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Abstract. Load sharing in the data centre is an essential strategy for
meeting service levels in high volume and high availability services. We
investigate the accuracy with which simple, classical queueing models
can predict the scaling behaviour of server capacity in an environment
of both homogeneous and inhomogeneous hardware, using known traffic
patterns as input. We measure the performance of three commonly used
load sharing algorithms and show that the simple queueing models un-
derestimate performance needs significantly at high load. Load sharing
based on real-time network monitoring performs worst on average. The
work has implications for the accuracy of Quality of Service estimates.

1 Introduction

Network services are now a central paradigm in the management of commercial
resources in a market framework. They are divided broadly into network level
services (such as sale of subscriber lines) and application level services (such as
Internet banking and other Web-based portals). Predicting the expected service
delivery is an important prerequisite for selling services in a market place; these
expectations are then codified in Service Level Agreements in order to place the
relationships on a contractual footing[1]. In simplistic terms, a service provider’s
task is to deliver the promised service level in as lucrative a way as possible (the
Service Level Objective). There is a clear need for models which can reliably
predict the relationship between supply and demand.

Meeting the requirements set by SLAs, with variable demand and resources,
has become a keen point of interest in the last year[2,3,4]. A common strategy for
trying to determine this relationship is to opt for “over-provision”, i.e. providing
more resources than are needed, by some acceptable margin. This is a straight-
forward way of dealing with uncertainty, but it can be a relatively expensive way
and, without a model for capacity, it is not clear exactly what margin is required
for meeting the peaks in demand. Another approach would be to try to adapt
the service scheduling strategy and resource pool to better adapt to changing
requirements[3,4]. In each case, there is a role for parallelism in the provision of
the services both for the purpose of load sharing and redundancy.

In this paper, we consider how well one is able to predict the scalability of an
application service by means of low level load balancing. We examine how the
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simple queueing models behave as estimators of local load balancing techniques,
and we look at how response times vary as a function of traffic and number of
servers. This information is of direct interest to data centre managers, especially
when the hardware in a data centre in inhomogeneous, with varying processing
capacity.

We quantify the expected uncertainty in service levels for different kinds of
demand and equipment, so as to provide an estimate of service level margins,
suitable for inclusion in a Service Level Agreement.

2 Experiment

Consider the following problem. Suppose our data centre resources are not fixed,
but that we can add additional computing nodes in a cluster-like fashion, how
can we adapt to changing service levels using models to predict the effects of
changing the number of servers used in parallel?

We base our experiment on simulated traffic running on real hardware. The
traffic is a stream of page-lookups to PHP-enabled web pages, generated us-
ing httperf. Each page involved CPU-bound iteration (spin delay); this was
necessary to offer the server any load at all, as the server CPU hardware was
comparable to that of the traffic generator.

There is some controversy in the literature about the exact arrival charac-
teristics of Web traffic requests and how this affects the ability of a server to
process them. We do not wish to involve ourselves in that question here (see
[5] for a treatment of this matter); rather we wish to answer a far less ambi-
tious question: assuming that the traffic follows the simplest, most predictable
pattern, are we able use the corresponding models for load sharing to predict
the performance of the balanced system? As we shall see below, this is far from
being a straightforward question.

In our tests, we use a commercial Alteon 2208 load balancing switch as the
dispatcher, to a back end of symmetrical IBM blade servers running Apache2 on
GNU/Linux. These servers can be made identical, and they can be switched into
power saving modes of lower CPU frequency (from 1.2 GHz to 2.8 GHz, step-
wise). We make use of this feature to simulate the transition from homogeneous
to inhomogeneous server hardware.

We would like to be able to predict the performance of servers in a data centre,
with regard to

– Average delivery time of a job in the system.
– Change in average delivery time on adding new hardware.

This information is of direct use to a data centre manager adapting to demand,
and it is also useful to the sales staff who decide when to promise specific service
levels in their agreements.

Since we are dealing with random processes, exact prediction is not an option.
A realistic picture is to end up with a probability or confidence measure e.g. what
is the likelihood of being able to be within 80% or 90% of an SLA target value?
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Fig. 1. The topology for low level load sharing using a commercial dispatcher

The shape of this probability distribution will also answer the question: what is
the correct level at which to ‘over-provision’ a service in order to meet the SLA
requirements. Fig. 1 shows the schematic arrangement of servers.

3 Queues and Service Prediction

Queueing theory is the domain of experts, not of data centre engineers. In-
deed, in engineering terms, only the simplest queueing models are really used
as predictors[6], because the more complex models require input that is not
available to the average engineer. What is the distribution of traffic at a given
moment? Does it vary throughout the course of a day or a week? These are
questions that are not easily answered and, even if they are, those answers are
not easily used in an advanced queueing model to give a simple result. We need
therefore simple models that give approximate rules of thumb.

Recent work by Sauvé et al discusses the matter of trying to convert low
level knowledge of a system into SLA margins, in a multi layered model using
the cost of the equipment and services to add an element of risk analysis to
the problem[2]. They use the simplest kind of queue model to estimate capacity
– this is understandable given the complexity of the problem. However, they
do not evaluate whether the model actually has any predictive power. Another
group has considered the idea of combining queueing models with an adaptive
control framework to allow service capacity to change with demands[3]. This
work is rather interesting from a design point of view, but it does not answer
the basic questions that an engineer might ask, such as how to deal with the
varying demand in lieu of this new technology.

The basic queueing models we consider are, in Kendall notation, the M/M/1
queue and the M/M/n queue for n servers[7]. The M stands for ‘memoryless’,
i.e. discrete time Poisson inter-arrival time traffic. This is the ‘simplest’ case
for queues, since Poisson traffic has simple analytical properties. It is known
that Web traffic is rarely this well-behaved in practice, however, we use it as
a source with the rationale that, if we cannot predict Poisson traffic, then we
certainly cannot deal with more long-tailed traffic patterns. There is evidence
to suggest that it is good enough to compensate for this model with additional
uncertainty[5].
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The total quality of service in a system must be viewed as the combined
qualities of the component parts[8]. It is a known result of reliability theory[9]
that low level parallelism is, in general, more efficient than high level parallelism,
in a component-based system. Thus a single M/M/n queue is generally superior
in performance to n separate M/M/1 queues (denoted (M/M/1)n). The M/M/n
queueing model is already significantly more complex than the M/M/1 model.
A natural question is then: how to actual measurements of performance tally
with either of these models, given a Poisson traffic source?

4 Server Performance

For calibration, we begin by considering the response of a single server to in-
creasing load, as a control. The graph in fig. 2 shows a rising CPU utilization
on the left of the graph, and a response time which stays low until we reach
approximately 100 requests/second.

Notice that the response time eventually levels out, as packets are simply
dropped above the threshold. Above 110 requests/second the response time stays
between 1200 and 1400 ms. From these results it is clear that the server can
handle somewhere between 100 and 110 requests per second, and that this task
is heavily CPU bound (this is a result of our experiment design, but we believe
that it is representative for many application tiered web services).
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Fig. 2. Response time and CPU utilization of a single server as a function of requests
per second, using Poisson distribution with exponential inter-arrival times

We also see that the CPU utilization increases linearly until around 105 re-
quests/second, then it drops. This is a telling result since the server should be
heavily utilized above this rate if the system is working efficiently. Looking at
the standard deviation of the results obtained for CPU load, we see that it is
very high when the request rate is above 110 requests/second. This implies that
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the server is unable to deliver the maximum level of service when requests per
second exceed the maximum threshold due to thrashing at the server side. This
is a strong indication that we want to avoid this region at all costs.

The response time also flattens out when the load exceeds approximately
105 requests per second. Above this rate the server starts to refuse connections
instead of accepting all of them. Data show that the error rate above 100 requests
per second increases proportionally with the increasing request rate. This again
indicates that the server can’t process request at any higher rate.

The reason for the results shown in fig. 2 is the queue length configured on
the Apache web-server. Apache only spawns a limited number of child processes
to handle incoming requests, and when all these processes are busy it needs to
queue up waiting requests. This queue has a maximum length, in our case defined
by the Apache ListenBacklog directive. The errors start to increase when the
server has filled up its queue; 120 requests/second gives an error rate of 5.91
packets, and when the request rate increases above this we see that the increase
in errors is almost the same as the increase in requests per second.

5 Load Sharing

Our load balancing arrangement uses a dispatcher at the bottleneck to distribute
load to the back-end servers, using one of three different sharing algorithms:

– Round Robin: the classic load sharing method of taking each server in turn,
without consideration of their current queue length or latency.

– Least Connections: the dispatcher maintains state over which back end server
currently has fewest on-going TCP connections and channels new arrivals to
the least connected host.

– Response Time: the dispatcher measures the response time of each server in
the back end by regularly testing the time it takes to establish a connection.
This has many tunable parameters.

In elementary queueing theory, there is no simple way of dealing with the issue
of inhomogeneous servers. A simple question is therefore whether the simplest
classical queueing models provide sensible predictive power for the data centre
engineer in either a homogeneous or non-homogeneous case, on average.

6 Queueing Models as Sharing Predictors

We consider how queueing models perform compared to results obtained from
our lab experiment. We use a c script to calculate response times using both
M/M/1n and M/M/n queues. From the previous sections we have calculated
the performance of a single web-server, and we use this result in our queueing
simulation. Below is a list of parameters used for expected response times using
queueing theory:
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– μ This is the variable we calculated when doing performance tests against
one server. It is the processing capability of the server, also called the service
rate and is often expressed in completions per millisecond. We take μ =
0.10413from the fact that each server is able to process 0.10413 requests per
millisecond.

– λ This is the arrival rate, and is expressed in arrivals per millisecond
– n Number of servers available. In our experiments we had at most 5 available

servers to balance the load between.
The max rate specifies the limit at which we stopped simulation. This is
usually equal to n·μ since the queueing algorithms do not produce well-
defined results when the servers are overloaded. In figure 3 max rate equals
2 · μ = 0.20826.
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Fig. 3. Theory vs. Experiment: This graph shows the results obtained from simulating
load balancing with both M/M/n and (M/M/1)n queues and response times from a
real experiment

Figure 3 shows a comparison of queue model with experiment for 2-5 inden-
tical servers, using the Round Robin algorithm to balance the load between two
servers. We see that the experimental results for n servers follow those for the
M/M/n queue quite closely up to the point of about 90% saturation. This is
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an encouraging sign for theory – given that the servers truly are measurably
identical. It is perhaps better than one would expect given the simplicity of the
queueing model. However, there is an indication that the model worsens as the
number of servers increases. The (M/M/1)n is overly pessimistic for all n at low
traffic, but M/M/n traces the actual behaviour with surprising accuracy.

At about 90% of the maximum expected capacity (as calibrated against the
single server levels) the models begin to fail. A summary of requests per sec-
ond, errors and network input/output in Table 1 reveals that errors first start to
occur when the request rate exceeds this 88% mark. The actual 2,3,4-server so-
lutions even out-perform the M/M/2, 3, 4 predictions across the whole spectrum
of loads, even when entering the thrashing regime. This is likely due to the fact
that each server in fact deals with requests using parallel processing threads, not
a First Come First Served (FCFS) discipline as the queue model assumes[5]; this
is more efficient than FCFS. Nonetheless, the closeness of behaviour is notable
for two servers. As the total load rises in the 5 server case, this behaviour changes
and the thrashing regime cuts in even more sharply. This could be a sign of a
change in the performance of the load balancer itself.

Table 1. A summary of CPU utilization, request and error rates when using Poisson
distributed inter-arrival times in a 2-server regime

No. of requests Response Time Std. Dev. No. of errors

2 9.89 0.09 0
10 9.87 0.12 0
50 10.45 0.13 0
100 12.49 0.12 0
150 17.64 0.36 0
160 20.12 0.67 0
170 24.40 1.00 0
180 31.40 1.72 0
190 41.08 3.27 0
200 66.04 18.35 0
202 78.44 34.21 0.002
204 97.91 77.31 0.003
220 853.56 76.73 0.1

Repeating the simulation for higher numbers of shows a similar story, but one
which becomes progressively worse earlier. Figure 3 shows the comparison for
M/M/15 and M/M/5. Here performance reaches approximately 490 out of the
expected 520 requests per second (77%) before significant deviation sets in. Then
at about 490 requests/second the experimental system reaches an instability
and diverges drastically from the theoretical models. The fact that this occurs
more quickly here is an anomaly; alas, we did not have more identical servers
to attempt to extend the number to an even higher level, but this would have
been interesting. Clearly, when theory and practice do not agree, some of the
theoretical assumptions are incorrect. It is unlikely that the problem lies with
the distributions. A clue as to the reason is found in the next section.
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7 Scalability with Increasing Servers

If performance scales linearly when adding servers it means that we can easily
predict the effect of adding more servers. This would be a useful property when
considering QoS and maintaining SLA agreements. In figure 4 we show the ad-
dition of servers at four traffic levels intended to saturate the same number of
servers.
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Fig. 4. How response rates scale when adding extra servers. For low traffic, adding a
new server results in a discontinuous improvement in response time. At very high load,
adding a server seems to reduce performance, leading to the upward curve in the last
figure as the limitations of the bottleneck dispatcher become apparent.

In the first graph we see that the response time is kept low in all scenarios. This
fits with the assumption that even a single server should be capable of handling
104 requests per second. The next graph shows that all scenarios except the one
with a single server are capable of handling 200 requests per second. This fits the
scaling predictions. With 400 requests per second, in the third graph, four servers
just cut it. In the fourth graph we request 600 connection per second, and we see
that the response rate is high for all scenarios. These results make approximate
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Fig. 5. Maximum processing capacity as a function of number of servers

sense, yet the scaling is not exactly linear; there is some overhead when going
from having 1 server to start load balancing between 2 or more servers. We
explore this further below. Figure 5 shows how the rates scale with number of
servers. Note the discontinuities in points of maximum curvative in the response
functions after one server and four servers. the response is not exactly linear.

8 Load Sharing Performance

The measurements above have been made with the round robin sharing strategy.
It makes sense that this would agree maximally well with the M/M/n model
when all of the servers are indentical. In any real data centre, the likelihood of
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Fig. 6. The performance of the RT, LC and RR algorithms in a homogenous server
environment. RR is superior at low traffic intensity, LC survives to slightly higher
levels, but a small instability around 250 req/s.
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Fig. 7. Performance of the RT; LC and RR algorithms in an inhomogeneous environ-
ment. Surprisingly both RR and RT measurements behave similarly under load, while
RR is best at low loads. This indicates that there is no advantage to using RT. LC
holds out longest here before saturating as it is able to utilize the extra capacity in the
faster servers.

having perfectly identical hardware is near zero given the rate at which technol-
ogy advances. Equipment bought even a few weeks later could have dramatically
different specifications.

To investigate the effects of inhomogeneities on the balancing, we manually
adjusted the CPU speed on some of the blades to create a stepwise inhomoge-
neous environment with the following processor capacities: 1.4, 1.75, 2.1, 2.45,
2.8 GHz. The result is shown in figure 6 and 7.

Figure 6 shows results from using Least Connected (LC), Round Robin (RR),
and Response Time (RT) algorithms to balance load between 5 servers. The
algorithms perform approximately the same under low loads. The LC algorithm
performs well marginally longer than the others. The RT algorithm perform
almost as well, but succumbs to noise before earlier.

For the inhomogeneous case, the results are more surprising. Here the Round
Robin and Response Time strategies (based on actual measurements of the sys-
tem performance) perform equally well. Both succumb to noise at about the same
point. Remarkably the Least Connections approach (which uses state information
directly in the dispatcher) survives the longest. We suspect that this is because,
once the variance in the computing nodes blows up due to thrashing, it dominates
the measurements of response times and they become so unreliable that the infor-
mation make no difference and the performance of RT. RT is therefore no better
than RR (random chance) in practice. The dominance of uncertainty matches the
conclusions made in [5]. The fact that Least Connections works longer is probably



Predictable Scaling Behaviour in the Data Centre 59

a result of the greater reliability of the state kept by the dispatcher combined with
the fact that the faster machines finish their equal tasks more quickly, thus main-
taining an equilibrium. In real traffic, job lengths will be variable and we suspect
that LC will not perform significantly better than random chance.

9 Conclusions

There is surprisingly little literature on dispatcher load balancing, in spite of the
importance of this technology for business. Ref. [10] performs similar studies to
ours and arrives at somewhat different conclusions. In [10,11] they found the RR
algorithm to be the worst under all conditions. Teo[10] also show results that
indicate that RR, LC and RT converges at high loads. These results contradict
our results and the ones found by Cardellini[12], as we found the RR algorithm
to have best performance at low intensities, and that the LC algorithm could
sustain higher traffic intensity than RR and RT. We suspect that the results are
dependent on the nature of the test data downloaded. Our results have been
easily controllable, and yet we see the effects of uncertainty start to dominate
behaviour. In this regime, none of the expensive technology does much better
than random chance.

In terms of scalability, we see that adding servers is not a smooth operation,
in contrast with ref. [10]. Even at high traffic loads, modern servers have such
power that they lead to very discontinuous changes in the performance. If one
fixes the traffic level, the addition of a single server can have a large impact on
the processing time, assuming that the trunk service is not a bottleneck. One
can move from saturation to a comfort zone fairly easily. In this regard, there is
no reason not to have extra capacity available in a server centre. Even a single
extra server on standby can make a significant impact if one can predict the
rise.

Our results indicate that there is little reason to use anything other than RR
as a load sharing algorithm. This is a rather depressing conclusion. One would
hope that monitoring and analysis would improve performance, but there is no
strong evidence of this here.

What does the data centre engineer learn from this study? We believe that
the key message of this work is that dispatcher capacity is the key in server
load balancing. The sharing algorithm plays a lesser role than the ability of the
dispatcher to cope with the connections. A simple Round Robin sharing works
approximately as well the more sophisticated methods, but as the total load
increases, the efficiency of the sharing appears to waver. We are not able to
confirm this last conclusion in our experiment, but we think this point is worth
further study. Once again, Service Level Objectives are far from predictable close
to maximum capacity. We see here an operating level of 80% of maximum as
being a reasonable over-capacity in production.

We are grateful to Jon Henrik Bjørnstad and Sven Ingebrigt Ulland for help-
ful discussion. This work is supported by the EC IST-EMANICS Network of
Excellence. (#26854)
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