

R. State et al. (Eds.): DSOM 2006, LNCS 4269, pp. 197 – 208, 2006.
© IFIP International Federation for Information Processing 2006

ZERO-Conflict: A Grouping-Based Approach for
Automatic Generation of IPSec/VPN Security Policies*

Kuong-Ho Chen, Yuan-Siao Liu, Tzong-Jye Liu, and Chyi-Ren Dow

Department of Computer Science, Feng Chia University,
No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C

cyne@pluto.iecs.fcu.edu.tw, {m9301324, tjliu, crdow}@fcu.edu.tw

Abstract. IPSec/VPN management is a complicated challenge, since IPSec
functions correctly only if its security policies satisfy all administrated
requirements. Computer-generated security policies tend to conflict with each
other, which would causes network congestion or creates security vulnerability.
Thus conflict resolving has become an issue. In this paper, a method to
automatically generate policies is proposed. Instead of performing complicated
conflict-checking procedures as most existing works do, the proposed Zero-
Conflict algorithm is able to predict and avoid conflict in advance by using
requirement groups and cut points techniques. Since policies are established
without the need to perform backward conflict check, thus yielding a
significantly less time-complexity, which is O(nlogn). Experimental results
show that it maintains a satisfactorily minimal numbers of generated tunnels.

Keywords: IP security, network management, policy conflict, security policy,
security requirement.

1 Introduction

Network management in large distributed networks, in particular IPSec/VPN
management [8, 13], is a complicated challenge. IPSec functions will be executed
correctly only if policies are correctly specified and configured, but due to the
growing number of secure Internet applications today, IPSec policy [1, 7] deployment
has become rather complex in large distributed networks, and manual configuration is
rather tedious, ineffective, and often erroneous. On the other hand, a policy-based
management system treats network requirements as goals to be achieved,
automatically translates them into low-level machine-understandable policies, and
systematically applies them to right network devices. Since IPSec is basically a typical
policy-enabled networking service, policy-based network management [3, 11] is a good
solution in handling complicated IPSec policy, and various solutions for IPSec/VPN
policy management have been proposed in researches such as [2, 4, 5, 6, 12, 13].

A class of high level policy is defined in [5], which is called security requirement.
Conceptually, security requirements (high level policy) are like goals, while implemental

* This Research is supported in part by the National Science Council under the grants No. NSC

NSC94-2213-E035-025, NSC95-2221-E035-071.

198 K.-H. Chen et al.

IPSec policies (low level policy) are like specific plans to achieve these objectives.
IPSec policies are considered correct only if these policies as a whole are able to
satisfy all specified security requirements. However, security requirement and IPSec
policy may not directly map to each other since one security requirement might be
satisfied by several sets of implemental policies. Moreover, it is possible that there are
conflicts between requirements and policies. If such conflicts exist on one of the
gateways/routers, packets could be dropped, network could be down, and security
could be breached. Conflicts occur when given requirements conflict with each other,
or when a set of policies binding together is unable to support given requirements. An
exemplary scenario of the latter case is given in Table 1 and Fig. 1. (In this paper, the
terms policy and tunnel will be used interchangeably.)

Table 1. Two Requirements

Requirement

Req1 All traffics from A to D must be applied encryption
Req2 All traffics from C to E must be applied authentication

A B C D EAA BB CC DD EE

Encryption

Authentication

Fig. 1. Overlapping Tunnels

In this scenario, there are two requirements for all traffics from A to E: the
coverage of Req1 is from A to D and the coverage of Req2 is from C to E. According
to these two requirements, two tunnels were built: one from A to D with encryption
and another from C to E with authentication. With these tunnels, all packets are
encapsulated in A, encapsulated again in C, and then sent to E. E decapsulates these
packets and finds that their destinations are D, thus send them there. Finally, D
decapsulates them and sends the packets to their final destination E. However, while
the original requirement was to authenticate the traffic from C to E, the traffic is
actually sent without protection from D to E due to tunnel overlapping.

Thus said, in spite of policy generation, an IPSec policy management system will
also need to tack tunnel overlapping and identify possible policy conflicts. Researches
so far in automatic IPSec policy generation [2, 4, 6, 12] focus their efforts on conflict
resolving: in these algorithms, each newly generated security policy is compared with
existing policies to check for conflict. Once found, operations are called for conflict
resolve. The process of requirement comparison, however, is rather time-consuming,
since any change or addition in security requirements will require the entire execution
of conflict-check (and possibly conflict-resolving) procedure.

If tunnels were constructed in a way such that conflicts are predicted and avoided
in advance, establishment of policies without need for time-consuming backward
conflict check would be made possible, thus yielding a faster result. With this in

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 199

mind, this paper proposed a Zero-Conflict algorithm, which is an efficient conflict-
avoiding method for automatic generation of IPSec/VPN security policy. In this
paper, a 3-phased automatic policy construction procedure is proposed, which seeks
to lower the complexity of conflict dealing by dividing requirements into groups, and
establish bus tunnels and branch tunnels inside each group. In comparison with
several existing methods [2, 4, 12], which mostly came with the efforts of O(n2), this
approach requires the effort of only O(nlogn), where n is the number of requirements.
Simulation results also show that the proposed Zero-Conflict approach maintains an
appropriately minimal number of established tunnels.

The rest of this paper is organized as follows. Related works are addressed in
Section 2. Analysis of policy conflict problem is described in Section 3. Automatic
policy generation algorithms are described in Section 4. The complexity analysis and
simulation are in Section 5 and Section 6. Finally, conclusions are made in Section 7.

2 Related Works

In this section, research backgrounds and literatures related to our work are described
in Section 2.1, including the categories and the definitions of security requirements.
Various approaches for automatic IPSec/VPN policy generation are then described
and discussed in Section 2.2, including bundle approach [4], direct approach [4],
Order-Split approach [12], and Conflict-Free approach [2].

2.1 Security Requirements

In [5], two levels of security policies are defined: the requirement level and the
implementation level. The needs to distinguish high-level security requirements and
low-level policies were addressed in [9, 10]. A security policy set is correct if and
only if it satisfies all the requirements. A requirement R is a rule of the following
form: If condition C then action A:

R ≡ C → A (1)

There are four cases of requirements defined in [5]:

• Access Control Requirement (ACR):
flow id → deny | allow

• Security Coverage Requirement (SCR):
flow id → enforce (sec-function, strength, from, to, [trusted-nodes])

• Content Access Requirement (CAR):
flow id, [sec-function, access-nodes] → deny | allow

• Security Association Requirement (SAR):
flow id, [SA-peer1, SA-peer2] → deny | allow
flow id is used to identify a traffic flow, and is composed of 5 to 6 sub-selectors

including src-addr, dst-addr, src-port, dst-port, protocol, and optional user-id. A
requirement is satisfied if and only if all packets selected by the condition part
execute the action part of the requirement. As were mentioned in [2, 12], other
requirements such as SAR or CAR can be validated after SCR results are produced.

200 K.-H. Chen et al.

ACR policies also can be determined after tunnel configurations are done. Therefore
the algorithm in this paper will seek to focus on the handling SCR requirements only.

2.2 Previous Works

Bundle approach [4] is the first algorithm for automatic policy generation. In this
approach, the problem is divided into two phases. From given requirements, the entire
traffic is first divided into several disjointed traffic flows, which are called bundles.
Sets of security policies are then built from each bundle. Although correct and
solution-guaranteed, this approach is not efficient since redundant tunnels for the
same area could be built from different bundles.

Direct approach which was also proposed in [4], tunnels are built from each
requirement directly, and all the while with the system making sure new tunnels do
not overlap with any existing ones. If overlapping occurs, the new tunnel is divided
into two connecting tunnels. In comparison with bundle approach, this approach
produces fewer tunnels and has better efficiency. It does not, however, yield solutions
for every case.

Ordered-Split algorithm [12] is based on traditional task-scheduling schemes for
automatic policy generation. Original requirements are converted into tie-free
requirement sets; a minimal sized Canonical Solution for the new requirements are
then acquired. The condition for a Canonical Solution is that no two tunnels share the
same start as well end, while the condition for a tie-free requirement is that no two
requirements share the same from and to. According to [12], this algorithm generates
fewer tunnels than Bundle/Direct approach, and is free of tunnel-redundancy problem.
Its time-complexity is O(n2).

Conflict-Free approach [2] focuses on the handling with the intersection relationship
between tunnels. In this approach all tunnel are made as long as possible since if two
security policy sets have the same number of tunnels, the set which has longer
average tunnel length will be preferred since longer tunnel decreases the number of
times a traffic has to be encapsulated/decapsulated. The time-complexity, of this
algorithm is O(n2).

3 Analysis of Overlapping Relationship Possibilities

A policy conflict is caused when two or more tunnels have certain overlapping
relationships. To be more specific, when packets in one tunnel are passing through a
node in the network, they will be pulled into other tunnels due to the policies of the
same node, which is likely to cause a policy conflict. To better understand the nature
of policy conflict, shown in Fig. 2 are the six possibilities of overlapping relationships
between two tunnels, whose analysis could be used to find the possible cause of
conflicts.

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 201

T1

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

* Indicates starting/ending in the same node

T1 T1

T1 T1 T1

T2 T2

T2 T2

T2

T2

T1T1

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

* Indicates starting/ending in the same node

T1T1 T1T1

T1T1 T1T1 T1T1

T2T2 T2T2

T2T2 T2T2

T2T2

T2T2

Fig. 2. Overlapping Relationship Possibilities for Two-tunnel Scenario

According to [2], conflicts could possibly appear in case 5 and case 6 only. In case
5, packets are encapsulated at the start of T1. When traveling through the network to
the middle node, which is the start of T2, they will be encapsulated again, then be
directly sent to the most right node, which is the end of T2, and be unwrapped and sent
back to the end of T1. After arriving at the end of T1, the traffic will leave T1 and be
sent to the most right node. Since there is a sent back occurrence, conflicts are likely
to be caused. In case 6, T1 and T2 start at the same node, and packets will be
encapsulated twice here. When being unwrapped first time at the end of T2, these
packets will be sent back to the end of T1, which might cause a policy conflict. Note
that case 2 and case 6 differ only in the order of input tunnels. While processing,
algorithms in [2, 4, 6, 12] will perform extra order switching in order to convert case
6 into case 2, thus avoiding conflict, which generates extra overhead. In contrast with
these, we hope to construct a scheme that is free of this problem of ordering, whereas
policies are processed in the order as they were inputted.

To sum it up, a conflict exists when send back occurs in two overlapping tunnels,
therefore only case 5 and case 6 can possibly cause conflicts. Knowing this in
advance, our algorithm, different from those aforementioned, seeks to avoid the
occurrences of these two situations at all, rather than dealing with them headfirst.

4 Zero-Conflict Algorithm

Taking advantages from analysis above, Zero-Conflict algorithm was designed with
the concepts of requirement group and cut point in mind. In this section these two
major concepts are described, the mechanism of the Zero-Conflict algorithm itself
explained, and an example is also given for better understanding.

4.1 Requirement Group

In a two-tunnel scenario, if these two tunnels do not overlap with each other, no
conflict will occur. A requirement group is a set of requirements that do not overlap
with the requirements belonging to other group. In other words, a group is composed
of at least one or more overlapping requirements so that the conflicts will appear only
in their own respective groups.

202 K.-H. Chen et al.

4.2 Cut-Point

Once requirement groups are finalized, conflicts inside each group are to be resolved.
Common methods for resolving overlapping is to divide the requirement in question
into two non-conflicting ones.

T1

T2

T1

T2i T2j

T1

T2i
T2j

+

cut point

policies with conflict tunnel division conflict resolved

T2i

T1

T2

T1

T2i T2j

+

policies with conflict tunnel division conflict resolved

T2j

T1

cut point

Fig. 3. Conflict Resolving with Tunnel Division

The center of the problem is to find where to “cut”, thus the cut point. An
observation was made: If the original requirement list is first sorted by from values in
ascending order and tunnels are established accordingly, when conflicting cases in Fig. 3
appear, the tunnel T2 will be divided at the end of the tunnel T1 (thus T2.cutpoint=T1.to).
Thus T2 will be replaced by T2i=(T2.from, T1.to) and T2j=(T1.to, T2.to). Any subsequent
tunnels, if in conflict with T1, will be divided at the same cut point, thus T1.to.

Thus if every to in the requirement list is treated as a cut point, and all tunnels are
to be divided according to these cut points, conflicts can be avoided (In this way, a
tunnel covering n cut points will be divided n times). Basing on this assumption, two
facts can be derived: a) a cut point is the end of one tunnel and the start of another,
but a start of one tunnel is not necessarily a cut point. b) Between every two
neighboring cut points in a group, there must be at least one tunnel. According to a)
and b), those tunnels whose establishments are guaranteed can be determined in early
stage of the algorithm. These are called bus tunnels, which will be established after
the acquisition of the to of a security requirement in advance, and serve as backbones
shared by all requirements in the same group. Branching tunnels will later be built
from these buses, covering remaining areas, which are henceforth called branch
tunnels. It could be observed that the from and to of a bus tunnel are both cut points.
For a branch tunnel, its from must not be a cut point, while its to must be one. Branch
tunnels, in conjunction with bus tunnels, satisfy the overall covering demands of the
requirement list. Therefore any given requirement can satisfied by connecting its from
with a closest bus tunnel using a branch tunnel.

4.3 Zero-Conflict Algorithm

Taking advantages from analysis above, an algorithm for automatic policy generation
which avoids the two conflict cases can thus be designed, which is called “Zero-Conflict
algorithm”. The pseudo code of Zero-Conflict is shown in Fig. 4. Sub- functions are
explained as follows:

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 203

Zero-Conflict Algorithm
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Zero-Conflict_Algorithm (Reqs)
{
 remove_length_1_requirement (Reqs, lenegth1_Req_list);

sort_by_from_value (Reqs);
assign_group_number_to_each_requirement (Reqs);
gather_cut_points_for_each_requirement_group (Reqs, Cut-Point_list);

build_bus_tunnel (Cut-Point_list, Policy_List);
build_branch_tunnel (Reqs, Cut-Point_list, Policy_List);
build_length_1_tunnel (length1_Req_list, Policy_List);

remove_redundant_tunnel (Policy_List);

return Policy_List;

}

Fig. 4. Pseudo code for Zero-Conflict Algorithm

remove_length_1_requirment (Reqs, length1_Req_list). Requirements with their
from and to as neighbors (hop count is 1, thus one-hop requirement) does not conflict
with other requirements, but increases the number of cut points unnecessarily, thus
has to be moved to backup space length1_Req_list and be processed in later stage.

sort_by_from_value (Reqs). The original requirement list is then sorted by from in
ascending order. Note that most subsequent operations are done directly on the sorted
requirements list, thus lowering their time-complexity to O(n).

assign_group_number_to_each_requirement (Reqs). To the sorted requirement
list, a variable max_end_node is used to record the end node of current group, which
is also the to of the first requirement. A single n-loop operation is executed to
determine the group of each requirement. If a requirement belongs to current group,
its from must be less or equal to max_end_node, else it belongs to the next
requirement group. In the latter case, a new group is created, and max_end_node is set
to the to of first requirement in this group. Note that if to is greater then
max_end_node, then max_end_node is set to the to.

gather_cut_points_for_each_requirement_group (Reqs, Cut-Point_list). The end
nodes from each requirements are collected in non-repeated fashion as cut points, and
then sorted with their group numbers as primary key and to as second key, thus
generating the cut point list.

build_bus_tunnel (Cut-Point_list, Policy_List). For every two neighboring cut
points in each requirement group, bus tunnels are established between them.

build_branch_tunnel (Reqs, Cut-Point_list, Policy_List). Once bus tunnels are
established, a single n-loop operation is executed to establish branch tunnels. Since
the to of a branch tunnel is a cut point, which itself is the from of a certain bus tunnel.
Thus for each requirement, a branch tunnel is established between its from and the

204 K.-H. Chen et al.

nearest cut point, thus linking itself with the backbone of the requirement group. Note
that for each from, only one branch tunnel will be established, since there may be
multiple requirements with identical from.

build_length_1_tunnel (length1_Req_list, Policy_List). Finally, the removed one-
hop requirements are established. (After this function is completed, established
tunnels are already able to satisfy all requirements.)

remove_redundant_tunnels (Policy_List). This function removes redundant
tunnels. If the area covered by several tunnels is also the covered area by a single
tunnel, the latter tunnel is considered redundant, and will be removed.

Generated tunnels are first sorted by from in descending order and by hop count
(hop count = to-from) in ascending order. This is due to that all tunnels excluding
one-hop end in a cut point. Since hop count is the distance between to and from,
therefore sorting by from equals to sorting by the distance between the start of each
tunnel and its nearest cut point. In this way, shorter tunnels will be pushed toward the
top. Since a redundant tunnel can only be replaced by several shorter tunnels (thus
tunnels with less hop count) that interconnect together, therefore a variable Ma is used
to record the area covered by current set of connecting tunnels.

An n-loop operation is then executed for removal. Since there could be multiple
tunnels connecting together, a variable Ma is used to record the area covered by
current set of connecting tunnels. The initial value of Ma is set to the area covered by
the first tunnel, thus Ma=(To.from, T0.to).

Each tunnel Ti is first compared with Ma. If identical, Ti will be erased. If not, the
operation proceeds to see whether Ti is connected with the area covered by Ma. If Ti.to
= Ma.form, then Ti is added into the set (thus Ma.from = Ti.from). Else, Ma is set to
(Ti.from, Ti.to), and then the loop is carried onto the next tunnel.

4.4 An Example of Zero-Conflict Method

For better understanding, an example is given in Table 2, where 8 requirements are
input.

First of all, one-hop requirements are to be removed. In this case, Req3 is removed,
and the remaining requirements are sorted by from, thus generating Table 3.

To the finding of group numbers, there are two groups in this case. The first group,
G0={Req2, Req4, Req5, Req6, Req8}, with max_end_node = 6. While processing Req1 it
can be noted that Req1.from is greater than current max_end_node, thus forming a
new group, G1={Req1, Req7}, with max_end_node = 10.

Subsequently, cut points in each requirement groups are to be decided. In this case,
they are {5, 6} for Go, and {9, 10} for G1.

Thus onto the construction of bus tunnels. In this case, T1=(5,6) is established for
G0, while T2=(9,10) is established for G1.

For branch tunnel construction, the nearest cut point for requirements in G0 is 5.
And since Req5 and Req8 share the same from, only one branch tunnel will be
generated for these two requirements. Thus 4 branch tunnels : T3= (1,5), T4= (2,5),
T5= (3,5), T6= (4,5) are established for G0, and 2 for G1 : T7= (7,9), T8= (8,9).

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 205

Now the one-hop requirements removed earlier can be put back and established,
thus T9= (2,3).

Onto the redundancy check. Sorted by from in descending order, the check will
start from the farest tunnel, which is T2, thus Ma=(9, 10).

Table 2. An Example of Eight Requirements

Requirement
Req1 SCR(E, 7, 9)

Req2 SCR(E, 1, 5)

Req3 SCR (A, 2, 3)

Req4 SCR (E, 2, 6)

Req5 SCR (E, 3, 5)

Req6 SCR (E, 4, 6)

Req7 SCR (E, 8, 10)

Req8 SCR (A, 3, 6)

Table 3. Sorted Requirement List

Sorted Requirement
Req2 SCR (E, 1, 5)

Req4 SCR (E, 2, 6)

Req5 SCR (E, 3, 5)

Req8 SCR (A, 3, 6)

Req6 SCR (E, 4, 6)

Req1 SCR (E, 7, 9)

Req7 SCR (E, 8, 10)

T8 is then compared with Ma, and it is found that Ma.from = T8.to, indicating that T8

are connected to current Ma, therefore T8 is merged with Ma, thus Ma = (T8.from,
Ma.to).

T7 is then compared with Ma, and it is found that Ma.from ≠ T7.to, indicating that T7
are neither redundant nor connected with Ma, therefore Ma = (T7.from, T7.to).

While checking T1, since T1.to>Ma.from, indicating that T1 is not connected with
Ma, thus Ma is set to (T1.from, T1.to).

Onto the checking of T6, Ma.from = T6.to, indicating T6 is connected with M6,
therefore T6 is merged into Ma, thus Ma=(T6.from, Ma.to).

T5.to < Ma.from, indicating that T5 is not connected with Ma, thus Ma = (T5.from,
T5.to).

Onto the checking of T9, Ma.from=T9.to, thus Ma = (T9.from, Ma.to).
Onto the checking of T4, it is found that both T4.from and T4.to equals to those of

Ma, thus T4 is considered redundant, and is removed.
Finally, T3 passed the checking with Ma, thus the redundant check is completed.

The final result is shown in Fig. 5.
Note that the goal of this approach focuses on rapidly establishment of non-conflict

tunnels. Once a tunnel is established, its attributes could be determined right away.

206 K.-H. Chen et al.

Since this algorithm shares the same goal with both Order-Split and Conflict-Free
approach, and since these two are proven so far to be out-perform other approaches,
thus here Zero-Conflict is compared with them. Shown in Table 4 are the numbers of
resulting tunnels of Order-Split, Conflict-Free, as well as Zero-Conflict, generated
from requirements in Table 2. It can be observed that Zero-Conflict yields same
results for this case.

Group 0

1 2 3 4 5 6 7 8 9 10

T5

T6

T4

T3

T1

Group 1

T8

T7

T2
T9

Group 0

1 2 3 4 5 6 7 8 9 1011 22 33 44 55 66 77 88 99 1010

T5

T6

T4

T3

T1

Group 1

T8

T7

T2
T9

Fig. 5. The Solution for the Example of Table 2 by Using Zero-Conflict Algorithm

Table 4. The Compare of Three Algorithms

Approach Total Number of Tunnels
Ordered-Split Approach 8
ï ï ï ïïïï ïïï ïï ï ïAlgorithm 8
Zero-Conflict Algorithm 8

5 Time Complexity Analysis

The proposed Zero-Conflict Algorithm generates cut points right after security
requirements are acquired. Checking for conflicts are unnecessary, since possible
cases are successfully avoided. Removing of 1-hop requirements, grouping, and the
three phases of tunnel building, are all O(n) operations. However several steps in the
algorithm employed sorting operation, such as the sorting of requirement list, and
gathering of the cut point list, which raised the over-all time-complexity to O(nlogn).

In the final redundancy removal, the generated tunnels are sorted. It should be
noted that in this approach, n input requirements will generate at most 2n tunnels.
Assuming there are x 1-hop requirements in these n requirements, then there will be at
most n-x bus tunnels, n-x branch tunnels, and x 1-hop tunnels. Therefore the maximal
number of generated tunnels is 2n-x. Since x ≦ n, it is thus proven that n
requirements generated at most 2n tunnels, making redundancy removing itself a
O(nlogn) operation. Thus the time-complexity of Zero-Conflict is bounded in
O(nlogn), which, in comparison with Order-Split and Conflict-Free, is significantly
more efficient, as well as scalable.

 ZERO-Conflict: A Grouping-Based Approach for Automatic Generation 207

6 Simulation Results

To show that Zero-Conflict, in addition of being fast, generates no more tunnels then
existing approaches, a simulation was conducted. The simulator for Zero-Conflict
algorithm was implemented under Windows platform. The simulation program takes
a requirement file as input, and outputs a file containing generated tunnels. The
Order-Split and the Conflict-Free approaches were also implemented. The
performances of these algorithms were tested with inputs ranging from 1-200
requirements, each randomly generated 1000 times. The results of average amount of
tunnels are shown in Fig. 6. The X-axis represents the number of the requirements
input, while the Y-axis represents the number of tunnels generated. It could be seen
that the result of Zero-Conflict is close Order-Split and Conflict-Free. Noted that
under the assumption that the end nodes of all requirements are cut points, a tunnel
covering n cut points will be divided into n+1 connecting tunnels, which would raise
the number of resulting tunnels. However, the simulation results show that the
average number of tunnels generated by the proposed Zero-Conflict approach meets
(or in some cases, beats) the results of most known approaches.

Fig. 6. The Average Number of Tunnels in the Network of 50 Routers

7 Conclusion

This paper proposed a Zero-Conflict algorithm, an automatic policy construction
algorithm which is able to predict and avoid conflict in advance by using requirement
groups and cut points techniques. Moreover, the worse case of time-complexity of
this approach is only O(nlogn), which as far as we know, beats most known
approaches, whose worse cases of time-complexity are at least O(n2). Thus it is shown
that by avoiding possible cases for conflicts, this approach yields both satisfying
efficiency as well as effectiveness so that the resource for network management and
the performance of the entire network is further improved.

208 K.-H. Chen et al.

In addition, most preceding algorithms are suitable for central processing, whereas
security requirements are dealt with only after all of them are collected. The proposed
concept of cut point prediction is more suitable for distributed processing. Future
works can be made on utilizing this concept on constructing distributed processing
algorithms.

References

1. M. Blaze, A. Keromytis, M. Richardson, and L. Sanchez, “IP Security Policy (IPSP)
Requirements," RFC 3586, IPSP Working Group, August 2003.

2. C. L. Chang, Y. P. Chiu, and C. L. Lei, “Automatic Generation of Conflict-Free IPSec
Policies,” International Conference on Formal Techniques for Networked and Distributed
Systems, pp. 233-246, October 2005.

3. J. Conover, “Policy-Based Network Management,” Network Computing, Vol. 10, No. 24,
pp. 44-50, November 1999.

4. Z. Fu and S. F. Wu, “Automatic Generation of IPSec/VPN Security Policies in an Intra-
Domain Environment,” 12th International Workshop on Distributed Systems: Operations
& Management (DSOM 2001), pp. 279-290, 2001.

5. Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu, “IPSec/VPN Security
Policy: Correctness, Conflict Detection, and Resolution,” IEEE Policy 2001 Workshop,
pp, 39-56, 2001.

6. H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification of IPSec and VPN
security policies,” 13th IEEE International Conference on Network Protocols (ICNP
2005), Vol. 0, pp. 259-278, November 2005.

7. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401,
Internet Society, Network Working Group, November 1998.

8. M. Li, “Policy-based IPSec management, ” Network, IEEE, Vol. 17, No. 6, pp. 36-43,
November 2003.

9. J. D. Moffett, “Requirements and Policies,” Position paper for Workshop on Policies in
Distributed Systems, HP- Laboratories, November 1999.

10. J. D. Moffett and M. S. Sloman, “Policy Hierarchies for Distributed Systems
Management,” IEEE Journal on Selected Areas in Communication, Vol. 11, No. 9, pp.
1404-1414, December 1993.

11. M. Sloman, “Policy Driven Management for Distributed Systems,” Journal of Network
and Systems Management, Vol. 2, No. 4, pp. 333-360, December 1994.

12. Y. Yang, C. U. Martel, and S. F. Wu, “On Building the Minimal Number of Tunnels - An
Ordered-Split approach to manage IPSec/VPN policies,” 9th IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), Vol.1, pp. 277-290, April 2004.

13. Y. Yang, Z. Fu, and S. F. Wu, “BANDS: An Inter-Domain Internet Security Policy
Management System for IPSec/VPN,” 8th IFIP/IEEE International Symposium on
Integrated Network Management 2003, pp. 231- 244, March 2003.

	Introduction
	Related Works
	Security Requirements
	Previous Works

	Analysis of Overlapping Relationship Possibilities
	Zero-Conflict Algorithm
	Requirement Group
	Cut-Point
	Zero-Conflict Algorithm
	An Example of Zero-Conflict Method

	Time Complexity Analysis
	Simulation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

