Comparative results are showed in Figure 3 (right). The
first two bars in the graph describe the accuracy of classifiers induced without
temporal features and the last two bars display the accuracy of classifiers induced
with temporal features. One can observe a clear advantage of the last classifiers
over the first ones. The experimental results also show that the approach for
dealing with temporal features and concept constraints considerably improves
approximation quality of the complex groups such as B, D, E and F .

5 Conclusions

We presented some extensions of a layered learning approach. Unlike traditional
approach, in the layered learning approach the concept approximations are in-
duced not only from available data sets but also from expert’s domain knowledge.
In the paper, besides a concept dependency hierarchy we have also considered
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additional domain knowledge in the form of concept constraints. We proposed
an approach to deal with some forms of concept constraints. Experimental re-
sults with sunspot classification problem have shown advantages of these new
approaches in comparison to the standard learning approach.
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Abstract. A new method for estimation of attributes’ importance for
supervised classification, based on the random forest approach, is pre-
sented. Essentially, an iterative scheme is applied, with each step consist-
ing of several runs of the random forest program. Each run is performed
on a suitably modified data set: values of each attribute found unimpor-
tant at earlier steps are randomly permuted between objects. At each
step, apparent importance of an attribute is calculated and the attribute
is declared unimportant if its importance is not uniformly better than
that of the attributes earlier found unimportant. The procedure is re-
peated until only attributes scoring better than the randomized ones are
retained. Statistical significance of the results so obtained is verified. This
method has been applied to 12 data sets of biological origin. The method
was shown to be more reliable than that based on standard application
of a random forest to assess attributes’ importance.

1 Introduction

Application of computer programs to decision support or classification of data
dates back to the 1970’s. Such problems can be formally presented in the form of
a decision system which consists of a set of objects O, each of the objects being
described by P different attributes, X1, X2, . . . , XP , and a decision attribute Y
not equal to any of the attributes whose value may be unknown.

An expert system or, more narrowly, a classifier can be defined as a function
F (X1, . . . , XP ) → Y .

The first generation of expert systems was designed by human experts whose
knowledge was explicitly coded by the if A then B rules [1]. The systems
could cope with all examples whose decision attribute value could have been
predicted by the experts, but were unable to cope with new (unseen) examples
with properties not earlier predicted by the experts. Applicability of such systems
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was limited to simple cases with a small number of attributes. Multi-dimensional
problems with complex properties based on uncertain data could not be handled
by this rational approach. For a detailed discussion see [1].

Starting in the 1980-ies, machine learning and statistical methods, such as
neural networks,decision trees, and many others, were popularized with the aim
to address several of the limitations of expert systems [2,3,4,5]. These methods,
often collectively called inductive learning, generate models from examples with
known Y , which can then be applied to unseen cases. They can successfully cope
with high-dimensional problems, albeit the achieved improvement comes with a
price.

While the first generation expert systems were hardly tractable for anything
but simple and small domains, the newer methods are often even less amenable to
human understanding. Some of them are more or less like a black box, where one
throws in the description of the object and by a process that is hidden to human
inspection the outcome decision comes out automatically. Neural networks are
most notorious in this respect, but even several rule-based methods, such as
Bayesian networks [6] and in certain circumstances methods based on rough
set theory [7,8,9,10], generate decision functions which are not easy to analyse.
Such functions may be comprised of thousands, if not hundreds of thousands,
of simple rules which are connected by complex, non-linear logical relations.
Although the problems that are very complex are often likely to be described
by very complex models, we should not give up the possibility of gaining insight
into the structure of the generated model. There exist several approaches to
obtaining a better legibility of the models. One well-known idea is to make
models less exact (cf. Ziarko’s approach and approximate attributes in rough
sets), which avoids over-fitting and generates simpler models with often higher
performance of the model on the unseen examples. A similar idea is to use
dynamic reducts that sample the space of examples and allow finding the most
important attributes. Another approach to obtaining legible models from large
rule sets is rule tuning (see e.g. Ågotnes et al [11,12] which often provides a
very significant reduction of the cardinality of the rule set and, sometimes, an
improvement of the classification quality due to a generalization algorithm used
in rule tuning. Yet another approach is the use of templates to discover local
models [13,14]. Finally, in the rough set model approach of Kowalczyk, a small
subset of attributes is selected using various heuristics and user knowledge to
generate simple models.

Unfortunately, for problems with a very high dimension where domain knowl-
edge is not yet available, for instance in functional genomics and other areas of
modern molecular biology and medicine, other approaches have to be applied.
Interestingly, biomedical researchers are often interested in learning which of the
attributes are the important ones. Only later, the researchers investigate classi-
fiers that may be generated using these attributes. Thus, within such a frame-
work, the first task is to identify the most important attributes. This problem
is particularly acute for high-dimensional data of biological origin, where the
number of attributes Xi can be of order of thousands.
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Recently, a new classifier, actually comprised of an ensemble of decision trees,
the so-called random forest (RF) has been proposed by Breiman [15]. The RF’s
classification ability is comparable to, if not better than that of the best methods
available, e.g. boosting [16]. In addition, RF offers two features which improve
significantly, and in a very natural way, our understanding of a classification
problem under scrutiny. These are:

– the assessment of the importance of the contributions of the attributes to
the final prediction,

– the assessment of the interactions between the attributes.

In the present study, we show the limits of the importance estimation as
originally proposed by Breiman and present a method that aims at discerning
the truly most important attributes for classification and in this respect improves
significantly upon the original approach of Breiman.

2 The Method

The process of determining whether a given attribute contributes significantly
to the final prediction or not, is based on multiple application of RFs, and
utilization of the estimate of importance generated by each RF.

Random Forests. Random forest is a classification method that combines re-
sults from an ensemble of many, say M , decision trees built on bootstrap samples
drawn with replacement from the original training sample. Each bootstrap sam-
ple is of the same size, say N , as the original sample. Drawing with replacement
guarantees that roughly 1/3 of elements from the original sample are not used
in each bootstrap sample (indeed, note that the probability of not drawing a
particular element is (1 − 1/N)N ≈ e−1). For each tree in the forest, elements
of the original sample not used to grow this tree are called out-of-bag or oob
elements for the tree.

Assume that each element (object) in the training sample is given as a vector
of P attributes. At each stage of tree building, i.e. for each node of any particular
tree in the forest, p attributes out of all P attributes are randomly selected, where
p << P (say, p =

√
P ), and the best split on these p attributes is used to split

the data in the node. Each tree is grown to the largest extent possible, i.e. there
is no pruning. In this way, RF consisting of M trees is constructed. Classification
of each (new) object is made by simple voting of all trees.

Estimation of Attribute Importance. For any k-th attribute, proceed in the
following way. In every tree in the forest, put down its oob objects and count the
number of votes cast for the correct class. Then randomly permute the values
of attribute k in the oob objects, put these objects down the tree and count the
number of votes cast for the correct class. Subtract the latter number of votes
from that obtained for the original oob data. The average of this difference over
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all trees in the forest constitutes the raw importance score for attribute k. The
normalized score, i.e. the so-called z-score by reference to the standard normal
case, is obtained as usual, by dividing the raw score by its standard error.

Apparent Importance of Noisy Attributes. Applying the standard nor-
mal theory when calculating p-values corresponding to z-scores obtained is well
justified by the observed low correlations between scores for individual trees for
a number of data sets (cf. [15]). At the same time, however, we have observed
that even if all the attributes are completely random and therefore by design
not related to the decision attribute, relatively strong correlations between some
attributes and the decision attribute may appear by chance. Such attributes
are then singled out by the RF and the classifier effectively based on them is
built. As a result, these noisy attributes get z-scores which suggest strong, non-
random correlation with the decision attribute. The simulation experiment was
performed, that indeed confirmed this hypothesis.

Highest z-score of Permuted Attribute. In order to discern properties
which significantly and truly, not by chance, contribute to correct predictions,
we propose to find by simulation means how high a z-score of a noisy attribute
can get on the average. This can be done by estimating the mean and variance
of the distribution of the Highest z-score of Permuted Attribute (HZPA). To
this end, we introduce controlled noise into the system by randomly permuting
values of the selected attributes, retaining the other attributes untouched and
generating bootstrap samples of objects modified in the way described.

The Algorithm. We apply this idea in an iterative ’self-consistent’ way into
the algorithm which generates statistically validated set of important attributes,
with average z-score higher than the average z-score of the HZPA.

Our method is coded as a bash script, which calls RandomForest program
and two additonal C programs used to generate permuted data sets and perform
statistical computations and selection of the variables. The pseudocode of the
algorithm is as follows:

RunRandomForests() // Initial run
SetZlimit() // Set the z-score which will be

// considered provisionally important
BuildNonRandomList() // build an initial list of provisionally

// important attributes
while ( !Glob_Self_Cons )
do // Main Loop
while ( !Loc_Self_Cons )
do // Loop for current Zlimit

for (i=1;i<=NSTEP;i++) // NSTEP repetitions
do
ShuffleAttributes // Create data set with permuted

// unimportant attributes
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RunRandomForests // single Random Forest run
done
ComputeStatistics // Computes z-score for all

// important attributes
// and finds AvHZPA

BuildNewNonRandomList // Only attributes with
// z-score higher than current
// Zlimit are on the list

Loc_Self_Cons=CompLists() // CompLists() returns TRUE
// if old and new list of important
// attributes are identical

done
Glob_Self_Cons=ChckGlobCon() // ChckGlobCon() returns TRUE

// when AvHZPA is lower than current
// Zlimit

Zlimit=Zlimit+Delta // Increase current Zlimit
done

At the first step, the classifier is used with input vectors consisting of all
attributes; z-scores are computed for all attributes, and attributes which have
z-score higher than some predefined level are provisionally considered as impor-
tant, while the remaining ones are considered unimportant. We start with the
threshold level equal to 1.0.

The second step consists in running several random forests. Each time the
values of the attributes identified in the previous step as unimportant are ran-
domly permuted and values of the important attributes remain unchanged. For
each run of RF and all attributes, z-scores are computed, and the average (over
all RFs) z-scores for all important attributes are obtained as well. Moreover,
for each run of RF, the highest z-score is found among those for the permuted
attributes (i.e. HZPA is found), and its average over all RF runs, AvHZPA, is
determined for later use. Note that the permuted attribute with the highest z-
score can prove different for different RF runs, since they are run on different
bootstrap samples.

Attributes which have average scores higher than the current threshold are
considered to be temporarily important, and attributes which have average scores
lower than the threshold are irreversibly considered to be unimportant. This
second step is repeated at each fixed threshold level until all the attributes
considered temporarily important have average z-scores higher than the current
threshold. After this condition is satisfied, we have a set of temporarily important
attributes which we consider ”self-consistent at the current threshold level”.

Once the self-consistence at a given level has been achieved, in the third step
of the procedure, the check is performed if the current threshold level allows
one to distinguish the attributes that carry real information from those that do
not. If the threshold level is higher than AvHZPA, we conclude that full self-
consistence has been reached and the iterative procedure is finished. Otherwise,
the threshold is increased and the procedure for reaching self-consistence at this
higher threshold level is repeated.
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Finally (this step is not included in the pseudocode above), once full self-
consistence has been reached, a statistical test of significance is performed for
conclusive importance of attributes found important in the third step of the
procedure. This test rests on repeating the second step of the procedure, but
with a much higher number of iterations (actually, we increase the number of
iterations to 1000, while NSTEP was set at 40).

Note that the average score of the non-permuted attributes and the average
of the HZPA are obtained from sums of conditionally independent variables,
where independence comes from random permutations of the attributes deemed
unimportant (the experiment is conditioned on the sample and the fixed values
of the attributes deemed important). Therefore, if the number of iterations is
sufficiently large, the averages can be assumed to be normally distributed. As
the test of significance, a simple one-sided t-test is used, namely the test for
equality of two means against the alternative that the mean of z-scores of an at-
tribute tested for importance is higher than the mean of HZPA. We consider the
attribute conclusively important if the null hypothesis is rejected at 0.001 sig-
nificance level. A large number of iterations makes the test sufficiently powerful.

Summarizing, it is indeed a tall order for an attribute to be designated con-
clusively important. First, full self-consistence requires that the candidates for
such designation have average z-scores higher than AvHZPA. And second, an
even more stringent requirement is placed in the procedure’s final step, namely
that the final significance test can be passed by only these attributes whose true
average z-score has a chance to be lower than AvHZPA with probability only
0.001, the AvHZPA being obtained on the basis of all attributes conclusively
designated unimportant and comprised of the highest scores for each run in the
final step.

Additionally, given, say, I attributes designated conlusively important, we
generate the distribution of the classification error for the system built on I
randomly selected attributes, not including any of the I important attributes
determined by the algorithm. We then check if the classification result obtained
for the conlusively important attributes is likely to be drawn from the generated
distribution.

Computational Complexity. Our algorithm is an overlay superimposed on
the original random forest, which calls the original program several times in the
iterative fashion. Therefore the computational complexity of the whole algorithm
depends both on the computational complexity of the random forest and that
of our extension.

Two aspects of the computational complexity should be taken into account -
dependence of the number of elementary operations on the number of samples
and that on the number of attributes.

Obviously, the complexity of the random forest is of the same order as the
complexity of building an individual tree, which is P 1/2Nlog(N).

Regarding our extension, it is easily seen that its complexity is indepen-
dent of the number of samples. On the other hand, dependence of the number
of elementary operations on the number of attributes depends on data under
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scrutiny. Indeed, the number of iterations depends on the observed importance
of attributes. For two limit cases - when an attribute is finally important or is
deemed conclusively unimportant in the initial run - the number of iterations
of the feature selection algorithm is not affected by the number of attrubutes.
However, in the worst case scenario, when an attribute is deemed provisionally
important, an additional round of iterations may be necessary to find that it is
conclusively unimportant. Therefore, while in the best case the whole algorithm’s
complexity due to the number of attributes is that of the random forest, i.e., it
is of order P 1/2, in the worst case it is of order P 3/2. Consequently, the overall
complexity of the whole algorithm achieves order P 1/2N log N or P 3/2N log N
in the worst case.

3 Data

The algorithm presented in the previous section was applied to twelve data
sets of biological origin. The number of objects in the data sets varies between
319 and 820, and the number of attributes for all datasets is 202 including
two-valued decision attribute, with the exception of dataset No. 8, where the
number of all attributes is 183. Each attribute can take up to twenty categorical
values, but usually this number is smaller. For categorical attributes, the device
suggested by Theorem 4.5 of [3] was applied to ensure high performance of the
classifier. Biologically, each object is a sequence of the HIV protein, and the
decision attribute tells, whether virus carrying protein coded with this sequence
is, or isn’t, resistant to one of the antiviral drugs. Biological implications of our
findings will be published elswhere. The data can be accessed at the following
URL: http://www.icm.edu.pl/˜rudnicki/RoughSets/data/

4 Results and Discussion

The algorithm described is used to find the attributes that contribute signifi-
cantly to the final prediction. In Table 1, results of the algorithm are compared
with those obtained by direct application of the Breiman’s approach to finding
important attributes. In that approach the random forest is run first with all
the attributes, then only the attributes with ’high’ z-scores are retained, and fi-
nally the forest is run again using only these attributes. In our implementation,
z-scores larger than 3 were considered ’high’. Consequently, the attributes with
z-scores higher than 3 in the second run are conclusively declared important
when using the Breiman’s approach.

In the majority of cases classification error is low, and in all cases it is signif-
icantly lower than percent error of the random classifier (data not shown).

One may notice that in all cases we found less attributes than suggested by
the application of the Breiman algorithm and the assumption that z-score higher
than 3 implies importance of an attribute. Interestingly, in all cases, the AvHZPA
is significantly higher than 3 and varies considerably between data sets; indeed,
it varies between 5.3 and 8.7. Therefore it is impossible to build an ’a priori’
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Table 1. Summary of results for all datasets. The following entries are in the succesive
rows: number of objects in each data set (OB), number of important attributes using
the method developed in the current study IA (C), number of important attributes
obtained using the Breiman approach IA (B), AvHZPA for each data set (AvHZPA)
and percent error of the classifier (%ERR).

Data 1 2 3 4 5 6 7 8 9 10 11 12
OB 356 354 353 355 319 354 749 675 820 721 737 767

IA (C) 7 14 20 19 14 15 17 23 30 6 7 7
IA (B) 21 32 39 31 24 23 52 42 59 49 48 58

AvHZPA 8.1 8.3 6.4 5.6 7.0 5.2 6.8 7.3 6.7 8.0 8.7 7.6
%ERR 4.4 11.0 13.9 8.7 24.5 11.6 4.9 18.8 13.9 15.6 26.0 22.6

analytical model of the HZPA distribution and inference has to be based on
Monte Carlo-like approach, e.g. as presented in this report.

Accordingly, in Table 2, example results for the final t-test are summarized.
Two variables which passed the initial test, have the value of the t-statistic lower
than the threshold, set at 3, and consequently they fail the verification test.

It is interesting to note that only two variables had z-scores higher than HZPA
for all 1000 iterations. Even rather highly scoring attributes had in some itera-
tions scores smaller than HZPA. For example, attribute # 112 had score lower
than HZPA in 7 cases out of 1000, despite that its average z-score was almost
two times as high as the average of the HZPA.

The results of our study suggest that a single run of the RF classifier, and
in particular the attribute importance analysis, may be subject to siginficant
random fluctuations generated by spurious correlations between important and
unimportant attributes.

Within our approach, this issue has been addressed by multiple application
of RFs with randomly permuted values of attributes found unimportant, proper
use of the estimates of attributes’ importance generated by each RF, and a
final test of significance of the results. When looking for important attributes,
neither arbitrary selection of the limiting z-score, above which the attribute is
considered important, nor (even more artificial) a priori selection of the number
of important attributes is needed. Such arbitrary decisions have been replaced by
an objective statistical procedure based on comparisons of z-scores for original
attributes with the HZPA. Only the attributes which in many bootstrap samples
score significantly higher than any attribute which is unimportant by design, can
be conjectured to be important.

A related problem has been studied by Gediga and Duentsch within the rough
set framework [17,18] several years ago. They have shown limited applicability
of statistical methods in assesing the rule importance. Instead, they introduce
the notion of casual dependencies in information systems and provide arguments
that approximate reducts cannot be applied to measure quality of a model in
certain cases.

Their results do not apply to our approach, since the methodology presented
here is developed towards minimizing, to any desirable level, the error of the
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Table 2. The results for the final step of the algorithm. Sixteen provisionally important
attributes were tested using one thousand replications. Subsequent columns represent
attribute number (Attribute), average z-score (Z) over 1000 iterations, standard devi-
ation (SDev(Z)) of the mean z-score, average rank (Rank) in the importance ranking,
standard deviation of the rank (SDev(R)), value of t-statistic (t) and the number of
instances, when given attribute had higher score than an AvHZPA (Inst), respectively.

Attribute Z SDev(Z) Rank SDev(R) t Inst
2 29.11 0.05 2.000 0.000 60.7 1000
4 11.01 0.04 10.20 0.07 8.3 874

28 10.66 0.05 11.04 0.1 6.8 824
35 9.57 0.04 13.42 0.07 3.9 735
36 14.24 0.03 4.58 0.03 18.7 974
38 9.28 0.03 14.16 0.06 3.2 702
67 8.40 0.03 15.62 0.05 0.4 578
77 12.16 0.03 7.71 0.05 12.3 918
79 11.48 0.04 9.22 0.08 9.6 896

112 16.52 0.03 3.05 0.007 25.8 993
145 64.50 0.09 1.000 0.000 141.4 1000
169 13.40 0.03 5.50 0.04 15.8 959
171 11.10 0.04 10.05 0.08 8.4 858
176 13.09 0.05 6.35 0.07 13.8 945

179 9.03 0.04 14.48 0.07 2.2 661
189 11.02 0.04 10.22 0.07 8.4 867

AvHZPA 8.28 0.08 14.78 0.11 – –

second kind (that is to minimize the number of false positives), whereas the
approach of Gediga and Duentsch pertains to minimization of the error of the
first kind (minimizing the number of false negatives).
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Abstract. This paper gives a empirical analysis of determinant, which
empirically validates the trade-off between sample size and size of ma-
trix. In the former studies, relations between degree of granularity and
dependence of contingency tables are given from the viewpoint of deter-
minantal divisors and sample size. The nature of determinantal divisors
shows that the increase of the degree of granularity may lead to that
of dependence. However, a constraint on the sample size of a contin-
gency table is very strong, which leads to the evaluation formula where
the increase of degree of granularity gives the decrease of dependency.
This paper gives a further study of the nature of sample size effect on
the degree of dependency in a contingency matrix. The results show
that sample size will restrict the nature of matrix in a combinatorial
way, which suggests that the dependency is closely related with integer
programming.

1 Introduction

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes. Tsumoto introduces
linear algebra into formal analysis of a contigency table [1]. The results give the
following interesting results. First, a contingency table can be viewed as com-
parison between two attributes with respect to information granularity. Second,
algebra is a key point of analysis of this table. A contingency table can be viewed
as a matrix and several operations and ideas of matrix theory are introduced into
the analysis of the contingency table. Especially, The degree of independence,
rank plays a very important role in extracting a probabilistic model from a given
contingency table.

Then, thirdly, the results of determinantal divisors show that it seems that the
devisors provide information on the degree of dependencies between the matrix
of the whole elements and its submatrices and the increase of the degree of
granularity may lead to that of dependence [2]. This gives a contradictory view
from the intuition that when two attributes has many values, the dependence
between these two attributes becomes low.

The key for understanding these conflicts is to consider the constraint on the
sample size.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 567–576, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In [3] we show that a constraint on the sample size of a contingency table is
very strong, which leads to the evaluation formula where the increase of degree
of granularity gives the decrease of dependency.

This paper confirms this constraint by using enumerative combinatorics.
The results show that sample size will restrict the nature of matrix in a

combinatorial way, which suggests that the dependency is closely related with
integer programming.

2 Degree of Dependence

2.1 Contingency Matrix

Definition 1. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a set
of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|, |[R1 =
Aj ∧ R2 = Bi]A|, |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m). This table is
arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =

∑m
i=1 x1i = x·j,

|[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij , |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m).

Table 1. Contingency Table (n × m)

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Definition 2. A contigency matrix MR1,R2(m, n, N) is defined as a matrix,
which is composed of xij = |[R1 = Aj ∧ R2 = Bi]A|, extracted from a conti-
gency table defined in definition 1.

That is,

MR1,R2(m, n, N) =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n x1·
x21 x22 · · · x2n x2·
...

...
...

...
...

xm1 xm2 · · · xmn xm·

⎞⎟⎟⎟⎠ .

#$

For simplicity, if we do not need to specify R1 and R2, we use M(m, n, N) as a
contingency matrix with m rows, n columns and N samples.

One of the important observations from granular computing is that a con-
tingency table shows the relations between two attributes with respect to inter-
section of their supporting sets. When two attributes have different number of



Distribution of Determinants of Contingency Matrix 569

equivalence classes, the situation may be a little complicated. But, in this case,
due to knowledge about linear algebra, we only have to consider the attribute
which has a smaller number of equivalence classes. and the surplus number of
equivalence classes of the attributes with larger number of equivalnce classes can
be projected into other partitions. In other words, a m×n matrix or contingency
table includes a projection from one attributes to the other one.

2.2 Rank of Contingency Matrix (m × n)

In the former paper, Tsumoto obtained the following theorem[1].

Theorem 1. Let the contingency matrix of a given contingency table be a m×
n matrix. The rank of this matrix is less than min(m, n). If the rank of the
corresponding matrix is 1, then two attributes in a given contingency table are
statistically independent. If the rank of the corresponding matrix is n , then two
attributes in a given contingency table are dependent. Otherwise, two attributes
are contextual dependent, which means that several conditional probabilities can
be represented by a linear combination of conditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(m, n) dependent

2, · · · ,

min(m, n) − 1 contextual independent

1 statistical independent

#$

2.3 Degree of Granularity and Dependence

Let us assume that the determinant of a give contingency matrix gives the degree
of the dependence of the matrix. Then, from the results of linear algebra, we
obtain the following theorem.

Theorem 2. Let A denote a n× n contingency matrix, which includes N sam-
ples. If the rank of A is equal to n, then there exists a matrix B (n × n) which
satisfies

BA =

⎛⎜⎜⎜⎝
ρ1

ρ2 O
. . .

O ρn

⎞⎟⎟⎟⎠ = P,

where ρ1 + ρ2 + · · · + ρn = N .
It is notable that the value of determinants of P is larger than A:

detA ≤ detP

#$
Thus, the following theorem is obtained[3].
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Theorem 3. When a contingency matrix A holds AB = P , where P is a diag-
onal matrix, the following inequality holds:

detA ≤
(

N

n

)n

,

Proof.

detA = det(PB−1)
≤ detP

= ρ1ρ2 · · ·ρn

≤
(

ρ1 + ρ2 + · · · + ρn

n

)n

=
(

N

n

)n

, (1)

where the former equality holdes when detB−1 = detB = 1 and the latter equality
holds when ρ1 = ρ2 = · · · = ρn = N

n .

Thus, the maximum value of the determinant of A is at most
(

N
n

)n
. Since N

is constant for the given matrix A, the degree of dependence will decrease very
rapidly when n becomes very large. That is,

detA ∼ n−n.

Thus,

Corollary 1. The determinant of A will converge into 0 when n increases into
infinity.

lim
n→∞

detA = 0.

#$

This results suggest that when the degree of granularity becomes higher, the
degree of dependence will become lower, due to the constraints on the sample
size.

However, it is notable that N/n is very important. If N is very large, the
rapid decrease will be observed N is close to n.

3 Distribution of Determinant

The next interest is how is the statistical nature of the derminant for M(m, n, N).
First, since a 2 × 2 matrix is a basic one, let us examine the nature of

detM(2, 2, N).

3.1 Total Number of M(2, 2, N)

Let the four elements of M(2, 2, N) be denoted as a,b,c,d. That is, x11 = a,
x12 = b, x21 = c, and x22 = d. Then, a + b + c + d = N .
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Let us assume that a = 0. Then, b + c + d = N . Recursively, we can assume
that b = 0. Then, for this pair (a, b) = 0, we have (N + 1) pairs which satisfies
c + d = N . In this way, the total number of M(2, 2, N) is obtained as:

N∑
i=0

(N + 1 − i) × (N + 2 − i)
2

.

Simple calculation shows that the above formula is equal to:

1
6
(N + 1)(N + 2)(N + 3).

That is,

Theorem 4. The total number of a contingency matrix M(2,2,N) is equal to:

1
6
(N + 1)(N + 2)(N + 3).

(Proof Sketch)
The total combination of M(2, 2, N) is given as:

N∑
i=0

⎛⎝(N−i)+1∑
k=1

k

⎞⎠ =
N∑

i=0

(N + 1 − i) × (N + 2 − i)
2

=
N∑

i=0

{
1
2
(N + 1)(N + 2)

−1
2
(2N + 3)i +

1
2
i2
}

=
1
6
(N + 1)(N + 2)(N + 3)

(2)

#$
Intuitively, this formula can be interpreted as follows. We have four parameters,
a,b,c,d, which will take a value between 0 and N . Thus, the original freedom
is 4, and the order of total number can be N4. However, since a constraint
a + b + c + d = N is given, we have only three free parameters, thus the order of
total number of M(2, 2, N) is approximately of N3:

# of M(2, 2, N) ≈ O(N3).

3.2 Total Number of det = 0

Enumeration of total number of det = 0 is very difficult. However, upper bound
can be calculated as follows. When a and d is fixed, we have obtained two
constraints:

b + c = N − (a + d)
bc = ad
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Thus, (b, c) can be obtained as a solution for quadratic equations. If the pair
(b, c) is integer, we will have obtained two solutions (ad − bc = 0) for each pair:
(b,c) and (c,b).

Therefore, the upper bound of the number of solutions is equal to:

N∑
i=0

⎛⎝(N−i)+1∑
k=1

2

⎞⎠ = (N + 1)(N + 2)

Theorem 5. The upper bound of total number of a contingency matrix M(2,2,N)
with determinant being 0 is equal to:

(N + 1)(N + 2)

Thus, the probability that the determinant of a matrix M(2, 2, N) is equal to 0
is at most:

(N + 1)(N + 2)
1
6 (N + 1)(N + 2)(N + 3)

=
6

N + 3
.

#$

Then, how is the lower bound ? This is the case when (b,c) does not have any
integer solution for a given quadratic equations except for trivial solutions. The
simple trivial solutions are: a = 0 or d = 0 with b = 0 or c = 0. Then, for
a = 0, b = 0, we may have a solution for c + d = N , N pairs (c �= 0, d �= 0).
Totally, 4N pairs. If we consider the cases when three values are equal to 0, such
as a = b = c = 0, we have 4 pairs. Thus, totally. we have 4(N+1) pairs.

Theorem 6. The lower bound of total number of a contingency matrix M(2,2,N)
with determinant being 0 is equal to:

4(N + 1)

Thus, the probability that the determinant of a matrix M(2, 2, N) is equal to 0
is at least:

4(N + 1)
1
6 (N + 1)(N + 2)(N + 3)

=
24

(N + 2)(N + 3)
.

#$

Thus, it is expected that the number of matrices with 0 determinant vibrates
between 4(N +1) and (N +1)(N +2). The variance will beccome larger when N
grows. In other words, the probability of det = 0 will vibrate between O(1/N2)
and O(1/N). The variance will become larger when N grows.

It is notable that the above discussion can be applied to a general case, such
as ad− bc = k, or other constraint. For example, if we have a constraint such as
a/(a+b) or a/(a+c), then we can analyze a constraint for accuracy or coverage.
It will be our future work to investigate such cases.
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4 Empirical Validations

For empirical validations, we calculate the whole combination of a 2 × 2 matrix
with fixed sample size (0 ≤ N ≤ 100) M(2, 2, N).

4.1 Total Number of M(2, 2, N)

Figure 1 plots the relation between sample size N and the total number of
M(2, 2, N). This figure clearly shows that the relation is polynomial.

On the other hand, Figure 2, which plots the relation between sample size
and the total number of matrices with zero determinant, gives an interesting
feature. As discussed in Section 3, the total number vibrates and the amplitude
of the vibration becomes larger when N grows. Furthermore, the lower bound of
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the total number can be approximately equal to a linear function, whereas the
upper bound is to a quadratic function.

Finally, the ratio of the number of matrices with zero determinant to the total
number of M(2, 2, N) is plotted as Figure 3. This figure also confirms the results
obtained in Section 3.

4.2 Statistics of Determinant

Figure 4 and 5 show the distributions of the determinant of M(2, 2, 10) and
M(2, 2, 50). The distribution are symmetric, and the median and average are
exactly equal to 0. Furthermore, the number of matrices with 0 determinant is
very high, compared with other values.

5 Discussion

In [4], Tsumoto obtained the following theorem.

Theorem 7. The chi-square test statistics of M(m, n, N) is given as:

X =
m∑

i=1

n∑
j=1

(∑
k �=i
l �=j

Δi,k
j,l

)2

x··xi·x·j
.

#$

Especially, when m = n = 2, this will give us the following equation:

X =
2∑

i=1

2∑
j=1

Δ2

x··xi·x·j
,
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where Δ denotes a determinant of M(2, 2, N). Thus, it implies that each residual
follows N(0, 1) asymptotically:

σij =
Δ

√
x··xi·x·j

.

This fact implies thatasymptotically, thedistributionofdeterminantsofM(2, 2, N)
can be approximated by function of N(0, 1). It will be our future work to whether
this assumption on the residual is reasonable or not.

6 Conclusion

In this paper, the nature of the dependence of a contingency matrix and the
statistical nature of the determinant are examined.
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Especially, the constraint on the sample size N of a contingency table will
determine the number of 2× 2 matrices. As N grows, the ratio of matrices with
zero determinant rapidly decreases, which shows that the number of matrix
with statistical dependence will increase. However, due to the nature of the
determinant, the average of absolute value of the determinant also increase with
the order of N2, whereas the increase in the size of total number of matrix is of
N3.

This is a preliminary work on the statistical nature of the determinant, and it
will be our future work to investigate the nature of 3 × 3 or higher dimensional
contingency matrices.
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Abstract. This paper shows formal analysis of a contingency table
based on its marginal distributions. The main approach is to make an
expected matrix from two given marginal distributions and take the dif-
ference between original cell values and expected values to construct a
residual matrix. The most important characeristics of a residual matrix
are following: (1) Its determinant is equal to 0, which implies the rank
of this matrix is less than the rank of an original matrix. (2) Each ele-
ment of a residual matrix can be represented as a linear combination of
2 × 2 subderminants. These characteristics shows that the residual of a
contingency matrix is closely related with 2 × 2 subderminants, which
also shows that the χ2 test statistic is a function of 2 × 2 subderminants
and marginal sums and suggests that distribution of determinants should
have an important meaning for this statistic.

1 Introduction

Statistical independence between two attributes is a very important concept in
data mining and statistics. The definition P (A, B) = P (A)P (B) show that the
joint probability of A and B is the product of both probabilities. This gives sev-
eral useful formula, such as P (A|B) = P (A), P (B|A) = P (B). In a data mining
context, these formulae show that these two attributes may not be correlated
with each other. Thus, when A or B is a classification target, the other attribute
may not play an important role in its classification.

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes.

Tsumoto shows formal analysis of statistical independence in a contingency ta-
ble [1,2]. The first important point is that statistifcal independence in a contin-
gency table is a special form of linear depedence of two attributes. Especially, when
the table is viewed as a matrix, the above discussion shows that the rank of the ma-
trix is equal to 1.0[1]. The second important point is that partial statistical indepen-
dence can be observed between statistical dependence and independence and that
this property gives statistical independence when rows or columns are merged[3].

The third important observation is that from the characteristics of the deter-
minants, the larger rank a correponding matrix has, the higher the two attributes

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 577–586, 2006.
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are dependent. This results is shown by a monotonicity of a sequence of determi-
nantal divisors[4]. However, the constraint on the sample size of a contingency
table is very strong, which leads to the evaluation formula where the increase of
degree of granularity gives the decrease of dependency[2].

In this paper, we focus on decomposition of a contingency matrix by using
a matrix of expected values based on marginal distribution (expected matrix).
Especially when the rank of a matrix is full, say, r, the difference between a
original matrix and the expected matrix will become r − 1 at most. Moreover,
the sum of rows or columns will become zero, which means that the information
of one rank correponds to information on the frequency of a contingency matrix.

The paper is organized as follows: Section 2 shows the results of earlier work.
Section 3 gives definitions of marginal distribution, expected matrix and residual
matrix. Section 4 shows the definition of difference matrix and its main results.
Section 5 provides the meaning of residual matrix. Finally, Section 6 concludes
this paper.

2 Definitions and Preliminary Work

2.1 Contingency Matrix

Definition 1. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables T (R1, R2) is a table
of a set of the meaning of the following formulas: |[R1 = Aj ]A|, |[R2 = Bi]A|,
|[R1 = Aj ∧R2 = Bi]A|, |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m). This table
is arranged into the form shown in Table 1, where: |[R1 = Aj ]A| =

∑m
i=1 x1i =

x·j, |[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj∧R2 = Bi]A| = xij , |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m).

Table 1. Contingency Table (m × n)

A1 A2 · · · An Sum
B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
· · · · · · · · · · · · · · · · · ·
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Definition 2. A contigency matrix MR1,R2(m, n, N) is defined as a matrix,
which is composed of xij = |[R1 = Aj ∧ R2 = Bi]A|, extracted from a conti-
gency table defined in definition 1.

That is,

MR1,R2(m, n, N) =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠ . #$
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For simplicity, if we do not need to specify R1 and R2, we use M(m, n, N) as a
contingency matrix with m rows, n columns and N samples.

One of the important observations from granular computing is that a con-
tingency table shows the relations between two attributes with respect to inter-
section of their supporting sets. When two attributes have different number of
equivalence classes, the situation may be a little complicated. But, in this case,
due to knowledge about linear algebra, we only have to consider the attribute
which has a smaller number of equivalence classes. and the surplus number of
equivalence classes of the attributes with larger number of equivalnce classes can
be projected into other partitions. In other words, a m×n matrix or contingency
table includes a projection from one attributes to the other one.

2.2 Rank of Contingency Matrix (m × n)

In the former paper, Tsumoto obtained the following theorem[1].

Theorem 1. Let the contingency matrix of a given contingency table be a m×
n matrix. The rank of this matrix is less than min(m, n). If the rank of the
corresponding matrix is 1, then two attributes in a given contingency table are
statistically independent. If the rank of the corresponding matrix is n , then two
attributes in a given contingency table are dependent. Otherwise, two attributes
are contextual dependent, which means that several conditional probabilities can
be represented by a linear combination of conditional probabilities. Thus,

rank =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(m, n) dependent

2, · · · ,

min(m, n) − 1 contextual independent

1 statistical independent #$

In the cases of m �= n, we need a discussion on submatrix and subderminant in
the next section.

2.3 Submatrix and Subdeterminant

The next interest is the structure of a corresponding matrix with 1 ≤ rank ≤
n − 1. First, let us define a submatrix (a subtable) and subdeterminant.

Definition 3. Let A denote a corresponding matrix of a given contigency table
(m × n). A corresponding submatrix Ai1i2···ir

j1j2···js
is defined as a matrix which is

given by an intersection of r rows and s columns of A (i1 < i2 < · · · < ir, j1 <
j2 < · · · < jr).

Definition 4. A subdeterminant of A is defined as a determinant of a submatrix
Ai1i2···ir

j1j2···js
, which is denoted by det(Ai1i2···ir

j1j2···js
).
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Rank and Subdeterminant. Let Δij denote a co-factor of aij in a square
corresponding matrix of A. Then,

Δij = (−1)i+jdet(A1,2,··· ,i−1,i+1,··· ,n
1,2,··· ,j−1,j+1,··· ,n).

It is notable that a co-factor is a special type of submatrix, where only ith-row
and j-column are removed from a original matrix. By the use of co-factors, the
determinant of A is defined as:

det(A) =
n∑

j=1

aijΔij ,

which is called Laplace expansion.
From this representation, if det(A) is not equal to 0, then Δij �= 0 for

{ai1, ai2, · · · , ain} which are not equal to 0. Thus, the following proposition is
obtained.

Proposition 1. If det(A) is not equal to 0 if at least one co-factor of aij(�= 0),
Δij is not equal to 0.

It is notable that the above definition of a determinant gives the relation between
a original matrix A and submatrices (co-factors). Since cofactors gives a square
matrix of size n−1, the above proposition gives the relation between a matrix of
size n and submatrices of size n−1. In the same way, we can discuss the relation
between a corresponding matrix of size n and submatrices of size r(1 ≤ r < n−1).

3 Marginal Distribution and Expected Matrix

In statistical analysis of a contingency table, marginal distribution plays an
important role. Especially, marginal distribution is closely related with statistical
independence of two attributes.

Let us start first the defintion of marginal distribution (row or column).

Definition 5. Marginal row distribution of T (R1, R2), mrM,R2 is defined as:

(
x·j
)

=
(
x·1 x·2 · · · x·m

)
=
(
1 1 · · · 1

)
⎛⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠ .

Marginal column distribution of T (R1, R2), mcM,R1 is defined as:

(
xi·
)

=

⎛⎜⎜⎜⎝
x1·
x2·
...

xn·

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
1
...
1

⎞⎟⎟⎟⎠ #$



Interpretation of Contingency Matrix Using Marginal Distributions 581

It is notable that marginal row and column distribution correspond to P (R1 =
Ai) and P (R2 = Bj).

Then, when statistical independence holds for two attributes, since P (R1 =
Ai, R2 = Bj) = P (R1 = Ai) × P (R2 = Bj), each cell xij is obtained from the
product of xi· and x·j [3]:

xij

x··
=

xi·
x··

× x·j
x··

.

Thus, a expected matrix, whose cell is given by statistical independence of
two attributes, is defined as follows.

Definition 6. A expected matrix ER1,R2(m, n, N) is defined from MR1,R2

(m, n, N) as follows: (
eij

)
,

where eij is obtained as a product of elements of marginal distribution.

eij =
xi· × x·j

x··
.

#$
According to the results in [5], it is notable that this matrix can be decomposed
into the product of marginal column and row distributions:

Theorem 2. A expected matrix ER1,R2(m, n, N) can be decomposed into:

ER1,R2(m, n, N) = mrM,R2 ⊗ mcM,R1 (1)

#$
In chi-square test, total sum of the difference between real value and expected
value gives the test statistic:

X =
m∑

i=1

n∑
j=1

(
xij − x·jxi·

x··

)2

x·jxi·
x··

, (2)

which approximately follows a χ2 distribution of (m− 1)(n− 1) freedom. Thus,
the difference between real value and expected value, σij :

σij = xij −
xi· × x·j

x··
.

is a very important factor for this test.
From the viewpoint of matrix theory, σij is obtained from MR1,R2(m, n, N)−

ER1,R2(m, n, N). We call this matrix residual matrix.

Definition 7. A residual matrix SR1,R2(m, n, N) is defined as follows:(
σij

)
,

where σij is obtained as a product of elements of marginal distribution.

σij = xij − eij = xij −
xi· × x·j

x··
. (3)

#$
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4 Difference Matrix

Let us assume that we have two matrices AR1,R2(m, n, N) = (aij) and BR3,R4

(m, n, N) = (bij) with N samples and the same marginal distributions:

a·· = b··(= N), mrA,R1 = mrB,R3 and mcA,R2 = mcB,R4 .

We will focus on the difference between AR1,R2(m, n, N) and BR3,R4(m, n, N),
which we call a difference matrix:

Definition 8. The difference matrix D(m, n, A, B) is defined as:

D(m, n, A, B, N) = AR1,R2(m, n, N) − BR3,R4(m, n, N),

where each element dij is obtained as:

dij = aij − bij . #$

Then, several important characteristics are obtained as follows.

Theorem 3. Let DA,B(m, n, N) denote a difference matrix of AR1,R2(m, n, N) =
(aij) and BR3,R4(m, n, N)=(bij).

Then,
det DA,B(m, n, N) = 0

Proof
Since mrA,R1 = mrB,R3 and mcA,R2 = mcB,R4, for every i(= 1, 2, · · · , m)
and j(= 1, 2, · · · , n),

ai· = bi· anda·j = b·j.

Thus,
di· = 0 and d·j = 0.

Since
d1j + d2j + · · · + dmj = 0,

at least one row can be described by linear combination of other dij , which implies
the determinant of this matrix is equal to 0. #$

This theorem shows that the rank of SR1,R2(m, n, N) is at most min(m, n) − 1,
which gives a contextual independence introduced in [3]. When a contingency
matrix gives contextual independence, it can be decomposed into a product of
three matrices[5]:

M(m, n, N) = Mm×sM(s, s, N ′)Ms×n, (4)

where where M(s, s, N ′) denotes the core matrix of M(m, n, N) whose rank is
equal to s and Mm×n shows a operator m × n matrix. Thus, we have obtained
a decomposition of a contingency matrix as follows.
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Theorem 4

AR1,R2(m, n, N) = BR3,R4(m, n, N) + Mm×sM
′(s, s, N ′)Ms×n, (5)

where M ′(s, s, N ′) gives a core matrix of DR1,R2(m, n, N) (s ≤ min(m, n) − 1).
#$

5 Residual Matrix as Difference Matrix

5.1 Main Results

Let us take the expected matrix of AR1,R2(m, n, N) as a special case of BR3,R4

(m, n, N) in the above section. Then, the difference matrix DA,B(m, n, N) is
equivalent to the residual matrix of AR1,R2(m, n, N), and we obtain the following
corollary, which was reported in [6].

Corollary 1. Let SR1,R2(m, n, N) denote the residual matrix of AR1,R2(m, n, N).
Then,

det SR1,R2(m, n, N) = 0 #$

Then, we obtained a decomposition of a contingency matrix as follows.

Theorem 5

MR1,R2(m, n, N) = mrM,R2 ⊗ mcM,R1 + Mm×sM
′(s, s, N ′)Ms×n, (6)

where M ′(s, s, N ′) gives a core matrix of SR1,R2(m, n, N) (s ≤ min(m, n) − 1).
#$

These features can be charaterized by special cases of difference matrices, as
shown in the above section.

Then, what is the original characteristic of residual matrices? The following
theorem shows this original feature of residual matrices.

Theorem 6. The residual of MR1,R2(m, n, N) is obtained as:

σij =
1
x··

⎧⎨⎩xij

∑
k �=i

∑
l �=j

xkl −

⎛⎝∑
l �=j

xil

⎞⎠⎛⎝∑
k �=i

xkj

⎞⎠⎫⎬⎭
=

1
x··

∑
k �=i
l �=j

(xijxkl − xkjxil) =
1
x··

∑
k �=i
l �=j

Δi,k
j,l ,

where Δi,k
j,l is the determinant of a 2 × 2 submatrix of MR1,R2(m, n, N) with

selection of i and k rows and j and l columns.
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Proof.

σij = xij −
xi· × x·j

x··
=

1
x··

{
xijx·· −

xi· × x·j
x··

}

=
1
x··

⎧⎨⎩xij

⎛⎝x·j +
∑
l �=j

x·l

⎞⎠ −

⎛⎝xij +
∑
l �=j

xil

⎞⎠ x·j

⎫⎬⎭
=

1
x··

⎧⎨⎩xij

⎛⎝∑
k �=i

∑
l �=j

xkl +
∑
l �=j

xil

⎞⎠ −

⎛⎝∑
l �=j

xil

⎞⎠⎛⎝xij +
∑
k �=i

xkj

⎞⎠⎫⎬⎭
=

1
x··

⎧⎨⎩xij

∑
k �=i

∑
l �=j

xkl −

⎛⎝∑
l �=j

xil

⎞⎠⎛⎝∑
k �=i

xkj

⎞⎠⎫⎬⎭
=

1
x··

∑
k �=i
l �=j

(xijxkl − xkjxil) #$

5.2 χ2-Test Statistics and Subdeterminants

This gives another proof of chi-square statistics for 2×2 contingency table. From
equation (2), we obtained:

X =
(

detM(2, 2, N)
x··

)2 2∑
i,j=1

{
1

xi·x·j
x··

}

=
(

detM(2, 2, N)
x··

)2

× x··

∑2
i,j=1 xi·x·j

x1·x·1x2·x·2

=
detM(2, 2, N)2x··

x1·x·1x2·x·2
=

x··(x11x22 − x12x21)2

x1·x·1x2·x·2

Thus, in case of 2 × 2 matrices, the chi-square distribution is closely related
with the distribution of the determinant. Especially, when the sample size and
the marginal distributions are fixed, a chi-square distribution with one freedome
gives the asymptotic distribution of detM(2, 2, N)2.

This result can be generalized into m × n matrix as follows.

X =
m∑

i=1

n∑
j=1

(
xij − x·jxi·

x··

)2

x·jxi·
x··

=
m∑

i=1

n∑
j=1

x·· ×
(σij)

2

xi·x·j

=
m∑

i=1

n∑
j=1

x·· ×

(
1

x··

∑
k �=i
l �=j

Δi,k
j,l

)2

xi·x·j
=

m∑
i=1

n∑
j=1

(∑
k �=i
l �=j

Δi,k
j,l

)2

x··xi·x·j
(7)

Thus, chi-square test statistics is related with square sum of linear combina-
tion of 2 × 2 subdeterminants of an given matrix.
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Theorem 7. The chi-square test statistics of M(m, n, N) is given as:

X =
m∑

i=1

n∑
j=1

(∑
k �=i
l �=j

Δi,k
j,l

)2

x··xi·x·j

#$

Therefore, since the above test statistic will approach to χ2-distribution, whcih
can be viewed as a special case of Γ -distribution (GA((m− 1)(n− 1)/2, 2)), it is
expected that the distribution of square sum of 2× 2 subdeterminants is closely
related with Γ -distribution GA(λ, β) whose density function is given as:

f(x) =
1

Γ (λ)βλ
xλ−1e−

x
β ,

where λ and β are a shape parameter and a scale parameter, respectively. In the
case of χ2 distribution, β is equal to 2, and λ = (m − 1)(n − 1)/2. Thus, the
density function can be derived as:

f(x) =
1

Γ (λ)2λ
xλ−1e−

x
2 .

Furthermore, these results also suggest that

σij =
1
x··

∑
k �=i
l �=j

Δi,k
j,l

follows a normal disitrubtion N(0, 1) in an asymptotic way.

6 Conclusion

In this paper, we focus on the difference between two matrices with the same
sample size and the marginal distributions, called difference matrix and we show
the following interesting results.

First, the samle sample size and marginal distributions make the determinant
of the difference matrix equal to 0. This shows that the information on marginal
distributions corresponds to that of one dimension in an given matrix and also
show that the residual part of difference matrix gives another information of
a contingency table. Secondly, although the number of elements of a matrix
grows n2, the size of marginal distributions is about 2n − 1. Thus, the finer
the granularity generated by two attributes becomes, more the contribution of
marginal distributions decreases. This suggests that another type of information
should be hidden in a larger size contingency table. Third, although the residual
matrix can be viewed as a special case of a difference matrix, the difference
between a given and its expected matrix has a distinguished nature: each element



586 S. Tsumoto and S. Hirano

of the difference matrix becomes linear combination of determinants of 2 × 2
submatrices. Thus, this type of difference is closely related with the nature of
determinants. Especially, in case of 2×2 matrix, the residual matrix gives a very
interesting form:

(−1)i+j

N
det M(2, 2, N),

which gives another proof that chi-square statistic of 2× 2 tables is related with
the determinant of contingency matrix.

This paper gives preliminary analysis of a contingency matrix and more formal
studies will be our future work.
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Abstract. A formal model of machine learning by considering user pref-
erence of attributes is proposed in this paper. The model seamlessly com-
bines internal information and external information. This model can be
extended to user preference of attribute sets. By using the user preference
of attribute sets, user preferred reducts can be constructed.

1 Introduction

A basic task of machine learning and data mining is to derive knowledge from data.
The discovered knowledge in general should be concise, precise, general, easy to
understand and practically useful. Typically, knowledge is expressed by using a
certain formal language or a representation scheme. It is a crucial issue to select
the most suitable features or properties of the objects in a dataset in the machine
learning process. This attribute selection problem is studied under many different
areas, such as data reduction, feature selection, rule generation, and so on [1,4,5,6].

Many proposals have been made regarding the effectiveness of individual at-
tributes, or subsets of attributes. They can be broadly divided into two classes,
the approaches based on internal information and the approaches based on exter-
nal information. Internal information and external information are so called and
distinguished with respect to the dataset. Internal information based approaches
typically depend on the syntactic or statistical information of the dataset. For
example, an attribute weighting function is designed by using attributes’ dis-
tribution information or prediction power. The most fit attribute is used firstly
in the rule construction process. On the contrary, external information based
approaches assign weights to attributes, or rank attributes based on external
semantics or constraints. It is important to realize that these two classes are
complementary to each other. Together, they may provide a realistic model for
machine learning and data mining. That is, it is desirable that one can consider
both syntactical and semantical information in a unified framework.

A review of existing research in machine learning observes that the major
research efforts have been done on the internal information based approaches,
although the external information based approaches may be more meaningful
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and effective. This may stem from the fact that external information covers a very
diverse range, is highly subjective, and usually is not well-defined. Consequently,
it may be difficult to build a well-accepted model. In this paper, we only consider
very simple cases of external information based on our intuitions. We provide a
formal model of machine learning by considering user preference of attributes.
The model seamlessly combines internal information and external information.

The rest of the paper is organized as follows. Section 2 discusses the user
preference of attributes. Section 3 extends the user preference of attributes to
attributes sets. Both qualitative and quantitative representations of these two
models are discussed. Section 4 illustrates the usefulness of the proposed model
by applying it to reduct construction. The conclusion is made in Section 5.

2 User Preference of Attributes

In many machine learning algorithms, it is implicitly assumed that all attributes
are of the same importance from a user’s point of view. Consequently, attributes
are selected based solely on their characteristics revealed in an information sys-
tem. This results in a model, which is simple and easy to analyze. At the same
time, without considering the semantic information of attributes, the model is
perhaps unrealistic. A more applicable model can be built by considering at-
tributes with non-equal importance. This type of external information is nor-
mally provided by users in addition to the information system, and is referred
to as user judgement or user preference.

User judgement can be expressed in various forms. Quantitative judgement
involves the assignment of different weights to different attributes. Qualitative
judgement is expressed as an ordering of attributes. In many situations, user
judgement is determined by semantic considerations. For example, it may be
interpreted in terms of notions that are more intuitive, such as the cost of testing,
the easiness of understanding, or the actionability of an attribute. It is virtually
impossible to list all practical interpretations of user judgement. In addition,
the meaning of a user judgement becomes clear only in a particular context of
application. To simplify our discussion, we treat user judgement as a primitive
notion. In other words, we only investigate the desirable properties of a user
judgement, as well as how to incorporate it into a machine learning process.

A practical issue is how to acquire user preference. One may argue that a user
might not be able to precisely and completely express preference on the entire
attribute set. For clarity, we simply assume that a user can provide such infor-
mation. This enables us to investigate the real issues without the interference
of unnecessary constraints. Practical constraints, although very important, can
always be resolved, at least partially, with further understanding of the problem,
or the development of additional methods.

2.1 Quantitative User Judgement

A simple and straightforward way to represent user judgement of attributes is to
assign them with numerical weights. Formally, it can be described by a mapping:
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w : At −→ 7, (1)

where At is a finite non-empty set of attributes, and 7 is the set of real numbers.
For an attribute a ∈ At, w(a) is the weight of a. The numerical weight w(a) may
be interpreted as the degree of importance of a, the cost of testing a in a rule,
or times of occurrence of a in a set (which is also called the frequency of a).
This naturally induces an ordering of attributes. For example, if the weights
are interpreted as costs, a machine learning algorithm should apply, if possible,
attributes with lower costs first. Furthermore, one may also apply arithmetic
operations on the weights.

The use of numerical weights for attribute importance has been extensively
considered in machine learning. In many learning algorithms, a numerical func-
tion is used to compute weights of individual attributes based on their distribu-
tion characteristics. According to the computed weights, attributes are selected.
For example, entropy-theoretic measures have been studied and used for at-
tribute selection [7].

2.2 Qualitative User Judgement

A difficulty with the quantitative method is the acquisition of the precise and
accurate weights of all attributes. On the other hand, a qualitative method only
relies on pairwise comparisons of attributes. For any two attributes, we assume
that a user is able to state whether one is more important than, or more preferred
to, the other. This qualitative user judgement can be formally defined by a binary
relation , on At. For any two a, b ∈ At:

a , b ⇐⇒ the user prefers a to b. (2)

The relation , is called a preference relation. If a , b holds, we say that the
user strictly prefers a to b. In contrast to the quantitative representation, the
preference does not say anything regarding the degree of preference, namely, how
much a is preferred to b.

In the absence of preference, i.e., if both ¬(a , b) and ¬(b , a) hold, we say
that a and b are indifferent. An indifference relation ∼ on At is defined as:

a ∼ b ⇐⇒ ¬(a , b) ∧ ¬(b , a). (3)

The indifference of attributes may be interpreted in several ways. A user may
consider the two attributes are of the same importance. The indifference may
also occur when the comparison of two attributes are not meaningful, as they are
incompatible. When both a and b are unimportant, it may not make too much
sense to compare them. The indifference represents such an absence of prefer-
ence. In fact, in many practical situations, one is only interested in expressing
preference on a subset of crucial attributes, and considers all unimportant at-
tributes to be the same.

Based on the strict preference and indifference, one can define a preference-
indifference relation � on At:

a � b ⇐⇒ a , b ∨ a ∼ b. (4)
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If a � b holds, we say that b is not preferred to a, or a is at least as good as b.
The strict preference can be re-expressed as a , b ⇐⇒ a � b ∧ ¬(b � a).

A user preference relation must satisfy certain axioms in order to represent
our intuitive understanding of preference. The following two axioms seem to be
reasonable for ,. For any a, b, c ∈ At:

(1). a , b =⇒ ¬(b , a) (asymmetry);
(2). (¬(a , b) ∧ ¬(b , c)) =⇒ ¬(a , c) (negative transitivity).

The asymmetry axiom states that a user cannot prefer a to b, and at the same
time prefer b to a. The negative transitivity axiom states that if a user does not
prefer a to b, nor b to c, then the user should not prefer a to c. If a preference
relation , on At is asymmetric and negatively transitive, it is called a weak
order.

A weak order imposes a special structure on the set of attributes. Additional
properties of a weak order are summarized in the following lemma [2].

Lemma 1. Suppose a preference relation , on a finite set of attributes At is a
weak order. Then,

– Exactly one of a , b, b , a and a ∼ b relations holds for any two a, b ∈ At;
– The indifference relation ∼ is an equivalence relation, which induces a par-

tition At/∼ of At;
– The relation ,′ on the partition At/∼, defined by [a]∼ ,′ [b]∼ ⇐⇒ a , b, is

a linear order, where [a]∼ is the equivalence class containing a.

A linear order is a weak order in which any two distinct elements are comparable.
This lemma implies that if , is a weak order, the indifference relation ∼ divides
the set of attributes into disjoint subsets. Furthermore, for any two distinct
equivalence classes [a]∼ and [b]∼ of At/ ∼, either [a]∼ ,′ [b]∼ or [b]∼ ,′ [a]∼
holds. In other words, it is possible to arrange the attributes into several levels
so that attributes in a higher level are preferred to attributes in a lower level,
and attributes in the same level are indifferent.

When each equivalence class contains exactly one attribute, the preference
relation , on At is in fact a linear order itself. The ordering has been considered
by some authors [3,9]. In general, if we do not care how to order attributes in
an equivalence class, we can extend a weak order into a linear order such that a
is ranked ahead of b if and only if a � b. For a weak order, its linear extension
may not be unique [2].

Example 1. The main notions of qualitative user preference can be illustrated by
a simple example. Suppose a user preference relation , is qualitatively specified
on a set of attributes At = {a, b, c, d} by the following weak order:

c , a, c , b, d , a, d , b, d , c.

This relation , satisfies the asymmetry and negative transitivity conditions.
Because of the absence of preference relation between attribute a and b, we say
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a ∼ b. Thus, three equivalence classes {d}, {c}, {a, b} can be found. They can
also be written as [d]∼, [c]∼, [a]∼ (or [b]∼), respectively. In turn, they can be
arranged as three levels in a linear order:

{d} ,′ {c} ,′ {a, b}.

If one does not care the order of attributes in an equivalence class, we can
extend the weak order of attributes into a linear order of attributes. The given
weak order can be extended to two linear orders on At:

d � c � b � a,

d � c � a � b.

2.3 Connections Between Quantitative and Qualitative Judgements

A quantitative judgement can be easily translated into a qualitative judgement.
Given the weights of attributes, we can uniquely determine a preference relation.
Suppose w(a) and w(b) represent the importance of a, b ∈ At, a preference
relation is defined by:

a , b ⇐⇒ w(a) > w(b). (5)

When w(a) and w(b) are the costs of testing attributes a, b ∈ At in a rule, the
following preference relation should be used instead,

a , b ⇐⇒ w(a) < w(b). (6)

In general, two attributes may have the same weights. Therefore, the induced
preference relation is indeed a weak order.

The translation to a preference relation only preserves the ordering of at-
tributes implied by the relative weights. The additional information given by
the absolute weight values is lost.

In the reverse process, a user preference relation can be represented in terms
of the weights of attributes. A rational user’s judgement must allow numerical
measurement.

The following theorem states that a weak order is both necessary and sufficient
for a numerical measurement [2]:

Theorem 1. Suppose , is a preference relation on a finite non-empty set At
of attributes. There exists a real-valued function u : At → 7 satisfying the con-
dition:

a , b ⇐⇒ u(a) > u(b), a, b ∈ At. (7)

if and only if , is a weak order. Moreover, u is uniquely defined up to a strictly
monotonic increasing transformation.

The function u is referred to as an order-preserving utility function. It pro-
vides a quantitative representation of a user preference. That is, the numbers of
u(a), u(b), . . . as ordered by > reflect the order of a, b, . . . under the preference
relation ,.
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The utility function also trustfully represents the indifference relation, i.e.,

a ∼ b ⇐⇒ u(a) = u(b), a, b ∈ At. (8)

According to Theorem 1, for a given preference relation, there exist many
utility functions. For a utility function, we can only obtain one preference rela-
tion. Under the ordinal scale, it is only meaningful to examine the order induced
by a utility function. Although numerical values are used, it is not necessarily
meaningful to apply them to arithmetic operations.

Example 2. We can easily observe the connections between a preference rela-
tion and a set of weights by the running example. Suppose we can define user
preference quantitatively on the set At = {a, b, c, d}. For example, we can de-
fine a utility function u1 as information entropy, therefore, u1(a) = 0, u1(b) =
0, u1(c) = 0.8, u1(d) = 1. We can also define another utility function u2 as the
cost of testing, therefore, u2(a) = 210, u2(b) = 210, u2(c) = 4, u2(d) = 0. The two
utility functions define two opposite orders for any pair of attributes. They also
use different measurement scales. While the utility function u1 is used, a pref-
erence relation is defined by Equation 5; while the utility function u2 is used,
a preference relation is naturally defined by Equation 6. The example identi-
fies that a user preference relations can be induced by more than one utility
functions. A utility function can decide a rational user preference.

One can impose addition axioms on user preference. It is then possible to
derive quantitative measurements using other scales. Different scales allow more
operations [2].

3 User Preference of Attribute Sets

Conceptually, rule learning in an information system can be viewed as two tasks,
the selection of a subset of attributes, and the construction of rules using such
attributes. The two tasks can in fact be integrated in one algorithm without
a clear separation. Ideally, the subset should contain more preferred attributes
and avoid including less preferred attributes. In this case, users should be able to
express the preference over subsets of attributes. This requires a user preference
relation on the power set 2At. In this section, we present the way to derive a
preference relation , on 2At based on a preference relation , on At.

3.1 Basic Properties

For simplicity, we use the same symbol to denote the preference relation on At
and the preference relation on 2At. Obviously, the relation , on 2At needs to
satisfy certain conditions.

By definition, , on 2At must be an extension of , on At. That is,

(E1). {a} , {b} ⇐⇒ a , b;
(E2). {a} ∼ {b} ⇐⇒ a ∼ b;
(E3). {a} � {b} ⇐⇒ a � b.
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Suppose , on At is a weak order. For a subset of attributes A ⊆ At, the
cardinality |A| = k, we can arrange the attributes of A into a linear order in the
form of a1 � a2 � . . . � ak. According to Theorem 1, this requires the following
axiom:

(T). , on 2At is a weak order.

The previous axioms may be considered as the basic properties of , on 2At.
In addition, , on 2At must allow quantitative measurements. One may impose
on additional conditions, depending on particular applications.

3.2 Qualitative Extensions

For a set of attributes, we can arrange them in a linear order based on the
preference-indifference relation �. This enables us to derive a possible ordering
of subsets by consecutively examining attributes one by one. Based on the di-
rections in which attributes are examined, we define two lexical orders. In the
left-to-right lexical order, we compare two sets of attributes from left to right, in
order to determine which set of attributes is preferred. In the right-to-left lexical
order, we compare attributes in the reverse order.

Definition 1. Left-to-right lexical order: Given two attribute sets A : a1 �
a2 � . . . � am and B : b1 � b2 � . . . � bn, let t = min{m, n}. We say that A
precedes B in the left-to-right lexical order, written A , B, if and only if

(a) there exists a 1 ≤ i ≤ t such that aj ∼ bj for 1 ≤ j < i and ai , bi, or
(b) ai ∼ bi for 1 ≤ i ≤ t and m < n.

Definition 2. Right-to-left lexical order: Given two attribute sets A : a1 �
a2 � . . . � am and B : b1 � b2 � . . . � bn, let t = min{m, n}. We say that A
precedes B in the right-to-left lexical order, written A , B, if and only if

(a) there exists a 0 ≤ i < t such that am−j ∼ bn−j for 0 ≤ j < i and am−i ,
bn−i, or

(b) am−i ∼ bn−i for 0 ≤ i < t and m < n.

These two lexical orders represent two extreme views and define two different
criteria for selecting the winner of attribute sets. Roughly speaking, the meaning
of these two can be interpreted as follows. The left-to-right method focuses on
the preferred attributes of the two sets. That is, the winner of all attribute sets
is determined by comparing the strongest attributes of individual sets. By the
left-to-right lexical order, an attribute set A is preferred to another attribute
set B if and only if (1) the most preferred attribute of A is preferred to the
most preferred attribute of B, or, (2) A is a proper subset consisting of the most
preferred attributes of B.

On the other hand, the right-to-left method emphasizes the less preferred
attributes of the two sets. The winner of all subsets of attributes is determined
by comparing the weakest attributes of individual sets. By the right-to-left lexical
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order, an attribute set A is preferred to another attribute set B if and only if (1)
the least preferred attribute of A is preferred to the least preferred attribute of
B, or, (2) A is a proper subset consisting of the least preferred attributes of B.

The left-to-right lexical order encourages an optimistic comparison, and the
right-to-left lexical order promotes a pessimistic comparison.

Example 3. The running example can be used to illustrate the differences be-
tween two lexical orders. Recall that attributes in Example 1 can be arranged
as {d} ,′ {c} ,′ {a, b}. For two attribute subsets A : d � c � a and B : d � a,
since d ∼ d and c , a, then A is the winner according to the left-to-right lexical
order. At the same time, since a ∼ a and d , c, thus B is the winner according
to the right-to-left lexical order.

For two attribute subsets C : d � c � a and D : c � b, since d , c, then C is
the winner according to the left-to-right lexical order. On the other hand, since
a ∼ b, c ∼ c and |D| < |C|, then D is the winner according to the right-to-left
lexical order.

It is essential to note that both lexical orders satisfy Axioms (E1,2,3) and (T),
and should be considered as examples of potential extensions of the preference
order from At to 2At. They may provide different preference orders based on
their criteria, as we just showed in the example. It may be difficult to argue
which one is better based solely on theoretical basis. In real applications, we
might also need to consider other extensions.

3.3 Quantitative Extensions

When user preference is given as weights of attributes, one can first define a pref-
erence and then use the previously discussed qualitative methods. The numerical
weights also offer addition methods. We can extend the weighting function w on
At to a weighting function on 2At. For simplicity, we use the same symbol to de-
note these two functions. Similarly, the extensions are not unique. For example,
for A ⊆ At, we consider the following possible extensions:

Additive extension: w(A) =
∑

a∈A w(a),
Average extension: w(A) = a∈A w(a)

|A| ,
Maximal extension: w(A) = maxa∈A w(a),
Minimal extension: w(A) = mina∈A w(a).

The extensions are not true or false. They are simply useful or not useful
for some purposes. One can interpret the meaningful extensions based on the
physical meaning of the weighting function on At. It is important to note that
only some extensions are meaningful in a particular application.

The values of an extension naturally define an order. For example, if w(a) is
a cost measurement function, the above extensions are interpreted as the total
cost, average cost, maximal cost and minimal cost, respectively. An attribute
set with the minimum cost is normally in favour. If w(a) is an information
measurement function, w(A) is the joint information of all attributes in the set.



A Model of Machine Learning Based on User Preference of Attributes 595

Normally, an attribute set with the maximal information gain is in favour. Based
on the computed weights, we can order subsets of attributes in a similar way as
given by Equations 5 and 6.

4 User Preference on Reducts

The usefulness of the proposed model can be illustrated by reduct construc-
tion. A reduct is the minimal subset of attributes that preserves the discernible
information of an information table. Conceptually, internal information deter-
mines a set of reducts, and user preference determines an ordering of reducts.
By involving user preference in the reduct construction process, we can observe
two directions. First is to choose the user preferred reducts while all reducts are
available. Second is to construct a user preferred reduct directly. It is obvious
that the second approach is more efficient.

Regarding the two lexical orders, we can define an RLR algorithm for com-
puting the winner reduct of the right-to-left lexical order, and an LRR algorithm
for computing the winner reduct of the left-to-right lexical order. We define that
an attribute set R′ ⊆ At is called a super-reduct of a reduct R if R′ ⊇ R; and an
attribute set R′ ⊂ At is called a partial reduct of a reduct R if R′ ⊂ R. Given a
reduct, there exist many super-reducts and many partial reducts.

An RLR algorithm uses a deletion strategy, that removes the less preferred
attributes one by one from the super-reduct, until a reduct is obtained. An RLR
algorithm can start from the largest super-reduct At, or a computed super-
reduct A ⊆ At. An LRR algorithm uses an addition strategy, that adds the
most preferred attributes one by one to an empty set, until a reduct is obtained.
It is important to note that as long as an attribute is added, it is hard to remove
it. Therefore, the addition strategy should be carried out with caution. The
general RLR and LRR algorithms are briefly illustrated below.

A general RLR algorithm:
Input: An information table S with At in a linear preference order.
Output: The winner reduct of the right-to-left lexical order.
(1) R = At, CD = At.
(2) While CD �= ∅:

(2.1) Consider all attributes in CD from right to left, let CD = CD − {a};
(2.2) If R − {a} is a super-reduct, let R = R − {a}.

(3) Output R.

A general LRR algorithm:
Input: An information table S with At in a linear preference order.
Output: The winner reduct of the left-to-right lexical order.
(1) R = ∅, CA = At.
(2) While R is not a reduct and CA �= ∅:

(2.1) Consider all attributes in CA from left to right;
(2.2) If R ∪ {a} is a partial reduct, let R = R ∪ {a}, and CA = CA − {a}.

(3) Output R.
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It is important to note that the deletion strategy and the addition strategy
correspond to the RLR algorithm and the LRR algorithm, respectively. The
cross effect is not easy to implement, if it is not impossible. The detailed imple-
mentation and discussion of these two strategies are presented in our another
recent paper [8], and will be addressed more carefully in our following research.

5 Conclusion

We propose a model for machine learning based on user preference of attributes.
This model can be extended to user preference of attribute sets. Both qualitative
and quantitative representations of user preference on attributes and attribute
sets are elaborately explored. With respect to user preference of attribute sets,
various of applications, such as the computation of the most preferred reducts,
can be intensively studied.
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Abstract. This paper presents a two-step method of combining two types of 
features for two-class Chinese text categorization. First, the bi-gram of 
character is regarded as candidate feature, a Naive Bayesian classifier is used to 
classify texts. Then, the fuzzy area between two categories is fixed directly 
according to the outputs of the classifier. Second, the bi-gram of word with 
parts of speech verb or noun is regarded as candidate feature, a Naive Bayesian 
classifier same as that in the first step is used to deal with the documents falling 
into the fuzzy area, which are thought of classifying unreliable in the previous 
step. Our experiment validated the soundness of the proposed method, which 
achieved a high performance, with the precision, recall and F1 being 97.65%, 
97.00% and 97.31% respectively on a test set consisting of 12,600 Chinese 
texts. 

1   Introduction 

Text categorization (TC) is a task of assigning one or multiple predefined category 
labels to natural language texts. To deal with this sophisticated task, a variety of 
statistical classification methods and machine learning techniques have been exploited 
intensively [1], including the Naïve Bayesian (NB) classifier [2], the Vector Space 
Model (VSM)-based classifier [3], the example-based classifier [4], and the Support 
Vector Machine [5]. 

Text filtering is a basic type of text categorization (two-class TC). There are many 
real-life applications [6], a typical one of which is the ill information filtering, such as 
erotic information and garbage information filtering on the web, in e-mails and in 
short messages of mobile phones. It is obvious that this sort of information should be 
carefully controlled. On the other hand, the filtering performance using the existing 
methodologies is still not satisfactory in general. The reason lies in that there exist a 
number of documents with high degree of ambiguity, from the TC point of view, in a 
document collection, that is, there is a fuzzy area across the border of two classes (for 
the sake of expression, we call the class consisting of the ill information-related texts, 
or, the negative samples, the category of TARGET, and, the class consisting of the ill 
information-not-related texts, or, the positive samples, the category of Non-
TARGET). Some documents in one category may have great similarities with some 
other documents in the other category, for example, a lot of words concerning love 
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story and sex are likely appear in both negative samples and positive samples if the 
filtering target is erotic information.  

Fan et al observed that most of the classification errors result from the documents 
of falling into the fuzzy area between two categories, and present a two-step TC 
method based on Naive Bayesian classifier [6-8], in which the idea is inspired by the 
fuzzy area between categories: in the first step, the words with parts of speech verb, 
noun, adjective and adverb are regarded as candidate feature, a Naive Bayesian 
classifier is used to classify texts and fix the fuzzy area between categories; in the 
second step, bi-gram of words with parts of speech verb and noun as feature, a Naive 
Bayesian classifier same as that in the previous step is used to classify documents in 
the fuzzy area. The two-step categorization framework is very good, but the TC 
method in [6-8] has a shortcoming: its classification efficiency is not well. The reason 
lies in that it needs word segmentation to extract the features, and at currently, the 
speed of segmenting Chinese words is not high.  

To overcome the shortcoming, this paper presents a TC method that uses the bi-
gram of character as feature at the first step in the two-step framework. Another 
object of this paper is to explore the biggest puzzled problem in Chinese text 
categorization: Comparing with a classifier that uses word as feature, why the 
performance of a classifier that uses the bi-gram of character as feature is better? This 
is implemented by comparing the experiments in this paper with those in [7]. The rest 
of this paper is organized as follows. Section 2 describes how to use a Naive Bayesian 
classifier to fix the fuzzy area between categories, and presents an assumption based 
on data observation; Section 3 describes experiments; Section 4 describes the related 
works; Section 5 summaries the whole paper.   

2   Fix the Fuzzy Area Between Categories by a Naïve Bayesian 
Classifier 

A Naïve Bayesian classifier is used to fix the fuzzy area in the first step. For a 
document represented by a binary-valued vector d = (W1, W2, …, W|D|), the two-class 
Naïve Bayesian classifier is given as follows: 
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where Pr{·} is the probability that event {·} occurs, ci  is category i, and 
pki=Pr{Wk=1|ci} (i=1,2). If f(d) 0, the document d will be assigned the category 
label c1, otherwise, c2. Let: 
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where Con is a constant relevant only to the training set, X and Y are the measures that 
the document d belongs to categories c1 and c2 respectively. (1) is rewritten as: 

ConYXdf +−=)(  (5) 

Apparently, f(d)=0 is the separate line in a two-dimensional space with X and Y 
being X-coordinate and Y-coordinate respectively. In this space, a given document d 
can be viewed as a point (x, y), in which the values of x and y are calculated according 
to (3) and (4).  

As shown in Fig.1, the distance from the point (x, y) to the separate line will be: 

)(
2

1
ConyxDist +−=  (6) 

 

Fig. 1.  Distance from point (x, y) to the separate line 

An assumption based on data observation 
Fig. 2 illustrates the distribution of a training set (refer to Section 3) regarding Dist in 
the two-dimensional space, with the curve on the left for the negative samples, and 
the curve on the right for the positive samples. As can be seen in the figure, most of 
the misclassified documents, which unexpectedly across the separate line, are near the 
line.  

Assumption: the performance of a classifier is relevant to the distance Dist in (6), 
most of the classifying error gathers in an area near the separate line, and the 
documents falling into this area only constitute a small portion of the dataset.   

Thus, the space can be partitioned into reliable area and unreliable area: 

<
>

≤≤

  reliable is   to  label  theAssigning                 

 reliable is    to  label  theAssigning        

 unreliable is for Decision          

22
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12

dc,     DistDist
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Fig. 2. Distribution of the training set in the two-dimensional space 

where Dist1 and Dist2 are constants determined by experiments, Dist1 is positive real 
number and Dist2 is negative real number. 

3   Experiments 

The dataset used here is composed of 12,600 documents with 1,800 negative samples 
of TARGET and 10,800 positive samples of Non-TARGET. It is split into 4 parts 
randomly, with three parts as training set and one part as testing set. All experiments 
in this section are performed in 4-fold cross validation.  

In the first step, the bi-gram of Chinese character is regarded as feature. The 
original feature set is further reduced to a much smaller one according to formula (8) 
or (9). A Naïve Bayesian classifier is then applied to the testing set. In the second 
step, only the documents that are identified unreliable in terms of (7) in the first step 
are concerned. This time, the bi-gram of Chinese word with parts-of-speech verb or 
noun is used as feature, and another Naïve Bayesian classifier same as that in the 
previous step is trained and applied. 
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where tk stands for the kth feature, which may be a Chinese character bi-gram or a 
Chinese word bi-gram, and ci is the ith predefined category.  

The following five methods are tried.  

Method-1: Use bi-gram of Chinese character as feature, reduce feature with (8), 
and classify documents directly without exploiting the two-step strategy.  

Method-2: same as Method-1 except feature reduction with (9).  
Method-3: same as Method-1 except bi-gram of Chinese word as feature.  
Method-4: Use the mixture of bi-gram of Chinese character and bi-gram of 

Chinese word as feature, reduce features with (8), and classify documents directly.    
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Method-5: (i.e., the proposed method): Use bi-gram of Chinese character as 
feature in the first step and then use bi-gram of Chinese word as feature in the second 
step, reduce feature with (8), and classify the documents in two steps. 

To extract the feature in the second step, CSeg&Tag3.0, a Chinese word 
segmentation and POS tagging system developed by Tsinghua University, is used to 
perform the morphological analysis for Chinese texts. Note that the proportion of 
negative samples and positive samples is 1:6. Thus if all the documents in the test set 
is arbitrarily set to positive, the precision will reach 85.7%. For this reason, only the 
experimental results for negative samples are considered in evaluation. 

Experiment 1: Selecting the feature reduction formula and determining the scale of 
feature set.    

Employing Method-1 and Method-2, the curves that the performance of a classifier 
changes with the used feature number are drawn and illustrated as Fig.3, in which 
Fig.3.a and Fig.3.b correspond Method-1 and Method-2 respectively.    

  

 

Fig. 3. The curves that the performance of a classifier changes with the used feature number 
when two kinds of feature reduction method (8) and (9) are exploited 

From Fig.3, the scales of feature set for (8) and (9) are determined as 800 and 
12000 respectively. In terms of precision, recall and F1, the corresponding 
performances are 95.42%, 88.00% and 91.56% in Fig.3.a, and 70.06%, 79.44% and 
74.39% in Fig.3.b. Comparing Fig.3.a and Fig.3.b, it shows that formula (8) is 
superior to formula (9) because not only the performance of Method-1 is higher than 
that of Method-2 (91.56% vs. 74.39%), but also the used feature number is smaller 
(800 vs. 12000).    

Experiment 2: Validating the assumption and determining constant Dist1and Dist2. 
To validate the assumption, the two measures, error rate (ER) and region percentage 
(RP), are introduced, which definitions are as follows.    

100%
set  testinga in misclassed texts of number the

region given a in misclassed  textsofnumber  the
ER ×=  

%100
set  testinga in  textsofnumber  the

region give a into falling  textsofnumber  the
RP ×=  

(a)                                                          (b)
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Employing Method-1, the curves that the performance (including ER and RP) of a 
classifier changes with the distance Dist are drawn and illustrated as Fig.4. From 
Fig.4, the constant Dist1 and Dist2 are determined as 32 and –52 respectively, and the 
corresponding performance of the classifier is given in Table.1.  

Fig.4 and Table.1 show that the assumption is true because 97.48% classification 
error occurs in a region (32 Dist -52), but all texts in the region is 40.23% of all texts 
in the testing set.       

 

Fig. 4. The curves that error rate and region percentage change with the distance Dist 

Table 1. The error rate and region percentage in a give region 

Region Error rate Region percentage 
32 Dist 0 28.26% 1.88% 
0 Dist -52 69.22% 38.44% 
32 Dist -52 97.48% 40.23% 

Experiment 3: Comparing the performances of five kinds of methods. 
The experimental results of five kinds of methods are given in Table.2. The results of 
Method-1 and Method-2 result from Experiment 1. The results of Method-3 result 
from reference [7]. Employing Method-4, the curves of the performance of a classifier 
changing with the used feature number are drawn and illustrated as Fig.5. From Fig.5, 
the scale of feature set is determined as 2000, and the corresponding performance is 
illustrated as Table.2. Employing Method-5, the feature number used in the first step 
is 800, the curves of the performance of a classifier changing with the feature number 
used in the second step are drawn and illustrated as Fig.6. From Fig.6, the scale of 
feature set used in the second step is determined as 8500, and the corresponding 
performance is illustrated as Table 2. 

Table 2. The performance of five kinds of methods 

Method  Precision Recall F1 Feature number 
Method-1 95.42% 88.0% 91.56% 800 
Method-2 70.06% 79.44% 74.39% 12000 
Method-3 93.15% 94.17% 93.65% 15000 
Method-4 97.80% 95.72% 96.71% 2000 
Method-5 97.65% 97.0% 97.31% 800+8500 
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Comparing Method-1, Method-3 and Method-4, it shows that Chinese word bi-
gram as feature has better discriminating capability meanwhile with more serious 
data sparseness: the performances of Method-3 and Method-4 are higher than that 
of Method-1, but the number of feature used in Method-3 is more than those used in 
Method-1 and Method-4 (15000 vs. 800 and 2000). Table 2 shows that the proposed 
method (i.e., Methond-5) has the best performance (F1 as 97.31%) and good 
efficiency. It integrates the merit of Chinese character bi-gram and word bi-gram. 
Using Chinese character bi-gram as feature in the first step aims at its better 
statistical coverage. For example, the 800 selected features in the first step can treat 
a majority of documents of constituting 59.77% of the testing set. Especially, 
Chinese character bi-gram as feature in the first step, it does not need Chinese word 
segmentation, and achieve a high computational efficiency. On the other hand, 
using word bi-gram as feature in the second step aims at its better discriminating 
capability, although the number of feature becomes comparatively large (8500). 
Comparing Method-5 with Method-1, Method-3 and Method-4, it shows that the 
two-step approach is superior to either using only one kind of features (Chinese 
character bi-gram or Chinese word bi-gram) in the classifier, or using the mixture of 
two kinds of features in one step. 

 

Fig. 5. The curves that the performance changes with the feature number under Method-4 

 

Fig. 6. The curves that the performance changes with the feature number used in the second 
step when the feature number used in the first step is fixed under Method-5 
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Comparing bi-gram of character as feature and bi-gram of word as feature 
Table 3 gives the experimental results in reference [7]. Method-I, Method-II and 
Method-IV in Table 3 are similar to Method-1, Method-2 and Method-4 in this paper 
respectively, the differences are that the used feature changes from bi-gram of 
Chinese character in this paper to Chinese word with parts-of-speech verb, noun, 
adjective or adverb in [7]. Method-III is the same as Method-3. Method-V is similar 
to Method-5 except that the feature used in the first step is different, Chinese word 
with parts-of-speech verb, noun, adjective or adverb in [7] as feature. 

Table 3. 

Method Precision Recall F1 Feature number 
Method-I 93.35% 88.78% 91.00% 500 
Method-II 78.04% 88.72% 82.67% 4000 
Method-III 93.15% 94.17% 93.65% 15000 
Method-IV 95.86% 91.11% 93.42% 800 
Method-V 97.19% 93.94% 95.54% 500+3000 

Comparing Method-1 and Method-I, Method-2 and Method-II, it shows that 
Chinese character bi-gram as feature has better performance (91.00% vs. 91.56, 
82.67% vs. 74.39% in F1), and Chinese word as feature need smaller feature number 
(500 vs. 800, 4000 vs. 12000), to sum up that the former (Chinese character bi-gram) 
has higher efficiency because it does not need Chinese word segmentation.  

Comparing Method-4 and Method-IV, Method-5 and Method-V, it shows that the 
combination of character and word bi-gram is superior to the combination of word 
and word bi-gram because the former has better performance (93.42% vs. 96.71%, 
95.54% vs. 97.31% in F1). Comparing Table 2 and Table 3, it shows that the proposed 
method in this paper (i.e., Method-5) has the best performance and efficiency, 
although it uses more features (800+8500 vs. 500+3000), but it does not need Chinese 
word segmentation in the first step.   

Based on experiments and analysis described in above, it shows that bi-gram of 
Chinese character as feature has better statistic capability than word as feature, thus the 
former has better classification ability in general. But for those documents that have 
high degree ambiguity between categories, bi-gram of Chinese word as feature has 
better discriminating capability. So, it is easy to obtain high performance if the two 
types of features are combined to classify Chinese texts in two steps like this paper. 

4   Related Works 

Combining multiple methodologies or representations has been studied in several 
areas of information retrieval so far, for example, retrieval effectiveness can be 
improved by using multiple representations [9]. In the area of text categorization in 
particular, many methods of combining different classifiers have been developed. For 
example, Yang et al. [10] used simple equal weights for normalized score of each 
classifier output so as to integrate multiple classifiers linearly in the domain of Topic 
Detection and Tracking; Hull at al. [11] used linear combination for probabilities or 
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log odds scores of multiple classifier output in the context of document filtering. 
Larkey et al. [12] used weighted linear combination for system ranks and scores of 
multiple classifier output in the medical document domain; Li and Jain [13] used 
voting and classifier selection technique including dynamic classifier selection and 
adaptive clas sifier. Lam and Lai [14] automatically selected a classifier for each 
category based on the category-specific statistical characteristics. Bennett et al. [15] 
used voting, classifier-selection techniques and a hierarchical combination method 
with reliability indicators. 

Comparing with other combination strategy, the two-step method of classifying 
texts in this paper has a characteristic: the fuzzy area between categories is fixed 
directly according to the outputs of the classifier. 

5   Conclusions 

This paper presents a two-step TC method to classify two-class Chinese text, in which 
bi-gram of character that does not need Chinese word segmentation as candidate 
feature is used in the first step, and bi-gram of word with parts of speech verb or noun 
as feature is used in the second step. The proposed method exploits a Naive Bayesian 
classifier to fix directly the fuzzy area between two categories in the first step. A 
Naive Bayesian classifier similar to that in the previous is used to deal with the 
documents of falling into the area in the second step, which are thought of classifying 
unreliable in the previous step. Experiments show that the method achieves a high 
performance. 

In addition, other conclusions can be drawn from the experiments and analysis: (1) 
The performance of a classifier is relevant to the distance from text point to separate 
line in a constructed space, most of the classifying error gathers in an area near the 
separate line; (2) Formula (8) is superior to (9) in feature reduction in two-class 
Chinese text categorization; (3) The two-step feature combination is superior to either 
using only one kind of features (Chinese character bi-gram or Chinese word bi-gram) 
in the classifier, or using the mixture of two kinds of features in one step; (4) The 
combination of character bi-gram and word bi-gram is superior to the combination of 
word and word bi-gram, the former has not only better performance but also better 
efficiency; (5) Bi-gram of Chinese character as feature has better statistic capability 
than word as feature, so the former has better classification ability in general; (6) For 
those documents that have high degree ambiguity between categories, bi-gram of 
Chinese word as feature has better discriminating capability.  

It is worth point out that we believe the proposed method is in principle language 
independent, though all the experiments are performed on Chinese datasets. 
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Abstract. This study proposes a hybrid model for online forecasting of
option prices. The hybrid predictor combines a Monte Carlo filter with
a support vector machine. The Monte Carlo filter (MCF) is used to infer
the latent volatility and discount rate of the Black-Scholes model, and
makes a subsequent prediction. The support vector machine is employed
to capture the nonlinear residuals between the actual option prices and
the MCF predictions. Taking the option transaction data on the Taiwan
composite stock index, this study examined the forecasting accuracy of
the proposed model. The performance of the hybrid model is superior to
traditional extended Kalman filter models and pure SVM forecasts. The
results can help investors to control and hedge their risks.

1 Introduction

The valuation of financial assets and the pricing of financial derivatives are one
of the most important areas in financial studies in recent years. Evidence of
this importance can be found in the large number of publications. Moreover,
option markets are among the top most popular shares of financial institutions.
To explore the markets well and improve investment yields, the modelling and
online predicting of option prices is very important for practitioners.

Due to the high risk in trading options, an accurate online forecast of option
prices is important for an investor to control and hedge his risk. Traditionally, the
literature of online forecasting of option prices focus on using Kalman filters (KF)
or extended Kalman filters (EKF) as methodologies. However, the KF requires
linearity and Gaussian conditions of the underlying stochastic processes, and the
EKF use a first order linear approximation to simplify the underlying processes,
which are all sub-optimal solutions. These methods are limiting because many
financial time series are stochastic, nonlinear and non-Gaussian. For example,
when one uses the Black-Scholes (BS) model [1] to predict the option price,
there are two latent state variables and the BS formula is nonlinear. Thus the
present article uses the Monte Carlo filter (MCF)[5,7] as a state estimator and
a predictor for the BS model, which does not require the linearity and Gaussian
conditions of the underlying processes.

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 607–616, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Recently, many nonparametric methods such as neural networks [16] or sup-
port vector machines (SVM) [10] are employed to forecast option prices, but
these models do not capture important financial characteristics–latent volatil-
ity and riskless discount rate of an option, and thus their performances are not
satisfactory. Combining MCFs with SVMs is a novel strategy proposed by this
article. The nonlinear patterns which can’t be predicted by the BS model (or
the MCF) is further captured by a SVM in our hybrid model.

Monte Carlo or particle filters (Gordon et al. [5], Kitagawa [7], Pitt and Shep-
hard [11], Merwe et al. [9]) are a sequential learning and inference methods which
are important in many applications involving real-time state estimates and on-
line forecasting, where data arrival sequentially. For instance, in high-frequency
financial analysis, huge transaction data are observed sequentially every minute.
Thus we need a fast online forecasting method with the computational simplic-
ity in the form of not having to store all the data, and information from the
recent past is given greater weighting than information from the distant past.
From a Bayesian perspective, MCFs allow one to compute, recursively in time,
a stochastic point-mass approximation of the posterior distribution of the states
given the observations. Consequently, MCFs are very suitable for high-frequency
online forecasting. For a comprehensive review of Monte Carlo filtering methods
see Doucet, Freitas, and Gordon [4].

Support vector machines (SVMs) (Cristianini, N. and J. Shawe-Taylor [3],
Schoelkopf, Burges, and Smola [12], Vapnik [14]) are forcefully competing with
Neural Networks as tools for solving nonlinear regression and pattern recognition
problems. They are based on some beautifully simple ideas and provide a clear
intuition of what learning from examples is all about. More importantly they
are showing high performances in practical applications. In very simple terms
an SVM corresponds to a linear method in a high dimensional feature space
that is nonlinearly related to the input space. Even though we think of it as a
linear algorithm in the high dimensional feature space, in practice, it does not
involve any computations in that high dimensional space. By the use of kernels,
all necessary computations are performed directly in input space.

Different forecasting models can complement each other in capturing dif-
ferent patterns of data sets, and both theoretical and empirical studies have
concluded that a combination of forecasts outperforms individual forecasting
models [2,6,8,13,15,17]. This study presents a hybrid model that combines the
MCF and a SVM to forecast an option price. In our hybrid approach, the MCF
model serves as a processor to handle the Black-Scholes model predictions (sto-
chastic predictions). Then, the residuals between the actual prices and the Black-
Scholes model predictions are fed into the SVM in the hybrid model. The SVM is
conducted to further reduce the prediction errors (deterministic nonlinear pat-
terns forecasting). Our empirical results demonstrated that the hybrid model
outperforms three individual models, the EKF, MCF, and pure SVM models.
These results revealed that neither the MCF model nor the SVM model can
capture all of the patterns in the option data. Only the hybrid model can sig-
nificantly reduce the overall forecasting errors.
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The remainder of the paper is organized as follows. Section 2 describes the
option price modelling and forecasting methods, including the BS model, the
MCF, the SVM and the hybrid models. Section 3 describes the data used in the
study, and displays the empirical results with discuss of our empirical findings.
Conclusions are given in Section 4.

2 Option Price Modelling and Forecasting

2.1 Black-Scholes Model

Black and Scholes [1] established the price of an European call option through
a well known formula, which is the solution to a second order partial differen-
tial equation. This closed analytical solution conferred elegance to the proposed
formulation and multiplied in extensive and complementary studies. Black and
Scholes [1] assumed that the underlying stock price follows a geometric Brownian
motion with constant volatility,

dS

S
= μdt + σdWt, (1)

where μ is the expected return and Wt is the Brownian motion. In their pa-
per, Black and Scholes derived the following partial differential equation which
governs prices of a call option or a put option,

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂2f

∂S2 = rf, (2)

where r is the riskless interest rate or discount rate. The solutions for the call
and put option prices are thus

C = SN(d1) − Ke−rτN(d2), (3)
P = −SN(−d1) + Ke−rτN(−d2), (4)

where C is the call option price, P the put option price, K the strike price, and
τ = T − t the maturity. Parameters d1 and d2 are as follows:

d1 =
ln(S/K) + (r + σ2/2)τ

σ
√

τ
, (5)

d2 = d1 − σ
√

τ . (6)

2.2 Monte Carlo Filters

BS formula in the previous section can be represented as a state-space form:

Ct, Pt = F (St, K, τ, r(t), σ(t)) + εt,

r(t) = r(t − 1) + ςt,

σ(t) = σ(t − 1) + ηt,
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where r, σ can be viewed as the hidden states. Ct, Pt the output observations are
a nonlinear function of St, K, τ, r(t), σ(t). St, τ , K are treated as the parameters
or the input signals. Consequently, an EKF or MCF can be employed to infer
the latent states and makes predictions.

In the following we focus on the estimation of states and predictions of future
option prices. The Bayesian state space representation of the nonlinear BS model
is given by an initial distribution p(x0), a measurement density p(yt|xt, θ) and a
transition density p(xt|xt−1, θ),

xt|xt−1 ∼ p(xt|xt−1, θ), (7)
yt|xt ∼ p(yt|xt, θ), (8)

x0 ∼ p(x0), t = 1, ..., T , (9)

where xt = (rt, σt), θ = (St, τ, K), yt = (Ct + ε1t , Pt + ε2t ), ε1t , ε
2
t ∼ N(0, 1), and

ε1t , ε
2
t are independent measurement noises.

The causality structure of this model can be easily represented through a
Directed Acyclic Graph, and under the previous assumptions the filtering and
prediction densities can be simplified as follows:

p(xt|y1:t, θ) =
p(yt|xt, θ)p(xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
, (10)

p(xt|y1:t−1, θ) =
∫
X

p(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1, (11)

where p(yt|xt, θ) is the likelihood, and p(xt|xt−1, θ) is the predictive distribution
of latent states.

At each step t + 1, as a new observation yt+1 becomes available, we are inter-
ested in filtering the hidden variables and make a prediction. In particular, we
want to approximate the prediction and filtering densities given in equations (11)
and (10) by means of sequential Monte Carlo methods. Assume that a weighted
sample {xi

t, w
i
t}N

i=1 has been drawn from the filtering density at time t. Each
simulated value xi

t is called “particle” and the particles set, {xi
t, w

i
t}N

i=1, can be
viewed as a random discretization of the state space X , with associated weights
wi

t, and the empirical filtering density can be written as

p̂(xt|y1:t, θ) =
N∑

i=1

wi
tδxi

t
(dxt). (12)

It is possible to approximate, by means of this particle set, the prediction
density given in equation (11) as follows:

p(xt+1|y1:t, θ) =
∫
X

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt �
N∑

i=1

wi
tp(xt+1|xi

t, θ), (13)

which is called empirical prediction density and is denoted by p̂(xt+1|y1:t, θ). As-
sume now that the quantity E(f(xt+1|y1:t+1)) is of interest. It can be evaluated



Combining Monte Carlo Filters with Support Vector Machines 611

numerically by a Monte Carlo sample {xi
t+1, w

i
t+1}N

i=1 drawn from the filtering
distribution

E(f(xt+1)|y1:t+1) �
1
N

∑N
i=1 f(xi

t+1)w
i
t+1

1
N

∑N
i=1 wi

t+1

.

For more details of Monte Carlo filters, we refer to [7,9].

2.3 Support Vector Machines

The support vector machines (SVMs) were proposed by Vapnik [14]. Based on
the structured risk minimization (SRM) principle, SVMs seek to minimize an
upper bound of the generalization error instead of the empirical error as in other
neural networks. Additionally, the SVMs models generate the regress function by
applying a set of high dimensional linear functions. The SVM regression function
is formulated as follows:

y = wφ(x) + b, (14)

where φ(x) is called the feature, which is nonlinear mapped from the input space
x to the future space. The coefficients w and b are estimated by minimizing

R(C) = C
1
N

N∑
i=1

Lε(di, yi) +
1
2
||w||2, (15)

where

Lε(d, y) =
{
|d − y| − ε |d − y| ≥ ε,
0 others, , (16)

where both C and ε are prescribed parameters. The first term Lε(d, y) is called
the ε-intensive loss function. The di is the actual option price in the ith pe-
riod. This function indicates that errors below ε are not penalized. The term
C
N

∑N
i=1 Lε(di, yi) is the empirical error. The second term, 1

2 ||w||2, measures the
smoothness of the function. C evaluates the trade-off between the empirical risk
and the smoothness of the model. Introducing the positive slack variables ξ and
ξ∗, which represent the distance from the actual values to the corresponding
boundary values of ε-tube. Equation (15) is transformed to the following con-
strained formation:

min
w,b,ξ,ξ∗

R(w, ξ, ξ∗) =
1
2
wT w + C

(
N∑

i=1

(ξi + ξ∗i ).

)
(17)

Subject to

wφ(xi) + bi − di ≤ ε + ξ∗i , (18)
di − wφ(xi) − bi ≤ ε + ξi, (19)

ξi, ξ
∗
i ≥ 0. (20)
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After taking the Lagrangian and conditions for optimality, one obtain the dual
representation of the model:

y = f(x, α, α∗) =
N∑

i=1

(αi − α∗
i )K(x, xi) + b, (21)

where K(x, xi) is called the kernel function. αi, α∗
i are the solution to the dual

problem and b follows from the complementarity Karush-Kuhn-Tucker (KKT)
conditions.

2.4 Hybrid Approaches

The hybrid prediction model of call option price Ct can be represented as follows:
(similar for put price Pt)

C̃t = B̃St + f̃t, (22)

where B̃St is the MCF prediction based on Black-Scholes, f̃t the nonlinear SVM
prediction, and C̃t the overall prediction. Let δt represent the residual between
the actual option price and the MCF at time t, namely,

δt = Ct − B̃St. (23)

The residuals are fed to the SVM, which further reduces the prediction errors,
that is,

δt = f̃(St/K, T − t, δt−1) + εt, (24)

where εt is the final residual.

3 Experimental Results and Analysis

The empirical data used in this research are the option transaction data on
the Taiwan composite stock index (TWSI) traded in Taiwan Futures Exchange
(TWIFEX). We studied the transaction data of call and put option prices from
16 September 2004 to 14 June 2005 with expiration on 15 June 2005. There are
184 observations. This study chooses three types of options. Data with K =
5800 represents the in-the-money options for call options in the sample period;
data with K = 6000 approximates the at-the-money options, while data with
K = 6200 represents the out-of-money options in the sample period.

In this study, we consider the one-step-ahead forecasting because one-step-
ahead forecasting can prevent problems associated with cumulative errors from
the previous period for out-of-sample forecasting. The EKF, MCF models are
trained in a sequential manner, while the SVM model is trained in a batch
manner, that is, 100 data points before the day of prediction are treated as the
training data set, and we used daily option closing prices in the remanding eighty
days of the data series to evaluate the performances of the various models.
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Traditional performance indices such as MSE (mean-squared error), RMSE
(root-mean-squared error), MAE (mean absolute error), and MAPE (mean ab-
solute percent error), can be used as measures of forecasting accuracy. In this
study, we use RMSE as the performance index, which is shown blow:

RMSE =

(
1
N

N∑
t=1

(dt − d̂t)2
)1/2

, (25)

where N is the number of forecasting periods, di is the actual option price at
period t, and d̂t is the forecasting option price at period t.

We compare six forecasting model in this paper, the trivial model, EKF,
MCF, pure SVM, EKF+SVM, and the new hybrid model. The trivial model
takes the current option price as the next day’s prediction. The MCF model
uses 100 particles for filtering and predictions, and the parameters used in the
SVM model are set as follows: C = 104, ε = 0.01, and σ = 0.1 for the Gaussian
Kernel.

Table 1 shows the forecasting performance of the trivial model, EKF, MCF,
pure SVM, EKF+SVM, and the new hybrid model for call option prices with
different types of options, while Table 2 provides the performance of these models
on predicting put option prices. The actual prices, predicted values and model
residuals of various models under the strike price of K = 6000 are displayed in
Figures 1-3 for reference.

Table 1. Forecasting Performance of Every Model on the Three Call Options

Out-the-Money At-the-Money In-the-Money
K = 6200 K = 6000 K = 5800

Trivial Predictions 0.01600 0.02157 0.02485
EKF Predictions 0.01653 0.01945 0.02049
MCF Predictions 0.01039 0.01085 0.01239
Pure SVM 0.02504 0.03757 0.03309

EKF+SVM 0.01082 0.01708 0.01422
New Hybrid Mode Predictions 0.00289 0.00233 0.00227

The results in Table 1 and 2 indicated that the EKF model does not necessar-
ily yield favorable forecasting results than the trivial prediction model. Some-
times the EKF predictions are even inferior to the trivial prediction method.
The performance of the pure SVM is similar, also slightly inferior to the trivial
prediction method.

Due to that the BS model is a quite nonlinear model, the linearized version
of the EKF model is not a good approximation. As indicated in Table 1 and 2,
due to the superior capability to infer two state variables in the nonlinear BS
model, the MCF model with just 100 particles systematically outperform the
trivial, EKF, and pure SVM models.
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Table 2. Forecasting Performance of Every Model on the Three Put Options

In-the-Money At-the-Money Out-the-Money
K = 6200 K = 6000 K = 5800

Trivial Predictions 0.02732 0.02463 0.02059
EKF Predictions 0.02209 0.01965 0.01705
MCF Predictions 0.01102 0.01036 0.00966
Pure SVM 0.04472 0.04382 0.03309

EKF+SVM 0.02719 0.01431 0.00849
New Hybrid Model Predictions 0.00375 0.00246 0.00294
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Fig. 1. EKF predictions on the option prices of K = 6000: This figure displays
predictions of the EKF on the option prices of K = 6000 over the sample period
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Fig. 2. Monte Carlo filter (Particle filter) predictions on the option prices
of K = 6000: This figure displays MCF predictions on the option prices of K = 6000
over the sample period
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Fig. 3. Final errors of the hybrid model predictions on the option prices
of K = 6000: This figure displays final errors of the hybrid model predictions on the
option prices of K = 6000 over the sample period

In two types of hybrid models, EKF+SVM and MCF+SVM, our empirical
results indicated that SVM can significantly improve the performance of the
original model. The best performance is achieved by combining MCF with SVM.
MCF+SVM outperformed the MCF model in terms of all three options. These
results revealed that none of the four individual models can capture all of the
nonlinear patterns in the option data. Hybrid forecasting is a good strategy.

4 Conclusion

This study proposes to combine a Monte Carlo filter with an support vector
machine as an option price predictor. The Monte Carlo filter serves as a state
estimator and a predictor for the BS model, and the nonlinear price patterns
which can’t be captured by the BS model is further captured by the support
vector machine.

For more than half a century, the Kalman filter and the extended Kalman fil-
ter have dominated many areas of time series forecasting, especially state space
models. However, options are nonlinear financial instruments. Their price dy-
namics are quite nonlinear, and thus linear prediction tools like the Kalman
filter and extended Kalman filter are not a good choice for online forecasting.
Recently many nonparametric regression methods such as SVM are employed
to do the forecasting, but these models do not capture an important financial
characteristic–latent volatility of an option, and thus their performances are not
satisfactory. Combining Monte Carlo filters with SVMs is a novel strategy pro-
posed by this article. Its performance is promising.

The powerful framework established in this study can also applied to other
online forecasting problems. A challenging future task is the Bayesian selection
of optimal weighting between the MCF model and the SVM model by data, and
to train the SVM by a Bayesian method to adjust its internal parameters.



616 S.-C. Huang and T.-K. Wu

Acknowledgment

This work was supported in part by the National Science Foundation of Taiwan
(NSC 95-2416-H-018-012).

References

1. Black, F. and Scholes, M. S., The pricing of options and corporate liabilities. Jour-
nal of Political Economy. 81 (1973), 637–654.

2. Clemen, R., Combining forecasts: a review and annotated bibliography with dis-
cussion. International Journal of Forecasting. 5 (1989), 559–608.

3. Cristianini, N. and Shawe-Taylor, J., An Introduction to Support Vector Machines.
Cambridge University Press. (2000)

4. Doucet, A., Freitas, N., and Gordon, N. J., editors. Sequential Monte Carlo Meth-
ods in Practice. Springer-Verlag. (2001)

5. Gordon, N. J., Salmond, D. J., and Smith, A. F. M., Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings. 140(2)
(1993), 107–113.

6. Grace, B. K., Black-Scholes option pricing via genetic algorithms, Applied Eco-
nomics Letters. 7(2) (2000), 129–132

7. Kitagawa, G., Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics. 5 (1996), 1–25.

8. Makridakis, S., Why combining works?. International Journal of Forecasting. 5
(1989), 601–603.

9. Merwe, R., Doucet, A., Freitas, N., and Wan, E., The unscented particle filter.
Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering
Department. (2000)

10. Pires, M. M., Marwala, T., American option pricing using multi-layer perceptron
and support vector machine, IEEE International Conference on Systems, Man and
Cybernetics. 2 (2004), 1279–1285.

11. Pitt, M. K. and Shephard, N., Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association. 94(446) (1999), 590–599.

12. Schoelkopf, B., Burges, C. J. C., and Smola, A. J., Advances in kernel methods–
support vector learning. MIT Press, Cambridge, MA. (1999)

13. Terui, N. and Dijk, H. K., Combined forecasts from linear and nonlinear time series
models. International Journal of Forecasting. 18 (2002), 421–438.

14. Vapnik, V. N., The Nature of Statistical Learning Theory, New York, Springer-
Verlag. (1995)

15. Wu, H. C., Pricing European options based on the fuzzy pattern of Black-Scholes
formula, Computers & Operations Research. 31(7) (2004), 1069–1081.

16. Yao, J. T., Li, Y. L., and Tan, C. L., Option price forecasting using neural networks,
Omega-International Journal of Management Science. 28(4) (2000), 455–466.

17. Zhang, G. P., Times series forecasting using a hybrid ARIMA and neural network
model. Neurocomputing. 50 (2003), 159–175.



Domain Knowledge Assimilation by Learning
Complex Concepts

Tuan Trung Nguyen

Polish-Japanese Institute of Information Technology
ul. Koszykowa 86, 02-008 Warsaw, Poland

nttrung@pjwstk.edu.pl

Abstract. Domain, or background, knowledge has proven to be a key
component in the development of high-performance classification sys-
tems, especially when the objects of interest exhibit complex internal
structures, as in the case of images, time series data or action plans.
This knowledge usually comes in extrinsic forms such as human ex-
pert advices, often contain complex concepts expressed in quasi-natural
descriptive languages and need to be assimilated by the classification
system. This paper presents a framework for the assimilation of such
knowledge, equivalent to matching different ontologies of complex con-
cepts, using rough mereology theory and rough set methods. We show
how this framework allows a learning system to acquire complex, highly
structured concepts from an external expert in an intuitive and fully in-
teractive manner. We also argue the need to focus on expert’s knowledge
elicited from outlier or novel samples, which we deem have a crucial im-
pact on the classification process. Experiments on a large collection of
handwritten digits are discussed.

Keywords: Rough mereology, concept approximation, ontology match-
ing, handwritten digit recognition, outlier samples.

1 Introduction

A machine learning problem can be viewed as a search within a space of hy-
potheses H for a hypothesis h that best fits a set of training samples T . Amongst
the most popular approaches to such problems are e.g. statistical learning, de-
cision trees, neural networks or genetic algorithms, commonly referred to as
inductive learning methods, i.e. methods that generalize from observed training
examples by finding features that empirically distinguish positive from negative
training examples. Though these methods allow for highly effective learning sys-
tems, there often exist proven bounds on the performance of the classifiers they
can construct, especially when the samples involved exhibit complex internal
structures, such as optical characters, facial images or time series data. It is
believed that analytical learning methods based on structural analysis of train-
ing examples are more suitable in dealing with such samples. In practice, best
performances are obtained using a combination of the two learning methods [5].

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 617–626, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An analytical learning algorithm, in addition to the training set T and a
hypothesis space H assume a domain theory D which carries prior knowledge
about the samples being learned. The search is now for a hypothesis h that best
fits T and at the same time conforms to D. In other words, a background or
domain knowledge is available to the learning system and may help facilitate the
search for the target hypothesis. One of the widely used approach to analytical
learning is the Explanation Based Learning (EBL) method, which uses specific
training examples to analyze, or explain, which features are relevant or irrelevant
to the target classification function. The explanations therefore can serve as
search control knowledge by establishing initial search points or by subsequent
altering search directions. In this paper, we investigate an architecture in which
the explanation comes from an external, possibly human, expert. Moreover, the
explanations will not come as a priori, but will be provided by the expert in a
two way dialog along with the evolution of the learning system.

One of the first and major challenges of this approach is that the knowledge
employed by the external expert is often expressed in a descriptive language,
called a foreign language Lf , which may contain natural language constructs.
This language is usually alien to the learning system, which has its own knowl-
edge encoded in a domestic language Ld. This is because the expert and the sys-
tem have different knowledge ontologies, meaning they rely on different concepts
and relations [2]. An ontology matching, i.e. a mapping between concepts and,
in a further step, relations used by the expert and the learning system is needed.

The expert knowledge ontology, similarly to the samples to which it applies,
will be highly structured. More specifically, it has the form of a lattice, or acyclic
tangled trees of concepts, representing different aspects of the expert’s percep-
tion about training samples. One can view these concepts as abstract informa-
tion granules which, together with binding relations amongst them, form the
expert’s reasoning about the samples. These concepts and, in a further steps,
their binding relations have to be translated, or in other words, approximated
by the learning system by means of its domestic expressions. Examples:

– SquareFace(Ed)≡ (Ed.getFace().Width - Ed.getFace().Height ≤ 2.0 cm)
– IsEclipse(p)≡ (s=p.GetSun())∧(m=p.GetMoon())∧(s∩m.Area≥ s.Area·0.9)

A key issue is that although the concepts and relations get approximated,
their hierarchical structure remains intact in translation. This aims to allow
parent concepts be approximated using the approximations of children concepts,
essentially building an approximate reasoning scheme. We will show how this
multi layered approximation can be performed using rough inclusion measures,
rough set decision rules and how to ensure the quality of approximation using
tools based on rough mereology theory.

The expert’s advices are based, in a natural way, on his perception on training
samples. Human perception and behavior are subject of extensive research of
Cognitive Science and Computational Psychology. We will discuss resemblances
and common points of interest between complex concepts’ approximation and
popular cognitive architectures.
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Another important issue is the focus we place on the analysis of atypical,
or outlier samples. Recent developments in pattern recognition clearly indicate
they are crucial to search refining. They allow to better understand the inter-
class dependencies of the sample collection and help to steer the search process
through vital points in the search spaces. Together with the explanation based
learning approach these outliers, borderline samples often prove to be key in
forming effective domain reasoning schemes.

2 Knowledge Elicitation from External Expert

We assume an architecture that allows a learning recognition system to consult
a human expert for advices on how to analyze a particular sample or a set of
samples. Typically this is done in an iterative process, with the system subse-
quently incorporating knowledge elicited on samples that could not be properly
classified in previous attempts.

Fig. 1. System’s Overview

2.1 Ontology Matching

The knowledge on training samples that comes from a expert obviously reflects
his perception about the samples. The language used to describe this knowledge
is a component of the expert’s ontology which is an integral part of his percep-
tion. In a broad view, an ontology consists of a vocabulary, a set of concepts
organized in some kind of structures, and a set of binding relations amongst
those concepts [2]. We assume that the expert’s ontology when reasoning about
complex structured samples will have the form of a multi-layered hierarchy, or
a lattice, of concepts. A concept on a higher level will be synthesized from its
children concepts and their binding relations. The reasoning thus proceeds from
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the most primitive notions at the lowest levels and work bottom-up towards
more complex concepts at higher levels.

As the human perception is inherently tolerant to variation and deviation,
the concepts and relations in his ontology are approximate by design. To use the
terms of granular computing, they are information granules that encapsulate the
autonomous yet interdependent aspects of human perception.

The knowledge elicitation process assumes that samples for which the learning
system deems it needs additional explanations are submitted to the expert, which
returns not only their correct class identity, but also an explanation on why, and
perhaps more importantly, how he arrived at his decision. This explanation is
passed in the form of a rule:

[CLASS(u) = k] ≡ =(EFeature1(u), ..., EFeaturen(u))

where EFeaturei represents the expert’s perception of some characteristics of
the sample u, while synthesis operator = represents his perception of some re-
lations between these characteristics. In a broader view, = constitutes of a rela-
tional structure that encompasses the hierarchy of experts’ concepts expressed
by EFeaturei.

The ontology matching aims to translate the components of the expert’s on-
tology, such as EFeaturei and binding relations embedded in the = structure,
expressed in the foreign language Lf , which may have the form of, e.g.

“A six is a digit that has a closed belly below a slanted neck.”
[CLASS(u) =‘6’] ≡ a, b are parts of u; “Below”(b,a); “SStroke”(a);“CBelly”(b)

into the patterns familiar to the learning system, which involve, e.g. pixels count-
ing or calculations of density or mass center of pixel collections.

The translation must be done so as to preserve the hierarchical structure of
the advice, at the same time allow for a flexible matching of a variations of
similar domestic patterns to a foreign concept, i.e. the translation result should
not be a single patterns, but rather a collection or cluster of patterns.

Single Concept Approximation. A foreign concept C is approximated by a
domestic pattern (or a set of patterns) p in term of a rough inclusion measure
Match(p, C) ∈ [0, 1]. Such measures take root in the theory of rough mereology
[8], and are designed to deal with the notion of inclusion to a degree. An example
of concept inclusion measures would be:

Match(p, C) =
|{u ∈ T : Found(p, u) ∧ Fit(C, u)}|

|{u ∈ T : Fit(C, u)}|

where T is a common set of samples used by both the system and the expert to
communicate with each other on the nature of expert’s concepts, Found(p, u)
means a pattern p is present in u and Fit(C, u) means u is regarded by the
expert as fit to his concept C.

Our principal goal is, for each expert’s explanation, find sets of patterns Pat,
Pat1,...,Patn and a relation =d so as to satisfy the following quality requirement :
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if (∀i : Match(Pati, EFeaturei) ≥ pi) ∧ (Pat = =d(Pat1, ..., Patn))
then Quality(Pat) > α

where p, pi : i ∈ {1, .., n} and α are certain cutoff thresholds, while the Quality
measure, intended to verify if the target pattern Pat fits into the expert’s concept
of sample class k, can be any, or combination, of popular quality criteria such
as support, coverage, or confidence [9].

In other words, we seek to translate the expert’s knowledge into the domes-
tic language so that to generalize the expert’s reasoning to the largest possible
number of training samples. More refined versions of the inclusion measures
would involve additional coefficients attached to e.g. Found and Fit test func-
tion. Adjustment of these coefficients based on feedback from actual data may
help optimize the approximation quality.

The use of rough inclusion measures allows for a very flexible approximation
of foreign concept. For instance, a stroke at 85 degree to the horizontal in an
image can still be regarded as a vertical stroke, though obviously not a ‘pure’
one. Instead of just answering in a ‘Y es/No’ fashion, the expert may express his
degrees of belief using such terms as ‘Strong’, ‘Fair’, or ‘Weak’.

Domestic patterns satisfying the defined quality requirement can be quickly
found, taking into account that sample tables submitted to experts are usu-
ally not very large. The most effective strategies seem to be genetic algorithms
equipped with some greedy heuristics.For example, [7] reported using this kind
of tools and methods for a similar problem.

Relations Between Features. Relations between expert’s features may in-
clude concepts such as ’Above’, ’Below’ or simply ’Near’. They express not only
expert’s perceptions about particular concepts, but also the interdependencies
among them. Similarly to the stand-alone features, these relations can also be
described by the expert with a degree of tolerance.

Fig. 2. Tolerant matching by expert
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The approximation of these relations has been formalized within the frame-
work of perception structures developed by Skowron [10]. A perception structure
S, in a simpler form, is defined as:

S = (U, M, F, |=, p)

where U is a set of samples, F is a family of formulas expressed in domestic
language that describe certain features of the samples and M is a family of
relational structures in which these formulas can be evaluated, while p: U →
M × F is a perception function such that ∀u∈U : p1(u)|=p2(u) (p1 and p2 are
the first and second component projections of p) which means that p2(u) is
satisfied (is true) in the relational structure p1(u). This may express that some
relations among features within samples are observed.

Perception structures, following natural constructs in the expert’s foreign lan-
guage, can involve tolerant matching. Two relational structures might be consid-
ered approximately the same if they allow for similar formulas to yield similar
results in majority of cases when these formulas are applicable.

Layered Approximate Reasoning Paradigm. Let’s observe that the ap-
proximation quality requirement previously introduced yields a powerful feature
of the multi-layered approximation scheme. First, as the target pattern Pat re-
tains its quality regardless of deviations of input patterns, the approximation
is robust with regards to noisy input data or imperfect performances on lower
levels. This also means high reusability of the same framework on changing or
evolving data. Second, we have the global stability, which guarantees that if only
some input patterns Pat,i are equally “close” or “similar” to EFeaturei, then
the target pattern Pat, = =d(Pat,1, ..., Pat,n) will meet the same quality re-
quirements as Pat to a satisfactory degree. This leads to an approximation of
EFeaturei which is independent from particular patterns Pati. The hierarchy
scheme itself therefore becomes a high level search knowledge control mecha-
nism that allow for the classifier system, when conditions are met, to bypass
intermediate levels of reasoning without sacrificing too much on approximation
quality.

It is noteworthy to observe that our approach, based on approximate reasoning
scheme and granular computing, though developed independently, have much in
common with theories and methods of Cognitive Science. For example, one of the
most fundamental assumption of Unified Theory of Cognition [6] stipulates that
human perception are inherently hierarchical and theories on such perception
should be deliberately approximate. Most, if not all, cognitive architectures such
as SOAR, ACT-R, Prodigy or recently developed ICARUS [4] are based on
knowledge and data chunking, which follows the hierarchical structure of human
perception. Chunking resembles in many ways the layered reasoning paradigm.
Many other common issues such as search control, target function learning or
external background knowledge assimilation can also be observed.

On the other hand, cognitive architectures seem not to incorporate the ap-
proximation of internal predicates or goal seeking strategies to a large extent,
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Fig. 3. Quality constraints

while the approximation of concepts and their binding relations is at the core of
our approach.

2.2 Analysis of Outlier Cases

Our architecture typically asks for the expert’s additional knowledge on samples
which escaped previous classification attempts. This eventually results in asking
the expert’s help on “hard” samples that had defied much of our classification
efforts, mainly because they differ to a significant extent from other samples of
their class, or belong to a boundary region between several classes.

Outliers are kind of atypical samples that either are markedly different from
the rest of their group in terms of some similarity measures, or behave very dif-
ferently from the norm [1]. These samples previously tended to be treated as bias
or noisy input data and were frequently discarded or suppressed in the learning
process. However, there is an increasing effort to develop better methods for
their analysis, based on the observation that they often carry useful diagnosis
on the characteristics of the sample domain and, if properly analyzed, may pro-
vide valuable guidance in discovering the causalities underlying the behavior of
a learning system. As such, they may prove to be valuable as additional search
control knowledge. Most popular measures to detect outliers can be found in [3].

While outlier detection does not pose significant computation problems, their
effective use in eliciting additional domain knowledge is believed difficult without
support of a human expert.

Having established a mechanism for eliciting expert’s knowledge as described
above, we can develop outlier detection tests that might be completely indepen-
dent from the existing similarity measures within the learning system as follows.
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For a given training samples u∗, we ask the expert for his explanation on u∗

and received a foreign knowledge structure =(u∗). Next, we approximate =(u∗)
under restrictive matching degrees to ensure only the immediate neighborhood
of u∗ is investigated. Let’s say the result of such an approximation is a pattern
(or set of pattern) p∗u. It is now sufficient to check Coverage(p∗u). If this coverage
is high, it signifies that u∗ may bear significant information that is also found in
many other samples. The sample u∗ therefore cannot be regarded as an outlier
despite the fact that there may not be many other samples in its vicinity in
terms of existing domestic distance measures of the learning system. This test
shows that outlier analysis and expert’s elicited knowledge are complementary
to each other.

In our architecture, outliers may be detected as samples that defied previous
classification efforts, or samples that pass the above described outlier test, but
may also be selected by the expert himself. In this way, we can benefit from the
best of both sources of knowledge.

3 Implementation

The proposed framework and methods have been verified with a OCR system
working on the NIST SD 19 handwritten digits. The domestic representational
language of digit images involves various simple pixel evaluation functions and
the Loci coding scheme, which reflects the local and global topological morphol-
ogy or strokes in an image.

The expert’s advices employ concepts such as ‘Circle’, ‘Slanted Strokes’ or
‘West Open Belly’. The expert will explain what he means when he says, e.g.
‘Circle’, by providing a decision table (U, d) with reference samples, where d is
the expert decision to which degree he considers that ‘Circle’ appears in samples
u∈U . The samples in U may be provided by the expert, or may be picked up
by him among samples explicitly submitted by the system, e.g. those that had
been misclassified in previous attempts.

Table 1. Perceived features

Circle

u1 Strong
u2 Weak
... ...
un Fair

Table 2. Translated features

#NESW Circle
u1 252 Strong
u2 4 Weak
... ... ...
un 90 Fair

We then attempt to find domestic feature(s) that approximates these degrees
of belief using, among other means, genetic algorithms. In this particular exam-
ple, such feature may be the number of pixels that have black neighbors in all
four directions (See Tab. 2).

Having approximated the expert’s features EFeaturei, we can try to translate
his relation = into our =d by asking the expert to go through U and provide
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us with the additional attributes of how strongly he considers the presence of
EFeaturei and to what degree he believes the relation = holds (See Tab. 3).

Table 3. Perceived relations

V Stroke WBelly Above

u1 Strong Strong Strong
u2 Fair Weak Weak
... ... ... ...
un Fair Fair Weak

Table 4. Translated relations

#V S #NES Sy < By Above

u1 0.8 0.9 (Strong,1.0) (Strong, 0.9)
u2 0.9 1.0 (Weak, 0.1) (Weak, 0.1)
... ... ... ... ...
un 0.9 0.6 (Fair, 0.3) (Weak, 0.2)

We then replace the attributes corresponding to EFeaturei with the rough
inclusion measures of the domestic feature sets that approximate those concepts
(computed in the previous step). In the next stage, we try to add other features,
possibly induced from original domestic primitives, in order to approximate the
decision d. Such a feature may be expressed by Sy < By, which tells whether the
median center of the stroke is placed closer to the upper edge of the image than
the median center of the belly. (See Tab. 4) Again, this task should be resolved by
means of adaptive or evolutionary search strategies without too much computing
burden, although it is more time-expensive.

The expert’s perception ”A ‘6’ is something that has a ‘vertical stroke’ ‘above’
a ’belly open to the west’” is eventually approximated by a classifier in the form
of a rule:

if S(#BL SL > 23) AND B(#NESW > 12%) AND Sy < By then CL=‘6’,

where S and B are designations of pixel collections, #BL SL and #NESW are
numbers of pixels with particular Loci codes, and Sy < By reasons about centers
of gravity of the two collections.

We compared the performances gained by a standard learning approach with
and without the aid of the domain knowledge. The additional knowledge, passed
by a human expert on popular classes as well as some atypical samples allowed to
reduce the time needed by the learning phase from 205 minutes to 168 minutes,
which means an improvement of about 22 percent without loss in classification
quality. In case of screening classifiers, i.e. those that decide a sample does not
belong to given classes, the improvement is around 40 percent. The represen-
tational samples found are also slightly simpler than those computed without
using the background knowledge.

Table 5. Comparison of performances

No domain knowledge With domain knowledge Gain
Total learning time 205s 168s 22%

Negative classifier learning time 3.7s 2.2s 40%
Positive classifier learning time 28.2s 19.4s 31%

Skeleton graph size 3-5 nodes 2-5 nodes
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4 Conclusion

A formal framework based on multi-layered approximate reasoning schemes for
the domain knowledge assimilation problem is proposed. We demonstrated that
rough mereology theory and granular computing can be successfully used to
transfer domain knowledge expressed in quasi-natural languages into domestic
languages of computer learning system. A universal, robust and stable scheme
for human-computer ontology matching in a clear, friendly interactive manner
is also presented. We also argue that outlier analysis is key to successful domain
knowledge elicitation whence elicited domain knowledge can help detect new
outlier. Comparison of selected common aspects with cognitive theories and ar-
chitectures has been outlined. Proposed methods have been verified by an OCR
system working on a large handwritten digit dataset.
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Abstract. In this paper, we investigate the problem of learning the de-
cision functions for sequential data describing complex objects that are
composed of subobjects. The decision function maps sequence of attribute
values into a relational structure, representing properties of the object de-
scribed by the sequence. This relational structure is constructed in a way
that allows us to answer questions from a given language. The decision
function is constructed by means of rule system. The rules are learned in-
crementally in a dialog with an expert. We also present an algorithm that
implements the rule system and we apply it to real life problems.

Keywords: Rough sets, Sequential pattern recognition.

Introduction

There are two types of sequential data:

– Data describing changes of objects in some evolving process.
– Data describing structural objects.

The first approach is suitable for physical phenomena, e.g., modeled by differen-
tial equations. In this case, surroundings of each point in the sequence is a state of
object. The second approach is natural while analysing the data generated as the
result of purposeful actions composing objects from simpler objects. Such a prop-
erty have for example textual data, voice, recorded parameters of car on road.

In this paper, we investigate the problem of the decision function learning for
data that belongs to the second mentioned type. The considered decision function
maps any sequence of attribute values into a relational structure, representing
properties of object described by the sequence. This relational structure is con-
structed in a way that allows us to answer questions from a given language. The
decision function is constructed by means of a rule system. In a consequence,
the decision function is compound (consists of vast number of rules), and has
compound domain. So it belongs to a huge hypothesis space and according to
statistical learning theory [11] cannot be learned only from data.

The function is learned in a dialog with an expert. The expert provides us
the domain knowledge: He explains his decisions in natural language. We ap-
proximate, in a sense, his language by the rule system. The rule system must
be compatible with the expert’s way of thinking. Then the rules acquired from

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 627–636, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the expert are tested on data. Finally, the expert is inquired about the cases
than does not match to the rules or are classified improperly. In this way, we
extract successive fragments of decision functions which converge to the ideal
description of the problem.

Due to the sequential character of data the rule system differs from the one
used with data represented by tables. Each object is described by a sequence of
attribute values. Complex objects can be decomposed into simple ones, which
correspond to the split of the attribute value sequence into smaller parts. How-
ever, the distance from the beginning of sequence does not distinguish objects.
Decision rules are not applied to the attributes according to their absolute po-
sition in sequence. Only the relative position of attributes is important for the
rule to recognize the pattern.

Rules are used to recognize objects. Successful rule application means that
object described by its construction belongs to the upper approximation of the
problem. Information about this object is added to the data as a new attribute.
The relational structure that describes the object is assigned to the attribute.
The other rules may use such an attribute to recognize more complex objects.

The problem discussed in the paper is relates to the objectives of the Infor-
mation Extraction (IE) [2,6,10].

IE is a subdiscipline of the Natural Language Processing. Its task is to find
information, in text written in a natural language, needed to fill a table with
description of some event. The attributes of the event are defined a priori.

The main differences follow the characteristics of the data. IE bases on the
fact that in modern languages words are marked out with spaces and meaning
of ambiguous parts of document can be determined using heuristic methods [1].

Our aim is to process sequential data in general. This implies that we can’t
take advantage of any a priori defined partition of the data sequence. We con-
centrate on solving the problem of ambiguity without the necessity of choosing
one out of the contradicting interpretations.

We discover the relational structures during the process of learning instead of
using a prori defined table.

We adopted the idea of syntax and semantic parsers well known in computer
science [3,4,5,8]. Yet we propose our own approach to representation of rules and
parser (rule-applying algorithm).

In Section 1, we formally define objects and attributes. In Section 2, we de-
scribe rules system properties. In Section 3 and 4, we define rules. In Section 5,
we discuss the representation of data. In Section 6, we propose efficient algorithm
for applying rules. In Section 7, we discuss the problem of learning the decision
rules. In Section 8, we present applications.

1 Objects, Attributes, Meanings and Relational
Structures

We are given a set of objects U , a set of attributes A, a set of meanings M and
a set of relational structures E .
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white figures:
black figures:
shapes with undefined colours:
colours:
letters (signs): a,. . . ,z,space

Fig. 1. Example of the set of objects

The signature of every structure in E is identical to the signature of the
language of questions, which is a set of sentences in some logic. Having a structure
from E we can deduce answers to the questions expressed in the logic.

The example of the set of objects is presented on Fig. 1 and the example of
corresponding relational structures is on Fig. 1.

constants: a,. . . , z, space, white, black, circle, triangle, square
unary relations: Shape, Colour
binary relations: Figure

Fig. 2. Signature for the set of relational structures

Each attribute a ∈ A is a function a : U → V , where V is the set of attribute
values. Each meaning e ∈ M is a function e : U → E . Only information defined
by attributes from A is available about objects from U . For each attribute a the
function h : A → M returns h(a) — the meaning of a.

We are given an infinite sequence of attributes {ai}∞i=−∞, where ai : U →
(V ∪ {#}), and a finite set X of attribute value sequences for some elements of
U . Each value sequence is finite, i.e., for each u ∈ U there exists n ∈ N such,
that for 0 < i ≤ n we have ai(u) �= # and for i > n ai(u) = # and ai(u) = #,
when i ≤ 0. In other words, each sequence from X has a finite interval of values
from V and every attribute beyond that interval is equal to #.

V = {a, . . . , z, space, colour, shape, figure}

Fig. 3. Set of attribute values

Objects in U have a hierarchical structure: u ∈ U may be composed of some
u1, u2, . . . , uk ∈ U . In terms of attributes’ sequence it means that the whole
sequence describes an object, every ai(u) describes an object, and every subse-
quence {ai(u)}n

i=k may describe an object.
u1 in Fig. 1 is composed of two smaller objects

– object described by sequence {a1(u1), . . . , a5(u1)} with associated mean-
ing: Colour(black)

– object described by sequence {a7(u1), . . . , a13(u1)} with associated mean-
ing: Shape(circle)
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objects’ attributes
ids a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

u1 w h i t e c i r c l e # #
u2 c i r c l e # # # # # # # #
u3 b l a c k p o l y g o n #
u4 w h i t e t r i a n g l e

Fig. 4. Object descriptions in terms of attribute value sequences

We denote the object described by a single ai as an atomic object and we
assume that the meaning of atomic objects is a simple function of value of their
attributes.

In our example meaning for ai is equal to its value:

h(ai)(u) = ai(u).

We say that objects u1, u2 represented by sequences {an+i(u1)}k
i=0 and

{am+i(u2)}k
i=0 are indiscernible if and only if an+i(u1) = am+i(u2) for each i

such that 0 ≤ i ≤ k.

– {a1(u1), . . . , a12(u1)} defines in an exact way
– {a1(u2), . . . , a6(u2)} is incomplete, and thus does not distinguish and
– {a1(u3), . . . , a13(u3)} does not discern , , and because it is too general
– On the other hand our set of relational structures does not provide distinction

between and , so {a1(u4), . . . , a14(u4)} is as exact as possible definition
of .

Information about objects from U is finite but it is not bounded. The number
of attributes does not provide itself any useful information. Only the order of
attributes is important.

2 Rule System

Our task is to discover the structure of objects from X having their description
provided in terms of attributes.

We assume that elements of U are constructed out of some smaller objects.
And these objects are represented by subsequences of elements of X . We recog-
nize them by means of rules. The rule application can be interpreted as a process
of object recognition. The rule recognizes the sequence of attribute values de-
scribing object and returns its meaning.

The rules can be divided into two parts: syntactical and semantic. Each syn-
tactical rule recognizes sequence of attribute values and returns a value of new
attribute constructed out from them. Any semantic rule operates on meanings
of recognized sequence of attribute values and generates meaning for the newly
constructed attribute.

We may derive the following rules for the example presented in previous
section:
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colour ::= w h i t e → {Colour(white)}
colour ::= b l a c k → {Colour(black)}
shape ::= c i r c l e → {Shape(circle)}
shape ::= t r i a n g l e → {Shape(triangle)}
shape ::= p o l y g o n → {Shape(circle), Shape(triangle), Shape(square)}
figure ::= colour space shape (C, , S) →

⋃
Colour(c)∈C

⋃
Shape(s)∈S{Figure(c, s)}

figure ::= shape S →
⋃

Shape(s)∈S{Figure(black, s), Figure(white, s)}

If we apply the rules to u4 we obtain the following attributes:

a1,5(u4) = colour h(a1,5)(u4) = {Colour(white)}
a7,14(u4) = shape h(a7,14)(u4) = {Shape(triangle)}
a1,14(u4) = figure h(a1,14)(u4) = {Figure(white,triangle)}
a7,14(u4) = figure h(a7,14)(u4) = {Figure(white,triangle), Figure(black,triangle)}.

So after the rule application we obtained meaning for the entire sequence.
We construct the upper approximation of the set of meanings in a sense that

for each sequence we find all possible meanings. For indiscernible objects we
generate rules that recognize the same sequence and return a different attribute
value or meaning.

3 Syntactic Rules

Now, we consider the problem of rule representation. Since attribute value se-
quence may be arbitrary long, there exists infinite number of possible rules. Only
a finite subset of them can be learned. We must have decided what class of lan-
guages will be recognized by our rule system. We chose regular languages as a
trade of between language strength and implementability. Yet for specific tasks
another choice could be more appropriate.

We represent syntactic rules using a modification of context-free grammars
by adding some special rule, called, a term accumulation rule. Formally, let

G = (Σ, N, XI , R, +)

be such that

– Σ =
⋃

u∈U
⋃

i{ai(u)} is finite set of atomic objects’ names (terminal sym-
bols),

– N = V \ Σ is a finite set of non-atomic objects’ names (non-terminal sym-
bols),

– XI ∈ N is the start-symbol of grammar,
– R is a finite set of production rules. Each production has the form A → α

or A → β+, where A is a non-terminal and α is a sequence of terminals and
non-terminals and β ∈ Σ ∪ N ; A → β+ is a shortcut for the set of rules:
A → β, A → ββ, A → βββ, . . . .
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– ≺ is a binary relation of Σ ∪N such that A ≺ B if and only if there is a rule
A → α in R such that B belongs to α or there is a rule A → B+,

– ≺ is an irreflexive and transitive partial order.

Proposition 1. A language L can be recognized by a grammar of the defined
above type if and only if L is a regular language.

The purpose of syntactic rules is to parse any sequence from U into XI .

4 Semantic Rules

In order to obtain the object meaning instead of recognizing its presence we
add semantic interpretations to symbols and rules. Let E be set of relational
structures (see Section 1 for a definition and Section 8 for an example). For
terminal symbols we define

[[·]]Σ : Σ → E .

For each A → α1 . . . αn rule we define

fA→α1...αn : En → E

For each A → β+ rule we define

fA→β+ : E+ → E

These semantic functions operates on the relational structures. They compose
greater structures out of smaller ones.

Now, we define semantics interpretation of symbols: For each σ ∈ Σ let

[[σ]] = [[σ]]Σ .

For each A ∈ N if A was derived using A → α1 . . . αn rule let

[[A]] = fA→α1...αn([[α1]], . . . , [[αn]]),

and if A was derived using A → β+ rule as β1 . . . βn sequence let

[[A]] = fA→β+([[β1]], . . . , [[βn]])

Let u be an object, and a an attribute, then

[[a(u)]] = h(a)(u)

Note that we may add many different semantic actions to each syntactic rule.
Obtaining rules that are grammatically identical but differ on semantic level.
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5 Data Sequence Representation

Our goal is to find all possible semantic interpretations (the upper approxima-
tion) for a given rule set and an attribute value sequence. We represent objects
recognized in data sequence as directed acyclic graph whose edges are labelled
by attribute values.

Having given attribute value sequence {σi}n
1 , σi ∈ Σ we create graph with

vertexes V = {v0, . . . , vn} and set of edges E = {v0
σ1−→ v1, . . . , vn−1

σn−→ vn}
Applying the rule A → α1, . . . , αk consists in finding all paths

va0

α1−→ va1

α2−→ va2 . . . vak−1

αk−→ vak

and adding for each of them the edge

va0

A−→ vak

to the graph. Formally, applying the A → β+ consisting in finding all paths

va0

β−→ va1

β−→ va2 . . . vak−1

β−→ vak

and adding for each of them the edge

va0

A−→ vak

to the graph.

6 Rule-Applying Algorithm

We divide set of symbols into layers: Let N0 = Σ and let

Nn+1 = {A : ∃A→α1...αk
∀i(αi ∈ Nn) ∨ ∃A→β+(β ∈ Nn)}

Now we divide the rule set R into layers. Let R−1 = ∅ and

Rn = ({A → α1 . . . αk : ∀iαi ∈ Nn} ∪ {A → β+ : β ∈ Nn}) \ Rn−1.

We begin with graph (V, E0), where E0 = E. We obtain graph (V, En+1) by
applying to (V, En) rules from Rn.

In order to do it efficiently we create prefix tree out of every layer: For each
rule A → α1 . . . αk in Rn we create path from the root labelled by symbols α1
till αk and we label the leaf tree node by A. For each node we merge path that
have identical labels. Using this data structure we can apply all A → α rules in
layer in O(|En|l log |Σ ∪ E| + |En||R+

n |) time, where

l = max
Rn

{k : A → α1 . . . αk ∈ Rn}

Since l, log |Σ ∪ E| and number of layers is relatively small |En| is crucial for
parser performance. The problem is that En contains information that we want
to obtain as a result of parsing process. If text have exponential number of
interpretations |En| will increase exponentially. To handle this problem we must
reduce the number of interpretations either by throwing away part of them or
merging them.
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7 Learning

Experiments indicated that the rules can be divided into two kinds:
The rules that describe the structure of sequences. They have complex se-

mantics and, therefore, they must be designed manually in dialog with experts.
Fortunately, in typical task there is only a small number of such rules.

The rules that contain the “vocabulary” of the problem. There may be lots
of them, but they split into a few groups and all the rules in each group produce
the same semantic function. These rules may be learned automatically.

The learning process may be performed analogically as in case of learning de-
cision tables: We create the training sample and using it we generate a classifier.
As a classification algorithm we use one of well known classifiers adjusted for
sequential data. For example, if we wish to use k-Nearest Neighbour algorithm
we introduce a similarity measure on attributes values and use the edit distance
to determine similarity of a pair of attribute value sequences.

The other possibility is specific for the sequential data. We learn the context
in which the sample is likely to appear instead of learning the sample itself.

One can also combine the above mentioned methods.
In the example presented in the following section we use a semiautomatic

way of learning, which takes the advantage of the fact that samples appear in
a small number of contexts. We derive rules automatically from the attribute
value sequences that are within the context which we manually indicated.

8 Application Example: Semantic Analyser for Sumerian
Ur III Economic Text Corpus

The Ur III economic text corpus consists of circa 43500 documents. They describe
the process of redistribution of goods in Ancient Sumer during the Ur III period
(2100BC-2000BC). The Ur III economic texts were the subject of sumerological
research for many years. The tablets were transliterated by many researchers,
who didn’t have the strict conventions for describing the tablet content. As
a result the corpus does not have a uniform format, the description of text
arrangement on tablets is not standardized and mixed with Sumerian text. The
other problem is that the Sumerian texts itself are often ambiguous on both
syntactic and semantic level.

The signature for structures included in E is composed of following elements:

– constants such as numbers, names, commodities and dates
– unary relations: Number, Name, Day, Month, Year, Date, Quantity,

Commodity Supplier, Receiver
– 5-tuple relation Transaction.

We arranged a rule set into the corpus. Most of the rules (about 3500) recog-
nize Sumerian personal names, names of gods and cities, etc. These rules were
generated in semiautomatic way described in Sect. 7. The remaining rules (about
200) describe the structure of the language.

We described contents of the whole tablet as a set of transactions:
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&P123831 = OIP 121, 101
tablet
obverse
1. 1(disz) sila4 ur-mes ensi2 1 lamb Urmes governor
2. 1(disz)# sila4 da-da dumu lugal 1 lamb Dada son of king
3. 1(disz)# sila4 id-da-a 1 lamb Idda
reverse
1. u4 2(u) 3(asz@t)-kam Day 23
$ 1 line blank
3. mu-DU delivery
4. ab-ba-sa6-ga i3-dab5 Abbasaga received
5. iti sze-KIN-ku5 month sze-kin-ku5
6. mu en {d}inanna ba-hun Year when high priest of goddess Innana
left was elevated to office
1. 3(disz) 3

Fig. 5. Example of transliterated cuneiform tablet

Date Quantity Commodity Supplier Receiver
23-11-AS05 1 sila4 ur-mes ensi2 ab-ba-sa6-ga
23-11-AS05 1 sila4 da-da dumu lugal ab-ba-sa6-ga
23-11-AS05 1 sila4 id-da-a ab-ba-sa6-ga

Fig. 6. Rule applying algorithm at work

The system allowed us to transform automatically the data (in this case
Sumerian economic document) from the sequential form into a table representing
a relational structure. We defined relational structure that represents informa-
tion contained in texts in a way convenient for further analysis.

9 Conclusions

We investigated the problem of learning the decision functions for sequential data.
Weproposedarulesystemthatallowsustomapdata intoacompounddecisionvalue.
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We introduced a heuristic distinction between rules that may and may not
be learned automatically. We outlined the general ideas for the classification
algorithms construction.

The question about kinds of rules that may be learned from data and details
of construction various classification algorithms require further studies.

In our future work, we plan to define properties of query languages relevant for
certain applications and extend the rule system for numerical data. We also plan
to combine the process of constructing the relational structure with deductive
reasoning, by creating an implicative interpretation for object recognition rules.

We would like also extend the process of learning to the higher level concepts
(e.g. soft concepts) that cannot be expressed in an exact way by means of our
relational structures.
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002 26 from Ministry of Scientific Research and Information Technology of the
Republic of Poland.
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Abstract. This paper presents a method of using virtual examples to improve 
the classification accuracy for data with nominal attributes. Most of the previ-
ous researches on virtual examples focused on data with numeric attributes, and 
they used domain-specific knowledge to generate useful virtual examples for a 
particularly targeted learning algorithm. Instead of using domain-specific 
knowledge, our method samples virtual examples from a naïve Bayesian net-
work constructed from the given training set. A sampled example is considered 
useful if it contributes to the increment of the network’s conditional likelihood 
when added to the training set. A set of useful virtual examples can be collected 
by repeating this process of sampling followed by evaluation. Experiments have 
shown that the virtual examples collected this way can help various learning al-
gorithms to derive classifiers of improved accuracy. 

1   Introduction 

Over the past decades, many researchers have been devoted to improving the accu-
racy of classification in various ways. Several new, improved or combined learning 
algorithms have been proposed. Ensemble methods, which use multiple classifiers 
derived from homogeneous or heterogeneous learning algorithms such as bagging [1], 
boosting [2] and stacking [3], have been developed. In addition, methods of trans-
forming a training set into a more suitable one for learning have been widely investi-
gated. Noisy example elimination [4], numeric attribute discretization [5], new attrib-
ute synthesis [6], feature selection [7], and inclusion of unlabeled examples [8] belong 
to such transformation methods. This paper proposes a method of using virtual exam-
ples for learning, which is also a way of transforming the given training set. 

A virtual example is an artificial example that does not exist in the original training 
set. A virtual example is useful when it has a high prior probability and contributes to 
improving classification accuracy. In order to generate a useful virtual example, we 
sample a virtual example from a Bayesian network constructed from the original 
training set, and evaluate it by the increment of the network’s conditional likelihood. 
Once a generated virtual example is found to be useful by this evaluation, it is saved 
and used to update the network for the next sampling. By repeating the process of 
sampling a virtual example, we can obtain as many virtual examples as we want. In 
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order to determine the appropriate size of the virtual example set to use, we generate 
candidate virtual example sets of various sizes. The best virtual example set is then 
selected through cross-validation and statistical significance tests. The selected virtual 
example set is used for learning, together with the original training set. Experiments 
with nominal attribute data have shown that our method improves the classification 
accuracy of various learning algorithms. 

The next section digests related research. Section 3 explains in detail our method of 
generating useful virtual examples from Bayesian networks. Section 4 shows a 
method of selecting the best virtual example set among candidates. Section 5 evalu-
ates the proposed method and summarizes the experimental results. Finally, Section 6 
gives our conclusions and some topics for further research. 

2   Related Work 

Many previous works have reported promising results improving classification accu-
racy by using virtual examples. [9] proposed a method that placed a virtual example 
in the sparse regions of example space and then labeled its class by a neural network 
generated from the original training set. The method was applied to the robot arm 
kinematics problem. [10,11] generated virtual examples by using symmetrical image 
transformation and rotating a two-dimensional prototypical face and weighted-
averaging each person’s images for face recognition. [12] presented a simple method 
for a face verification system with a neural network. It generated virtual examples by 
applying simple geometric transformations to the original images. [13] generated 
virtual support vectors by using the desired invariance transformations of real sup-
port vectors for a digit recognition problem. [14] proposed a simple method that 
generates virtual examples by applying geometric transformations to images. It im-
proved the performance of a support vector machine for a handwritten Japanese 
Hiragana character classification. [15] proposed a method of generating a virtual 
example by combining two text documents of the same category, and improved the 
accuracy of text classification. 

These studies focused on classification problems with numeric attributes only. In 
their methods, virtual examples were generated by using domain-specific knowledge 
or by simple heuristics. Their aim of using virtual examples is to improve the accu-
racy of a particular classifier under investigation. In contrast, our method concentrates 
on classification problems with nominal attributes. We use Bayesian networks to 
generate virtual examples without using any domain-specific knowledge. It has been 
shown that the virtual examples generated by our method can improve the accuracy of 
classifiers derived by various learning algorithms. 

3   Sampling Useful Virtual Examples 

A virtual example is considered useful if it has a high prior probability and has posi-
tive effects on classification. To obtain virtual examples of a high prior probability, a 
naïve Bayesian network is constructed from the original training set and then the 
examples are sampled from this network. To select only those examples that are likely 
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to contribute to the improvement of classification accuracy, each sampled example is 
evaluated to see whether, if it is included, we could construct the next version of the 
network with increased conditional likelihood. Although the naïve Bayesian model is 
used as a means of sampling and evaluation of virtual examples, they can be used not 
just to improve the performance of naïve Bayes classifier but to improve classifiers 
derived by other learning algorithms. 

3.1   Using Bayesian Network for Sampling 

A Bayesian network is defined by a directed acyclic graph G = W, E  and a set of 
conditional probability tables . Among the nodes in W = {x1, x2,…, xm–1, xm},  
x1, x2,…, xm–1 represent the random variables corresponding to the attributes and xm 
represents the class. A directed edge xj, xi  ∈ E indicates that xj is a parent of xi. Note 
that xi is conditionally independent of its non-descendents given its parents. Each 
node i contains a conditional probability table i = {pi,j,k | j ∈ the domain of i, k ∈ the 
domain of xi}, where i is the parents of i and pi,j,k = P(xi = k | i = j). One popular 
measure for evaluating the quality of a Bayesian network for a given data is the likeli-
hood. The likelihood of a training set D = {X1, X2,…, Xn} on a Bayesian network B is 

 L(D|B) = PB(D) = d PB(Xd) = d PB(x1 = xd,1,…, xm = xd,m) 

= d i PB(xi = xd,i |  i = d,i) (1) 

where Xd is the d-th example in D, PB(D) is the posterior probability of D, given B, xd,i 
is the i-th attribute’s value (or class value when i = m) of Xd, and d,i is the value of the 
parent attributes of the i-th attribute of Xd. Having a fixed set of edges E, we can eas-
ily determine  that maximizes L(D|B) by applying maximum likelihood parameter 
learning. Let ni,j and ni,j,k be the numbers of examples in D satisfying i = j and i = j ∧ 
xi = k, respectively. Then maximum likelihood parameter learning simply sets pi,j,k to 
ni,j,k / ni,j. It is expected that virtual examples sampled from a Bayesian network of 
maximum likelihood will have higher prior probabilities than those generated by 
assigning arbitrary values to the attribute and class variables. 

We just saw that it is simple and easy to determine the maximum likelihood value 
for  when E is given, but finding the best structure E is a very difficult problem. 
Several studies have suggested heuristic methods of searching for a reasonable struc-
ture under some constraints [16]. However, these methods usually require consider-
able time to run. Therefore, in this paper, we adopt a naïve Bayesian network that 
assumes a strong conditional independence among the attributes, given the class. 
Naïve Bayes learning algorithm runs very fast and has been successfully applied to 
many classification problems [17].  

After the network structure and the parameters are determined based on the given 
training set, a virtual example is generated simply as follows. First, a class value is 
sampled from the class node’s probability table. Then, each attribute’s value is sam-
pled from the conditional probability table of the corresponding attribute node. Once 
the class and all the attribute values are determined, a virtual example is obtained. 
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3.2   Conditional Likelihood as a Measure of Usefulness 

We cannot expect to be able to derive a better classifier by using the training set ex-
panded by simply adding the virtual examples sampled from the Bayesian network. 
Classification accuracy may be bound to the accuracy of the Bayesian network that 
generates the virtual examples. Therefore, we test each sampled example to see 
whether it could really improve the classification accuracy. To qualify a virtual exam-
ple, we introduce a strong but reasonable hypothesis: If a virtual example is useful, 
most learning algorithms can generate more accurate classifiers by using it. Under 
this hypothesis we expect that a virtual example is probably useful if it potentially 
increases the accuracy of a certain learned classifier. A proven theorem says that a 
Bayesian network with a higher conditional likelihood can classify examples more 
accurately [18]. Some studies also support this theorem by experiments [16, 19, 20, 
21]. By adopting the theorem and our hypothesis, a virtual example is regarded as 
useful if it increases the conditional likelihood of the network from which it is sam-
pled. The conditional likelihood is defined as 

 

 CL(D|B) = d PB(xd,m| xd,1,xd,2,…,xd,m-1) (2) 
 

where xd,i is the i-th attribute’s value (class value when i = m) of training example Xd. 
This conditional likelihood can be easily calculated by applying Bayes rule and the 
conditional independence assumption as follows: 

 

PB(xd,m| xd,1,xd,2,…,xd,m-1) = α PB(xd,1,xd,2,…,xd,m-1 | xd,m)PB(xd,m) 

                         = α PB(xd,m) i PB(xd,i | xd,m)        (3) 
 

where α is the normalization constant. 
Let B be the Bayesian network constructed from the training set D and B+ be the 

same network after incrementally adjusting the conditional probability tables [22] 
according to D+ = D ∪ {v}, where v is a virtual example. The virtual example v is 
considered useful if CL(D+|B+) – CL(D|B) > 0. 

Now, we summarize the procedure for sampling useful virtual examples: (1) a 
Bayesian network B is built from the original training set D. (2) A virtual example v is 
sampled from B. (3) B is updated to B+ by incrementally adjusting the conditional 
probability tables using D+ = D ∪ {v} as a new training set. (4) If CL(D+|B+) – 
CL(D|B) ≤ 0, go back to step (2). Otherwise, v is qualified and D and B are replaced 
by D+ and B+ and go back to step (2). The procedure continues until a desired number 
of virtual examples are obtained. 

4   Selecting a Virtual Example Set for Learning 

Two questions should be answered regarding the generation and use of virtual exam-
ples for learning. The first is how many virtual examples we want to generate and use. 
The second is how we guarantee that the generated virtual examples can really im-
prove the accuracy of learned classifiers. Since we employ naïve Bayesian model to 
generate virtual examples, we cannot take it for granted to have classifiers other than 
naïve Bayes be improved by using such virtual examples. One may also be curious if 
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the virtual examples generated and evaluated by naïve Bayesian model could be use-
ful for other type of classifiers when given a problem in which naïve Bayes does not 
perform well. 

To cope with these questions we derive virtual example sets of various sizes and 
select one from them based on accuracy estimation and a statistical significance test. 
We first construct b virtual example sets V1, V2, . . . , Vb of increasing sizes from the 
sequence of useful virtual examples V = v1, v2, …, vs  obtained by the procedure 
described in the previous section, where Vi =  {vj | 1  j   i × (s / b) }. To select a 
virtual example set of an appropriate size for a particular learning algorithm, we run 
the learning algorithm to derive b + 1 classifiers h0, h1, . . . , hb, where h0 is the classi-
fier derived by using only the original training set D, and hi by using D ∪ Vi. The 
accuracies of these classifiers are estimated by self cross-validation. When cross-
validating, virtual examples are used only for learning but not for testing. If, for every 
i, hi shows significantly better accuracy than h0, then Vi is selected as a candidate. A t-
test is applied for this statistical verification. Among all these candidates, the one that 
shows the best estimated accuracy is selected for final learning without leaving any 
holdout. The learning algorithm will not choose any virtual example set if none passes 
the significance test with a certain predetermined confidence level. In that case, we 
conclude that the virtual examples selectively sampled from naïve Bayesian network 
are of no help to the learning algorithm at hand for this particular problem. A detailed 
algorithm of the proposed method is given in Fig. 1. 

5   Experimental Results 

The proposed method was evaluated by using eleven nominal attribute data sets se-
lected from UCI machine learning repository [23]. Table 1 shows the characteristics 
of these data sets. The learning algorithms tested include naïve Bayes (NB), nearest 
neighbor (1-NN), decision tree (C4.5)[24], SVM using sequential minimal optimiza-
tion (SMO) [25], and naïve Bayes tree (NBtree), for which the experiments were done 
with Weka data mining software [26]. In each experiment, the classification accuracy 
was averaged from the results of ten tenfold cross-validations. Virtual examples were 
generated up to 500% of the original training set and ten virtual example sets ranging 
from 50% to 500% were constructed. The confidence level of the t-test for selecting a 
virtual example set was set at 90%. 

Table 2 summarizes the experimental results. The superscript +V indicates that vir-
tual examples were used for learning in addition to the original training examples. If 
there is a statistically significant difference between the accuracies of classifiers with 
and without virtual examples, a thick arrow is put at the front of the result. For the 
significance test, a t-test is used with a confidence level of 90%. NB+V shows signifi-
cant improvement over NB in seven data sets. 1-NN+V and C4.5+V also outperform 1-
NN and C4.5 in six data sets. SMO and NBtree outperform their counterparts in five 
data sets. An interesting result can be found by carefully inspecting Table 2. NB 
showed the worst performance among the five learning algorithms with the audiology 
data. Although the virtual examples were generated from the naïve Bayesian model, 
other learning algorithms such as 1-NN, C4.5, and NBtree performed significantly  
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procedure Learning-with-Virtual-Examples 
input 

L – learning algorithm to use 
D – training set 
s – maximum number of virtual examples to be generated 
b – number of virtual example sets derived 
c –confidence in t-test for selecting a virtual example set      

output 
h – classifier derived by L with virtual examples 
 

begin 
V  ø 
Build a Bayesian network B using D 
Calculate the conditional likelihood cl of  D on B 
repeat until |V| < s 

Generate a virtual example v by sampling from B 
Copy B to B+ and incrementally update B+ with v 
Calculate the conditional likelihood cl+ of D on B+ 
if cl+ > cl then 

Add v to V 
B  B+, cl  cl+ 

Generate Vs = {V1, V2, …, Vb}, Vi  {vj | 1  j   i × s / b }. 
Get accuracy list A0 by using L with D (ten-ten cross-validations are used) 
a*  average of A0, V

*  φ 
for each Vi in Vs 

Get accuracy list Ai by using L with D ∪ Vi 
if Ai is significantly higher than A0 by t-test with confidence c then 

if average of Ai is greater than a* then 
a*  average of Ai, V

*  Vi 
Derive a classifier h by using L with D ∪ V* 
return h 

end 

Fig. 1. The algorithm for generating a classifier with virtual examples 

better when they used those virtual examples. These experimental results strongly 
support our hypothesis introduced in Section 3. 

Table 3 shows the effects of different confidence levels used in the procedure of se-
lecting a virtual example set. Confidence levels tried were 0%, 25%, 50%, 60%, 70%, 
80%, 90%, and 99%. With each level, we counted the numbers of cases (11 data sets 
and 5 learning algorithms constitute 55 cases in total.) in which learning with virtual 
examples showed a significantly higher accuracy than that without (Win), a signifi-
cantly lower accuracy than that without (Loss), and no difference (Draw). The best 
result was obtained when the confidence level was set to 90%. However, since the 
overall results were not that sensitive to various different levels, it seems that our 
method can reliably generate useful virtual examples even without any t-test. 
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Table 1. Characteristics of data sets used 

Data set # of examples # of attributes # of classes 

audiology 226 69 24 

breast-c 286 9 2 

kr-vs-kp 3,196 36 2 

monks-1 556 6 2 

monks-2 601 6 2 

monks-3 554 6 2 

primary 339 17 25 

soybean 683 35 19 

splice 3,190 62 3 

vote 435 16 2 

zoo 101 17 7 

Table 2. Accuracy of various classifiers with/without virtual examples (unit: percentage) 

Data set NB NB+V 1-NN 1-NN+V   C4.5 C4.5+V SMO SMO+V NBtree NBtree+V 

audiology 73.0  79.2 75.2  78.8 77.5  83.2 81.5  83.6 78.3  82.3 
breast-c 71.6  72.1 75.5 74.8 75.2 74.2 69.9  68.5 71.3  73.8 
kr-vs-kp 87.7  89.7 90.0 90.8 99.4 99.2 95.4  96.7 97.1 97.8 
monks-1 77.4 78.2 72.9 73.3 82.3  81.1 83.9 82.9 90.6 89.4 
monks-2 56.7 57.3 55.2  57.2 56.2  60.6 58.6  59.9 60.4  59.2 
monks-3 93.3 93.3 77.1  83.3 93.4  94.6 93.3 93.3 93.4 93.4 
primary 50.1  54.8 33.6  40.0 43.2  45.9 46.9  46.9 46.0  47.6 
soybean 93.0  94.1 89.9  92.9 91.5  93.8 93.8  94.9 91.5  92.5 

splice 95.3  96.1 75.9  82.4 94.1  95.8 93.4  94.5 95.3 95.0 

vote 90.1  92.8 92.6  93.6 96.3  97.1 96.1 95.0 95.6  96.8 
zoo 93.0  94.4 96.0 96.0 92.1  95.0 96.0 96.0 95.1  94.4 

average 80.1 82.0 75.8 78.5 81.8 83.6 82.6 82.9 83.1 83.8 
 

Table 3. Effects of various different confidence levels 

Confidence level 0% 25% 50% 60% 70% 80% 90% 95% 99% 

Win 24 25 24 26 26 28 29 28 28 

Draw 23 23 24 22 22 21 21 21 22 

Loss 8 7 7 7 7 3 5 6 5 

We select and use a virtual example set of a certain size that is expected to be the 
best for the targeted learning algorithm, among candidates that passed a statistical 
significance test. If there is no such candidate, the learning algorithm uses only the 
original training set. Table 4 shows the frequency of using the virtual example set for 
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100 experiments. We can see that usage frequencies differ depending on the learning 
algorithms and data sets. The learning algorithm that showed higher accuracy im-
provement in a classification problem has a tendency to use virtual example sets more 
frequently for that problem. In other words, there is a strong correlation between im-
provement in classification accuracy and usage frequency. For example, NB, SMO, 
and NBtree showed no significant improvement or even deterioration with the monks-
3 data, and their usage frequencies were very low. In contrast, 1-NN and C4.5 with the 
same data showed significant improvement in accuracy and their usage frequencies 
were relatively high. 

Table 4. Usage frequencies of the virtual example set (unit: percentage) 

Data set NB 1-NN C4.5 SMO NBtree 

audiology 93 96 91 82 74 

breast-c 65 45 63 45 65 

kr-vs-kp 67 75 46 57 34 

monks-1 21 24 25 21 16 

monks-2 23 12 42 33 21 

monks-3 6 76 78 8 6 

primary 75 85 57 56 69 

soybean 65 75 65 56 65 

splice 68 63 71 74 34 

vote 65 43 46 43 54 

zoo 21 4 35 2 32 

6   Concluding Remarks 

We presented a framework for generating and using virtual examples to improve 
classification accuracy for problems with nominal attributes. A virtual example is 
sampled from a naïve Bayesian network and its quality is measured by the increment 
of the network’s conditional likelihood after adding it. A statistical significance test is 
applied to select an appropriate virtual example set, and the selected set is used for 
learning, together with the original training set. Experimental results have shown that 
our method can improve the accuracy of classifiers derived from various learning 
algorithms including naïve Bayes, nearest neighbor, decision tree, support vector 
machine, and naïve Bayes tree.  

We consider two main expansions of our work for future study. First, the proposed 
method will become much more useful if it can handle data with numeric attributes. 
We think that it can be achieved by adopting a numeric attribute discretization method 
or by introducing a Gaussian mixture model to the Bayesian network used for gener-
ating virtual examples. Second, we expect that better virtual examples can be obtained 
more efficiently if we use Bayesian networks with enhanced structures such as TAN 
[27] rather than just the simple naïve Bayesian networks. 
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Abstract. This paper presents a new approach to the problem of de-
signing Radial Basis Function Neural Networks (RBFNNs) to approx-
imate a given function. The presented algorithm focuses in the first
stage of the design where the centers of the RBFs have to be placed.
This task has been commonly solved by applying generic clustering al-
gorithms although in other cases, some specific clustering algorithms
were considered. These specific algorithms improved the performance by
adding some elements that allow them to use the information provided
by the output of the function to be approximated but they did not add
problem specific knowledge. The novelty of the new developed algorithm
is the combination of a fuzzy-possibilistic approach with a supervising
parameter and the addition of a new migration step that, through the
generation of RBFNNs, is able to take proper decisions on where to move
the centers. The algorithm also introduces a fuzzy logic element by set-
ting a fuzzy rule that determines the input vectors that influence each
center position, this fuzzy rule considers the output of the function to be
approximated and the fuzzy-possibilistic partition of the data.

1 Introduction

The problem of approximating a given function using an RBFNN F can be for-
mulated as, given a set of observations {(xk; yk); k = 1, ..., n} with yk = F (xk) ∈
IR and xk ∈ IRd, it is desired to obtain a function F so

n∑
k=1

||yk − F(xk)||2 is

minimum. RBFNNs have been widely used to solve this problem because of their
capability to approximate any function [6,13].

An RBFNN F with fixed structure to approximate an unknown function F
with d variables and one output is defined as:

F (xk; C, R, Ω) =
m∑

i=1

φ(xk; ci, ri) · Ωi (1)

where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c i, ri) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 647–656, 2006.
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continuous, differentiable, it provides a softer output and improves the interpo-
lation capabilities [2,15].

The first step of initialization of the position of the RBF centers has been
commonly carried out using clustering algorithms [11,17]. Classical clustering
algorithms have been used to solve classification task where the objective is to
identify to classify the input data assigning a discrete set of predefined labels,
however, in the function approximation problem, the output of the function
belongs to a continuous interval. The output of the function is an important
element that must be considered when initializing the centers, they should be
concentred where the output is more variable since these areas require more
RBFs to be modelled.

This paper proposes a new algorithm to solve the task of the initialization
of the centers. It is based on a mixed fuzzy-possibilistic supervised approach
that, with the use of fuzzy logic and problem specific knowledge, will provide
an adequate placement of the centers. The consequence of this is that the final
RBFNN obtained after following the rest of the steps dependent from the center
initialization, approximates the given function with a smaller error than if other
algorithms were applied.

2 Previous Clustering Algorithms

This section describes several clustering algorithms that have been used to deter-
mine the centers when designing RBFNNs for function approximation problems.

2.1 Fuzzy C-Means (FCM)

This algorithm presented in [1] uses a fuzzy partition of the data where an
input vector belongs to several clusters with a membership value. It defines an
objective distortion function to be minimized is:

Jh(U, C; X) =
n∑

k=1

m∑
i=1

uh
ik‖xk − ci‖2 (2)

where X = {x1, x2, ...,xn} are the input vectors, C = {c1, c2, ..., cm} are the
centers of the clusters, U = [uik] is the matrix where the degree of membership
is established by the input vector to the cluster, and h is a parameter to control
the degree of the partition fuzziness. After applying the least square method to
minimize the function in Equation 2, we get the equations to reach the solution
trough an iterative process.

2.2 Fuzzy Possibilistic C-Means (FPCM)

In this approach developed in [12], a combination of a fuzzy partition and a
possibilistic partition is presented. The point of view of the authors is that the
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membership value of the fuzzy partition is important to be able to assign a hard
label to classify an input vector, but at the same time, it is very useful to use
the typicality (possibility) value to move the centers around the input vectors
space, avoiding undesirable effects due to the presence of outliers. The distortion
function to be minimized is:

Jh(U, C, T ; X) =
n∑

k=1

m∑
i=1

(uh
ik + th2

ik )‖xk − ci‖2 (3)

with the following constraints:
m∑

i=1
uik = 1 ∀k = 1...n and

n∑
k=1

tik = 1 ∀i = 1...m.

Let T = [tik], then, the constraint shown above requires each row of T to
sum up to 1 but its columns are free up to the requirement that each column
contains at least one non-zero entry, thus, there is a possibility of input vectors
not belonging to any cluster. The main improvement in comparison with the
FCM algorithm is that, since there are some input vectors that can be outliers,
the membership function for them will be small not forcing all clusters to share
them.

2.3 Possibilistic Centers Initializer (PCI)

This algorithm [9] adapts the algorithm proposed in [10] using a mixed approach
between a possibilistic and a fuzzy partition, combining both approach as it was
done in [16]. The objective function to be minimized is defined as:

Jh(U (p), U (f), C, W ; X)=
n∑

k=1

m∑
i=1

(u(f)
ik )hf (u(p)

ik )hpD2
ikW+

m∑
i=1

ηi

n∑
k=1

(u(f)
ik )hf (1−u

(p)
ik )hp

(4)
where u

(p)
ik is the possibilistic membership of xk in the cluster i, u

(f)
ik is the fuzzy

membership of xk in the cluster i, DikW is the weighted euclidean distance, ηi

is a scale parameter that is calculated by: ηi =

n

k=1
(u(f)

ik )hf ‖xk−ci‖2

(u(f)
ik )hf

.

This function is obtained by replacing de distance measure in the FCM al-
gorithm by the objective function of the PCM algorithm, obtaining a mixed
approach. The scale parameter determines the relative degree to which the sec-
ond term in the objective function is compared with the first. This second term
forces to make the possibilistic membership degree as big as possible, thus, choos-
ing this value for ηi will keep a balance between the fuzzy and the possibilistic
memberships.

The algorithm has a migration step that moves centers allocated in input
zones where the target function is stable, to zones where the output variability
is higher. The idea of a migration step was introduced in [14] as an extension of
Hard C-means.
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3 Fuzzy-Possibilistic Centers Initializer (FPCI)

This section introduces the proposed algorithm, describing first the elements that
characterize the algorithm: the supervising parameter, the migration process and
the distortion function. Then the main body of the algorithm, which integrates
the previous components, is introduced.

3.1 Supervising Parameter

Classical clustering techniques do not consider the output of the function that
will be approximated by the RBFNN, so there is a need of introducing an ele-
ment that influences the way in which the centers are placed. This effect can be
achieved by changing the similarity criteria that defines the clusters.

In [8], it was presented the concept of expected output of a center which is
an hypothetic value for each center that gives a position on the output axis.
This element makes possible to compare the output of the centers and the real
output of the input vectors. The calculation of the supervising parameter w is
performed by:

wik = |F (xk) − oi| (5)

where oi represents the expected output of a center. The parameter w is used
in the algorithm in order to modify the similarity criteria during the clustering
process, reducing the distance between a center and an input vector if they have
similar outputs. Therefore, the distance calculation is performed by:

DikW = dik · wik (6)

where dik is the euclidean distance between the center ci and the input vector xk.

3.2 Distortion Function

As classical clustering algorithms, the proposed algorithm defines a distortion
function that has to be minimized. The distortion function is based in a fuzzy-
possibilistic approach as it was presented in [12] although it contains the elements
required for a supervised learning. The function is:

Jh(U, C, T, W ; X) =
n∑

k=1

m∑
i=1

(uhf

ik + t
hp

ik )D2
ikW (7)

restricted to the constraints:
m∑

i=1
uik = 1 ∀k = 1...n and

n∑
k=1

tik = 1 ∀i = 1...m.

The solution is reached by an alternating optimization approach where all the
elements defined in the function to be minimized (Equation 7) are actualized
iteratively. For the new algorithm proposed in this paper, the equations are:
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uik =
1

m∑
j=1

(
t
(hp−1)/2
ik DikW

t
(hp−1)/2
jk DjkW

) 2
hf −1

tik =
1

1 +
(

DikW

ηi

) 1
hp−1

(8)

ci =

n∑
k=1

t
hp

ik u
hf

ik xkw2
ik

n∑
k=1

t
hp

ik u
hf

ik w2
ik

oi =

n∑
k=1

t
hp

ik u
hf

ik ykd2
ik

n∑
k=1

t
hp

ik u
hf

ik d2
ik

(9)

These equations are obtained by differentiating Jh(U, T, C, W ; X) (Equation
7) with uik, tik, ci and oi, therefore the convergence is guaranteed.

3.3 Migration Step

The migration step will allow the algorithm to escape from local minima found
during the iterative process, that minimizes the distortion function, and to work
with non continuous data sets.

The idea of a migration step was developed in [14], and it was also used in
[10], but the migration the new algorithm uses is totally different to the previous
ones because it adds problem specific knowledge.

Since the problem is to design an RBFNN to approximate a given function, an
RBFNN is generated to decide where to move the centers and if the migration
step was correct. The migration is accepted if the distortion function has been
decreased or if the error from the output of the RBFNN generated after the
migration is smaller than the error from the RBFNN generated before.

To design the RBFNN on each migration step, since the centers are already
placed, it is only needed to get the values for each radius, which is calcu-
lated using the KNN algorithm with K=1. Once we have these two parameters,
the weights for each RBF are computed optimally by solving a linear equation
system [7].

errori = Accumulated error between the hypothetic output of the center ci

and the output of the vectors that belong to that center
numveci = number of vectors that belong to ci

for each center ci with i = 1...m
if errori < mean(error)

select ci

else
if numveci < mean(numvec)

select ci

end
end
distortioni= errori · numveci

end
utilityi=distortioni/mean(distortion)
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Each center is assigned an utility value that represents how important is that
center in the current partition. The utility of a center is calculated with the
following algorithm:

This process excludes the centers that own a big number of input vectors
and have a small error from those vectors from the set of centers to be source
or destination of the migration. Once the pre-selection of the centers has been
done, the center that will be migrated is the one with minimum utility and the
center receiving the other center is the one with maximum utility.

Due to the addition of the parameter w both the fuzzy and the possibilistic
membership functions loose their interpretability. The combination of them using
a fuzzy rule will allow us to decide which input vectors are owned by each cluster.
This process is necessary in order to choose which centers will be migrated.

for each center ci

for each input vector xk

distance=||xk − ci||
if (distance< near)

Bik = (uik · tik)/(distance+1 + wik)
else

Bik = (uik · tik)/(distance+1)
end

end
end

The aim of the rule is that if an input vector is near a center, the value of the
output of that input vector must influence the position of the center, otherwise,
the difference between the expected and the real output is not as important since
the center is far. This method alleviates the problem of an input vector being
owned by a center just because they have the same output values. In order to set
a value for the threshold near, the columns of the matrix B must be normalized.
An empirical value of 0.05 has been shown to provide a good performance as it
will be shown in the experiments.

The complete algorithm for the migration is shown in Figure 1.

3.4 General Scheme

The FPCI algorithm follows the scheme shown in Figure 2. In the new algorithm,
centers will be distributed uniformly through the input data space. Proceeding
like this, all random elements of the previous algorithm are excluded, obtaining
the maximum robustness. The centers expected outputs must be initialized using
the same value, thanks to this, all the centers will be in the same conditions
so the weighting parameter will influence the centers in the same way in the
first iteration of the algorithm. The initialization value is not too important
and does not influence in a significant way the final configuration of the centers
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Fig. 1. FPCI migration algorithm

although a fixed value of 1 is assigned in order to avoid any random element in
the algorithm. This leads to obtain always the same output for a fixed input,
providing a standard deviation of zero when multiple executions are run with
the same input.

4 Experimental Results

The target function that will be used in this experiment was presented in [3] and
it has been used as a benchmark in [4,5]. The function is defined as:

f1(x1, x2) = 1.9
(
1.35 + ex1 sin

(
13 (x1 − 0.6)2

)
e−x2 sin (7x2)

)
, x1, x2 ∈ [0, 1]

(10)
Figure 3 shows the original function and the training data set that was ob-

tained by selecting randomly 400 points from the original function. The number
of test input vectors was 1900, such a big difference between the size of the
data sets is to show the generalization abilities of the RBFNN that, learning
from a reduced number of examples, are able to generalize and obtain a good
approximation of the complete function.

Once the centers were placed by all the algorithms, the radii of the RBFs were
calculated using the KNN heuristic with k=1, and then, a local search algorithm
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Fig. 2. General scheme of the FPCI algorithm
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Fig. 3. Target function f1 and the training set

(Levenberg-Marquardt) was applied to obtain a fine tuning of these parameters.
Table 1 shows the approximation errors obtained after designing the RBFNNs
using the algorithms described above.

These results show how the best performance is obtained by the proposed
algorithm. In general, the other three algorithms have the drawback of lack of
robustness. The results obtained using the FPCM show how the combination
of a fuzzy partition with a possibilistic one leads to a better performance. The
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Table 1. Mean and Standard Deviation of the approximation error (NRMSE) for
function f1 for the training and test set

Clusters FCM FPCM PCI FPCI
8 0.155(0.039) 0.163(0.037) 0.204(0.042) 0.145(0)
9 0.160(0.019) 0.136(0.035) 0.112(0.023) 0.130(0)
10 0.108(0.030) 0.118(0.035) 0.102(0.011) 0.085(0)
11 0.128(0.073) 0.077(0.012) 0.071(0.015) 0.062(0)
8 0.153(0.040) 0.160(0.036) 0.245(0.119) 0.143(0)
9 0.157(0.017) 0.135(0.034) 0.129(0.061) 0.131(0)
10 0.107(0.027) 0.116(0.032) 0.100(0.011) 0.087(0)
11 0.126(0.050) 0.078(0.012) 0.071(0.015) 0.062(0)

PCI algorithm uses both types of partitions with the addition of an element
to consider the output of the function to be approximated, this element makes
possible to obtain better results than the other non-supervised algorithms. The
new algorithm combines the advantages of using the same type of fuzzy possi-
bilistic partition of the FPCM algorithm with the addition of the supervising
parameter and the migration step. These three elements together lead to obtain
the smallest approximation errors when is compared with the other algorithms.

Regarding the use of RBFNN to approximate a function, the results the al-
gorithms present show how well they perform when interpolating the modelled
function because for all the algorithms, the training and test errors do not differ
significantly.

5 Conclusions

Within the different methods to solve the function approximation problem,
RBFNNs have shown their good performance although their design still rep-
resents a difficult problem. The RBF center initialization is the first stage in the
design, and the success of the rest of the stages depends critically in the way the
centers are placed. This paper presents a new algorithm that combines several
elements of previous algorithms used to place the centers, adding a new element
that uses problem specific knowledge. This new element consists in the design
of an RBFNN that helps to decide where to move the centers in the migration
stage. The migration incorporates also a fuzzy rule that alleviates the problem
of loosing interpretability in the supervised method, making more adequate the
election of the centers that should be migrated.
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14. G. Patanè and M. Russo. The Enhanced-LBG algorithm. Neural Networks,
14(9):1219–1237, 2001.

15. I. Rojas, M. Anguita, A. Prieto, and O. Valenzuela. Analysis of the operators
involved in the definition of the implication functions and in the fuzzy inference
proccess. International Journal of Approximate Reasoning, 19:367–389, 1998.

16. J. Zhang and Y. Leung. Improved possibilistic C–means clustering algorithms.
IEEE Transactions on Fuzzy Systems, 12:209–217, 2004.

17. Q. Zhu, Y. Cai, and L. Liu. A global learning algorithm for a RBF network. Neural
Networks, 12:527–540, 1999.



A Partitive Rough Clustering Algorithm

Georg Peters and Martin Lampart

Munich University of Applied Sciences
Faculty of Computer Science/Mathematics
Lothstrasse 34, 80335 Munich, Germany

georg.peters@muas.de, martin lampart@web.de

Abstract. Since rough sets were introduced by Pawlak about 25 years
ago they have become a central part of soft computing. Recently Lingras
presented a rough k-means clustering algorithm which assigns the data
objects to lower and upper approximations of clusters. In our paper we
introduce a rough k-medoids clustering algorithm and apply it to four
different data sets (synthetic, colon cancer, forest and control chart data).
We compare the results of these experiments to Lingras rough k-means
and discuss the strengths and weaknesses of the rough k-medoids.

1 Introduction

Since its introduction rough set theory [8] has gained increasing importance
and has become a central concept of soft computing. Recently Lingras et al. [5]
suggested a rough set clustering algorithm that assigns data objects to upper
and lower approximations with the lower approximation a subset of the upper
approximation. Objects in the lower approximation belong to a certain cluster
unambiguously while the memberships of objects that do not belong to a lower
approximation are not clearly defined due to missing information. These objects
belong to the boundary area which is defined as upper approximation without
the area covered by the lower approximation.

Consequently an object in a lower approximation of a certain cluster cannot
belong to any other cluster - it is a member of one and only one lower approxima-
tion. To show that the membership of an objects is unclear it has to be assigned
to more than one upper approximation. Nevertheless this object is member of
one and only one of the associated clusters only - however its actual membership
cannot be determined due to missing information.

Lingras rough k-means clustering algorithms has already been successfully
applied to real data such as web-log, forest, vowel and mircoarray data besides
others. Mitra [7] extended the rough k-means by an evolutionary component to
determine the optimal initial parameters and Peters suggested refinements of
the algorithm to improve its performance in the presence of outliers [9], increase
its convergence and besides others refinements [10]. Further rough clustering
approaches have been suggested by do Prado, Engel and Filho [3] and Voges [11].

In this paper we introduce a rough k-medoids clustering algorithm which
belongs to the family of the rough models suggested by Lingras et al. [5] and

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 657–666, 2006.
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the classic k-medoids as introduced by Kaufman et al. [4]. The new algorithm is
applied to four different data sets and compared to Lingras rough k-means.

The paper is organized as follows. In Section 2 we describe the rough k-means
cluster algorithm of Lingras et al. and some of its extensions. Then, in Section 3,
we present the new rough k-medoids. In the following Section 4 we evaluate the
rough k-medoids by applying it to synthetic and real data. The article concludes
with a summary in Section 5.

2 Rough k-Means Cluster Algorithms

2.1 Lingras’ k-Means

Lingras et al. rough set clustering algorithm belongs to the branch of rough set
theory with a reduced set of properties in comparison to the original ideas of
Pawlak [12]. The properties are:

1. A data object belongs to one lower approximation at most.
2. If a data object is no member of any lower approximation it belongs to two

or more upper approximations.
3. A lower approximation is a subset of its corresponding upper approximation.

The part of an upper approximation that is not covered by a lower approxi-
mation is called boundary area. The means are computed as weighted sums of
the data objects Xn(n = 1, ..., N) in the lower approximation (weight wl) and
the boundary area (weight wb):

mk =

⎧⎪⎨⎪⎩
wl

∑
Xn∈Ck

Xn

|Ck| + wb

∑
Xn∈CB

k

Xn

|CB
k | for CB

k �= ∅

wl

∑
Xn∈Ck

Xn

|Ck| otherwise
(1)

where |Ck| is the number of objects in lower approximation and |CB
k | = |Ck−Ck|

(with Ck the upper approximation) in the boundary area of cluster k (k =
1, ..., K). Then Lingras et al. rough set clustering algorithm goes as follows:

1. Define the initial parameters: the weights wl and wb, the number of clusters
K and a threshold ε.

2. Randomly assign the data objects to one lower approximation (and per de-
finitionem to the corresponding upper approximation).

3. Calculate the means according to Eq (1).
4. For each data object, determine its closest mean. If other means are not rea-

sonably farer away as the closest mean (defined by the threshold ε) assign the
data object to the upper approximations of these close clusters. Otherwise
assign the data object to the lower approximation (and per definitionem to
the corresponding upper approximation) of the cluster of its closest mean.

5. Check convergence. If converged: STOP otherwise continue with STEP 3.
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2.2 Extensions and Variations of the Rough k-Means

Mitra’s Evolutionary Rough k-Means. To initialize the rough k-means one has
to select the weights of the lower approximation and the boundary area as well
as the number of clusters.

Mitra [7] argued that a good initial setting of these parameters is one of the
main challenges in rough set clustering. Therefore she suggested an evolutionary
version of Lingras rough k-means which automates the selection of the weights
and number of clusters. Mitra applied a genetic algorithm to optimize these
parameters with respect to the Davies-Bouldin cluster validity criterium [2].

The Davies-Bouldin index is independent of the number of clusters analyzed
and does not depend on the partitioning cluster method. So it can be used to
compare different partitioning cluster algorithms [2].

Basically the Davies-Bouldin index is the ratio of the sum of the within-
cluster scatter to the between cluster separation [1]. Well separated clusters are
obtained when the within-cluster scatter is small and the separation between
different clusters is large [7]:

1
K

K∑
k=1

max
k �=l

{
S(Uk) + S(Ul)

d(Uk, Ul)

}
(2)

with S(Uk)+S(Ul) the within-cluster distances and d(Uk, Ul) the between-cluster
separation. So the Davies-Bouldin index has to be minimized for optimal cluster
separation. When analyzing the rough set cluster validation index Mitra took
the members of the lower approximations of the clusters [7].

Mitra applied her evolutionary rough clustering method to vowel, forest cover
and colon cancer data and compared the results to k-means, PAM, CLARANS,
fuzzy k-means and fuzzy k-medoids.

Peters’ Refined Rough k-Means Algorithm. Peters presented a refined version
of Lingras rough k-means which improves its performance in the presence of
outliers [9], its compliance to the classic k-means, its numerical stability and
others [10]. He applied the algorithm to a small and a large synthetic data set,
forest cover data and microarray gene data from bioinformatics.

3 The New Rough k-Medoids Clustering Algorithm

3.1 Classic k-Medoids Algorithm

Overview. The k-medoids clustering algorithm was introduced by Kaufmann et
al. [4]. Instead of calculating a cluster center as mean, in k-medoids clustering
the cluster center is represented by a real data object.

Mainly there are the following advantages of the k-medoids in comparison to
the k-means. (1) Each cluster has a real data object as its representative rather
than an artificial one. (2) The k-medoids delivers better results in the presents
of (extreme) outliers since the cluster center is always within the core cluster
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while applying the k-means could result in cluster centers that are ”drawn” out
of the core cluster. (3) The k-medoids is less noise sensitive in comparison to the
k-means. (4) The objective criterion can be defined freely by the user.

The main drawbacks of the k-medoids are: (1) The algorithm is of combina-
toric nature which makes it not as efficient as the k-means. (2) The need for
a real data object as cluster center compromises on its quality as representa-
tive in comparison to the artificial cluster center in k-means clustering. (3) For
small changes in the distribution of the data objects the cluster centers change
discontinuously in certain circumstances: they jump from one data object to
another.

The Algorithm: Often the compactness of the clustering (CPC) is chosen as

objective criterion: CPC =
K∑

k=1
CPC(Ck) with CPC(Ck) =

∑
Xn∈Ck

d(Xn, mk)

and Ck the compactness of cluster k. Then the algorithm goes as follows [4]:

1. Define the number of cluster K.
2. Randomly define K data objects as medoids.
3. Assign the remaining data objects (non-medoids) to the cluster of its closest

medoid.
4. Swap each medoid with every non-medoid as long as the compactness of the

clustering CPC improves.
5. Check convergence. If converged: STOP otherwise continue with STEP 3.

Please note, that the objective criterion of the k-medoids (CPC) is well sep-
arated from any other step of the clustering algorithm. Therefore it can be
replaced by another objective criterion easily.

3.2 Introducing Rough k-Medoids Clustering

We introduce a new rough cluster algorithm that has its foundations in the rough
k-means [6] and the classic k-medoids [4]. It proceeds as follows:

Some Definitions:

– Data set: Xn, n = 1, ..., N
– Medoids: mk of the clusters Ck, k = 1, ..., K.
– Distance between the data object Xn and the medoid mk:

d(Xn, mk) = ‖Xn − mk‖
– Rough Compactness of the clustering:

RCPC =
K∑

k=1
RCPC(Ck)

with RCPC(Ck) = wl

∑
Xn∈Ck

d(Xn, mk) + wb

∑
Xn∈(Ck−Ck)

d(Xn, mk) .

The parameters wl and wb define the impact of the lower approximation and
the boundary area of a cluster on the rough compactness RCPC.
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The Algorithm:

1. Select K data objects randomly as medoids: mk, k = 1, ..., K. They belong
to the lower approximation of the set they are medoids of: mk ∈ Ck.
The remaining data objects are denoted as X′

m, m = 1, ..., (N − K).
2. Assign the remaining (N − K) data objects X′

m to the K clusters in a
two step process. In the first step a data object is assigned to the upper
approximation of the cluster to which it is closest. In the second step the
data object is assigned to the upper approximation of further reasonably
close clusters or it is assigned to the lower approximation of the closest
cluster. The details are as follows:

(i) For a given data object X′
m determine its closest medoid mk:

d(X′
m, mk) = min

h=1,...K
d(X′

m, mh).

Assign X′
m to the upper approximation of the cluster k: X′

m ∈ Ck.
(ii) Determine the clusters Ch that are also close to X′

m - they are not
farther away from X′

m than d(X′
n, mk)+ε where ε is a given threshold:

T = {h : d(X′
n, mh) − d(X′

n, mk) ≤ ε ∧ h �= k}.
– If T �= ∅ (X′

n is also close to at least one other medoid besides
mk)
Then X′

m ∈ Ch, ∀h ∈ T .
– Else X′

m ∈ Ck.
3. Calculate RCPCcurrent.
4. Swap every medoid mk with every data object X′

m and calculate RCPCk↔m.
Let RCPCk0↔m0 = min

∀k,∀m
RCPCk↔m for k = 1, ..., K, m = 1, ..., (N − K).

– If RCPCk0↔m0 < RCPCcurrent

Then swap the medoid mk0 and data object Xm0 and set RCPCcurrent=
RCPCk0↔m0 . Go back to STEP 2.

– Else STOP.

4 Evaluation of the Rough k-Medoids

The rough k-medoids cluster algorithm will be tested and compared to the rough
k-means in four experiments: synthetic, colon cancer, forest and control chart
data.

4.1 Synthetic Data

The synthetic data [9] consist of a two dimensional set of ten randomly distrib-
uted data objects in an interval of [0, 1]. In each of the following experiments
the number of clusters is set to two (K = 2).

Rough k-Means. For the rough k-means we obtain a Davies-Bouldin index of
DBMeans = 0.403 for wl = 0.95 and thresholds between ε ∈ [0.25, 0.55]. The
assignment of the data objects to the approximations is depicted in Figure 1.
The means are located as show in Table 1.
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Fig. 1. Clusters for the Synthetic Data Set: Rough k-Means

Rough k-Medoids. Within the range1 of the initial parameters wl ∈ [0.50, 0.95]
and thresholds between ε ∈ [0.00, 0.30] the lowest Davies-Bouldin index that
was obtained is DBMedoids,RCPC = 0.755. This is significantly worse than the
Davies-Bouldin index (DBMeans = 0.403) obtained by the rough k-means.

In the optimum the upper approximations of the two clusters are empty.
The data objects that have been determined as medoids are (see Figure 2):
m1 = (0.1, 0.2) and m2 = (0.5, 0.5).

However if the objective function, the compactness of the clustering, of the
rough k-medoids is replaced by the Davies-Bouldin index the results improve.
Now we get a Davies-Bouldin index of DBMedoids,DB = 0.404 which is almost
equal to the one obtained in rough k-means clustering. The assignment of the
data objects to the lower and upper approximations is identical to the results
obtained by the rough k-means. The medoids are m1 = (0.0, 0.2) and m2 =
(1.0, 0.8).

1 Cluster results outside this range lead to lower Davies-Bouldin indexes. However
these results were not taken into account since the assignment of the data objects to
the approximations seem to be sup-optimal in the sense that the lower approximation
of one cluster only has the medoid as member while the lower approximation of the
other cluster has four members.
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Table 1. Means for Rough k-Means

Mean x-axis y-axis
1 0.119 0.153
2 0.815 0.850

4.2 Colon Cancer Data

The colon cancer database (http://molbio.princeton.edu/colondata) consists of
62 gene expression data which 2000 features each. In the data set 22 samples are
normal and 40 of patients suffering from colon cancer.

Typically the many features of gene expression data are highly correlated. For
the following experiment a correlation analysis delivered a reduced set of data
with only 21 features.

The number of clusters was set to K = 2 reflecting the normal and colon
cancer samples. First, in the rough k-medoids algorithm the RCPC is applied
as optimization criterion. The optimal results according to the Davies-Bouldin
index are depicted in Table 2.

Table 2. Davies-Bouldin Indexes for the Colon Cancer Experiment

Algorithm Davies-Bouldin Index
Rough k-Means 0.602

Rough k-Medoids 0.530

Second, when the optimization criterion for the rough k-medoids is changed to
the Davies-Bouldin index the optimal Davies-Bouldin index remains unchanged
(DBMedoids,RCPC = DBMedoids,DBI = 0.530). So the cluster validities of both
rough k-medoids cluster algorithms do not differ in the colon cancer experiment.

According to the Davies-Bouldin index the obtained results of the rough k-
means and the rough k-medoids are in the same range with the rough k-medoids
a little bit better.

4.3 Forest Data

The forest data set (http://kdd.ics.uci.edu) consist of about 580,000 observa-
tions each with 54 features. A data object describes the forest type of an area of
30x30m2. Features are, for example, elevation, slope or hillshade in the morning
and in the afternoon. Out of the 54 features 44 are qualitative and 10 quantita-
tive. One feature describes 7 different forest types.

To reduced complexity of the data set in the cluster experiment a randomly
reduced set of 241 observations with the 10 quantitative features was taken; the
number of clusters was set to K = 3. The results of the cluster analysis are
shown in Table 3.

Again the results for the rough k-means and the rough k-medoids are within
the same range. The rough k-means delivered only a little better Davis-Bouldin
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Fig. 2. Clusters for the Synthetic Data Set: Rough k-Medoids

Table 3. Davies-Bouldin Indexes for the Forest Data Experiment

Algorithm Davies-Bouldin Index
Rough k-Means 0.908

Rough k-Medoids 0.925

index in comparison to the rough k-medoids. However, with the Davies-Bouldin
index as objective criterion the rough k-medoids delivers an improved result of
DBMedoids,DBI = 0.484.

4.4 Control Chart Data

The control data set (http://kdd.ics.uci.edu) is synthetically generated and con-
sists of 6 classes each with 100 observations. An object has 60 features. In the
experiment 21 randomly selected data objects with all 60 features were clustered
into 6 classes (K = 6).

The results obtained by the rough k-means and rough k-medoids are compara-
ble again. Both deliver Davies-Bouldin indexes that are in the same range. If one
applies the Davies-Bouldin index as objective criterion to the rough k-medoids
the index can be improved to DBMedoids,DBI = 0.462.



A Partitive Rough Clustering Algorithm 665

Table 4. Davies-Bouldin Indexes for the Control Chart Experiment

Algorithm Davies-Bouldin Index
Rough k-Means 0.539

Rough k-Medoids 0.586

5 Conclusion

In the paper we presented a new k-medoids cluster algorithm based on rough
set theory and applied it to four data sets. In the experiments we showed that
the rough k-medoids delivers comparable results to the rough k-means.

The main advantage of the rough k-medoids cluster algorithm is that the
objective criterion is not deeply integrated in the algorithm - in contrast to the
rough k-means - but can be easily changed and replaced according to the needs
and preferences of the user.

In our case we performed the rough k-medoids with two objective criterions:
the rough compactness of the clustering and the Davies-Bouldin index. Obvi-
ously we obtained better results, in terms of the Davies-Bouldin index, when
we took the second objective criterion. Any other objective criterion can also be
implemented easily. This flexibility of the rough k-medoids is its special strength.

The drawback of any k-medoids is its combinatoric algorithm that makes it
inefficient for large numbers of data objects and/or high dimensional feature
spaces. For a small number of data objects the number of possible medoids is
very limited and may lead to stable but coarse clustering results.

However, because of the flexible definition of the objective criterion, the rough
k-medoids is a good alternative to the rough k-means for not too small and not
too large sets of objects.
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Abstract. In this paper, we propose a method for selecting clusterheads, called 
‘zone-based method for selecting clusterheads’, in a wireless sensor network to 
balance the amount of energy consumption over all nodes without generating 
any isolated sensor nodes. In our method, the network field is first divided into 
several zones, and each zone includes clusterheads in proportion to its area, 
which contributes to distributing clusterheads evenly over the network. 
Simulation results show that our method outperforms LEACH and PEGASIS in 
terms of network lifetime. 

Keywords: wireless sensor network, clustering, clusterhead selection, multiple 
hop transmission. 

1   Introduction 

Due to the development of low cost and low power sensing devices with 
computational ability, wireless sensing and communication capabilities, wireless 
sensor networks can be applicable to various environments that monitor a specified 
parameter in a region.  They are especially useful in extremely hostile environments, 
such as near volcanically active sites, inside a dangerous chemical plant or in disaster 
area with a nuclear reactor. They also have advantages in inaccessible environments, 
such as difficult terrains, or on a spaceship [1]. 

Generally a sensor node consists of sensing elements, microprocessor, limited 
memory, battery, and low power radio transmitter and receiver. An important feature 
of wireless sensor networks is that the nodes are unattended, resource-constrained, 
their energy cannot be recharged. Since the batteries of the sensor nodes are not 
regularly rechargeable or not replaceable, the lifetime of a system is limited and 
distributing power consumption to all nodes is a major design factor [2]. Therefore, 
locating sensor nodes over network fields efficiently is one of the most important 
topics in sensor networks. Clustering approaches in wireless sensor networks have 
been proposed in to minimize the energy used to communicate data from nodes to the 
sink [3-5]. A good clustering scheme should preserve its structure of cluster as much 
as possible [6].  
                                                           
∗ Corresponding Author. 
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In this paper, we propose a method to evenly distribute clusterheads over network 
field to reduce the energy consumption and the computational overhead. To distribute 
the clusterheads evenly, the network field is divided into several zones, and the 
number of clusterheads to be included in each zone is determined in proportion to its 
area. In our method, the sensed data is transmitted over multiple-hop path through 
clusterheads. Since reclustering is performed in a single zone independently, the 
computational overhead will be reduced as compared with the conventional 
approaches in which reclustering is carried out for all nodes in the network field every 
round. 

This paper is organized as follows. We discuss some related works in section 2 and 
present an overview and discussion of our method in section 3. In section 4, we 
compare our method with the existing protocols and show the results. Finally, we 
conclude the paper in section 5. 

2   Related Works 

Heinzelman has proposed Low-Energy Adaptive Clustering Hierarchy (LEACH) for 
efficient routing of data in wireless sensor networks. In LEACH, the sensors elect 
themselves as clusterheads with some probability and broadcast their decisions. Each 
sensor node determines to which cluster it wants to belong by choosing the cluster-
head that requires the minimum communication energy. The algorithm is run 
periodically, and the probability of becoming a clusterhead for each period is chosen 
to ensure that every node becomes a clusterhead at least once within 1/p rounds, 
where p is 5 percent of the number of all nodes [7].  The positive aspect of LEACH is 
the fact that the nodes will randomly deplete their power supply, and therefore they 
should randomly die throughout the network. The randomized clusterheads will make 
it very difficult to achieve the optimal number of clusterheads [8].  

A centralized version of LEACH, called LEACH-C, was proposed in [9]. Unlike 
LEACH, where nodes self-configure themselves into clusters, LEACH-C uses a 
centralized algorithm that employs the sink as a cluster formation controller. During 
the setup phase of LEACH-C, the sink receives information regarding the location 
and energy level of each node in the network. Using this information, the sink finds a 
predetermined number of clusterheads and configures the network into clusters. The 
cluster groupings are chosen to minimize the energy required for non-cluster-head 
nodes to transmit their data to their respective clusterheads (see Figure 1 (a)) [9].  

Power Efficient Gathering in Sensor Information Systems (PEGASIS) [4] 
enhances network lifetime by increasing local collaboration among sensor nodes. In 
PEGASIS, sensor nodes are arranged in a chain topology using a greedy algorithm so 
that each node transmits to and receives from only one of its neighbors. Every rounds, 
a randomly chosen node from the chain will transmit the aggregated data to the sink, 
thus reducing the per round energy consumption compared to LEACH [3]. 

The core ideas of Base station Controlled Dynamic Clustering Protocol (BCDCP) 
[3] are the formation of balanced clusters where each clusterhead leads an nearly 
same number of sensor nodes to avoid clusterheads overload, uniform placement of 
clusterheads throughout the whole sensor fields, and utilization of cluster-head-to-
cluster-head routing to transfer the data to the base station as shown in Figure 1 (b). 
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(a)(a) (b)(b)

(c)(c)

Sink nodeSink node
Head nodeHead node
NodeNode

(a)(a) (b)(b)

(c)(c)

Sink nodeSink node
Head nodeHead node
NodeNode

 

Fig. 1. (a) Single-hop to the sink node, (b) Multi-hop between CH-to-CH (c) Multi-hop 
between CH-to-CH and node-to-node 

3   Proposed Scheme 

In this paper, we propose a topology configuring method for wireless sensor networks 
with an objective of balancing energy consumption over all nodes in the network field 
without generating any isolated nodes. We call it ‘zone-based method for selecting 
clusterheads’. 

Our method starts from dividing a network field into several zones depending on 
the distance from the origin point. Each sensor node transmits data toward the sink 
through the nearest neighbor node or clusterhead in each zone. Each clusterhead 
aggregates data and sends it to the next zone, and continues until all data are 
transmitted to the sink. The sink node is an essential component which has complex 
computational abilities, thus making the sensor nodes very simple and cost effective. 
It has three primary goals:  

 prolonging network lifetime by evenly distributing clusterhead over the network, 
 balancing energy consumption by selecting clusterhead in proportion to the area 

of each zone, and 
 saving communication energy with multiple-hop transmission.  

Several assumptions needed in our method are:  

(1) All nodes in the network are uniformly distributed and quasi-stationary, (2) all 
nodes are homogeneous, energy constrained and location-aware, (3) all nodes are 
sensing at a fixed rate and always have data to send, (4) the sink is fixed, (5) the sink 
controls clusterhead selection, and (6) all data sent by the previous nodes are 
aggregated by a constant bit size.  

Our method operates in three phases: (1) zone configuration phase, (2) clustering 
phase, (3) reclustering and data communication phase as shown in Figure 2. Zone 
configuration phase is executed just once at the time of network initialization to 
divide overall network into several zones. Clustering phase is also carried out one 
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time to choose the initial clusterhead in all zones when the network is first deployed. 
Reclustering and data communication phase is performed for every round in a single 
zone independently to reduce the computational overhead as much as possible. 

Initialization

(1) ZC: Zone Configuration,  (2) CLST: Clustering for all zones
(3) ReCLSTi: Reclustering for ZONEi and Data communication

ZC CLST ReCLST1 …ReCLST2 ReCLSTi

Initialization

(1) ZC: Zone Configuration,  (2) CLST: Clustering for all zones
(3) ReCLSTi: Reclustering for ZONEi and Data communication

ZC CLST ReCLST1 …ReCLST2 ReCLSTi

 

Fig. 2. Three phases for clusterhead selection 

3.1   Zone Configuration Phase 

The main activity in this phase is to divide the network field into several zones as 
shown in Figure 3. The zone is configured based on the zone range (r) which is 
determined by considering the network size, transmission range, and distribution 
density of the nodes.  

SensorNode ClusterHead

zone0

zone1

zone2

zone3

zone4

zone5

SensorNode ClusterHead

zone0

zone1

zone2

zone3

zone4

zone5

 

Fig. 3. Zone configuration 

The first zone, denoted by ZONE0, contains sensor nodes whose distances to the 
origin point are less than the zone range (r). The next zone, ZONE1, contains sensor 
nodes whose distances to the origin point are greater than r but less than 2r.  So, the i-
th zone, ZONEi, includes sensor nodes whose distances to the origin point are greater 
than ri ×  but less than ri ×+ )1( . The last zone covers all remaining sensor nodes 

beyond the boundary of the previous zone. Thus, the total number of zones configured 
in the network is given by 1/)_( +rRANGENETWORK .  

After zone configuration, the sink node broadcasts the zone information to have 
each node know which zone itself is assigned to. The number of clusterheads in each 
zone is determined in proportion to the area of each zone. In ZONE0, no clusterhead is 
allowed because this zone has the sink. In ZONE1, we can assign only one 
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clusterhead. The number of clusterheads in ZONE2 is proportional to the area of 
ZONE2. For example, if the area of ZONE2 is about two times than the area of ZONE1, 
ZONE2 has two clusterheads. The number of clusterheads in each zone is obtained by  

2,
)(

)(
_

1

≥= i
ZONEArea

ZONEArea
CHN i

i

 
(1) 

where iCHN _  is the number of clusterheads elected in 
iZONE . 

3.2   Clustering Phase 

This phase consists of the clusterhead(CH) selection, the cluster setup, and the 
formation of routing paths. The sink node selects the clusterheads until the desired 
number of clusterheads in each zone is attained. We select a high density node, which 
has a good many neighbor nodes, as a clusterhead in each zone. Reclustering is 
performed for a single zone every round. After the number of rounds equal to a 
multiple of the number of zones, all clusterheads are replaced once for all zones. 
Cluster setup operation in this phase means that each node joins in the close 
clusterhead in the same zone. 

Once the clusters and the clusterheads have been identified, the sink node chooses 
the routing path for any two adjacent clusterheads as illustrated in Figure 1 (b). All 
sensor nodes transmit data to the close neighbor node until reaching the clusterhead in 
the cluster as depicted in Figure 1 (c). There is an exception in case that all nodes in 
ZONE0 where data is transmitted to the sink directly. 

3.3   Reclustering and Data Communication Phase 

The main functions in this phase are reclustering for a single zone, data gathering, 
data fusion, and data forwarding. All sensor nodes transmit the sensed information to 
their clusterhead by multiple-hop paths as shown in Figure 4. Once a clusterhead 
receives data from any nodes, it performs data fusion on the collected data to reduce 
the amount of raw data that needs to be sent to the sink. 

Sink nodeSink node
Head nodeHead node
NodeNode

Sink nodeSink node
Head nodeHead node
NodeNode

 

Fig. 4. Multiple-hop data transmissions between nodes and between clusterheads 

A sensor node transmits its data to the nearest neighbor node within the cluster that it 
belongs to. The neighbor node aggregates the data with its own data, and transmits it to 
the next node until reaching to clusterhead. Similarly, the clusterhead sends its aggre-
gated data to the nearest clusterhead in the next zone until arriving at the sink node. 
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4   Simulation and Results 

To evaluate the performance of our method, we compared its performance with other 
cluster-based protocols such as LEACH and PEGASIS. We simulated LEACH with a 
probability of 5% that each node elects itself clusterhead. As a radio model, we use 
the same one discussed in [8]. The energy costs for the transfer of k-bits data message 
between two nodes separated by a distance of r meters is given by, 

krEkErkE ampTxT ×+×= )(),(  (2) 

kEkE RxR ×=)(  (3) 

where ),( rkET
 indicates the total energy for transmission of the source sensor node, 

and kEkE RxR ×=)(  expresses the energy cost incurred in the receiver of the 

destination sensor node. The parameters
RxTx EE , are the energy consumption for 

communication. )(rEamp
 is the energy required by the transmit amplifier to maintain 

an acceptable signal-to-noise ratio in order to transfer data messages safely. Also the 
energy cost for data aggregation is the set as messagebitnJEDA //5=  [3]. 

Table 1. Simulation Parameters 

Parameter Value Parameter Value 

Network size 100 x 100 Transmission energy  50 nJ/bit 

Number of nodes 100 Data Aggregation energy  5 nJ/bit/message 

Packet size 2000 bits Transmit amplifier energy  100 pJ/bit/m2 

Initial energy of a node 1 J Zone range ( r ) 19 

Throughout the simulation, we consider a 100 x 100 network configuration with 
100 nodes where each node is assigned an initial energy of 1.0 J, the amount of 
transmission energy is 50 nJ/bit, transmit amplifier energy (

ampE ) is 100 pJ/bit. The 

zone range is set by 19 (see Table 1), and the sink node is located at (15, 15) as shown 
in Figure 5. 

In simulations, all nodes are assumed to carry out sensing operation at a fixed rate 
and always have data to send when they receive query messages from the sink.  It is 
also assumed that all data sent by the previous nodes are aggregated into a data 
segment with a constant size of 2000 bits. We assume that every node performs data 
aggregation when forwarding data to the next hop. So, once a node receives data from 
any sensor nodes, it performs data aggregation on the collected data to reduce the 
amount of raw data. Table 2 shows the number of clusterheads in each zone in the 
simulation with the network size of 100 m x 100 m. 
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SensorNode Sink
 

Fig. 5. Network Field Configuration 

Table 2. The number of clusterheads in each zone 

Zone 
number 

Zone area 
Number of 
clusterheads (N_CHi) 

Number of clusterheads 
used in simulations 

ZONE0 283.39 0 0 

ZONE1 850.16 1.00 1 

ZONE2 1416.93 1.67 2 

ZONE3 1983.70 2.33 3 

ZONE4 2550.47 3.00 3 

ZONE5 2915.28 3.43 4 

Figure 6 shows the average transmission distance from all nodes to the sink.  From 
this figure, we can see that our method produces a shorter transmission distance than 
those of LEACH and PEGASIS. This is because our method offers a multi-hop 
routing path between any sensor node and the sink. Once the clusters and the 
clusterheads have been identified, the sink node chooses the routing path for any two 
adjacent clusterheads as illustrated in Figure 1 (b). All sensor nodes transmit data to 
the close neighbor node until reaching the clusterhead in the cluster as depicted in 
Figure 1 (c). There is an exception in case that all nodes in ZONE0 where data is 
transmitted to the sink directly.  

Figure 7 shows the number of rounds when a sensor node is dead for the first time 
and all sensor nodes are dead. The x-axis represents the number of rounds until the 
first or the last sensor node dies. This plot clearly shows that our method has more 
desirable energy expenditure than those of LEACH and PEGASIS. Also, we can see 
that our method offers a longer number of rounds to the first sensor node death. Also, 
our method outperforms LEACH and PEGASIS in terms of the system lifetime. As 
shown in Figure 7, the short transmission distance contributes to extending the 
number of rounds until the first sensor node and the last sensor node is dead.  
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Fig. 6. The average distance to transmit data from nodes to the sink 

 

Fig. 7. The number of rounds until the first or the last sensor node dies 

 

Fig. 8. Number of sensor nodes alive 

Figure 8 shows the number of sensor nodes that remain alive in the sensor network. 
It shows that our method always outperforms LEACH, and roughly competes with 
PEGASIS. Since we allow a multi-hop routing path for data transmission, the distance 
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required for data transmitting are less than those of LEACH, and a node has sustained 
more rounds than LEACH. 

Figure 9 shows the amount of residual energy at all sensor nodes for each round. 
This plot shows that our method offers an improvement as compared with LEACH 
and PEGASIS since the short transmission distance in our method makes a little 
energy consumption at all nodes.  

 

Fig. 9. The amount of residual energy as time goes on 

5   Conclusions 

In this paper, we propose a topology configuration method for wireless sensor 
networks with an objective of well balancing energy consumption over all sensor 
nodes without generating any isolated sensor nodes. Our method has several attractive 
features:  

 a high density node which has a good many neighbor nodes can be selected as 
clusterhead in a zone,   

 reconfiguration of cluster can be carried out in a single zone, not all over 
network field, to reduce the number of nodes that participate in changing 
clusterheads, and 

 multiple-hop transmissions between nodes or between clusterheads are possible.  

Simulation results show that our method outperforms LEACH and PEGASIS in 
terms of the system lifetime. 
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Abstract. This paper proposes a new clustering method based on con-
necting adjacent hyper-rectangles. Our method searches a set of hyper-
rectangles that satisfies the properties that (1) each hyper-rectangle cov-
ers some of the samples, and (2) each sample is covered by at least one of
the hyper-rectangles. Then, a correction of connected hyper-rectangles is
assumed to be a cluster. We apply agglomerative hierarchical clustering
method to realize the clustering based on connecting adjacent hyper-
rectangles. The effectiveness of the proposed method is shown by apply-
ing artificial data sets. This paper also considers on a way for speeding
up of the agglomerative hierarchical clustering.

Keywords: agglomerative hierarchical clustering, combinatorial opti-
mization problem, heap sort.

1 Introduction

Clustering (or unsupervised clustering) is a method for grouping samples auto-
matically by referring only similarities or distances between samples. There are
many researches on cluster analysis, and many clustering methods have been
proposed such as hierarchical clustering and the k-means clustering etc. There
are wide application fields on cluster analysis; it applies to pattern classification
and multi-variate statistical analysis, for example. On the other hand, if we know
classes that samples belong, then this kind of classification problem is called a
supervised clustering. There are also many researches on supervised clustering,
and recently, supervised clustering based on rough sets theory and two level
logic minimization techniques have been studied[1,2,3]. This paper introduces
and discusses a new unsupervised clustering.

The k-means clustering is well-known non-hierarchical clustering algorithm.
The characteristic feature of k-means clustering is that it classifies samples by
referring distances between the centers of clusters. Therefore, the k-means clus-
tering does not work well if it is applied to such samples shown in Figure 1,
in which there is a group of samples in the center of the plane and the other
samples are distributed on the circle whose center is the first group. For the
samples given in Figure 1, it is a natural result if we have two clusters; one is
the cluster of the center and the other one is the ring-shaped cluster. Recently,
Miyamoto introduced a clustering method based on support vector machine[4],

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 677–686, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



678 N. Takagi

Fig. 1. Artificial Data: The k-means clus-
tering can not find the two clusters; one is
the cluster of the center and the other one
is the cluster in the ring-shaped

Fig. 2. Samples in Continuous Domain

and this clustering method can find the two clusters when the samples in Figure
1 are applied to his clustering method. But, this clustering method requires the
number of clusters as its initial values, and clustering results strongly depend on
the initial values.

This paper proposes a new clustering method based on connecting adjacent
hyper-rectangles[5]. Each sample is a point in a sample space. This method first
considers each sample to be a hyper-rectangle in the sample space. Then, for
a pair of two adjacent hyper-rectangles, the method introduces a new hyper-
rectangle to make them form a connected component. This process repeats until
an evaluation function gives the best. In this method, samples covered by a
connected component of hyper-rectangles are assumed to be members of the same
cluster. Characteristic features of our method are (1) it does not require none of
the initial values, and (2) since clustering results give a set of hyper-rectangles,
it is easy to understand how samples distribute in the sample space. This paper
also considers on speeding up of hierarchical clustering. A simple realization of
hierarchical clustering has O(n3) time complexity, where n is the number of
samples. But, this paper shows an algorithm with O(n2 log n) time complexity.

2 Clustering by Connecting Adjacent Hyper-Rectangles

2.1 Outline

Let R be the set of real numbers and D = {o1, o2, . . . , on} be a finite subset of
Rd. In our method, at the first time, the universal set Rd is discretized into a set
of finite number of discrete values by referring a given sample data set D. This
paper discretizes Rd in the following way. First, every sample oi (i = 1, 2, . . . , n)
is projected into each of the attribute xj-coordinate (j = 1, 2, . . . , d). Then,
Rd is discretized into intervals whose width are equal to the minimum distance
between two neighboring values. For example, Figure 3 is a discrete space given
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Fig. 3. Samples in Discrete Domain Fig. 4. Example of Clustering Results:
Samples that are covered by a connected
component are assumed to be members of
the same cluster. So, in this example, there
exist the five clusters.

from a continuous sample data set shown in Figure 2. In Figure 3, ’1’ implies the
existence of a sample in the interval corresponding to the discrete value, while ’0’
implies the absence of samples in the interval. For the discrete sample data set
D, our method tries to find an optimum set of clusters by connecting adjacent or
neighbor samples into a hyper-rectangle, or introducing a new hyper-rectangle
to make them form a connected component. Let us show an abstractive example
for our method using the discrete sample data set in Figure 3. In the initial
situation, each sample is a hyper-rectangle. Then, after finding a pair of hyper-
rectangles that are adjacent to each other, our method may introduce a new
hyper-rectangle so that the three hyper-rectangles form a connected component.
This process continues in an appropriate number of iterations. Finally, if we meet
a result shown in Figure 4, we then consider a set of connected hyper-rectangles
as a cluster.

2.2 Evaluation Function

In our method, clustering results are evaluated by the evaluation function f given
later in this section. Let REC be a set of t hyper-rectangles {r1, r2, . . . , rt}, where
rk (k = 1, 2, . . . , t) is a hyper-rectangle rk = [xL

1k, xR
1k] × · · · × [xL

nk, xR
nk]. For a

discrete sample data set D = {o1, o2, . . . , on}, the minimum and the maximum
values ôj and ǒj for the attribute xj are defined below.

ôj = min(oj
1, o

j
2, . . . , o

j
n) and ǒj = max(oj

1, o
j
2, . . . , o

j
n),

where j = 1, 2, . . . , d and oi = (o1
i , o

2
i , . . . , o

d
i ) (i = 1, 2, . . . , n). The universal

hyper-rectangle is defined as [ô1, ô1]× . . .× [ǒn, ǒn]. Then, U is the set of discrete
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Fig. 5. Non-adjacent Two Rectangles Fig. 6. Example of Undesirable Connected
Component: The long thin rectangle con-
nects the non-adjacent two rectangles

points that are included in the universal hyper-rectangle. It is obvious that D ⊆
U . Let E be a subset of U whose elements are not members of D, that is,
E = U − D. c(REC) denotes the number of connected components of REC.
So, c(REC) means the number of clusters existing in REC. Then, we give the
following function f that can evaluates the clustering quality for the REC.

f(REC) = 2 · c(REC)
|D| +

∣∣∣⋃t
k=1 Ak

∣∣∣
|E| + max

1≤k≤t

{
max

1≤j≤d

dj
k

ǒj − ôj

}
, (1)

where the set Ak is the number of 0-points (which are discrete points with ’0’)
covered by the hyper-rectangle rk, and dj

k represents the maximum number of
consecutive 0-points of the hyper-rectangle rk in the xj -coordinate direction.

The 1st term means that the smaller number of clusters gives the better
clustering result. If the number of clusters is small, then the value of the function
becomes better. From the view point of the reduction of the number of clusters,
the universal hyper-rectangle gives the best result. But, we can not accept this
undesirable result. To avoid this undesirable result, we introduce the 2nd term.
It counts the 0-points that are covered by hyper-rectangles. A clustering result
would be better if hyper-rectangles cover 0-points as small as possible. However,
this penalty is not enough to find a desirable clustering result. For example, in
Figure 5, there are two rectangles that may not be adjacent to each other. As
shown in Figure 6, by adding the long thin rectangle, we can connect the two
rectangles with the small number of 0-points. Thus, we introduce the 3rd term
into the evaluation function to eliminate such an undesirable situation.

In the evaluation function (1), when the 1st term would be better, then the
2nd and the 3rd terms became worse. Conversely, when the 3rd and the 4th
terms would be better, then the 1st term became worse. So, there is a trade-off
between the 1st term and the 3rd and the 4th terms.

Let V be the set of all hyper-rectangles such that each of them covers at least
one 1-point. Then, our method can be formulated as a combinatorial optimiza-
tion problem below.

Minimize: f(A)
Subject to: A ⊆ V
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3 Agglomerative Hierarchical Algorithm

In our method, the problem is how to search a set of hyper-rectangles that gives
the minimum evaluation value. This paper does not focus on an algorithm how
to find the optimum solution. But, the paper focuses on an algorithm that is able
to find a near optimum solution with a small amount of the computation time.
To achieve this task, we refer the agglomerative hierarchical clustering method.
In the agglomerative hierarchical clustering,

1. similarities between any two of clusters is calculated, and then,
2. the two clusters with the best similarity are merged into one cluster,
3. the above two steps repeated until the number of clusters becomes one, that

is, until all of the samples belong to one cluster.

3.1 Agglomerative Hierarchical Clustering

For a sample data set D, let s(oi, oj) be a similarity between samples oi and oj

of D, and let G be a set of clusters. Then, the following is a standard flow of our
method.

Step 1: For every sample oi, set Gi ←{oi}. Then, calculate similarities s(Gi, Gj)
between any pair of two clusters Gi and Gj (i, j = 1, 2, . . . , n). Set G ←
{G1, G2, . . . , Gn}, c ← n, REC ← ∅, and BEST ← G.

Step 2: Find a pair of clusters (Gp, Gq) whose similarity s(Gp, Gq) is the best
among all of the similarities. Let G′ be the union Gp ∪ Gq. Then, remove
Gp and Gq from G, add G′ into G, and set c ← c − 1. In our method, a set
of samples forms a cluster if they are covered by connected component. To
make the samples of G′ be a cluster, create a new hyper-rectangle in the
following way, and add it into REC.

1 Find a pair of samples o′ ∈ Gp and o′′ ∈ Gq whose similarity s({o′}, {o′′})
is the best among all of the similarities s({x}, {y}) of x ∈ Gp and y ∈ Gq.

2 Create a new hyper-rectangle such that it includes the samples o′ and
o′′, and the size of the new hyper-rectangle is the minimum among all of
the hyper-rectangles covering the two samples o′ and o′′.

Step 3: If c = 1, then output BEST, and stop the algorithm.
Step 4: Calculate the evaluation function f(REC). If c = n, then BEST ←

REC. If c < n and f(REC) is better than f(BEST), then BEST ← REC.
Step 5: For every Gi ∈ G such that Gi �= G′, calculate the similarity s(G′, Gi).

Go to Step 2.

3.2 Speeding Up of Hierarchical Clustering

In this section, we discuss the way of speeding up of agglomerative hierarchical
clustering. This will be done by introducing the heap data structure. A heap is
one of the data structures, and it is first applied to a fast sort algorithm, called
the heap sort. A heap H is a one-dimensional array satisfying the following
condition.
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Heap: H [1], H [2], . . . , H[m], where m is the number of elements.
Condition: H [i] ≥ H [2i] and H [i] ≥ H [2i + 1] for every i = 1, 2, . . . , m/2.

Therefore, a heap is a one-dimensional array, but it also expresses a partially
ordered binary tree. Figure 7 shows an example of a heap H when m = 10.

H[1] = 25

H[2] = 24
H[3] = 12

H[4] = 11 H[5] = 15 H[6] = 6 H[7] = 8

H[8] = 10 H[9] = 9 H[10] = 5

Fig. 7. Example of heap

The following algorithm is a general version of agglomerative hierarchical
clustering algorithm (AHC).

Algorithm AHC

Input: A set of samples {o1, o2, . . . , on}
Output: Dendroid diagram

Step 1: Construct n clusters Gi ← {oi}, and let G ← {G1, G2, . . . , Gn}. Calcu-
late the similarity s(Gi, Gj) for every pair of clusters Gi and Gj such that
i �= j.

Step 2: Search the pair of clusters Gp and Gq whose similarity is the best. Let
G′ ← Gp ∪ Gq. Then, remove Gp and Gq from G, and add G′ to G.

Step 3: If G includes only one cluster, then output the dendroid diagram, and
stop the algorithm.

Step 4: Recalculate the similarity s(Gi, Gj) for every pair of clusters Gi and
Gj of G such that i �= j. Then, go to Step 2.

The time complexity of the algorithm AHC depends on the number of recal-
culations of similarities. The total number of the recalculations is given below.

1
2
n(n − 1) +

1
2
(n − 1)(n − 2) + · · · + 1

2
· 2 · 1 =

1
6
(n3 − n)

Thus, the time complexity of the algorithm AHC is O(n3).
We use a heap to reduce the number of recalculations of similarities. At the

first step, let H be a heap whose size is m = 1
2n(n + 1), which is the number

of all the pairs (oi, oj) (where i �= j) of the sample set {o1, o2, . . . , on}. Then,
we save all the similarities of the pairs (oi, oj) into the heap H . If the heap
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H is constructed well, then the pair of clusters Gp and Gq whose similarity is
the best exists at the first element H [1] of the heap H . Therefore, the cost for
searching the pair Gp and Gq is O(1). Then, the pair Gp and Gq is merged
into one cluster G′, and we recalculate the similarities s(G′, Gi) between G′ and
the other remaining clusters Gi. After the recalculations, we reconstruct the H
in order for it to express a heap. This reconstruction can be done in the cost
O(c log c), where c is the number of clusters.

The following is a sketch of the agglomerative hierarchical clustering with a
heap (AHCH).

Algorithm AHCH

Input: A set of samples {o1, o2, . . . , on}
Output: Dendroid diagram

Step 1: Let H be an array whose size is m = 1
2n(n + 1). Let Gi ← {oi}, and

let G ← {G1, G2, . . . , Gn}. Calculate the similarity s(Gi, Gj) for every pair
of clusters Gi and Gj such that i �= j. Then, save the similarities in H .

Step 2: Sort the elements of H to satisfy the heap condition.
Step 3: If G includes only one element, then output the dendroid diagram and

stop the algorithm.
Step 4: Let the pair of clusters in H [1] be Gp and Gq (which give the best

similarity), and set G′ ← Gp ∪ Gq. Remove Gp and Gq from G, and then
recalculate the similarity s(G′, Gi) for every Gi of G, and save the similarity
s(G′, Gi) in H [k], where k means the place that the similarity s(Gp, Gi) was
saved.

Step 5: For every Gi of G, exchange the element H [k] for the last H [m] and
remove H [m] (i.e., m ← m − 1), where k is the place that the similarity
s(Gq, Gi) is saved. Set G ← G ∪ {G′}.

Step 6: Reconstruct H in order for it to satisfy the heap condition. Go to Step 3.

Suppose a recalculated similarity s(G′, Gi) was saved at H [k] of the heap H .
If H [k] < H [2k] or H [k] < H [2k + 1] hold, then this situation does not satisfy
the heap condition. In this case, we exchange H [k] for either one of H [2k] or
H [2k + 1]. This exchanging process will be executed until we meet the heap
condition H [k] ≥ H [2k] or H [k] ≥ H [2k + 1]. Next, consider the case where
H [k] ≥ H [2k] and H [k] ≥ H [2k+1] hold. In this case, H [k] locally holds the heap
condition, but it is possible not to satisfy the heap condition for the ancestors
of H [k]. So, we have to check if H [k] would not satisfy the heap condition for
all the ancestors of H [k].

The cost of the above process is at most the height of the partially ordered
binary tree of the heap H . So, the order of this cost is O(log m) for each H [k]
when the number of nodes in the tree is m. The number of the H [k]’s that we
have to check is equal to the number of clusters |G|. Thus, we can conclude that
the reconstruction cost of the heap H in Step 6 is O(|G| log |G|2) = O(|G| log |G|),
since the size of the heap H is equal to the square of the number of clusters |G|.
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The time complexity of the algorithm AHCH depends on the number of re-
constructions of the heap H in Step 6, whose cost is O(|G| log |G|). Therefore,
the overall cost of the algorithm AHCH is given in the following formula.

n log n + (n − 1) log(n − 1) + · · · + 2 log 2,

where n is the number of data. Since this summation is approximately equal to
n2 log n, we can conclude that the time complexity of the algorithm AHCH is
O(n2 log n). Table 1 shows the CUP times of the algorithms AHC and AHCH,
where the CUP is a Pentium4 3.6GHz. We apply the AHCH algorithm to realize
our clustering method. The last row of Table 1 shows the CPU time when we add
the process for calculating the evaluation function (1) into the AHCH algorithm.
The cost for evaluating the function (1) is very fast.

Table 1. Comparison of CPU Times (sec)

# of data 1000 1500 2000 2500 3000
AHC 24 85 212 433 780

AHCH 4 11 25 44 74
Our Method 4 11 26 46 77

4 Experimental Results

This section describes the effectiveness of our method. We employed the Euclid-
ean distance as the similarity of two samples oi = (o1

i , o
2
i , . . . , o

d
i ) and oj =

(o1
j , o

2
j , . . . , o

d
j ) below.

s(oi, oj) =

√√√√ d∑
k=1

(ok
i − ok

j )2

We created three artificial data for estimating the effectiveness of our method.
The three sample sets are shown in Figures 8, 9, and 10. There are two clusters
in Figure 8 (the two spiral-shaped clusters), also two clusters in Figure 9 (the
ring-shaped and the circle clusters), and four clusters in Figure 10 (the two
bar-shaped and the two triangular-shaped clusters).

There are many kinds of recalculation methods when we execute the agglom-
erative hierarchical clustering, such as the nearest neighbor method, the furthest
neighbor method, and the group average method, and so on. In this experiment,
we applied the nearest neighbor method to the AHCH algorithm. Here, the near-
est neighbor method calculates the similarity between two clusters Gi and Gj

by the following formula.

s(Gi, Gj) = min
x∈Gi,y∈Gj

s(x, y)

Then, our method can perform well, that is, it can find the two clusters in Figures
8 and 9, respectively, and also can find the four clusters in Figure 10.
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Fig. 8. Artificial Data 1: 438 Samples Fig. 9. Artificial Data 2: 412 Samples

Fig. 10. Artificial Data 3: 1072 Samples

5 Conclusions

This paper introduced a new clustering method based on connecting adjacent
hyper-rectanglesDThe agglomerative hierarchical clustering method with the
nearest neighbor method is applied to realize an algorithm based on connecting
adjacent hyper-rectangles. The effectiveness of the proposed method is shown
by applying the three artificial data. This paper also considered on the way for
speeding up of agglomerative hierarchical clustering, and this can be done by
introducing a heap memory when we execute the clustering.

There are huge amount of partitions (which mean sets of clusters) on a given
sample data set. Our method can check only a few number of the partitions; it
can check only partitions that are created by the nearest neighbor method. To
find the optimum clustering result, it is necessary to check clusters that are not
created by the hierarchical clustering methods. Overcoming this drawback is one
of the future works. Finally, it is one of characteristic features of our method
that resultant clusters are given in the form of hyper-rectangles. It enables us
to easy understand regions that samples in a cluster are distributed. It suggests
that our method would be applied to pattern classifications.
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Abstract. We present an evaluation of a rule evaluation support method
for post-processing of mined results with rule evaluation models based on
objective indices in this paper. To reduce the costs of rule evaluation task,
which is one of the key procedures in data mining post-processing, we have
developed the rule evaluation support method with rule evaluation mod-
els, which are obtained with objective indices of mined classification rules
and evaluations of a human expert for each rule. Then we have evaluated
performances of learning algorithms for constructing rule evaluation mod-
els on the meningitis data mining as an actual problem, and ten rule sets
from the ten kinds of UCI datasets as an article problem. With these re-
sults, we show the availability of our rule evaluation support method.

1 Introduction

In recent years, it is required by people to utilize huge data, which are eas-
ily stored on information systems, developing information technologies. Besides,
data mining techniques have been widely known as a process for utilizing stored
data, combining database technologies, statistical methods, and machine learn-
ing methods. Although, IF-THEN rules are discussed as one of highly usable
and readable output of data mining, to large dataset with hundreds attributes
including noises, a rule mining process often obtains many thousands of rules.
From such huge rule set, it is difficult for human experts to find out valuable
knowledge which are rarely included in the rule set.

To support a rule selection, many efforts have done using objective rule eval-
uation indices such as recall, precision and interestingness measurements (called
‘objective indices’ later), which are calculated by the mathematical analysis and
do not include any human evaluation criteria. However, it is also difficult to es-
timate a criterion of a human expert with single objective rule evaluation index

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 687–695, 2006.
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[15], because his/her subjective criterion such as interestingness is influenced by
the amount of his/her knowledge.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In this paper, we present a performance comparison of learning algorithms
for constructing rule evaluation models. Then we discuss about the availability
of our rule evaluation model construction approach.

2 Related Work

To avoid the confusion of real human interest, objective index, and subjective
index, we clearly define them as follows: Objective Index: The feature such
as the correctness, uniqueness, and strength of a rule, calculated by the mathe-
matical analysis. It does not include any human evaluation criteria. Subjective
Index: The similarity or difference between the information on interestingness
given beforehand by a human expert and those obtained from a rule. Although
it includes some human criterion in its initial state, the similarity or difference
are mainly calculated with a mathematical analysis. Real Human Interest:
The interest felt by a human expert for a rule in his/her mind.

Focusing on interesting rule selection with objective indices, researchers have
developed more than forty objective indices based on number of instances, proba-
bility, statistics values, information quantity, distance of rules or their attributes,
and complexity of a rule [11,21,23]. Most of these indices are used to remove
meaningless rules rather than to discover really interesting ones for a human
expert, because they can not include domain knowledge. Ohsaki et. al [15] inves-
tigated the relation between objective indices and real human interests, taking
real data mining results and their human evaluations. In this work, the compar-
ison shows that it is difficult to predict real human interests with a single objec-
tive index exactly. However, their work has never shown any concrete method
to predict human evaluations with these objective indices.

3 Rule Evaluation Support with Rule Evaluation Model
Based on Objective Indices

At practical data mining situations, a human expert repeatedly does costly rule
evaluation procedures. In these situations, useful experiences of each evaluation
such as focused attributes, interesting their combinations, and valuable facts are
not explicitly used by any rule selection system, but tacitly stored in the human
expert. To these problems, we suggest a method to construct rule evaluation
models based on objective rule evaluation indices as a way to describe criteria
of a human expert explicitly, re-using the human evaluations.

We considered the process of modeling rule evaluations of human experts as
the process to clear up relationships between the human evaluations and features
of input if-then rules. Then, we decided that the process of rule evaluation model
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Fig. 1. Overview of the construction method of rule evaluation models

construction can be implemented as a learning task. Fig. 1 shows the process
of rule evaluation model construction based on re-use of human evaluations and
objective indices.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices values. At the same time, a human expert evaluates the
whole or part of input rules at least once to join as class of each instance. After
obtaining the training data set, its rule evaluation model is constructed by a
learning algorithm. At the prediction phase, a human expert receives predictions
for new rules based on their values of the objective indices. Since the task of rule
evaluation models is a prediction, we need to choose a learning algorithm with
higher accuracy as same as current classification problems.

4 Performance Comparisons of Learning Algorithms for
Rule Model Construction

In this section, we firstly present the result of an empirical evaluation with
the dataset from the result of a meningitis data mining [9]. Then to confirm
the performance of our approach, we present the result on the ten kinds of UCI
benchmark datasets [10]. In these case studies , we have evaluated rule evaluation
construction algorithms from the following three view points: performances of
learning algorithms, estimations of minimum training subsets to construct valid
rule evaluation models, and contents of learned rule evaluation models.

To construct a dataset to learn a rule evaluation model, 39 objective indices
[15] have been calculated for each rule as shown in Table 1.

To these dataset, we applied the following five learning algorithms from Weka
[22]: C4.5 decision tree learner [18] called J4.8, neural network learner with back
propagation (BPNN) [12], support vector machines (SVM) 1 [17], classification
via linear regressions (CLR) 2 [3], and OneR [13].

1 The kernel function was set up polynomial kernel.
2 We set up the elimination of collinear attributes and the model selection with greedy

search based on Akaike Information Metric.
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Table 1. Objective rule evaluation indices for classification rules used in this research.
P: Probability of the antecedent and/or consequent of a rule. S: Statistical variable
based on P. I: Information of the antecedent and/or consequent of a rule. N: Number
of instances included in the antecedent and/or consequent of a rule. D: Distance of a
rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverage (Coverage), Prevalence (Prevalence)

Precision (Precision), Recall (Recall)
Support (Support), Specificity (Specificity)
Accuracy (Accuracy), Lift (Lift)
Leverage (Leverage), Added Value (Added Value)[21]
Klösgen’s Interestingness (KI)[14], Relative Risk (RR)[1]
Brin’s Interest (BI)[2], Brin’s Conviction (BC)[2]
Certainty Factor (CF)[21], Jaccard Coefficient (Jaccard)[21]
F-Measure (F-M)[19], Odds Ratio (OR)[21]
Yule’s Q (YuleQ)[21], Yule’s Y (YuleY)[21]
Kappa (Kappa)[21], Collective Strength (CST)[21]
Gray and Orlowska’s Interestingness weighting Dependency (GOI)[7]
Gini Gain (Gini)[21], Credibility (Credibility)[8]

S χ2 Measure for One Quadrant (χ2-M1)[6]
χ2 Measure for Four Quadrant (χ2-M4)[6]

I J-Measure (J-M)[20], K-Measure (K-M)[15]
Mutual Information (MI)[21]
Yao and Liu’s Interestingness 1 based on one-way support (YLI1)[23]
Yao and Liu’s Interestingness 2 based on two-way support (YLI2)[23]
Yao and Zhong’s Interestingness (YZI)[23]

N Cosine Similarity (CSI)[21], Laplace Correction (LC)[21]
φ Coefficient (φ)[21], Piatetsky-Shapiro’s Interestingness (PSI)[16]

D Gago and Bento’s Interestingness (GBI)[5]
Peculiarity (Peculiarity)[24]

4.1 Constructing Rule Evaluation Models on an Actual Datamining
Result

In this case study, we have taken 244 rules, which are mined from six dataset
about six kinds of diagnostic problems as shown in Table 2. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction
algorithm composed by CAMLET [9]. For each rule, we labeled three evalua-
tions (I:Interesting, NI:Not-Interesting, NU:Not-Understandable), according to
evaluation comments from a medical expert.

Table 2. Description of the meningitis datasets and their datamining results

Dataset #Attributes #Class #Mined rules #’I’ rules #’NI’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9
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Comparison on Performances. In this section, we show the result of the
comparisons of performances on the whole dataset, recall and precisions of each
class label. Since Leave-One-Out holds just one test instance and remains as the
training dataset repeatedly for each instance of a given dataset, we can evaluate
the performance of a learning algorithm to a new dataset without any ambiguity.

The results of the performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table 3. All
of the accuracies, Recalls of I and NI, and Precisions of I and NI are higher than
predicting default labels.

Table 3. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms

On the whole training dataset Leave-One-Out
Recall of Precision of Recall of Precision of

Acc. I NI NU I NI NU Acc. I NI NU I NI NU
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0

These learning algorithms excepting OneR achieve equal or higher perfor-
mance with combination of multiple objective indices than sorting with single
objective index. The accuracies of Leave-One-Out shows robustness of each learn-
ingalgorithm. These learning algorithms have achieved from 75.8% to 81.9%.

Estimating Minimum Training Subset to Construct a Valid Rule Eval-
uation Model. Since the rule evaluation model construction method needs eval-
uations of mined rules by a human expert, we have estimated minimum training
subset to construct a valid rule evaluation model. Table 4 shows accuracies to
the whole training dataset with each subset of training dataset. As shown in
these results, SVM and CLR, which learn hype-planes, achieves grater than 95%
with only less than 10% of training subset. Although decision tree learner and
BPNN could learn better classifier to the whole dataset than these hyper-plane
learners, they need more training instances to learn accurate classifiers.

Rule Evaluation Models on the Actual Datamining Result Dataset.
In this section, we present rule evaluation models to the whole dataset learned
with OneR, J4.8 and CLR, because they are represented as explicit models such
as a rule set, a decision tree, and a set of linear models.

As shown in Fig. 2, indices used in learned rule evaluation models, they are
not only the group of indices increasing with a correctness of a rule, but also they
are used some different groups of indices on different models. Almost indices such
as YLI1, Laplace Correction, Accuracy, Precision, Recall, and Coverage are the
former type of indices on the models. The later indices are GBI and Peculiality,
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Table 4. Accuracies(%) on the whole training dataset of the learning algorithms
trained by sub-sampled training datasets
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Fig. 2. Top 10 frequencies of indices of learned rule evaluation models by OneR(a),
J4.8(b), and CLR(c). Statistics are collected by 10,000 times bootstrap iterations.

which sums up difference of antecedents between one rule and the other rules in
the same ruleset. This corresponds to the comment from the human expert.

4.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

To confirm the performances without any human criteria, we have also evaluated
our method with rule sets from the following ten datasets of UCI lachine learn-
ing repository: anneal, audiology, autos, balance-scale, breast-cancer, breast-w,
colic, credit-a, credit-g, and diabetes. From these datasets, we obtained rule
sets with bagged PART, which repeatedly executes PART [4] to bootstrapped
training sub-sample datasets. To these rule sets, we calculated the 39 objective
indices as attributes of each rule. As for the class of these datasets, we set up
three class distributions with multinomial distribution. Table 5 shows us the
datasets with three different class distributions. The class distribution for ‘Dis-
tribution I’ is P = (0.35, 0.3, 0.3) where pi is the probability for class i. Thus
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Table 5. The flow to obtain datasets from UCI datasets (on the left flow chart). And
the datasets of the rule sets learned from the UCI benchmark (on the right table).

A dataset from 
UCI ML repository

Obtaining rule sets with
bagged PART (iteration=10)

rule sets of the UCI dataset

Obtaining rule sets with
bagged PART (iteration=10)

A dataset for rule evaluation 
model construction

append random class
label for each instance

Table 6. Accuracies(%) on whole training datasets( left table), and number of mini-
mum training sub-samples to outperform %Def. class(right table).

the number of class i in each instance Dj become piDj. As the same way, the
probability vector of ‘Distribution II’ is P = (0.3, 0.5, 0.2), and ‘Distribution III’
is P = (0.3, 0.65, 0.05).

Accuracy Comparison on Classification Performances. As shown in the
left table of Table 6, J48 and BPNN always work better than just predicting a
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default class. However, their performances are suffered from probabilistic class
distributions to larger datasets such as balance-scale,credit-a and credit-g.

Estimating Minimum Training Subset to Construct a Valid Rule Eval-
uation Model. As shown in the right table of Table 6, to smaller datasets with
balanced class distributions, the five learning algorithms can construct valid
models with less than 20% of given training datasets. However, to larger datasets
or with unbalanced class distributions, they need more training subsets to con-
struct valid models, because their performances with whole training dataset fall
to the percentages of default class.

5 Conclusion

In this paper, we have described rule evaluation support method with rule eval-
uation models to predict evaluations for an IF-THEN rule based on objective
indices.

As the result of the performance comparison with the five learning algorithms,
rule evaluation models have achieved higher accuracies than just predicting each
default class. Considering the difference between the actual evaluation labeling
and the artificial evaluation labeling, it is shown that the medical expert eval-
uated with certain subjective criterion. In the estimations of minimum training
subset for constructing a valid rule evaluation model on the dataset of the actual
datamining result, SVM and CLR have achieved more than 95% of achievement
ratio compared to the accuracy of the whole training dataset with less than 10%
of subset of the training dataset with certain human evaluations. These results
indicate the availability of our method to support a human expert.

As future work, we will introduce a selection method of learning algorithms
to construct a proper rule evaluation model according to each situation.
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Abstract. Mining the most interesting patterns from multiple pheno-
types medical data poses a great challenge for previous work, which only
focuses on bi-phenotypes (such as abnormal vs. normal) medical data.
Association rule mining can be applied to analyze such dataset, whereas
most rules generated are either redundancy or no sense. In this paper, we
define two interesting patterns, namely VP (an acronym for “Vital Pat-
tern”) and PP (an acronym for “Protect Pattern”), based on a statistical
metric. We also propose a new algorithm called MVP that is specially
designed to discover such two patterns from multiple phenotypes med-
ical data. The algorithm generates useful rules for medical researchers,
from which a clearly causal graph can be induced. The experiment re-
sults demonstrate that the proposed method enables the user to focus on
fewer rules and assures that the survival rules are all interesting from the
viewpoint of medical domain. The classifier build on the rules generated
by our method outperforms existing classifiers.

1 Introduction

With the recent development of medical science, not only the disease but also
many types of the disease can be accurately identified. For example breast cancer
can be divided into three different subtypes: BRCA1, BRCA2 and Sporadic. Dif-
ferent subtypes correspond to different patterns. Previous work only focuses on
distinguishing several pairs of phenotypes. It is important to medical researcher
to mining specific patterns in different phenotypes simultaneously.

Rules are one of the most expressive and human understandable representa-
tions of knowledge, which has been widely accepted because of the simplicity
of the problem statement and the effectiveness of pruning by support. However,
association rule [1] discovery usually produces too many rules and not all of the
rules are interesting.

Hence it is important to select the right measure for a given application do-
main. Utilizing the measure, some uninteresting rule will be prune efficiently.
In medical applications, the vital patterns usually exist in every types of the
diseases. Optimal rule discovery uncovers rules that maximize an interestingness
measure, because it can prune some uninteresting itemsets and hence optimal
rule discovery is significantly more efficient than association rule discovery. This
� The work was supported by the “fifteen” tackle key problem project of National

Science and Technology Department under grant no.2004BA721A05.
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paper aims to find and identify the vital patterns and protect patterns which
are important to the medical application.

The main contributions of this work are as follows: (1) explain why mining
medical data for VP and PP is an interesting problem, (2) identify useful con-
straints to make the patterns mined useful for the medical domain, (3) based
on the proposed constraints, design an algorithm to discover VP and PP on
multiple disease phenotypes, and (4) utilize the VP and PP to perform a causal
analysis for a medical data set, which is more clear than association rules and is
more suitable to analysis the medical data set.

The remainder of this paper is organized as follows: Section 2 states the defin-
itions of VP and PP. In Section 3, we present the efficient method for identifying
VP and PP based on interesting measure, and propose an algorithm to imple-
ment it. Experimental results are described in Section 4, where a casual graph
is derived, which is understandable results to medical practitioners. Section 5
presents related work for comparison with our approach. We summarize our
research and discuss some future work directions in Section 6.

2 Preliminary

In this section, we introduce some basic concepts and give the problem definition.

2.1 The Basics

As shown in Table 1, the medical dataset D consist of a set of rows and a set of
columns, where the rows denote patients, P = {p1, p2..., pm}, and the columns
except the last one denote attributes(i.e. symptoms), L = {L1, L2, ...Ln}, while
the last one, T = {T1, T2, ...Tk}, is the complete set of class of D. Each patient
pi ∈ P consists of one or more attributes from L and a class label from T, i.e.{Ai,
Bi,..., Ti}. Note that every attribute has different expression value, which can
evaluate the degree of the symptom. For simplicity, we let the capital letters,
such as A, B, C, D, denote attributes and the number, such as 1, 2, 3, 4, denote
different values of the symptoms. Table 1 shows a multiple pneumonia medical
data with twelve patients and four symptoms with hierarchy. The diseases can
be partitioned three types: typeA, typeB, typeC. Bellow are some definitions.

Table 1. An example of a three phenotypes medical data

A B C D CLASS
A0 B1 C2 D1 T1
A0 B1 C2 D3 T1
A0 B1 C2 D1 T1
A1 B1 C2 D1 T1
A0 B0 C2 D1 T2
A0 B0 C2 D1 T2
A1 B1 C0 D1 T2
A1 B1 C2 D1 T2
A1 B1 C2 D2 T3
A2 B0 C2 D1 T3
A2 B0 C2 D1 T3
A2 B0 C2 D1 T3
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Definition 1. Let D be a dataset with attribute A, A={P1, P2, ..., Pn}. Let P =
{P1P2...Pl} ⊆A(l=1,2,...,n) be an attribute or a subset of attributes. We called
an attribute value or a set of attribute-value pairs a Pattern.

For example, {fever=1(i.e.370C), cough=3(i.e.frequency in([40,50]/min))} is a
pattern with two attribute-value pairs, denoted by P.

Definition 2. Let P be a pattern and Tk ∈ T be a phenotype. The intra-class
support of pattern P in phenotype Tk is the ratio of the number of records con-
taining P with the phenotype Tk to the number of phenotype Tk in the data set,
Intra Supp is an abbreviation of Intra Support.

Intra Supp(P → Tk) =
Support(P

⋃
Tk)

Support(Tk)

Definition 3. Let I={P,Pa,Pab,...,Pabcd} be a pattern set. Pa denotes the su-
perset of pattern P, Pab denotes the superset of pattern P and Pa, Pabcd is the
superset of all pattern in I except itself. So all supersets with prefix P are Pa, Pab,
Pabc and so on. we say the set I is the Prefix Rule Sets with common prefix P.

Definition 4. The Prefix Rule Sets I={Pa, Pab,..., Pabcde} satisfy Pa→Tk,
Pab→Tk,..., Pabcde→Tk, if there not exist pattern P′ ∈P, and P′ →Tk, then
we called pattern P the General pattern which induce Tk. If there not exist
Pabcde∈P′ ′, and P′′→Tk, then we called pattern Pabcde the Specific pattern
which induce Tk.

Definition 5. Interestingness Measure Odd Ratio is abbreviated to OR.
The Odd Ratio evaluate the relative likelihood of pattern P occurring in different
phenotypes. That is say, it estimate the correlation about the pattern with the
disease. The OR value lies in the range [0,∞].

A pattern′OR for specific Tk is defined as:

OR(P → Tk) =
Supp(P ∪ Tk)Supp(¬P ∪ ¬Tk)
Supp(¬P ∪ Tk)Supp(P ∪ ¬Tk)

Supp is abbreviation of Support. Supp(P ∪ Tk) denotes the support of pattern
P and Tk emerging simultaneously, Supp(P ∪ ¬Tk)=Supp(P )-Supp(P ∪ Tk),
Supp(¬P ∪ Tk)=Supp(Tk)-Supp(P ∪ Tk), and Supp(¬P ∪ ¬Tk)=1-Supp(P )-
Supp(Tk)+Supp(P ∪ Tk).

Definition 6. Let P⊆A, Tk ∈ T denote one of the phenotype disease. We say P
is Vital Pattern if and only if OR(P→ Tk)
δ (δ is a given threshold by user).
VP is an abbreviation of Vital Pattern. Some vital pattern combination as Vital
Pattern Sets. We say P is Protect Pattern if and only if OR(P→ Tk)�ε (ε
is a given threshold by user). PP is an abbreviation of Protect Pattern. Some
protect pattern combination as Protect Pattern Sets.

Definition 7. For a given phenotype Tk, an optimal rule P should satisfy:
(1)Pattern P should be frequent in each phenotype; (2)Pattern P should have
the highest confidence in the Prefix Rule Set containing it; (3)Pattern P in the
Prefix Rule Set containing it should have the maximal interesting in a specific
domain. All the optimal rules combination as Optimal Rule Sets.
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2.2 Problem Definition

Given: (1) a multiple phenotype dataset D = S ×A with a set of target diseases,
T={T1, T2, ..., Tk}, (2) γ, the minimum intra-class support(Intra Supp) thresh-
old, (3) δ, a user-specific OR threshold such that a pattern with OR ≥ δ is a
vital pattern, and (4) ε, a user-specific OR threshold such that a pattern with
OR ≤ ε is a protect pattern, our task is to mine a pattern set R in which every
element satisfies either the definition of vital pattern or the definition of protect
pattern.

3 MVP Algorithm

We present our algorithm, called MVP1, to find all vital patterns and protect
patterns satisfying thresholds δ and ε respectively in section 3.1 and the effective
pruning strategies in section 3.2.

3.1 The Description of MVP Algorithm

We discuss the detail of MVP algorithm below, taking Table 1 as the example,
where the minimum intra-class support threshold γ=2.

The mining process is conducted on a prefix tree as shown in Figure 1, which
is build on Table 1. Limited by space, we omit the description of constructing
such a prefix tree structure.

From figure 1, we can see 10 candidate 1-patterns at level 1, where the number
within brackets denotes the count of patterns. For example, A0(4) denotes the
total count of A0 is 4. We only use the support-based pruning 1(see the details
in section3.2) to generate these candidate patterns(line 2-5). Tk with solid box
represents the corresponding rule pruned. For example, T3 with solid box un-
der A0(4) means the rule A0→T3 can be cut by pruning rule 1. Further, if all
Tk under some pattern are pruned, then rules containing this pattern will be
pruned. For example, the removal of all Tk under C0 induces 46 rules in the pre-
fix rule set of C0 pruned, such as A0C0→Tk, A1C0→Tk,...,A0B0C0→Tk,..., and
A2B1C0D3→Tk will not be generated, and the similar case to D3. Next, we gen-
erate the candidate patterns for the second level. At first, we can pruning some
redundancy rules by applying pruning rule 1(line 8∼10), such as candidate A0D2,
A1B0, A1D2 are remove since Intra Supp(A0D2)=0< γ, Intra Supp(A1B0)=0<
γ, Intra Supp(A1D2)=0< γ. It is marked by red 1© where the prune rule 1 is
applied. Then, we perform the confidence-based pruning rule 2(line 13), which
will also be explained in subsection 3.2. For instance, (T1T2) in candidate(A0C2;
T1T2) is terminated because of Supp(A0)=Supp(A0C2). It is marked by red 2©
where the prune rule 2 is applied. At last, OR-based pruning rule 3 is very
important but not difficult understand (see subsection 3.2). For example, T1
in candidate (A0D1; T1T2) is removed by line 14 because Supp(A0D1∪¬T1) =
Supp(A0∪¬T1) hold. It is marked by red 3© where the prune rule 3 is applied.
A complete pseudo-code for mining optimal VP and PP sets is presented in
Algorithm 1.
1 MVP stands for Mining Vital and Protect Patterns.
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Fig. 1. The MVP algorithm

Algorithm 1. Mining the VP and PP algorithm
Input: data set D, minimum Inter Class Support θ
Output: Pattern sets R
1: Set R = φ
2: Count support of 1-patterns in every phenotype
3: Generate 1-pattern set
4: Count supports of 1-pattern in different phenotype
5: Select 1-pattern respectively and add them to R
6: new pattern set ← Generate(2-pattern set)
7: while new pattern set is not empty do
8: Count Intra Supp(P,Tk) of candidates in new pattern set
9: For each pattern P in (l+1)-pattern set
10: Applying pruning 1: IF Intra Supp(P→ Tk)< γ
11: remove pattern S;
12: Else if there is a sub pattern P’ in l-pattern set
13: Applying pruning 2: that Supp(P’)= Supp(P) or
14: Applying pruning 2: Supp(P’,¬Tk)=Supp(P,¬Tk)
15: Then remove pattern P;
16: Count the OR value;
17: Select VP and PP to R;
18: ENDIF
19: end while
20: new pattern set ← Generate(next level pattern sets)
21: Return R;

The algorithm 1 discuss the support-based pruning, confidence-based pruning,
and OR-based pruning. Existing algorithms to find an interesting rule sets are
to post-prune an association rule set but this may be very inefficient when the
minimum support is low and it will be generate a mount of redundancy rules. Our
MVP algorithm makes use of the interestingness measure property to efficiently
prune uninteresting rules and save only the maximal interesting rules instead of
all ones, and this distinguishes it from an association rule mining algorithm.
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Function 1. Generate(l+1)-pattern Set
1: Let (l + 1)-pattern set be empty set
2: (Note: Obey by the CIk−1 * CIk−1 Method to Merge)
3: for each pair of patterns pPl−1 and Pl−1q in l-pattern set do
4: Insert candidate Pl−1.pq in (l + 1)-pattern set ;
5: for all Pl ⊂ Pl−1pq do
6: if Pl does not exist in l-pattern set then
7: Then remove candidate Pl−1pq
8: end if
9: Return (l+1)-pattern set
10: end for
11: end for

Function 1 as function for generate candidate itemsets. All candidate genera-
tion are build on the prefix tree structure. We adopt the CIk−1*CIk−1 Merge to
obtained the candidate itemset. After rules have been formed, we can prune many
redundancy rules, limited by space, we don’t explain the function in details.

3.2 Pruning Strategies

We next look at the pruning techniques that are used in MVP, which are essential
for the efficiency. Our emphasis here is to show that our pruning steps prevent
unnecessary rules generation and only preserve interesting rules, the correctness
of our algorithm will be obvious.

Pruning Rule 1. Given Intra Supp, Pattern Pa denotes pattern P and all its
possible proper supersets, phenotype Tk ∈ T (k=1,2,3,...) denotes one types of
the diseases. If 0� Intra Supp(P→Tk)� γ, then pattern P and its supersets for
their′s corresponding phenotype Tk will not be the optimal rule.

Pruning Rule 2. If pattern P satisfy Supp(P)= Supp(Pa), Pa denotes its proper
superset, then pattern Pa and all its possible proper supersets will not be useful for
VP and PP.

Pruning Rule 3. If pattern P satisfy Supp(P∪¬Tk)=Supp(Pa∪¬Tk), Pa de-
notes its proper superset, then pattern Pa and all its possible proper supersets
will not be useful for VP and PP.

Limited by space, we omit the proof. The above pruning rules are very efficient
since it only generates a subset of frequent patterns with maximal interestingness
instead of all ones.

Finally, the optimal VP and PP sets are significantly smaller than an associa-
tion rule set, but is still too big for medical practitioners to review them all. We
may only return top-k vital patterns or protect patterns, but they may all come
from a section of the data set and lack the representation for all phenotypes. In
order to account for all known phenotypes, we aim to retain one vital pattern
sets and protect pattern sets for each phenotype Tk. Limited by space, we don′t
list the top-k algorithm in details.

4 Experiments

The task was support by national nature fund. The pneumonia data come from
eight hospitals. The data set contains 20000 cases, where belong to six different
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pneumonia. Patients are described by 112 attributes, but not all the attributes
are useful to mining vital pattern and protect pattern. Some information in-
cluding age, sex, address, phone number are excluded during the preprocessing.
Our goal is to identify VP and PP from multiple pneumonia phenotypes. We
set the Intra Supp as 0.01. It returned 6 phenotypes and corresponding VP and
PP. The following are the first four representative patterns with the highest VP
and lowest PP. For phenotype Tk, below is the example of VP and PP, the vital
pattern is:

Pattern 1: OR=3.06 , Significance Testing : χ2 = 14.08, P<0.05, it illuminate
the pattern is relevant to phenotype Tk.

Fever = 380C ∼ 390C
Breath = 30∼40 times/minute
X ray = ”thick and weight”
The PP is :
Pattern: OR=1.102
Fever = 36.50C ∼ 370C
Moist Rales = ”normal”
Limited by space, we don’t list all the experiment results. From the experiment

results, we can draw a causal graph with respective patterns.
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Fig. 2. Causal analysis graph of multiple phenotypes pneumonia

With this causal graph, we can verify that different phenotypes are indepen-
dent or conditionally independent. The representative edges form a graph with
three type of edges:

1. Directed edges (→) indicating a cause-effect relationship. It means the
pattern would be the vital pattern.

2. Bidirected edges (←→) indicating the two patterns are appearance to-
gether. It means one pattern’s appearance go with another pattern’s appearance
together.
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3. Directed edges with a small circle at its tail (o→) also indicate a cause-
effect. It means the pattern are common cause for more than two phenotypes.
It will not be the highest vital pattern.

4. Edge with circles at both ends (o–o) indicate that either could be causing
the other. It means the pattern would be the protect pattern.
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We evaluate the performance of MVP algorithm from effectiveness and the
classification accuracy. In all experiments, we use Intra Supp=0.01, unless other-
wise specified. Figure 3 presents the comparison of classification accuracies. Fig-
ure 3 (a) compare the classification accuracy with the same support by different
algorithms(SVM, C4.5, and MVP). Figure 3(b) present the classification accu-
racy of different pattern selection(range from 5 to 35) with different Intra Supp.
Obviously, the classification accuracy are different with different Intra Supp.

In figure 4, we compute the pattern′OR value in different phenotypes. We
clearly see that each pattern′OR value is different in different phenotypes, which
illuminate the different signification of the same pattern in different outcome
phenotypes and the importance of interesting measure.

Figure 5 compare the run times of rules with different algorithms(association
rules, non-redundant rules and MVP). Figure 5 (a) compare the runtime of rules
with the different support(range from 0.01 to 0.07). Figure 5 (b) compare the
runtime of rules with the same support by different layer-th. We can see that
MVP algorithm always consume the least time, because it prune the redundant
rules in each level.
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In comparison with MVP in figure 6, the non-redundant rules and association
rules is very inefficient. We can draw a conclusion that MVP only generate the
maximal interesting rules which reduce the redundant rules dramatically.

From a series of experiment above, we can prove that our algorithm can
discover vital patterns and protect patterns which are important for domain
expert and most found patterns are of great interest to domain experts and
verified by them and our MVP algorithm is efficient for classification.

5 Related Work

Data Mining is an active research area. One of the most popular approaches to
do data mining is discovering association rules [1]. Association rules are generally
used with basket, census or financial data [2]. Medical data is generally analyzed
with classifier trees [3,4], clustering, or regression. Recent years, association rule
mining has been used in medical data analysis. Brossette et al [5] found associ-
ation rules in hospital infection control and public surveillance data. Sequence
patterns have been found in chronic hepatitis data by Ohsaki et al [6], and so
on. However, these cases result in too many trivial and similar patterns which
is also a problem in the research. It is quite impossible for domain experts to
review a huge number of association rules. Liu et al [7] used the standard test
to prune insignificant rules and introduced the concept of direction setting rules
to summarize the patterns. A crucial aspect of data mining is that the discov-
ered knowledge should be somehow interesting, where the term interestingness
arguably has to do with surprisingness (unexpectedness), usefulness and nov-
elty [8]. So fining an interesting measure is very important for a special domain.

6 Conclusions and Future Research Directions

In this paper, we discuss the vital pattern and protect pattern which are im-
portant for medical researcher, and propose an interesting measure in order to
decide whether the rules are interesting for the biomedical domain. Based on
the interesting measure, we propose a new algorithm with efficient pruning rules
to mine all optimal VP and PP rules. A causal graph can be deduced using
the resulting rules. Our experimental results confirm that our approach is effec-
tive and efficient for optimal VP and PP rules generating. Our approach also
outperforms the existing approach in performance.

There is an emerging need for mining interesting rules from multiple phe-
notypes medical data. Interesting rule discovery is efficient and works well by
selecting the right measure. Therefore, it is a great alternative for association
rule discovery in biomedical domain.
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Abstract. To err is human. How can we avoid near misses and achieve
medical safety? From this perspective, we analyzed the nurses’ incident
data by data mining with the ”concept of quality control” that near
misses are produced by the system rather than individuals. Nurses’ inci-
dent data were collected during the 18 months at the emergency room.
Significant rules (If-then rules) indicated that the medication errors are
likely to occur when mental concentration is disrupted by interruption
of work, etc. Based on the results of the analysis, the nurses’ medica-
tion check system was improved. During the last 6 months, the check
system was put into effect. The frequency of the medication errors de-
creased to about one-twenties or less. It was considered that the data
mining analysis contributes the decision support on the improvement of
incidents.

1 Introduction

It has passed about twenty years since clinical information are stored electron-
ically as a hospital information system since 1980’s. Stored data include from
accounting information to laboratory data and even patient records are now
started to be accumulated: in other words, a hospital cannot function without
the information system, where almost all the pieces of medical information are
stored as multimedia databases. Especially, if the implementation of electronic
patient records is progressed into the improvement on the efficiency of infor-
mation retrieval, it may not be a dream for each patient to benefit from the
personal database with all the healthcare information, “from cradle to tomb”.
However, although the studies on electronic patient record has been progressed
rapidly, reuse of the stored data has not yet been discussed in details, except
for laboratory data and accounting information to which OLAP methodologies
are applied. Even in these databases, more intelligent techniques for reuse of the
data, such as data mining and classical statistical methods has just started to
be applied from 1990’s[1,2].

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 706–715, 2006.
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Human data analysis is characterized by a deep and short-range investigation
based on their experienced “cases”, whereas one of the most distinguished fea-
tures of com-puter-based data analysis is to enable us to understand from the
different viewpoints by using “cross-sectional” search. It is expected that the
intelligent reuse of data in the hospital information system provides us to grasp
the all the characteristics of univer-sity hospital and to acquire objective knowl-
edge about how the hospital management should be and what kind of medical
care should be served in the university hospital.

This paper focuses on application of data mining to medical risk manage-
ment. To err is human. However, medical practice should avoid as many errors
as possible to achieve safe medicine. Thus, it is a very critical issue in clinical
environment how we can avoid the near misses and achieve the medical safety.
Errors can be classified into the following three type of erros. First one is sys-
tematic errors, which occur due to problems of system and workflow. Second one
is personal errors, which occur due to lack of expertise of medical staff. Finally,
the third one is random error. The important point is to detect systematic er-
rors and personal errors, which may be prevented by suitable actions, and data
mining is expected as a tool for analysis of those errors.

For this purpose, this paper proposes risk mining where data including risk in-
formation is analyzed by using data mining methods and mining results are used
for risk prevention. We assume that risk mining consists of three major processes:
risk detection, risk clarification and risk utilization, as shown in Section 2.

As an illustrative example, we applied risk mining process to analysis of nurses’
incident data. First, data collected in 6 months were analyzed by rule induction
methods, which detects several important factors for incidents (risk detection).
Since data do not include precise information about these factors, we recollect
incident data for 6 months to collect precise information about incidents. Then,
rule induction is applied to new data. Domain experts discussed all the results
obtained and found several important systematic errors in workflow (risk clar-
ification). Finally, nurses changed workflow to prevent incidents and data were
recollected for 6 months. Surprisingly, the frequency of medication errors has
been reduced to one-tenth (risk utilization).

This paper is organized as follows. Section 2 shows background of our studies.
Section 3 proposes three major processes of risk mining. Section 4 gives an
illustrative application of risk mining. Finally, Section 5 concludes this paper.

2 Background

A hospital is a very complicated organization where medical staff, including doc-
tors and nurses give a very efficient and specialized service for patients. However,
such a complicated organization is not robust to rapid changes. Due to rapid ad-
vances in medical technology, such as introduction of complicated chemotherapy,
medical workflow has to be changed in a rapid and systematic way. Such rapid
changes lead to malpratice of medical staff, sometimes a large-scale accident may
occur by chain reaction of small-scale accidents.
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Medical accidents include not only careless mistakes of doctors or nurses,
but also prescription errors, intrahospital infections or drug side-effects. The
cause for such accidents may not be well investigated and it is unknown whether
such accidents can be classified into systematic errors or random errors. Since
the occurrence of severe accidents is very low, case studies are used for their
analysis. However, in such investigations, personal errors tend to be the cause of
the accidents. Thus, it is very important to discover knowledge about how such
accidents occur in a complicated organization and knowledge about the nature
of systematic erors or random errors.

On the other hand, clinical information have been stored electronically as
a hospital information system(HIS). The database stores all the data related
with medical actions, including accounting information, laboratory examination,
treatement and patient records described by medical staffs. Incident or accident
reports are not exception: they are also stored in HIS as clinical data. Thus, it is
now expected that mining such combined data will give a new insight to medical
accidents.

3 Risk Mining

In order to utilize information about risk extracted from information systems,
we propose risk mining which integrates the following three important process:
risk detection, risk clarification and risk utilization.

3.1 Risk Detection

Patterns or information unexpected to domain experts may be important to
detect the possiblity of large scale accidents. So, first, mining patterns or other
types of information which are unexpected to domain experts is one of the impor-
tant processes in risk mining. We call this process risk detection, where acquired
knowdedge is refered to as detected risk information.

3.2 Risk Clarification

Focusing on detected risk information, domain experts and data miners can focus
on clarification of modelling the hidden mechanism of risk. If domain experts
need more information with finer granularity, we should collect more data with
detailed information, and apply data mining to newly collected data. We call this
process risk clarification, where acquired knowdedge is refered to as clarified risk
information.

3.3 Risk Utilization

We have to evaluate clarified risk information in a real world environment to
prevent risk events. If risk information is not enough to prevention, then more
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analysis is required. Thus, additional data collection is evoked for a new cycle
of risk mining process.

We call this process risk utilization. where acquired knowdedge is refered to
as clarified risk information.

Figure 1 shows the overview of risk mining process.
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3.4 Elemental Techiques for Risk Mining

Mining Unbalanced Data. A large scale accident rarely occur: usually such
it can viewed as a large deviation of small scale accidents, called incidents. Since
even the occurence of incidents is very low, the probability of large accidents
is nearly equal to 0. On the other hand, most of the data mining methods
depend on “frequency” and mining such unbalanced data with small proba-
bilities is one of the difficult problems in data mining research. Thus, for risk
mining, techiques for mining unbanced data are very important to detect risk
information.

3.5 Interestingness

In convetional data mining, indices for mining patterns are based on frequency.
However, to extract unexpected or interesting knowledge, we can introduce mea-
sures for unexpectedness or interestingness to extract patterns from data, and
such studies have been reported in data mining literature.

3.6 Uncertainty and Granularity: Granular Computing

Since incident reports include information about human actions, these data are
described by subjective information with uncertainty, where we need to deal
with coarseness and fineness of information (information granularity). Granular
computing, including fuzzy sets and rough sets, are closely related with this
point.

3.7 Visualization

Visualizing cooccurence events or items may enable domain experts to detect
risk information, to clarify the mechanism of risk, or to utilize risk information.

3.8 Structuration: Graph Mining

Risk may be detected or clarified only by relations between several items in a
large network structure. Thus, exracting partial structure from network hidden
in data is a very important techique, focusing on risk information based on
relations between items.

3.9 Clustering

Similarity may find relations between similar objects which seems not to be
similar. Or events which seems to occur independently can be grouped into
several “similar” events, which enables us to find dependencies between events.
For this purpose, clustering is a very important techique.
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3.10 Evaluation of Risk Probablity

Since probability is formally defined as a Lebegue measure on a fixed sample space,
its performance is very unstable when the definition of sample space is unstable.
Especially, when we collect data dynamically, such unstablility frequently occurs.
Thus, deep reflection on evaluation of risk probability is very important.

3.11 Human Computer Interaction

This process is very important for risk mining process because of the following
reasons. First, risk information may be obtained by deep discussions on mining
results among domain experts because mining results may show only small part
of the total risk information. Since domain experts have knowledge, which is
not described in a datasets, they can compensate for insufficient knowledge to
obtain a hypothesis or explanation of mining results. Second, mining results may
lead to domain experts’ deep understanding of workflow, as shown in Section 4.
Interpretation of mining results in risk detection may lead to new data collection
for risk clarification. Finally, human computer interaction gives a new aspect for
risk utilization. Domain experts can not only performance of risk clarification
results, but also look for other possiblities from the rules which seems to be
not so important, compared with rules for risk clarification and also evalute the
possibility to design a new data collection.

4 Case Study of Risk Mining: Prevention of Medication
Errors

4.1 Risk Detection

Dataset. Nurses’ incident data were collected by using the conventional sheet
of incident reports during 6 months from April, 2001 to September, 2001 at the
emergency room in Osaka Prefectural General Hospital.

The dataset includes the types of the near misses, the patients’ factors, the
medical staff’s factors and the shift (early-night, late-night, and daytime) and
the number of items of incidents collected was 245.

We applied C4.5[3], decision tree induction and rule induction to this dataset.

Rule Induction. We obtained a decision tree shown in Figure 2 and the fol-
lowing interesting rules.

(medication error):
If late-night and lack of checking,
then medication errors occur: probability (53.3%, 8/15).

(injection error):
If daytime and lack of checking,
then injection incidents occur: probability (53.6%, 15/28).
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(injection error):
If early-night, lack of checking, and error of injection rate,
then injection incidents occur: probability (50%, 2/4)

Those rules show that the time shift of nurse and lack of checking were the
principal factors for medication and injection errors. Interestingly, lack of ex-
pertise (personal errors) was not selected. Thus, time shift and lack of checking
could be viewed as risk factor for these errors. Since the conventional format
of incident reports did not include furture information about workflow, we had
decided to ask nurses’ to fill out new report form for each incident. This is the
next step in risk clarification.

*** Decision tree : First 6 Months ***
�Injection error�Injection route trouble�an obstruction due to the bending�reflow,
� the disconnection) = Yes: early-night work (2��2)
�Injection error�Injection route trouble�an obstruction due to the bending�reflow,

� the disconnection) = No
�Injection error�Pulled out. (accident and self) = Yes: early-night (2��2)
�Injection error�Pulled out. (accident and self) = No

�Injection error� Interrupts for the work = Yes: late-night (5��3)
�Interrupts for the work = No          

�Injection error�Lack of knowledge for drugs and injection

� = Yes: late-night (5��3)

�Injection error�Lack of knowledge for drugs and injection = No

�Injection error�Lack of command on the serious patients

� = Yes: late-night (3��2)

�Injection error� Lack of command on the serious patients = No

�Injection error�Lack of attention and confirmation 

� ( drug to, dosage by, patient at, time in, route ) = No: day-time(6��4)   

�Injection error�Lack of attention and confirmation = Yes 

�Injection error�Wrong IV rate of flow = Yes: early-night work (4��2)

�Injection error�Wrong IV rate of flow = No: day-time (28��15)

Fig. 2. Decision Tree in Risk Detection

4.2 Risk Clarification

Dataset. Just after the first 6 months, we had found that the mental concen-
tration of nurses may be important factors for medical errors. During the next 6
months from October 2001 to March 2002, the detailed interference factors were
included in the additional incident report form as the items of ”environmental
factors”.

Figure 3 shows a sheet for additional information. The additional items in-
cluded the duration of experience at the present ward, the number of nurse, the
degree of business, the number of serious patients whether the nursing service
was interrupted or not and so on.

We applied C4.5[3], decision tree induction and rule induction to this dataset.
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Fig. 3. Sheet for Additional Information

Rule Induction. The following rules were obtained:

(medication error):
If the number of disturbing patients is one or more,

then medi-cation errors occur: probability (90%, 18/20).

(medication error):
If nurses’ work interrupted,
then medication errors occur: probability (80%, 4/5).

By addition of ”the environmental factors”, these high probability rules of
medication errors were extracted.

Rule Interpretation. With these results, the nurses discussed their medication
check system.

At the emergency room, the nurses in charge of the shift prepared the medica-
tion (identification, quantity of medicines, etc.). The time of preparation before
the beginning of the shift was occasionally less than 30 minutes when the liaison
conference between shifts took time. In such cases, the sorting of medicines could
not be made in a advance and must be done during the shift.

If nurses’ concentration was disturbed by the restless patients in such situa-
tions, double check of the preparation for medicine could not be made, which
leads to medication errors.
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4.3 Risk Utilization

Therefore, it was decided that two nurses who had finished their shifts would
prepare medicines for the next shift, and one nurse in charge of the medication
would check the dose and identification of medicines alone (triple check by a
total of 3 nurses). (However, heated discussions among domain experts (nurses)
needed for this decision, as shown in Section 5.) Improvement was applied to
the check system as a result of their discussion. During the last 6 months (April
2002 to October 2002), incident reports were collected.

After introducing the triple check system, the total number of the medication
errors during the last 6 months decreased to 24 cases. It was considered that the
nurses’ medication work was improved by the triple check system during the last
6 months.

5 Discussion for Case Study

5.1 Risk Utilization as Information Sharing

For discussion among domain experts, mining results were presented to medical
staffs as objective evidence. Discussion on mining results give a very interactive
discussion among the staff of the department of emergency and finally achieve
common understanding of the problem on its workflow. Then, it is found that
changes in workflow is required for solving the problem: If the staff assigned to
the shift cannot prepare medicines, other members who are free should cooper-
ate. However, this idea met a fierce objection in the department at first because
of disagreement among nurses about the responsibility of those who prepare
medicines. After repeated discussions, it was decided that nurses in charge of
medication were responsible for mistakes rather than those who made prepara-
tions and nurses in the preceding shift should prepare medicines for the next
shift.

During the last 6 months, medication errors were reduced markedly by creat-
ing the common perception that liaison (overlapping of shift margins, or paste
margins) is important among nurses, and the initial opposition completely sub-
sided. Following this nursing example, we could extend this policy of “paste
margins”, i.e. mutual support by free staff members, to the entire department.

This process also shows that information granularity is a very important issue
for risk clarification.

Items in a conventional report form, such as “lack of checking, lack of at-
tention, etc.” are too coarse for risk clarification. Rather, detailed description
of environmental factors are much more important to evoke domain experts’
discussion and their risk utilizaiton.

6 Conclusion

Since all the clinical information have been stored electronically as a hospital
information system(HIS), it is now expected that mining such combined data
will give a new insight to medical accidents.
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In order to utilize information about risk extracted from information systems,
we propose risk mining which integrates the following three important process:
risk detection, risk clarification and risk utilization. Risk Detection discovers
patterns or information unexpected to domain experts, which can be viewed
as a sign of large scale accidents. In risk clarification, domain experts and data
miners construct the model of the hidden mechanism of risk, focusing on detected
risk information. If domain experts need more information with finer granularity,
we should collect more data with detailed information, and apply data mining
to newly collected data. Risk utilization evaluated clarified risk information in a
real world environment to prevent risk events. If risk information is not enough
to prevention, then more analysis is required. Thus, additional data collection is
evoked for a new cycle of risk mining process.

As an illustrative example, we applied risk mining process to analysis of nurses’
incident data. First, data collected in 6 months were analyzed by rule induction
methods, which detects several important factors for incidents (risk detection).
Since data do not include precise information about these factors, we recollect
incident data for 6 months to collect precise information about incidents. Then,
rule induction is applied to new data. Domain experts discussed all the results
obtained and found several important systematic errors in workflow (risk clar-
ification). Finally, nurses changed workflow to prevent incidents and data were
recollected for 6 months. Surprisingly, the frequency of medication errors has
been reduced to one-tenth (risk utilization).
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Abstract. Properties of several rule quality measures are characterized in the 
paper. Possibilities of their application in algorithms of rules induction and re-
duction are presented. Influence of replacing rules accuracy with the Bayesian 
confirmation measure has been tested.   

1   Introduction 

Knowledge discovery in databases is read as a process of extraction of unknown, 
nontrivial and useful patterns in data. On of the most popular representation of such 
patterns on its simplicity account is rule form. 

IF 
k1 aa1 VVa ∈∈ ka and ... and THEN d=vd (1) 

Rules induction is made on the basis of  training dataset DT=(U, A∪{d}), in which 
U is the finite set of objects characterized by the set of conditional attributes A and the 
decision attribute d. Each attribute a∈A is treated as a function a:U→Da, where Da is 
the range of the attribute a. Consequence of  assumed notation is the fact that in the 
rule of the form (1) we have {a1,..,ak}⊆A, 

ii aa DV ⊆ and vd∈Dd. The expression a∈V 

is called the conditional descriptor, and a set of objects with equal values of decision 
attributes is the decision class (notation: Xv={x∈U: d(x)=v}). 

Rule induction can be made, among others, by use of rough sets theory, [12], [17], 
which is the source of big number of algorithms (and programs) executing rules in-
duction [6],[11],[14],[18]. The algorithms create complete, satisfying or minimal 
descriptions of decision classes. From among big group of programs that do not come 
from rough sets theory, family of programs AQ [9] is worthy of notice. 

All of the algorithms mentioned above exploit measures that decided either about 
form of determined rule or about which of already determined rules may be removed 
or joined. These measures are called the rule quality measures and their main goal is 
such steering of induction and/or reduction processes that in output rules set there are 
rules with the best quality. A set composed of rules with good generalization (high 
classification accuracy) and description (small number of output rules) abilities is the 
rules set with high quality.  
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In the paper, properties of several rule quality measures are characterized and pos-
sibilities of their application in induction and rules number reduction algorithms are 
presented.  

2   Rule Quality Measures 

Values of most known rule quality measures [2],[3],[4] can be determined based on 
analysis of a contingency table, that allow to describe rules behavior with relation to 
the training set. 

An object x∈U recognizes a rule of the form (1) if and only if ∀i∈{1,..,k} 
ai(x)∈

iaV , an object x∈U supports a rule of the form (1), if the rule is recognized by 

the object and d(x)=vd. A set of objects from the table DT that recognizes the rule r is 
denoted by matchDT(r). 

Contingency table for the rule r≡ϕ→ψ  is defined in the following way: 

nϕψ nϕ¬ψ nϕ 

n¬ϕψ n¬ϕ¬ψ n¬ϕ 

nψ n¬ψ  

where: nϕ= nϕψ+ nϕ¬ψ=|Uϕ| is the number of objects that recognize the rule ϕ→ψ; 
n¬ϕ= n¬ϕψ+ n¬ϕ¬ψ=|U¬ϕ| is the number of objects that do not recognize the rule ϕ→ψ; 
nψ= nϕψ+ n¬ϕψ=|Uψ| is the number of objects that belong to the decision class de-
scribed by the rule ϕ→ψ; n¬ψ= nϕ¬ψ+ n¬ϕ¬ψ=|U¬ψ| is the number of objects that do 
not belong to the decision class described by the rule ϕ→ψ; nϕψ=|Uϕ∩Uψ| is the num-
ber of objects that support the rule ϕ→ψ; nϕ¬ψ=|Uϕ∩U¬ψ|; n¬ϕψ=|U¬ϕ∩Uψ|; 
n¬ϕ¬ψ=|U¬ϕ∩U¬ψ|. 

Using information included in the contingency table and the fact that for known 
decision rule ϕ→ψ, there are known the values |Uψ| i |U¬ψ|, it is possible to determine 
values of each measure based on values nϕψ and nϕ¬ψ.. It can be also observed that for 
any rule ϕ→ψ , the inequalities 1≤nϕψ≤|Uψ|,  0≤nϕ¬ψ≤|U¬ψ| holds. Hence, the evalua-
tion measure is the function of two variables q(ϕ→ψ):{1,..,|Uψ|}×{0,..,|U¬ψ|}→R. 

Two basic evaluation measures are accuracy (designated by qacc(ϕ→ψ)=nϕψ/nϕ) 
and coverage (designated by qcov(ϕ→ψ)=nϕψ/nψ) of a rule. Both  the measures consid-
ered at the same time give the complete view of rule quality, since according to the 
enumerational induction principle it is known that rules with big accuracy and cover-
age reflect real dependences. The dependences are true also for objects from outside 
of the analyzed dataset. 

It is easy to prove that along with accuracy increasing, rule coverage decreases. 
Therefore, attempts at defining quality measures that simultaneously respect accuracy 
and coverage of a rule are carried on. Numerous papers focused on empirical search of 
generalization abilities of obtained classifiers depending on rule quality measure used 
during rules induction [2],[4]. Some of the papers [1],[14],[15] considered influence of 
applied quality measure on the number of discovered rules. It has special weight in 
context of knowledge discovery, since a user is usually interested in discovering such 



718 M. Sikora 

model that can be interpreted or is intent on finding several rules that describe the most 
important dependences. 

In quoted researches some evaluation measures reached good results both in classi-
fication accuracy and size of classifiers (number of rules). These measures are WS 
proposed by Michalski, C2 proposed by Bruha [4] and adequately adopted Gain 
measure used in decision trees induction. 

WS measure respect rule accuracy as well as rule coverage: 

)( ψϕ →WSq = 21

acc wqwq  )( )( cov ψϕψϕ →+→ ,  w1,w2 ∈[0,1] (2) 

In rules induction system YAILS values of parameters w1, w2 for the rule ϕ→ψ are 

calculated as follows )(*.., ψ→ϕ±= acc
21 q25050w . The measure is monotone with 

respect to each variable nϕψ and nϕ¬ψ, and takes values from the interval [0,1]. 
The measure C2 is described by the formula: 

)(q 2C ψϕ → =
→+

−
→

2

)(q1

nn

)(qn covacc ψϕψϕ
ψ

 
 (3) 

The first component of the product in the formula (3) is the separate measure known 
as the Coleman measure. This measure evaluates dependences between occurrences 
“the objects u recognizes the rule”, and “the objects u belongs to the decision class 
described by the rule”. The modification proposed by Bruha [4] (the second compo-
nent of the formula (3)) respects the fact that the Coleman measure put too little  
emphasis on rule coverage. Therefore, application of the Coleman measure in the 
induction process leads to creation of a big number of rules [1],[15]. The measure C2 
is monotone with respect to variables nϕψ and nϕ¬ψ,, its range is the interval (-∞, 1), 
for a fixed rule the measure takes minimum if nϕψ=1 and nϕ¬ψ=n¬ψ. 

The Gain measure has origin in the information theory. The measure was adopted 
to rules evaluation from the decision trees methods (so-called LimitedGain criterion): 

)(q Gain ψϕ → =Info(U)-Infoϕ→ψ(U) (4) 

In the formula (4) Info(U) is the entropy of training examples and 
Infoϕ→ψ(U)=(nϕ/|U|)Info(ϕ→ψ)+((|U|-nϕ)/|U|)Info(¬(ϕ→ψ)), where Info(ϕ→ψ), is the 
entropy of examples covered by the rule ϕ→ψ;  Info(¬(ϕ→ψ)) is the entropy of ex-
amples not covered by the rule ϕ→ψ. The measure is not monotone with respect to 
variables nϕψ and nϕ¬ψ, and takes values from the interval [0,1]. If the accuracy of a 
rule is less then the accuracy of decision class (accuracy that results form examples 
distribution in the training set) described by the rule then the measure qGain is the 
function decreasing with respect to both variables nϕψ and nϕ¬ψ , otherwise qGain is the 
increasing function. 

Recently, so-called  “the Bayesian confirmation measure” (denoted by f) was pro-
posed as the alternative for rule accuracy evaluation. Until now there are no published 
results of applying the measure in rules number generation and/or reduction algo-
rithms. In papers [5],[7],[8] is presented theoretical analysis of the measure f, and is 
shown, among others, that the measure is monotone with respect to rule accuracy (so, 
in terminology adopted in our paper, with respect to the variable nϕψ). 
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In standard notation the Bayesian confirmation measure is defined by the formula 
qf(ϕ→ψ)=(P(ϕ|ψ)-P(ϕ|¬ψ))/(P(ϕ|ψ)+P(ϕ|¬ψ)), where P(ϕ|ψ) denotes the conditional 
probability of the fact that objects belonging to the set U and having the property ψ  
have also the propertyϕ. 

It is easy to see that qf can be also write as follows: 

)(q f ψϕ → =
)(q)(q

)(q)(q
accacc

accacc

ϕψϕψ
ϕψϕψ

→¬+→
→¬−→

 (5) 

Therefore, by substitution suitable symbols from the contingency table and using the 
facts that  nψϕ=nϕψ, n¬ψϕ=nϕ¬ψ  we obtain the simplified formula: 

)(q f ψϕ → =
ψ¬ϕψϕψψ¬

ψ¬ϕψϕψψ¬

+
−

nnnn

nnnn
 (6) 

It can be noticed that the measure qf does not take into consideration the coverage 
of evaluated rule, the most clearly it can be observed for two rules with identical ac-
curacy and different coverage. If the rules r1 and r2 are accurate then for both of them 
the equality nϕ¬ψ=0 holds. Hence the formula that allow to calculate a value of the 
measure qf reduces to nϕψ/nϕψ. Then, independently on the number of objects that 
support rules r1 and r2, the value of the measure qf will be equal to one for both the 
rules. Interest in the measure qf is justified by the fact that beside rule accuracy it 
takes into consideration probability distribution of examples in training set between 
decision classes. Because of the above argumentation, replacing the accuracy with the 
measure qf can be proposed for rule quality measures that use both accuracy and rule 
coverage simultaneously. Therefore let us consider such modifications of measures 
WS and C2 in which qacc will be replace with qf. 

3   Rule Quality Measures in Induction and Postprocessing  

Rule quality measures fulfill the role of optimality criterion during rules creation or 
reduction of already existing rule data model. 

Process of creation a rule of the form (1) based on a certain data set consists in se-
lection of conditional attributes that will create conditional descriptors and in estab-
lishing ranges of the descriptors (i.e. sets Va). The process is usually iterative and 
allows to such use of quality measure at each stage that created rule is characterized 
by big accuracy and coverage. 

In experiments described in the next section the modified version of the MODLEM 
algorithm was used for rules induction. The modification consists in application of the 
quality measure to evaluate currently created conditional part of a rule. After adding (or 
modification) the next conditional descriptor, current form of the rule is evaluated. The 
rule that obtained the best evaluation is remember as the output rule. The carried out 
tests shown that a value of the evaluation measure increases during rule creation until it 
achieves some maximum value and then decreases (quality measure has one maximum). 
This observation allows to define such stop criterion that the algorithm stops rule crea-
tion process when the evaluation value begins to decrease [16]. MODLEM can create 
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descriptors of the form attribute∈{attribute_values_set} and/or atribute < (>) value. 
Detailed description of the MODLEM algorithm is published in [18]. 

Independently on the method of determining the output rules set can be put to re-
duction using algorithms of joining [13] and/or filtration [1], [15]. Rules set joining 
and filtration algorithms are shortly presented below. 

The aim of rules joining is increasing rules generality (qcov) without needless de-
creasing of its accuracy (qacc). Joining consists in adding sets of values of correspond-

ing conditional descriptors. If the descriptor 1
aVa ∈  occurs in the conditional part of 

the rule ϕ1→ψ and the descriptor 2
aVa ∈ occurs in the conditional part of the rule 

ϕ2→ψ  then after their joining the descriptor a∈Va with the property: a

1

a VV ⊆ and 

a
2

a VV ⊆ will arise. If the attribute a is of the numerical type and descriptors of the 

form ],[ 2

a

1

a vva ∈  and ],[ 4

a

3

a vva ∈  are joined, then the joined descriptor has the form 

Va=[vmin, vmax], where },:max{max 42ivv i

a ==   },:min{min 31ivv i

a == . 

The algorithm exploits any quality measure q. If for two rules r1 and r2, the ine-
quality )()( 21 rqrq > holds, then the rule r2 is stuck on to the rule r1. Conditional  

descriptors are joined sequentially, value of the measure evaluating the new rule r 
decides about the order of joining. To indicate the best descriptor for joining in next 
iteration the climbing strategy is applied. The joining process is finished while the 
new rule r recognizes all positive training examples which were recognized by the 
rules r1 and r2.  

If r is a new rule and q(r) ≥ λ, then the rule r is substitute in description of the deci-
sion class in the place of rules r1 and r2, otherwise rules r1 and r2 can not be joined. A 
parameter λ determines the limit value under which rules quality, according to the 
given quality measure, can not fall down (in particular, for joined rules r1, r2,  
λ=max{ )r(q),r(q 21 }). The detailed description of the algorithm can be find in [13]. 

Filtration consists in removing from the rules set these rules which are unimportant 
for description readability as well as for classifier’s generalization abilities. Simple 
but effective filtration “Forward” algorithm [15] exploits rules ranking created by rule 
quality measure. 

Initial description of each decision class consists of one – the best rule, then adds 
one rule to the description of each decision class. If classification accuracy of a class 
increases, the rule is leaved in the description, if not, the rule is removed and the next 
rule is considered. Rules ranking established by the quality measure decided about the 
order of rules consideration. Rules adding to the description of the decision class is 
finished while classification accuracy is the same as for not filtrated rules set or if the 
all rules have been considered. During filtration, so-called tuning set of objects is 
subject to classification (in particular, it can be a part of the training set).    

4   Experiments with Data  

Experimental researches was carried out on several benchmark data sets (Monks2, 
Monks3, Breast, Heart [10]) and on data coming from industrial system of monitoring 
the rock cutting process. Data from the monitoring system describe three decision 
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classes (“low energy”, “average energy”, “high energy”) reflecting the unit cutting 
energy. Conditional attributes in this set are designed for describing parameters of the 
cutting process (cutting scale, cutting depth, the geometric blade parameters (blade 
angle, position angel, revolution angle), the rock type). 

Tests were done by the 10-fold cross validation testing method (for monk problems 
originally prepared training and test sets were used).  

Classification process applied rules voting. Each rule recognizing a test object 
voted for the decision class that it describes (power of a vote is the value of rule qual-
ity measure). For each decision class votes were summed up and then the tested object 
was assigned to the class with the maximum value of the sum.  

The first table presents results of application various evaluation measures to modi-
fied version of the MODLEM algorithm. Results of joining and filtration for the best 
scores obtained in the first table (bold-faced type in the first table) are presented in the 
second and third tables. 

The column % contains testing classification accuracy put in percent.  The column 
Reg. Denotes the number of determined rules. Results are round to natural numbers. 

Table 1. Classification results  

Acc. Gain C2 WS C2_f WS_f Data 
% Reg. % Reg. % Reg. % Reg. % Reg. % Reg.

Monk2 65 71 64 39 64 71 68 54 63 58 64 71 
Monk3 92 29 96 13 93 23 94 23 94 21 93 23 
Heart 73 62 78 12 81 37 79 36 79 35 76 21 
Breast 67 99 73 37 66 96 67 84 66 97 66 30 
Energy 86 91 63 16 84 50 86 35 88 70 86 56 

Table 2. Joining results 

Acc. Gain C2 WS C2_f WS_f Data 
% Reg. % Reg. % Reg. % Reg. % Reg. % Reg.

Monk2 68 48 64 45 67 47 68 47 67 47 68 47 
Monk3 94 16 97 12 96 14 96 14 97 12 94 14 
Heart 79 10 79 9 79 11 79 10 78 12 79 10 
Breast 72 35 73 34 72 35 72 34 72 32 72 32 
Energy 88 65 80 45 88 58 82 56 88 62 87 63 

Table 3. Filtration results 

Acc. Gain C2 WS C2_f WS_f Data 
% Reg. % Reg. % Reg. % Reg. % Reg. % Reg.

Monk2 69 48 69 44 69 45 69 44 69 44 69 45 
Monk3 94 19 93 17 94 19 94 19 94 19 94 19 
Heart 79 10 79 10 79 10 79 10 79 10 79 10 
Breast 68 28 68 6 68 17 68 16 68 16 68 21 
Energy 87 48 87 20 88 41 88 40 87 43 87 45 
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Tables 2 and 3 show that reduction of the number of determined rules is not big, 
but this follows from the fact that determining rules algorithm itself generates not 
many rules.  

Results presented in Table 1 illustrate the biggest influence of the given measure on 
quality of determined rules. As it was reported in many research [1], [2], [4], [13], [14], 
[15] it is impossible to point at a measure that always gives the best results, but it is pos-
sible to show two groups of measures. One of them contains measures that put emphasis 
on rule coverage (these are, among others, measures used in the our paper), second group 
includes measures that put the greater emphasis on rule accuracy which leads to deter-
mining a lot more rules (these are measures: Accuracy, Brazdil, Coleman, IKIB). 

Obviously, application of rule quality measures is sensible only if we admit ap-
proximate rules generating. If we determine rules using the local reducts method then 
the only determined rules quality measure will be rules coverage. (alternatively, rules 
strength [19], if accuracy and coverage of compared rules will be identical). 

It is interested that none of the presented measures generates the same rules rank-
ings, but the rankings are similar. Rules order obtained for the Energy set (20 rules 
after filtration, classification accuracy 87%) is presented below, rule accuracy is given 
by the rule number.  

In the first column of Table 4 rules ranking established by the measure accuracy is 
shown. In next columns can be seen how the other measures change this order, in 
particular the measure Gain and, in smaller degree, C2 and WS prefer more general 
rules, and rankings established by the measures C2_f, WS_f are more similar to the 
ranking created by the accuracy. 

Table 4. Rules ranking for the Energy set 

Acc. Cov. Gain C2 WS C2_f WS_f
1 5 5 0.87 5 0.87 5 0.87 5 0.87 1 1.00
2 4 4 0.88 4 0.88 1 1.00 3 0.96 2 0.98
3 7 3 0.96 3 0.96 2 0.98 1 1.00 3 0.96
4 3 2 0.98 2 0.98 3 0.96 2 0.98 5 0.87
5 2 7 0.76 1 1.00 4 0.88 4 0.88 4 0.88
6 8 1 1.00 7 0.76 7 0.76 6 0.83 6 0.83
7 1 8 0.74 6 0.83 6 0.83 7 0.76 7 0.76

“low
energy” 

8 6 6 0.83 8 0.74 8 0.74 8 0.74 8 0.74
1 6 6 0.68 1 1.00 1 1.00 1 1.00 1 1.00
2 5 5 0.83 2 1.00 2 1.00 2 1.00 2 1.00
3 7 7 0.66 5 0.83 5 0.83 5 0.83 3 0.83
4 3 1 1.00 3 0.92 3 0.92 3 0.92 4 0.92
5 1 3 0.92 4 0.92 4 0.92 4 0.92 5 0.92
6 2 2 1.00 6 0.68 6 0.68 7 0.68 6 0.68

„average
energy” 

7 4 4 0.92 7 0.66 7 0.66 6 0.66 7 0.66
1 1 1 0.95 1 0.95 1 0.95 1 0.95 1 0.95
2 3 3 0.92 3 0.92 3 0.92 3 0.92 3 0.92
3 5 2 0.92 2 0.92 2 0.92 2 0.92 2 0.92
4 2 5 0.74 4 0.83 4 0.83 4 0.83 4 0.83

„high
energy” 

5 4 4 0.83 5 0.74 5 0.74 5 0.74 5 0.74  
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However, in every cases rules that are little accurate and little general appear at the 
end of rankings. 

From the realized experiments follows also that replacing accuracy with “the 
Bayesian confirmation measure” in rules reduction algorithms do not gives any ad-
vantages (it is neutral solution). Influence of such replacing can be better seen in algo-
rithms of rules induction, here measures C2_f and WS_f allowed to reduce a little the 
number of determined rules keeping similar classification abilities. 

5   Summary  

The presented rule quality measures applied for decision rules induction allow to 
generate not big sets of rules which are characterized by good classification abilities. 
Although the measures do not evaluate rules in the same way, it is possible to indicate 
groups of measures that evaluate similar rules. 

Establishing rules ranking is of great importance for databases exploration tasks, 
especially for industrial data including noises which leads to approximate rules gen-
eration. Selection of several the best, accurate and general to some degree rules that 
describe bigger part of analysed data set is especially important for domain experts 
that are recipients of the analysis results. It is obvious that small number of rules can 
be easy interpreted by a user, while a model composed of tens of patterns becomes 
very difficult for interpretation. However, it is important for a selected group to be 
characterized by good generalization abilities.  

Until now there are no methodology that enable to indicate for which data set the 
concrete quality measure may be applied. It depends on the type of analysed data 
(types of attributes describing decision classes, examples distribution between deci-
sion classes, etc) Therefore, at present analysis in realizing rules induction process is 
done by use of several quality measures. 

The presented proposition of determining all rule quality measures as the function 
of two variables makes possible standardization of notation for all measures and 
analysis of their monotonicity with respect to each variable. Monotonicity is very 
important feature that should characterize rule quality measures. The thing is that 
evaluation measure’s value should increase with increasing of accuracy (coverage) 
under fixed coverage (accuracy). This does not occur in the case of the measure Gain. 
However, it is possible to observe that if accuracy of created or evaluated rule is less 
than accuracy following from examples distribution in the training set (a priori accu-
racy) then it is enough to change value’s sign of the given measure and then the 
measure becomes monotone. This change may be of importance during initial process 
of rule creation when its accuracy can be less than a priori accuracy. Detailed monot-
ony analysis of rule quality measures defined as a function of variables nϕψ, nϕ¬ψ can 
be found in [15], analysis for „the Bayesian confirmation measure” is presented, 
among others, in [5],[7],[8]. 

Our further works on rule quality measures will proceed in the direction of adap-
tive application of quality measures in rules induction process. During rules induction 
with the help of so-called coverage, after induction of the successive rule objects  
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supporting this new generated rule are removed from the training set. This fact influ-
ence change of characteristic of remaining part of the training set. In particular, distri-
bution of examples from decision classes changes, probably from this good results are 
obtained by use of measures WS_f, C2_f, which by replacing qacc with the measure qf, 
better respect this irregularity. Hence, during initial stage of rules creation quality 
measures that put strong emphasis on general rules determining should be applied. 
Whereas during final stage, when there are already few examples from the given 
class, rules induction algorithm should produce very accurate rules at the cost of their 
lower generality.  
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Abstract. In this paper, we introduce a novel distributed Mean field Genetic al-
gorithm called MGA for the resource allocation problems in MPI environments, 
which is an important issue in parallel processing. The proposed MGA is a hy-
brid algorithm of Mean Field Annealing (MFA) and Simulated annealing-like 
Genetic Algorithm (SGA). SGA uses the Metropolis criteria for state transition 
as in simulated annealing to keep the convergence property in MFA. The pro-
posed MGA combines the benefit of rapid convergence property of MFA and 
the effective genetic operations of SGA. Our experimental results indicate that 
the composition of heuristic mapping methods improves the performance over 
the conventional ones in terms of communication cost, load imbalance and 
maximum execution time.  

Keywords: genetic algorithms, mean field annealing, simulated annealing, par-
allel processing, mapping.  

1   Introduction 

If tasks are not properly assigned to the processors in distributed memory multiproc-
essors, processor idle time and the inter-processor communication overhead from load 
imbalance may lead to poor utilization of parallel processors. This is a load balance 
mapping problem between tasks and processors [1,2,3,4,5].  

The proposed Mean Field Genetic Algorithm (MGA) is a hybrid algorithm based 
on mean field annealing (MFA) [1,4,6] and genetic algorithm (GA) [7]. MFA has the 
characteristics of rapid convergence to the equilibrium state while the simulated an-
nealing (SA) [5,8,9] takes long time to reach the equilibrium state[10,11,12].  

In the proposed method, the typical genetic algorithm is modified where the evolved 
new states are accepted by the Metropolis criteria as in simulated annealing. Proposed 
MGA algorithm takes long time comparing with other mapping algorithm such as 
MFA and GA, but it must be solved before the execution of a given parallel program in 
a parallel computer. So the efficient parallel implementation of mapping algorithm  
is essential for developing parallel programs because the mapping algorithm can be 
considered as a sequential preprocessing and can be a bottleneck of parallel implemen-
tation. We propose two phases of distributed implementation of proposed MGA algo-
rithm. The first phase is for MFA and the second one is for SGA. 
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2   The Mapping Problem in Multiprocessors 

The multiprocessor mapping problem is a typical load balancing optimization prob-
lem. A mapping problem can be represented with two undirected graphs, called the 
Task Interaction Graph (TIG) and the Processor Communication Graph (PCG).  

TIG is denoted as GT(V, E). |V| = N vertices are labeled as (1, 2, …, i, j, …, N). 
Vertices of GT represent the atomic tasks of the parallel program and its weight, wi, 
denotes the computational cost of task i for 1  i  N. Edge E represents interaction 
between two tasks. Edge weight, eij, denotes the communication cost between tasks i 
and j that are connected by edge Eji ∈),( . The PCG is denoted as GP(P, D). GP is a 

complete graph with |P| = K vertices and |D| = KC2 edges. Vertices of the GP are la-
beled as (1, 2, …, p, q, …, K), representing the processors of the target multicomput-
ers. Edge weight, dpq, for 1  p,q  K and p  q, denotes the unit communication cost 
between processor p and q.  

The problem of allocating tasks to a proper processor is to find a many-to-one 
mapping function M: V P. That is, each vertex of GT is assigned to a unique node of 
GP. Each processor is balanced in computational load (Load) while minimizing the 
total communication cost (Comm) between processors.  
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M(i) denotes the processor to which task i is mapped, i.e. M(i) = p represents that 
task i is mapped to the processor p. In Equation (1), if tasks i and j in GT  are allocated 
to the different processors, i.e. M(i)  M(j) in GP, the communication cost occurs. The 
contribution of this to Comm is the multiplication of the interaction amount of task i 
and j, eij, and the unit communication cost of different processors p and q, dpq , where 
M(i) = p and M(j) = q. Loadp in Equation (2) denotes the summation of computational 
cost of tasks i, wi, which are allocated processor p, M(i) = p.  

A spin matrix is used to represent the mapping state of tasks to processors. A spin 
matrix consists of N task rows and K processor columns representing the allocation 
state. The value of spin element (i, p), sip, is the probability of mapping task i to proc-
essor p. Therefore, the range of sip is 0  sip  1 and the sum of each row is 1. The 
initial value of sip is 1/K and sip converges 0 or 1 as solution state is reached eventu-
ally. sip = 1 means that task i is mapped to processor p.  

The cost function, C(s), is set to minimize the total communication cost and to 
equally balance the computational load among processors of Equation (1).  
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eij : The interaction amount of task i and j in TIG 
wi : The computational cost of task i in TIG 
dpq : The unit communication cost of processor p and q in PCG 
sip : The probability of task i mapping to processor p 
r : The ratio of communication to computation cost 
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The first term of cost function, Equation (2), represents inter-processor communi-
cation cost (IPC) between two tasks i and j when task i and j are mapped to different 
processor p and q respectively. Therefore the first IPC term minimizes as two tasks 
with large interaction amount are mapped to the same processors. The second term of 
Equation (2) means the multiplication of computational cost of two tasks i and j 
mapped to the same processor p. The second computation term also minimizes when 
the computational costs of each processor are almost the same. It is the sum of 
squares of the amount of tasks in the same processor. The ratio r changes adaptively 
in the optimization process in order to balance the communication and computation 
cost. Changing the ratio r adaptively results in better optimal solution than fixing the 
ratio r. The optimal solution is to find the minimum of the cost function.  

3   Distributed Implementation  

3.1   Distributed Mean Field Annealing (MFA)  

The mean field annealing (MFA) is derived from simulated annealing (SA) based on 
mean field approximation method in physics [1]. While SA changes the states ran-
domly, MFA makes the system reach the equilibrium state very fast using the mean 
value estimated by mean field approximation.  

The N×K spin matrix is partitioned column-wise such that each node is assigned an 
individual or a group of columns in a spin matrix. A node is a computer system that 
solves mapping algorithm, while the processor is defined in a target parallel com-
puter. Since in our experiment, the number of nodes, P, is generally less than that of 
processors, K, the group of columns in a spin matrix is assigned to each node. How-
ever, in real parallel implementation, the number of nodes and that of processors will 
be same. When task-i is selected at random in a particular iteration, each node is re-
sponsible for updating its spin value, sip. The pseudo code for the distributed mean 
field annealing algorithm of each node is as follows.  

<Distributed Mean Field Annealing> 
while cost change is less than ε for 
   continuous N annealing process begin 
 Select a same task-i at random by using same seed 
 Compute the local mean field 
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 Update the spin values at the ith row 

  Kpss new
ipip ≤≤= 1for  

 Perform global collect  
  for a spin value, sip, at the i

th row 
end  

In implementing MFA, the cooling schedule has a great effect on the solution qual-
ity. Therefore the cooling schedule must be chosen carefully according to the charac-
teristics of problem and cost function. The following parameters must be specified.  

 

Initial temperature (T0): Initial temperature, T0, is set such that the probability 
where the cost change is less than (=0.5) is more than 95% for the number of 
tasks (N) annealing process 

Final temperature (Tf): Tf is set to the temperature where the value of the cost 
change is in /1,000 for continuous 20 temperature changes. 

Length of the Markov chain at a certain temperature Tk (Lk): Lk is the number of 
state transition to reach the equilibrium state. It is set to the number of state transi-
tions where the cost change is less than  for continuous N annealing process.  

Decrement strategy of the temperature (Tk+1 = ·Tk ): A fixed decrement ratio, , is 
set to 0.9 experimentally. This strategy decreases the temperature proportional to 
the logarithm of the temperature.  

3.2   Distributed Simulated Annealing-Like Genetic Algorithm (SGA)  

Since GA does not have a concept of temperature comparing with MFA and SA, 
general GA breaks the convergence property of MFA in the proposed hybrid algo-
rithm. We modified GA such that the new evolved state is accepted with a Metropolis 
criterion like simulated annealing in order to keep the convergence property of MFA. 
The modified GA is called SGA. In order to keep the thermal equilibrium of MFA, 
the new configurations generated by genetic operations are accepted or rejected by the 
Metropolis Criteria that is used in SA. The followings are parameters for SGA im-
plementation. 

 

Representation of individual: The individual is represented by a string in the order 
of tasks whose value is allocated processor identification. For example, a string , 
“1,3,4,1,2”, means that tasks are allocated to processors such that task 1 to proces-
sor 1, task 2 to processor 3, task 3 to processor 4, task 4 to processor 2, task 5 to 
processor 2.  

Form GA’s population from MFA’s spin matrix: The individuals are generated 
randomly with the probability as same as that of spin matrix in MFA. For exam-
ple, if spin values of an arbitrary ith task, which is the elements of ith row, is 0.2, 
0.4, 0.1, 0.1, 0.2, an individual is made such that the ith character in a string can be 
1 with a probability of 0.2, 2 with that of 0.4, 3 with that of 0.1, 4 with that of 0.1 
and so on.  

The size of population: In the experiment, the number of individuals in a population 
is set to 100. 

The cost or objective function: The linear cost function is chosen as same as that of 
MFA. 
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Selection:  A proportionate selection scheme is used. The individual is chosen ran-
domly with a ratio of individual’s cost over sum of population’s cost. 

Reproduction: The new population is made with individuals chosen by selection 
operation. 

Crossover: After 2 individuals are chosen by turns from population, the part of string 
is exchanged. So the tasks allocations to processors are exchanged. The size of ex-
changed part is randomly set less than 1/4 of string length. The probability of 
crossover is 0.8. 

Mutation: An individual is selected with a probability of 0.05.  Exchange and dis-
placement operation is implemented on the selected individual. The probability of 
exchange is 0.1 and displacement is 0.9. The exchange operation selects less than 
4 tasks randomly in an individual and then allocations to processors of selected 
tasks are exchanged. The displacement operation selects 1 or 2 tasks randomly and 
changes their allocations to processors randomly. 

Keeping best individual: The individual with the lowest cost is kept in the next 
population. This prevents genetic operations from losing the best solution of the 
previous stage. 

Termination condition: The number of genetic operation in a certain temperature is 
set to the number of tasks. This number is set experimentally. 

Simulated annealing-like Genetic Algorithm (SGA): In order to keep the thermal 
equilibrium of MFA, the new configurations generated by genetic operations are 
accepted or rejected by the Metropolis Criteria which is used in SA. 

Δ=Δ
T

C
C exp,1min]acceptedisPr[  (3) 

C is the cost change of new state from old state which is made by subtracting the 
cost of new state from that of old one. T is the current temperature. 

Form the MFA’s spin matrix from GA’s population: This is inverse operation of 
making GA’s population from MFA’s spin matrix. After GA finishes, selection 
and reproduction are applied on the population for the new generation, and then a 
spin matrix is made on the ratio of task allocations to processors. For example, let 
the population size be 10 and the problem be as same as fig.1 where there are 6 
tasks and 4 processors. The ith character in an individual represents the allocation 
of task i. If the ith characters in 10 individuals are 1,2,3,4,1,2,3,1,2,1 respectively, 
the probabilities of task i to processor 1, 2, 3, and 4 are 0.4, 0.3, 0.2, 0.1 respec-
tively also. So, the ith row of a spin matrix is set to 0.4, 0.3, 0.2, 0.1 according to 
the distribution of task i in GA population.  

 

In the experiment, the subpopulation size in each node is set to the number of 
tasks, N. Therefore the size of global population is the multiplication of the number of 
tasks and the number of nodes, N×P. The linear cost function is chosen as same as 
that of MFA. The probabilities of crossover and mutation are 0.8 and 0.05 respec-
tively.  

In our synchronous distributed genetic algorithm, each node generates subpopula-
tion randomly from the MFA’s spin matrix. And then the subpopulation and its fitness 
value are broadcast to all other nodes and they form the global population. Next,  
the individuals are selected as much as the size of subpopulation from the global 
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population randomly. Each node executes the sequential genetic algorithm in parallel. 
Independent genetic operation are implemented and evaluated to its subpopulation. 
The duration of isolated evolution is called one epoch and the epoch length is the 
number of predefined generations for a node before synchronizing communication 
among the nodes. The epoch length is set to the N/P, where N is the number of tasks 
and P is the number of nodes. max_epoch is the number of synchronous communica-
tions. It is set to P.  

The pseudo code for the distributed genetic algorithm of each node is as follows.  

<Distributed SGA> 
Initialize subpopulation(Psub) from MFA spin matrix 
for iteration is less than max_epoch begin  
 Calculate fitness for Psub  
 for generations = 1 until epoch_length begin 
  Select individuals from subpopulation 
  Reproduce next population 
  for select 2 individuals by turns begin 
   Perform crossover with probability of crossover 
   Calculate the cost change ( C) 
   if exp(- C/T)> random[0,1] then  
    Accept new individuals 
  end 
  for all individuals begin 
   Perform mutation with probability of mutation 
   Calculate the cost change ( C) 
   if exp(- C/T)> random[0,1] then  
    Accept new individuals 
  end  
 end 
 broadcast Psub to all other nodes;    
 select new Psub randomly;  
 Keep the best individual 
end 

3.3   MGA Hybrid Algorithm 

A new hybrid algorithm called MGA combines the merits of mean field annealing 
(MFA) and simulated annealing-like genetic algorithm (SGA). MFA can reach the 
thermal equilibrium faster than simulated annealing and GA has powerful and various 
genetic operations such as selection, crossover and mutation.  

First, MFA is applied on a spin matrix to reach the thermal equilibrium fast. After 
the thermal equilibrium is reached, the population for GA is made according to the 
distribution of task allocation in the spin matrix. Next, GA operations are applied on 
the population while keeping the thermal equilibrium by transiting the new state with 
Metropolis criteria. MFA and GA are applied by turns until the system freeze. The 
followings are the pseudo code for the distributed MGA algorithm of each node.  

<Distributed MGA Hybrid Algorithm> 
Initialize mapping problems /* getting TIG and PCG */ 
Forms the spin matrix, s=[s11, …, sip, …, sNK] 



732 C. Hong 

Set the initial ratio r  
Get the initial temperature T0 , and set T= T0 
while T  Tf begin  
 Executes MFA  
 Forms GA population from a spin matrix of MFA 
 Executes SGA 
 Forms the spin matrix of MFA from GA population 
 Adjusts the ratio r 
 T= ×T   /*decrease the temperature*/ 
end 
 

Initial temperature, T0, is set such that the probability where the cost change is less 
than (=0.5) is more than 95% for the number of tasks (N) annealing process. Final 
temperature (Tf) is set to the temperature where the value of the cost change is in 
/1,000 for continuous N temperature changes. A fixed decrement ratio, , is set to 0.9 

experimentally. This strategy decreases the temperature proportional to the logarithm 
of the temperature. 

4   Simulation Results 

The MFA and GA-1(Genetic Algorithm-1) have same linear cost function as that of 
the proposed MGA. GA-2 has the cost function which minimizes the sum of squares 
of load in each node. The cost function of GA-2 is generally used and verified as the 
best one.  

In this simulation, the size of tasks is 200 and 400 (only the results of task size of 
400 are shown). The multiprocessors are connected with wrap-around mesh topology. 
The computational costs of each task are distributed uniformly ranging [1..10]. The 
communication costs between any two tasks ranges [1..5] with uniform distribution. 
The number of communications is set to 1, 2, or 3 times of the number of tasks. The 
experiment is performed 20 times varying the seed of random number generator and 
TIG representing the computational and communication cost. 

Table 1 displays total inter-processor communication costs. Comparing with the 
communication cost of GA-2, those of MFA and GA-1 are much larger than that of 
GA-2 while that of MGA decreases 9%. Table 1 also displays computational cost 
imbalance, which is defined as the difference between maximum and minimum com-
putational cost of processors normalized by the maximum cost. The computational 
cost imbalance of each algorithm displays a little difference, while total communica-
tion costs in Table 2 are much more different. This implies that the inter-processor 
communication cost has a greater effect on the solution quality than the computational 
cost.  

Table 2 shows the maximum completion times of each algorithm. The maximum 
completion times of MFA and GA-1, which use a linear cost function, are longer than 
that of GA-2 while the maximum completion time of MGA is averagely 9% shorter 
than that of GA-2. The performance of MGA decreases as the number of communica-
tions, |E|, increases. However, the performance of MGA increases as the problem size 
increases, so MGA can be applied the large sized problems. Table 2 also shows the 
execution time of each algorithm. The averaged execution time of MGA is 1.5 and 1.7 
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times longer than that of GA-2 and MFA respectively. This is a trade-off between the 
solution quality and execution time.  

The proposed MGA takes a long time compared with other heuristic algorithm. So 
we proposed the efficient distributed implementation of MGA. Fortunately, the both 
of MFA and GA can be implemented in parallel inherently. The parallel speedup 
generally increases proportional to the problem size due to reducing synchronization 
 

Table 1. Total inter-processor communication cost and Percent of computational cost imbal-
ance 

Problem Size Total Comm. Time Comp. Cost. Imbalance 

N |E| K MFA GA-1 GA-2 MGA MFA GA-1 GA-2 MGA 

200 200 16 414.6 627.5 523.2 346.8 47% 42% 44% 39% 

 400 16 3650.5 3260.9 1907.2 2084.0 68% 49% 70% 61% 

 600 16 6525.6 5744.0 3482.1 4215.8 65% 45% 79% 60% 

 200 36 539.0 1718.1 858.2 490.5 66% 71% 59% 58% 

 400 36 4002.2 4903.4 3096.7 2956.3 85% 73% 81% 77% 

 600 36 8608.2 8546.1 5513.0 6231.2 85% 68% 89% 78% 

400 400 16 994.3 2370.5 1093.0 629.7 47% 37% 37% 32% 

 800 16 8089.1 6714.6 3918.2 4004.2 61% 37% 63% 57% 

 1200 16 14677.0 11743.0 7017.9 8348.4 49% 35% 75% 54% 

 400 36 1062.7 3539.5 1714.0 852.4 60% 59% 51% 50% 

 800 36 10021.0 10360.0 6222.3 5603.0 79% 62% 75% 72% 

 1200 36 19937.0 17780.0 11008.0 11868.0 75% 60% 84% 70% 

Table 2. Maximum completion time and Running time in seconds  

Problem Size Maximum Completion Time Running Time(Sec) 

N |E| K MFA GA-1 GA-2 MGA MFA GA-1 GA-2 MGA 

200 200 16 138.2 184.6 147.7 120.2 6.2 16.4 19.4 22.4

 400 16 525.9 389.4 326.7 320.1 8.5 19.4 22.2 33.2

 600 16 767.2 579.4 544.7 544.3 11.1 19.8 25.8 42.5

 200 36 84.7 136.6 90.2 72.0 22.1 19.4 30.9 46.9

 400 36 307.3 281.9 222.2 218.5 27.6 22.4 36.7 59.4

 600 36 559.2 454.9 391.0 388.2 33.4 24.5 43.3 74.9

400 400 16 279.1 364.7 284.4 222.8 26.2 61.7 87.4 95.6

 800 16 888.1 709.1 618.8 587.0 40.7 70.3 109.9 150.9

 1200 16 1557.4 1075.2 1041.1 987.5 51.7 63.7 119.1 190.9

 400 36 152.9 244.9 169.6 128.7 94.9 77.6 145.4 212.4

 800 36 617.0 530.7 415.0 385.2 122.9 76.4 138.9 260.6

 1200 36 1065.5 850.5 732.8 693.0 148.1 70.6 154.5 317.5
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cost. We can find that the proposed distributed algorithm maintains the solution qual-
ity of sequential algorithm. The simulation is implemented in MPI environments that 
are made up of 600Mhz personal computers running Linux operating system con-
nected via 10Mbps Ethernet. 

5   Conclusions  

In this paper, we proposed a new hybrid heuristic called MGA. The proposed ap-
proach combines the merits of MFA and GA on a load balance problem in distributed 
memory multiprocessor systems. This new hybrid algorithm is compared and evalu-
ated with MFA and two different GA’s (GA-1, GA-2). The solution quality of MGA 
is superior to that of MFA and GA’s while execution time of MGA takes longer than 
the compared methods. The execution time takes longer in order of MFA, GA-1, GA-
2, and MGA. There can be the trade off between the solution quality and execution 
time by modifying the cooling schedule and genetic operations. MGA was also veri-
fied by producing more promising and useful results as the problem size and com-
plexity increases.  

The proposed distributed algorithm was easily developed since MFA and GA can 
be parallelized in a nature. This distributed algorithm also can be applied efficiently to 
broad ranges of NP-Complete problems. 
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Abstract. Premature convergence, the major problem that confronts evolu-
tionary algorithms, is also encountered with the Particle Swarm Optimization 
(PSO) algorithm. Quantum-behaved Particle Swarm (QPSO), a novel variant of 
PSO, is a global-convergence-guaranteed algorithm and has a better search 
ability than the original PSO. But like PSO and other evolutionary optimization 
techniques, premature in QPSO is also inevitable. The reason for premature 
convergence in PSO or QPSO is that the information flow between particles 
makes the diversity of the population decline rapidly. In this paper, we propose 
Diversity-Maintained QPSO (DMQPSO). Before describing the new method, 
we first introduce the origin and development of PSO and QPSO. DMQPSO, 
along with the PSO and QPSO, is tested on several benchmark functions for 
performance comparison. The experiment results show that the DMQPSO 
outperforms the PSO and QPSO in many cases. 

1   Introduction 

Over the last decades researchers have been looking for new paradigms in 
optimization. Swarm intelligence arose as one of the paradigms based on social 
organisms. The most famous and frequently used meta-heuristics in this class are Ant 
Colony (AC) algorithm and Particle Swarm Optimization (PSO). PSO, which can be 
likened to the behavior of a flock of birds or the sociology behavior of a group of 
people and was first introduced by Kennedy and Eberhart [8], has been used to solve 
a range of optimization problems, including neural network training [6] and function 
minimization. The original PSO, however, is not a global convergent optimization 
algorithm, as has been demonstrated by F. van den Bergh [3]. In the previous work 
[12], [13], [14], a novel variant of PSO called Quantum-behaved Particle Swarm 
Optimization (QPSO), which was inspired by quantum mechanics, was proposed. It 
could be demonstrated mathematically that the QPSO is a global-convergence-
guaranteed algorithm and seems to be a promising optimization problem solver. 
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Like PSO and other evolutionary algorithm, however, QPSO also encounters the 
problem of premature convergence, which results in great performance loss and sub-
optimal solutions. In QPSO or PSO, the fast information flow between particles 
seems to be the reason for clustering of particles, which, in turn, makes the diversity 
of the swarm decline rapidly and leaves QPSO algorithm lead to low diversity with 
fitness stagnation as an overall result.  In this paper, we propose a Diversity-
Maintained Quantum-behaved Particle Swarm Optimization (DMQPSO). In 
DMQPSO, a low bound is set for swarm’s diversity measure to prevent premature 
convergence and therefore enhance the overall performance of QPSO.  

The paper is organized as follows. In the next section, PSO is introduced. The 
origin and development of QPSO is described in Section 3 and DMQPSO is proposed 
in Section 4. Section 5 is the experiment results and discussion.  The paper is 
concluded in Section 6. 

2   PSO Algorithms 

Particle Swarm Optimization (PSO), first introduced by J. Kennedy and R. Eberhart 
[8], is a population-based optimization technique, where a population is called a 
swarm. A simple explanation of the PSO’s operation is as follows. Each particle 
represents a possible solution to the optimization task at hand. For the remainder of 
this paper, reference will be made to unconstrained minimization problems. During 
each iteration each particle accelerates in the direction of its own personal best 
solution found so far, as well as in the direction of the global best position discovered 
so far by any of the particles in the swarm. This means that if a particle discovers a 
promising new solution, all the other particles will move closer to it, exploring the 
region more thoroughly in the process. 

Let M denote the swarm size and n the dimensionality of the search space. Each 
individual Mi ≤≤1  has the following attributes: A current position in the search 
space ),,,( ,2,1, niiii XXXX = , a current velocity ),,,( ,2,1, niiii VVVV = , and a 

personal best (pbest) position in the search space ),,,( ,2,1, niiii PPPP = . During each 

iteration, each particle in the swarm updates its velocity according to (1), assuming 
that the function f is to be minimized, and that )1,0(~1 Ur , )1,0(~1 Ur  are elements 

from two uniform random sequences in the range (0,1).  

)]()([)()]()([)()()1( ,,,22,,,11,, tXtPtrctXtPtrctVwtV jijgijijiijiji −⋅⋅+−⋅⋅+⋅=+  (1) 

for all nj ,2,1∈ , where jiV ,  is the velocity of the jth dimension of the ith particle, 

and 1c  and 2c  denote the acceleration coefficients. The new position of a particle is 

calculated using (2). 

)1()()1( ++=+ tVtXtX iii  (2) 

The personal best (pbest) position of each particle is updated using the following 
formula, 
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iii
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and the global best (gbest) position found by any particle during all previous steps, 

gP , is defined as 

MitPftP i
P

g
i

≤≤+=+ 1)),1((minarg)1(  (4) 

The value of each component in every iV  vector can be clamped to the range 

[ ]maxmax ,VV−  to reduce the likelihood of particles’ leaving the search space. The value 

of maxV  is usually chosen to be 
maxXk × , with 0.11.0 ≤≤ k , where Xmax is the up-

limit of the search scope on each dimension [18].  
The variable w in (1) is called the inertia weight; this value is typically set up to 

vary linearly from 0.9 to near 0.4 during the course of training run. Note that this is 
reminiscent of the temperature adjustment schedule found in Simulated Annealing 
algorithms. The inertia weight is also similar to the momentum term in a gradient 
descent neural-network training algorithm. 

Acceleration coefficients 1c  and 2c  also control how far a particle will move in a 

single iteration. Typically, these are both set to a value of 2.0, although assigning 
different values to 1c  and 2c  sometimes leads to improved performance. 

Work by M. Clerc [4], [5] indicated that a constriction factor may help to ensure 
convergence. Application of the constriction factor results in (5).  

))]()(())()(()([)1( ,,,22,,,11,, tXtPrctXtPrctVtV jijgijijiijiji −⋅⋅+−⋅⋅+=+ χ  (5) 

where 

ϕϕϕ
χ

42

2
2 −−−

=  
(6) 

and 21 cc +=ϕ , 4>ϕ . The constriction factor, as shown in (5) and (6) above, should 

replace the maxV  clamping. For other improved version of PSO, one may refer to the 

literatures such as [1], [2], [9], [10], [11]. 

3   Quantum-Behaved Particle Swarm Optimization 

Trajectory analyses in [5] demonstrated that, to guarantee convergence of PSO 
algorithm, each particle must converge to its local attractor ),,( ,2,1, niiii pppp = , of 

which the coordinates are defined as: 

)())()(()( 21,2,1, cctPctPctp jgjiji ++= , (j=1,2,…n) (7) 

or 

)()1()()( ,,, tPtPtp jgjiji ⋅−+⋅= ηη , )1,0(~ Uη , (j=1, 2,…, n) (8) 
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Assume that there is one-dimensional Delta potential well on each dimension at point 

ip  and each particle has quantum behavior. Solving the Schrödinger equation for 

each dimension, we can get the normalized probability density function Q and 
distribution function F for each component of the particle’s current position. 

( ) )()1()(2

,
,

,,,

)(

1
)1(

tLtXtp

ji
ji

jijijie
tL

tXQ
+−−=+  (9) 

( ) )()1()(2

,
,,,)1(

tLtXtp

ji
jijijietXF

+−−=+  (10) 

where )(, tL ji
 is standard deviation of the distribution, which determines search scope 

of each particle. Employing Monte Carlo method, we can obtain the position of the 
particle 

)1,0()1ln(
2

)(
)()1( ,

,, randuu
tL

tptX ji
jiji =±=+  (11) 

where  u is a random number uniformly distributed in (0, 1). 
In [13], a global point called Mainstream Thought or Mean Best Position of the 

population is introduced into PSO. The global point, denoted as C, is defined as the 
average of the pbest positions of all particles. That is 
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where M is the population size and 
iP  is the pbest position of particle i. Then the 

values of )(, tL ji
 and the position are evaluated by 

)()(2)( ,, tXtCtL jijji −⋅= β  (13) 

)/1ln()()()1( ,,, utXtCptX jijjiji ⋅−⋅±=+ β  (14) 

where parameter β is called Contraction-Expansion Coefficient, which can be tuned to 
control the convergence speed of the algorithms. The PSO with equation (14) is called 
Quantum-behaved Particle Swarm Optimization (QPSO). The QPSO algorithm is 
described as follows. 

Initialize population: random X[i]and set P[i]=X[i]; 
do 
   find out mbest using equation (12); 
   for i=1 to population size M 
      if f(Xi)<f(Pi) then P[i]=X[i]; 
      g=arg min(f(P[i])); 
      for j=1 to dimensionality n 
        η=rand(0,1);  
        p[i][j]= η*P[i][j]+(1-η)*P[g][j]; 
        u=rand(0,1)  
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        if rand(0,1)>0.5 
           X[i][j]=p[i][j]-β*abs(C[j]-X[i][j])*ln(1/u); 
        else 
           X[i][j]=p[i][j]+β*abs(C[j]-X[i][j])*ln(1/u); 
        enif  
      endfor 
   endfor 
Until termination criterion is met 

4   Diversity-Controlled QPSO 

A major problem with PSO, QPSO and other evolutionary algorithms in multi-modal 
optimization is premature convergence, which results in great performance loss and 
sub-optimal solutions. In a PSO or QPSO system, premature convergence results from 
the fast information flow between particles due to its collectiveness, which makes 
diversity of the swarm decline rapidly, leaving PSO or QPSO algorithm with great 
difficulties of escaping local optima. Therefore, the collectiveness of particles leads to 
low diversity with fitness stagnation as an overall result. In QPSO, although the 
search space of an individual particle at each iteration is the whole feasible solution 
space of the problem, diversity loss of the whole population is also inevitable due to 
the collectiveness.  

In 2002, Ursem has proposed a model called Diversity-Guided Evolutionary 
Algorithm (DGEA) [16], which applies diversity-decreasing operators (selection, 
recombination) and diversity-increasing operators (mutation) to alternate between two 
modes based on a distance-to-average-point measure.  The performance of the DGEA 
clearly shows its potential in multi-modal optimization. Also in 2002, Riget et al [16] 
adopted the idea from Usrem into the basic PSO model with the decreasing and 
increasing diversity operators used to control the population. This modified model of 
PSO uses a diversity measure to have the algorithm alternate between exploring and 
exploiting behavior. They introduced two phases: attraction and repulsion, and the 
swarm alternate between these phases according to its diversity.  The improved PSO 
algorithm is called Attraction and Repulsion PSO (ARPSO) algorithm. In this paper, 
we introduce the diversity measure, employed by Uresem and Riget, into Quantum-
behaved Particle Swarm Optimization Algorithm, and propose a Diversity-Maintained 
QPSO (DMQPSO). Instead of measuring diversity of the swarm according to the 
particles’ current position as Riget’s work and the previous proposed method in [15], 
we use as diversity the distance-to-average-point measure of the particles’ personal 
best positions. That is, the diversity of the swarm is measure by 

= =

−⋅
⋅

=
S

i

n

j
jji CP

AS
Sdiversity

1

2

1
, )(

1
)(  (15) 

where S is the swarm, MS = is the population size, A  is the length of longest the 

diagonal in the search space, n is the dimensionality of the problem, 
jiP,
 is the jth 

value of the ith particle’s personal best (pbest) position and 
jC is the jth value of the 

average point of pbest position of particles. 



 Enhancing Global Search Ability of QPSO by Maintaining Diversity of the Swarm 741 

In our proposed DMQPSO, a low bound value dlow is set for the diversity measure 
to prevent the swarm from clustering. That means the diversity will be maintained 
higher than dlow. The procedure of the algorithm is as follows. After the initialization 
of the swarm, the diversity is high and its declination is absolutely necessary for 
fitness improvement. After the middle stage of the search, the diversity may decrease 
to a low level so that the global search ability of the particle swarm is weak and the 
particles may fail to escape the local optima or sub-optima. Therefore, we can set a 
low bound for the diversity to keep the swarm possesses global search ability with a 
certain extent. There are several methods to maintain the diversity. The one used in 
this paper is that, when the diversity value declines to below dlow, mutation operation 
is exerted on a randomly selected particle’s pbest position until the diversity value 
returns to above dlow. The mutation operation can be described by the following 
formula. 

)1,0(~,max,, NXPP jiji δδα ⋅⋅+= , ),,2,1;,2,1( njMi ==  (16) 

where δ is a random number with standard normal distribution N(0,1) and α is a 
parameter. With the above specification, we now outline the proposed DMQPSO 
algorithm below. 

DMQPSO 
Initialize particles’ position X[:]and set P[:]=X[:]; 
for t=1 to Maxiter 
  find out the C position of the swarm; 
  measure the diversity of the swarm by formula (15); 
  if (diversity<dlow) 
     Randomly select a particle k; 
     for j=1 to n 
         P[k][:]=P[k][:]+α*Xmax*δ; X[k][:]=P[k][:]; 
         f(Pk)=f(P[k][:]); f(Xk)=f(Pk); 
     endfor 
  endif 
  for i=1 to population size M; 
    if f(Xi)<f(Pi) then P[i]=X[i]; 
      g=arg min(f(P[i])); 
      for j=1 to n 
        η=rand(0,1);  
        p[i][j]= η*P[i][j]+(1- η)*P[g][j]; 
        u=rand(0,1)  
        if rand(0,1)>0.5 
           X[i][j]=p[i][j]-β*abs(C[j]-X[i][j])*ln(1/u); 
        else 
           X[i][j]=p[i][j]+β*abs(C[j]-X[i][j])*ln(1/u); 
        enif  
      endfor 
   endfor 
endfor 
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In the above algorithm, Maixter is the maximum number of iterations the DMQPSO 
executes for. The value of β is generally linearly on the course of running in most 
cases. 

5   Experiment Results and Discussion 

We have tested DMQPSO on four widely known benchmark functions for testing the 
performance of different evolutionary optimization strategies. These functions are all 
minimization problems with minimum value zero. The four test functions are: 
Rosenbrock, n-dimensional 
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We tested original PSO with inertia weight (called Standard PSO or SPSO), QPSO 
and DMQPSO for performance Comparison. In all performance tests, the initial range 
of the population in all cases listed in Table 1 is asymmetry. Table 1 also lists 

maxV  
for SPSO. The fitness value is set as function value and the population size is set to be 
20, 40 and 80 respectively.  

We had 50 trial runs for every instance and recorded mean best fitness and 
standard deviation of 50 best fitness values. The maximum number of iterations, 
Maxiter, is set as 1000, 1500 and 2000 corresponding to the dimensions 10, 20 and 30  
 

Table 1. The table lists the initial range of the population in the performance tests. The third 
column is the uplimit of the velocity of the partilce in SPSO. 

 Initial Range Vmax 
f1 (15, 30) 100 

f2 (2.56, 5.12) 10 

f3 (300, 600) 600 

f4 (30, 100) 100 
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Table 2. Mean best fitness and standard deviation of all algorithms on Rosenbrock function 

SPSO QPSO DMQPSO M Dim. Maxiter 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 94.1276 194.3648 59.4764 153.0842 21.6372 55.7839 
20 20 1500 204.337 293.4544 110.664 149.5483 31.0208 77.0761 

 30 2000 313.734 547.2635 147.609 210.3262 79.8686 127.3118 
 10 1000 71.0239 174.1108 10.4238 14.4799 10.0527 13.1835 

40 20 1500 179.291 377.4305 46.5957 39.536 48.5732 60.1797 
 30 2000 289.593 478.6273 59.0291 63.494 70.3407 65.2116 
 10 1000 37.3747 57.4734 8.63638 16.6746 12.1356 23.2038 

80 20 1500 83.6931 137.2637 35.8947 36.4702 31.2263 35.0650 
 30 2000 202.672 289.9728 51.5479 40.849 46.8169 35.7819 

Table 3. Mean best fitness and standard deviation of all algorithms on Rastrigrin function 

SPSO QPSO DMQPSO M Dim. Maxiter 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 5.5382 3.0477 5.2543 2.8952 4.4964 2.5785 
20 20 1500 23.1544 10.4739 16.2673 5.9771 14.7371 4.9460 

 30 2000 47.4168 17.1595 31.4576 7.6882 27.5713 7.1196 
 10 1000 3.5778 2.1384 3.5685 2.0678 3.1754 1.7769 

40 20 1500 16.4337 5.4811 11.1351 3.6046 11.1452 3.2323 
 30 2000 37.2796 14.2838 22.9594 7.2455 19.6839 4.6700 
 10 1000 2.5646 1.5728 2.1245 2.2353 2.2351 1.4411 

80 20 1500 13.3826 8.5137 10.2759 6.6244 7.5875 2.4115 
 30 2000 28.6293 10.3431 16.7768 4.4858 17.1367 4.6976 

Table 4. Mean best fitness and standard deviation of all algorithms on Griewank function 

SPSO QPSO DMQPSO M Dim. Maxiter 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

 10 1000 0.09217 0.0833 0.08331 0.06805 0.0689 0.0762 
20 20 1500 0.03002 0.03255 0.02033 0.02257 0.0198 0.0168 

 30 2000 0.01811 0.02477 0.01119 0.01462 0.0088 0.0083 
 10 1000 0.08496 0.0726 0.06912 0.05093 0.0565 0.0531 

40 20 1500 0.02719 0.02517 0.01666 0.01755 0.0150 0.0138 
 30 2000 0.01267 0.01479 0.01161 0.01246 0.0081 0.0122 
 10 1000 0.07484 0.07107 0.03508 0.02086 0.0352 0.0212 

80 20 1500 0.02854 0.0268 0.0146 0.01279 0.0156 0.0149 
 30 2000 0.01258 0.01396 0.01136 0.01139 0.0076 0.0101 

Table 5. Average best fitness and standard deviation of all algorithms on Shaffer’s function 

SPSO QPSO DMQPSO M Dim. Maxiter 
Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

20 2 2000 2.782E-04 0.001284 0.001361 0.003405 0.0012 0.0032 
40 2 2000 4.744E-05 3.593E-05 3.891E-04 0.001923 5.8303e-004 0.0023 
80 2 2000 2.568E-10 3.134E-10 1.723E-09 3.303E-09 2.5830e-009 8.729e-009 
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for first three functions, respectively, The dimension of the last function is 2 and the 
Maxiter, is 2000 for this function. In performance test of the SPSO, the inertia weight 
w is decreases linearly from 0.9 to 0.4 as in [18]. In performance tests for QPSO and 
DMQPSO, the Contraction-Expansion Coefficient β  is varying from 1.0 to 0.5 
linearly when the algorithms are running. For DMQPSO, the low bound value of the 
diversity, dlow, is dynamically decreasing linearly from 4100.5 −×  to 6100.1 −× , and the 
value of α is set to constant 5100.1 −× . 

The mean values and standard deviations of best fitness values for 50 runs of each 
function are recorded in Table 2 to Table 5. On Rosenbrock and Rastrigrin functions, 
it seems that DMQPSO outperforms QPSO and SPSO when the swarm size is 20. 
However, when the swarm size is 40 and 80, there are no improvements in terms of 
statistical significance under the above specified parameter settings. On Griewank 
function, it is shown that DMQPSO generated better results than QPSO and SPSO 
when dimension of the problem is 30. However, when the dimension is 10 and 20, 
there are no remarkable performance differences between QPSO and DMQPSO. On 
Shaffer’s function, the performances of DMQPSO and QPSO are similar, which 
means that the diversity maintenance method with the specified parameter settings 
does not work on this function.  

6   Conclusion 

In this paper, we proposed a diversity maintenance method to enhance the global 
search ability of QPSO. The improved algorithm is called DMQPSO. The 
methodology of DMQPSO is setting a low bound for the diversity to prevent the 
particles from clustering. In our experiments, the value of low bound is dynamically 
decreasing and mutation operation is implemented on the personal best position of a 
certain particle once the value of diversity is below the low bound. The experiment 
results on several benchmark function show that the diversity maintenance method 
may be a good technique to avoid premature convergence and may result in 
performance improvement of the QPSO in many cases. Our future works will focus 
on finding more efficient diversity maintenance methods for QPSO and exploring the 
applicability of DMQPSO to real world problems. 
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Abstract. An improved artificial immune algorithm with a dynamic threshold is 
presented in this paper. Numerical experiments show that compared with the 
genetic algorithm and the originally real-valued coding artificial immune 
algorithm, the improved algorithm possesses high speed of convergence and 
good performance of preventing the premature convergence. The proposed 
algorithm is employed to train the network structure, weights, initial inputs of 
the context units and self-feedback coefficient of the modified Elman network. 
A novel identifier and controller are constructed successively based on the 
proposed algorithm. A simulated dynamic system of the ultrasonic motor 
(USM) is considered as an example of a highly nonlinear system. The novel 
identifier and controller are applied to perform the speed identification and 
control of the ultrasonic motors. Numerical results show that both the identifier 
and controller based on the proposed algorithm possesses not only high 
convergent precision but also robustness to the external noise.  

Keywords: dynamic threshold; artificial immune algorithm; Elman network; 
ultrasonic motor; system identification; control. 

1   Introduction 

The immune system is the basic and remarkable defense system against bacteria, 
viruses and other disease-causing organisms. It can produce millions of antibodies 
from hundreds antibody genes and can protect animals which are infected by foreign 
molecules to survive [1-4]. The Artificial Immune System (AIS) or Artificial Immune 
Algorithm (AIA) was inspired by the immune system. Compared with genetic 
algorithm (GA), AIA has affinity calculation function, which could explain the 
relationship not only between the antigen and the antibody but also between 
antibodies. That makes AIA have the unique characteristic to guarantee the survival 
of the variant offspring that could match the antigen better. Related papers [5, 6] show 
that the algorithms based on AIA have much better performance than conventional 
                                                           
* Corresponding author. 
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probabilistic optimization algorithms. However, it usually takes long time for the 
binary coding AIA to obtain convergence. Furthermore, it is very difficult for AIA to 
break away from the local optimal value, which can hold the searching process 
around this value and can easily lead to the premature during the evolution. 

To improve the convergence speed and to prevent the premature convergence, a 
dynamic threshold artificial immune algorithm (DTAIA) is presented in this paper. 
The proposed algorithm changes the affinity function of the real-valued coding 
artificial immune algorithm by considering both the antibody’s fitness and the 
dynamic threshold value.  

An ultrasonic motor (USM) is a typical non-linear dynamic system. Due to some 
excellent performances and useful features, the USM has attracted considerable 
attention in many practical applications [7-9]. The simulation and control of the USM 
are important in the applications of the USM. According to the conventional control 
theory, an accurate mathematical model should be set up. But the USM has strongly 
nonlinear speed characteristics that vary with the driving conditions [10] and its 
operational characteristics depend on many factors. Therefore, it is difficult to 
perform effective identification and control to the USM using traditional methods 
based on mathematical models of systems.  

The dynamic recurrent multilayer network employs dynamic links to memorize 
feedback information of the history influence. It has great potential development in 
the fields of system modeling, identification and control [11, 12]. The Elman network 
is one of the simplest types among the available recurrent networks. In this paper, a 
modified Elman network is employed to identify and control an USM, and a novel 
learning algorithm based on an improved artificial immune algorithm is proposed for 
training the Elman network. 

2   Dynamic Threshold Artificial Immune Algorithm (DTAIA) 

Toyoo Fukuda proposed an immune algorithm based on the information entropy, 
which is used to represent the diversity of the population [13]. The information 
entropy )(NE can be concluded as 

=

=
M

j
j NH

M
NE

1

)(
1

)(  
(1) 

where N is the number of the antibodies, M is the number of the genes and )(NH j  is 

the entropy of the jth gene. The entropy )(NH j  is  

=

=
S

i ij
ijj P

PNH
1

)
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log()(  
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where ijP  is the probability that the ith allele comes out at the jth gene, and s is the 

number of the selectable characters in the alphabet. 
The affinity between the antibody v and w is defined as follows 

)2(1
1

, H
y wv

 
(3) 
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where H(2) is the information entropy of antibody v and w. 
The affinity between antigen and antibody v , vxα , is defined by 

vv optx =α  (4) 

where vopt  is the fitness of antibody v. 

Considering the model based on the Euclidean distance for affinity calculation 
[14], the antibody v and antibody w have the affinity if the following inequalities are 
satisfied 

mxxlwvd wv <−< αα,),(  (5) 

In Eq. (5), l>0 and m>0; d(v, w) is the Euclidean distance between the antibody v 
and antibody w; vxα  is the fitness of antibody v; and wxα is the fitness of antibody w . 

The expectation value ve of antibody v is calculated as 

vvv caxe =  (6) 

where 
vC is the density of antibody v. It can be seen from Eq. (6) that the antibody 

with both high fitness and low density would have more chance to survive.  
In Ref. [14], both l and m of Eq. (5) are constants. Therefore, if two antibodies i 

and j have the same Euclidean distance with antibody v, but have different fitness 
values, then the following inequalities hold: 

ljvdivd <= ),(),(  (7) 

|||| jviv axaxaxax −≠− , maxax iv <− || , maxax jv <− ||  (8) 

It is obvious that the one with less fitness difference is closer to the antibody v. 
In order to avoid such problem, we modify the inequalities of (5) and consider that 

if the following inequality is satisfied 

Laxaxwvdwvf wv <| - |)+ ,(= ,(  (9) 

then the antibodies v and w have the affinity. In the improved algorithm, the value of 
the parameter L is an important factor for determining the density. If L is larger, there 
will be more antibodies that have affinity with antibody v, which makes higher 
density of antibody v, and the algorithm will have stronger ability to suppress 
antibody v to be duplicated. So the diversity will remain relatively high, vice versa. 

As well as we know, in the initial period of evolution, the algorithm has little 
possibility to fall into the local optimum value because of the high diversity. With an 
increase of the evolution generations, there will be more and more antibodies with 
high fitness values. If L is a constant, the algorithm can easily become premature and 
get into the local optimum since the diversity is getting lower and lower. If L is an 
increasing function of evolution generations, the antibody’s diversity and density will 
be increased efficiently with the increase of the evolution generations and that the 
suppression will be more powerful to preserve high diversity. So the algorithm would 
have strong ability to control the reproducing process. In this paper, the dynamic 
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value of L is taken as )exp(0 bTLL = , here 00 >L , 0>b  and T >0 is the evolution 

generations. 
Just as GA, AIA starts on the initial population that is generated randomly, and 

uses the reproducing, crossover and mutating operators to produce the filial 
generation superior to their parents. Through these iterations, the population gradually 
approaches to the optimum. 

We compared the performance of GA, MAIA (model used in Ref. [14]) and the 
proposed DTAIA by finding the maximum values of 1F , 3F  and the minimum value 

of 2F . 
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The colony size is taken as 50 ( POPSIZE=50 ), the max evolvement generation is 
500, crossover probability is 0.8 and mutation probability is 0.15. Other parameters 
are: MAIA: m=0.2, l =0.7 at the function 1F  and l=0.05 at the functions 2F  and l=0.1 

at the function 3F ; DTAIA: b =0.0001, 0l =0.7 at the function 1F  and 0l =0.042 at 

the function 2F  and 0l =0.04 at the function 3F . 

The results of the simulated experiments are shown in Table 1. From the table it 
can be seen that the proposed method is superior to the other two methods in terms of 
the convergence speed and precision. 

Table 1. Comparisons of GA, MAIA and DTAIA 

Algorithms Function 
1F  Function 

2F  Function 
3F  

 Generation 
of reaching 
stable stage 

Optimum 
value 

Generation 
of reaching 
stable stage

Optimum 
value 

Generation 
of reaching 
stable stage 

Optimum 
value 

GA 440 3907.966 308 0.000 299 3.000 
MAIA 263 3907.966 208 0.000 162 3.000 
DTAIA 179 3907.970 92 0.000 48 3.000 

3   Modified Elman Network and DTAIA-Based Learning 
Algorithm of Elman Network 

Elman neural network (ENN) is a type of recurrent neural network with three layers 
of neurons. It includes not only input nodes, output nodes and hidden nodes, but also 
context nodes in this model. The context nodes are used to memorize previous 
activations of the hidden nodes and can be considered to function as a one-step time 
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delay. The modified Elman network differs from the original Elman network by 
introducing self-feedback coefficient links to improve its memorization ability. Figure 
1 depicts the modified ENN. 

Assume that there are r nodes in the input layer, n nodes in the hidden and context 
layers, respectively, and m nodes in the output layer. Then the input u is an r 
dimensional vector, the output x of the hidden layer and the output 

cx  of the context 

nodes are n dimensional vectors, respectively, the output y of the output layer is m 

dimensional vector, and the weights 1IW , 2IW  and 3IW  are n×n, n×r and m×n 
dimensional matrices, respectively. The mathematical model of the modified Elman 
neural network is 

))1()(()( −+= kuWkxWfkx I2
c

I1  (13) 

)1()1()( −+−= kxkxkx cc α  (14) 

)()( 3 kxWky I=  (15) 

where )(xf is often taken as the sigmoid function. 

)1/(1)( xexf −+=  (16) 

and α  ( 10 <≤ α  ) is the self-feedback coefficient. When the coefficient α  is zero, 
the modified Elman network is identical to the original Elman network. 

Let the kth desired output of the system be )(kyd
. Define the error as 

2/))()(())()(()( kykykykykE d
T

d −−=  (17) 

Differentiating E with respect to 3IW , 2IW  and 1IW  respectively, according to 
the gradient descent method, we obtain the learning algorithm for the modified Elman 
neural network as follows 
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where 1η , 2η  and 3η  are learning steps of 1IW , 2IW  and 3IW respectively, and 
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If )(xg is taken as a linear function, then 1)( =⋅′ig . 
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The network shown in Figure 1 is considered, where there exist r nodes in the input 
layer, n nodes in the hidden and context layers, and m nodes in the output layer. The 
corresponding individual structure can be illustrated in Figure 2, where 

),...,(
~ 0

,
0

1,
0

nCCC xxX = is a permutation of the initial inputs of the context unit, 1~ IW , 2~ IW  

and 3~ IW  are their respective permutations of the expansion of weight matrices 1IW , 
2IW  and 3IW  by rows. So the number of the elements in the body is 

n+n×n+n×r+n×m. The individuals are trained and evolved by the proposed DTAIA 
algorithm. 

α α

)(kx
c

1IW
2IW

3IW

 

Fig. 1. Architecture of the Elman network 

α )0(~
cx 1~ IW 2~ IW 3~ IW

 

Fig. 2. Architecture of the individual 

4   Speed Identification of USM Using the DTAIA-Based Elman 
Network 

A dynamic identifier is constructed to perform the identification of non-linear systems 
using the DTAIA-based Elman network, which is called DTBEI. The model can be 
used to identify highly non-linear systems. A simulated dynamic system of the 
ultrasonic motor is considered as an example of a highly nonlinear system. 

The identification model of the motor is shown in Figure 3. Numerical simulations 
are performed using the model of DTBEI for the speed identification of a longitudinal 
oscillation USM [15] shown in Figure 4. Some parameters of the USM model are 
taken as: driving frequency 27.8 kHZ , amplitude of driving voltage 300 V , allowed 
output moment 2.5 k cm, rotation speed 3.8 m/ s . 
    The curve of the actual motor speed is shown in Figure 5 and Figure 6. A durative 
external moment of 1 N m is applied in the time window [0.3999s, 0.7s] as the 
external disturbances. Figures 7 to 12 show the identification results. The proposed 
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 Fig. 3. Identification model of the motor              Fig. 4. Schematic diagram of the motor 

DTBEI model is compared with the original Elman model using the gradient descent-
based learning algorithm. The error is the difference between the identification result 
and the actual speed. The identification errors using the gradient descent-based 
learning algorithm are only less than 0.003, while the errors using the proposed method 
are less than 0.001. The identification error of the DTBEI is about 33.3% that of the 
Elman model trained by the gradient descent algorithm, and the identification precision 
is more than 99.9%. These results demonstrate that the proposed method can obtain 
higher precision and can be used to identify highly non-linear system successfully. 

0.0 0.4 0.8 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

S
pe

ed
 (

m
/s

)

Time (s)
       

1.040 1.042 1.044 1.046

3.264

3.268

3.272

3.276

 

 

S
pe

ed
 (

m
/s

)

Time (s)
 

        Fig. 5. Actual speed curve of the USM           Fig. 6. Amplification of USM speed curve 
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Fig. 7. Speed Identification curves before the 
disturbance  

Fig. 8. Identification error curves before the 
disturbance 
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Fig. 9. Speed identification curves during the 
disturbance 

Fig. 10. Identification error curves during the 
disturbance 
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Fig. 11. Speed identification curves of the 
stable stage 

Fig. 12. Identification error curves of the 
stable stage 

5   Speed Control of USM Using the DTAIA-Based Elman Network 

A novel controller is specially designed to control non-linear systems using the DTAIA-
based Elman network, which is called DTBEC. The USM used in Section 4 is still 
considered as an example of a highly nonlinear system to examine the performance of 
the controller DTBEC. In this paper the model is illustrated in Figure 13. 
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)1( −ke )(ku

 

Fig. 13. Speed control model of the motor 
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In the controller DTBEC, the Elman network is trained by DTAIA on line, and the 
driving frequency is taken as the control variable. The fitness of an individual is 
evaluated by 

22 ))()(/(1)(/1)( tytytetf idii −==  (24) 

where )(tfi
 is the fitness value of the individual i at sampling time t, )(tyd

 is the 

expected output at time t while )(tyi
 is the actual output. 

Figures 14 to 17 show the USM speed control curves using the DTBEC control 
strategy when the control speed is changed according to the sin curve and trapezoid 
curve respectively. From the Figure 14 and Figure 15, which is the amplification of 
the Figure 14 at the time windows [120s, 130s], it can be seen that the controller 
performs successfully and the proposed method possesses good control precision. 
While from the Figure 16 and Figure 17, it also can be seen that the control model 
possesses rapid adaptability for the sharp change of the control speed. It suggests that 
the controller presented here exhibits very good robustness and can handle a variety 
of operating conditions without losing the ability to track a desired course well. 
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Fig. 14. Speed control curves with sinusoidal 
type reference speeds 

Fig. 15. The amplification of the Fig. 14 at the 
time windows [120s, 130s] 
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Fig. 16. Speed control curves with step type 
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Fig. 17. The amplification of the Fig. 16 at the 
time windows [2.5s, 2.8s] 
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6   Conclusions 

By analyzing the principles of artificial immune algorithm and genetic algorithm, we 
propose an improved immune algorithm DTAIA in order to overcome the shortage of  
GA and AIA for the tendency towards local optimum value and premature. Simulated 
experimental results show that the proposed DTAIA is more efficient than the GA 
algorithm and the real-valued coding AIA. 

The proposed algorithm DTAIA can be employed to train the Elman network and 
to realize effectively the evolution of network construct, weights, initial inputs of the 
context unit and self-feedback coefficient together. Furthermore, an identifier DTBEI 
and a controller DTBEC are respectively designed to identify and control non-linear 
systems on line. Numerical results show that the designed identifier can approximate 
the nonlinear input-output mapping of the USM quite well, and the controller is tested 
by using step and sinusoidal types speed. Both of them achieve higher convergence 
precision and show fairly robust characteristics. Compared with other existing 
approaches, the proposed methods could be effective alternatives for system 
identification and control, especially for non-linear dynamic systems. 
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Abstract. Predicting the output time of every lot in a semiconductor fabrication 
factory (wafer fab) is a critical task to the wafer fab. To further enhance the ef-
fectiveness of wafer lot output time prediction, a hybrid and intelligent system 
is constructed in this study. The system is composed of two major parts (a k-
means classifier and a back-propagation-network regression) and has three in-
telligent features: incorporating the future release plan of the fab (look-ahead), 
example classification, and artificial neural networking. Production simulation 
is also applied in this study to generate test examples. According to experimen-
tal results, the prediction accuracy of the hybrid and intelligent system was sig-
nificantly better than those of four existing approaches: BPN, case-based rea-
soning (CBR), FBPN, kM-BPN, by achieving a 9%~44% (and an average of 
25%) reduction in the root-mean-squared-error (RMSE) over the comparison 
basis – BPN. 

1   Introduction 

Lot output time series is one of the most important time series data in a wafer fab. 
Predicting the output time for every lot in a wafer fab is a critical task not only to the 
fab itself, but also to its customers. After the output time of each lot in a wafer fab is 
accurately predicted, several managerial goals (including internal due-date assign-
ment, output projection, ordering decision support, enhancing customer relationship, 
and guiding subsequent operations) can be simultaneously achieved [5]. Predicting 
the output time of a wafer lot is equivalent to estimating the cycle (flow) time of the 
lot, because the former can be easily derived by adding the release time (a constant) to 
the latter. There are six major approaches commonly applied to predicting the out-
put/cycle time of a wafer lot: multiple-factor linear combination (MFLC), production 
                                                           
* This work was support by the National Science Council, R.O.C. 
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simulation (PS), back propagation networks (BPN), case based reasoning (CBR), 
fuzzy modeling methods, and hybrid approaches. Among the six approaches, MFLC 
is the easiest, quickest, and most prevalent in practical applications. The major disad-
vantage of MFLC is the lack of forecasting accuracy [5]. Conversely, huge amount of 
data and lengthy simulation time are two shortages of PS. Nevertheless, PS is the 
most accurate output time prediction approach if the related databases are continu-
ingly updated to maintain enough validity, and often serves as a benchmark for evalu-
ating the effectiveness of another method. PS also tends to be preferred because it 
allows for computational experiments and subsequent analyses without any actual 
execution [3]. Considering both effectiveness and efficiency, Chang et al. [4] and 
Chang and Hsieh [2] both forecasted the output/cycle time of a wafer lot with a BPN 
having a single hidden layer. Compared with MFLC approaches, the average predic-
tion accuracy measured with the root mean squared error (RMSE) was considerably 
improved with these BPNs. On the other hand, much less time and fewer data are 
required to generate an output time forecast with a BPN than with PS. Theoretically, a 
well-trained BPN (without being stuck to local minima) with a good selected topol-
ogy can successfully map any complex distribution. However, wafer lot output time 
prediction is a much more complicated problem, and the results of these studies have 
shown that BPN remains incapable in solving such a problem. One reason is that there 
might be multiple complex distributions to model, and these distributions might be 
quite different (even for the same product type and priority). For example, when the 
workload level (in the wafer fab or on the processing route or before bottlenecks) is 
stable, the cycle time of a wafer lot basically follows the well-known Little’s law 
[14], and the output time of the wafer lot can be easily predicted. Conversely, if the 
workload level fluctuates or keeps going up (or down), predicting the cycle time and 
output time of a wafer lot becomes much more difficult. 

Chang et al. [3] proposed a k-nearest-neighbors based case-based reasoning (CBR) 
approach which outperformed the BPN approach in forecasting accuracy. Chang et al. 
[4] modified the first step (i.e. partitioning the range of each input variable into sev-
eral fuzzy intervals) of the fuzzy modeling method proposed by Wang and Mendel 
[15], called the WM method, with a simple genetic algorithm (GA) and proposed the 
evolving fuzzy rule (EFR) approach to predict the cycle time of a wafer lot. Their 
EFR approach outperformed CBR and BPN in prediction accuracy. 

Chen [5] constructed a fuzzy BPN (FBPN) that incorporated expert opinions in 
forming inputs to the FBPN. Chen’s FBPN was a hybrid approach (fuzzy modeling 
and BPN) and surpassed the crisp BPN especially in the efficiency respect. 

To further enhance the effectiveness of wafer lot output time prediction, a hybrid 
and intelligent system is constructed in this study. The system is composed of two 
major parts (a k-means (kM) classifier and a BPN regression) and has three intelligent 
features: 

1. Look-ahead: The future release plan of the fab is incorporated. 
2. Example classification: Wafer lots are classified before predicting their output 

times with the BPN. 
3. Artificial neural networking: BPN is applied. 
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The system architecture is shown in Fig. 1. PS is also applied in this study to gen-
erate test examples. Using simulated data, the effectiveness of the hybrid and intelli-
gent system is shown and compared with those of four existing approaches, BPN, 
CBR, FBPN, and kM-BPN. 

kM BPN Output time forecastLook-ahead
 

Fig. 1. The system architecture 

2   Methodology 

Firstly, the look-ahead property of the hybrid and intelligent system is explained. 

2.1   Incorporating the Future Release Plan (Look-Ahead) 

All aforementioned traditional methods are based on the historical data of the fab. 
However, a lot of studies have shown that the performance of sequencing and sched-
uling in a fab relies heavily on the future release plan, which has been neglected in 
this field. In addition, the characteristic re-entrant production flows of a fab lead to 
the phenomenon that a lot that will be released in the future might appear in front of 
another lot that currently exists in the fab. For these reasons, to further improve the 
accuracy of wafer lot output time prediction, the future release plan of the fab has to 
be considered (look-ahead). There are many possible ways to incorporate the future 
release plan in predicting the output time of a wafer lot currently existing in the fab. 
In this study, the three nearest future discounted workloads on the lot’s processing 
route (according to the future release plan) are proposed for this purpose: 

1. The 1st nearest future discounted workload (FDW(1)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now, now + T1]. 

2. The 2nd nearest future discounted workload (FDW(2)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now + T1, now + T1 + T2]. 

3. The 3rd nearest future discounted workload (FDW(3)): the sum of the (processing 
time/release time)’s of the operations of the lots that will be released within time 
[now + T1 + T2, now + T1 + T2 + T3]. 

Note that only the operations performed on the machines on the lot’s processing 
route are considered in calculating these future workloads, which then become three 
additional inputs to the BPN. 

2.2   Example Classification with kM – Rationale and Procedure 

The rationale for combining kM and BPN for wafer lot output time prediction is ex-
plained as follows. As stated previously, wafer lot output time prediction is a compli-
cated problem, in which there might be multiple complex distributions to model, and 
these distributions might be quite different (even for the same product type and priority). 
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For this reason, classifying wafer lots under different circumstances seems to be a rea-
sonable treatment. In this respect, kM can serve as a clustering tool for production data 
in a wafer fab. As a result, the combination of kM and BPN is chosen in this study. 

The parameters used in this study are defined: 

1. Un: the average fab utilization at the release time of the n-th example/lot. 
2. Qn: the total queue length on the lot’s processing route at the release time. 
3. BQn: the total queue length before bottlenecks at the release time. 
4. FQn: the total queue length in the whole fab at the release time. Obviously, FQn ≥ 

Qn ≥ BQn. 
5. WIPn: the fab work-in-process (WIP) at the release time. 

6. )(i
nD : the latenesses of the i-th recently completed lots. 

The procedure of applying kM in forming inputs to the BPN is now detailed. Every 
lot fed into the BPN is called an example. Examples are pre-classified to m categories 
before they are fed into the BPN according to their Euclidean distances to the cate-
gory centers: 
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denotes the parameter set of the j-th category center, which is arbitrarily chosen from 
those of all examples in the beginning. In this way, lot n is classified to category j 
with the smallest d(n, j). Each time after all examples are classified, the parameter sets 
of all category centers are recalculated by averaging those of the examples clustered 
in the same categories. Example classification is continued until the sum of the aver-
age Euclidean distances (SADs) from examples to their category centers in all catego-
ries converges to a minimal value: 

.categoryinlotsofnumber/),(
1 categoryinlotall=

=
m

j jn

jjndSAD  (2) 

Examples of different categories are then learned with different BPNs but with the 
same topology. The procedure for determining the parameters is described in the next 
section.  

2.3   Output Time Prediction with BPN 

The configuration of the BPN is established as follows: 

1. Inputs: nine parameters associated with the n-th example/lot including Un, Qn, BQn, 

FQn, WIPn, 
)(i

nD , FDW(1), FDW(2), and FDW(3). These parameters have to be nor-

malized so that their values fall within [0, 1]. 
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2. Single hidden layer: Generally one or two hidden layers are more beneficial for the 
convergence property of the network. 

3. Number of neurons in the hidden layer: the same as that in the input layer. Such a 
treatment has been adopted by many studies (e.g. [2, 5]). 

4. Output: the (normalized) cycle time forecast of the example. 
5. Network learning rule: Delta rule. 
6. Transformation function: Sigmoid function, 

).1/(1)( xexf −+=  (3) 

7. Learning rate ( ):  0.01~1.0. 
8. Batch learning. 

The procedure for determining the parameter values is now described. A portion of 
the examples is fed as “training examples” into the BPN to determine the parameter 
values. Two phases are involved at the training stage. At first, in the forward phase, 
inputs are multiplied with weights, summated, and transferred to the hidden layer. 
Then activated signals are outputted from the hidden layer as: 
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lh ’s are also transferred to the output layer with the same procedure. Finally, the 

output of the BPN is generated as: 
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Then the output o is compared with the normalized actual cycle time a, for which the 
RMSE is calculated: 

examplesofnumber/)( 2

examplesall

aoRMSE −= . (10) 

Subsequently in the backward phase, the deviation between o and a is propagated 
backward, and the error terms of neurons in the output and hidden layers can be cal-
culated respectively as: 
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))(1( oaooo −−=δ , (11) 

.)1( oo
lll

h
l whh δδ −=  (12) 

Based on them, adjustments that should be made to the connection weights and 
thresholds can be obtained as 
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To accelerate convergence, a momentum can be added to the learning expressions. 
For example, 
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l
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ll

oo
l αηδ  (17) 

Theoretically, network-learning stops when the RMSE falls below a pre-specified 
level, or the improvement in the RMSE becomes negligible with more epochs, or a 
large number of epochs have already been run. Then the remaining portion of the 
adopted examples in each category is used as “test examples” and fed into the BPN to 
evaluate the accuracy of the network that is also measured with the RMSE. Finally, 
the BPN can be applied to predicting the cycle time of a new lot. When a new lot is 
released into the fab, the nine parameters associated with the new lot are recorded and 
compared with those of each category center. Then the BPN with the parameters of 
the nearest category center is applied to forecasting the cycle time of the new lot. The 
data acquisition and transformation processes are shown in Fig. 2. In this study, BPN 
was implemented on the software “NeuroSolutions 4.0”. 
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Fig. 2. The data acquisition and transformation processes 
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3   A Demonstrative Example from a Simulated Wafer Fab 

In practical situations, the history time series data of each lot is only partially avail-
able in the factory. Further, some information of the previous lots such as Qn, BQn, 
and FQn is not easy to collect on the shop floor. Therefore, a simulation model is 
often built to simulate the manufacturing process of a real wafer fabrication factory 
[1-5, 8, 11]. Then, such information can be derived from the shop floor status col-
lected from the simulation model [3]. To generate test data, a simulation program 
coded using Microsoft Visual Basic .NET is constructed to simulate a wafer fabrica-
tion environment with assumptions as follows. 

1. The distributions of the interarrival times of orders are exponential. 
2. The distributions of the interarrival times of machine downs are exponential. 
3. The distribution of the time required to repair a machine is deterministic. 
4. The percentages of lots with different product types in the fab are predetermined. 

As a result, this study is only focused on fixed-product-mix cases. However, the 
product mix in the simulated fab does fluctuate and is only approximately fixed in 
the long term. 

5. The percentages of lots with different priorities released into the fab are controlled. 
6. The priority of a lot cannot be changed during fabrication. 
7. Lots are sequenced on each machine first by their priorities, then by the first-in-

first-out (FIFO) policy. Such a sequencing policy is a common practice in many 
foundry fabs. 

8. A lot has equal chances to be processed on each alternative machine/head available 
at a step. 

9. A lot cannot proceed to the next step until the fabrication on its every wafer has 
been finished. No preemption is allowed. 

The basic configuration of the simulated wafer fab is the same as a real-world wa-
fer fabrication factory which is located in the Science Park of Hsin-Chu, Taiwan, 
R.O.C. A trace report was generated every simulation run for verifying the simulation 
model. The simulated average cycle times have also been compared with the actual 
values to validate the simulation model. Assumptions 1~3, and 7~9 are commonly 
adopted in related studies (e.g. [2-5]), while assumptions 4~6 are made to simplify the 
situation. There are five products (labeled as A~E) in the simulated fab. A fixed prod-
uct mix is assumed. The percentages of these products in the fab’s product mix are 
assumed to be 35%, 24%, 17%, 15%, and 9%, respectively. The simulated fab has a 
monthly capacity of 20,000 pieces of wafers and is expected to be fully utilized (utili-
zation = 100%). Purchase orders (POs) with normally distributed sizes (mean = 300 
wafers; standard deviation = 50 wafers) arrive according to a Poisson process, and 
then the corresponding manufacturing orders (MOs) are released for these POs a fixed 
time after. Based on these assumptions, the mean inter-release time of MOs into the 
fab can be obtained as (30.5 days/month * 24 hours/day) / (20000 wafers/month / 300 
wafers) = 11 hours. An MO is split into lots of a standard size of 24 wafers per lot. 
Lots of the same MO are released one by one every 11 / (300/24) = 0.85 hours. Three 
types of priorities (normal lot, hot lot, and super hot lot) are randomly assigned to 
lots. The percentages of lots with these priorities released into the fab are restricted to 
be approximately 60%, 30%, and 10%, respectively. Each product has 150~200 steps 
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and 6~9 reentrances to the most bottleneck machine. The singular production charac-
teristic “reentry” of the semiconductor industry is clearly reflected in the example. It 
also shows the difficulty for the production planning and scheduling people to provide 
an accurate due-date for the product with such a complicated routing. Totally 102 
machines (including alternative machines) are provided to process single-wafer or 
batch operations in the fab. Thirty replicates of the simulation are successively run. 
The time required for each simulation replicate is about 12 minute on a PC with 
512MB RAM and Athlon™ 64 Processor 3000+ CPU. A horizon of twenty-four 
months is simulated. The maximal cycle time is less than three months. Therefore, 
four months and an initial WIP status (obtained from a pilot simulation run) seemed 
to be sufficient to drive the simulation into a steady state. The statistical data were 
collected starting at the end of the fourth month. For each replicate, data of 30 lots are 
collected and classified by their product types and priorities. Totally, data of 900 lots 
can be collected as training and testing examples. Among them, 2/3 (600 lots, includ-
ing all product types and priorities) are used to train the network, and the other 1/3 
(300 lots) are reserved for testing. The three parameters in calculating the future dis-
counted workloads are specified as: T1 = one week; T2 = 1.5 weeks; T3 = 2 weeks. 

3.1   Results and Discussions 

To evaluate the effectiveness of the hybrid and intelligent system and to make some 
comparisons with four approaches – BPN, CBR, FBPN, and kM-BPN, all the five 
methods were applied to five test cases containing the data of full-size (24 wafers per 
lot) lots with different product types and priorities. The convergence condition was 
established as either the improvement in the RMSE becomes less than 0.001 with one 
more epoch, or 1000 epochs have already been run. The minimal RMSEs achieved by 
applying the four approaches to different cases were recorded and compared in Table 
1 (the proposed system is indicated with look-ahead kM-BPN). As noted in Chang 
and Liao [5], the k-nearest-neighbors based CBR approach should be fairly compared 
with a BPN trained with only randomly chosen k cases. The latter (BPN) was also 
adopted as the comparison basis, and the percentage of improvement on the minimal 
RMSE (a negative value indicates a reduction was achieved) by applying another 
approach is enclosed in parentheses following the performance measure. The optimal 
value of parameter k in the CBR approach was equal to the value that minimized the 
RMSE [5]. According to experimental results, the following discussions are made: 

1. From the effectiveness viewpoint, the prediction accuracy (measured with the 
RMSE) of the hybrid and intelligent system was significantly better than those of 
the other approaches by achieving a 9%~44% (and an average of 25%) reduction in 
the RMSE over the comparison basis – BPN. The average advantages over CBR 
and FBPN were 22% and 21%, respectively. 

2. As the lot priority increases, the superiority of the hybrid and intelligent system 
over BPN and CBR becomes more evident. 

3. The effect of look-ahead is revealed with the fact that look-ahead kM-BPN outper-
formed kM-BPN with an average advantage of 2%. 

4. The effect of classification is obvious because kM-BPN considerably outperformed 
BPN in all cases. 
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Table 1. Comparisons of the RMSEs of various approaches 

Product 
(priority) 

RMSE 

A 
(normal) 

A 
(hot) 

A 
(super hot) 

B 
(normal) 

B 
(hot) 

BPN 177.1 102.27 12.23 286.93 75.98 

FBPN 
171.82 
(-3%) 

89.5 
(-12%) 

11.34 
(-7%) 

286.14 
(-0%) 

76.14 
(+0%) 

CBR 
172.44 
(-3%) 

86.66 
(-15%) 

11.59 
(-5%) 

295.51 
(+3%) 

78.85 
(+4%) 

kM-BPN 
161.95 
(-9%) 

78.25 
(-23%) 

11.61 
(-5%) 

190.79 
(-34%) 

43.06 
(-43%) 

Look-ahead kM-BPN 
154.42 
(-13%) 

77.15 
(-25%) 

11.14 
(-9%) 

188.3 
(-34%) 

42.72 
(-44%) 

4   Conclusions and Directions for Future Research 

To further enhance the effectiveness of wafer lot output time prediction, a hybrid and 
intelligent system is constructed in this study. The system is composed of two major 
parts (a kM classifier and a BPN regression) and has three intelligent features: look-
ahead, example classification, and artificial neural networking. For evaluating the 
effectiveness of the proposed hybrid and intelligent system and to make some com-
parisons with four approaches – BPN, CBR, FBPN, and kM-BPN. PS is applied in 
this study to generate test data. Then all the five methods are applied to five cases 
elicited from the test data. According to experimental results, the prediction accuracy 
of the hybrid and intelligent system was significantly better than those of the other 
approaches by achieving a 9%~44% (and an average of 25%) reduction in the RMSE 
over the comparison basis – BPN. The average advantages over CBR and FBPN were 
22% and 21%, respectively. 

However, to further evaluate the effectiveness of the proposed hybrid and intelli-
gent system, it has to be applied to fab models of different scales, especially a full-
scale actual wafer fab. In addition, the proposed hybrid and intelligent system can also 
be applied to cases with changing product mixes or loosely controlled priority combi-
nations, under which the cycle time variation is often very large. These constitute 
some directions for future research. 

References 

1. Barman, S.: The Impact of Priority Rule Combinations on Lateness and Tardiness. IIE 
Transactions 30 (1998) 495-504 

2. Chang, P.-C., Hsieh, J.-C.: A Neural Networks Approach for Due-date Assignment in a Wa-
fer Fabrication Factory. International Journal of Industrial Engineering 10(1) (2003) 55-61 

3. Chang, P.-C., Hsieh, J.-C., Liao, T. W.: A Case-based Reasoning Approach for Due Date 
Assignment in a Wafer Fabrication Factory. In: Proceedings of the International Conference 
on Case-Based Reasoning (ICCBR 2001), Vancouver, British Columbia, Canada (2001) 



766 T. Chen and Y.-C. Lin 

4. Chang, P.-C., Hsieh, J.-C., Liao, T. W.: Evolving Fuzzy Rules for Due-date Assignment 
Problem in Semiconductor Manufacturing Factory. Journal of Intelligent Manufacturing 16 
(2005) 549-557 

5. Chen, T.: A Fuzzy Back Propagation Network for Output Time Prediction in a Wafer Fab. 
Journal of Applied Soft Computing 2/3F (2003) 211-222 

6. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley, Reading, MA (1989) 

7. Lin, C.-Y.: Shop Floor Scheduling of Semiconductor Wafer Fabrication Using Real-time 
Feedback Control and Prediction. Ph.D. Dissertation, Engineering-Industrial Engineering 
and Operations Research, University of California at Berkeley (1996) 

8. Vig, M. M., Dooley, K. J.: Dynamic Rules for Due-date Assignment. International Journal 
of Production Research 29(7) (1991) 1361-1377 

9. Wang, L.-X., Mendel, J. M.: Generating Fuzzy Rules by Learning from Examples. IEEE 
Transactions on Systems, Man, and Cybernetics 22(6) (1992) 1414-1427 



S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 767 – 775, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Combining SOM and GA-CBR for Flow Time Prediction 
in Semiconductor Manufacturing Factory 

Pei-Chann Chang1,2, Yen-Wen Wang3, and Chen-Hao Liu2 

1 Department of Information Management, Yuan-Ze University 
2 Department of Industrial Engineering and Management, Yuan-Ze University, 

135 Yuan-Dong Rd., Taoyuan 32026, Taiwan, R.O.C. 
3 Department of Industrial Engineering and Management, Ching-Yun University, 229  

Chien-Hsin Rd., Taoyuan 320, Taiwan, R.O.C. 
iepchang@saturn.yzu.edu.tw 

Abstract. Flow time of semiconductor manufacturing factory is highly related 
to the shop floor status; however, the processes are highly complicated and 
involve more than hundred of production steps. Therefore, a simulation model 
with the production process of a real wafer fab located in Hsin-Chu Science-
based Park of Taiwan is built. In this research, a hybrid approach by combining 
Self-Organizing Map (SOM) and Case-Based Reasoning (CBR) for flow time 
prediction in semiconductor manufacturing factory is proposed. And Genetic 
Algorithm (GA) is applied to fine-tune the weights of features in the CBR 
model. The flow time and related shop floor status are collected and fed into the 
SOM for classification. Then, corresponding GA-CBR is selected and applied 
for flow time prediction. Finally, using the simulated data, the effectiveness of 
the proposed method (SGA-CBR) is shown by comparing with other 
approaches.  

Keywords: Flow time prediction, Case-Based Reasoning, Genetic Algorithms, 
Self-Organizing Map. 

1   Introduction 

Flow time prediction is an important feature of a semiconductor manufacturing 
problem, which is the basis used to estimate the due date of a new order under current 
shop floor status. Traditionally, assigning due date for each order is accomplished by 
the production planning and control staffs based on their knowledge of the 
manufacturing processes and shop floor status. The production planning and 
scheduling staffs usually estimate the flow time of each order based on products 
manufactured before and schedule its release to the shop floor for production. Even if 
the product specification is exactly the same, the status of the shop floor such as jobs 
in the system, shop loading and jobs in the bottleneck machine may not be identical to 
the previous production. As a result, due date estimated by the production planning 
and scheduling staffs might subject to errors.  

As the advance in artificial intelligence (AI), tools in soft computing have been 
widely applied in manufacturing planning and scheduling problems. Ref. [2] reported 
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that back-propagation neural networks (BPN) could be more effective than some 
traditional direct procedures for due date assignment since neural network can obtain 
a probable result even if the input data are incomplete or noisy. Using a k-nearest-
neighbors (KNN) based case-based reasoning (CBR) approach with dynamic feature 
weights and non-linear similarity functions; ref. [6] found that further performance 
improvement could be made. This paper constructs a case-based prediction system 
with the aid of a Self-Organizing Map (SOM), Genetic Algorithm (GA) and CBR, 
and we call it SGA-CBR in the rest of the article. The SOM is first used to classify the 
data, and after the classification GA is used to construct the CBR prediction method 
by searching the best weights combination. 

The rest of the paper is organized as follows: Section 2 reviews some related 
literatures. Section 3 briefly describes the case that will be discussed in this research. 
Section 4 presents the framework of the methodology applied in the flow time 
prediction method. Section 5 presents some experimental results of various models 
including other compared methods. Section 6 discusses the simulated results from 
these different models and then the conclusion is made. 

2   Literature Review 

CBR is a general problem solving method with a simple and appealing definition [10] 
that emphasizes finding appropriate past experience to the solution of new problems. 
It solves problems using or adapting solutions from previous experiences. CBR is a 
problem-solving approach that takes advantage of the knowledge gained from 
previous attempts to solve a particular problem. Ref. [7] applied the CBR technique to 
the software estimation problem and found that CBR performs somewhat superior to 
regression modeling based on the same data. The successful applications of the CBR 
system in the prediction problem can refer to ref. [8], [12], [17], and [18]. 

For a CBR system, the retrieval of appropriate cases relies on a similarity metric 
which takes into account the distance between pairs of cases in their state space of 
variables, also commonly called “features”. Similarity measurements between pairs of 
features play a central role in CBR [11]. Many CBR systems represent cases using 
features and employ a similarity function to measure the similarities between new and 
prior cases [15]. A CBR system may perform ineffectively in retrieving cases when 
the features are irrelevant for cases matching. Therefore, to minimize the bias 
associated with the features, it is crucial to identify the most salient features leading to 
effective case retrieval. Generally, the performance of the similarity metric and the 
weighting of features are keys to this reasoning process [10].  

In general, feature weights are used to denote the relevance of features. They allow 
similarity functions to emphasize features according to their relevance. Several 
research works attempted to determine feature weight settings with the aid of GA. 
Ref. [16] proposed methods for feature subset selection using genetic algorithms. Ref. 
[1] developed a GA-based, weighted K-NN approach to construct CBR. They 
suggested that the types of similarity functions, feature weights, and the indexing 
method could affect the retrieval performance of CBR. To the best of our knowledge, 
none of the above studies considered the non-linear feature value distance between an 
old case and a new case. Therefore, this paper aims to investigate the effect of GA-
based feature weighting together with a number of non-linear similarity functions. 
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3   Problem Description 

The basic configuration of the wafer fabrication factory is same as a real-world one 
located in the Science-Based Park in Hsin-Chu, Taiwan, R.O.C. There are 66 single-
server or multiple-server workstations in the shop floor. The major wafer 
manufacturing processes are divided into two sections, i.e., the front-end process and 
the back-end process. A flowchart of the basic front-end processes is described in 
Figure 1. The production steps are just a step-by-step process. Real floor shop 
manufacturing processes are more complicated with many detailed processing 
procedures. 
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Fig. 1. Basic Front-End Processes 

After the front-end processes, wafers are fed into the back-end processes. A simple 
flowchart of the back-end processes is also shown in Figure 2. 
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Fig. 2.  Basic Back-End Processes 

The time series plot of 300 flow time data is depicted in Figure 3. The pattern of 
the flow time is not stable in this plot. The traditional approach by human decision is 
very inaccurate and very prone to fail when the shop status is totally different even for  
 

 

Fig. 3. Time Series Plot of Flow Time 
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the same product. This is the motive for this research to develop an approach to cut 
down the forecasting error based on such non-stationary situation. 

4   A Hybrid System Combining SOM and GA-CBR 

This research first uses SOM to cluster past cases to the different groups, and the 
training cases in each sub-group are used to train the best weights between features by 
GA. In the testing process, the most similar sub-group to the new case then could be 
retrieved by CBR from past case. New case is compared to each case within the 
selected group in order to find the most similar case to get the forecasting flow time 
of the new case. Hopefully, the hybrid model could improve the effect of flow time 
forecasting. The framework of SGA-CBR can be described as figure 4. Totally 300 
records of data are randomly divided into 240 records of training data and 60 records 
of testing data. Following briefly describes the operation process for the SGA-CBR: 

 

Fig. 4. The Framework of the research 

Step 1. Classify the training data by SOM 

From the data collected, each new case is composed of six features: order quantities 
( 1X ), existing order qualities when the order arrived ( 2X ), average shop workload 

when the order arrived ( 3X ), average queuing length when the order arrived ( 4X ), 

workstation queue when the order arrived ( 5X ), and utilization rate of work station 

when the order arrived ( 6X ). Uses these six features to be the input variables of 

SOM, and SOM will produce output-processing elements similar to neighboring 
elements, which means that the cases in the same group would have similar 
connection weight. 
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Training Process 

Step 2. Initial weights generation 

Randomly generate the initial weights i
jW  of the thj −  feature in sub-group i . 

Step 3. Case retrieving  

This step would find out the most matching case from case base using similarity rule 
in order to predict the flow time for the new case. The similarity rule as follows: 

( )i
n

i
mmn CCDisS ,= , mn ≠∀  (1) 

mnS  is the similarity degree between case m ( i
mC ) and n ( i

nC )  in group i . And 

( )Dis  is the distance between two cases, ( )Dis  is compute as: 
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where m
fF  means the value of the thf −  feature of case m . Thus, ),( i
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i
m CCDis  

computes the summarized weighted distance between case m  and n . 

Step 4. Case reusing 

After the steps above, KNN is added to gain more matching cases to forecast the flow 
time of case. For example, when 5=k  in the sub-group, the forecast flow time of 
new case is determined by the 5 best matching cases. And the parameter k  of each 
sub-group is generated by trail-and-error separately. 

Step 5. Error computing 

Root of mean square error (RMSE) is adopted to be the performance measure in this 
research. 
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N

l=
−
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where, N  is the total number of case in the sub-group. 

Table 1.  Parameters settings in GA 

Parameters Setting 
Selection Binary tournament  
Crossover Single point crossover 
Crossover rate 0.85 
Mutation Swap mutation 
Mutation rate 0.1 
Reproduction Elitism strategy 
Population size 30 
Stopping criteria 1000  
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Step 6. Weights revising by GA 

Uses GA approach to find the optimal weight for each feature in the sub-group. Some 
parameters setting of GA are list in following: 

Step 7. Cases and weights retaining 

The best weight combination of each sub-group is retained for the further testing 
process. 

Testing Process 

Step 8. New testing case retrieving 

The same as process above, similarity rule is used to compute the similarity of cases. 

Step 9. New testing case reusing 

Find the most k similar cases of new case. 

Step 10. Forecasted flow time generating 

Forecast the flow time of new case from k similar cases. 

5   Experimental Results 

5.1   Data Clustered by SOM  

The main purpose of data clustering is to reduce the effect of data noise. As 
mentioned previously, SOM is applied to cluster the data in this study. The cluster 
results diagram can be found in figure 5, which shows the results of two and three 
clusters for 240 data. The number of clusters might influence the forecasting result; 
therefore, the number of clusters will be discussed in the next sub-section. 
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Data Classification (3 Clusters)
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Fig. 5. The two and three clustered results by using SOM 

5.2   SGA-CBR with Different Clusters 

Forecast results under different number of cluster are shown in figure 6. By observing 
the figure 6, when the cluster number is increasing, the forecasting and real data will 
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be more matched. Furthermore, according to the Mean Absolute Percentage Error 
(MAPE) and RMSE, figure 7 shows the performance of different number of clusters. 

 

Fig. 6. SGACBR with different number of cluster 

 

Fig. 7. The convergence chart of MAPE and RMSE from different number of cluster 

Table 2. Parameters settings in GA 

Number of Cluster 2 3 4 5 
MAPE 7.44 % 5.18 % 5.01 % 4.73 % 
RMSE 312.5231 218.3532 218.6860 208.2776 

We chose 5 clusters as the number of sub-groups in the research. As shown in 
Table 2, we can find that when the number of clusters is large than 3, the accuracy of 
forecasting will converge, and it has no obviously improvement when using large 
number of clusters. Therefore, further cluster number will stop to test. 

5.3   Comparison with Other Methodology 

Other forecasting methodologies are compared with SGA-CBR in this research, such 
as general CBR, Back-propagation neural network (BPN), GA and fuzzy rule based 
method (GA&WM), GA and CBR hybrid method (GA-CBR), and Fuzzy rule based 
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SOM method (SOM&WM). The detail of these methods can refer to the previous 
research [3], [4], and [6]. 

By observing table 3, SGA-CBR proposed in this research performs superior to 
other methods that performed well in the previous research. The reason why SGA-
CBR of this research outperforms others is because GA can fine-tune the weights. 
CBR is one of the famous forecasting methods while resolving this kind of 
forecasting problem with multiple features considering. By adopting the Euclidean 
distance to retrieve the similar cases, CBR is an effective and efficient method. 
Otherwise, in the real world, each feature may play a different important role. It 
means we should take different importance of each feature into consideration; thus, 
we use GA to search the best weights combination of features in our CBR process. 

Table 3.  Parameters settings in GA 

Methodology RMSE Improving rate 
CBR 538 - 
BPN 480 10.78% 

GA&WM 479 10.97% 
GA-CBR 391 27.32% 

SOM&WM 320 40.52% 
SGA-CBR 208 61.34% 

In the comparative study, the overall average RMSE of SGA-CBR is 208, the 
overall average RMSE of other methods can be found in table 3. Hence the results of 
our limited comparative studies show that the proposed SGA-CBR method produces 
the lowest RMSE value. 

6   Conclusion 

The experimental results in section 5 demonstrate the effectiveness of the SGA-CBR 
that is superior to other effective approaches.  In summary, this research has the 
following important contribution in the flow time prediction area and these 
contributions might be interested to other academic researchers and industrial 
engineers and managers: 

No matter what kind of data, some noise may influence the forecasting result a lot. 
In the recent research, data preprocessing seems to be more and more important. After 
the numerical testing of this study, data pre-clustering is a better way to increase the 
forecasting accuracy. As shown in table 3, the methods with SOM clustering 
(SOM&WM, and SGA-CBR) perform better than other method without data 
classifier. 

This research compared some well forecasting methods; RMSE was the 
performance measure index. SGA-CBR proposed in this research was the best one 
with the minimum RMSE. 

This research discussed how to integrate the SOM and GA-CBR approaches to 
construct a hybrid system of flow time prediction. It can help industrial managers to 
make a better project scheduling or some other forecasting matters. 
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Abstract. Both complex network and Web Intelligence (WI) are novel
and promising research fields. This paper primarily discusses how to de-
velop intelligent applications in social e-mail networks (SENs) with WI-
related techniques. It gives a common architecture and discusses some
important issues such as creating SENs automatically and SEN analysis
for developing such applications. Also, this paper describes a full process
of implementing an application via studying an illustrative example.

1 Introduction

E-mail has become a pervasive communication means in the information society.
As an asynchronous and efficient way of communication between human and
human, human and machine, or machine and machine, it now pervades business,
social and technical exchanges. In a group, an enterprise, or the whole world,
e-mail communication relationship results in a social network. Hence, e-mail is
a highly relevant area for research on communities and social networks [5].

Just as a computer network consists of computers and their connections, a
social e-mail network (SEN) consists of e-mail users and e-mails which logically
connect users. In our view, although a SEN is a logical network, if we design each
node in the SEN as an agent and view e-mails as the soft communication media
between them, we can implement similar intelligent applications with that on
the computer networks. Our perspective motivates us to study how to develop
such applications and the infrastructure.

This paper gives a systematic investigation about SEN by surveying related
work. And, it describes the mechanism of implementing intelligent applications
in SENs, and provides an illustrative example. Especially, how e-mail social
networks meets WI (Web Intelligence) [8,9] is the keystone in this work, because
developing social intelligence is one of ultimate goals of WI research [8].

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 776–785, 2006.
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The rest of this paper is organized as follows. In Section 2, some related work
is surveyed. Section 3 proposes the architecture for developing applications in
SENs. Section 4 discusses the all-important task in our architecture, i.e., creating
SENs automatically. In Section 5, we briefly introduce SEN analysis techniques
that are important for many applications in SENs. Also, we describe the potential
applications in SENs and provide an illustrative example in Section 6. Finally,
Section 7 gives concluding remarks and future directions.

2 Related Work

The study of SEN has attracted much attention from communities of sociologists,
computer scientists, physicists and so on. In our opinion, the existing research
work can be categorized into four types: (1) mining in SENs, (2) anti-virus and
anti-spam using SENs, (3) searching in SENs, and (4) studying the statistical
properties of SENs. Below, we survey some of the related work.

P. Oscar, et al. show how to use an e-mail social network which is constructed
solely from sender and recipient information available in the e-mail headers to
distinguish “spam” and “legitimate” e-mails associated with his/her own circles
of friends [10]. J. Golbeck, et al. present an e-mail scoring mechanism based
on a social network augmented with reputation ratings [4]. Furthermore, they
describe how to use this method to score and filter e-mails. In their work, the
social network is built from the user’s own e-mail folders. H. Ebel, et al. con-
struct an e-mail social network from server log files, and show that the network
exhibits a scale-free link distribution and pronounce small-world behavior [3]. A.
Culotta, et al. design an end-to-end system extracting a user’s social network.
This system builds the social network from the user’s e-mail inbox, and finds
sender’s information from the Web automatically [1]. M.E.J. Newman, et al.
discuss e-mail networks and the spread of computer viruses [7]. They construct
an e-mail network according to address books gathered from a large university
computer system serving 27841 users. J.R. Tyler, et al. describe a methodology
to identify the communities practice from e-mail logs within an organization [5].
This method is also available for identifying the leadership roles within the com-
munities.

The main differences between the above work and this paper are that firstly,
our work constructs dynamic SENs with automated techniques; Secondly, we
focus on developing applications in SENs, just as on physical networks, and the
infrastructure.

3 The Architecture of Applications in SENs

As mentioned above, SENs can be used for the tasks of anti-virus and anti-spam.
In our view, the possible applications in SENs are not limited to such two tasks.
On the one hand, SENs are a knowledge base which records users’ name, rela-
tionship between users, even other background knowledge about users. And, in
many occasions, knowledge is a necessary condition for implementing intelligent
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applications. The knowledge base denoted by the whole network facilitates the
implementing process for automated applications in SENs. On the other hand,
although SENs are logical networks, while when we provide the same infras-
tructure with physical networks such as media, protocols and so on, we can
implement similar applications in SENs as on those physical networks.

Figure 1 gives a common architecture for the applications implemented in
SENs. In this figure, Operable E-mail is a type of XML-based e-mail with ma-
neuverability, which is defined by us. So-called maneuverability means that the
Operable E-mail allows users enclose predefined commands that can be parsed
and executed by agents in e-mail. We do not describe how to design Operable
E-mail here because of the space limitation of this paper. Comparison with tradi-
tional e-mail, Operable E-mail is designed to take scripts of our language similar
to KQML [6]. Agents distinguish such e-mails from the traditional ones by judg-
ing whether a specified field appears in an e-mail’s header or not. When an agent
receives an Operable E-mail from another agent, it will parse and execute the
enclosed commands predefined by us. For example, if user A wants to download
a file from B automatically. A should enclose the “download” command with
the filename in an Operable E-mail and send it to B. When B’s agent receives
such a message, it will respond A automatically. In this way, B is released from
some time-consuming work such as responding manually.

Intelligent Applications

Security Mechanism, Publishing & Searching Algorithms, etc.

SEN Analysis Meta Data Ontologies

SEN Creation, Representation, Updation, etc.

Operable E-mail

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 1. The architecture of the applications in SENs

The second level in the architecture is to build, represent and update SENs.
We will discuss these issues, respectively, in the next section in detail. In our
solutions, both the processes of building and updating depend on exchanging
information enclosed in Operable E-mails by agents. Thus, the Operable E-mail
can be viewed as the soft communication media connecting all agents in a SEN.
And the syntax and semantic transferred on such a media can be viewed as the
communication protocols.

Media and protocols are other necessary conditions for implementing com-
munication and applications in SENs, but they are not enough. As shown in
Figure 1, in the level 3, Meta Data, Ontologies, SEN analysis are other condi-
tions for our work. Meta Data denotes the description data for each node in a
SEN. Ontologies provide the semantic support for the automated communication
between agents. SEN analysis is the essential for many applications in SENs, as
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shown in Section 5. In the level 4, the security mechanism aims at providing a
safe communication channel. The publishing/searching algorithms are used to
push or pull information in SENs. With the support of the levels 1∼4, we can
implement intelligent applications in the level 5.

4 Constructing Dynamic SENs

For any research work in a SEN, the all-important task is to construct the SEN.
Below, we discuss algorithms for building SENs.

4.1 Traditional Methods

For different research aims, researchers adopt different methods to build SENs.
In general, the following methods can be used to construct SENs. They are (1)
the method based on personal inboxes, (2) the method based on contact books,
and (3) the method based on log files of one or multiple e-mail servers. The
methods (1) and (2) are used to build personal SENs. While, the third one is
used to construct larger SENs for a school, an enterprise or an office via tracking
communication history of all users in their e-mail servers.

The main idea of the first method is as follows. Suppose that A is a user,
he/she sends an e-mail to the user B, also “cc” (or “bcc”) this message to the
user C. Then, a network with three nodes (i.e. A, B, and C) can be built. And
this network has two edges: A → C and A → B. It is obvious that the scale of
the network constructed by this method is limited.

The second method builds SENs based on the contact books stored in e-mail
servers, whose process is briefly described as follows. Suppose that the user A
records B in his/her book, furthermore, B records C in his/her book. Then, we
can get a network with three nodes and two edges. These two edges are A → B
and B → C, respectively. However, the SENs cannot completely reflect the real
relationship between users since many users do not use contact books.

The third method does not have the disadvantages as the above methods.
Although different e-mail servers have the different style of log files, any kind of
log files has the necessary information for the building task. Table 1 shows the
style of Exchange 2003 log files. And Algorithm 1 gives the building algorithm
based on such log files.

The aim of this work is to develop intelligent applications in SENs of one or
multiple enterprises (even the whole world). However, from the above descrip-
tion, we can see that the traditional methods are not fit for our need. Thus, we
will discuss the automated method for creating dynamic SENs in any range.

4.2 The Automated Method

In the range of one or multiple enterprises (even the whole world), the com-
munication relationship between e-mail users denotes a social network which
changes continually. In this network, new nodes and edges are added oftentimes.
At the same time, some nodes disappear from the network because they did not
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Table 1. The style of Exchange 2003 log files

No. Field No. Field No. Field
1 Date 2 Time 3 client-ip
4 Client-hostname 5 Partner-Name 6 Server-hostname
7 server-IP 8 Recipient-Address 9 Event-ID
10 MSGID 11 Priority 12 Recipient-Report-Status
13 total-bytes 14 Number-Recipients 15 Origination-Time
16 Encryption 17 service-Version 18 Linked-MSGID
19 Message-Subject 20 Sender-Address

Data: log. //log is a log file
Result: matrix. //for storing the SEN
initialize a hash table ht;
matrix[][3] = 0; index = 0;
while NOT EOF(log) do

to read a line from log;
x = Recipient-address; y = Sender-Address;
if str contract(y, x) is not in ht then

matrix[index][1] = y; matrix[index][2] = x; matrix[index][3] = 1;
ht.add(str contact(y, x), index); index++;

end
else

temp = ht.get(str contact(y, x));
matrix[temp][3] + = 1;

end
end

Algorithm 1. Pseudocode for creating SENs from log files

contact other nodes for a long time. How to build such a dynamic SEN is the
all-important task for our work, as shown in Figure 1. Below, we give a method
for automatically creating SENs.

The main idea of our method is as follows. We design each e-mail client as
an agent. It can monitor its owner’s inbox and construct the personal SEN with
the first traditional method described in Section 4.1. Then the enterprise SEN
constituted by all users can be formed by that each agent exchanges its personal
SEN under the support of a specified mechanism. Before describing the method
in detail, we give some definitions at first.

Definition 1. (Single/Double Relationship) Suppose that send(x, y) is true
if and only if the user x once sent e-mails to y, and x �= y. Then, if send(x, y) ∧
∼ send(y, x) is true, we call that the user x has a single relationship with y. If
send(x, y) ∧ send(y, x) is true, then the user x has a double relationship with y.

Definition 2. (Stranger) If the user x has a single relationship with an-
other user y, we call that x is a stranger of y, denoted by stranger(y, x).
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Definition 3. (Direct Friend) If the user x has a double relationship with
another user y, we call that x is a direct friend of y, denoted by friend1(x, y).

Based on the above definitions, a SEN can be represented by some Prolog [2]
facts and rules. For example, the SEN shown in Figure 2(a) can be denoted
by the following facts: user(A); user(B); user(C); user(D); stranger(B, A);
stranger(D, A); stranger(B, C); friend1(B, D); friend1(C, D); friend1(x, y) :
−friend1(y, x).

Below, we describe the creating process of the SEN shown in Figure 2(a) to
illustrate our automated method. At the beginning, the Prolog fact databases
respectively maintained by the agents of users A, B, C and D are null. Some
days later, the agent of A will know that A has a single relationship with B as
well as D. That is, this agent has the following facts: user(A); user(B); user(D);
stranger(D, A), stranger(B, A). Similarly, the agent of B will know below Pro-
log facts: user(A); user(B); user(C); user(D); stranger(B, A); stranger(B, C);
friend1(B, D). At the same time, the agents of C and D will create their fact
databases.

Fig. 2. A SEN and the space complexity for storing SENs

Here, the count of facts added in the database of A’s agent is 5. The agents of
B, C and D get 7, 5, 7 new facts, respectively. When the count of the changed
facts of an agent is larger than a pre-given threshold, the agent will enclosed these
facts into an Operable E-mail, and then sent this e-mail to its direct friends to
update their local SENs. In the above example, suppose that the threshold is 6.
Then, the agents of B and D will send their new facts to other agents. Concretely,
B’s agent will send an Operable E-mail to D’s, and the agent of D will send
a message with the new facts to B’s and C’s. After that, the agents of B, C
and D will create the full SEN as shown in Figure 2(a). Furthermore, all agents
continue to track users’ inboxes to catch the new changes. When the changes
are accumulated to the exchanging degree, the new facts will be promulgated in
the SEN. In this way, all agents maintain a dynamic SEN.

However, we still do not answer some important questions with respect to our
method, such as how to control the updating frequency and network flux, as well
as the space complexity for storing SENs.
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As mentioned above, the updating process is implemented via sending Op-
erable E-mails. It is obvious that too many messages will affect the bandwidth
of the networks, also will overload the e-mail servers. Thus, we should control
the updating frequency as possible as we can to reduce the times of sending
Operable E-mails. In order to do that, we suggest some measures below. Firstly,
we should set an appropriate updating threshold. Secondly, we can adopt the
selective broadcast method. That is, an agent selects some direct friends while
not the all to send the updating information. The received nodes can be selected
randomly. Or, we can select the nodes with a higher out-degree (see Definition 4)
as the received nodes. Thirdly, we should adopt an accumulative method to up-
date. For example, in the SEN shown in Figure 2(a), when C’s agent received
an updating information from the agent of B, it will inform its direct friends
this information with that changed in its side. Fourthly, each fact waited to be
updated has the information of hops and source node. When the hops of the fact
is greater than a threshold, the fact will be not sent anymore. In addition, any
fact will not be sent back to the source node.

Besides the updating frequency, the space complexity is another factor af-
fecting the bandwidth of the networks. Figure 2(b) shows us the relationship
between the count of facts and the needed disk space. From that figure, we can
see that the space complexity is in our acceptable range even the changed records
are very large.

5 SEN Analysis

SEN analysis is an important component for supporting intelligent applications,
as shown in Figure 1. Many applications are based on the analysis techniques.
So-called SEN analysis is to analyze the statistical properties of a SEN, such as
in/out-degree, degree distribution, clustering coefficient and so on.

H. Ebel, et al. use the third traditional method (see Section 4.1) to build a
SEN. They report that networks composed of persons connected by exchanged
e-mails show both the characteristics of small-world networks and scale-free net-
works [3]. Scale-free networks are characterized by a power-law distribution of
a node’s degree (see Definition 5) and dynamics of the network are strongly af-
fected by nodes with a great number of connections. The characteristics of the
small-world property are as follows: (1) a high probability that two neighbors of
one node are connected themselves, and (2) a small average length of the shortest
path between two nodes. Furthermore, H. Ebel et al. claim that the scale-free
nature of the e-mail network strongly eases persistence and propagation of e-mail
viruses but also points to effective countermeasures. P. Oscar, et al. provide an
anti-spam method based on clustering coefficient analysis (see Definition 6) [10].
Also, there are open research issues based on SENs analysis.

Definition 4. (In/Out-Degree), Din(x) The in-degree of a node x is defined
as | { y | send(y, x) }|. The out-degree of the node x is | { x | send(x, y) }|.
Here, y is another node.



Developing Intelligent Applications in Social E-Mail Networks 783

Definition 5. (In-Degree Distribution) The degree distribution is the rule
that the probability p(k) of the node with k in-degree changes with k. Here, k >=
0. Similarly, we can define out-degree distribution.

Definition 6. (The “Clustering Coefficient” of an node x, C(x)) For
simplification, we discuss it on undirected SENs. C(x) = 2Ex

D(x)(D(x)−1) , where
Ex is the sum of degree of all nodes which have single or double relationship
with x, and D(x) the degree of x.

6 Developing Applications in SENs

6.1 The Potential Applications in SENs

Although a SEN is a logical network, just as we can implement many applications
on a physical network, we can develop many functions on the SEN. However, the
SEN should possess the similar conditions (see Figure 1) with the physical net-
work. This subsection enumerates some potential (but not limited to) intelligent
applications in SENs.

Auction/Giveaway: Suppose that user A wants to sell his saloon car that
he does not use, and other strangers B, C and D want to buy such a car. A, B, C
and D tell their agents what they want via writing an operable e-mail. Then,
A’s agent will promulgate his owner’s information on its SEN, at the same time,
agents of B, C and D will search in the SEN. After they “meet” in this virtual
network, they will transparently negotiate with the protocols of the SEN. At
last, A, B, C, and D will receive the round-table result respectively reported by
their agents.

Information Dissemination/Subscription: In the simplest case, suppose
that you subscribe your interested information in a SEN via Operable E-mail.
With suitable supporting semantic, your agent will automatically (1) find all
corresponding nodes which publish information, (2) match subscription in the
SEN, and (3) track changes and find new dissemination nodes in the SEN, and
so on.

Asynchronous Sharing: Suppose that A, B, C, D, . . . are members of a task
group. A is the manager, and he/she is often asked to send attachments relative
to a task by the group members. He/She is tired of the frequent interruption.
Hence, A wants to share a folder in which all files concerned about the task
are stored, then B, C, D, . . . can fetch files they need. However, B, C, D, . . .
can only communicate with A by e-mails, that is to say, they cannot access the
sharing folder in the current network environment with a traditional way. It is
fortunate that A can share those files in his/her SEN. The imaginary process
of sharing files in the SEN consists of (1) A tells his/her agent what files are
shared, who can access them in the SEN, and permissions for those users, (2)
B, C, D . . . write an operable e-mail to ask A’s agent what they can download or
upload, (3) A’s agent returns information about what B, C, D can download, (4)
B, C, D . . . write another Operable E-mail to A’s agent to download the needed
files, (5) A’s agent responds B, C, D . . . automatically.
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Anti-Spam and Anti-Virus: Nodes of spam makers in a SEN always have
distinct characteristics, e.g., they have lower clustering coefficient [10,3]. Hence,
we believe that the global SEN is very promising for anti-spam and anti-virus
tasks.

6.2 An Illustrative Example

This section illustrates the process of implementing intelligent applications on
the SEN created in the whole world by depicting a case in details.

Definition 7. (The ith level friend, friendi) Suppose that the user A has a
node x in a SEN, and B has y, where B �= A. If the length of the shortest path
between x and y is i (i>1), then we call that A is B’s ith level friend (or B is
A’s). We use friendi(A, B) to denote that.

Suppose that A is a user whose agent is a. The user A wants to publish a piece
of information to sell a car on the global SEN, and he only wants to sell it to the
users from the set S1 = {x | friendi(x, A), 1=<i<=3}. Another user B wants to
buy a car, and he/she only wants to buy it from the users from the set S2 = {y |
friendi(y, B), 1=<i<=2}. In tradition, A registers his/her information in some
sites δ. B searches selling data in sites γ. This way has following disadvantages:
(1) if δ ∩ γ = ∅, A cannot sell his/her car to a potential buyer B. (2) the
traditional way cannot contain A and B’s demands. (3) A and B should deal
with everything by hand, for example, register, find, and negotiate with each
other etc. However, all these problems can be solved on the global SEN.

For simplicity, we suppose that S1={B, C, D}, and the agents of B, C and D
are b, c, and d, respectively. We can adopt “push” or “pull” way to implement
such an application.

When the first way is used. a encloses the selling information input by A into
an Operable E-mail, and obtains the set S1 according to its global SEN. Then, a
sends this e-mail to the inboxes of the users in S1. When b, c and d receive that
e-mail, they will parse the content in it automatically. As mentioned above, only
B wants to buy a car. Hence, b will negotiate with a automatically, and return
the round-table result to A and B.

When we adopt the “pull” solution. b will enclose the buying information
input by b into an Operable E-mail with “Query” command at first. Secondly,
b obtains the S2 from its global SEN. Then, b sends the e-mail to the inbox of
each user in S2. When any agent of a user in S2 receives that e-mail, it will parse
the Operable E-mail automatically. In S2, only A wants to sell a car. Hence, in
the next step, b will negotiate with a without the intervention of their users. In
the end, a and b will report the result to their owner respectively.

Both the “pull” and “push” solutions generate some Operable E-mails. As a
result, the e-mail servers may suffer from these e-mails. To solve this problem,
we can let agents delete these e-mails after dealing with them.
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7 Concluding Remarks

In the paper, we mainly describe the mechanism of implementing intelligent
applications in SENs. We attempt to provide a more complete picture of what
SENs can do and how to do, as well as to show that developing automated
and novel applications in SENs is an important issue in WI research. Still, many
issues are not discussed in this paper, such as how to protect the privacy for users,
how the agents negotiate automatically, how to store the publishing information
and so on. All these problems will be studied in our future work.
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Abstract. The aim of this work is to describe a way of using of the bib-
liographical database system and to present new functional possibilities
regarding its research aspect as well. The system has been designed and
created in order to facilitate the access to descriptions of publications
and applications related to the rough set theory and its use. This system
has been fitted up with basic possibilities of database use. There are also
special extensions of basic possibilities in the system, in particular:
– new versions of an advanced searching,
– information about co-authors for every author in the system,
– a module of a graph – statistical analysis of the content of the system,
– a module of a classification of scientific publications according to a

projected classifier,
– an interactive map of the world showing who and where in the world

works on the development of the rough set theory and its applica-
tions.

Keywords: rough sets, data mining, knowledge discovery, pattern recog-
nition, database systems.

1 Introduction

The system of bibliographical database called Rough Set Database System (the
RSDS system, or in short: the system) has been designed and created in order
to facilitate the access to descriptions of publications concerning the rough set
theory and its applications. The access to the system is free and possible via
http://www.rsds.wsiz.rzeszow.pl. According to the present version of the sys-
tem, new bibliographical descriptions of publications have been added to the
database, and the database has been verified regarding accuracy and excessive-
ness of the stored data. As a result of conducted operations the data stored
in the system is reliable and in most cases they have abstracts and keywords
added. At the moment there are over 3000 publications in the system that have
been written by over 1600 authors. Descriptions of publications in the system
are classed in accordance with 12 publication types (specified in the specification
BibTeX), i.e., article, book, booklet, inbook, incollection, inproceedings, manual,
mastersthesis, phdthesis, proceedings, techreport, unpublished. Functionality of
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the created system is based on possibilities: adding, modifying, searching and
data transforming (descriptions of publications) in the system. To simplify the
maintenance of the system by users there were created separate sections (group
of menu) that make possible to move around the whole system.

System user is able to login to it through Login section. For registered users
there are given possibilities such as: inserting new data in the system using a spe-
cial form, modifying inserted data, classifying publications in accordance with a
designed classifier. All system users are able to gain information (bibliographical
descriptions publications).

In the section called Search there are two kinds of searching possible: al-
phabetical and advanced. An advanced search allows to find bibliographic data
according to criteria. After finding the searched data, the system is able to gen-
erate and download the text file including these data (in the format of plain text
or BibTeX).

In the section called Statistics there are dynamically generated statistics, that
describe system usage, data and their analysis.

In the system there are present information concerning the software connected
with the rough sets and biographies of outstanding people working actively into
the rough set domain.

The actual version of the system has been given new extensions which make it
more functional. The basic possibilities of the system have been exactly described
in publications [1,2,3].

This paper is organized as follows. Section 2 presents the way in which one
can use new extensions added into the system. Section 3 is devoted to open
questions and directions for future work. Conclusions are given in section 4.

2 Functional Extension of the System

2.1 Searching Data

In order to find descriptions of publications on a given subject one has to use
the section Search. There are three versions of searching available in this section:
alphabetical, advanced version 1, advanced version 2. The alphabetical searching
contains the following options of searching: searching according to titles, authors,
editors, conferences, journals and years of publishing. The option of searching
according to authors has been extended and given new possibilities, i.e., infor-
mation related to co-authors for a given author as well as the number of their
common publications. If one wants to use this information he has to choose the
alphabetical searching according to authors and then display the list of chosen
authors whose names start with a particular letter of the alphabet. When the
author is chosen from the list a user will see the list of the author’s publica-
tions and above the publications one will see the list of all coauthors for that
author together with the number of their common publications. After clicking
the coauthor’s name the list of his publications will be displayed.

The option of advanced searching version 1 has been extended on the list that
contains particular authors, editors, journals, conferences and editors present in
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Fig. 1. The result of searching for publications (an alphabetical searching according to
authors) with the list of co-authors for a given author

the system. These lists make it easier to search for data necessary to prepare
conditions of searching. The lists have been equipped with the mechanism of
”self-organizing”, i.e., writing in the letters in the text field over the list will
cause narrowing the data in the list to the data compatible with an introduced
pattern. The option of advanced version 2 is a new option which at the moment
finds information in the system and puts the results of searching into categories
according to a designed classifier described in a section 2.4.

2.2 Statistics

This section which contains statistical information about the system has been
rebuilt and given new possibilities:

– Page 4 - includes information about what percent of all authors have written
particular number of publications.

– Page 5 - contains the analysis of data in the system with a division into
defined time periods. We have assumed that such a period will be 5 years
and therefore the periods are defined as follows: 1981-85, 1986-90,. . . . The
designated factors allow to answer different questions concerning the devel-
opment of the rough set theory and its applications. These factors are: the
average number of authors for one piece of work, the average number of pub-
lications for one author, the number of publications with particular number
of co-authors, the number of authors having a common publication etc.

– Page 6 - contains the same analysis as page 5 with the only difference that
we have used different time periods here, i.e., 1981-85, 1981-90,. . . .
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Fig. 2. The analysis of data in the system with a division into particular five-years
(Page 5)

Fig. 3. An exemplary structure of a collaboration graph

– Page 7 contains the analysis of the so-called collaboration graph. (The ver-
tices of the graph are the authors in our database, and two vertices are joined
by an edge if the two authors have published a joint paper.)

An exemplary structure of the collaboration graph is presented in the Fig. 3,
where the vertices at the graph were marked with the letters A,. . . , G.

The above statistics (except the analysis of the graph of collaboration) are gen-
erated dynamically, i.e., every change in the system carries the change of the at-
tributed factors. A detailed analysis of the obtained results in generated statistics
has been presented in the paper [4].
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2.3 Interactive Map of the World

The possibilities of the system have been augmented about an interactive map of
the world illustrating where in the world the rough set theory is being developed
and used, as well as allowing for different kind of searching for information in
the system.

The realized map has been divided into 4 main parts:

– the map of the world,
– maps of the continents,
– maps of the countries,
– information about chosen rough set research groups (people).

After the map has been started (a map section in the main menu of the system)
the map of the world is displayed with a division into continents. In this part one
can obtain information about: how many rough set research groups are there on
a given continent and how many authors come from a given continent.

Fig. 4. An interactive map of the world - a map of the world (part 1)

After choosing the continent we go to a detailed map of the continent with
the countries marked on it. In this part we can also obtain information about
the number of rough set research groups and the number of authors depending
on the country. In the top right-hand corner of the window there is a list of
the countries where we can find people who deal with the rough sets. This is to
facilitate navigation.

When we choose a particular country we can move to the map with the cities
(research centers), where we can find research groups (people) working on the
rough set theory and its applications.

After choosing the city we obtain information about the research groups in
a given city and information who is the leader of the group. When we choose a
particular group we will move to the part with information about this group:

– The name of the research group (if the group has WWW web site the name
is a reference to this site).
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Fig. 5. An interactive map of the world - a map of particular continent (part 2)

Fig. 6. An interactive map of the world - a map of a chosen country (part 3)

– The leader and members of the group (each name is a reference to the pub-
lication of a particular person in the system).

– E-mail address of a given person - an icon of an envelop (from this level, if
we have the mail program configured in the system we can send an e-mail
message to a given person).

– WWW web site of a person - an icon of a house (this icon symbolizes the
WWW web site of a person and is a reference to this site).

The created map of the world can be also used to find descriptions of publications
when we only have information about the origin of the author.

2.4 Classifier

In the system there has been defined a classifier according to which we can
classify publications in the system. At present, in the system according to the
option Advanced version 2 when searching for information we use information
about classification of publications in the system.

The classifier had been divided into 8 main groups which include subgroups
describing the parent groups.
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Fig. 7. An interactive map of the world - detailed information for a chosen scientific
group (part 4)

Generally, the structure of the classifier looks as follows: In the classifier the
main groups were marked with the letters A,. . . , H, while the subgroups with
successive numbers 1,. . . , 48. The main groups have been prepared in order to
describe all directions of the research over the rough sets and these are:

A. Foundations
B. Applications in
C. Methods
D. Methodology
E. Software systems
F. History
G. Didactics
H. Others

Fig. 8. A structure of a classifier

In order to start the option of classifying publications one has to log into the
system. After logging in, the option of classifying is started and will be possible
to use if a bibliographical description of a given publication will be displayed.
After clicking on the link Classify again the description of publications will be
displayed with the classifier below. In this classifier we can define to which group
a given publication will be classified by means of marking particular groups. In
order to avoid mistakes when marking sub-groups, automatically a parent group
will be marked. If one wants to send a defined classification into the system, one
has to press the button Submit. Before sending the classifier to the system it
will be displayed in order to verify it in a simple form consisting of the name
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of the main group, designation of a sub-group or main group itself (if a given
publication has been attributed to all sub-groups of the parent group), e.g. B,
A.1, A.2–5. After pressing the button Submit the classifier will be sent into the
system which will allow to use this information in the system, and it will also
displayed with the description of a given publication. In case of an incorrect
classification of a publication one will be able to classify it again and sending a
new classification into the system will cause deleting the old one.

Fig. 9. The screenshot displaying the classification of a given publication

3 Open Questions and Directions for Future Work

Research problems connected with the system and considered by us can be di-
vided into two groups:

1. studies related to the system functioning,
2. studies related to data analysis.

The first group contains research concerning ”information search”, search engine
optimization service and search results grouping. Our studies over ”information
search” are based on constructing an intelligent searching information mecha-
nism for our system, to generalize it later for other systems that store data. We
want the mechanism to be based on semantic data analysis and defined ontology
of concepts, to gain the most appropriate results in the process of searching. The
studies described above can also be helpful in creating an intelligent searching
facilitator for users.

In the system we have defined classifier used for publication classifying on
account of contents included in them. Relying on it, it is possible to undertake
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studies connected with dividing the information thematic groups created on the
basis of search results content analysis.

In the group of studies concerning data analysis we have undertaken research
connected with statistical and graphical analysis of data included in the system.
We conducted the statistical analysis in various time periods determining differ-
ent statistical parameters which enabled us to detect some abnormalities that
characterize the development of rough sets theory.

The graphical analysis is based on the defined graph C of cooperation anal-
ysis which enabled us to determine some of the social phenomenons that exist
in environment being examined by us. Further studies in this group can be con-
ducted relying on continuation of the same graph C of cooperation analysis by
appointing some sub-graphs that describe cooperation of authors among various
research directions over the defined sets methodology. During the next step of
graph C analysis searching for answers for the following items appears: searching
for the differences between groups of the rough sets researchers, the extend of
works of a particular person in the first period of his/her research work (taken
into consideration a defined initial period) constitutes ground for his/her further
research, what are the differences between defined cooperation patterns among
scientists depending on the type of academy (institution) or their different de-
cent. Another graph type that can be constructed and analyzed is bipartite graph
B, which means that the vertices of the first type are papers and the vertices
of the second type are the names of their authors, and the edge joins particular
paper with its author. During such graph analysis many questions can be raised
such as: the number of papers written by particular authors, etc.

4 Conclusions

The extensions added into the system cause that it turns from an ordinary bibli-
ographical data base into a complex system which can not only store information
about scientific publications but also it can analyze stored information - which
may be recognized as the origin of an ”intelligent system of processing informa-
tion”. On the basis of these extensions we will be trying to develop an intelligent
part of the system.

On the basis of a graph-statistical analysis of the content of the system one
can come to interesting conclusions about the development of the rough sets
methodology as well as a co-operation between the authors of scientific publi-
cations in this field. An interactive map of the world in an innovative element
in processing information in data base systems and it allows to search for infor-
mation (which has been described in the work). A module of a classification of
publications is the beginning of an intelligent mechanism of adding and finding
information in the system.
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Abstract. Existing studies on music recommendation systems pose the problem 
of being incapable of proposing proper recommendations according to user 
conditions due to limited metadata obtained from users using a content-based 
filtering method. Although some studies have been conducted in recent years on 
recommendation systems employing a great amount of environmental 
information, they have been unable to satisfy information requested by the user. 
Thus, this study defines context information required to select music and 
proposes a hybrid filtering method that exploits a content-based filtering and 
collaborative filtering method in ubiquitous environments. In addition, this 
study developed a music recommendation system based on these filtering 
methods which significantly improved user satisfaction for music selection. 

Keywords: Content-based Filtering, Collaborative Filtering, Ubiquitous 
Computing, Recommendation System. 

1   Introduction 

A ubiquitous computing environment is a world that obtains required information 
without restrictions to time and location by connecting a large number of intelligent 
computers to various wire and wireless networks. Within this ubiquitous environment, 
it is easy to listen to music regardless of location using a variety of devices. 
Furthermore, the necessity for a service that recommends appropriate music requested 
by users has increased because users cannot afford to investigate every file among 
such a vast number of music files. 

A music search system that only provides the results of queries by rank using 
music information in a web environment. Although a music search system has the 
advantage of being easily implemented, it may produce unwanted worthless 
information due to the exclusion of a user’s interests and becomes a reason for a 
decrease in user satisfaction. In recent years, a recommendation system has been 
actively studied that predicts and recommends only information requested by a user. 
Music recommendation systems currently exist on the Web in which users can share 
and recommend music using their own ID despite possessing no music data. 
Professional music portal sites in Korea, such as Bugs Music, provide various 
recommendation services according to the period, age, and theme. Moreover, a large 
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number of overseas users have joined last.fm and have enjoyed the personalized 
music-broadcasting program using profiles collected by an audioscrobbler. These 
systems allow users to recommend music from a vast amount of music data. 

In this recommendation system, the similarity between the content of an item and 
user information was measured to recommend information desired by the user, and a 
content-based filtering method that based the rank on this measurement was also used. 
However, the recommendation of multimedia data is still limited[1] and is not highly 
reliable due to filtering only being based on static information. In particular, with a 
music recommendation system in the present web service environment, it is difficult 
to exactly recommend music that is desired by users because real-time context 
information like weather significantly affects a user’s music selection.  

Thus, this paper proposes a hybrid music filtering method that applies a statistics-
based content-based filtering and collaborative filtering method in order to recommend 
music in a ubiquitous environment. In order to apply context information to a content-
based filtering, data regarded as a factor in music selection was configured as context 
information and was based on ontology. In addition, data obtained using various 
sensors and an Radio Frequency Identification (RFID) Tag based on Open Service 
Gateway Initiative (OSGi) could be recognized as exact context information through 
an ontology database and inference engine. Recognized context information will be 
used in a hybrid music filtering process and service a recommendation according to 
high user preference. Collaborative filtering can be used to rate music lists 
recommended by a content-based filtering method according to user preferences. 

A Hybrid Music Recommendation System (HMRS) was developed to evaluate this 
filtering method. The system used in this study consisted of three large sections; a 
Context Manager section, Service Manager section, and Music Recommendation 
Manager section. 

2   Hybrid Music Filtering Using Context Information 

This system defines contexts to recommend music by considering surrounding 
contexts and user information and configures a music list using a content-based 
filtering and collaborative filtering. The initial profile of content-based filtering can 
be updated using the music title selected by users and the context information 
recognized in an OSGi environment in a music service. This profile is statistically 
analyzed and recommends a music list that corresponds to the context information 
from the Music Content Information Database (MCIDB) when a user inquires about a 
music service. The collaborative filtering method used for recommendation employed 
a Music Content Information Database and Rating DB. Based on the preference for a 
neighbored item with similar preferences, the priority of recommended music was 
altered to employ a content-based filtering method by estimating the preference of the 
item by new users. 

2.1   Configuration and Definition of Context Information 

Brown’s definition[2] is an accurate method to develop application services, used to 
configure and determine proper context for a music recommendation service in this 
system. 



798 J.-H. Kim, K.-Y. Jung, and J.-H. Lee 

This system determines the following factors which affect music selection: user 
sex, age, temperature, and weather before the configuration and determination of 
context. 

The configuration of context information for HMRS consists of user information 
(sex, age), weather, and outdoor temperature. In addition, user location information in 
the home is configured as context information. This allows a music recommendation 
service to employ certain applications regardless of the user’s location in the home. 

Table 1 presents the definition of context information as different spaces, such as 
class 5 for age, class 4 for temperature, class 7 for weather, and class 6 for location 
information. The service area is limited to homes, and the users’ location is limited to 
the Balcony, Bathroom, Bedroom, Guestroom, Kitchen, and Living-room. 

Table 1. Configuration and Definition of Context Information 

Sex Age Weather Temperature Location 

class num. class class Fo class class 
0~7 Infant -4~30.2 Cold 

8~19 Child 32~68 Cool 
MA- 
LE 

20~35 Young Adult 69.8~86 Warm 
36~50 Adult 

FEM-
ALE 51~ Old Adult 

Clear, Sunny, 

Cloudy, 

Shower, Rain, 

Snow, Storm 87.8~ Hot 

Balcony, Bathroom, 

Bedroom, 

Guestroom, 

Kitchen, Living-

room 

This system was implemented the ubiquitous network based on an OSGi 
framework in order to acquire automatic sensing datas. User information, 
temperature, and location information can be input from sensors based on OSGi 
framwork. User sex, age, and location information can be traced using an RFID Tag 
which is attached to a user’s watch, and temperature information can be obtained 
from a temperature sensor through real-time Zigbee communication. However, 
although weather information is predefined as ontology, its data can be established as 
a database retrieved from the Internet. 

The context of HMRS based on the context information used in this study is 
defined as Web Ontology Language (OWL) that is used on a Semantic Web in order 
to configure and express exact contexts and various relationships. 

2.2 Items Based Collaborative Filtering 

Collaborative filtering technique selects items (music) for a user based in the opinions 
of other users. Generally, collaborative filtering techniques do not rely on content-
based information about items, considering only human judgments on the value of 
items. Collaborative filtering technique consider every user as an expert for his taste, 
so that personalized recommendations can be provided based on the expertise of taste-
related users. Collaborative filtering has been applied to several domains of 
information. For example, MovieCritic, Music, Ringo[3,4], GroupLens[5]. Most 
collaborative filtering systems collect the user opinions as ratings on a numerical 
scale, leading to a sparse matrix rating (user, item) in short ru.i. Collaborative filtering 
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technique then uses this rating matrix in order to derive predictions. Several 
algorithms have been proposed on how to use the rating matrix to predict 
rating[3,4,6]. In our HMRS, we apply a commonly used algorithm, proposed in the 
GroupLens project and also applied in Ringo, which is based on vector correlation 
using the Pearson correlation coefficient. 

Usually the task of a collaborative filtering technique is to predict the rating of a 
particular user u for an item i. The system compares the user u’s rating with the rating 
of all other users, who have rated the considered item i. Then a weighted average of 
the other users rating is used as a prediction. If Iu is set of items that a user u has rated 
then we can define the mean rating of user u by Equation (1). 
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Collaborative filtering algorithms predict the rating based on the rating of similar 
users. When Pearson correlation coefficient is used, similarity is determined from the 
correlation of the rating vectors of user u and the other users a by Equation (2). 
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It can be noted that w(u,a)∈[-1,+1]. The value of  w(u,a) measures  the similarity 
between the two users’ rating vectors. A high absolute value signifies high similarity 
and low absolute value dissimilarity. The general predict formula is based in the 
assumption that the prediction is a weighted average of the other users rating. The 
weights refer to the amount of similarity between the user u and the other users by 
Equation (3). The factor k normalizes the weights. 
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Sometimes the correlation coefficient between two users is undefined because they 
not rated common objects (Iu Ia = ). In such cased the correlation coefficient is 
estimated by a default voting (wdefault = 2), which is the measured mean of typically 
occurring correlation coefficient. 

2.3 Content-Based Filtering Based Statistical Method 

This system remembers and creates a profile based on a selected item and context 
information when users are faced with specific context. In addition, when a user 
requires a recommended service, this system recommends a similar item to the user’s 
former selection based on this profile. Thus, a content-based filtering method can be 
used to rank a recommendation list. 

A content-based filtering method keeps the information related to items and 
recommends these items to the user who inputs a keyword, which is related to the 
property of the information. This method has been largely used in the field of 
information search[7]. 



800 J.-H. Kim, K.-Y. Jung, and J.-H. Lee 

To establish a Music Content Information Database (MCIDB), an automatic 
establishing method in web documents and user input methods were used. In an 
automatic establishing method, web documents can be extracted by a web robot 
agent. In addition, a database can be built using the analysis of morphology. 

Table 2 shows the recorded value of the ‘Angel in the Snow’ in the MCIDB in 
which the key word was obtained by analyzing the song title using a morphological 
analysis. 

Table 2. Example of a Music Content Information Database  

Music Information Extracted Nouns 
Title Angel In The Snow 

Singer A-Ha 
Genre Pop 
Age Young Adult 

Weather Snow 
Temperature Cold 

Keyword Angel, Snow 

The earlier profile was configured as a title selected by the user according to the 
weather, temperature, location, and recommended ages from a music content 
information database. This means that context data, such as weather, temperature, 
location and age profiles, could be obtained. Furthermore, a type of query profile is an 
additional profile configured using a music list which is selected from specific 
context. The query profile used in this profile becomes a selected music list according 
to the specific context of a user. For example, the profile can be automatically 
configured with the selected music list when context is presented as male-
young_adult-snow-cold-bedroom. A profile can be produced according to a user’s 
selected item for each context data set. 

The recommendation method used in this system is as follows: 
First, the frequency of words reappearing can be calculated using a morphological 

analysis method for a profile that corresponds to context information when a user 
requires a recommended service. For instance, if the context information is assumed 
to be male-young_adult-snow-cold-bedroom when a user requires a recommended 
service, the frequency of words reappearing can be calculated by analyzing the 
morphology of snow, cold, bedroom, young adult, and the query profiles (male-
young_adult-snow-cold-bedroom). The frequency of a specific word reappearing can 
be expressed as )( iWP  represented in Equation. (4). 

100)(/)()(
1

maxmax ×=
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i
iii WFreqWFreqWP ,      Ni ≤≤1  (4) 

where 
iW  is the ith word in a specific profile, )(max iWFreq  is the total appearance 

number of 
iW  in the profile, and N  is the total word in the profile except for the 

duplicated word.  
Second, this method searches for the word that appears most frequently with each 

profile and song title, which coincides with the key word in the MCIDB and 
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configures a list based on the results of these searches. Third, it combines these results 
into a single list excluding duplicate song titles. Fourth, it configures the priority of 
the list. In this process, the list was produced using a content-based filtering method 
and reconfigured as a high preference based music recommendation list utilizing 
collaborative filtering. 

3   System Design and Implementation 

This chapter designed and implemented the HMRS that was able to recommend 
proper music by estimating context information in a Java-based OSGi framework 
using the context definition and filtering method proposed in Chapter 2.  

The OSGi is a type of industrial standard proposed by an OSGi organization in 
order to establish a standard connection method for Internet devices, such as 
household information devices and security systems. It is JES-based gateway 
software, which is an open architecture Java embedded server able to provide high 
quality multimedia services with a high security level regardless of platform 
application software. In particular, it is an open architecture network technology that 
can support various network techniques[8]. 

Fig. 1 presents the diagram of the overall system. The HMRS designed in this 
paper analyzed and suggested various data transferred from context recognition 
sensors and established it as information to recommend proper music through a 
filtering process for user profiles and MCIDB. In order to perform this process, the 
HMRS consisted of a Context Manager, Service Manager, and Music 
Recommendation Manager. 

 

Fig. 1. The Hybrid Music Recommendation System Using Content-based Filtering and 
Collaborative Filtering 
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The Context Manager transfered data generated by events to a context analyzer and 
that data was transfered to an OWL inference engine. The OWL inference engine 
transferred data received from the context manager to the Service Manager in which 
data was transformed as information using an OWL inferencer including OWL 
ontology object database. The Service Manager consisted of a Bundle Service that 
provided music recommendation service as a bundle in a Simple Object Access 
Protocol (SOAP) Service, OSGi framework installed device in order to transfer 
information received from the OWL inference engine to the HMRS, and an 
Application and Bundle Manager Service that supported the management of the 
mobility of bundles. The Music Recommendation Manager played a role in the 
decision of an optimal music recommendation list in a recommendation module by 
applying the recommendation list that corresponded to certain context information 
received from the Service Manager with the user profiles, the MCIDB and the rating 
DB to a filtering process in a recommendation module. 

The system proposed in this study used an ontology inferencer Jena 2.0 and 
developed an OSGi gateway using the Knopflerfish 1.3.3, an open architecture source 
project which implemented a service framework. 

4   Evaluation 

Experiments were carried out to observe the recommendation system performance of 
our proposed method, especially in comparison with other method. The test 
environment consisted of the Context Manager and Service Manager as a bundle in an 
OSGi gateway on a home network in which the Music Recommendation Manager 
was implemented on a Desktop Personal Computer (PC). In addition, the MCIDB 
consisted of 300 pop songs. 

In this paper, Rank Score Measure (RSM) and Mean Absolute Error (MAE), both 
suggested by paper[9] are used to gauge performance. MAE is used, in order to 
evaluate single item recommendation systems. RSM is used to evaluate the 
performance of systems that recommend items from ranked lists. 

The RSM of an item in a ranked list is determined by user evaluation or user visits. 
The RSM is measured under the premise that the probability of choosing an item 
lower in the list decreases exponentially. Suppose that each item is put in a decreasing 
order of value j, based on the weight of the preference. Equation (5) calculates the 
expected utility of user ua’s RSM using the ranked item list. 
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In Equation (5), d is the mid-average value of the item, and  is the half-life. The 
half-life is the number of items in a list that have a 50/50 chance of either review or 
visit. In the evaluation phase of this paper a half-life value of 5 is used. In Equation 
(6), the RSM is used to measure the accuracy of the predictions regarding the user. 
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In Equation (6), if the user has evaluated or visited an item ranking highly in a 
ranked list, Ru(max) is the maximum expected utility of the RSM. 
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The accuracy of the MAE, expressed as Equation (7), is determined by the absolute 
value of the difference between the predicted value and real value of user evaluation. 
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In Equation (7), Pa,j is the predicted preference, va,j the real preference, and ma the 
number of items that have been evaluated by the new user. 

To verify this hypothesis the following experiments were conducted. Data used in 
the test applied in this study was collected using a web-based questionnaire answered 
by 500 users. 100 of these users were treated as test users. This experiment uses the 
following methods: The proposed Hybrid Music Recommendation System using 
content-based filtering and collaborative filtering (HMRS_CC), the former memory 
based methods used a Pearson correlation coefficient (P_Corr), the recommendation 
method only used content-based filtering (Content). Predictions were computed for 
the items using each of the different predictors. The quality of the various prediction 
algorithms was measured by comparing the predicted values for the ratings to the 
actual ratings. Various methods were used to compare performance by changing the 
number of clustering users. Fig. 2 and Fig. 3 demonstrate the RSM and MAE of the 
number of users based on Equation (6) and Equation (7). 
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    Fig. 2. RSM at varying the number of users     Fig. 3. MAE at varying the number of users 

In Fig. 2 and Fig. 3, as the number of users increases, the performance of the 
HMRS_CC, and the P_Corr also increases, whereas the method using Content shows 
no notable change in performance. In terms of prediction accuracy, it is evident that 
method HMRS_CC, which uses the recommendation system using context 
information, is superior to the P_Corr method. 

The proposed hybrid music recommendation system using content-based filtering 
and collaborative filtering (HMRS_CC) and hypothesized that it would outperform 
only the content-based filtering approach. However, it is also important to compare 
the proposed approach with that obtained using a combination of content-based 
filtering and collaborative filtering. In comparing the proposed method and those  
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   Fig. 4. Rank scoring of nth rating                           Fig. 5. MAE of nth rating 

proposed by Soboroff[11], Pazzani[10] and, Fab[7], analysis of the predictive 
accuracy values, such as the RSM and MAE, can be achieved. Fig. 4 and Fig. 5 
demonstrate the RSM and MAE as the frequency with which the user evaluates the 
nth rating number is increased. Fig. 4 and Fig. 5 demonstrate a system proposed by 
Soboroff exhibiting lower performance when the number of evaluations is lower. The 
other methods demonstrate higher performance than that of Soboroff. As a result, the 
method developed by Pazzani and the HMRS_CC method present the highest 
accuracy rates. 

5   Conclusions and Future Work 

Existing music recommendation systems recommend music by passively receiving 
user information. This system cannot sustain appropriate search results due to the 
diversity of user conditions and is limited to data obtained from questionnaires.  

Thus, this paper aggressively obtained and recognized user context data from an 
OSGi frame and processed the data through content-based filtering. In addition, this 
paper developed a content-based filtering method based on data from a ubiquitous 
environment and increased the level of precision in recommendations compared to 
other recommendation systems using a collaborative filtering method simultaneously.  

Future studies resolve to develop a module that automatically updates the rating 
DB established by a questionnaire utilizing user context recognition. In addition, 
studies will be conducted to reduce delays in recommendation speeds due to the high 
use of multiple profiles in the HMRS. 
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Abstract. In this paper, a novel intensity adaptive color image watermarking 
algorithm based on genetic algorithm is presented. The adaptive embedding 
scheme in color image’s three component sub-images’ wavelet coefficients, 
which belong to texture-active regions, not only improves image quality, but 
also furthest enhances security and robustness of the watermarked image. Then 
a novel watermark recovering method is proposed based on hybrid neural net-
works, which enhance the performance of watermark system successfully. The 
experimental results show that our method is more flexible than traditional 
methods and successfully fulfills the compromise between robustness and im-
age quality. 

1   Introduction 

With the widespread use of digital multimedia and the development in computer in-
dustry, digital multimedia contents suffer from infringing upon the copyrights with 
the digital nature of unlimited duplication, easy modification and quick transfer over 
the Internet [1]. As a result, copyright protection has become a serious issue. Hence, 
in order to solve this problem, digital watermarking technique has become an active 
research area [2] [4].  

In the past a few years, most of the watermarking schemes employ gray-level im-
ages to embed the watermarks, whereas their application to color images is scarce and 
usually works on the luminous or individual color channel. Fleet [3] embedded wa-
termarks into the yellow-blue channel’s frequency domain. Kutter et al. [5] proposed 
another color image watermarking scheme that embedded the watermark into the 
blue-channel of each pixel by modifying its pixel value. But they didn’t notice that the 
capacity of hiding information in different color channel is varied with the image 
changing. In this paper, a novel watermarking embedding method based on genetic 
algorithm (GA) is proposed. GA is applied to analyze the influence on original image 
when embedding and the capacity of resisting attacks in every channel. Then the 
optimized intensity is selected for every color channel. Using GA can improve image 
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quality and furthest enhance security and robustness of the watermarked image simul-
taneously. This algorithm fulfills an optimal compromise between the robustness and 
image quality. Then a watermarking recovering method is proposed based on hybrid 
neural networks. Neural networks can distinguish the prototype of extracting water-
mark even when it is not clear under sharp attacking. 

This paper is organized as follows: the watermark embedding algorithm and ex-
traction algorithm are described in Section 2 and Section 3, respectively. Experimen-
tal results are presented in Section 4. Section 5 depicts the watermark recovering 
method. Finally, conclusions are given in Section 6. 

2   The Embedding Algorithm 

Let the original color image be I with size 3×× NM . Our goal is to embed a wa-
termark W with size LH × into the DWT special frequency bands of I, and have a 
watermarked reconstruction I’ after optimization. 

Before the embedding procedure, the host image needs to be analyzed to obtain the 
embedding position. 

2.1   The Host Image Analyzing 

Based on human visual system’s characteristic, the human eyes have different sensi-
tivity to noise in areas with different luminance and texture. So we consider analyzing 
the host image before watermark embedding to ensure the imperceptibility of the 
proposed watermarking scheme [4]. 

In our study, three gray-scale images are separated from the host RGB image. For 
the purpose of getting active regions in host image and taking less time, the block-
variance analyzing is employed, which divides the host image into sub-blocks and 
computes each sub-block’s variance for detecting texture active regions. For example, 
the process of analyzing Red component image is presented as follows: 

Step 1: Divide the Red component image into un-overlapped 88×  sub-blocks in 
spatial domain. 

Step 2: Compute each image sub-block’s variance, which can measure the relative 
smoothness and contrast of the intensity in a region. 

Step 3: Compute image’s average variance. Compare each block’s variance with 
the average variance. If block’s variance is greater than the average value, the block is 
classified as the texture active blocks (TAB). 

Step 4: All the pieces of the TAB are divided into three parts, according their vari-
ance in decreasing order, to compose the texture-most-active sub-blocks, the texture-
median-active sub-blocks and the texture-low-active sub-blocks, respectively. 

The blocks’ visual mask effect varied with texture features, so we embed water-
mark based on their own intensity to ensure the robustness and the imperceptibility of 
watermarking scheme simultaneously. 

The other two blue and green component images are analyzed in the same manner. 
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2.2   Intensity Optimizing Using GA  

For the selected sub-blocks, the discrete wavelet decomposition is adopted in fre-
quency domain to embed watermarks. The multi-resolution feature and compatibility 
to JPEG-2000 compression standard [7] of wavelet transform make the embedded 
watermark robust to compression operation. Intensity optimal selecting algorithm is 
described as follows: 

1. Transform the selected sub-blocks using discrete wavelet transform. Select coef-
ficients to embed watermark W. 

2. Insert watermark signal at coefficients called cow _ using additive modulation. 

Every texture sub-block of the component sub-image has its own embedding in-

tensity as iα( ) . wcow_ denotes the wavelet coefficients after embedding. 

( ) 91,2,3,i     __                             =×+= Wicowcow w α . (1) 

 

Fig. 1. The flowchart of intensity optimizing algorithm 

3. Perform the inverse discrete wavelet transform on wcow_ . 

4. Embed the watermarked sub-images back into the original host image to get the 
watermarked color image I’. 

5. Apply the attacking schemes on I’, and then adopt the GA training process to 
search for the optimal intensity for each channel. 

The flowchart for illustrating intensity optimal selecting algorithm using GA is 
shown in Fig. 1. 
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Not all watermarking applications require robustness to all possible signal process-
ing operations. In addition, the watermarked image after attacking needs to be worthy 
of using or transmitting. Therefore, some attacks like image-cropping is not employed 
in our GA training procedure [8]. In this paper, three major attacking schemes are 
employed, namely, additive noise attack, median filtering attack, and JPEG attack 
with quality factor of 50%. The quality of watermark extracted from embedded image 
I’ is measured by the normalized correlation (NC). The NC between the embedded 

watermark ( )jiW ,  and the extracted watermark ( )jiW ,'  is defined as, 
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The watermarked image’s quality is represented by the peak signal-to-noise ratio 
(PSNR) between the original color image I and watermarked image I’, as follows, 
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After obtaining the PSNR of the watermarked image and the three NC values after 
attacking, we are ready to adopt the GA training process. The fitness function in the 
mth iteration is defined as: 

)(
3

1
 ,

=

+−=
i

immm NCPSNRf λ , (4) 

where mf is fitness value, λ  is the weighting factor for the NC values. Because the 

PSNR values are dozens of times larger than the NC values in the GA fitness function, 
the NC values are magnified with the weighting factors λ  in the fitness function to 
balance the influences caused by both the imperceptibility and robustness requirements. 

2.3   Watermark Embedding 

The first five steps of watermark embedding algorithm are the same as intensity opti-
mal selecting algorithm, and then the obtained optimal intensity is used to form wa-
termarked image. Fig. 2 is the block-diagram of the embedding algorithm.   

 

Fig. 2. The block-diagram of embedding algorithm 
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3   Watermark Extracting 

Watermark extraction algorithm is the exact inverse process of embedding algorithm. 
The watermark can be extracted just when we get the optimal intensity as the secret 
keys. 

4   Experimental Results 

The performance of digital watermarking system can be characterized by the follow-
ing aspects: imperceptibility, security and robustness. All these aspects are evaluated 
by experimental results respectively in our study. In our simulation, ‘Lena’ image and 
‘Baboon’ image with the size of 256×256 are taken as test images and watermark 
with size of 64×64 is shown in Fig. 4(d). The result images of test image ‘Lena’ and 
‘Baboon’ are shown in Fig. 3(b) and Fig. 3(d).  
 

 

 

Fig. 3. (a) (c) Original host image ‘Lena’ and ‘Baboon’, (b) (d) Result image watermarked 

When free of any attacks, the PSNR of the watermarked image ‘Lena’ is 35.8487, 
NC is 1 and the PSNR of the watermarked image ‘Baboon’ is 36.3028 and NC is 1. 

In the GA training process, ten individuals are chosen for every iteration. The 
crossover operation is selected as scattered function in the MATLAB Genetic Algo-
rithm Toolbox. The selection operation is selected as stochastic uniform function and 
the mutation operation is Gaussian function with the scale value 1.0 and the shrink 
value 1.0. The training iterations are set to 200. The fitness values converge after 200 
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iterations, and the optimized intensity with the optimal fitness value is 31, 27, 24, 18, 
17, 16, 14, 14, and 13 respectively. 

The result images under different attacks and the watermarks exacted are depicted 
in Fig. 4. Seen from Table 1, the conclusion can be drawn that our algorithm is robust 
to attacks encountered always in image processing and transmission. 

Table 1. Experimental results under different attacks of our scheme (measured by NC) 

Attack Type Baboon Lena Airplane 

Attack-free 1 1 1 
Additive noising 0.9137 0.9139 0.9479 

Filtering 0.9320 0.9536 0.9139 
JPEG  QF=80 0.9957 0.9830 0.9957 
JPEG  QF=50 0.9801 0.9547 0.9861 
JPEG  QF=30 0.9639 0.9390 0.9752 

 

 

Fig. 4. (a) Result image of watermarked ‘Baboon’ under additive noising attack, (b) Water-
marked image under filtering attack, (c) Watermarked image under compressing attack, (d) 
Original watermark, (e-g) Extracted watermarks from (a-c) using our method, respectively. (g) 
Extracted watermark from (c) using Kutter’s method. 

To evaluate the robustness of the proposed watermarking scheme, Kutter’s algo-
rithm is simulated as comparison. The results under several attacks of Kutter’s algo-
rithm are shown in Table 2. 

Compared with Table 1, it can be concluded that our algorithm is more robust than 
Kutter’s, especially in resisting additive nosing and JPEG compressing. 
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Table 2. Experimental results under different attacks of Kutter’s scheme (measured by NC) 

Attack-free Noising Filtering JPEG  QF=80 JPEG  QF=50 JPEG  QF=30 

0.9684 0.9546 0.9362 0.6386 0.5925 0.5071
 

5   Watermark Recovering 

From the experimental results above, the conclusion can be drawn that our algorithm 
is robust to many kinds of attacks. In order to get better capability, a watermarking 
recovering method is proposed based on hybrid neural networks. Neural networks can 
distinguish the prototype of extracting watermark even when it is not clear under 
sharp attacking. Hybrid back-propagation (BP) neural networks are employed to iden-
tify the characteristics of extracting watermark, which are extracted using principal 
components analysis (PCA). 

5.1   Hybrid Neural Network Training 

Attacking original watermark with different kinds of attacks to get a set as the training 
set of the neural networks. Then PCA is employed to analyze watermarks, and the 
above ten eigenvalues are chosen as the input in training pattern. The structure of the 
neural networks is depicted in Fig. 5. Every type of attack has its own neural  
 

 

Fig. 5. The structure of the neural networks used in our watermark techniques 
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networks, and their outputs are chosen as input of the final neural networks. These 
attacks include noising, filtering and JPEG compressing. The neural networks for 
specific attack are able to recover watermarks which are under such attack too effec-
tively. Then a final neural network is employed. This method can distinguish the 
prototype of extracting watermarks even when they were under multiple attacks  
simultaneously.  

Every node in final output layer represents different watermarks. The eigenvalue as 

input vector is defined by ( )ntttk aaaP  ,2 ,1 , ,,,= , and the desired output for the 

neural networks corresponding to the input is defined by ( )qk yyyT ,,, 21= , 

where n and q stand for the number of input and output nodes respectively, k is the 
number of training patterns, and t is the number of attack type. The sub-neural net-
works include an input layer with ten nodes, a hidden layer with twenty hidden nodes, 
and an output layer with q nodes, which can be varied with the number of water-
marks’ type. The final neural network include an input layer with q×3 nodes, which 

are the output of the sub-networks, a hidden layer with twenty hidden nodes, and an 
output layer with q nodes as above. 

5.2   Watermark Recovering Based on the Trained Neural Networks 

The trained neural networks perform a highly adaptive capacity in identifying water-
marks. Taking an extracted watermark from an embedding image after attacking as a 
test image, the above ten eigenvalues are chosen as the input, the prototype of at-
tacked watermark can be recognized clearly using neural networks. In the experi-
ments, even NC of the test watermark is 0.1628, which is shown in Fig. 6(a), the 
trained neural networks also can associate its corresponding original watermark, as 
shown in Fig. 6(b). So it can conclude that the proposed watermark recovering 
method is an important complementation in watermark system. 
 

 

Fig. 6. (a) Test watermark, (b) Corresponding watermark of (a) 

6   Conclusion 

A novel embedding intensity adaptive color image watermarking method is proposed 
in this paper. A color image is divided into three channels firstly. Then genetic algo-
rithm is applied to analyze the influence on the original image when embedding and 
the capacity of resisting attacks in every channel. At last, the watermark is embedded 
in R, G and B channels respectively. Using genetic algorithm is not only able to im-
prove image quality, but also furthest enhance security and robustness of the water-
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marked image. Using hybrid neural networks, the proposed watermark recovering 
method enhances the performance of watermarking technique successfully. This algo-
rithm fulfills an optimal compromise between the robustness and image quality. 
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Abstract. This paper presents a new self-calibration algorithm of omnidirec-
tional camera from uncalibrated images by considering the inlier distribution. 
First, one parametric non-linear projection model of omnidirectional camera is 
estimated with the known rotation and translation parameters. After deriving pro-
jection model, we can compute an essential matrix of the camera with unknown 
motions, and then determine the camera positions. The standard deviations are 
used as a quantitative measure to select a proper inlier set. The experimental re-
sults showed that we can achieve a precise estimation of the omnidirectional 
camera model and extrinsic parameters including rotation and translation. 

1   Introduction 

The seamless integration of synthetic objects with real photographs or video images 
has long been one of the central topics in computer vision and computer graphics 
[1,2]. Generating a high quality synthesized image requires first matching the geomet-
ric characteristics of both the synthetic and real cameras, and then shading the syn-
thetic objects so that they appear to be illuminated by the same lights as the other 
objects in the background image. In general, the integration of synthetic objects in a 
realistic and believable way is labor intensive process and not always successful due 
to the enormous complexities of real-world. Therefore, an automatic tool to recon-
struct 3D structure and illumination environment of the scene allows users to alleviate 
much effort for realistic composition.  

Since the fisheye lens has a wide field of view, it is widely used to capture the 
scene and illumination from all directions from far less number of omnidirectional 
images. This paper presents a new self-calibration algorithm for estimating the omni-
directional camera model from uncalibrated images. First, we derive one parametric 
non-linear projection model of the omnidirectional camera, and estimate the model by 
considering a distribution of the inlier set. In order to estimate the camera model, our 
method uses the standard deviation which represents the degree of the point distribu-
tion in each sub-region relative to the entire image. After deriving projection model of 
the camera, we can compute an essential matrix of the camera with unknown camera 
motions, and then determine the relative rotation and translation. 
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2   Previous Studies 

Many researches for self-calibration and 3D reconstruction from omnidirectional 
images have been proposed up to now. In addition, these approaches are combined 
widely with IBL (Image-Based Lighting) [2, 5] due to their merits.   

Xiong et al register four fisheye lens images to create the spherical panorama, 
while self-calibrating its distortion and field of view [3]. However, camera setting is 
required, and the calibration results may be incorrect according to lens because it is 
based on equi-distance camera model. Sato et al simplify user’s direct specification of 
a geometric model of the scene by using an omnidirectional stereo algorithm, and 
measure the radiance distribution. However, because of using the omnidirectional 
stereo, it is required in advance a strong camera calibration for capturing positions 
and internal parameters, which is complex and difficult process [5].  

 
Previous studies Image Acquisition Methods  

UC Berkeley 
/ Y. Xiong [3] 

self-calibration of fisheye lens 
and capturing the spherical pano-
rama with 3~4 images    

- restricted camera parameters: by  
rotating the camera 90 degrees 

- based on equi-distance camera model    

Columbia Univ. 
/ S. K. Nayar [4]

using planar, ellipsoidal, hyper-
boloidal and paraboloidal mirrors 
for stereo  

- modeling catadioptric system by pre-
calibrated camera  

Univ. of Tokyo 
/ K. Ikeuchi [5]

using omnidirectional pairs for 
scene modeling & scene radiance 
computing   

- 3D reconstruction and lighting   
- strong pre-calibration and scene con-

straints    
Univ. of Am-

sterdam  
/ B. Krose [6] 

using omnidirectional sensor on 
the  mobile robot for scene recon-
struction 

- using robot odometry for camera poses 
estimation and tracking 

- calibrated catadioptric sensors 
automatic estimation of projection 
model of dioptric lens without 
calibration objects and scene con-
straints 

- no optimal method to estimate projec-
tion model 

- no consideration of image sequence  
Czech Tech. 

Univ.  
/ T. Pajdla [7, 8]

automatic reconstruction of un-
calibrated omnidirectional images 

- applications problems in image se-
quence: correspondence, frame group-
ing  

 
Although previous studies on calibration of omnidirectional images have been 

widely presented, there were few methods about estimation of one parametric model 
and extrinsic parameters of the camera [6~8]. Pajdla et al metntioned one parametric 
non-linear projection model has smaller possibility to fit outliers, and explanied that 
simultaneous estimation of a camera model and epipolar geometry may be affected by 
sampling corresponding points between a pair of the omindirectional images [9]. 
However, it requires further consideration about various inlier sampling methods: 8-
points algorithm, RANSAC (RANdom Sampling Consensus), LMS (Least-Median-
Squares) [10]. This paper presents a robust calibration algorithm for one parametric 
model by considering inlier distribution.  
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3   One-Parametric Projection Model 

The camera projection model describes how 3D scene is transformed into 2D image. 
The light rays are emanated from the camera center, which is the camera position, and 
determined by a rotationally symmetric mapping function f as follows: 

θtan/)(),( rfvuf == u                                                  (1) 

where, 22 vur +=  is the radius of a point (u, v) with respect to the camera center 
and θ  is the angle between a ray and the optical axis.  

The mapping function f has various forms determined by lens construction [7,11]. 

The precise two-parametric non-linear model for Nikon FC-E8 fisheye converter as 
follows: 

θ
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where a, b are parameters of the model. On the assumption that the maximal view 

angle 
maxθ  is known, the maximal radius maxr  corresponding to 

maxθ  can be easily 
 

                

(a)                                  (b)  

Fig. 1. Input images were taken by Nikon FC-E8 fisheye converter mounted on Nikon Cool-
pix995 with 1530 1530 pixels and 20 correspondences marked by red circles. (a) omnidirec-
tional image captured at the reference position, (b) at relatively rotated and translated position 
(rotation R: -30  around y-axis, unit translation vector T: (tx,ty,tz)=(0.9701, 0, 0.2425)). 

 

Fig. 2. Corresponding epipolar curves superimposed on Fig. 1(b) 
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obtained from the normalized view field image. It allows to obtain the one-parametric 
non-linear model as follows: 

( )
,

11
2

maxmax
max

ra
r

r

ar

−+
=

θ
θ                                              

(3)
 

        

(a) (b) 

Fig. 3. (a) Sum of distance between epipolar curves and correspondence points by change of 
parameter a, (b) estimated projection model, parameter a = 1.3 

In order to estimate one parametric non-linear projection model, we use two omnidi-
rectional images with known relative camera direction and translation. 20 correspond-
ing points between images are established by the commercial program MatchMover 
pro3.0 [12].  Since the relative rotation and translation parameters are known in estima-
tion of the camera model, we can draw an epipolar curve as shown in Fig. 2. In addi-
tion, we obtain the parameter a minimizing a distance of the epipolar curves and the 
projected points as follows: 

 ,),(
1

1
minarg

=

N

i
ii ptcurved

Na
                                           (4) 

where, N and d(,) are the number of correspondences and Euclidean distance between 

a curve and a point, respectively. icurve  is the i-th epipolar curve, and ipt is the i-th 

corresponding point. The distance error graph for the parameter a is shown in Fig. 3 
(a). We obtained the minimum error when a is 1.3, and then the estimated projection 
model is represented in Fig. 3 (b).  

4   Essential Matrix and Camera Pose Estimation 

We expand Eq. 1 to Taylor series with respect to a and b at a0 and b0 [7]. By omitting 
the nonlinear part of the Taylor series, we obtain function f

~ , which is linear in a and 

b as follows: 
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The vector p can be written by using Eq. 1 and 5 as follows: 
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The epipolar constraint [10] for vector p1 in the left and p2 in the right image that 
corresponds to the same scene point reads as: 

0)()(,0
11

T

221

T

2
=++= xFxFpp aa .                              (7) 

After arranging of unknown parameters into the vector f, we obtain the following 
equation: 

      0)( 3
2

21 =++ fDDD aa ,                                            (8) 

where matrices Di and vector f are as follows: 
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An initial set of correspondences is obtained by tracking salient image features. Af-
ter the correspondences are obtained, the essential matrix relating each image to the 
reference image is estimated by the normalized 8-point algorithm. The rotation R and 
translation T can be determined from the singular value decomposition. There are 4 
possible combinations of rotation and translation which result in the same essential 
matrix. The correct combination can be found by recovering the depths to each 
tracked point according to the relative poses implied by each combination. The cor-
rect combination is the one for which most recovered depths are positive. The angle 
between a ray and an epipolar plane is used as the error function, instead of the dis-
tance of a point from its epipolar curve [13]. 
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5   Quantitative Measure for Inlier Distribution 

One of the main problems on the estimation of omnidirectional camera is the fact that 
the essential matrix can be very sensitive to errors on the point locations. The essen-
tial matrix contains relative orientation and position between both cameras. Therefore, 
when estimating the essential matrix, we have to choose the inliers, which represent 
sufficiently the depths of the scene points and change of the image due to camera 
motion, among several feature points. In order to cope with the unavoidable outliers 
inherent in the given correspondence matches, we use 9-points RANSAC that calcu-
lates the point distribution for each essential matrix.  

In general, the evenly distributed corresponding points can thoroughly represent 
the image variation by the camera motion. In this paper, the standard deviation of the 
point density in the sub-region and that in an entire image is used to evaluate whether 
the points are evenly distributed. First, 3D patches of the hemi-spherical camera 
model are segmented by the same solid angle, and then they are projected into 2D 
image plane. Fig. 4 shows the segmented sub-regions by the proposed method. 

( ) ( )NintNint πφπθ 2,5.0 =Δ=Δ ,                            (9) 

where N is the number of the inliers, and int(·) means conversion to integer. The pro-
posed method computes the standard deviation of two densities that represents a de-
gree of the point distribution in each sub-region relative to the entire. The obtained 
information is used as a quantitative measure to choose the evenly distributed point 
sets. The standard deviation of the point density is defined as: 
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where NS is the number of sub-regions, N and PSi are the number of inliers and that in 
the i-th sub-region, respectively. 

              

(a)                                                     (b) 

Fig. 4. Segmented sub-regions by proposed method. (a) Segmented 3D patch by uniform solid 
angle in hemi-spherical model, (b) 2D projected sub-regions and inlier set (red dots). 

The proposed method chooses the inlier set by using the standard deviation of distri-
bution of corresponding points by Eq. 10. Then we find the inlier set with the least stan-
dard deviation. In the final step, we estimate the essential matrix from the selected inlier 
set by minimizing a cost function that is the sum of the distance error of the inliers [7]. 
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6   Experimental Results 

We have compared the experimental results of previous method such as 9-poins 
RANSAC without considering inliers distribution [9] and the proposed method. Fig. 5 
shows the regions for selecting inlier sets. Since points near the center have no special 
contribution to the final fitting, the center region is omitted [9]. 

           

(a) Previous method              (b) Proposed method (NS = 9) 

Fig. 5. Interest regions for selecting inlier sets 

The input images (1530 1530) and corresponding points between two consecu-
tive images are showed in Fig. 6. The correspondences between two images were 
established by MatchMover pro 3.0 automatically [12]. 

            

(a) Rotation (75 correspondences) 

            

(b) Translation (90 correspondences)  

Fig. 6. Input images and corresponding points between two views 
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Fig. 7 shows the computed epipole distance error. In these results, the proposed 
method obtains more precise results over the previous method according to an itera-
tion number. In general, when the camera is translated, many feature points may be 
occluded according to the scene complexity. Therefore, more epipole distance error is 
obtained in the case of the camera translation than the rotation.  

 

Fig. 7. Experimental results on the omnidirectional image pair 

Fig. 8 shows the estimated one-parametric projection model. In the results, we 
have ascertained that the proposed method is converged to more stable shape than the 
previous at the same iteration number. 

  

(a) Rotation 

 

(b) Translation 

Fig. 8. Estimated one-parametric projection model after 10000 iterations. Left: previous method. 
Right: proposed method. 
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7   Conclusions 

This paper presents a novel approach to estimate one parametric model of the omnidi-
rectional camera by considering the inlier distribution. The proposed method divides 
the entire image into the sub-regions, and then examines the number of the inliers in 
each sub-region and the area of each region. By considering the point distribution, we 
can choose the inlier set reflecting the scene structure and camera movement, so 
achieve more precise estimation of the essential matrix. In addition to using both hemi-
spherical coordinates of two cameras, we identify 3D position of the light sources with 
respect to the camera positions. And then photo-realistic scenes can be generated in the 
reconstructed illumination environment. Further study will include an integration of 
scene and illumination reconstruction for photo-realistic image synthesis.  
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Abstract. Images which have a lot of textured regions make the result
of Hough transform (HT) very poor. This paper presents an improved HT
that deals with such a textured image by diminishing the effect of noise
edges and using weighted voting score. The method first eliminates the
noise edges resulted from textured regions; then, the method casts votes
for edges upon the accumulator array with weight score in accordance
with the number of sequential votes. Our modified HT is efficient in
that it produces important lines first such as verge of building, avoiding
improper lines taken from the noise edges.

1 Introduction

Hough Transform (HT) is a voting process for detecting discontinuous patterns
in images. An accumulator array is used for the votes, where the bin of the
accumulator array which has the maximum votes is recognized as a desired
pattern. The first introduced HT was a method for detecting straight lines [10].
Hough used the slope-intercept equation (y = ax + b), but it has a critical
disadvantage in that it gives infinity value as a line approaches the vertical.

Alternatively, straight lines can be parameterized by length and angle as (r =
x cos θ+y sin θ) [11], which is called standard HT (SHT). However, SHT has some
disadvantages in memory consumption, computation time and peak detection.
Thus, there have been many improved versions of SHT, e.g. fast HT [4], adaptive
HT [6], combinatorial HT [2] and hierarchical HT [7]. Those algorithms reduced
the complexity of the detection of local peaks, but those still have to consider
all the orientations for the scanning of HT.

A new method of HT, probabilistic HT [9], and its modified version, ran-
domized HT [8] were proposed. The randomized HT is based on the fact that a
parameter point can be determined uniquely by using n features in the image.
However, any version of probabilistic HT should carefully select the number of
points for the vote; otherwise it produces improper result.
� This work was supported by KIPA Information Technology Research Center, Uni-

versity Research Program by Ministry of Information & Communication, Seoul
Metropolitan and Brain Korea 21 projects.
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Despite various versions of HT for the improvement of its performance, it
has still a “blind” characteristic. The fact that HT cannot discern lines in the
same parameter space is the worst weakness. Besides, the previous versions of
HT have paid little attention to the application to which they are applied, so
that such weaknesses give the result of HT incorrect information, especially in
real world images such as building image. Real world images have many objects
and various textured regions which have a mass of short edges. Thus, it is very
possible for a group of parallel edges to be detected as a line when the HT line
parameter pierces those edges.

Recently, Furukawa et al. presented a robust peak detection algorithm in
Hough space [13]. The algorithm analyzes the butterfly shape in the accumulator
space to extract accurate peak that matches a line segment. This algorithm
focuses on peak detection, but it did not consider the voting process.

Our algorithm is useful for 3-dimensional building reconstruction where frame
lines of a building are extracted using a line extractor such as HT, so as to match
the lines between related images [1]. On the other hand, the common HT gives
many improper lines consisting of noise edges, so that it additionally requires a
procedure for selecting important lines from the result. We first eliminate some
edge points that may prevent important lines from being detected; then we use
a weighted voting process.

2 Improved HT

The purpose of our algorithm is to detect straight lines which are perceptually
important in an image. The proposed algorithm consists of two steps. The first
step is to eliminate unimportant edge points. Then, HT with weight score is
performed.

2.1 The First Step: Eliminating Unimportant Edges

Most HT algorithms start with an edge image. Our algorithm also uses Canny
edge detector [5]. However, Canny edge detector has an uncertainty about the
scale parameter and the edge location. As the scale value of the detector grows
larger, the detector gives strong edges; but the locations of the edges are incor-
rect. Even though the small scale parameter contributes to the location of edge,
it gives a lot of shabby edges.

We propose an edge elimination step as a preprocessing of HT (see Fig 1).
It does not matter whether edge detector has a small scale parameter value,
because disturbing parts of the edge image will be eliminated. For the scale value
of the edge detector, we use 1.0. Then, the covariance of the edge distribution is
estimated.

Textured regions in image have a lot of noise edges after the image gets
through the edge detector, and the edge distribution within that region is large.
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Edge detection

(Canny edge detector)

Mask processing

(5 5 mask)

Source image

Covariance matrix

estimation

Edge elimination

with the determinant

of the covariance matrix

Noise eliminated image

The first step:

Eliminating

unimportant

edges

Fig. 1. The first step of proposed HT algorithm

On the contrary, clear parts around a strong edge have a small distribution.
Therefore, the covariance matrix is used to see which part of an edge image
may ill-affect the result. We used 2 × 2 covariance matrix because the image
is 2 dimension in which two variables, x and y for each coordinate, exist. To
estimate the covariance of the edge pixels within a mask area, we restricted the
size of the mask to 5 × 5, since wide mask processing has a large variation. The
mask moves from an edge point to the next one in the edge image to get the
covariance around each edge point. Given n edge points in a mask area, the
covariance matrix is

C =
(

c11 c12
c21 c22

)
, (1)

where
c11 =

1
n

Σi=1,...,n(xi − xm)2, (2)

c12 = c21 =
1
n

Σi=1,...,n(xi − xm)(yi − ym), (3)

c22 =
1
n

Σi=1,...,n(yi − ym)2 (4)

and
xm =

1
n

Σi=1,...,nxi, ym =
1
n

Σi=1,...,nyi. (5)

The distributions of x and y are dependent on each other, so that the covari-
ance value can be easily deduced from the determinant of the covariance matrix,
i.e. det = c11c22 − c12c21. If the determinant is larger than a certain threshold,
the edge point at the origin of the mask will be erased, because a large deter-
minant of a matrix means that the elements are not oriented. On the contrary,



Modified Hough Transform for Images Containing Many Textured Regions 827

a straight line gets zero determinant of the covariance matrix in its distribution
because it is oriented. However, considering the stepwise shape of edge in pixel
coordinates, even the covariance determinant of a straight line may have a small
value. If the determinant is zero, the small eigenvalue of the covariance matrix,
which means the second principal axis of dispersed data, is also zero. Guru et al.
used the small eigenvalue to detect a line [3]; in our case, however, it is sufficient
to use the determinant of the covariance instead of the eigenvalue, because it
simplifies the processing.

The proper threshold for the determinant is needed to eliminate unsuitable
edge points. Empirically, we found that the threshold value of 10.0 produces
good results for 1.0 scale factor of Canny edge detector. If the threshold is larger
than 10.0, there are still lots of noisy parts; if it is less than 10.0, many parts
of strong lines are eliminated. The edge point in the edge image will remain if
its determinant of the covariance in the mask area is less than the threshold as
follows:

p(x, y) =
{

1, if det(x, y) ≤ t
0, otherwise , (6)

where det(x, y) is determined by edge points within the mask area of which the
center is p(x, y). In this equation, t is the threshold, and 1 indicates remaining
and 0 indicates being erased.

2.2 The Second Step: Accumulation with Weight Score

Fig. 2(a) is a synthetic edge image that contains a group of short lines and
an ordinary line. If a common HT is applied to the image, the result will first
give incorrect information as Fig. 2(b) shows. On the other side, our algorithm
overcomes such a problem (Fig. 2(c)). Although the total number of votes for
the detected line in Fig. 2(b) and that for the detected line in Fig. 2(c) are
the same, our accumulation processing makes a difference between real line and
noise group, because we use the following function:

a(r, θ) =
∑

i

ni(r, θ)k if ni(r, θ) ≥ tn, (7)

(a) (b) (c)

Fig. 2. (a) Synthetic edge image. Gray lines indicate the maximum votes in accumu-
lator array. (b) The result of a common HT; (c) the result of our modified voting
system.
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where a(r, θ) is the accumulator bin for r and θ (refer to Introduction), ni(r, θ)
is the length of the i-th line overlapping with the HT line of r and θ. The length
of a line is simply the number of sequential votes for the current r and θ. Thus,
when the line meets the best matching parameter values, it has high score; and
the long line can have higher score because it is accumulated with the power
sum. The length of a line should be longer than tn; otherwise, the score will be
zero. The threshold tn was 3 in our experiments because we simply considered
an edge of 1 or 2 length as a noise edge.

Since HT is iteratively performed whenever r and/or θ is changed, the direc-
tion of the scanning of image follows the current r and θ. Therefore, without any
need of additional process for the estimation of the length of each edge line, our
algorithm just needs one buffer that is used for temporary accumulation, and it
receives sequential votes instead of the current accumulation bin until there is
no vote. The cumulated value in the buffer itself becomes the length of a line
lying over the current parameters of HT, and the value with the power sum will
be added to the current accumulation bin. Then, the buffer is initialized and
used for the next line to vote.

In Eq. (7), the problem is how to determine the value k of the power sum.
If k is large, very short lines also have great voting scores irrespective of their
lengths. If k is around 1.0, it will be meaningless. We have found that the results
are good when k is a number between 1.5 and 2.0; so we used nearly mid value,
1.8. The below algorithm describes this second step.

1. Start HT with Yuen’s quantization (refer to [12]).
2. Increase r and/or θ (refer to the equation in Introduction).

(a) Follow the HT line of the current parameters in the image space and
vote the pixel overlapping with the HT line upon a temporary buffer.

(b) Repeat (a) until there is no vote.
(c) If the votes of the buffer is less than tn, then go to (a); otherwise, go to

the next.
(d) Accumulate the votes of the buffer with Eq. (7) into the current bin of

the accumulator array.
(e) Initialize the buffer and go back to (a) until the HT line meets the end.

3. Repeat 2 until the end of r and θ.
4. Search the peak from the accumulator array and draw the line corresponding

to the peak.

3 Experimental Results

In our experiments, we selected only one maximum peak from the accumulator
array per iteration; then, the edges corresponding to the peak are deleted from
the edge image. This processing is repeated several times, so that it produces
the lines matching the maximum peaks in order of their magnitude. The reason
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is that the purpose of this paper is not to address efficient peak detection and
that the lines should be carefully extracted for other applications such as 3-
dimensional building modeling. All the source images were obtained from Visual
Geometry Group at Oxford University (see Fig. 3).

We also have used Yuen’s quantization [12], since it is simple and deals with
the memory economically. In these experiments, all the scale factors of Canny
detector were 1.0, which gave a lot of edges with correct positions. The value k of
the power sum was 1.8, and the threshold for the determinant of the covariance
matrix was 10. The common HT we have used for the comparison was the SHT.
Also, we manually selected some lines referring to the edge image because the
output can be obtained only from explicit edges, aside from human perception.

3.1 House Image

As shown in Fig. 4(f), one can consider that important edges lie on the roof
and the bottom of the house. The edge image shows that the image has a lot of
textured regions, especially in the wall of the house (Fig. 4(a)). Through the first
step, relative noisy parts of the edge image were erased as seen in Fig. 4(b). We
detected 9 lines in this image with the maximum value of the votes per iteration,
but the SHT gave improper lines (Fig. 4(c)), comparing to our algorithm. In this
result, the SHT with the first step has not remarkable differences with the SHT
without it (Fig. 4(d)). However, our algorithm shows better performance than
the SHT (Fig. 4(e)).

3.2 College Image

This image has also textured features in the wall (Fig. 3(c)), and the lines likely
to be detected is shown in Fig. 5(f). Figs. 5(a) and 5(b) show the results of edge

(a) (b) (c)

Fig. 3. Source images: (a) House image; (b) Church image; (c) College image
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. House image: (a) edge image; (b) the result of the first step; (c) the result of
SHT; (d) the result of SHT after the first step; (e) the result of our algorithm; (f)
manually selected lines (superimposed white lines)

detection and noise edge elimination. We detected 8 lines, but the SHT did not
give a good result for this image (Fig. 5(c)). However, our first step improves
the performance of the result as seen in Fig. 5(d). Our voting system gives
the best performance as the lines on the verges of the wall indicate (Fig. 5(e)).
Nevertheless, there is some unsatisfying information. For example, a missing line
is found in the bottom verge of the front roof. Besides, the line through a bench
in the middle of the image is not important line. The result might be affected
by the quantization scheme for the accumulator, and it seems that there is still
a blind characteristic.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. College image: (a) edge image; (b) the result of the first step; (c) the result
of SHT; (d) the result of SHT after the first step; (e) the result of our algorithm; (f)
manually selected lines (superimposed white and black lines)

3.3 Church Image

As shown in Fig. 6(a), there are many noise edges. After noise edge elimination
(Fig. 6(b)), there are still some noise that may affect the final result. Church
image shows great differences between algorithms. We extracted 11 lines, but the
SHT gave too inappropriate result. Many lines have got together into the tower
(Fig. 6(c)). However, with our first step, the performance of the SHT is slightly
improved (Fig. 6(d)). The best performance is shown in Fig. 6(e), where the
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Church image: (a) edge image; (b) the result of the first step; (c) the result
of SHT; (d) the result of SHT after the first step; (e) the result of our algorithm; (f)
manually selected lines (superimposed white lines)

verges of the tower and the lines of the front fence are detected, but the lines are
slightly deviated to the vertical and horizontal direction, compared to Fig. 6(f).

4 Conclusions

This paper has addressed a simple and efficient method for the enhancement of
HT. In summary, our algorithm consists of two steps: The first step is the elimi-
nation of noisy parts of the edge image, and the second is the accumulation with
weight score. Noisy parts of the image have large determinant of the covariance
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matrix, while straight lines have almost zero determinant. A long edge has a
great weight for its vote into the corresponding accumulator bin. Our algorithm
uses the proper rate of the weight score according to the length of a line which
means the number of sequential votes.

The algorithm is suitable for architectural images which have a lot of textured
regions. The purpose of our algorithm differs from previous versions of HT.
Commonly, the previous HTs have paid little attention to the application to
which they are applied. In fact, the performance, speed and memory management
are important for HT; however, if HT is used as a preprocessing for other vision
applications, a robust HT that is able to be used for any kind of image is needed.
On the other hand, our algorithm detects important lines first, so that other
applications such as 3-dimensional building modeling can use this algorithm for
a feature extraction.

The line detection is a difficult field in computer vision, but it is necessary
for high level image processing and computer vision. HT is a good algorithm for
the line detection, even though it has a blind characteristic. Therefore, the HT
that is able to overcome those disadvantages is being demanded.
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Abstract. This paper proposes a new framework of the color model for outdoor 
scene image detection and recognition. This model enables us to manipulate 
easily the color of an image. Here, the concept of ‘relative color polygon’ for an 
object composed of uniform color regions is introduced on a 2D color space
(XY space). Then the color similarity is defined using three kinds of parameters 
of the polygon: length and slope of every side and angle of adjacent sides. This 
paper addresses how to decide the color similarity by using the facts about color 
shifting on the XY space. The feasibility of the proposed framework has been 
confirmed through the experimental results using outdoor scene images taken 
under a great variety of various illumination conditions.    

1   Introduction 

Color has been widely used in various tasks such as image segmentation, pattern 
recognition and classification, and so on. Clearly, for such tasks to be successful, the 
color must be stable across illumination change [1]. A color image is a function of 
many parameters, for example, light source color, scene and object geometry, object 
shape and albedo, and camera parameters. Existing works in relevant aspects of color 
vision can be divided into two categories: computational color constancy and physics-
based modeling. In addition, there are many researches who related to color vision in 
the areas of parametric classification [2][3], machine learning techniques [4], color-
based segmentation [5], color-contrast landmark detection [6], illumination estimation 
[7], and color indexing [1][8][9]. 

Moreover, the problem of color representation affects almost every field in com-
puter vision. Many methods have been suggested for modeling and representing col-
ors. The RGB color space is widely used for image capture and display, however it is 
not always considered the appropriate representation for color. Other color spaces 
have been suggested to create more intuitive color representation. There are many 
such spaces (HLS, HSV, L*a*b* and so on), but they are not enough to overcome the 
difficulties under illumination changes. So, we introduce Relative Color (RC) poly-
gons defined on a 2D color space (XY space) that is well suited to image processing in 
outdoor scenes. One application of the proposed system is shown in Fig.1. 
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original colorevening nighttime

Is it possible to judge that the above road signs’ colors are similar with the original colors?

original colorevening nighttime

Is it possible to judge that the above road signs’ colors are similar with the original colors?  

Fig. 1. Scenes to decide the color similarity for road sign recognition 

This paper is organized as follows. In Section II, we define the XY color space with 
chromatic and achromatic regions. Section III introduces RC polygons, some parame-
ters for color similarity, and explains the advantages of RC polygons. The evaluation 
and discussions are included in Section IV. Finally, Section V concludes this paper.  

2   Color Space  

Color is very important for image processing and computer vision. In 1931, CIE de-
fined the virtual primary colors XYZ as the standard [10]. The representation of the 
RGB color space in 3D-polar coordinates (hue, saturation and brightness) can some-
times simplify this task by revealing characteristics not visible in the rectangular co-
ordinate representation. The rgb space (Eq.(1)) is a normalized form of the RGB space 
and is used to eliminate the effect of brightness. Here, we define the XY space using 
the rgb space. This space is suitable for image processing especially in outdoor scene 
images. The aspect of the XY space is described in Fig.2. In this paper, we mainly 
focus on the chromatic region. In Fig.2(c-d), the ellipse region painted by black color 
represents the achromatic region which is predefined by using the pixel values of 
white color from various types of signboards under different illumination conditions. 
Here, the XY space is defined as follows. 
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Each pixel value of an input image is transformed from the RGB space to the point 
(X,Y) on the XY space as follows. 
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Fig. 2. XY space: (a) relation between RGB and XY space, (b) XY space with colors, (c) and (d) 
analysis of XY space   
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3   RC Polygons  

Color representation is a crucial factor for color image segmentation and recognition. 
Many attempts have been made to find the best color space for the task, yet no one 
model has proven to be always superior to others [11]. Here, we introduce RC poly-
gons defined on the XY space. In order to explain the reason for using RC polygons, 
we take examples of road signs. Most road signs consist of two or more uniform color 
regions. Ones considered here are composed of three colors: red, white, and blue. The 
outdoor scene colors always vary due to illumination changes and weather conditions. 
For example, Fig.3(a) shows the road sign images taken at different times in the same 
day. Although their respective pixel values are significantly different from those of 
the other time on the conventional RGB space (Fig.3(b)), they change slightly on the 
XY space (Fig.3(c)). In Fig.3(c), the triangles of red, white, and blue colors on the XY 
space are very similar and look homothetic one another even though their illumination 
conditions are quite different. 

In the case of more than three uniform color regions, the triangle becomes the 
polygon called the RC polygon as shown in Fig.4. Although the place and the lighting 
always changing in outdoor scene images, the RC polygons keep their shapes. Ac-
cording to this investigation, we can decide robust color similarity between objects 
with uniform color regions in different images. For the sake of checking similarity, 
three parameters are introduced:  

• length of every side,  
• slope of every side,   
• angle of adjacent sides.  

5:50 7:50 10:50 12:50 16:50 18:505:50 7:50 10:50 12:50 16:50 18:50
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X

Y
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G

X

Y
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R
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(b) (c) 

Fig. 3. Color changing of road signs within one day: (a) images of the same road sign taken at 
the different times, (b) their cropped colors on RGB space, (c) RC polygons on XY space   
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Fig. 4. RC polygons and criterions for similarities 

If the following conditions are satisfied for every k=1,...,n, then we can conclude 
that the two polygons are homothetic, in other words, the colors of the input object are 
similar with those of the standard one. Then the color similarity between two RC 
polygons is formulized as follows (Fig.4): 

,21 d
k

k
d Th

d

d
Th ≤

′
≤  (7) 

,θθθ Thkk ≤−′  (8) 

,φφφ Thkk ≤−′  (9) 

where, |.| is the absolute value and angles are expressed by the inferior angles, 

),,,(,, nkeedeed
n

i
ikk

n

i
ikk 1

11

==′′=′
==

 (10) 

and n is the number of sides of the polygon, and the parameters θk, φk, vk, and ek are 
the angle of adjacent sides, the slope of the sides, the vertex, and the length of the 
sides for the standard RC polygon, respectively. Then θk′, φk′, vk′, and e′ are the corre-
sponding parameters of the input RC polygon. Eq.(7) and (8) are deeply linked, but 
not the same. According to our experiences, Thθ and Thφ are approximately 22° in 
their maximums in outdoor scene images. In order to be applicable to outdoor and 
indoor scene images with various color temperatures at the same time, it is enough to 
decide the threshold values by pre-experimental results as follows: 

Thθ = Thφ = 38°, (11) 

Thd1 = 0.7, Thd2 = 1.5. (12) 

To put it briefly, we use only four kinds of thresholds. Unlike as other approaches, the 
proposed algorithm does not need many images to decide the standard values of these 
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parameters (the standard RC polygon). That is, it is enough to use only one good 
condition (daytime) image for a standard.  This point is the big advantage over many 
other methods.     
   To check the stability of the RC polygons, some experiments are conducted under 
six fluorescent lamps with color temperatures (3000K, 3200K, 5000K, 5500K, 
6700K, and 7200K) using six chromatic color regions (cyan, yellow, magenta, red, 
green, and blue). Fig.5 shows the color board images taken under single directional 
lighting (Geometrical condition: 45-n (45-0) by CIE) and RC polygons when the 
color temperature changes. According to this figure, it is seen that the RC polygons 
are homothetic. Moreover, to confirm the effectiveness of the proposed method, we 
extend the color board images to visual information signboard images at different 
times under outdoor scenes. In this paper, all chromatic colors and white color (achro-
matic) are mainly treated, but black color is not considered in this system. Because the 
color value of a black pixel is so small that the movement of this color is too much 
sensitive and not stable. Almost all signboards are composed of not so many color re-
gions, but the similarity of RC polygons can be kept when using many. 

In Fig.6(a), the component colors of the visual signboard are orange, red, white, 
and green. The RGB ratios of these colors at each hour (from 9AM to 4PM) are ex-
pressed in Fig.6(c). Due to various illumination changes, the red and orange colors are 
very difficult to distinguish from each other on the RGB space. If we use absolute 
color values like as color bounding boxes (BBs), we will face with mis-classifying. 
Even though the illumination effect is strongly influenced on an image, all colors move 
to the same direction. This fact agrees with our RC polygons and the criterions for simi-
larities. Therefore, the RC polygon on the XY space can easily solve such a problem as 
shown in Fig.6(b). 

X

Y

Light source with color temperature 3000 Kelvin

Light source with color temperature 7200 Kelvin

X

Y

Light source with color temperature 3000 Kelvin

Light source with color temperature 7200 Kelvin

 

(a)                                                                (b) 

Fig. 5. Color movements against with color temperature: (a) input images, and (b) RC polygons 
on XY space 
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(a)                                     (b) 

 
(c) 

Fig. 6. Example of a commercial signboard: (a) cropped uniform color regions (orange, red, 
white and green), (b) RC polygons on XY space, and (c) RGB color ratios for orange, red, white, 
and green, respectively  

4   Evaluation and Discussions   

The proposed framework has been evaluated through experiments with a large and 
diverse set of road sign images acquired from different weather conditions (sunny, 
cloudy, and rainy) and different illumination conditions (day, dusk, and night). The 
system was implemented in Matlab 7.0.4 and executed on a personal computer with 
AMD Athlon™ XP 2800+ Processor. There are many difficult situations for segmen-
tation and recognition of outdoor scenes images taken by various kinds of digital 
cameras from outdoor scenes under a great variety of illumination changes. That is 
why we choose road sign for testing. Some of these difficulties are: 
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• changing illumination due to outdoor lighting conditions varying from day to 
night,  

• reflection and specular highlights due to electric bulbs, headlights of cars, 
• decreasing visibility due to weather conditions, for example, rain and fog,  
• color fading away after long exposure due to sunlight and so on. 

The recognition of road signs is more difficult than other commercial signboards 
which are always well maintained.  

One of the most significant characteristics of all road signs is the combination of 
distinctive colors. Many color segmentation methods have been implemented on the 
RGB color space [3][12], HSV [2][13][14] and YUV [15]. Many researchers used BB 
methods on the RGB color space, for example, BB1 in Example 1. According to BB1, 
the road sign segmentation under good illumination conditions may be well done, but 
it faces immediately big problems under bad illumination conditions as shown in 
Fig.1 and Fig.7. In Table1, the B components are larger than other components even 
though in a red color region in Fig.7. So BB1 can’t solve such a problem. Most of 
papers suggested that the HSV color space might be more flexible to the disturbance 
caused by lighting problems, but it didn’t significantly improve any performance in 
our experiments. Vitabile et al. [2] used dynamic pixel aggregation techniques in the 
HSV color space using BB2 in Example 2. The system performance decreased when 
the processed images are characterized by predominant sets of pixels whose attributes 
fall into the HSV achromatic and/or unstable areas. From these results, it can be seen 
that the road sign colors can’t be detected only by color BBs under such bad illumina-
tion conditions. 

Example 1: BB1 (in RGB color space) 

 RED   : if (R>80) AND (R-G>20) AND (R-B>20), 
 WHITE : if(R>150) AND (G>150) AND (B>150). 

Example 2: BB2 (in HSV color space) 

 Chromatic: 902050 ... ≤<≥ VandS , 

 Unstable chromatic: 902050250 .... ≤<<< VandS , 

 Achromatic: 9020250 ... ≥≤≤ VorVorS . 

In fact, we have already tried the road sign color separation by a linear learning method 
[16][17], and looked into the color nature of road signs. The road sign colors, such as 
red, blue and white, were successfully separated in the three dimensional RGB color 
space by a hyper-plane at daytime but couldn’t do at night-time. Therefore, we have 
found out it is impossible to solve simultaneously under all illumination conditions 
even though many color BBs are prepared. To handle this kind of problems, we pro-
posed the relative color method for road sign colors in our past studies [18]. In order 
to address the above difficulties, we apply the RC polygons that can successfully 
achieve the recognition of outdoor scene images. Thus, almost all of road sign colors 
are detected and recognized under all illumination conditions even though at night-
time. Thus the RC polygons, that is, the ‘relative color’ is very powerful and effective 
not only for bad illumination conditions, but also for removing noises. We will have 
the chance to present the outcome at the next time. In Fig.7(b), the blue dotted line 
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triangle is the standard RC polygon from Fig.3 (10:50AM). Although the images of 
Fig.7(a) are strongly blue color influenced images, their color vertices keeps their 
relative shape of RC polygon. Therefore, the proposed RC polygon is very suitable 
for outdoor scene segmentation and recognition. 

To evaluate the proposed system performance, 300 images under a great variety of 
illumination changes were processed. By using this method, about 95% of images 
matched correctly to the standard images. There are 5% failure cases left. The reasons 
are: (i) deteriorated uniform color regions by occlusion or partial highlight due to 
leaves, street lamps, headlights and so on, and (ii) very dark images, for example, 
RGB values less than 10 in chromatic color. 

(A1)

(B1)

(A2)

(B2)
(A1)

(A2)
(B2)

(B1)

standard

(A1)

(B1)

(A2)

(B2)
(A1)

(A2)
(B2)

(B1)

standard

 
(a)                                              (b) 

Fig. 7. Color composition in a road sign: (a) strongly blue color influenced images, (b) on XY 
space 

Table 1. Color components in RGB and HSV space 

pixels R G B  H S V Colors 

(A1) 100 41 105 0.82 0.61 0.41 Red 

(A2) 63 88 188 0.63 0.67 0.74 Blue 

(B1) 105 52 106 0.83 0.51 0.42 Red 

(B2) 134 155 202 0.62 0.34 0.79 White 

5   Conclusions 

Large amounts of information are embedded in the natural scene. We have introduced 
the RC polygons on the XY space and discussed several illumination problems in 
outdoor scenes. Experiments have shown the robustness and efficiency of the pro-
posed methods. For experiments, we used 300 images including road signs and other 
visual information signboards under a great variety of illumination changes including 
nighttime, foggy day and rainy day. Road signs and visual information signboards are 
good examples of objects composed of uniform color regions. The proposed method 
can potentially be applicable to various tasks such as image retrieval, image indexing, 
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image reproduction, image enhancement, segmentation and recognition of objects 
with uniform color regions, and so on. Furthermore, it may be also possible to esti-
mate the color temperature of the light source based on the RC polygons.  
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Abstract. We describe a rough set based segmentation method of video 
sequences. In a frame, there are many objects and a background. We represent 
theses objects and a background by regions. We consider that each object or 
background is a region. This region is represented by a rough set. Rough set is 
approximately representation of a crisp set. Our method consists of two phases. 
First phase is updating regions phase that consist three steps. First step is setting 
initial parameters. We use previous regions’ parameters to initial parameters. 
Second step is updating object regions. Updating is by hill climbing method 
with our evaluation function. Third step is updating a background region. The 
background region is updated by using other regions. In second phase, we make 
a segmentation map of frame using the regions. An ambiguous pixel’s label is 
decided using distance with regions. 

Keywords: image segmentation, rough set, video sequences, region. 

1   Introduction 

Segmentation is making several non-overlapping partitions from an image. Image 
segmentation is necessary in many image processing fields such as image 
understanding, object recognition and etc. There are many researches for image 
segmentation. The current work focuses on spatiotemporal methods of segmentation 
on video sequences. There are many segmentation approaches such as context based 
approach, motion based approach, and so on. Context based segmentation determine a 
pixel included a partition using the pixel’s location of total data’s distribution [1]. 
Motion based segmentation is considering that partitions or pixels have a velocity or 
acceleration, so we know where is the partition previously [2]. There are some 
researches of image segmentation using a rough set [3] [4] [5]. But, these researches 
are not based on video sequences. 

We describe a rough set based segmentation method of video sequences. We 
consider that an image is composed many objects and a background. And an object 
has close spatial location and similar color. Each object or background is represented 
by a region, and a region is presented by a rough set. A pixel in a frame is an element 
of these rough sets. A rough set is approximately representation of a crisp set [6] [7]. 
A rough set is represented by a pair of crisp sets. The pair of crisp sets is a lower 
approximation and an upper approximation. In rough set theory, we know that a pixel 
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is belonging to a rough set approximately. So each region has minimum area and 
maximum area. These two areas are presented by two concentric ellipsoids in five-
dimension. Our method consists of next two phases. First phase is updating regions 
phase that consist three steps. First step is setting initial parameters. We use previous 
regions’ parameters to initial parameters. Second step is updating object regions. 
Updating is by hill climbing method with our evaluation function. Third step is 
updating a background region. The background region is updated by using other 
regions. Next phase is making segmentation map using current regions and a current 
frame. In second phases, we have to verifying that a pixel’s label. A pixel of a 
region’s lower approximation has a label of the region. But a pixel of regions’ upper 
approximation has a label of a region that has minimum distance with the pixel. 

The paper proceeds as follows: In section 2, we introduce the concept of rough 
sets. Section 3 describes about our image modeling with rough sets. In section 4, we 
describe our rough set based segmentation method. In section 5, our experiment and 
the result are showing.  

2   Concept of Rough Sets 

A rough set is an approximately representation of a crisp set. On the rough set theory, 
we know that a rough set includes an element approximately. So an element is 
included a rough set, or is not included a rough set, or is included a rough set 
approximately. A rough set is represented by a pair of crisp sets. The pair of crisp sets 
are a lower approximation and an upper approximation. In case of an information 
system ( )AU , , the U  is a non-empty set of finite objects and the V  is a non-empty 

finite set of attributes such that 
aVUa →:  for Aa ∈∀ . Then the U  is the universe set. 

In this case, a rough set RX  is representing a crisp set X , then the rough set is 
defined as following: 

XRXRRX ,= , (1) 

where the XR  is the lower approximation of the rough set and the XR  is the upper 

approximation of the rough set. A lower approximation of a rough set XR  is 

composed of all the elementary sets included in X , and a upper approximation of a 
rough set XR  is composed of all the elementary sets which have non-empty set 
intersection with X . A lower approximation is defined as following: 

[ ]{ }
( ){ }XERINDUEEXR

orXxUxXR P

⊆∈=
⊆∈=

,/|

| . (2) 

And an upper approximation is defined as following: 

[ ]{ }
( ){ }φ
φ

≠∈=

≠∈=

XERINDUEEXR

orXxUxXR P

,/|

| . 
(3) 

In above definitions, the ( )RIND  is an equivalence relation. The equivalence relation 

is defined as following: 
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( ) ( ) ( ) ( ){ }ayfaxfRaUUyxRIND ,,,|, =∈∀×∈= . (4) 

And there is a boundary of a rough set. The boundary is a set of elements which is not 
know exactly that the X  includes the elements. The boundary is defined as following:  

( ) XRXRRBN −= . (5) 

Fig. 1 shows an example of representing a rough set. There is an object X , and two 
ellipses. An ellipse which include the object is upper approximation, and an ellipse 
which included the object is lower approximation. 

 

Fig. 1. An Example of representing a rough set 

3   Image Modeling with Rough Sets 

A frame is made up of constant number pixels. And a pixel has a location and a color. 
We consider a pixel as a five-dimensional vector. So, a pixel p  is represent to 

[ ]Τ
bgryx ppppp . There are many objects and a background in a frame. 

We consider that each objects and background consist of a region. A region consists 
of pixels that have close spatial locations and similar colors. Each region is 
represented by a rough set. All of these rough set’s lower approximations and upper 
approximations are a subset of a frame. So we consider a frame as a set of rough set. 
A region’s lower approximation is a set of pixels which is must be included in the 
region. And a region’s upper approximation is a set of pixels which is may be 
included in the region. 

We make the shape of region’s rough set as two concentric ellipsoids in five-
dimension. The two ellipsoids are a lower ellipsoid and an upper ellipsoid. A lower 
ellipsoid is representing a region’s lower approximation, and an upper ellipsoid is 
representing a region’s upper approximation. So we represent a region iR  by a central 

five-dimension point i
centerp , five axes lengths ( )

i
indexaxel , a rotation angle id  and a 

marginal value im . The central point is two ellipsoids’ center. The five axes are a 

lower ellipsoid’s axes. The rotation angle is a rotation angle for axes of a lower  
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ellipsoid’s location. The marginal value is a number that shows how much bigger an 
upper ellipsoid then a lower ellipsoid. 

A region of an object’s rough set is defined as follows: 

( ){ }
( ){ }mObjectDistanceObject

ObjectDistanceObject

ObjectObjectObject

≤=

≤=

=

,|

1,|

,

pp

pp  

(6) 
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( ) CBackgroundDistance =,p  

(7) 

The rough set representing a background is made using all rough sets of objects. A 
background’s lower approximation is a set of pixels which is not included in any 
object. And a background’s upper approximation is a set of pixels which is may not 
included in any object. A background’s rough set is defined as follows: 

ObjectUBackground

ObjectUBackground

BackgroundBackgroundBackground

−=

−=

= ,
 

(8) 

where U  is a universal set. The universal set is the set of all pixels in the current 

frame. So ( )ObjectBackground ∪  and ( )ObjectBackground ∪  are 

always equals to universal set. 
Fig. 2 shows an example of above image modeling with rough sets. Fig. 2a is an 

original image. And Fig. 2b is the rough sets of original image. In this figure, a pair of 
concentric ellipses means a rough set. The inside ellipse is lower approximation, and 
outside ellipse is upper approximation. The color of ellipse is a center color of the 
rough set. The white space is lower approximation of background. Fig. 2c shows a 
segmentation map using rough sets and the current frame. 
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                   (a)                                            (b)                                               (c) 

Fig. 2. An example of image modeling. (a) original image. (b) image modeling via a rough sets. 
(c) image segmentation using our method. 

4   Segmentation Method 

The segmentation method for a frame of video sequences consists of two phases. First 
phase is updating regions. In this phase, we update the previous regions to make 
current regions using the current frame. Next phase is a making segmentation map. In 
second phase, we make a segmentation map using the current frame and the current 
regions. Following sections 4.1 and 4.2 are detailed methods for an each phase. 

4.1   Updating Regions 

Method for an updating current rough sets is consist of three steps. First step is setting 
initial parameters of regions. Second step is updating regions of object. Third step is 
updating region of background. Followings are each step’s detailed methods: 

Step 1: For initial parameters of current regions, we use the parameters of previous 
frame’s regions. Because variations of object between frames are slightly, we know 
the current region is similar to the previous region. But region of background is set to 
an empty set, initially. We calculate the region of background in step 3. 

Step 2: This step is a updating current regions of object. We use hill climbing method 
for this step. So for the updating, we need an evaluation function for an evaluating a 
fitness between regions and a frame. The fitness between regions and a frame is 
higher in proportion to a summation of fitness which between each region and the 
frame. And there are no collisions between rough set’s lower approximations. So, the 
evaluation function is defined as following: 

{ }( ) ( ) { }( )frameRPenaltyframeRfframeRf iifitnessievaluation ,,, −=  (9) 

In above definition 9, we need a fitness function for a region and a frame. The fitness 
function is calculated by using pixels in the region. The pixels in a same region have 
similar parameters, so a smaller variation of the pixels’ parameter gets higher fitness. 
And the region’s size is also important. The fitness function is defined as following: 

( ) ( ) ( )RScoreframeRScoreframeRf sizeiationfitness ⋅= ,, var  (10) 

In above definition 10, we need two score functions. The score of variation is 
calculated by using the region and the pixels in the frame. Each pixel has weight of 
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proportion to a region. The score of variation is weighted summation using the 
weight. And the score of size is calculated by using the region’s size in five 
dimensions. So, these score functions are defined as following: 

( ) ( )
( )∈∀

=
frame

iation RDistance

RWeight
frameRScore

p p
p

,

,
,var

 

( )
( )

( ) ≤<
≤

=

others

mRDistancew

RDistance

RWeight boundary

,0

,1,

1,,1

, p

p

p  

( ) bgryxsize lllllRScore ⋅⋅⋅⋅⋅= π  

(11) 

And we introduce the penalty function. The penalty is for collisions of rough set’s 
lower approximations. The collision means that some pixel is an element of two or 
more rough set’s lower approximations. So we want that there is no collision. The 
penalty function is summation of all penalties of pixel. So, the total penalty function 
is defined as following: 

{ }( ) { }( )
∈∀

=
frame

ii RPenaltyframeRPenalty
p

p,,  

{ }( ) >⋅
=

others

kSk
RPenalty P

i ,0

1,
,p  

(12) 

In above definition 12, the k  is the number of lower approximations which have the 
pixel as a element. And the 

PS  is a constant number of a unit penalty score. 

Step 3: Updating the region of background is the current step working. All regions of 
object are calculated already. So we can calculate the region of background by using 
formula 7. 

4.2   Making a Segmentation Map 

In this phase, we introduce the method for a making segmentation map. For a making 
segmentation map, we use a frame and regions. The frame is already segmented to 
regions. The segmentation’s result is non-overlapping partitions. But a pixel is a 
element of many regions, possibly. So, we need to verify which region a pixel is 
belonging. 

For a making segmentation map, we verify each pixel in the frame is belonging to 
which region. A pixel which is an element of a region’s lower approximation is 
belonging to the region. And a pixel which is not an element of any region’s lower 
approximation is belonging to a region that the region has the pixel as upper 
approximation’s element and the region have minimum distance to the pixel. The 
function which verifies a pixel’s label is defined as following: 
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{ }( )

( ) ∈∈
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pp
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(13) 

 

In above function, we use the Eq. 7 function for the distance function. 

5   Experimental Results 

We have an experiment by our method. The input video sequences are video chatting 
images of a man. There is an object and a background. An object is the man’s face,  
 

   

   

   

   
                 (a)                                                     (b)                                             (c) 

Fig. 3. Segmentation result. (a) original image. (t=1, 16, 31, 46) (b) image modeling via a rough 
sets. (c) image segmentation using our method. 
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and other area in image is the background. In the experiment images, the face’s 
movement is faster then normal video chatting images. The video sequences’ frame 
rate is 15 frames in a second. 

Fig. 3 is result images of the experiment. Fig. 3a is the original images. Their 
frame numbers are 1, 16, 31 and 46. So a time interval between images is a second. 
Fig. 3b is images of represented modeling by rough sets. The object’s lower 
approximation area covers in part of man’s face. And the man’s face is in the upper 
approximation area. Fig. 3c is result segmentation of our method. There is some 
noise, but the results follow the man’s face.  

6   Conclusion 

In this study, we describe a rough set based method for segmenting video sequences. 
There area many objects and a background in a frame. Each objects and a background 
consist of a region. We represent these regions to rough sets. So each region has 
minimum area and maximum area. These two areas are presented by two concentric 
ellipsoids in five-dimension. Our method consists of next two phases. First phase is 
updating regions phase that consist three steps. First step is setting initial parameters. 
We use previous regions’ parameters to initial parameters. Second step is updating 
object regions. Updating is by hill climbing method with our evaluation function. 
Third step is updating a background region. The background region is updated by 
using other regions. Second phase is making segmentation map phase. A lower 
approximation of an object is the object’s area. And a pixel in upper approximation of 
regions is decided by distance between the pixel and the regions. The experiments 
result shows that the object’s movement is detected, but there is some noise. We need 
to more experiments in variable situation, and more images with many objects. 
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Abstract. In this paper we propose the two dimensional Laplacianfaces method 
for face recognition. The new algorithm is developed based on the two 
techniques, i.e., locality preserved embedding and image based projection. The 
two dimensional Laplacianfaces method is not only computationally more 
efficient but also more accurate than the one dimensional Laplacianfaces 
method in extracting the facial features for human face authentication. 
Extensive experiments are performed to test and evaluate the new algorithm 
using the Yale and the AR face databases. The experimental results indicate that 
the two dimensional Laplacianfaces method significantly outperforms the 
existing two dimensional Eigenfaces, the two dimensional Fisherfaces and the 
one dimensional Laplacianfaces methods under the various settings of 
experiment conditions. 

1   Introduction 

The Laplacianfaces is a recently developed method for face recognition [1]. It is a 
natural generalization of the locally linear embedding (LLE) [2] algorithm that can 
effectively handle the nonlinearity of the image space for dimensionality reduction. It 
was observed to outperform significantly the popular Eigenfaces and the Fisherfaces 
methods on the Yale, the MSRA and the PIE face databases [1]. However, like the 
Eigenfaces and the Fisherfaces, the Laplacianfaces method involves handling the 
eigen problem whose computation and memory complexity scales up quickly with the 
dimensionlity of the training image vectors. In order to address this problem, Liu et al. 
[3], Yang et al. [4]-[6], Xiong et al. [7], and Jing et al. [8] applied the image based 
projection technique to develop the two dimensional Eigenfaces and Fisherfaces 
methods, respectively. The complexity of the algorithms is reduced dramatically from 

22 nm ×  to 2m  (or 2n ). In addition, as the size of the matrices in the eigen equations 
is reduced they can be more accurately evaluated. So, the objective function in the 
algorithm can be fully optimized to achieve the best result of classification [4]. The 
two dimensional Eigenfaces and the Fisherfaces methods are successful for face 
recognition. But it is unclear whether or not the image based projection technique can 
also be applied effectively to improve the performance of the Laplacianfaces method. 
In this paper, we develop the two dimensional Laplacianfaces method utilizing this 
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technique. Extensive experiments have been performed to investigate the performance 
of the new algorithm for face recognition. 

2   Two Dimensional Laplacianfaces 

2.1   Idea and Algorithm 

Let X  denote an n-dimensional unitary column vector, A  represents an image of m  
rows and n  columns. In the one dimensional Laplacianfaces method, the sample 
image, A , has to be transformed to form a vector of nm×  dimensions prior to 
training. Instead, in the new algorithm, two dimensional Laplacianfaces method, we 
project the image matrice directly onto the vector X ,  
 

AXY = . (1) 

 
The obtained m-dimensional vector Y is called the projection feature vector. Given a 
set of training images }A,,A,,A,,A{T Nji1=  the objective function of 

the two dimensional Laplacianfaces method is defined as, 
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2

ij
ji SYYmin −  (2) 

 
where iY  is the projection feature vector corresponding to the image iA , ⋅  is the 

2L  norm and ijS  is the similarity between the image iA  and jA  in the observation 

space and is defined as, 
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(3) 

 
where k  is the size of the local neighborhood, t  is the window width determining the 
rate of decay of the similarity function. As shown in Equation (3) the objective 
function imposes a heavy penalty if two arbitrary neighboring samples iA  and jA  in 

the original space are mapped far apart. By minimizing this criterion it is ensured that 
if iA  and jA  are near to each other then their projection feature vectors iY  and jY  

are close as well. By taking several algebraic steps the objective function of the two 
dimensional Laplacianfaces method is converted to, 
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where ]A,,A[A T
N

T
1

T = , D  is the diagonal matrice with =
j

ijii Sd , S  is the 

similarity matrice, and L  is called the Laplacian matrice. Since the entry of the 
matrice D  indicates how important each point is a constraint is imposed as follows, 

       1DAXAX TT = . (5) 

Finally, the two dimensional Laplacianfaces method is formulated as, 
LAXAXminarg TT  

s.t. 1DAXAX TT = . 

(6) 

The optimal projection vector X  that minimizes the objective function can be 
obtained by solving the following generalized eigen problem,  

        DAXALAXA TT λ=  (7) 

where both L  and D  are symmetric and positive semidefinite. The eigenvectors 
corresponding to the first d  smallest eigenvalues are used for feature extraction.  

2.2   Feature Extraction 

Let us denote the optimal projection vectors as d1 X,,X . For a given input image 

A , let ii AXY = , d,,1i = . A set of projection feature vectors, d1 Y,,Y , can 

then be obtained. Note that the features extracted in the two dimensional 
Laplacianfaces method are vectors while in the original algorithm they are scalars. 
The projection vectors are used to form an dm ×  matrice ]Y,,Y[B d1=  which is 

called the feature matrice of the sample image A . 

2.3   Classification  

After obtaining the feature matrices of all the training images the nearest neighbor 
classifier is used for classification. The distance between any two feature matrices 

]Y,,Y[B id1ii =  and ]Y,,Y[B jd1jj =  is defined as, 

        
=

−=
d

1p
jpipji YY)B,B(d . (8) 
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Suppose that the feature matrices are N1 B,,B  and each of these samples is 

assigned a class identity C . Given an input testing image B , if )B,B(dmin)B,B(d jl =  

and lB  belongs to class C , then B  is classified as belonging to C . 

3   Experimental Results 

In this section, we experimentally evaluate the proposed two dimensional 
Laplacianfaces method on two well known face databases, Yale and AR. While the 
Yale database is used to test the performance of the face recognition algorithms under 
the condition of the varied training sample size, the AR database is used to examine 
the performance of the algorithms under various conditions of the illumination, the 
facial expression and the time sessions. The experiments are performed on a Pentium 
4 2.6GHz PC with 512MB RAM memory under Matlab 7.1 platform.  

3.1   Results on Yale Database 

The Yale face database [9] contains 165 images of 15 individuals, each subject has 11 
images of the size 80100× , manually cropped and resized to 4050 × . The images are 
captured under various facial expressions and illumination conditions. Here, seven 
tests are performed using different number of samples for training. More specifically, 
in the k -th test, we used the first k  image samples per class for training and the 
remaining samples for testing. To determine the proper parameters of the 
neighborhood size and the window width of the Gaussian functions we use the global-
to-local strategy [10]. The top recognition rate for each testing and the number of the 
projection vectors used for feature extraction are listed in Table 1. 

Table 1. Top recognition rate (%) and number of components used 

Number of training samples of each class  
Method 2  3 4 5 6 7 8 

Eigenfaces 87.4 
(28) 

89.2 
(14) 

89.5 
(39) 

87.8 
(25) 

84.0 
(48) 

91.7 
(25) 

88.9 
(30) 

Fisherfaces 90.4 
(10) 

88.3 
(10) 

87.6 
(14) 

86.7 
(11) 

84.0 
(9) 

91.7 
(9) 

88.9 
(6) 

Laplacianfaces 90.9 
(15) 

90.8 
(23) 

89.7 
(18) 

89.4 
(20) 

87.7 
(20) 

93.3 
(23) 

95.6 
(24) 

2D Eigenfaces 87.4 
(12) 

87.5 
(3) 

89.5 
(10) 

87.8 
(6) 

84.0 
(14) 

91.7 
(14) 

91.1 
(3) 

2D Fisherfaces 86.7 
(9) 

87.5 
(9) 

90.5 
(12) 

87.8 
(4) 

86.7 
(3) 

91.7 
(2) 

95.6 
(1) 

2D Laplacianfaces 94.1 
(8) 

95.0 
(2) 

95.2 
(3) 

96.7 
(3) 

97.3 
(2) 

96.7 
(3) 

97.8 
(1) 

It can be observed that the proposed two dimensional Laplacianfaces method 
outperforms the other five methods significantly and consistently (also indicated in 
Fig. 1), while the one dimensional Laplacianfaces method shows slightly better 
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performance than the other four algorithms. Also, compared with the 2D Eigenfaces 
and the 2D Fisherfaces, the 2D Laplacianfaces method requires fewer components to 
achieve the top accuracy of classification in six of the seven tests, as highlighted with 
bold font.  

 

Fig. 1. Top recognition rate with varying number of training samples 

Fig. 2 shows the average recognition rate changing over the number of the projection 
vectors. For each number of dimensions we average the recognition accuracies obtained 
using different number of samples for training. Note that for the Fisherfaces and the 2D 
Fisherfaces methods the maximum number of the available projection vectors is 14 
because there are 15 classes of data in the database and the rank of the between class  
 

 

Fig. 2. Average recognition rate with varying dimension of projection vectors 
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scatter matrice is at most 14. The result in Fig. 2 indicates that the proposed  
2D Laplacianfaces algorithm is not only more accurate but also very stable in 
outperforming the other algorithms.  

In Table 2 and 3 we list and compare the computation and the memory complexities 
of the two types of Laplacianfaces methods. Here, m  and n  is the number of the rows 
and the columns of the image matrices. L , M  and N  is the number of the projection 
vectors, the testing samples and the training samples, respectively. 

Table 2. Time and memory complexities 

Complexity  
Method Time (training) Time (testing) Memory 

Laplacianfaces )mnNLnm(O 222 +  )MNL(O  )nm(O 22  

2D Laplacianfaces )mnNLn(O 22 +  )mMNL(O  )n(O 2  

In Table 2 we can see that when n)1m(MN 2 −≤  the 2D Laplacianfaces requires 

not only fewer memory space but also less time than the 1D Laplacianfaces method in 
training and testing. In Table 3 we list the average time and the memory space that are 
used to achieve the top recognition rate under the configurations shown in Table 1.  

Table 3. Time and memory space used for training and testing 

Average time (sec.) and memory cost  
Method Time (training) Time (testing) Total Time Size of matrix 

Laplacianfaces 1,540 0.56 1540.56 20002000×  

2D Laplacianfaces 4.55 4.68 9.21 4040×  

As can be seen in Table 3 while the one dimensional Laplacianfaces method 
requires averagely 1,540 seconds for training the proposed two dimensional 
Laplacianfaces needs only 4.55 seconds. Also, the size of the matrix drops from 

20002000×  to 4040× , which improves significantly the memory efficiency of the 
algorithm. 

3.2   Results on AR Database 

The AR face database [11] contains over 4,000 face images of 126 individuals taken 
in two time sessions under the variations of illumination, facial expression and 
occlusion conditions. Each person has 26 images. In our experiment we consider 
using a subset of 14 images of each person for training and testing. Fig. 3 shows the 
selected sample images of one subject. The global-to-local strategy is used for 
parameter selection. 
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(a) (b) (c) (d) (e) (f) (g) 

       
(n) (o) (p) (q) (r) (s) (t) 

Fig. 3. Sample images for one subject of the AR database 

In Fig. 3, the images (a)-(g) and (n)-(t) are drawn from the first and the second time 
sessions respectively. For each session the first four images (a)-(d) and (n)-(q) involve 
the variation of facial expressions (neutral, smile, anger, scream) while the images 
(e)-(g) and (r)-(t) are taken under different lighting conditions (left light on, right light 
on, all sides light on). The images are manually cropped and normalized to 4050×  
pixels. We design and perform three experiments to investigate the performance of 
the 2D Eigefaces, the 2D Fisherfaces and the 2D Laplacianfaces methods under the 
variations of facial expressions, time sessions, and illuminations. The indices of the 
images of each person used in the three tests are listed in Table 4. 

Table 4. Indices of training and testing images 

Experiment conditions  
Data set 

Illumination Expression Time 

Training set {e, s} {a, n} {a, b, c, d, e, f, g} 
Testing set {f, g, r, t} {b, c, d, o, p, q} {n, o, p, q, r, s, t} 

Table 5 shows the top recognition rate, the number of the dimensions of feature 
vectors used for classification, and the testing time of the three algorithms.  

Table 5. Performance of three algorithms using image based projection technique 

Experiment Top recognition 
rate (%) 

Dimension Classification 
time (sec.) 

2D Eigenfaces 95.4 10 5.547 
2D Fisherfaces 95.6 10 5.281 

 
Expression 

2D Laplacianfaces 97.8 4 4.765 
2D Eigenfaces 65.2 22 42.42 
2D Fisherfaces 68.6 14 28.75 

 
Time 

2D Laplacianfaces 71.5 4 17.66 
2D Eigenfaces 80.2 27 12.375 
2D Fisherfaces 91.4  9 3.765 

 
Illumination 

2D Laplacianfaces 93.7  3 1.975 
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As we can see in Table 5 the proposed 2D Laplacianfaces method outperforms the 
2D Fisherfaces and the 2D Eigenfaces methods in all the three tests. It improves the 
recognition rate by 2.4%, 6.3%, 3.5% over the 2D Eigenfaces, and 2.2%, 2.9%, 2.3% 
over the 2D Fisherfaces, respectively. It requires also fewer dimensions of projection 
vectors and time to achieve the top recognition rate as shown in the column 5 of Table 
5. Fig. 4 to Fig. 6 show the relationship between the accuracy of the three algorithms 
and the dimension of the feature vectors used for recognition. 

 

Fig. 4. Recognition rate over dimensions of feature vectors (Expressions) 

 

Fig. 5. Recognition rate over dimensions of feature vectors (Time) 

In the figures we can see that for the 2D Laplacianfaces method most of the 
effective discriminant information can be characterized by using only a small number 
of components as opposed to the other two methods where more components have to 
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Fig. 6. Recognition rate over dimensions of feature vectors (Illumination) 

be employed to achieve the top recognition rate. The new method is also stable in 
outperforming the 2D Fisherfaces and the 2D Laplacianfaces methods with various 
number of feature vectors as shown in Fig. 4 to Fig 6. 

4   Conclusions 

In this paper we developed the two dimensional Laplacianfaces method and applied it 
to solve the face recognition problem. The new method has the following properties, 
a) It is locality preserving, which enables the Laplacianfacaes method to handle the 
nonlinearity of the data set more effectively for feature extraction. b) It is more 
efficient than the one dimensional Laplacianfaces by taking advantage of the image 
based projection technique. c) The new algorithm requires fewer feature vectors to 
achieve the highest accuracy rate of classification. Experimental results on the Yale 
and the AR face image databases show that the new algorithm is not only more 
efficient but also more accurate than the 1D Laplacianfaces, the 2D Fisherfaces, and 
the 2D Eigenfaces methods for face recognition.  
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Abstract. New algorithm for partitional data clustering is presented,
Neural Society for Clustering (NSC). Its creation was inspired by hier-
archical image understanding, which requires unsupervised training to
build the hierarchy of visual features. Existing clustering algorithms are
not well-suited for this task, since they usually split natural groups of
patterns into several parts (like k-means) or give crisp clustering.

Neurons comprising NSC may be viewed as a society of autonomous
individuals, proceeding along the same simple algorithm, based on four
principles: of locality, greediness, balance and competition. The same
principles govern large groups of entities in economy, sociology, biology
and physics. Advantages of NSC are demonstrated in experiment with
visual data. The paper presents also a new method for objective and
quantitative comparison of clustering algorithms, based on the notions
of entropy and mutual information.

1 Introduction

To understand and reliably recognize complex images we need a multi-layer
hierarchical system of visual features – small and simple in the bottom, more
and more complex in higher layers. This is how visual perception in the brain is
organized. Several methods for creation of such hierarchy were already proposed:
LeNet convolutional neural network developed by LeCun et al. [1]; HMAX model
of object recognition in cortex by Riesenhuber and Poggio [2]; recent extension
of HMAX by Serre et al. [3]; Neural Abstraction Pyramid by Behnke [4].

However, their performance is still very far from performance of the brain.
One of the reasons for this is underestimation of unsupervised training and
neglecting the possibility of information extraction from patterns themselves,
while the fact that unsupervised training does not require class labels is a big
advantage, especially when creation of a hierarchical system is considered.

Generally, there are three ways to build a hierarchy of visual features: (1)
manually, by giving a mathematical description of every feature; (2) with super-
vised training, by providing examples of input patterns together with their class
labels; (3) with unsupervised training, when class labels are not available.

The main weakness of the first approach is that we do not know what features
should be represented in each layer. We know only roughly what features are

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 862–871, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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recognized at first stages of visual perception. Moreover, the features represented
by biological neurons are fuzzy so it is difficult to define them mathematically.

Supervised training for large, multi-layer systems is intractable, as target clas-
sification is known only in the last layer and it is difficult to back-propagate this
information through many layers, composed of thousands of units. We might try
to use supervised training for each layer separately, starting with the first one
and going up the hierarchy when the previous layer is trained. However, with
this method we must know what features are needed in each layer and we have
to (manually) label all occurrences of all the features in training data.

With unsupervised training, we can build the hierarchy in the most natural
order: from the bottom to the top, layer by layer, without need to label manually
huge amount of data. The reason why unsupervised algorithm could create useful
features is that visual stimuli are not random combinations of pixels. The stimuli
are composed of structures characteristic for the domain of the problem being
solved. These structures occur much more frequently in training images than
they would in purely random data, where pixels are picked independently of each
other. Examples of such frequent structures in the task of face recognition would
be the shapes of mouth, nose or chin. Thus, an unsupervised algorithm which
discovers unusually frequent patterns could produce features that are useful for
image understanding.

To give even stronger evidence that unsupervised training is essential for hi-
erarchical image recognition, we might wonder how the brain learns to recognize
images. Can it be supervised learning? If so, who or what is the supervisor? There
are two possibilities: parents (environment) or genes. The first possibility is un-
likely, since supervision from environment requires well-developed perception to
communicate information between learner and supervisor – and perception is
just what has to be learned. Genes certainly hold large amount of information
about organization of visual perception, since they must describe algorithms
which drive development of perception, but they surely do not describe precisely
every single connection between neurons. Firstly because this is huge amount of
information, too big to be stored in genome. Secondly, this would be extremely
inflexible, making adaptation to environment almost impossible.

The above argument shows that unsupervised training must form the basis
of visual perception development in the brain, so perhaps it could be applied
to computer vision, as well. Moreover, we know that biological perception can
develop properly only in the presence of stimuli, which is yet another argument
for the use of stimuli-driven training in computer vision.

2 Clustering Algorithms

To build the hierarchy in unsupervised manner, we need a clustering algorithm
to train a single layer. More precisely, this should be a partitional algorithm [5],
and it must define a partition of the whole input space, not only of the training
set. It would be also desirable to obtain fuzzy partition, instead of crisp. Only
few existing methods satisfy these requirements. The most popular approaches
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Fig. 1. Partitions obtained by k-means when k is larger (a) or the same (b) as the
number of natural groups in data. In both cases some groups are split into 2 or 3 parts.

are k-means and gaussian mixture model (GMM) [5,6] trained with Expectation
Maximization algorithm. However, both of them have serious disadvantages,
which are overcome by the new algorithm introduced in this paper.

2.1 K-Means

The k-means algorithm finds cluster centers c1, . . . , ck by minimizing:

E(c1, . . . , ck) =
n∑

i=1

min
j=1,...,k

‖xi − cj‖2 , (1)

where n is the number of training patterns [5,6].
One of the weaknesses of k-means is that it partitions natural groups in the

data into several separate clusters, even if k is exactly equal to the number of
groups. This fact is illustrated in Figure 1. Two data sets composed of gaussian
groups of points in the plane are clustered by k-means. For the first one, k = 6,
which is more than the number of groups (3) – like in most of applications,
where the exact number of groups is unknown and larger k should be chosen.
For the second data set, k is equal to the number of groups (9). In both cases
some groups are split into 2 or 3 parts, like a pie. Moreover, several groups from
the second data set fall into the same cluster.

The above-mentioned characteristic of k-means is a weakness if the algorithm
is used to build a hierarchy of visual features, as information propagated to
the next layer incorrectly discriminates between patterns representing the same
distorted prototype, thus biasing feature learning in the next layer.

Another disadvantage of k-means for hierarchical image understanding is that
it assigns every pattern to exactly one cluster, in a crisp way, while some patterns
may lie on the border between two or more features (then several clusters should
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activate), and some others may lie far away from all cluster centers (then all
clusters should be inactivated).

2.2 Gaussian Mixture Models

In gaussian mixture modelling we want to estimate the probability density func-
tion of data using a combination of parameterized normal densities [6]:

f(x; Θ) =
k∑

i=1

wiφ(x; θi) , (2)

such that
∑

wi = 1, Θ = (θ1, . . . , θk, w1, . . . , wk). The mixture is interpreted as
a fuzzy partition of the input space, with cluster membership functions defined
by posterior probabilities that pattern x belongs to component i. Parameters
Θ of the mixture are found by maximization of the log-likelihood L of the data
X = (x1, . . . ,xn), as a function of Θ, which is usually done with Expectation
Maximization (EM) algorithm [6]:

L(Θ;X) = log f(X; Θ) =
∑

i

log f(xi; Θ) . (3)

Clustering with gaussian mixtures seems to be much more sophisticated than
k-means, thus perhaps it could give better results. E.g. if the number of compo-
nents is bigger than the number of natural groups in the data, the mixture model
may (sometimes) converge to a solution where several gaussians share the same
parameters – this situation is easy to detect and fix. Moreover, GMM clustering
is fuzzy, which is better for hierarchical image understanding.

However, despite the sophistication and complexity of GMM+EM algorithm,
for multi-attribute data, e.g. images, it behaves exactly like k-means (!) – this is
what “curse of dimensionality” means for GMM. It comes out that the bound-
aries between fuzzy clusters defined by GMM get so small in multidimensional
space that in fact they disappear. The clustering becomes crisp and then the
EM update rule becomes the same as in k-means.

3 Neural Society for Clustering

This section introduces a new clustering algorithm, Neural Society for Clustering
(NSC), which may be seen as a type of a single-layer artificial neural network.
However, the most important part of the system – its training algorithm – is
devised in a completely different way than for standard neural networks. The
algorithm is not a result of applying an optimization method to some error
function, but instead it is designed to satisfy several simple principles formulated
in natural language. These principles govern real societies in sociology, economy,
biology or even physics – that is why the presented system is called “society”
instead of “network”.
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Similar methodology, like the use of locality or greediness rules, can be found in
Local Transfer Function Classifier (LTF-C) – a neural network for classification
problems introduced by Wojnarski [7]. LTF-C-based systems are double winners
of the EUNITE1 world-wide machine-learning competitions, on “Modelling the
Bank’s Client behaviour using Intelligent Technologies” (2002) and “Prediction
of product quality in glass manufacturing process” (2003).

3.1 General Assumptions

NSC is composed of some number of neurons, which generate activations in the
range of [0; 1]. Every neuron corresponds to one cluster – the neuron activation
defines cluster membership function – thus clusters are fuzzy and may overlap,
or some regions of the input space may belong to no cluster (or have very low
value of membership function).

Further in this paper, we will also use the notion of a neural receptive field,
i.e. the subset of the input space on which the activation of a given neuron is high.
Receptive field is a fuzzy set and in fact it is exactly the cluster represented by
the neuron. Moreover, to find proper values of adaptive parameters of a neuron
means to find a proper receptive field for that neuron, so a neuron is in fact the
receptive field. Thus, in the following sections we will use the notions of cluster,
neuron and receptive field interchangeably.

Training process is composed, as usually, of some number of cycles. Each
cycle consists of: drawing randomly a training pattern, computing responses of
all neurons and adjusting adaptive parameters.

3.2 The Principles

Creation of the training algorithm is a two-stage process. First, general principles
of the training are formulated. Then, specific mathematical formulas are devised,
which should satisfy the general rules. The principles of NSC are the following:

– Locality: the neuron must be activated to undergo training.
– Greediness : the neuron wants to be activated as often as possible, so it gets

positive feedback after (moderate) activation.
– Balance: total activation of the network should be moderate, so neurons get

negative feedback when total activation is too large and positive otherwise.
– Competition : if several neurons activate simultaneously, only the winner

gets positive feedback, others – negative.

The greediness principle does not affect fully activated neurons, because they
do not need a feedback – full activation cannot be even larger. The compe-
tition principle is the most important one, as it drives the process of setting
decision borders (the borders between clusters) in appropriate positions. Let us

1 European Network of Excellence on Intelligent Technologies for Smart Adaptive
Systems, http://www.eunite.org/.
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consider a simple situation depicted in Figure 2. There are two groups of one-
dimensional training patterns (dashes), distributed according to the presented
density function. There are also two neurons, represented by their activation
functions. However, the decision border (point where both activations are equal)
lies far away from the minimum of the density. Will it get closer in next cycles?

neuron 1
neuron 2

density of

patterns

Fig. 2. Illustration of the competition principle. Two neurons (activation functions
are shown) with overlapping reception fields compete, which leads to repositioning of
decision border (dashed line). There is unequal distribution (dashed regions) of training
patterns (dashes in the bottom) on both sides of the border, so their influence (arrows)
is unbalanced and the border moves towards the minimum of density function.

The training process has stochastic nature (patterns are picked randomly),
so we cannot say with certainty what will happen, but we can estimate an
expected modification of neuron positions in the next cycle. Let us consider
possible choices of the next training pattern x:

1. x lies far away from the decision border, where one of the neurons is fully
activated and another one is quiet. In this case modification of adaptive
parameters will be very small, due to the principles of locality (non-activated
neuron does not undergo training) and greediness (fully activated neuron
does not undergo training because its activation cannot be greater any more).

2. x lies to the left from the border, in its vicinity. Then, both neurons activate
moderately, but the first one is the winner, so due to the competition princi-
ple it gets positive feedback and moves the reception field towards x – that
is to the right. The second neuron is the loser, so it gets negative feedback
and moves the reception field further from x – which also means to the right.
Thus, the decision border gets moved to the right, as well, which is denoted
by the right arrow in Figure 2.

3. x lies to the right from the border, in its vicinity. This situation is opposite to
the previous one: now the second neuron is the winner, so it moves towards
x, that is to the left. Similarly, the loser moves further from x, which also
means to the left. In this way, the decision border moves to the left, as well.
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The crucial point to observe is that the distribution of patterns on both sides
of the border is unequal – the dashed area in Figure 2 is larger on the left side
of the border than on the right. Hence, the right arrow is longer than the left
one and the resultant force affecting the border is directed towards a minimum
of density function. Thus, the competition rule drives repositioning of decision
borders, forcing them to move towards decreasing density.

Note that similar principles as given above lie in the basis of many processes
in sociology, economy, biology or physics. For example, the greediness and com-
petition rules govern free-market economy – and this similarity with NSC is not
a surprise, as one of major problems which an economic system must solve is
how to cluster possible business activities and allocate them to firms. Moreover,
the free-market economy achieves this goal by self-organization, as NSC.

3.3 The Training Algorithm

Till now, we have not specified the form of the neural activation function, because
the principles are so general that they can be applied to very different types of
activation functions. In this paper, we will assume sigmoidal form of activations:

fi(x) = σ
(
wT

i x − αi

)
, (4)

where x denotes a presented pattern (vector), wi is a vector of weights, αi is a
threshold, i is the index of a neuron and σ denotes logistic function:

σ(t) =
1

1 + exp(−t)
. (5)

After every cycle, weights and thresholds are adjusted according to the formulas:

wi ← wi + ηwFi x , (6)

αi ← αi − ηαFi , (7)

where ηw and ηα are predefined positive constants and Fi is the total force
affecting the neuron with index i. The total force indicates whether the presented
pattern would have positive or negative influence on the neuron. Namely, if the
force is positive, the weights and the threshold are modified in such a way that
the neuron activation would be stronger if the same pattern x is presented again.
The total force is a combination of balance force, Bi, and competition force, Ci :

Fi = γBi + (1 − γ)Ci , (8)

where γ is a constant in (0, 1). Force Bi realizes the balance principle – it keeps
total activation of neurons around one, while force Ci realizes the competition
and greediness principles – it shifts receptive fields and decision boundaries:

Bi = yi

⎛⎝1 −
∑

j

yj

⎞⎠ , (9)
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Ci = yi(1 − yi)si . (10)

In the above formulas, yi denotes activation of neuron i in the last cycle, the sum
runs over all neurons, and si is the winner indicator after the last presentation:

si =
{

+1, if neuron i is the winner
−1, if neuron i is a loser . (11)

Factors yi in the above formulas guarantee that locality principle is satisfied.

4 The Conformity Index

To perform a quantitative comparison of clustering algorithms, we devised the
conformity index, κ, which measures similarity between two partitions of a data
set. In our experiment, the first partition was the one obtained by NSC or
k-means, and the second was true classification of the data (for NSC the clus-
tering had to be made crisp by taking the most activated neuron for every
pattern).

The difficulty in comparing partitions is that we do not know which clusters
in the first partition correspond to which clusters in the second and it is usually
impossible to draw exact correspondence. To solve this problem, an information-
theoretic approach is used. Given two partitions P1 and P2 of a data set D, they
are treated as random variables defined on D as a discrete stochastic space, with
values in sets of cluster labels. Uniform distribution on D is assumed. Then, the
conformity index is calculated as mutual information of P1 and P2 normalized
by their joint entropy [8]:

κ(P1, P2) =
I(P1; P2)
H(P1, P2)

. (12)

Intuitively, this index says what part of the whole information carried by P1 or
P2 is contained in both of them. Such an index catches the intuition of similar
partitions very well. It takes values between 0 (iff the partitions are stochastically
independent) and 1 (iff the partitions are identical).

5 Experiment

Experiment with a set of artificially generated images was carried out. The data
contained 20x20-pixel gray-scale images of four types: three groups of horizontal
segments in different positions (top, middle, bottom) and a group of vertical
segments. Each group contained 100 patterns of diverse length, orientation and
exact position, as shown in Figure 3. Note the proximity of neighboring hor-
izontal groups and the fact that vertical segments intersected with horizontal
ones from all groups. The groups were also very wide in terms of Euclidean
distance between extreme patterns. Pixel values were between 0 (black) and 1
(white).
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1 2 3

7 8 9

4 5 6

10 11 12

Fig. 3. Examples of training patterns. There are four groups of images: top horizontal
segments (1-3), middle horizontal (4-6), bottom horizontal (7-9) and vertical (10-12).

(a) (b)

Fig. 4. (a) Weights of neurons of NSC (absolute values are depicted). Note the exact
correspondence between meaningful neurons and genuine groups in the data. Unneces-
sary neurons atrophied and do not activate; (b) Cluster centers generated by k-means.
Note that each group but the top horizontal was split into several clusters.

The data were clustered by NSC and k-means with 9 neurons or centers. Ob-
tained neural weights and cluster centers are presented in Figure 4. Conformity
index of the partitions was: 0.96 for NSC and 0.67 for k-means.

We may observe in Figure 4 that k-means splits natural groups into several
clusters. Moreover, the cluster centers represent images that are asymmetric,
distorted and far from prototypes of the groups. Such images are inappropri-
ate as features in hierarchical image understanding. On the other hand, NSC
can properly recognize the whole groups – unnecessary neurons are simply not
used, their receptive fields are pushed away from the training patterns by com-
petition and finally atrophy. As conformity index shows, the obtained partition
corresponds almost perfectly to true classification.

The number of training cycles of NSC was 800. Values of parameters: ηw =
ηα = 0.1, γ = 0.3. Neuron thresholds were initialized with 3 and weights with
randomly picked training patterns scaled by 0.1.
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6 Discussion

New clustering algorithm, Neural Society for Clustering, was presented in this
paper. Development of this algorithm was motivated by the desire to build in
unsupervised manner a hierarchical system for image understanding and recogni-
tion, although NSC is a general-purpose method. Existing clustering algorithms
– k-means and Expectation Maximization for gaussian mixture model – are not
well-suited for this task due to their tendency to split groups of similar patterns
into several parts and because of crisp nature of the partition they produce when
applied to multi-variable data. NSC gives fuzzy clustering and do not split nat-
ural groups of patterns – it can recognize if some neurons are unnecessary. NSC
is based on four principles: of locality, greediness, balance and competition. The
same principles govern real societies in economy, sociology and biology.

The paper presented results obtained by NSC and k-means in clustering of
a data set of images. The results showed that NSC gives indeed a clustering
which is very close to real partition into classes – contrary to k-means, which
produces very fragmented partition. In order to quantitatively compare the al-
gorithms, a measure of quality of partition, conformity index, was devised, based
on the notions of entropy and mutual information. This index is intuitive and
its boundary values are easy to interpret.

In the future, we plan to carry out experiments with real-world data sets,
containing visual as well as non-visual data. We also plan to extend the presented
algorithm to build a hierarchy of visual features.
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Abstract. Indiscernibility threshold is a parameter in rough clustering
that controls the global ability of equivalence relations for discriminating
objects. During its second step, rough clustering iteratively refines equiv-
alence relations so that the coarseness of classification of objects meets
the given level of indiscernibility. However, as the relationships between
this parameter and resultant clusters have not been studied yet, users
should determine its value by trial and error. In this paper, we discuss
the relationships between the threshold value of indiscernibility degree
and clustering results, as a framework for automatic determination of
indiscernibility threshold. The results showed that the relationships be-
tween indiscernibility degree and the number of clusters draw a globally
convex but multi-modal curve, and the range of indiscernibility degree
that yields best cluster validity may exist on a local minimum around
the global one which generates single cluster.

Keywords: Indiscernibility, Clustering, Rough Sets.

1 Introduction

Clustering is characterized as a task of forming groups of similar objects based
on the predefined (dis-)similarity measure and grouping criteria. A lot of ap-
proaches, for example, agglomerative/divisive hierarchical clustering, k-means
and EM algorithms, have been proposed in the literature [1][2] and widely used
for exploratory analysis of real-world data. In order to find the best partition
of objects that maximizes both inter-cluster homogeneity and between-clusters
isolation, clustering methods usually employ geometric measures such as the
variance of distances. However, it becomes difficult to form appropriate clusters
if only a dissimilarity matrix is available as intrinsic information for analysis and
the raw attribute values of data are unavailable or inaccessible. This is because
the lack of attribute-value information may bring a difficulty in computing the
global properties of groups such as centroids. Additionally, the choice of global
coherence/isolation measures is limited if the dissimilarity is defined as a subjec-
tive or relative measure, because such a measure may not satisfy the triangular
inequality for any triplets of objects. Although conventional hierarchical clus-
terings are known to be able to deal with relative or subjective measures, they

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 872–881, 2006.
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involve other problems such as erosion or expansion of data space by intermedi-
ate objects between large clusters and the results are dependent on the orders
of object handling [2].

In order to deal with this problem, we have proposed an indiscernibility-based
clustering method called rough clustering [3]. Rough clustering groups objects
according to the classification induced by a set of N equivalence relations where
N denotes the number of objects. First, an equivalence relation that performs
binary classification according to the local information is independently assigned
to each object. Next, global assessment of classifications is done according to a
parameter called indiscernibility degree. The equivalence relations are iteratively
refined so that the classification of objects meets the given level of indiscernibility.
Consequently, adequately coarse clusters are obtained.

In rough clustering, two factors affect the resultant clusters: (1) initial equiv-
alence relations that form the basic partition of objects, (2) threshold value of
indiscernibility degrees. In previous work, we have shown that (1) minor dis-
turbance in the initial equivalence relations would be absorbed in refinement
steps [4], and (2) there might be a range of indiscernibility degree that yield
high cluster validity. However, these findings were dependent on the determi-
nation method of initial equivalence relations used in the experiments; in that
case density-based determination method. Thus the intrinsic property of the
indiscernibility degree should be analyzed in more systematic way.

In this paper, we discuss the relationships between the threshold value of
indiscernibility degree and clustering results as a framework for automatic de-
termination of indiscernibility threshold. For the purpose of secluding the effect
of the determination method of initial equivalence relations, we employ the per-
fect initial equivalence relations that are derived from class labels of objects.
Based on the perfect equivalence relations, we first examine the relationship be-
tween the threshold value of indiscernibility degree and resultant clusters. After
that, we apply random disturbance to the perfect relations, and examine how
the result changes.

The remainder of this paper is organized as follows. Section 2 gives a brief
explanation of rough clustering. Section 3 describes experimental results on ar-
tificial datasets, and Section 4 concludes the technical results.

2 Rough Clustering

This section gives a brief overview of rough clustering, which is also referred to
as indiscernibility-based clustering. This method is based on iterative refinement
of N binary classifications, where N denotes the number of objects. First, an
equivalence relation, that classifies all objects into two classes according to the
local relative proximity, is assigned to each of N objects. Next, for each pair of
objects, the number of binary classifications in which the pair is included in the
same class is counted. This number is termed the indiscernibility degree. If the
indiscernibility degree of a pair is larger than a user-defined threshold value, the
equivalence relations may be modified so that all of the equivalence relations
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commonly classify the pair into the same class. This process is repeated until
class assignment becomes stable. Consequently, we may obtain the clustering
result that follows a given level of granularity. The main benefits of this method
is that (1) it can handle relative proximity, where no geometric measure such as
centroids can not be defined, (2) it can take dissimilarity matrix as input and
does not require any direct reference to the original data value.

There are two parameters that control the behavior of this clustering method:
the threshold value Th for refinement of equivalence relations and the number Nr

of iteration of refinement. As shown in the experiments, Nr can be determined
automatically, because the equivalence relations will be stable after several cycles
of refinement. The refinement process can be terminated when no candidates for
refinement appear.

2.1 Assignment of Initial Equivalence Relations

Let U = {x1, x2, ..., xN} be the set of objects we are interested in. An equivalence
relation Ri for object xi is defined by

U/Ri = {Pi, U − Pi}, (1)

where
Pi = {xj | d(xi, xj) ≤ Thdi}, ∀xj ∈ U. (2)

d(xi, xj) denotes dissimilarity between objects xi and xj , and Thdi denotes an
upper threshold value of dissimilarity for object xi. The equivalence relation,
Ri classifies U into two categories: Pi, which contains objects similar to xi and
U − Pi, which contains objects dissimilar to xi. When d(xi, xj) is smaller than
Thdi, object xj is considered to be indiscernible to xi. U/Ri can be alternatively
written as U/Ri = {{[xi]Ri}, {[xi]Ri}}, where [xi]Ri ∩ [xi]Ri = φ and [xi]Ri ∪
[xi]Ri = U hold.

Methods for constructing initial equivalence relations, including the choice of
dissimilarity measure, is arbitrary under the condition that it has the ability
of performing binary classification of U . For example, one can simply use Eu-
clidean distance and k-means with cluster number 2, if it is appropriate based on
the property of the data. We have introduced a method for constructing initial
equivalence relations based on the denseness of the objects in [3]; however, one
may use another approach for this purpose.

2.2 Refinement of Initial Equivalence Relations

In the second stage, we perform global optimization of initial equivalence rela-
tions so that they produce adequately coarse classification to the objects. The
global similarity of objects is represented by a newly introduced measure, the
indiscernibility degree. Rough clustering takes a threshold value of the indiscerni-
bility degree as an input and associates it with the user-defined granularity of the
categories. Given the threshold value, we iteratively refine the initial equivalence
relations in order to produce categories that meet the given level of granularity.
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Now let us assume U = {x1, x2, x3, x4, x5} and classifications of U by R =
{R1, R2, R3, R4, R5} is given as follows.

U/R1 = {{x1, x2, x3}, {x4, x5}},

U/R2 = {{x1, x2, x3}, {x4, x5}},

U/R3 = {{x2, x3, x4}, {x1, x5}},

U/R4 = {{x1, x2, x3, x4}, {x5}},

U/R5 = {{x4, x5}, {x1, x2, x3}}. (3)

This example contains three types of equivalence relations: R1 (= R2 = R5), R3
and R4. Since each of them classifies U slightly differently, classification of U
by the family of equivalence relations R, U/R, contains four very small, almost
independent categories.

U/R = {{x1}, {x2, x3}, {x4}, {x5}}. (4)

In the following we present a method to reduce the variety of equivalence rela-
tions and to obtain coarser categories.

First, we define an indiscernibility degree, γ(xi, xj), for two objects xi and xj

as follows.

γ(xi, xj) =
∑|U|

k=1 δindis
k (xi, xj)∑|U|

k=1 δindis
k (xi, xj) +

∑|U|
k=1 δdis

k (xi, xj)
, (5)

where

δindis
k (xi, xj) =

{
1, if (xi ∈ [xk]Rk

∧ xj ∈ [xk]Rk
)

0, otherwise. (6)

and

δdis
k (xi, xj) =

⎧⎨⎩
1, if (xi ∈ [xk]Rk

∧ xj �∈ [xk]Rk
)

or if (xi �∈ [xk]Rk
∧ xj ∈ [xk]Rk

)
0, otherwise.

(7)

Equation (6) shows that δindis
k (xi, xj) takes 1 only when the equivalence rela-

tion Rk regards both xi and xj as indiscernible objects, under the condition
that both of them are in the same equivalence class as xk. Equation (7) shows
that δdis

k (xi, xj) takes 1 only when Rk regards xi and xj as discernible objects,
under the condition that either of them is in the same class as xk. By summing
δindis
k (xi, xj) and δdis

k (xi, xj) for all k(1 ≤ k ≤ |U |) as in Equation (5), we ob-
tain the percentage of equivalence relations that regard xi and xj as indiscernible
objects. Note that in Equation (6), we excluded the case when xi and xj are
indiscernible but not in the same class as xk. This is to exclude the case where
Rk does not significantly put weight on discerning xi and xj . As mentioned in
Section 2.1, Pk for Rk is determined by focusing on similar objects rather than
dissimilar objects. This means that when both of xi and xj are highly dissimilar
to xk, their dissimilarity is not significant for xk, when determining the dissim-
ilarity threshold Thdk. Thus we only count the number of equivalence relations
that certainly evaluate the dissimilarity of xi and xj .
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From its definition, a large γ(xi, xj) represents that xi and xj are commonly
regarded as indiscernible objects by the large number of the equivalence relations.
Therefore, if an equivalence relation Rl discerns the objects that have high γ
value, we consider that it represents excessively fine classification knowledge
and refine it according to the following procedure (note that Rl is rewritten as
Ri below for the purpose of generalization).

Let Ri ∈ R be an initial equivalence relation on U . A refined equivalence
relation R′

i ∈ R′ of Ri is defined as

U/R′
i = {P ′

i , U − P ′
i}, (8)

where P ′
i denotes a set of objects represented by

P ′
i = {xj |γ(xi, xj) ≥ Th}, ∀xj ∈ U. (9)

and Th denotes the lower threshold value of the indiscernibility degree above, in
which xi and xj are regarded as indiscernible objects. It represents that when
γ(xi, xj) is larger than Th, Ri is modified to include xj into the class of xi.

2.3 Iterative Refinement of Equivalence Relations

It should be noted that the state of the indiscernibility degrees could also be
changed after refinement of the equivalence relations, since the degrees are re-
calculated using the refined family of equivalence relations R′. Thus we iterate
the refinement process using the same Th until the categories become stable.
Note that each refinement process is performed using the previously ’refined’ set
of equivalence relations.

3 Experimental Results

3.1 Perfect Equivalence Relations

Our aim is to analyze the relationships between the threshold value Th of in-
discernibility degree γ and cluster numbers, while minimizing the influence of
methods for determining initial equivalence relations in step 1. We prepared
equivalence relations called perfect equivalence relations, which can classify the
data into correct groups. Taking them as initial equivalence relations, we per-
formed step 2 of the rough clustering several times by changing Th and observed
the change of resultant clusters. We also performed clustering experiments on
randomly disturbed perfect equivalence relations.

A perfect equivalence relation Ri for object xi is denoted as follows.

U/Ri = {Pi, U − Pi}, (10)

where
Pi = {xj | c[xi] = c[xj ]}, ∀xj ∈ U. (11)

where c[xi] denotes the class label of xi assigned when creating the dataset. Ob-
viously, the types of perfect equivalence relations in R are equal to the number
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Table 1. Number of data points in datasets

Dataset CBS 1 CBS 2 CBS 3 CBS 4 CBS 5 total
c3-1 52 40 93 – – 185
c3-2 224 31 177 – – 432
c5-1 52 171 148 215 55 641
c5-2 64 164 126 58 155 567

of classes in the dataset, because if objects xi and xj belong to the same class,
Ri and Rj become identical.

3.2 Datasets

We artificially created a total of four numerical datasets named c3-1, c3-2, c5-1,
and c5-2 shown in Table 1. Datasets c3-1 and c3-2 contain three clusters, and
c5-1 and c5-2 contain five clusters respectively. The number of data points in
each cluster was controlled to be substantially different and in balanced, because
the balanced data may induce special effect of Th on a specific range. The data
points were generated based on a two-dimensional normal distribution for easy
visualization; however, note that the geometric distribution of data points is not
significant in this experiment because we used only their class labels for creating
the perfect equivalence relations.

3.3 Procedures

The following procedure was applied to each dataset.

1. Form perfect initial equivalence relations: according to E’s. (10) and (11),
assign a perfect initial equivalence relation for each xi ∈ U .

2. Disturb the initial relations: Select one of the following disturbance opera-
tion randomly at each time and apply it to initial relations. This process is
repeated card(Pi) × ρ times, where ρ denotes disturbance ratio (from 0.0 to
1.0, interval 0.2).

Delete: Randomly select one element in Pi and remove it from Pi.
Add: Randomly select one element from U and add it to Pi.

Replace: Randomly select one element from Pi and replace it with randomly
selected element in U .

3. Clustering: Apply the iterative refinement process of rough clustering to the
disturbed initial equivalence relations and obtain clusters. This process is
repeated by changing Th (from 0 to 1.0, interval 0.05) . For each Th, calculate
the validity of clustering result according to the following measure.

vR(C) = min
(

|XR ∩ C|
|XR| ,

|XR ∩ C|
|C|

)
,

where XR and C denote the obtained clusters and original classes,
respectively.
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Fig. 1. Results for Dataset c3-1. Left: Number of clusters. Right: Cluster Validity.
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Fig. 2. Results for Dataset c3-2. Left: Number of clusters. Right: Cluster Validity.

3.4 Results and Discussions

Figures 1-4 show the results on the four datasets respectively. Each of the figures
consists of two sub-figures: Th-Number of clusters curves (left) and Th-Cluster
Validity curves (right). The horizontal axis corresponds to the threshold value
Th of indiscernibility degree γ. The vertical axis corresponds to the number of
clusters or cluster validity for the left or right figure, respectively. Each figure
contains six curves indexed by “ρ = x”, which corresponds to the ratio of dis-
turbance of the perfect initial equivalence relations described previously.

Let us first see the global characteristics the curves. At Th = 0, every equiva-
lence relation was modified to include all objects. This means that, regardless of
the characteristics of initial equivalence relations, all objects would be grouped
into the same cluster. Therefore the number of clusters was always 1 at Th = 0.
The cluster validity took a constant value which was dependent only to the class
distribution of the dataset (around 0.5 or 0.3 for the datasets used here).

When ρ = 0, initial equivalence relations were identical to the perfect relations
since no disturbance was applied. In this case the indiscernibility degrees were 0
for all pairs of objects belonging to different clusters, and 1 for those belonging
to the same cluster. Therefore, correct clusters of validity=1 were formed for all
values of Th > 0 without any refinement.
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Fig. 3. Results for Dataset c5-1. Left: Number of clusters. Right: Cluster Validity.
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If ρ > 0, situations become close to those of real-world datasets. The variety
of initial equivalence relations drastically increase because of disturbance. Even a
small difference of equivalence relations results in producing fine clusters due to
the increase of total discrimination ability. Hence, without refinement of the rela-
tions, excessively large number of fine clusters would be produced. Let us first see
the case of dataset c3-1 in Figure 1. For large values of Th > 0.8, only a few equiv-
alence relations satisfied the condition for refinement in CEQ. (9). As most of the
relations remained unchanged, the number of induced clusters kept high value -
almost equal to the number of objects in the dataset. When Th became smaller,
the number of equivalence relations to be refined increased. The refinement made
classification coarser and made the number of clusters smaller, inducing the in-
crease of cluster validity. The level of Th for starting this improvement was higher
if ρ was smaller, because at smaller ρ initial equivalence relations were only slightly
and locally modified from the perfect equivalence. Therefore, the indiscernibility
degree of each object pairs kept high value, while the types of equivalence relations
are quite large. As ρ becomes larger, more severe and global disturbance could oc-
cur. Since it induced the decrease of average level of the indiscernibility, the values
of Th should be smaller to do the necessary refinement.

For 0.5 > Th > 0.1, the number of clusters kept 3 with the highest validity of
1. In this range, the method could produce the correct cluster assignment with
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the help of iterative refinement of the disturbed initial equivalence relations. The
range became narrow as ρ became small. For example, when ρ = 0.6 the range
was about 2.7 > Th > 1.8 and when ρ = 1.0, there was no range of Th that could
generate the correct cluster assignment. If there exists too much disturbance,
the level of indiscernibility degrees for objects that should belong to the same
cluster would be close to those of objects that belong to different clusters. Hence
it would be difficult to form correct clusters, especially for small clusters.

For small values of Th < 0.1, the number of clusters decreased to 1, followed
by the decrease of cluster validity. In this range, too coarse cluster was obtained
due to too much refinement of equivalence relations. Let us denote by minγ

the minimum value of indiscernibility degrees. Actually, for Th < minγ , the
results are identical with the case of Th = 0, due to the discrete property of
indiscernibility degree.

The above characteristics were commonly observed for all the other datasets
used in this experiment. It demonstrated that, by changing the threshold value
of indiscernibility degree, we could control the roughness of classification knowl-
edge, namely, granularity of the data.

Furthermore, an interesting feature about the number of clusters was observed
on all datasets. Around Th = 0.1 − 0.2, there existed a short spike at the left
end of the range for yielding the correct number of clusters. Although it could
disappears on extremely disturbed cases, the convex features of the curve may
be used for determining the best range of Th semi-automatically.

4 Conclusions

In this work, we have empirically investigated the characteristics of indiscerni-
bility degree in rough clustering. By the use of perfect equivalence relations, we
could observe more basic relationships between the threshold value of indiscerni-
bility degree and resultant clusters, without the effect of methods for determining
initial equivalence relations. The result demonstrated that the threshold param-
eter might be associated with roughness of knowledge, which also controls the
granularity of dataset. Additionally, although it still requires exploratory ap-
proach, the convex shape of th-AC curve suggested the possibility of guiding
appropriate range of the thresholds. It remains as a future work to investigate
the reason why these spikes occur. The future work also include comparison with
other methods, e.g, classical hierarchical and partitional clustering methods [2]
and rough set-based clustering methods [5].
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Abstract. A fuzzy neighborhood model for analyzing information sys-
tems having topological structures on occurrences of keywords is pro-
posed and algorithms of clustering, classification and approximations
similar to generalized rough sets are developed. Real applications in-
clude text mining and clustering of keywords on the web. An illustrative
example is given.

1 Introduction

Motivations for a new theory of text mining and web information analysis are be-
coming stronger. From the viewpoint of rough sets [9,10], the classical framework
of classifications of the universal set is frequently insufficient, and more general
structure of the topology should be considered, as texts and web information
have natural topologies.

Topologies in general applications can be of different types. First, topologies
in the sense of mathematics in applications should actually be metrics or dis-
tances, and it is true that texts and web information have natural distances.
However, the distances in these applications are difficult to compute, or require
huge computation, as the distances should be calculated even between very far
elements.

What we propose in this paper is fuzzy neighborhoods that are calculated
from the distances. The fuzzy neighborhoods have finite supports, in other words,
they are zero outside of finite sets whereby calculation becomes easier. It should
also be noted that the fuzzy neighborhoods are different from the mathematical
neighborhood. Instead, the former is simply fuzzy sets naturally induced from
distances.

We study methods of clustering, classification, and approximation using this
model of fuzzy neighborhood. The approximation is similar to that used in gen-
eralized rough set [12].
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2 Term Space and Fuzzy Neighborhood Space

Throughout this paper, we assume A(x) means the membership value of fuzzy
set A at x instead of the classical symbol μA(x). Moreover supp(A) means the
crisp set on which A(x) > 0.

The fuzzy neighborhood model basically consists of the quadruple

< T, O, R, N > (1)

in which T is called a term set in which generic elements are denoted by
t, t′, ti, . . . ∈ T ; O is called an occurrence space in which generic elements are
denoted by o, o′, oi, . . . ∈ O. T is generally a finite set, while O can be either
finite or infinite, and we need not observe all elements of O in general. R is a
fuzzy relation on T × O, while N is a fuzzy relation on O × O. We moreover
define a family of fuzzy sets N [o] of the same symbol:

N(o, o′) = N [o](o′), ∀o′ ∈ O. (2)

That is, N [o] is a fuzzy set that is dependent on o, which is defined by the above
equation. The fuzzy set N [o] is called a fuzzy neighborhood of o ∈ O.

The above is a very simple and general model but when we add more structures
and give adequate interpretations, this model becomes an useful framework in
applications.

Let PT be the projection of a fuzzy set of T × O onto T :

PT (R)(t) = sup
o∈O

R(t, o).

while
PO(R)(t) = sup

t∈T
R(t, o).

We assume
supp(PT (R)) = T, (3)

but generally
supp(PO(R)) �= O. (4)

In applications, the set T is a set of keywords which we wish to classify or
make approximations. In real worlds, the keywords may occur many times in a
text, or distributed on web pages. Hence keyword occurrences are represented by
o, o′ . . . ∈ O. When o means a keyword t, R(t, o) = 1. However, there are similar
keywords and hence generally 0 ≤ R(t, o) ≤ 1. When an occurrence o does not
correspond to any keyword t, R(t, o) = 0. Hence (3) implies that all keywords
occur at least once in O including fuzzy correspondence, and (4) means there
are nonsense or uninteresting occurrences in O. We hereafter use the word of a
term instead of a keyword.

N [o] shows a neighborhood of occurrence o. When a distance d(o, o′) is defined
on O, we can define N [o] by the next procedure.
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(i) Let f : R∪{0} → [0, 1] be a strictly monotonically decreasing function such
that f(0) = 1 and there exists a positive number M satisfying

f(x) = 0, M ≤ x < +∞. (5)

(ii) Define N [o] by
N [o](o′) = f((d(o, o′)). (6)

Notice that the relation N(o, o′) defined by (6) satisfies the symmetry

N(o, o′) = N(o′, o).

There are, however, other ways to define directly the neighborhoods and hence
generally the relation is not always symmetric.

We moreover state additional assumptions.

(I) Reflexivity: N(o, o) = 1 for all o ∈ O.
(II) Finiteness: For an arbitrary o ∈ O, |supp(N [o])| < +∞, i.e., the number of

elements which have nonzero membership values are finite.

The interpretation of N [o] is straightforward, If N [o](o′) > N [o](o′′), then o′

is nearer to o than o′′. If N [o](o′) = 0, then the relation of o to o′ is neglected
by the model.

2.1 Text Mining: Term Relations in Text Sets

Let the set of documents be D = {d1, d2, . . . , dn}. A document d consists of a
sequence of occurrences. For simplicity suppose an occurrence corresponds to a
unique term. We handle a sequence of occurrences, and accordingly we define
Sqnc(d) is the sequence of occurrences. For example assume Sqnc(d) = abcde
and term of a, b, d is t; term of c and e is t′. Then Sqnc(d) = ttt′tt′ using the
term symbols.

From technical reason we define concatenation of two document sequences by
Sqnc(d)|Sqnc(d′). Thus if

Sqnc(d) = abcd, Sqnc(d′) = vwxyz,

then
Sqnc(d)|Sqnc(d′) = abcdvwxyz.

The whole sequence X of the document set D is

X = Sqnc(d1)|Sqnc(d2)| · · · |Sqnc(dn).

A natural distance D is defined:

D(a, b) = { number of term occurrences between a and b } + 1
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For the above d and d′, D(v, w) = 1 and D(v, z) = 4. Thus for this distance the
fuzzy neighborhood is naturally defined. The next two are typical examples.
Crisp and fuzzy neighborhoods NCK [a] and NFK [a]:

NCK [a](x) =

{
1 (D(a, x) ≤ K),
0 (D(a, x) > K).

NFK [a](x) =

{
1 − D(a, x)/K (D(a, x) ≤ K),
0 (D(a, x) > K).

The meanings of these neighborhoods are clear.

2.2 Information on Web

Although information on web has complicated structures, the simplest formu-
lation is to assume the set of occurrences to be a network. Thus, the distance
on the network is defined by the shortest path and then the present framework
should be employed. It should be noted that fast algorithms of shortest path
can be employed. The above notations are directly applicable and we omit the
details.

3 Methods of Classification and Clustering

Relatively simple methods as well as advanced algorithms can be developed
based on this framework. We describe simple classification methods and algo-
rithms of clustering.

3.1 Nearest Neighbor and k-Nearest Neighbor Classifications

Since the present model is nonprobabilistic, parametric methods cannot be ap-
plied, and hence the well-known approaches of nearest neighbor and k-nearest
neighbor [2] should be used. Clearly the objective of classification is to obtain
classification rules defined on the term set T based on partial information based
on previous observations.

Partial information is assumed to be on occurrences. Thus we assume crisp
subsets C1 and C2 of O such that C1 ∩C2 = ∅. These sets represents class 1 and
2, respectively.

Our objective is to classify a term t into one of the two classes. Note

R−1(t) = R(t, ·), i = 1, 2. (7)

is a fuzzy set of O
To define a generalized k-nearest neighbor method, let us review the OWA

operator with weight w = (w1, . . . , wk):

OWA(A, w) =
k∑

i=1

wi · Ord(A; i) (8)
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in which Ord(A; i) is the i-th largest element when A(o1), . . . , A(on) are arranged
into decreasing order. Hence Ord(A, 1) is the largest, Ord(A, 2) is the second
largest, and Ord(A, n) is the smallest among A(o1), . . . , A(on).

Using the OWA operator, the following rule can be applied when t should be
classified:

t → class 1 ⇐⇒ OWA(C1 ∧ R−1(t), w) > OWA(C2 ∧ R−1(t), w),

t → class 2 ⇐⇒ OWA(C1 ∧ R−1(t), w) < OWA(C2 ∧ R−1(t), w),

and note that the class of t cannot be decided when OWA(C1 ∧ R−1(t)) =
OWA(C2 ∧ R−1(t)).

This method is rather simple and does not use the topology defined by N . A
natural method using N is to extend Ci into N ◦ Ci. Thus the extended rule is:

t → class 1 ⇐⇒ OWA(C1 ∧ (N ◦ R−1)(t), w) > OWA(C2 ∧ (N ◦ R−1)(t), w),

t → class 2 ⇐⇒ OWA(C1 ∧ (N ◦ R−1)(t), w) < OWA(C2 ∧ (N ◦ R−1)(t), w).

Moreover we can use N j ◦ R−1 (j = 2, 3, . . .) or N∗ ◦ R−1 instead of N ◦ R−1,
where N∗ is the transitive closure of N .

3.2 Agglomerative Hierarchical Clustering

Different methods of agglomerative hierarchical clustering [3,5] of terms can be
considered. We begin with the simplest method of the transitive closure.

The Method of Transitive Closure
Let us suppose that N is a symmetric relation. A reflexive and symmetric relation
S on T × T which represents similarity between two terms can be derived using
R and N :

S = R ◦ N ◦ R−1. (9)

It has been well-known that the transitive closure

S∗ = S ◦ S2 ◦ · · · (10)

is a fuzzy equivalence relation that generates the same hierarchical classification
as the single link method in agglomerative clustering [5,7,4].

Similarity Measures and General Procedure
While the above method employs the sup-min composition, other natural idea
to use the sum is also adequate.

p1(t, t′) =
∑
a∈O

∑
b∈O

R(t, a) ⊗ N(a, b) ⊗ R(t′, b) (11)

s1(t, t′) =
p1(t, t′)√

p1(t, t)p1(t′, t′)
. (12)
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The operation ⊗ is a t-norm type of operation including the minimum and
algebraic product. Note moreover that the similarity measure s1 is normalized.

We next show the general procedure AHC of agglomerative clustering in
which G = {G1, . . . , GC} is a family of clusters G1, . . . , GC which forms a parti-
tion of T .

Algorithm AHC (Agglomerative Hierarchical Clustering).
AHC0. Put the number of clusters C = |T |; initialize clusters:

Gi = {ti}, i = 1, . . . , C; s(Gi, Gj) = s(ti, tj), all i, j.
AHC1. Calculate (G, G′) = arg max

1≤i,j≤C,i�=j
s(Gi, Gj).

Put Ĝ = G ∪ G′. Remove G, G′ from G and add Ĝ to G.
AHC2. Let C = C − 1. If C = 1, output the dendrogram and stop.

Else update s(Ĝ, G′′), ∀G′′ ∈ G, and go back to AHC1.
End of AHC.

Note 1. Gnenerally the maximizing pair (G, G′) is not unique in which case one
of them should be selected. In the case of SL, this selection has no effect in
the output, whereas other methods may have different outputs according to the
selection [5,7].

Calculation of s1(G, G′) uses natural idea of regarding terms in a cluster to
be identical. Hence we have

p1(G, G′) =
∑
t∈G

∑
t′∈G′

p1(t, t′) (13)

s1(G, G′) =
p1(G, G′)√

p1(G, G)p1(G′, G′)
. (14)

Crisp and Fuzzy c-Means Clustering
Crisp and fuzzy c-means algorithms [1,2] are most well-known methods of non-
hierarchical clustering. These methods use cluster centers and hence similarity
between a term or cluster and the center should be defined.

We describe fuzzy c-means algorithm based on an entropy [6,7,4], but the
standard algorithm [1] is derived likewise.

Let Gi be a fuzzy cluster

Gi =
∑
tk∈T

uik|tk

Put also
‖Gi‖2 =

∑
k

u2
ik‖tk‖2,

Note 2. uik is the membership of tk to the cluster i [1,7], and
∑

tk∈T uik|tk is an
abbreviated notation of the fuzzy set Gi where the membership is μGi(tk) = uik,
tk ∈ T .
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A cluster center, denoted by zi, is assumed to be a fuzzy set of terms

zi =
∑
tk∈T

wik|tk (15)

We should determine wik that satisfies

max
z

s1(Gi, zi).

We also put

p1(Gi, z) =
∑
tk∈T

uikp1(tk, z),

s1(Gi, z) =
p1(Gi, z)

‖Gi‖
√∑

tk∈T w2
ik‖tk‖2

.

The detailed calculation of zi is omitted here; the solution of wik is given by

wik =

(∑
tr∈T

‖tk‖4(
∑

ts∈T uisXr)2

‖tr‖2(
∑

ts∈T uisXk)2

)− 1
2

,

where Xi =
∑
a∈O

∑
t′∈T

∑
b∈O

R(ti, a) ⊗ N(a, b) ⊗ R(t′, b). The membership uik for

clusters is given by the ordinary formula:

uik =
exp(λs(Gi, zi))∑
k exp(λs(Gk, zk))

(16)

Hence iterative calculation of the last equation and the cluster center until con-
vergence leads to the solution of fuzzy c-means clustering.

For crisp c-means, the membership employs the following nearest center allo-
cation rule instead of (16), while the cluster centers are using the same formula
as the entropy-based fuzzy c-means.

uik =

{
1 (i = arg min

1≤j≤c
‖xk − vi‖),

0 (otherwise).

4 Upper and Lower Approximations

Given a fuzzy set A of T , we can define upper approximation U(A) and lower
approximation L(A) using the fuzzy neighborhood.

For this purpose we consider two families of subsets of T :

U(A) = {C ∈ 2T : A ◦ R ◦ N ⊆ C ◦ R},

L(A) = {D ∈ 2T : D ◦ R ◦ N ⊆ A ◦ R}.
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The minimum subset in U(A) is defined to be the upper approximation and the
maximum element in L(A) is the lower approximation.

U(A) =
⋂

C∈U(A)

C, L(A) =
⋃

D∈L(A)

D.

5 An Illustrative Example

To save space, a simple illustrative example and results from the crisp and fuzzy
c-means are described, as they are most advanced methods among those de-
scribed above. Consider the text mining model in section 2.1. Three classes of
{A, B, C, D, C}, {i, j, k, l}, and {X, Y, Z} should be clustered. Five data sets one
of which is shown next have been prepared. In the next example, a colon shows
separation of documents and hence a neighborhood does not intersect between
two sequences with a comma.

E,C,A:i,j,l:X,Y:j,i,k:D,E,B:X,Z,Y:i,l,j:E,C,B:
X,Z,Z:j,l:B,D:k,i:X,Z:B,A:i,l:B,A,A,C,D:X,Y,Y

The neighborhoods are given by

N(x, y) =

{
F (D(x, y)) (D(x, y) ≤ K),
0 (K < D(x, y)).

where either F (D(x, y)) = 1 or F (D(x, y)) = 1/D2(x, y) is used. The data
sets are basically well-separated for the three classes, the objective is to check
whether or not the algorithms correctly work. As a result, fuzzy c-means always
provide the correct result when the algorithm is convergent, while crisp c-means
mostly produce the correct result with a few exceptions. However, the ratio of
convergence is not high, as shown in the next tables that show convergence ratios
in percentages with different values of K and the two choices of F (D(x, y)).

Crisp neighborhood F = 1:
K 2 3 4 5 6 7

Data1 4 0 0 0 0 0
Data2 32.5 71.5 79 87 53.5 0
Data3 52.5 57 89.5 84 94.5 99.5
Data4 0 0 0 0 0 0
Data5 51.5 16 0 0 0 0

Fuzzy neighborhood F = 1
D2 :

K 2 3 4 5 6 7
Data1 3.5 2 1.5 2 3.5 1.5
Data2 57.5 61.5 79 70 65.5 60.5
Data3 16 19.5 26 18.5 31.5 32.5
Data4 2.5 1 3 2.5 1 1
Data5 61.5 58.5 51.5 50 52 57.5

In short, these results show that the methods of c-means correctly work, but
there are much rooms for further improvement.
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6 Conclusion

We have described a model of fuzzy neighborhood space in which methods of
classification, clustering, and approximations of terms have been proposed. In
applications, clustering of information on the web such as vivisimo [11] and
Lingo [8] is promising. Moreover text mining techniques using this framework
are more advanced than current algorithms, since the fuzzy neighborhood space
can handle refined structures of various texts.

Since the present framework is new, there are many possibilities for further
research in both theory and applications.
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Abstract. In the field of marketing, companies often carry out a questionnaire to
consumers for grasping their impressions of products. Analyzing the evaluation
data obtained from consumers enables us to grasp the tendency of the market and
to find problems and/or to make hypotheses that are useful for the development
of products. Semantic Differential (SD) method is one of the most useful meth-
ods for quantifying human-impressions to the objects. The purpose of this study
is to develop a method for visualization of individual features in data. This paper
proposes the clustering method based on Orthogonal Procrustes Analysis (OPA).
The proposed method can cluster subjects among whom the distributed structures
of the SD evaluation data are similar. The analysis by this method leads to dis-
covery of majority/minority groups and/or groups which have unique features. In
addition, it enables us to analyze the similarity/difference of objects and impres-
sion words among clusters and/or subjects by comparing the cluster centers and/or
transformation matrices. This paper applies the proposed method to an actual SD
evaluation data. It shows that this method can investigate the similar relationships
among the objects in each group and compare the similarity/difference of impres-
sion words used for the evaluation of objects among subjects in the same cluster.

1 Introduction

In the field of marketing, companies often carry out a questionnaire to consumers for
grasping their impressions of products. Analyzing the evaluation data obtained from
consumers enables us to grasp the tendency of the market and to find problems and/or to
make hypotheses that are useful for the development of products. Semantic Differential
(SD) method is one of the most useful methods for quantifying humans’ impressions to
the objects. The SD method uses some pairs of adjectives (impression words) having
antithetical meanings with five/seven discrete levels, and subjects (consumers) evaluate
the objects with these adjectives.

There are two types of principal approaches to analyze SD evaluation data. The first
approach is to analyze the averaged data by using statistical methods. The second one is
to analyze the individual data based on individual differences. The first approach trans-
forms the structure of data from “Subjects” × “Objects” × “Impression Words” into
“Objects” × “Impression Words” by averaging the SD evaluation data to apply statisti-
cal methods. This approach is useful to discover the common factors for whole subjects.
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However, this approach loses the information of individual features which the evalua-
tion data originally has. The second approach can cover this shortcoming. Murakami et
al. [1] examined the modeling and the evaluation of the individual differences included
in the SD evaluation data employing three-mode factor analysis, and they described the
rotation of factors and the decision method for the number of factors. Nakamori et al. [2]
proposed the method to recognize the impression words as fuzzy objects in the factor
space by mapping individual SD evaluation data onto the factor space composed of the
average data. Toyoda [3] proposed an exploratory positioning analysis method based on
a three-mode multivariate statistical model to analyze SD evaluation data. Yamamoto et
al. [4] proposed useful method to analyze the differences of impression among subjects
by the application of the Procrustes analysis (Orthogonal Procrustes Analysis: OPA) to
SD evaluation data with an assumption that the information of the objects is equal to
the subjects. The OPA identifies an orthogonal transformation matrix to minimize the
sum of squares of the residual between two data distributions [5].

It is general that SD evaluation data obtained from many subjects are classified by
stratified criterion based on the purpose of the analysis such as age, living area, occupa-
tion and so on. In addition, Yamamoto et al. [6] proposed a clustering method based on
the individuality that is different from the conventional stratified analysis. The method
defines the difference of the data structure and distribution between the averaged SD
evaluation data and the individual one as the individuality of scale and that of impres-
sion words, and it classifies the subjects into four groups based on these individualities.

The purpose of this study is to develop a method for visualization of individual fea-
tures in SD evaluation data. The authors focuse on the distributed structure of data. The
distributed structure represents the relationships among the objects, which depend on
each subject’s sensibility. Then this paper defines the distributed structure as one of the
individual features, and tries to cluster the subjects based on it. This paper also uses
Cluster Analysis (CA) and Principal Component Analysis (PCA) for the visualization
of the clustering results.

This paper proposes the clustering method based on OPA. The proposed method can
cluster subjects among whom the distributed structures of the SD evaluation data are
similar. The analysis by this method leads to discovery of majority/minority groups
and/or groups which have unique features. In addition, it enables us to analyze the simi-
larity/difference of objects and impression words among clusters/subjects by comparing
the cluster centers/transformation matrices.

This paper applies the proposed method to an actual SD evaluation data, which is
the evaluation of laptop photo images by SD method, and it analyzes the data through
the visualized results. It describes some features of discovered majority and minority
groups, and it shows that this method can investigate the similar relationships among
the objects in each group and compare the similarity/difference of impression words
used for the evaluation of objects among subjects in the same cluster.

2 Proposed Method

This paper uses the OPA [5] for comparing distributed structures. The proposed method
defines the value of objective function of the OPA as the dissimilarity measure between
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individuals. Matrix Ai represents the i-th SD evaluation data, in which the number of
data points (objects) is n, and the number of dimensions (impressin words) is p. Matrix
Bk represents the k-th cluster center matrix, which has the same size with Ai.

The residual matrix Eik is defined as Eq. (1) using the orthogonalization transfor-
mation matrix T i identified by OPA for transforming the matrix Ai into the matrix Bk.

Eik = AiT i − Bk (1)

Therefore, the dissimilarity measure between the matrix Ai and the matrix Bk is
defined as

tr
{
ET

ikEik

}
= tr

{
(AiT i − Bk)T (AiT i − Bk)

}
. (2)

The objective function of the proposed method is expressed as

C∑
k=1

∑
i∈Gk

tr
{
ET

ikEik

}
=

C∑
k=1

∑
i∈Gk

tr
{
(AiT i − Bk)T (AiT i − Bk)

}
, (3)

where C is the number of clusters, and Gk is the set of individual indexes that belong
to the k-th cluster.

The matrix T i must satisfy the condition of orthogonal transformation matrix.

T T
i T i = T iT

T
i = I (4)

Lagrange function for optimizing the objective function in the proposed method is
described as Eq. (5) by combining Eq. (3) and Eq. (4).

F (T , B, L) =
C∑

k=1

∑
i∈Gk

tr
{
(AiT i − Bk)T (AiT i − Bk)

}
+

N∑
j=1

tr
{

Lj

(
T T

j T j − I
)} (5)

The symbols used in Eq. (5) are shown in Table 1. In the proposed method, Bk and T i

to optimize Eq. (5) are determined by iterative optimization.
Eq. (6) must be set to 0 for the derivation of optimal Bk.

∂F

∂Bk
=
∑
i∈Gk

(−AiT i − AiT i + 2Bk) = 0 (6)

From Eq. (6), the optimal Bk(cluster center matrix) is derived as

Bk =
1

|Gk|
∑
i∈Gk

AiT i . (7)

Then Eq. (8) must be set to 0 for the derivation of optimal T i.

∂F

∂T i
=

C∑
k=1

(
2AT

i AiT i − 2AT
i Bk

)
+ T i

(
Li + LT

i

)
= 0 (8)
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Table 1. List of symbols used in Eq. (5)

C Number of clusters
Gk Set of individual indexes that belong to k-th cluster
N Number of individuals (matrices A)
k Subscript that shows index of cluster

i, j Subscripts that show index of individual (matrix A)
Ai Individual that is clustering object (Size is [n × p])
T i Orthogonalization transformation matrix (Size is [p × p])
Bk k-th cluster center matrix (Size is [n × p])
L Lagrange coefficient matrix (Size is [p × p])
I Identity matrix (Size is [p × p])

(
Li + LT

i

2

)
= T T

i AT
i

C∑
k=1

Bk − CT T
i AT

i AiT i (9)

Since
(
Li + LT

i

)
is symmetric matrix, it has the following relationship.

Li + LT
i

2
=

(
Li + LT

i

2

)T

(10)

Eq. (11) is derived from Eq. (9) and Eq. (10).

T T
i M i = MT

i T i , where M i = AT
i

C∑
k=1

Bk . (11)

Eq. (12) is derived by multiplying the left side of Eq. (11) by T i and the right side
by T T

i .
M i = T iM

T
i T i

T T
i M iT

T
i = MT

i

}
(12)

Eq. (13) is derived from Eq. (12).

M iM
T
i = T iM

T
i M iT

T
i (13)

Then Singular Value Decomposition (SVD) is applied to M iM
T
i and MT

i M i, respec-
tively.

V iDiλV T
i = T iW iDiλW T

i T T
i , (14)

where V i and W i are orthogonal [p × p] matrices consisting of the singular vectors
of M iM

T
i and MT

i M i, respectively. Diλ is a diagonal matrix whose elements are
expressed by singular values.

Therefore, the optimal T i(transformation matrix) is solved by

T i = V iW
T
i . (15)

The algorithm of the proposed method is as follows:

Step 1. Each distribution matrix Ai is preprocessed for conforming the distribution
center and the scale, when it is necessary.
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Step 2. Initial cluster k (k ∈ {1, ..., C}) for each Ai is randomly assigned.
Step 3. Initialization of T i = I

Step 4. Each cluster center matrix Bk is calculated by Eq. (7).
Step 5. Each distribution matrix Ai is assigned to the cluster that has the smallest eval-

uation value to Eq. (2).
Step 6. All B are fixed, and each optimal T i is calculated by Eq. (15).
Step 7. All T are fixed, and each optimal Bk is calculated by Eq. (7).
Step 8. If each Bk and T i is converged, iteration is end. Otherwise, go to Step 5.

In Step 6, each row vector of V i and W i composing Eq. (15) has the degree of
freedom of sign inversion. Consequently, the sign of each row vector is serially reversed
and the combination minimizing the objective function is calculated. The matrix T i is
updated by using V i and W i consisted of the row vectors of these combinations.

3 Experiment

30 laptop photo images were employed as the objects for the SD evaluation. This exper-
iment requested 22 subjects to evaluate the objects by SD method including 21 impres-
sion words. Table 2 shows the impression words used in the experiment. IW-xx will be
employed in this paper instead of each impression word for simplicity.

3.1 Result and Discussion

This section discusses the result by the proposed method when the number of cluster
was five. Table 3 shows the result of clustering.

The number of subjects belonging to each cluster was {2, 4, 4, 8, 4}, respectively. A
majority (cluster 4) and a minority (cluster 1) group were found in the SD evaluation
data. This paper applied the cluster analysis by Ward’s method to the distance matrix
(similarity matrix) among objects calculated by each cluster center distribution for the
cluster 1 and cluster 4. Fig. 1 and Fig. 2 represent impression relationships among the
objects in each group. The acquired dendrogram showed that they had some character-
istic differences among objects. For example, though the distance in the dendrogram
between object 6 and 14 was less than 0.5 in cluster 4 (majority), those in cluster 1
(minority) was approximately 1.5. In addition, though object {20,23,18,29} were same
cluster (0.5) in cluster 4, object{20,23} and object{18,29} were the farthest distance
(3.0) in cluster 1. It is thought that these two groups have different individuality for
similarities among the objects.

3.2 Comparison of Impression Evaluation

Eq. (16) represents the relationship among the SD evaluation data Ai, the orthogonal
transformation matrix T i of subject i and the cluster center matrix Bk of cluster k that
subject i belongs.

Bk � AiT i (16)
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Table 2. Impression words

IW-01 Ugly Beautiful
IW-02 Thick Thin
IW-03 Cheerful Gloomy
IW-04 Interesting Boring
IW-05 Cold Warm
IW-06 Unrefined Neat
IW-07 Humorous Serious
IW-08 Popular Unpopular
IW-09 Rectilinear Rounded
IW-10 Individual Uniformed
IW-11 Hard Soft
IW-12 Simple Complicated
IW-13 Unseemly Noble
IW-14 Expensive Cheap
IW-15 New Old
IW-16 Cool Clumsy
IW-17 Formal Casual
IW-18 Heavy Light
IW-19 Weak Strong
IW-20 Loose Tight
IW-21 Clean Dirty

Table 3. Result of clustering

Subject Index of clustering Subject Index of clustering

sub-11 1 sub-03 4
sub-13 1 sub-06 4
sub-01 2 sub-09 4
sub-04 2 sub-10 4
sub-15 2 sub-16 4
sub-21 2 sub-19 4
sub-07 3 sub-20 4
sub-12 3 sub-05 5
sub-17 3 sub-08 5
sub-18 3 sub-14 5
sub-02 4 sub-22 5

Principal Component Analysis (PCA) is applied to Bk.

P k = BkCk � AiT iCk, (17)

where P k is the matrix of Principal Component (PC) score, and Ck is that of PC
coefficient. When we consider T iCk as the matrix of PC coefficient of Ai, we can
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Fig. 1. Minority group (cluster 1) Fig. 2. Majority group (cluster 4)

Fig. 3. PC score of objects Fig. 4. Impression words of subjects

relate the SD evaluation data to the objects, and we can also relate impression words of
subjects in the same group on the same PC space of objects.

Fig. 3 and Fig. 4 show the result of applying Eq. (17) to the cluster 1 (subject 11 and
13). Fig. 3 shows the distribution of the objects in cluster 1. Fig. 4 shows the relationship
of impression words between subject 11 and subject 13 corresponding to Fig. 3. The
numbers plotted in Fig. 3 represent the indexes of objects. Cumulative contributing rate
by these two principal components was 60.2%. In Fig. 4, impression words represented
by principal component coefficients of each subject are plotted on principal compo-
nents of Fig. 3. In subject 11, IW-02 (Thick - Thin), IW-06 (Unrefined - Neat) and
IW-18 (Heavy - Light) have a strong influence to PC1 (horizontal axis). Subject 13 also
has a similar tendency. They evaluated Obj-{04,06,10,14,21, etc} by using structure
impression words of laptop products whose meaning can be easily shared. It is inferred
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that these objects have stronger structural feature than other objects. In addition, Fig. 4
shows they were impressed “Beautiful” (IW-01) to the objects having “Neat”, “Thin”
and “Light” structure. Moreover, the bottom-left area in Fig. 4 shows that subject 13
evaluated object 06 using some impression words such as “Neat”, “Soft”, “Noble” and
so on while subject 11 used “Thin” and “Casual”. It suggests that the evaluation of sub-
ject 13 for these objects in this area was more meticulous than subject 11. In addition,
“Thin” for subject 11 was close to “Neat” for subject 13.

4 Conclusion

This paper defined the distributed structure of objects in the space of impression words
as individual feature, and it proposed the clustering method based on the OPA for clus-
tering of the individual feature. This paper applied the proposed method to the actual
SD evaluation data obtained from subjects, and it showed that this method enabled us
to discover majority/minority groups. It also showed that the analysis by the proposed
method could investigate the similar relationships among the objects in each group and
compare the similarity/difference of impression words used for the evaluation of objects
among subjects in the same cluster. For the future works, we will examine the validity
of the result acquired by the proposed method.
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Abstract. Privacy is becoming a pervasive issue, as nowadays informa-
tion is gathered by all kind of information systems.

In this paper we introduce a method for database protection in the
case that the data under consideration is expressed in terms of time se-
ries. We propose the use of microaggregation for this purpose and extend
standard microaggregation so that it works for this kind of data.

Keywords: privacy, masking methods, time series, microaggregation,
clustering, time series distances.

1 Introduction

In the last years, the need for tools to ensure data privacy is increasing as
people is more and more concerned with privacy issues. At the same time, there
is an increasing demand of data by researchers and decision makers. Privacy
preserving data mining and inference control [13] are to develop tools for data
protection with the aim that protected data can be released for further study
without compromising the privacy of data respondents.

Masking methods [13] are the specific tools that are used for data protec-
tion. Among all masking methods, perturbative ones are those that modify the
original data so that the perturbed data avoids disclosure. Nevertheless, data
perturbation might cause data to lose their utility. This is so because a max-
imum perturbation makes disclosure impossible but at the same time data is
useless for any analysis. Instead, when no perturbation is applied, we have max-
imum data utility (only original data is published) but data permit disclosure.
To measure all these aspects, some measures have been defined. They are the
so-called measures for information loss (to evaluate in what extent data has lost
its utility), and measures for disclosure risk. Besides, there are scores and other
functions to combine or visualize these measures to evaluate the tradeoff between
data utility and disclosure risk.

Most masking methods have been developed for standard databases. That is,
databases in which records take values on a set of variables. Information loss
and disclosure risk measures have been defined for such kind of records.
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Due to the increasing amount of information currently available, and due to
the increasing rate on data storage, data is no longer a static object but it has a
temporal component. Therefore, it is of interest the study of masking methods for
temporal data protection. That is, the protection of time series. Some research
has been done in this line. See e.g. [1].

In this paper we develop a new method for time series protection. The method
is based on microaggregation [2], a tool for data protection that has a good
performance in standard numerical data with respect to information loss and
disclosure risk measures as shown in [4]. Microaggregation is one of the standard
tools for database protection commonly in use in National Statistical Offices (see
e.g. [6]).

Microaggregation requires the definition of a distance on the data. In microag-
gregation for standard data such distance is usually the Euclidean distance. In
the case of time series, several distance on time series can be considered. In this
paper we propose and use two different distances: the short time series distance
and Euclidean distance. We can see in section 2.3 the formal definition of these
distances and in section 3 we will study how the choice of the distance affects
microaggregation results.

The structure of the paper is as follows. In Section 2 we describe some pre-
liminaries required in the rest of the paper. In particular, this section describes
standard microaggregation and some distance functions for time series. Then,
in Section 3, we propose our method for time series protection. In Section 4 we
describe the experiments done. The paper finishes with some conclusions and
some research lines for future work.

2 Preliminaries

This section presents standard microaggregation and some results on time series
that are needed in the rest of this work.

2.1 Microaggregation

Microaggregation is a masking method for database protection. From the pro-
cedural point of view, it works as follows:

1. Clusters are built from the original data. Each cluster should contain at least
k records.

2. A representative is built for each cluster.
3. Original records are replaced by the corresponding representatives.

The fact of having clusters containing at least k records is to ensure data pri-
vacy. Note that after microaggregation is applied, we will have at least k records
indistinguishable for each cluster (with respect to the variables clustered).

This method was originally defined on numerical data. Then, it was extended
to categorical data [11]. The method can be formally defined in terms of an opti-
mization problem. Nevertheless, it was proven that finding the optimal solution
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of such optimization problem is an NP-problem [9]. Therefore, some research
has been done to find heuristic approaches. One of the methods is the so-called
MDAV (Maximum Distance Average Vector)-generic algorithm [5]. This method
is described in the next section.

2.2 MDAV-Generic Algorithm

The MDAV-generic algorithm is an heuristic algorithm for clustering records in
a dataset R. Each cluster is constrained to have at least k records. The algorithm
is as follows:

Algorithm (MDAV-generic) (R: dataset, k: integer) is
1. while (|R| > k) do

(1.a) Compute the average record x̃ of all records in R
(1.b) Consider the most distant record xr to the average record x̃ using

and appropriate distance
(1.c) Form a cluster around xr. The cluster contains xr together with

the k − 1 closest records to xr

(1.d) Remove these records from dataset R
2. if (|R| > k) then

(2.a) Find the most distant record xs from record xr (from step 1.b)
(2.b) Form a cluster around xs. The cluster contains xs together with

the k − 1 closest records to xs

(2.c) Remove these records from dataset R
3. end if
4. end while
5. form a cluster with the remaining records

This algorithm is generic and it can be applied to different kind of data using
appropriate definitions of distance and average. That is, we need to formulate
what the most distant record means, and which are the closest records of a given
record. Additionally, we need to define the average record of a set of records.
This average record is needed in step (1.a) and later to mask the original data.
Recall that we need to build a representative for each cluster and then replace
each original record by the corresponding representative.

In [2] this method is applied to numerical data, using the Euclidean distance
for computing the distance between records and the arithmetic mean to com-
pute the average. In [5] this method was extended to categorical data using
appropriate functions.

2.3 Time Series

Now we turn into the problem of defining distances for time series. We focus
on numerical time series. Formally speaking, a time series is defined by pairs
{(vk, tk)} for k = 1, . . . , N where tk corresponds to the temporal variable and vk

is the variable that depends on time (dependent variable). Naturally, tk+1 > tk.
Stock prices are examples of time series, as they depend on time.
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There are different methods to compute the distances between time series.
We can use distance based on raw values of equal or unequal length, cross-
correlation matrix, vectors of feature-value pairs, probability-based functions
and so on. See [12] for more details.

For our experiments we have implemented two different distance functions,
Euclidean distance and the Short Time Series distance proposed by Möller-Levet
et al. in [7].

Let x and v be two N -dimensional time series. Let x be defined by the pairs
{(xk, tk)} for k = 1, . . . , N and let v defined by the pairs {(xk, tk)} for k =
1, . . . , N . Note that we assume that the two time series under consideration
have exactly the same length and that they are aligned. That is, the temporal
component in both series is exactly the same. Also, note that we use x and v for
both denoting the time serie and the dependent variable.

Then, the Euclidean distance is defined by:

dEU (x, v) = 2

√√√√ N∑
k=1

(xk − vk)2

The short time series distance, STS distance in short, is defined as

dSTS(x, v) = 2

√√√√ N∑
k=1

(
vk+1 − vk

tk+1 − tk
− xk+1 − xk

tk+1 − tk

)2

3 Time Series Microaggregation

To specialize the MDAV-generic algorithm for time series we need to make the
distances concrete, and then consider the particular average functions. We have
implemented the algorithm described in Section 2.2 with the following parame-
terizations:

Distance functions: We have used Euclidean and STS distances: dEU and
dSTS as defined in Section 2.3.

Average: We have used a kind of arithmetic mean. The mean has been defined
component-wise. That is, given the set V = {vj}j=1,...,J with time series vj

for j = 1, . . . , J , each one with vj
k, we define ṽk = (1/J)

∑
j=1,...,J vj

k.

Therefore, we have applied the MDAV-generic algorithm where x̃ is the av-
erage of all records (time series) in R. These distance functions have been used
to determine the most distant records as well as the closest records to a given
record r.

Different distance functions cause the microaggregation algorithm to compute
different clusters. While Euclidean distance makes clusters based on the distance
between data components, the STS distance makes clusters based on the shape
of the time series. This is illustrated in the following example.
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Fig. 1. Graphical representation of distance function selection

Example 1. Figure 1 (left) illustrates this problem: 4 series are to be microag-
gregated. The results of microaggregating these 4 series into 2 clusters using
Euclidean and STS distances are given, respectively, in middle and right figures
of Figure 1. It can be seen that the Euclidean distance gathers together the most
near series although they have different shapes (and, thus, the outcomes are just
lines but that mainly keep the original values). Instead, the STS distance gathers
series according to shapes (and, thus, the outcomes keep such shapes but not
the original position of the series).

In this example, we have used point-wise average for computing the represen-
tative of each cluster.

According to this, in the step of selecting the distance function, we have the
opportunity to model how the microaggregation procedure makes the clusters
and decide which information is the most important to be kept in the final
protected model.

4 Experiments

We have applied our method to a data set consisting on several time series. We
describe below the data considered. We have applied our algorithm to these data,
testing different values of k. In particular, we have used: k ∈ {2, 3, 6, 9, 12}.

4.1 Data

The data under consideration correspond to the Stock Exchange information of
the thirty five most important Spanish companies. These companies are ranked
in the so-called Ibex35 stock market. We have got historical information about
company prices in the Ibex35 stock market for about a year from [10]. This
information is publicly available.

We have obtained thirty five files, one for each company ranked in the Ibex35
stock market. These files have been processed to obtain a new file with the
opening prices of the companies. In this way, we have 35 time series. Tables 1
and 2 give details on the 35 series considered for applying microaggregation.

The selection of economic data was done for two main reasons. First, data can
be obtained easily and free in electronic markets. Second, economic information
clearly corresponds to a time series structure, so it is a good example for our
method.
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Table 1. Original data for one company (Abertis) in Ibex35. Thirty five files with this
structure were downloaded.

Abertis opening value maximum value minimum value closing value volume
06-21-2005 19.94 19.94 19.81 19.89 841
06-22-2005 19.95 20.10 19.88 19.99 799
06-23-2005 19.90 20.05 19.90 19.95 708
... ... ... ... ... ...
04-27-2006 20.93 20.97 20.67 20.95 2507
04-28-2006 21.00 21.00 20.65 20.92 2442

Table 2. 35 time series corresponding to the opening prices of all companies in the
Ibex35 stock market

Company name business 05-03-2005 05-04-2005 05-05-2005 ... 04-27-2006 04-28-2006
Abertis Building firm 19,94 19,95 19,90 ... 20,93 21,00
Acciona Building firm 76,85 79,00 81,40 ... 139,65 134,65
Acerinox Steel firm 11,75 11,58 11,55 ... 13,72 13,29
ACS Building firm 22,05 22,38 22,41 ... 33,14 32,87
Altadis Tobacco firm 33,85 34,28 34,68 ... 37,75 37,25
Antena3 TV Private television 17,25 17,11 16,92 ... 21,84 21,67
Arcelor Steel firm 16,64 16,47 16,22 ... 34,03 33,13
Banco Popular Bank 10,00 9,98 9,94 ... 12,12 12,06
Banco Sabadell Bank 21,12 21,14 21,29 ... 28,47 28,87
Bankinter Bank 42,63 42,65 42,70 ... 55,80 54,90
BBVA Bank 12,87 12,77 12,79 ... 17,44 17,32
Cintra Building firm 8,97 9,00 9,05 ... 10,88 10,85
ENAGAS Energy firm 13,63 13,73 13,90 ... 17,93 17,57
Endesa Energy firm 18,18 18,37 18,45 ... 26,51 26,35
F.C. Contratas Building firm 46,67 46,32 45,93 ... 64,10 64,25
Ferrovial Building firm 50,60 52,00 51,95 ... 65,15 65,00
Gamesa Aeronautics industry 11,27 11,35 11,42 ... 17,41 16,93
Gas Natural Energy firm 23,30 23,57 23,45 ... 24,40 24,31
Iberdrola Energy firm 21,40 21,63 21,59 ... 25,89 25,80
Iberia AirLine 2,47 2,49 2,50 ... 2,24 2,22
Inditex Textile firm 21,97 21,94 21,70 ... 32,85 32,41
Indra New Technology firm 15,60 15,65 15,85 ... 16,73 16,41
Metrovacesa Building firm 49,57 50,75 52,65 ... 72,95 71,90
NH Hoteles Hotel firm 10,89 11,06 11,03 ... 14,28 14,35
Prisa Press firm 16,06 16,19 16,12 ... 14,65 14,69
R. E. Española Energy firm 20,90 21,24 21,15 ... 27,92 27,87
Repsol YPF Energy firm 21,35 21,26 21,28 ... 24,02 23,77
SCH Bank 9,52 9,58 9,59 ... 12,15 12,19
Sogecable Private television 30,23 30,24 30,55 ... 30,78 30,20
Telecinco Private television 19,42 19,48 19,30 ... 20,70 20,63
Telefónica Telecom firm 13,54 13,51 13,51 ... 12,77 12,74
Telefónica Móvil Telecom firm 8,76 8,75 8,80 ... 10,52 10,46
TPI Telecom firm 6,90 7,09 7,05 ... 8,90 8,82
Unión Fenosa Energy firm 24,04 24,40 24,59 ... 31,00 30,70
Vallehermoso Building firm 19,50 19,93 19,37 ... 27,51 27,44

Before applying microaggregation, time series were standardized to avoid any
scale problems. This standardization step consists in normalizing the data values
using the mean and the standard deviation. We have calculated the mean and
the standard deviation for all values in all time series.
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4.2 Microaggregation and Results

In Figure 2 we can see all time serials of the Ibex35 stock market and in Figures 3
and 4 we can see the cluster centroids when we use, respectively, Euclidean and
STS distances. In these figures the cluster size is fixed to six series per cluster.

The clusters obtained with the Euclidean distance and cluster size fixed to six
are as follows:

Cluster 1: Abertis, Antena 3 TV, Enagas, Endesa, Indra and Telecinco
Cluster 2: Acciona, Altadis, Bankinter, F.C. Contratas, Ferrovial and

Metrovacesa
Cluster 3: ACS, Inditex, Red Eléctrica Española, Repsol YPF, Sogecable and

Unión Fenosa
Cluster 4: Arcelor, Banco Sabadell, Gas Natural, Iberdrola and Vallehermoso
Cluster 5: Banco Popular, Cintra, Iberia, SCH, Telefónica Móvil and TPI
Cluster 6: BBVA, Gamesa, NH Hoteles, Prisa and Telefónica

Fig. 2. Graphical representation of Ibex35 time series

Fig. 3. Graphical representation of Euclidean distance clustering



906 J. Nin and V. Torra

Fig. 4. Graphical representation of STS distance clustering

If we compare these results with Table 2, we can see that the companies in
the first cluster have the lowest opening prices, the prices of these companies are
around seventeen during June 2005 and around twenty-one during April 2006. In
the second cluster, on the other side, we have companies with the highest opening
prices, around fifty three during June 2005 and seventy-one during April 2006.
The remaining clusters are between these opening values.

The clusters obtained using the STS distance and cluster size fixed to six are
as follows:

Cluster 1: Abertis, ACS, Arcelor, F.C. Contratas and Vallehermoso
Cluster 2: Acerinox, Enagas, Ferrovial, Indra, Prisa and Red Eléctrica

Española
Cluster 3: Altadis, Inditex, Repsol YPF, Sogecable and Telecinco
Cluster 4: Antena 3 TV, Bankinter, Endesa, Gamesa, Gas Natural and Iber-

drola
Cluster 5: Banco Popular, Banco Sabadell, Iberia, Telefónica, Telefónica Móvil

and TPI
Cluster 6: BBVA, Cintra, Metrovacesa, NH Hoteles, SCH and Unión Fenosa

In this case (see Table 2), clusters are not based on the opening prices but
on the business type. If we observe the first cluster we notice that five of the
six companies in the cluster are construction firms and if we check the fourth
cluster we take into account that three companies are energy firms or in the fifth
cluster three companies are telecommunications firms. On the remaining clusters
we can find the same effect with two or more companies.

This effect in STS distance is possible because stock markets have been af-
fected for social or external conditions like the price of money or fuel and all
companies with a similar business have similar trends during a certain time.

From these results we can say that Euclidean distance measures differences
between time serial values, and this distance benefits time series with closer
sample values. Meanwhile STS distance measures difference between trends, this
measure clusters time series with respect to their closer shape.
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5 Conclusions and Future Work

In this paper, we have introduced a new method for protection of time series
based on microaggregation. We have applied our approach using two different
distances for time series. In particular, a distance based on the Euclidean distance
and the STS distance. We have applied our approach to a data set defined in
terms of time series.

The comparison of the two distances shows that the Euclidean distance gath-
ers time series with similar values, while the STS one focuses on the shape of the
series instead of the values themselves. This corresponds to the effect illustrated
in Figure 1 and described in Example 1.

As future work we include the analysis of the method with respect to infor-
mation loss and disclosure risk measures (some preliminary results can be found
in [8]). These measures are required to properly evaluate the performance of the
new methods and compare different approaches.

Although not analysed in this paper, the procedure for computing the repre-
sentative of a cluster is also a relevant point. Further work is also needed in this
direction.
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Abstract. A generalization of hierarchical clustering is proposed in
which the dendrogram is replaced by clusters attached to a lattice dia-
gram. Hence the method is called lattice-valued hierarchical clustering.
Different algorithms of lattice-valued clustering are described with appli-
cation to information systems in the form of tables studied in rough sets.
A simple example is given whereby how the concept of the lattice-valued
hierarchical clustering is related to classifications in rough sets is shown.

1 Introduction

Data clustering is one of main tools for data mining in various fields of sci-
ences and engineering. Among various techniques, the methods of agglomerative
hierarchical clustering [2,4,3] are old and still known to be most useful. A rea-
son for the usefulness is much information is provided from the output of the
dendrogram of the agglomerative clustering process.

In this paper we consider a generalization of hierarchical clustering in which
the dendrogram is replaced by clusters attached to a lattice diagram [1]. Hence
we can call the method herein that of lattice-valued hierarchical clustering.

The information system in the form of a table should be considered as a typical
application of the lattice-valued hierarchical clustering, where the collection of
all subsets of the attribute set forms the lattice.

After reviewing the standard agglomerative clustering procedure, a formal de-
finition of hierarchical classification is given. A simple method of lattice-valued
clustering which is related to studies in rough set studies is described, and its
generalizations are proposed using measures of dissimilarity. Finally, two prob-
lems for further studies are mentioned.

2 Agglomerative Hierarchical Clustering

Let the objects for clustering be o1, . . . , on and the set of objects be O =
{o1, . . . , on}. Generally a cluster which is denoted by Gi is a subset of O and the
family of clusters is denoted by G = {G1, G2, . . . , GK} where the clusters form
a partition of O:

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 909–917, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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K⋃
i=1

Gi = O, Gi ∩ Gj = ∅ (i �= j). (1)

Agglomerative clustering uses a dissimilarity measure (also called a distance)
between two clusters d(G, G′) (G, G′ ∈ G) which is called inter-cluster dissimi-
larity. Sometimes a similarity measure s(G, G′) is used. The difference between a
dissimilarity measure and a similarity measure is that a smaller d(G, G′) means
G and G′ are more similar, whereas a smaller s(G, G′) implies G and G′ are
less similar. In the following we discuss mainly d(G, G′); discussion of s(G, G′)
is found in [4,5].

2.1 General Procedure of Agglomerative Clustering

We first describe a general procedure of agglomerative clustering [4,5].

Algorithm AHC (Agglomerative Hierarchical Clustering):
AHC1. Assume that initial clusters are given by

G = {Ĝ1, Ĝ2, . . . , ĜN},
Set K = N (K is the number of clusters) and
Gi = Ĝi (i = 1, . . . , K).
Calculate d(G, G′) for all pairs G, G′ ∈ G.

AHC2. Search the pair of miminum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G, G′). (2)

and let
mK = d(Gp, Gq) = min

G,G′∈G
d(G, G′). (3)

Merge: Gr = Gp ∪ Gq.
Add Gr to G and delete Gp, Gq from G.
K = K − 1. If K = 1 then stop and output the dendrogram.

AHC3. Update dissimilarity d(Gr, G
′′) for all G′′ ∈ G.

Go to AHC2.
End AHC.

In AHC, the detail of constructing a dendrogram is omitted (see e.g., [4,5]).
Notice that the above algorithm is a generalization of an ordinary agglomerative
clustering. That is, the initial clusters are objects in an ordinary algorithm:
Gj = {oj} (N = n) while the present algorithm does not use this assumption.

Two well-known methods are the single link and the complete link. In these
methods we do not care about how the initial dissimilarity measure is defined; we
simply assume d(oi, oj) is given in some way. Note that inter-cluster dissimilarity
is given as follows.

– the single link (SL): d(G, G′) = min
o∈G,o′∈G′

d(o, o′).

– the complete link (CL): d(G, G′) = max
o∈G,o′∈G′

d(o, o′).
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The basic definition of d(Gr, G
′′) in AHC3 uses one of the above definitions of

the inter-cluster dissimilarity for SL and CL.
An important issue in agglomerative clustering is efficient updating of a dis-

similarity measure. Ordinary methods such as the single link, complete link,
etc. [2] have respective updating formulas using the dissimilarity matrix [dij ]
in which dij = d(Gi, Gj) and after merging, drj = d(Gr , Gj) can be calcu-
lated solely from d(Gp, Gj) and d(Gq, Gj) instead of the above basic definitions.
Namely, the single link and the complete link respectively use

d(Gr, G
′′) = min{d(Gp, G

′′), d(Gq, G
′′)}

and

d(Gr , G
′′) = max{d(Gp, G

′′), d(Gq , G
′′)}.

2.2 Formalization of Agglomerative Clustering

For later use, let us define a refinement between two partitions. Assume that
G = {G1, G2, . . . , GK} and G′ = {G′

1, G
′
2, . . . , G

′
L} are two partitions of O. We

say G′ is a refinement of G iff

∀G ∈ G, ∃G′ ∈ G′ such that G′ ⊆ G. (4)

We write G′ � G iff G′ is a refinement of G.
For the single link and the complete link, the levels of the merging mj satisfy

the next monotonicity property.

mN ≤ mN−1 ≤ · · · ≤ m2 (5)

Denote the clusters formed at the level α = mi by

G(α) = {G1(α), G2(α), . . . , GK(α)}. (6)

It then is easy to see

G(α′) � G(α) (7)

when α′ ≤ α in case when a dissimilarity measure is used. Notice that α′ ≤ α
should be replaced by α′ ≥ α and mN ≥ mN−1 ≥ · · · ≥ m2 should be employed
instead of (5) when a similarity measure is used.

A hierarchical classification is formally defined by such G(α). That is, sup-
pose that a monotone sequence of real numbers (5) is given and G(α) (α ∈
{mN , mN−1, . . . , m2}) satisfies (7). Then we have a hierarchical classification. If
such a hierarchical classification is generated from a dissimilarity or similarity
measure, or by some other computational methods, we have an algorithm of the
hierarchical clustering.
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3 Lattice-Valued Clustering and Information Table

The last observation leads us to a generalization to a method of lattice-valued
hierarchical clustering. Let P be a poset (partially ordered set) in which the
partial order is denoted by α � β (α, β ∈ P ).

Let us consider a family of classifications G(α) (α ∈ P ). Instead of the real
value, the parameter value is in poset P .

We say G(α) is a poset-valued hierarchical classification iff

α � β ⇒ G(α) � G(β). (8)

Among poset-valued classifications we are particularly interested in case when
P is a lattice. In order to make our motivation clear, we describe a typical
example which is not very new and related to studies in rough sets. Information
systems which are also called information tables or decision tables are studied
in rough sets [6,7]. Since what we consider is not rough approximations but
clustering, we use notations in relational databases [8] that seem more convenient
than usual symbols used in rough sets. Let

A = {a1, a2, . . . , am}

be a relational schema in which a1, a2, . . . , am are attributes. For each attribute
ai, we have the corresponding domain Di. An information table T is a finite
subset of the product D1 × · · · × Dm, or in other words, T is a relation. An
element t ∈ T is called a tuple using the term in relational database. Let us
assume T = {t1, . . . , tn} and an attribute value of t with respect to ai is denoted
by t(ai). Thus,

t = (t(a1), . . . , t(am)).

For a given subset A = (ai1 , . . . , air ) of the attribute set A, define

t(A) = (t(ai1 ), . . . , t(air )).

For a given set T (⊂ T ) of tuples, we define

T (A) = { t(A) : t ∈ T }.

We hence have
t ∈ T ⇒ t(A) ∈ T (A),

while the converse ⇐ is not true in general.
For a given subset A(⊆ A) of attributes, we define a relation RA:

tRAt′ ⇐⇒ t(A) = t′(A).

It is easy to see that RA is an equivalence relation.
Note that A is a lattice in which the natural inclusion of subsets is the pre-

ordering and the union and the intersection are respectively sup and inf operation
of the lattice: sup(A, A′) = A ∪ A′ and inf(A, A′) = A ∩ A′.
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We have the quotient set, in other words, a classification

G(A) = T /RA = { [t]RA : t ∈ T }
where

[t]RA = {t′ ∈ T : tRAt′} = {t′ ∈ T : t(A) = t′(A)}.

We thus have the next proposition.

Proposition 1. The above defined equivalence relation RA generates a hierar-
chical classification. That is, we have

B ⊇ A ⇒ G(B) � G(A).

We thus have a lattice-valued hierarchical classification or a simple method of
lattice-valued hierarchical clustering.

Example 1. Consider seven tuples shown in Table 1 with the schema A =
(D, E, F ). Here these three letters are attributes. The lattice is Λ=2A={∅, D, E,
F, DE, DF, FE, DEF} where the abbreviated symbol DE implies {D, E}, and
so on. We have

G(DEF ) = T /RDEF = {t1, . . . , t7},

G(DE) = T /RDE = {t1t2, t3t4, t5t6, t7}
etc. where titj is an abbreviated symbol for {ti, tj}.

Figure 1 shows the Hasse diagram of Λ = 2A together with the partitions
attached to each element of the lattice.

3.1 Dissimilarity Measures Between Tuples

When each t(ai) is a numerical value, we can easily define a dissimilarity measure
between two tuples. For example, the followings are natural measures:

d2(t, t′; B) =
∑

ai∈B

|t(ai) − t′(ai)|2, (9)

dE(t, t′; B) =
√∑

aiB

|t(ai) − t′(ai)|2, (10)

d1(t, t′; B) =
∑

ai∈B

|t(ai) − t′(ai)|. (11)

Table 1. An example of an information table

T D E F

t1 a1 b1 c1

t2 a1 b1 c2

t3 a1 b2 c1

t4 a1 b2 c2

t5 a2 b1 c1

t6 a2 b1 c2

t7 a2 b2 c1
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Fig. 1. An example of the lattice-valued clustering

Usually, B is taken to be the all attributes: B = A, later we take B to be all
subsets of A, as expected. Notice also that a dissimilarity measure is dependent
on B and hence the symbol d(t, t′; B) shows the dependence explicitly.

In contrast to the above three measures, normalized measures using the num-
ber of attributes in B (denoted by |B|) can also be used:

d′2(t, t
′; B) = d2(t, t′)/|B|, (12)

d′E(t, t′; B) = dE(t, t′)/|B|, (13)
d′1(t, t

′; B) = d1(t, t′)/|B|. (14)

Let d(t, t′) be a dissimilarity measure, e.g., one of the above six measures.
Our question is how we can generalize the last method to generate lattice-valued
clusters with Λ = 2A.

Let us fix the set B to be a subset: B ∈ 2A. A simple method is to use con-
nected components generated from the network on the vertices T with d(t, t′; B)
and the threshold ε, which is defined as follows.

1. Consider first the complete graph whose vertices are all tuples of T . Put the
value d(t, t′; B) on the edge {t, t′}.

2. Delete all those edges {t, t′} which satisfy d(t, t′; B) > ε .
3. Let the obtained connected components be Gε

1(B), . . . , Gε
K(B) of which the

set of vertices are V (Gε
1(B)), . . . , V (Gε

K(B)), respectively.

We define the equivalence relation:

tRε
Bt′ ⇐⇒ t, t′ ∈ V (Gε

j).

It is obvious that equivalence classes are generated from this definition [4], in
other words, we are considering

G(B) = {V (Gε
1(B)), . . . , V (Gε

K(B))}.
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We proceed to consider how the lattice-valued hierarchical clusters are gener-
ated by changing subset B.

Let us take d(t, t′; B) to be one of (9), (10), and (11). We easily observe

C ⊇ B ⇒ d(t, t′; C) ≥ d(t, t′; B). (15)

Accordingly,
d(t, t′; B) > ε ⇒ d(t, t′; C) > ε,

and hence the connected components given C is finer than those with B. In
other words, we have the following.

Proposition 2. Assume that the connected components above described are used
for the classifications. If

C ⊇ B ⇒ d(t, t′; C) ≥ d(t, t′; B) (16)

holds, we have
C ⊇ B ⇒ G(C) � G(B).

This proposition implies that while the measures (9), (10), and (11) are useful
for the present purpose, the other three normalized measures (12), (13), and (14)
do not always generate hierarchical classifications.

Symbolic and nonnumerical values of t(ai) can be handled likewise. There
are ways to define dissimilarity or similarity measures between the two symbolic
values. A simple method is as follows.

1. Let

d(t(ai), t′(ai)) =

{
0 (t(ai) = t′(ai)),
1 (t(ai) �= t′(ai)).

(17)

2. Define
d(t, t′; B) =

∑
ai∈B

wid(t(ai), t′(ai)). (18)

where wi is a positive weight constant attached to ai. The method in Proposi-
tion 1 is a special case when 0 < ε < 1 and wi = 1 using the last dissimilarity.

Example 2. Let us consider Table 1 again in which we assume d(t(E), t′(E)) = 1
for t(E) �= t′(E) and d(t(F ), t′(F )) = 1 for t(F ) �= t′(F ), but d(t(D), t′(D)) = 0.4
for t(D) �= t′(D). Put wD = wE = wF = 1 and ε = 0.5. We now have the
hierarchical clusters shown in Fig. 2 instead of Fig. 1.

3.2 Various Generalizations

Since the present method is in its initial stage of consideration, we have many
future research possibilities. In this section we briefly mention two of them.
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Fig. 2. Example of the lattice-valued clustering where a dissimilarity measure is used

Many Attributes: Generally we have many attributes where the Hasse dia-
gram is very large, and hence to show the whole Hasse diagram would be im-
possible. In such a case hierarchical clusters along a path from ∅ to the universe
should be shown instead of all the Hasse diagram.

For example, we can show clusters along the path ∅ − D − DE − DEF in
Example 1:

∅ − {t1t2 · · · t7}
D − {t1t2t3t4, t5t6t7}

DE − {t1t2, t3t4, t5t6, t7}
DEF − {t1, . . . , t7}.

For such a path, the hierarchical clusters can be represented like a dendrogram.

Single Link and Other Methods: The above stated method of the connected
components is equivalent to a classification derived from the single link with the
threshold ε (cf. [4]). A natural question is whether the complete link or other
methods of agglomerative clustering can be used instead of the single link. It
seems that the other methods, e.g., the complete link, do not work correctly
from the theoretical viewpoint. More precisely, the condition (8) does not hold
in general even for the dissimilarities satisfying (16).

4 Conclusion

We have proposed the method of lattice-valued clustering in order to analyze
information systems in the form of tables. As we have seen above, there are many
problems for future study in both theoretical and practical senses. In practice,
software development for the lattice-valued hierarchical clustering algorithms
with an adequate display of the output will be necessary.
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Abstract. Miyamoto et al. derived a hard clustering algorithms by de-
fuzzifying a generalized entropy-based fuzzy c-means in which covariance
matrices are introduced as decision variables. We apply the hard c-means
(HCM) clustering algorithms to a postsupervised classifier to improve
resubstitution error rate by choosing best clustering results from local
minima of an objective function. Due to the nature of the prototype
based classifier, the error rates can easily be improved by increasing the
number of clusters with the cost of computer memory and CPU speed.
But, with the HCM classifier, the resubstitution error rate along with
the data set compression ratio is improved on several benchmark data
sets by using a small number of clusters for each class.

1 Introduction

There are four types of basic ideas representing clusters, i.e., crisp, probabilis-
tic, fuzzy, and possibilistic. Examples of alternating optimization algorithms of
clustering that can generate memberships to clusters as well as a set of cluster
centers from unlabeled object data are hard c-means (HCM) [2], Gaussian mix-
ture models (GMM), fuzzy c-means (FCM) [1], and possibilistic c-means [10].
Miyamoto et al. [12] proposed a generalized hard c-means clustering (HCM-g) by
introducing Mahalanobis distances. The approach is originated from the FCM
clustering with regularization by KL-information (FCM-K). FCM-K is a special
case of the entropy regularized FCM (FCM-e) [11], which has a close relationship
to GMM or deterministic annealing by Rose [16]. Though the FCM-K is similar
to these statistical clustering methods, its representation of the objective func-
tion is rather simple and does not strictly follow the EM algorithm and Bayes’
rule. This reinterpretation of statistical clustering approaches leads to a general
FCM objective function, but it is still limited to a few models of fuzzy clustering.

Various membership functions different from those in the standard FCM clus-
tering (FCM-s) [1] and FCM-e can be used in an FCM clustering algorithm with
the iteratively reweighted least square (IRLS) technique [4]. Cluster member-
ships are defined by a function of Mahalanobis distances or Euclidean distances
between data vectors and cluster centers. The algorithms of GMM, FCM-e and
FCM-K are the special cases of IRLS fuzzy c-means clustering (IRLS-FCM). The
algorithm is applied to a postsupervised classifier design and is called IRLS-FCM
classifier [7,9]. One of the classifiers with Cauchy membership function improved

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 918–927, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the classification performance in terms of the generalization ability and the re-
ceiver operating characteristics [7,9] for some benchmark data sets.

By replacing the clustering phase of the classifier with HCM-g, we propose
a new fuzzy classifier in which the cluster centers and the covariance matrices
are determined by the HCM-g. In this postsupervised design, the clustering is
implemented by using the data from one class at a time. When working with
the data class by class, the prototypes (cluster centers) that are found for each
labeled class already have the assigned physical labels. Therefore the hard clus-
tering algorithm can be implemented in the unsupervised phase, and then, the
parameters in the membership function are chosen so that the resubstitution er-
ror rate attains minimum in the supervised phase. The clustering is also known
as a combinatorial optimization problem and the algorithm produces many lo-
cal minima, from which we can choose to improve classification accuracy. The
strategy for classification is not just based on the hard clustering results but also
on fuzzy memberships to the hard clusters.

The classification algorithms using Mahalanobis distances should include steps
to check that the covariance matrices are nonsingular and hence invertible. The
way of handling singular covariance matrices in the mixture of probabilistic
principal component analysis (MPCA) [17] is employed to prevent unexpected
termination of HCM-g and improve the convergence of the algorithm.

In supervised classifier design, a data set is usually crisply partitioned into
a training set and a test set. Testing a classifier designed with the training set
means finding its misclassification rate. The standard method for doing this is to
submit the test set to the classifier and count errors. This yields the performance
index by which the classifier is judged because it measures the extent to which
the classifier generalizes to the test data. When the test set is equal to the
training set, the error rate is called the resubstitution error rate. This error rate
is not reliable for assessing the generalization ability of the classifier, but this
is not an impediment to using as a basis for comparison of different designs. If
training set is large enough and its substructure is well delineated, we expect
classifiers trained with it to yield good generalization ability. It is not very easy
to choose the classifier or its parameters when applying to real classification
problems, because the best classifier for the test set is not necessarily the best
for the training set. Since the FCM classifier proposed in [7,8] is designed to
maximize the accuracy for test set, HCM-g classifier, which is also one of the
FCM classifiers, is designed to maximize the accuracy for training set. In this
paper we confine our discussion to the resubstitution classification error rate and
the data set compression ratio as performance criteria. Please refer to [7,8] for
the generalization ability (classification accuracy on test sets) of the IRLS-FCM
classifier.

The trained classifiers are tested on the benchmark data sets from the UCI ML
repository (http://www.ics.uci.edu/˜ mlearn/). The proposed HCM-g classifier
with small number of clusters shows relatively low error rates on several data
sets. Also concerning storage requirements and classification speed, the HCM-g
classifier gives a good performance and efficiency.
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2 Postsupervised Classifier with Fuzzy and Hard c-Means
Clustering

FCM clustering partitions data set by introducing memberships to fuzzy clusters.
The clustering criterion used to define good clusters for fuzzy c-means partitions
is the FCM objective function.

2.1 Entropy Regularized FCM

In [11], an entropy term and a positive parameter λ are introduced in the FCM
objective function. This approach is referred to as entropy regularization. By
replacing the entropy term with K-L information term, we can consider the
minimization of the following objective function under the constraints that both
the sum of uik and the sum of πi with respect to i equal one respectively [6].

Je =
c∑

i=1

n∑
k=1

uikd2
ik + λ

c∑
i=1

n∑
k=1

uik log
uik

πi

+
c∑

i=1

n∑
k=1

uik log |Ai| (1)

dik is the Mahalanobis distance between datum xk and the i-th cluster center.
(1) is defined as an FCM objective function, though, it is a reinterpretation of
GMM. If uik � πi for all k and i, the partition becomes very fuzzy, but when λ
is 0 the optimization problem with respect to uik reduces to a linear one and the
solution uik are obtained at extremal point, i.e., uik equals 0 or 1. Fuzziness of
the clusters can be controlled by λ whereas it is usually fixed to 2 in the GMM.

Equations for variable update in the iterative algorithm are as follows. Let
r dimensional vector vi denote prototype parameter (i.e., cluster center). uik

denotes the membership of k-th object datum to i-th cluster.

d2
ik = (xk − vi)�A−1

i (xk − vi) (2)

is the squared Mahalanobis distance from xk to i-th cluster prototype, where Ai

is a covariance matrix of data samples of the i-th cluster.

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

. (3)

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (4)

πi =
∑n

k=1 uik∑c
j=1
∑n

k=1 ujk
=

1
n

n∑
k=1

uik. (5)

From objective function (1), Miyamoto et al. [12] derived the generalized hard
clustering HCM-g by setting λ = 0. The HCM-g is a defuzzified clustering algo-
rithm of FCM-K.
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2.2 IRLS-FCM Classifier

When each covariance matrix Ai is a unit matrix, a general form of the FCM
objective function can be written as :

Jg =
c∑

i=1

n∑
k=1

um
ikd2

ik + λ

c∑
i=1

n∑
k=1

R(u), (6)

where m and λ are fuzzifiers.
When m=1 and R(u) = uikloguik, (6) is the objective function of entropy

regularized FCM, whose algorithm is the same as the EM algorithm for GMM
with a unit covariance matrix and equal cluster volume.

When m > 1 and λ = 0, (6) is the standard FCM objective function.
When m = 1 and R(u) = u2

ik, (6) is the FCM objective function with
quadratic regularization [13,14].

When m > 1 and R(u) = um
ik, (6) is an FCM objective function from which

(8) with unit covariance matrix is derived.
The objective function (1) includes the entropy term and is the only case

where covariance matrices (Ai) are taken into account. Although Gustafson and
Kessel’s modified FCM [3] is derived from an objective function with fuzzifier
m, we need to specify the value of determinant |Ai| for all i.

A simplification of the FCM clustering is to discard objective function method
and use the iteratively reweighted least square (IRLS) technique, which is known
as a solution technique in robust M-estimation [4,5]. The M-estimators try to
reduce the effect of outliers by replacing the squared residuals with ρ-function,
which is chosen to be less increasing than square. Instead of solving directly
this problem, we can implement it as the IRLS. While the IRLS approach does
not guarantee the convergence to a global minimum, experimental results have
shown reasonable convergence points. If one is concerned about local minima,
the algorithm can be run multiple times with different initial conditions.

We implicitly define ρ-function through the weight function [9] and try to
minimize only the first and third terms of (1). The weight u should be recom-
puted after each iteration in order to be used in the next iteration. In robust
M-estimation, the function uik = w(dik) provides adaptive weighting. The influ-
ence from xk is decreased when |xk − vi| is very large and suppressed when it
is infinitely large.

To facilitate competitive movements of cluster centers, we need to define the
weight function to be normalized as:

uik =
u∗

ik∑c
l=1 u∗

lk

. (7)

Examples of membership functions used in [8] are of the forms of

u
∗(1)
ik = πi/(λ + d2

ik/0.1)1/(m−1)|Ai|−1/γ , (8)

u
∗(2)
ik = πiexp(−d2

ik/λ)|Ai|−1/γ . (9)
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u∗(1) is a modified and parameterized multivariational version of Cauchy’s weight
function in M-estimator or of the PDF of Cauchy distribution. The classifier with
Cauchy membership function improved the classification performance in terms
of generalization ability [8] and receiver operating characteristics [9] for some
benchmark data sets. u∗(2) is a modified Welsch’s weight function in M-estimator.
Both the functions take into account covariance matrices in an analogous manner
with Gaussian PDF. It should be noted that if we choose u∗(2) in (9) with λ =
2, γ = 2 , then the IRLS-FCM is the same as GMM. This paper focuses on the
classifier with u∗(2). Although the classification accuracy by using (8) in terms of
10-CV is slightly better than that by (9), we use (9) in this paper, because HCM-
g is originated from (6). The clustering algorithm is the repetition of (4), (5) and
(7). After completing the clustering for each class, the classification is performed
by computing class memberships. Let αq denote the mixing proportion of class q,
i.e., the a priori probability of class q. When we adopt (9), the class membership
of k-th datum xk to class q is computed as:

u
∗(1)
qjk = πqjexp(−d2

qjk/λ)|Aqj |−1/γ , (10)

ũ
(1)
qk = αq

c∑
j=1

u
∗(1)
qjk /

Q∑
s=1

αs

c∑
j=1

u
∗(1)
sjk . (11)

The modification of covariance matrices in the mixture of probabilistic prin-
cipal component analysis (MPCA) [17] is applied in the IRLS-FCM classifier for
preventing singular matrices.

Let A′
i denotes an approximation of covariance matrix Ai in (8)-(9) as:

A′
i = P p

i (Δp
i − σiIp)P

p�
i + Pi(σiIr)P�

i , (12)

where Pi is an r×r matrix of eigenvectors of Ai. Δi =diag(δi1, ..., δir) is an r×r
diagonal matrix of eigenvalues. r equals the dimensionality of input samples. P p

i

is an r×p matrix of eigenvectors corresponding to the p largest eigenvalues, where
p < r − 1. P p

i is an r × p matrix and Δp
i is a p × p diagonal matrix. p is chosen

so that all A′
is are nonsingular and the classifier maximizes its classification

performance. σi = (trace(Ai) − Σp
l=1δil)/(r − p) and Pi(σiIr)P�

i = σiIr.
When p=0, Ai is reduced to a unit matrix and dik in (2) is reduced to Euclid-

ean distance. This modification can be used for both the fuzzy and hard classifiers
to compute distances in (2).

The IRLS-FCM classifier stated above is of a fuzzy approach and postsu-
pervised, and the IRLS clustering phase can be replaced by a hard clustering
algorithm. Although the main thesis of Miyamoto et al. [12] is the sequential
hard clustering algorithm, we confine our discussion to its simple batch algo-
rithm of hard clustering. The objective function of the HCM-g is (1) with λ = 0.
We only use (9) for HCM-g classifier. The simple HCM classifier uses Ai of unit
matrix, and thus, dik in (2) is reduced to Euclidean distance.
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An alternating optimization algorithm of HCM-g is the repetition of (3)
through (5) and

uik =

{
1 ; i = arg min

1≤j≤c
d2

jk + log|Aj |
0 ; otherwise

(13)

The modification of covariance matrices by (12) is not always enough for
preventing singular matrices, thus we modify (13) as:

uik =

{
M ; i = arg min

1≤j≤c
d2

jk + log|Aj |
1−M
c−1 ; otherwise

(14)

where M is a positive constant little smaller than 1.
As we will show in the numerical comparisons, HCM-g produces many local

minima than FCM-K or GMM. Our proposed classifier is of postsupervised and,
thus, the optimum clustering result with respect to the objective function does
not guarantee the minimum classification error. Our strategy is to select the best
one in terms of classification error from many local minima of the clustering
criterion of HCM-g. Parameter values used for HCM-g classifier are chosen by
the golden section search method [15].

3 Numerical Comparisons

Figs.1-2 show clustering results of artificial 2-D data. HCM-g produces many
different results for a nonseparate data set as shown in Fig.1. Five different
clustering results are obtained by 10 trials of HCM-g, while the results similar
to the one shown in Fig.2 are obtained 9 times out of 10 trials of GMM. As we
apply the classifier to data with more than two classes, we usually have many
more local minima of the clustering criterion. Convergence speed by HCM-g is
much faster than GMM. HCM-g needs only around 10 iterations, while GMM
needs more than 50.

We used 8 data sets of Iris, Wisconsin breast cancer, Ionosphere, Glass, Liver
disorder, Pima Indian Diabetes, Sonar and Wine as shown in Table 1. These
data sets are available from the UCI ML repository (http://www.ics.uci.edu/˜
mlearn/) and were used to compare the generalization ability of various
prototype-based classifiers such as k-nearest neighbor (k-NN), k-means (hard
clustering), and learning vector quantization (LVQ) in [18]. Iris-V represents a
2-class problem discriminating between the iris versicolor and the other two iris
subspecies. Incomplete samples in the breast cancer data set were eliminated.
All attribute values of each data set were normalized to zero mean and unit
variance. Classification error rates ± standard deviation (s.d.) by IRLS-FCM
classifier using u∗(2) and 10-fold cross validation (10-CV) with a default parti-
tion are shown in Table 2. The chosen parameters are shown in Table 3. Since
u∗(2) is an exponential function, when λ = 2, γ = 2, c = 1, IRLS-FCM is the
same as the discriminant analysis based on normal population, which is also
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Fig. 1. Five different clustering results observed by 10 trials of HCM-g

Fig. 2. Result observed 9 times out of 10 trials by GMM
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Table 1. Data sets used in the experiments

features objects classes
Iris 4 150 3

Iris-V 4 150 2
Breast 9 683 2
Iono 33 351 2
Glass 9 214 6
Liver 6 345 2
Pima 8 768 2
Sonar 60 208 2
Wine 13 178 3

Table 2. Classification error rates ±
s.d.: Results by IRLS-FCM and Gaussian
(quadratic) classifier using u∗(2) and 10-
fold CV with a default partition

IRLS-FCM u∗(2) Gaussian
u∗(2), λ = 2,
γ = 2, c = 1

Iris 1.33 2.0 p=3
Iris-Vc 2.0 3.33 p=2
Breast 2.79 ± 0 4.41 p=3
Iono 4.86 5.71 p=3
Glass 31.90 42.38 p=5
Liver 30.59 40.29 p=3
Pima 24.74 25.13 p=2
Sonar 11.95 ± 1.57 19.0 p=7
Wine 0 0.59 p=9

Table 3. Parameters used in IRLS-FCM (u∗(2))

parameters
Iris λ = 2.5, γ = 1, p = 3, c = 1

Iris-V λ = 1.8, γ = 1.8, p = 2, c = 1
Breast λ = 1.5, Aqj = I, πqj = αq = 1, c = 3
Iono λ = 2.0, γ = 2.6, p = 3, c = 1
Glass λ = 0.3, γ = 2, p = 5, c = 1
Liver λ = 0.5, γ = 11, p = 5, c = 1
Pima λ = 3, γ = 3, p = 3, c = 1
Sonar λ = 2.2, Aqj = I, πqj = αq = 1, c = 30
Wine λ = 1.5, γ = 2, p = 9, c = 1

known as Gaussian classifier or quadratic classifier. Table 2 shows how general-
ization ability is improved by parameterizing p, λ and γ. The parameters used
in IRLS-FCM (u∗(2)) are shown in Table 3.

Best resubstitution error rates from a 500 trials for each data set by HCM-g
classifier and LVQ are shown in Table 4. Initial value of LVQ learning rate β was
set as 0.3 and was changed as in [18], i.e., β(t + 1) = β(t) × 0.8 where t (=1, ...,
100) denotes iteration number. For c > 2, we set p = 0 for HCM-g. When p = 0,
HCM-g is a simple hard clustering with Euclidean distances. Naturally, as the
number c is increased, the error rate decreases and for example when c = 50 the
rate is 1.17% for the breast cancer data. For the glass data, when c=2 and (13)
was used, all trials unexpectedly terminated due to singular covariance matrices,
though, by using (14) the algorithm successfully converged.

Despite the continuous increase in computer memory capacity and CPU speed,
especially in data mining, storage and efficiency issues become even more and
more prevalent. For this reason we also measured the compression ratios of the
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Table 4. Best resubstitution error rates from a 500 trials by HCM-g and LVQ classifiers

c=2 c=5 c=10 LVQ c=5 LVQ c=10
Iris 0 1.33 0.67 2.0 1.33

Iris-V 0 1.33 2.0 2.0 0.67
Breast 2.2 3.07 2.20 2.34 1.61
Iono 1.99 5.13 3.99 7.41 5.70
Glass 7.94 17.76 13.08 20.56 18.22
Liver 20.29 25.51 23.77 27.54 21.45
Pima 19.53 20.57 19.79 20.18 18.88
Sonar 0 5.77 0.48 4.81 1.92
Wine 0 0 0 0 0

Table 5. Parameter values used for HCM-g
classifier

c=2 c=5, p=0 c=10,p=0
p, λ, γ λ λ

Iris 2, 1.6, 1.3 0.18 0.16
Iris-V 2, 1.4, 1.2 0.08 0.01
Breast 1, 2.2, 2.1 1.6 1.02
Iono 2, 3.8, 2.1 3.1 3.3
Glass 5, 1.1, 2.0 0.50 0.12
Liver 4, 3.1, 2.1 1.7 0.63
Pima 7, 2.0, 2.0 1.9 1.4
Sonar 10, 1.9, 2.6 4.3 2.1
Wine 1, 1.0, 1.9 1.9 2.2

Table 6. Compression ratio (%)

c=2 c=5 c=10
Iris 6.0 10 20

Iris-V 4.0 6.7 13.3
Breast 0.6 1.5 2.9
Iono 1.7 2.8 5.7
Glass 16.8 14.0 28.0
Liver 3.0 2.9 5.8
Pima 2.1 1.3 2.6
Sonar 10.6 4.8 9.6
Wine 3.4 8.42 16.9

trained classifiers in Table 6. The ratio is defined as Ratio=(p+1)× c× number
of classes ÷ number of data samples. The ratios for HCM-g (c > 2) and LVQ
are the same. The prototype based HCM-g classifier demonstrates relatively low
compression ratios. Parameter values used for HCM-g classifier are chosen by
the golden section search method [15] and are shown in Table 5.

HCM-g with c=2 attains the lowest error rate for 7 data sets as indicated by
boldface letters in Table 4.

4 Concluding Remarks

We have applied the generalized hard clustering algorithm with covariance struc-
ture to a postsupervised classifier to improve resubstitution error rate by choos-
ing best clustering results from local minima of the clustering criterion. The
resubstitution error rates and the data set compression ratios are improved on
several benchmark data sets by introducing HCM-g with c=2. Although the
approximation method of covariance matrices is effective, it does not always
guarantee the stable convergence of HCM-g clustering. Further modification is
to be developed for preventing unexpected termination of the algorithm.
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Abstract. In this paper, we examine the effects of the application of
LEM2 to a hierarchical structure of decision classes. We consider clas-
sification problems with multiple decision classes by nominal condition
attributes. To such a problem, we first apply an agglomerative hierarchi-
cal clustering method to obtain a dendrogram of decision classes, i.e., a
hierarchical structure of decision classes. At each branch of the dendro-
gram, we then apply LEM2 to induce rules inferring a cluster to which
an object belongs. A classification system suitable for the proposed rule
induction method is designed. By a numerical experiment, we compare
the proposed methods with different similarity measure calculations, the
standard application of LEM2 and a method with randomly generated
dendrogram. As the result, we generally demonstrate the advantages of
the proposed method.

1 Introduction

Rough set analysis [9] provides useful tools for data analysis. For example, based
on rough set, we can induce minimal rules from a given decision table. Many al-
gorithms for rule induction have been proposed [1,2,3]. Those algorithms are usu-
ally applied to induce rules inferring the membership to single decision classes.
Under the induced rules, a new object can be classified by evaluations of rules
in view of strength, specificity and matching factor.

However, for the classification of a new object, induction of rules inferring
the membership to single decision classes is not compulsory. We may induce
rules inferring the membership to one of decision classes for classifying a new
object. For example, if rules inferring the membership to ‘D1 or D2’ and ‘D2
or D3’ are obtained as a part of all induced rules and if a new object satisfies
conditions of those rules but not others, then the object can be classified into D2.
Even when no conditions of rules are satisfied or the conclusions of applicable
rules are conflict, we may classify a new object by evaluations of rules in view
of strength, specificity, matching factor and so on in the same way as in the
standard approaches.

From this point of view, we propose grouping decision classes and applying
a rule induction method to groups of decision classes. The conditions to be a
member of a large class are often simpler than those of a small class. Therefore,

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 928–938, 2006.
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by grouping decision classes before rule induction, we may obtain simpler rules.
Moreover simpler rules can be induced with less computation effort. Then this
approach may be computationally efficient.

The problem is how to group decision classes. The overlaps among groups is
allowed so that a set of groups build a cover of decision classes. A desired cover
is such that, for each decision class, there exist groups whose intersection include
the class only. However, to obtain such a desired cover is not an easy task. Then
we consider to apply an agglomerative hierarchical clustering algorithm [7,11]
for grouping decision classes.

An agglomerative hierarchical clustering algorithm was already applied to
group decision classes and hierarchical classifier was proposed in Kim and Land-
grebe [5]. Moreover, instead of an agglomerate hierarchical clustering algorithm,
a newly proposed divisive hierarchical clustering algorithm was applied to group-
ing decision classes in Kumar et al. [6]. Those methods are very similar to the
method proposed in this paper. However, their aim is to treat high-dimensional
numerical condition attribute data and a large number of decision classes and
they did not treat nominal condition attribute data.

Turning on rough set literature, Tsumoto [13] proposed a rule induction
method with grouping target concepts based on rough sets. The methods for
grouping as well as for rule induction are both based on the coverage. However,
in some cases, the rules seem to be passive. Jelonek and Stefanowski [4] pro-
posed the n2-classifier and showed its advantages in classification accuracy. In
the approach, they did not obtain a hierarchical structure of decision classes but a
cover of decision classes composed of all pairs of decision classes. Stefanowski [12]
showed the advantages of the n2-classifier with MODLEM in classification ac-
curacy and in computation time over the standard MODLEM classifier.

In this paper, we focus on classification problems with multiple decision classes
by nominal condition attributes. We use LEM2 [2] as a rule induction method.
We examine the performance of the application of LEM2 to a dendrogram of
decision classes obtained by an agglomerative hierarchical clustering algorithm.
At each branch of the dendrogram, we then apply LEM2 to induce rules in-
ferring a cluster to which an object belongs. A classification system suitable
for the proposed rule induction method is designed. By numerical experiments,
we compare the proposed methods with different similarity measure calcula-
tions, the standard application of LEM2 and a method with randomly gener-
ated dendrogram. As the result, we demonstrate the advantages of the proposed
method.

This paper is organized as follows. In Section 2, we briefly review rough
sets and a rule induction method. The proposed method is described in Sec-
tion 3. The similarity between groups of decision classes is defined for the appli-
cation of the agglomerative hierarchy clustering algorithm and a classification
method suitable for the hierarchical structure are explained. In Section 4, the
proposed methods with different settings are compared with the standard ap-
plication of LEM2 by numerical experiments. Concluding remarks are given in
Section 5.
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2 Rough Sets and Rule Induction

2.1 A Decision Table and Rough Sets

Rough sets are often applied to analysis of decision tables. A decision table is
defined by a 4-tuple T = 〈U, C ∪{d}, V, ρ〉, where U is a finite set of objects, C is
a finite set of condition attributes and d is a decision attribute, V =

⋃
a∈C∪{d} Va

and Va is a set of all values of attribute a ∈ C ∪ {d} and ρ : U × C ∪ {d} → V
is called an information function which is a total function.

Given a decision table, we can define an indiscernibility relation with regard to
an attribute set A ⊆ C∪{d} by RA = {(x, y) ∈ U×U : ρ(x, a) = ρ(y, a), ∀a ∈ A}.
RA is reflexive, symmetric and transitive. Namely, RA is an equivalence relation.
An equivalence class [x]A can be defined as [x]A = {y ∈ U : (y, x) ∈ RA}. The
set of all equivalence classes {[x]A : x ∈ U} becomes a partition of U . When
A = {d}, an equivalence class Di in {[x]{d} : x ∈ U} = {Di, i = 1, 2, ..., p} is
called a decision class, where p is the cardinality of {ρ(x, d) : x ∈ U} and thus
we have Di �= Dj for i �= j.

Lower and upper approximations of a set of objects X ⊆ U by means of an
attribute set A ⊆ C are defined by

A∗(X) = {x ∈ U : [x]A ⊆ X}, A∗(X) = {x ∈ U : [x]A ∩ X �= ∅}. (1)

A∗(X) is a set of objects surely classified as members of X by using all attributes
in A while A∗(X) is a set of objects possibly classified as members of X by using
all attributes in A.

2.2 Rule Induction

Based on rough sets, rules inferring the membership to a class X are induced
from a decision table. Induced decision rules are represented by ‘if ρ(u, a1) =
va1and . . . and ρ(u, am) = vamthen u ∈ X ’, where ak ∈ C, vak

∈ Vak
and

u is an unknown object whose condition attribute values are known. Here the
information function ρ is extensively used for u �∈ U and ρ(u, aj) takes the known
value of condition attribute aj .

In this paper, we use LEM2 [2] as the rule induction algorithm. LEM2 pro-
duces a minimal set of minimal decision rules that covers all objects in B =
C∗(X) or C∗(X) as an input data. We can obtain a minimal set of rules surely
inferring Di by setting B = C∗(Di), and a minimal set of rules possibly inferring
Di by setting B = C∗(Di). The algorithm of LEM2 is omitted in this paper but
found in Grzymala-Busse [2].

3 Rule Induction Via Clustering Decision Classes

3.1 Grouping Decision Classes

In this paper, we group decision classes before the application of LEM2. To
grouping decision classes, we apply an agglomerative hierarchical clustering
(AHC) algorithm [7,11].
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In the AHC algorithm, the initial clusters are singletons of decision classes.
Then similarities/distances between clusters are calculated. The most similar/
least distant two clusters are merged into one cluster and similarities/distances
between clusters are updated. The merging and similarity/distance updating
processes are iterated until all clusters are merged into one cluster. The descrip-
tion of AHC algorithm is omitted since it is well-known in the literature [7,11].

3.2 Similarity

Now we define the similarity between groups of decision classes we use in the
AHC algorithm. The similarity is defined by the following steps:

(a) we define a similarity between two objects,
(b) we define a similarity between an object and a set of objects using the sim-

ilarity defined in (a),
(c) we define a similarity between two sets of objects using the similarity defined

in (b).
(d) we define a similarity between two groups of decision classes in the same

spirit of (c).

Given a decision table T = 〈U, C ∪ {d}, V, ρ〉, the similarity between two
objects x, y ∈ U is defined by

s(x, y) =
|{a ∈ C : ρ(x, a) = ρ(y, a)}|

|C| . (2)

This similarity represents the ratio of common condition attribute values be-
tween objects x and y, and is in the same idea as the distance based on simple
matching [11]. Moreover, it is related to an Archimedean rough inclusion dis-
cussed by Polkowski [10].

Using the similarity between two objects, we define the similarity between an
object y ∈ U and a set X ⊆ U by

s(y, X) = ϕ(〈s(y, x) : x ∈ B(X)〉), (3)

where B(X) is C∗(X) or C∗(X) and 〈s(y, x) : x ∈ B(X)〉 is a multiset of
similarities. ϕ : M → [0, 1] is a function such as a mean, a median, a maximum,
or an OWA operation and M is a set of finite multisets whose elements are real
numbers in [0, 1].

Using the similarity between an object and a decision class, we further define
the similarity between two sets X and Y ⊆ U by

s(X, Y ) = max(ψ(〈s(y, X) : y ∈ B(Y )〉), ψ(〈s(x, Y ) : x ∈ B(X)〉)), (4)

where ψ : M → [0, 1] is also a function such as a mean, a median, a maximum,
or an OWA operation.
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Since decision classes are sets of objects, the similarity between decision classes
Di and Dj is defined by S(Di, Dj). In the same way, we can define the similarity
between groups Gi and Gj of decision classes by

s(Gi, Gj) = s

⎛⎝ ⋃
Dk∈Gi

Dk,
⋃

Dl∈Gj

Dl

⎞⎠ . (5)

The adoption of the similarity defined above is based on an idea that we
may induce simple rules from a set of objects having similar condition attribute
patterns.

When C∗(Di) = C∗(Di) = Di, i = 1, 2, . . . , p, the adoption of the maximum
operation for both of ϕ and ψ, the similarity is same as single-linkage [7,11]. The
adoptions of the minimum operation and the arithmetic mean for both of func-
tions ϕ and ψ are same as complete-linkage [7,11] and average-linkage between
groups [7,11]. Those adoptions are advantageous in the computational efficiency
than many other adoptions since the updating of similarity by merging clusters
is performed easily from similarities between clusters before the mergence.

Moreover, the adoption of the arithmetic mean for both functions ϕ and ψ
is advantageous in computation of the similarities between initial clusters. The
reason is as follows. We have

s(Di, Dj) =
1

|Di| × |Dj |
∑

u∈Di

∑
v∈Dj

∑
a∈C

||ρ(u, a) = ρ(v, a)||

=
1

|Di| × |Dj |
∑
a∈C

∑
u∈Di

∑
v∈Dj

||ρ(u, a) = ρ(v, a)||,

where ||statement|| is a truth value of statement, i.e., if statement is true then
||statement|| = 1, and otherwise ||statement|| = 0. |D| shows the number of
objects in D. Let the domain of attribute a be Va = {v1

a, . . . , vt
a} and let nk(vs

a)
be the number of objects u in Dk such that ρ(u, a) = vs

a ∈ Va. Namely, ni(vs
a) =

|{u ∈ Di : ρ(u, a) = vs
a}| and nj(vs

a) = |{u ∈ Dj : ρ(u, a) = vs
a}| for s =

1, 2, . . . , t. Then, we obtain the following equality:

∑
u∈Di

∑
v∈Dj

||ρ(u, a) = ρ(v, a)|| =
t∑

s=1

ni(vs
a) × nj(vs

a).

Utilization of this property makes the calculations of s(Di, Dj) faster.

3.3 Rule Induction and Classification Through the Dendrogram

Applying the AHC algorithm, we obtain a dendrogram as a result. At each
branch of a dendrogram, we apply LEM2 twice. One application is for inducing
rules inferring the inclusion in the left cluster and the other is for inducing rules
inferring the inclusion in the right cluster. Therefore, if we have p decision classes,
we apply LEM2 2(p−1) times. Note that the number of objects we use in LEM2
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decreases as the depth of the dendrogram increases. This is because we need
to consider only objects satisfying conditions of rules obtained at a pass from
the wth branch to the root when we induce rules at the wth branch. Therefore,
the computation effort for one execution of LEM2 decreases as the depth of the
dendrogram increases. This implies that the proposed approach do not always
require more computational effort than the standard approach.

After we induce all rules, we should built a classification system applicable
for any new objects. In the classification system of LERS including LEM2 as
a module of rule induction, given condition attribute values of a new object, a
decision class to which the object could belong is selected based on strength,
specificity and matching factor. Strength(r) is the total number of objects in
given decision table correctly classified by rule r. Specificity(r) is the total
number of attribute-value pairs in the condition of rule r. Matching factor(r)
is the ratio of the number of matched attribute-value pairs of rule r to the total
number of attribute-value pairs of rule r.

When conditions of some rules obtained by LEM2 are satisfied with the object,
the following measure Supp(Di) called support is used:

Supp(Di) =
∑

matching rules r inferring Di

Strength(r) × Specificity(r), (6)

where r is called a matching rule if condition of r is satisfied. For convenience,
when Supp(Di) is not defined, we treat Supp(Di) = 0. When no conditions of
rules obtained by LEM2 are satisfied with the object, the following measure
M(Di) is used:

M(Di) =
∑

partially matching
rules r inferring Di

Matching factor(r)×Strength(r)×Specificity(r),

(7)
where r is called a partially matching rule if at least one attribute-value pair in
condition of r is satisfied.

The classification can be performed as follows: if Supp(Di) > 0 for a decision
class Di, the decision class Di∗ with the largest Supp(Di∗) is selected. Otherwise,
the decision class Di∗ with the largest M(Di∗) is selected.

We may apply this idea to build a classification system based on the proposed
approach. Namely, we decide a cluster including a given new object at each
branch of dendrogram. Let G1 and G2 be left and right clusters at a branch. We
can define measures Supp(Gj) and M(Gj) by replacing Di with Gj in (6) and
(7). Following the idea described above, when one of Supp(G1) and Supp(G2) is
positive, we select Gj with larger Supp(Gj). Otherwise, we select Gj with larger
M(Gj).

However, this classification method will not be always advantageous. If a
cluster G1 includes much more objects in a given decision table than the other
cluster G2, Supp(G1) and M(G1) can often take a larger value than Supp(G2)
and M(G2) because Strength with respect to G1 is larger than that with respect
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to G2. Even in this case, in average, we may have a case when rules inferring
the inclusion in G2 are more matching than rules inferring the inclusion in G1.

Taking this into consideration, we propose the following measures to classify
a new object. When conditions of some induced rules inferring the inclusion in
Gi are satisfied with the object, the following measure Supp(Gi) called average
support is used:

Supp(Gi) =
∑

matching rules r inferring Gi

Strength(r) × Specificity(r)
|Gi|

, (8)

where |Gi| is the number of objects included in cluster Gi. For convenience, when
Supp(Gi) is not defined, we treat Supp(Gi) = 0. When no conditions of rules
inferring the inclusion in Gi are satisfied with the object, the following measure
M(Gi) is used:

M(Gi) =
∑

partially matching
rules r inferring Gi

Matching factor(r) × Strength(r) × Specificity(r)
|Gi|

.

(9)
The classification can be performed as follows at each branch of the dendro-

gram: when one of Supp(G1) and Supp(G2) is positive, we select Gj with larger
Supp(Gj). Otherwise, we select Gj with larger M(Gj).

4 Numerical Experiments

In order to examine the performance of the proposed approach, we did numerical
experiments. We compare several specifications of the proposed approaches and
the standard application of LEM2. Moreover, in order to examine the advantages
of the AHC algorithm with the similarity described in Section 3, we compare the
proposed approaches with the method using a randomly generated dedrogram
instead of the dedrogram generated by the AHC algorithm.

We used seven data sets obtained from UCI Machine Learning Repository [8].
Due to the paper size we skip the details of data sets. All condition attributes
are treated as nominal attributes. No inconsistency is not included in all data
sets, i.e., we have C∗(Di) = Di = C∗(Di) for all decision classes Di.

The evaluation is made by the 10-fold cross-validation technique. We executed
10-fold cross-validation technique 10 times. The evaluation is made by the aver-
age and standard deviation of the 10 time execution of 10-fold cross-validation
technique. We evaluate the simplicity of the obtained rules, the classification
accuracy (ACC) and the computation time (TIME) to obtain rules. The evalua-
tion of the simplicity is done by the number of rules (NUM), the average number
(LEN) of attribute-value pairs in the condition of a rule and the total number
of attribute-value pairs (SIZE) in whole rules composing a classification system.

We examined many specifications of the proposed approach, the standard
LEM2 approach (LEM2) and the approach with randomly generated dendro-
grams (RANDOM) on the same PC machine. Among many specifications of the
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proposed approach, we show the results of the proposed approaches using four
pairs of functions ϕ and ψ shown in the first column of Tables 1. and 2. For the
proposed approaches and RANDOM, we used Supp and M to classify a new
object while for LEM2, we used Supp and M . The adoption of Supp and M for
LEM2 is because it is used the standard applications of LEM2. On the other
hand, the adoption of Supp and M for others is because its performances were
in general better than that in the adoption of Supp and M .

The results of the numerical experiments are shown in Tables 1 and 2. In
Tables 1 and 2 ‘mean’ stands for the arithmetic mean. An entry in the form
of ave ± dev in those tables show the average ave and the standard deviation
dev. In those tables, asterisk ∗ shows the non-rejection of the null hypothesis

Table 1. The result of numerical experiments (part 1)

(a) Data set ‘car’
Method NUM LEN SIZE ACC(%) TIME(ms)

(mean,mean) 145.31±0.63 4.00±0.00 581.31±3.10 98.77±0.19 59.00±1.84

(max,max) 145.31±0.63 4.00±0.00 581.31±3.10 98.77±0.19 88.60�±2.15

(min,min) 145.31±0.63 4.00±0.00 581.31±3.10 98.77±0.19 87.50�±2.16

(max,mean) 150.90±0.66 4.07±0.01 614.17±3.30 98.59±0.18 238.40±2.42

LEM2 212.42±0.99 5.19±0.00 1102.86±5.90 95.14±0.40 123.10±0.70

Random 197.23∗±21.32 4.46±0.18 882.79±124.40 97.39±0.81 104.40±24.29

(b) Data set ‘dermatology’
Method NUM LEN SIZE ACC(%) TIME(ms)

(mean,mean) 25.70±0.22 2.08±0.03 53.39±0.74 95.15±0.67 20.40∗�±1.85

(max,max) 25.16±0.39 2.02±0.03 50.84±0.92 96.69±0.50 23.00�±2.53

(min,min) 27.15±0.30 2.06±0.03 55.90±0.90 93.75�±0.63 23.80±1.17

(max,mean) 25.70±0.22 2.08±0.03 53.39±0.74 95.15±0.67 60.30±2.69

LEM2 19.45±0.16 3.50±0.03 67.91±0.75 90.24±0.91 20.40±0.66

Random 30.65±2.18 2.26±0.06 69.35∗±6.33 91.96∗±2.74 20.80∗±3.31

(c) Data set ‘letter-recognition’
Method NUM LEN SIZE ACC(%) TIME(s)

(mean,mean) 6877.24±13.28 3.25±0.00 22385.45±59.28 79.78±0.13 97.23±0.62

(max,max) 6834.33±13.93 3.36±0.00 22932.57±76.85 78.44±0.23 125.10±2.97

(min,min) 7502.20±27.03 3.53±0.01 26500.23±132.09 74.87±0.25 216.89±4.46

(max,mean) 6899.65±11.92 3.10±0.00 21402.25±50.16 80.19±0.15 433.70±2.20

LEM2 3136.24±8.59 4.22±0.00 13246.08±31.50 77.33±0.20 68.08±0.37

Random 7427.40±90.72 3.46±0.03 25676.99±494.09 75.80±0.63 171.95±13.05

(d) Data set ‘nursery’
Method NUM LEN SIZE ACC(%) TIME(s)

(mean,mean) 405.49±0.94 4.49±0.00 1818.71±4.05 99.85±0.02 1.60±0.02

(max,max) 448.27�±1.89 4.63�±0.01 2073.69�±10.09 99.65�±0.03 5.31±0.05

(min,min) 522.34±2.18 4.96±0.01 2591.88±13.34 99.24�±0.13 7.14±0.07

(max,mean) 433.61�±3.78 4.69�±0.01 2031.01�±12.84 99.73�±0.05 17.95±0.07

LEM2 532.38±0.94 5.37±0.00 2858.91±6.04 98.83±0.07 3.38±0.04

Random 470.06±54.11 4.74±0.17 2234.64±312.77 99.48±0.37 2.70∗±0.90
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Table 2. The result of numerical experiments (part 2)

(e) Data set ‘optdigits’
Method NUM LEN SIZE ACC(%) TIME(s)

(mean,mean) 938.01±3.43 3.59±0.01 3363.77±17.79 86.54±0.37 39.79±0.33

(max,max) 982.90±3.85 3.40±0.01 3339.68±17.95 85.72±0.37 46.14�±0.36

(min,min) 984.50±7.36 3.56±0.02 3502.52�±28.69 85.22�±0.30 48.58±0.64

(max,mean) 966.51�±3.79 3.39±0.01 3273.86±14.92 85.99±0.36 79.91±0.26

LEM2 601.53±1.86 4.63±0.01 2784.48±12.01 82.35±0.53 37.56±0.48

Random 964.67±22.07 3.64±0.05 3512.88±85.46 84.64±0.96 45.47±3.78

(f) Data set ‘pendigits’
Method NUM LEN SIZE ACC(%) TIME(s)

(mean,mean) 2566.79±6.24 2.24±0.00 5749.70∗±13.77 86.40±0.26 22.89±0.23

(max,max) 2582.76±7.12 2.25±0.00 5822.05±18.45 86.36±0.22 23.67±0.61

(min,min) 2665.59�±7.41 2.40�±0.01 6407.75±32.48 85.52�±0.24 51.44±1.87

(max,mean) 2616.17�±7.02 2.22±0.00 5804.90±19.31 86.26±0.14 50.76±0.34

LEM2 1976.70±2.76 2.91±0.00 5744.92±8.27 81.76±0.22 20.67±0.67

Random 2637.39±54.81 2.38±0.03 6270.21±144.05 85.79±0.55 40.49±7.31

(g) Data set ‘zoo’
Method NUM LEN SIZE ACC(%) TIME(ms)

(mean,mean) 15.65±0.22 1.20±0.01 18.85±0.30 94.73∗±1.27 3.40∗�±0.80

(max,max) 14.45±0.14 1.14±0.01 16.44±0.20 95.02∗±1.49 3.70∗�±1.27

(min,min) 15.72±0.24 1.21±0.01 19.08±0.31 94.95∗±2.19 3.30∗�±1.00

(max,mean) 14.44±0.13 1.14±0.01 16.39±0.13 95.53±1.62 5.70±0.78

LEM2 9.62±0.10 2.12±0.01 20.32±0.14 94.24±1.18 3.90±1.51

Random 18.77±1.64 1.39±0.10 26.14±3.98 93.48∗±1.57 4.10∗±1.76

‘the averages of the method and LEM2 are same’ in t-test, star � shows the
non-rejection of the null hypothesis ‘the average of the method and RANDOM
are same’ in t-test.

From Tables 1 and 2, we observe that, generally speaking, the hierarchical
structure may improve the classification accuracy. Even in RANDOM, the clas-
sification accuracy ACC is improved or comparable with LEM2 in data sets
except ‘letter-recognition’ and ‘zoo’. This is surprising since the results can be
improved no matter how adequate the hierarchical structure is. However the
hierarchical structures obtained by the AHC algorithms improve more in many
data sets. The proposed approach with the adoption of the arithmetic mean for
functions ϕ and ψ is most advantageous in the classification accuracy than other
methods.

The number (NUM) of rules are increased in the approaches using the hier-
archical structure but the average number (LEN) of attribute-value pairs in a
rule decreases. The total number of attribute-value pairs (SIZE) in whole rules
is comparable or depends on a given data set.

The advantages using the AHC algorithms over RANDOM except case (min,
min), i.e., complete-linkage method appear especially in the simplicity of the
obtained classification system. Taking the standard deviation into consideration,
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the results of RANDOM are not stable and then we recognize the significance
of the AHC algorithms.

The computation time (TIME) of the proposed approaches are comparable
to LEM2. Especially, we observe that the adoption of the arithmetic mean for
functions ϕ and ψ, i.e., (mean,mean) is more advantageous in computation time
than the other adoptions.

To sum up, the proposed approach with the adoption of the arithmetic mean
for functions ϕ and ψ seems to be better than the standard application of LEM2
in the classification accuracy and it is comparable with LEM2 in computation
time.

5 Concluding Remarks

In this paper, we have proposed to group decision classes by an AHC algorithm
before the application of LEM2. We have demonstrated by numerical experi-
ments that the proposed approach using the AHC algorithm with the arithmetic
mean is advantageous than the standard application of LEM2.

Many further investigations on the proposed method remain. Among them,
comparison with n2-classification method [4,12] and examinations in numerical
data sets are the next steps of this research.

The authors express our appreciation to Professor J. Stefanowski for his valu-
able and constructive suggestions. The second author acknowledges that this
work has been partially supported by the Grant-in-Aid for Scientific Research
(B) No. 17310098.
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Abstract. Fuzzy clustering is a useful tool for capturing intrinsic struc-
ture of data sets. This paper proposes several formulations for soft tran-
sition of fuzzy memberships from probabilistic partition to possibilistic
one. In the proposed techniques, the free memberships are given by in-
troducing additional penalty term used in Possibilistic c-Means. The new
features of the proposed techniques are demonstrated in several numeri-
cal experiments.

1 Introduction

Fuzzy c-Means (FCM) [1] is a well known fuzzy clustering algorithm whose goal
is to partition objects (data points, individuals) into several clusters by esti-
mating fuzzy memberships of objects to each cluster. In the FCM clustering, an
additional weighting parameter called “fuzzifier” is introduced into the objec-
tive function of (hard) k-Means clustering [2] in order to fuzzify the degree of
memberships, i.e., the constraints on the membership parameters are general-
ized so that they can take arbitrary values from the interval of [0, 1] instead of
{0, 1}. Because the sum of memberships of objects with respect to clusters are
constrained to be 1, the fuzzy memberships are often said to be “probabilistic”.

Recently, several other techniques for fuzzifying membership assignment have
been proposed based on regularization approaches. Miyamoto and Mukaidono [3]
considered the singularity in the hard clustering which implies the case where
proper partition is not obtained by the Lagrangian multiplier method, and intro-
duced an entropy term as the regularization term with a positive parameter into
the objective function of k-Means clustering. Because the fuzzification technique
derives the similar algorithm to that of entropy-constrained fuzzy clustering
by Deterministic Annealing (DA) [4], the clustering model is often compared
with probabilistic mixture models [5]. Then, Ichihashi et al. [6] proposed a clus-
tering algorithm, which is similar to the EM algorithm for Gaussian Mixture

S. Greco et al. (Eds.): RSCTC 2006, LNAI 4259, pp. 939–948, 2006.
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Models (GMMs), by using the regularization technique with Kullback-Leibler
divergences (K-L information).

In spite of its usefulness, the “probabilistic” partition has a problem of noise
sensitivity because the probabilistic constraint forces noise samples to belong
to one or several clusters with some degree. Then, Krishnapuram and Keller
proposed the Possibilistic c-Means (PCM) algorithm [7] by giving up the con-
straint of sum to 1. This mode seeking algorithm is useful for outlier rejection
in fuzzy membership assignment, and the memberships can be regarded as the
probability that an experimental outcome coincides with one of mutually inde-
pendent events. However, it is possible that sets of events are neither mutually
independent nor completely mutually exclusive. Then, Masulli and Rovetta [8,9]
proposed the graded possibilistic approach to clustering with regularization by
entropy. In the approach, soft transition from probabilistic to possibilistic par-
tition is performed by using the graded possibilistic constraint.

This paper proposes two other formulations for soft transition of fuzzy mem-
berships from probabilistic partition to possibilistic one. One is a modified ver-
sion of the original FCM algorithm, in which the updating rule for memberships
is a hybrid of FCM and PCM. The other is an enhanced version of the FCM
algorithm with regularization by K-L information. In the proposed techniques,
the free memberships drawn from the interval of [0, 1] are given by introduc-
ing an additional penalty term used in PCM. The new features of the proposed
techniques are demonstrated in several numerical experiments.

2 Fuzzy c-Means and Possibilistic c-Means

2.1 Fuzzy c-Means and Several Fuzzification Techniques

Fuzzy c-Means (FCM) [1] is an unsupervised classification technique that is
a fuzzified version of k-Means clustering [2]. In the k-Means (hard c-Means)
clustering, objects to be classified are assigned to one of C clusters where each
cluster has its prototypical mean vector. The membership assignment is based on
minimization of within-group-sum-of-errors, i.e., nearest prototype classification.
Then, the two step iterative algorithm is composed of calculation of mean vectors
and assignment of objects.

The FCM algorithm proposed by Bezdek et al. [1] uses the objective function
of generalized within-group-sum-of-errors

Ls
fcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci. (1)

d2
ci is the clustering criterion of the distance between the ith object xi and

the cth prototypical mean vector (cluster center) bc, and uci ∈ [0, 1] represents
the membership of the ith object to the cth cluster. θ is an additional weighting
exponent. If θ = 1, the clustering model is reduced to the (hard) k-Means model.
The larger the θ, the fuzzier the memberships. So, the weighting exponent is
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usually set to be θ > 1 and is called the “fuzzifier”. The memberships are often
calculated under the constraint of

C∑
c=1

uci = 1, i = 1, · · · , n. (2)

Because the memberships are obtained by a formula similar to the updating
rule for posterior probabilities in the EM algorithm with probabilistic mixture
models, the constraint is called the “probabilistic constraint” [10].

In the original FCM algorithm, called the “standard FCM algorithm”, the
updating rules for parameters are given as

bc =
∑n

i=1 uθ
cixi∑n

i=1 uθ
ci

, (3)

uci =

[
C∑

l=1

(
d2

ci

d2
li

) 1
θ−1
]−1

. (4)

Another approach to fuzzification of the hard c-Means clustering is the reg-
ularization of the objective function. Miyamoto and Mukaidono [3] introduced
a regularization term with a positive parameter λ into the objective function.
Using the entropy term, the objective function of the FCM clustering based on
the regularization technique is defined as

Le
fcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log uci, (5)

where the entropy term works like the weighting exponent in the standard FCM
algorithm, and transforms the linear programming problem into the nonlinear
optimization problem with respect to memberships uci. The parameter λ plays a
role for tuning the degree of fuzziness of membership values. The larger the λ, the
fuzzier the memberships. This fuzzification technique is called the “regularization
by entropy.” The updating rules for cluster centers and memberships are derived
as follows:

bc =
∑n

i=1 ucixi∑n
i=1 uci

. (6)

uci =
exp(− 1

λd2
ci)∑c

l=1 exp(− 1
λd2

li)
, (7)

The regularization approach can also be performed by using other regular-
ization terms. Ichihashi et al. [6] generalized the regularized objective function
replacing the entropy term with K-L information term and proposed an FCM-
type counterpart of the GMMs with full unknown parameters. The clustering
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technique is called the FCM clustering with regularization by K-L information
(KLFCM) and the objective function is defined as follows:

Lklfcm =
C∑

c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log
uci

πc
+

C∑
c=1

n∑
i=1

uci log |Σc|, (8)

where d2
ci is the (squared) Mahalanobis distance d2

ci = (xi − bc)�Σ−1
c (xi − bc),

and all the elements of Σc are also decision variables. Eq.(8) is minimized under
the condition that both the sum of uci and the sum of πc with respect to c equal
1, respectively. If uci � πc for all i and c, the K-L information term becomes 0
and the membership assignment is very fuzzy; but when λ is 0 the solution uci’s
are obtained at the extremal point (0 or 1). Fuzziness of the partition can be
controlled by λ. From the necessary conditions, the updating rules for uci, πc, Σc

are given as follows:

uci =
πc exp

(
− 1

λdci

)
|Σc|−

1
λ∑C

l=1 πl exp
(
− 1

λdli

)
|Σl|−

1
λ

, (9)

πc =
1
n

n∑
i=1

uci, (10)

Σc =
∑n

i=1 uci(xi − bc)(xi − bc)�∑n
i=1 uci

, (11)

and the cluster center bc is given by Eq.(6). Because πc represents the proportion
of objects belonging to the cth cluster, it is regarded as the capacity of the
cluster. The algorithm is equivalent to the EM algorithm with GMMs if and
only if the fuzzification coefficient λ = 2. When λ �= 2, there is no corresponding
mixture density. In the KLFCM clustering, K-L information term is used for
both optimization of cluster capacities and fuzzification of memberships while
Hathaway [5] interpreted the clustering criterion as the sum of K-L information
for updating memberships [11].

2.2 Possibilistic c-Means

Krishnapuram and Keller [7] proposed the possibilistic clustering by giving up
the probabilistic constraint. The objective function is formulated as

Ls
pcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci +

C∑
c=1

ηc

n∑
i=1

(1 − uci)θ, (12)

where ηc, c = 1, · · · , C are suitable positive numbers. The first term demands
that the distances from the objects to the prototypes be as low as possible,
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whereas the second term forces the uci to be as large as possible avoiding the
trivial solution. Then, the updating rule for memberships is given as

uci =
1

1 +
(

d2
ci

ηc

) 1
θ−1

. (13)

The value of ηc controls the bandwidth of the possibility (membership) distri-
bution for each cluster and determines the distance at which the membership
value of an object in a cluster becomes 0.5. In [7], ηc was calculated by using the
fuzzy intra-cluster distance as

ηc = K

∑n
i=1 uθ

cid
2
ci∑n

i=1 uθ
ci

, (14)

and K is typically chosen to be 1.
Another formulation for Possibilistic c-Means can be derived by modifying

the FCM clustering with regularization by entropy [12,13],

Le
pcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

(uci log uci − uci) (15)

The updating rule for memberships is given as uci = exp(− 1
λd2

ci).

3 Soft Transition to Possibilistic Partition

3.1 DA-Based Soft Transition

Masulli and Rovetta [8,9] proposed the graded possibilistic approach to clus-
tering, in which soft transition from probabilistic to possibilistic constraint is
performed by using the graded possibilistic constraint. Assume that a class of
constraints is expressed by a unified formulation: Ψ =

∑C
c=1 u

[ξ]
ci − 1, where [ξ] is

an interval variable representing an arbitrary real number included in the range
[ξ, ξ], i.e., there must exist a scalar exponent ξ∗ ∈ [ξ, ξ] such that the equality
Ψ = 0 holds. The constraint can be implemented by using a running parameter
α. The extrema of the interval are written as a function of α, where ξ = α, ξ = 1

α
and α ∈ [0, 1]. Then, the constraint with an interval is represented as a set of

two inequalities:
∑C

c=1 uα
ci ≥ 1 and

∑C
i=1 u

1
α

ci ≤ 1.
For implementation of the graded possibilistic clustering, the following algo-

rithm can be used. When we use the entropy regularization (or DA approach),
the memberships are updated as

uci =
φci

κi
, (16)

where φci is a free membership of xi to the cth cluster drawn from the interval
of [0, 1] and is given as

φci = exp
{
−d2

ci

λ

}
. (17)
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κi takes one of the following three values.

κi =

(
C∑

l=1

φ
1
α

li

)α

if
C∑

l=1

φ
1
α

li > 1, (18)

κi =

(
C∑

l=1

φα
li

) 1
α

if
C∑

l=1

φα
li < 1, (19)

κi = 1 else. (20)

Eq.(18) transforms memberships that are above the upper boundary onto the

boundary (
∑C

l=1 u
1
α

li = 1) while Eq.(19) transforms memberships under the lower
boundary onto the boundary (

∑C
l=1 uα

li = 1). When α = 1, Eqs.(18) and (19)
derive κi =

∑C
l=1 φli, and memberships uci’s are reduced to the probabilistic ones

(
∑C

c=1 uci = 1). On the other hand, α = 0 provides the possibilistic membership
assignment because all of κi’s are given by Eq.(20). Then, the value of α should
be gradually decreased from 1 to 0.

3.2 Soft Transition with Standard Fuzzification Technique

The key in generalizing the graded possibilistic approach to other fuzzification
techniques is how to define the free memberships of Eq.(17). In this subsection,
a free membership drawn from the interval of [0, 1] is formulated in the frame of
the standard fuzzification technique. In order to generalize the updating rule for
memberships, the additional penalty term used in PCM is introduced into the
objective function of FCM as follows:

Lgs
fcm =

C∑
c=1

n∑
i=1

uθ
cid

2
ci +

C∑
c=1

ηc

n∑
i=1

(1 − uci)θ. (21)

Then, Eq.(16) is calculated with the following free membership φci:

φci =
1

1 +
(

d2
ci

ηc

) 1
θ−1

, (22)

where ηc is a predefined constant. We can see that d2
ci = 0 derives φci = 1, and

φci moves toward 0 as d2
ci → ∞.

Here, it is obvious that the free membership of Eq.(22) derives the possibilistic
partition of PCM when α = 0. Then, the parameter ηc plays a similar role
with that of PCM and can be given in the same way with PCM. On the other
hand, when α = 1, the updating rule has some connection with that of FCM.
Substituting Eq.(22), Eq. (16) with α = 1 is written as

uci =
φci∑C
l=1 φli

=

(d2
ci)

− 1
θ−1

(d2
ci)

− 1
θ−1 +(ηc)

− 1
θ−1∑C

l=1
(d2

li)
− 1

θ−1

(d2
li)

− 1
θ−1 +(ηl)

− 1
θ−1

. (23)
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By the way, the updating rule of Eq.(4) can be written as

uci =
(d2

ci)
− 1

θ−1∑C
l=1(d

2
li)

− 1
θ−1

=

(d2
ci)

− 1
θ−1

C
l=1(d

2
li)

− 1
θ−1∑C

l=1
(d2

li)
− 1

θ−1

C
k=1(d

2
ki)

− 1
θ−1

. (24)

Then, the proposed model is equivalent to the standard FCM if (ηc)−
1

θ−1 =∑C
l=1(d

2
li)

− 1
θ−1 − (d2

ci)
− 1

θ−1 for all c.
Assume that ηc is fixed for all i and c. When ηc is large, all uci’s tend to take

the same value of 1/C, i.e., the membership assignment becomes very fuzzy.
On the other hand, when ηc is enough close to 0, the value of Eq.(23) becomes
similar to that of Eq.(24) because

(d2
ci)

− 1
θ−1

(d2
ci)

− 1
θ−1 + (ηc)−

1
θ−1

� (d2
ci)

− 1
θ−1

(ηc)−
1

θ−1
, (25)

and

C∑
l=1

(d2
li)

− 1
θ−1

(d2
li)

− 1
θ−1 + (ηc)−

1
θ−1

� 1

(ηc)−
1

θ−1

C∑
l=1

(d2
li)

− 1
θ−1 . (26)

Therefore, the value of ηc should be gradually increased from a positive small
value to Eq.(14).

3.3 Soft Transition with Regularization by K-L Information

In the same manner, the graded possibilistic approach to the FCM clustering
with regularization by K-L information can be formulated as follows:

Lg
klfcm =

C∑
c=1

n∑
i=1

ucid
2
ci + λ

C∑
c=1

n∑
i=1

uci log
uci

πc
+

C∑
c=1

n∑
i=1

uci log |Σc|

+
C∑

c=1

λ log ηc

n∑
i=1

(1 − uci) + λ

C∑
c=1

n∑
i=1

(1 − uci) log(1 − uci), (27)

where d2
ci is the (squared) Mahalanobis distance. Then, Eq.(16) is calculated

with the following free membership φci:

φci =
πc exp

(
− 1

λdci

)
|Σc|−

1
λ

πc exp
(
− 1

λdci

)
|Σc|−

1
λ + 1

ηc

, (28)

where ηc is a predefined constant.
Here, the free membership of Eq.(28) derives a possibilistic partition when

α = 0, and the parameter ηc plays a similar role with that of PCM. Consid-
ering the similarity between KLFCM and GMMs, it is a natural choice that



946 K. Honda et al.

1
ηc

= Kπc exp
(
− 1

λ

)
|Σc|−

1
λ because the within-group variance is 1 in the Maha-

lanobis distance. Then K can be chosen to be 1. On the other hand, when α = 1,
the updating rule becomes more similar to that of KLFCM as ηc moves toward
0. Therefore, the value of ηc should be gradually increased from a positive small

value to
[
Kπc exp

(
− 1

λ

)
|Σc|−

1
λ

]−1
in the graded possibilistic clustering.

By the way, other parameters can be updated in the same manner with
KLFCM so long as we use the same constraint except for the probabilistic con-
straint of Eq.(2).

4 Numerical Experiments

This section shows the results of numerical experiments that were performed by
using an artificial data set consisting of 100 samples with 2-D observation. The
data set was partitioned into 2 clusters using the proposed formulations.

First, the standard FCM and its generalized model were applied to the data
set. The derived fuzzy classification functions are shown in Figs. 1 and 2, in
which the objects to be classified are represented by “◦” and the gray scale
shows the maximum membership value, i.e., the membership degree belonging

Fig. 1. Fuzzy classification function by standard FCM with θ = 2.0

(a) α = 0.5 (b) α = 0.0

Fig. 2. Fuzzy classification function by graded possibilistic approach with standard
fuzzification with θ = 2.0



Several Formulations for Graded Possibilistic Approach to Fuzzy Clustering 947

Fig. 3. Fuzzy classification function by KLFCM with λ = 2.0

(a) α = 0.1 (b) α = 0.0

Fig. 4. Fuzzy classification function by graded possibilistic approach with regulariza-
tion by K-L information with λ = 2.0

to the nearest cluster center. In the graded possibilistic approach, ηc was given as
ηc = 0.0001α+(1−α)

n
i=1 uθ

cid
2
ci

n
i=1 uθ

ci

. The figures show that the possibilistic partition
is a good property of the mode seeking algorithm and the graded possibilistic
approach performs the soft transition well. Furthermore, the intermediate model
(α = 0.5) reflects the features of both of probabilistic and possibilistic partition.

Next, the graded possibilistic approach is performed using the regularization
by K-L information. Here, it has been shown that the KLFCM algorithm is
sensitive to initial partition and often falls into local minima where we have
a very large cluster (global cluster) and several very small clusters with a few
objects. In this experiment, the initial partition was given by the standard FCM
algorithm and the lower limit of variance (covariance) was set as 0.02 in order
to avoid a global cluster. The derived fuzzy classification functions are shown in

Figs. 3 and 4. ηc was given as ηc = 0.0001α+(1−α)
[
πc exp

(
− 1

λ

)
|Σc|−

1
λ

]−1
. The

figures show that the KLFCM-based model could capture not only the cluster
centers but also the capacities and the shapes of clusters.

In this way, the proposed approach is useful for performing the soft transition
from probabilistic to possibilistic partition.
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5 Conclusion

This paper proposed several formulations for graded possibilistic approach in the
FCM clustering. In the proposed techniques, the free memberships drawn from
the interval of [0, 1] are given by introducing an additional penalty term used in
PCM. The probabilistic partition of the conventional clustering algorithm can be
derived by using a small penalty weight while the weight plays a role for tuning
the bandwidth of the possibility (membership) distribution for each cluster in
the possibilistic partition. Application to real world data sets is remained in
future work.
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