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Preface

DGCI 2006, the 13th in a series of international conferences on Discrete Geom-
etry for Computer Imagery, was held in Szeged, Hungary, October 25-27, 2006.
DGCI 2006 attracted a large number of research contributions from academic
and research institutions in this field. In fact, 99 papers were submitted from
all around the world. After review, 55 contributions were accepted from which
28 were selected for oral and 27 for poster presentation. All accepted contri-
butions were scheduled in single-track sessions. The program was enriched by
three invited lectures, presented by internationally well-known speakers: Jean-
Marc Chassery (Domaine Universitaire Grenoble, France), T. Yung Kong (City
University of New York, USA), and László Lovász (Eötvös Loránd University,
Budapest, Hungary).

We were pleased that DGCI got the sponsorship of the International Associ-
ation of Pattern Recognition (IAPR). DGCI 2006 is also a conference associated
with the IAPR Technical Committee on Discrete Geometry (TC18). Hereby, we
would like to thank all contributors, the invited speakers, all reviewers and mem-
bers of the Steering and Program Committees, and all supporting personnel who
made the conference happen. We are also grateful to the Institute of Informat-
ics, University of Szeged, for the financial and infrastructural help, which was
essential to the organization of a successful conference. Finally, we thank all the
participants and hope that they found interest in the scientific program and also
that they had a pleasant stay in Szeged.

October 2006 Attila Kuba
László G. Nyúl

Kálmán Palágyi
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Duality and Geometry

Straightness, Characterization and Envelope

Jean-Marc Chassery1, David Coeurjolly2, and Isabelle Sivignon2

1 Laboratoire LIS
Domaine universitaire Grenoble - BP46
38402 St Martin d’Hères Cedex, France
jean-marc.chassery@lis.inpg.fr

2 Laboratoire LIRIS - Université Claude Bernard Lyon 1
Bâtiment Nautibus - 8, boulevard Niels Bohr

69622 Villeurbanne cedex, France
{david.coeurjolly, isabelle.sivignon}@liris.cnrs.fr

Abstract. Duality applied to geometrical problems is widely used in
many applications in computer vision or computational geometry. A clas-
sical example is the Hough Transform to detect linear structures in im-
ages. In this paper, we focus on two kinds of duality/polarity applied to
geometrical problems: digital straightness detection and envelope com-
putation.

Introduction

In domain of geometry, notion of duality is often used to represent the same
structure in different domains like spatial domain or parametric one. The objec-
tive is to facilitate transformations like characterization, detection, recognition
or classical ones such as intersection or union. A first example is illustrated with
Voronoi partition in which polygonal regions are not homogeneous in terms of
number of vertices. Nevertheless, the corresponding dual mesh, called Delaunay
mesh, is composed of triangles. According to applications the choice of the alter-
native representations can be used on optimality criteria (computational cost,
database structure, ...).

Following this first example, we focus in this paper on dual transformations
illustrated by problems of digital straightness and envelope.

1 Example of the Hough Transform

The Hough transform (HT for short) is a very classical tool in image analysis
to detect geometric features in images. These features may be line segments,
circles, ellipses or any other parameterized curve. The HT, introduced in 1962 by
Hough [1], is a dual transformation that enables to find a set of global structures,

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 J.-M. Chassery, D. Coeurjolly, and I. Sivignon

without any a priori knowledge on the number of structures to be found. Note
also that this method is robust to noise and disconnected features.

1.1 Definition of Hough Transform

The general idea of this transform is that every point of the image contributes to
the definition of the solution set for a given parameterized structure. Consider
for instance a point p0 of coordinates (x0, y0) and the parameterization of lines
y = αx + β. Then the set of lines going through p0 are the ones of parameters
(α, β) fulfilling the equality y0 = αx0 + β. This equality may be rewritten as
β = −αx0 + y0, and if a new geometrical space (αβ), called dual space, or
parameter space, is defined, this equation defines a line : in this dual space, each
point of this line represents a line of the (xy) space going through the point
p0. An illustration of three points and the three corresponding lines in the dual
space (αβ) are represented in Figure 1 (a)-(b): note that the three lines in (αβ)
space are concurrent in one point, the coordinates of which defines a line going
through the three points in (xy) space.

However, as noticed by Duda in [2], the linear parameterization of lines defined
by y = αx + β is not the handiest one since the two parameters α and β are
unbounded. Thus, another transform consists in using the polar parameterization
of straight lines ρ = x cos θ + y sin θ. Any point in the (xy) space defines a
sinusoidal curve in the (θρ) space, where only the parameter ρ has unbounded
values (see Figure 1(c) for an illustration).

General properties fulfilled by these two representations, and suitable for
straight line detection in images were expressed by Duda [2]:

Property 1

• A point in the (xy) space matches up with one curve in the dual space;
• A point in the dual space matches up with a straight line in the (xy) space;
• Points lying on a same line in the (xy) space match up with concurrent curves

in the dual space;
• Points on a same curve in the dual space match up with concurrent straight

lines in the (xy) space.
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Fig. 1. (a) Three points in the (xy) space; (b) Dual representation in the (αβ) space;
(c) Dual representation in the (θρ) space



Duality and Geometry Straightness, Characterization and Envelope 3

1.2 Recognition of Parameterized Structures

Line segment detection in images does not consist in finding the pixels lined
up according to the Euclidean straight line definition, but a relaxation of this
definition has to be used. To do so, the method generally used consists of, first,
decomposing, or quantifying the dual space along the two axis, and second, defin-
ing a counter for each cell of the dual space. Algorithm 1 describes the general
algorithm for finding parameterized curves in an image using HT. The quantiza-
tion step is a trade-off between precision on one part, and memory/computation
cost on the other hand. Moreover, a good quantization should provide constant
densities for equally probable line parameters. An illustration of Algorithm 1 is
proposed in Figure 2.

Algorithm 1. Hough transform for parameterized curve detection
Input: Set of pixels P
Quantify the dual space of the parameterized curve;
Set all the cell counters to zero;
for every pixel p of P do

Compute HT (p) and digitize it according to the quantization grid;
Add one to the counters of HT (p) digitization;

end
Look for local maxima among the cells counters: each maximum matches with
the parameters of a curve found in P .

2 Duality in Discrete Geometry

During a HT, the discrete nature of the data processed is taken into account
with a quantization of the dual space. On the contrary, we see in this section
that the classical notion of dual space used in discrete geometry introduces the
discrete nature of the data in the definition of the dual representation of a point.

2.1 Definition of the Dual Space

In digital geometry, pixels are said to be lined up if they belong to a digital
straight line, which is the digitization of a straight line. In a general way, a digital
straight line of parameters (a, b, μ) and bounds ρ(a, b) and ω(a, b) is the set of
pixels (x, y) such that ρ(a, b) ≤ ax− by+μ ≤ ω(a, b). Without loss of generality,
we suppose that |b| > |a|, and b > 0 in the following. With these conditions, the
previous definition may be rewritten as ρ′(α, β) ≤ αx−y+β ≤ ω′(α, β). Given a
point p0 of coordinates (x0, y0), the digital lines containing are the ones for which
(x0, y0) fulfills the inequalities. Thus, we can once again define a dual space (αβ)
to represent the space of line parameters, but contrary to HT, a given point p0

of coordinates (x0, y0) matches up with the intersection of two linear constraints
defined by E+ : β ≥ −αx0 + y0 + ρ′(α, β) and E− : β < −αx0 + y0 + ω′(α, β).
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Fig. 2. Detection of a line segment with HT: (a) the four pixels of the set P ; (b)
dual representation in the quantified dual space; (c) result of the digitization of the
sinusoidal curves; (d) straight line computed from the local maximum found

Definition 1. Let P be a set of pixels. The preimage of P denoted by P(P ) is
defined as follows: P(P ) = {(α, β), |α| ≤ 1 | ∀(x, y) ∈ P, ρ′(α, β) ≤ αx−y+β <
ω′(α, β)}. (See Figure 3).

As we can see, in digital geometry, the linear parameterization of lines is used in
order to define the dual space. Nevertheless, we pointed out that for the Hough
transform, using a polar parameterization is more convenient in order to handle
bounded parameters. Actually, the polar parameterization is not appropriate
for preimage definition since intersection of sinusoidal curves would be involved.
Thus, the handling of unbounded domains has to be tackled. First, the parameter
β takes its values in an unbounded domain since it represents all the possible
translation of a line. This problem is easy to solve, operating a translation of the
set of pixels studied such that one particular pixel of the set is set to the origin.
Next, the slope α of the lines also have unbounded values. The idea here is to
use two dual spaces instead of one :
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Fig. 3. Illustration of the preimage of a set of pixels (digitization process fixed): each
point matches up with two linear constraints, and the preimage is the intersection of
these constraints

Definition 2. The dual space Py is defined as the space where one point (α, β),
|α| < 1 stands for the line αx − y + β = 0. In the same way, a point (α, β),
|α| < 1 of the dual space denoted Px stands for the line αy − x+ β = 0.

2.2 Preimages of Digital Lines and Line Segments

The definition of preimage depends on the values of ρ′(α, β) and ω′(α, β)}, and in
most applications, these values are defined according to the digitization process
considered during the definition of the digital straight line. In this section, firstly
we give some examples of preimages of digital straight lines in respect to the dig-
itization process considered, and secondly, we emphasize on particular properties
of the preimage of digital straight line segments (DSS for short) for one digiti-
zation process.

Digitization and Preimage. Let us first consider the OBQ (object boundary
quantization) digitization scheme: given a straight line of equation ax−by+μ =
0, its OBQ digitization is the set of pixels such that 0 ≤ ax − by + μ < b
(see conditions over a and b previously defined). Since the OBQ digitization is
based on the definition of the inside and this outside of an object, this definition
assumes that the line ax − by + μ = 0 is part of the boundary of an object the
inside of which is given by the direction of the normal vector (a,−b).

From this definition, we derive a characterization of the preimage of an infinite
digital line according to the OBQ digitization process [3]:

Property 2. Let L be a digital straight line defined by 0 ≤ ax− by+μ < b, with
0 ≤ a < b. Then the preimage of L according to the OBQ digitization process
is the vertical segment [(a

b ,
μ
b ), (a

b ,
μ+1

b )].
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Following a previous remark, this property assumes that the interior of object
is “under” the line (see Figure 4, left). Otherwise the preimage of L is the segment
[(a

b ,
μ+1

b − 1), (a
b ,

μ
b − 1)[ (see Figure 4, right).

1
Inside of the object

Inside of the objecty

x

y

x

α(0,0)

D

D′ D

D′

D : 2x − 5y + 1 = 0

D : 2x − 5y = 0
D : −2x + 5y + 4 = 0
D′ : −2x + 5y + 5 = 0

−1

1
5

2
5

−
4
5

β

Fig. 4. Preimage of the digital straight line 0 ≤ 2x − 5y < 5: two solutions according
to the direction of the solutions normal vector

Let us now consider the standard digitization process: given a straight line of
equation ax − by + μ = 0 such that 0 ≤ a < b, its standard digitization is the
set of pixels such that − |a|+|b|

2 ≤ ax − by + μ < |a|+|b|
2 . Contrary to the OBQ

digitization process, the standard digitization of a line does not depend on the
direction of the normal vector of the line. However, we have the same kind of
results on the characterization of the preimage (see Figure 5 for an illustration):

Property 3. Let L be a digital straight line defined by − |a|+|b|
2 ≤ ax− by + μ <

|a|+|b|
2 , with 0 ≤ a < b. Then the preimage of L according to the standard

digitization process is the vertical segment defined by:

– [(a
b ,

μ
b ), (a

b ,
μ+1

b )[ if |a|+ |b| is even;
– [(a

b ,
μ
b −

1
2b ), (

a
b ,

μ
b + 1

2b )[ if |a|+ |b| is odd.

y

x

D

D′

D : x − 3y + 1 = 0

D : x − 3y = 0

y

x

D : 2x − 5y −

1
2

= 0

D : 2x − 5y + 1
2

= 0
α

β

1
10

1
3

1
2

1
3

2
5−

1
10

D′

D

Fig. 5. Preimages of digital straight lines according to the standard digitization process:
on the left, the sum |a|+ |b| is even, on the right, it is odd



Duality and Geometry Straightness, Characterization and Envelope 7

DSS Preimage. Using a dual space is a common technique for digital straight
line recognition, and thus many works have been carried out about the geo-
metrical and arithmetical structure of the preimage of a digital straight seg-
ment. We simply recall here some of the main and classical properties on this
structure [4, 5]:

Property 4. Let S be a set of N +1 8-connected pixels, and x0 be the minimum
abscissa of this set of pixels. Then the preimage P(S) of S has the following
properties:

1. P(S) is a convex polygon with at most four vertices;
2. two consecutive abscissa of the vertices are consecutive terms in the Farey

series [6] of order max(x0, N − x0). Moreover, for a given abscissa equal to
p
q , the corresponding ordinate is a multiple of 1

q ;
3. if this polygon has four vertices, then two out of the four vertices have the

same abscissa.

This property shows that there is a strong connection between DSS preimages
and Farey series. Actually, given a Farey series of order d, a Farey diagram may
be defined ( [5], see Figure 6, on the left for an example). An important property
of this diagram is that their is a bijection between the cells of the Farey diagram
of order q and the preimages of the DSS of length q + 1 [7]. This property is
illustrated in Figure 6 in the case of q = 2: there are only four DSS of length 3,
and their preimages are the cells of the diagram. These strong arithmetical and
geometrical features of DSS preimages are used to design efficient recognition
algorithms [8, 9].
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Fig. 6. Bijection between the cells of a Farey diagram of order 2 and the preimages of
DSS of length 3
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3 Generalizations and Applications

These definitions of dual space and preimage easily extend to higher dimensions
for digital hyperplanes. Nevertheless, even if the characterization of the preim-
ages of infinite hyperplanes is easy to handle, few works have been carried out
concerning the structure of the preimage in 3D or more. In [10], the authors
propose a first structural and arithmetical characterization of the preimage of a
digital plane segment for particular cases. In [11], a theoretical and experimental
study on the number of faces of the preimage in higher dimensions is proposed.
Concerning the definition of dual space and preimage, recent work [12] proposes
a generalization of the preimage which enables to define the dual of a polygon as
the set of lines crossing this polygon. Together with the use of standard digital
planes, this new dual structure enables to define nice algorithms for digital curve
reconstruction.

Concerning the interest of using a dual space for applications, we already
mentioned the digital line recognition problem, for which using a dual space offers
a nice solution. This algorithm can also be extended for digital plane segments
recognition [13]. This notion may also be used to study the properties of the
intersection of two digital lines or two digital planes, as in [14]. In this case, the
preimage of infinite digital lines and planes are involved in the characterization of
the minimal parameters of the set of intersection grid points. Finally, let us also
mention the work carried out by Veelaert in [15,16,17] concerning the detection
of collinear, parallel or concurrent segments in an image. In these works, the
dual representation of the studied properties enables to extract a graph in which
particular structures (e.g. cliques) are sought. Then these structures represent
sets of segments fulfilling the desired property.

4 Duality/Polarity and Convexity

4.1 Definitions

Another way to consider the geometrical duality is to consider the projective
group on (d + 1) homogeneous coordinates. The homogeneous representation
of a point p = (x1, . . . , xd) in the d−dimensional Euclidean space is the point
(x1, . . . , xd, 1) in the projective space [18]. Furthermore, for any non-zero scalar
λ, the homogeneous points (λx1, . . . , λxd, λ) represent the same point in the
Euclidean space.

This representation framework is convenient to obtain a matrix representa-
tion of both affine transformations and duality mappings. Indeed, with (d + 1)
homogeneous coordinates, we can represent Euclidean points and all linear va-
rieties of dimension k < d + 1. To define the polarity, we consider the following
transformation:

α = βB

where α and β are vectors in (d + 1) homogeneous coordinates and B is a
(d+ 1)× (d+ 1) matrix.
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In the following, we focus on matrices B such that |B| �= 0 (defining the pro-
jective group) and B = BT . In dimension 2, this transformation maps points to
lines and lines to points using the homogeneous coordinate system. Furthermore,
this class of transformation preserves the incidence: α ∈ β, then βB ∈ αB. We
thus obtain a geometric duality.

Note that the matrix B is such that αBαT = 0 which corresponds to the
equation of a conic in homogeneous coordinates [18]. In computational geometry,
the mapping induced by such a conic is called polarity.

4.2 Polarity with Respect to Unit Circle

In the following, we focus on the polarity defined by the matrix:

B =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦
The conic defined by this mapping in homogeneous coordinates is a unit circle

in dimension 2. This transformation maps a point (x1, x2, 1) to the line x1x +
x2y − z = 0 in homogeneous coordinates.

A final property of this special duality is that we have a kind of metric preser-
vation. Given a point (or a line) α, we have:

distance(α, 0) · distance(dual(α), 0) = 1

In the Cartesian space, we can thus consider the dual by polarity of a polygon.
Note that the center of the unit circle (called the pole) needs to be specified.
Figure 7 illustrates the dual transformation of each straight line defined by the
polygon edges. Connecting the polar elements using the incidence property, we
thus obtain a polygon (not necessarily simple) called the dual polygon.

Using the classical property of polarity that maps union to intersection and
conversely we mention the property that in the general case, the convex hull
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Fig. 7. A polygon and its dual by polarity
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Fig. 8. A polygon, its kernel as the dual of the convex hull of the dual

of the dual polygon corresponds to the dual of a geometrical object called the
kernel. This object corresponds to the set of all the points inside the polygon
which are visible from any point of polygon contour (see below for a formal
definition of the kernel). The class of polygons the kernel of which is not empty
is called the star-shaped class of polygons. Figure 8 illustrates this construction
(remind that the position of the pole is very important).

5 Application to Convex Optimization by Interior

This section addresses the problem of the access of the shape by its interior.
Polygon inclusion problems are defined as follows: given a non-convex polygon,
how to extract the maximum area subset included in that polygon ? The search
of the maximum horizontal-vertical convex polygon included into a simple or-
thogonal polygon has been solved in the continuous case by Wood and Yap with
complexity in O(n2) [19]. For more details about a lot of proposed solutions to
inclusion problems, refer to [20].

For the rest of the presentation, we consider a polygon P = (v0, v1, . . . , vn−1)
with n vertices. We denote by R = (r0, r1, . . . , rk−1) the k reflex vertices (or
concave vertices) of P (maybe empty). We note by Ci a chord supported by two
successive vertices vi and vi+1. The potato-peeling problem can be expressed as
follows: Find the maximum area convex subset (MACS for short) Q contained
in P .

In [21], Goodman proves that Q is a convex polygon. He presents explicit
solutions for n ≤ 5 and leaves the problem unsolved in the general case.

In [22], Chang and Yap prove that the potato-peeling problem can be solved in
polynomial time in the general case. More precisely, they detail an O(n7) time
algorithm to extract Q from P . Since this algorithm uses complex geometric
concepts and dynamic programming in several key steps, it is not tractable in
practical applications.
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In the following we propose an approximation based algorithm to approach
the MACS of a star-shaped polygon P . The proposed algorithm is an iterative
process based on a kernel dilatation framework.

5.1 Fast Approximation Algorithm

In this section, we assume that P is a star-shaped polygon. P is a star-shaped
polygon if there exist a point q in P such that ¯qvi lies inside P for all vertices vi

of P . The set of points q satisfying this property is called the kernel of P .
An extremal chord is a chord which contains two or more vertices of P. We

note that an edge of P is always included in an extremal chord.
To end with definitions a chord is called single-pivot chord if it contains only

one reflex vertex (chord C1 in Figure 9) and double-pivot chord if it contains
two distinct reflex points (chord C2 in Figure 9).

The kernel of P can be seen as the intersection between P and the half-
planes C+

i defined by all extremal chords Ci associated to all reflex vertices, as
illustrated in Figure 10.

Figure 10 is an illustration of such proposition. We have the property:

Property 5. Let P be a star-shaped polygon, then its kernel is a subset of the
maximum area convex subset of P .

Fig. 9. Notations and illustrations of chords and half-planes generated by these chords

Fig. 10. Illustration of the kernel computation based on intersection of extremal chords
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Proof. Details of the proof are given in [20].

In other words, there exists a continuous deformation that transforms the kernel
to the MACS. In the following, the strategy we choose to approximate the MACS
is to consider the deformation as an Euclidean dilatation of the kernel. Based on
this heuristic, several observations can be made: the reflex vertices must be taken
into account in the order in which they are reached by the dilatation wavefront.
More formally, we consider the list O of reflex vertices such that the points are
sorted according to their minimum distance to the kernel polygon. When a reflex
vertex is analyzed, we fix the possible chords as follows:

– the chord may be an extremal one;
– the chord may be a single-pivot chord such that its slope is tangent to the

wavefront (this point will be detailed in the next section);
– the chord may be a double-pivot chord. In that case, the second reflex vertex

that belongs to the chord is necessary. It must correspond to the next reflex
point in the order O.

Furthermore, when a reflex vertex is analyzed, we choose the chord from this list
that maximizes the area of the resulting polygon. If we denote by P ′ the polygon
given by the intersection between P and the half-plane associated to the chosen
chord, the chord must maximize the area of P ′. In the algorithm, it is equivalent
to minimize the area of the removed parts P/P ′. Using these heuristics, the ap-
proximated MACS algorithm can be easily designed in a greedy process.

Algorithm 2
Compute the kernel of P ;
Compute the ordered list O of reflex vertices;
Extract the first point r1 in O;
tant que O is not empty faire

Extract the first point r2 in O;
Choose the best chord that maximizes the resulting polygon area with the
chords (r1, r2);
Modify the polygon P accordingly;
Update the list O removing reflex points excluded by the chord;
r1 ← r2;

fin

5.2 Single-Pivot Chords Computation

Given a reflex point ri of P , we have listed three possible classes of chord: ex-
tremal, single-pivot and double-pivot chords. The Figure 11 reminds the possibles
chords. The extremal and double-pivot chord computation is direct. However, we
have to detail the single-pivot chord extraction. According to our heuristic, the
single-pivot chord associated to ri must be tangent to the wavefront propagation
of the kernel dilatation.
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Fig. 11. All possible chords that can be associated to the reflex point r1 (the two
extremal chords, a single-pivot balanced chord and the double-pivot chord)

Using the exterior angular bisector structure issued from the computation of
the generalized Voronoi diagram of Kern(P ), we can efficiently compute the
slopes of such chords. In Figure 12, let e1 and e2 be two adjacent edges of
Kern(P ) (e1 and e2 are incident to the vertex v). Let p (resp. q) be a point in
the plane that belongs to the cell generated by e1 (resp. e2). We can distinguish
two cases: p is closer to e1 than to one of its extremities and q is closer to v
than to e2 (without the extremities). Hence the straight line going through p
and tangent to the wave-front propagation is parallel to e1. In the second case,
the tangent to wavefront straight line going through q is tangent to the circle of
center v and radius ‖vq‖ (see Figure 12).

(a) (b)

Fig. 12. Computing a chord parallel to the kernel dilatation wavefront: (a) illustration
of the kernel dilatation, (b) single-pivot slope computation

Finally, if each reflex point ri of P is labelled according to the closest edge
ei of Kern(P ) (extremities included), we can directly compute the single-pivot
chord: if ri is closer to ej than one of its extremities, the chord is parallel to ej ,
otherwise, the chord is tangent to a given circle. Computational cost analysis is
developed in details in [20].

5.3 Experiments

In this section, we present some results of the proposed algorithm. First of all,
Figure 13 compares the results between the optimal Chang and Yap’s algo-
rithm [22] and the approximated MACS extraction process on 3 examples. In
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Fig. 13. Comparisons between the optimal MACS and the fast approximation proposed
algorithm. Each line corresponds to a new example. The first column presents the input
polygons, their kernels and the distance labelling, the second column shows the results
of the Chang and Yap’s algorithm. The last column presents the result of the proposed
algorithm. For the third example, optimal MACS and the fast approximation proposed
algorithm offer the same result.

practical experiments, the optimal O(n7) algorithm do not lead to a direct imple-
mentation. Indeed, many complex geometrical concepts are used and the overall
algorithm is not really tractable. In Figure 13, the first column presents the
polygon, its kernel and the distance labelling of all vertices, the second row con-
tains the optimal MACS and the third one the fast approximation of the MACS
presented in Section 5.1. Note that the results of the last row are identical. If
we compute the area error between the optimal and the approximated MACS
on these examples, the error is less than one percent.

6 Conclusion

Duality can be seen in two ways : a geometric or a parametric transform. Geo-
metrical duality and graphs have been widely investigated with Voronoi diagrams
and Delaunay triangulations. In this paper, we focused on transformation based
duality. Two different processes have been investigated. The first one is based on
characterization of digital straight lines using duality and preimage. The second
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one is based on polarity for kernel construction used as an initialization step
for the problem of convex envelope of polygon by interior. The analysis of the
geometry of the dual polygon seems to be very promising to have a direct com-
putation of the MACS. Furthermore, a unification of both duality and polarity
frameworks is a challenging future work. Many other examples or approaches
could be studied and elaborated using this concept of duality. All these meth-
ods share the choice of alternative representations in order to offer optimality
criteria.
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Abstract. This paper explores proofs of the isoperimetric inequality for
4-connected shapes on the integer grid Z2, and its geometric meaning.
Pictorially, we discuss ways to place a maximal number unit square tiles
on a chess board so that the shape they form has a minimal number of
unit square neighbors. Previous works have shown that “digital spheres”
have a minimum of neighbors for their area. We here characterize all
shapes that are optimal and show that they are all close to being digital
spheres. In addition, we show a similar result when the 8-connectivity
metric is assumed (i.e. connectivity through vertices or edges, instead of
edge connectivity as in 4-connectivity).

1 Introduction

The isoperimetric inequality for R2 states that the area enclosed by a closed
simple curve is at most that enclosed by a circle of the same length, with equality
occurring only for curves that are circles. This implies two conclusions about
circles that are equivalent in the continuous case, but distinct in discrete spaces.
It is clear that among closed simple curves of a certain length, a circle encloses
a maximal area, and on the other hand, that among curves enclosing a certain
area, a circle has minimal length. For discrete spaces there are special shapes
that have been proved to have minimal “perimeter”, for various definitions of the
perimeter, corresponding to the first conclusion. In the context of the Zn grid,
Wang and Wang [1] presented an ordering of grid points, such that every finite
prefix of the sequence forms a set with minimal boundary size for that cardinality.
Similar arguments have been applied to Bn (the hypercube of dimension n) and
other classes of spaces, and are reviewed by Bezrukov [2]. More results appear
in [3, 4, 5].

This paper is concerned with shapes that are optimal in both having minimal
boundaries and having maximal areas given their boundary size. In this way,
they are similar to disks. We limit our treatment to the 2 dimensional grid, and
provide a characterization of shapes that are optimal in this “double” sense.
� This research was supported in part by the Israeli Ministry of Science Infrastructural
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We will start with a useful result that illustrates the differences between the
double optimality we require and the weak optimality that was imposed before.
We seek a tight lower bound on the size of the neighborhood of a general subset
of the Z2 grid for which we know the cardinality i.e. the area. This is clearly a
form of isoperimetric inequality. Bounds of this sort were used to prove lower
bounds on the efficiency of a multi-agent algorithm for sweeping dynamically
growing shapes [6].

Let A be a finite subset of the Z2 grid. We define its neighborhood as N (A) ={
p ∈ Z2|d (p,A) = 1

}
, where d is the Manhattan metric d ((a, b), (x, y)) = |a− x|

+ |b− y|. Then the lower bound we seek can be written in the form of an integer
sequence n (k) : N → N, defined via n (k) = min|A|≥k {|N (A)|}.

Let us first look at the 2 dimensional case of the sequence described by Wang
and Wang in [1]. Every prefix of this sequence is a set of tiles (a shape) that
can be described as the union of a discrete sphere (all tiles whose coordinates
sum to at most k) and part of the shell needed for the next largest sphere (some
of the tiles whose coordinates sum to k + 1). The first elements of the Wang2

sequence are (0,0), (0,1), (1,0), (-1,0), (0,-1), (1,1), (-1,1). The corresponding
shapes can be seen in Figure 1. Because Wang2 show that the shape formed
by every such prefix has a minimal boundary size for its area, a formula to
calculate the neighborhood size of every such shape would provide us with a
way to calculate n (k). Geometrically we can say that the boundary size changes
whenever the expansion of the outer shell enters a new quadrant.

Fig. 1. The first few shapes in the 2D Wang sequence

In our approach, we first note that the function n (k) is not affected by a
shape that has a non minimal neighborhood size for its area (because it will
not be chosen in the min), nor by a shape that has non maximal neighborhood
area (since then the shape of maximal area can be used instead). Then at the
beginning of the next section we provide an explicit expression for n (k), which we
later justify by characterizing the set of shapes that are simultaneously optimal
in both having largest area for the given neighborhood size and having smallest
neighborhood size given their area.

The rest of the paper is organized as follows — section 2 contains a detailed
analysis of the above while section 3 presents an alternative method of producing
similar results. This alternative approach is later used with slight modifications
to derive similar results under the 8-connectivity metric.

2 The Isoperimetric Inequality Theorem

We shall next provide the promised explicit expression for n (k), whose first few
values are 0, 4, 6, 7, 8, 8, 9. This sequence already highlights the fact that the
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fourth shape in the Wang2 sequence (Figure 1) obviously does not have maximal
area for its boundary size, because n (4) = n (5) = 8.

Theorem 1. If k = 0, then n (k) = 0. For k > 0 n (k) = 4 (m+ 1) + i where
(m, i) ∈ N× Z4 is the first pair for which one of the following holds:

1. i = 0 ∧ k ≤ 2m2 + 2m+ 1
2. i = 1 ∧ k ≤ 2m2 + 3m+ 1
3. i = 2 ∧ k ≤ 2m2 + 4m+ 2
4. i = 3 ∧ k ≤ 2m2 + 5m+ 3

where N× Z4 is ordered lexicographically (with priority to N).

While the formula for n (k) in the above theorem is explicit, one might find this
expression somewhat difficult to grasp. However it is easy to understand as a
way to fill a simple look up table, the first few columns of which are shown
below and which is scanned column first for the first value above or equal to k.
Then the column and row of that value provide i and m needed to calculate the
perimeter.

i\m 0 1 2 3 4 5 6 7 8
0 1 5 13 25 41 61 85 113 145
1 1 6 15 28 45 66 91 120 153
2 2 8 18 32 50 72 98 128 162
3 3 10 21 36 55 78 105 136 171

. . .

Note that the increasing sequence of values that appear in the successive rows
of the table, i.e. 1 2 3 56 8 10 13 15 . . . etc. are the areas of the double optimal
shapes.

To gain some geometrical understanding of n (k) in terms of m and i, we
reconsider the Wang2 sequence. This sequence includes among others, some op-
timal shapes, which are those whose area appears in the table above. As we
mentioned, such a shape can be seen as a digital sphere enclosed by a shell of
zero to three quadrants. It is easy to see by continuing the sequence that the
radius of the digital sphere is m+1 and the number of quadrants is i. A complete
correspondence of these areas to all optimal shapes, including small ones, will
be proved in the next sections.

Our exploration of optimal shapes that yields theorem 1 consists of two phases.
First we show that the optimal shapes belong to a class of simple shapes (sec-
tion 2.1) and explore the structure common to all the shapes of this class (sec-
tions 2.2 and 2.3). Then we use this structure to find which shapes in that class
are indeed optimal (section 2.4).

2.1 Simple Shapes

In this section we present an algorithm that allows us to cover every shape with
a simple shape of the same neighborhood size and at least as much area. This
will show that only simple shapes may be optimal. We will show how to calculate
the neighborhood size of a simple shape, and later on its area.
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Definition 1. (x, y) is called a 4 neighbor of A if :

(x, y) /∈ A and {(x, y + 1) , (x+ 1, y) , (x− 1, y) , (x, y − 1)} ∩A �= ∅

The set of 4 neighbors of A is written N (A).

Definition 2. A shape A is called optimal if for every shape B :

(|N (B)| ≤ |N (A)| ⇒ |B| ≤ |A|) and (|B| ≥ |A| ⇒ |N (B)| ≥ |N (A)|)

Definition 3. A shape is called simple if it can be written as :

B = {(x, y) |y − x ∈ [j1, j2] and x+ y ∈ [k1, k2]}

We often refer to the sizes of a simple shape as j = j2 − j1; k = k2 − k1.
Sometimes the specific directions do not matter, in which cases we denote w.l.o.g
a = min {j, k} ; b = max {j, k}. Note that there may be different shapes that have
the same dimensions.

Theorem 2. If A is optimal, then A is simple.

Proof. Let A = {(x, y)} be a set of tiles, k1 = min {k|∃ (x, y) ∈ B ∧ x− y = k},
k2 = max {k|∃ (x, y) ∈ B ∧ x− y = k}, j1 = min {j|∃ (x, y) ∈ B ∧ x+ y = j},
and j2 = max {j|∃ (x, y) ∈ B ∧ x+ y = j}.

Fig. 2. A general shape A and the corresponding simple shape B

We look at the shape B = {(x, y) | x− y ∈ [j1, j2] ∧ x+ y ∈ [k1, k2]}, then
clearly B ⊃ A. We will show that if A is optimal, B = A. Since B is sim-
ple, this is sufficient. On each boundary line there is at least one point that is
in A. Let {(x1, y1) , (x2, y2) , (x3, y3) , (x4, y4)} be on such a boundary, where
(xi, yi) , (xi+1, yi+1) are on non-opposite sides. Note that it is possible that
(xi, yi) = (xi+1, yi+1), for example for A′ = {(x0, y0)} all the points are the
same, and that we consider the indexes i modulo 4, so that i = 4 ⇒ i+ 1 = 1.

W.l.o.g, we assume that yi − xi = k2 ∧ xi+1 + yi+1 = j2, then xi ≤ xi+1.
Since there are no vacant columns between xi, xi+1, A has at least xi+1− xi + 1
neighbors from above (in each column, the neighbor above the highest tile of
A in that column — see Figure 3). Doing the same for the other 3 adjacent
pairs of points, we find a lower bound on neighbors from the left, from below,
and from the right. Note that this bound is tight for shape B, which has no
other neighbors, and has all the possible tiles. Then if A �= B, A is not optimal,
because it has at least as many neighbors, and not as many tiles. ��
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Definition 4. A simple shape A with a = 0 is denoted as degenerate shape.

Note that degenerate shapes behave differently from other simple shapes (for ex-
ample, in the degenerate case b cannot have odd values, because the Manhattan
distance between two tiles on a diagonal is always even).

Lemma 1. The only optimal degenerate shapes have an area of 0, 1 or 2.

Proof. If A is degenerate, then a = 0. We assume by contradiction that b ≥ 4
(see Figure 3) and A is optimal. But the shape B, created by placing all the tiles
in the same column has exactly as many neighbors (two horizontal neighbors
per tile, and two additional vertical neighbors), and the same area, but is not
simple, therefore is not optimal. Then A cannot be optimal. The shapes with
b ≤ 3 have areas as described, as can be seen in Figure 7. ��

Since we have seen that only a small and finite set of degenerate shapes is of
interest to our discussion we shall assume that all simple shapes have a ≥ 1.

Fig. 3. A degenerate shape A, and a variation A′ which clarifies that A is non optimal

Lemma 2. Every simple shape has j + k + 4 4-Neighbors

Proof. By induction on j and k. This is true for the shape of two neighboring
tiles (i.e j = k = 1), and 6 neighbors. In the induction step, we assume validity
for j, k and prove it for j+1 (same reasoning applies to expansion in k). Adding
1 to j causes one diagonal side (having r tiles) to expand to some direction
(an expansion up is illustrated in Figure 4). As a result, r neighbors in that
direction become new tiles, and r vacant beyond those in the same direction
become neighbors, not modifying the neighborhood size yet. However, the new
tile that is last in the direction of advancement is exposed to a new neighbor
from the side. Having been diagonal to an extreme tile in the shape, it was not
a neighbor before (i.e. increasing j or k adds one neighbor), thus a shape of
dimensions (j + 1) , k has j+1+k+4 neighbors, completing the induction step.

��

2.2 Expansion

In this section we demonstrate how each simple shape can be described as a
“spine” expanded by an iterative expansion process. This process and its effects
on the area and neighborhood size of a simple shape is described.

Definition 5. Let A be a simple shape of dimensions j, k. We call increasing
each of j, k by two an expansion step.
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Fig. 4. Expanding a simple shape to one side

Note that each expansion step performed on a simple shape adds exactly all of
its 4-neighbors. Thus, the number of tiles of the shape increases by j + k + 4,
and the number of neighbors grows by 4. See Figure 5 for an example.

Lemma 3. Let A be a simple shape with dimensions j, k. After s expan-
sion steps, its neighborhood grows by 4s and its area grows by E (j, k, s) =
s (2 + j + k + 2s).

Proof. The neighborhood grows linearly, being equal to j + k + 4. E (j, k, s) is
defined as the number of tiles added to a simple shape by s expansions, therefore :
E (j, k, s) =

∑s−1
i=0 ((j + 2i) + (k + 2i) + 4) = s (2 + j + k + 2s). ��

2.3 Spines

Definition 6. A simple shape such that a ∈ {1, 2} is called a spine.

Theorem 3. A simple shape A can be described as a spine, expanded some finite
number (possibly zero) of times. This description is unique.

We shall next show that there are only 4 kinds of spines. Thus, since we know
the area added by each expansion step, we can calculate the areas of all simple
shapes.

Proof. Of the theorem. If a ofA is even, we say thatAs has dimensions 2, b−a+2,
otherwise 1, b− a + 1. Either way, As is a spine and expanding it s =

⌈
a
2

⌉
− 1

times yields exactly A. Then the area of every simple shape is the sum of the
area of its spine As and the area added in the expansions. We note that starting
from any other spine will result in the wrong shape - a different initial width (or
different number of expansions) results in wrong parity of the final width, and
the same spine width but different different length results in a wrong difference
between length and width. Therefore this description is unique. ��

Lemma 4. Let As be a spine of dimensions a ≤ b, then its area is given by (See
Figure 5):

1. If a = 1, the area is b+ 1
2. If a = 2, then we have the following options:
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(a) If b is odd, then |As| = 3·(b+1)
2 .

(b) b is even, of type 1, then |As| = 3·b
2 + 1.

(c) b is even, of type 2, then |As| = 3·b
2 + 2.

Proof. For a = 1, there are b tiles at distances 0 to b− 1 from one line, and one
more. For a = 2, there are

⌊
b+1
2

⌋
triplets of tiles. Note that there are two ways of

getting from an odd b to an even one, depending on which boundary is moved,
resulting in different area increases. ��

Fig. 5. Spine types and their areas

2.4 Spines of Optimal Shapes

Theorem 4. Let As be a spine with dimension a, b of an optimal shape A, then
a+ 4 > b.

Later we show that this result, while necessary in our construction, is not tight.

Proof. We assume by contradiction that A is an optimal shape with spine a+4 ≤
b, extended s times. Then we take the same skeleton with b shortened by 4, and
expanding it s+ 1 times we get B, such that |N (A)| = |N (B)|.

We will now show that |B| > |A|, contradicting the optimality of A. |A| is the
sum of spine size and E (a, b, s).

First we note that E (a, b− 4, s+ 1)− (E (a, b, s)) = a+ b, then if a = 1, the
area of the skeletons is b− 4 + 1 and b+ 1, then b− 4 + a ≥ a+ 4− 4 + a > 0 ⇒
(b− 4 + 1) + (a+ b) > b+ 1.

If a = 2, in all the variations, subtracting 4 from b reduces the skeleton area
by precisely 2, but the expansions more than offset that because a + b ≥ 2a +
4 > 2. ��

Corollary 1. The dimensions of spines of optimal shapes are a subset of:

{(1, 1) , (1, 2) , (1, 3) , (1, 4) , (2, 2) , (2, 3) (2, 4) , (2, 5)}

Recalling Lemma 4, we note that spines of dimensions {(2, 2) , (2, 4)} mentioned
above come in two types. As we saw then type 2 spines have strictly more area
than those of type 1, with the same neighborhood. Therefore only type 2 spines
can result in optimal shapes. In this context, each set of spine dimensions results
in a certain spine area and neighborhood size.
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Theorem 5. Let A be a non degenerate optimal shape with dimensions j, k, so
that |N (A)| = 4 (m+ 1) + i, with i ∈ {0, 1, 2, 3}. Then:

|A| = 2m2 + (1 + i)m+ max {1, i}

Proof. Let a, b be the dimensions of A’s spine, then remembering each expansion
increases the neighborhood size by 4, we see that 4 (m+ 1) + i = j + k + 4 =
a + b + 4 (s+ 1). One conclusion is that a + b ≡ i mod 4, and another is that
s = 4m+i−a−b

4 . Hence, denoting |As| the area of the skeleton of dimensions a, b,
the total area for such a shape is exactly |A| = |As|+ E

(
a, b, 4m+i−a−b

4

)
.

Below we have a table describing for each i the possible spines for optimal
shapes with |N (A)| = 4m + i, the shape’s area for each spine, and the spines
resulting in shapes that are sub-optimal for that neighborhood size.

i Spine Spine Type Spine Area # of Expansions Total Area Sub-opt.
0 (1, 3) a = 1 3+1 m− 1 2m2 + 2m yes
0 (2, 2) a = 2 b is even 3·2

2 + 2 m− 1 2m2 + 2m+ 1
1 (1, 4) a = 1 4+1 m− 1 2m2 + 3m yes
1 (2, 3) a = 2 b is odd 3·(3+1)

2 m− 1 2m2 + 3m+ 1
2 (1, 1) a = 1 1+1 m 2m2 + 4m+ 2
2 (2, 4) a = 2 b is even 3·4

2 + 2 m− 1 2m2 + 4m+ 2
3 (1, 2) a = 1 2+1 m 2m2 + 5m+ 3
3 (2, 5) a = 2 b is odd 3·(5+1)

2 m− 1 2m2 + 5m+ 2 yes
��

Theorem 5 provided a necessary condition for an optimal non degenerate simple
shape A. However, although we have shown the optimal area for every specific
neighborhood size, we are not done yet. We must show that no shape exists
having larger area and smaller neighborhood. This should hold because n (k) is
defined so that it is a non-decreasing sequence.

First we note that for any specific m, |A| is strictly monotonous in i. Further-
more, we see that 2 (m+ 1)2 + 2 (m+ 1) + 1 = 2m2 + 4m+ 2 + 2m+ 2 + 1 =
2m2 + 6m+ 5 > 2m2 + 5m+ 3, then |A| is strictly monotonous in N (A). Thus,
all size values in the above result are indeed areas of optimal shapes. Therefore:

Theorem 6. The non-degenerate optimal shapes are those simple shapes that
when decomposed into spine and expansion have a spine of one of the fol-
lowing forms: (a, b) ∈ {(1, 1) , (1, 2) , (2, 2) , (2, 3) (2, 4)} (these spines appear in
Figure 6).

Corollary 2. Let As be a spine with dimension a, b of an optimal shape A, then
a+ 3 > b.

Corollary 2 is a tighter version of theorem 4, and can now be verified by inspec-
tion of the list of optimal spines.

Corollary 3. The degenerate simple shapes with areas 0, 1, 2 are all optimal.

All these appear in Figure 7.
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Fig. 6. The optimal spines

Proof. There are no other optimal shapes with neighborhoods sizes 0 or 4, and
the other optimal shapes of neighborhood size 6 also have area equal to 2. ��

Fig. 7. The optimal degenerate shapes: two with dimensions (0,0) and one with (0,2)

We have now identified all the optimal shapes, degenerate and simple, with
explicit expressions for their neighborhood sizes and areas. This allows us to
state that every shape of area k has a neighborhood at least as large as that
of (every) optimal shape with area ≤ k. From this characterization, Theorem 1
immediately follows.

3 Alternative Analysis

This section describes an alternative approach to the grid isoperimetric inequal-
ity. Some results similar to those presented in section 2 are rederived, as well as
a new result, concerning the 8-connectivity grid metric.

3.1 Four Connectivity in Z2

Let A be a finite subset of the Z2 grid, having the neighborhood N (A) ={
p ∈ Z2|d (p,A) = 1

}
, where d is the Manhattan metric d ((a, b), (c, d)) = |d− b|

+ |c− a|. Let us denote n(A) = |N(A)|.
For some area k ∈ N let AMIN (k) be defined as the shape of area k whose

neighborhood is the smallest, namely :

AMIN (k) ⊂ Z2 ∧ |AMIN (k)| = k ∧
∀A ⊂ Z2

(
|A| = k

)
→
(
n(A) ≥ n(AMIN (k))

)
Theorem 7. For every positive k, the neighborhood of AMIN (k) is at least as
large as this of the largest digital sphere (assuming 4 Connectivity) of size at
most k, minus two, namely :

∀k ∈ N n(AMIN (k)) ≥ max
{
n(ASPHERE)

∣∣ |ASPHERE | ≤ k
}
− 2
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We provide only the outline of this proof due to space considerations, but the
steps described here are followed in the proof for 8 Connectivity. As we proved
before, any shape A is covered by a simple shape R that has no more neighbours
than A. This simple shape R is enclosed by another simple shape denoted CR,
that has all of its neighbours on tiles such that the parity of the sum of their
coordinates is constant (if the plane is colored as a chess board, the neighbours
are all of the same color) and such that CR has at most two more neighbours
than C and A. We call such a shape a Canonical Rectangle. We derive formulae
for the area and boundary size of CR based on the sizes of its sides a, b, then
find a lower bound on the minimal boundary for a canonical rectangle of the
same area by differentiating by b. This minimum is found when a = b, that is
when the canonical rectangle is a Manhattan sphere.

�

�
�

� �

�
�

�

Fig. 8. For a shape A, the left chart demonstrates R while the right chart demonstrates
the canonical rectangle CR

3.2 Eight Connectivity in Z2

Let B be a finite subset of the Z2 grid, having the neighborhood N8 (B) ={
p ∈ Z2|d8 (p,B) = 1

}
, where d8((a, b), (c, d)) = max{(d − b), (c − a)}. Let us

denote n8(B) = |N8(B)|.
For some area k ∈ N let BMIN (k) be defined as the shape of area k whose

neighborhood is the smallest, namely :

BMIN (k) ⊂ Z2 ∧ |BMIN (k)| = k ∧
∀B ⊂ Z2

(
|B| = k

)
→
(
n8(B) ≥ n8(BMIN (k))

)
Theorem 8. For every positive k, the size of the neighborhood of BMIN (k) is
at least as large as this of the largest digital sphere (assuming 8 Connectivity) of
size at most k, namely :

∀k ∈ N n8(BMIN (k)) ≥ max
{
n8(BSPHERE)

∣∣ |BSPHERE | ≤ k
}

Note that a digital sphere of radius 3, for example, is a 5 by 5 square.

Proof. Let us denote the bounding rectangle of B by bounding-rectangle(B).
For each of the four sides of bounding-rectangle(B) (i.e. top, right, down, left)
let us denote the last tiles of B that are 4 neighbors of the four sides (assuming
clockwise movement) by 1, 2, 3 and 4 respectively. See an example in Figure 9.

Let us project all the tiles of bounding-rectangle(B) between points 1 and 2
in 45◦ down-left, the points between 2 and 3 in 45◦ up-left, the points between
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Fig. 9. An example of the bounding-rectangle and its projection

3 and 4 in 45◦ up-right and the points between 4 and 1 in 45◦ down-right. An
example appears in Figure 9.

Clearly, after such projection each tile of bounding-rectangle(B) a 4 neighbor
of at least a single tile ofB. In addition, it is impossible that two tiles of bounding-
rectangle(B) will merge in the same spot. Thus, n8(B) is at least the number of
tiles in bounding-rectangle(B), namely :

∀B n8(B) ≥ |bounding-rectangle(B)| (1)

Let R(k) be the smallest rectangle which contains at least k tiles. Let a and
b denote the sides of R(k) and let c denote the number of tiles R(k) comprises.
Then :

c = 2(a+ b)− 4 (2)

Let f(a, b) denote the area of a rectangle of sides a and b :

f(a, b) = (a− 2)(b− 2) (3)

We would like to find a solution for the following optimization problem :

min c s.t f(a, b) ≥ k ∧ c = 2(a+ b)− 4

After some arithmetics equation 3 can be written as :

a =
f(a, b)
b− 2

+ 2 (4)

Combining this with 2 we get c = 2f(a,b)
b−2 +2b. Since we require that f(a, b) ≥ k

we can write the following :

c ≥ ρ � 2k
b− 2

+ 2b (5)

Note that while the minimizing b may not be an integer, it still gives a bound
valid over the integer b. In order to minimize ρ we require that ∂ρ

∂b = 2− 2k
(b−2)2 = 0

and after some arithmetics we get that :

b =
√
k + 2 (6)

By examining the behavior of ∂2ρ
∂b2 we can see that for b =

√
k+ 2 since k ≥ 1

then ∂2ρ
∂b2 > 0, meaning that ρ is indeed minimized at this point. By assigning the
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value of bmin to equations 4 and 5 we can see that for bmin, a = b (meaning that
R(k) is a square — the equivalent of a digital sphere, assuming 8 Connectivity)
and that :

c ≥ 4(
√
k + 1) (7)

It is easy to see that for some sphere B such that |B| = k, n8(B) = 4(
√
k+1)

and therefore it is the shape that minimizes the neighborhood for shapes of given
area k. The rest of the Theorem is implied. ��
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Abstract. In this paper, we provide an unified view of two definitions
of digital lines in 3D via the use of lattice theory and specific projections
of the lattice Z3. We use this unified vision to explain the extension of
the definition of Voss [1] to an arbitrary dimension and we show how
to extend the definition of Figueiredo and Reveillès [2] to an arbitrary
dimension.

1 Introduction

Digital lines are among the simplest primitives in Digital Geometry. Many defi-
nitions have been proposed by many authors [3], which are almost all equivalent
in 2D. Several drawing algorithms are known as well as several recognition al-
gorithms. All of this explains why digital lines are extremely central for a lot of
digital algorithms. Thus, it is natural to look for an extension of the definition
of 2D digital lines to 3D digital lines. Moreover, as the applications nowadays
manipulate 3D, 4D and sometimes higher dimensional data, extensions of digital
lines to n-D becomes also very important and critical.

Several extensions have been proposed to define 3D digital lines. First, Voss
[1] recalled some previous works by Kim [4] and proposed a definition of n-D
digital lines based on the integer part function �.�. Second, the work of Debled-
Rennesson et al. [5,6] proposed to define 3D digital lines through their projections
(two or three in the general case) on the planes defined by the axes of the
standard basis of Z3, and used the arithmetical approach of Reveillès [7]. It must
be noticed that [4] also used projections onto the coordinates planes. The work of
Debled et al [6] also leads to a recognition algorithm. A third approach was also
done by Figueiredo and Reveillès in [8, 2] using lattice theory and projections
onto the orthogonal plane of a direction v in Z3. As it can be seen, only the
definition given by Voss [1] extends to an arbitrary dimension. Beside this, we
can note that there exist drawing algorithms of digital lines in n-D [9] based on
displacement vectors. Moreover, the definition of n-D digital lines is related to
the notion of digitization. Some models are presented by Klette [10] (with the
important correction given in [11]).

The goal of this paper is to present a unified and generic view of the defini-
tion of Voss [1] and the definition of Figueiredo and Reveillès [2]. Moreover, due
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to this unified viewpoint, we also extend the last definition to an arbitrary di-
mension. The main mathematical tools used in this paper are lattice theory and
projections of lattices. We prove in the paper that both definition are obtained
via projection of the lattice Z3 onto specific planes which are the xOy plane for
the definition of Voss and the orthogonal plane - as it was already the case - in
the definition of Figueiredo and Reveillès.

The structure of the paper is as follows. We first recall how to manage sym-
metries in 3D via the octaedral group in section 2. This is followed in section 3
by the construction of the definition of Voss in dimension 3, as well as a recall of
the construction of Figueiredo and Reveillès. We end this section by the presen-
tation of a drawing algorithm. Then in section 4, those approaches are extended
to an arbitrary dimension. We also present some results concerning the basis of
the lattice we manipulate. The paper ends in section 5 with some conclusions
and perspectives.

2 Preliminaries

In 2D, it is usual to restrict the study of digital lines to the first octant where
for each point (x, y), we have 0 ≤ y ≤ x. In higher dimension, we can do the
same following the approach of Reveillès [12]. Hence, we will use the group of
the symmetries of the unit cube in 3D. We denote this octaedral group by Oh.
This group can be identified to the product of the group ( Z

2Z
)3 of order 8, and

the group S3 of the permutations of the three letters a, b, c, whose order is 6.
The order of Oh is thus 48. Its geometrical interpretation is easy using rotations
and symmetries and is given on Fig. 1.

Fig. 1. The octaedral group Oh associated to the decomposition of a cube into 48
tetraedra, each being a transformation of the fundamental domain 0 ≤ a ≤ b ≤ c by
an element of the group Oh

Using the octaedral group, we could study only the fundamental domain which
is the subset F of Z3 composed of the integer points (a, b, c) such that 0 ≤ a ≤
b ≤ c. To generate all possible cases, we simply study the action of Oh on a triple
of signed symbols (±a,±b,±c). Each of the eight elements of the subgroup ( Z

2Z
)3

ofOh modify the signs of the symbols and the other six, coming from S3, permute
them. Consequently, Oh can be identified to the group of 3× 3 matrices where
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each row and column contains only one value being either +1 or −1. We can
effectively find 48 of such matrices.

Let n = (n1, n2, n3) ∈ Z3 be a vector and let us denote by Domn the domain
of n. The element gn of Oh which maps Domn onto F can be constructed as
follows. We sort the matrix whose columns are the ni such that the order of
the first row is increasing. The resulting matrix is the element Mn. Let us now
denote by permn : Z3 → Z3 and by sgnn : Z3 → Z3 the applications

permn :

⎛⎝x
y
z

⎞⎠ �→Mn

⎛⎝x
y
z

⎞⎠ sgnn :

⎛⎝x
y
z

⎞⎠ �→
⎛⎝sign(n1)x
sign(n2)y
sign(n3)z

⎞⎠
where sign(w) is the sign of w. We have gn = sgnn ◦ permn.

3 3D Digital Lines

We present in this section our construction of 3D digital lines using lattices of
Rn and arithmetics. Recall that if v1, v2, . . . , vp is a collection of p vectors of Rn,
then the lattice generated by the collection is the set of all integral combinations∑

aivi, ∀i = 1, 2 . . . , p, ai ∈ Z

Our approach is based on the study of the repartition of integer points of Z3

in the neighborhood of the integral direction given by the vector (a, b, c). We will
define 3D digital lines based on the notion of 1D dotted lines as it is the case for
the two dimensional lines [13]. Using the octaedral group Oh, we suppose that
(a, b, c) belongs to the fundamental domain F . Moreover, a, b and c are supposed
to be relatively prime.

Let us denote by E the set of all Euclidean lines whose direction vector is
v and which contain integer points. We will call 1D dotted lines with direction
v = (a, b, c), the intersection of the Euclidean lines - with direction v - with Z3.
The plane (P ) given by ax + by + cz = 0 is a subgroup of R3. The orthogonal
projection of Z3 onto (P ) is the intersection of E and (P ) and is a lattice of (P )
denoted by EP . This lattice is clearly a rational lattice (see Fig. 4).

It is easy to verify that the intersection of the planes −cx + az = 0 and
−cy + bz = 0 is the line directed by v and passing through the origin. The
intersections of the planes −cx + az = k and −cy + bz = l where k, l ∈ Z also
give a family of lines of direction v. We denote by D this family. It is clear that
E ⊂ D, but the converse is false as the following system shows it,{

13x− 3z = 2 (1)
13y − 5z = 3 (2)

corresponds to the line whose direction is (3, 5, 13) but this line does not intersect
Z3. Indeed, the solution of (1) are given by (2 + 3μ, 0, 8 + 13μ), μ ∈ Z, whereas
the solutions of (2) are (0, 6 + 5ν, 15 + 13ν), ν ∈ Z. To have an integer solution
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of the system, one must have: ∃μ, ν ∈ Z, 8 + 13μ = 15 + 13ν ; this is clearly
impossible.

Let us denote by DP the lattice given by the intersection of D and the plane
(P ). It is clear that EP ⊂ DP . The lattice EP belonging to (P ) is the projection
of all 1D dotted lines, but its use is not very easy. However, we can see it as a
sublattice of DP . Since DP is a Cartesian lattice, it is much easier to work with.
These lattices were introduced in [2] to propose a new definition of 3D digital
lines. Beside this definition, we can refer to definition 4.2.3 of Voss [1] of nD
digital lines. In the sequel, we explain how to obtain Voss definition using two
specific lattices whose construction is similar to the one of EP and DP of [2].

0
1/13

1

2

   1/13 1 2

Fig. 2. The lattices Dxy, Exy, the line l with direction (a, b, c) = (3, 5, 13)

3.1 The Lattices Exy and Dxy

Let us denote by Exy and Dxy the lattices which are respectively the intersections
of the collection of lines D and E with the xOy plane (see Fig. 2).

Proposition 1. The lattice Dxy is the set of integer points of the xOy plane,
given by (k

c ,
l
c ) where k and l are arbitrary integers.

Let L be the line with direction v containing the origin and let l be its projection
onto the plane z = 0. We then have the following.

Proposition 2. The lattice Exy is the set of rationnal points (x− az
c , y−

bz
c ) of

the plane z = 0 where x, y, z are arbitrary integers.

To efficiently manipulate 3D digital lines, we must clearly understand the lattice
Exy. To do this, we now give a modular generation of this last lattice.

When z varies in Z, the points (x+ za
c , y + zb

c ) are located into unit squares
given by [k, k+1[×[l, l+1[⊂ R2 where k and l are well chosen. We can consider the
reduction of this series modulo (1, 1), that is (ka mod c

c , kb mod c
c ). We simplify

the notation by denoting by
{

u
v

}
the value of u mod v, such that the previous

couple is 1
c ({ka/c}, {kb/c}).
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The c points 1
c ({ka/c}, {kb/c}), k = 0, 1, 2, . . . , c − 1 of the lattice Exy all

belong to the unit square [0, 1[×[0, 1[. We denote by Πabc this set. The whole
lattice Exy is obtained by periodic translations of Πabc. The only consideration
of the lattices Dxy and Exy will lead to the notion of 3D digital lines.

First, the points 1
c (za, zb) of Exy, belonging to l , are the projections of the

intersections of L with the planes z = cste. But l also intersects the unit squares
of R2 given by [x, x + 1[×[y, y + 1[. These squares are the projection over the
plane z = 0 of the voxels [x, x + 1[×[y, y + 1[×[z, z + 1[ of R3. Consequently,
the study of the intersections of L with the unit cube of R3 is equivalent to the
study of the intersections of l with the squares [x, x+1[×[y, y+1[ and the study
of the lattices Dxy and Exy.

If we consider the parallel lines to L containing a point of Πabc, thus the 1D
dotted lines with direction v, we can verify that they intersect the same voxels or
neighboor voxels than L. Hence, the set of intersected voxels is a 26-connected
structure we can call a 3D digital lines.

Among the points of Exy belonging to l, which are generally rational points,
the one given by k(a, b) = kc

c (a, b) with k ∈ Z are integer points. These are the
projections of the integer points k(a, b, c), k ∈ Z belonging to the line L.

Theorem 1. The projection of k(a, b, c), k ∈ Z of the line L is the series of
integer points of the plane z = 0 given by k(a, b), k ∈ Z. If 1

c (m,n) is a point
different from (0, 0) in Πabc, either i = −ma−1 mod c or i = −nb−1 mod c
where a−1 (resp. b−1) is the inverse of a (resp. b) in the group Z

cZ
, then (1

c (m+
ia), 1

c (n+ ib)) is an integer point and is the projection of the point (1+
[

ia
c

]
, 1+[

ib
c

]
, i) of the dotted line parallel to L and containing the point (m,n).

Proof. The first relation on L has already been given. For the second on an
arbitray dotted lines, as the three integers a, b, c are relatively prime ((a, b, c) = 1
where (a, b, c) is the gcd of the three numbers), then a or b is invertible mod c
(as (m,n) ∈ Exy, ma−1 = nb−1 mod c if both are invertible). Consequently,
m+ ia and n+ ib are multiples of c. Using the Euclidean division between m+ ia
and n+ ib, we obtain the last relation of the theorem. ��

We now describe the construction of the 3D digital lines Δabc directed by v and
containing the origin. This line is an union of c 1D dotted lines and L is one of
them. We then apply theorem 1 to add one by one 1D dotted lines to Δabc.

We consider the point 1
c (m,n) = 1

c ((c − 1)a, (c − 1)b) of Πabc and the line δ
directed by (a, b) and containing 1

c (m,n). The sum 1
c (m,n) + 1

c (a, b)) is equal
to (a, b), hence the point following 1

c (m,n) on δ is an integer point which is the
projection of the point (1, 1, 1) (here i = 1). We obtain thus that the 3D line
directed by v and containing the point (1, 1, 1) is parallel to L. It is also a 1D
dotted line whose integer points are (1, 1, 1)+k(a, b, c), k ∈ Z. We add it toΔabc.

By adding the vector 1
c (2a, 2b) to the point 1

c (m,n) = 1
c ((c − 2)a, (c − 2)b)

of Πabc, we also obtain an integer point (x, y) of Exy (equal to (1, 1) or (1, 2)
depending on the relative values of a, b, c). This point (x, y) is the projection of
the point (x, y, 2) of Z3 defining the 1D dotted line made by the points (x, y, 2)+
k(a, b, c), k ∈ Z. We also add it to Δabc.
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We pursue this construction by adding all the dotted lines defined by the
points 1

c ((c− i)a, (c− i)b) of Πabc. At the end, when i = c, we obtain an integer
point of L. Hence, Δabc is periodic with period (a, b, c). Its period is composed
of the c first voxels described previously. As (c− i)a = −ia mod c, it is easy to
compute the x and y coordinates of the voxels.

Fig. 3. The first 13 voxels of the first period followed by the first voxel of the second
one. The direction vector is (a, b, c) = (3, 5, 13).

We thus obtain Voss definition of a 3D digital lines (see Fig. 3).

Definition 1. The 3D digital line with direction (a, b, c) and initial conditions
m,n at the origin, where 0 ≤ m < c and 0 ≤ n < c, is given by⎧⎪⎨⎪⎩

x =
[

az+m
c

]
y =

[
bz+n

c

]
z = z

with z ∈ Z.

Contrarily to the 2D case, choosing m = n = c
2 does not produce the approx-

imation with rounding of the Euclidean line. In fact, we will recall that this
Bresenham-like 3D digital line is generated via the lattices EP and DP .

From the previous study, it becomes easy to find an algorithm to draw the
3D digital lines. Indeed, if we translate the point 1

c (m,n) ∈ Πxy by the vector
(a, b), 4 cases happen⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ m < c− a and 0 ≤ n < c− b step (0, 0, 1)
c− a ≤ m and 0 ≤ n < c− b step (1, 0, 1)
0 ≤ m < c− a and c− b ≤ n step (0, 1, 1)
c− a ≤ m and c− b ≤ n step (1, 1, 1)

The 3D digital lines, previously defined, with direction vector n = (a, b, c)
such that 0 ≤ a < b < c and a, b, c relatively prime, are given by the intersection
of two particular digital planes.

Definition 2. A 3D digital lines with direction vector (a, b, c) such that 0 ≤ a <
b < c and a, b, c relatively prime is the set of solutions of the linear systems of
inequalities given by
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γ ≤ cx− az < γ + c

γ′ ≤ cy − bz < γ′ + c

The lower bounds can be used to translate the digital line so that it can contain
any given integer point of Z3. Their arithmetical thickness is the integer c. This
number can be replaced by any couple ε, ε′ of integers in orderto define 3D digital
lines with prescribed thickness.

One on the fundamental properties of 3d digital lines is that they cover Z3.
Moreover, the action of the octahedral group Oh can be used to define 3D digital
lines with any direction vector.

3.2 The Lattices DP and EP

Recall that for a direction vector n = (a, b, c), the canonical lattices attached
to the famillies D and E are the intersections of these famillies with the plane
(P ) : ax+ by + cz = 0. The lattices are respectively DP and EP .

The lattice EP is very interesting since it permits to measure Euclidean dis-
tances between the 1D dotted lines so to locate the integer points which are
closest to an Euclidean lines with direction vector n. As it was the case for D,
DP is a cartesian lattice which contains EP and with which it is easier to work.

The coordinates of the points of DP and EP are more complex that for Dxy

and Exy but their dependances are algegraically similar. We refer to [2] for the
computation. The coordinates of the points of DP are given by:⎧⎪⎨⎪⎩

x = (b2+c2)u−abv
a2+b2+c2

y = (a2+c2)v−abu
a2+b2+c2

z = −c(au+bv)
a2+b2+c2

u, v ∈ Z

Hence, DP is generated by the vectors α = 1
a2+b2+c2 (b2 + c2,−ab,−ac) and

β = 1
a2+b2+c2 (−ab, a2 + c2,−bc).

The lattice EP is generated by the reductions modulo α and β of the vectors
k

a2+b2+c2 (ac, bc,−(a2 + b2)), k ∈ Z. Fig. 4 shows a partial view of a lattice EP

as well as several 1D dotted lines of E .
Both DP and EP are planar lattice with rank 2. Then, using a convenient

isometry we can map them onto xOy. After some tedious calculus, the isometric
lattice of DP is generated by the vectors U = 1√

(a2+b2)
(1, −ab

c
√

(a2+b2+c2)
) and

V = a2+c2

c
√

(a2+b2)
√

(a2+b2+c2)
(0, 1). The image of the lattice EP is the reduction

modulo U and V of the vectors k(aU, bV ) k ∈ Z. As it can be easily seen, this
situation is the analoguous of the link between Dxy and Exy.

Given a point in EP , the closest points in EP to the given points enables us
to define the notion of closest 3D digital lines (see Fig. 5). This corresponds to
a Bresenham-like 3D digital lines. To define it, one must sort the points in EP

around a given point in EP .
Let π : Z3 �→ EP be the application which maps a 1D dotted line to its

intersection with the plane (P ), let ω be a point of EP and let Δω,ρ be the set



36 F. Feschet and J.-P. Reveillès

Fig. 4. A part of the lattice EP where (a, b, c) = (3, 5, 13) as well as some 1D dotted
lines

0

1

2

3

4

1 2 3 4

Fig. 5. The isometric images of DP and EP , where (a, b, c) = (3, 5, 13), in the plane
xOy and a circle of radius 1.17 containing some closest points of one element of EP

of points in EP belonging to a disk (in plane (P )) with center ω and radius ρ,
then we have the following,

Definition 3. The 3D digital line with best integer approximation of order ρ
of the 1D dotted line containing the point ω of EP is the reciprocical image
π−1(Δω,ρ).

Obviously, these 3D digital lines does not cover Z3, which could be a bad be-
haviour. Nevertheless, it guarantees that the digital lines is as closest as possible
of the Euclidean corresponding line.

3.3 3D Segment Drawing

If any segment AB is given let us denote by OV the vector B − A and by
n = (n1, n2, n3) the components ofOV divided by their greatest common divider,
so that n1, n2, n3 are relatively prime. Construction given in section 3 about the
symmetry group Oh can be used to give an operator gn mapping the domain of
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n (or OC) to the fundamental domain F of Oh. Let n′ = gn.n = (a, b, c) and
OC′ = gn.OC = (u′1, u

′
2, u

′
3) in F .

Operator g−1
n followed by the translation of OC to AB leads to a procedure

g(x, y, z) which maps the 3D discrete segment associated with OC′ to the one
associated to AB, (gn being orthogonal g−1

n is equal to the transposed of gn).
Drawing the 3D discrete segment associated to AB is thus reduced to the follow-
ing algorithm giving the discrete approximation of OC′ directed by n′ = (a, b, c).

Drawing of 3D segment OC’=(u’1,u’2,u’3) directed by n’=(a,b,c).
//(a,b,c) satisfy 0<=a<=b<=c and gcd(a,b,c)=1
x=y=0;
// integer division so that line OC’ is in the
// middle of generated voxels
rx=c/2;
ry=rx
for z = 0 to u’3

draw g(x,y,z);
if rx>=c-a then

rx=rx+a-c;
x=x+1;

else
rx=rx+a;

end if;
if ry>=c-b then

ry=ry+b-c;
y=y+1;

else
ry=ry+b

end if;
end for

4 nD Digital Lines

Let v = (a1, a2, . . . , an) ∈ F an integer point in the fondamental domain of
the hyperoctaedral group Bn. This group of order 2n.n! can be identified with
integer matrices of order n where each row and column contains one and only
one non-zero term equals to ±1.

Let P be the hyperplane whose equation is a1x1+a2x2+. . . anxn = 0, and EP

be the lattice obtained by projection of Zn on P along direction v. We denote
by {ui} 1 ≤ i ≤ n the canonical basis of Zn and Xi the projection of ui onto P
along v. Vectors Xi belong to EP and from equation of hyperplane P we have:

Xn = a1(
X1

an
) + a2(

X2

an
) + · · ·+ an−1(

Xn−1

an
)

We consider the lattice DP generated in P by the n− 1 vectors X1

an
, X2

an
, . . . ,

Xn−1

an
; of course EP is a sublattice of DP . Moreover, EP is n − 1 periodic, one
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period being given by EP ∩ δ, δ denoting the fondamental domain of DP . Any
point of EP is obtained by reduction modulo δ of integer multiples of Xn.

Let σ2 = a2
1 + a2

2 + · · · + a2
n and σ̂2

i = a2
1 + a2

2 + · · ·+ (̂a2
i ) + · · ·+ a2

n where,
in the sum û means omission (so that σ̂2

i = σ2 − a2
i ), then components xij of

Xi = (xij) can be computed and we have xij = −aiaj

σ2 if i �= j and xii = σ2
i

σ2 for
i = j.

From these expressions of vectors Xi the determinant of the Gram matrix of
DP can be evaluated giving det((Xi.Xj)) = an showing that domain δ contains
an elements of EP .

The hypothesis v ∈ F leads to a very natural observation which will be
helpful to define nD digital lines. Computation of the norm of Xi − Xj gives

‖ Xi −Xj ‖2=
σ2

i +σ2
j +(ai+aj)

2

σ2 from which inequalities ‖ Xi ‖≤‖ Xi −Xj ‖ and
‖ Xj ‖≤‖ Xi −Xj ‖ can be deduced showing that the set {X1, X2, . . .Xn−1} is
almost orthogonal in DP .

Let Πi be the hyperplane generated by u1, . . . , ûi, . . . , un−1, v where, again,
−̂ means omission. Intersection Πi ∩ P is the subspace of P generated by
X1, . . . , X̂i, . . . , Xn−1 so that these hyperplanes too are almost orthogonal. Def-
inition of digital hyperplanes in Zn being obvious we can define nD digital line
through 0 and directed by v as the intersection of digital hyperplanes associated
to Π ′

is.

Definition 4. Digital line through 0 directed by v = (a1, a2, . . . , an) where 0 ≤
a1 ≤ a2 ≤ · · · ≤ an is the set of integer points solution of the n− 1 diophantine
inequations

γi ≤ a1x1 + · · ·+ (̂aixi) + . . . an−1xn−1 + anxn < γi + εi 1 ≤ i ≤ n− 1

−̂ meaning omission.

Vector (γi) is the lower bound and vector (εi) the arithmetical thickness.
Algorithms can be given to draw digital nD lines defined in this way. They

use a vector of errors ρ = (r1, r2 . . . rn−1 and the simplest one draws 2n − 1-
connected lines when εi = an ∀i = 1, 2, . . . n − 1; again we suppose v ∈ F , the
general case being solved with the help of operators of the Hyperoctaedral group
H\ in a similar way as what has been donne in 3D.

Suppose M = (m1,m2, . . . ,mn) is a point in Zn and v = (a1, a2, . . . , an) ∈ F
and gcd(ai) = 1, then to obtain the first nbPoints of the nD and 2n−1-connected
digital line through M and directed by v we have the following algorithm.

nD digital line drawing
-----------------------
M=(m1,m2,...,mn); // starting point
x=(x1,x2,...,xn)=M; // initialization of x variable
v=(a1,a2,...,an); // line direction in F and gcd(ai)=1
rho=(an/2,an/2,...,an/2);//n-i components of rho are equal to an/2
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for i=1 to NbPoints
draw x;
for j=1 to n-1
if rj>=an-aj {

rj=rj+aj-an;
xj=xj+1;

}
else

rj=rj+aj;
end if;

end for
end for

Initializing error vector ρ with half of thickness, that is setting an

2 for all
ρ’s component we are assured that integer points generated are well distributed
around the euclidean line going through M and directed by v.

Following array shows an application of this algorithm for the drawing of the
first 13 points of the 4D digital line going through origin and directed by vector
v = (3, 5, 7, 13). First 3 lines show evolution of ρ = (r1, r2, r3) error vector and
the last ones are coordinates of approximating points. One period of this line
is thus obtained; following ones are obtained by translating this one by integer
multiples of vector v.

r1 6 9 12 2 5 8 11 1 4 7 10 0 3 6
r2 6 11 3 8 0 5 10 2 7 12 4 9 1 6
r3 6 0 7 1 8 2 9 3 10 4 11 5 12 6

x1 0 0 0 1 1 1 1 2 2 2 2 3 3
x2 0 0 1 1 2 2 2 3 3 3 4 4 5
x3 0 1 1 2 2 3 3 4 4 5 5 6 6
x4 0 1 2 3 4 5 6 7 8 9 10 11 12

5 Conclusion

We have presented in this paper a unified view of the definitions of Voss [1]
and Figueiredo and Reveillès [2]. This permits us, for instance, to give a short
drawing algorithm in 3D. Moreover, the presentation is extended to an arbitrary
dimension via the use of lattice theory and specific projections. We also give a
13-lines long drawing algorithm for nD digital lines. It should be very interesting
to study the link between this approach and multi-dimensonal continued fraction
given by Arnold [14] and this is a future work.

References

1. Voss, K.: Discrete Images, Objects and Functions in Zn. Springer-Verlag (1993)
2. Figueiredo, O., Reveillès, J.P.: New results about 3D digital lines. In Melter, R.A.,

Wu, A.Y., Latecki, L., eds.: Vision Geometry V. Volume 2826. (1996) 98–108



40 F. Feschet and J.-P. Reveillès

3. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan-Kaufmann (2004)
4. Kim, C.: Three-dimensional digital line segments. IEEE Trans. Pattern Analysis

and Machine Intelligence 5 (1983) 231–234
5. Debled-Rennesson, I.: Etude et reconnaissance des droites et plans discrets. PhD
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Abstract. In this paper we study the relationship between the Euclid-
ean and the discrete world thru two operations based on the Euclidean
scaling function: the discrete smooth scaling and the discrete based geo-
metrical simplification.
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1 Introduction

The Euclidean and the discrete world are generally considered as antagonists.
Both worlds have different properties and it is reflected in the operations. Oper-
ations might be trivial in one world and difficult to transpose in the other one.
For instance, there isn’t a satisfying discrete rotation that is at the same time
one-to-one and commutative. Two primary properties of the Euclidean rotation.
Boolean operations (intersection, union, difference) that are trivial in the discrete
world become tedious to perform in the Euclidean world because of numerical
errors. The goal of this paper is to show how the specificities of both worlds
can be used to define operations with new interesting properties. To illustrate
this we propose two operations: one in the discrete (discrete smooth scaling)
and one in the Euclidean world (discrete based geometrical simplification). Each
operation is partly performed in the other world with a digitization and/or an
analytical reconstruction step. The digitization process allows us to move from
the Euclidean world to the discrete world. The analytical reconstruction process
allows us to move from the discrete to the Euclidean world.

The first operation that we are proposing is called ”discrete smooth scaling”.
The idea behind this operation is to describe a discrete object in a smaller (finer)
grid. We want to perform this operation without filtering or smoothing. The in-
formation in a discrete cell (pixel, voxel) can be a complex information that can’t
simply be smoothed. So far, discrete scaling didn’t respect geometrical proper-
ties of the object (discrete edge slopes for instance) [1]. To solve this problem, we
perform the dilation in the space best adapted: the Euclidean space. We perform
an analytical reconstruction on the original image followed by a Euclidean scal-
ing. The discretization provides us with the final ”refined” image. This discrete
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smooth scaling operation possesses a remarkable property: the almost stability
by inverse scale. If we make a discrete smooth scale of factor α ≥ 1 followed by
a discrete smooth scale of factor β = 1

α we obtain the original discrete object
with an error bounded by a factor proportional to 1

α .
The second operation is a discrete based geometrical simplification operation.

The operation consists, this time, starting with a Euclidean object, to digitize
with a given grid size and then to reconstruct it. When we reconstruct a discrete
object, the ”shape complexity” (resulting vertice and edge number) depends
on the size of the object. The smaller the object, the less complex the recon-
structed object. It is however difficult to assure a topological consistence between
the initial object and the reconstructed object. An interesting property of this
operation is that the Hausdorff distance between the original object and the
simplified object is bounded by a factor proportional to the grid size.

The interest of these two operations is that they each make use of the prop-
erties of the other world. The discrete operation uses the properties of the
Euclidean world and the Euclidean operation those of the discrete world. These
operations show how the duality between the discrete and the Euclidean world
can be used at our advantage.

In section two, we introduce the basic notions used in this paper such as dis-
crete analytical models, the principle of the analytical reconstruction method
and the notations used through out the paper. In the third section we intro-
duce the discrete discrete smooth scaling operation. In section four we present
the discrete geometrical simplification operation. We conclude and propose some
extensions in section five.

2 Preliminaries

2.1 Basic Notations in Discrete Geometry

The following notations correspond to those given by Cohen and Kaufman in [2]
and those given by Andres in [3]. We provide only a short recall of these notions.

A discrete (resp. Euclidean) point is an element of Zn (resp. Rn ). A
discrete (resp. Euclidean) object is a set of discrete (resp. Euclidean) points.
We denote pi the ith coordinate of a point p of Zn. The voxel V(p) ⊂ Rn of a
discrete nD point p is defined by V(p) = [p1 − 1

2 , p1 + 1
2 ]× ...× [pn − 1

2 , pn + 1
2 ].

For a discrete object D, V(D) =
⋃

p∈D V(p)
In this paper, we use the Hausdorff distance defined by:

Definition 1. Leth be the directHausdorff distance:A ⊂ Rn, B ⊂ Rn,h(A,B) =
maxa∈A (minb∈B (d2(a, b))) , where d2 is the Euclidean distance. The Hausdorff
distance H between A and B is H(A,B) = max (h(A,B), h(B,A)).

This paper is based on the relations between the Euclidean and the discrete world
and the way operations can benefit from this duality. We present two operations
that are based on the Euclidean scale function noted Sc. We consider, without
loss of generality, that the center of the scale function Sc is the origin.



Two Discrete-Euclidean Operations Based on the Scaling Transform 43

2.2 Digitization and Reconstruction

The basic idea behind this paper is to profit from the possibility to travel between
the discrete world Zn and the Euclidean world Rn. The transformation from
the discrete to the Euclidean world is called digitization. The transformation
from the Euclidean world to the discrete world is called reconstruction. The
experiments presented in this paper have been conducted with the standard
analytical model [3] (see also Fig. 1). The theoretical results are however not
restricted to the standard analytical model and are also verified for a larger class
of digitization schemes. Most of the digitization schemes commonly used seem
actually to fit the definition that follows including the Bresenham algorithms,
the supercover model, the naive digitization, the standard model, etc. Let us try
to propose a characterisation of the digitization schemes that suit the purpose
of this paper.

We consider digitization transforms defined by narrow offset areas. A narrow
offset area O is defined for classes of Euclidean objects. It simply has to verify two
fundamental conditions: A narrow offset area O (E) ⊂ Rn of a Euclidean object
E must be narrow meaning that if x ∈ O (E) ∩ Zn ⇒ V (x) ∩ E �= ∅. It simply
requires that the digitization of an Euclidean object E to be composed of pixels
that are intersected by E. The second condition is a constructive condition. A
narrow offset area must verify a stability property for the union: O (E ∪ F ) =
O (E) ∪O (F ).

Definition 2. The digitization based on a narrow offset area is defined by:

D : P(Rn) −→ P(Zn)
D (E) = {p ∈ Zn |p ∈ O (E)} = O (E) ∩ Zn.

A good way to define a wide class of digitization tranforms is to define the offset
area with a distance d.

O (E) =
{
x ∈ Rn

∣∣∣∣d (x,E) ≤ 1
2

}
.

The best known discrete analytical model is called the supercover model [4,5,6]
with an offset defined by the Chebyshev distance d∞. The distance d1 defines the
closed näıve model and the distance d2 defines the closed pythagorean model. All
distances, of course, don’t verify the narrowness property but many do. There
exist also narrow offset areas that aren’t defined with distances. This is the
case for the Bresenham algorithms, the standard analytical model, the naive
digitization, etc.

Digitization based on narrow offset areas verify, by construction, properties
such as D (E ∪ F ) = D (E)∪D (F ); D (E ∩ F ) ⊂ D (E)∩D (F ) and F ⊂ G =⇒
D (E) ⊂ D (F ). These properties ensure that we can build complex discrete
objects out of a set of basic elements. We can, for instance, build all linear
objects out of simplices.

Defining a reconstruction transform is much more difficult. If we want the
reconstruction transform to make any sense we must define some properties that
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Fig. 1. Supercover and standard model examples

Fig. 2. Coherence between discrete and Euclidean world

have to be verified. For any given analytical digitization, we have an infinity of
reconstruction operations [7, 8, 9, 10]. For instance, it’s natural to associate a
reconstruction transform to a digitization. Indeed, we can define a equivalence
relation ≈ between two Euclidean objects E and F by E ≈ F iff D (E) = D (F ).
There is a one-to-one mapping between the discrete objects and the equivalence
classes defined by ≈. One of the properties of any reconstruction R is to stay in
the equivalence class if we digitize and then reconstruct. Of course, in general,
R (D (E)) �= E (see Fig. 2).

Definition 3. Reconstruction
A reconstruction operation R : P(Zn) −→ P(Rn) associated to an analytical

digitization D is an operation verifying, for any Euclidean object E:

R (D (E)) ≈ E.

A property that we won’t have systematically but that will be verified in many
practical situations is: D (R (A)) = A for a given discrete object A. This property
will be verified if there isn’t any missing information in A. For instance, if we
reconstruct a Bresenham line segment, that isn’t missing any pixels, the property
will be verified.

3 Discrete-Euclidean Operations

In this part, we will study two operations linking the discrete and Euclidean
world. The first is an operation from Zn to Zn that use the Euclidean scale
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properties to define a discrete smooth scale. The second, from Rn to Rn, uses
the digitization properties to erase details in Euclidean objects.

3.1 Discrete Smooth Scaling

The first operation that we are proposing is called discrete smooth scaling. The
idea behind this operation is to describe a discrete object on a smaller grid. We
want to perform this operation without filtering or smoothing (see Fig. 3). We
therefore perform the dilation in the space best adapted: the Euclidean space.

Fig. 3. a) original discrete object. b)reduced grid size. c) classical smoothing. d) discrete
smooth scaling.

Definition 4. We call discrete smooth scaling of a discrete object A of Zn by a
scale α, α ∈ R+∗, the following operation denoted DSSα (A):

DSSα (A) = D ◦ Scα ◦R(A).

We can see in section 4 some examples of this operation on discrete objects.
The operation is meant to work for α ≥ 1. We can consider scales smaller
than 1 especially in order to define the inverse operation. However the intuitive
DSS 1

α
is actually not an exact inverse operation (see Fig. 4). We don’t know

for the moment how to define the exact inverse transform but we can estimate
the error commited with DSS 1

α
. This error is due to the reconstruction part

of the operation. We don’t measure the error between two discrete objects A
and DSS 1

α
(DSSα (A)) but between R (A) and Sc 1

α
(R (DSSα (A))). This error

measure is translation independant.
Note that the error bound we are proposing makes sense for objects veri-

fying D (R (A)) = A. In case of missing information and partial information
reconstruction the result of the theorem that follows stands but it’s not very
meaningful. Measuring an error between an incomplete discrete object and its
scaled and descaled reconstruction isn’t, in our case, very interesting. So, let us
suppose, for what follows, that D (R (A)) = A.

Let us introduce several notations: for a discrete object A, we note Afirst =
R(A) the reconstruction of the original discrete object and we note
Alast = Sc 1

α
(R (DSSα (A))) the Euclidean object which discretization is Alast∩

Zn = DSS 1
α

(DSSα (A)). The error measure is a bound on the Hausdorff dis-
tance between both objects.
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Fig. 4. Discrete smooth scaling: inversibility problem

Fig. 5. Discrete smooth scaling inversibility

Theorem 1

H (Afirst, Alast) = H
(
R (A) , Sc 1

α
(R (D (Scα (R(A)))))

)
≤ 1
α

√
n.

Proof (see Fig. 5): Let A be a discrete object and let: Afirst = A(1) = R(A) ⊂
Rn, A(2) = Scα(A(1)) ⊂ Rn, A(3) = D(A(2)) ⊂ Zn, A(4) = R(A(3)) ⊂ Rn,
Alast = A(5) = Sc 1

α
(A(4)) ⊂ Rn and A(6) = D(A(5)) ⊂ Zn.According to our

notations, we have Afirst = A(1) and Alast = A(5).
Digitization and reconstruction definitions and properties provide the follow-

ing result: A(2) ≈ A(4) and thus A(3) = (O(A(2))) ∩ Zn = (O(A(4))) ∩ Zn.
The narrowness property of the digitization tells us that A(2) and A(4) intersect
each voxel of A(3) and therefore, each voxel of A(3) contains at least one point
of A(2) and one of A(4). The Euclidean distance between these two points is
bounded by the voxel diagonal length:

√
n. We can generalize: ∀x ∈ A(2), ∃y ∈

D(4)|d2(x, y) ≤
√
n. This implies the following result on the direct Hausdorff dis-
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tance: ∀x ∈ A(2), miny∈A(4) (d2(x, y)) ≤
√
n and therefore h(A(2), A(4)) ≤ √n.

The same reasoning stands for h(A(4), A(2)) and leads to h(A(4), A(2)) ≤
√
n. The

result is : H(A(2), A(4)) ≤
√
n. We then apply the scale operation Sc 1

α
.We have

H
(
Sc 1

α

(
A(2)

)
, Sc 1

α

(
A(4)

))
= H

(
A(1), A(5)

)
≤ 1

α

√
n since Sc 1

α

(
A(2)

)
= A(1)

by construction and Sc 1
α

(
A(4)

)
= A(5) by definition.

Finally: H (Afirst, Alast) ≤ 1
α

√
n. �

Here are some comments on these results. The first obvious comment is that
the bigger the scaling factor, the smaller the possible difference between A and
DSS 1

α
(DSSα (A)) is (in case of D (R (A)) = A as already stated). Since R(A)−

Sc 1
α

(R (DSSα (A))) is smaller, there is a lesser chance that it contains a discrete
point. The result of our theorem is a quite general bounding value. It doesn’t
take into account the fact that the reconstruction algorithms are deterministic
and that it’s often the case that if A and B are very similar then R(A) is similar
to R(B). This occurs especially for small scale factors. We can thus suppose, and
experimentation supports it, that in many cases the actual Hausdorff distance is
much smaller than the theoretical bounding value we propose. For the case α = 1
we have no difference between Afirst = Alast and thus H (Afirst, Alast) = 0.

Corollary 1. limα→∞H (Afirst, Alast) = 0.

The corollary tells us that the discrete smooth scaling is invertible when α tends
to infinite. In fact, the discrete smooth scaling operation can be seen as a multi-
scale digitization of the Euclidean scaling function with an approximation factor
α. We can say that when α tends to infinite then DSS tends to Sc. Some more
theoretical work needs to be done here. Non standard analysis is one way of
looking at this problem [11].

3.2 Discrete Based Geometrical Simplification

The second operation we have studied and implemented is a discrete based geo-
metrical simplification operation. This operation acts on a Euclidean object that
is first digitized on a given grid size and then reconstructed. According to the
grid size, details are gathered in the same voxel and thus do not appear in the
reconstructed object. The bigger the voxel, the lesser details from the Euclidean
object will remain after the reconstruction. The object is simplified and can be
represented at different levels of details (see Fig. 6). In practice, it’s not the voxel
size that changes but the object size. The object is scaled with the Euclidean
scaling function to fit the grid size. For a scaling factor x the voxel size is 1

x .

Definition 5. We call discrete based geometrical simplification of a Euclidean
object E of Rn by a factor α, α ∈ R+∗, the following operation denoted Spα(E):

Spα(E) = Sc 1
α
◦ R ◦ D ◦ Scα (E) .
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Digitizations

Associated reconstructions

Fig. 6. Discrete based geometrical simplification principle : α = 1, 1
2

and 1
4

We remark that the discrete based simplification has a similar property as the
discrete smooth scaling operation: the Hausdorff distance between the original
object and its simplification is bounded by a factor proportional to the grid size.

Theorem 2
∀E ⊂ Rn, H(E,Spα(E)) ≤ 1

α

√
n.

Proof
Theorem 2 is similar to theorem 1. We proved that
H
(
R (A) , Sc 1

α
(R (D (Scα (R(A)))))

)
≤ 1

α

√
n for A a discrete object. Now,

R (A) is a Euclidean object so, if we call E = R (A), we have
H
(
E,Sc 1

α
(R (D (Scα (E))))

)
≤ 1

α

√
n. By definition Sc 1

α
(R (D (Scα (E)))) =

Spα(E) which leads to H(E,Spα(E)) ≤ 1
α

√
n. �

The theorem tells us that the geometrical simplification process respects the
general shape of an object. The error we commit by replacing the Euclidean
object by its simplified version is bounded.

Corollary 2. limα→∞ Spα (E) = E.

4 Results: Implementation and Illustrations

Let us comment our implementation choices and present some images to illus-
trate the operations. The theoretical results we presented in this paper are valid
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in dimension n for a very large class of digitization and related reconstructions
transforms. We implemented both operations in 2D. We present also an image
of our first results in 3D.

4.1 Implementation

For several years our discrete geometry team develops a multi-representation
modelling software intended to represent objects under four different embeddings
(see Fig. 7): a Euclidean version, its analytical equivalent, the region represen-
tation and finally a discrete 2D pixel or 3D voxel representation. This allows us
to choose the best adapted representation form depending on the type operation
we want to realise.

Fig. 7. Multi-representation modeller

In this modeller discrete object are defined using the standard analytic model
[3] (see Fig. 1). The reconstruction implemented in the modeller was defined
in [7, 8] and is based on the preimage notion [12]. This algorithm computes the
set of Euclidean hyperplane segments which digitization contains the original
discrete object: R (A) ⊂ V (A) (the standard model is a cover). This approach
is based on discrete analytic geometry and is composed of two steps: the regog-
nition of discrete analytical hyperplane segments (see [10] for an overview on
recognition algorithms) and the analytical polygonalisation of the curve [9, 8].

4.2 Illustrations

Here we present illustrations of the discrete smooth scaling transform with scal-
ing factor α = 5 and α = 10.

The reconstruction operation we implemented [7, 8] reconstruct objects with
line segments, plane segments. The discrete smooth scaling is thus quite good
on discrete objects with linear borders. The arrows in Fig. 8 show that on more
circular parts the reconstruction creates less natural reconstruction shapes. This
comes of course from the fact that a circle in low resolution will be reconstructed
as a polygon.

The discrete based geometrical simplification operation decreases object de-
tail level and therefore decreases its complexity. This operation can be used to
simplify object when details are not perceptible by a human observer and when
only the global pattern of the object is meaningful. Our simplification operation
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Fig. 8. Discrete smooth scale example (α = 5 and α = 10) with details

Fig. 9. Edges and vertices number evolution

Fig. 10. Simplification example: α = 1, 1
2
, and 1

3.5

allows to decrease significantly the number of object element to be rendered (see
Fig. 9).

However, as we can see on Fig. 9, for some coefficients (see dot lines), the
number of object element increases. This is due to the instability of the dig-
itization grid resulting from a simplification with coefficients in R and to the
non determinism of the number of reconstructed edges. Figure 9 shows several
resulting pictures. We can notice that the object topology is modified: a hole can
appear and then disappear. In [13], authors provide a theorem linking topology
modifications and grid size. This gives only a general bound because the recon-
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1 1
4

Fig. 11. 3D object simplification

struction process in not translation invariant. With a same grid size we can get
different topologies. Object topology not only depends on the grid size but on
its position. The center of the scaling function modifies the end result.

Figure 10 presents a discrete based simplification example and Fig. 11 shows
its extention in 3D.

5 Conclusion

In this paper, we have presented two operations that both use Euclidean and
discrete world properties. Both operations are based on the Euclidean scaling
transform. In the first case it scales the object, in the second one, it scales the
grid. Both operations, while they seem quite different have a strong link and we
obtained similar error bounds for them. The first operation is called the ”discrete
smooth scaling”. We bounded the error done while trying to reverse this opera-
tion. The bigger the scale, the closer the discrete operation is to the Euclidean
scaling transform. The discrete smooth scaling can be seen as a digitization of
the Euclidean scale transform.

The second operation is a Euclidean operation that uses the discrete world
properties. We define an operation that digitizes and recontructs Euclidean ob-
jects according to a given grid size. Depending on the grid size, a certain number
of details are gathered in the same pixel and do therefore disappear during the
reconstruction process. The result is a simplified Euclidean object that can be
used in a multi-level representation form. The quality measure of a simplified ob-
ject is a bound of the Hausdorff distance between the simplified and the original
object proportional to the grid size.

In the future we are going to consider discrete-Euclidean transforms based
on Euclidean operations such as rotations, translations and general affine trans-
forms. We are also considering discrete-Euclidean transforms based on discrete
operations such as boolean operations, mathematical morphology operations,
etc. The long term theoretical goal of this study is to better understand the
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relations between the Euclidean and the discrete world. In practice, we hope
to apply this new insight in multi-level topological structure operations or on
multi-scale described objects.
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Abstract. In this paper the nodes of the hexagonal grid are used as
points. Three types of neighbors are used on this grid, therefore neigh-
borhood sequences contain values 1, 2 and 3. The grid is coordinatized
by three coordinates in a symmetric way. Digital circles are classified
based on digital distances using neighborhood sequences. They can be
triangle, hexagon, enneagon and dodecagon. The corners of the convex
hulls of these polygons are computed.

1 Introduction

The classical digital geometry started by [1], where the authors defined the two
basic neighborhood relations on the square grid. The topic is well developed
due to people of image processing and computer graphics communities. We refer
to [2] as a recent textbook on the topic. In [3] the authors used the so-called
neighborhood sequences to vary the neighborhood criterion in a path. They
used only periodic neighborhood sequences in their analysis. Some properties
of distances based on neighborhood sequences are detailed in [4]. Nowadays,
in many applications it is worth to consider other grids than the square one.
The hexagonal grid has some nice properties and it is regular, therefore it is
not too hard to handle it. The geometry of the hexagonal grid with a symmetric
coordinate system is described in [5]. In [6] the neighborhood sequences were also
defined for the hexagonal grid. In this paper we will analyse some properties of
the distances based on neighborhood sequences on this grid.

The structure of the paper is as follows. In the second section we give our
notation, and provide some properties of the concepts introduced. In the other
sections we detail some former results of Das and Chatterji [4] on the hexagonal
grid. We use only initial parts of the neighborhood sequences in our analysis,
therefore we do not care about the periodic property of the whole neighborhood
sequences. In the third section we describe the smallest digital circles of the
hexagonal grid using only a step from the origin. In the fourth section changing
and developments of wave-fronts and digital circles are analysed. We compute
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the coordinate values of the corners of these polygons. In the fifth section we
give a description of all the digital circles with neighborhood sequences in the
hexagonal grid. We show a characterization of them. We present some proper-
ties, in which the hexagonal grid differs from the square grid. In the last section
we summarize our results.

2 Basic Notation and Concepts

In this section we recall some definitions and notation from the literature men-
tioned earlier concerning neighborhood relations and sequences.

There are usually three types of neighbors defined, as Fig. 1 shows, among
the nodes of the hexagonal grid.

In Figure 1 a node and its 12 neighbors are shown. Only the 1-neighbors are
directly connected by an edge, the other 2- and 3-neighbors are at the positions
of shorter and longer diagonals, respectively. These relations are reflexive (i.e.,
a node is a 1-, 2-, and a 3-neighbor of itself by definition) and symmetric. In

Fig. 1. Types of neighbors in the hexagonal grid

Fig. 2. Coordinate values of nodes
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addition, all 1-neighbors of a point are its 2-neighbors and all 2-neighbors are
3-neighbors, as well (i.e., they have increasing and inclusion properties).

The coordinate values of the grid were introduced as it is shown in Fig. 2. The
coordinate axes meet at a grid-point called Origin having triplet (0,0,0). They are
the direction of grid-edges starting at the Origin. The coordinate values of each
point can be computed as the sum of steps on the grid-edges taken into direction
of the edges. A step by direction of axis x increases the first coordinate value by
1, while a step to inverse direction decreases the first coordinate. Similarly steps
on the edges parallel to axis y and z modify the second and third coordinate
values, respectively. Three coordinate values are used to address a point taking
advantage of the symmetry of the grid.

With the help of the assigned coordinate values we are able to describe the
grid in a mathematical way. By the presented coordinate system every node
has a unique triplet which exactly shows the place of the node. The hexagonal
grid contains exactly those triplets which have sum of coordinate values 0 or 1.
We call the points with 0-sum value even (their connections have shape Y in
the figure); the points with 1-sum are odd (opposite shape). We can write the
neighborhood relations in the following formal form.

The points P (p(1), p(2), p(3)) and Q(q(1), q(2), q(3)) of the hexagonal grid are
m-neighbors (m = 1, 2, 3), if the following two conditions hold:

1. |p(i)− q(i)| ≤ 1, for i = 1, 2, 3,
2. |p(1)− q(1)|+ |p(2)− q(2)|+ |p(3)− q(3)| ≤ m.

It is easy to check that the formal definition above with the presented coor-
dinate values (Fig. 2) gives the neighborhood relations shown in Fig. 1.

Now, we are recalling some concepts about the theory of neighborhood se-
quences. In this paper, we are dealing only with neighborhood sequences in this
grid. The sequence B = (b(i))∞i=1, where 1 ≤ b(i) ≤ 3 for all i ∈ N, is called a
neighborhood sequence (on the hexagonal grid). When we need only the initial
part up to the l-th element, then we briefly write Bl = (b(1), b(2), . . . , b(l)).

A movement is called a b(i)-step when we move from a point P to a point Q
and they are b(i)-neighbors. Let P,Q be two points and B be a neighborhood
sequence. The point-sequence P = P0, P1, . . . , Pk = Q, in which we move from
Pi−1 to Pi by a b(i)-step (1 ≤ i ≤ k), is called a B-path from P to Q of length k.
The B-distance d(P,Q;B) from P to Q is defined as the length of the shortest
B-path(s). In a B-path an initial sequence of B is used.

The sequence of 1-neighbor points, for which a coordinate value remains con-
stant, forms a so-called lane. In Fig. 3 there are some examples; the black line
shows the lane for which the third coordinate is 0 and the gray lane represents
the lane for which the second value is 0.

Every lane is ‘orthogonal’ to one of the coordinate axes, especially that one
of {x, y, z}, for which the coordinate value is fixed.

If a point is on an axis, then two of its coordinate-values coincide. For instance
on axis x they are the second and third ones (meaning that the point is on the
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Fig. 3. Examples for lanes

Fig. 4. Lanes and coordinate axes

lanes for which the same value is fixed on axes y and z). See Fig. 4, where the
lanes x = 1 and y = 1 are shown with black and dark-gray, respectively. They
are orthogonal to the axes x and y, respectively. The two points where they meet
are on the axis z. It is a nice property of the assignment of coordinates to the
grid, that a point and its symmetric pair mirroring it to an axis have the same
coordinate values, but – if they are not on the symmetry axis, – in a different
order. So a point and its mirror images are identical up to a permutation of their
coordinates.

To use the line between the lanes x = 0 and x = 1 as a symmetry axis such that
these two lanes are mirror images of each others we have the following formula.
The mirror image of the point P (x, y, z) is given as P ′(−(x− 1),−z,−y).

In this paper we investigate the way of a neighborhood sequence spreads in
the digital space starting from a point of the hexagonal grid. This spreading is
translation-invariant among the points of the same parity and it is symmetric
concerning points with different parities. So, for simplicity we may choose the
Origin O(0, 0, 0) as the starting point.
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Let
CBk

= {P : d(O, P ;B) ≤ k}.

It is the region (digital circle) occupied by B after the first k steps.
In [4] Das and Chatterji showed that for every initial part of a neighborhood

sequence in the square grid (using Cartesian coordinates and two types of neigh-
bors), the obtained digital circle is always an octagon. These octagons can be
degenerated, so the digital circles are squares in the following cases: Using only
1-steps in the initial part of the neighborhood sequence we get only four edges
(the corners will be (0, k), (k, 0), (0,−k), (−k, 0)), while using only 2-steps we get
a square with corners (k, k), (k,−k), (−k,−k), (−k, k). In the case when we use
both 1-step(s) and 2-step(s) our result is a non-degenerated octagon.

The following observations hold in the square grid, and they are true in the
hexagonal case as well:

Remark 1. The convex hull of every CBk
is digitally convex in the usual sense

(see e.g. p. 171, Definition 4.3.4. in [7])

On figures we will use the convex hull as the occupied polygon of the digital
circle. These polygons has sides and corners in the usual sense. Since they are
convex, the sets of the coordinate triplets of corners describe them. (We use the
term corner only for angles less than π.)

Remark 2. For any neighborhood sequence B, the sequence of regions (CBk
)∞k=1

is a strictly monotone increasing sequence. That is, k > l implies CBk
� CBl

.

In the following sections we will underline some properties which are different
for the digital circles in square grid and in hexagonal grid. Now, we are moving
to describe all digital circles of the hexagonal grid in details.

3 Description of Small Circles

Table 1 shows the three possible circles obtained by a step.
The three circles have four kinds of corners. Corner-type α signs corners with

angle π
3 . Corner-types β and γ refer for angles 2π

3 (where the sides connected
at a corner type γ are parallel to some edges and so to coordinate axes of the
hexagonal grid, and the sides at a corner type β are orthogonal to some edges
and so to coordinate axes of the grid.) At corners type δ the angles are 5π

6 . Note
that the circle obtained by a 2-step from O is the same as the circle obtained by
two 1-steps. This property (a circle can have more radii, depending on the used
neighborhood sequences) is not present in the square grid.

Proposition 1. Contrary to the square grid in the hexagonal grid it is possible
for two neighborhood sequences B′, B′′ that CB′

k
= CB′′

l
with k �= l.

Let B′ be given such a way that B′
2 = (1, 1) and let it hold for B′′ that B′′

1 = (2)
then C(1,1) = C(2).
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Table 1. Digital circles with radius 1 by various steps

4 Development of Corners

In [3] the authors analysed the wavefront sets of neighborhood sequences in
the square grid. In this part we are detailing how the wave-fronts are occupying
the hexagonal grid. Because of symmetry it is sufficient to deal with a sixth of
the plane. For our convenience we will use the region between the axes z and
y, especially between the positive part of z and the negative part of y (we refer
here to Fig. 2). One can check that the points P (x, y, z) with z ≥ x ≥ y are
exactly those ones which are in this sixth of the plane. We will call this region
as the analysed section.

It is sufficient to deal with this analysed section since we have the following
statements. For any point P the points obtained by permutating the coordinate-
values of P are exactly the same points as the mirror images of P obtained by
mirroring it to some of the coordinate axes. Every point has the same parity as
its symmetric pairs. Let P be given as (p(1), p(2), p(3)). It is easy to check that,
for instance, the mirror image of P with axis x is P ′(p(1), p(3), p(2)). Similar
facts hold for the other mirror points. A point with its mirror images represent
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at most six points. In this case there are not equal coordinate values, i.e. the
point is not on an axis. Every point has a mirror image in the analysed section of
the grid (using only axial mirroring to the coordinate axes). It can be obtained
by permutation of coordinate-values.

Let us check which corners of the small circles are in the analysed section.
C(1) has only one corner in this section, namely α(0, 0, 1). C(2) has also only one
corner in this area of the grid, namely β(0,−1, 1), while C(3) has two corners
in the analysed section; they are γ(1,−1, 1) on axis y and δ(0,−1, 1) with an
orthogonal edge to axis z.

Now we analyze how the possible vertices change in the growing steps. Table 2
lists all kinds of corners occur in different digital circles. (We detail only the
changing way of the coordinate values of those corners which are in the analysed
sixth of the hexagonal plane.) The table shows all possibilities of the evolution
of the corners by a step in the analysed section of the grid. It is due to the facts
that all corners of Table 1 (which are in the analysed section) are also in Table 2,
and all possible evolving corners are in Table 2, as well.

Based on Table 2 we summarize the evolution of corners via the growing
procedure.

Proposition 2

– (a) The new corner(s) are b-neighbors of the previous one when we obtain
them by a b-step.

– (b) A corner type α occurs only at digital circle C(1).
– (c) A corner type γ occurs only when two coordinate values have the same

value, i.e. the corner is on an axis.
– (d) In some steps a corner type β or a corner type γ is divided to two corners

type δ.
– (e) If a corner type γ remains the same type after a step then it stays on the

same axis as before (by changing the parity).
– (f) The corners type δ never change their type, moreover their position is

fixed, i.e. when a side of the corner was orthogonal to an axis then this is
also the case after any kind of step.

– (g) The corners type δ coming from a corner type γ have a side orthogonal
to that axis on which the corner γ was.

– (h) In some cases the resulted digital object by a 3-step is the same as the
one obtained by a 2-step.

Proof. Most of the statements above are easy to check. We analyse only the
statements (e) and (f). Let us start with (e).

If a corner γ(x, y, z) on the axis y, then x = z. If it is even then with a 3-step
we get γ(x+1, y− 1, z+1) which is also on the axis y. Similarly if γ is odd then
with a 1-step the first and the third coordinate values do not change, therefore
the new corner is on the axis y as well. The same analysis works when γ is on
the axis z. It is evident that the parity of the corner is changing by these steps.

To prove (f) assume that δ(x, y, z) has an edge which is orthogonal to the
axis y. Then the mirror images of δ are also corners. Let δ′(z, y, x) be its
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Table 2. Development table of corners by taking a step

original corner: type
and coordinates

corner after a
1-step

corner after a 2-
step

corner after a 3-step

α(0, 0, 1) β(0,−1, 1) β(0,−1, 2) γ(−1,−1, 2) on axis z,
δ(0,−1, 2) with edge or-
thogonal to axis y

β(x, y, z) even β(x, y, z + 1) β(x, y − 1, z + 1) δ(x, y − 1, z + 1) with edge
orthogonal to axis z,
δ(x + 1, y − 1, z + 1) with
edge orthogonal to axis z

β(x, y, z) odd β(x, y − 1, z) β(x, y − 1, z + 1) δ(x, y − 1, z + 1) with edge
orthogonal to axis y,
δ(x − 1, y − 1, z + 1) with
edge orthogonal to axis z

γ(x, y, z) even on
axis y

δ(x, y, z + 1),
δ(x + 1, y, z)

δ(x, y − 1, z + 1),
δ(x + 1, y − 1, z)

γ(x + 1, y − 1, z + 1)

γ(x, y, z) odd on
axis y

γ(x, y − 1, z) δ(x, y − 1, z + 1),
δ(x + 1, y − 1, z)

δ(x, y − 1, z + 1),
δ(x + 1, y − 1, z)

γ(x, y, z) even on
axis z

γ(x, y, z + 1) δ(x − 1, y, z + 1),
δ(x, y − 1, z + 1)

δ(x− 1, y, z + 1),
δ(x, y − 1, z + 1)

γ(x, y, z) odd on
axis z

δ(x − 1, y, z),
δ(x, y − 1, z)

δ(x − 1, y, z + 1),
δ(x, y − 1, z + 1)

γ(x− 1, y − 1, z + 1)

δ(x, y, z) even with
edge orthogonal to
axis y

δ(x, y, z + 1) δ(x, y − 1, z + 1) δ(x + 1, y − 1, z + 1)

δ(x, y, z) odd with
edge orthogonal to
axis y

δ(x, y − 1, z) δ(x, y − 1, z + 1) δ(x, y − 1, z + 1)

δ(x, y, z) even with
edge orthogonal to
axis z

δ(x, y, z + 1) δ(x, y − 1, z + 1) δ(x, y − 1, z + 1)

δ(x, y, z) odd with
edge orthogonal to
axis z

δ(x, y − 1, z) δ(x, y − 1, z + 1) δ(x− 1, y − 1, z + 1)

symmetric pair to axis y. Then the side of the polygon connecting δ and δ′

is orthogonal to the axis y. After any kind of step the new corners obtained
from δ and δ′ have the same property. The proof is similar if one of the edges
connected at corner δ is orthogonal to axis z. ��

As we can see the corner-types are in a closed set, i.e. we cannot step out from
the above used set by the growing steps.

Now, we present a method which calculates the corners of any digital circle.
We are using Table 1 and the transition table given in Table 2.

Let us calculate the corner of the digital circle with origin (x0, y0, z0) using
the initial part Bk of a neighborhood sequence B. First we compute the corners
of CBk

using O as origin, and after this we will translate the circle.
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Algorithm

1. Initially start with corners of the circle C(b(1)) from Table 1 which are in the
analysed section of the grid, where b(1) is the first element of B. Let i = 1.

2. While i < k let i := i+ 1 and the analysed corners of the new polygon are
from Table 2 by a b(i)-step. (Keep only those ones which are in the analysed
part of the grid.)

3. Get every point which coordinate values form a permutation of a computed
point. Those are the corners of CBk

.
4. If (x0, y0, z0) is even then add the vector (x0, y0, z0) to each corner of CBk

in order to get the result.
5. If (x0, y0, z0) is odd then then, first, let the new values of coordinates of the

corners be given by the formula (x, y, z)→ (−(x−1),−z,−y) (they represent
the digital circle with origin (1, 0, 0) generated by B with radius k);
secondly, add the vector (x0 − 1, y0, z0) to each corner to obtain the final
result.

Now we present an example. Let us determine the corners of the digital circle
starting from point (−5, 3, 3) with B4 = (1, 3, 1, 2).

1. b(1) = 1, therefore we start with C(1), so we have α(0, 0, 1) and i = 1.
2. i < 4 therefore i := 2, b(i) = b(2) = 3, the result: γ(−1,−1, 2) and δ(0,−1, 2).
i < 4 therefore i := 3, b(i) = b(3) = 1, γ(−1,−1, 2) is even and it is on axis
z (the first two coordinates have the same value): γ(−1,−1, 3) and
δ(0,−1, 2) is odd and it has edge orthogonal to the axis y so the new corner:
δ(0,−2, 2).
i < 4 therefore i := 4, b(i) = b(4) = 2, γ(−1,−1, 3) is odd and it is on axis
z, so we get δ(−2,−1, 4) and δ(−1,−2, 4), but the first one is outside of the
analysed section of the plane
δ(0,−2, 2) is even and it has edge orthogonal to the axis y so the new corner:
δ(0,−3, 3).
i = 4, the loop of Step 2 is finished.

3. The corners with permutations: all of them are type-δ: (−1,−2, 4),
(−2,−1, 4), (−1, 4,−2), (−2, 4,−1), (4,−1,−2), (4,−2,−1) and (0,−3, 3),
(0, 3,−3), (−3, 0, 3), (−3, 3, 0), (3, 0,−3), (3,−3, 0).

4. The given origin is odd, so
5. first we get: (2,−4, 2), (3,−4, 1), (2, 2,−4), (3, 1,−4), (−3, 2, 1), (−3, 1, 2),

(1,−3, 3), (1, 3,−3), (4,−3, 0), (4, 0,−3), (−2, 3, 0), (−2, 0, 3).
Secondly, adding (−6, 3, 3) the final result: (−4,−1, 5), (−3,−1, 4),
(−4, 5,−1), (−3, 4,−1), (−9, 5, 4), (−9, 4, 5), (−5, 0, 6), (−5, 6, 0), (−2, 0, 3),
(−2, 3, 0), (−8, 6, 3), (−8, 3, 6) and all of them are type-δ.

Using the three digital circles with radius 1 and our growing table we get all
possible digital circles of the hexagonal grid. In the next section we will list their
types.
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5 The Shapes of the Digital Circles

In this section - continuing our previous results - we characterize the digital
circles by neighborhood sequences in the hexagonal grid.

Theorem 1. The shape of the digital circle generated by the neighborhood se-
quence B in k steps is a triangle if and only if it is C(1). The shape is a hexagon
if and only if there is no element 3 in the initial part of B up to the k-th element.
(Except the previous case, in which C(1) is especially a triangle.) The shape is
an enneagon if and only if there is not any element 2 and nor any consecutive
1,1 or 3,3 occur in the initial part Bk. (Except C(1).) In every other case the
digital circle is a dodecagon.

Proof. In the first case the triangle has three α corners. According to point (b)
of Proposition 2 only other types of corners can occur at the other digital circles.
With other types of corners it is impossible to get a triangle.

Now let us consider the other digital circles. It is easy to check in Table 1 that
starting with an element 2 we get a hexagon with six β corners. Moreover by
Table 2 we know that using 1-step and/or 2-step from corners type α and from
corners type β the new corners will be type β as well. With only corners type
β there must be six of them to make a polygon. Therefore without a 3-step the
result is a hexagon with corners type β.

It is shown in Table 1 that C(3) is an enneagon with three γ and six δ corners.
The corner γ(1,−1, 1) is odd and it is on the axis y. Therefore with a 1-step
it grows to a γ2 which is even and is on the same axis. (With a 2-step or a
3-step the corner would be divided to two δ vertices.) From γ2 with a 3-step
γ3 is resulted; it is odd on axis y. (From γ2 with a 1-step or a 2-step we would
obtain two δ corners.) Since γ3 is in the same ’class’ (i.e. in the same row of
Table 2) as γ(1,−1, 1) the computing cycle is starting again, and it is going on
while the steps are 1-step and 3-step turn by turn. Observe in Table 2 that type
γ corner can be obtained from α, but cannot from β. Therefore there is no way
to get γ vertices from C(2) and so from any hexagons. From C(1) one can obtain
an enneagon in one way, namely to get C(1,3). The obtained corner γ(−1,−1, 2)
is even and it is on the axis z. One can check that there is a similar computing
cycle for this γ to keep it with only 1-steps and 3-steps by turns. (Leaving this
computing cycle two corners type δ are obtained instead of the type γ.)

Finally, in all other cases the polygons only have δ vertices. When twelve
corners type δ are in a digital circle, then it never happens that they change
to another type (see Table 2) and twelve of them are needed for a polygon.
Therefore the last statement is proved. ��

Analysing the digital circles on the square and on the hexagonal grid we have
found the following important difference.

In the square grid the region occupied by k steps of a neighborhood sequence
A is independent of the ordering of the first k element of A. (see [4])
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(a) Digital circle by (1,3) (b) Digital circle by (3,1)

Fig. 5. The elements of the neighborhood sequence on the hexagonal grid are not
permutable, in general

Proposition 3. Contrary to the case of the square grid, it is possible for a
neighborhood sequence B and for a k ∈ N, that the region CBk

depends on the
order of the first k elements of B.

Assume that B′
2 = (1, 3) and B′′

2 = (3, 1) then our regions CB′
2

and CB′′
2

differ
as Fig. 5 shows.

6 Conclusions

In this paper we presented some results about neighborhood sequences on the
hexagonal grid. We made a classification of the digital circles. We gave the
possible types of corners of these digital polygons and studied their development
in the growing procedure. Moreover an algorithm is presented to compute the
coordinate-values of the corners of any digital circle (arbitrary origin, arbitrary
neighborhood sequence and arbitrary radius) on the hexagonal grid. We listed
the types of the digital circles occupied by neighborhood sequences, as well.
Since the convex hulls of the digital circles are convex polygons, the lists of their
corners determine them.

Our results can be used in digital image processing and in the field of networks
as well. It is useful in region growing procedures. In grid-structured networks the
non-common properties are useful. Some digital circles have several radii or the
non permutability of the elements of the neighborhood sequence are exotic prop-
erties. In practice, it would also be interesting to analyse the development of the
wave-front sets in the case of “barrels”, or starting not from a point, but from
other digital object, for instance from a lane. Another possible direction of future
research is the further analysis of meeting waves, etc. It would be interesting if one
mixed our method of region growing with the methods used in practice ( [8,9,2]).
Extensions to non-regular grids can be topics of further research, as well.
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Abstract. We introduce a new discrete primitive, the blurred piece of a
discrete plane, which relies on the arithmetic definition of discrete planes.
It generalizes such planes, admitting that some points are missing and
then permits to adapt to noisy discrete data. Two recognition algorithms
of such primitives are proposed: the first one is a geometrical algorithm
and minimizes the Euclidean distance and the second one relies on linear
programming and minimizes the vertical distance.

1 Introduction

The recognition of discrete primitives as digital straight lines and digital planes
is a deeply studied problem in digital geometry (see a review in the book [1]).
This problem consists in determining if a set of discrete points corresponds to
a known discrete primitive and, in such case, in identifying its characteristics.
Three main classes of algorithms can be defined:

– Structural algorithms: based on geometric (convex hull, chords) or com-
binatorial (size of the steps) properties of discrete primitives. Indeed, the
structural regularity of these primitives can lead to efficient algorithms.

– Arithmetic algorithms: based on the definition of discrete primitives as Dio-
phantine inequalities, these algorithms make profit of the well defined arith-
metical structure of discrete primitives.

– Dual space algorithms: the recognition problem is translated in a dual space
where each grid point is represented by a double linear constraint. The recog-
nition problem is then defined as a linear programming problem, optimized
using particular knowledge on the constraints geometry.

Recently, a new discrete primitive, the blurred segment [2,3], was introduced
to deal with the noise or artefacts due to the acquisition tools or methods. Re-
lying on an arithmetic definition of discrete lines [4], it generalizes such lines,
admitting that some points are missing. Efficient blurred segments recognition
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algorithms were proposed [2, 3, 5] and they were used in applications in image
analysis [6]. In the same framework, we introduce in the paper the new notion of
blurred pieces of discrete planes, relying on the definition of arithmetic discrete
plane [7] by considering a variable thickness.

Two recognition algorithms of blurred pieces of discrete planes are proposed.
The first one is based on a structural approach: the computation of the con-
vex hull of the given voxels is done while we search for the two parallel planes
that mark out this convex hull and that minimize the Euclidean distance be-
tween themselves. An incremental algorithm is given. The second one is based
on a dual space approach in the context of linear programming: the recog-
nition problem is modelled by a system of linear constraints defined by the
initial set of points. The simplex algorithm is then used to solve the prob-
lem by minimizing the vertical distance between two parallel planes containing
all the points of the initial set. A geometrical interpretation of this method
is also given. The codes of these algorithms and examples are available on
http://www.loria.fr/∼debled/BlurredPlane.

In section 2, after recalling definitions and basic properties of arithmetic dis-
crete planes, we define the related notion of blurred pieces of discrete planes and
optimal bounding planes. Then, in section 3, a geometrical method is proposed
to solve the recognition problem by minimizing the Euclidean distance. The sec-
ond method, based on linear programming, is presented in section 4 as well as
a geometrical interpretation of the dual problem. The paper ends up with some
conclusions and perspectives in section 5.

2 Blurred Pieces of Discrete Planes

An arithmetic discrete plane [7], named P(a, b, c, μ, ω), is a set of integer
points (x, y, z) verifying μ ≤ ax + by + cz < μ + ω where (a, b, c) ∈ Z3 is
the normal vector. μ ∈ Z is named the translation constant and ω ∈ Z the
arithmetical thickness.

The two real planes, defined by the following equations: ax+ by+ cz = μ and
ax + by + cz = μ + ω − 1, are called the leaning planes of P(a, b, c, μ, ω). All
the points of P are located between the leaning planes of P .

We hereafter propose a generalization of the notion of discrete plane relying on
the arithmetical definition and admitting that some points are missing. Consider
a norm N on R3. We define the notion of bounding plane, relative to N , as
follows:

Definition 1. Let E be a set of points in Z3. We say that the discrete plane
P(a, b, c, μ, ω) is a bounding plane of E if all the points of E belong to P. We
call width of P(a, b, c, μ, ω), the value ω−1

N(a,b,c) .

Interpretation of the Width:

1. if N = ‖ · ‖2, the width ω−1
N(a,b,c) represents the Euclidean distance between

the two leaning planes of the bounding plane P(a, b, c, μ, ω). Indeed, let P1 :
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ax+ by+ cz = μ and P2 : ax+ by+ cz = μ+ω− 1 be the two leaning planes
of P . As P1 and P2 are parallel, the distance between P1 and P2 is equal to
|μ+ω−1−μ|√

a2+b2+c2
, i.e. ω−1

‖(a,b,c)‖2
since ω > 0.

2. if N = ‖ · ‖∞, the width ω−1
N(a,b,c) represents the distance according to the

main direction of the vector (a, b, c). Indeed and without loss of generality
we can assume that max(|a|, |b|, |c|) = |c|, which means the main direction
is the Oz axis. Let M1(x1, y1, z1) ∈ P1 and M2(x2, y2, z2) ∈ P2 such that
x1 = x2 and y1 = y2. The distance between P1 and P2 is equal to |z1− z2| =
|c(z1−z2)|

|c| = |a(x1−y2)+b(y1−y2)+c(z1−z2)|
|c| = |μ−(μ+ω−1)|

|c| because M1 ∈ P1 and
M2 ∈ P2, i.e. ω−1

‖(a,b,c)‖∞
since ω > 0.

(a) (b)

(c) (d)

Fig. 1. A width-3 blurred piece of discrete plane (a and b), its optimal bounding planes
(c) for Euclidean norm: P2(4, 8, 19,−80, 49) and the width of P2 = 2.28 (d) for infinity
norm: P∞(31, 65, 157,−680, 397) and the width of P∞ = 2.52. The leaning planes and
corresponding leaning points of P2 and P∞ are respectively drawn on (a,c) and (b,d).

Definition 2. Let E be a point set in Z3. A bounding plane of E is said optimal
if its width is minimal.

This leads us to the definition of a blurred piece of discrete plane (Fig. 1).

Definition 3. A point set E in Z3 is a width-ν blurred piece of discrete
plane if and only if the width of its optimal bounding plane is less or equal to ν.
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In the following sections we propose two algorithms which solve the recognition
problem of blurred pieces of discrete planes. For a given set of points E in Z3

and a width ν these algorithms decide whether E is a width-ν blurred piece of
discrete plane. In addition, they give the characteristics of an optimal bounding
plane of E for which the width is minimal. We also show how these algorithms
can be made incremental.

3 Geometrical Method for the Recognition of Blurred
Pieces of Discrete Planes

The first approach allows to solve the problem in terms of the norm ‖ · ‖2. It
relies on the computation of the width of a point set in 3-space [8, 9].

Definition 4. Let E be a set of points in R3 and P a real plane. We say that
P is a plane of support of E if all the points of E are located in one of the
two half-spaces delimited by P and such that P ∩ E �= ∅.

Definition 5. The width of E is the smallest (Euclidean) distance between two
parallel planes of support of E called width planes.

The link with our problem is the following: if E is a set of points in Z3 then
the width planes coincide with the leaning planes of an optimal bounding plane
of E and the width of E is equal to the width of this optimal bounding plane.
For that reason, computing the width and deducing the width planes allow to
recognize blurred pieces of discrete planes.

3.1 Width Computation

We are looking for two parallel planes P1 : αx + βy + γz + δ1 = 0 and P2 :
αx+ βy+ γz+ δ2 = 0 which minimize the distance |δ2−δ1|√

α2+β2+γ2
between P1 and

P2 and such that, for all points p(px, py, pz) ∈ E, we have px +βpy +γpz +δ1 ≤ 0
and px + βpy + γpz + δ2 ≥ 0. For this purpose we can see that the width of E
is the same as the width of its convex hull CH(E) [8]. It is due to the fact that
CH(E) is the intersection of all the half-spaces containing all the points of E.
We can then simplify the problem by introducing antipodal pairs. Consider the
convex hull of a set of points E in 3-space. Two of its edges form an antipodal
edge-edge (E-E) pair when two parallel planes of support of E contain these
edges. Similarly, we define vertex-vertex (V-V), face-face (F-F), vertex-
face (V-F), vertex-edge (V-E) and edge-face (E-F) pairs.

In [8], M.E. Houle and G.T. Toussaint show that, to compute the width of
E, it is sufficient to focus only on parallel planes which contain an E-E pair or
a V-F pair. Therefore, we will enumerate all the E-E and V-F pairs of CH(E)
and keep the ones whose distance is minimal.

In [9], B. Gärtner and T. Herrmann propose a direct approach relying on the
geometry and combinatorial properties of the convex hull. The method is inspired
from the rotating calipers [10] but generalized to the three-dimensional space.
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They start with an arbitrary face f of CH(E) and determine its antipodal
vertices V = {v1, . . . , vk} by exploring all the vertices of CH(E). Thus, they
obtain an initial V-F pair and the two parallel planes P1 and P2 supporting V
and f respectively. Next, they rotate the two planes about an incident edge e
of f until P2 supports the other facet f ′ incident to e. During this rotation the
parallelism and the supporting property of the two planes are preserved and all
E-E pairs belonging to e as well as the antipodal vertices of f ′ are reported.

The important part is as follows: given a V-E pair (w, e) and two parallel
planes P1 and P2 supporting w and e respectively, two events of interest might
happen during the rotation of P2 about e:

1. P2 supports a new face f ′ incident to e, a new V-F pair (w, f ′) is found.
2. P1 supports an additional vertex v, a new E-E pair ((wv), a) is found.

Thus, a rotation about an edge e of CH(E) allows to get all E-E pairs be-
longing to e and all V-F belonging to the two incident faces of e. Hence, by
rotating about all the edges of CH(E) we get all the possible E-E and V-F pairs
of CH(E). At least one of them belongs to the width planes and the distance
between these planes is the width W of E.

As W represents the width of an optimal bounding plane of E, if W ≤ ν then
E is a width-ν blurred piece of discrete plane.

Furthermore, we can obtain the characteristics of this optimal bounding plane.
As the width planes coincide with the leaning planes of the bounding plane
P(a, b, c, μ, ω) of E, we have a = α, b = β and c = γ. Relying on the width
interpretation in Section 2, we get ω = |δ2− δ1|+1. Lastly, owing to the leaning
planes equations, μ = min(−δ1,−δ2).

3.2 Incremental Algorithm

Here we propose an incremental version, in order to get an algorithm which gives
the characteristics of an optimal bounding plane of E each time we add a new
point. A naive method consists in recomputing the width of E each time we add
a point. Nevertheless some observations allow to improve this process.

On the one hand, only one point differs from one step to another. Thus, we
can advantageously replace the computation of the convex hull of all the points
of E by an incremental computation ( [11] pp 235–246). Let us briefly recall

horizon

M

(a)

M

M

C i
C i+1

(b)

Fig. 2. (a) The horizon from M ; (b) Adding a point to the convex hull



70 L. Provot, L. Buzer, and I. Debled-Rennesson

the procedure. At a general step i of the algorithm, a convex hull Ci is given
and we add a new point M . If it lies inside Ci or on its boundary, then there is
nothing to be done. Otherwise we look for all the visible1 faces of Ci, standing
from M . This set of faces is enclosed by a curve called horizon (Fig. 2(a)).
All the visible faces are removed from Ci and replaced by new ones created by
joining each vertex of the horizon to the point M (Fig. 2(b)). Some of them
could be coplanar with non-visible faces so they have to be merged together.
The resulting polytope is the new convex hull Ci+1.

On the other hand, we can observe that, at each step of the algorithm, we
know the characteristics of an optimal bounding plane P(a, b, c, μ, ω) of E . So,
if we add a point M(xM , yM , zM ), we can compute the remainder value of M
relative to P : rP(M) = axM +byM +czM−μ. According to a property of discrete
planes, if rM ∈ [0, ω− 1] then M ∈ P , so it is useless to recompute the width of
E since it does not change.

Algorithm 1. Incremental Recognition
Data: E ∈ Z3, the convex hull C of E , the characteristics a, b, c, μ and ω of the

optimal bounding plane of E
Input: A point M ∈ Z3

Result: The updated data after the addition of M
begin1

E ←− E ∪M2

Update C using the incremental process3

rM ←− axM + byM + czM − μ4

if rM /∈ [0, ω − 1] then5

〈α, β, γ, δ1, δ2〉 ←− ComputeWidthPlanes(C)6

a ←− α7

b←− β8

c ←− γ9

μ ←− min(−δ1,−δ2)10

ω ←− |δ2 − δ1|+ 111

end12

This leads to the incremental procedure described in Algorithm 1. The func-
tion ComputeWidthtPlanes(C) at line 6 computes the width planes of C ac-
cording to the method described in Section 3.1. The returned tuple contains the
coefficients of these planes.

Complexity: In [9], Gärtner and Herrmann showed that the complexity of com-
puting the function ComputeWidthPlanes(C) is O(n2), where n is the number
of points in E . As the other instructions of Algorithm 1 run in constant time,
1 Consider a plane Pf containing a face f of the convex hull. By convexity, this convex

hull is completely contained in one of the closed half-spaces defined by Pf . The face
f is visible from a point if that point is located in the open half-space on the other
side of Pf .
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we obtain a complexity of O(n2) for our incremental procedure. We need to use
this incremental procedure each time we add a point to E . Thus, we obtain an
O(n3) worst case complexity for a set E of n points. Nevertheless, in practice,
the recognition process seems rather linear.

4 Linear Programming Method

The second method relies on linear programming and permits to solve the prob-
lem by considering the norm ‖·‖∞. We recall in the following section the general
formulation of a linear programming problem and the simplex algorithm. The
problem of recognition of blurred pieces of discrete planes is then modelled in
that way in Section 4.2.

4.1 The Simplex Algorithm

Formulation. We try to identify a minimum point x∗ ∈ Rd of a function
f(x) : Rd → R where x = (x1, . . . , xd). Moreover, x∗ must satisfy a set of n
constraints G = (gi(x) ≤ bi)1≤i≤n. LP is the specialization of mathematical
programming to the case where both, the objective function f and the problem
constraints G are linear. Let A(n× d) denote a matrix of n rows and d columns.
Let c(d), b(n) and x(d) denote three column vectors of size d and n. Thus, we
can write our LP problem in such a way: Min ct.x subject to A · x ≤ b and
x ≥ 0. We call the standard form the equivalent rewriting: Min c′t.x′ subject to
A′ · x′ = b and x′ ≥ 0 where A′ = [A|Identity(n × n)], c′ = [c|Zero(n)]. The n
inserted variables in the standard form are called the slack variables.

The simplex algorithm. This method, developed by George Dantzig 1947,
provides a powerful computational tool (see [12] for details). It operates on the
formulation of the standard form. We have n + d variables and n equalities in
the system Ax = b, we can extract a nonsingular matrix B of rank n relative to
this system of equations.

The basis corresponds to the indices of the columns extracted from A to create
B. In the simplex method, the nonbasic variables, denoted by xN = (xi) 1≤i≤n+d

i/∈basis

are forced to be zero. The basic variables xB = (xi)i∈basis are thus equal to
B−1b. A solution x associated with a basis B is called feasible when it verifies
xB ≥ 0.

The simplex algorithm starts from a feasible solution. At each iteration, the
program computes a new basis in such a way that the new basic solution is
feasible and that the objective function has decreased or remains unchanged. To
build the new basis, one nonbasic variable is reclassified as basic and vice versa.
Which variable can we choose ? Let N denote the columns of A whose indices
are not in the basis. From Ax = b, we have: [B|N ].[xB , xN ] = b. As B is a non-
singular matrix, we obtain: xB = B−1.(b−N.xN ). The objective function can be
rewritten as: f(x) = ct.x = cB

t.xB + cN
t.xN = (cN t − cBtB−1N)xN + ctBB

−1b.
This rewriting is not depending on the variables xB . Thus, as the variables
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are positive, if there exists no negative value in the reduced cost vector rct =
cN

t − cBtB−1N , we have found the minimum x∗.
If there exists a negative value, then we can decrease the current value of the

objective function by increasing the corresponding variable xl of xN . As xl is
no more zero, at the next iteration, it will be reclassified as a basic variable.
By increasing xl, the values of the basic variables change. If they all increase,
the problem is unbounded, it means that the minimum value for the objective
function is −∞. In the other case, where some basic variables decrease when xl

increases, the first basic variable xk that reaches zero will stop the increase of
xl. Thus, xk leaves the basis.

To determine the index k, let consider the equalities xB = B−1.(b − N.xN ).
Only xl is now nonzero among xN , so we have xB = B−1.b − B−1Alxl. Let b
and P denote B−1b and B−1Al. Values in b are positive, so only the indices
associated with a positive value in P are of interest. The previous condition
b− P.xl ≥ 0 implies that for all i in the basis with Pi > 0, we have: xl ≤ bi/Pi.
It follows that k = index of mini,Pi>0{bi/Pi}.

function Min-Simplex(A,b,c,basis)
Repeat

1- Extract B, cB from A // relative to the current basis
2- b = B−1b
3- rc′ = ct − (cBtB−1).A // equivalent version of rc
4- If (rc′ ≥ 0) return b // optimum found (≤ for a Max)
5- Choose l such that rc′l < 0 // xl enters the basis (> 0 for a Max)
6- P = B−1Al

7- If P ≤ 0 return unbounded
8- k = mini,Pi>0{bi/Pi} // (same thing for a Max)
9- basis← basis\{k} ∪ {l}

Duality theorem. Associated with each Primal LP problem is a companion
problem called the Dual. The main theorem of LP proves that the Primal prob-
lem is infeasible iff the Dual problem is unbounded and vice versa. Moreover,
one problem has an optimum iff the other problem has an optimum. The two op-
timum values are equal. Moreover, if cB and B are the matrices associated with
the optimum in the Dual, then the optimum in the Primal is equal to ctBB

−1.

Primal: (i) Min ct.x ←→ Dual: Max bt.λ
Subject to: (ii) A.x ≥ b ←→ Subject to: λ ≥ 0

(iii) A.x = b ←→ λ ∈ R
(iv) x ≥ 0 ←→ At.λ ≤ c
(v) x ∈ R ←→ At.λ = c

4.2 Modelling the Recognition Problem

In this way, we compute the minimum vertical distance between two parallel
planes whose slopes relative to the x-axis and the y-axis are between ±π/2.
Indeed, let us recall the given problem, we are looking for the characteristics
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a, b, c, μ, ω of an optimal discrete plane bounding P for a set of n points by
minimizing the vertical distance between its two leaning planes. By considering
α = −a

c , β = − b
c , h = μ

c and e = ω−1
c , the problem may be reformulated

as follows: for a given set of n points (xi, yi, zi), we want to find two planes
P : z(x, y) = α.x + β.y + h and P ′ : z′(x, y) = α.x + β.y + h + e such that
all the points are located between P and P ′ and such that e is minimal. We
obtain one couple of inequalities for each entered point: α.xi +β.yi +h ≤ zi and
α.xi + β.yi + h+ e ≥ zi.

Primal Dual standard form
Min e Max [-z1 . . .-zn | z1 . . . zn | -1 -1 -1 -1 0 ].λ⎧⎨⎩

-α.xi − β.yi − h ≥ -zi

α.xi + β.yi + h+ e ≥ zi

i = 1, . . . , n

⎡⎢⎢⎣
-x1 ... -xn x1 ... xn -1 1 0 0 0
-y1 ... -yn y1 ... yn 0 0 -1 1 0
-1 ... -1 1 ... 1 0 0 0 0 0
0 ... 0 1 ... 1 0 0 0 0 1

⎤⎥⎥⎦
⎡⎣ λ1

. . .
λ

2n+5

⎤⎦ =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦
|α| ≤ 1, |β| ≤ 1
α, β, h ∈ R, e ≥ 0 λ ≥ 0

We gather the two different types of inequalities on each side of the matrix.
Working in the Primal problem with the standard form forces to manage a large
sparse matrix of size (2n+4)× (2n+8). The Dual allows to bypass this problem
with a 4× (2n+ 5) matrix ((i), (ii) and (v) in 4.1). We can easily check that the
basis {λ1, λ2n+1, λ2n+3, λ2n+5} where B−1b = [0 0 0 1]t ≥ 0 is always a feasible
basis for the Dual problem.

Geometrical Interpretation of the Dual Problem
The basis of the Dual problem is associated with four inequalities in the Primal
problem. So when λi is in the basis, the ith inequality in the Primal problem
corresponds to an equality. For example, when λi, 1 ≤ i ≤ n is in the basis, the
ith inequality implies α.xi + β.yi + h = zi, this means that the point pi belongs
to the lower plane P . When n < i ≤ 2n, the point pi−n belongs to the upper
plane P ′. In the same way, the variables λ2n+1, . . . , λ2n+5 are associated with
the cases: α = 1, α = −1, β = 1, β = −1 or e = 0.
The vector ctBB

−1 in the Dual transforms the current basis into the primal
variables. This follows from the previous remark. Let K denote the matrix cor-
responding to the equalities retained in the Primal problem. The current system
verifies: K · [ α β h e ]t = bPrimal

B . Thus, we have: [ α β h e ] = (K−1 ·bPrimal
B )t =

(bPrimal
B )t · (Kt)−1 = ctB Dual ·B−1

Dual

Reduced cost optimality condition. The simplex algorithm maximizes a
function in the Dual. So, it stops when it finds an rc vector with negative values
(line 4). We easily verify that: rct = ct − (cBtB−1).A = [ (-zi + [α.xi + β.yi +
h])1≤i≤n | (zi− [α.xi +β.yi +h+e])1≤i≤n | -1+α | -1-α | -1+β | -1-β | -e ]. As all
these values are negative, this implies that the inequalities of the Primal are all
verified. The Dual program stops when it finds two parallel planes that include
all the points and that have valid slopes.
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The objective function in the Dual is quite obscure. Nevertheless relative
to the theorem of Duality, the dual objective function must represent the same
thing than the Primal function. In fact, we have f(λ) = ctBDual(B

−1bDual) =
(ctBDualB

−1)bDual = [ α β h e ]× cPrimal = e.

The core of the algorithm. Each iteration is associated with a feasible basis.
We only consider in the following the two most important cases with all the ba-
sic variables λi such that 1 ≤ i ≤ 2n. Other subcases can be processed without
difficulty. The configuration 1 ≤ i, j, k, l ≤ n for the indices of the basic variables
is not possible because the corresponding matrix B would be singular.

Configuration 1: 1 ≤ i, j, k ≤ n < l ≤ 2n. In this case, the three points
pi(xi, yi), pj(xj , yj), pk(xk, yk) define the lower plane P and the parallel plane
P ′ is supported by pl−n. The matrix B is equal to [ -xi -yi -1 0 | -xj -yj -1 0 | -
xk -yk -1 0 | xl−n yl−n 1 1 ]. Wlog, we can assume that the point pl−n corresponds
to the origin, this allows to simplify the writing of the matrix B to [ -xi -yi -1 0 | -
xj -yj -1 0 | -xk -yk -1 0 | 0 0 1 1 ]. Let Ni denote the two-dimensional vector
(xi, yi). The vector B−1b is equal to: [Nk∧Nj

det(B) ; Ni∧Nk

det(B) ; Nj∧Ni

det(B) ; 1]. As the matrix
B is nonsingular and det(B) = −det([ xi yi 1 | xj yj 1 | xk yk 1]) the three
points pi, pj , pk must not be colinear. Suppose that the three points NiNjNk lie
in clockwise order, so det(B) ≥ 0. As B−1b ≥ 0, Nk ∧Nj , Ni ∧Nk and Nj ∧Ni

are positive. Such a situation can appear only when the point pl−n lies inside
the triangle NiNjNk relative to the projection into the Oxy plane.

Configuration 2: 1 ≤ i, j ≤ n < k, l ≤ 2n. The planes P (resp. P ′) is sup-
ported by the segment pipj (resp. pk−npl−n). As they are parallel, this couple
of planes is unique. Consider that the point pl−n is centered on the origin, we
have B−1b = [Nk ∧ Nj/Δ;Ni ∧ Nk/Δ; ...; ...] with Δ = (Ni − Nj) ∧ Nk. Δ is
nonzero iff the segment pipj and the segment pk−npl−n are not colinear in the
Oxy plane. It follows that Nk ∧Nj and Nk ∧Ni have not the same sign. Thus,
the segment pipj crosses the line (pk−npl−n). When we center the origin on pi,
we symmetrically obtain the same result. Thus, this case is associated with two
segments pipj and pk−npl−n that intersect each other relative to a projection
into the Oxy plane.

Configuration 3: It is equivalent to the first configuration.

Variables interchanging. We traverse all the set of points. For each point,
we consider its vertical distance from P when it lies under P or from P ′ when it
lies above P ′. If no points are found, our problem is solved. Otherwise, we select
the point that is the vertically farthest point from P and P ′. The associated
variable λu enters the basis. In the Configuration 1, we have three equalities
of the type: α.x+β.y+h = z. When we select a variable λu of the same type, it
means with 1 ≤ u ≤ n, we can not withdraw pl−n, otherwise we would obtain a
basis with four equalities of the same type and this configuration is not possible.
Thus the new basis will remain in configuration 1. So, the new point pu replaces
the sole point among pi, pj and pk that will preserve the constraint: pu−n lies
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Fig. 3. Different configurations relative to the basis and the entering variable

inside the new triangle relative to the Oxy plane. As pu−n is under the plane
P defined by pipjpk, the current thickness e has also increased (see Fig. 3.1a).
In the other case where n < u ≤ 2n, two possibilities can appear. When pu−n

lies inside the triangle, it simply replaces its equivalent point pl and e increases.
When pu−n lies outside, we cannot achieve a configuration of type 1, thus we
move to a configuration of type 2. For this, the segment that supports P ′ is also
pu−npl−n. The other segment corresponds to the sole edge of the triangle that
crosses this segment relative to the Oxy plane. pu−n lies at a vertical distance
greater than the one defined by the triangle and pl−n. Moreover, this distance
is equal to the distance between the two retained segments, so the new config-
uration increases the value of e (see Fig. 3.1b). In the Configuration 2, when
a variable λu, 1 ≤ u ≤ n is selected, we have two possibilities. To remain in
the same configuration, pu must replace a point in such a way that the two new
segments cross each other relative to the Oxy plane (see Fig. 3.2a). When this
is not attainable, one of the two points pk−n or pl−n inevitably belongs to the
triangle pipjpu and we then shift to a configuration of type 1 (see Fig. 3.2b).
Other interchangings can be deduced from the ones exposed in this section.

Convergence and complexity. As the Primal is feasible (choose a large value
for e), the Dual is never unbounded and we can suppress the processing of this
particular case. As we select a point outside of two parallel planes, we know that
the vertical distance (the objective function) strictly increases at each iteration.
Thus, unlike in the general case, the simplex algorithm applied to this recogni-
tion problem can not cycle. Moreover, we have at most C4

2n+5 = O(n4) possible
feasible basis. Thus, we obtain an O(k4) time complexity where k represents the
number of the vertices of the convex hull of the given points. In practice, this
quantity is relatively small compared to the number of points.

The incremental version. When a new point is inserted, it may lie between
the two planes P and P ′. In this case, the previous solution remains optimal
and nothing has to be done. Otherwise, two columns are added to the matrix
A in the Dual. Next, using the last processed feasible basis, we launch a new
sequence of iterations until the new optimum solution is found.
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5 Conclusion

We proposed in this paper a new definition of discrete primitives: the blurred
pieces of discrete planes. These discrete primitives allow to deal with the noise
present in discrete data by varying a parameter. Two recognition algorithms are
given. The first one is a geometric algorithm, based on the convex hull of the
considered set of points and its result is the optimal bounding plane for which the
Euclidean distance is minimal. The second one is based on the simplex algorithm
and its output corresponds to the optimal bounding plane for which the vertical
distance is minimal. The codes of these two algorithms and examples of use
are available on http://www.loria.fr/∼debled/BlurredPlane. A work about
the comparison between these two methods is in progress. Moreover we intend
to use these algorithms in the framework of the boundary segmentation of 3D
noisy discrete objects. Our aim is to obtain an algorithm of polyhedrization of
3D noisy discrete objects by controlling the approximations done.
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Abstract. The number of line-convex directed polyominoes with given
horizontal and vertical projections is studied. It is proven that diagonally
convex directed polyominoes are uniquely determined by their orthogonal
projections. The proof of this result is algorithmical. As a counterpart,
we show that ambiguity can be exponential if antidiagonal convexity is
assumed about the polyomino. Then, the results are generalised to poly-
ominoes having convexity property along arbitrary lines.

Keywords: Discrete tomography; line-convex directed polyomino; re-
construction from projections.

1 Introduction

The reconstruction of two-dimensional discrete sets (the finite subsets of Z2)
from their projections is a frequently studied area of discrete tomography [1]
and it has its applications in pattern recognition, image processing, electron
microscopy, and radiology [2, 3, 4, 5, 6]. For practical reasons the number of pro-
jections used in the reconstruction is small (usually two or four). Thus, in certain
cases the number of discrete sets having the same projections can be extremely
large leading to a reconstructed set which is possibly quite dissimilar to the
original one. A commonly used technique to reduce the number of solutions is
to suppose having some a priori information of the set to be reconstructed such
as convexity, connectedness and directedness. Some properties imposed on the
set to be reconstructed completely eliminate ambiguity and make it possible to
develope efficient reconstruction algorithms [7,8,9]. However, there are classes of
discrete sets where ambiguity is only partially eliminated making the reconstruc-
tion of the set very difficult [10,11]. In this paper we investigate the problem of
ambiguity when the set to be reconstructed must be line-convex, connected, and
directed.

This contribution is structured as follows. First, the necessary definitions are
introduced in Section 2. In Section 3 we study diagonally convex directed poly-
ominoes. We give a uniqueness result for this class and derive an algorithm for
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reconstructing the uniquely determined polyomino from its horizontal and verti-
cal projections. In Section 4 we show that ambiguity can remain very high when
the polyominoes to be reconstructed are antidiagonally convex. In Section 5 we
consider the possibility to adapt the results of Sections 3 and 4 to polyominoes
that are convex along an arbitrary set of directions. Finally, in Section 6 we
conclude our results.

2 Preliminaries

The finite subsets of Z2 defined up to translation are called discrete sets. A
discrete set F can be represented by a set of unitary cells or by a binary matrix
F̂ = (f̂ij)m×n where f̂ij = 1 if and only if (i, j) ∈ F . To stay consistent we
assume that the vertical axis of the two-dimensional integer lattice is directed
top down (see Fig. 1). The horizontal and vertical projections of F are the vectors
H(F ) = H = (h1, . . . , hm), and V(F ) = V = (v1, . . . , vn), respectively, where

hi =
n∑

j=1

f̂ij (i = 1, . . . ,m) and vj =
m∑

i=1

f̂ij (j = 1, . . . , n) . (1)

Not any pair of vectors are the projections of some discrete set. In the following
we suppose that H ∈ Nm

0 and V ∈ Nn
0 are compatible which means that they

satisfy the following conditions

(i) hi ≤ n, for 1 ≤ i ≤ m, and vj ≤ m, for 1 ≤ j ≤ n;
(ii)

∑m
i=1 hi =

∑n
j=1 vj , i.e., the two vectors have the same total sums.

Two points P = (p1, p2) and Q = (q1, q2) in Z2 are said to be 4-adjacent if
|p1 − q1| + |p2 − q2| = 1. The sequence of distinct points P0, . . . , Pk is a 4-path
from point P0 to point Pk in a discrete set F if each point of the sequence is
in F and Pl is 4-adjacent to Pl−1 for each l = 1, . . . , k. A discrete set F is 4-
connected if for any two points in F there is a 4-path between them. Such a set
is also called as polyomino. A 4-path in a discrete set F is a northeast path (or
shortly, NE-path) from point P0 to point Pk if each point Pl of the path is in
north or east to Pl−1 for each l = 1, . . . , k. The discrete set F is directed if there
is a NE-path in F from point (m, 1) to any other point of F .

Given two integers a and b such that they are coprimes and (a, b) �= (0, 0) we
define the kth line of the discrete rectangle R = {1, . . . ,m}× {1, . . . , n} parallel
to the vector (a, b) by

S
(a,b)
k = {(i, j) ∈ R | bi− aj = k} . (2)

Throughout this paper, without loss of generality, we will assume that b ≥ 0
and b = 0 if and only if a = 1. The discrete set F is line-convex along the
direction (a, b) if for every k ∈ Z and (i1, j1), (i2, j2) ∈ S

(a,b)
k ∩ F the discrete

line segment with the endpoints (i1, j1) and (i2, j2) is in F , i.e., if (i, j) ∈ S(a,b)
k

such that (i, j) = (i1 + t(i2 − i1), j1 + t(j2 − j1)) where t ∈ [0, 1] then (i, j) ∈ F .
In particular, the discrete set is
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j

i

Fig. 1. A diagonally convex directed polyomino F , and the correspondig binary matrix
F̂ . The projections of the polyomino are the vectors H and V .

– horizontally convex if it is line-convex along the direction (0, 1),
– vertically convex if it is line-convex along the direction (1, 0),
– diagonally convex if it is line-convex along the direction (1, 1),
– antidiagonally convex if it is line-convex along the direction (−1, 1).

For example, Fig. 1 shows a diagonally convex directed polyomino, which is
vertically, horizontally, and antidiagonally non-convex.

3 Diagonally Convex Directed Polyominoes

Polyominoes are widely used in physics and chemistry for modelling and they
have long been studied by mathematicians and computer scientists (see [11, 12,
13] and the references given there). Concerning polyominoes with some line-
convexity properties some important results are already known. In [11] the
authors studied the number of (horizontally and vertically) convex polyomi-
noes reconstructible from their orthogonal projections and showed that in this
class ambiguity can be very high. Moreover, in [12] a method is given to enu-
merate diagonally convex directed polyominoes according to several parameters
(sources, diagonals, horizontal and vertical edges, etc.). Recently, in [14] the
author stressed the importance of finding classes of polyominoes where the re-
construction from two projections can be solved uniquely in polynomial time.
The only class known so far satisfying this condition was investigated in [8, 9].
The results given there can be summarized in the following.

Theorem 1. Every horizontally or vertically convex directed polyomino can be
reconstructed from its horizontal and vertical projections uniquely in O(mn)
time.

In this section we show that the class of diagonally convex directed polyominoes
(let us denote this class by DCD4) also satisfies this condition. As an inmediate
consequence of the directedness and 4-connectedness we can say
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Lemma 1. Let D ∈ DCD4 with H(D) = (h1, . . . , hm) and V(D) = (v1, . . . , vn).
Then, (m, j) ∈ D if and only if 1 ≤ j ≤ hm, and (i, 1) ∈ D if and only if
m− v1 < i ≤ m.

With the aid of Lemma 1 a subset F of the polyomino D to be reconstructed
can easily be found. On the basis of the following lemma the remaining elements
of D are determined by the set F .

Lemma 2. Let D ∈ DCD4, F ⊂ D and (i, j) ∈ {1, . . . ,m−1}×{2, . . . , n} be a
position such that for every (i′, j′) �= (i, j) if i′ ≥ i and j′ ≤ j then (i′, j′) ∈ D ↔
(i′, j′) ∈ F . Then, (i, j) ∈ D if and only if

∑n
t=i+1 f̂tj < vj and

∑j−1
t=1 f̂it < hi.

Proof. Let (i, j) be a position satisfying the conditions of the lemma. The nec-
essary part is trivial since i′ ≥ i, j′ ≤ j and (i′, j′) �= (i, j) implies (i′, j′) ∈ D ↔
(i′, j′) ∈ F and so the inequalities

∑n
t=i+1 f̂tj < vj and

∑j−1
t=1 f̂it < hi must hold.

To prove the sufficient part assume that
∑n

t=i+1 f̂tj < vj and
∑j−1

t=1 f̂it < hi and
contrary (i, j) �∈ D, i.e., d̂ij = 0. If i = 1 then the contradiction follows from∑n

t=i+1 f̂tj < vj and the fact that (i′, j) ∈ F ↔ (i′, j) ∈ D holds for every
position (i′, j) if i′ > 1. Similarly, if j = n then the contradiction follows from∑j−1

t=1 f̂it < hi and the fact that (i, j′) ∈ F ↔ (i, j′) ∈ D holds for every position
(i, j′) if j′ < n. In any other cases, since the conditions of the lemma hold, there
exist i′′ < i and j′′ > j for which d̂i′′,j = d̂i,j′′ = 1. Since D is directed there is
a NE-path from (m, 1) to (i′′, j) such that for every point (c1, c2) of this path
c2 ≤ j holds. Therefore the diagonal S(1,1)

i−j contains at least one point of D,
say (i1, j1) for which j1 < j. Similarily, we get that there is a NE-path from
(m, 1) to (i, j′′) and therefore the diagonal S(1,1)

i−j contains at least one point of
D, say (i2, j2) for which j2 > j. We get d̂i1,j1 = 1, d̂ij = 0 and d̂i2,j2 = 1 with
j1 < j < j2 which contradicts the diagonal convexity (see Fig. 2). ��

(i,j)

(i  ,j  )

(i  ,j  ) (i’’,j)

(i,j’’)

2 2

1 1

Fig. 2. Proof of Lemma 2
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The following theorem states that if we assume that the directed polyomino to be
reconstructed is diagonally convex then ambiguity can be completely eliminated.

Theorem 2. Let H ∈ Nm and V ∈ Nn. In the class DCD4 there is at most one
polyomino P such that H(P ) = H and V(P ) = V .

Proof. On the basis of Lemma 1 the first column and the last row of P are
uniquely determined by v1 and hm, repsectively, i.e., a subset F of the polyomino
P (consisting of all the positions of the last row and first column of P ) can be
found. Then, for the position (m−1, 2) the conditions of Lemma 2 hold. Therefore
on the basis of Lemma 2 it can be decided whether the position (m − 1, 2)
belongs to P and if so then we set F = F ∪ {(m − 1, 2)}. Taking each position
bottom up left to right F always satisfies the conditions of Lemma 2 and so the
above method can be repeated. If H and V are the projections of a diagonally
convex polyomino then in the end we get F = P . Uniqueness follows from the
construction. ��

The proof of Theorem 2 is constructive, i.e., an algorithm similar to the one
in [9] can also be described to reconstruct the possibly existing polyomino of the
class DCD4 with given horizontal and vertical projections.

Algorithm DCD4
Input: Two compatible vectors, H ∈ Nm and V ∈ Nn.
Output: The binary matrix F̂ representing the uniquely determined polyomino
of DCD4 having projections H and V (if there is such a solution).

Step 1 F̂ := (0)m×n; H ′ := H ; V ′ := V ;
Step 2 for i := m− v1 + 1, . . . ,m {f̂i1 := 1; h′i −−; }

for j := 1, . . . , hm {f̂mj := 1; v′j −−; }
Step 3 for i := m− 1, . . . , 1

for j := 2, . . . , n
if (h′i > 0 and v′j > 0) then {f̂ij := 1; h′i −−; v′j −−;}

Step 4 if (H(F ) �= H or V(F ) �= V or F is not a diagonally convex polyomino)
then exit(no solution) else return F̂ ;

This algorithm works as follows. Step 1 is for the initialization of the matrix F̂
and the auxiliary vectors H ′ and V ′. In Step 2 a subset F of the polyomino to be
reconstructed is defined on the basis of Lemma 1. Then, in each iteration of Step
3 we check whether the conditions of Lemma 2 hold and if so then we update
the matrix F̂ and the vectors H ′ and V ′. Due to the vectors H ′ and V ′ Step 3
runs in O(mn) time. Finally, in Step 4 we check whether the reconstructed set
is a diagonally convex polyomino and has the given projections H and V which
can also be done in O(mn) time. Summarizing this we can say

Corollary 1. Let H ∈ Nm and V ∈ Nn. If there is a polyomino P ∈ DCD4 such
that H(P ) = H and V(P ) = V then Algorithm DCD4 reconstructs it in O(mn)
time.
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4 Antidiagonally Convex Directed Polyominoes

In this section we show that there is a drastic change in the number of directed
polyominoes if instead of diagonal convexity it is assumed that the polyomi-
noes to be reconstructed are antidiagonally convex. We will use the concept of
switching component of a binary matrix F̂ which is a submatrix of F̂ of the form(

0 1
1 0

)
or

(
1 0
0 1

)
. (3)

Interchanging 0s and 1s in a switching component the horizontal and vertical
projections of F do not change [15]. Let us denote the class of antidiagonally con-
vex directed polyominoes by ACD4. The following theorem shows that assuming
antidiagonal convexity on the directed polyomino having given horizontal and
vertical projections does not eliminate ambiguity.

Theorem 3. In the class ACD4 there can be exponentially large number of poly-
ominoes with the same horizontal and vertical projections.

Proof. We show that for any k ∈ N there are at least 2k number of discrete sets
of size (6k − 1) × 3 in the class ACD4 with the same horizontal and vertical
projections. Let

B̂ = ( 1 1 0 ) , F̂1 =

⎛⎜⎜⎜⎝
1 1 0
1 1 1
1 1 0
1 0 1
1 1 1

⎞⎟⎟⎟⎠ , and F̂k =

⎛⎝ F̂1

B̂
F̂k−1

⎞⎠ for k > 1 .

(4)
For a given k ∈ N and for any l ∈ N (1 ≤ l ≤ k) we will refer to the submatrix
of F̂k consisting of the rows 6(l − 1) + i (i = 1, . . . , 5) as the lth level of F̂k

and to the submatrix B̂ in the row 6l as the lth bridge of F̂k (omitting the case
k = l). For any l the positions (6(l− 1) + 4, 2), (6(l− 1) + 4, 3), (6(l− 1) + 1, 2),
and (6(l− 1) + 1, 3) form a switching component in F̂k and we will refer to it as
the lth switching component of F̂k. Let F̂ ′

1 be the binary matrix that we get by
interchanging the 0s and 1s in the first switching component of F̂1, i.e.,

F̂ ′
1 =

⎛⎜⎜⎜⎝
1 0 1
1 1 1
1 1 0
1 1 0
1 1 1

⎞⎟⎟⎟⎠ . (5)

Clearly, F1, F
′
1 ∈ ACD4 and so the theorem holds for the case k = 1. For the

case k > 1 let F̂S
k where S = {s1, . . . , sn} ⊆ {1, . . . , k} (n ≤ k) denote the

binary matrix that we get from F̂k by switching the s1th, . . ., snth switching
components. Note, that from the viewpoint of directedness, 4-connectedness and
antidiagonal convexity the lth bridge effects only on the (l+ 1)-th and lth levels
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and vice versa (if they exist). Then, in order to prove that FS
k ∈ ACD4 for

any k ∈ N and S ⊆ {1, . . . , k} it is sufficient to study the submatrices of F̂S
k

consisting of the lth level and the lth bridge and the lth bridge and the (l+1)-th

level. These matrices can only be of the form
(
B̂
F̂1

)
,
(
F̂1

B̂

)
,
(
B̂
F̂ ′

1

)
, or

(
F̂ ′

1

B̂

)
.

It can be shown directly that the four sets represented by these matrices are
antidiagonally convex. For a given k S can be any subset of {1, . . . , k} therefore
the number of solutions with the same projections is at least 2k and so the
theorem is proven (see Fig. 3 for the case k = 2). ��

(a) (e)(d)(c)(b)

Fig. 3. Exponentially large number of discrete sets of ACD4 with the same horizontal
and vertical projections. (a)-(d) Proof of Theorem 3 for the case k = 2. The sets left

to right are F
{}
2 , F

{1}
2 , F

{2}
2 , and F

{1,2}
2 , respectively. (e) One more set with the same

projections.

Remark 1. The bound 2k in the proof of Theorem 3 is not tight. See, for example,
the discrete set in Fig. 3e.

As a consequence of this theorem we get

Corollary 2. If there is an algorithm that reconstructs all the discrete sets of
ACD4 with the horizontal and vertical projections H and V , respectively, then
there are some pair of vectors H and V for which the time complexity of the
algorithm is not polynominal.

5 Generalisation to Arbitrary Line-Convexity

From Sections 3 and 4 it is clear that the direction of convexity has an important
role in whether or not ambiguity can be eliminated. In this section we study in
more detail how the direction of convexity effects on the number of directed
polyominoes. First, note that without further modification Theorem 2 can be
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stated in a more general way to polyominoes that are line-convex along the
direction (a, b) if a > 0 holds. Moreover, the construction given in the proof
of Theorem 3 can be adapted to polyominoes that are line-convex along any
direction (a, b) for which a < 0 in the following way.

Theorem 4. Let C(a,b) be the class of polyominoes that are line-convex along the
direction (a, b) such that a < 0. Then, there can be exponentially large number
of polyominoes of C(a,b) with the same horizontal and vertical projections.

Proof. (Sketch.) Assume that a direction (a, b) is given with a < 0. We will give
a construction similar to the one used in the proof of Theorem 3. First, note that
for each k ≥ 1 the martices of (4) have only 3 columns therefore they are also
line-convex along the direction (a, b) if b ≥ 2. Moreover, a �= 1 implies b �= 0.
Thus, the theorem holds for b �= 1. Consider b = 1 and construct the bridge B̂(a)

of size (−a)× 3 and the matrix F̂ (a)
1 of size (4− a)× 3 from the matrices given

in (4) in the following way

B̂(a) =

⎛⎝ 1 1 0
...

1 1 0

⎞⎠ , F̂
(a)
1 =

⎛⎜⎜⎜⎝
1 1 0
1 1 1

B̂(a)

1 0 1
1 1 1

⎞⎟⎟⎟⎠ . (6)

Notice that B̂(−1) = B̂ and so F̂ (−1)
1 = F̂1. Then, for each a < 0 the proof can

be finished similarly as the proof of Theorem 3. ��

Now, we can state the main result of our paper.

Theorem 5. Let D = {(ai, bi) | i = 1, . . . , l} be a finite set of directions and
P be a polyomino line-convex along every directions of D. Then, P is uniquely
determined by its horizontal and vertical projections and it can be reconstructed
in O(mn) time if there exist a direction (a, b) ∈ D with a ≥ 0. If ai < 0 for all
directions (ai, bi) ∈ D (i = 1, . . . , l) then there can be exponentially large number
of polyominoes that are line-convex along the directions of D and have the same
horizontal and vertical projections as P .

Proof. It follows from Theorem 1 and the discussion of the above paragraph.
The only non-trivial statement is the case if ai < 0 for all directions (ai, bi) ∈ D
(i = 1, . . . , l). In this situation we can have two cases. If there is at least one
direction (aj , bj) such that bj = 1 then we have to to apply the construction of
(6) with the argument a = min{ai | bi = 1, (ai, bi) ∈ D}. Otherwise, (that is, if
bi �= 1 for all i = 1, . . . , l) we can simply use the construction of (4). ��

Remark 2. Theorem 5 can be extended to any infinte set D of directions except
the case if bi �= 1 for all (ai, bi) ∈ D. In this latter case the integer min{ai | bi =
1, (ai, bi) ∈ D} does not exist.
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6 Conclusions

We have studied the problem of ambiguity in classes of directed discrete sets.
We have shown that in the class of diagonally convex directed polyominoes the
horizontal and vertical projections uniquely determine the polyomino and this
polyomino can be reconstructed in O(mn) time. However, assuming antidiagonal
convexity about the polyomino the number of solutions with the same horizontal
and vertical projections can be extremely large. Then, the results were gener-
alised to polyominoes having arbitrary line-convexity. It is an open question
whether in the classes where non-uniqueness holds a reconstruction algorithm
can be given to find a solution in polynomial time. Another interesting question
is if it is possible to generalise Theorem 5 to arbitrary infinite set of directions,
too.
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2. Crewe, A.V., Crewe, D.A.: Inexact Reconstruction: Some Improvements. Ultrami-
croscopy 16 (1985) 33–40

3. Gordon, R., Herman, G.T.: Reconstruction of Pictures from their Projections.
Graphics Image Process. 14 (1971) 759–768

4. Kuba, A.: The Reconstruction of Two-Directionally Connected Binary Patterns
from their Two Orthogonal Projections. Comp. Vision, Graphics, and Image Proc.
27 (1984) 249–265

5. Prause, G.M.P., Onnasch, D.G.W.: Binary Reconstruction of the Heart Chambers
from Biplane Angiographic Image Sequences. IEEE Trans. Medical Imaging MI-15
(1996) 532–546

6. Schilferstein, A.R., Chien, Y.T.: Switching Components and the Ambiguity Prob-
lem in the Reconstruction of Pictures from their Projections. Pattern Recognition
10 (1978) 327–340

7. Balázs, P., Balogh, E., Kuba, A.: Reconstruction of 8-Connected but not 4-
Connected hv-Convex Discrete Sets. Discrete App. Math. 147 (2005) 149–168

8. Del Lungo, A.: Polyominoes Defined by Two Vectors. Theor. Comput. Sci. 127
(1994) 187–198

9. Kuba, A., Balogh, E.: Reconstruction of Convex 2D Discrete Sets in Polynomial
Time. Theor. Comput. Sci. 283 (2002) 223–242

10. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing Convex Poly-
ominoes from Horizontal and Vertical Projections. Theor. Comput. Sci. 155 (1996)
321–347

11. Del Lungo, A., Nivat, M., Pinzani, R.: The Number of Convex Polyominoes Re-
costructible from their Orthogonal Projections. Discrete Math. 157 (1996) 65–78

12. Feretic, S., Svrtan, D.: Combinatorics of Diagonally Convex Directed Polyominoes,
Discrete Math. 157 (1996) 147–168

13. Golomb, S.W.: Polyominoes. Charles Scriber’s Sons, New York (1965)
14. Balázs, P.: A Decomposition Technique for Reconstructing Discrete Sets from Four

Projections. Image and Vision Computing, submitted
15. Ryser, H.J.: Combinatorial Mathematics. The Carus Mathematical Monographs

14 (1963)



A Network Flow Algorithm for Binary Image

Reconstruction from Few Projections

Kees Joost Batenburg1,2

1 Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract. Tomography deals with the reconstruction of images from
their projections. In this paper we focus on tomographic reconstruction
of binary images (i.e., black-and-white) that do not have an intrinsic lat-
tice structure from a small number of projections. We describe how the
reconstruction problem from only two projections can be formulated as
a network flow problem in a graph, which can be solved efficiently. When
only two projections are used, the reconstruction problem is severely un-
derdetermined and many solutions may exist. To find a reconstruction
that resembles the original image, more projections must be used. We
propose an iterative algorithm to solve the reconstruction problem from
more than two projections. In every iteration a network flow problem is
solved, corresponding to two of the available projections. Different pairs
of projection angles are used for consecutive iterations. Our algorithm
is capable of computing high quality reconstructions from very few pro-
jections. We evaluate its performance on simulated projection data and
compare it to other reconstruction algorithms.

1 Introduction

Tomography deals with the reconstruction of images from a number of their
projections [1, 2]. In many applications, such as the reconstruction of medical
CT images, a large number of different pixel values may occur in the reconstruc-
tion. Typically, the number of projections that is required to obtain sufficiently
accurate reconstructions is large in such cases (more than a hundred).

For certain applications, however, it is known in advance that only a few possi-
ble gray values may occur. Many objects scanned in industry for nondestructive
testing or reverse engineering purposes are made of one homogeneous mater-
ial, resulting in two possible gray values: the material and the surrounding air.
Another example is medical digital subtraction angiography, where one obtains
projections of the distribution of a contrast in the vascular system.

The field of discrete tomography deals with the reconstruction of images from
a small number of projections, when the set of pixel values is known to have only
a few discrete values [3]. By using this prior information about the set of possible
values, it may be possible to dramatically reduce the amount of projection data
that is required to obtain accurate reconstructions.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 86–97, 2006.
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In [4] the author proposed an algorithm for reconstructing binary images that
are defined on a lattice, using smoothness assumptions. This algorithm exploits
the fact that the reconstruction problem for only two projections can be solved
in polynomial time. The proposed reconstruction procedure is iterative: in each
iteration a new reconstruction is computed using only two projections and the
reconstruction from the previous iteration. The new reconstruction simultane-
ously resembles the image from the previous iteration and adheres to the two
selected projections.

In this paper we describe a new iterative algorithm for reconstructing bi-
nary images that do not have an intrinsic lattice structure (i.e., subsets of the
plane), which is based on ideas similar to those used in [4]. To solve the two-
projection subproblems efficiently, a different pixel grid has to be used in each
iteration, corresponding to the selected pair of projections. The reconstruction
problem can then be solved as a special case of the minimum cost network
flow problem in graphs, for which efficient polynomial time algorithms are avail-
able [5].

In [6] a more general version of our algorithm is described and more details
are provided on the algorithmic steps. We refer the reader to that paper for
further details.

We restrict ourselves to parallel beam tomography. Let D = {θ1, . . . , θd} be
a set of disjoint real numbers in the interval [0, π), the projection angles. Let n
be a positive integer. For i = 0, . . . , n, put ti = −n/2 + i. Let θ ∈ [0, π). For
t, t′ ∈ R, t < t′, define the strip Sθ(t, t′) as

Sθ(t, t′) =
{

(x, y) ∈ R2 : x cos θ + y sin θ ≥ t and
x cos θ + y sin θ ≤ t′

}
.

(a) (b)

Fig. 1. (a) Left: Schematic view of the parallel beam geometry which contains the lines
L1 : x cos θ+y sin θ = 0 and L2 : x cos θ+y sin θ = t. (b) Right: A two-projection image.
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Figure 1a shows the geometric meaning of the last definition. Define the imaging
area I as

I =
d⋂

k=1

Sθk
(t0, tn).

We will now define the basic reconstruction problem of reconstructing a binary
image (i.e., black-and-white) from few projections. We consider the unknown
image as a mapping f : I → {0, 1}.

Problem 1. Let p1 = (p11 . . . p1n)T , . . . , pd = (pd1 . . . pdn)T ∈ Rn be vectors of
nonnegative real numbers (the measured strip projections for projection angles
θ1, . . . , θd ∈ D respectively). Construct a function f : I → {0, 1} such that∫∫

Sθk
(ti−1,ti)

f(x, y) dy dx = pki for i = 1, . . . , n, k = 1, . . . , d.

We call an integral of the form
∫∫

Sθk
(ti−1,ti)

f(x, y) dy dx a strip projection.
In the next section we deal with the reconstruction problem from only two

projections, which is severely underdetermined. In Section 3 we describe our iter-
ative algorithm for reconstruction from more than two projections. Experimental
results of the algorithm from Section 3 are presented in Section 4.

2 Reconstruction from Two Projections

This section deals with the reconstruction problem from only two projections,
for angles θ̄1 and θ̄2. To represent a mapping f : I → {0, 1} in a computer we
have to resort to an approximate representation. An image f is represented as
a 2D array of pixels. Every measured strip projection then gives rise to a linear
equation on the pixel values of f . The resulting system of linear equations can
be solved by methods from linear algebra, but in this way one cannot guarantee
that a binary solution is found. We now introduce a particular grid, the two-
projection grid, for which a binary solution of the reconstruction problem can be
found efficiently. The rows and columns of this grid correspond to the strips for
the two projections angles θ̄1 and θ̄2. Define grid cell Cij (1 ≤ i, j ≤ n) as

Cij = Sθ̄1
(ti−1, ti) ∩ Sθ̄2

(tj−1, tj).

A two-projection image is a mapping {1, . . . , n} × {1, . . . , n} → {0, 1} which
assigns a binary value to each grid cell of a two-projection grid. Figure 1b shows
an example of a two-projection image.

It is often convenient to consider a two-projection image X as a matrix (xij),
where xij denotes X((i, j)) (the pixel value of cell Cij). The strip projections of
X for the projection angles θ̄1 and θ̄2 can be computed directly by summation of
all entries in each row of X , or column respectively, and multiplying the result by
the cell area a. For k = 1, 2, define Pk(X) ∈ Rn as the vector of strip projections
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ofX for angle θ̄k. Define the one-count ofX by S(X) =
∑

1≤i,j≤n xij . We denote
the area of a single grid cell by a. Note that all grid cells have the same shape
and size.

We will now define a reconstruction problem for two-projection images. As
the projection data may contain noise or other errors, we don’t require that the
image adheres perfectly to the measured projection data. In the next section,
where we consider reconstruction from more than two projections, we require a
generalization of the reconstruction problem which incorporates prior knowledge.
We state this general reconstruction problem here.

Problem 2. Let θ̄1, θ̄2 ∈ [0, π) be two disjoint projection angles. Let p1, p2 ∈ Rn

be two vectors of nonnegative real numbers (the measured projection data). Let
W = (wij) ∈ Rn×n, T̄ ∈ N>0 and α ∈ R. Construct a matrix X ∈ {0, 1}n×n

such that S(X) = T̄ and

α(|P1(X)− p1|1 + |P2(X)− p2|1)−
∑

1≤i,j≤n

awijxij

is minimal.

In any instance of Problem 2, the one-count S(X) is considered to be fixed at
T̄ . A good value for T̄ can be computed from the measured projection data by
taking T̄ = (|p1|1 + |p2|1)/2a. Putting α = 1 and wij = 0 for 1 ≤ i, j ≤ n,
yields the basic reconstruction problem (without the use of prior knowledge).
The matrix W is called the weight map. The weight map is used extensively in
the algorithm for reconstructing a binary image from more than two projections
that we describe in the next section. It is used to express a preference for each
pixel to obtain a value of either 0 or 1 in the reconstruction.

Problem 2 can be solved efficiently by formulating it as a minimum cost flow
problem in a particular graph. Efficient algorithms are available for solving the
resulting network flow problem. The basic idea of using network flow methods
for the reconstruction of binary images from two projections was first described
by Gale in 1957 [7], in the context of reconstructing binary matrices from their
row and column sums.

For the sake of brevity, we make one simplifying assumption: we assume that
all measured strip projections are integral multiples of the pixel area a. If the
strip projections do not satisfy this assumption they can simply be rounded
to the nearest multiple of a. If n is large, the effect of this rounding step is
neglegible. Details on how to compute an exact solution of Problem 2, without
the assumption on the strip projections, are given in [6].

In the remainder of this section we assume that the reader is familiar with the
basic concepts of network flows. The book [5] provides an excellent introduction
to this subject.

With a pair of projection angles (θ̄1, θ̄2) and their respective measured pro-
jections (p1, p2), we associate a directed graph G = (V,E), where V is the set of
nodes and E is the set of edges. We call G the associated graph, see Figure 2.
The set V contains a node s (the source), a node t (the sink), one node for each
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Source node

Line edges

Line nodes

Sink node

Pixel edges

Line nodes

Line edges

s

t

n1,1 n1,2 n1,3

2,2n n2,3 n2,4

Fig. 2. Basic structure of the associated graph

strip of projection angle θ̄1 and one node for each strip of projection angle θ̄2.
The node that corresponds to Sθ̄k

(ti−1, ti) has label nk,i. We call the nodes nk,i

line nodes.
Each edge e of G has an associated capacity ue and cost ce. Every pair

(n1,i, n2,j) of nodes is connected by a directed edge. We call these edges pixel
edges. Each pixel edge (n1,i, n2,j) has capacity 1 and cost −awij . For each pair
(s, n1,i) the graph G contains two parallel edges. The first edge has capacity
p1i/a and cost 0, the second edge has capacity n−p1i/a and cost 2αa. Similarly,
G contains two parallel edges for every pair (n2,j , t) with capacities p2j/a and
n− p2j/a and costs 0 and 2αa respectively.

An integral flow in G is a mapping Y : E → N≥0 such that Y (e) ≤ ue for all
e ∈ E and such that for all v ∈ V \{s, t}:∑

w: (w,v)∈E

Y ((w, v)) =
∑

w: (v,w)∈E

Y ((v, w)).

Every integral flow Y corresponds to a two-projection image X = xij , defined
by xij = Y ((n1,i, n2,j)). Define the total cost of an integral flow Y by

C(Y ) =
∑
e∈E

ceY (e).

In [6] it is proved that any integral flow of minimal cost in G corresponds to a
solution of Problem 2. Note that all edge capacities ofG are integers. The integral
minimum cost flow problem can be solved in polynomial time for graphs that



A Network Flow Algorithm for Binary Image Reconstruction 91

have integral arc capacities and costs. To obtain integral costs in our case, we
multiply the edge costs by a sufficiently large number and round the results.
Note that scaling all costs by the same factor does not change which flow has
minimal cost.

3 More Than Two Projections

Unfortunately, there is no straightforward generalization of the network flow
approach to the case of more than two projections. We propose an iterative
algorithm, which uses the fact that the two-projection problem can be solved
efficiently. The algorithm computes a reconstruction from more than two projec-
tions by solving a series of two-projection subproblems, each using two projection
angles. The algorithm uses the concept of a weight map, as introduced in Prob-
lem 2. Our algorithm aims to find an approximate solution of the reconstruction
problem. In each iteration a new pair of projection angles is selected. An in-
stance of Problem 2 is then solved on the two-projection grid that corresponds
to those two angles. The weight map is computed using the reconstruction from
the previous iteration, in such a way that solutions are preferred which resemble
the reconstruction from the previous iteration. Additionaly, a preference for lo-
cally smooth regions is incorporated in the weight map. The reconstruction from
the previous iteration was computed using a different pair of projections, which
are thus incorporated into the new reconstruction. Repeating this argument,
projections from earlier iterations are also incorporated.

Compute a start solution X0 on the standard square pixel grid;

A := ( d
k=1 |pk|1)/d;

τ := 0;

while (stop criterion is not met) do
begin

τ := τ + 1;

Select a new pair of projection angles θ̄τ
1 , θ̄τ

2 ∈ D;

Compute the weight map W τ = (wτ
ij) for the two-projection grid

corresponding to (θ̄τ
1 , θ̄τ

2 ), using the previous reconstruction Xτ−1;

Compute T̄ := A/aτ ;

Compute a solution Xτ with S(Xτ ) = T̄ of Problem 2
on the two-projection grid for angles (θ̄τ

1 , θ̄τ
2 ), using the

weight map W τ ;

end

Return the final reconstruction X∗;

Fig. 3. Basic steps of the algorithm
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Figure 3 shows the basic steps of the algorithm. First, a start solution is
computed, using all projections simultaneously. The start solution should provide
a good first approximation of the unknown image, while being easy to compute.
The start solution can be computed on the standard n×n square pixel grid.
For the experiments in Section 4 we used the SIRT (Simultaneous Iterative
Reconstruction Technique, see Chapter 7 of [1]) to compute the start solution,
which yields a gray value reconstruction.

Subsequently, the “total area A of the white region” (i.e., the region where
the function value of the unknown image f is 1) is computed as (

∑d
k=1 |pk|1)/d.

Next, the algorithm enters the main loop. In each iteration τ of the main loop
a new pair (θ̄τ

1 , θ̄
τ
2 ) of projection angles is first selected, which determines the

two-projection grid for iteration τ . We refer to the cell (i, j) of this grid as Cτ
ij .

To choose the projection angles, the projections of the current image for each of
the angles θ1, . . . , θd are computed first. The new pair of angles is chosen such
that the angle between θ̄τ

1 and θ̄τ
2 is at least π/3 and the total deviation of the

computed projections from the prescribed projections is largest, according to the
sum-norm.

Next, the number of white pixels T̄ = round(A/aτ ) is computed, where aτ

denotes the area of a grid cell in the current two-projection grid. Note that the
grid cell area is different for each two-projection grid.

Subsequently the weight map W τ = (wτ
ij) is computed from the previous

reconstruction. We denote the grid cells of the new two-projection grid by Cτ
ij .

Define mij ∈ R2 as the center of mass of cell Cτ
ij . The pixel weight wτ

ij of pixel
(i, j) depends directly on the average gray value of Xτ−1 in a small neighbour-
hood of mij . Most common pixel neighbourhood definitions that are used in
image processing, such as the 4-neighbourhood and 8-neighbourhood, are very
suitable for square pixel grids. However, as our algorithm deals with many dif-
ferent pixel grids for which the pixel sizes and shapes may vary, we have to use
a more general neighbourhood concept. Let r be a positive real number, the
neighbourhood radius. We used r = 1.5 for all experiments in Section 4. Let Γij

be the average gray value inside a circle of radius r, centered in mij , in the
two-projection image Xτ−1. This value can be computed by intersecting each
of the overlapping pixels of Xτ−1 with the circular neighbourhood of mij and
weighting the pixel values by the intersection area. Note that we always have
Γij ∈ [0, 1].

Define g : [−1, 1]→ R by

g(v) =

{
v if |v| �= 1
2v if |v| = 1.

We call g the local weight function. Together with the neighbourhood radius
r, the local weight function determines the preference for locally smooth regions.
The pixel weight wτ

ij is computed as

wτ
ij = g(2(Γij −

1
2
))
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The basic idea of the local weight function is that, as the neighbourhood of
a pixel becomes more white, the preference to make this pixel white in the next
iteration increases. The same holds for black neighbourhoods. There is an addi-
tional increase in the (absolute value of) the pixel weight if the neighbourhood
is completely homogeneous. If a pixel neighbourhood consists of 50% black and
50% white pixels, no preference is expressed as the pixel weight is zero.

The weight map W τ , the value T̄ and the projections for angles (θ̄τ
1 , θ̄

τ
2 ) define

an instance of Problem 2. Solving this problem by the network flow approach
yields the new reconstruction Xτ .

To determine when the algorithm should terminate, the strip projections of
Xτ are computed for all projection angles θ1, . . . , θd. Subsequently the norm of
the error with respect to the measured projections is computed. The algorithm
terminates if the error has not decreased for T iterations, where T is a constant.
In all experiments of Section 4 we used T = 30.

4 Experimental Results

In this section we present reconstruction results of our algorithm for a set of
four phantom images. For each of the phantoms we computed the measured
projection data by simulation. In this way the noise level can be controlled,
which is difficult for datasets obtained by real measurements.

We implemented the iterative network flow algorithm in C++, using the Re-
laxIV library [8] to solve the min cost flow problems. All experiments were per-
formed on a 2.4GHz PentiumIV PC.

The four phantom images that we use to evaluate the reconstruction time and
the reconstruction quality of our algorithm are shown in Figure 4.

(a) single object

300×300

(b) 50 ellipses

256×256

(c) turbine blade

276×276

(d) cylinder head

276×276

Fig. 4. Four phantom images

First, we compare our reconstruction results from perfect projections to two
alternative approaches. It is well known that continuous tomography algorithms
such as Filtered Backprojection require a large number of projections. Algebraic
reconstruction methods, such as ART and SIRT (see Chapter 7 of [1]) typically
perform much better than backprojection algorithms if the number of projec-
tions is very small. Our algorithm uses the SIRT algorithm to compute a start
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solution. As a first comparison, we compare the final reconstruction computed by
our algorithm to the continuous SIRT reconstruction. In [9,10], Weber et al. de-
scribe a linear programming approach to binary tomography which incorporates
a smoothness prior. We implemented the R-BIF approach which is described
in [10] using the ILOG CPLEX interior point solver [11]. The real-valued pixel
values are rounded to binary values as a postprocessing step, which was also
done in [9]. Besides the projection data, the linear program depends on a pa-
rameter α, which determines the preference for smoothness. For our set of four
phantoms we found that α = 0.2 works well. Figure 5 shows the reconstruction
results for the four phantoms. Table 1 shows a quantitative comparison.

(a) SIRT, d = 5 (b) SIRT, d = 8 (c) SIRT, d = 7 (d) SIRT, d = 10

(e) R-BIF, d = 5 (f) R-BIF, d = 8 (g) R-BIF, d = 7 (h) R-BIF, d = 10

(i) NF, d = 5 (j) NF, d = 8 (k) NF, d = 7 (l) NF, d = 10

Fig. 5. Reconstruction results for the four phantoms from parallel beam projections,
using SIRT (top), R-BIF from [10] (middle) and our network flow algorithm (NF,
bottom). The figure captions show the number d of projections that was used.

The number d of projections is chosen for each phantom as the minimum
number for which our algorithm computes an accurate reconstruction from the
projection data. The projection angles are equally spaced between 0 and 180
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Table 1. Quantitative comparison between the R-BIF reconstruction and the recon-
struction computed by our network flow algorithm. The table shows the reconstruction
time in minutes and the total number of pixel differences between the reconstruction
and the original phantom.

phantom size #proj. R-BIF Network Flow
#errors time(min) #errors time(min)

single object 300×300 5 220 9.2 58 2.0
50 ellipses 256×256 8 216 3.5 152 1.5
turbine blade 276×276 7 214 3.2 108 1.8
cylinder head 276×276 10 375 10 665 1.9

degrees. Each projection consists of n strip projections, that each have a width
equal to the phantom image pixel width.

Our algorithm is capable of computing an accurate reconstruction of each of
the four phantom images from a small number of projections. The reconstruction
quality of the R-BIF algorithm appears to be similar, although there are some
small differences between the reconstructions by both methods. Both algorithms
clearly outperform the continuous SIRT algorithm.

We observed that the number of projections that is required to compute an
accurate reconstruction is the same for the R-BIF algorithm as for our algorithm,
for each of the four phantoms. As there are major differences between both
algorithms, this suggests that this minimal number of projections is an intrinsic
property of the images themselves. It may be very difficult or even impossible
to do better by using a different algorithm.

The minimal number of projection that is required to reconstruct a given
(unknown) image depends strongly on characteristics of the unknown image, as
can be seen by the varying number of projections that is required for the four
phantom images.

Our algorithm has several advantages compared to the R-BIF linear program-
ming approach. First, the network flow algorithm is faster than general linear pro-
gramming as used in [10], even though we used a high performance interior point
solver for solving the linear program. It was demonstrated in [12] for the case of lat-
tice images that the network flow approach for 2D reconstruction can be extended
to a highly efficient algorithm for 3D reconstruction. Within each iteration a series
of 2D reconstruction problems is solved, instead of one big 3D problem. The 2D re-
constructions can be computed fast (because each subproblem is relatively small)
and in parallel. A similar extension is possible for our new algorithm. Dealing with
large volumes seems to be very difficult when using general linear programming,
as the number of variables becomes huge for large 3D volumes.

Another advantage of our algorithm is that it can deal with noise effec-
tively, as we will show in the next subsection. The linear programming approach
from [9,10] is not capable of handling noisy data. It can be extended to the case
of noisy data, as described in [13]. However, the presented algorithm for dealing



96 K.J. Batenburg

with noisy data solves a series of linear programs, which results in far longer
reconstruction times.

More recently, Schüle et al. developed a different reconstruction algorithm
based on D.C. programming [14]. The results of this algorithm seem to be very
promising and it does not have some of the drawbacks of the linear programming
approach. We intend to perform a comparison between a wider set of reconstruc-
tion algorithms in a future publication.

4.1 Noisy Projection Data

So far all experiments were carried out with perfect projection data. We now
focus on the reconstruction of images from noisy projection data, which is prac-
tically more realistic. We also assume that the noise is independent for each
projected strip. To be more precise, we assume that the noise is additive and
that it follows a Gaussian distribution with μ = 0 and σ constant over all pro-
jected strips. The standard deviation σ is expressed as σ = vy, where y denotes
the average measured strip projection over all projected strips. For example,
taking v = 0.05 results in independently distributed additive noise for each strip
projection, following the N (0, 0.05y) distribution.

Figure 6 shows reconstruction results for the cylinder head phantom, using 10
parallel beam projections and varying noise levels. The reconstruction quality
decreases gradually as the noise level is increased. Up to v = 0.02, the noise
hardly has any visible influence on the reconstruction quality.

(a) v = 0.01 (b) v = 0.02 (c) v = 0.05 (d) v = 0.10

Fig. 6. Reconstruction results from 10 parallel beam projections for increasing noise
levels

5 Conclusions

We have described a novel algorithm for the reconstruction of binary images from
a small number of their projections. Our algorithm is iterative. In each iteration a
reconstruction problem is solved that depends on two of the projections and the
reconstruction from the previous iteration. The two-projection reconstruction
problem is equivalent to the problem of finding a flow of minimal cost in the
associated graph. This equivalence allows us to use network flow algorithms for
solving the two-projection subproblems.
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The reconstruction results show that the reconstruction quality of our algo-
rithm is far better than for the SIRT algorithm from continuous tomography. A
comparison with the R-BIF linear programming approach from [10], which uses
a smoothness prior, shows that both algorithms yield comparable reconstruc-
tion quality. Our algorithm runs faster than the linear programming approach
and can be easily extended to 3D reconstruction or reconstruction from noisy
projections. These extensions are difficult to accomplish efficiently for the linear
programming approach.

Our results for noisy projection data shows that the algorithm is capable of
dealing with significant noise levels. The reconstruction quality decreases grad-
ually as the noise level is increased.

In future research we intend to perform extensive comparisons between dif-
ferent discrete tomography algorithms. Such a comparison is often difficult, as
each algorithm makes different assumptions on the class of images, the detector
setting, etc. Generalization of our algorithm to 3D reconstruction is straightfor-
ward, following the same approach as in [12].
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Abstract. Filling operations are procedures which are used in Discrete
Tomography for the reconstruction of lattice sets having some convexity
constraints. In [1], an algorithm which performs four of these filling oper-
ations has a time complexity of O(N2 log N), where N is the size of pro-
jections, and leads to a reconstruction algorithm for convex polyominoes
running in O(N6 log N)-time. In this paper we first improve the imple-
mentation of these four filling operations to a time complexity of O(N2),
and additionally we provide an implementation of a fifth filling operation
(introduced in [2]) in O(N2 log N) that permits to decrease the overall
time-complexity of the reconstruction algorithm to O(N4 log N). More
generally, the reconstruction of Q-convex sets and convex lattice sets (in-
tersection of a convex polygon with Z2) can be done in O(N4 log N)-time.

Keywords: Discrete Tomography, Convexity, Filling Operations.

1 Introduction

One of the most intensively studied fields of discrete tomography is the recon-
struction of lattice sets or, specially, binary matrices. Several algorithms have
been published for reconstructing such sets. It is well-known that a binary matrix
from its row and column sums can be reconstructed in polynomial time [3]. The
interesting question is which sub-class of binary matrices can be reconstructed in
polynomial time. In most cases some kind of (discrete) convexity is supposed on
the sets. For example, Kuba published an algorithm [4] to reconstruct so-called
hv-convex lattice sets from two projections. As it turned out later the recon-
struction problem in this class is NP-complete [5]. Barcucci et al. showed [6]
that a sub-class of hv-convex lattice sets, namely, the class of hv-convex poly-
ominoes can be reconstructed in polynomial time. This result was extended also
to a bigger class, that of hv-convex 8-connected lattice sets [2]. A new bigger
class of convex sets, the so-called Q-convex sets was studied by Brunetti and

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 98–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Daurat [7] and proved that even in this class the reconstruction can be solved
in polynomial time.

Most of the algorithms reconstructing sets presenting some convexity prop-
erties use special procedures called filling operations. These operations can be
applied in iterative procedures to approach the final solutions with two sequences
of sets. The first sequence is a sequence of decreasing upper bounds and the sec-
ond one is a sequence of increasing lower bounds of the solutions.

Originally in [6], four filling operations were defined. In [1], an efficient algo-
rithm was given to apply the filling operations. In [2] a fifth filling operation
was introduced to decrease the overall complexity of the reconstruction algo-
rithm. Unfortunately, the algorithm for the filling operations of [1] cannot be
generalized with this fifth operation (in [2] this point was not treated). In this
paper we provide an implementation of all the five filling operations in the same
complexity as the algorithm of [1]. As a result, we get an improvement in the
time-complexity of the reconstruction algorithm.

The structure of this paper is the following. Section 2 contains the neces-
sary definitions and notations. The filling operations, the new reconstruction
algorithm, its analysis, and a possible generalization are described in Section 3.
Section 4 shows the application of the new operation in the case of Q-convex
and convex sets. Finally, in Section 5 we show some statistical results connected
with the application of the filling operations in computer experiments.

2 Definitions

A lattice set is a finite subset of Z2. A lattice direction is given by an integer
vector p = (px, py), and it can also be represented by a linear form p(x, y) =
pyx−pxy. The horizontal direction (resp. vertical direction) denoted by h (resp.
v) is determined by the vector (1, 0) (resp. (0, 1)).

A lattice set is line-convex with respect to a direction p if its intersection
with each line in the direction p is made of consecutive points. A set which is
line-convex w.r.t. to the horizontal and vertical directions is called hv-convex.

The projection of a lattice set E along a direction p, denoted by XpE, is
the function which gives the number of points on any line of direction p, more
precisely:

XpE(k) = |{M ∈ E : p(M) = k}| for any k ∈ Z

where p is the linear form associated to p.
In this article we are interested in the reconstruction of set E which satisfies

some convexity constraints from its projections. More precisely if M is a class of
lattice sets, and D is a finite set of lattice directions, the reconstruction problem
for the class M and the directions D is the following.

Reconstruction(M,D)
Data: A function f : D×Z → Z+ which gives a non-negative integer f(p, k) for

any line p = k with p ∈ D, and such that {(p, k) : f(p, k) > 0} is finite.
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Task: Reconstructing a lattice set E ∈ M such that XpE(k) = f(p, k) for any
(p, k) ∈ D × Z

In the whole paper [a, b] denotes the discrete interval {k ∈ Z : a ≤ k ≤ b}.

3 Filling Operations

3.1 Preliminaries

A filling operation is a procedure which has been used in many reconstruc-
tion algorithms [2, 4, 6, 7, 8]. Formally, a filling operation takes function f of
Reconstruction(M,D), and a pair of sets (α, β) such that α ⊂ β and returns
a new pair of sets (α′, β′) with α ⊆ α′ ⊆ β′ ⊆ β.

We now present classical filling operations which can be used for any class
contained in that of line-convex sets w.r.t. D.

To simplify the description of these operations, we first describe them for the
set D = {h, v} consisting of the horizontal and vertical directions. We denote
hi = f(h, i) and vj = f(v, j). We also suppose without loss of generality that
there exist m,n ∈ Z+ such that hi = 0 for i /∈ [1,m] and vj = 0 for j /∈ [1, n].

For any i ∈ [1,m] we denote the set {(i, j) : j ∈ Z, (i, j) ∈ α} by αh
i . On an

analogous way we define αv
j , β

h
i , βv

j for i ∈ [1,m] and j ∈ [1, n].
The following notations are used for the extremities of each αh

i and βh
i .

l(αh
i ) = min({j : (i, j) ∈ αh

i }), r(αh
i ) = max({j : (i, j) ∈ αh

i })

l(βh
i ) = min({j : (i, j) ∈ βh

i }), r(βh
i ) = max({j : (i, j) ∈ βh

i })
with the conventions min(∅) = +∞, max(∅) = −∞.

With this notation, the four filling operations of [6] on horizontal lines can be
defined as:

– If αh
i �= ∅ then ⊕αh

i = {(i, j) ∈ βh
i : l(αh

i ) ≤ j ≤ r(αh
i )}.

– ⊗αh
i = {(i, j) ∈ βh

i : r(βh
i )− hi < j < l(βh

i ) + hi}.
– If αh

i �= ∅, j′ = max({j : (i, j) /∈ βh
i and j < l(αh

i )}, j′′ = min({j : (i, j) /∈
βh

i and j > r(αh
i )} then !βh

i = {(i, j) ∈ βh
i : j′ < j < j′′}.

– If αh
i �= ∅, then "βh

i = {(i, j) ∈ βh
i : r(αh

i )− hi < j < l(αh
i ) + hi}.

A fifth filling operation "′ has been introduced in [2,7,8]. It permits to reduce
the overall complexity of the reconstruction algorithm: In all the reconstruction
algorithms the first step of the algorithm is fixing arbitrarily some points on
the border of the reconstructing sets (these points are in general called bases or
feet). Without the operation "′, at least four fixed points were necessary, but
with it, only two are necessary. (See [7, p.43-44] for more details.) The operation
"′ simply removes the components of βh

i (maximum sequences of consecutive
elements of βh

i ) which are smaller than the corresponding projection.
To define it formally we need a notation for the extremities of each component.

So the sequence (ck)1≤k≤2r = c(βh
i ) is defined by:

ck < ck+1 and {j : (i, j) ∈ βh
i } =

r⋃
k=1

[c2k−1, c2k − 1]. (1)
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Fig. 1. The filling operations

Then the operation "′ is defined by:

"′βh
i =

⋃
1≤k≤r

c2k−c2k−1≥hi

[c2k−1, c2k − 1].

We can also define these five operations on the vertical lines.
The reconstruction algorithms described in [2,6,7] iteratively apply the filling

operations in a fixed order on all the lines of [1,m]× [1, n] (iterative step). The
kth iteration gives rise to a new couple (αk, βk) from (αk−1, βk−1), and the
iterative process ends when an invariant couple is obtained, that is, (αk′ , βk′) =
(αk′−1, βk′−1). There are several methods to construct the initial couple of sets
(α0, β0). For example in [6], β0 is the complete rectangle [1,m] × [1, n] and α0

consists of a set of points (called feet) located on the four edges of β. More
generally, we assume that α0 ⊆ β0 ⊆ [1,m]× [1, n].

In [1,6] only the first four filling operations are considered. If N = max(m,n),
the whole iterative process runs in O(N4)-time in [6]. In [1] the author proves
that this process can be executed in O(N2 logN)-time. The best time-complexity
with the five filling operations is O(N3) [7]. Now we will describe a procedure
which performs the five filling operations in O(N2 logN)-time.

3.2 The New Algorithm

At first we describe the data structures we use in the algorithm.
For each horizontal line of index i, we use the following data.

– The scalar variables l1(αh
i ) and l2(αh

i ) for l(αh
i ). The first one is only updated

when the operations are performed on the ith horizontal line. The second
one is updated for any change of any point on this line.
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– The scalar variables r1(αh
i ) and r2(αh

i ) which are defined in a similar way.
– The scalar variable l1(βh

i ) and l2(βh
i ) for l(βh

i ). The first one is only updated
when the operations are made on the ith horizontal line. The second one
is updated for any change of any point on this line and if αh

i �= ∅, then
l2(βh

i ) = max({j : (i, j) /∈ βh
i and j < l(αh

i )}) + 1 (so it anticipates the
operation ! on the line).

– The scalar variables r1(βh
i ) and r2(βh

i ) which are defined in a similar way.
– The integer array next in betah

i such that next in betah
i [j] gives the near-

est point of βh
i on the right of (i, j) ∈ βh

i . Moreover this array also indi-
cates the leftmost point of βh

i , indexed by −∞. Formally for any (i, j) ∈
βh

i ∪ {(i,−∞)}, next in betah
i [j] = min({k > j : (i, j) ∈ βh

i }).
– The array prev in betah

i which is analogous to next in betah
i but gives the

nearest point on the left: For any (i, j) ∈ βh
i ∪ {(i,+∞)} prev in betah

i [j]
is max({k < j : (i, j) ∈ βh

i }).
– An optimized structure denoted by c(βh

i ) to represent the ordered sequence
of intervals [c2k−1, c2k − 1] defined by (1).
We suppose that we have the following operations on this structure:
• insert(c(βh

i ), u, v): insertion of a new interval [u, v − 1] which is disjoint
with the intervals [c2k−1, c2k − 1].

• delete(c(βh
i ), u, v): deletion of an interval [u, v − 1].

• search(c(βh
i ), x): returns (c2k−1, c2k) such that c2k−1 ≤ x < c2k.

We use a structure such that these operations are made in O(log(r))-time.
For example, an implementation with AVL trees permits this (see [9]).

– Another ordered sequence d(βh
i ) of intervals [d2k−1, d2k−1] which represents

the components which are to be deleted by the operation "′. This sequence
is represented by the same structure as c(βh

i ).

There are also data not associated directly to a line.

– The sets α and β are simply implemented by a boolean two-dimensional
array.

– A set lines to treat stores the lines which are to be treated by the fill-
ing operations. The only operations used on this structure are the vacuity
test, the extraction of one arbitrary element and the insertion of one element
(if not already present in the structure). These operations can be executed
in constant time if the set is implemented as an array B of booleans cou-
pled with an array A (implementing a stack) of the elements both indexed
in [1,m + n] and an integer variable cA for the cardinality. Precisely the
implementation is the following.
isempty(lines to treat)

return(cA = 0)

extract(lines to treat)
x ← A[cA]; B[x]← false; cA ← cA− 1
if x ≤ m then

return(h = x)
else

return(v = x−m)
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end if
add line(lines to treat, h = i)

if not(B[i]) then
B[i] ← true; cA ← cA + 1; A[cA]← i

end if
add line(lines to treat, v = j)

if not(B[m + j]) then
B[m + j] ← true; cA ← cA + 1; A[cA]← m + j

end if

Now we can describe precisely the algorithm for the filling operations.
The two first procedures put a point in α or remove a point from β. They

update the data for the horizontal and vertical lines passing through the point.
put in alphah(i, j)

if (i, j) /∈ β then
exit(no solution)

end if
if (i, j) ∈ α then

return // Nothing to do !
end if
α← α ∪ {(i, j)}
for (p, i′, j′) ∈ {(h, i, j), (v, j, i)} do

l2(α
p
i′)← min(l2(α

p
i′), j

′); r2(α
p
i′)← max(r2(α

p
i′), j

′)
end for
add line(lines to treat, v = j)

remove from betah(i, j)
if (i, j) ∈ α then

exit(no solution)
end if
if (i, j) /∈ β then

return // Nothing to do !
end if
β ← β \ {(i, j)}
for (p, i′, j′, x) ∈ {(h, i, j, hi), (v, j, i, vj)} do

if j′ = l2(β
p
i′) or j′ < l2(α

p
i′) then

l2(β
p
i′)← next in beta

p
i′ [j

′]
end if
if j′ = r2(β

p
i′) or j′ > r2(α

p
i′) then

r2(β
p
i′)← prev in beta

p
i′ [j

′]
end if
next in beta

p
i′ [prev in beta

p
i′ [j

′]] ← next in beta
p
i′ [j

′]
prev in beta

p
i′ [next in beta

p
i′ [j

′]] ← prev in beta
p
i′ [j

′]
(u, u′) ← search(c(βp

i′), j
′); delete(c(βp

i′), u, u′)
if u < j′ then

insert(c(βp
i′), u, j′)

end if
if j′ + 1 < u′ then

insert(c(βp
i′), j

′ + 1, u′)
end if
if u′ − u < x then
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delete(d(βp
i′), u, u′)

end if
if 0 < j′ − u < x then

insert(d(βp
i′), u, j′)

end if
if 0 < u′ − (j′ + 1) < x then

insert(d(βp
i′), j

′ + 1, u′)
end if

end for
add line(lines to treat, v = j)

This procedure applies the filling operations on a horizontal line.
treat line(h = i)

(dk)1≤k≤2r ← d(βh
i ) // Operation �′

for all k ∈ [1, r] and j ∈ [d2k−1, d2k − 1] do
remove from betah(i, j)

end for
if l1(α

h
i ) = +∞ then // Operation ⊕

for all j ∈ [l2(α
h
i ) + 1, r2(α

h
i )− 1] do

put in alphah(i, j)
end for

else
for all j ∈ [l2(α

h
i ) + 1, l1(α

h
i )− 1] ∪ [r1(α

h
i ) + 1, r2(α

h
i )− 1] do

put in alphah(i, j)
end for

end if
for all j ∈ [l1(β

h
i ), l2(β

h
i )− 1] ∪ [r2(β

h
i ) + 1, r1(β

h
i )] do // Operation 


remove from betah(i, j)
end for
if r2(β

h
i )− hi + 1 ≤ l2(β

h
i ) + hi − 1 then // Operation ⊗

if l2(α
h
i ) = +∞ then

for all j ∈ [r2(β
h
i )− hi + 1, l2(β

h
i ) + hi − 1] do

put in alphah(i, j)
end for

else
for all j ∈ [r2(β

h
i )− hi + 1, l2(α

h
i )− 1] ∪ [r2(α

h
i ) + 1, l2(β

h
i ) + hi − 1] do

put in alphah(i, j)
end for

end if
end if
if l2(α

h
i ) = +∞ then // Operation �

for all j ∈ [l2(β
h
i ), r2(α

h
i )− hi] ∪ [l2(α

h
i ) + hi, r2(β

h
i )] do

remove from betah(i, j)
end for

end if
l1(α

h
i )← l2(α

h
i ); r1(α

h
i ) ← r2(α

h
i ); l1(β

h
i )← l2(β

h
i ); r1(β

h
i )← r2(β

h
i )

The procedures put in alphav(i, j), remove from betav(i, j), treat line
(v = j) are similar. This is the main procedure for the filling operations.
filling operations(α0, β0)

α← α0; β ← β0
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β ← β \ {(i, j) : hi = 0 or vj = 0}
for all l ∈ {h = i : 1 ≤ i ≤ m and hi > 0} ∪ {v = j : 1 ≤ j ≤ n and vj > 0} do

add line(lines to treat, l)
end for
initialize l1, l2, r1, r2, next in beta, prev in beta, c, d for all the lines of lines to treat

while not(isempty(lines to treat)) do
l ← extract(lines to treat)
treat line(l)

end while
return(α, β)

3.3 Correctness of the Algorithm

– At the end of the executions of the procedure put in alpha and
remove from beta, all the variables l2, r2, next in beta, prev in beta, c, d
are updated according to the actual α and β.

– The modifications of α and β done by treat line correspond exactly to the
five filling operations "′, ⊕, !, ⊗, " executed in this order. In particular, if
an instruction “exit(no solution)” is executed, the filling operations lead to
a situation where α �⊆ β.

– At the end of the procedure treat line(h = i), the line h = i is invariant
w.r.t. the five filling operations, so during the execution of the algorithm all
the lines which are not in lines to treat are invariant w.r.t. to the filling
operations: when lines to treat is empty, (α, β) is invariant w.r.t. to the
filling operations.

– The algorithm stops after a finite number of steps because
(|β \ α|, |lines to treat|) decreases lexicographically at each iteration of
filling operations.

3.4 Analysis of Complexity

Let N = max({m,n}).

– The procedures put in alpha and remove from beta are executed in O(1)
and O(logN)-time respectively.

– The procedure treat line has a time complexity O(1 + p logN) where p is
the number of times the procedure put in alpha, or remove from beta run.

– The procedure put in alphah is never done more than once on a point and
remove from betah is never done more than twice: once for the first four
filling operations and a second time for the fifth operation "′. So these two
procedures are executed less than 2N2 times.

– Similarly the procedures put in alphav and remove from betav are exe-
cuted less than 2N2 times.

– The procedure treat line is repeated less than 2N + 8N2 times because
lines to treat is filled first with less than 2N lines and then a line is
added to it only from put in alpha or remove from beta. So the global
time-complexity of the algorithm is O(N2 logN).
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3.5 Differences with Gebala’s Algorithm

The procedures performing the filling operations which are described by Gebala
in [1] have the same structure than the ones presented here. However our algo-
rithm presents several improvements:

– Gebala’s algorithm does not apply the fifth filling operation.
– Gebala’s algorithm uses a tree (free0) to store the points on each line which

are not in β. In our algorithm this structure is not needed because we use
the arrays next in beta and prev in beta. Thanks to this, there is no loop
in the procedures put in alpha and remove from beta which simplifies the
analysis of the complexity of these procedures. Moreover these arrays need
only O(1)-time operations.

– Gebala uses two trees (treerow and treecol) in the place of lines to treat.

In fact if we restrict our algorithm to work with the first four filling operations,
the ordered sequences c and d are not necessary and so our algorithm runs in
O(N2)-time, that is better compared to the complexity O(N2 logN) of Gebala’s
algorithm. Unfortunately, the additional fifth filling operation increases the time-
complexity of our algorithm to O(N2 logN).

3.6 Extension to Any Finite Set of Lattice Directions

Let D be a finite set of lattice directions, M be a class of lattice sets con-
taining the line-convex sets w.r.t. D. We suppose that f is a function as in
Reconstruction(M,D). The size of f will be measured by
N = maxp∈D(max({k : f(p, k) > 0})−min({k : f(p, k) > 0}) + 1).

The filling operations described above can be easily generalized to any set of
directions:

– The procedures put in alpha and remove from beta must update the data
for all the lines parallel to one of the directions of D.

– The procedure treat line is unchanged.
– The initial β0 is always included in G = {M ∈ Z2 : ∀p ∈ D min({k :
f(p, k) > 0}) ≤ p(M) ≤ max({k : f(p, k) > 0})} which contains less than
N2 points.

– The time-complexity of the whole algorithm is still O(N2 logN) as the pro-
cedures put in alpha and remove from beta are done at most two times on
each point and each direction.

4 Consequence on the Reconstruction of Convex Sets

We now consider two special classes of lattice sets for which the new implemen-
tation of the filling operations improves the complexity of the algorithm solving
the reconstruction problem.
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4.1 Reconstruction of Q-Convex Sets

Let p = bx− ay and q = dx− cy define two lattice directions, and M be a point
of Z2; the four quadrants around M are the four regions delimited by the lines
of directions p and q and passing through M . More precisely;

Zpq
0 (M) = {M ′ ∈ Z2 : p(M ′) ≤ p(M) and q(M ′) ≤ q(M)} ,

Zpq
1 (M) = {M ′ ∈ Z2 : p(M ′) ≥ p(M) and q(M ′) ≤ q(M)} ,

Zpq
2 (M) = {M ′ ∈ Z2 : p(M ′) ≥ p(M) and q(M ′) ≥ q(M)} ,

Zpq
3 (M) = {M ′ ∈ Z2 : p(M ′) ≤ p(M) and q(M ′) ≥ q(M)} .

Definition 1. A lattice set E is Q-convex w.r.t. D = {p, q} if Zpq
k (M) ∩E �= ∅

for all k ∈ {0, 1, 2, 3} implies M ∈ F..
Definition 2. A lattice set is Q-convex w.r.t. a set D of directions if it is Q-
convex w.r.t. every pair of directions included in D.

We denote the class of the Q-convex sets w.r.t. D by Q(D). In [10] it is proved
that there is an algorithm for Reconstruction(Q(D),D) which runs in time
O(N2(N2 + F (N))), where F (N) is the complexity of the filling operations. We
can deduce:

Theorem 1. Reconstruction(Q(D),D) can be solved in O(N4 logN)-time
where N = maxp∈D(max({k : f(p, k) > 0})−min({k : f(p, k) > 0}) + 1).

4.2 Reconstruction of Convex Lattice Sets

Definition 3. A lattice set is convex if it is the intersection of a convex polygon
and Z2. We denote the class of convex lattice sets by C.
If (pi)i=1...4 are four lattice directions determined by the vectors (pi)i=1...4 =
(ai, bi)i and with the slopes (λi)i = (−bi/ai)i then the cross-ratio of the four
directions (pi)i=1...4 denoted by [p1, p2, p3, p4] is the element of R∪ {∞} defined
by:

[p1, p2, p3, p4] =
(λ3 − λ1)(λ4 − λ2)
(λ3 − λ2)(λ4 − λ1)

.

The ordered cross-ratio of (pi)i=1..4 is [pσ(1), pσ(2), pσ(3), pσ(4)], where σ is the
permutation such that λσ(i) < λσ(i+1). The ordered cross-ratio of four lattice
directions is always a rational number which is greater than 1.

It is known that if D is a set of directions containing four directions whose
ordered cross-ratio is not in {4/3, 3/2, 2, 3, 4}, then the convex lattice sets and
Q-convex lattice sets w.r.t D are uniquely determined by their projections along
D (see [11, 12]). From the same scheme as in [7, 10] we can deduce:

Theorem 2. If D is a set of directions containing four directions whose or-
dered cross-ratio is not in {4/3, 3/2, 2, 3, 4}, then Reconstruction(C,D) can
be solved in O(N4 logN)-time, where N = maxp∈D(max({k : f(p, k) > 0}) −
min({k : f(p, k) > 0}) + 1).
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5 The Filling Operations in Practice

In this paper we have proved that the five filling operations can be made until
the invariance of α and β in O(N2 logN) time. However if we do not apply the
fifth filling operation "′ this complexity decreases to O(N2). Let us consider the
following algorithm which does contain the fifth filling operation.

filling operations2(α0, β0)
α← α0

β ← β0

repeat
Apply the four operations ⊕, 
, �, ⊗ to (α, β) until invariance of α and β
Apply the operation �′ to (α, β)

until the last operation �′ leaves (α, β) invariant
return(α, β)

The time-complexity of this algorithm is O(lN2), where l is the number of
iterations of the repeat loop. The only theoretical upper bound we have found
for l is N2. To have a better estimation of l we have conducted the following
experiment:

– We have considered the set of directions D = {h, v} and the class of lattice
sets Q(D).

– We have generated 106 sets Q(D) having a fixed sum of m+ n by the algo-
rithm described in [13].

– For each set, we have computed its projections, the initial sets α0, β0 given by
the algorithm described in [7], and then the algorithm filling operations2
is applied.

Table 1. The number of iterations in the algorithm filling operations2 applied to
the reconstruction to Q-convex sets w.r.t. the horizontal and vertical directions

�����l
m + n

10 30 50 70 90 110

1 996977 994865 996970 997909 998468 998764

2 3023 5134 3030 2091 1532 1236

3 0 1 0 0 0 0

Table 1 gives the frequencies of the number l of iterations. In this experiment
we have always l ≤ 3. So it seems reasonable to make the conjecture that l is
bounded by a constant. With it, the time-complexity of filling operations2
is O(N2).

6 Conclusion and Perspectives

In this paper, we presented an implementation of the five filling-operations
in O(N2 logN)-time, where N is the size of the projections. The new imple-
mentation permitted to reconstruct Q-convex sets in O(N4 log(N))-time from
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projections in the same directions as the ones used for Q-convexity. This repre-
sented an improvement of the previous fastest algorithm which run in O(N5)-
time.

The introduction of the fifth operation has permitted to reduce the complex-
ity of the reconstruction because it allowed to fix two points instead of four.
Additional considerations could perhaps induce a faster algorithm. In particu-
lar, the phase which fixes some points (bases) could be faster in the case of three
directions and more, because in this case experiments show that these bases are
very rarely needed (see [14, Annexe B]). This could lead to an algorithm with a
complexity of O(N2)-time, but at the moment we have only experimental hints.
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9. Knuth, D.E.: Balanced Trees (section 6.2.3). In: Sorting and Searching. Volume 3
of The Art of Computer Programming. Addison-Wesley (1998) 458–475

10. Brunetti, S., Daurat, A.: Reconstruction of Q-convex sets. In Herman, G.T., Kuba,
A., eds.: Advances in Discrete Tomography and its Applications. Appl. Numer.
Harmon. Anal. Birkhäuser (To Appear)
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Abstract. We consider the two-projection tomography problem, assum-
ing a priori known prohibited region. We show that a modification of
Ryser’s reconstruction algorithm gives a solution. We then study the re-
lation of the switching graph for the solution sets with and without the
prohibited region. Finally, we apply our idea to get a better reconstruc-
tion figure imposing prohibited region artificially.

1 Introduction

We consider the reconstruction problem of a discrete plain figure F contained
in a rectangle I from its two projections fy(x) and fx(y) along the y- and x-
axis, respectively. This is equivalent to finding a binary matrix from its column-
and row-sums, but we prefer the geometric notation better related with the
continuous tomography. See [11] for general reference on this problem. In this
report we assume that F is a priori known to have no building cell (that is, filled
with 0 for the binary matrix formulation) in a subregion J of I, and consider
the reconstruction problem with this constraint.

We show that under the assumption of uniqueness for J Ryser’s algorithm
for the reconstruction without constraint can be modified to obtain a solution
of this problem. Then we study the structure of the solution set by means of a
graph, extending our former work [7] for the full solution set without constraint.

Then we apply our idea to obtain a better solution of the reconstruction
problem without constraint, by setting artificial constraint as a priori knowledge.
This works faster than the strategy of successive improvement adopted so far.
In the final section we try characterization for the prohibited region.

The reconstruction problem with rectangular constraint was considered by
Brualdi and Dahl [3]. In [4] an equivalent result for unique figure J is announced
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without proof. We hope that our reconstruction algorithm is simple and practi-
cal. As further related works, Fulkerson [5] considered reconstruction of binary
square matrices with zero diagonal, which is a typical non-unique figure. Also,
Kuba [10] studied problem of reconstruction with prescribed 1’s, which is inti-
mately related with the present problem, but not equivalent (see Remark 1 (2)
of §2). The work of Anstee [1] can also be understood of reconstruction with
prescribed 1’s. We thank the referee for informing us these references.

2 Setting of the Problem and Reconstruction Algorithm

Let I denote the rectangular region a ≤ x < b, c ≤ y < d in the first quadrant of
RRR2, where a, b, c, d ∈ ZZZ. Let F be a subregion of I which is the union of integer
cells Cij := [i, i+ 1)× [j, j + 1). We shall denote its characteristic function also
by F . Thus its y-projection fy(x), or x-projection fx(y) is defined as

fy(x) =
∫ d

c

F (x, y)dy, fx(y) =
∫ b

a

F (x, y)dx. (1)

These take integer values, representing the number of cells in the respective
columns or rows. The reconstruction problem from the two projections is to find
F from the projection data f = {fy(x), fx(y)}. Define the arrangements by

fxy(x) = meas{y; fx(y) ≥ x}, fyx(y) = meas{x; fy(x) ≥ y},
fyxy(x) = meas{y; fyx(y) ≥ x},

where meas denotes the one-dimensional length. In the discrete case, this is
equivalent (modulo measure 0) to the permutation of the columns or rows in
decreasing order and finally view all from the x-axis. Then the consistency con-
dition, that is, the condition for the existence of a solution, given by Lorentz,
Gale and Ryser is

∀x
∫ x

0

fxy(t)dt ≥
∫ x

0

fyxy(t)dt, and
∫ ∞

0

fxy(t)dt =
∫ ∞

0

fyxy(t)dt,

The uniqueness of the solution is assured if and only if the equality holds for all
x in the first inequality above. For further information about this problem see
the survey article [11]. We here recall only necessary materials.

First we review Ryser’s reconstruction algorithm in a form given in [6]. We
shall call this hereafter the Ryser-Kaori algorithm without constraint.

1. Choose the tallest column from fy(x). In case of tie, choose the leftmost one.
2. Remove this column from fy(x) and at the same time, remove the same

number of cells from fx(y) one for each row by the strategy of the longest
row first.

3. Modify the graph of fx(y) crashing the removed cells toward the y-axis.
4. Return to 1 if there still remain cells in the projection data.
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Now we have a subregion J ⊂ I where we should not place any cell in recon-
struction. In what follows we assume that J constitutes a unique figure, that is,
there is no other figure having the same projection data. Note the following.

Lemma 1. J is unique if and only if by a permutation of columns and rows it
is brought to the form of Lorentz’s renormalization of the projections, that is,
to the form of union of height-decreasing adjacent subrectangles with the lower
edge common to that of I (see Figure 1) :

J = J1 ∪ J2 ∪ · · · ∪ Jr. (2)

In fact, the sufficiency is obvious. For the necessity, we can obviously find a
permutation bringing the y-projection fy(x) to the monotone decreasing form.
Then by the assumption of uniqueness, the y-projection fxy(x)of the x-projection
fx(y) agrees with this. Since the y-projection is achieved by a permutation of
rows, after these two permutations the y- and x-projection of J agree with this
monotone figure. In view of the uniqueness, J itself has the same form.

Thus, we shall assume henceforth without loss of generality that J has the
above form (2).

J
I

x

y

f ( )x

xf ( )y

yf ( )xyxy

f ( )xxy

Fig. 1. Figure with prohibited region and its projections

Now we explain the reconstruction algorithm. We assume that the projection
data are J-consistent, that is, there exists at least a solution with J as prohibited
region.

1. For i = 1 to r do
2. Choose the tallest column from fy(x) among those above Ji. In case

of tie, choose the leftmost one.
3. Remove this column from fy(x) and at the same time, remove the

same number of cells from fx(y) one for each level by the strategy of
the longest level first, but among the rows not touching Ji.

4. Modify the graph of fx(y) crashing the removed cells.
5. Return to 2 if there still remain cells above Ji.
6. End for.
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Theorem 1. The above algorithm successfully gives a reconstruction figure
which does not contain any cell in J , provided that the projection data are
J-consistent.

Proof. We proceed by the induction of the total number of cells in the figure.
The case of one cell is trivial. Assume that the assertion is true for any J and for
any J-consistent projection data up to n cells, and consider a problem with n+1
cells. By the assumption of J-consistency, there exists a solution figure F which
we may not know concretely. Following the above algorithm, we first choose the
tallest column among those above J1. For each cell in this column, we pick up
a cell from fx(y) at the longest row not touching J1. If the chosen cell exists in
the figure F , we are correctly diminishing the data. If we chose a cell, say P ,
from a row where there was no cell in that column of the figure F , then there
should exist a cell of F , say P ′, in the column of P which was not chosen by the
reconstruction algorithm. On the other hand, P comes from a cell of F , say Q,
in another column by x-projection, There are several candidates of such Q, but
we claim that among them there is at least one such that P ′ and Q constitute
a switching component in F , that is, the place R in Figure 2 is vacant. In fact,
if all the counterparts in the row of P ′ are occupied by the cells of F , then the
x-projection at the row of P ′ will have length greater than that at the row of
P . This violates the rule of algorithm that we should pick up the cell from the
longer rows of fx(y) first. This argument applies to all cells chosen in relation to
this column. Thus after removing the column from fy(x) and the corresponding
cells from fx(y) there remain projection data which come from a true figure F ′

obtained by several switching as mentioned above from F . This means that the
remaining projection data are J-consistent, and by the induction hypothesis, we
can obtain a solution of reconstruction with the constraint. By adding the first
treated column to this solution, we obtain a solution for given size. ��

P

J

x
f ( )xy

1

P’

Q Q Q

R R R

’ ’’

’’’

Fig. 2. Proof of justification of reconstruction algorithm

The converse is obvious: if our algorithm ends up using all the cells in the pro-
jection, we obtain a reconstruction with the given constraint J . Thus it presents
a practical criterion for the J-consistency.

Remark 1. (1) The direct application of Ryser-Kaori algorithm, that is, process-
ing from the tallest of all columns ignoring J , does not work. Figure 3 is such
an example.
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(2) One may think of an alternative algorithm such as filling the prohibited
region by cells and applying Ryser-Kaori algorithm without constraint, then
removing the cells in the prohibited region will give a desired solution. But in
general it is not easy to obtain a reconstruction of which the prohibited region
is filled with cells. See, however, §5 in this respect.

J I

Fig. 3. Necessity of modification of reconstruction order

3 Switching Graph

It is well known that a figure is non-unique, namely, there is another figure with
the same y- and x-projections, if and only if it contains a switching component.
For a non-unique figure we can relate a graph to the solution set by considering
each solution as a vertex, and connecting a pair of solutions by an edge if and
only if they are transformed by one switching operation. This graph seems to
have been first introduced by Brualdi [2] under the name of interchange graph.
Later, [9] re-intruduced it and called Ryser graph. Ignoring these, we called it
the switching graph and studied its properties with many examples. Further we
gave a direction to each edge showing the type modification from type 2 to type
1 (see Figure 4), thus producing the switching digraph ([7]). Since we employ in
the sequel permutation of columns and rows which may change the direction of
engaged edges, we only consider the switching graph in this paper.

Fig. 4. Switching components and switching operation: type 2 (left) and type 1 (right)

We shall denote by GJ the switching graph for the solution set with constraint
J , and simply call it the J-constraint switching graph. If distinction is preferable,
we shall call the switching graph G of all the solutions without constraint the
full switching graph and further add the projection data like G[f ] or GJ [f ]. It is
obvious from the definition that for any J (not necessarily unique) GJ becomes
a full subgraph of G. Although G is known to be connected by Ryser’s theorem,
it is not obvious if GJ is connected, too. We shall first establish this.

Theorem 2. Let J be a prohibited region which is a unique figure. Then the J-
constraint switching graph GJ is a connected full subgraph of the full switching
graph G.



Reconstruction Algorithm and Switching Graph 115

Proof. The prohibited region J is constructed step by step, by adding a cell each
time from left and from bottom, so that

∅ = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = J,

where each Jk consists of k cells in the renormalized form, that is, consists of sub-
rectangles with the bottom edge on the x-axis and with decreasing heights. The
corresponding constraint switching graphs GJk

constitute a decreasing sequence
of full subgraphs

G = GJ0 ⊃ GJ1 ⊃ GJ2 ⊃ · · · ⊃ GJm = GJ .

Assume that GJ is not connected. Since G is connected, there exists the minimal
k such that Gj , j = 0, 1, . . . , k is connected but Gk+1 is not. Note that Jk+1 =
Jk∪{P}, for some cell P . Let A, B be two vertices of GJk+1

which are connected
by a path γ in GJk

, but never in GJk+1
. We can assume that the other vertices

of γ are not in GJk+1
, and moreover, γ is the shortest among such paths. These

vertices are obtained from A by several switching operations employing the cells
of A and using the place or cell at P . Since the region to the left and below P are
totally contained in Jk, the cells of A participating in the switching operations
together with P must lie to the right and above P . Thus in observing what
happens along the path γ we can restrict our consideration inside this rectangle.
(There may be cells below P and to the right of Jk, or above Jk and to the
left of P . But these do not mutually switch. Hence the argument below is not
essentially affected by these cells.) This means that we can only consider the
case where J consists of a single cell to the leftmost and the lowest place, which
we shall denote by J by abbreviation of notation, just like the initial step of an
induction argument.

Note also that since J is in the prohibited region, the figure A does not have
a cell at J . By the same reason, the figures corresponding to the vertices of γ
other than the endpoints should all have a cell at J . In fact, if there exists a
vertex C in the midst, which does not contain J in its cell, then it is a due vertex
of GJk+1

, hence either of the subpaths AC or CB would be a path shorter than
γ and connecting two vertices in GJk

which are disjoint in GJk+1
. This violates

the choice of γ. Just by the same reason, vertices not adjacent to the endpoints
of γ do not contain any cell which constitute a switching component with J .

Thus we assume hereafter that J is the left-lower corner cell of I and show a
contradiction, assuming that γ is a minimal path connecting two vertices A, Z
of G1 in G. The first edge of γ corresponds to the switching of P,Q ∈ A bringing
P to the hole J , and Q to some vacant place Q′ in I \ J , thus producing a new
figure B, the second vertex of γ. First note that

(0) Z can never be the next vertex of B.

In fact, if so, J must switch with another cell R, as in Figure 5. But if position U
is vacant in A, then we can execute this modification without using the position
J , namely as a path in G1, by the series of switchings Q-R, P -U . On the other
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hand, if U is occupied, then the same modification is also realized as a path
in G1 by the switchings P -U , Q-R. Thus the vertex C next to B should be
in G \ G1. The passage from B to C, or more generally, any inner edge of γ,

P
J

’

Q

R
’P

J

Q
R

’
P
J

Q

R

A B Z

U

Fig. 5. Case where the length of γ is 2

never corresponds to the switching of cells independent of those touched before,
because otherwise, that switching could be preprocessed before the first edge,
thus shortening γ. Hence the second edge B to C corresponds to either of

(i) the switching of Q′ with another cell R ∈ I \ J (see Figure 6 upper),
(ii) the switching of a new pair R, S in I \ J executed using the vacant place

after P or Q moved.

Since the essence of the problem does not change by the reflection with respect
to the diagonal passing through J , we can assume without loss of generality that
it is the place of Q which is used in (ii), as in Figure 6 lower.

P
J

’

Q

R ’’

P
J

Q
R

’P
J

Q

R

U

V

A B C

P

J

’

Q

R
P

J

Q
R ’

P

J

Q

R

A B C

S S

S
’

’

Fig. 6. Path A–B–C; upper: case (i), lower: case (ii) (only concerned cells are shown)

Let us consider case (i). Note that R can never be in the same column as P .
In fact, if so, we may directly switch R with Q, obtaining the same figure C,
thus shortening γ. Hence the above Figure 6 represents the general situation.
Next note that the places denoted U , V in A are both occupied by the cells of
A. In fact, assume e.g. that U is vacant. Then, we can preprocess the switching
of Q and R, to Q′′ and U . Then the above portion of γ is shortened to one
edge corresponding to the switching of P and U . The same is true of V . Now
we have to consider the next edge. Assume first that it ends at Z. Then a new
cell S switches with J . In this last figure, however, we can see the switchable
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P
J

’

Q

R ’’

P
J

Q
R

’P
J

Q

R

A B C

S S S ’’

’P
J

Q

R

Z

S

S’
U

Fig. 7. Case (i) where γ = path A–B–C–Z

P
J Q

R
’P

J Q

R
’P

J Q
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A B

S S S ’’

’P
J

Q

R

Z

S

S’
U

U

Z’

S’
U

U

’

Fig. 8. Shortened path A–B′–Z′–Z

pair Q′′-U . After switching this, we obtain another figure Z ′ contained in G1,
which can be connected with A by a shorter path as in Figure 8. This contradicts
the minimality of γ. There is a case where S is in the same row as P , but the
conclusion is the same.

Thus the above path continues to one more inner vertex A–B–C–D with
D ∈ G \G1. We can show in this way that we can never reach the end vertex Z.
See [8] for the detailed proof. The case (ii) can be discussed similarly. ��

Remark 2. When the prohibited region J is not unique, the connectivity of GJ

is not necessarily assured. Figure 9 presents such an example. There GJ consists
of the two shadowed vertices to the right at the top and the bottom of G.

J

Fig. 9. Example of disconnected constraint switching graph

4 Experiments

We apply our construction to discretized slant ellipse. Figure 10a is the original
figure. Figure 10b is the Ryser-Kaori reconstruction without constraint, and
Figure 10c the type 2 to 1 modification. The value indicated in each figure
denotes that of the standard weight function introduced in [6], which increases
by the type modification:

w(F ) :=
∑

Cij⊂F

ij, where Cij = [i, i+ 1)× [j, j + 1).
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If we apply the combination of randomized regression and type 2 to 1 modifica-
tion, we soon fall in a strong local maximum as in Figure 10d hard to get rid
of. On the other hand, if we apply our algorithm with prohibited region J as in
Figure 10g, we obtain Figure 10e. The type 2 to 1 modification with J-constraint
gives Figure 10f. This time, a number of regression and type 2 to 1 modification
with J-constraint easily regains the original figure as shown in 10g.

a. 174074 b. 160008 c. 168356 d. 168735

e. 159944 f. 170293 g. 174074

Fig. 10. Reconstruction of slant ellipse

5 Condition for Prohibited Region

In the above experiment, we have set a prohibited region from the known orig-
inal figure. It is, however, desirable that we can set such a region only on the
knowledge of the projection data. We therefore examine here a necessary and
sufficient condition for J which allows at least one reconstruction for the given
projection data. In this section we treat general subsets as prohibited region and
do not necessarily require their uniqueness.

Lemma 2. Let J be unique, and let f = {fy(x), fx(y)}, f ′ = {f ′
y(x), f ′

x(y)} be
two pairs of J-consistent projection data. Assume that

∀x fy(x) ≤ f ′
y(x), ∀y fx(y) ≤ f ′

x(y), ‖f ′
y − fy‖L1 = 1, ‖f ′

x − fx‖L1 = 1,

that is, they are different only by one cell. Then there exist reconstruction F
from f and F ′ from f ′, each with J-constraint, such that the Hamming distance
of F, F ′ is equal to 1, that is, differing only by one cell.

Proof. We shall assume that the columns and rows are so arranged that J has
the renormalized form. We proceed by induction on the size n of f . For n = 0, the
assertion is trivial. Let it be true for any J and for any J-consistent projection
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data, where f has up to n − 1 cells, and consider the case of n cells. We apply
the modified Ryser-Kaori algorithm for reconstruction with J constraint. Let us
take the tallest column from fy(x) in the range of J1. By permutation of these
columns, we can assume without loss of generality that this column is leftmost
and that it is the tallest of f ′

y(x) among J1, too. In fact, if this is not the case, it
means that the cell was added to another column of fy(x) of the same height in
the range of J1. Then we could take this latter column from the beginning. Now
process the lowest cell of this column by the modified Ryser-Kaori algorithm and
stop. This should produce the same cell P outside J to the reconstruction figure.
By the permutation of rows above J1, we can assume without loss of generality
that P is just the next cell above the leftmost column of J1, hence J ∪ {P} is
still a unique figure. Since this algorithm can be continued to finally produce
a legitimate solution with J constraint for each projection data, the remaining
projection data should be J ∪{P}-consistent, and have n−1, resp. n cells. Thus
by the induction hypothesis, these should have at least one reconstruction F0,
F ′

0 with J ∪ {P}-constraint of Hamming distance = 1. Then F = F0 ∪ {P},
F ′ = F ′

0 ∪ {P} will be a desired pair of reconstructions with J-constraint. ��

Lemma 3. Let f = {fy(x), fx(y)} be a consistent pair of projection data. Then
for a cell P , the projection data augmented by P , f + proj(P ), is consistent if
and only if there exists a reconstruction F for f for which the place P is vacant.

Proof. The sufficiency is obvious: if f admits a reconstruction F for which the
place P is vacant, then, the augmented projection data will be those for a valid
figure F∪{P}. Let us prove the necessity. Assume that the augmented projection
data is consistent. Then there are reconstructions for the augmented data. If
there is one F ′ among them for which the place P is filled, then, F = F ′\{P} will
be a reconstruction for the original data with the place P vacant. Thus assume
that the place P is always vacant in any reconstruction F ′ for the augmented
projection data and nevertheless that P is always present in any reconstruction
F for the original data. Then the Hamming distance of F and F ′ gains one at P ,
and at least 2 outside P , because |F \{P}| = n−1 and |F ′ \{P}| = |F ′| = n+1.
Thus it is ≥ 3, contradicting Lemma 2 (applied with J = ∅). ��

Employing Lemma 3 repeatedly, we can add a cell at any place as well as the cor-
responding augmentation of the projection data keeps the consistency of Lorentz-
Ryser. Thus we can finally reach a unique figure. But this does not imply that
we can adopt the place of thus added cells as the constraint set. We have, how-
ever, the following criterion for prohibited region which is verifiable only from
the projection data:

Theorem 3. Let f = {fy(x), fx(y)} be a consistent projection data. A region
J (not necessarily unique) can be set as a prohibited region to the data f if
the augmented projection data f + proj(J) satisfies the consistency condition of
Lorentz-Ryser, and if J is incrementally constructed cell by cell in such a way
that each column is filled until it is maximal satisfying the consistency. Any (not
necessarily unique) subset of a set constructed in this way is again an admissible
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prohibited region. Especially, we can construct a subregion J such that I \ J is a
reconstruction from f .

Thus a subregion of such J consisting of rectangles in the renormalized form can
serve for our discussion hitherto.

Proof. Since the order of adding cells is inessential, we can assume without loss
of generality, that we add cells starting from the leftmost column and proceed
upward, verifying the consistency cell by cell. In view of Lemma 3, the first cell
can be added if and only if f admits a reconstruction with this cell vacant. Hence
this cell certainly constitute a part of J . Assume that we proceed in the first
column and successfully added J0k =

⋃k
j=0 C0j , where C0j = [0, 1)× [j, j + 1),

having a reconstruction from f + proj(J0k) with these cells filled. The next cell
C0,k+1 can be added, again in view of Lemma 3, if there exists a reconstruction
from f + proj(J0k) with this cell vacant. But this may have also vacant place
among J0k. We claim that nevertheless there is a reconstruction with J0k filled
and with C0,k+1 vacant. This is not obvious, but can be proved by an elementary
argument similar to that of Theorem 2. We omit the details. If on the other hand,
C0,k+1 cannot be added, it is filled for all reconstructions from f + proj(J0k),
hence especially for those with J0k filled. Thus we proceed to the next upper cell.
Continuing this, we finally fill whole the first column with original and added
cells. Therefore this column does not concern the problem hereafter, and the
argument goes just in the same way with the next column. ��

Though the cell-handling order can be arbitrary, a well arranged one is prefer-
able to obtain a better figure. In Figure 11 we show two examples against the
projection data of Figure 10a. In each figure, the black region shows J and the
complement presents a reconstruction canonical in some sense.

Remark 3. We cannot omit the assumption of maximality of J in the above
theorem. Actually we have a counter-example as in Figure 12. This shows in the

Fig. 11. Reconstructions of slant ellipse with maximal prohibited region; left: from
leftmost column; right: from the highest column

1 2 2 3 1 2 3

Fig. 12. Counter example without the assumption of maximality
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same time that the assertion “if f , f ′ are two pairs of consistent projection data
and f ∪ f ′ is also consistent, then there exist reconstructions F , F ′ of f , f ′ such
that F ∩ F ′ = ∅” is false even if all projections are unique.

In general, it is difficult to find the relation between switching graphs G[f ]
and G[f ∪ proj(J)]. We now see, however, that they are connected through the
common connected full subgraph GJ [f ].
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Abstract. The Mojette transform is an entirely discrete form of the
Radon transform developed in 1995. It is exactly invertible with both
the forward and inverse transforms requiring only the addition operation.
Over the last 10 years it has found many applications including image
watermarking and encryption, tomographic reconstruction, robust data
transmission and distributed data storage. This paper presents an elegant
and efficient algorithm to directly apply the inverse Mojette transform.
The method is derived from the inter-dependance of the “rational” pro-
jection vectors (pi, qi) which define the direction of projection over the
parallel set of lines b = pil− qik. Projection values are acquired by sum-
ming the value of image pixels, f(k, l), centered on these lines. The new
inversion is up to 5 times faster than previously proposed methods and
solves the redundancy issues of these methods.

1 Introduction

The Mojette transform is a form of Radon transform. It is an entirely discrete
mapping which requires only the addition operation and is exactly invertible.
It was first proposed by Guédon, Barba and Burger in 1995 [1] in the con-
text of psychovisual image coding. It has since been applied in many aspects
of image processing such as image analysis [2], image watermarking [3], image
encrytion [4], image compression [5] and tomographic image reconstruction from
projections [6,7]. The unique properties of the transform have also made it a use-
ful multiple description tool with applications in robust data transmission [8] and
distributed data storage [9]. A summary of the evolution and applications of the
mojette transform entitled “The Mojette Transform: the First Ten Years” [10]
was presented at the last DGCI conference.

Since the Mojette transform is pre-dominantly used as a tool, (e.g., for image
analysis, to apply a watermark, for channel coding), the transform and inversion
procedure should be as efficient as possible especially for real-time applications.
This paper presents an inversion algorithm which uses a geometrical approach
to streamline the reconstruction process.

Section 2 recalls the definition and some important properties of the Mojette
transform as well as the methods for exact inversion utilised to date. Section 3

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 122–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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outlines the proposed geometry driven inversion method. Simple cases where
qi or pi is constant for all I projections are presented in Sections 3.1 and 3.2.
These results generalised for the inverse to apply to an arbitrary set of (pi, qi) in
Sections 3.3 and 3.4. A comparison between this method and previously proposed
reconstructions is presented in Section 4 followed by a conclusion in Section 5.

2 The Mojette Transform

2.1 The Forward Transform (Projection)

The linear integration of the discrete 2D function f(k, l) is obtained via the
Mojette transform over a set of I pre-defined rational angles, θi = tan−1(qi/pi).
The pairs of integers defining the angles, (pi, qi) must be relatively prime, i.e.,
gcd(pi, qi) = 1, and since linear integration is directionally independant, qi is
restricted to Z+ (except for the case pi = 1, qi = 0) to ensure θi ∈ [0, π[.
Assuming a Dirac pixel model the linear integrations become sums over the
pixels centred on the lines b = qik − pil. The Mojette projection operator is
defined as

M{f(k, l)} = Proj(pi, qi, b) =
P−1∑
k=0

Q−1∑
l=0

f(k, l)δ(b+ pil− qik), (1)

where δ(η) is the Kronecker function, i.e., δ(η) = 1 if η = 0, otherwise δ(η) = 0.
An example of these projections is given in Fig. 1. The number of linesums called
“bins” per projection, B, for a P ×Q image is found as

Bi(P,Q, pi, qi) = (Q− 1)|pi|+ (P − 1)qi + 1, (2)

with b ∈ [0, Bi − 1] for pi ≤ 0 and b ∈ [−(Q − 1)pi, (P − 1)qi] otherwise. For
a transform with I projections, unique inversion is possible provided the Katz
criterion [11] is satisfied, i.e.,

P ≤
I−1∑
i=0

|pi| or Q ≤
I−1∑
i=0

qi. (3)

This criterion was generalised by Normand, Guédon, Phillipé and Barba [12]
for images of arbitrary shape. Their scheme generates the minimum sized ghost
functions ,(i.e., functions that exist in the image but disappear in the projections,
refer to [11] for more detail) as a sequence of 2D convolutions with all two pixel
structuring elements formed from the set of projection slopes qi/pi by 1 at (0, 0)
and -1 at (pi, qi). Any array which cannot contain the minimum ghost generated
by the projection set therefore has an empty null-space and must have a unique
inverse.
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Fig. 1. Four projections of a 4×4 image f(k, l), Proj(−1, 1, b), Proj(0, 1, b), Proj(1, 1, b)
and Proj(2, 1, b)

2.2 The Inverse Transform (Reconstruction)

When the Mojette transform was first proposed a recursive algebraic method
was used for reconstruction. The following year a fast and more direct technique,
requiring addition operations only was proposed by Normand, Guédon, Philippé
and Barba [12]. It solves for one pixel at a time and subtracts this value from the
bins that include this pixel in each of the I projections [12]. The reconstruction
propagates from the image corners (where there is only one pixel value per bin)
to the centre. The first step of the inversion for f(k, l), as given in Fig. 1, is
shown in Fig. 2a. For each of the PQ pixels there are O(I) operations, so the
complexity of this technique is O(IPQ). If the number of projections, I, is chosen
to be log(PQ), the Mojette transform has similar complexity to that of the fast
Fourier transform [12].

There are two minor problems with this method. First, locating the bins
in a projection which can be back projected (i.e., those bins for which only one
pixel value remains unknown along its corresponding line of projection). Second,
determining which one of the pixels, (k, l), in the line of projection, b = qik−pil,
is yet to be reconstructed.

A simple method is utilised to overcome these problems. Two “comptabilité”
(or accounting) images are projected with the same projection sets and recon-
structed simultaneously with the unknown image. The first of these is a unitary
image, i.e., an image where f(k, l) = 1 for all pixels. The second is an index
image which labels the pixels according to a raster scan, i.e., f(k, l) = k + lP .
The projections of these images assist with the respective problems above. This
inversion technique will be referred to as the Comptabilité Mojette Inversion
(CMI) method.

In recent years, two reconstruction methods involving back-projection have
been proposed in the context of applying the Mojette transform to reconstruct
medical images from continuous projections. The first of these is an exact method
which was discovered by Servières, Normand, Guédon and Bizais [7]. Given all I
possible projections in the P ×Q array, back-projection (M∗) yields I − 1 times
the original pixel value plus the sum of the image, fsum (which can be found as
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(a) (b) (c)

Fig. 2. Reconstructon via the CMI method. (a) A candidate bin is selected in the
projections of the unitary image. (b) The value in the corresponding projection bin of
the index image gives the pixel to be reconstructed. (c) The value in the corresponding
projection bin of the image gives the pixel value. The projections of all 3 images are
then updated simultaneously.

∑
b Proj(pi, qi, b) for any projection), i.e.,

M∗{Proj(pi, qi, b)} = f̃(k′, l′) =
I−1∑
i=0

Proj(pi, qi, qik − pil)

=
I−1∑
i=0

f(k, l)δ(qi(k − k′)− pi(l − l′))

= (I − 1)f(k′, l′) + fsum.

(4)

The set of projections can be found from (pi, qi) being all the points visible from
the origin, i.e., Farey points, of the P × Q array and all symmetries, (−pi, qi).
Assuming a uniform density of Farey points in the plane, approximately I =
12PQ/π2 projections are required.

The second back-projection technique uses the conjugate gradient method [13]
to minimise ||M∗b−M∗Mf̃ ||2 where f̃ is the reconstructed image. Both of these
inversions are relatively stable in the presence of noise and therefore ideal in this
context. The exact back-projection however requires a very large number of
projections and the conjugate gradient method, while it does give the inverse, is
unnecessary in the case of reconstruction from uncorrupted discrete projections.

Since the Mojette transform is often used as a codec in data transmission,
the most efficient inversion possible is required for real time applications. The
following section outlines a very efficient inversion method which is similar to
the CMI method but determines the inter-dependance of projections using graph
theory to remove the accounting problems.

3 A Geometry Driven Reconstruction

For this method of reconstruction, it is assumed that
∑I−1

i=0 qi = Q. Any redun-
dant projections are ignored. The reconstruction is performed from left to right,
(reconstruction from right to left, top to bottom and bottom to top are symme-
tries of this method). These two properties imply this algorithm can reconstruct
images of infinite size, “on the fly”, only the image height Q must be finite, P
is not restricted.
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When reconstructing an image (according to the above criteria) using the
CMI method, the reconstruction can be seen to originate in the image corners
retaining a convex region of unknown pixel values and then propagates towards
the right. Once the initial trivial section in the corners is completed, it can
be noticed that the projections and image rows are linked, in that a unique
projection is utilised to reconstruct every pixel in a given row. The algorithm
proposed here takes advantage of this. To describe how, it is preferable to begin
with a simplified case where all projections have a common value for qi of 1.

3.1 The Case Where qi = 1 for i ∈ ZQ

This case commonly arises when the Mojette transform is utilised for multiple
description coding in packet data transmission [8]. If the set of projections are
sorted by pi, (i.e., p0 < p1 < . . .), and reconstruction is performed from left
to right, then row r of the image, f(k, r) for k ∈ ZP , is reconstructed by the
Mojette projection, Proj(pr, 1, b).

Proof. Assume on the contrary that projection, Proj(pQ−1, 1, b), is used to re-
construct the pixel value f(k, l) on a row other than Q− 1, i.e., 0 ≤ l < Q− 1.
This implies that the pixel value f(k+pQ−1, l+1) has already been reconstructed
by some projection other than Proj(pQ−1, 1, b), say Proj(pr, 1, b). Thus the pixel
value f(k + pQ−1 − pr, l) must have been reconstructed and since pQ−1 is the
largest in the set of pi, then k + pQ−1 − pr > k and this pixel is further right
than f(k, l). However, it can not be known if reconstructing from left to right;
A contradiction.

Therefore, only row Q − 1 can be reconstructed by Proj(pQ−1, 1, b). Since
reconstruction requires that only one pixel remains unknown in the line of pro-
jection, Proj(pQ−1, 1, b) can not be used to reconstruct any other row. Therefore,
this proof can be repeated to show Proj(pQ−2, 1, b) must reconstruct row Q− 2
and so on, down to Proj(p0, 1, b).

Intuitively this can be seen as ordering the projections by the slope (or angle)
of their corresponding line of projection. This gives a convex hull to the recon-
struction region that ensures the lines of back-projection can cut the hull such
that only one pixel on the line lies within the hull; The condition necessary for
reconstruction.

Since each projection corresponds to one row of the image, a dependancy
graph can be constructed to show the relationship between the projections in
reconstruction. The dependancy graph for the example image of Fig. 1 is given
in Fig. 3a. Here vertices correspond to pixels and directed edges represent the
dependancies of each pixel on other pixels being reconstructed in the inversion
process.

Two simple paths can be found to traverse the graph (as shown in Fig. 3b-
i and b-iv for the example). The reconstruction process involves beginning to
the left of the image, so that only the rightmost of the vertices in the path
intersect image pixels in column zero, and reconstructing pixel values according
to the path. The distance the path is initially shifted is referred to as the offset.
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(a) (b)
(i) (ii)

(iii) (iv)

Fig. 3. (a) The dependancy graph for the example image. (b) The 4 possible recon-
struction paths.

The path is then shifted right 1 pixel and the entire process repeated until the
last pixel value in column P − 1 of image is reconstructed. This process will be
referred to as the Balayage (or sweeping) Mojette Inversion (BMI) method.

The path through the graph termed a reconstruction path does not necessarily
have to traverse from one side to the other. Two seperate paths originating from
opposite sides of the graph can terminate at a common vertex in the graph
(some examples are shown in Fig. 3b-ii and b-iii). To optimise the reconstruction
algorithm, it is desired to find the most compact path possible.

The offset for two paths in the graph terminating on row r due to all projection
vectors with negative gradient is found as

Offset−(r) =
r∑

i=1

max(0,−pi) +
Q−2∑
i=r

max(0,−pi)

= max(0,−pr) +
Q−2∑
i=1

max(0,−pi) = max(0,−pr) + S−,
(5)

where S− =
∑Q−2

i=1 max(0,−pi). Similarly the offset due to all projection vectors
with positive gradient is found as:

Offset+(r) =
r∑

i=1

max(0, pi) +
Q−2∑
i=r

max(0, pi)

= max(0, pr) +
Q−2∑
i=1

max(0, pi) = max(0, pr) + S+,

(6)

where S+ =
∑Q−2

i=1 max(0, pi). The width of the reconstructed path is deter-
mined by the maximum of these two offsets. The objective is therefore to find
an r which minimises

Offsettotal = max(Offset−(r),Offset+(r)). (7)

Let S = S−−S+ =
∑Q−2

i=1 −pi. Note that if S− > S+ then any pr ∈ [0, S] has
no effect on Offsettotal. Similarly, if S− < S+ then any pr ∈ [S, 0] has no effect
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on Offsettotal. Therefore the optimal pr lies in the range [min(0, S),max(0, S)].
If there is no pr within this range then that which is minimises the following
should be selected;(

pr −
min(0, S) + max(0, S)

2

)2

= (pr − 0.5S)2. (8)

Balayage Inversion Algorithm(for qi = 1 for i ∈ ZI)
� Input: Set of projections, Proj(pi, 1, b), ordered with increasing pi

� Output: Reconstructed image, f(k,l).
Begin

2 � Compute S−, S+ and S
2 S minus ← S plus ← 0
3 for i← 1 to Q− 2 do
4 S minus ← S minus + max(0,−pi)
5 S plus ← S plus + max(0, pi)
6 S̄ ← S minus− S plus

� Determine the rendezvous row r
7 temp ← (p0 − 0.5S)2

8 r ← 0
9 for i← 1 to Q− 1 do

10 if (pi − 0.5S)2 < temp then
11 temp ← (pi − 0.5S)2

12 r ← i
¯ ¯� Determine the initial image column offset for each projection

13 offset(r) ← max(max(0,−pr) + S minus,max(0, pr) + S plus)
14 for i← r + 1 to Q− 1 do
15 offset(i) ← offset(i− 1) + pi−1

16 ¯for i← r − 1 downto 0 do
17 offset(i) ← offset(i+ 1) + pi+1

�̄ Begin reconstructing image, f(k, l), at column k = −offset(r)
18 for k ← −offset(r) to P − 1 do
19 for l ← 0 to r − 1 do
20 f(k, l)← Projl(k − pkl)
21 for i← 0 to Q− 1 do
22 Proji(k − pil)← Proji(k − pil)− f(k, l)
23 ¯ ¯for l ← Q− 1 downto r do
24 k′ ← k + offset(r) − offset(l)
25 f(k′, l)← Projl(k′ − pkl)
26 for i← 0 to Q− 1 do
27 Proji(k′ − pil)← Proji(k′ − pil)− f(k′, l)
28 ¯ ¯ ¯End

This reconstruction procedure can be trivially generalised to the case where all
qi = m for m ∈ Z+. In this instance each projection Proj(pi,m, b) reconstructs
m consecutive rows of the image. The reconstruction paths are simlar to that
for the above case with qi = 1 but with m passes shifted down a row each time.
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An example directed graph and reconstruction path for m = 3 is presented in
Fig. 4a. Another simple case for the reconstruction occurs when pi is constant
for all projections as is discussed in the next section.

3.2 The Case Where pi = m for i ∈ ZI

This case where m = 1 is the most common type of angle set used for transform-
ing images with minimal redundancy as described in [12]. Since pi is constant,
for a proof similar to that given in section 3.1 to apply, the projections must be
sorted in order of decreasing qi, (i.e., q0 > q1 > . . .), then the rth set of qi rows
of the image, i.e., from row R + 1 up to row R + qr where R =

∑r−1
i=0 qi, are

reconstructed by projection Proj(m, qr, b).
Since all qi > 0 the set of reconstruction paths all have the same total offset

of (I − 1)m as shown for the example in Fig. 4b. The reconstruction is similar
to that for constant qi, in that it requires multiple passes (qmax in this case),
however the number of vertices included in each subsequent pass decreases as
shown for the example.

(a) (b)

Fig. 4. The dependancy graphs (grey) and simplest reconstruction paths (black) for the
set of projections (a) Proj(Proj(−2, 3, b), Proj(−1, 3, b), Proj(1, 3, b) and Proj(2, 3, b)
which requires 3 passes and (b) Proj(3, 1, b), Proj(3, 2, b), Proj(3, 4, b) and Proj(3, 5, b)
which requires qmax = 5 passes

3.3 The Case Where pi ≥ pi−1 and qi ≤ qi−1

The constant qi and constant pi cases from Sections 3.1 and 3.2 can be amal-
gamated if, when ordered by slope, the projections have the property that pi is
increasing and qi is decreasing, i.e., pi ≥ pi−1 and qi ≤ qi−1 for (0 < i < I). For
this case the reconstruction path is straightforward, similar to that for constant
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pi path with qmax passes. The paths through the region with pi ≥ 0 can be
constructed independantly to those in the region with pi ≤ 0 similar to the case
with constant qi. An example has been presented in Fig. 5.

Fig. 5. The dependancy graph for the set of projections Proj(4, 1, b), Proj(3, 2, b),
Proj(3, 2, b) and Proj(4, 1, b) with the simplest reconstruction path shown in black
which requires qmax = 4 passes

3.4 The General Case

The above reconstruction techniques can be generalised to any set of I projec-
tions such that

∑I−1
i=0 qi = Q for qi ∈ Z+. As for the previous cases with varying

qi, if the set of projections are sorted by slope pi/qi, (i.e., p0/q0 < p1/q0 < . . .),
then the rth set of qi rows of the image are reconstructed by the Mojette pro-
jection, Proj(pr, qr, b). The proof is again similar to that given in section 3.1.

Since each projection corresponds to qi rows of the image, once again a depen-
dancy graph can be constructed to show the relationship between the projections
in reconstruction. However, each vertex of the graph is no longer assured of 2
originating and 2 terminating directed edges. There may only be a single termi-
nating edge and there may be zero or many originating edges depending on the
set of (pi, qi) used to define the projections.

To ensure a reconstruction path in this instance, only the pixels located im-
mediately inside the edge of the convex hull created by the lines of projection
ordered by slope are considered. As for the constant qi case, the paths that ter-
minate at the rows with minimum slope are used to generate the most compact
convex hull. An example of the selection process is given in Fig. 6a with the
dashed line giving the complex hull. The directed graph is then used to deter-
mine the reconstruction paths required for these selected vertices as shown in
Fig 6b for the example.
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(a) (b)

Fig. 6. Determining the vertices of the dependancy graph to be considered for the set of
projections (a) Proj(Proj(4, 1, b), Proj(3, 2, b), Proj(4, 3, b),Proj(1, 2, b) and Proj(1, 3, b)
(b) A reconstruction path from the directed graph to reconstruct these vertices

4 Discussion

Although very similar in nature, the balayage inversion algorithm can be shown
to be up to 5 times faster than the comptabilité inversion algorithm. Assuming
the pixel count and pixel label projections have not been pre-computed (which
is possible in the case of image transmission where the incoming array size is
known), these must both be determined in 2×O(PQI) operations and during the
inversion process, I projection value bins, pixel count bins and pixel label bins
must be updated for each of the P ×Q pixels (3×O(PQI) operations), giving a
total of approximately 5×O(PQI) operations. In contrast the balayage algorithm
requires updating I projection bins for each image pixel once in a single pass
across the image in O((P + Offset)QI) operations. This has been demonstrated
for three types of angle sets in Table 1 comparing the computation times for the
BMI, the CMI with pre-computed unitary and index image projections (CMI-pc)
and the complete CMI. In implementation the actual gain in efficiency can be
up to an order of magnitude since there is a periodic pattern to the BMI process
that can be exploited while this is not the case for the CMI method where the
position of the next pixel to be reconstructed is not predetermined at all.

Since the proposed method is based on the inter-dependancy of each pro-
jection, the algorithm removes the need to search through the projections to
find the next candidate bin that can be back-projected. As a pixel is recon-
structed the predetermined dependancy graph indicates the pixel that can be
reconstructed next and by what projection. This is highlighted by the relative
performance of the CMI method for the General case of Table 1 where the pro-
jections have a large number of possible reconstruction bins to manage. The CMI
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Table 1. Reconstruction times comparing the BMI with CMI-pc (pre-computed uni-
tary and index image projections) and CMI methods. Times are given as a ratio with
respect to the time to perform the forward Mojette transform.

TEST P Q I {(pi, qi) | i ∈ ZI} BMI CMI-pc CMI

Const. qi 4096 64 64 (-31,1), (-30,1), ... (31,1), (32,1) 1.08 4.6 6.6

Const. pi 512 512 9 (1,52),(1,54),(1,55), ... (1,61) 1.05 5.5 7.5

General 512 512 10 (±95,31), (±63,32), (±31,32),
(±31,64), (±31,96)

1.42 8.6 10.6

algorithm is more robust however, it is more adaptable to any set of projections
such as redundant sets where

∑I−1
i=0 qi > Q and sets of partial projection data.

The knowledge of which projections are used to reconstruct which rows of the
image can be also used to ignore/discard projection bins that are not required for
the inversion. This removes unwanted redundancy to optimise Mojette encoding
as was investigated by Verbert, Ricordel and Guédon in [14].

5 Conclusion and Future Work

A new inversion algorithm for the Mojette transform has been presented which
takes advantage of the knowledge of the interdependancy of projections in recon-
struction. The method is more direct and more efficient than previous methods
however is less robust in terms of adaptability to any set of projections. This
method of reconstruction also automatically enables optimal encoding by the
Mojette transform by identifying which projection bins are required for inver-
sion. Developing a BMI method that can be applied to reconstruct a redundant
set of projections and can adapt to sets of partial projections as well as deter-
mining optimal coding incorporating redundancy are topics of future research.
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4. Autrusseau, F., Guédon, J., Bizais, Y.: Mojette cryptomarking scheme for medical
images. In Sonka, M., Fitzpatrick, J., eds.: Proc. SPIE; Medical Imaging 2003:
Image Processing. Volume 5032. (2003) 958–965

5. Autrusseau, F., Parrein, B., Servières, M.: Lossless compression based on a discrete
and exact Radon transform: A preliminary study. In: Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing 2006 (ICASSP), Toulouse,
France (2006)

6. Servières, M., Guédon, J., Normand, N.: A discrete tomography approach to PET
reconstruction. In: Proc. 7th International Conference on Fully 3D Reconstruction
in Radiology and Nuclear Medicine, Saint-Malo, France (2003)
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Abstract. A quantum mechanics based method is presented to generate
sets of digital angles that may be well suited to describe projections
on discrete grids. The resulting angle sets are an alternative to those
derived using the Farey fractions from number theory. The Farey angles
arise naturally through the definitions of the Mojette and Finite Radon
Transforms. Often a subset of the Farey angles needs to be selected when
reconstructing images from a limited number of views. The digital angles
that result from the quantisation of angular momentum (QAM) vectors
may provide an alternative way to select angle subsets. This paper seeks
first to identify the important properties of digital angles sets and second
to demonstrate that the QAM vectors are indeed a candidate set that
fulfils these requirements. Of particular note is the rare occurrence of
degeneracy in the QAM angles, particularly for the half-integral angular
momenta angle sets.

Keywords: Discrete projection, tomography, digital angles, finite Radon
transforms.

1 Introduction

The ultimate quality with which digital images can be reconstructed from pro-
jected views is highly sensitive to the selection of the viewing angles [1, 2, 3].
Conventional CT view angles, Figure 1(a), are constrained by the configuration
of the x-ray source and detectors. In contrast, digital image angles are con-
strained only by pixellation of the discrete array on which the image is to be
reconstructed, Figure 1(b). Simply dividing an angle interval into equal or in-
tegral steps does not provide descriptive digital angle sets. This becomes even
more critical for asymmetric digital images that have one or more elongated
axes. True digital angle sets should satisfy the following properties:

1. Generate a set of O(N) discrete angles for a symmetric N × N array (to
balance O(N) view angles with O(N) projected elements in each view. For
an asymmetric discrete array, far fewer than N angles would be needed).

2. These angles should be constructed in a way that accommodates the integer
spacing of pixels.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 134–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Fig. 1. (a) real space CT projections of a continuous object at three analogue angles.
(b) discrete projections of a simple digital object taken at four “grid-friendly” angles.

3. A digital angle set should have the properties of being uniformly distributed
over the range 0 ◦ − 180 ◦, or at least be locally uniform over a more limited
angle range.

4. Be increasing; any new angle set for N ′ > N should contain all of the previ-
ously generated angles for N , with each resulting angle remaining unique.

A digital angle set that satisfies these criteria is derived from the Farey se-
ries [4]. A different scheme to span analogue real and Fourier spaces to create
digital angles was developed through the pseudo-polar Fourier transform scheme
of [5]. The Farey angles are important here as they arise intrinsically in the Mo-
jette Transform [6] and the Finite Radon Transform (FRT) [7]. The discrete
angle properties of these transforms are reviewed in Section 2.

This paper examines an alternative set of angles designed for use on a discrete
grid that are derived from the spatial quantisation of the 3D angular momentum
in quantum physics. We will show that the digital angle set derived from the
QAM vectors satisfy the above criterion. The idea of using an analogue version
of the quantum vector spaces has already been utilised by [8] to represent polar
colour variables.

This “naturally” occurring quantum angle set has attractive properties that
seem to be relatively unexplored. The quantised angular momenta (QAM) an-
gle distribution has the property of being increasing and appears to be locally
uniform, with a slow and smooth decrease in density at larger angles. The set
of all possible QAM angles is almost, but not quite, unique. Understanding the
formation and distribution of the small number of redundant QAM angles is im-
portant when choosing appropriate digital projection and reconstruction angles.
This alternative set of quantum-based angles may improve the attainable qual-
ity of digital image reconstructions and help optimise the number of projected
views required, particularly for the projection of asymmetric digital objects.
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This paper is organised as follows: a review of the Farey-based digital angles
and their relationship to the Mojette and FRT transforms is presented in Sec-
tion 2. Example sets of QAM angle vectors are compared to similar sets of Farey
angles in Section 3. Section 4 describes the origin of integer and half-integer
quantisation of angular momentum. Section 5 shows how digital angles can be
obtained from these QAM vectors. The remainder of the paper demonstrates
the properties of the QAM angles against the requirements 1-4 outlined above;
Section 6 demonstrates the angle set has extremely low degeneracy and Section 7
explores the local density and range of the QAM angles.

2 Existing Digital Angle Schemes

An N ×N square (or hexagonal) regular discrete array generates a natural set
of projection angles [9, 10]. These unique angles have tangents that are based
on the ratios of relatively prime integers belonging to members of the set of
Farey fractions FN ranging from 1/N up to 1/1. Taking the arctangent of these
fractions produces a set of angles lying between 0 ◦ and 45 ◦. An example showing
F4 = 0, 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1 for N = 4 has been depicted in Figure 2(a). The density

of Farey angles is remarkably even and exhibits no degeneracy or replication of
any angles as the integer N increases to infinity. Each Farey angle is defined by
a unique vector θab that links the origin (0, 0) to a co-prime pair of Cartesian
coordinates (a, b). Farey angles ranging from 0 ◦ to 180 ◦ degrees are obtained
using (a, b), (b, a), (−a, b) and (−b, a) as four-fold symmetric vectors oriented at
θab, 90-θab, 90+θab and 180-θab respectively, as shown for F20 in Figure 2(b).
Any N ×N image can be reconstructed exactly if N > 1+max(|ai|, |bi|) for any
set of projections taken at rational angles ai/bi. The Katz criterion [11] ensures
that ambiguous “ghost functions” do not exist in projections of the reconstructed
image space (and hence that the reconstructed image is unique).

The Mojette transform developed in [6] is a generalisation of the FRT [7].
Many properties of the FRT have been investigated and applied by Kingston and
Svalbe [12]. The Mojette and FRT formalisms both map between digital images
and digital projections. This is done exactly and invertibly, with no interpolation
(hence preserving image sharpness) by a deliberate selection of grid-dependent
digital view angles and projection paths.

The FRT restricts N to be prime. This endows the projections with the prop-
erty of minimal information redundancy [13, 14] and enables the use of very
simple projection and reconstruction algorithms. Each 2D square array of prime
size p has a pre-determined set of p + 1 rational slopes that define the digital
projection orientations. These orientations are a subset of the Farey series for
FN , as shown in Figure 2(c). The subset of Farey fractions (a/b) that are selected
at each prime size p has its own interesting behaviour, as discussed in [15]. The
FRT has robust, efficient real-space and Fourier-space reconstruction algorithms
based on simple addition. It automatically satisfies the Katz reconstruction
criterion.
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(a) (b) (c)

Fig. 2. (a) Farey angles (F4) made of co-prime integer ratios a/b (a < b). (b) the set
F20 depicted as co-ordinates (a, b) giving θab (grey points), and the reflected set (b, a)
giving 90 ◦ − θab (black points). (c) The first half (0 ◦ < θab < 90 ◦) of the FRT angle
set is a subset of the extended Farey set, shown here for p = 379 and F20.

The Mojette Transform allows much more flexibility in the shape and size
of the discrete array chosen to represent some discrete object. A set of Farey
vectors, tailored to satisfy the Katz criterion, are selected for projection orien-
tations based on the shape and size of the array. Some degree of information
redundancy arises in this more general Mojette projection representation. How-
ever this redundancy may be exploited usefully in the design of very efficient
data transmission, storage and encryption schemes [16, 17]. The algorithms to
reconstruct images from Mojette projections [6] are more complex than for the
FRT, largely because of the increased level of redundancy.

3 Quantised Angular Momentum Directions

The 3D angular momentum vector in quantum physics also generates a “natural”
set of discrete angles. The angular momentum vector (j) can only take on values
that are integer or half-integer multiples of the reduced Planck’s constant (h̄).
When this vector is aligned with respect to an externally imposed reference
direction (such as that of the total local magnetic field), the magnitude of the z-
projection of j can change only in integer increments, Figure 3(a). This alignment
constraint results ultimately from the quantisation of stable energy states for
bound particles, and the sensitivity of the state energy to the orientation of the
particle orbit.

In atoms and nuclei, the use of quantum mechanics is essential. There the
observed magnitude of j ranges from 0 to 8 as electron or nucleon orbits are
filled in the atoms and nuclei from hydrogen to uranium. The correspondence
principle argues that, in the classical (large angular momentum) limit, the 3D
vector j is equally free to take any alignment direction with respect to any
z-axis. The spectra of vibrational modes which arise as allowed excitations in
finite discrete lattices is another relevant physical example of where a set of
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(a) (b) (c)

Fig. 3. (a) Depiction of the allowed quantum angular momentum (QAM) vector pre-
cession orientations for angular momentum j = 3. (b) The quantised z-projection of
the QAM vectors for j = 5. (c) The full integer j QAM angle set for |j| ≤ 19.

discrete angle trajectories emerges naturally from the underlying matrix of the
data structure [18].

The QAM vectors provide a locally smooth and reasonably uniform global
coverage of angle space, particularly over the interval 0 ◦−45 ◦, for large angular
momentum values, Figure 3(c). At angles closer to 90 ◦, the density decreases
steadily and this property may find application in the limited field of view case
encountered when reconstructing SPECT data using cone-beams or for PET/CT
tomosynthesis.

The size of the set of QAM angle vectors increases as the magnitude of the
maximum angular momentum j is increased, adding 2j + 1 vectors when j − 1
increments to j. In the main, the added vectors are new and do not occur at
angles generated previously by smaller values of j. There are, however, some
values of j that do result in degenerate angles.

The occurrence of such replicated angles in the QAM set is rare, even more
so for the half-integer QAM case. In this paper, these relatively rare degenerate
angles will be examined with a view to being able to predict and quantify any
clumping in the local smoothness of the QAM angle set. Quite localised non-
uniformities in the density of angles also occur for the Farey sets [10]. The
analytic work of [19] has examined and modelled the details of those variations.

4 Quantised Angular Momentum

Classical angular momentum is a measure of the “turning moment” of a moving
object about some axis: it is a vector quantity of magnitude proportional to the
radius r of the object from the axis and to the linear momentum p = mv of
the object, where v is the velocity of the particle which has mass m. Formally,
L = r × p, with the direction of vector L being normal to the plane defined by
the vectors r and p. In classical mechanics, the direction of L is free to take any
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direction in space and |L| is a continuous variable, given that values for r and p
are unconstrained.

In quantum mechanics, the measurable momentum and location of all objects
are subject to the Heisenberg Uncertainty Principle that reflects the “graininess”
of space-time and the particles that can exist within it. Momentum and position
cannot be simultaneously specified to a precision below the value of the reduced
Planck’s constant (h̄). This automatically imposes an uncertainty on the angular
momentum, it being a product of position and linear momentum. This uncer-
tainty means that the angular momentum vector can only be observed to change
by amounts proportional to h̄.

If we take a quantised angular momentum vector L in 3D (x, y, z) space with
components Lx, Ly, Lz, then the uncertainty in L means that if the direction
of Lz is fixed, the vector must “precess” (with unknown phase) around the z-
axis so that Lx and Ly are uncertain, Figure 3(a). The uncertainty in L, and
the expression for its magnitude, emerges naturally in quantum mechanics after
separation of the radial and angular part in the solution to the Schrödinger
equation when applied to any particle constrained by a potential well.

In quantum mechanics, all fundamental particles (like electrons) have an in-
ternal angular momentum (called spin S). This spin is also quantised, so that
changes in spin must also occur in h̄ steps. Spin can be either a symmetric or
anti-symmetric component of the quantised particle’s wavefunction. Fermion ob-
jects have half-integral spin (S = (n + 1/2)h̄) whilst bosons have integral spin
(S = nh̄) or positive integer n. It appears that the fermion and boson QAM
distributions, whilst being very similar, turn out to have remarkably different
angle degeneracy properties. A particle with rotational and spin angular mo-
mentum has a total angular momentum j, subject to the same uncertainty and
quantisation, with j = L + S.

The length of the quantised angular momentum vector is given by |j| =√
j(j + 1)h̄. It is the j(j + 1), rather than a j2 term, that endows interest-

ing properties to the QAM angle distribution. The direction of j is defined by
the angle θ measured in cylindrical coordinates relative to the direction of the
xy plane. The z-projection of j, jz is constrained to have |jz | = mh̄, where m is
integral for integer j and half-odd integral for half-integer j values.

5 QAM Vectors as Points in the Plane

If we denote the radius of the projection of the vector j on to the x-y plane as
rm, then rm =

√
j(j + 1)−m2, see Figure 4(a). The angle θ of the vector j from

the origin to (rm,m) is given by the arctangent of the gradient, taken here as
g(j,m) = m/rm.

The equations for lines of constant |m| form simple parabolas, for example,
rm =

√
j for |m| = j. The half-integer points fall exactly in between the integer

points, as both sets of allowed (rm,m) values lie on the same quadratic curves
as seen in Figure 3(c).



140 I. Svalbe et al.

The rm values will not, in general, be integers, but can be scaled and rounded
to the nearest integer at any required precision. Here (rm,m) have the same role
as the (a, b) integers used in Section 2 for the Farey and FRT examples. The
z-projection m is an integer or half-integer but in either case changes in integer
steps. As rm may be irrational, the exact process used to convert this value to
an integer may be important in any application.

(a) (b)

Fig. 4. (a) Definition of the QAM projections m and rm for a given j. (b) Plot of the
density of the QAM angle distribution for j = 199/2. Each white point represent a
selected angle.

For j # 1,
√
j(j + 1) asymptotes to j + 1

2 (and so can never be an integer,
nor an exact 1

2 integer). Hence the direction of any QAM vector j cannot ever
be aligned exactly along the z-axis, as jz = m must be an integer or half-
integer. The maximum angle of θ occurs when m = j, so that rm =

√
j and

g = tan(θ) = j/
√
j =

√
j. The maximum angle is 88.7 ◦ for j = 2000 (and

reaches only 70.5 ◦ for j = 8, for a j typical of the atomic case).
The minimum angle for integer QAM is zero degrees, which occurs when

m = 0 with rm =
√
j(j + 1). The minimum half integer angle occurs at |m| = 1

2 .
For large j, the minimum gradient g then approaches 1/(2j). This corresponds
to a minimum angle of 1.8 ◦ for j = 15/2, the typical maximum half integer j
for the atomic case, falling to 0.014 ◦ when j = 3999/2.

6 QAM Angle Degeneracy

The QAM angle set can adapt to the size and shape of a discrete array, as |j|
can be matched to the array size and |m| can be used to accomodate asymmetry
in the array shape. The QAM digital angles then meet the design properties
1,2 and 3 that are outlined in Section 1. Are there integer j vectors that link
the origin to points (rm,m) and (rm′ ,m′) that have the same angle? For this to
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be true, the values j and j′ (and hence m′ and m, or rm′ and rm) must scale
according to

(m′/m)2 =
j′(j′ + 1)
j(j + 1)

. (1)

The next section examines integer j values where (1) is satisfied.

6.1 Degeneracy of the QAM Angles for Integer j

For rm = nm, that is a gradient of g = m/(nm) = 1/n, (i.e. 1 : n), then
j(j+1)−m2 = (nm)2 means that N =

√
1 + 4(n2 + 1)m2 needs to have integer

solutions, whereN = 2j+1.N also corresponds, incidentally, to the total number
of allowed QAM vector projections for a given j.

Then j(j + 1) = (n2 + 1)m2 = (n2 + 1)k2l2, where m = kl, with k, and l
integers. We choose to factor m into a product of two integers, kl, because then
we can identify j and j + 1 as separate squared quantities that enable m to
be an integer. The values of k and l (and hence j and m) can be determined
recursively, starting with the values k = l = 1. Then

j = (n2 + 1)k2 and j + 1 = l2. (2)

The ratio of k/l approximates 1/
√
n2 + 1 because

l2 = (n2 + 1)k2 + 1. (3)

The values obtained for k and l turn out to be exceptionally good integer ap-
proximations for the irrational number

√
n2 + 1. The next integral solution at

j′, m′ turns out to given by

j′ = (n2 + 1)k′2 and j′ + 1 = l′2 with m′ = k′l′, where (4)
k′ = nk + l and l′ = (n2 + 1)k + nl. (5)

The recursive relationship (5) determines all of the redundant solutions for gra-
dients (1 : n). Table 1 shows example redundant (j,m) values for the gradients
1 : 1 and 1 : 3.

Finding integers k,l that give integer values of rm has a parallel to the approx-
imation of surds (such as a+

√
b) using continued fractions, where the sequence of

continued fraction values is periodic. For example, the value of
√

2−1 (which cor-
responds to

√
(n2 + 1) =

√
2 for n = 1) can be found as 1/(2+1/(2+1/(2+ . . .),

which can be written recursively as ar+1 = 1/(2 + ar) where a0 = 0. The frac-
tions k/l used to find (j,m) values that each have exactly the same gradient
1 : n can also be found using ar+1 = 1/(2n+ ar) and adding n to each fraction.

The j values that replicate a given gradient have quadratic separation in j.
The gap between the next (j′,m′) with the same slope as (j,m) grows very
rapidly. The ratio or scale, s, between successive values of j is given by m′/m
(or j′/j or N ′/N) and can be shown to be s = 2n2 + 1 + 2n

√
n2 + 1.
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Table 1. Examples of degenerate QAM angles for integer j and gradients of 1 : n

g = 1 : 1 j(j + 1) = (2)k2l2

N j m k l

3 1 1 1 1

17 8 6 2 3

99 49 35 5 7

577 288 204 12 17

3363 1681 1189 29 41

19601 9800 6930 70 99

g = 1 : 3 j(j + 1) = (10)k2l2

N j m k l

19 9 3 1 3

721 360 114 6 19

27379 13689 4329 37 110

The ratios for gradients n : 1 have the same values of rm and m in exchanged
roles as for 1 : n, so these angles and their j,m values can be found from the
1 : n result. The tabulated N and j values for n : 1 are the same as for 1 : n,
but the value of m is just n times that for 1 : n.

For g = p : q (as well as g =
√
p/q) there is also a similar sparse redundancy

in the representation of angles. Results for g = 3 : 5 are given in Table 2.

Table 2. QAM angle redundancy for the gradient 3:5

g = 3 : 5 j(j + 1) = (34/9)k2l2

N j m k l

35 17 9 9 1

2449 1224 630 18 35

The total number of redundant angles for the integer QAM case appears to
increase approximately linearly with increasing j. For 0 < j ≤ 2000, we found
just 242 redundant angles in the integer QAM angle distribution out of a total
number of j(j + 1)/2 = 2, 001, 000 angles.

6.2 Degeneracy of the j QAM Angles for Half-Integer j

For half integer QAM, j and m are both required to be odd, so we write:

(2n+ 1)(2n+ 3)/4− (2m+ 1)2/4 = r2m, (6)

where n and m are any positive integers. Then r2m = (n2−m2)+(2n−m)+1/2,
so that rm can never have integer values for the half-integer QAM case. For the
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gradient to be degenerate, i.e. g = m/rm = m′/rm′ , then [j(j+2)/4−m2/4]m′2 =
[j′(j′ + 2)/4−m′2/4]m2, and

(m′/m)2 =
j′(j′ + 2)
j(j + 2)

. (7)

Condition (7) turns out to be much harder to satisfy than (1) for the integer
QAM case. Scaled solutions for j and j′ that give redundant angles are only
possible if j′ = α2j and j′ + 2 = β2(j + 2) with m′ = (αβ)m, and where α, β
are integral, which is similar to the constraint (4) for integer QAM.

For 0 < j ≤ 3999/2, we found only 16 redundant angles in the first 2 million
possible angles (as compared to 242 redundant angles for j up to 2000 for the
integer case). Note the repeated occurrence of the integers 845, 2023 and 3969
in Table 3. These integers have highly composite forms, for example 3969 =
34.72. If the half integer and integer angle distributions are pooled (this does not
occur in real quantum systems), the number of redundant angles increases, at
approximately double the integer rate, to reach a total of 510 redundancies for j
up to 2000. The QAM angle set hence satisfies the fourth digital angle property
as set out in Section 1.

Table 3. Degenerate values of j, m for half-integer QAM angles

G = m/rm G j,m j′,m′

0.101015 1/
√

2.72 9/2,1/2 3969/2, 399/2

0.127001 1/
√

2.31 7/2, 1/2 2023/2, 255/2

0.101499 1/
√

2.17 5/2, 1/2 845/2, 143/2

0.267261 1/
√

2.7 3/2, 1/2 243/2, 63/2

0.316228 1/
√

2.5 9/2, 3/2 3969/2, 1197/2

0.408248 1/
√

2.3 7/2, 3/2 2023/2, 765/2

0.581238 5/
√

2.37 9/2, 5/2 3969/2, 1995/2

0.588348 3/
√

2.13 5/2, 3/2 845/2, 429/2

0.707107 1/
√

2 1/2, 1/2 25/2, 15/2 and 361/2, 209/2

0.988849 7/(5
√

2) 9/2, 7/2 3969/2, 2793/2

1.224745 3/2 3/2, 3/2 243/2, 189/2

1.581139 5/2 5/2, 5/2 845/2, 715/2

1.870829 7/2 7/2, 7/2 2023/2, 1785/2

2.12132 3/
√

2 9/2,9/2 3969/2, 3591/2

7 Distribution of QAM Angles

The uniformity of the QAM angle distribution has been examined using the
same unevenness criterion (D) as used for the Farey angle set [10]. The QAM
sets are much more uneven than the Farey sets because of the smooth decrease
in angle density as the z-axis projected value of j increases. For the half integer
case at j = 199/2, D = 65.09 over 2203 angles (selected for m < rm and
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rm < j/
√

2 = 70.71 here, from a total of 5050 angles). For the Farey sequence
F86(1/86, 1/85, . . .85/86) which has 2273 angles, D = 2.106.

Figure 4(b) shows the density of m, rm points from the QAM distribution in
the 2D plane which satisfies the property 3 qiven in Section 1. Note that the
points “missing” for the low angles are reflections of the positions of the real
points at large angles.

8 Conclusions and Further Work

The QAM vectors produce an interesting set of digital angles with remarkably
little degeneracy, especially for the half-integer angular momenta where the con-
ditions required for integer-based solutions are harsher. In physical systems,
the QAM directions are limited to either whole or half-integral values, but the
above investigation can be extended to include angles for 1/3 (quark-like) or
other fractional quantisation values. More work is needed on how to best round
or interpolate the (often irrational) values of rm to integers when applying these
digital angle sets.
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Abstract. Discrete tomography concerns the reconstruction of func-
tions with a finite number of values from few projections. For a number of
important real-world problems, this tomography problem involves thou-
sands of variables. Applicability and performance of discrete tomography
therefore largely depend on the criteria used for reconstruction and the
optimization algorithm applied. From this viewpoint, we evaluate two
major optimization strategies, simulated annealing and convex-concave
regularization, for the case of binary-valued functions using various data
sets. Extensive numerical experiments show that despite being quite dif-
ferent from the viewpoint of optimization, both strategies show similar
reconstruction performance as well as robustness to noise.

1 Introduction

Discrete tomography (DT) is an active field of research covering a number of
important problems across various application areas [1, 2]. A key aspect of DT
is the reconstruction of functions under non-standard conditions, in contrast to
conventional tomography. A necessary condition for making such reconstructions
feasible is to restrict the range of the functions to be reconstructed to a finite
set. Challenging application problems that can be naturally modeled in this
way include non-destructive testing [3], electron microscopy [5], and medical
imaging [4, 6].

A major problem in connection with DT concerns optimization. In fact, most
applications like DT in medical imaging involve thousands of variables represent-
ing the discrete-valued function to be computed. Solving such large-scale com-
binatorial problems to reach global optimality is generally not possible, hence,
optimization strategies providing a good compromise between the quality of sub-
optimal solutions and runtime are of primary interest.

For these reasons, we study in this paper two different optimization strategies
that showed promising performance in recent work:

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 146–156, 2006.
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– The first strategy based on the classical approach of simulated annealing
(SA). It is a stochastical optimization strategy, a random-search technique
that is based on the physical phenomenon of metal cooling [10]. The system
of metal particles, here the values of the image pixels, gradually reaches the
minimum energy level where the metal freezes into a crystalline structure.

– The second optimization strategy, convex-concave regularization, was pro-
posed in [7]. It combines convex relaxations of reconstruction functionals
with concave minimization to enforce discrete decisions. A local minimum
is determined by solving a sequence of convex optimization problems, each
of which can be solved to global optimality. The method involves a single
regularization parameter only requiring an application-dependent choice.

In Section 2 we briefly describe the general reconstruction problem. Section
3 details the algorithms related to the two optimization strategies which are
evaluated. The evaluation criteria (data sets, performance measures, parameter
settings) are specified in section 4, and our quantitative numerical results are
presented and discussed in Section 5. We conclude and outline further work in
Section 7.

2 Reconstruction Problem

We consider the reconstruction problem of transmission tomography for binary
objects. As explained in Fig. 1(a), the imaging process is represented by the
algebraic system of equations

Ax = b , A ∈ Rm×n , x ∈ {0, 1}n , b ∈ Rm , (1)

where A and b are given, and the binary indicator vector x representing the
unknown object has to be reconstructed. Though we restrict ourselves here to
parallel beam geometry, Fig. 1(b), this algebraic representation is general enough
to suit other geometries as well.

3 Two Optimization Strategies

This section describes two approaches capable to numerically solve large-scale
instances of the general reconstruction problem (1).

3.1 Simulated Annealing

Actually, a possible way of solving (1) at least approximately is to reformulate
it as an optimization problem. Formally, we should find the minimum of the
following objective function

C(x) = ||Ax− b||2 + γ · Φ(x) , where x is a binary-valued vector . (2)

The first term on the right hand side ensures that we have an x satisfying (1)
at least approximately. The second term allows us to include a priori knowledge
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Fig. 1. (a) Discretization model for transmission tomography. The measured
projection data are given in terms of a vector b ∈ Rm. Each component bi corresponds
to a projection ray measuring the absorption along the ray through the volume which
is discretized into cells. The absorption aj in each cell is assumed to be proportional to
the density of the unknown object. x1, x2, . . . are binary variables indicating whether
the corresponding cells belong to the object (xk = 1) or not (xk = 0). Assembling
all projection rays into a linear system gives Ax = b, x ∈ {0, 1}n, from which the
unknown binary object, represented by x, has to be determined. (b) Parallel beam
geometry. Multiple projections are gathered by rotating the source-detector system
around a center point.

about x into the optimization if there are several good binary vector candidates
that keep ||Ax − b||2 low. In our experiments we have used the following Φ(x)
function

Φ(x) =
n∑

j=0

∑
l∈Qm

j

gl,j · |ξj − ξl| , (3)

where Qm
j is the set of the indexes of the m × m adjacent pixels of the j-th

lattice pixel and gl,j is the corresponding element of a matrix representing a 2D
m×m Gaussian matrix. The gl,j scalar weights the differences according to the
distance of the two adjacent, l-th and j-th pixels. Using this regularization term
we can force the optimization algorithm to find binary matrices with possibly
compact regions of 0s and 1s.

For solving (2) the simulated annealing (SA) optimization method [10] was
used.

3.2 Convex-Concave Regularization and DC-Programming

We also consider the one-parameter family of functionals introduced in [7]:

Jμ(x) := ‖Ax− b‖2 +
α

2

n∑
j=1

∑
l∈Q1

j

(xj − xl)2 − μ
1
2
〈x, x − e〉 , x ∈ [0, 1]n . (4)

The first terms in (4) and (2) coincide. The second term in (4) is similar to
(3), but involves nearest neighbors only, i.e. m = 1, with uniform weighting.
This term is controlled by the regularization parameter α. Proper values depend
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on the application and have to be supplied by the user. The third term in (4),
together with the convex domain of definition x ∈ [0, 1]n, pertains to the second
optimization strategy, to be explained below, that was used to minimize (4). It is
a concave functional which gradually enforces the binary constraint x ∈ {0, 1}n

by increasing the value of μ (e denotes the vector with all components equal
to 1).

Algorithm 1. SA Algorithm
Require: γ ≥ 0 {regularization parameter supplied by the user}
Require: Tstart > 0 {start temperature supplied by the user}
Require: Tmin > 0 {minimum temperature supplied by the user}
Require: 1 > Tfactor > 0 {The multiplicative constant for reducing the temperature

supplied by the user}
Require: 1 > Robjective > 0 {The ratio between the first and the current value of the

objective function supplied by the user}
x := (0, ..., 0)�

T := Tstart

Cstart := Cold := ||Ax− b||2 + γ · Φ(x)
repeat

for i = 0 to sizeof(x) do
choose a random position j in the vector x
x̃ := x
x̃[j] := 1− x[j] {change the value of x in the position j}
Cnew := ||Ax̃− b||2 + γ · Φ(x̃)
z := random()
ΔC := Cnew − Cold

if ΔC < 0 or exp(−ΔC/T ) > z , then
x := x̃ {accept changes}
Cold := Cnew

end if
end for
T := T ∗ Tfactor

until T > Tmin or Cold/Cstart > Robjective

Functional (4) can be represented by the sum of a convex and a concave
function

Jμ(x) = g(x)− hμ(x) , x ∈ [0, 1]n , (5)

where

g(x) := ‖Ax− b‖2 +
α

2

n∑
i

∑
j∈Qm

i

(xi − xj)2 , (6)

=: ‖Ax− b‖2 + α〈x, L�Lx〉 , (7)

hμ(x) := μ
1
2
〈x, x− e〉 . (8)
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As a consequence, (4) naturally belongs to the class of dc-programs (dc: difference
of convex functions) and thus provides a basis for algorithm design. It is shown
in [7] that the following algorithm converges to a binary local minimum of the
criterion Jμ:

Algorithm 2. DC Algorithm
Require: α ≥ 0 {regularization parameter supplied by the user}
Require: εin > 0 {termination criterion for the inner loop}
Require: εout > 0 {termination criterion for the outer loop}
Require: εμ > 0 {determines the increment μΔ by eqn. (9)}

x := (0, ..., 0)�

μ = 0
repeat

repeat
x̃ := x
x := argmin

x∈[0,1]n
g(x)− 〈x,∇hμ(x̃)〉

until ‖x− x̃‖2 < εin

μ := μ + μΔ

until max
i
{min{xi, 1− xi}} < εout

We point out that each x computed in the inner loop is the global optimum
of a convex optimization problem. Our current implementation involves [9] for
this step, but many other convex optimization techniques could be applied as
well.

Furthermore, while the decomposition (5) with (7) and (8) is the most natural
one, a range of alternative decompositions of the functional Jμ are possible to
which algorithm 1 can be applied. We refer to [8] for further details.

4 Evaluation

4.1 Data Sets

For evaluation purposes both reconstruction algorithms were tested on the same
data set of binary images. The images are software phantoms consisting of dis-
cretized versions of geometrical objects like circles, ellipses, etc. – see Fig. 2.

For each phantom, the image reconstruction problem (1) was compiled by
taking parallel projections from different directions. The number p of projections
ranged between 2, 3, 5, and 6. For p ∈ {2, 3, 5}, directions were uniformly chosen
within [0◦, 90◦], and within [0◦, 150◦] for p = 6. For each direction, the number
of measurements was 96 for phantom 1 and 384 for phantom 2 and 3.

In addition to noiseless projection data, we also used noisy data for the evalua-
tion. To this end, the projection data were superimposed by noise with Gaussian
distribution N (0, σ) , σ ∈ {0.5, 1.5, 5}. Negative values that may rarely be gen-
erated in this way, do not make sense physically and were clipped to the value
zero.
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Phantom 1 Phantom 2 Phantom 3

Fig. 2. Phantom images of size 64× 64, 256× 256, and 256× 256 used for the exper-
imental evaluation

4.2 Performance Measures

Let x∗ be the ground truth image and x be a solution to the reconstruction
problem (1) computed by either optimization algorithm. We use the following
error measures for a quantitative evaluation:

E1(x) := ‖Ax− b‖2 ,

E2(x) :=
1∑n

i=1 xi
‖x− x∗‖1 .

For interpreting the corresponding numerical results in the tables below, readers
should keep in mind that these two measures scale quite differently. While a
single pixel error results in a change of E1 of about 101, say, the order of change
of E2 will be 10−2 only.

4.3 Parameter Settings

To compare both approaches numerically, we used a fixed parameter set for each
reconstruction algorithm. These values were used throughout all experiments.

Simulated Annealing Algorithm:

γ = 14.0
Tstart = 4.0

Tmin = 10−14

Tfactor = 0.97
Robjective = 0.00001

DC Algorithm:

α = 0.25
εin = 0.1
εout = 0.01
εμ = 10
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Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC

SA

5
DC

SA

6
DC

SA

Fig. 3. The phantom images reconstructed from noise free projections (p = 2, 5, 6)

The μ−increment was computed by evaluating the following equation

μΔ :=
εμn

1/2λmin (Q)
‖x− 1

2e‖
, Q := A�A+ αL�L . (9)
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Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC

SA

5
DC

SA

6
DC

SA

Fig. 4. The phantom images reconstructed from projections (p = 2, 5, 6) with additive
5 % noise

Here, x denotes the solution of the very first inner loop for μ = 0, and λmin

is the smallest eigen value of the matrix Q that can be computed offline and
beforehand. For details and an interpretation of (9), we refer to [8].
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5 Results

The aim of the experiments was to make a comparison between the two re-
construction methods. Both methods used the same input projections. Also the
same formulas were applied for measuring the errors.

We computed the reconstruction images for phantoms 1-3 from 2, 3, 5, and 6
projections with and without additive noise. Figure 3 shows the reconstruction
results in the case of noise-free projections (the reconstructions from 3 projec-
tions are omitted, because of the lack of space). From all images reconstructed
from noisy projections we present here only those having 5 % additive noise (see
Fig. 4). The cases of 0.5 % and 1.5 % additive errors show something similar
behavior).

The tables 1-3 contain the error values of the measures E1(x) and E2(x)
for all reconstruction scenarios and for both algorithms. Although the same
experiments were repeated with 0 %, 0.5 %, 1.5 %, and 5 % additive noise, we
present here all the tables except the case 0.5 % (which gave similar results as
in the case of 0 %).

Table 1. The error values E1(x)/E2(x) measured on the reconstructed images in noise
free case

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 3.464/0.537 6.782/0.835 5.477/1.108
SA 8.173/0.480 15.870/0.841 16.901/1.198

3
DC 0.000/0.000 8.351/0.471 7.804/0.751
SA 6.779/0.020 19.028/0.524 20.453/0.882

5
DC 0.000/0.000 0.005/0.000 14.761/0.545
SA 0.000/0.000 9.040/0.001 26.478/0.537

6
DC 0.000/0.000 0.005/0.000 0.004/0.000
SA 0.000/0.000 10.134/0.001 9.632/0.001

Table 2. The error values E1(x)/E2(x) measured on the reconstructed images in the
case of 1.5 % additive noise

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 9.708/0.492 21.375/0.829 21.101/1.181
SA 12.707/0.442 26.854/0.853 26.391/1.188

3
DC 11.892/0.080 24.024/0.489 23.414/0.761
SA 15.993/0.093 31.156/0.565 30.878/0.918

5
DC 19.020/0.080 31.135/0.026 29.182/0.551
SA 23.323/0.059 41.052/0.021 39.057/0.536

6
DC 18.795/0.102 31.298/0.034 33.203/0.045
SA 25.324/0.058 45.537/0.020 43.371/0.042
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Table 3. The error values E1(x)/E2(x) measured on the reconstructed images in the
case of 5 % additive noise

Projections Algorithm Phantom 1 Phantom 2 Phantom 3

2
DC 25.599/0.479 59.701/0.857 59.270/1.160
SA 28.633/0.519 63.004/0.839 62.437/1.162

3
DC 27.276/0.305 68.470/0.525 68.802/0.798
SA 31.936/0.295 73.966/0.563 73.522/0.903

5
DC 44.607/0.292 82.858/0.114 80.945/0.589
SA 48.423/0.265 91.049/0.103 87.514/0.597

6
DC 47.855/0.342 86.354/0.123 86.269/0.151
SA 53.585/0.287 98.575/0.102 95.214/0.145

6 Discussion

Both algorithm perform very similar on the tested reconstruction problems. Con-
sider first the noise free reconstructions. The methods were able to reconstruct
Phantom 1 from 3 or more projections. Phantom 2 was more difficult, 5 or more
projections are necessary for the almost perfect reconstruction. The most difficult
object was Phantom 3, it needs 6 projections for a good quality reconstruction.

The DC method gives smaller errors in almost all cases in Table 1. It is
interesting that the measure E1(x) was smaller for DC than SA in every cases.
The reason can be explained as follows. E1(x) measures the differences between
the input projections (b) and the projections of the reconstructed object (Ax).
For this reason E1(x) takes into account only the projections and not the original
object. (That is, E1(x) can be very small even if the object x is far from the
original one.) Our results shows that the difference between the projections is
not so strongly weighted in the objective function of SA (2). At the same time
SA reaches similarly low values of E2(x) as DC does.

Consider now the results of noisy projections. It is clear that DC gives again
better E1(x) values. The differences in the E2(x) values are small, if we have 5
or more projections then SA seems to give solutions being nearer to the original
object.

7 Conclusion

Summarizing the results we can say that there is no huge difference between the
qualities of the reconstructed images of the two methods.
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Abstract. Switching components play an important role investigating
uniqueness of problems in discrete tomography. General projections and
additive projections as well as switching components w.r.t. these projec-
tions are defined. Switching components are derived by combining other
switching components.

The composition of switching components into minimal ones in case
of additive projections is proved. We also prove, that the product of
minimal switching components is also minimal.

1 Introduction

In many scenarios of discrete tomography the so-called switching components
play an important role. In the current paper we consider switching components
from a more general point of view. The paper is intended to serve as a starting
point for further description or even construction of the set of all switching
components w.r.t. a given projection. This may be done via composing switching
components into bigger ones. For projections derived from lower dimensional
projections – let them be additive, as in the unabsorbed or absorbed case, or
even more general – we can decide whether a switching component is minimal.
This will possibly give the opportunity to describe or construct the set of all the
switching components of this kind of projections.

2 Switching Components

2.1 Generalized Projections

Consider a finite or countably infinite set L (for example an integer lattice) and
a set R containing the so-called rays of L. This set may, but need not be a set
of certain subsets of L. A ray of L will be denoted by R, the set of the rays is
R(L).

Given a (finite or countably infinite) set L and a set of rays R = R(L) on L.
Furthermore, let F be a (commutative) ring, for example the ring of the integer,
real or complex numbers.

Definition 1. A function P is called a generalized (F-valued) projection of the
pair (L,R(L)), if for every (finite) subset G ⊂ L and for every ray R ∈ R(L) P

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 157–168, 2006.
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returns a value P(G,R) ∈ F. In order to emphasize the projection as a function
on the subsets of the set L we will also write

P(R)(G) := P(G,R) .

Definition 2. A generalized projection P is called an additive projection, if

P(R)(G1 ∪G2) = P(R)(G1) + P(R)(G2) (1)

for all rays R ∈ R(L)
for all (finite) sets G1, G2 ⊂ L with G1 ∩G2 = ∅ .

Let P an additive projection. Considering the projection on an arbitrary ray R
as above, we then get for a (finite) subset G of L

P(R)(G) =
∑
g∈G

P(R)({g}) =
∑
g∈L

χG(g) · ω(R)
g . (2)

with the weights ω(R)
g := P(R)({g}) ∈ F.

2.2 Product of Projections

Let (L1,R1(L1),P1) and (L2,R2(L2),P2) be two projections. L := L1 × L2.
Let a ray on the base set L be defined either as a pair (g1, r2) with g1 ∈ L1

and r2 ∈ R2(L2) or as a pair (r1, g2) with r1 ∈ R1(L1) and g2 ∈ L2. Hence, the
rays on L form the set

R(L) = (L1 ×R2(L2) ) ∪̇ (R1(L1)× L2 ) .

G2

G1

row = r1

c
o

lu
m

n
=

r 2

g2

g1

Fig. 1. Rays on the Cartesian Product

Let the transections of a subset G ⊂ L be defined by

T2(G | g1) := {g ∈ L2 | (g1, g) ∈ G}

and
T1(G | g2) := {g ∈ L1 | (g, g2) ∈ G} .
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Definition 3. Let

∀ (g1, r2) ∈ L1 ×R2(L2) P(g1,r2)(G) := P(r2)
2 (T2(G | g1))

∀ (r1, g2) ∈ R1(L1)× L2 P(r1,g2)(G) := P(r1)
1 (T1(G | g2)) . (3)

We call the triple (L,R(L),P) the product of the projections (L1,R1(L1),P1)
and (L2,R2(L2),P2) and denote it by P1 × P2.

2.3 Generalized Switching Components

Let L be a given set, R(L) a set of rays in L and P a given projection. Let G
be a (finite) subset of L and c and cS two functions on G with values in {0 ; 1}.

Definition 4. We say a function ε on L switchable w.r.t. the pair (G, c) if

∀ g ∈ G : ε(g) = c(g) .

Definition 5. If ε is switchable w.r.t. (G, c), then we say the function εS =
εS
(G, c, cS) that we get by replacing the values of ε by those of cS on the set G, the

switching result of ε with respect to the triplet (G, c, cS).

εS(g) = εS
(G, c, cS)(g) :=

{
cS(g) if g ∈ G
ε(g) otherwise . (4)

Definition 6. The triplet (G, c, cS) is said a switching component with respect to
the projection function P, if whenever ε is switchable w.r.t. (G, c) the projection
values Pε and PεS

(G, c, cS) are identical.

∀ R ∈ R(L) : P(R)(εS
(G, c, cS)) = P(R)(ε) . (5)

For a switching component S = (G, c, cS) we call the set G the domain of S and
denote it by G = dom(S).

Lemma 1

(i) For every set G ⊆ L and every function c : G→ {0; 1} the triplet (G, c, c)
is a switching component of each projection P.

(ii) If (G, c, cS) is a switching component with respect to the projection function
P, then (G, cS , c) is also a switching component.

(iii) If (G, c, c(1)) and (G, c(1), c(2)) are switching components with respect to the
projection function P then (G, c, c(2)) is also a switching component.

Proof
The proof is evident and can be omitted. ��
For a switching component S = (G, c, cS) we say the switching component
(G, cS , c) the switched switching component and denote it by Ssw = (G, cS , c).

The empty switching component is denoted by E = (∅, ∅, ∅).
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Definition 7. Let P be a projection on L and (G, c, cS) a switching component
w.r.t. this projection. The switching component is called a minimal switching
component if whenever (G′, c′, c′S) is also a switching component w.r.t. P and
G′ is a subset of G and c|G′ = c′ and cS |G′ = c′S then G′ = G or G′ = ∅.

Lemma 2. If P is an additive projection on L and S = (G, c, cS) is a minimal
switching component w.r.t. P, then

∀ g ∈ G : c(g) �= cS(g) .

Proof
Let Ge = {g ∈ G | c(g) = cS(g)}. Consider the set G − Ge and the restrictions
of c and cS to this set. Let R be an arbitrary ray of R(L) and ε : L → {0 ; 1} a
function on L with values in {0 ; 1}. Suppose that ε is switchable w.r.t. (G−Ge, c).

Since P is additive we can calculate the projections value P(R) of ε on a ray
R ∈ R as follows

P(R)(ε) = PGc(ε) + PG−Ge(ε) + PGe(ε) ,

where PG(f) := P(R)(f · χG) for a set G and a function f , and Gc := L −G.
ε equals c on G−Ge, i.e.

P(R)(ε) = PGc(ε) + PG−Ge(c) + PGe(c)− PGe(c) + PGe(ε)
= PGc(ε) + PG(c)− PGe(c) + PGe(ε) .

Since (G, c, cS) is a switching component we have PG(c) = PG(cS). Additionally,
c and cS are identical on Ge, thus PGe(c) = PGe(cS) also holds. Replacing these
expressions we get

P(R)(ε) = PGc(ε) + PG(cS)− PGe(c
S) + PGe(ε)

= PGc(ε) + PG−Ge(c
S) + PGe(ε) ,

which means that replacing the values of c on G − Ge by those of cS already
results in the same projection value, i.e. (G − Ge, c|G−Ge , c

S |G−Ge) is also a
switching component w.r.t. P . Since (G, c, cS) is minimal, Ge = ∅. This is what
we wanted to show. ��

3 Deriving Switching Components

In the following we are going to derive switching components from other, known
switching components.

3.1 Composition of Switching Components

Let P be a given projection, S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) two switching

components with respect to P .
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Definition 8. If the functions cS1 and c2 are identical on the set G1 ∩G2, i.e.

∀ g ∈ G1 ∩G2 : cS1 (g) = c2(g) ,

then the two switching components are called composible.

Note, that the composible relation betwen switching components is not sym-
metric.

Lemma 3. Suppose that S1 and S2 are two composible switching components.
Defining c and cS as

c(g) =
{
c1(g) if g ∈ G1

c2(g) if g ∈ G2 −G1

and

cS(g) =
{
cS1 (g) if g ∈ G1 −G2

cS2 (g) if g ∈ G2
,

the triplet (G1∪G2, c, c
S) is a switching component with respect to the projection

P.

c2

c1

⇔

c1

S

c2

S

Fig. 2. The composition of two switching components

Proof
Let R ∈ R(L), and ε a function L → {0 ; 1} switchable w.r.t to (G1 ∪G2, c).

Because of the definition of c, ε is identical to c1 on G1. Thus, the switching
component (G1, c1, c

S
1 ) can be applied, and as the result we get the following

P(R)(ε) = P(R)(ε1) ,

where

ε1(g) =
{
cS1 (g) if g ∈ G1

ε(g) otherwise .

Now, (G2, c2, c
S
2 ) can be applied, since cS1 and c2 are identical on the set

G1 ∩G2 and ε and also ε1 are equal to c2 on G2 −G1 and we have

P(R)(ε1) = P(R)(ε2) ,
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where

ε2(g) =
{
cS2 (g) if g ∈ G2

ε1(g) otherwise =

⎧⎨⎩ cS2 (g) if g ∈ G2

cS1 (g) if g ∈ G1 −G2

ε(g) otherwise
.

This is the function after applying (G1 ∪ G2, c, c
S) and, hence, the projection

value is the same. ��

Definition 9. Given two composible switching components S1 and S2. The
switching component constructed in Lemma 3 is called the composition of the
switching components, and we write

(G1 ∪G2, c, c
S) = (G1, c1, c

S
1 ) ◦ (G2, c2, c

S
2 )

Lemma 4. Let L be a set, R(L) a set of rays of L and P a projection on
(L,R(L)). Let S = (G, c, cS), S1 = (G1, c1, c

S
1 ), S2 = (G2, c2, c

S
2 ) and S3 =

(G3, c3, c
S
3 ) be switching components w.r.t. (L,R(L),P). For the composition of

switching components w.r.t. (L,R(L),P) the following properties hold.

(i) S and the empty switching component E are composible and

S ◦ E = E ◦ S = S .

(ii) The switching components S and Ssw as well as Ssw and S are composible
and

S ◦ Ssw = (G, c, c) and Ssw ◦ S = (G, cS , cS)

(iii) If S1 and S2 are composible, then Ssw
2 and Ssw

1 are also composible and

Ssw
2 ◦ Ssw

1 = (S1 ◦ S2)sw .

(iv) If S1 and S2 are composible and S1 ◦ S2 and S3 are also composible, then
S2 and S3 are composible as well as S1 and S2 ◦ S3 and

(S1 ◦ S2) ◦ S3 = S1 ◦ (S2 ◦ S3) .

Proof
The proof of these properties follow immediately from the definition. ��

3.2 Symmetric Composition of Switching Components

In the following, let P be an additive projection. S1 = (G1, c1, c
S
1 ) and S2 =

(G2, c2, c
S
2 ) two switching components w.r.t. P .

Definition 10. The switching components S1 and S2 are called symmetric com-
posible, if

∀ g ∈ G1 ∩G2 : cS1 (g) = c2(g) and cS2 (g) = c1(g) .

Note, that the symmetric composible relation betwen switching components is
a symmetric one.
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Lemma 5. Assume, that S1 and S2 are symmetric composible. Define c and cS

on G1 &G2, the symmetric difference of G1 and G2, as

c(g) :=
{
c1(g) if g ∈ G1 −G2

c2(g) if g ∈ G2 −G1

and

cS(g) :=
{
cS1 (g) if g ∈ G1 −G2

cS2 (g) if g ∈ G2 −G1

Then the triplet (G1 & G2, c, c
S) is a switching component with respect to the

projection P.

c1

c2

⇔

c1

S

c2

S

Fig. 3. The symmetric composition of two switching components

Proof
Let R ∈ R(L) be a ray, and ε : L → {0 ; 1} a function switchable w.r.t. (G1 &
G2, c).

For a set G and a function f , we denote

PG(f) := P (R)(f · χG) .

Gc denotes the complement of the set G w.r.t. to the set L, i.e. Gc = L−G.
Since the projection P is additive and ε equals c1 and c2 on G1 − G2 and

G2 −G1 respectively, for the projection of ε we then have

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .

From the additivity of P we have

PG1−G2(c1) = PG1(c1)− PG1∩G2(c1)

and, hence,

P(R)(ε) = P(G1∪G2)c(ε) + PG1(c1)− PG1∩G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .

(G1, c1, c
S
1 ) is a switching component w.r.t. R, that’s why we can replace c1 by

cS1

P(R)(ε) = P(G1∪G2)c(ε) + PG1(c
S
1 )− PG1∩G2(c1) + PG1∩G2(ε) + PG2−G1(c2) .
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Since P is additive and cS1 = c2 on the set G1 ∩G2

PG1(c
S
1 ) = PG1−G2(c

S
1 ) + PG1∩G2(c

S
1 ) = PG1−G2(c

S
1 ) + PG1∩G2(c2)

and
PG2−G1(c2) + PG1∩G2(c2) = PG2(c2)

and, thus,

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 )− PG1∩G2(c1) + PG1∩G2(ε) + PG2(c2) .

From (G2, c2, c
S
2 ) also being a switching component w.r.t. P we get

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 )− PG1∩G2(c1) + PG1∩G2(ε) + PG2(c

S
2 ) .

From the additivity of P again and from cS2 = c1 on the set G1 ∩G2 it follows

PG2(c
S
2 ) = PG2−G1(c

S
2 ) + PG1∩G2(c

S
2 ) = PG2−G1(c

S
2 ) + PG1∩G2(c1)

and replacing this expression we get

P(R)(ε) = P(G1∪G2)c(ε) + PG1−G2(c
S
1 ) + PG1∩G2(ε) + PG2−G1(c

S
2 ) .

The expression on the right hand side is an expression for P(R)(εS) and, hence,
as the final result we have

P(R)(ε) = P(R)(εS) .

This is what we wanted to prove. ��

Definition 11. For two symmetric composible switching components S1 and
S2, the switching component constructed in Lemma 5 is called the symmetric
composition of the two switching components, and we write

(G1 &G2, c, c
S) = (G1, c1, c

S
1 ) " (G2, c2, c

S
2 ) .

The following properties of the symmetric composition hold.

Lemma 6. Let L be a set, R(L) be a set of rays on L and P be an additive
projection on these rays. Furthermore, let S = (G, c, cS), S1 = (G1, c1, c

S
1 ), S2 =

(G2, c2, c
S
2 ), and S3 = (G3, c3, c

S
3 ) switching components w.r.t. (L,R(L),P).

(i) S and E are always symmetric composible and

S " E = E " S = S .

(ii) S and Ssw are symmetric composible and

S " Ssw = Ssw " S = E .
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(iii) If S1 " S2 and S3 are symmetric composible then S1 and S2 " S3 are also
symmetric composible and

(S1 " S2)" S3 = S1 " (S2 " S3) .

(iv) If S1 and S2 are symmetric composible, then

S2 " S1 = S1 " S2 .

Proof
The proof of these properties follows immediately from the definition. ��

Proposition 1. Let S be an arbitrary switching component w.r.t. an additive
projection P. There exists a constant switching component S0 and a sequence
of minimal switching components {Si}N

i=1 with pairwise disjunct domains with
the symmetric composition being S

S = S0 " S1 " · · · " SN

with
c |S0 ≡ cS |S0 and dom(Si) ∩ dom(Sj) = ∅ for i �= j .

Proof
This easily follows from the definitions. ��

3.3 Product of Switching Components

Let P1 be a generalized projection w.r.t. (L1,R1(L1)) and P2 a generalized
projection w.r.t. (L2,R2(L2)) and P = P1 × P2 their product as defined in
Section 2.2.

Furthermore, let S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) be a switching com-

ponent w.r.t. P1 and P2, resp.
The following figure gives an idea how to create the switching component on

the set G1 × G2 or on a subset of G1 × G2 based on the two given switching
components.

Let

G1 ×(c1, c2) G2 := G1 ×G2 − {(g1, g2) | c1(g1) = cS1 (g1) ∧ c2(g2) = cS2 (g2)} .

For c1(g1) �= cS1 (g1) ∧ c2(g2) �= cS2 (g2) we define

c(g1, g2) =
{

0 if c1(g1) = c2(g2) ∧ cS1 (g1) = cS2 (g2)
1 if c1(g1) = cS2 (g2) ∧ cS1 (g1) = c2(g2)

and

cS(g1, g2) =
{

1 if c1(g1) = c2(g2) ∧ cS1 (g1) = cS2 (g2)
0 if c1(g1) = cS2 (g2) ∧ cS1 (g1) = c2(g2)

.
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For the other cases we define

c(g1, g2) =
{

0 if c1(g1) = cS1 (g1) = 0 ∨ c2(g2) = cS2 (g2) = 0
1 if c1(g1) = cS1 (g1) = 1 ∨ c2(g2) = cS2 (g2) = 1

and

cS(g1, g2) =
{

0 if c1(g1) = cS1 (g1) = 0 ∨ c2(g2) = cS2 (g2) = 0
1 if c1(g1) = cS1 (g1) = 1 ∨ c2(g2) = cS2 (g2) = 1 .

Lemma 7. The triple (G1 ×(c1, c2) G2, c, c
S) with the two functions c and cS as

defined above is a switching component w.r.t. the product projection P = P1×P2.

Proof
Let ε : A→ {0 ; 1} an arbitry function for which

∀ (g1, g2) ∈ G1 ×(c1, c2) G2 : ε(g1, g2) = c(g1, g2)

and we investigate the function εS with

εS(g1, g2) :=
{
cS(g1, g2) if (g1, g2) ∈ G1 ×(c1, c2) G2

ε(g1, g2) otherwise

We define
∀ g ∈ G1 : ε(g2)

1 (g) := ε(g, g2)

and
∀ g ∈ G2 : ε(g1)

2 (g) := ε(g1, g)

The appropriate projections P1 and P2 can be applied to the functions ε(g2)
1

and ε(g1)
2 .

First, let (g1, r2) ∈ L1 ×R2(L2). For g1 /∈ G1 the following equality is trivial.

P(g1,r2)(εS) = P(r2)
2 ([εS

2 ](g1)) = P(r2)
2 (ε(g1)

2 ) = P(g1,r2)(ε)

G2

G1
c1

c2c2

S

0

0

1

1

0 0

0 0

0 0

0 0

0

1

1

0

0

1 1

1 1

1 1 X X

XX

c1

S1 10

1 1

Fig. 4. Product of Switching Components
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Let now g1 ∈ G1 and c1(g1) �= cS1 (g1). As we can see from the definition of c, in
this case it holds that

c(g1, g) ≡ c2(g) and cS(g1, g) ≡ cS2 (g) for g ∈ G2 ,

or
c(g1, g) ≡ cS2 (g) and cS(g1, g) ≡ c2(g) for g ∈ G2 .

Since (G2, c2, c
S
2 ) is a switching component for the projection P2, again we have

P(g1,r2)(εS) = P(g1,r2)(ε)

If g1 ∈ G1 and c1(g1) = cS1 (g1) we can see from the definition of c that cS(g1, g) ≡
c(g1, g) for g ∈ G2, if c2(g2) �= cS2 (g2). Hence, ε(g1, g) ≡ εS(g1, g) for these
g ∈ G2 and, again,

P(g1,r2)(εS) = P(g1,r2)(ε) .

The second case, namely if (r1, g2) ∈ R1(L1)×L2, can be shown similarly. ��

Definition 12. We call the switching component S = (G1×(c1, c2)G2, c, c
S) the

product of the switching components S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) and

denote it by S = S1 × S2 = (G1, c1, c
S
1 )× (G2, c2, c

S
2 ).

Proposition 2. If S1 = (G1, c1, c
S
1 ) and S2 = (G2, c2, c

S
2 ) are two minimal

(non-empty) switching components w.r.t. the generalized projections P1 and P2

then their product S = S1 × S2 is also a minimal switching component w.r.t. to
the product projection P = P1 × P2.

Proof
Suppose that S = S1×S2 is not a minimal switching component, i.e. there exists
a (G′, c′, c′S) switching component w.r.t. P = P1 × P2 for which ∅ � G′ � G =
G1 ×(c1, c2) G2 and c(S)|G′ = c′ and c(S)S |G′ = c′S .

G2

G1
c1

c2

0

0

0 0

1

1

1 1

(g ,g )1 2

Fig. 5. Product of minimal switching Components
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Let (g1, g2) ∈ G1 ×(c1, c2) G2 − G′ and consider the sets T2(G′ | g1) and
T1(G′ | g2).

Since (g1, g2) ∈ G1 ×(c1, c2) G2 we have c1(g1) �= cS1 (g1) or c2(g2) �= cS2 (g2).
If c1(g1) �= cS1 (g1) then

c |T2(G | g1) ≡ c2 or c |T2(G | g1) ≡ cS2

and, hence, T2(G′ | g1) = T2(G | g1) or T2(G′ | g1) = ∅ because c2 is minimal.
Similarly, if c2(g2) �= cS2 (g2) then

c |T1(G | g2) ≡ c1 or c |T1(G | g2) ≡ cS1

and, hence, T1(G′ | g2) = T1(G | g2) or T1(G′ | g2) = ∅ because c1 is minimal.
Equality cannot hold because we supposed (g1, g2) ∈ G1 ×(c1, c2) G2 − G′.

Hence, the appropriate transection sets are all empty.
As one of the possibilties, let’s suppose now, that c1(g1) �= cS1 (g1). In this case

T2(G′ | g1) = ∅. This implies that ∀j ∈ G2 : (g1, j) /∈ G′ and so, whenever
j ∈ G2 ∧ c2(j) �= cS2 (j) we have T1(G′ | j) = ∅ also.

From this, on the other hand, it follows that whenever i ∈ G1 ∧ c1(i) �= cS1 (i)
we have T2(G′ | i) = ∅, and as the final consequence G′ = ∅. This completes
the proof. ��
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Minimal Non-simple and Minimal Non-cosimple

Sets in Binary Images on Cell Complexes

T. Yung Kong

Department of Computer Science, Queens College, City University of New York,
65-30 Kissena Boulevard, Flushing, NY 11367, U.S.A.

Abstract. The concepts of weak component and simple 1 are general-
izations, to binary images on the n-cells of n-dimensional cell complexes,
of the standard concepts of “26-component” and “26-simple” 1 in bi-
nary images on the 3-cells of a 3D cubical complex; the concepts of
strong component and cosimple 1 are generalizations of the concepts of
“6-component” and “6-simple” 1. Over the past 20 years, the problems of
determining just which sets of 1’s can be minimal non-simple, just which
sets can be minimal non-cosimple, and just which sets can be minimal
non-simple (minimal non-cosimple) without being a weak (strong) fore-
ground component have been solved for the 2D cubical and hexagonal,
3D cubical and face-centered-cubical, and 4D cubical complexes. This
paper solves these problems in much greater generality, for a very large
class of cell complexes of dimension ≤ 4.

1 Introduction

In a binary image, the n-dimensional cells of an n-dimensional cell complex
(most often, the 2D or 3D cubical complex) are labeled 1 or 0. Cells labeled 1
are referred to as 1’s of the image, and cells labeled 0 are referred to as 0’s.

We say that a 1 of the image is simple if “the topology of image is preserved”
(in a sense which will be made precise in Sect. 4) when that 1 is changed into
a 0. We say that a 1 is cosimple if the topology of the image is preserved in
another, complementary, sense when the 1 is changed into a 0.

In the case of the 2D cubical complex, these are two of the oldest con-
cepts of digital topology, and date back to the 1960’s. Rosenfeld’s concept of
an “8-deletable” pixel in [20] is mathematically equivalent to our concept of
a simple 1 in a binary image on the 2D cubical complex. The concept of a
“4-deletable” pixel in [20] is similarly equivalent to our concept of a cosimple 1.
Today, simple and cosimple 1’s in binary images on the 2D cubical complex are
often called “8-simple” and “4-simple”, respectively. In binary images on the 3D
cubical complex, simple 1’s are often called “26-simple”, cosimple 1’s are often
called “6-simple”, and a number of non-trivial characterizations of such 1’s have
been published (e.g., in [2,21]).

A subset of the set of 1’s of a binary image is said to be simple (cosimple) if
the elements of that subset can be arranged in a sequence D1, . . . , Dk in which
each element Di is simple (cosimple) after its predecessors D1, . . . , Di−1 have all

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 169–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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been changed to 0’s. Such sequences were apparently first studied by Ronse [18]
in the 1980’s, in the case of binary images on the 2D cubical complex.

A subset S of the set of 1’s is said to be minimal non-simple or MNS (mini-
mal non-cosimple or MNCS) if S is non-simple (non-cosimple) but every proper
subset of S is simple (cosimple). MNS and MNCS sets were first introduced by
Ronse [19], for the 2D cubical complex. (In that context, Ronse referred to MNS
sets as “8-MND sets” and referred to MNCS sets as “4-MND sets”; MND stood
for “minimal non-deletable”.)

The principal application of the concepts of simple and cosimple sets of 1’s is
to the theory of parallel thinning algorithms for binary images. Each iteration
of such an algorithm deletes (i.e., changes to 0) all 1’s for which the configura-
tion of nearby 1’s and 0’s satisfies the algorithm’s deletion condition. Thinning
algorithms are expected to “preserve topology” in the sense that the set of 1’s
deleted by the algorithm should always be simple or always be cosimple.

The concepts of MNS and MNCS sets provide the basis for a systematic
method of verifying that a proposed parallel thinning algorithm satisfies either
of these conditions. In the types of cell complex which seem most likely to be
used in applications, only a few kinds of set can ever be MNS or MNCS, and such
sets can have only a few elements. (For example, in the case of the 2D cubical
complex Ronse showed in [19] that a set of 1’s can be MNS only if every pair of
those 1’s are 8-adjacent—which implies that no MNS set can contain more than
four 1’s.) If we can deduce from a given parallel thinning algorithm’s deletion
condition that the set of 1’s which are changed to 0’s at a single iteration can
never include a non-simple (non-cosimple) set of one of the kinds that can be
MNS (MNCS), then we will have proved that the set of 1’s that are changed to
0’s at any iteration of the algorithm is always a simple (cosimple) set, so that the
thinning algorithm does indeed “preserve topology” in the corresponding sense.

It can happen that a certain kind of set can be MNS (MNCS), but only in
the very special case where the set is a weak (strong) component of the 1’s.
(Here the concepts of weak and strong components are generalizations, to sets
of n-dimensional cells of nD cell complexes, of the well known concepts of 8-
and 4-components, respectively, in sets of 2-cells of the 2D cubical complex.) For
example, in the case of the 2D cubical complex Ronse showed in [19] that a set
of two 1’s that are 8-adjacent but not 4-adjacent can be MNS only if it is an
8-component of the 1’s (i.e., only if neither of the 1’s is 8-adjacent to any other
1 of the image). Knowing that sets of certain kinds cannot be MNS (MNCS)
unless they are weak (strong) components of the 1’s can considerably simplify
the application of the verification method described above.

This motivates the problem of determining just which kinds of set can be MNS,
just which kinds can be MNCS, and just which kinds can be MNS (MNCS)
without being a weak (strong) component of the 1’s. Ronse [19] solved these
problems for the 2D cubical complex. Hall [6, Sect. 4] essentially solved the
problems for the 2D hexagonal complex. The problems were solved for the 3D
cubical complex by Ma [15] and Kong [10]. Gau and Kong [4] solved the problems
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for the 3D face-centered-cubical complex (whose 3-dimensional cells are rhombic
dodecahedra) and, more recently, for the 4D cubical complex [5,11].

In this paper, we solve these problems for a very general class of cell complexes
of dimension ≤ 4, namely the xel-complexes which we define in Sect. 3. The
cubical, 2D hexagonal, and 3D face-centered-cubical complexes mentioned above,
and most other complexes that have been considered in digital topology (such
as the 3D body-centered-cubical complex [7,14], whose 3-dimensional cells are
truncated octahedra), are simple examples of xel-complexes.

2 Contractibility, Polyhedra, and Polyhedral Cells

A set S in Rn is said to be contractible if S is nonempty, and S can be continu-
ously deformed over itself to some point p in S. More precisely, S is contractible
if and only if S �= ∅ and there is a continuous mapping h : S × [0, 1] → S such
that, for every point s ∈ S and some point p in S, h(s, 0) = s and h(s, 1) = p. A
contractible set is necessarily connected.

Every convex set is contractible. More generally, if P is any nonempty collec-
tion of convex sets such that

⋂
P �= ∅, then

⋃
P is contractible—because if

p is any point in
⋂
P then the map h :

⋃
P × [0, 1]→

⋃
P that is defined by

h(s, t) = tp+ (1− t)s has the above-mentioned properties.
On the other hand, it is an easy consequence of basic results of algebraic

topology that the boundary of a k-simplex—i.e., the set of all points that lie on
one or more of the (k−1)-dimensional faces of the k-simplex—is not contractible.

In this paper a set in Rn is called a polyhedron if it is expressible as a union of
a finite collection of simplexes (which may possibly include simplexes of different
dimensions). Note that the empty set is a polyhedron, and that a polyhedron
need not be connected. Evidently, the union of two polyhedra is a polyhedron. It
is also not hard to prove that the intersection of two polyhedra is a polyhedron.

There is a simple characterization of contractible polyhedra in R3: A poly-
hedron P in R3 is contractible if and only if P is nonempty, connected, and
simply connected, and R3 \ P is connected. This characterization follows from
well known results of algebraic topology—the Alexander duality theorem, and
the theorems of Whitehead and Hurewicz [16, Chs. 5, 7, and 8].

For any integer k ≥ 0, a polyhedral k-cell is a polyhedron that is homeomorphic
to a k-simplex. A polyhedral cell is a set that is a polyhedral k-cell for some integer
k; the integer k (which is always uniquely determined) is the dimension of the
polyhedral cell. The dimension of a polyhedral cell C is denoted by dim(C). Note
that a polyhedral 0-cell consists of just one point. A polyhedral cell is closed and
bounded, and is contractible because it is homeomorphic to a simplex (which is
a contractible set because it is nonempty and convex).

If C is a polyhedral k-cell, and h : σ → C is a homeomorphism of a k-simplex
σ onto C, then the image under h of the boundary of the simplex σ is called
the manifold boundary or just the boundary of C, and is denoted by ∂C. (This
set does not depend on our choice of h and σ.) If C is a polyhedral 0-cell then
∂C = ∅.
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3 Xel-Complexes

A xel-complex is a collection K that satisfies the following conditions for some
positive integer n, which we call the dimension of K and denote by dim(K):

1. Each member of K is a polyhedral k-cell for some k ≤ n, and
⋃

K = Rn.
2. No bounded region of Rn intersects infinitely many members of K.
3. For all distinct X,Y ∈ K, either X � ∂Y , or Y � ∂X , or X ∩Y = ∂X ∩∂Y .
4. For all X,Y ∈ K, either X ∩ Y = ∅ or X ∩ Y ∈ K.
5. For all X,Y ∈ K such that ∅ �= Y � X ,

⋃
{D ∈ K | D � X and D∩Y = ∅}

is a contractible polyhedron.
6. For all X,Y ∈ K such that X ∩ Y = ∅, there exist X ′, Y ′ ∈ K such that

dim(X ′) = dim(Y ′) = n, X ′ ⊇ X , Y ′ ⊇ Y , and X ′ ∩ Y ′ = ∅.

The only places in this paper where we use conditions 5 and 6 are in the proofs
of assertion 4 of our first main theorem (Theorem 3) and assertions 3 and 4 of
our second main theorem (Theorem 4).

Each member of a xel-complex K will be called a xel of K, and a xel X will be
called a k-xel if dim(X) = k. An mD xel-complex is a xel-complex K for which
dim(K) = m. The above conditions imply that if X and Y are xels of K such
that X � Y , then X � ∂Y ; in such cases we say X is a proper face of Y . So if
C1 and C2 are distinct intersecting xels of K neither of which is a proper face of
the other, then C1 ∩ C2 = ∂C1 ∩ ∂C2 is a proper face of C1 and of C2.

A simple and important example of an nD xel-complex is the nD cubical
complex, whose xels are the Cartesian products E1 × . . .×En in which each set
Ei either is a singleton set of the form {i+ 0.5} for some integer i, or is a closed
unit interval [i − 0.5, i + 0.5] for some integer i. Here E1 × . . . × En is a k-xel
of the xel-complex if n − k of the n E’s are singleton sets and the other k E’s
are closed unit intervals. (Thus a k-xel of this xel-complex is an upright closed
k-dimensional unit (hyper)cube in Rn whose vertices are located at points each
of whose coordinates differs from an integer by exactly 0.5.)

If X and Y are n-xels of an nD xel-complex K, then X is said to be weakly
adjacent to Y if X �= Y and X∩Y �= ∅, and X is said to be strongly adjacent to Y
if X∩Y is an (n−1)-xel of K. If T is any set of n-xels of K, then each equivalence
class of the reflexive transitive closure of the restriction to T of the “is weakly
adjacent to” relation is called a weakly connected component of T . Similarly, each
equivalence class of the reflexive transitive closure of the restriction to T of the
“is strongly adjacent to” relation is called a strongly connected component of T .
We say T is weakly connected if T = ∅ or if there is just one weakly connected
component of T . Similarly, we say T is strongly connected if T = ∅ or if there is
just one strongly connected component of T . (In the 2D (3D) cubical complex,
a set of 2-(3-)xels is strongly connected if and only if it is 4-(6-)connected, and is
weakly connected if and only if it is 8-(26-)connected.) Evidently, every strongly
connected set is weakly connected.

We now state (without proof) a number of properties of xel-complexes which
will be used in proving our main theorems. Readers are encouraged to at least
convince themselves that the 2D and 3D cubical complexes have these properties.
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Property 1. If X is a xel of a xel-complex K, then ∂X is a union of xels of K. ��

Property 2. If X1 and X2 are xels of a xel-complex K such that X1 � X2, then
dim(X1) < dim(X2). ��

Property 3. If X is a xel of a xel-complex K, and dim(X) > 0, then ∂X contains
at least dim(X) + 1 distinct 0-xels of K. ��

Property 4. If Z is an (n− 1)-xel of an nD xel-complex K, then there are n-xels
X1, X2 ∈ K such that X1 ∩ X2 = ∂X1 ∩ ∂X2 = Z, and no other xel of K
intersects Z \ ∂Z. ��

Property 5. If X and X ′ are distinct n-xels of an nD xel-complex K such that
X ∩ X ′ �= ∅, then there exists a sequence X0, X1, . . . , Xk of n-xels of K such
that X0 = X , Xk = X ′, and, for 1 ≤ i ≤ k, Xi−1 ∩ Xi is an (n − 1)-xel of K
that contains X ∩X ′. ��

Property 6. If X and C are xels of a xel-complex K such that X � ∂C, then
there is a (dim(C)− 1)-xel Y of K such that X ⊆ Y � ∂C. ��

4 MNS and MNCS Sets in Binary Images

Let K be an nD xel-complex, for some positive integer n, and let G be the set
of all n-xels of K. A function I : G → {0, 1} for which either I−1[{1}] is finite or
I−1[{0}] is finite will be called a binary image on K or, more briefly, a K-image.
Note that I(X) is only defined if X ∈ G (i.e., if X is an n-xel of K)—I(X) is
undefined if X is a xel of lower dimension in K.

If I is a K-image, then each n-xel in I−1[{1}] is called a 1 of I, and each n-xel
in I−1[{0}] is called a 0 of I. If D is any subset of the set of 1’s of a K-image
I, then we write I − D to denote the K-image whose set of 1’s is I−1[{1}] \ D.
Changing I to I−D is referred to as deletion of the set D from I.

We write Ic to denote the K-image defined by Ic(X) = 1−I(X) for all X ∈ G.
Thus the set of 1’s of Ic is the set of 0’s of I.

Each weakly (strongly) connected component of I−1[{1}] will be called a
weak foreground component (strong foreground component) of I. Each weakly
(strongly) connected component of I−1[{0}] will be called a weak background
component (strong background component) of I.

If D ∈ I−1[{1}], then D is said to be simple in I if (loosely speaking) “the
deletion of {D} from I preserves topology”. A precise definition of this concept
is as follows:

Definition 1. Let K be a xel-complex, and let D be a 1 of a K-image I. Then we
say D is simple in I if

⋃
(I−1[{1}]−{D}) is a deformation retract of

⋃
I−1[{1}].

In other words, D is simple in I if and only if the union of all the 1’s of I can
be continuously deformed over itself onto the union of all the 1’s of I other than
D, in such a way that all points in the latter union remain fixed throughout the
deformation process.
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The idea of defining simpleness in terms of continuous deformation is an old
one that dates back to the 1960’s: In the case of the 2D cubical complex, the
above definition is very similar to an informally stated connectivity preservation
condition given by Hilditch in an early paper on thinning [8, p. 411, condition 5].

A complementary concept to that of a simple 1 is that of a cosimple 1:

Definition 2. Let K be a xel-complex, and let D be a 1 of a K-image I. Then we
say D is cosimple in I if D is simple in (I−{D})c. Equivalently, D is cosimple
in I if and only if

⋃
I−1[{0}] is a deformation retract of

⋃
(I−1[{0}] ∪ {D}).

Let I be a K-image for some xel-complex K, and let D be any 1 of I. Then we
define two sets Attach(D, I) and Coattach(D, I) of xels in ∂D as follows:

Attach(D, I) = {X ∈ K | X � ∂D and ∃Q ∈ I−1[{1}] \ {D} (X � ∂Q)}
Coattach(D, I) = {X ∈ K | X � ∂D and ∃Q ∈ I−1[{0}] (X � ∂Q)}

If a xelX is in Attach(D, I) or in Coattach(D, I), then so is every proper face of
X . Note also that Coattach(D, I) = Attach(D, (I− {D})c). Conditions 3 and
4 in the definition of a xel-complex and Property 2 imply that

⋃
Attach(D, I) =

D ∩
⋃

(I−1[{1}] \ {D}) and
⋃

Coattach(D, I) = D ∩
⋃

I−1[{0}].
We can now state essentially discrete characterizations of simple and cosimple

1’s in binary images on xel-complexes of dimension ≤ 4:

Theorem 1. Let K be an nD xel-complex, where n ≤ 4, and let D be a 1 of a
K-image I. Then:

1. D is simple in I if and only if
⋃

Attach(D, I) is contractible.
2. D is cosimple in I if and only if

⋃
Coattach(D, I) is contractible. ��

Note that, since D is cosimple in I if and only if D is simple in (I − {D})c,
and since Coattach(D, I) = Attach(D, (I − {D})c), the two assertions of this
theorem are really equivalent. The “if” parts of the theorem can be deduced
from the fact that if A and B are contractible polyhedra such that B ⊆ A, then
B is a deformation retract of A.1 The “only if” parts of the theorem can be
proved using methods of algebraic topology.2

1 A self-contained proof of this fact is given in [13, Sect. 4].
2 More specifically, it follows from the excision theorem and the exact homology

sequence of a pair [16, Ch. 4] that if D is simple in I then the polyhedron
Attach(D, I) is nonempty and its reduced homology groups are all trivial. A

polyhedron in R3 or in the boundary of a polyhedral 4-cell is contractible if (and
only if) it has these properties. This is a consequence of (1) the theorems of White-
head and Hurewicz [16, Chs. 7, 8] and (2) the fact that a polyhedron P in R3 or in
the boundary of a polyhedral 4-cell is simply connected if its first homology group
H1(P ) is trivial. In the case where P is in R3, a proof of (2) is given in [12]. The
truth of (2) for a polyhedron P in R3 implies its truth for a polyhedron P in the
boundary of a polyhedral 4-cell X, because if P � ∂X then, by Thm. 2 of [17, Ch.
36], there is a homeomorphism h : ∂X → R3 ∪ {∞} such that h[P ] is a polyhedron
in R3.
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For n ≤ 4, if D is a polyhedral n-cell then a polyhedron P ⊆ ∂D is con-
tractible if and only if P is connected, (∂D) \ P is connected, and the Euler
characteristic of P is 1.3 An important consequence of this and Theorem 1 is
that it is computationally straightforward to determine whether or not a given
1 of a binary image on a xel-complex of dimension ≤ 4 is simple or cosimple.

The concepts of simple and cosimple 1’s are extended to finite sets of 1’s as
follows:

Definition 3. Let K be a xel-complex, and let D be a set of 1’s of a K-image
I. Then we say D is simple (cosimple) in I if D is a finite set and there is an
enumeration D1, . . . , Dk of all the elements of D such that, for 1 ≤ i ≤ k, Di is
a simple (cosimple) 1 in the K-image I− {Dj|1 ≤ j < i}.
Note that the empty set is both simple and cosimple in every K-image. Also
note that, if D is a 1 of I, then the singleton set {D} is simple (cosimple) in I if
and only if D is simple (cosimple) in I.

Important properties4 of simple sets of 1’s are that the deletion of such a
set can never split a weak foreground component, can never completely elimi-
nate a weak foreground component, can never merge different strong background
components, and can never create a new strong background component. More
precisely, if D is a set of 1’s that is simple in I, then each weak foreground com-
ponent of I contains exactly one weak foreground component of I−D, and each
strong background component of I−D contains exactly one strong background
component of I.

Analogously, deletion of a cosimple set can never split a strong foreground
component, can never completely eliminate a strong foreground component, can
never merge different weak background components, and can never create a new
weak background component: If D is a set of 1’s that is cosimple in I, then
each strong foreground component of I contains exactly one strong foreground
component of I − D, and each weak background component of I − D contains
exactly one weak background component of I.

We are now ready to define the principal concepts of this paper, namely MNS
and MNCS sets:

Definition 4. Let K be a xel-complex, and let D be a set of 1’s of a K-image
I. Then we say D is minimal non-simple, or MNS (minimal non-cosimple, or
MNCS) in the K-image I if D is non-simple (non-cosimple) in I, but every proper
subset of D is simple (cosimple) in I.

Note that, if D is any 1 of I, then the singleton set {D} is MNS (MNCS) in I
if and only if D is non-simple (non-cosimple) in I. Note also that all MNS and
MNCS sets are finite, because simple and cosimple sets are, by definition, finite.
3 This can be deduced from the fact stated in the second sentence of footnote 2 and

the Alexander duality theorem [16, Ch. 4].
4 These properties can be deduced from the first sentence of footnote 2 and the Alexan-

der duality theorem, which imply that if D is a 1 of I that is simple in I then
Attach(D, I) is a nonempty connected proper subset of ∂D whose complement in

∂D is also connected.
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If a finite set Q of 1’s of a K-image I is non-simple (non-cosimple) in I, then
Q must contain a subset that is MNS (MNCS) in I. Thus if P is a set of 1’s of I
such that no subset of P is MNS (MNCS) in I, then every subset of P is simple
(cosimple) in I. We say that a set P of 1’s of I is hereditarily simple (hereditarily
cosimple) in I if P has this property. It can be shown that, if I is a binary image
on the 3D cubical complex, then P is hereditarily simple (hereditarily cosimple)
in I if and only if P is P26-simple (P6-simple) in the sense of Bertrand [1].

The arguments in this paper will be based on the characterizations of MNS
and MNCS sets that are stated in the following theorem:

Theorem 2. Let K be an nD xel-complex, where n ≤ 4, and let D be a set of
1’s of a K-image I. Then:

1. D is MNS in I if and only if the following conditions hold for all D ∈ D:
MNS0 D is nonempty and finite.
MNS1 D is non-simple in I− (D \ {D}).
MNS2 D is simple in I−D′ for every D′ � D \ {D}.

2. D is MNCS in I if and only if the following conditions hold for all D ∈ D:
MNCS0 D is nonempty and finite.
MNCS1 D is non-cosimple in I− (D \ {D}).
MNCS2 D is cosimple in I−D′ for every D′ � D \ {D}. ��

Both assertions of this theorem are special cases of Prop. 6 in [9]. Explanations
of why the hypotheses of that proposition are satisfied are given in [5, p. 123]
(for the MNS case) and in [11, p. 326] (for the MNCS case).

We say that a set S of n-xels of an nD xel-complex K can be MNS (can be
MNCS) if there exists a K-image I in which S is an MNS (MNCS) set of 1’s.
We say that S can be MNS (MNCS) without being a weak (strong) foreground
component if there exists a K-image I in which S is an MNS (MNCS) set of 1’s
and S is not a weak (strong) foreground component of I. The main goals of this
paper are to determine, for every xel-complex K of dimension ≤ 4, exactly which
sets of xels can be MNS, exactly which sets can be MNCS, and exactly which
sets can be MNS (MNCS) without being a weak (strong) foreground component.

5 Properties of Contractible Polyhedra in R3 or in the
Boundary of a Polyhedral 4-Cell

The proofs of our main theorems will depend on the following fact:

Property 7. Let A and B be polyhedra in R3 or in the boundary of a polyhedral
4-cell, such that at least two of the following three statements are true:

1. Each of A and B is contractible.
2. A ∪B is contractible.
3. A ∩B is contractible.

Then all three of these statements are true. ��
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The hypotheses of Property 7 evidently imply that none of the polyhedra A,
B, and A∩B is empty. Indeed, if any of these sets is empty then A∩B = ∅ (so
that statement 3 is false), and either A and B are disjoint nonempty closed sets
(in which case A ∪ B is disconnected and statement 2 is false) or one of A and
B is empty (in which case statement 1 is false).

Property 7 is a consequence of the reduced Mayer-Vietoris sequence (see, e.g.,
[16, pp. 128–129]) and the fact, mentioned in footnote 2, that a polyhedron in
R3 or in the boundary of a polyhedral 4-cell is contractible if and only if it is
nonempty and its reduced homology groups are all trivial.

The following lemma and its corollary state some consequences of Property 7.
Note that the hypotheses of assertions 1 and 2 of the lemma imply that each
member of the collection S is contractible, since “every nonempty subcollection”
includes subcollections that consist of just one member.

Lemma 1. Let S be a nonempty finite collection of polyhedra in R3 or in the
boundary of a polyhedral 4-cell. Then:

1.
⋂
S is contractible if every nonempty subcollection of S has a contractible

union.
2.
⋃
S is contractible if every nonempty subcollection of S has a contractible

intersection.

Proof. First, we prove assertion 1. Assertion 1 is evidently true if |S| = 1. Now
assume as an induction hypothesis that, for some integer l > 1, assertion 1
is true whenever |S| < l. Suppose |S| = l, and every nonempty subcollection
of S has a contractible union. We need to show that

⋂
S is contractible. Let

S = {Ai | 1 ≤ i ≤ l}, S′ = S \ {Al}, and S′′ = {Al ∪ Ai | 1 ≤ i ≤ l − 1}. Since
every nonempty subcollection of S has a contractible union, we have that:

(a) Al is contractible.
(b) Every nonempty subcollection of S′ has a contractible union.
(c) Every nonempty subcollection of S′′ has a contractible union.

It follows from (b), (c), and the induction hypothesis that each of the two sets⋂
S′ =

⋂l−1
i=1Ai and

⋂
S′′ = Al ∪

⋂l−1
i=1 Ai is contractible. This, (a), and Prop-

erty 7 imply that Al ∩
⋂l−1

i=1 Ai =
⋂
S is contractible, as required. This proves

assertion 1. By a symmetrical argument, with unions in place of intersections,
and vice versa, assertion 2 is also true. ��

Corollary 1. Let S be a nonempty finite collection of polyhedra, in R3 or in the
boundary of a polyhedral 4-cell, that satisfies one of the following conditions:

1. Every nonempty proper subcollection of S has a contractible union.
2. Every nonempty proper subcollection of S has a contractible intersection.

Then S satisfies both of these conditions. Moreover,
⋃
S is contractible if and

only if
⋂
S is contractible.
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Proof. If condition 1 holds, and S′ is any nonempty proper subcollection of S,
then every nonempty subcollection of S′ has a contractible union, and so

⋂
S′

is contractible by assertion 1 of Lemma 1. Hence condition 2 holds if condition
1 holds. Since condition 2 holds, if

⋂
S is contractible then every nonempty

subcollection of S has a contractible intersection, and so
⋃
S is contractible

by assertion 2 of Lemma 1. By symmetrical arguments, condition 1 holds if
condition 2 holds, and

⋂
S is contractible if

⋃
S is contractible. ��

Another property of contractible polyhedra that we will need is:

Property 8. Let X be a polyhedral n-cell, and let T be a nonempty finite col-
lection of polyhedra in ∂X such that:

1.
⋂
T = ∅.

2.
⋂
T ′ is a contractible set whenever ∅ �= T ′ � T .

Then |T | − 1 ≤ n, and
⋃
T = ∂X if and only if |T | − 1 = n. ��

The hypotheses of Property 8 imply that the polyhedron of the nerve complex of
T is the boundary of a (|T |−1)-simplex. So it follows from the nerve theorem [3,
Thm. 10.6(i)] that the |T |− 2nd Betti number of

⋃
T is 1 if |T | ≥ 3. Property 8

can be deduced from this and the fact that
⋃
T is a polyhedron in ∂X .

6 The Fundamental Lemma

We now use the results of Sect. 5 to establish some key facts (stated in the
following lemma) on which the proofs of our main theorems will be based.

Lemma 2 (Fundamental Lemma). Let X be an n-xel of a xel-complex K,
where n ≤ 4, let (Xi)1≤i≤k be a nonempty finite family of xels of K in ∂X, and
let P ⊆ ∂X be a union of xels of K for which

P ∪
⋃
{Xi | i ∈M} is contractible whenever ∅ �= M � {1, . . . , k} (*)

Then:

1. For all S such that ∅ �= S � {Xi | 1 ≤ i ≤ k}, P ∩
⋂
S is contractible if and

only if P is contractible and
⋂
S �= ∅.

2. If
⋂k

i=1Xi = ∅, then P is contractible if and only if P ∪
⋃k

i=1Xi is con-
tractible.

3. If P∩
⋂k

i=1Xi is contractible, then P is contractible if and only if P∪
⋃k

i=1Xi

is contractible.
4. If P is contractible, and there is some S such that ∅ �= S � {Xi | 1 ≤ i ≤ k}

and
⋂
S =

⋂k
i=1Xi, then P ∪

⋃k
i=1Xi is contractible.

5. If
⋂k

i=1Xi �= ∅ but P ∩
⋂k

i=1Xi = ∅ and P ∪
⋃k

i=1Xi is contractible, then
P = ∅.

6. If
⋂k

i=1Xi �= ∅ but P ∩
⋂k

i=1Xi = ∅ and P is contractible, then k ≤ n, and
P ∪

⋃k
i=1Xi = ∂X if and only if k = n.
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Proof. We claim that it is enough to prove this lemma in the case where no
two of the Xi’s are equal. For assertions 1 – 5 this is because, if (X ′

i)1≤i≤k′ is
a family of distinct sets such that {X ′

i | 1 ≤ i ≤ k′} = {Xi | 1 ≤ i ≤ k},
then when we replace Xi with X ′

i and k with k′ it is evident that (*) still holds
and none of assertions 1 – 5 changes in meaning. In the case of assertion 6, if
Xj = Xl for some j �= l, then the case M = {1, . . . , k} \ {j} of (*) implies that
P ∪

⋃k
i=1Xi is contractible, and so the hypotheses of assertion 6 are inconsistent

with assertion 5. In other words, if assertion 5 is true then assertion 6 is vacuously
true if Xj = Xl for some j �= l. This justifies our claim, and in the rest of this
proof we shall assume that the Xi’s are all distinct.

To prove assertion 1, let S satisfy ∅ �= S � {Xi | 1 ≤ i ≤ k} and let S∗ =
{P ∪ Y | Y ∈ S}. By (*), every nonempty subcollection of S∗ has a contractible
union. Hence, by assertion 1 of Lemma 1, P ∪

⋂
S =

⋂
S∗ is contractible. If⋂

S = ∅ then P ∩
⋂
S = ∅ is not contractible, which is consistent with assertion

1. Now suppose
⋂
S �= ∅. Then

⋂
S is a xel of K (by condition 4 of the definition

of a xel-complex) and is therefore contractible. Since each of P ∪
⋂
S and

⋂
S

is contractible, it follows from Property 7 that P is contractible if and only if
P ∩

⋂
S is contractible. This proves assertion 1.

Next, we prove assertion 2. Suppose
⋂k

i=1Xi = ∅ (which implies k ≥ 2).
By (*), every nonempty proper subcollection of {P ∪ X1 ∪ Xi | 2 ≤ i ≤ k}
has a contractible union, and so it follows from Corollary 1 of Lemma 1 that
P∪
⋃k

i=1Xi =
⋃k

i=2(P∪X1∪Xi) is contractible if and only if (P∪X1)∪
⋂k

i=2Xi =⋂k
i=2(P ∪X1 ∪Xi) is contractible.
There are now two cases:

⋂k
i=2Xi = ∅, and

⋂k
i=2Xi �= ∅. In the first case,

the set (P ∪ X1) ∪
⋂k

i=2Xi = P ∪ X1 is contractible (by (*)), so it follows
from the equivalence established in previous paragraph that P ∪

⋃k
i=1Xi is also

contractible. Moreover, in this case it follows from assertion 1 of Lemma 1 that
P = P ∪

⋂k
i=2Xi =

⋂k
i=2(P ∪Xi) is contractible as well, because every nonempty

subcollection of {P ∪Xi | 2 ≤ i ≤ k} has a contractible union (by (*)). Thus the
sets P and P∪

⋃k
i=1Xi are both contractible, which is consistent with assertion 2.

In the second case, where
⋂k

i=2Xi �= ∅, the set (P ∪X1)∪
⋂k

i=2Xi is the union
of the set

⋂k
i=2Xi (which is a xel of K, by condition 4 in the definition of a xel-

complex, and is therefore contractible) with the set P ∪X1 (which is contractible
because of (*)). Hence, by Property 7, we have that (P ∪ X1) ∪

⋂k
i=2Xi is

contractible if and only if (P ∪X1)∩
⋂k

i=2Xi = P ∩
⋂k

i=2Xi is contractible. But,
by assertion 1, P ∩

⋂k
i=2Xi is contractible if and only if P is contractible. We

conclude that (P ∪X1)∪
⋂k

i=2Xi is contractible if and only if P is contractible.
As we showed earlier that (P ∪ X1) ∪

⋂k
i=2Xi is contractible if and only if

P ∪
⋃k

i=1Xi is contractible, assertion 2 is proved.
To prove assertion 3, suppose P ∩

⋂k
i=1Xi is contractible. This implies that⋂k

i=1Xi �= ∅, and so
⋂k

i=1Xi is a xel of K (by condition 4 in the definition of a
xel-complex) and is therefore contractible. Since P ∩

⋂k
i=1Xi and

⋂k
i=1Xi are

both contractible, it follows from Property 7 that P is contractible if and only
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if P ∪
⋂k

i=1Xi is contractible. But, since every nonempty proper subcollection
of {P ∪ Xi | 1 ≤ i ≤ k} has a contractible union (by (*)), P ∪

⋂k
i=1Xi =⋂k

i=1(P ∪ Xi) is contractible if and only if P ∪
⋃k

i=1Xi =
⋃k

i=1(P ∪ Xi) is
contractible, by Corollary 1 of Lemma 1. This proves assertion 3.

To prove assertion 4, suppose that P is contractible, and that there is some
S such that ∅ �= S � {Xi | 1 ≤ i ≤ k} and

⋂
S =

⋂k
i=1Xi. Now if

⋂
S =⋂k

i=1Xi = ∅ then assertion 4 is true, by assertion 2. If, on the other hand,⋂
S =

⋂k
i=1Xi �= ∅, then assertion 1 implies that P ∩

⋂k
i=1Xi = P ∩

⋂
S is

contractible, and so assertion 4 is true, by assertion 3. This proves assertion 4.
To prove assertion 5, suppose

⋂k
i=1Xi �= ∅ but P ∩

⋂k
i=1Xi = ∅. Let P ′ =

P∪
⋂k

i=1Xi. Then the hypotheses of the lemma still hold when we replace P with
P ′, and P ′ ∩

⋂k
i=1Xi =

⋂k
i=1Xi is a xel of K (by condition 4 in the definition

of a xel-complex) and is therefore contractible. Hence assertion 3 of the lemma
(with P ′ in place of P ) implies that if P ∪

⋃k
i=1Xi = P ′∪

⋃k
i=1Xi is contractible

then P ′ is contractible. However, P ′ is contractible only if P = ∅ (for if P �= ∅
then P ′ = P ∪

⋂k
i=1Xi is disconnected, as P and

⋂k
i=1Xi are disjoint nonempty

closed sets).
To prove assertion 6, suppose

⋂k
i=1Xi �= ∅ but P ∩

⋂k
i=1Xi = ∅ and P is

contractible. Let T = {Xi | 1 ≤ i ≤ k} ∪ {P}. Then it follows from assertion 1
that every nonempty proper subcollection of T has a contractible intersection.
Moreover,

⋂
T = P ∩

⋂k
i=1Xi = ∅. So it follows from Property 8 that k ≤ n,

and that P ∪
⋃k

i=1Xi =
⋃
T = ∂X if and only if k = n. ��

7 The Main Theorems

Theorem 3 (First Main Theorem). Let K be an nD xel-complex, where
1 ≤ n ≤ 4, and let T be a nonempty finite collection of n-xels of K. Then:

1. If
⋂
T = ∅, then there is no K-image I such that T is MNS in I.

2. If
⋂
T �= ∅, and T is a weak foreground component of a K-image I, then T

is MNS in I.
3. If

⋂
T is a 0-xel of K, and T is MNS in a K-image I, then T is a weak

foreground component of I.
4. If

⋂
T is an m-xel of K for some m ≥ 1, then there is a K-image I such

that T is MNS in I and T is not a weak foreground component of I.

Proof. Let k = |T | − 1, let T = {X,T1, . . . , Tk} and, for 1 ≤ i ≤ k, write Xi for
X ∩ Ti.

We first prove assertions 1 and 3. For this purpose we may assume k �= 0,
as this is implied by the hypotheses of assertions 1 and 3. Suppose there is a
K-image I such that T is an MNS set of 1’s of I. We will deduce that

⋂
T �= ∅

(which will prove assertion 1). We will further deduce that if
⋂
T is a 0-xel of

K then T is a weak foreground component of I (which will prove assertion 3).
Let P = X ∩

⋃
(I−1[{1}] \ T ). Thus P =

⋃
Attach(X, I− {Ti | 1 ≤ i ≤ k}).

Then
⋃

Attach(X, I − ({Ti | 1 ≤ i ≤ k} \ W)) = P ∪
⋃
{Xi | Ti ∈ W} for any

subcollection W of {Ti | 1 ≤ i ≤ k}.
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Since T = {X,T1, . . . , Tk} is MNS in I, it follows from Theorem 2 that X is
simple in I − ({Ti | 1 ≤ i ≤ k} \ W) for every nonempty subcollection W of
{Ti | 1 ≤ i ≤ k}, and that X is non-simple in I − {Ti | 1 ≤ i ≤ k}. Hence,
by Theorem 1, P =

⋃
Attach(X, I − {Ti | 1 ≤ i ≤ k}) is not contractible, but

P ∪
⋃
{Xi | Ti ∈ W} =

⋃
Attach(X, I− ({Ti | 1 ≤ i ≤ k} \ W)) is contractible

whenever ∅ �= W ⊆ {Ti | 1 ≤ i ≤ k}.
The collection of sets {P ∪

⋃
{Xi | Ti ∈ W} | ∅ �= W ⊆ {Ti | 1 ≤ i ≤ k}}

is the same as the collection of sets {P ∪
⋃
S | ∅ �= S ⊆ {Xi | 1 ≤ i ≤ k}}.

Hence P ∪
⋃
S is contractible whenever ∅ �= S ⊆ {Xi | 1 ≤ i ≤ k}. Since this

implies P ∪Xi is contractible for 1 ≤ i ≤ k, and since we saw above that P is
not contractible, none of the sets Xi is empty, and so each set Xi = X ∩ Ti is a
xel of K. Thus we have established the following:

(a) P , X , and the family (Xi)1≤i≤k satisfy the hypotheses of the Fundamental
Lemma.

(b) P is not contractible.
(c) P ∪

⋃k
i=1Xi is contractible.

Assertion 2 of the Fundamental Lemma now implies:⋂
T =

k⋂
i=1

Xi �= ∅ (†)

This proves assertion 1.
Now suppose

⋂
T =

⋂k
i=1Xi is a 0-xel of K. If P ∩

⋂k
i=1Xi �= ∅ then P ∩⋂k

i=1Xi is the 0-xel
⋂k

i=1Xi (as a 0-xel has no nonempty proper subset), and
so P ∩

⋂k
i=1Xi is contractible, which contradicts assertion 3 of the Fundamental

Lemma (in view of (a), (b), and (c) above). Hence P ∩
⋂k

i=1Xi = ∅. In view
of this, (a), (c), (†), and assertion 5 of the Fundamental Lemma, we have that
X ∩

⋃
(I−1[{1}] \ T ) = P = ∅.

As X is an arbitrary element of T , it follows that T ∩
⋃

(I−1[{1}] \ T ) = ∅
for every T ∈ T . Moreover, every two elements of T are weakly adjacent (since⋂
T �= ∅), and so T is weakly connected. Hence T is a weak foreground compo-

nent of I. This proves assertion 3.
To prove assertion 4, suppose

⋂
T is an m-xel of K for some m ≥ 1. Then,

by Property 3 of a xel-complex, there exist two distinct 0-xels {q1} and {q2} of
K in

⋂
T . By condition 6 of the definition of a xel-complex, there exist n-xels

Q1 and Q2 of K such that q1 ∈ Q1, q2 ∈ Q2, and Q1 ∩ Q2 = ∅. Let I∗ be the
K-image whose set of 1’s is T ∪ {Q1, Q2}.

We claim that T is MNS in I∗. To justify this claim, let P ∗ = X∩(Q1∪Q2), so⋃
Attach(X, I∗ − {Ti | 1 ≤ i ≤ k}) = P ∗. Then, for any W ⊆ {Ti | 1 ≤ i ≤ k},⋃
Attach(X, I∗ − ({Ti | 1 ≤ i ≤ k} \ W)) = P ∗ ∪

⋃
{Xi | Ti ∈ W}. So (since

X is an arbitrary element of T ) our claim that T is MNS in I∗ will follow from
Theorems 1 and 2 if we can show that:

(a) P ∗ is not contractible.
(b) P ∗ ∪

⋃
S is contractible whenever ∅ �= S ⊆ {Xi | 1 ≤ i ≤ k}.
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Here (a) is true since P ∗ = X ∩ (Q1 ∪ Q2) is disconnected (as Q1 ∩ Q2 = ∅).
To prove (b), let ∅ �= S ⊆ {Xi | 1 ≤ i ≤ k}, let S1 = S ∪ {X ∩ Q1}, and let
S2 = S ∪{X ∩Q2}. Then (

⋃
S1)∪(

⋃
S2) = P ∗∪

⋃
S. Note that if X is S, S1, or

S2, then the intersection of any nonempty subcollection of X is nonempty, and is
therefore a xel of K. So if X is S, S1, or S2 then every nonempty subcollection of
X has a contractible intersection, which implies (by assertion 2 of Lemma 1) that⋃
X is contractible. Thus each of the sets

⋃
S,
⋃
S1, and

⋃
S2 is contractible.

Since (
⋃
S1) ∩ (

⋃
S2) = (

⋃
S) ∪ (X ∩ Q1 ∩ Q2) =

⋃
S is also contractible, we

see from Property 7 that P ∗∪
⋃
S = (

⋃
S1)∪ (

⋃
S2) is contractible. This proves

(b) and completes the proof of assertion 4.
To prove assertion 2, suppose

⋂
T �= ∅, and let I′ be any K-image of which

T is a weak foreground component. We will show that T is MNS in I′.
Now Attach(X, I′ − {Ti | 1 ≤ i ≤ k}) = ∅, as T is a weak foreground

component of I′. We also have that
⋃

Attach(X, I′ − ({Ti | 1 ≤ i ≤ k} \W))
=
⋃
{Xi | Ti ∈ W} for any subcollection W of {Ti | 1 ≤ i ≤ k}. So (since

X is an arbitrary element of T ) our claim that T is MNS in I′ will follow
from Theorems 1 and 2 if we can just show that

⋃
S is contractible whenever

∅ �= S ⊆ {Xi | 1 ≤ i ≤ k}. Now the intersection of any nonempty subcollection
of {Xi | 1 ≤ i ≤ k} is nonempty (as

⋂
T �= ∅) and is therefore a xel of K.

Thus if ∅ �= S ⊆ {Xi | 1 ≤ i ≤ k} then every nonempty subcollection of S has a
contractible intersection, and so

⋃
S is contractible (by assertion 2 of Lemma 1),

as required. ��

The proof of our second main theorem will depend on two more lemmas, which
we now establish. Note that if S is a finite set of 1’s of a binary image I on a
xel-complex of dimension ≤ 4, then it follows from assertion 2 of the first lemma
below that S is cosimple if (and only if) the intersection of S with each strong
foreground component of I is cosimple, and so S cannot be MNCS in I if S
intersects more than one strong foreground component of I.

Lemma 3. Let K be an nD xel-complex, where n ≤ 4, and let T be any set of
n-xels of K. Let I1 and I2 be K-images such that I1(X) = I2(X) = 1 for every
X ∈ T , and I1(X) = I2(X) = 0 for every n-xel X that is not in T but is strongly
adjacent to an n-xel in T (i.e., T is a union of strong foreground components
both of I1 and of I2). Then:

1. For every T ∈ T , Coattach(T, I1) = Coattach(T, I2).
2. For every T ∈ T , T is cosimple in I1 if and only if T is cosimple in I2.
3. For every T ′ ⊆ T , T ′ is MNCS in I1 if and only if T ′ is MNCS in I2.

Proof. To prove assertion 1, let T ∈ T . We now show that Coattach(T, I1) ⊆
Coattach(T, I2). Let Y ∈ Coattach(T, I1). Then Y � ∂T and there is an n-xel
Q ∈ I−1

1 [{0}] such that Y � ∂Q. Thus Y ⊆ T ∩Q and so, by Property 5, there
exists a sequence Q0, Q1, . . . , Qk of n-xels of K such that Q0 = T , Qk = Q, and,
for 1 ≤ i ≤ k, Qi−1∩Qi is an (n−1)-xel of K that contains Y . Now Q0 = T ∈ T
andQk = Q �∈ T (sinceQ ∈ I−1

1 [{0}]). LetQj be the first element of the sequence
Q0, Q1, . . . , Qk that does not belong to T . Then, Qj−1 ∈ T . Since Qj−1∩Qj is an
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(n−1)-xel of K, the n-xel Qj is strongly adjacent to an n-xel in T , and therefore
I1(Qj) = I2(Qj) = 0. As Qj ∈ I−1

2 [{0}] and Y ⊆ Qj−1 ∩Qj � Qj (which implies
that Y � ∂Qj), it follows that Y ∈ Coattach(T, I2). As Y is an arbitrary
xel in Coattach(T, I1), this shows that Coattach(T, I1) ⊆ Coattach(T, I2).
By a symmetrical argument, Coattach(T, I2) ⊆ Coattach(T, I1). This proves
assertion 1. Assertion 2 follows from assertion 1 and Theorem 1. Assertion 3
follows from assertion 2 and Theorem 2, because if W is any subset of T then
the hypotheses of the lemma must still hold when T , I1, and I2 are respectively
replaced by T \W, I1 −W , and I2 −W . ��

Lemma 4. Let K be an nD xel-complex, and let T be a nonempty finite col-
lection of n-xels of K such that

⋂
T �= ∅ and there is no T ′ � T such that⋂

T ′ =
⋂
T . Then |T | ≤ n + 1. Moreover, if |T | = n + 1 then

⋂
T ∗ is an

(n+ 1− |T ∗|)-xel of K whenever ∅ �= T ∗ ⊆ T .

Proof. Let k = |T |−1 and let T 0, T 1, . . . , T k be an enumeration of the elements
of T . Since

⋂
T �= ∅,

⋂l
i=0 T

i is a xel of K for 0 ≤ l ≤ k. Hence:

dim(T 0)− dim(
k⋂

i=0

T i) =
k−1∑
l=0

(dim(
l⋂

i=0

T i)− dim(
l+1⋂
i=0

T i)) (�)

But we must have
⋂l

i=0 T
i �

⋂l+1
i=0 T

i for 0 ≤ l ≤ k − 1 (for if
⋂l

i=0 T
i =⋂l+1

i=0 T
i then

⋂
(T \ {T l+1}) =

⋂
T ), and so it follows from Property 2 that

dim(
⋂l

i=0 T
i)− dim(

⋂l+1
i=0 T

i) ≥ 1 for 0 ≤ l ≤ k − 1. Hence the right side of (�)
is ≥ k. Since the left side of (�) is ≤ dim(T 0) = n, we have that n ≥ k, and so
|T | = k + 1 ≤ n+ 1.

Now suppose |T | = n + 1. Then k = n and the left side of (�) is ≤ k, so no
term on the right exceeds 1 and we have that dim(

⋂l
i=0 T

i)− dim(
⋂l+1

i=0 T
i) = 1

for 0 ≤ l ≤ k − 1. Hence dim(
⋂l

i=0 T
i) = n− l = (n+ 1)− |{T i | 0 ≤ i ≤ l}| for

0 ≤ l ≤ k, since dim(
⋂0

i=0 T
i) = dim(T 0) = n. As this holds for any enumeration

T 0, T 1, . . . , T k of T , the lemma is proved. ��

Theorem 4 (Second Main Theorem). Let K be an nD xel-complex, where
1 ≤ n ≤ 4, and let T be a nonempty finite collection of n-xels of K. Then:

1. If
⋂
T = ∅, then there is no K-image I such that T is MNCS in I.

2. If there is some T ′ � T such that
⋂
T ′ =

⋂
T , then there is no K-image I

such that T is MNCS in I.
3. If

⋂
T �= ∅ and there is no T ′ � T such that

⋂
T ′ =

⋂
T , and |T | = n+ 1,

then T is MNCS in a K-image if and only if T is a strong foreground com-
ponent of that K-image.

4. If
⋂
T �= ∅ and there is no T ′ � T such that

⋂
T ′ =

⋂
T , and |T | ≤ n,

then there is a K-image I such that T is MNCS in I and T is not a strong
foreground component of I.

Proof. Let k = |T | − 1, let T = {X,T1, . . . , Tk} and, for 1 ≤ i ≤ k, write Xi for
X ∩ Ti.
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We first prove assertions 1 and 2, and the “only if” part of assertion 3. For this
purpose we may assume k �= 0, as this is implied by the hypotheses of assertions
1, 2, and 3. Suppose there is a K-image I such that T is an MNCS set of 1’s of
I. We will deduce that

⋂
T �= ∅ (which will prove assertion 1). We will further

deduce that there is no set T ′ � T such that
⋂
T ′ =

⋂
T (which will prove

assertion 2). Then we will prove the “only if” part of assertion 3 by showing
that T must be a strong foreground component of I if |T | = n+ 1.

Let P = X∩
⋃

I−1[{0}] =
⋃

Coattach(X, I). Then
⋃

Coattach(X, I−W) =
P ∪

⋃
{Xi | Ti ∈ W} for any subcollection W of {Ti | 1 ≤ i ≤ k}.

Since T = {X,T1, . . . , Tk} is MNCS in I, it follows from Theorem 2 that X
is cosimple in I − W for every proper subcollection W of {Ti | 1 ≤ i ≤ k},
and that X is non-cosimple in I − {Ti | 1 ≤ i ≤ k}. Hence, by Theorem 1,
P ∪

⋃k
i=1Xi =

⋃
Coattach(X, I − {Ti | 1 ≤ i ≤ k}) is not contractible, but

P ∪
⋃
{Xi | Ti ∈ W} =

⋃
Coattach(X, I−W) is contractible for every collection

W � {Ti | 1 ≤ i ≤ k}. As a special case of the latter fact, P is contractible.
The collection of sets {P ∪

⋃
{Xi | Ti ∈ W} | W � {Ti | 1 ≤ i ≤ k}}

includes the collection of sets {P ∪
⋃
S | S � {Xi | 1 ≤ i ≤ k}}. Hence

P ∪
⋃
S is contractible whenever S � {Xi | 1 ≤ i ≤ k}. Since this implies

P ∪
⋃

({Xj | 1 ≤ j ≤ k} \ {Xi}) is contractible for 1 ≤ i ≤ k, and since we saw
above that P ∪

⋃k
i=1Xi is not contractible, none of the sets Xi is empty, and so

each set Xi = X ∩ Ti is a xel of K. Thus we have established the following:

(a) P , X , and the family (Xi)1≤i≤k satisfy the hypotheses of the Fundamental
Lemma.

(b) P is contractible.
(c) P ∪

⋃k
i=1Xi is not contractible.

Assertion 2 of the Fundamental Lemma now implies that
⋂
T =

⋂k
i=1Xi �= ∅.

This proves assertion 1.
To prove assertion 2, we suppose there is a set T ′ � T such that

⋂
T ′ =

⋂
T ,

and deduce a contradiction. We may assume without loss of generality that T1 ∈
T \ T ′. Then

⋂k
i=2Xi = X ∩

⋂k
i=2 Ti ⊆

⋂
T ′ =

⋂
T = X ∩

⋂k
i=1 Ti =

⋂k
i=1Xi,

which implies
⋂k

i=2Xi =
⋂k

i=1Xi. This and (a) – (c) above contradict assertion 4
of the Fundamental Lemma, and so we have established assertion 2.

To prove the “only if” part of assertion 3, we continue to suppose that T is
MNCS in the K-image I, but now also suppose that |T | = n+1 (so that k = n).
We need to deduce that T is a strong foreground component of I.

By assertions 1 and 2,
⋂
T �= ∅ and there is no set T ′ � T such that

⋂
T ′ =⋂

T . So Lemma 4 implies that, for any two distinct elements T and T ′ of T , the
intersection T ∩ T ′ is an (n− 1)-xel of K. Hence T is strongly connected. It also
follows from Lemma 4 that

⋂k
i=1Xi =

⋂
T is a 0-xel of K.

Now if P ∩
⋂k

i=1Xi �= ∅ then P ∩
⋂k

i=1Xi is the 0-xel
⋂k

i=1Xi, and so P ∩⋂k
i=1Xi is contractible, which contradicts assertion 3 of the Fundamental Lemma

(in view of (a) – (c) above).
Hence we may assume P ∩

⋂k
i=1Xi = ∅. Then assertion 6 of the Fundamental

Lemma implies that
⋃

Coattach(X, I−{Ti | 1 ≤ i ≤ k}) = P ∪
⋃k

i=1Xi = ∂X .
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It follows that there is no n-xel Y of K such that Y is a 1 of I−{Ti | 1 ≤ i ≤ k}
and X ∩Y is an (n− 1)-xel. (For if such an n-xel Y exists, and Z = X ∩Y , then
(by Property 4) no point in Z \ ∂Z lies on a 0 of I − {Ti | 1 ≤ i ≤ k} and all
points of Z \ ∂Z must lie in ∂X \

⋃
Coattach(X, I− {Ti | 1 ≤ i ≤ k}).) Hence

X is not strongly adjacent to any 1 of I − T . As X is an arbitrary element of
T (and we already know T is strongly connected) it follows that T is a strong
foreground component of I. This proves the “only if” part of assertion 3.

It remains to establish the “if” part of assertion 3, and assertion 4. For this
purpose we suppose that

⋂
T �= ∅, and that there is no set T ′ � T for which⋂

T ′ =
⋂
T . (To begin with, we do not suppose that |T | = n+1.) We will define

a K-image I∗, and show that T is MNCS in I∗.
Let H be the set of all n-xels of K that intersect the xel

⋂
T , and let H be the

set of all n-xels of K that do not intersect the xel
⋂
T . Let I∗ be the K-image

whose set of 1’s is H (and whose set of 0’s is H). We will show that T is MNCS
in I∗.

Now H consists of the xels of dimension n in the set {C ∈ K | C ∩
⋂
T = ∅}.

Moreover, condition 6 in the definition of a xel-complex implies that each xel of
dimension < n in {C ∈ K | C ∩

⋂
T = ∅} is contained in an n-xel in H. Hence⋃

H =
⋃
{C ∈ K | C ∩

⋂
T = ∅}. Therefore

⋃
Coattach(X, I∗) = X ∩

⋃
H =⋃

{X ∩ C | C ∈ K and C ∩
⋂
T = ∅}

⋃
{D ∈ K | D � X and D ∩

⋂
T = ∅}.

Let P =
⋃

Coattach(X, I∗). Then, for any W ⊆ {Ti | 1 ≤ i ≤ k}, we have
that

⋃
Coattach(X, I∗ − W) = P ∪

⋃
{Xi | Ti ∈ W}. Now we observe that

{Xi | Ti ∈ W} is a proper subset of {Xi | 1 ≤ i ≤ k} whenever W is a proper
subset of {Ti | 1 ≤ i ≤ k}. (This is because there cannot exist j �= j′ for which
Xj = Xj′ . For if such j and j′ existed then X∩Tj∩Tj′ = Xj∩Xj′ = Xj = X∩Tj ,
which would imply that

⋂
T =

⋂
(T \ {Tj′}), contrary to our hypothesis that

there is no set T ′ � T for which
⋂
T ′ =

⋂
T .) In view of this, and since X is an

arbitrary element of T , if we can show that the following statements (i) and (ii)
are both true, then Theorems 1 and 2 will imply that T is indeed MNCS in I∗:

(i) P ∪
⋃
S is contractible whenever S � {Xi | 1 ≤ i ≤ k}.

(ii) P ∪
⋃k

i=1Xi is not contractible.

Recall that P =
⋃
{D ∈ K | D � X and D ∩

⋂
T = ∅}. If k = 0, then⋂

T = X , P = ∅, (i) is vacuously true, and (ii) is true.
Now suppose k �= 0. Then condition 5 of the definition of a xel-complex

implies that P is contractible, since
⋂
T is a nonempty proper subset of X . The

intersection of any nonempty subcollection of {Xi | 1 ≤ i ≤ k} is contractible,
as it is nonempty (since

⋂
T �= ∅) and is therefore a xel of K. Now let S′ be any

nonempty proper subcollection of {Xi | 1 ≤ i ≤ k}. Then
⋂
T is a nonempty

proper subset of
⋂
S′, since there is no set T ′ � T such that

⋂
T ′ =

⋂
T . Hence

P ∩
⋂
S′⋃{E ∈ K | E �

⋂
S′ and E ∩

⋂
T = ∅} is contractible, by condition 5

of the definition of a xel-complex.
The observations in the preceding paragraph imply that, if k �= 0, then the

intersection of any nonempty proper subcollection of {Xi | 1 ≤ i ≤ k} ∪ {P}
is contractible. It follows, by Corollary 1 of Lemma 1, that the union of any
nonempty proper subcollection of {Xi | 1 ≤ i ≤ k} ∪ {P} is contractible. This
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proves (i). Corollary 1 also tells us that P ∪
⋃k

i=1Xi =
⋃

({Xi | 1 ≤ i ≤ k}∪{P})
is contractible if and only if

⋂
({Xi | 1 ≤ i ≤ k} ∪ {P}) = P ∩

⋂k
i=1Xi is

contractible. But P ∩
⋂k

i=1Xi = P ∩
⋂
T = ∅ is not contractible, and so we have

proved (ii). Thus we have shown that T is MNCS in I∗.
Now suppose, again, that |T | = n + 1. Since T is MNCS in I∗, the “only if”

part of assertion 3 implies that T must be a strong foreground component of I∗,
and so it follows from assertion 3 of Lemma 3 that T is MNCS in any K-image
of which T is a strong foreground component. This establishes the “if” part of
assertion 3.

Finally, we suppose, instead, that |T | ≤ n (so that k ≤ n−1), and complete the
proof of assertion 4 by deducing that T is not a strong foreground component
of I∗. First of all, we claim that

⋃
Coattach(X, I∗ − {Ti | 1 ≤ i ≤ k}) =

P ∪
⋃k

i=1Xi � ∂X . Recall that P =
⋃
{D ∈ K | D � X and D ∩

⋂
T = ∅}. If

k = 0 then
⋂
T = X and P ∪

⋃k
i=1Xi = P = ∅, so that our claim is valid. If

k �= 0 then, since P is contractible (as we observed earlier), and since
⋂
T �= ∅,

P ∩
⋂
T = ∅, and k ≤ n− 1, the validity of our claim follows from assertion 6 of

the Fundamental Lemma.
Let p be any point in ∂X \

⋃
Coattach(X, I∗ − {Ti | 1 ≤ i ≤ k}). Then

(by Properties 1 and 6) there must exist an (n − 1)-xel Z � ∂X such that
p ∈ Z. Since p �∈

⋃
Coattach(X, I∗ − {Ti | 1 ≤ i ≤ k}), we also have that

Z �⊆
⋃

Coattach(X, I∗ − {Ti | 1 ≤ i ≤ k}), and so the n-xel Y of K such
that X ∩ Y = ∂X ∩ ∂Y = Z (which must exist, by Property 4) is a 1 of
I∗−{Ti | 1 ≤ i ≤ k}. Hence X is strongly adjacent to a 1 of I∗−{Ti | 1 ≤ i ≤ k}
and T is not a strong foreground component of I∗. This completes the proof. ��
Note that, in view of Lemma 4, every nonempty finite collection T of n-xels of
K must satisfy the hypotheses of one of the four assertions of Theorem 4.

8 Concluding Remarks

We say that a set T of n-dimensional xels of an n-dimensional xel-complex can
be minimal non-simple (can be minimal non-cosimple) if there exists a binary
image in which T is a minimal non-simple (minimal non-cosimple) set of 1’s. We
say that T can be minimal non-simple (minimal non-cosimple) without being a
weak (strong) foreground component if there exists a binary image in which T is
a proper subset of a weak (strong) foreground component and T is a minimal
non-simple (minimal non-cosimple) set.

This paper has determined just which sets of xels can be minimal non-simple,
just which sets can be minimal non-cosimple, and just which sets can be min-
imal non-simple (minimal non-cosimple) without being a weak (strong) fore-
ground component, in arbitrary xel-complexes of dimension ≤ 4. A number of
earlier papers [4,5,6,10,11,15,19] have solved these problems for particular xel-
complexes—specifically, the 2D, 3D, and 4D cubical, 2D hexagonal, and 3D
face-centered-cubical complexes. This paper generalizes that earlier work.

We have established that, for n ≤ 4, a nonempty finite collection T of
n-dimensional xels of an n-dimensional xel-complex can be minimal non-simple
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if and only if
⋂
T �= ∅. We have shown, too, that T can be minimal non-

simple without being a weak foreground component if and only if
⋂
T is an

m-dimensional xel for some m ≥ 1.
We have further established that T can be minimal non-cosimple if and

only if
⋂
T �= ∅ and there is no nonempty proper subcollection T ′ of T such

that
⋂
T ′ =

⋂
T , and we have shown that T can be minimal non-cosimple

without being a strong foreground component if and only if, in addition, |T |
≤ n.
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Abstract. In this paper we define the notion of gap in an arbitrary dig-
ital picture S in a digital space of arbitrary dimension. As a main result,
we obtain an explicit formula for the number of gaps in S of maximal
dimension. We also derive a combinatorial relation for a digital curve.

Keywords: Digital geometry, digital picture, gap, brim.

1 Introduction

A gap is a location in a digital picture (that is any finite set of pixels/voxels
in 2D/3D) through which a “discrete path” can pass. Gaps are considered in
rendering pixelized/voxelized scenes, which is done by casting digital rays from
the image to the scene [1, 2]. Therefore, it is useful to know whether a digital
picture has gaps of certain type or is gap-free. This is particularly interesting
when dealing with digital curves or surfaces. It is also helpful to have an estima-
tion for the number of gaps (if any) in a considered digital object, possibly as a
function of other object parameters. Such kind of information may help better
understand the topological structure of a binary picture and is of potential inter-
est in property-based image analysis. Of special interest are the gaps of maximal
dimension (to be defined later) since they can be penetrated by a digital ray
of any connectivity. Moreover, estimations of the number of such kind of gaps
may be useful for evaluating the performance of some polyhedra decomposition
algorithms (see comments in Section 4). Moreover, digital picture gap-freeness
appears to be equivalent to the notion of well-composedness of a set of pixels
proposed by Latecki, Eckhardt, and Rosenfeld [3]. This last paper demonstrates
the advantages of using well-composed (gap-free) sets in image analysis.

Theoretical studies of this sort are related to combinatorial topology, but are
also of interest in several other disciplines, such as digital geometry, combina-
torial image analysis, and theory of computer graphics. A classical result is the
famous Descartes-Euler formula v−e+f = 2 that relates the number of vertices
(v), edges (e), and facets (f) of a polytope. For various applications of this last
formula and other similar results to image analysis and digital geometry, see
Chapters 4 and 6 of [4].

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 189–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Conditions for existence of gaps in digital lines and planes are available, e.g.,
in [5,6,7]. The notion of gap has been used in higher dimensions, too [8]. However,
a rigorous definition that applies to arbitrary digital pictures is still missing.
Approaches to estimating the number of gaps have been, overall, unclear.

A recent work [9] provided the formula

g = v − 2(p+ c− h) + b, (1)

where g is the number of gaps, v the number of vertices, p the number of pixels, h
the number of holes, c the number of connected components, and b the number
of 2 × 2 grid squares in a digital picture. For another similar result we refer
to [10].

In the present paper we define the notion of gap in arbitrary dimension and
obtain a formula for the number of gaps of maximal dimension n. We also derive
a combinatorial relation for an n-dimensional digital curve.

In the next section we introduce some basic notions and notations of digital
topology. In Section 3 we present our main results. In Section 3.4 we comment
on a computer program that was developed to facilitate our theoretical research.
We conclude with some remarks in Section 4.

2 Preliminaries

In this sections we introduce some basic notions of digital geometry to be used
in the sequel. We conform to terminology used in [4] (see also [11]).

All considerations take place in the grid cell model that consists of the grid
cells of Zn, together with the related topology. In the grid cell model we represent
n-cells as hyper-cubes, called hyper-voxels, or voxels, for short. Their edges and
vertices are 1-cells and 0-cells, respectively. For every i = 0, 1, . . . , n, the set of
all cells of dimension i (or i-cells) is denoted by C(i)

n . Further, we define the space
Cn =

⋃n
k=0 C(i)

n . We say that two n-cells e, e′ are k-adjacent for 0 ≤ k ≤ n − 1
if they share a k-cell. Two n-cells are strictly k-adjacent if they are k-adjacent
but not (k + 1)-adjacent.

A digital object S ⊂ Cn is a finite set of n-cells. A k-path (0 ≤ k ≤ n−1) in S
is a sequence of voxels from S such that every two consecutive voxels on the path
are k-adjacent. Two voxels of a digital object S are k-connected (in S) iff there is
a k-path in S between them. A subset G of S is k-connected iff there is a k-path
connecting any two pixels of G. The maximal (by inclusion) k-connected subsets
of a digital object S are called k-components of S. Components are nonempty,
and distinct k-components are disjoint.

The grid cell model can be considered as an abstract cell complex (Cn, <, dim)
(see [12]), where < is a bounding relation, that is antisymmetric, irreflexive, and
transitive, and such that for every e, e′ ∈ Cn, e < e′ if and only if eIe′ and
dim(e) < dim(e′). The relation < is a partial order on Cn. The corresponding
order topology τ(<) is called the grid cell topology.1 In the rest of the paper,
1 In that topology the open sets are precisely the sets U ⊆ Cn, such that, for every

u ∈ U and every v ∈ Cn with u < v, we have v ∈ U .
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we will assume that the abstract cell complex (Cn, <, dim) is equipped with the
topology τ(<). Then, for any subset A of Cn, its boundary ∂A is defined as the
set of all points x of Cn such that every open neighborhood of x meets A and
Cn \A, while its interior int(A) is the set of all points x of Cn such that there
exists some open neighborhood of x contained in A. The points of int(A) will
be called internal points of A.

Given a digital object S, note that its closure S̄ is naturally a subcomplex of
Cn. In the sequel, we will denote by Sk the set of k-cells of S̄, i.e., Sk = S̄∩C(k)

n .
In particular, we have Sn = S̄ ∩C(n)

n = S.

3 Combinatorial Relations

In this section we first introduce the notions of tandem, gap, and brim of arbi-
trary dimension. Then we obtain a formula for the number of gaps of maximal
dimension and a combinatorial relation for digital curves.

3.1 Tandems, Gaps, and Brims

A 2× · · · × 2︸ ︷︷ ︸
k

× 1× · · · × 1︸ ︷︷ ︸
n−k

grid parallelepiped in Cn will be called 2k1n−k-block

(0 ≤ k ≤ n). In particular, any voxel is a 1n-block. See Figure 1a for illustrations.

(a) (b) (c)

Fig. 1. Illustration to some notions in 3D. (a) Top: 23-block; Bottom: 2211-block. (b)
Top: 0-tandem; Bottom: 1-tandem. (c) Top: Configuration exposing a 0-gap (in two
different orientations); Bottom: Configuration exposing a 1-gap.

Now we are able to give the following definition.

Definition 1. A pair tk = (v1, v2) of two strictly k-adjacent voxels v1 and v2,
for 0 ≤ k ≤ n − 1, is called a k-tandem. Then the complement of tk w.r.t. a
2n−k1k-block, for 0 ≤ k ≤ n− 2, determines a k-gap of S.
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Remark 1. Technically, the complement of an (n− 1)-tandem to a 211n−1-block
can be considered as a (n − 1)-gap. These are similar to “tunnels” known in
classic combinatorial topology, see [4]. Since tunnels are well-studied object of
essentially diverse type, we will not consider them here.

There are n − 1 types of gaps: 0, 1, 2, . . . , and (n − 2)-gaps. For a given digital
object S, the number of its tandems and gaps will be denoted by b0, b1, . . . , bn−1

and g0, g1, . . . , gn−2, respectively. Figure 1b,c illustrates tandems and gaps in
dimension three.

(a) (b)

Fig. 2. (a) Possible 1-brims in 2D. (b) Possible 2-brims in 3D.

In the sequel we will also use the following technical notion.

Definition 2. Let c ∈ ∂Sk−1 for some k (1 ≤ k ≤ n) and let bk(c) be the set
of elements of ∂Sk incident to it. Then the pair brk(c) = (c, bk(c)) is called a
k-brim of S. We will say that brk(c) is hinged on c.

Basically, k-brims of a digital object delineate its “k-dimensional” boundary. A
set of voxels in a digital object will be called configuration. Figure 2 displays
possible configurations of pixels/voxels that expose 1-brims in C2 and 2-brims
in C3. (Note that there is one-to-one correspondence between both. There are
19 distinct configurations of voxels that expose 1-brims in C3.)

3.2 Formula for the Number of (n − 2)-Gaps

For a given digital object S ⊂ Cn, let si = |Si|, 0 ≤ k ≤ n. In this section we
prove the following theorem.

Theorem 1. For a given digital object S ⊂ Cn,

gn−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2 + b, (2)

where b is the number of 221n−2-blocks of S.

Proof. For any c ∈ Sk−1, 1 ≤ k ≤ n− 1, we define

Ik(c) = {c′ ∈ Sk : c is incident with c′}.
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We also define

intSk−1 ={c ∈ Sk−1 : c ∈ intS}
∂Sk−1 ={c ∈ Sk−1 : c ∈ ∂S}
∂Sk ={c ∈ Sk : c ∈ ∂S}

It is easy to see that a (k − 1)-cell belongs to intSk−1 iff it is incident with
2n−(k−1) n-cells of S. Otherwise, it belongs to the boundary of S.

For c ∈ Sn−1 we can consider In(c) = {c′ ∈ Sn : c is incident with c′}. The
possible values for |In(c)| are 1 and 2. More precisely, we have

intSn−1 ={c ∈ Sn−1 : In−1(c) = 2}
∂Sn−1 ={c ∈ Sn−1 : In−1(c) = 1}
Sn−1 = intSn−1 ∪ ∂Sn−1

Let us denote sint
n−1 = |intSn−1|, and s∂

n−1 = |∂Sn−1|. Then sn−1 = sint
n−1 + s∂

n−1.
Since every n-cell of S is incident with 2n (n− 1)-cells from Sn−1, we obtain

2n|S| = s∂
n−1 + 2sint

n−1.

From here we get

sint
n−1 = nsn −

s∂
n−1

2
.

Next we consider incidence relations between elements of ∂Sn−1 and Sn−2.
For any c ∈ Sn−2 we consider the brim hinged on c:

brn−1(c) = {c′ ∈ ∂Sn−1 : c is incident with c′}.

The possible values for |brn−1(c)| are 0, 2, and 4. This partitions Sn−2 as follows:

Sn−2 = S0
n−2 ∪ S2

n−2 ∪ S4
n−2, (3)

where Si
n−2 = {c ∈ Sn−2 : |brn−1(c)| = i}, for i = 0, 2, 4. If denote s̄i

n−2 =
|Si

n−2|, i = 0, 2, 4, we get sn−2 = s̄0n−2 + s̄2n−2 + s̄4n−2. From here, we obtain
s̄2n−2 = sn−2 − s̄0n−2 − s̄4n−2.

Every cell x ∈ S∂
n−1 is incident with 2(n− 1) cells y ∈ Sn−2. Then it follows

that

2(n− 1)s∂
n−1 =4s̄4n−2 + 2s̄2n−2 = 4s̄4n−2 + 2(sn−2 − s̄0n−2 − s̄4n−2) =

=2s̄4n−2 + 2sn−2 − 2s̄0n−2

from where we obtain

s∂
n−1 =

s̄4n−2 + sn−2 − s̄0n−2

n− 1
.

Then

sn−1 = sint
n−1 + s∂

n−1 = nsn −
s∂

n−1

2
+ s∂

n−1 = nsn +
s∂

n−1

2
,
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i.e.,

sn−1 = nsn +
s̄4n−2 + sn−2 − s̄0n−2

2(n− 1)
. (4)

Thus
2(n− 1)sn−1 = 2n(n− 1)sn + s̄4n−2 + sn−2 − s̄0n−2,

and
s̄4n−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2 + s̄0n−2.

We also have the following fact.

Fact 1. For any n ≥ 2, the sets of (n− 2)-gaps and (n− 2)-tandems are deter-
mined by the same configurations.

Then it is enough to observe that s̄4n−2 = gn−2 is the number of (n − 2)-gaps
(that are also (n− 2)-tandems) and s̄0n−2 = b the number of 221n−2-blocks of S,
and we obtain the result stated. ��
Note that for n = 2 the only gaps in S are the 0-gaps. For this case equality (4)
has the form s1 = 2s2 + 1

2 (g0 + s0 − b), where b is the number of (2× 2)-blocks
in S. Now, by Euler-Poincaré characteristic we have s0− s1 + s2 = β0− β1 + β2,
where β0, β1, β2 are the Betti numbers [4]. From here we get s2 − (2s2 + 1

2 (s0 −
b+ g0)) + s0 = β2 − β1 + β0.

Since S is homotopic to a 1D CW-complex, we have β2 = 0 . Moreover, β0 is
the number of connected components of S, while β1 is the number of its holes.
From here we immediately obtain formula (1).

3.3 Relations for Digital Curves

A digital curve admits various equivalent definitions [13]. One of them is the fol-
lowing. A simple digital k-curve is a set Γ = {c1, c2, . . . , cl} of voxels that satisfy
the following two axioms: (A1) ci is k-adjacent to cj iff i = j ± 1(modulo l),
and (A2) ρ is one-dimensional with respect to k-adjacency. To get acquainted
with the classical definition of dimension of a digital object the reader is re-
ferred to [14]. For further developments and various results see [13, 4] and the
bibliography therein. For example, we have the following:

Fact 2. Let M be a finite set of pixels which is one-dimensional with respect to
0-adjacency. Then M does not contain any 221n−2-block.

Figure 3 illustrates curves in C2 and C3.

Theorem 2. Let Γ ⊂ Cn be a digital 0-curve. Then:

gn−2 = −2n(n− 1)sn + 2(n− 1)sn−1 − sn−2.

Moreover, letting b0, . . . bn−1 be the number of its k-tandems, for 0 ≤ k ≤ n− 1
we have the relation

sk = 2n−k

(
n

k

)
sn −

n−k−1∑
i=0

2i

(
k + i

k

)
bi+k (5)
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Fig. 3. Simple closed curves in C2 (left) and C3 (right)

Proof. Let Γ = 〈c1, c2, . . . , cm〉 be a closed digital 0-curve, i.e., it satisfies
conditions (A1) and (A2) and Fact 2 applies, as well. None that Γ consists of
consecutive tandems of the form (c1, c2), (c2, c3), . . . , (cm−1, cm), (cm, c1).

The first assertion follows immediately from Theorem 1 and Fact 2.
For the second assertion, let c be a k-cell for k �= n.
We say that c is a totally boundary cell if c is incident with exactly one n-cell.

If c is not totally boundary, then c belongs to the closure of the shared face of a
tandem tj in dimension j ≥ k; we then say that c is involved in tj .

Since Γ is a 0-curve, every k-cell is incident with at most two n-cells and,
thus, every non totally boundary cell is involved in exactly one tandem. Now
the number of k-cells involved in a j-dimensional tandem tj is easily seen to be
2j−k

(
j
k

)
. Therefore the number of non totally boundary cells sntb

k is:

sntb
k = bk + 2

(
k + 1
k

)
bk+1 + . . .+ 2n−1−k

(
n− 1
k

)
bn−1, (6)

whereas the number of totally boundary k-cells is given by stbk = sk−sntb
k . Since

every n-cell is incident with 2n−k
(
n
k

)
k-cells, we have:

2n−k

(
n

k

)
sn =1 · stbk + 2 · sntb

k

=sk + sntb
k (7)

The second assertion now follows straightforwardly from eq. (6) and eq. (7). ��
Remark 2. Note that (n−2)-gaps are the only gaps a digital curve Γ may have.
Note also that if Γ is a digital (n−2)-curve,2 then the number of (n−2)-gaps of
Γ matches the number of “linear segments” into which Γ can be decomposed.

Remark 3. Since Γ is a closed curve, its Euler-Poincaré characteristic χ(Γ ) is
zero. We then have:

0 = χ(Γ ) =
n∑

k=0

(−1)ksk

2 That is, any two consecutive voxels of Γ are (n− 2)-adjacent.
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Fig. 4. Sample output of the computer program

Using the expression for the si found in eq. (5), we recover, after elementary
manipulations, the not-surprising relation:

sn = b0 + b1 + . . .+ bn−1

The used approach allows to obtain similar (although more complex and thus
less compact and elegant) relations for k-curves with k �= 0, as well as for arbi-
trary digital object.

3.4 Experimental Software

The theoretical results described in the previous sections have been supported
and verified by an experimental computer program.

Given a digital picture S represented by the coordinates of its voxels, our
program takes as an input a file with the list of the voxel coordinates. It outputs
the number of the 0-, 1-, and 2-facets, 2211-blocks, and 0- and 1-gaps of S. Com-
putation of the number of the 0-/1-gaps is performed by appropriate scanning
of S by 2 × 2 × 2-cubes/2 × 2 × 1- blocks and counting the distinct gaps. The
number of 1-gaps can alternatively be found by using formula (2).

The program is written in Visual Studio C++ 6.0 and uses OpenGL. It runs
under Windows 98 or higher. It allows to visualize the digital picture S and to
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interactively rotate it along the Ox-, Oy-, and Oz- axes so that the object can be
seen from different viewpoints. In Figure 4, a snapshot of the running program
is displayed.

4 Concluding Remarks

In this paper we provided a rigorous definition of gaps in a digital picture and
derived a formula for the number of (n−2)-gaps, as well as certain combinatorial
relations for digital curves. A supporting computer program has been developed
as well.

Knowledge of the number of gaps of maximal dimension can be useful in
several aspects. Among these we would like to mention an application to the well-
known polyhedron decomposition problem [15, 16], that is to partition a given
non-convex polyhedron into as small as possible number of convex polytopes.
Specifically, let P be the rectilinear polyhedron defined as a union of a set of
voxels of C3. It is not hard to see that the number of gaps in the discrete
surface constituted by the boundary voxels of P is an upper bound for the
number r of “notches” of P , that are locations causing non-convexity.3 The fact
is that all bounds on the number of convex polytopes obtained by decomposition
algorithms are in terms of that parameter r. A more careful study of this aspect
is seen as a further task. Another one is seen in seeking approaches that would
allow to obtain more compact characterizations of lower dimensional gaps in
digital pictures.
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Universidad de Sevilla, Seville, Spain

{rogodi, belenmg, fjsp, real}@us.es
http://www.us.es/gtocoma

Abstract. In this paper, algorithms for computing integer (co)homology
of a simplicial complex of any dimension are designed, extending the work
done in [1, 2, 3]. For doing this, the homology of the object is encoded
in an algebraic-topological format (that we call AM-model). Moreover,
in the case of 3D binary digital images, having as input AM-models for
the images I and J , we design fast algorithms for computing the integer
homology of I ∪ J , I ∩ J and I \ J .

1 Introduction

Efficient algorithms for computing topological information are powerful tools in
the fields of Data Mining, Pattern Recognition, Geometric Modeling and nD
Digital Image Processing. Nevertheless, topological notions (such as the cup
product on cohomology, cohomology operations, fundamental group, homotopy
groups, etc) are hard to adapt into an n-dimensional discrete framework; and
the number of available computational tools are limited. It is a fact that the cup
product on cohomology is a topological invariant which contains more informa-
tion than homology groups when we deal with an object of dimension greater
than or equal to 3. Since cohomology is essentially an algebraic notion, it seems
reasonable to encode it using a classical algebraic-topological cover: chain homo-
topy equivalences. In the setting of Simplicial Topology, we use here this extra
algebraic-topological information (that we will define as an AM-model for a sim-
plicial complex) to compute the cup product on integer cohomology as well as
cohomological numbers derived from it, extending the work developed in [1, 2].
Our computational approach follows the philosophy of the Effective Homology
Theory developed by F. Sergeraert in [4, 5]. In particular, we prove that all
the algorithms for computing integer homology based in the matrix reduction
method to Smith normal form (for example [6, 7, 8, 9]) can be translated to our
setting with no extra computational cost in time. Finally, we successfully apply
this computational algebraic topological approach to 3D binary digital images
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and we prove that a suitable extended notion of AM-model for binary 3D dig-
ital images can be reused under voxel-set operations (union, intersection and
difference).

2 Integer Homology, Chain Contractions and AM-Models

In [9], an algorithm improving the efficiency of the classical integer reduction
homology algorithm is described. Their technique is mainly based on the re-
sults of [8], in which a matrix reduction to integer Smith normal form is deter-
mined in an efficient way. There is no problem for translating this method to our
framework since it consists in constructing a chain homotopy equivalence from
the previously calculated Smith normal form, without additional computational
cost. Moreover, our strategy of saving more algebraic information outperforms
the previous algorithms for computing integer homology in several points such
as: 1) cohomological features can be computed; 2) we can efficiently control the
topological changes after addition or deletion of simplices.

First, we give a brief summary of concepts and notations. The terminology
follows Munkres book [6]. We will consider that the ground ring is Z.

Simplicial Complexes. Considering an ordering on a vertex set V , a q–simplex
with q + 1 affinely independent vertices v0 < · · · < vq of V is the convex hull
of these points, denoted by 〈v0, . . . , vq〉. If i < q, an i–face of σ is an i–simplex
whose vertices are in the set {v0, . . . , vq}. A simplex is maximal if it does not
belong to any higher dimensional simplex. A simplicial complex K is a collection
of simplices such that every face of a simplex of K is in K and the intersection
of any two simplices of K is a face of each of them or empty. The set of all the
q–simplices of K is denoted by K(q). The dimension of K is the dimension of
the highest dimensional simplex in K.

Chains and Homology. Let K be a simplicial complex. A q–chain a is a
formal sum of simplices of K(q). The q–chains form the qth chain group of K,
denoted by Cq(K). The boundary of a q–simplex σ = 〈v0, . . . , vq〉 is the (q − 1)–
chain: ∂q(σ) =

∑q
i=0(−1)i〈v0, . . . , v̂i, . . . , vq〉, where the hat means that vi is

omitted. By linearity, ∂q can be extended to q–chains. The collection of boundary

operators connect the chain groups Cq(K) into the chain complex C(K): · · · ∂2→
C1(K) ∂1→ C0(K) ∂0→ 0. An essential property is that ∂q∂q+1 = 0. In a more

general setting, a chain complex C is a sequence · · · d2−→ C1
d1−→ C0

d0−→ 0 of
abelian groups Cq and homomorphisms dq, such that for all q, dqdq+1 = 0 . The
set of all the homomorphisms dq is called the differential of C. A q–chain a ∈ Cq

is called a q–cycle if dq(a) = 0. If a = dq+1(a′) for some a′ ∈ Cq+1 then a is
called a q–boundary. Denote the groups of q–cycles and q–boundaries by Zq and
Bq respectively. Define the qth homology group to be the quotient group Zq/Bq,
denoted by Hq(C). We say that a is a representative q–cycle of a homology
generator α if α = a + Bq. We denote α = [a]. The qth betti number βq is the
rank of the free part of Hq(C). Intuitively, β0 is the number of components of
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connected pieces, β1 is the number of independent “holes” and β2 is the number
of “cavities”.

Chain Contractions. A chain contraction [10] of a chain complex C to a chain
complex C′ is a set of three homomorphisms (f, g, φ) such that: f : C → C′ and
g : C′ → C are chain maps; fg is the identity map of C′; and φ : C → C is a chain
homotopy of the identity map id of C to gf , that is, φ∂ + ∂φ = id− gf . In this
case, C and C′ have isomorphic homology groups [6, p. 73].

AM-Models. An AM-model for a simplicial complex K is the set (C,M, f, g, φ)
where C is a basis of C(K), M is a subset of generators of C(K) and (f, g, φ)
is a chain contraction from C(K) to M(K) where M(K) is the chain complex
generated byM with differential ∂|M(K) such that in each dimension q, the matrix
A of the differential ∂q|M(K) coincides with its Smith normal form and satisfies
that any non-null entry of A is greater than 1. Moreover, if the homology is free
or the ground ring is a field, then M(K) is isomorphic to the homology of K.
It is necessary to emphasize that given a simplicial complex K, it is possible
to define different AM-models for K since the chain complex M(K) and the
morphisms f , g and φ can admit different formulae.

A translation of the integer reduction homology algorithm in terms of chain
contractions has been made in [11]. Here we rewrite this work using a more al-
gorithmic language. This algorithm consists in reducing the matrix Aq of the
boundary operator in each dimension q, to its Smith normal form A′

q, rela-
tive to some basis {a1, . . . ar} of Cq(K) and {e1, . . . , es} of Cq−1(K) such that
{a�+1, . . . , ar} is a basis of Zq(K), and {λ1e1, . . . , λ�e�} is a basis of Bq−1(K) [6,
pp. 56-61].

Algorithm 1. Computing an AM-model for a Finite Simplicial Complex.

Input: A simplicial complex K of dimension d.
Initially: Cq := K(q), Mq := K(q) and C′

q = { } for 0 ≤ q ≤ d,
f(σ) := σ, g(σ) := σ, φ(σ) := 0 for every σ ∈ K.

For q = 1 to q = d do
Reduce the matrix Aq of the boundary operator ∂q relative to
the basis Cq and Mq−1 to its Smith normal form A′

q relative
to some basis {a1, . . . , ar} of Cq and {e1, . . . , es} of Mq−1 where:
∂q(ai) = ei, for 1 ≤ i ≤ t ≤ min (r, s);
∂q(ai) = λiei, λi ∈ R, for t < i ≤ � ≤ min (r, s);
and ∂q(ai) = 0 for � < i ≤ r.
Define Cq−1 := C′

q−1 ∪ {e1, . . . , es}, Mq−1 := {et+1, . . . , es},
Cq := {a1, . . . , ar}, C′

q := {a1, . . . , at}, Mq := {at+1, . . . , ar},
f(ai) := 0, f(ei) := 0 and φ(ei) := ai for 1 ≤ i ≤ t.

Output: The set (C0 ∪ · · · ∪Cd,M0 ∪ · · · ∪Md, f, g, φ).

The following result shows that although M(K) is not isomorphic to the
homology of K, we can directly obtain the integer homology from it.

Theorem 2. Let K be a finite simplicial complex of any dimension. The set
(C0 ∪ · · · ∪ Cd,M0 ∪ · · · ∪Md, f, g, φ) defines an AM-model for K, being C =
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C0 ∪ · · · ∪ Cd a basis of C(K), M(K) the chain complex generated by M =
M0∪· · ·∪Md and with differential ∂|M(K), and (f, g, φ) a chain contraction from
C(K) to M(K). Moreover, the integer homology of K and integer homology
generators can be directly obtained from M and ∂|M(K).

If K has m simplices, an AM-model for K can be computed in time and
storage O(m3).

Fig. 1. The Klein bottle and a triangulation of it

Example 1. Consider the simplicial complex K in Figure 1 whose underlying
space is the Klein bottle [6, p. 283]. Running the algorithm above, we obtain
that the vertex 〈a〉 belongs to C0 andM0(K), the cycles α1 := 〈a, b〉+〈b, c〉−〈a, c〉
and α2 := 〈a, d〉+ 〈d, e〉− 〈a, e〉 belong to C1 and M1; and the 2-chain consisting
in the sum of all the triangles in K, β := −〈a, b, f〉−〈b, c, f〉+〈a, c, g〉−〈a, e, g〉+
〈e, g, i〉 − 〈e, d, i〉 + 〈c, d, i〉 − 〈a, c, d〉 + 〈b, c, i〉 + 〈a, b, h〉 − 〈a, e, h〉 − 〈e, d, f〉 +
〈a, d, f〉 + 〈c, f, g〉 − 〈f, g, h〉 − 〈h, g, i〉 − 〈b, h, i〉, is an element of C2 and M2.
The rest of the elements of C0 are the boundaries of the 1-simplices marked in
blue in Figure 1. These 1-simplices are also elements of C1. Denote by x one of
these 1-simplices. The rest of the elements of C1 are the boundaries of all the
2-simplices except for 〈f, g, h〉. These 2-simplices belong to C2. Denote by y one
of these 2-simplices. The images of the maps (f, g, φ) on the generators of C(K)
and M(K) are described in the table below:

C M f g φ
〈a〉 〈a〉 〈a〉 〈a〉 0
α1 α1 α1 α1 0
α2 α2 α2 α2 0
β β β β 0
x 0 0
∂x 0 x
y 0 0
∂y 0 y

Summing up, M0 = {〈a〉}, M1 = {α1, α2} and M2 = {β}. Moreover, ∂(〈a〉) = 0,
∂(α1) = 0, ∂(α2) = 0 and ∂(β) = 2α2. Therefore we obtain that H0(K) ) Z,
H1(K) ) Z ⊕ Z/Z2 and representative cycles of the homology generators are
〈a〉 for H0(K), α1 for the free part of H1(K) and α2 for the torsion part.

3 Cohomology Computations with Integer Coefficients

In this section, we extend the work done in [11,1,2] (with coefficients in a field)
for computing cohomology features over the coefficient domain Z. The interest
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for computing cohomology (the dual notion of homology) is that cohomology has
an additional multiplicative structure, the cup product, from which we can derive
finer invariants than homology. Observe that working with coefficients in a field,
homology groups are free and isomorphic to cohomology groups. Nevertheless,
working with coefficients in Z, homology and cohomology of simplicial complexes
can have torsion part and, in this case, they are not isomorphic.

Cochains and Cohomology. Let C be a chain complex. The cochain complex
C∗ in each dimension q is the group of q–cochains with coefficients in Z, Cq =
{c : Cq → Z such that c is a homomorphism}. If {a1, . . . , an} is a basis of Cq

then a basis of Cq is {a∗1, . . . , a∗n}, where a∗i : Cq → Z is given by a∗i (ai) = 1 and
a∗i (aj) = 0 for 1 ≤ i, j ≤ n and j �= i. For each q, the differential dq+1 on Cq+1

induces the codifferential δq : Cq → Cq+1 via δq(c) = cdq+1, so that δq raises
dimension by one. Define Zq to be the kernel of δq and Bq+1 to be its image.
These groups are called the group of q–cocycles and q–coboundaries, respectively.
Define the qth cohomology group, Hq(C) = Zq/Bq for q ≥ 0.

The following result shows that we can directly obtain the integer cohomology
of K from an AM-model for it. This assertion is not given in [11, 1, 2].

Theorem 3. Let K be a finite simplicial complex of any dimension. Given an
AM-model (C,M, f, g, φ) for K, the integer cohomology of K and integer coho-
mology generators can be directly obtained from M and ∂|M(K).

Example 2. Consider the AM-model (C,M, f, g, φ) obtained in Example 1 for
the simplicial complex K whose underlying space is the Klein bottle. Start-
ing from the chain complex M(K) whose basis is {〈a〉, α1, α2, β} and dif-
ferential ∂|M(K), we construct in an straightforward way the cochain com-
plex M∗(K) whose basis is {〈a〉∗, α∗

1, α
∗
2, β

∗} and codifferential δ given by:
δ(〈a〉∗) = 〈a〉∗∂|M(K) = 0, δ(α∗

1) = α∗
1∂|M(K) = 0, δ(α∗

1) = α∗
2∂|M(K) = 2β∗,

δ(β∗) = β∗∂|M(K) = 0. Therefore we obtain that H0(K) ) Z, H1(K) ) Z and
H2(K) ) Z/Z2; and the generators are: 〈a〉∗ for H0(K), α∗

1 for H1(K) and β∗

for H2(K).

Cup Product. The cochain complex C∗(K) is a ring with the cup product �:
Cp(K)×Cq(K)→ Cp+q(K) given by: (c � c′)(〈v0, . . . , vp+q〉) = c(〈v0, . . . , vp〉)·
c′(〈vp, . . . , vp+q〉). It induces an operation �: Hp(K)×Hq(K)→ Hp+q(K), via
[c] � [c′] = [c � c′], that is bilinear, associative, commutative up to a sign,
independent of the ordering of the vertices of K and homotopy-type invariant [6,
p. 289].

Working with coefficients in Z/Z2, a new cohomology invariant called HB1
is obtained in [1, 2]. The idea is to put into a matrix form the multiplication
table of the cup product of cohomology generators of dimension 1. The following
algorithm compute HB1 working with integer coefficients. Assuming that K has
m simplices, the complexity of this algorithm is O(m6). This algorithm is an
straightforward extension of that given in [1, 2].

Algorithm 4. Algorithm for computing HB1 with integer coefficients.
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Input: An AM-model (C,M, f, g, φ) for a simplicial complex K.
Let {α1, . . . , αp} and {β1, . . . , βm} be the set of 1 and 2-cycles in M.
For i = 1 to p do

For j = i to p do
For k = 1 to m do

b((i,j),k) := (α∗
i f � α∗

jf)(g(βk)).
HB1:= the rank of the 2D matrix of integers B(p(p+1)/2)×m = (b((i,j),k)).
Output: The integer HB1.

The implementation of the algorithms described above working with coefficients
in Z/Z2 has been made by J. Sánchez-Peláez and P. Real. We have tested
it on several 3D objects. We give here an example of the computation of the
cohomology, cohomology generators and the invariant HB1.

Example 3. Consider the simplicial complex T whose underlying space is showed
in Figure 2 (on the left). It consists in 11847 simplices. The running time for
computing an AM-model for T and the homology of T using a Pentium 4, 3.2
GHz, 1Gb RAM was 2 seconds. We obtain that β0 = 1, β1 = 4 and β2 = 3.
The running time for computing the cup product was 1.5 seconds. In Figure 2
(on the center), the 1 and 2-simplices on which the representative cocycles are
non-null are drawing. The table on the right of Figure 2 shows the results of the
cup product of any two cohomology generators of dimension 1. Finally, HB1= 2.

Fig. 2. The simplicial complex T , representative cocycles of the generators of H1(T )
and H2(T ) and the multiplication table of the cup product

4 AM-Models for 3D Digital Images

Three dimensional digital images are usually captured into the cubic grid or
computed from 2D projections. There are, however, capturing techniques such
as CT or MRI to produce images into other grids, such as the face-centered cubic
(fcc) and the body-centered cubic (bcc) grids [12]. An important issue in Digital
Volume Processing is to design efficient algorithms for analysis and processing
in these grids, since it is very easy to obtain data structures for the fcc and bcc
grids. On the other hand, the only Voronoi adjacency relation on the bcc grid
is the 14–adjacency. Using this adjacency, it is straightforward to associate to a
digital image I, a unique simplicial complex K(I) (up to isomorphism) with the
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same topological information as I. The i–simplices of K(I) (i ∈ {0, 1, 2, 3}) are
constituted by the different sets of i mutually 14–neighbor black points in I.

Definition 1. Let I be a 3D binary digital image. An AM-model for I is defined
as an AM-model for its simplicial representation K(I).

Since simplicial complexes considered in this section are embedded in R3, their
homology groups vanishes for dimensions greater than 3 and they are torsion–
free for dimensions 0, 1 and 2 (see [13, ch.10]). Therefore the chain complex
M(K(I)) is isomorphic to the homology of I.

In the following table we present the running time for computing integer
homology generators of the 3D digital images showed in figure 3. We have to
say that these images have been created in a cubic grid. For these reason, we
consider a special 14-adjacency in the cubic grid in the way that it is isomorphic
to the bcc grid.

Image I Number of voxels in I Time for computing β0 β1 β2

A 26308 50 seconds 2 9 3
B 31012 38 seconds 138 419 13
C 18842 27 seconds 1 277 5

Fig. 3. The 3D digital images A, B and C

Fig. 4. Representative cycles of the homology generators of the images A, B and C
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4.1 Computing “Good” Homology Generators

In [14], algorithms for obtaining “optimal” generators of the first homology group
are developed using Dijkstra’s shortest path algorithm for any oriented 2-mani-
folds. Here, in the context of digital volumes we sketch some techniques for
drawing “good” representative cycles of homology generators.

Given an AM-model (K(I),MI , fI , gI , φI) for a 3D digital image I, we say
that x is the representative cycle of the generator h ∈ MI obtained by gI if
gI(h) = x. Our interest now is to get a new AM-model (K(I),M ′

I
, f ′

I
, g′

I
, φ′

I
)

with “good” representative cycles of homology generators obtained by g′
I
. This

means that each representative cycle obtained by g′I belongs to the boundary of
the image ∂I (it is constituted by the set of black voxels in I with a 14-neighbor
white voxel). Moreover, it is required that in dimension 0, it must be a vertex;
in dimension 1, an elementary cycle (it is connected, each vertex is shared by
exactly two edges and two consecutive edges can not belong to the same triangle
in K(I)) and in dimension 2, an elementary cavity (it is a connected 2-cycle
with exactly one white connected component inside and three triangles can not
belong to the same tetrahedra).

Now, for obtaining good representative cycles of homology generators we can
use the following new result.
Lemma 1. Let (K,M, f, g, φ) be an AM-model for a simplicial complex K. Let h
be a generator of M and x a chain in C(K) such that x = g(h). Let x′ be a chain
in C(K) such that ∂(x′) = 0 and f(x′) = h. Then, it is possible to define a new
AM-model (K,M, f ′, g′, φ′)) for K such that g′(h) := x′ as follows: g′(h) := x′

and g′(z) := z if z �= h; φ′(x) := φ(x′), φ′(x′) := φ(x) and φ′(z) := φ(z) for all
z �= x′, x.

If we change the basis of M(K) and/or the basis of C(K), it is straightforward
to obtain a new AM-model for K.
Now, suppose we have an AM-model (K(I),MI , fI , gI, φI) for I at hand. First of
all, we compute an AM-model for ∂I, (K(∂I),M∂I, f∂I , g∂I , φ∂I). If the elements
of M∂I are denoted by {α1, . . . , αn} then the set of representative cycles obtained
by g∂I is S∂I = {g∂I(α1), . . . , g∂I(αn)}. Since all the homology generators of I
are homology generators of ∂I, find a subset M ′

I
of {fIg∂I(α1), . . . , fIg∂I(αn)},

which is a basis of M(K(I)). Obtain the new AM-model (K(I),M ′
I , f

′
I , g

′
I , φ

′
I)

for I using Lemma 1. Now, denote by SI = {c1, . . . , cm} the set of all the repre-
sentative cycles obtained by g′I which is a subset of S∂I . Decompose and replace
each 0-cycles in SI by its constitutive vertices, each 1-cycle by its elementary
cycles and each 2-cycle by its elementary cavities. Let M ′′

I
:= { }. For each cycle

s in SI , if {f ′
I(s)}

⋃
M ′′

I is a linearly-independent set then M ′′
I := {fI(s)}

⋃
M ′′

I ;
otherwise, M ′′

I
:= M ′′

I
. Obtain the new AM-model (K(I),M ′′

I
, f ′′

I
, g′′

I
, φ′′

I
) us-

ing Lemma 1. Then, (K(I),M ′′
I
, f ′′

I
, g′′

I
, φ′′

I
) is an AM-model for I with “good”

representative cycles of homology generators of I.

4.2 AM-Models After Adding or Deleting a Voxel

Now, we study the problem of topologically controlling a digital image using
AM-models when it suffers local changes (addition or deletion of one voxel).
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More concretely, we show how to compute an AM-model for a digital image
when a voxel is added or deleted using the algebraic-topological information
computed before. Assuming that I hasm voxels, the complexity of the algorithms
in this subsection is O(m2). The key idea for both algorithms is that when a
q-simplex is added to or deleted from an AM-model of K, we only have to put
into a Smith normal form the matrix of ∂q for obtaining the new AM-model.
Moreover, take into account that adding or deleting a voxel v of I means to
add or delete a set of simplices of K(I ∪ {v}) having v as a vertex. Since we
work with simplicial complexes representing 3D digital images considering the
14-adjacency, the maximum number of simplices having v as a vertex is 74.

Let (K,M, f, g, φ) be an AM-model for a simplicial complex K. The differen-
tial of M(K) is null since the homology is torsion free. Moreover, the value of
all the possible non-null entries of the Smith normal form of the matrix of the
differential of C(K) in each dimension only can only be 1.

AM-Models After Adding a Voxel. As we have mentioned before, the ad-
dition of a voxel v to I means the addition to K(I) of all the simplices of
K(I ∪ {v}) \K(I). In each step of the process, one simplex is added. Assuming
that I has m voxels, the following algorithm computes an AM-model for the
image I ∪ {v} with integer coefficients in O(m2).

Algorithm 5. Incremental Algorithm for computing an AM-model for a 3D
Binary Digital Image.

Input: An AM-model AMMI = (K(I),M, f, g, φ) for I and a voxel v �∈ I.
Let {σ1, . . . , σn} (n ≤ 74) be the ordered-by-increasing-dimension set
of all the simplices of K(I ∪ {v}) \K(I).
K0 := K(I).
For i = 1 to i = n do:

Let q be the dimension of σi; let Cq = {a1, . . . , ar},
Mq = {at+1, . . . , ar}, Cq−1 = {e1, . . . , es} and Mq−1 = {et+1, . . . , es+1};
let ∂q(aj) = ej for 1 ≤ j ≤ t and ∂q(aj) = 0 for t < j ≤ min (r, s);
let ∂q(σi) =

∑s
�=1 λ�e� where λ� ∈ R.

Define a := σi −
∑t

�=1 λ�a� and Cq := {a1, . . . , ar, a}.
If λ� = 0 for � > t then

f(a) := a, g(a) := a, φ(a) := 0 and Mq := {at+1, . . . , ar, a}.
Else obtain the Smith normal form of the matrix of ∂q

relative to some base {e1, . . . , et, e
′
t+1, . . . , e

′
s} of Cq−1(K).

Define f(a) := 0, φ(a) := 0, φ(e′t+1) := a, f(e′t+1) := 0,
Cq−1 := {e1, . . . , et, e

′
t+1, . . . , e

′
s} and Mq−1 := {e′t+2, . . . , e

′
s}.

Ki := Ki−1 ∪ {σi}.
Output: An AM-model (Kn,M, f, g, φ) for I ∪ {v}.

AM-Models After Deleting a Voxel from a 3D Digital Image. The
deletion of a voxel v from I means the deletion from K(I) of all the simplices
having v as a vertex. In each step of the process one simplex is deleted. Suppose
that an AM-model for a digital image I with m voxeles has been computed and
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after this a voxel is deleted. The following algorithm computes an AM-model for
the image I \ {v} with integer coefficients in O(m2).

Algorithm 6. Decremental Algorithm for computing an AM-model for a 3D
Digital Image I.

Input: An AM-model (K(I),M, f, g, φ) for I and a voxel v ∈ I.
Let {μ1, . . . , μn} (n ≤ 72) be the ordered-by-decreasing-dimension set
of all the simplices of K(I) having v as a vertex.
K0 := K(I).
For i = 1 to i = n do

Let q be the dimension of σi; let Cq = {a1, . . . , ar},
Mq = {at+1, . . . , ar}, Cq−1 = {e1, . . . , es} and Mq−1 = {et+1, . . . , e�+1};
let ∂q(aj) = ej for 1 ≤ j ≤ t and ∂q(aj) = 0 for t < j ≤ min (r, s)
Find the element ak ∈ Cq such that
Cq := {a1, . . . , âk, . . . , ar} is a base of Cq(Ki−1 \ {σi}).
If 1 ≤ k ≤ t then

Mq−1 := {ek, et+1, . . . , e�+1}, f(ek) := ek, g(ek) := ek and φ(ek) := 0.
Else Mq := {at+1, . . . , âk, . . . , ar}.
Ki := Ki−1 \ {σi}.

Output: An AM-model (Km,M, f, g, φ) for I \ {v}.

4.3 AM-Models Under Voxel-Set Operations on 3D Digital Images

In this subsection, we efficiently reuse the AM-model information for digital
images under voxel-set operations (union, intersection and difference).

Let I and J be two digital images. We will not consider these trivial cases:
I = ∅, J = ∅, I ∩ J = ∅, I ⊆ J and J ⊆ I. Let AMMI := (K(I), MI , fI , gI , φI)
and AMMJ := (K(J), MJ , fJ , gJ , φJ) be AM-models for I and J , respectively.

We give now the pseudocode of the algorithms we have developed for com-
puting AM-models for I ∪ J , I ∩ J and I \ J starting from AM-models for I
and J . Denote by FrI(J) = {v1, . . . , vm} the set of all the voxels of I \ J that
are 14-neighbors of a voxel of J . Algorithm 7 is a common preprocessing to the
three voxel-set operations treated here. In this algorithm, an AM-model for the
image I \ FrI(J) is calculated.

Algorithm 7. Preprocessing.

Input: The AM-model AMMI and the set FrI(J) = {v1, . . . , vm}.
Im+1 := I.
For i = m to i = 1 do

apply Algorithm 6 to vi and the AM-model (K(Ii+1),MI , fI , gI , φI).
Ii := Ii+1 \ {vi}.

Output: An AM-model (K(I1),MI , fI , gI , φI) for I \ FrI(J).

For computing an AM-model for I ∪ J , we first compute an AM-model for
(I ∪ J) \ FrI(J) using Algorithm 7 and after that we add the voxels of FrI(J)
using Algorithm 5.
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Algorithm 8. Computing an AM-model for I ∪ J .

Input: The AM-models AMMI for I and AMMJ for J and the set FrI(J).
Apply Algorithm 7 to AMMI and FrI(J) = {v1, . . . , vm}.
Define I0 := (I ∪ J) \ FrI(J);
f(μ) := fJ(μ), φ(μ) := φJ(μ) if μ ∈ K(J);
f(μ) := fI(μ), φ(μ) := φI(μ) if μ ∈ K0 \K(J); M := Imf;
g(α) := gJ(α) if α ∈MJ and g(α) := gI(α) if α ∈M \MJ.
For i = 1 to i = m do

apply Algorithm 5 to vi and the AM-model (K(Ii−1),M, f, g, φ).
Ii := Ii−1 ∪ {vi}.

Output: an AM-model (K(Im),M, f, g, φ) for I ∪ J.

Algorithm 7 is also the essential step for computing an AM-model for I ∩ J .

Algorithm 9. Computing an AM-model for I ∩ J .

Input: The AM-model AMMI for I and the set FrI(J).
Apply Algorithm 7 to AMI and FrI(J).
Define f(μ) := fI(μ) and φ(μ) := φI(μ) if μ ∈ K(I ∩ J);

M := Imf and g(α) := gI(α) if α ∈M.
Output: an AM-model (K(I ∩ J),M, f, g, φ) for I ∩ J.

For computing an AM-model for I \ J , we first apply Algorithm 7. Second,
we consider the voxels that are in I \ (J ∪ FrI(J). Finally, we add the voxels of
FrI(J) using Algorithm 5.

Algorithm 10. Computing an AM-model for I \ J .

Input: The AM-model AMMI for I and the set FrI(J).
Apply Algorithm 7 to AMMI and FrI(J) = {v1, . . . , vm}.
Define I0 := I \ (J ∪ FrI(J); f(μ) := fI(μ) and φ(μ) := φI(μ) if μ ∈ K(I0)

M := Imf; g(α) := gI(α) if α ∈M.
For i = 1 to i = m do

apply Algorithm 5 to vi and the AM-model (K(Ii−1),M, f, g, φ).
Ii := Ii−1 ∪ {vi}.

Output: an AM-model (K(Im),M, f, g, φ) for I \ J.

5 Comments

The algebraic-topological representation of simplicial complexes of any dimen-
sion showed here, allows us to compute topological invariants derived from the
integer cohomology ring. Moreover, we give a positive answer to the problem of
efficiently reusing AM-models for determining homological information of new
3D binary digital images constructed from the previous ones using voxel-set
operations.

There is considerable scope for further research: 1) To compute cohomol-
ogy operations or homotopy groups of simplicial complexes using AM-models.
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2) To suitably extend our method to nD binary digital images in any grid using
simplicial analogous techniques [15, 16, 17, 18].

Potential applications of our particular method in computer vision and dig-
ital image processing involving not only 3D object but also higher dimensional
structures can be encountered in Medical Imaging and Object Modeling. Our
method seems to be especially well adapted to segmentation under topological
constraints and elimination of small topological noise.
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Abstract. In this paper we investigate the lattice properties of several
special, but important subsets of Sn, the set of nD octagonal neighbor-
hood sequences in Zn, with respect to two ordering relations �∗ and �.
Both orderings have some natural meaning, especially �∗ compares the
”speed” how neighborhood sequences spread in Zn. We summarize our
and the previous related results in a table. In particular, our theorems
can be considered as extensions of some results from [1,2,3].

1 Introduction

Motions in the digital space Zn play an important role in several parts of dis-
crete mathematics, including discrete geometry and digital image processing.
The most important and most well-known motions in Z2 are the so-called city-
block (or von Neumann) and the chessboard (or Moore) motions. They are
based upon the classical 4-neighborhood and 8-neighborhood relations, respec-
tively. If we combine these relations in a strictly alternating way, then we get
the so-called octagonal distance. These motions and the induced distance func-
tions were (partly) introduced and extensively studied in the pioneer paper of
Rosenfeld and Pfaltz [4]. Das, Chakrabarti and Chatterji [5] investigated peri-
odic octagonal neighborhood sequences (i.e. arbitrary periodic combinations of
the 4- and 8 neighborhood relations). They performed similar investigations also
in Zn. Such sequences are dealt with in many papers, see e.g. [1,6,5,7,8] and the
references given there. Fazekas, Hajdu and Hajdu [2] extended the theory to the
case of arbitrary octagonal neighborhood sequences, where any (not necessarily
periodic) sequences are considered. Such sequences are much more appropriate
for certain purposes. For example, the authors in [9] constructed digital metrics
on Z2 based upon such sequences, which provide the best approximation to the
Euclidean distance in a certain sense. Using periodic sequences, only some finite
parts of such sequences can be obtained, see e.g. [6, 10].
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In [2] Fazekas, Hajdu and Hajdu described the lattice structure of Sn, the
set of (general) octagonal neighborhood sequences on Zn, with respect to two
ordering relations *∗ and *. The structure of Pn, the subset of Sn consisting
of the periodic octagonal neighborhood sequences was also investigated here.
Further, the same authors in [3] (among other results) described the lattice
structure of Mn, i.e. the set of neighborhood sequences inside Sn which generate
metrics.

In this paper we investigate the lattice structures of some other subsets of
Sn, as well. Our main motivation is to tie up some loose ends in this field,
and also to extend existing results to other subsets, not examined so far. We
start with Un, the set of ultimately periodic octagonal neighborhood sequences.
The study of such sequences is motivated by their importance, as they yield a
natural extension of the periodic sequences. We also refer to the paper of Hajdu,
Hajdu and Tijdeman [11] where such sequences are closely investigated, under
more general circumstances. We also consider the so-called Lyndon sequences
Ln. Such sequences play a central role in many problems of word theory, see
e.g. the book [12]. Finally, as a natural generalization of the sets Pn, Un,Mn

we consider the set Dn consisting of sequences A such that all symbols in A
have densities. Beside these results we provide some theorems for Pn and Mn,
as well. The extension of the investigated families is meaningful in applications,
e.g. for the Un sequences that are generated by finite data. The main interest of
comparing the sequences lies in deciding about their relative spreading speed in
Zn (see also [13]).

The structure of the paper is as follows. In section 2 we introduce some con-
cepts and notation. Section 3 contains our main results summarized in a table,
as well. We give auxiliary results and prove our theorems in section 4.

2 Basic Concepts and Notation

In this section we introduce the necessary notation. First we recall some standard
notions from the theory of words; for more details see e.g. [12,14]. Let Γ be a finite
alphabet. As usual, finite sequences consisting of symbols from Γ are called Γ -
words, or simply words. The concatenation uv of two words u and v is understood
in the well-known way, and by |u| we denote the number of symbols in u. If u
is a word and n ∈ N, then un means the n-fold concatenation uu . . . u. If W is a
(one-sided) infinite sequence of symbols from Γ , then we call W a Γ -sequence,
or simply a sequence. If u is a word and W is a sequence then the concatenation
uW is defined in the classical way, as well as the prefixes and suffixes of words
and sequences. Finally, if u is a word then u denotes the sequence uuu . . ..

Now we introduce some standard notation concerning neighborhood sequen-
ces, see e.g. [5, 2]. Let m,n ∈ N with m ≤ n. The points p = (p1, . . . , pn),
q = (q1, . . . , qn) in Zn are m-neighbors, if the following conditions hold:

– |pi − qi| ≤ 1, for all 1 ≤ i ≤ n,

–
n∑

i=1

|pi − qi| ≤ m.
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The sequence A = (A(i))∞i=1, where A(i) ∈ {1, . . . , n} for all i ∈ N, is called an
n-dimensional (shortly nD) neighborhood sequence. The set of such sequences is
denoted by Sn. Obviously, Sn can be considered as the set of Γ -sequences with
Γ = {1, . . . , n}. For A ∈ Sn and k ∈ {1, . . . , n}, i, j ∈ N with i ≤ j put

k(A, i) = #{A(l) | A(l) = k, l = 1, . . . , i}

and let
k(A, i, j) = k(A, j) − k(A, i).

The density sk of the symbol k in A is defined as

sk(A) = lim
i→∞

k(A, i)
i

, for k ∈ {1, . . . , n},

if the limit exists. We say that A ∈ Sn have density, if sk(A) exists for every
k = 1, . . . , n. In this case s(A) = (s1(A), . . . , sn(A)) is called the density tuple
of A.

If for an A ∈ Sn we have

A = A(1)A(2) . . . A(h)A(h + 1)A(h+ 2) . . . A(h+ l)

for some h, l ∈ N then A is called an ultimately periodic neighborhood sequence.
In case of h = 0, i.e. when A = A(1)A(2) . . . A(l), A is called periodic with period
l. The set of periodic and ultimately periodic sequences is denoted by Pn and
Un, respectively.

Let p, q ∈ Zn and A ∈ Sn. The point sequence p = p0, p1, . . . , pt = q, where
pi−1 and pi are A(i)-neighbors in Zn (1 ≤ i ≤ t), is called an A-path from p to
q of length t. The A-distance d(p, q;A) of p and q is defined as the length of the
shortest A-path(s) between them. As a brief notation, we also use d(A) for the
A-distance. If d(A) is a metric on Zn, then A is called a metrical neighborhood
sequence. The set of such sequences is denoted by Mn.

A neighborhood sequence A ∈ Sn is called a Lyndon sequence if for any
(infinite) suffix B of A, either A = B, or A lexicographically precedes B. The
set of such sequences is denoted by Ln. As it turns out, we have Mn ⊆ Ln. The
literature of (finite) Lyndon words is very extensive; see e.g. [12]. For some basic
results and properties of Lyndon sequences see e.g. [15, 16].

In our structural investigations we examine some subsets of Sn with respect
to two partial orderings, *∗ and * [1, 2]. These orderings are defined in the
following way. For A,B ∈ Sn write A *∗ B if and only if d(p, q;A) ≤ d(p, q;B)
for every p, q ∈ Zn, and set A * B if and only if A(i) ≥ B(i) for every i ∈ N.
Obviously, *∗ is a refinement of *, that is A * B implies A *∗ B for every
A,B ∈ Sn. Further, from [2] we know that if A,B ∈ Sn then A *∗ B if and only
if

j∑
i=1

min{k,A(i)} ≥
j∑

i=1

min{k,B(i)}, for all j ∈ N, k = 1, . . . , n.

We will use this property throughout the paper, without any further reference.
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We also note that it is obvious that d(A) is not a metric on Zn for every
A ∈ Sn. Nagy [17,18] proved that A ∈Mn if and only if B *∗ A for any (infinite)
suffix B of A. We will use this assertion without any further mentioning.

Now we recall a few basic concepts and facts from lattice theory. They also will
be used throughout the paper without any further notice. Let H be a partially
ordered set. We say that H is a lattice, if for any A,B ∈ H the greatest lower
bound A∧B and the least upper bound A∨B of these elements exist. If for any
S ⊆ H the greatest lower bound

∧
S and the least upper bound

∨
S of S also

exist, then the lattice H is called complete. It is well-known that if
∧
S exists

for all subset S of H , then
∨
S also exists for any subset, and vice versa. The

lattice H is distributive, if for any A,B,C ∈ H we have

(A ∧B) ∨ C = (A ∨C) ∧ (B ∨ C) and (A ∨B) ∧ C = (A ∧C) ∨ (B ∧ C).

In our investigations we consider greatest lower bounds and least upper bounds
both with respect to *∗ and *. To make a distinction, the simple notation ∧
and ∨ will refer to *, while in case of *∗ we use ∧∗ and ∨∗. In particular, a
theorem from [2] guarantees that for any A,B ∈ S2 we have

2(A ∧∗ B, i) = min{2(A, i),2(B, i)}

and
2(A ∨∗ B, i) = max{2(A, i),2(B, i)}

for all i ∈ N. A very important remark is that though we will work in several
subsets of Sn, this notation will always refer to the corresponding upper or lower
bounds in Sn.

3 The Lattice Structure of Subsets of Sn

In this section we give our results about the lattice structure of certain special,
but important subsets of Sn. We investigate the lattice structures under both
orderings *∗ and *. We start with noting that the lattice structure of Sn under
these orderings were clarified in [2]; see also Table 1. In particular, (S2,*∗) and
(Sn,*) for n ≥ 2 are complete distributive lattices. However, (Sn,*∗) is not a
lattice for n ≥ 3.

3.1 Periodic Neighborhood Sequences — Pn

We start with the investigation of the simplest and most studied subset of Sn,
i.e. with the set Pn of periodic sequences. For the survey of the related literature
we refer to [2].

As it is known, (Pn,*∗) is not a lattice for any n ≥ 2, while (Pn,*) is a lattice
for every n ≥ 2 (cf. also Table 1). However, it is possible to prove something
”positive” for *∗ also in this case. Namely, we have

Theorem 1. Let 0 ≤ α ≤ 1, and put H = {A ∈ P2 | s2(A) = α}. Then (H,*∗)
is a distributive lattice.
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3.2 Ultimately Periodic Neighborhood Sequences — Un

As a natural extension of periodic sequences, now we consider ultimately periodic
ones. Our first result shows that while (P2,*∗) is not a lattice, the larger set
(U2,*∗) has this property.

Theorem 2. (U2,*∗) is a non-complete distributive lattice.

However, it turns out that for larger values of n the structure of (Un,*∗) is not
so nice, and we get

Theorem 3. (Un,*∗) is not a lattice for n ≥ 3.

The following result shows that the structural behavior of Un with respect to *
is nice, just as in case of Pn.

Theorem 4. (Un,*) is a non-complete distributive lattice for n ≥ 2.

3.3 Metrical Neighborhood Sequences — Mn

From [3] we now that (M2,*∗) forms a complete lattice, which is not distributive.
However, this is the only ”positive” result, as neither (Mn,*∗) with n ≥ 3, nor
(Mn,*) with n ≥ 2 are lattices. Here we provide the following related theorem.
Note that by a result from [9], every A ∈M2 has density.

Theorem 5. Let 0 ≤ α ≤ 1, and set H = {A ∈M2 | s2(A) = α}. Then (H,*∗)
is a complete lattice.

Fazekas, Hajdu and Hajdu in [3] made the observation that for any A,B ∈ M2

we have A∧∗B ∈M2, however, A∨∗B ∈M2 does not always hold. As (M2,*∗)
is a lattice, this implies that for any A ∈ S2 there exists a uniquely determined
B ∈ M2 such that for any C ∈ M2 with C *∗ A we have C *∗ B. This B is
called the metrical closure of A, and is denoted by MC(A) = B. The authors
in [3] derived several properties of the metrical closure, e.g. they provided an
algorithm which generates MC(A) for a fixed A. Now we prove the following
result.

Theorem 6. For any A ∈ P2 we have MC(A) ∈ U2.

Note that by a simple example one can check that A ∈ P2 does not necessarily
implies MC(A) ∈ P2. Further, unfortunately we are not able to prove (or dis-
prove) the analogue of the above theorem for ultimately periodic sequences. So
we formulate the following open problem:

Problem 1. Is it true that for any A ∈ U2 we have MC(A) ∈ U2?
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3.4 Lyndon Sequences — Ln

In this section we investigate the lattice properties of Lyndon sequences. This
investigation is motivated by the simple but important observation that metrical
neighborhood sequences are Lyndon sequences. Note that the opposite statement
is false, as the Lyndon sequence 11122112112 is not a metrical neighborhood
sequence. Unfortunately, it turns out that the set of Lyndon sequences does not
form a nice structure neither under *∗, nor with respect to *.

Theorem 7. (Ln,*∗) and (Ln,*) are not lattices for any n ≥ 2.

3.5 Neighborhood Sequences Having Density — Dn

It is obvious that sequences from Pn and Un have densities. It is also known
from [3] that the same holds for sequences from Mn. Hence it is natural to
investigate general neighborhood sequences having density. In this section we
give our results about the lattice structure of the set Dn of such sequences.

Theorem 8. (D2,*∗) is a non-complete distributive lattice.

Similarly to all the other investigated subsets of Sn, neither Dn behaves nicely
for higher dimensions with respect to *∗.

Theorem 9. (Dn,*∗) is not a lattice for n ≥ 3.

The following statement implies that D2 has worse structural properties with
respect to * than to *∗.

Theorem 10. (Dn,*) is not a lattice for n ≥ 2.

3.6 Summarizing the Lattice Properties

We summarize the lattice properties of the investigated subsets of Sn under the
orderings *∗ and * in Table 1. Though *∗ shows a rather negative behavior
from 3D on, this ordering describes better the relative spreading speed. Moreover
*∗ supersedes * in case of metrical expectations. The 3D space is also important
from practical point of view, and this domain can be addressed by restricting
the investigated subsets for a more successful comparison. Introducing a new
ordering can be an alternative to overcome the negative results, as well. In this
paper we focused only on the relations investigated in the literature so far.

4 Auxiliary Results and Proofs of the Theorems

In this section we give the proofs of our theorems. For this purpose we need
some auxiliary results. Our first statement shows that if A,B ∈ S2 have the
same density tuples, and they belong to some special subset of S2, then the
same is true for A ∧∗ B and A ∨∗ B. More precisely, we have
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Table 1. Lattice properties of subsets of Sn with respect to �∗ and �

�∗ (n = 2) �∗ (n ≥ 3) � (n ≥ 2)
Lattice Complete Distributive Lattice Lattice Complete Distributive

Sn + + + – + + +

Pn – – – – + – +

Un + – + – + – +

Mn + + – – – – –

Ln – – – – – – –

Dn + – + – – – –

Lemma 1. Let H ∈ {P2, U2, D2} and let A,B ∈ H with s2(A) = s2(B). Then
A ∧∗ B,A ∨∗ B ∈ H.

Proof. Assume first that H = P2, i.e. A,B ∈ P2. Without loss of generality we
may assume that l is a common period length for both A and B. As s2(A) =
s2(B) we have 2(A, l) = 2(B, l). Moreover,

2(A ∧∗ B, l) = 2(A ∨∗ B, l) = 2(A, l) = 2(B, l)

also hold. Hence for all i ∈ {1, . . . , l} we get that

(A ∧∗ B) (i) = (A ∧∗ B) (i+ l) and (A ∨∗ B) (i) = (A ∨∗ B) (i+ l).

Thus A ∧∗ B,A ∨∗ B ∈ P2.
Let now H = U2, that is A,B ∈ U2. Without loss of generality we may assume

that A = A1A2 and B = B1B2 with c := |A1| = |B1|. Let l be the least common
multiple of |A2| and |B2|. Then by s2(A) = s2(B) we have T := 2(A, c, c+ l) =
2(B, c, c+ l), and thus also 2(A, c, c+ kl) = 2(B, c, c+ kl) = kT for any k ∈ N.
Hence we have

2(A ∨∗ B, c+ kl+ i) = max{2(A, c+ kl + i),2(B, c+ kl + i)} =

= max{2(A, c+ i),2(B, c+ i)}+ kT = 2(A ∨∗ B, c+ i) + kT

for any i = 1, . . . , l, k ∈ N. Consequently, A ∨∗ B ∈ U2. As a similar argument
shows that A ∧∗ B ∈ U2, the lemma is proved when H = U2.

Finally, let H = D2, so A,B ∈ D2. As s2(A) = s2(B) and

min{2(A, i),2(B, i)} = 2(A ∧∗ B, i) ≤ 2(A ∨∗ B, i) = max{2(A, i),2(B, i)}

for any i ∈ N, the statement follows in this case, as well. ��

Proof (of Theorem 1). By Lemma 1 for any A,B ∈ P2 we have A∨∗B,A∧∗B ∈
P2. As (S2,*∗) is a distributive lattice, the theorem follows. ��

Lemma 2. Let A,B ∈ D2 with s2(A) > s2(B). Then there exists a K ∈ N such
that (A ∧∗ B)(i) = B(i) and (A ∨∗ B)(i) = A(i) for i > K.
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Proof. As s2(A) > s2(B), there exists a K ∈ N such that for i > K we have
2(A, i) > 2(B, i). Hence the statement immediately follows. ��

Proof (of Theorem 2). Let A,B ∈ U2. If s2(A) = s2(B) then by Lemma 1, and
if s2(A) �= s2(B) then by Lemma 2 we obtain that A ∧∗ B,A ∨∗ B ∈ U2. Hence
as (S2,*∗) is a distributive lattice, the same is true for (U2,*∗). To prove that
(U2,*∗) is non-complete, put A1 = 12 and for i ∈ N let Ai+1 = A1 . . . Ai1i+12.
Writing A = {Ai | i ∈ N}, it is obvious that A :=

∧
∗A = 12122132142 . . . does

not belong to U2. Suppose that there exists the greatest lower bound B of A
in (U2,*∗). Then A *∗ B, hence from s2(A) = 0 we have s2(B) = 0 which
implies that B is of the form B = B11. Put k = |B1|, and consider the sequence
C = C11 ∈ U2 with |C1| = 2k + 1 and C(j) = A(j) for j = 1, . . . , 2k + 1. Then

A *∗ C and from
2k+1∑
i=1

B(i) <
2k+1∑
i=1

C(i) we derive the contradiction B �*∗ C.

Hence the lattice (U2,*∗) is not complete. ��

Proof (of Theorem 3). Fix n ≥ 3 and put A1 = 31, A2 = 2, B1 = 213 and
B2 = 131. Now for any B3 ∈ Un with B3 �= B1, A1 *∗ B3 and A2 *∗ B3 imply
B3 �*∗ B1. This means that if the greatest lower bound of A1 and A2 exists in
Un then it must be B1. However, A1 *∗ B2 and A2 *∗ B2 but B1 �*∗ B2. This
together with the fact that A1, A2, B1, B2 ∈ Un imply that A1 and A2 have no
greatest lower bound in Un with respect to *∗ and the statement follows. ��

Proof (of Theorem 4). Let A,B ∈ Un. Then we may write A = A1A2 and
B = B1B2 with |A1| = |B1| and |A2| = |B2|. Hence it is obvious that A∨B,A∧
B ∈ Un, and we get that (Un,*) is a distributive lattice. To show that the
lattice is non-complete, let Bi = 12i (i ∈ N) and put Ak = B1 . . . Bk1 (k ∈ N)
and A = {Ak | k ∈ N}. Suppose that A has a least upper bound in Un with
respect to *, which is given by C = C1C2. Put B = B1B2 . . ., and observe that
B ∈ Sn \ Un. Hence, as obviously

∨
A = B, we have C * B. Let j be minimal

with C(j) = 2 and B(j) = 1, and define D ∈ U2 by

D(l) =
{
B(l), for 1 ≤ l ≤ j,
2, for l > j.

Then clearly, D * Ak for all k ∈ N, however, D * C does not hold. This shows
that the lattice (Un,*) is not complete. ��

Proof (of Theorem 5). Let L be an arbitrary subset of M2 such that s2(A) =
s2(B) = α for all A,B ∈ L. Theorem 7 of [3] implies that

∧
∗ L ∈M2. Define the

sequence A ∈ S2 in the following way. If α = 1 then put A(1) = 2, otherwise let
A(1) = 1. Then if A(i) is already defined, set A(i+1) = 2 if (i+1)α ≤ 2(A, i)+1
and let A(i + 1) = 1 otherwise. By Lemma 2 from [9] we get that A ∈ M2.
Further, it is clear that s2(A) = α and that A *∗ B holds for any B ∈M2 with
s2(B) = α. Let C be the least upper bound of L in M2 with respect to *∗.
Then we have A *∗ C, which immediately gives s2(C) = α, and the theorem
follows. ��
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To prove Theorem 6 we need two lemmas. The first one gives a characterization
of the metrical property of neighborhood sequences.

Lemma 3. Let A ∈ S2. Then A ∈ M2 if and only if for all t ∈ N, j ≤ t and

k1, . . . , kj ∈ N with
j∑

i=1

ki = t we have 2(A, t) ≥
j∑

i=1

2(A, ki).

Proof. First we show necessity. Let A ∈M2. For t = 1 the statement is obvious.
Let T ∈ N, and assume that the condition is valid for all t with 1 ≤ t < T .

Further, let k1, . . . , kj ∈ N with
j∑

i=1

ki = T . Then as A ∈M2 we have

2(A, T ) ≥ 2(A, k1) + 2(A, T − k1) ≥
j∑

i=1

2(A, ki)

and the necessity follows by induction. To prove sufficiency, take an A ∈ S2

having the appropriate condition. Then for arbitrary k1, k2 ∈ N with k1 < k2 we
have

2(A, k1 + k2) ≥ 2(A, k1) + 2(A, k2)

which yields 2(A, k1, k1 +k2) ≥ 2(A, k2). Hence A ∈M2, and the lemma follows.
��

The following lemma shows that when creating the metrical closure of a periodic
sequence A, after a certain index A ”does not matter” any more, it is sufficient
to take care of the metricity condition only.

Lemma 4. Let A ∈ P2 having period length l and B ∈M2. If 2(A, t) ≤ 2(B, t)
holds for all t = 1, . . . , l then B *∗ A.

Proof. Obviously, 2(A, k) ≤ 2(B, k) for k = 1, . . . , l. Assume that k > l and
write k = ql + r with q, r ∈ N, where 0 ≤ r < l. Now using our conditions and
Lemma 3 we have

2(A, k) = q2(A, l) + 2(A, r) ≤ q2(B, l) + 2(B, r) ≤ 2(B, k),

and the statement follows. ��

Proof (of Theorem 6). Let A ∈ P2 with period length l. Put B = MC(A) and
denote by r the minimal index with 1 ≤ r ≤ l for which 2(B,r)

r = max
1≤i≤l

{
2(B,i)

i

}
.

Now we show that for an arbitrary t ∈ N with t > l there exist non-negative

integers a1, . . . , al with
l∑

i=1

aii = t such that 2(B, t) =
l∑

i=1

ai2(B, i). Note that

by Lemma 3 and Theorem 8 of [3] we get that B(t) = 2 if and only if for some
k ∈ N with 1 ≤ k < t we have 2(B, k) = 2(B, t−k, t−1)+1. Hence 2(B, l+1) =
2(B, l) + 2(B, 1) if B(l + 1) = 1, and 2(B, l + 1) = 2(B, k) + 2(B, l + 1 − k)
with the appropriate k if B(l + 1) = 2. That is, our claim holds for t = l + 1.
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Assume now that T > l + 1, and that the property holds for every t with
l < t < T . Again, we have 2(B, T ) = 2(B, T − 1) + 2(B, 1) if B(T ) = 1, and
2(B, T ) = 2(B, k) + 2(B, T − k) with the appropriate k if B(T ) = 2. In both
cases we get by the induction hypothesis that the property is valid for T , as well.
Hence our claim follows. We call a1, . . . , al a minimal combination system for t.

Let u ∈ N such that u ≥ u0 :=
l∑

i=1

ri and take a minimal combination system

a1, . . . , al for u. Then we have ai ≥ r for some i ∈ {1, . . . , l}. However, as
r2(B, i) ≤ i2(B, r), we may assume that ar > 0. Let now b1, . . . , bl be a minimal
combination system for u + r. Similarly as above, we may assume that br > 0.
Hence as

2(B, u) + 2(B, r) ≤ 2(B, u+ r) =
l∑

i=1

bi2(B, i)

and by Lemma 3

2(B, u) ≥
l∑

i=1

bi2(B, i)− 2(B, r)

holds, we get
2(B, u) + 2(B, r) = 2(B, u+ r).

Note that the latter relation is valid for any u ≥ u0, in particular also if we write
u+ 1 in place of u. This implies

2(B, r) = 2(B, u, u+ r) = 2(B, u+ 1, u+ r) + 2(B, u, u+ 1),

2(B, r) = 2(B, u+ 1, u+ r + 1) = 2(B, u+ 1, u+ r) + 2(B, u+ r, u+ r + 1).

Thus 2(B, u, u + 1) = 2(B, u + r, u + r + 1), or in other words B(u + 1) =
B(u+ r + 1). This proves that B ∈ U2, and the theorem follows. ��

Proof (of Theorem 7). To prove the statement in case of *∗, we give a coun-
terexample. Let

A1 = 1122211222222112221212112, A2 = 1122211222212112221122222.

Then A1, A2 ∈ Ln, and we have

C = A1 ∧∗ A2 = 1122211222 21 2112221122212 �∈ Ln.

Moreover, let
A = 1122211222 12 2112221122212.

Then A ∈ Ln. If B ∈ Ln with C *∗ B *∗ A then as only the eleventh and
twelveth elements (boxed above) of A and C are different, we get that A = B.
Thus we deduce that if the greatest lower bound of A1 and A2 in Ln exists, then
it must be A. However, for D = 1111222222212112221122212 ∈ Ln we have
A1 *∗ D and A2 *∗ D, but A �*∗ D. This shows that A cannot be the greatest
lower bound of A1 and A2 in L2. Thus (L2,*∗) is not a lattice.
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Now we consider the ordering *. Let A = 12222212, B = 12221222. As it can
be easily seen, A,B ∈ Ln. We show that A and B do not have a greatest lower
bound in Ln. Let C = 12121212 and D = 11221212. Clearly, C,D ∈ Ln, A * C,
B * C, A * D and B * D. Moreover, neither C nor D can be the greatest lower
bound of A and B in Ln, since C and D cannot be compared. Looking at the
first few elements of A,B,C and D we obtain that if the greatest lower bound
E of A and B in Ln exists, then we must have E = 1222121 . . .. However, such
a sequence cannot belong to Ln and the statement follows. ��

Proof (of Theorem 8). Let A,B ∈ D2. By Lemmas 1 and 2 it is obvious that
A∧∗B,A∨∗B ∈ D2. Thus, as S2 is a distributive lattice, D2 is also a distributive
lattice with respect to *∗.

To prove that the lattice is not complete, let A ∈ S2 \ D2 arbitrary with
lim inf
k→∞

2(A,k)
k = 0. For i ∈ N put

Ai(j) =
{
A(j), for j ≤ i,
2, for j > i,

and P =
∞⋃

i=1

Ai. Then as Ai ∈ D2 with s2(Ai) = 1 for every i ∈ N, we have

P ⊆ D2 and
∧

∗ P = A.
Assume that B ∈ D2 is the least upper bound of P in D2. Then as A *∗ B,

2(A,k)
k ≥ 2(B,k)

k must hold for all k ∈ N which by taking lim inf yields s2(B) = 0.
Consider now the minimal index t ∈ N for which A(t) �= B(t). Then A *∗ B

implies A(t) = 2 and B(t) = 1. Put

C(i) =

⎧⎨⎩
B(i), for i < t,
2, for i = t,
1, for i > t.

ThenC ∈ D2 with s2(C) = 0, and we haveA *∗ C. However, as 2(C, t) > 2(B, t)
we get B �*∗ C which contradicts the assumption that B is the greatest lower
bound of P in D2. ��

Proof (of Theorem 9). The validity of the statement can be easily checked by
the same example as in the proof of Theorem 3. We omit the details. ��

Proof (of Theorem 10). Let A = 12 and let B = V1W1V2W2V3W3 . . ., where

Vk = (12)2
k−1

and Wk = (21)2
k−1

for k ∈ N. Note that A,B ∈ D2 with s2(A) = s2(B) = 1
2 . For C = A ∨ B we

have
C = B112B214B318B4116 . . . ,

where Bk = (12)2
k−1

for k ∈ N. It is easy to check that

lim inf
k→∞

2(C, k)
k

=
1
4

and lim sup
k→∞

2(C, k)
k

=
1
3
,
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whence C �∈ D2. Suppose that D ∈ D2 is the greatest lower bound of A and
B in D2. Let t ∈ N be the minimal index such that D(t) �= C(t). Now C * D
implies D(t) = 1 and C(t) = 2. For i ∈ N put

E(i) =
{
C(i), if i ≤ t,
1, if i > t.

Then we have E ∈ D2 with s2(E) = 0, and C * E. However, since E(t) > D(t)
we obtain E �* D which contradicts the assumption that D is the greatest lower
bound of A and B in D2. ��
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Abstract. While connected arithmetic discrete lines are entirely char-
acterized by their arithmetic thickness, only partial results exist for arith-
metic discrete hyperplanes in any dimension. In the present paper, we
focus on 0-connected rational arithmetic discrete planes in Z3. Thanks
to an arithmetic reduction on a given integer vector n, we provide an al-
gorithm which computes the thickness of the thinnest 0-connected arith-
metic plane with normal vector n.

1 Introduction

In [1], J.-P. Reveillès initiated a new approach of linear discrete objets and
introduced arithmetic discrete lines as sets of pairs of integers satisfying a double
Diophantine inequality : the arithmetic discrete line with normal vector n ∈ R2,
translation parameter μ ∈ R and thickness w ∈ R is the set D(n, μ, w) ={
x ∈ Z2, 0 ≤ n · x + μ < w

}
, where n · x = n1x1 + n2x2 is the usual Euclidean

scalar product of n and x. Geometrically, an arithmetic discrete line can be
viewed as a set of integer points of the plane R2 included in a band delimited by
two parallel Euclidean lines (see Fig. 1). The thickness parameter w plays a key
role in the topology of the arithmetic discrete lines: given n ∈ R2 and μ ∈ R,
the thinnest 0-connected (resp. 1-connected) arithmetic discrete line among the
ones with normal vector n and translation parameter μ is the arithmetic discrete
line D(n, μ, ‖n‖∞) (resp. D(n, μ, ‖n‖1)) (see Section 2 for the definition of the
0-connectedness and 1-connectedness) [1].

The definition of arithmetic discrete lines extends naturally in dimension 3 to
the arithmetic discrete planes and in any dimension d ≥ 2 to the arithmetic dis-
crete hyperplanes [2]. It is thus natural to try to exhibit a similar relation between
the κ-connectedness of an arithmetic discrete hyperplane and its thickness. In
fact, the 2-dimensional case is somewhat confusing since a 0-connected (resp. 1-
connected) arithmetic discrete line is also 1-separating (resp. 1-separating) in Z2

(see Section 2).
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ω

ax+ by + μ = ω

ax+ by + μ = 0

Fig. 1. From left to right: an arithmetic discrete line - a naive discrete plane - a standard
discrete plane

In the particular case of rational arithmetic discrete hyperplanes (rememeber
that an arithmetic discrete hyperplane is rational if its normal vector n ∈ Rd is
colinear to an integer vector, or equivalently, if the Q-vector space spanned by
{n1, . . . , nd} is of dimension 1), several approaches have been attempted [2,3,4]
although none of them provides an explicit formula to compute the thickness of
the thinnest 0-connected rational arithmetic discrete hyperplane with any given
normal vector.

In [4], V. Brimkov and R. Barneva partially solved this request for rational
arithmetic discrete planes whose the normal vector n ∈ Z2 satisfies particular
conditions (for instance when |n1|+ 2|n2| ≤ |n3|) and provided an algorithm for
the entire problem. Unfortunately, their algorithm seems to incorrect and does
not generally return the right thickness (see Section 4).

In [3], Y. Gérard investigated a problem close to the one we are interested
in in the present paper: given an arithmetic discrete hyperplane P(n, μ, w) and
κ ∈ {0, . . . , d − 1}, is P(n, μ, w) κ-connected ? In other words, given the graph
G(n, μ, w) whose vertices are the points of P(n, μ, w) and whose edges are the
pairs {x,y} of κ-adjacent points of P(n, μ, w), does G(n, μ, w) admit a unique
connected component ? The main difficulty of this problem is the possibly in-
finiteness of G(n, μ, w). Assuming dimQ{n1, . . . , nd} = 1, one reduces G(n, μ, w)
to a finite graph by quotienting G(n, μ, w) iteratively by a subgroup of rank 1
of the lattice of periods of P(n, μ, w). Since G(n, μ, w) is injectively projectable
in Zd, then, with at most d such quotienting processes, one reduces G(n, μ, w)
to a finite graph with the same connectedness as G(n, μ, w).

In the present paper, we deal with the determination of the thickness of the
thinnest 0-connected rational arithmetic discrete plane with a given normal vec-
tor n. For this purpose, we give a short and elementary algorithm which takes a
vector n ∈ Z3 as entry and returns the thickness w of the thinnest 0-connected
arithmetic discrete plane with normal vector n. While Y. Gérard, V. Brimkov
and R. Barneva’s approaches need to determine a connected component, our
algorithm is entirely arithmetic and does not need to consider any connectivity
graph.

Here is the sketch of the present paper. Section 2 is devoted to the ba-
sic notions useful for the remaining. In Section 3, we investigate the notions
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of κ-connectedness and κ-separatingness and state a first comparison between
their characterization in the case of rational arithmetic discrete lines and ra-
tional arithmetic discrete hyperplanes. In Section 4, we focus on V. Brimkov
and R. Barneva’s investigation [4]. After having recalled some of their results,
we exhibit a counter example of the algorithm they proposed. In Section 5,
we introduce an arithmetic reduction on the integer vectors preserving the 0-
connectedness of arithmetic discrete planes. We end this section by designing an
elementary and quite short algorithm which computes the minimal thickness by
iterating this arithmetic reduction.

2 Basic Notions

The aim of this section is to introduce the basic notions and definitions we use
throughout the present paper.

Let d be an integer equal or greater than 2 and let {e1, . . . , ed} denote the
canonical basis of the Euclidean vector space Rd. Let us call a discrete set any
subset of the discrete space Zd. In the following, for the sake of clarity, we denote
by (x1, . . . , xd) the point (resp. vector) x =

∑d
i=1 xiei ∈ Rd. An integer point

x ∈ Zd is called a voxel (resp. a pixel if d = 2). A subset of Zd is called a discrete
set.

Let κ ∈ {0, . . . , d − 1}. Two voxels x ∈ Zd and x′ ∈ Zd are said to be κ-
adjacent if ‖x − x′‖∞ = 1 and ‖x − x′‖1 ≤ d − κ. In other words, x ∈ Zd and
x′ ∈ Zd are κ-adjacent if they are distinct, the differences of their coordinates
are at most 1 and x and x′ have at most d−κ different coordinates (resp. at least
κ identical components). A κ-path is a (finite or infinite) sequence of consecutive
κ-adjacent voxels. If (γi)1≤i≤n is a finite κ-path, then we say that γ links the
voxel γ1 to the voxel γn. A subset E ⊆ Zd is said κ-connected if, for each pair of
voxels (x,x′) ∈ E2, there exists a κ-path in E linking x to x′. Given a discrete
set E ⊆ Zd and given κ ∈ {0, . . . , d− 1}, one says that E is κ-separating in Zd

if its complement in Zd has (at least) two κ-connected components.
In [1], J.-P. Reveillès introduced the arithmetic discrete line as a set of integer

points satisfying a double Diophantine inequality. This definition extends in a
natural way to higher dimensions:

Definition 1 (Arithmetic discrete hyperplane [1,2]). The arithmetic dis-
crete hyperplane with normal vector n ∈ Zd, translation parameter μ ∈ Z and
thickness w ∈ Z is the discrete set P(n, μ, w) defined by:

P(n, μ, w) =
{
x ∈ Zd, 0 ≤ n · x + μ < w

}
, (1)

where n · x denotes the usual Euclidean scalar product in Rd. If w = ‖n‖∞
(resp. w = ‖n‖1) then P(n, μ, w) is said naive (resp. standard). If d = 2 the
arithmetic discrete hyperplane P(n, μ, w) is called an arithmetic discrete line and
is denoted by D(n, μ, w). If d = 3 the arithmetic discrete hyperplane P(n, μ, w)
is called an arithmetic discrete plane.
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Remark 1. Throughout the present paper, when P(n, μ, w) is a rational arith-
metic hyperplane, we assume, with no loss of generality, that gcd{n1, . . . , nd} =
1, μ ∈ Z and w ∈ Z. Moreover, since the isometry group of the unit cube
[−0.5, 0.5]d acts on the set of arithmetic discrete hyperplanes and since any
isometry of [−0.5, 0.5]d preserves the κ-connectedness of any arithmetic dis-
crete hyperplane, whatever κ ∈ {0, . . . , d − 1}, then in the following, except
when explicitly mentioned, we suppose the normal vector n ∈ Zd to satisfy
0 ≤ n1 ≤ · · · ≤ nd.

In Section 3, we recall some partial results on the connectedness of arithmetic
discrete lines and give a first extension of them to arithmetic discrete hyper-
planes.

3 κ-Connected Arithmetic Discrete Lines vs.
κ-Separating Arithmetic Discrete Hyperplanes

Let us first deal with the case d = 2. In [1], J.-P. Reveillès showed how the
κ-connectedness of an arithmetic discrete line depends only on its normal vector
and its thickness:

Theorem 1 ([1]). Let D(n, μ, w) be the arithmetic discrete line with nor-
mal vector n ∈ Z2, translation parameter μ ∈ Z and thickness w ∈ Z.
Then D(n, μ, w) is 0-connected (resp. 1-connected) if and only if w ≥ ‖n‖∞
(resp. w ≥ ‖n‖1).

It becomes natural to try to extend Theorem 1 to higher dimensions, that is,
given n ∈ Zd, μ ∈ Z and κ ∈ {0, . . . , d− 1}, to try to characterize the thickness
of the thinnest κ-connected arithmetic discrete hyperplane with normal vector
n and translation parameter μ.

Let us give a helpful reduction of our problem: if μ ∈ Z and n ∈ Zd, then
the κ-connectedness (resp. κ-separatingness in Zd) of P(n, μ, w), whatever d ≥ 2
and κ ∈ {0, . . . , d− 1}, does not depend on the translation parameter μ. Indeed,
it is a direct consequence of the following lemma:

Lemma 1. Let P(n, μ, w) be an arithmetic discrete hyperplane with d ≥ 2,
μ ∈ Z and n ∈ Zd. For all μ′ ∈ Z, there exists a vector α ∈ Zd such that
P(n, μ, w) = P(n, μ′, w) + α.

Proof. It obviously follows form Bezout’s Lemma applied on the coordinates
of n. ��

From now on, we consider only rational arithmetic discrete hyperplanes with
a null translation parameter. Thanks to Lemma 1, in the determination of the
thickness of the thinnest arithmetical discrete hyperplane with a given rational
normal vector, this assumption is not restrictive. From now on, in order to sim-
plify the notation, we denote by P(n, w) the arithmetic discrete hyperplane with
normal vector n, translation parameter 0 and thickness w.
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Definition 2 (κ-Connecting thickness). Let n ∈ Zd and κ ∈ {0, . . . , d− 1}.
The thickness wκ of the thinnest κ-connected arithmetic discrete hyperplane with
normal vector n is called the κ-connecting thickness of n.

Let us now investigate the κ-connectedness of arithmetic discrete planes (d = 3).
It is not difficult to exhibit a 0-connected arithmetic discrete plane P(n, w)
thinner than the naive one, that is, satisfying w < ‖n‖∞ (see Fig. 2). Similarly,
one easily finds a 2-connected arithmetic discrete plane P(n, w) thinner than the
standard one, that is, with w < ‖n‖1.

(a) A 0-connected arithmetic dis-
crete plane thinner than the
naive one

(b) A 1-connected arithmetic dis-
crete plane thinner than the stan-
dard one

Fig. 2. Connected arithmetic discrete planes

Nevertheless, although Theorem 1 does not seem to extend naturally to higher
dimensions, it admits a quite nice generalization of it concerning the κ-separating
arithmetic discrete hyperplane. For the sake of clarity, we introduce the following
notation, providing a norm on Rd:

Notation. — Let x ∈ Rd and let σ be a permutation over the set {1, . . . , d}
such that, for all i ∈ {1, . . . , d− 1}, |xσ(i)| ≤ |xσ(i+1)|. For all κ ∈ {0, . . . , d− 1},
we denote by ]x[κ the following number:

]x[κ =
d∑

i=d−κ

|xσ(i)|.

In other words, ]x[κ is equal to the sum of the (κ + 1) greatest absolute values
of the coordinates of x.

One checks that, for each κ ∈ {0, . . . , d − 1}, the map ] · [κ : Rd −→ Rd is a
norm on Rd. Moreover, one has ] · [0 = ‖ · ‖∞ and ] · [d−1 = ‖ · ‖1.

In the particular case of d = 2, for κ ∈ {0, 1}, the κ-connected arithmetic
discrete lines are exactly the (2− (κ+ 1))-separating ones in Z2 and Theorem 1
is reformulated as follows:

Theorem 2 ([1]). Let D(n, w) be the arithmetic discrete line with normal vec-
tor n ∈ Z2 and thickness w ∈ Z. Let κ ∈ {0, 1}. Then, D(n, w) is (1 − κ)-
separating in Z2 if and only if w ≥ ]n[κ.
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In fact, as previously mentioned, the κ-separatingness of an arithmetic discrete
hyperplane P(n, w), whatever the dimension d, is entirely characterized by ]n[κ.
Indeed, Theorem 2 extends in the most natural way to every dimension:

Theorem 3 ([2]). Let P(n, w) be the arithmetic discrete hyperplane with nor-
mal vector n ∈ Zd and thickness w ∈ Z. Let κ ∈ {0, . . . , d− 1}. The arithmetic
discrete hyperplane P(n, w) is (d−κ−1)-separating in Zd if and only if w ≥ ]n[κ.

4 V. Brimkov and R. Barneva’s Investigation: An
Algorithmic Approach [4]

In [4], V. Brimkov and R. Barneva investigated 0-connected rational arithmetic
discrete planes. They explicitly provided the 0-connecting thickness of some vec-
tors n ∈ Z3 and an algorithm for computing it in the general case. In the present
section, we exhibit a counter-example to this algorithm and deduce that it does
not always return the correct output.

Let P(n, w) be a rational arithmetic discrete plane. It is well known that if
w ≥ ‖n‖∞ then P(n, w) is 0-connected (see [2] Cor. 10 p. 307). Hence, if w0 is the
0-connecting thickness of n, then w0 ≤ ‖n‖∞. In [4], V. Brimkov and R. Barneva
reduced the determination of w0 to the determination of the 0-connectedness of
a subset of Z2 as follows:

Theorem 4 ([4]). Let P(n, w) be a rational arithmetic discrete plane with
‖n‖∞ = |v3| and w ≤ ‖n‖∞. The arithmetic dscrete plane P(n, w) is 0-connected
in Z3 if and only if the set {x ∈ Z2, v1x1 +v2x2 mod v3 ∈ [0, w[} is 0-connected
in Z2.

Remark 2. Let us remember that, thanks to Remark 1, the condition ‖n‖∞ =
|v3| in Theorem 4 is not restrictive. Up to an isometry, one can similarly treat
the cases ‖n‖∞ = |v1| and ‖n‖∞ = |v2|.

For the sake of clarity, we introduce the following notation:

Notation. — Let P(n, w) be an arithmetic discrete plane with ‖n‖∞ = |v3| and
w ≤ ‖n‖∞. We denote by Π(n, w) the set {x ∈ Z2, v1x1+v2x2 mod v3 ∈ [0, w[}.
In what follows, since Π(n, w) can be indexed by (a subset of) Z2, we call Π(n, w)
the array of remainders of P(n, w). For x ∈ Z2, the number v1x1+v2x2 mod v3
is called the remainder of x. Let us notice that this denomination is not exactly
the one used in [4,5], but is equivalent in the way we use it.

With this notation, from Theorem 4, it follows:

Corollary 1. Let P(n, w) be a rational arithmetic discrete plane with ‖n‖∞ =
|v3| and w ≤ ‖n‖∞. The arithmetic dscrete plane P(n, w) is 0-connected in Z3

if and only if the set Z2 \Π(n, w) is not 0-separating in Z2.
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Before describing V. Brimkov and R. Barneva’s algorithm, let us introduce a
notation:

Notation. — Let n ∈ Z3 such that 0 ≤ n1 ≤ n2 ≤ n3 and gcd{n1, n2, n3} =
1. We denote by Γ(n) the set of 1-paths in Π(n, ‖n‖∞) linking two points of
maximal remainder, that is, n3 − 1. For a 1-path γ ∈ Γ(n), we denote by

min(γ) = min{n1i1 + n2i2 mod n3, (i1, i2) ∈ γ}.

In other words, min(γ) is the smallest remainder reached in γ.

In [4], V. Brimkov and R. Barneva stated:

Theorem 5 ([4]). Let n ∈ Z3 such that 0 ≤ n1 ≤ n2 ≤ n3 and
gcd{n1, n2, n3} = 1. Let w0 ∈ Z be the 0-connecting thickness of n. Then
w0 = max {min(γ) ∈ Γ (n)}+ 1.

Given a vector n ∈ Z3 satisfying 0 ≤ n1 ≤ n2 ≤ n3 and gcd{n1, n2, n3} =
1, the problem of determining w0 can thus be reduced to the following one:
how to compute max {min(γ) ∈ Γ (n)} in a reasonable time ? V. Brimkov and
R. Barneva assumed that only exclusively down-right or up-right searches (with
additional conditions) in Π(n, ‖n‖∞) are necessary to compute w0 (see [4]). This
assertion is false and here is a counter-example:

Example 1. Let n = (4, 7, 16). Let w0 be the 0-connecting thickness of n. In
Figure 3(a), both light paths are computed by V. Brimkov and R. Barneva’s
algorithm. Minimal remainders of each one are respectively 3 and 5, and the
algorithm returns w0 = max{3, 5}+1 = 6. In Figure 3(b), one sees that Π(n, 6)
is not 0-connected, and by Theorem 4, so is P(n, 6). In fact, the correct 0-
connecting thickness for the vector n is 7 as shown in Figure 3(c). This value
is obtained with the dark grey path in Figure 3(a), which cannot be computed
using exclusively up-right or down-right searches.

5 Arithmetic Reduction of an Arithmetic Discrete Plane

We have seen in Section 4, that V. Brimkov and R. Barneva’s algorithm needs a
graph traversal for computing the 0-connecting thickness of a given integer vec-
tor. Similarly, Y. Gérard proposed an algorithm, based on a graph traversal too,
testing whether a given rational arithmetic discrete hyperplane is κ-connected.
In the present section, we propose a reduction acting on the normal vector and
the arithmetic thickness of an arithmetic discrete plane P(n, w) which returns
an arithmetic discrete plane P(n′, w′) with the same 0-connectedness as P(n, w)
and such that |n′

1| < |n1|. By iterating this reduction, we obtain in a finite time
an arithmetic discrete plane P(n′, w′) with a zero coordinate. The 0-connecting
thickness (see Definition 2) of such a vector is easy to determine:

Lemma 2. Let P(n, w) be a rational arithmetic discrete plane. Let us suppose
there exists i ∈ {1, 2, 3} such that ni = 0. Then, P(n, w) is 0-connected if and
only if w ≥ ‖n‖∞. In other words, the 0-connecting thickness of n is ‖n‖∞.
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(a) 1-connected paths in the 2-dimensional
representation

(b) Array of remainders Π(n, 6)

(c) Array of remainders Π(n, 7)

Fig. 3. Computation of V. Brimkov and R. Barneva’s algorithm [4] on the vector
n = (4, 7, 16)

Proof. It is well known that, if w ≥ ‖n‖∞ then P(n, w) is 0-connected [2].
Conversely, let us suppose, with no loss of generality, that n1 = 0 and 0 ≤ n2 ≤
n3. Let x ∈ Z2 such that n1x1 + n2x2 = n2x2 ≡ n3 − 1 mod n3 (remember
we assume gcd{n1, n2, n3} = 1). Then, for all k ∈ Z, (x1 + k)n1 + x2n2 =
x1n1 + x2n2 ≡ n3 − 1 mod n3. Hence, for all k ∈ Z, (x1 + k, x2) ∈ Π(n, w) and
Π(n, w) is not 0-connected. The result follows from Theorem 4. ��

Remember that, thanks to Theorem 4, one can reduce the determination of the
0-connectedness of the arithmetic discrete plane P(n, w) to the one of Π(n, w) ={
x ∈ Z2, n1x1 + n2x2 mod n3 ∈ [0, w[

}
with n ∈ Z3 and n3 = ‖n‖∞. Moreover,

a direct consequence of Theorem 4 is:

Lemma 3 (Symmetry Lemma [4]). Let Ω : N3 → N be the function mapping
each vector of N3 to its 0-connecting thickness. For all n ∈ Z3, if 0 ≤ n1, n2 ≤ n3,
then Ω(n1, n2, n3) = Ω(n3 − n1, n2, n3) = Ω(n1, n3 − n2, n3) = Ω(n3 − n1, n3 −
n2, n3).

Given a vector n ∈ Z3, thanks to Lemma 3 and to the action of the isometry
group of the cube on the set of arithmetic discrete planes, one suppose with
no loss of generality and in order to compute the 0-connecting thickness
of n that 0 ≤ 2n1 ≤ 2n2 ≤ n3.

Let us now state the main theorem of the present section:

Theorem 6 (Arithmetic reduction). Let n ∈ Z3 such that 0 ≤ 2n1 ≤ 2n2 ≤
n3 and let w ∈ Z. Let (q, r) ∈ N2 be the unique pair of integers such that
n2 = qn1 + r and r ∈ [0, n1[. Let n′ = M · n with
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M =

⎛⎝ 1 0 0
−q 1 0

1− q −1 1

⎞⎠ ,

and let w′ = w − (n2 − n1). Then, the arithmetic discrete plane P(n, w) is
0-connected if and only if so is the arithmetic discrete plane P(n′, w′).

In order to prove Theorem 6, let us introduce in some sense the dual notion of
the κ-connecting thickness of a vector:

Definition 3 (κ-separating thickness). Let n ∈ Z3 and let κ ∈ {0, 1}. The
κ-separating thickness wκ of n is the thickness of the thinnest κ-separating
Π(n, w), with w ∈ Z.

An easy computation directly gives:

Lemma 4. Let n ∈ Z3 such that 0 ≤ n1, n2 ≤ n3 and gcd{n1, n2, n3} = 1. Let
w0 (resp. w0) be the 0-connecting thickness (resp. 0-separating thickness) of n.
Then w0 + w0 = n3 + 1.

Proof. Let w ∈ N. Then

Z \Π(n, w) =
{
(x1, x2) ∈ Z2, n1x1 + n2x2 mod n3 ∈ [w, n3[

}
=
{
(x1, x2) ∈ Z2, n1x1 + n2x2 − w mod n3 ∈ [0, n3 − w[

}
Let (α1, α2) ∈ Z2 such that n1α1 + n2α2 ≡ −w mod n3. Thus, Z \Π(n, w) +
(α1, α2) = Π(n, n3−w) and Π(n, w) is 0-connected if and only if Π(n, n3−w) is
not 0-separating. Since Π(n, w0) (resp. Π(n, w0−1)) is 0-connected (resp. is not
0-connected), then Π(n, n3 − w0) (resp. Π(n, n3 − w0 + 1)) is not 0-separating
(resp. is 0-separating). Hence w0 = n3 − w0 + 1 and the result follows. ��

Since the κ-connectedness and the κ-separatingness of a rational arithmetic dis-
crete plane do not depend on the translation parameter, an easy computation
gives the equivalent reformulation of Theorem 6:

Theorem 7 (Arithmetic reduction). Let n ∈ Z3 such that 0 ≤ 2n1 ≤ 2n2 ≤
n3 and let w ∈ Z. Let (q, r) ∈ N2 be the unique pair of integers such that
n2 = qn1 + r and r ∈ [0, n1[. Let n′ = M · n with

M =

⎛⎝ 1 0 0
−q 1 0

1− q −1 1

⎞⎠ ,

and let w′ = w−qn1. Then, Π(n, w) is 0-separating if and only if so is Π(n′, w′).

Proof (sketch). For clarity, let us first introduce a quite natural notation. One
naturally represents a 1-path γ in Π(n, w) as a triple (A, u,B) with:
i) A ∈ [0, w[ (resp. B ∈ [0, w[) is the starting (resp. the ending) remainder of

the 1-path γ.
ii) u ∈ {±n1,±n2,±(n1 − n3),±(n2 − n3)}k is a finite sequence of movements
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Fig. 4. A 1-path corresponding to the triple (1, [−n2, n1, n1 − n3,−(n2 −
n3),−n2, n1, n1, n1 − n3, n1], 4)

between A and B (see Figure 4) (the integer k ∈ N is called the length of u). Let
us notice that the movements ±(n1 − n3) and ±(n2 − n3) corresponds to hori-
zontal (resp. vertical) movements in Π(n, w) with a change of height in P(n, w).
Such a change is represented by a thick line in the array of remainders (see
Figure 4).

Conversely, let (A, u,B) be a triple with (A,B) ∈ [0, w[2 and u ∈
{±n1,±n2,±(n1 − n3),±(n2 − n3)}k, with k ∈ N, then (A, u,B) is a 1-path
in Π(n, w) if and only if, for all j ∈ {0, . . . , k}, A+

∑j
i=1 uk ∈ [0, w[.

The aim of this proof is to show that Π(n, w) admits an infinite 1-path if and
only if so does Π(n′, w′).

Let us first prove that each pair of two 1-adjacent pixels in Π(n′, w′) can be
expanded into a 1-path in Π(n, w).
i) Let (A, n′

1, B) represent a pair of two 1-adjacent pixels in Π(n′, w′). Then
0 ≤ A < w′ = w − qn1 ≤ w, 0 ≤ B < w′ = w − qn1 ≤ w and (A, n1, B) =
(A, n′

1, B) is a 1-path in Π(n, w).
ii) Let (A, n′

1 − n′
3, B) represent a pair of two 1-adjacent pixels in Π(n′, w′).

Since n′
1 − n′

3 = qn1 + n2 − n3 and A < w − qn1, then 0 ≤ A + qn1 < w and
(A, n1, . . . , n1︸ ︷︷ ︸

q

, n2 − n3, B) is a 1-path in Pi(n, w).

The other cases, namely (A, n′
2, B) and (A, n′

2 − n′
3, B), are obtained in the

same way. For summarize, see Figure 5 for a correspondance between a 1-path
in Π(n′, w′) and a 1-path in Π(n, w). Conversely, if Π(n, w) admits an infinite 1-
path, then by a similar recoding of it, one obtains an infinite 1-path in Π(n′, w′).
The complete proof if this theorem will appear in a forthcoming long version of
the present paper. ��

A

B
B

A

B

A A

A B A B A B
B

A

B

q

q

Fig. 5. Transformation of 1-paths in Π(n′, w′) into 1-paths in Π(n, w)
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6 Algorithm

In the present section, we design an algorithm which computes the 0-connecting
thickness of a given integer vector n ∈ Z3. It iterates the reduction introduced
in Theorem 6 until 0-connecting thickness becomes easy to determine.

The arithmetic reduction mentioned above only preserves 0-connectedness be-
tween the arithmetic discrete plane with normal vector n and its image under
some conditions on n . Nevertheless changing the components of a vector ac-
cording to the symmetry lemma 3 or sorting them do not change the associated
0-connecting thickness. It is then possible to find from any vector n a vector
n′ with the same 0-connecting thickness meeting the requirement of Theorem
6. A step consisting of application of symmetry lemma, sorting, and the arith-
metic reduction can be repeated and turns the vector n into another vector n′

such that n1 ≤ n′
1, n2 < n′

2 and n3 < n′
3. Consequently, after a finite number

of iteration, we always obtain a vector with a zero component for which the
0-connecting thickness is easy to determine.

Algorithm 1. follows from those considerations. It always terminates since the
stopping condition, that is a vector with a zero component, is always reached in
a finite number of iteration.

Algorithm 1. Determination of the 0-connecting thickness.
Input : n ∈ N3.
Output : w0 ∈ Z, the 0-connecting thickness of n.

ω ← 0
while n2 = 0 do
{Symmetry and ordering}
n1 ← min(n1, n3 − n1)
n2 ← min(n2, n3 − n2)
t ← min(n1, n2)
n2 ← max(n1, n2)
n1 ← t
{Reduction}
q ← �n2/n1�
ω ← ω + (n2 − n1)
n3 ← n3 − (n2 + (q − 1)n1)
n2 ← n2 − qn1

end while
return ω + n3

7 Conclusion and Perspectives

In the present paper, we presented an algorithm computing the 0-connecting
thickness of any integer vector. The main difference between this algorithm and
the ones already known [4,3] is that it does not need a graph traversal and only
computes basic reductions on an integer vector.
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In a forthcoming work, we plan to investigate the case of non-rational arith-
metic planes. Since the reduction of Theorem 6 does not depend on the nature of
the input vector (integer or not), we hope to extend this approach to any vector
n ∈ R3.

Other interesting investigations should be, on the one hand, the computation
of κ-connected thickness for κ ∈ {1, 2} and, on the other, the extension of this
work to arithmetic discrete hyperplanes in any dimension.
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1. Reveillès, J.P.: Géométrie discrète, Calcul en Nombres Entiers et Algorithmique.
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Abstract. In this article the homology of simploidal sets is studied.
Simploidal sets generalize both simplicial complexes and cubical com-
plexes, more precisely cells of simplicial sets are cartesian products of
simplices. We define one homology for simploidal sets and we prove that
this homology is equivalent to the homology usually defined on simplicial
complexes.

1 Introduction

The aim of this paper is to define and to study the homology of simploidal sets.
Simploidal sets (see Fig. 1(a)) can be considered as a special case of cellular
complexes, where cells are simploids [1,2], i.e. products of simplices. Simploidal
sets include simplicial complexes and cubical complexes as particular cases, so
they can be used for representing the topology of digital images. They can also
be used for representing hybrid grids coming from finite elements methods. The
notion of simploid was introduced by Dahmen and Micchelli [1] to study
multivariate splines.

Topological invariants provide information about the structure of an object.
Homology is a powerful one1 which can be computed for any dimension. Homol-
ogy groups describe dimensional “holes” of a combinatorial object (connected
components for dimension 0, holes for dimension 1, cavities for dimension 2,...).
Homology information can be represented on combinatorial structures by com-
puting homology groups generators. For example, Fig. 1(c) represents the two
1−dimensional holes of the torus (b).

For digital image analysis, topological invariants are useful for classification,
indexation, or shape description [3]. Homology groups are classically computed
for simplicial combinatorial structures such as abstract simplicial complexes [4]
or semi-simplicial sets [5]. In this paper, we show that it is always possible to
convert a simploidal set into a simplicial structure (a semi-simplicial set). So,
homology groups of a simploidal set can be computed from the corresponding
semi-simplicial set. Since many simplices correspond to a single simploid, this
conversion of data structures can be space and time consuming. Similar argu-
ments as those developed for cubical complexes [6] can be taken into account.

1 Homology groups contain other classical topological invariant as Euler characteristic,
Betti numbers, and orientability of a closed surface.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 235–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We propose a direct definition of homology groups for simploidal sets, i.e.
we define boundary homomorphisms from which we can construct a free chain
complex2. It is well-known from algebraic topology that homology defined on a
triangulable cell complex (in our case : a simploidal set), is equivalent to homol-
ogy defined on the associated triangulated space (in our case : the associated
semi-simplicial set). We study this equivalence in a combinatorial and construc-
tive way in order to compute simplicial generators from simploidal generators
and conversely.

(a) (b) (c)

Fig. 1. (a) : a simploidal object. (b)−(c) : a geometric representation of the two 1−holes
of the torus.

In section 2 we recall the definition of semi-simplicial sets and basic con-
cepts of chain, cycle, boundary, free chain complex and homology groups. In
section 3, the simploidal set definition is recalled. Boundary homomorphisms
for this structure is defined, and thus homology groups of these sets can be de-
fined by constructing a free chain complex. In section 4, we study the conversion
of a simploidal set into a corresponding semi-simplicial set. Then, We define a
morphism between simplicial and simploidal chain groups, which associates to
each simploidal chain an equivalent simplicial chain in the corresponding semi-
simplicial set. After, we describe algorithms for constructing a simplicial homol-
ogy generator from a simploidal one, and conversely. This construction provides
a combinatorial and constructive proof of the equivalence between simploidal
and simplicial homologies.

2 Homology of Semi-simplicial Sets

In this section all notions needed to define the homology groups over a combi-
natorial structure are introduced. Semi-simplicial sets [5,7] are used to illustrate
these notions. Since our goal is the computation of homology groups of objects
explicitly represented within a computer, all sets are finite.

2 A free chain complex is an algebraic structure from which homology groups are
defined (cf. section 2).
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Fig. 2. (a)−(b) : Examples of semi-simplicial sets. (c) : positive orientation of simplices
of (b).

2.1 Semi-simplicial Sets

Definition 1. [5] Let n ∈ N. A n−dimensional semi-simplicial set S =
(K, (dp

i )) is a family of setsK = (Kp)p∈[0..n] together with maps dp
i : Kp → Kp−1

for i = 0, . . . , p, which satisfy the following property3 :

∀p, 2 ≤ p ≤ n, ∀i, j, 0 ≤ j < i ≤ n, ∀σ ∈ Kp, σdp
i d

p−1
j = σdp

jd
p−1
i−1

The elements of Kp are p−simplices, the dp
i are boundary operators (the super-

scripts p will be usually dropped). The relations between the boundary oper-
ators ensure that simplices are coherently assembled. Without these relations,
a p−simplex could have more than p + 1 distinct vertices in its boundary, i.e.
σd2d1, σd2d0, σd1d1, σd1d0, σd0d1,σd0d0: relations between boundary operators
ensure that σd2d1 = σd1d1, σd2d0 = σd0d1, σd1d0 = σd0d0. The notion of semi-
simplicial set generalizes the classical notion of abstract simplicial complexes [4]
in the following way: a semi-simplicial set can be associated to any abstract sim-
plicial complex, but the converse is not true. For example, it is not possible to
associate an abstract simplicial complex with the semi-simplicial set of Fig 2(a),
since it contains a self-loop.

2.2 Chain, Boundary Homomorphism and Free Chain Complex

Let np be the number of p−simplices of Kp, and Kp = {σp
1 , · · · , σp

np
}. A

p−chain c is a combination of p−simplices together with integer coefficients :
c =

∑np

i=1 α
p
i σ

p
i . For example on Fig. 2(c): A1, −A2 and 3A2−A4 are 1−chains.

The addition of p−chains consists in the addition of the corresponding simplex
coefficients. The neutral element is the empty chain denoted 0 for each dimension.
3 It could be noted that the notation xf is used instead of the classical notation f(x)

as it is more convenient when handling boundary operators.
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For any p, the p−chain group Cp is a free abelian group with Kp as a basis [4].
The chain concept is a purely formal one, since multiplying a p−simplex σp

i by
an integer has no geometric meaning except for 1 and −1. In these cases 1.σp

i

means that we consider σp
i with its orientation and −1.σp

i means that we consider
σp

i with its opposite orientation. The orientation of each simplex is induced by
its boundary operators (c.f. Fig. 2(c) and the following definition). More formal
discussions about orientation can be found in [4].

Homology groups are defined from the sequence of chain groups and appli-

cations ∂i defined between these groups, Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0.

These applications satisfy the relation cp∂p∂p−1 = 0 for each p−chain cp, p ≥ 1.
Such a sequence is a free chain complex. The image of cp by application ∂p is
the boundary of cp.

Definition 2. For any p, 1 ≤ p ≤ n, the boundary of p−simplex σp is the
(p− 1)−chain σp∂p =

∑p
i=0(−1)iσdi. The boundary of a 0−simplex is the null

chain.

The definition of a p−chain boundary is directly deduced by linearity from the
definition of a p−simplex boundary and the boundary applications ∂p are ho-
momorphisms. Usually the subscript and superscript p will be dropped. For ex-
ample on Fig. 2(c): F∂ = A1−A2 +A3 and (4A2− 3A4)∂ = 4(A2)∂− 3(A4)∂ =
7S3 − 4S2 − 3S1 are chain boundaries. Note that F∂∂ = (A1 −A2 +A3)∂ = 0.

In order to verify that applications ∂p are actually boundary applications,
we only have to check that c∂∂ = 0 for each chain c composed by one sim-
plex. This can directly be done using definition 2 and the property that for any
p−simplex σ, σ∂∂ = 0.

2.3 Cycles, Boundaries, Homology Groups

In order to define homology groups, we first define particular chains. A p−chain
which boundary is null is a p−cycle. The set of p−cycles equipped with the
addition is a p−chain subgroup, denoted Zp. For example on Fig. 2(c): 1−chains
A1 −A2 +A3 and A1 +A4 are 1−cycles: (A1 −A2 +A3)∂ = (S3 − S1)− (S3 −
S2) + (S1 − S2) = 0 and (A1 +A4)∂ = (S3 − S1) + (S1 − S3) = 0.

A p−chain which is the boundary of a (p+1)−chain is a p−boundary. The set
of p−boundaries equipped with the addition is also a p−chain subgroup, denoted
Bp. Moreover, each p−boundary is a p−cycle (since ∀c ∈ Cp+1, c∂∂ = 0) hence
Bp is a subgroup of Zp. For example on Fig. 2(c): 1−chain A1 −A2 +A3 is the
boundary of 2−chain F .

A p−dimensional hole is a p−cycle which is not a p−boundary. For example,
on Fig. 2(c), 1−cycle A1 +A4 is not a boundary.

Now an equivalence relation is defined as follow: two p−cycles μ1 and μ2

are equivalent if their difference is a boundary, i.e. μ1 = μ2 + c∂p+1 : μ1 and
μ2 are homologous4. Homology group Hp is the quotient of cycle group Zp by
the equivalence relation (i.e. Hp = Zp/Bp). Hence two cycles belong to the same

4 As a special case, if μ = c∂p+1 then μ is homologous to 0.
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equivalence class if they surround the same hole. For example on Fig. 2(c): cycles
z2 = A2 −A3 +A4 and A1 +A4 are homologous, since z1 = z2 + F∂.

For any p, Hp is finitely generated, i.e. there is a finite number of elements
from which all others can be deduced. Hence, following the finitely generated
group theorem, any group Hp is isomorphic to a direct sum [4]:

Z⊕ ...⊕ Z︸ ︷︷ ︸
βp

⊕Z/t1Z⊕ ...⊕ Z/tnZ.

Each Z corresponds to an equivalence class of infinite order cycles5. The number
βp is the pth Betti number. Each Z/tiZ corresponds to an equivalence class of
cycles of finite order ti6. Integers ti are the torsion coefficients. A cycle of finite
order is a weak boundary.

3 Homology of Simploidal Sets

In this section, simploidal sets are introduced. We extend classical notions of
chains, cycles and boundaries and we define boundary homomorphisms for this
structure. Thus, we provide a direct homology definition for simploidal sets.

3.1 Simploidal Sets

A simploid can be defined as the product of polytopes, which are ”geometric”
simplices [2]. We recall here the combinatorial structure of simploidal sets, which
is based upon the notion of semi-simplicial set (see section 4). In a simploidal set,
a simploid is defined by a k−tuple (a1, . . . , ak) of strictly positive integers, which
is its type, k is the length of the simploid,

∑k
l=1 al is its dimension (intuitively,

a simploid is the product of simplices of respective dimensions a1, · · ·ak). Some
examples of simploids are shown on Fig. 3. It should be noted that a p−simplex
is a simploid of type (p) and that a p−cube is a simploid of type (1, . . . , 1) with
length p.

(1) (2) (1, 1) (2, 1) (1, 1, 1)

Fig. 3. Examples of simploids

5 For any p, h ∈ Hp is an infinite order cycle if and only if, for any α, αh /∈ Bp.
6 For any p, h ∈ Hp is a cycle of order ti if and only if, for any α ∈ [1..ti − 1], αh /∈ B

and tih ∈ B.
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Definition 3. [8] A simploidal set S = (K, (εij)) of dimension n is the union⋃n
p=0K

p of sets of p−dimensional simploids, 0 ≤ p ≤ n equipped with border
operators εij such that:

(. . . , ai, . . .)εij : −→

⎧⎪⎪⎨⎪⎪⎩
(. . . , ai − 1, . . .) if ai > 1

(. . . , âi, . . .)
otherwise ( âi means
ai is removed)

(1)

(. . . , ai, . . .)εikε
i
l = (. . . , ai, . . .)εilε

i
k−1 with k > l and ai > 1 (2)

(. . . , ai, . . . , aj , . . .)ε
j
kε

i
l

with i < j
=

⎧⎨⎩
(. . . , ai, . . . , aj , . . .)εilε

j
k if ai > 1

(. . . , ai, . . . , aj , . . .)εilε
j−1
k otherwise.

(3)

Figure 4(a) shows an example of simploidal set. In the previous definition, first
equation (1) denotes the action of a border operator on the simploid type. The
cartesian product of a simploid s by a simploid of type (0) (i.e. a vertex) is the
identity. Hence, if zero appears in the type of a simploid by the application of a
boundary operator, it is removed from the type. With equation (2), the commu-
tation relation for semi-simplicial set boundary operators is retrieved. Finally,
equation (3) is the commutation relation when two boundary operators are suc-
cessively applied to two different simplices. The second part of this equation
allows us to take into account the shifts that are produced by suppressed zeros.

For example, if we apply the sequence of boundary operators ε30ε
2
1 to a simploid

of type (2, 1, 1), we obtain first a simploid (2, 1), due to the application of ε30 and
after a simploid (2) by the application of ε21. In an other way, if we start by the
application of ε21, a simploid (2, 1) is obtain since the zero that appears in the
middle of the type is removed. Hence, we cannot apply operator ε30. The applied
operator is ε20, so we get (2, 1, 1)ε30ε

2
1 = (2, 1, 1)ε21ε

2
0.

3.2 Simploidal Chain, Boundary Homomorphism and Free Chain
Complex

In order to define simploidal homology, we have to associate a free chain com-
plex to a simploidal set. Let S = (K, (εij)) be a simploidal set: a simploidal
p−chain is a combination of simploids of Kp with integer coefficients. Now, to
define boundary homomorphisms ∂� for simploidal sets, we extend the general
boundary formula of a cell-product: (a× b)∂ = a∂ × b+ (−1)dim(a)a× b∂.

Definition 4. Let s be a simploid of type (a1, · · · , ak).

s∂� =

{
0 if s = ()∑k

i=1

∑ai

j=0(−1)j+ i−1
l=1 alsεij otherwise
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Fig. 4. (a) an example of simploidal set of dimension 2. (b) a commutative diagram
which illustrates the property cτ∂ = c∂�τ .

For example on Fig. 4(a): F1∂
� = (F1ε

1
0 − F1ε

1
1) − (F1ε

2
0 − F1ε

2
1) ; F2∂

� =
F2ε

1
0 − F2ε

1
1 + F2ε

1
2. Definition 4 is extended by linearity for simploidal chains.

To prove that c∂�∂� = 0 for any simploidal chain c (i.e. ∂� are boundary
homomorphisms), we prove this property for a simploidal chain containing a
single simploid s (linearity ensure extension for a general chain). Then, we prove
that definition 4 satisfies the general boundary formula of a cell-product7 and
conclusion follows. So, we can associate a free chain complex to a simploidal
set. Now we are able to compute the homology groups for such a set, using for
example the Smith normal form transformation for incidence matrices [4].

4 Conversion Between Simploidal and Semi-simplicial
Sets

As we will see in this section, it is always possible to associate a semi-simplicial
set with a simploidal set. And, it is well known in algebraic topology that the
homology of a triangulable space does not depend on its triangulation [4]. So
we can directly conclude that simploidal homology as defined in section 3 is
equivalent to simplicial homology.

In this section, we study conversions between semi-simplicial and simploidal
sets. We define operator T which associates to each simploid a set of simplices in
the associated semi-simplicial set. We also define operator τ , which associates to
each p−simploidal chain a p−simplicial chain in the associated semi-simplicial
set. Operator τ preserves the boundary i.e. for any simploidal chain c, cτ∂ =
c∂�τ (see Fig. 4(b)).

Finally, we provide algorithms for converting a simploidal chain into a sim-
plicial chain and conversely. So we can associate a simplicial generator with
each simploidal homology generator and conversely. Incidentally, we get a di-
rect and constructive proof of the equivalence between simploidal and simplicial
homology.
7 This can be directly be proved using a recursion over the length of a simploid.
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4.1 Semi-simplicial Set Associated with a Simploidal Set

Any simploidal set can be constructed in two steps: (1) Creation of principal8

simploids and their boundaries. (2) Identifications9 of simploids which are in the
boundary of principal simploids.

In order to construct the semi-simplicial set associated to a simploidal set, we
proceed as follow : (a) For each simploid, the set of corresponding simplices is
created in the associated semi-simplicial set. (b) Boundary operators are defined
between simplices that correspond to a same simploid s and between simplices
that corresponds to s and s∂�.

Cartesian Product of Semi-simplicial Sets; Triangulation of a
Simploid. We recall some notions related to the cartesian product. The de-
finition is not provided, since it is rather long and it will not be used here. Actu-
ally, the cartesian product operation is defined on simplicial sets, which extend
semi-simplicial sets by adding a second class of operators (degeneracy operators),
which induces a second type of simplices (degenerate simplices, see [5]). The gen-
eral definition of simplicial sets makes possible to define cartesian product in a
very simple way. From which an equivalent definition of cartesian product which
acts directly upon semi-simplicial sets [9] is deduced. The basic principle is the
following : the cartesian product of two simplices is made of simplices (maybe
having different dimensions), which can be identified by integer sequences (these
integer sequences correspond to sequences of degeneracy operators). Boundary
operators can also be deduced from these integer sequences and relations with
boundary operators of the initial simplices.

In practice, the product of l−simplex σ and m−simplex μ, such that l ≥ m,
is a set of simplices of dimensions l to l + m, where the set of r−dimensional
simplices (l ≤ r ≤ l +m) corresponds to the set of simplices denoted (σI, μJ),
for all disjoint sequences I and J such that :

– I = (i1 · · · ir−l), J = (j1 · · · jr−m)
– 0 ≤ i1 < . . . < ir−l ≤ r − 1, 0 ≤ j1 < . . . < jr−m ≤ r − 1

For instance Fig. 5(c) illustrates the cartesian product of the two
semi-simplicial sets (a).

Then it is possible to define the set of simplices associated with a simploid of
length 2. We can extend this definition for any simploid s = σ1× · · ·σn. The set
of associated simplices is denoted sT. From sT the set of simplices of dimension
d = a1 + · · ·+an, is sT = {((· · · ((σ1I1, σ2I1)I2, σ3I2) · · · )In−1, σnIn−1)}, where:

Ii ∈ Eai+1,a1+···+ai+1 , 1 ≤ i ≤ n− 1,
Ep,n is the set of strictly increasing integer sequences of p integers range 0
to n− 1,
If I is an element of Ep,n, we denote I the sequence of En−p,n such that
I ∩ I = ∅.

8 A simploid is a main simploid if it is not in the boundary of another simploid.
9 Intuitively, identifying two simploids consists in merging them.
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For instance, let σ1 (reps. σ2, σ3) be a 1−simplex (resp. 3−simplex,
2−simplex). The set of 6−simplices of triangulation of σ1 × σ2 × σ3 is {((σ1I1,
σ2I1)I2, σ3I2)} where :

– I1 ∈ {012, 013, 023, 123}, I1 ∈ {3, 2, 1, 0},
– I2 ∈ {01, 02, 03, 04, 05, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45},
– I2 ∈ {2345, 1345, 1245, 1235, 1234, 0345, 0245, 0235, 0234, 0145, 0135, 0134,

0125, 0124, 0123},

4.2 Morphism τ Between Simploidal Chain Groups and Simplicial
Chain Groups

In this section, we define a morphism τ between simploid chains and simplicial
chains of the associated semi-simplicial set. We prove that τ commutes with
boundary homomorphisms.

Definition of Morphism τ . The simplicial chain associated to a simploid s
by τ is composed of simplices from sT taking into account their orientation such
that for any simploidal chain c� : c�τ∂ = c�∂�τ (cf. Fig. 4(b)). The set of
p−simplices associated to a p−simploid s is sT . To define τ , we assign a sign for
each simplex of sτ such that its boundary; (1) does not contain “internal” sim-
plices. (2) has an orientation which corresponds to the orientation of simploids
of the boundary of s.

For example on Fig. 5, semi-simplicial set (c) is equivalent to simploidal set (b).
The boundary of s = σ×μ is a1 + a4− a2− a3. In the associated semi-simplicial
set, we know that the chain corresponding to s is composed of 2−simplices
(σ0, μ1) and (σ1, μ0). The unique chain composed of these two simplices that
does not contain the internal edge a5 in its boundary and such that its boundary
corresponds to the boundary of s is (σ1, μ0)− (σ0, μ1).

More generally, for a p−simploid s corresponding to the product of two sim-
plices σ1 and σ2, we know that internal (p − 1)−simplices of sT are in the
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×
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Fig. 5. (a) two simploidal sets. (b) simploidal cartesian product of (a). (c) simplicial
cartesian product of (a).
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boundary of two simplices (σ1I, σ2I) and (σ1I
′, σ2I ′) such that there exists

i ∈ I, i+ 1 ∈ I. (I ′, I ′) is obtained from (I, I) by switching i and i+ 1 (cf. [9]).
Thus, we have: (σ1I, σ2I)di+1 = (σ1I

′, σ2I ′)di+1. For example, on Fig. 5, the
two 2−simplexes of (b), (σ0, μ1) and (σ1, μ0) have the common internal face :
(σ0, μ1)d1 = (σ1, μ0)d1 = (σ, μ) = a5.

As each internal simplex must vanish in the boundary of a chain sτ , two
simplices that have a common internal face must have opposite signs. Each sign
can be deduced from the parity of integer sequences that defined simplices [10],
and the sign of all simploids can be deduced from simplex,

((· · · ((σ1Ja1 , σ2Ja1)Ja1+a2 , σ3Ja1+a2) · · · )Ja1+···+ak−1
, σkJa1+···+ak−1

)

where Jm = 0 · · ·m− 1. So we get the following definition :

Definition 5. Let s = σ1 × · · · × σk a simploid of length k and dimension
a1 + · · ·+ ak.

sτ =
∑

I1···Ik−1

(−1)A(I1,··· ,Ik−1)((· · · ((σ1I1, σ2I1)I2, σ3I2) · · · )Ik−1, σkIk−1)

where:

– A(I1, · · · , Ik−1) = p(Ja1) + p(I1)) + · · ·+ p(Ja1+···+ak−1
) + p(Ik−1)

– for any integer sequence I, p(I) is the parity of the sum of elements of I.

So we get the commutation property such that for a simploid s, sτ∂ = s∂�τ .
The proof is not provided here since it is direct and long (see [10]).

Conversion Between Simploidal and Simplicial Generators. We intro-
duce the following notations: Let S� be a simploidal set and let S be its as-
sociated semi-simplicial set. C�, Z�, B� et H� (resp. C,Z,B,H) denote chain
group, cycle group, boundary group and homology group of S� (resp. S). The
previous commutation property ensures that τ preserves cycles and boundaries,
i.e. we use this property to prove that for any simploidal chain c�, if c� is a
cycle, then c�τ is a cycle and if c� is a boundary, then c�τ is a boundary too.

Reciprocally, it can be proved that any simplicial cycle z (resp. boundary) is
homologous to a simplicial cycle z′ (resp. boundary) such that z�τ = z′, where
z� is a simploidal cycle (resp. boundary). For example on Fig. 5, the simplicial
chain a1−a5 +a4 is homologous to a1−a2−a3 +a4 (they are both boundaries)
which is the image by τ of a simploidal chain (a1 − a2 − a3 + a4).

Note that any simplicial p−chain c can be partitioned according to their
corresponding simploids, i.e. c =

∑
i

∑
j αijσij where for a given i, every simplex

σij is associated with the same simploid si.
Let z =

∑
i

∑
j αijσij be a simplicial p−cycle (resp. boundary). We consider

the following two cases :
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• Case (1): For all i, si is a p−simploid. In this case, we can directly prove
that there exists a simploidal cycle (resp. boundary) z� =

∑
i γisi such that

z�τ = z; else z contains simplices which are internal to a simploid, and z is not
a cycle (resp. boundary).
• Case (2): There exists k such that sk is a n−simploid, n > p. Let ck be
the subchain of z corresponding to simploid sk. The boundary of ck must be
in the boundary of sk (since we consider only cycles). In this case, we propose
an algorithm that constructs a simplicial p−chain c′k homologous to ck having
the same boundary, such that each simplex of c′k comes from a m− simploid,
m < n. As c′k is homologous and have the same boundary as ck, by replacing
ck by c′k in the expression of z we don’t change the homology class of z. This
operation is repeated until all simplices belong to p−simploids (corresponding
to case (1)).

We do not provide here completely this algorithm as it is rather technical.
The principle is to use an ordering of simplices 10 for replacing each p−simplex
(in skT) of the current chain ck by its complementary in the boundary of a
(p+ 1)−simplex of skT.

For example Fig. 6(a) represents a subchain ck which is a part of a 2−cycle.
The two triangles of ck come from the triangulation of the cube, which is a
3−simploid. (b) illustrates a chain c′k, homologous to ck and with same boundary.
Each triangle of c′k comes from the triangulations of simploids on the boundary
of the cube.

(a) (b)

Fig. 6. (a) a 2−chain which comes from the cube (of dimension 3). (b) an homologous
2−chain which has same boundary as. Each resulting simplex of comes from simploids
of the boundary of the cube.

As a conclusion, we can associate to each simploidal cycle (resp. boundary)
a simplicial cycle (resp. boundary) using τ . Reciprocally, any simplicial cycle z
(resp. boundary) can be transformed into an homologous cycle (resp. boundary)
z′ such that z′ is the image of a simploidal cycle (resp. boundary). So we are able
to convert any generator of a simploidal set into a generator on the associated
semi-simplicial set and conversely. Incidentally, this provide a purely combinato-
rial and constructive proof of the equivalence between simploidal and simplicial
homology.

10 This ordering is based on the properties of integer sequences that define simplices
on a semi-simplicial set associated to a simploidal set.
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5 Conclusion

In this paper, notions of chains, cycles and boundaries have been extended to sim-
ploids. We defined boundary homomorphisms ∂� for simploidal sets (these ho-
momorphisms are directly defined using boundary operators εij): we also proved
that c∂�∂� = 0 for any simploidal chain c. So we show how to associate a free
chain complex to a simploidal set and thus we defined an homology for simploidal
sets.

We provided algorithms for converting a simploidal set into an equivalent
semi-simplicial set. Then we provided algorithms for converting simploidal ho-
mology generators into simplicial ones and reciprocally. We thus provide a purely
combinatorial and constructive proof of the equivalence between simplicial and
simploidal homology.

Now we want to study the adaptation to simploidal sets of existing algorithms
initially defined for computing homology of simplicial structures [7]. We hope
that this will lead to interesting results in terms of memory occupation and
efficiency. To do so, we need to develop comparisons with, as far as the authors
know, the lone studies for non simplicial complexes [6].

From a practical point of view, we are also interested to experiment these
algorithms for images of dimension greater than or equal to 3 (voxel images,
sequences of 3D images).
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Abstract. The intrinsic volumes – in 3d up to constants volume, surface
area, integral of mean curvature, and Euler number – are a very useful
set of geometric characteristics. Combining integral and digital geom-
etry we develop a method for efficient simultanous calculation of the
intrinsic volumes of sets observed in binary images. In order to achieve
consistency in the derived intrinsic volumes for both foreground and
background, suitable pairs of discrete connectivities have to be used.
To make this rigorous, the concepts discretization w.r.t. an adjacency
system and complementarity of adjacency systems are introduced.

1 Introduction

With the fast development of new materials like foams or fiber reinforced com-
posites there is a growing need for non-destructive testing and structure char-
acterization. In particular, computer tomography is now able to produce high
quality 3d images of very fine structures, yielding the demand for subsequent
quantitative analysis.

In many applications, geometric characteristics of the whole structure have to
be measured from the given image. A very attractive set of geometric character-
istics are the intrinsic volumes (or quermassintegrals or Minkowski functionals).
In 3d, they are, up to constants, volume, surface area, integral of mean curva-
ture, and Euler number. For fibrous structures, the integral of mean curvature
yields the total fiber length without need to segment individual fibers.

The Crofton formulae boil down computing the intrinsic volumes to com-
puting Euler numbers in lower dimensional intersections. Discretization of these
formulae (see Section 4) combined with an efficient calculation of the Euler num-
bers in the intersections yield a fast algorithm for simultaneously determining
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the intrinsic volumes based on observations in a digital image. The backbone of
the Euler number calculation are thorough investigations of digital connectivity
and consistency from [1, 2, 3], summarized in Section 3.

The consistency results for the Euler number of foreground and background
established in [2] carry over to all intrinsic volumes. A remarkable observation in
this context is that the 18-neighborhood can not be used for consistent estimation
of the intrinsic volumes. This counteracts the fact that (18,6) is considered to
be a ’good pair’ in digital topology, see e.g. [4, Chapter 7].

In 3d, the presented method’s algorithmic core consists in a convolution of
the binary image with a 2×2×2 mask, resulting in an 8 bit gray value image [5].
All further steps are based solely on the gray value histogram whose size does
not depend on image size or content. Thus the advantage over other methods for
computing the intrinsic volumes [6,7] are simplicity and speed of the algorithm.
The surface area is measured directly from the binary volume image without
need to approximate the surface. Similar methods are [8] and [9], see Section 6
for a comparison.

2 Section Lattices and Translative Complements

In this paper, we restrict ourselves to the three-dimensional cubic primitive lat-
tice L3 = aZ3, a > 0, where Z is the set of integers. For a more general ap-
proach see [10]. Let u1, u2, u3 denote the standard unit vector basis of the three-
dimensional Euclidean space R3. The closed unit cell of L3 is the Minkowski
sum C = [0, au1] + [0, au2] + [0, au3]. Its volume is volC = a3. We denote by F0

the set of vertices of a polyhedron, in particular F0(C) = {0, a}3. The set of all
lattice cells covers R3 =

⋃
x∈L3(C + x).

The Crofton formulae for computing the intrinsic volumes of a set X ⊂ R3

use section profiles of X on affine subspaces of R3. In order to obtain a digitized
version, we introduce section lattices of L3 and their translative complements in
analogy to linear subspaces and their orthogonal complements:

Definition 1. A pair
(
Lk,T L3−k

)
, k = 1, 2, is called a k-dimensional section

lattice Lk equipped with the translative complement T L3−k, if there exists a basis
v1, v2, v3 of L3 with

(i) Lk = (v1, vk)Zk ,
(ii) T L3−k = (vk+1, v3)Z3−k,
(iii) there is an x ∈ F0(Č) with {v1, vk} ⊂ F0(C + x) where Č is the reflection

of C at the origin, Č = −C.

Condition (iii) ensures that integration over ’local knowledge’ on the image data
is possible as needed later. The translative complement T L3−k has properties
similar to those of the orthogonal complement of a linear subspace:

1. Lk ∩ T L3−k = 0,
2. If x1, x2 ∈ T L3−k, x1 �= x2, then (Lk + x1) ∩ (Lk + x2) = ∅,
3. L3 =

⋃
x∈T L3−k(Lk + x).
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However, the translative complement is not necessarily uniquely determined.
Nevertheless, choosing one of the translative complements arbitrarily turns out
to work for all considerations presented in the following. For L3, there are 13 sec-
tion lattices Lk

i for both k = 1 and k = 2. This restriction is due to condition (iii).

Table 1. The bases of the 13 section lattices Lk
i of L3 = Z3 and a possible translative

complement T Lk
i for k = 1 (left), and k = 2 (right)

i basis of L1
i basis of T L2

i

1 {u1} {u2, u3}
2 {u2} {u1, u3}
3 {u3} {u1, u2}
4 {u1 + u2} {u1, u3}
5 {−u1 + u2} {u1, u3}
6 {u1 + u3} {u1, u2}
7 {−u1 + u3} {u1, u2}
8 {u2 + u3} {u1, u3}
9 {−u2 + u3} {u1, u3}

10 {−u1 + u2 + u3} {u1, u2}
11 {−u1 + u2 + u3} {u1, u2}
12 {u1 − u2 + u3} {u1, u2}
13 {u1 + u2 − u3} {u1, u2}

i basis of L2
i basis of T L1

i

1 {u1, u2} {u3}
2 {u1, u3} {u2}
3 {u2, u3} {u1}
4 {u1, u2 + u3} {u3}
5 {u1,−u2 + u3} {u3}
6 {u2, u1 + u3} {u3}
7 {u2,−u1 + u3} {u3}
8 {u3, u1 + u2} {u1}
9 {u3,−u1 + u2} {u1}

10 {u1 + u3, u2 + u3} {u3}
11 {−u1 + u3, u2 + u3} {u3}
12 {−u1 + u3,−u2 + u3} {u3}
13 {u1 + u3,−u2 + u3} {u3}

3 Adjacency and Euler Number

The Crofton formulae reduce the measurement of the intrinsic volumes V3−k of
a poly-convex set X to measuring the Euler number χ of section profiles of X
in k-dimensional sections, k = 1, 2. Thus it is essential to know how the Euler
number χ(X ∩ (L + y)) can be measured when instead of X ∩ (L + y) only
the observation X ∩ (Lk + y) on a translated section lattice is available with
L = spanLk and y ∈ T L3−k.

The problem of measuring the Euler number based on images was consid-
ered by several authors [11, 12, 6, 7]. Here we apply the concept of adjacency
systems from [1, 2, 3]. Good pairs of adjacencies for foreground and background
allow consistent calculation of the Euler number, see 3.3. It turns out that this
condition differs from the usually demanded Jordan surface theorem as the 18-
neighborhood can not be used for consistent calculation of the Euler number.
Note that for dimensions three and higher, a complete description of good adja-
cencies is not yet known.

3.1 Discretization with Respect to an Adjacency System

Let Lk be a (section) lattice with the basis v1, vk and the unit cell Ck. The
vertices xj =

∑k
i=1 λivi of Ck are indexed with j =

∑k
i=1 2i−1λi, λi ∈ {0, 1}.

Clearly, the unit cell Ck has 2k vertices xj ∈ F0(Ck), j = 0, . . . , 2k − 1. Analo-
gously, we introduce the index of a subset ξ ⊆ F0(Ck). Let 1 denote the indicator
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function of a set, i. e. 1(x ∈ ξ) = 1 if x ∈ ξ and 1(x ∈ ξ) = 0 otherwise. An index

� is assigned to ξ, and we write ξ� if � =
2k−1∑
j=0

2j1(xj ∈ ξ), i. e. � ∈ {0, . . . , ν}

with ν = 22k − 1. Note that ξ0 = ∅, ξν = F0(Ck), and ξν−� = ξν \ ξ�. The ξ� can
be considered as a local pixel configuration of the foreground of a k-dimensional
binary image. Finally, we introduce the convex hulls F� = conv ξ� forming convex
polytopes with F� ⊆ Ck and F0(F�) ⊆ F0(Ck), � = 1, . . . , ν. Let F j(F ) denote
the set of all j-dimensional faces of a convex polytope F . For a set F of convex
polytopes write F j(F) = ∪{F j(F ) : F ∈ F} for the set of all j-faces. Now we
are able to equip the lattice Lk with a (homogeneous) adjacency system defining
the neighborhood of the lattice points.

Definition 2. Let F0 ⊆ {F0, . . . , Fν} be a set of convex polytopes F� = conv ξ�
with the properties

(i) ∅ ∈ F0, C ∈ F0,
(ii) if F ∈ F0 then F i(F ) ⊂ F0 for i = 0, . . . ,dimF ,
(iii) if Fi, Fj ∈ F0 and Fi ∪ Fj is convex then Fi ∪ Fj ∈ F0.

Then the system F0 is a local adjacency system and F =
⋃

x∈Lk F0 + x is called
an adjacency system of the lattice Lk.

From condition (i) it follows immediately that F0(F) = Lk. The pair Γ =
(F0(F),F1(F)) consisting of the set F0(F) of nodes and the set F1(F) of edges
is said to be the neighborhood graph of F. Due to homogeneity (Γ + x = Γ ,
x ∈ Lk), all nodes have the same valence – the connectivity of Lk. Note that for
n > 2 there can be two or more adjacency systems having the same neighborhood
graph. In other words, an adjacency system F is not uniquely determined by Γ .

Examples of Adjacency Systems for k = 3:

The 6-adjacency is generated from the unit cell C3, F0 = ∪3
j=0F j(C3).

The 14.1-adjacency is generated from the tessellation of C3 into the 6 tetra-
hedra F139, F141, F163, F177, F197, F209 which are the convex hulls of the
configurations

, , , , , ,

i. e. F0 consists of all j-faces of the tetrahedra, j = 0, . . . , 3, and their convex
unions. The edges of the corresponding neighborhood graph Γ are the edges
of C3, the face diagonals of C3 containing the origin 0, the space diagonal
of C3 containing 0, and all their lattice translations. The degree of Γ is 14.

The 14.2-adjacency is generated from the tetrahedra F43, F141, F147, F169,
F177, and F212 which are the convex hulls of

, , , , , .

The corresponding neighborhood graph Γ differs from that one for 14.1 in
the choice of one face diagonal of C3 not containing 0.
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The 26-adjacency is given by F0 = {F0, . . . , F255}.

Definition 3. The discretization X�F of a compact set X ⊂ R3 with respect to
a given adjacency system F is defined as the union of all j-faces of the elements
of F for which all the vertices hit X, i. e.

X � F = ∪{F ∈ F : F0(F ) ⊆ X}. (1)

This means that a ’brick’ F ∈ F is a subset of the discretization of X if and
only if all vertices of F belong to X . The discretization is obtained from the
observation of the set on the lattice, i.e. X � F = (X ∩ L3) � F.

3.2 Euler Number

Since X�F forms a (not necessarily convex) polyhedron on span Lk, the number
of elements of F j(X �F) is finite. Therefore, the Euler number χ(X �F) can be
computed via the Euler-Poincaré formula,

χ(X � F) =
k∑

j=0

(−1)j #F j(X � F).

In order to apply a ’local method’ for measuring the intrinsic volumes we deduce
now a local version. The discretization of a local configuration ξ� = X ∩Ck ∩Lk

of X ∩Lk is ξ� � F = (X � F) ∩Ck = X � F0. We compute weights for the edge
correction using κF = min {j : there is a G ∈ Fj(Ck) with F ⊆ G}. Now define
the edge-corrected localization χ0 of χ as

χ0(ξ� � F) :=
k∑

j=0

(−1)j
∑

F∈Fj(ξ��F)

2κF−k, � = 0, . . . , ν. (2)

Then, additivity and translation invariance of the Euler number and the fact
that X � F = (X ∩ Lk) � F yield

χ(X � F) =
∑
x∈Lk

χ0(Ck ∩ ((X � F)− x))

=
∑
x∈Lk

ν∑
�=0

χ0(ξ� � F)1(ξ� + x ⊆ X)1(ξν−� + x ⊆ Xc)

=
ν∑

�=0

χ0(ξ� � F)
∑
x∈Lk

1(ξ� + x ⊆ X)1(ξν−� + x ⊆ Xc)︸ ︷︷ ︸ . (3)

=: h�

Thus the Euler number can be written as a scalar product, χ(X�F) = wh, where
the components w� = χ0(ξ� � F) of the vector w = (w�) depend on F, but they
are independent of X . On the other hand, the vector h = (h�) is independent of
F; its components h� can be computed very efficiently from ’local information’
about X ∩ L3.
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3.3 Complementarity

It is well-known that choosing an adjacency system F for the discretization of X
implies an Fc for the discretization of the complementary set Xc. In other words,
if the ’foreground’ X ∩ Lk is connected with respect to F then the ’background’
Xc ∩ Lk must be connected with respect to a complementary adjacency Fc.
The usual criterion for complementarity is the Jordan surface theorem (Jordan-
Brouwer theorem), see e. g. [13]. However, when aiming at computation of the
intrinsic volumes, another criterion seems to be more appropriate: In the con-
tinuous case the consistency relation

χ(X) = (−1)k+1χ
(
Xc
)

holds for all compact, poly-convex and topologically regular sets X ⊂ spanLk,
see [2]. In the discrete case this leads to:

Definition 4. The pair (F,Fc) is called a pair of complementary adjacency
systems if

χ(X � F) = (−1)k+1χ(Xc � Fc)

for all compact X ⊂ R3. An adjacency system F is called self-complementary if
χ(X � F) = (−1)k+1χ(Xc � F) for all compact X.

For a given adjacency system F, existence of a complementary adjacency system
Fc is not guaranteed. Even worse, until now, there is no constructive way to
find the complementary system Fc. However, most known ’good’ pairs of adja-
cencies w.r.t. Jordan curve or surface theorems are complementary in the sense
of our definition, too. Complementarity of adjacency systems can be checked
the following way: Let h be defined as in (3). Then for hc = (hc

�) with hc
� =∑

x∈Lk 1(ξ� + x ⊆ Xc)1(ξν−� + x ⊆ X) we obtain the relationship h� = hc
ν−�,

� = 0, . . . , ν. Using (3) and Definition 4 one can easily prove

Lemma 1. Let F and Fc be two adjacency systems and let w and wc be the
vectors with the coefficients w� = χ0(ξ� �F) resp. wc

� = χ0(ξ� �Fc), � = 0, . . . , ν.
Then (F,Fc) is a pair of complementary adjacency systems if and only if

w� = (−1)k+1wc
ν−�, � = 0, . . . , ν. (4)

Examples for 3d: The 6-adjacency is complementary to the 26-adjacency. The
14.1- and the 14.2-adjacencies are constructed to be self-complementary, see [2,3].
However, the 18-adjacency is not complementary to the 6-adjacency although
they are ’Jordan-Brouwer-complementary’, see e.g. [13]. In order to see this,
define F18 to be one of the 18-adjacencies with the neighborhood graph Γ ′ =
(L3,F1) where F1 consists of all edges and face diagonals of the cells of L3.
Independent of the choice of F18 we get e. g. χ0( � F18) = 1

4 since the space
diagonals of the unit cell do not belong to F18. On the other hand we get for the
complementary configuration χ0( �F6) = − 3

4 where F6 is defined as in Section
3.1. Thus, for the pair (F18,F6), the necessary condition for complementarity (4)
is violated.
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Remark: The example (F18,F6) shows that complementarity in the sense of
Definition 4 clearly differs from ’Jordan-Brouwer-complementarity’. So far, there
is no general result about the relationship of the two conditions known. Jordan
surface theorems for the two 14-adjacencies are expected to hold and subject of
further research.

4 Intrinsic Volumes of Poly-Convex Sets

Consider a poly-convex set X ⊂ R3. The intrinsic volumes Vj , j = 0, . . . , 3 are –
up to constant factors – the volume V (X), the surface area S(X) = 2V2(X), the
integral of mean curvature M(X) = πV1(X), [14, p. 210] and the Euler number
χ(X) = V0(X). By means of the Crofton formula, the intrinsic volumes can be
written as

1
2
V3−k(X) =

∫
Lk

∫
⊥L

χ(X ∩ (L+ y)) dλ⊥L(y)

︸ ︷︷ ︸
dμ(L), k = 1, 2, (5)

pk
X(L)

where Lk is the set of all k-dimensional linear subspaces of R3, ⊥L denotes the
orthogonal complement of L ∈ Lk, λ⊥L is the 3−k-dimensional Lebesgue measure
on ⊥L, μ denotes the rotation invariant probability measure on Lk, μ(Lk) = 1.

Remark: Note that the Crofton formula is also the base of stereological formulae
for the intrinsic volumes, see e.g. [15].

Here, the set X is observed in an image (a finite subset of the lattice L3)
only. This implies that the integrand in the Crofton formulae (5) is known for
only a finite number of elements of Lk, and the translation L + y is possible
for discrete values of y, only. That is, both integrals in (5) are approximated
by sums. Furthermore, the intersection (X − y) ∩ L must be replaced by its
discretization (X − y)�Fk with respect to an adjacency system Fk in Lk where
L = spanLk, and the translations y are from T L3−k instead of ⊥L, where T L3−k

is a translative complement according to Definition 1.

4.1 Discretization of the Translative Integral

Let Ck and TC3−k be the unit cells of Lk and T L3−k, respectively. Denote by
proj TC3−k the orthogonal projection of TC3−k onto ⊥L. Its volume is
vol proj TC3−k = volC/volCk.

Then – in analogy to the rectangular quadrature rule – the inner integral in
the Crofton formula (5) can be approximated by

pk
X(L) ≈ volC

volCk

∑
y∈T L3−k

χ((X − y) ∩ L)) ≈ volC
volCk

∑
y∈T L3−k

χ((X − y) � Fk))

=
volC
volCk

∑
x∈L3

χ0(Ck ∩ ((X − x) � Fk)) := p̃k
X(L). (6)
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The volume of proj TC3−k and thus p̃k
X(L) do not depend on the particular choice

of T L3−k. From the local Euler-Poincaré-Formula (2) it follows that∑
x∈L3

χ0(Ck ∩ ((X − x) � Fk)) = wh (7)

where the vector w corresponds to the adjacency system Fk and h can be com-
puted via

h� =
∑
x∈L3

1(ξ� + x ⊂ X)1(ξν−� + x ⊂ Xc), � = 0, . . . , ν. (8)

Remark: For an effective algorithmic implementation it is useful to use one vector
h̄ with (7) which has to be determined just once for given set X and lattice L3.
In order to use it for the dimensions k = 1, 2 and the different directions of
sections as well as for the computing the Euler number in 3d according to (3),
the vectors w̄ of weights can be adapted appropriately [5, 10], such that∑

x∈L3

χ0(C ∩ ((X − x) � Fk)) = w̄h̄. (9)

h̄ can be interpreted as the gray value histogram of the gray value image obtained
by convolution of the binary image with a suitable 2× 2× 2 mask.

4.2 Discretization of the Integral over All Subspaces

As a consequence of the observation of X on L3 and condition (iii) in Def-
inition 1 an approximation of pk

X is known for only finitely many subspaces
Li = span Lk

i , i = 1, . . . , 13, see Table 1. Hence, an appropriate approximation
of
∫
Lk p

k
X(L) dμ(L) is needed. Applying a simple quadrature we get

∫
Lk

pk
X(L) dμ(L) ≈

∫
Lk

p̃k
X(L) dμ(L) ≈

13∑
i=1

γ
(k)
i p̃k

X(Li) (10)

where γ(k)
i are the weights corresponding to the applied quadrature rule. The

choice of these weights is not trivial since the L1, . . . , L13 are not uniformly
scattered in Lk and moreover, the measurement values p̃k

X(Li) for the pk
X(Li)

are not of the same precision for different subspaces.
The weights γ(k)

i can be chosen as follows, see [5]: For k = 1 the unit sphere S2

is divided into Voronöı cells with respect to the point field L1 ∩S2, . . . , L13 ∩S2

containing 26 points. Then the weight γ(1)
i is the sum of the areas (Hausdorff

measure) of the two Voronöı cells corresponding to the two points of Li ∩ S2

divided by the surface area of S2. For k = 2, the same is done with ⊥Li instead
of Li. The numerical values are γ(k)

i = 0.045 778 for i = 1, 2, 3; γ(k)
i = 0.036 981

for i = 4, . . . , 9; γ(k)
i = 0.035 196 for i = 10, . . . , 13.
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Summarizing formulas (5), (6), and (10) we obtain the approximation
V̂3−k(X) of V3−k(X) as

1
2
V̂3−k(X) =

13∑
i=1

γ
(k)
i

volC
volCk

i

∑
x∈L3

χ0(Ck
i ∩ ((X − x) � Fk

i )), k = 1, 2 (11)

where Fk
i is an adjacency system on the respective section lattice Lk

i and Ck

its unit cell. Using this approximation, consistent measurement of the intrinsic
volumes for both foreground and background is possible:

Theorem 1. Let (Fk
i ,F

k
c,i) be pairs of complementary adjacency systems on the

lattices Lk
i , i = 1, . . . , 13, where X and Xc are discretized w.r.t. the Fk

i and the
Fk

c,i, respectively. If X is compact then the following consistency relation holds:

V̂n−k(X) = (−1)k+1V̂n−k(Xc), k = 1, 2. (12)

This follows directly from Definition 4.
From (6), the remark in Section 4.1, (7), (8), and (10) it can be seen that the

two intrinsic volumes V1 and V2, and thus the integral of the mean curvature M
and the surface area S, can be computed by scalar products, Ŝ(X) = v(1)h̄ and
M̂(X) = v(2)h̄, respectively, where

v(1) = 4
13∑

i=1

volC
volC1

i

γ
(1)
i w̄

(1)
i , v(2) = 2π

13∑
i=1

volC
volC2

i

γ
(2)
i w̄

(2)
i ,

and w̄(1)
i , w̄(2)

i are the vectors corresponding to w̄ (as in (9)) for L1
i and L2

i , see
also [5].

5 Congruence Classes of Configurations

In this section, we derive another version of (11) using congruence classes of the
local pixel configurations ξ� w.r.t. rigid motions and counting 1(ξ� + x ⊆ X)
instead of 1(ξ� + x ⊆ X)1(ξc

� + x ⊆ Xc), comparable to [8, 9].
To this end, chose a pair of complementary adjacency systems (F,Fc) for the

lattice L3. As in Section 4.2 the section lattices Lk
i of L3 are equipped with

pairs (Fk
i ,F

k
c,i) of complementary adjacency systems, i = 1, . . . , 13, k = 1, 2. It

is assumed that the section lattices Lk
i and the adjacency systems Fk

i , Fk
c,i are

chosen such that for each element F of Fk
i ∪Fk

c,i there exists a translation x ∈ L3

such that F + x ⊂ C. (Note that not necessarily Ck ⊂ C.) Then it is sufficient
to consider local configurations ξ� ⊆ F0(C), � = 0, . . . , 255.

Consider first replacing 1(ξ� ⊂ X)1(ξc
� ⊂ Xc) in (3) and (8), respectively, by

1(ξ� ⊂ X). For each set ξ ⊆ F0(C), ξc = F0(C) \ ξ and a point y ∈ ξc we have

1(ξ ⊂ X, ξc ⊂ Xc) = 1(ξ ⊂ X, ξc \ {y} ⊂ Xc)− 1(ξ ∪ {y} ⊂ X, ξc \ {y} ⊂ Xc).
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Table 2. The coefficients g3j of the 21 congruence classes of the local pixel con-
figurations in 3d-images. The columns of g0j correspond to (F26, F6), (F14.1, F14.1),
(F14.2, F14.2), and (F6, F26), in this order. g1j = g2j = 0 for the congruence classes
11-21. Note that the weights are those in (11). That is, the configurations are counted
if the black dots are foreground and the other vertices are background.

j ηj g0j g1j g2j

0 ξ0 0 0 0 0 0 0

1 ξ1 1 1 1 1 0.751 0.751

2 ξ3 −3 −3 −3 −3 −0.861 −0.275

3 ξ9 0 −3 −3 −6 −1.076 −0.314

4 ξ129 0 −1 −1 −4 −0.314 −0.163

5 ξ11 0 6 6 12 0.549 0

6 ξ131 0 6 4 24 0.628 0

7 ξ41 0 0 2 8 0.325 0

8 ξ15 3 0 0 −3 0 0

9 ξ43 0 0 −2 −8 0 0

10 ξ139 0 −6 −2 −24 0 0

j ηj g0j

11 ξ195 0 0 0 −6

12 ξ105 0 0 0 −2

13 ξ99 0 0 −2 −24

14 ξ31 0 0 0 24

15 ξ151 0 0 0 8

16 ξ167 0 0 0 24

17 ξ63 0 0 0 −12

18 ξ159 0 0 0 −12

19 ξ231 0 0 0 −4

20 ξ127 0 0 0 8

21 ξ255 −1 0 0 −1

Recursion and translation by x yield

h� =
∑
x∈L3

1(ξ� ⊂ X − x, ξ255−� ⊂ X − x) =
255∑

m=0

qm�

∑
x∈L3

1(ξm ⊂ X − x),

� = 0, . . . , 255, where the qm� are integers with q�� = 1 for � = 0, . . . , 255 and
qm� = 0 for m < �. Further,

∑255
m=0 qm� = 0 for � = 0, . . . , 254, as follows from

the case X = C.
Finally, we average the approximations of the intrinsic volumes w.r.t. rotations

and inversions that leave the lattice L3 invariant, i.e. w.r.t. the symmetry group
{θ1, . . . , θ48} of the octahedron. Let D0, . . . , D21 be the congruence classes of
{ξ0, . . . , ξ255} w.r.t. translations and the octahedral group and let {η0, . . . , η21}
be a system of representatives, η� ∈ D�. Now, using the coefficients

g3−k,j =
2

a3−k

13∑
i=1

γ
(k)
i

volC
volCk

i

255∑
�=0

q̄j� χ0(ξ� � Fk
i ), k = 1, 2,
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and

g0j =
255∑
�=0

q̄j� χ0(ξ� � F)

with q̄j� =
∑255

m=0 qm�1(ξm ∈ Dj) the approximations of the intrinsic volumes
(11) and (3) can be rewritten as

Ṽ3−k(X) = a3−k
21∑

j=0

1
48

48∑
i=1

∑
x∈L3

1(θ−1
i ηj ⊂ X − x) g3−k,j , k = 1, 2, 3. (13)

The g3−k,j are normalized such that they are independent of the lattice dis-
tance a and Ṽ3−k(X) is the mean of V̂3−k(X) w.r.t. the octahedral group.

For particular cases, the coefficients g3−k,j can easily be computed and be pre-
sented in tables. Table 2 contains the g3j for the pairs (F,Fc) of complementary
adjacency systems from Section 3.1. The coefficients g1j and g2j are computed
for the section lattices listed in Table 1. The 2-adjacency is applied for k = 1 and
the 6-adjacency is applied for k = 2. The weights γ(k)

i are chosen as described
in 4.2.

6 Discussion

We introduce a new method for measuring the intrinsic volumes based on
weighted local 2 × 2 × 2 configurations. Due to the restriction to these small
configurations, an efficient and simple algorithm can be derived. Given a proper
choice of connectivities for foreground and background, consistency of the results
for foreground and background can be ensured. This is remarkable in particular
for the Euler number, as many other algorithms ignore this.

3d imaging techniques like computed tomography and nano-tomography us-
ing transmission electron micorscopy combined with focused ion beam sample
preparation often produce anisotropic lattices. The results presented in this pa-
per carry over to these cases as well as higher dimensions, see [10]. Note that for
anisotropic lattices, the sets of weights γ(k)

i for k = 1, 2 from 4.2 do not coincide
anymore.

There are various methods of surface estimation based on weights for local
pixel configurations, see e. g. [8, 9]. In Table 3 the weights b(L)

j published in [9]
are compared with the weights bj computed from the coefficients g2j given in
Table 2. The surface area weights for complementary representatives ηc

j are the
same as for ηj .

Clearly, the weights differ, for some of the directions considerably. In [10],
multi-grid convergence of the surface area approximation as given by (13) is
shown for an important class of random closed sets (Boolean models). A neces-

sary condition for this is
21∑

j=0

g2jbj = 0, obviously violated by the weights b(L)
j .
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Table 3. Weights for the surface area depending on local configurations: top: the
weights from [9], bottom: the weights computed from the coefficients g2j given in Table
2. Note that the weights here are to be used with (13). That is, the black dots have to
be foreground while there is no condition on the others.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ηj

b
(L)
j 0 0.636 0.669 1.272 1.272 0.554 1.305 1.908 0.927 0.421 1.573 1.338 2.544 1.190

bj 0 0.376 0.659 0.646 0.588 0.839 0.768 0.813 0.927 0.914 0.856 0.785 0.874 0.845
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Abstract. In this paper, we compare two different definitions of dis-
tance transform for gray level images: the Gray Weighted Distance Trans-
form (GWDT), and the Weighted Distance Transform On Curved Space
(WDTOCS). We show through theoretical and experimental comparisons
the differences, the strengths and the weaknesses of these two distances.

1 Introduction

Automatic image analysis processes are generally performed on binary images.
However, when images are acquired, gray level values have specific meanings.
In some images, they can represent a third (fourth) dimension for 2D (3D)
images, or they can represent blurry boundaries of objects, or the object density
distribution and many other features. In all the cases, the binarization process,
although often mandatory to perform further automated image analysis, results
in a loss of information.

To overcome this problem, more and more methods are proposed to perform
image analysis directly on gray level images [1, 2, 3]. This is also the case of
distance transforms which are widely used on binary images to extract shape
and size information [4].

Rutovitz first proposed in [5] a Gray Weighted Distance Transform (GWDT)
which uses a pixel gray value as a cost to traverse this pixel. The Gray Weighted
Distance (GWD) between two pixels is then defined as the smallest weighted
sum of gray level values along the discrete path between these two points. Levi
and Montanari also proposed in [6] a distance transform on gray level images
where the length of each path is weighted by the gray values of the pixels along
the path. In their definition, the length of a path is defined as the discretization
of the integral of the pixel values along the path. Saha et al. [7] proposed a the-
oretical framework and a dynamic programming method for the n-dimensional
computation of the Gray Weighted Distance Transform. Verbeek and Verwer [8]
and Kimmel et al. [9] used this Gray Weighted Distance Transform to solve the
eikonal equation.

Another way of computing distance transforms on gray level images was pro-
posed by Toivanen in [10]. The path between two points is then defined as a

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 259–270, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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n + 1 dimensional path constraint to lie on the hyper-surface defined by the
gray level values (here considered as heights on the n dimensional image). This
distance transform is thus called Weighted Distance Transform On Curve Space
(WDTOCS).

Other distances have been defined on gray level images seen as supports for
fuzzy sets. For example, Bloch detailed in [11] several distances between fuzzy
sets. She also proposed a new geodesic distance for fuzzy sets [12]. Soille [13]
also defined a geodesic measure for fuzzy sets inspired by Levi and Montanari’s
definition [6].

In this paper, we focus only on distance transforms, so the later distance de-
finitions are beyond the scope of this study. As we want the path defined on
gray levels to be able to reach the background, we will not consider geodesic
distances either. Our aim is to understand how the two different distance trans-
form definitions ; Gray Weighted Distance (GWD) and Weighted Distance On
Curve Space (WDCOS), behave on gray level images where the gray level values
have different meanings. We first propose a theoretical comparison based only
on their definition and mathematical properties in Section 2. We then compare
the results obtained by using these definitions to compute the radius of a fuzzy
disk in Section 3. The comparison is then performed on density maps (Section 4)
and height maps (Section 5).

2 Comparison from Definitions

In this paper, we consider gray level images I : Zn −→ R as functions from
the discrete points of the n-dimensional space Zn to the space of real numbers
R. The gray level values correspond either to heights or to fuzzy membership
functions. The notion of height comes with 2D images where the third dimension
(elevation) is coded with gray level values in the image. A fuzzy membership
function is defined as a mapping to the interval of real numbers [0, 1]. The
notions of background and foreground can be extended to gray level images as
follows: B = {p ∈ Zn|I(p) = 0}, and F = {p ∈ Zn|I(p) > 0}. In the case of a
fuzzy image, the several gray levels of the foreground pixels can be seen as their
belonging degree of the object. In the case of height maps, the gray level values
correspond to the altitude of the ground.

2.1 Gray Level Distance Maps

A distance map is generally defined on a crisp image but can be extended to
gray level images:

Definition 1 (Distance map). Given a gray level image I, the distance map
of I : DI is a gray level image where the value of each point of the foreground
corresponds to its shortest distance to the background.

Given a distance definition d, a point p ∈ F of the foreground and a point q ∈ B
corresponding to its nearest background point, DI(p) = d(p, q). In the case of a
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crisp image, d(p, q) only depends on the length of the path Ppq between p and q.
This path can be either continuous as in Euclidean Distance Transforms [14] or
discrete, as in the chamfer algorithm [15]. In the case of gray level distance maps,
Ppq is a path between p and q lying on the hyper-plane defined by the gray level
values of I. In the following, we consider the continuous function π : [0, 1] −→ Rn

following Ppq such that π(0) = I(p) and π(1) = I(q). The length of Ppq depends
not only on the spacial distance between p and q, but also on the gray level
values along the path. As digital gray level images are defined on discrete grid,
the gray level values along a continuous path may not bee known. This is why,
even if they are theoretically defined in the continuous space Rn, both GWDT
and WDTOCS are practically computed on discrete paths. In this case, each
step [ti, ti+1] of the discrete path with t0 = p and tm = q is attributed a cost
value wi depending on the length ||ti − ti+1|| of the step i, and of the gray level
values I(ti) and I(ti+1). The global cost of the path is the sum of all the costs
of the local steps: W(Ppq) =

∑
iwi, and the final distance between p and q is

the minimum of the costs of all the paths: dpq = min {W(Ppq)}.

2.2 GWD and WDOCS Definitions

Continuous Case. The Gray Weighted Distance is defined in the continu-
ous case by [6] and [7] as follows: DGWDT =

∫ 1

0 |π(t)|dt. It corresponds to the
surface area estimation under the curve path Ppq. The Weighted Distance On
Curved Space is defined in [10] as the length of the shortest geodesic path Ppq

between p and q. It is expressed as follows in the continuous case: DWDTOCS =∫ 1

0

∣∣dπ
dt (t)

∣∣ dt. Figures of the first line of table 1 illustrate these two definitions.

Discrete Case. In the discrete case, the cost of each step for GWD and
WDOCS are respectively:

GWD: wGWDi =
1
2

(I(ti) + I(ti+1))× ||ti − ti+1||

WDOCS: wWDOCSi =
√

(I(ti+1)− I(ti))
2 + ||ti − ti+1||2

In both cases, the spatial distance between two steps ||ti− ti+1|| can be either

the Euclidean distance: ||ti − ti+1|| =
{

1 if ti and ti+1 are 4-neighbors√
2 if ti and ti+1 are strict 8-neighbors

or Borgefors [15] optimal propagating weights for a binary 3× 3 mask, i.e.

||ti − ti+1|| =
{

0.95509 if ti and ti+1 are 4-neighbors
1.36930 if ti and ti+1 are strict 8-neighbors

Table 1 summarizes the different mathematical properties of these two defi-
nitions. The last line of this table considers the metric properties (definitivity,
positivity, triangular inequality and positive homogeneity) of the two distances.

2.3 About Unit Consistency

By considering gray level values as a n + 1 image dimension, WDTOCS mixes
spatial and intensity units. This may raise several problems. A practical one for
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Table 1. Theoretical comparison of GWD and WDOCS

GWD WDOCS

Continuous
definition

x

I(x)
π

p q x

I(x)
π

p q

Discrete case

x

I(x)
π

p q x

I(x)
π

p q

Interpretation Surface / volume area
estimation

Length of a geodesic path

Shortest path
goes through the lowest

gray level values
minimizes changes in gray

level values

Crisp case

x

I(x)

π

p q x

I(x)

π

p q

Values outside F 0 ||pq||

Consistency with a
crisp DT F

Consistent with a crisp DT.

Consistent with a crisp DT
within F , but adds one to
the distance value at the

border of the object.

Metric property
metric within F , but not
within B (not definite) metric within F and B

example occurs when the gray level values are small with respect to the image
spatial dimensions: the WDTOCS makes no difference with the binary DT as
illustrated Figure 1. The experiments used in this paper to illustrate the differ-
ent behaviors of WDTOCS and GWDT are performed on 2D images to allow
full display of the results. Let denote the spatial dimensions of the images along x
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and y directions Ix and Iy respectively. To overcome this problem in Sections 4
and 5, we scale the gray level values between 0 and Imax = Ix+Iy

2 to make them
comparable to the spatial dimensions (Figure 1). This unit issue does not affect
GWDT as it does not mix spatial and gray level units. On the other hand, it
considers the integration of distance values, which is more often associated with
surface area estimation than with distances.

(a) (b) (c) (d) (e) (f)

Fig. 1. (a) Original Gauss image with transform start point marked. (b) Chamfer dis-
tance transform from the marked point. (c) WDTOCS using Imax = 1. (d) WDTOCS

using Imax =
Ix+Iy

2
. (e) GWDT using Imax = 1. (f) GWDT using Imax =

Ix+Iy

2
.

2.4 Implementation

Both WDTOCS and GWDT are discrete path based distance transforms. They
are computed with the principle of the chamfer algorithm. In [10] Toivanen
proposed to compute WDTOCS by iterating Rosenfeld’s raster scans [16] until
stability. Saha et al. [7] and Ikonen [17] proposed a wave-front propagation im-
plemented through a pixel-queue algorithm which starts from the border points
and propagates local distances to the center of the object.

We implemented both methods (Rosenfeld’s raster scans until stability and
wave-front propagation algorithms) for both GWDT and WDTOCS and the
numerical and visual results for the two different implementation methods are
exactly the same. On small images, the calculation time is almost the same, but
for larger images, the wave-propagation algorithm is more efficient.

3 Measurement of Continuous Disks Radii

Fig. 2.

The radius of a discrete disk is obtained by taking the highest
value of the distance map computed inside the disk. We produce
digital fuzzy disks which are discretization of continuous disks
and compare the results obtained by WDTOCS and GWDT
with Euclidean distance transform and chamfer distance trans-
form on a binarization of these fuzzy disks. The value of pixels
within a fuzzy disk is 1, and 0 for a pixel outside. For border
pixels, the value is calculated by subsampling the considered
pixel as suggestion in [18]. Figure 2 shows an example of a pixel
subsampled in 16 pixels whose value is 6

42 .
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We produce such fuzzy disks with several real radii and compute:

WDTOCS on the gray level fuzzy disks. As we saw in previous section, WD-
TOCS crates a step of value one between inside and outside pixels. To com-
pute fuzzy disks radii, we thus remove one to the final radius value.
GWDT on the gray level fuzzy disks
chamfer distance transform on a binarization of the gray level fuzzy disks
with a threshold at 0.5
Euclidean distance transform [14]1 on a binarization of the gray level fuzzy
disks with a threshold at 0.5

Figure 3 (a) shows the results obtained for radii from 2 to 10 pixels, and figure
3 (b) shows a close up of these curves for radii between 2 and 3 pixels.
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Fig. 3. Radii of digitized fuzzy disks obtained with Euclidean DT (orange), Chamfer
DT (purple), WDTOCS (blue) and GWDT (red)

We can see in Figure 3 (a) that WDTOCS and GWDT produce radii which are
close to the real ones ; at least closer to those given by the weighted distance on
the threshold disk. Figure 3 (b) shows that for small radii, the two gray level dis-
tances give better results than the Euclidean DT on threshold disks. Generally,
GWDT tends to underestimate radii as WDTOCS sometimes underestimate or
overestimates radii.

1 EDT code courtesy of David Coeurjolly http://www.cb.uu.se/∼{}tc18/
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4 Comparison on Density Maps

In many areas imaging devices produce density maps, e.g. medical imaging. In
these cases gray level distance transforms can be used when calculating density
based distances. An example application is content based clustering of local max-
ima in electron tomography images of proteins [19]. In this example application,
it is desirable to get high distance values when measuring distances between
points in different parts of the proteins (i.e. in different high density blobs), and
low distance values when measuring distances between points in the same part.

In the following, we compute point-to-point distance by computing distance
transforms (GWDT or WDTOCS) from a starting point and back-tracking the
path to the second point. To compare GWDT and WDTOCS for point-to-point
distance measures in density maps, we use a synthetic image of two gray level
blobs and a real image slice of a protein obtained by electron tomography. In
both case we compute

– a distance dwithin between two points of the same blob
– a distance dtrans between two points taken in two different blobs
– the ratio r = dtrans

dwithin
which gives an indication of the effectiveness measure

of the delineation of two density blobs (i.e. the larger r is, the better we can
differentiate the two different blobs.)

Synthetic Image. The synthetic image is a 40× 40 8-bit image which consists
of two high-density objects. It is then inverted to map high densities to low gray
level values. In Fig. 4 the gray level distance paths, and the respective distance
transforms, are shown. The values of dwithin, dtrans, and r are listed in Table 2.

(a) (b) (c) (d)

Fig. 4. (a) Inverted synthetic image with the GWDT path (red) and WDTOCS path
path (blue) for the measure of dwithin (paths are overlapping). (b) Paths corresponding
to the measure of dtrans (c) Corresponding GWDT. (d) Corresponding WDTOCS.

Real Image. The real image is a 36× 36 8-bit image, with a pixel size of 5.24
Ångström, and is taken from a slice of a 51 × 51 × 51 protein density volume
imaged using electron tomography. The slice shows the inertials of two blobs
interconnected with lower gray levels. In Fig. 5 the gray level distance paths, and
the respective distance transforms, are shown. In Table 3 the different distance
values are listed.
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Table 2. Distance measures in synthetic image

Measure dwithin dtrans r = dtrans/dwithin

GWDT 187.72 225.38 1.20
WDTOCS 37.54 68.27 1.82
Euclidean DT 19 12 0.63

(a) (b) (c) (d)

Fig. 5. (a) Inverted protein slice with the GWDT path (red) and WDTOCS path
path (blue) for the measure of dwithin. (b) Paths for the measure of dtrans (paths are
overlapping). (c) GWDT. (d) WDTOCS.

Table 3. Distance measures in protein slice image

Measure dwithin dtrans r = dtrans/dwithin

GWDT 125.13 303.40 2.42
WDTOCS 6.45 17.38 2.69
Euclidean DT 6.08 13.45 2.21

In both the synthetic and the real cases, the fraction r shows that both
GWDT and WDTOCS allow to separate the two blobs better than the Euclid-
ean distance (in the synthetic case the two points inside the same blob are
further than the two points taken in two different blobs). In both the synthetic
and the real cases, the blobs are better delineated in the case of WDTOCS
as rWDTOCS > rGWDT and we can also see that the corresponding distance
transforms Fig. 4 and 5 also separate the two blobs better.

5 Point-to-Point Distances in Height Maps

In areas where height maps are common, e.g. remote sensing, fuzzy distance
can be a valuable tool for calculating content-based distances in images. One
application is shortest path-finding in terrain images2.
2 Remark: In the case of heights maps, all altitude of the maps correspond to altitudes

of the ground. Here we consider the 0 level as absolute. Thus, if the distances of two
points of the same altitude are taken at different altitudes, this can lead to a shift
in the GWD value.
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To compare GWDT and WDTOCS for point-to-point distance measures in
height maps, we use a synthetic height map image and a height map image taken
of the Grand Canyon.

Synthetic Image. The synthetic image is a 136×136 8-bit image which consists
of a large central ridge. The paths between two points on the ridge calculated
with GWDT and WDTOCS, along with the corresponding distance transforms
are shown in Fig. 6.

(a) (b) (c) (d)

Fig. 6. (a) Original height map. (b) GWDT path (red) and WDTOCS path (blue)
between two points on the ridge. (c) GWDT. (d) WDTOCS.

Fig. 6 shows the two different behaviors GWDT and WDTOCS: GWDT path
goes through the lowest possible gray level values, and thus goes down from the
ridge, and then up to reach the end point, while WDTOCS path minimizes the
number of changes in gray level values, and thus remains on the ridge.

Real Image. The real image is a 2400× 1600 8-bit image, with a pixel size of
60 meters, and is taken from a a 4097× 2047 height map of the Grand Canyon
area. The image shows the canyon stretching from a lake in the left part of the
image, and continuing as a fissure to the far right of the image. Each pixel unit
(0 to 255) corresponds to 10.004 meters, and the pixel value 0 corresponds to a
base elevation of 284 meters. In Fig. 7 a surface rendered representation, along
with the fuzzy distance paths and the fuzzy distance transforms, are shown.

In this case, GWDT path follows the minimum gray level values as expected
and remains in the bottom of the Grand Canyon. However, the WDTOCS path
surprisingly goes out the canyon, and follows a high altitude plateau before going
down to the canyon again. On the corresponding WDTOCS Fig. 7 (d), we can
see, that the WDOCS values are low within the canyon until the middle of the
image, and then begin to be higher. To better understand what happens in this
case, we compute paths between points within this region as shown in Fig. 8.

In this case, the first part of the WDTCOS path also goes away from the
canyon center. This is due to the fact that the ground of this part is highly
irregular as shown in Fig. 8 (c) and that WDTCOS path looks for places where
the gray values vary more slowly. When the bottom ground values becomes
regular again, the WDTCOS path follows the canyon.
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(a) (b)

(c) (d)

Fig. 7. (a) Grand Canyon height map surface rendered. (b) Height map with GWDT
path (red) and WDTOCS path (blue) overlaid. (c) GWDT. (d) WDTOCS.

6 Discussion and Conclusion

In this paper, we compare two distance transform defined on gray level images.
The Gray Weighted Distance (GWD) defines the length of a path as the spatial
length of this path weighted by gray level values along this path. It can also be
seen as the computation of the surface area delimited by the path as shown in
Table 1. The Weighted Distance On Curved Space (WDOCS) on the other hand,
defines the distance between two points as the length of the geodesic path lying
on the hyper-surface defined by the gray level values. A GWD path will thus
follow low gray level values whereas WDOCS paths will minimize the changes
in gray level values.

The different experiments of this paper shows that the WDOCS depends
highly on the scale of the gray level values, contrary to the GWD. In a general
way, GWDT tends to smooth the values in the original gray level image, contrary
to WDTOCS which tends to sharpen the differences between gray level values.
This makes WDOCS more sensitive to the noise, whereas the GWD is more
robust to local changes of gray level values. However, this also makes WDTOCS
more accurate to delineate different gray valued objects in the same image.

The choice between these two distance transform definitions is highly appli-
cation dependent. It depends on the aim of the application: either highlighting
gray level differences or smoothing the values to obtain average distances.
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(a) (b)

(c)

Fig. 8. (a) Height map with GWDT path (red) and WDTOCS path (blue) overlaid.
(b) Close-up on paths showing WDTCOS path outside the canyon in the left part of
the image. (c) The close up surface rendered and viewed sideways (from south) showing
the jagged bottom of the left part of the canyon.
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Abstract. Chordal Axis (CA) is a new representation of planar shapes
introduced by Prasad in [1], useful for skeleton computation, shape analy-
sis, characterization and recognition. The CA is a subset of chord and
center of discs tangent to the contour of a shape, derivated from Medial
Axis (MA). Originally presented in a computational geometry approach,
the CA was extracted on a constrained Delaunay triangulation of a dis-
cretely sampled contour of a shape. Since discrete distance transforma-
tions allow to efficiently compute the center of distance balls and detect
discrete MA, we propose in this paper to redefine the CA in the discrete
space, to extract on distance transforms in the case of chamfer norms,
for which the geometry of balls is well-known, and to compare with MA.

Keywords: image analysis, shape description, chordal axis, medial axis,
discrete geometry, chamfer or weighted distances.

1 Introduction

Shape description consists in extracting features from a binary image, like area,
width, number of holes, etc. To this purpose, Blum first proposed the notion
of Medial Axis (MA) of a shape S in [2]. Then Pfaltz and Rosenfeld defined
it in [3] as the set of centers of maximal discs in S, a disc being maximal in
S if it is not completely overlapped by any other disc included in S. MA has
become an important tool in image analysis and shape description, because it
is a reversible coding and a global representation, centred in the shape, which
allows to simplify, compress, or compute a skeleton of a shape.

Among several approaches in image analysis, we distinguish : the continuous
approach with analytical pieces of curves, which is in general case difficult to
tackle; the semi-continuous approach, which consists in sampling the contour
of a shape, and then deals with computational geometry in Euclidean space, as
Voronöı diagram, convex hull, etc; the discrete approach, which keeps the shape
bitmap (or sample a continuous shape on the rectilinear grid) in discrete space
Zn and makes use of discrete geometry, often needing to redefine continuous
properties in discrete ones.

MA has been studied in this three frameworks. A continuous MA is obtained
in [4] with pieces of lines and arcs. The semi-continuous MA is an approximation
of continuous MA, extracted from the Voronöı Diagram of the sampled contour

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 271–282, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(e.g., see [5]). The discrete MA is generally extracted by local tests on a Distance
Transform (DT), which is an image where each shape point is labelled with its
distance to the background.

Working on semi-continuous framework, Prasad proposed in [1] a new repre-
sentation of shapes, called Chordal Axis (CA). The aim was to correct sensitive-
ness to noise in sampled contour for semi-continuous MA. The definition is close
to MA, but has different properties. A Maximal Chord of Tangency (MCT) of
a shape S is a chord of a maximal disc D of S, which separates the boundary of
D into two arcs such that one at least is not tangent to the boundary of S; the
CA is the set of midpoints of the MCTs, plus the set of centers of maximal discs
having at least three MCTs. Prasad then extracted a semi-continuous CA from
a Delaunay triangulation of sampled contour. In order to fix some zigzags in the
result, Prasad introduced in [6] a valuation of certain internal edges, leading to
a shape decomposition process.

We have recently proposed an algorithm for extracting discrete MA from a
DT for any chamfer norm in [7] and for Squared Euclidean Distance in [8]. The
algorithm computes a test neighbourhood and Look-Up Tables and then extracts
the centers of maximal balls for the given distance by local tests on DT. In this
paper we naturally propose to adapt the CA in discrete framework, in the case
of 2D chamfer norms. A chamfer (or weighted) distance is an integer distance
defined by a mask [9]; such a distance allows very fast computation of DT with a
sequential algorithm in two raster scans given in [10,11]. We focus on the masks
inducing a norm, for which the geometry of ball is established (a discrete convex
polyhedron, see [12]).

We recall in Section 2 some basic notions and definitions. We present and
justify our method in Section 3. Results are given in Section 4, and finally we
conclude in Section 5.

2 Definitions

2.1 Chordal Axis

Consider a shape S in R2 and B a maximal ball in S. Following Prasad in [1], a
chord of B is called a Maximal Chord of Tangency (MCT) if at least one of the
arcs subtended by the chord is free of points of tangency with the boundary of
S. Fig. 1 gives some examples of MCTs.

The Chordal Axis (CA) of a shape is the set of all pairs (p, δ), where p and δ
are either the midpoint and half the length of a maximal chord of tangency, or
the center and radius of a maximal ball which has at least three maximal chords
of tangency. We call α-points the midpoints of MCTs and β-points the centers
of maximal balls having at least three MCTs.

In the continuous domain (see Fig. 1), the CA is generally non-connected,
contrary to the MA. Indeed, the connectedness is broken as soon as a maximal
disc inside a shape contains at least three maximal chords of tangency (MCTs).
However, connectedness may easily be obtained if, in such maximal discs, we
draw a segment from the center of the disc to the middle of each MCT.
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chordal axis

maximal ball

MCT

Fig. 1. Three maximal balls inside a
shape and their MCTs; chordal axis

circumcircle of Delaunay triangle

CAT skeleton

internal edge of the triangulation

Fig. 2. Delaunay triangulation of sam-
pled contour and CAT skeleton

(a) (b) (c) (d)

Fig. 3. Shape of chamfer balls for d4 (a), d8 (b), d〈3,4〉 (c), d〈5,7,11〉 (d)

In [1], Prasad defines the Chordal Axis Transform (CAT) as a semi-continuous
method to extract the CA: he starts with a discrete sample of the boundary of a
given shape S, then calculates the Delaunay triangulation of these points, inside
S. The MCTs of S are approximated by the internal edges of the triangulation
(the edges which are not on the boundary of S). Then a skeleton based on
the semi-continuous CA is constructed by connecting, inside each triangle, the
midpoints of two or three internal edges, depending on the number of edges
lying on the boundary of S. The resulting skeleton (see Fig. 2) is sensitive to the
irregularities of the samples of the contour of S, giving to it angularities. In [6],
a valuation on the edges of the triangulation is proposed in order to delete edges
considered as weak and to smooth the skeleton; or to detect strong edges which
split the object into significant parts, to achieve shape decomposition.

2.2 Chamfer Distances and Norms

Here we recall some results from [12]. A chamfer mask M in Zn is a central-
symmetric set M = {(−→v i, wi) ∈ Zn × Z+∗ }1�i�m containing at least a basis of
Zn, where (−→v i, wi) are called weightings, −→v i vectors and wi weights. The chamfer
distance dM between two points p, q ∈ Zn is

dM(p, q) = min
{∑

λiwi :
∑

λi
−→v i = −→pq , 1 � i � m, λi ∈ Z+

}
; (1)

it is shown that dM is always a metric. A chamfer ball B of center p ∈ Zn and
radius R ∈ Z+ is BM(p,R) = { q ∈ Zn : dM(p, q) � R }.
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ConsiderM′ = {O +−→v i/wi }1�i�m ∈ Rn and let B′
M = conv (M′), then B′

M
is a central-symmetric and convex polyhedron whose facets separates Rn in cones
from O. A facet F of B′

M is generated by a subset M|F = { (−→v j , wj) }1�j�n of
M; if ΔF = det {−→v j }1�j�n is such that |ΔF | = 1, then F is said unimodular.
If each facet of B′

M is unimodular, then dM is a norm in Zn (the converse
is a difficult problem). Now let dM be a chamfer norm, F a facet of B′

M and
M|F = { (−→v j , wj) }1�j�n ; then for any point p = (y1, . . . , yn) in the cone (O,F)
we have dM(O, p) = y1 δ1 + · · ·+ yn δn, where

δk =
(−1)n+k

ΔF
·
∣∣∣∣∣v1,1 · · · v1,k−1 v1,k+1 · · · v1,n w1

...
...

...
...

vn,1 · · · vn,k−1 vn,k+1 · · · vn,n wn

∣∣∣∣∣
T

(2)

is the elementary displacement for coordinate yk. Moreover, the chamfer ball B
has the same geometry as B′ (up to a scale factor), so

−→
δF = (δ1, . . . , δn) is a

normal vector of facet F .
In Z2, a common way to denote small masks is 〈a, b〉 = { (1, 0, a), (1, 1, b) }

and 〈a, b, c〉 = { (1, 0, a), (1, 1, b), (2, 1, c) }. Widely used chamfer norms in image
analysis are d4 = �1 = d〈1,2〉, d8 = �∞ = d〈1,1〉, d〈3,4〉 and d〈5,7,11〉, see Fig. 3.

3 Discretization of Chordal Axis

In the following we work in Z2 with a given chamfer norm dM. Let S be a shape,
a point p of S is called a boundary point if its distance to the complement of
S equals the smallest weight in M. Consider B a ball of dM included in S. A
point p is called a tangency point between B and S if p belongs to B and to
the boundary of S. A tangency zone is a maximal 8-connected set of tangency
points. We exhibit three properties about tangency of discrete balls, then present
our algorithms to generate the discrete CA. Our aim is to generate MCTs which
are meaningful with respect to description and shape analysis.

3.1 Point Threshold

In the discrete domain (see Fig. 4.b), the local intersection between a maximal
ball included in an object and the boundary of this object is seldom a unique
point. Let A and B be two tangency points between a maximal ball and the
boundary of a shape S. The chord [AB] is maximal if one of the two arcs ÂB is
free of points of tangency with the boundary of S. In the continuous case (Fig.
4.a), we have a unique MCT [AB]. In the discrete case (Fig. 4.b), two MCTs
([A1B2] and [A2B1]) appear, because the intersections between the ball and the
shape’s boundary are not single points anymore. Nevertheless only one chord
should characterize this ball, the extra chord being an artefact of the discretiza-
tion. For a given tangency zone, we need to decide whether it is considered as a
point or not. To this end we introduce a point threshold, denoted PTH (in pix-
els). We measure the farthest Euclidean distance d between the tangency zone
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Fig. 4. Maximal Ball in continuous (a) and discrete (b),(c),(d) space

(a) (b)
B B

A2

A1

A2
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d

Fig. 5. Application of the point thresh-
old

p1

p2

p3 p4

extension ball

ETH

Fig. 6. Extension ball and protuberances
on the boundary: neglected (p1) and non
neglected (p2, p3 and p4); resulting MCTs

Â1A2 and the chord [A1A2] induced by the extremities of this zone (see Fig. 5).
If d is less then PTH, we contract the tangency zone to a single pixel, located
in the middle of the zone (case (b): one MCT). Otherwise each extremity of the
tangency zone becomes the endpoint of a MCT (case (a): two MCTs).

3.2 Extension Threshold

The local intersection between a maximal ball and the boundary of the shape
may be composed of several non-connected components. E.g. in Fig. 4 (c), we
observe that the discretization of the image splits each tangency zone into two
connected components. The immediate construction of MCTs would lead to the
appearance of two parasitic chords along the boundary of the object. Before
proceeding with the construction of the MCTs, we must determine for each
connected component, which tangency zone it should belong to. An appropri-
ate solution consists in exploring the peripheral domain of the maximal ball,
looking for a path in the boundary of the shape which connects some tangency
components.



276 J. Hulin and E. Thiel

We introduce an extension threshold, denoted ETH. Given a maximal ball
(O,R), we consider the extension ball (O,R + ETH), see Fig. 6. A n-connected
path from p0 to pk is a sequence of points such that pi and pi−1 are n-neighbours
(n = 4 or 8, 1 � i � k); if there exists an 8-connected path of points of the
boundary of the object inside the extension ball which connects two (or more)
tangency components, then we merge these components into a single one.

This peripheral search has another utility: it allows to ignore some noise fea-
tures on the boundary of the shape. Indeed if a protuberance on the border is
small enough to be fully included in the extension ball (p1 in Fig. 6), we will not
generate any MCT at the base of this irregularity (unless the point threshold is
exceeded). Therefore the value of the extension threshold has direct influence on
the level of detail of our analysis. The higher the extension threshold is set to,
the less precise this analysis near the boundary of the shape.

3.3 Radius Increment

In the discrete space, a maximal ball included in an object may not yield any
MCT, as shown in Fig. 4 (d): several points belong to the boundary but our
point threshold reduces the tangency zone to a unique point (there may even
be a single tangency point in some configurations). This phenomenon does not
question our point threshold (which avoids the creation of a parasitic MCT along
the boundary of the object); it is only due to the fact that the working domain
is the discrete grid. The most simple example is the case of an object having an
horizontal or vertical branch with an even width. In this case the maximal balls
inside this branch will only be tangent to one side of the shape (the chamfer
balls are central-symmetrical so their diameter, measured horizontally in pixels,
is odd). No MCT would then appear in such a branch.

We propose to increment the radius of maximal balls with a certain value RI
(Radius Increment), before proceeding with the exploration of their boundaries.
Let a be the smallest weight of the chamfer mask. Then a equals the distance
between two 4-neighbours, and it is sufficient to take RI = a to make certain
that all maximal balls have at least two tangency zones with the boundary of
the shape. However, in most cases, we observe that an increment of value 1 is
enough to ensure that almost all balls have two tangency zones.

3.4 Algorithms to Generate the Discrete Chordal Axis

The three proposed thresholds are independant and in practice, they enable
to generate almost all useful MCTs, and avoid the creation of parasitic chords
(lying along the boundary of the shape or describing noise features of the border).
These thresholds are computed sequentially for each maximal ball, as follows:

1. calculate the new radius of the ball, by adding RI,
2. look for tangency zones in the peripheral region, using ETH,
3. decide for each tangency zone, if it should be contracted to a single point,

using PTH.
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We recall (see [7]) that on DT, the value DT(p) for any shape point p is the
radius of the greatest set

{
q ∈ Z2 : DT(p)− dM(p, q) > 0

}
so the greatest ball

centred in p inside the shape is
{
q ∈ Z2 : dM(p, q) � DT(p)− 1

}
which has

radius DT(p)− 1 (utilized line 4 in the procedure Gen CA).
The boundaries of maximal balls are inspected thanks to the equations given

in Section 2.2, or by consulting an image containing the distance values from any
point to the top-left point of the image (computed once), then using symmetries.

Input IN Shape image, DT Distance Transform, MA Medial Axis
Output CA Chordal Axis

Procedure Gen CA (IN, DT, MA, CA, PTH, ETH, RI )
1 Initialize CA to ∅
2 For all points p in IN do
3 If p ∈ MA then
4 R = DT(p)− 1
5 If R � a then Search MCTs (p, R, DT, CA, {Thresholds})

Procedure Search MCTs (p, R, DT, CA, {Thresholds})
1 IMAGE tmp //image storing tangency points, initialized to 0
2 INT nbtang = 0 //number of tangency zones
3 Generate C, the boundary of the ball of center p and radius R+ RI
4 For all points q in C, counterclockwise, do
5 If tmp(q) = 0 and DT(q) = a then //new tangency zone
6 nbtang = nbtang + 1
7 Label recursively with the value nbtang in tmp the 8-neighbours nj

8 of q such that d(p, nj) � R+ ETH and DT(nj) = a

9 For each tangency zone ÂB do
10 Compute the maximal distance d between ÂB and the MCT [AB]
11 If d � PTH then contract the tangency zone to a single point, in the

middle of the zone
12 Compute the midpoints of the segments bounded by the extremities of

the tangency zones, counterclockwise //may be empty in the case
of a single contracted zone

13 Insert these points as α-points in CA
14 If nbtang � 3 then insert p as β-point in CA //at least three MCTs

4 Results and Discussion

This section deals with the analysis of the chordal axis (CA) produced by our
algorithm. We present the CA of different objects, and give some results in terms
of shape description. We analyze the influence of the chosen chamfer norm, as
well as the threshold values, on the geometry of the CA. An application to
shape decomposition is presented; then a connection with the medial axis (MA)
is proposed. Finally we have a look at the complexity of the algorithms.
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(b)(a)

(c) (d)

Fig. 7. CA with thresholds on a rectangle (a) and a noisy rectangle (b); CA without
thresholds (c); MA (d). In (a), (b), (c) : α-points in black and β-points in white.

4.1 Characteristics of the Chordal Axis

Fig. 7 shows in (a), (b) and (c) the CA of rectangular shapes produced by our
algorithm, together with the MA (d), using the chamfer norm d〈5,7,11〉. The input
rectangle (in grey) in (b), (c) and (d) has a noisy boundary. In (a), (b), (c), black
points are α-points, i.e. midpoints of maximal chords of tangency, while white
points are β-points, i.e. centers of maximal ball having at least three MCTs (the
CA is composed of both α and β points). The CA in (b) is computed using
the thresholds method described at Section 3, while (c) is generated without
any threshold. The CA in (a) is coherent with the definition of the CA in the
continuous plane (see Fig. 1). The differences between (b) and (c) point out the
importance of the thresholds. On (b) the extension threshold ETH (set to 10 for
this example) erases parasitic α-points near the border of the shape; the point
threshold PTH (here at 4 pixels) avoids the apparition of superfluous β-points;
the increment threshold RI (set to 1) ensures the presence of α-points in the
middle of the object. Compared to the MA (d), the CA contains less points, is
free of parasitic points, and is less connected. We also observe a slight deviation
between the MA and the CA in the tips of branches of the shape, because α-
points may be quite far from centers of maximal balls.

The influence of the chamfer norm on the CA is illustrated in Fig. 8. When
using d4 (a) or d8 (b), we observe three annoying phenomenons with respect to
shape description:

– There are too many β-points. This is because the distances d4 and d8 badly
approximate the Euclidean distance (their balls are squares).

– In some places of the middle of the branches of the shape, there is a lack
of points in the CA. This is also due to the shape of the balls of d4 and
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(b)(a) (c) (d)

Fig. 8. CA with d4 (a), d8 (b), d〈3,4〉 (c), d〈5,7,11〉 (d). α-points appear in black, β-points
in white.

Optimal value If less than optimal If greater than optimal

1 � RI � a incomplete CA (see Section 3.3) increase of the number of tan-
gency zones ⇒ too many MCTs

a � ETH � 3a parasitic MCTs along the bound-
ary of the shape (see Section 3.2)

rough detail level, lack of MCTs
in thick branches

3 � PTH � 6 parasitic MCTs along the bound-
ary of the shape (see Section 3.1)

lack of MCTs in maximal balls
having a single tangency zone

Fig. 9. Influence of threshold values (a is the weight of the first vector of the chamfer
mask)

d8, which tends to create MCTs whose extremities are often located in the
vertices of the squares. In certain local areas, many midpoints of chords may
overlap.

– There is a strong anisotropy of the CA.

These features considerably attenuate when choosing d〈3,4〉 (c) and d〈5,7,11〉 (d);
with d〈5,7,11〉 we obtain the best results (the average approximation error com-
pared to dE is only about 2%).

An important characteristic of the CA concerns the localization of its two
different kinds of points:

– the α-points are located in the branches of the object, and are equidistant
from each side of their branch;

– the β-points are located at the center of branching zones of the shape.

The choice of optimal values of the thresholds, for which the CA describes the
shape as well as possible, has been experimentally determined by tests on dif-
ferent objects (with various branching zones and widths). Recommanded values
and problems resulting from bad values are listed in Fig. 9.
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Fig. 10. Maximal balls yielding
overlapping MCTs

(b)(a)

7

7 8

5

Fig. 11. CA in black and points of high
concentration in white (with values) (a);
cut chords (in black) (b)

(a)

(b)

Fig. 12. MA with d〈5,7,11〉 (a); C-CA with d〈5,7,11〉, RI = 1, ETH = 10, PTH = 4 (b)

4.2 Application to Shape Decomposition

The CA has an interesting characteristic: points of the axis may be superposed,
as shown in Fig. 10. The three maximal balls which are drawn have maximal
chords of tangency which overlap each other in the discrete space. We notice
that the local concentration of the α-points of the CA is high in the zones where
the object presents narrowings.

An interesting idea consists in counting, for each point of the image, the
number of points of the CA (during computation). We are then able to study the
concentration of points of the axis. Points of high concentration are represented
in white in Fig. 11 (a). If for a given point of the image, the number of overlapping
points of the CA is greater than a certain value, denoted cut threshold, then we
consider the corresponding MCT as a cut chord for shape decomposition. Each
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cut chord splits the shape into two distinct parts. E.g. in Fig. 11 (b), the cut
threshold is set to 5.

Classic methods of shape decomposition are based upon the reckoning of a
skeleton, which must be thin and connected, and the study of gradient along
this skeleton. The main advantage of our method is that it does not previously
require the creation of a skeleton. The values of local concentrations of points of
the CA are directly calculated during the CA extraction.

4.3 Connections Between the Chordal Axis and the Medial Axis

We call C-Chordal Axis (or C-CA) of a shape S, the set of centers of all balls
included in S which admit at least a maximal chord of tangency. In R2 the C-CA
is exactly the MA, because a ball is maximal in S if and only if it has at least
two points of tangency with the boundary of S (see [2]). This property is not
true in the discrete plane, however our threshold techniques allow the C-CA to
approximate the MA while filtering it. We adapt our algorithm of generation
of the CA to compute the set of centers of balls inside S which have at least
one MCT. Fig. 12 shows the MA and C-CA of different shapes, using d〈5,7,11〉
and standard thresholds. Notice that both axis have a majority of common
points, nevertheless there are significant differences. The C-CA is much more
connected than the MA (note that MA can be filtered by post-processing to
achieve connectedness, see for instance [13]). Furthermore the C-CA contains
much less isolated parasitic points, thanks to the sequence of thresholds which
play the role of noise filter when constructing the C-CA. The C-CA is not yet an
ideal filtering of the MA: it is not guarantied to be connected, and may also be
relatively thick in some configurations. A further study of the influence of the
threshold values should be realized.

4.4 Complexity of the Algorithms

Two preliminary algorithms operate before the very generation of the CA. The
first one is the distance transformation algorithm, which computes the DT of the
object in time O(m.L2) for an image of side length L and a chamfer mask having
m weightings. The second one is the MA extraction algorithm, whose complexity
is O(k.L2) (k being a constant close to m, see [7]). The CA is then produced from
the MA: for each point of the MA, the boundary of a maximal ball is checked.
A ball of radius R pixels has about 2Π.R boundary points, the examination of
the boundary of the ball takes O(R), R being smaller than L/2. Therefore the
overall complexity is O(m.L2 +nMA.L), with nMA being the number of points of
the MA. However these points represent only a little portion of the points of the
shape; in practice we observe that the time complexity is linear in the number
of points of the image.

5 Conclusion

In this paper, we have adapted Prasad’s continuous definition of the chordal axis
(CA) [1] in the discrete plane Z2. We have proposed to extract it on a distance
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transform (DT) in the case of chamfer norms, which allows fast extraction of
medial axis (MA) [7]. We have introduced three quantities, namely point thresh-
old, extension threshold and radius increment, in the purpose of discretizing the
tangency of discrete balls to the boundary of a shape, and properly characteriz-
ing maximal chords of tangency (MCT). Then our algorithm extracts the MCTs
in near linear time. Changing thresholds enables to filter the noise in shapes,
and concentration of CA points allows shape decomposition. Comparison be-
tween discrete CA and MA is achieved, which shows a set of new properties
for shape description. Future work concerns local detection on DT, study of the
reversibility degree, and extension in 3D.
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Abstract. Although widely used for image processing, Distance Trans-
forms have only recently started to be used in computer graphics. This
paper proposes a new mesh simplification technique based on Distance
Transforms that allows taking into account the proximity of a mesh el-
ement to the focus of attention for adapting the approximation error
which will be tolerated during the simplification process to the relative
importance of that mesh element. Experimental results show the feasi-
bility of this approach.

1 Introduction

Thanks to the advances in Computer Graphics realistic renderings of complex
scenes can be achieved. Multiresolution modelling is one of the underlying tech-
niques that allow to process complex scenes at interactive rates. Basic principles
of this approach were set by James Clark [1] and comprehensive surveys can be
found at [2, 3, 4, 5, 6].

The generation of models at different resolutions can be performed by means
of simplification methods, providing reduced models that use less computational
resources but look similar to the original one when rendered under certain con-
ditions [7,8]. Within this context, the response of the human visual system plays
a crucial role in determining which details become more obvious to the final
observer. High visual acuity is known to be limited to a certain visual angle,
perceiving a quality degradation in regions that fall outside the focus of at-
tention [9]. Therefore, it may be useless to render a region of a model at high
resolution when its quality will be degraded by our visual system.

The goal of this paper is to propose a new technique that allows taking into
account the proximity of a mesh element to the focus of attention for adapting the
approximation error which will be tolerated during the simplification process to
the relative importance of that mesh element. More specifically, the contributions
of this work can be briefly summarized as follows:

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 283–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– Analyzing the applicability of Distance Transforms for detecting the prox-
imity of mesh elements to a focus of attention defined by a point on the
screen.

– Proposing a new mesh simplification criterion based on an eccentricity mea-
sure, obtained by means of a Distance Transform.

– Presenting a simplification technique using a Distance Transform for select-
ing the allowed approximation error depending on the eccentricity from the
focus point.

The rest of the paper is organized as follows: Section 2 presents a short
overview background of mesh simplification algorithms, digital Distance Trans-
forms and the Multi-Tessellation. Section 3 describes the proposed approach,
while Section 4 shows some experimental results. Finally the conclusions and
future work are presented in Section 5.

2 Background

2.1 Mesh Simplification

Many mesh simplification techniques have been proposed during the last years.
Among the methods based on objective metrics, work has been done in order
to incorporate other attributes besides geometry like color, texture or normals
[10, 11]. Perceptual metrics have also been developed during this time [12, 13].
Lindstrom and Turk use an image metric to guide the simplification process [14].
Reddy introduced a perceptive model to guide the selection of the appropriate
level of detail (LOD) [15]. Luebke defined a contrast sensitivity function that
predicts the perception of visual stimuli [16].

According to human ocular physiology, high visual acuity is limited by the di-
mension of the fovea to approximately a visual angle of 2o. Outside this area, the
quality of the image perceived by our visual system declines with eccentricity [17].

Some approaches have been proposed in order to deal with the phenomena of
foveal vision, either by adapting the image resolution to the eccentricity [17,18],
or by decreasing the mesh resolution in regions far away from the focus point
[19, 20]. For example, Baudisch et al. present a selection of techniques for the
design of attentive displays that take into account the distinction between foveal
vision and peripheral vision [17], and Murphy and Buchowski evaluate the visual
angle in world coordinates and use it for the resolution degradation in their
presented gaze contingent level of detail [19].

2.2 Digital Distance Transforms

Measuring the distance between image elements may be of interest for further
processing in many image analysis applications. Basics concepts regarding digital
distances can be found in [21, 22].

The application of a Distance Transform to a binary image produces as output
a distance image, where each element of this distance image is assigned a distance
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label. For any element belonging to the object, its label stores a value indicating
its closest distance to the complement of the object.

A distance transform can be computed in two steps by propagating local
distances over the image, regardless of its dimensions: 2D, 3D or higher dimen-
sions [21, 23]. Initially, the elements belonging to the object are set to infinity
and the elements belonging to the background are set to 0. In the case of a 2D
image, during the first step the image is analyzed from top to bottom and from
left to right. During the second step, the image elements are visited in reverse
order, from right to left and from bottom to top. Each element is updated with
the minimum value between its current value and the values of the already vis-
ited neighbours incremented by their connectivity weight. The neighbourhood
of a pixel and the distance assigned to each of the neighbours define the final
Distance Transform.

Distance Transforms and some variations of them in combination with other
image processing techniques can be applied for representing and analyzing 3D
objects in multiple applications [24, 25, 26, 27]. Distance information computed
in the object space has also been applied in computer graphics environments for
collision detection [28]. However, the authors are not aware of any previous work
applying Distance Transforms from a focus point in the image space in order to
guide a simplification process.

2.3 Multi-Tessellation

The Multi-Tessellation method, originally called Multi-Triangulation, was intro-
duced by De Floriani et al. [29]. It provides a general multiresolution framework
for polygonal meshes offering several attractive features like selective refinement,
locality or dynamic update [30].

Multi-Tessellation, MT for short, is a hierarchical model that can be generated
during an off-line simplification process, provided that the simplification method
has been adapted in order to build an MT. The MT stores the mesh updates
together with the approximation error.

Once the MT has been built, it can be queried at run time for extracting a
simplified mesh fulfilling some defined restrictions. Some useful restrictions are
already implemented in the distributed package [31], while the implementation
of new ones can be easily done.

3 Method Description

The approach followed here classifies the mesh faces or vertices attending to their
proximity to a focus of attention for a particular point of view. This focus of
attention is set in image coordinates and its position may be obtained by several
means such as eye trackers or pointing devices.

The classification process uses a Distance Transform, computed over the 2D
image; this transform provides for each pixel of the image its distance to the
attention point. A labelled mesh is obtained by backprojecting the distance
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value of a pixel to the mesh elements that project into it. These tags may be
assigned either to mesh vertices or faces, and they represent the distance of the
mesh element to the attention point, measured in the image space. The tags
assigned to the polygonal mesh elements can then be used in different ways to
guide the simplification process, providing a criterion for modifying locally the
approximation error allowed in areas close to the attention point.

The projection of the mesh over the 2D visualization plane and the backpro-
jection of distance labels for every pixel of the image is an expensive process
in terms of computation time. Nevertheless, it has to be pointed out that the
mesh projection process can be performed off-line in order to obtain a discrete
set of edited models that can be further processed by any other multiresolution
methods.

To reduce the method’s computational requirements, some auxiliary informa-
tion is collected previously to the simplification and rendering stage. In partic-
ular, a 2D grid is created on the visualization plane, which needs a resolution
level that has to be selected by the user according to the input mesh level of
detail and to the desired output mesh’s level of detail.

Every cell in the 2D grid has an associated list containing the indexes of the
vertices that project into it. In a straightforward way, every vertex of the 3D
model can also be labelled with the indexes of the 2D grid cell where it projects.
This information is very useful to speed up the backprojection of distance labels
to the mesh vertices, since the computation of the Distance Transform will be
carried out in an image with the same resolution as this 2D grid.

The same process can be applied for backprojecting the distance values to the
mesh’s faces instead of to the vertices.

The use of a Distance Transform from a focus of attention requires the modi-
fication of the technique presented in [32] by computing the Distance Transform
on-line during the simplification process. Thus, the grid computation can be used
for any focus of attention given a certain point of view

It must be highlighted that the computation of the 2D grid for a particu-
lar point of view is performed in a preprocessing stage, producing a mapping
between the mesh vertices and the 2D grid cells that will be used later on
during the simplification stage. The MT package has been used in this work
to present the results obtained by integrating the distance to the focus of at-
tention into the extraction criteria. Figure 1 shows a scheme of the proposed
mesh simplification process. The following Sections describe each of the method’s
stages.

3.1 Mesh Mapping: 2D Grid Computation

The focus of attention is set in the screen space. Therefore the distance of the
mesh elements to the attention point must be computed for a certain point of
view. Given a visualization plane, the 3D mesh is projected onto it by applying
the proper projection matrix to each vertex coordinates. The visualization plane
is then partitioned into cells forming a grid which can be seen as a 2D digital
image. Every vertex belonging to the projected polygonal mesh is tested to find
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2D Mesh projection
over configurable
resolution grid

selection
2D Point of view

mesh

3D Simplified
mesh

Mesh simplification

3D Original

Focus of attention
selectionLOD extraction

Distance values
backprojection computation

Distance Transform

Mesh mapping (Off−line computation stage)

Fig. 1. Overall scheme of the mesh simplification process

(a) Distance Transform to
the focus of attention, with
weights 5, 7, 11 for edge,
vertex and knight neigh-
bours

(b) Distance Transform in
2(a) displayed over the 3D
model projection

(c) Backprojection of dis-
tance labels onto the 3D
model

Fig. 2. Distance Transform backprojection

the cells of the 2D grid where the vertex is projected. This way, every vertex vk

stores information about the indices (i, j) of the grid cell associated to it.
Two remarks can be pointed out:

– It is possible to perform the whole process using different resolution levels
for the 2D image onto which the mesh is projected. This affects in turn the
resolution with which the 3D mesh analysis process is carried out.

– As mentioned above, the procedure is computationally expensive, although
it is affordable as a mesh preprocessing stage.

3.2 Mesh Simplification

This stage represents the final goal of the proposed method, which is to obtain a
simplified mesh where the region close to a focus of attention remains at higher
resolution, while the approximation error increases with eccentricity.

Before the mesh simplification, the preprocessing stage described in the pre-
vious section has to be carried out, storing for each vertex the indexes of the
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2D cells where the vertex is mapped. The following paragraphs explain in detail
each of the steps taken during the simplification process.

1. Focus of Attention Selection: There are many ways to select the focus of
attention. For example, eye-tracking devices can be used to select the areas
where end user watch more carefully; also guidelines can be established for
categories of objects or actors. Moreover, automated procedures considering
aspects such as motion speed or the presence of events such as lights or
moving distractors that drive the observer’s attention to a certain area can be
devised. Last, ”focus of neglect” can also be introduced in order to decrease
the resolution in specific areas of the object model. In this work, selecting
the focus of attention is performed just by clicking with the mouse on a point
in the 2D projected image.

2. Distance Transform Computation: Once the focus point has been es-
tablished, the next step consists in computing a Distance Transform over the
2D image. This way every pixel in the distance image will be labelled with
its distance to the focus.
In this work, the resolution of the distance image is the same as the resolution
of the 2D grid computed in the stage described in section 3.1. In consequence,
a pixel in the distance transform is equivalent to a cell in the 2D grid.

3. Distance Values Backprojection: The goal of this step is to assign a
value to every mesh node representing its distance to the focus of attention
for a certain point of view. Given the already computed distance transform
and the preprocessed mesh which stores for each vertex the reference to the
2D grid cell where it projects, the process is straightforward: the distance
value of a pixel is assigned to every vertex that projects onto it. Figure 2
shows this process graphically.

4. Level Of Detail Extraction: It is in this last stage where the extracted
distance values are used for mesh simplification purposes.
Evidently, how distance labels are used depends on the selected simplification
technique. The work presented here has been based on the Jade approach,
a vertex decimation technique based on the global error [33]. The distance
information is computed for the vertices of the original mesh. Since the
vertices belonging to a simplified model are a subset of the original mesh,
the precomputed distance labels are valid for any level of detail 1.
The proximity of every facet to the focus of attention is taken into account
during this stage. This means that for a given error threshold, the error
allowed in regions close to the focus point is reduced according to a predefined
law. The implemented solution, requires the definition of two parameters:

– Distance interval: range of distance labels which identify the region where
a more accurate approximation is desired.

– Error factor: the purpose of this parameter is to define an error threshold
for the portion of the mesh within the region of interest. This threshold,

1 Multi-Tessellations obtained through the application of the Jade method are freely
distributed with the MT-Package.
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different from the global error threshold, is defined as a function of the
global error threshold.

The size of the region of interest can be simply modified by changing the
range of distance labels that define it. In our case, the range is defined by
setting a threshold over the minimum distance of the vertices belonging to
a face. Other solutions can be easily devised.

The error factor allows to refine the quality of the approximation in the
region of attention taking into account the threshold error fixed for the rest
of the model. This way, the allowed error in the region of interest is f · e,
where e is the error permitted in the rest of the model and f is the error
factor. Again, other error functions are also feasible.

It has to be noted that this approach uses only two approximation errors.
The proposed technique can be easily extended in order to produce a vari-
able approximation error which is dependent on the distance to the focus of
attention. Nevertheless, the fact that the Multi-Tesselation method produces
smooth transitions between regions with different levels of detail makes this
approach less necessary.

4 Results

The experimental results presented in this section were obtained by applying
the technique previously described to the Multi-Tessellation models distributed
together with the MT-Package.

Figure 3(a) shows the full resolution mesh of the Stanford bunny rendered with
smooth shading. As it was explained in paragraph 3.2.1 the focus of attention
is established by clicking with the mouse on a pixel of the screen. In this first
example, a pixel in the bunny’s head is chosen as the focus of attention (pixel
(34,89) in an image of dimensions 250x248). Figure 3(b) shows the result of
computing a Distance Transform from the selected point over the image. The
distance of a pixel is represented by a grey level, restricted to a maximum value
of 255 only for displaying purposes.

Figure 3(e) shows a simplified model where the mesh has been refined taking
into account the attention area. It can be observed how the bunny’s head shows a
high resolution, while the rest of the model has been strongly simplified. In these
example, all the vertices with a distance label less than 178 have been preserved
by setting an error factor of 0, obtaining a mesh with no simplification error in
this region. Figure 3(c) shows the mesh of Figure 3(e) rendered in wireframe.
The extremely high density of faces in the bunny’s head can be appreciated.
This restrictive error threshold can be relaxed, while still producing a simplified
model where the bunny’s head keeps a good resolution, as can be seen in Figure
3(d). In this case, the error factor has been set to 0.05; this means that the
allowed error in the region of attention is 0.05 times the error allowed in the rest
of the model.

Figure 4 shows the full resolution mesh of a shell rendered with smooth shad-
ing. Besides the quality of the simplification within the region of interest, the
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(a) Original mesh of the
Stanford bunny.

(b) Distance transform to
the focus of attention com-
puted for a given point of
view.

(c) Mesh with no simplifi-
cation within the distance
thresholded region.

(d) Mesh with mild sim-
plification within the dis-
tance thresholded region.

(e) Mesh in figure 3(d)
rendered with smooth
shading

Fig. 3. Distance Transform based simplification of a 3D mesh

(a) Smooth shading (b) Flat shading (c) Wireframe

Fig. 4. Original mesh of the 3D model of a shell

presented method allows to parameterize the extension of this region. It is known
that the size of the focus of attention depends on some factors, like the task the
observer is performing at a given time [17]. Figure 5 shows the effect of modify-
ing the diameter of the attention region, by setting different thresholds over the
distance labels which will define the region of interest. It can be observed how
the high resolution area extends itself as the distance threshold is increased.
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Distance threshold=60.

(a) (b) (c)

Distance threshold=120.

(d) (e) (f)

Distance threshold=200.

(g) (h) (i)

Distance threshold= 265.

(j) (k) (l)

Fig. 5. Simplifications of a 3D mesh varying the distance threshold, rendered with
smooth shading (5(a), 5(d), 5(g), 5(j)), flat shading (5(b), 5(e), 5(h), 5(k)) and in
wireframe (5(c), 5(f), 5(i), 5(l))

Regarding computational issues, the cost in terms of memory requirements
is just one extra variable per vertex. In case of tagging the mesh faces or mesh
edges, an additional value per tagged element would be required. With respect
to computational cost, it has to be noted that all the heavy computation is
performed at preprocessing time. The most expensive step is the mesh mapping
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over the 2D grid, in order to collect the information needed for backprojecting the
distance values. Efficient implementations for these operations using spatial data
partitioning could be considered. As it was explained above, the computation of
the Distance Transform can be performed involving only two passes over the 2D
image.

5 Conclusions and Future Work

Simplification algorithms are usually guided by some criteria in order to select
which elements of the mesh shall be removed or replaced. Introducing distance
labels into the guiding metrics is a straightforward process, opening a new way
to design a range of techniques which are useful for including perceptually mo-
tivated criteria in mesh simplification algorithms.

The results presented here suggest that the use of distance information is
a promising approach for attention-based mesh simplification techniques, since
adding distance labels to mesh elements provides a natural way to model the
degradation of the perception’s resolution with eccentricity.

The fact that some distance information can be assigned to any element of
the mesh (vertices, edges or faces) facilitates adapting these techniques to a
wide range of simplification methods. The nature of the basic underlying oper-
ator (vertex removal, edge collapse, etc) does not impose additional limitations.
Furthermore, the applicability of distance labels goes from off-line simplification
processing to run-time selective refinement.

The work presented here computes the mesh elements’ distance to a screen
point of attention for a fixed point of view. Future work includes:

– Extending the method for covering all possible points of view in a way which
is both performant and computationally efficient.

– Integrating distance to the attention focus into other mesh simplification
methods besides the Jade method.

– Extending the method in order to deal with multiple focuses of attention.
– Including ”focus of neglect”, in order to explicitly select areas where low

resolution is preferred.
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Abstract. A sequential algorithm for computing the distance map using
distances based on neighbourhood sequences (of any length) in the 2D
square grid; and 3D cubic, face-centered cubic, and body-centered cubic
grids is presented. Conditions for the algorithm to produce correct results
are derived using a path-based approach. Previous sequential algorithms
for this task have been based on algorithms that compute the digital
Euclidean distance transform. It is shown that the latter approach is not
well-suited for distances based on neighbourhood sequences.

1 Introduction

In [1], a sequential algorithm for computing distance transforms (DTs, where
each object grid point is assigned the distance value to the closest background
grid point) was introduced. The authors considered only the simple L1 (city-
block) and L∞ (chessboard) metrics and they proved that a two-scan algorithm
will produce a correct distance map. This is due to the fact that the distances
are path-based with fixed adjacency, i.e., the distance between two points is
the length of the shortest path between the points in a graph structure. For
these distances, unit distance between adjacent grid points (weights) is used.
The DTs obtained from L1 and L∞ are very rotation-dependent. Basically, two
alternative ways to decrease the rotational dependency have been introduced
– weighted distances and distances based on neighbourhood sequences (n.s.-
distances or octagonal distances, first defined in [2]). With weighted distances
(each local step is assigned a weight), the weights are allowed to have different
values than one. The literature on weighted distances is rich, see for example the
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early paper [3]. Because of the fixed adjacency, the two scan algorithm applies
for weighted distances on any point-lattice, [4]. With weighted distances, the
rotational dependency is low also for short distances. This is not the case for
n.s.-distances, where the adjacency relation is allowed to vary along the path.
On the other hand, all distance values in each shortest path of length n between
two points consist of all integer values 1, . . . , n. This makes the n.s.-distances
well suited for morphological operations such as dilation and erosion where the
object should be divided into layers.

N.s.-distances have been considered by many authors and in most papers,
the theoretical properties of n.s.-distances are examined. The theory on n.s.-
distances is developed in, e.g., [5,6]. Distances based on neighbourhood sequences
are also of value in applications and has been used for e.g. skeletonization [7] and
shading of three-dimensional objects [8]. For these applications to be efficient, a
fast algorithm for computing the distance transform is of great value.

The situation for n.s.-distances is a bit more complex than for weighted dis-
tances – allowing the adjacency relation to vary implies that a two-scan algo-
rithm is not sufficient. In previous algorithms for computing the DT for n.s.-
distances [9,3,10], the scanning procedure designed for computing the Euclidean
DT [9, 3, 11] were used. We will see that this approach is not appropriate for
n.s.-distances.

Non-standard grids such as the face-centered cubic (fcc) grid and the body-
centered cubic (bcc) grid has gained more and more attention in the last decade.
One reason is that less samples can be used with the same representation/recon-
struction quality compared to the cubic grid [12,13]. For example, image acquisi-
tion techniques [12,13], image processing algorithms [14,15,16] and visualization
techniques [17] have been developed for these grids.

In this paper, conditions for sequential algorithms in the square, cubic, face-
centered cubic, and the body-centered cubic grids to produce correct results are
derived, independently from the algorithm designed for Euclidean DT, using a
path-based approach.

2 Preliminaries

In this paper, we will consider the square grid Z2, the cubic grid Z3, the fcc grid
F, and the bcc grid B. When handled in parallel, G is used to denote all of the
four grids.

Two grid points x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Zn (n ∈ Z+) are
ρ-neighbours, 1 ≤ ρ ≤ n, if

n∑
i=1

|xi − yi| ≤ ρ and max
i∈{1,2,...,n}

|xi − yi| = 1.

The face-centered cubic grid F and the body-centered cubic grid B are defined
as follows:

F = {(x1, x2, x3) ∈ Z3 : x1 + x2 + x3 ≡ 0 (mod 2)}, (1)
B = {(x1, x2, x3) ∈ Z3 : x1 ≡ x2 ≡ x3 (mod 2)}. (2)
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Two grid points x,y ∈ F or B are ρ-neighbours, 1 ≤ ρ ≤ 2 if

3∑
i=1

|xi − yi| ≤ 3 and max
i∈{1,2,3}

|xi − yi| ≤ ρ.

The neighbourhood relations in our four grids are visualized in Figure 1 by
showing the Voronoi regions (the pixels (2D) and voxels (3D)) corresponding to
some grid points.

The points x,y ∈ G are adjacent if x and y are ρ-neighbours for some ρ. The
ρ-neighbours which are not (ρ− 1)-neighbours are called strict ρ-neighbours. A
neighbourhood sequence B in G is a sequence B = (b(i))∞i=1, where each b(i)
denotes a neighbourhood relation in G. If B is periodic, i.e., if for some fixed l ∈
Z+, b(i) = b(i+ l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)).

Fig. 1. The grid points corresponding to the light grey, dark grey, and black pix-
els/voxels are 1-, (strict) 2-, and (strict) 3-neighbours to the grid point corresponding
to the white pixel/voxel, respectively. From left to right: Z2, Z3, F, and B.

A path, denoted P , in a grid is a sequence x = p0,p1, . . . ,pn = y of adjacent
grid points. A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and
pi are b(i)-neighbours.

Definition 1. The B-distance d(x,y;B) between the points x and y is the
length of (one of) the shortest B-path(s) between the points.

Given a path of length n, the following notation is used: ωi = pi − pi−1.
A prime vector is a vector between a grid point and an adjacent grid point. Let

Γ = {�p1, �p2, . . . , �pm}. The set {x ∈ G : x =
∑
αi�pi for any αi ∈ R+} is called

the Γ -sector.
We consider finite subsets of G for the algorithm:

Definition 2 (Image). The finite subset IG of G is denoted the image domain.
We call the function f : IG −→ N an image.

Definition 3 (Foreground and background). We denote the image fore-
ground X and the background X. These sets have the following properties:

1. X ⊂ IG and X ⊂ IG

2. X ∩X = ∅
3. X ∪X = IG.
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3 The Sequential Algorithm

Definition 4 (Distance map). Given a neighbourhood sequence B, the dis-
tance map, DMX , of f is a grey level image, where the value of each point of
the foreground corresponds to its shortest distance to the background, i.e.

DMX :
{
IG −→ N
x �−→ d(x, X ;B) = infy∈X d(x,y;B)

Definition 5 (Scanning mask). A scanning mask M is the set of vectors
from the origin to some grid points adjacent to 0.

Definition 6 (Scanning order). A scanning order (so) is an ordering of the
M = card(IG) distinct points in IG, denoted x1,x2, . . . ,xM .

For a scanning mask to propagate distances correctly, it is important that, in
each step of the propagation, the values at the points in IG to which the mask
propagate distances will propagate distances later in the scan. This is guaranteed
if each point that can be reached by the scanning mask either has not been visited
or is outside the image.

Definition 7 (Mask supporting a scanning order). Let x1,x2, . . . ,xM be
a scanning order and Ml a scanning mask. The scanning mask Ml supports the
scanning order if

∀xi, ∀�vj ∈ Ml, ((∃i′ > i : xi′ = xi + �vj) or (xi + �vj /∈ IG)) .

Remark 1. If �v ∈ Mk for some k, then −�v /∈ Mk. If both �v,−�v ∈ Mk, then
by Definition 7, there is an i′ such that xi′ = (xi + �v) + (−�v) = xi. This is not
possible since each grid point occurs only once in IG.

Algorithm 1. Initially, f(x) = ∞ if x ∈ X and f(x) = 0 if x ∈ X. The image
domain IG is scanned L times using scanning orders such that the scanning
masks Mi, 1 ≤ i ≤ L support the scanning orders soi.
for i = 1 : L
for all x ∈ IG following soi

if f(x) <∞
for all �v ∈Mi

if x and x + �v are b (f(x) + 1)-neighbours
f(x + �v)← min (f(x) + 1, f(x + �v))

Example 1. Consider the image in Z2 shown in Figure 2(a) (the grid points are
visualized by their pixels). The masks M1 and M2 are such that they propa-
gate distances in the directions shown in Figure 2(b) by dashed and solid lines,
respectively. The correct distance maps for B = (1) (city block), B = (2) (chess-
board), and B = (1, 2) are shown in Figure 2(c), Figure 2(d), and Figure 2(e),
respectively. For B = (1) and B = (2), a two-scan algorithm is sufficient to
propagate the distance between the two pixels in grey. Two scans are, however,
not enough for B = (1, 2).
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Fig. 2. Distance maps of (a) for B = (1), B = (2), and B = (1, 2) are shown in (c),
(d), and (e), respectively. Examples of shortest B-paths are shown in (c)–(e) over the
distance maps. Directions supported by the masks M1 and M2 are shown as dashed
and solid lines, respectively. The directions supported by the masks are shown in (b).

The distance that are propagated depends on previous propagations. Thus, if
local steps from M2 are needed before local steps from M1 (as in Figure 2(e)),
then two scans are not enough.

Since Algorithm 1 only propagates distances from mask i in scan i, there must
be a shortest path satisfying the condition in Proposition 1 below for each pair
of grid points in IG for the propagation of distances to be sufficient.

Proposition 1. If for each neighbourhood sequence B and each x,y∈IG there
is a shortest B-path in IG between x and y of length n and integers T0, T1, . . . ,
TL s.t.

ωi ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M1 if 0 = T0 < i ≤ T1

M2 if T1 < i ≤ T2

...
ML if TL−1 < i ≤ TL = n

then Algorithm 1 returns a distance map DMX .

The proof of this proposition is obvious: the first scan propagates the T1 first
steps of the path, the second scan propagates the steps T1 + 1, . . . , T2 and so on
until the last scans propagates the steps TL−1 + 1, . . . , TL.

In the next section, conditions for the masks Mi to fulfill the condition in
Proposition 1 are derived.

4 Theoretic Results

4.1 Conditions for a Path to Be in IG

Definition 8 (Sector-preserving image domain). The image domain is
called sector-preserving if there are integers Li and Ui s.t. Li ≤ 0 < Ui and

IZ2 =
{
(x1, x2) ∈ Z2 | Li ≤ xi ≤ Ui

}
IZ3 =

{
(x1, x2, x3) ∈ Z3 | Li ≤ xi ≤ Ui

}
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IF =
{
(x1, x2, x3) ∈ F | L1 ≤ x1 + x2 + x3 ≤ U1, L2 ≤ x1 + x2 − x3 ≤ U2,

L3 ≤ x1 − x2 − x3 ≤ U3, and L4 ≤ x1 − x2 + x3 ≤ U4

}
IB =

{
(x1, x2, x3) ∈ B | L1 ≤ x1 + x2 ≤ U1, L2 ≤ x2 + x3 ≤ U2, and

L3 ≤ x1 + x3 ≤ U3

}
.

Let Γ 1
Z2 = {(1, 0), (0, 1), (1, 1)}
Γ 1

Z3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
Γ 1

F = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
Γ 2

F = {(1, 1, 0), (1, 0, 1), (1, 0,−1), (2, 0, 0)}
Γ 1

B = {(1, 1, 1), (1,−1, 1), (1, 1,−1), (2, 0, 0)} .

Definition 9 (Path with ΓG-sector steps). A path that contains only steps
from ΓG is called a path with ΓG-sector steps.

We will see that for any fixed ξ and any grid point x ∈ Dξ
G defined below,

the distance (i.e. the shortest path) between 0 and x is defined by a path with
Γ ξ

G-sector steps.

D1
Z2 =

{
x ∈ Z2 : xi ≥ 0

}
D1

Z3 =
{
x ∈ Z3 : xi ≥ 0

}
D1

F =
{
x ∈ F : x1 ≥ x2 ≥ x3 ≥ 0 and x1 ≤ x2 + x3

}
D2

F =
{
x ∈ F : x1 ≥ x2 ≥ x3 ≥ 0 and x1 > x2 + x3

}
D1

B =
{
x ∈ B : x1 ≥ x2 ≥ x3 ≥ 0

}
We also will use the following notation: for any y ∈ G, DG(y)={y + x : x∈DG}.
The following proposition follows directly from Theorem 3.5 in [18] (Z2 and Z3)
and from the proofs of Theorem 2 and 5 in [15] for F and B respectively.

Proposition 2. Let the neighbourhood sequence B and the ξ be given. For any
point y ∈ Dξ

G(x) such that d(x,y;B) = n, there is a shortest B-path between x
and y with Γ ξ

G-sector steps.

For the square/cubic grid it is obvious that we need vectors having a value 1
and one/two zero(s) to connect the points by only 1-steps. If the neighbourhood
sequence contains values 2 and there are coordinate differences in at least 2
coordinates, then vectors changing 2 values simultaneously can be used in a
shortest path. In the cubic grid (1, 1, 1) is used if the neighbourhood sequence
contains element 3 and there are differences in all the 3 coordinates.

In the fcc grid if x1 ≤ x2 + x3 then vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) can
produce a shortest path independently of the used neighbourhood sequence (and
in case B = (1) all shortest paths built by them).

In case of x1 > x2 + x3 then the steps (0, 1, 1) are not needed, but we need
(additional) steps to go in direction (x1, 0, 0). If there are values 2 in the neigh-
bourhood sequence, then vector (2, 0, 0) is used in a shortest path. Having not
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(enough) values 2 in the neighbourhood sequence a step by (2, 0, 0) can be sub-
stituted by a step (1, 0, 1) and a step (1, 0,−1).

In the bcc grid one can construct a shortest path by vectors (1, 1, 1) and
(1, 1,−1) if x1 = x2 ≥ x3 ≥ 0. If x1 > x2 then step(s) by vector (2, 0, 0) can
also be used having values 2 in the neighbourhood sequence. Without (enough)
values 2 in the neighbourhood sequence steps by vectors (1, 1,−1) and (1,−1, 1)
are also used in a shortest path.

Definition 10 (Image border point). All grid points x ∈ IG such that there
is a prime vector �v such that x + �v /∈ IG are called image border points.

Lemma 1. Let y ∈ X and x ∈ X be such that x ∈ Dξ
G(y) for some ξ and there

is a shortest B-path P between y and x defining d(x, X ;B). If either

(A) all image border points are in the background or
(B) the image domain is sector-preserving.

then P is in IG.

Proof. When condition (A) is fulfilled: For some y ∈ X, let x = p0,p1, . . . ,pn =
y be the B-path defining d(x, X ;B) = n. Let y = q0,q1, . . . ,qn = x be the B-
path defining d(y,x;B) = n and assume that qi /∈ IG for some i, 0 < i < n. Let
SG,B(x, k) = {y : d(x,y;B) = k}. Now, qi ∈ SG,B(x, k) for some k ≤ n. There-
fore, by Definition 10, there is a background grid point z ∈ SG,B(x, k − 1) such
that qi and z are adjacent. We thus have n = d(x, X ;B) ≤ d(x, z;B) = k−1 < n,
which is a contradiction. �

When condition (B) is fulfilled: Let y = p0, . . . ,pn = x be a shortest path with
Γ ξ

G-sector steps between y and x. Assume that there is an i (0 ≤ i ≤ n) such
that pi /∈ IG. Since y ∈ IG, this implies

–
[
Z2, Z3

]
pj

i > Uj for some j.
–
[
F, D1

]
p1

i + p2
i + p3

i > U1, p1
i + p2

i − p3
i > U2, p1

i − p2
i − p3

i < L3, or
p1

i − p2
i + p3

i > U4.
–
[
F, D2

]
p1

i + p2
i + p3

i > U1, p1
i + p2

i − p3
i > U2, p1

i − p2
i − p3

i > U3, or
p1

i − p2
i + p3

i > U4.
– [B] p1

i + p2
i > U1, p2

i + p3
i > U2, or p1

i + p3
i > U3.

Now, for all local steps in Γ ξ
G, these inequalities are valid also for pi+1. Thus

pj /∈ IG for all j ≥ i, which contradicts x ∈ IG. �

4.2 Rules to Swap Steps in a Path

Lemma 2. Let the neighbourhood sequence B and the image IG be such that
either the image domain is sector-preserving or all image border points are in
the background. Let IG be such that y ∈ X and let x ∈ X ∩ Dξ

G(y) for some ξ
be such that the B-path P with Γ ξ

G-sector steps of length n between x and y is a
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shortest path defining d(x, X ;B). For any k (1 ≤ k ≤ n), let ρk be such that ωk

corresponds to a strict ρk-neighbour. Let also i, j be two fixed integers such that
1 ≤ i, j ≤ n.

Then for any ω′
i and ω′

j such that

(A1) ω′
i, ω

′
j ∈ Γ

ξ
G,

(A2) ω′
i and ω′

j correspond to strict ρi- and ρj-neighbours respectively,
(A3) ωi + ωj = ω′

i + ω′
j

there is a shortest B-path P ′ in IG of length n between 0 and x such that ω′
k = ωk

if k �= i, j and ω′
i = ωj and ω′

j = ωi.

Proof. Let P be the path x = p0,p1, . . . ,pi−1,pi, . . . ,pj−1,pj , . . . ,pn = y and
let ω′

i and ω′
j satisfy (A1)–(A3). We have

ωi = pi − pi−1 , ω′
i = p′

i − pi−1 (3)
ωj = pj − pj−1 , ω′

j = pj − p′
j−1 (4)

ωi + ωj = ω′
i + ω′

j (by (A3)). (5)

It follows from Equations (3)-(5) that pi−p′
i = pj−1−p′

j−1, i.e., that p′
i = pi−�v

and p′
j−1 = pj−1 − �v for some �v.

We will now see that the path P ′,
x = p0,p1, . . . ,pi−1,p′

i, . . . ,p
′
j−1,pj , . . . ,pn = y defined as

p′
k = pk − �v for any i ≤ k < j

p′
k = pk otherwise. (6)

is a shortest B-path in IG satisfying the Lemma.
By (A1), P ′ is a path with Γ ξ

G-sector steps. Thus, by Lemma 1, P ′ is in the
image IG.

By the definition of P ′, it is a shortest path (since it is of the same length as
P). Moreover, ωk = pk − pk−1 = p′

k − p′
k−1 = ω′

k for any i < k < j, so pk and
pk−1 are strict ρ-neighbours if and only if p′

k and p′
k−1 are. The cases k = i and

k = j follow from (A2) and when k < i or j < k, p′
k = pk by definition, so P ′

is a B-path.
We can now conclude that P ′ is a shortest B-path in IG between x and y.�

Example 2. Consider F, the neighbourhood sequence B = (1, 2, 1, 1, 2) and the
grid point x = (6, 2, 0). A shortest B-path between 0 and x is

0 = (0, 0, 0), (1, 1, 0), (3, 1, 0), (4, 1,−1), (5, 1, 0), (6, 2, 0) = x.

We have

ω1 = (1, 1, 0), ω2 = (2, 0, 0), ω3 = (1, 0,−1), ω4 = (1, 0, 1), ω5 = (1, 1, 0).

By Lemma 2, the B-paths between 0 and x with the following local steps are
also shortest paths.

ω1 = (1, 1, 0), ω2 = (2, 0, 0), ω3 = (1, 1, 0) ω4 = (1, 0,−1), ω5 = (1, 0, 1)
ω1 = (1, 0, 1), ω2 = (2, 0, 0), ω3 = (1, 0,−1), ω4 = (1, 1, 0), ω5 = (1, 1, 0)
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Thus, any order of the local steps corresponding to 1-neighbours results in short-
est B-paths.

Now we define sets BG
i . We will see that if each of these BG

i :s are in at least one
mask (supporting the scan orders) in Algorithm 1 then Algorithm 1 propagate
correct distance to any x ∈ Dξ

G.

BZ2

1 = {(1, 0), (1, 1)} BF
1 = {(1, 1, 0), (2, 0, 0)} BB

1 = {(1, 1, 1), (2, 0, 0)}
BZ2

2 = {(0, 1), (1, 1)} BF
2 = {(1, 0, 1), (2, 0, 0)} BB

2 = {(1,−1, 1), (2, 0, 0)}
BF

3 = {(0, 1, 1), (2, 0, 0)} BB
3 = {(1, 1,−1), (2, 0, 0)}

BF
3 = {(1, 0,−1), (2, 0, 0)}

BZ
3

1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}BZ
3

4 = {(0, 1, 0), (0, 1, 1), (1, 1, 1)}
BZ3

2 = {(1, 0, 0), (1, 0, 1), (1, 1, 1)}BZ3

5 = {(0, 0, 1), (0, 1, 1), (1, 1, 1)}
BZ3

3 = {(0, 1, 0), (1, 1, 0), (1, 1, 1)}BZ3

6 = {(0, 0, 1), (1, 0, 1), (1, 1, 1)}

4.3 Minimal Configuration of Scanning Masks

Theorem 1. Let the set αi, 1 ≤ i ≤ L such that αi �= αk if i �= k and αi ∈
{1, 2, . . . , L} for all i be given. For any neighbourhood sequence B, any image IG

such that all image border points are in the background, and any points y ∈ X
and x ∈ X ∩ Dξ

G(y) such that d(x,y) = d(x, X ;B) there is a shortest path
between x and y such that

ωj ∈ BG
α1

if 0 = k0 < j ≤ k1 (7)

ωj ∈ BG
α2

if k1 < j ≤ k2 (8)
...

ωj ∈ BG
αL

if kL−1 < j ≤ kL (9)

for some ki:s.

Proof. The theorem follows directly from Lemma 2 for Z2, F, and B. Since the
only 2-neighbour ((1, 1), (2, 0, 0), and (2, 0, 0), respectively) is in all the BG

i :s, it
is enough to order the 1-neighbours such that (7)-(9) are fulfilled. Compare with
Example 2.

For Z3, things are a bit more complicated. We argue by contradiction. Let
P be any shortest B-path (of length n) with ΓG-sector steps between x and y.
Construct the new path P ′ as follows:

There is obviously a maximal value of k1 such that ωj ∈ BZ3

α1
for all 0 < j ≤ k1.

Lemma 2 is used to find the ωj :s. In the same way, maximal values of k2, . . . , k6

and the ωj :s for j ≤ k6 are found.
Assume that k6 �= n (i.e. that k6 < n). Since (1, 1, 1) is in all BZ3

i :s, ωk6+1

corresponds either to a 1-neighbour or a 2-neighbour.
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Case i ωk6+1 corresponds to a 1-neighbour.
We consider ωk6+1 = (1, 0, 0) – the proofs for (0, 1, 0) and (0, 0, 1) are similar.
Let a and b be the values such that ωj ∈ BZ3

1 if ka−1 < j ≤ ka and ωj ∈ BZ3

2

if kb−1 < j ≤ kb. We assume b > a (the proof for a > b is similar).
Since (1, 1, 1) is in all BZ3

i :s, neither ωka+1 nor ωkb+1 corresponds to 3-
neighbours.

By Lemma 2, neither ωka+1 nor ωkb+1 corresponds to 1-neighbours: If, say
ωka+1 corresponds to a 1-neighbour, then we could use Lemma 2 to swap ωka+1

and ωk6+1 contradicting that ka is maximal.
Thus both ωka+1 and ωkb+1 correspond to 2-neighbours. It follows that ωj �=

(1, 1, 0) for j > ka and ωj �= (1, 0, 1) for j > kb. (Otherwise we could use
Lemma 2 to swap any such occurence of (1, 1, 0) or (1, 0, 1) with ωka+1 or ωkb+1

contradicting that ka and kb are maximal.)
Thus, ωkb+1 = (0, 1, 1). But then we could use Lemma 2 to set ωkb+1 to

(1, 0, 1) and ωk6+1 to (0, 1, 0) contradicting that kb is maximal.
Case ii ωk6+1 corresponds to a 2-neighbour.
We consider ωk6+1 = (1, 1, 0) (the proofs for (1, 0, 1) and (0, 1, 1) are similar).
Let now a and b be the values such that ωj ∈ BZ3

1 if ka−1 < j ≤ ka and
ωj ∈ BZ3

3 if kb−1 < j ≤ kb. We assume b > a – the proof for a > b is similar.
Since (1, 1, 1) is in all BZ3

i :s, neither ωka+1 nor ωkb+1 corresponds to 3-
neighbours.

By Lemma 2, neither ωka+1 nor ωkb+1 corresponds to 2-neighbours: If, say
ωka+1 corresponds to a 2-neighbour, then we could use Lemma 2 to swap ωka+1

and ωk6+1 contradicting that ka is maximal.
Thus both ωka+1 and ωkb+1 correspond to 1-neighbours. It follows that ωj �=

(1, 0, 0) for j > ka and ωj �= (0, 1, 0) for j > kb. (Otherwise we could use
Lemma 2 to swap any such occurence of (1, 0, 0) or (0, 1, 0) with ωka+1 or ωkb+1

contradicting that ka and kb are maximal.)
Thus, ωkb+1 = (0, 0, 1). But then we could use Lemma 2 to set ωkb+1 to

(0, 1, 0) and ωk6+1 to (1, 0, 1) contradicting that kb is maximal.
Now we can conclude that, since all possible ωk6+1:s lead to contradictions,

k6 = n and the proof is finished. �

We can now conclude that since the order of the BG
i :s is arbitrary, Algorithm 1

will propagate the correct distance value from y ∈ X to each point in DG(y) if
each BG

i :s is included in at least one mask in the algorithm. By symmetry, it
follows that if all configurations symmetric to the BG

i :s are included in at least
one mask in the algorithm, distance values will be propagated from y to any
object grid point in IG. We get the following condition:

Condition 1. If each configuration symmetric to the configurations shown in
Figure 1 is included in at least one mask supporting the scan orders used in
Algorithm 1, then Algorithm 1 will produce correct distance maps.

Sets of masks in the different grids fulfilling Condition 1 are shown in Figure 3.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Fig. 3. The masks above (colour-coded as in Figure 1) can be used to get correct results
from Algorithm 1. (a)–(c) Z2, (d)–(g) Z3, (h)–(k) F, and (l)–(o) B. Note that, for Z3,
F, and B, any mask can be obtained by rotating any other mask in the same grid.

5 Discussion and Conclusion

The unfolded cube graph was introduced in [11] to guarantee that local distances
are allowed to propagate in all possible directions. It was designed for Euclidean
DTs and shows the directions supported by a mask. The unfolded cube graphs
for a set of masks must fill the whole cube (direction space) to produce correct
Euclidean DTs. It is easy to produce a set of masks such that the unfolded cube
graph is covered but which does not produce correct distance maps for n.s.-
distances as shown in Figure 4. We have shown that distance propagation from
all directions is not sufficient for algorithms for n.s.-distances. The condition
derived in this paper is: if each configuration symmetric to the configuration in
Figure 1 is contained in at least one mask, then the algorithm produces correct
DT:s. We can notice that these configurations contain one and only one vector
of each neighbourhood kind.

Fig. 4. Using these masks and the 7+5 symmetric masks for Z3 in Algorithm 1 will
result in insufficient propagation of distances, e.g., for neighbourhood sequences with
B = (1, 3)
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In [15], scanning masks to compute the Euclidean DT on the fcc and bcc
grids were derived using the unfolded cube graph. Surprisingly, four scans are
not sufficient for the bcc grid – five masks, i.e. scans, are needed to fill the
direction space using the unfolded cube graph. This implies that the number of
scans needed for a sequential algorithm designed for computing the Euclidean
DT might be greater than for computing n.s.-DTs.

Using the algorithms presented in this paper, applications such as skeletoniza-
tion [7] and shading of three-dimensional objects [8] become faster and easier to
use. Also, since sequential algorithms for the non-standard fcc and bcc grids are
presented, it is easy to adjust the applications to work also for the fcc and bcc
grids.
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11. Ragnemalm, I.: The Euclidean distance transform in arbitrary dimensions. Pattern
Recognition Letters 14(11) (1993) 883–888

12. Matej, S., Lewitt, R.M.: Efficient 3D grids for image reconstruction using
spherically-symmetric volume elements. IEEE Transactions on Nuclear Science
42(4) (1995) 1361–1370

13. Garduno, E., Herman, G.T.: Optimization of basis functions for both reconstruc-
tion and visualization. Electronic Notes in Theoretical Computer Science 46 (2001)
1–17

14. Strand, R., Borgefors, G.: Distance transforms for three-dimensional grids with
non-cubic voxels. Computer Vision and Image Understanding 100(3) (2005) 294–
311



Generating Distance Maps with Neighbourhood Sequences 307

15. Strand, R.: The Euclidean distance transform applied to the fcc and bcc grids. In
Marques, J.S., de la Blanca, N.P., Pina, P., eds.: IbPRIA 2005, Estoril, Portugal,
June 7-9, 2005, Proceedings, Volume 3522 of LNCS., Springer (2005) 243–250

16. Carvalho, B.M., Garduno, E., Herman, G.T.: Multiseeded fuzzy segmentation on
the face centered cubic grid. In Ltd., S.V., ed.: Proceedings ICAPR 2001, Pattern
Analysis and Applications journal (2001)
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Abstract. A modification of the hierarchical chamfer matching algo-
rithm (HCMA) with the effect that no binarisation of the edge informa-
tion is performed is investigated. HCMA is a template matching algo-
rithm used in many applications. A distance transform (DT) from bi-
narised edges in the search image is used to guide the template to good
positions. Local minima of a function using the distance values hit by the
template correspond to potential matches. We propose to use distance
weighted propagation of gradient magnitude information as a cost image
instead of a DT from the edges. By this we keep as much information
as possible until later in the matching process and, hence, do not risk to
discard good matches in the edge detection and binarisation process.

1 Introduction

Chamfer matching is a template matching method based on geometric image
features and can be used for both 2D and 3D images. It finds good fits between
the template and edges in a search image. A generalized cost function between
the edges in the search image and the template, a list of coordinate pairs corre-
sponding to the searched pattern, is minimized. To guide the template to good
positions, a distance transform (DT) is calculated from edges in the search image
and the sum of the distance values hit by the superimposed template constitute
the cost function. Translation, scaling, rotation, and perspective changes are for
2D images and translation, scaling, and rotation for 3D images.

In its original form, proposed by Barrow et al. in 1977 [1] as described above,
chamfer matching is a fine matching algorithm which requires good start posi-
tions. In [2], Borgefors showed that using the sum of squared distances instead
of the sum of distances as the cost function results in significantly fewer false
minima. In [3], she embedded the chamfer matching in a resolution hierarchy.
This, the hierarchical chamfer matching algorithm (HCMA), turned the original
fine-matching algorithm to a fast, general and robust matching algorithm.

HCMA’s usefulness is clear not the least from the number of citations (al-
most 200, Science Citation Index March 2006). Although introduced almost 20

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 308–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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years ago, it is still used in many applications today. It is described in the recent
surveys of volume image registration by template matching [4] and image reg-
istration [5]. In [6], a 3D model based registration approach is taken for fusion
of information from positron emission tomography (PET), magnetic resonance
imaging (MRI) and magnetocardiography (MCG). For the PET-MRI registra-
tion, HCMA is used. HCMA is also used in object recognition, e.g., hand pose
recognition, [7], and pedestrian detection from moving vehicles, [8].

A few suggestions of improvements to HCMA have been described. In [9]
and [6], HCMA is used with an oriented DT, where not only the position of the
edges in the search image, but also their orientation is taken into account. The
oriented DT is used to guide the search and decreases the chance of getting stuck
in false local minima. In [9], it is also suggested to use a hierarchical clustering
of the template from different views to speed up the matching process. These
two modifications could be incorporated in the method suggested here. Three
different modifications of the DT taking into account gradient magnitude infor-
mation (salience DTs) are presented in [10]. The use of salience DTs in various
applications, including chamfer matching without the hierarchical structure and
for 2D images only, is discussed. One of the salience DTs presented in [10] is
similar to the distance weighted propagation of gradient magnitude information
suggested here. We investigate the use of distance weighted propagation of gra-
dient magnitude information in HCMA further. We discuss how the choice of
local propagation steps influences the outcome of the matching process and give
some ideas on how the matching measure need to be modified to suite the cost
image. Moreover, we generalise the concept to 3D images.

HCMA and our gradient magnitude based HCMA (GM-HCMA) are described
for 2D images in Section 2 and Section 3, respectively. Section 3 also contains the
generalisation to 3D images. The performance of GM-HCMA is illustrated on a
2D leaf-matching example in Section 4 and on a cryo-electron tomographic (cryo-
ET) 3D protein identification example in Section 5. The protein identification
example was inspired by [11], where the ordinary HCMA was shown to give
promising results for identifying proteins in cryo-ET images. Here, we show that
similar results can be achieved using GM-HCMA.

2 HCMA

HCMA improves the chamfer matching algorithm by embedding it in a resolution
pyramid, [3], [1]. Chamfer matching is performed in the image with the lowest
resolution. Relevant positions, i.e., positions giving a match measure greater
than a user defined rejection factor (RF), are used as start positions for chamfer
matching in the image at the next higher resolution level. Chamfer matching is
then performed level after level until the highest resolution level, i.e., the original
image, is reached. We start by describing the chamfer matching performed for
each resolution level and then how the image resolution pyramid is created.

Two images are needed to perform chamfer matching: a template representing
the contours of the searched pattern and a search image depicting the same type
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of information, i.e., edge information, as the template. There are many possible
ways to create a template. This is not the focus of this paper so we simply assume
that a template is given. There are likewise several different ways to detect edges
in an image. Here, we will detect edges as the gradient magnitudes derived as the
sum of the responses from a set of Sobel operators, e.g., [12]. For 2D images, the
operators are of size 3×3 pixels and horizontal, vertical, and diagonal directions
are taken into account. For 3D images, the operators are of size 3× 3× 3 voxels
and directions in the x-, y-, and z-planes are considered.

An edge image is created from the gradient magnitude image by, e.g., thresh-
olding, and a DT is calculated from the edges. In the DT, each pixel is assigned
a value corresponding to its distance to the nearest edge pixel. The DT serves as
a cost image which guides the template to positions giving low match measures.

When calculating a DT, the edge pixels are initially set to 0 and other pixels
to ∞. Local distances from the edge pixels are propagated over the image in
one forward and one backward scan. The local distances (weights) used here are
3 for an edge neighbour and 4 for a vertex neighbour, following the suggestion
in [3]. Each pixel is assigned the minimum of its value and the values of its, in
the current scan, already visited neighbours, each increased with their respective
local distance. This method of calculating a DT is known as chamfering, which
originates the name chamfer matching.

The template is represented by a set of coordinate pairs T = {(Xi, Yi) |
Xi, Yi ∈ Z, i = 1, . . . , n}. The search for local minimal match measures starts
from a set of start positions. Each position contains information on the transfor-
mation parameters translation (cX , cY ), rotation (θ), and scaling S. (We leave
out perspective.) The template T is transformed to its current position by T S =
T ·S, and T ′(Xi, Yi) = (cX +XS

i · cos θ−Y S
i · sin θ, cY +Y S

i · sin θ+Y S
i · cos θ).

The (X ′
i, Y

′
i ) coordinates are usually not integers and are rounded to the nearest

integer value. After this, T ′ is superimposed on the DT image. The match mea-
sure used, i.e., the measure on how well T ′ fits edges in the underlying image, is
the root mean square average (RMS) of the DT values hit by the template:

RMS =
1
3

√√√√ 1
n

n∑
i=1

d(X ′
i, Y

′
i )2,

where d(X ′
i, Y

′
i ) is the value in the DT at position (X ′

i, Y
′
i ), and the factor 1

3
comes from the use of 〈3, 4〉 DT. RMS is preferable to the arithmetic mean as
match measure in order to decrease the number of false minima, [2].

To reach a local minimum of the match measure from the current position,
a steepest descent and a line search method is used [13, chapter 10.5, 11.2].
Iteratively, a step is taken in the steepest descent direction if it produces a smaller
match measure. If not, the step length is halved until it does, or until the step
length is so small that a local minimum can be considered reached. For each step,
the steepest descent direction is calculated from all four parameters (rotation,
scaling, and 2× translation). The gradient for each parameter is approximated
by centred differences, where a translation step is the side length of a pixel, a
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rotation step is the angle which makes a point on the edge of the template move
one pixel side in length, and a scale step is a 2% change in scale.

In HCMA, chamfer matching as described above is embedded in a resolution
pyramid. The resolution pyramid is built from the binarised edges detected in
the search image, which serves as the base of the pyramid (L0). Each block of
2× 2 pixels at level Li is represented by a single pixel at level Li+1. This means
that for each higher level the size of the image is reduced by 3

4 , and the resolution
is halved. The “colour” of the pixel depends on the colour of the four pixels it
is assigned from. For HCMA, the highest value is chosen, i.e., an OR-pyramid is
used, guaranteeing that no edges disappear between successive levels.

A DT is calculated for all levels and starting positions are then distributed
at the top of the pyramid, i.e., at the lowest resolution level. The positions
that after the matching at level Li produce match measures better than RF
(depending on the size of the template and the resolution level) are kept and
used as starting positions at level Li−1. This means that at level L0 only fine
matching from relatively good starting positions is performed. If no a priori
knowledge is available, starting positions for the top level of the pyramid should
be evenly distributed, i.e., as a regular grid of points in the search space.

3 GM-HCMA

Instead of using a DT from the binarised edge image as the cost image, we
suggest decreasing propagation of the gradient magnitudes themselves and using
the result as the cost image. By this, we keep as much information as possible
until later in the process and do not risk to loose important edges by choosing
a threshold that is too high.

As the gradient magnitudes are high at edges, a good match does not cor-
respond to a low match measure but a high one. This means that we search
for local maxima in the matching process. Moreover, there is no longer a match
measure corresponding to a perfect match, as 0 is in HCMA. A certain match
measure can be the result of a good fit at edges with low gradient magnitudes
or a rather bad fit but still hitting some very high gradient magnitudes. The
same phenomenon occurs for HCMA but there only needs to be considered if
very occluded objects are desirable to be found. With the new cost image, this
effect will be more common and therefore additional RFs need to be considered.

To explain the proposed GM-HCMA, we start by recalling the concept of
the reverse distance transform (RDT) [14]. In RDT, decreasing local distance
information is propagated over the image in one forward and one backward scan
starting from a set of distance labelled seed points. Each pixel is assigned the
maximum of its value and the values of its, in the current scan, already vis-
ited neighbours, each decreased by their respective local distance. As for the
DT described in Section 2, good local distances are 3 for edge neighbours and
4 for vertex neighbours. Calculating a RDT can be seen as growing a ball for
each seed until it has a size (radius) corresponding to the distance value of the
seed.
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Our aim is to spread decreasing gradient magnitude information in a shape
preserving way in order to create a cost image where the values depend on the
gradient magnitude as well as the relative distance, i.e., the shape of the objects
in the image. We propagate the information in one forward and one backward
scan in the same way as for RDT and use application dependent local “distances”
(weights). To obtain a propagation stable under rotation, the edge and vertex
neighbour weights are chosen so that the ratio is 3

4 following the 〈3, 4〉 DT. The
result can be thought of as smoothing the image while creating a cost image,
as pixels with low gradient magnitude close to pixels with higher values will be
overshadowed and not contribute to the cost image. Note that the propagation is
done in full scale, which means that depending on the weights and the gradient
magnitudes, the resulting cost image can have values below 0. The process to
create the cost image is the same in 3D. We use face, edge, and vertex neighbour
weights with the relation 3,4,5, as suggested in [15].

Calculating a resolution pyramid from the gradient magnitude image is done
in the same way as in the binary case. Each pixel at a higher level is assigned
the maximum value of the four pixels at the lower level it is built from. For
3D images, the resolution pyramid is created by letting each block of 2× 2× 2
voxels in level Li represent a single voxel in Li+1, i.e, the resolution is halved and
the number of voxels is reduced by 7

8 between successive levels. For 3D images,
the search space increases as translation and rotation are described by three
parameters each, instead of two and one, respectively, as in the 2D case.

How the weights should be chosen depends on the application, image ac-
quisition situation, and how much smoothing the user wants to build into the
propagation. If the gradient magnitude information of the searched object is
likely to be low compared to other parts of the image, high weights, resulting in
a low smoothing factor, should be chosen. Using the logarithm of the gradient
magnitude image, before the resolution pyramid is calculated, can also be con-
sidered, as this leads to a compression of the range of the gradient magnitudes.
If the gradient magnitude information of the searched object is likely to be high
compared to other parts, low weights should be chosen so that points with low
gradient magnitude are overshadowed and noise is smoothed. This decreases the
chances of getting stuck in false local maxima during the matching process. A
1D curve illustrating the effect of using higher and lower weights is shown in
Figure 1. A higher weight (left) has the effect that the point with lower gradient
magnitude prevents the propagation from the point with higher gradient mag-
nitude. A lower weight (right) makes the point with higher gradient magnitude
overshadow the point with lower gradient magnitude. If no a priori information
is available, it is safer to use high weights as the influence of a point with high
gradient magnitude then drops quickly, even though this means that the chance
of getting stuck in false local maxima increases.

For GM-HCMA, good positions give high match measures (instead of low as
for HCMA). However, it is not possible to give absolute values for how high good
match measures should be as it depends on the gradient magnitude information
available. Instead additional criteria can be used to help evaluate possible match
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COST COST

Fig. 1. 1D curves illustrating the effect of using higher (left) and lower (right) weights

positions. If the background is even and, hence, the gradient magnitudes of the
searched object are likely to be of similar strength, the variance of the pixel values
in the cost image contributing to the match measure gives a good indication on
whether a position is relevant or not. In [16], a method for differentiating between
positions giving low match measures when HCMA is applied to noisy images is
presented. In such images, a low match measure does not necessarily mean that
the position is correct and a rather high match measure does not automatically
mean that the matching has failed. In the first case, it could be that the object
matches parts of other objects and in the second, that the searched object is
partially occluded or simply that the scene is noisy. In such cases, the variation
of the cost along the template for a found position can be studied.

4 Comparison of GM-HCMA and HCMA for 2D Images

We illustrate GM-HCMA and compare it to HCMA using the two images, leaf A
and leaf B, in Fig. 2. The images, both of size 896× 592 pixels, belong to a data
set used for experiments by the Computational Vision Group at California In-
stitute of Technology (http://www.vision.caltech.edu/ archive.html). The
templates used, consisting of 2494 and 1922 pixels, respectively, are also shown
in Fig. 2. These have been created manually in such a way that a “perfect”
position is possible for leaf B while for leaf A the template differs slightly in
shape compared to the leaf in the search image. We have chosen leaf A and B to
illustrate GM-HCMA as they show GM-HCMA’s advantages to HCMA as well
as point out situations when GM-HCMA have difficulties (and HCMA fails).

In this example, we have used the logarithm of the gradient magnitude image
to compress the range of gradient magnitudes. Assuming that we have no a
priori knowledge of the gradient magnitude information for the searched object,

Fig. 2. Leaf A (left) and leaf B (right) and their respective templates
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we have chosen weights in such a way that the influence from pixels with the
highest gradient magnitude decrease to 0 over a distance corresponding to the
width of the template, at the top level of the resolution pyramid. This is to
make sure that edges on one side of the template do not overshadow edges on
the opposite side. Hence, the weight for a step in the edge direction w1 is set
to the largest value in the gradient magnitude image divided by the minimum
width of the template. The weight for a step in the vertex direction w2 is 4

3w1.
We have used five levels in the resolution pyramid and the weights 〈0.32, 0.43〉
and 〈0.28, 0.37〉, respectively, on all levels. The low weights are due to the use of
the logarithm of the gradient magnitude instead of the gradient magnitude itself.
We have implemented GM-HCMA using MATLAB and pixel type “double” as
speed is not the main issue here. Implementing GM-HCMA, using a rescaling of
the logarithmic values, with 8- or 16-bit images will give approximately the same
computational complexity as HCMA. For translation, rotation, and scaling step
lengths and optimization process, we have followed what is described in Section 2.
In Fig. 3, the logarithm of the gradient magnitude image, the cost image, and the
positions giving the two highest match measures are shown for level L0. The cost
image is linearly stretched (and displayed in colour) to emphasize differences.

Fig. 3. Top row: leaf A. Bottom row: leaf B. Logarithm of the gradient magnitude
image, the cost image, and the positions giving the two highest match measures using
GM-HCMA (blue/dark for the highest and yellow/light for the second highest).

The match measures are 20.9 (leaf A) and 20.3 (leaf B) for the positions
shown in blue/dark in Fig. 3. For leaf A, this position corresponds to a reliable
response since the match measure for other positions are much lower (17.5 for
the second position, shown in yellow/light). For leaf B, the situation is less
certain as the second position, shown in yellow/light, also has match measure
20.3. Additional information is given by the variance of the pixel values in the
cost image contributing to the match measure. The variance is 2.60 for the first
position (and 11.0 for the second, incorrect, position) for leaf A and 7.31 and
9.46 for the first, correct, and second, incorrect, positions with match measure
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20.3 for leaf B. The low variance for the first position for leaf A indicates that it
is likely to be a correct match because a low variance corresponds to a good fit
for the whole template. Higher variances (as for leaf B) can result from partial
occlusion (as is the case for the first position), i.e., most of the template fits well
but parts of it does not, or from a less good fit for most of the template but
where parts of it hit very high gradient magnitudes. What is the cause for the
higher variance can be established by studying the graph of cost variation along
the template at the match position [16]. Another more automatic possibility is to
use a percentile of the values hit by the template in the RMS (and/or variance)
calculation, i.e., only take into account the 75% of the pixels (those with the
highest costs) hit by the template. In this example, the lower variance for the
first position for leaf B still give preference to that position, without performing
any additional investigations. Note that the difficulties for leaf B in finding a
more clear first, and correct, position is due to the fact that there are very high
gradient magnitudes on one side of the searched pattern (right) and low on the
other side (left). This will be even more evident when HCMA is ran for the same
example, see below. We remark that a direct comparison of match measures
and variances between images should not be performed unless the images are
acquired identically.

For comparison, we have also ran HCMA on leaf A and leaf B. Thresholding
of the gradient magnitude image was performed to generate edge images. For
leaf A, the gradient magnitudes range from 0 to 2577 and for leaf B from 0 to
2603. To illustrate the effect of the binarisation step, we ran HCMA starting
from two different edge images, using the thresholds 400 and 1000, for both leaf
A and leaf B. For the rest, the same settings as for GM-HCMA were used. In
Fig. 4, the edge images, the DTs, and the best HCMA positions are shown for
resolution level L0. The match measures for leaf A were 11.5 and 6.3, the latter
corresponding to a correct position. For leaf B, the match measures were 7.6 and
26.9, the former corresponding to a correct position. This shows that to succeed,
HCMA is dependent on a careful choice of threshold for the gradient magnitude
image. For leaf B, we remark, to make the link to what was pointed out for the
results from GM-HCMA, that the very high gradients on one side of the searched
pattern (right) and low on the other side (left) makes this thresholding difficult.

5 GM-HCMA for Identification of Proteins

The initial goal of this work was to investigate whether it was possible to use
GM-HCMA to achieve better and more stable matching results than by HCMA
for a specific application. In [11], HCMA was used for shape based identifica-
tion of proteins, or more specifically the Immunoglobulin G (IgG) antibody, in
cryo-ET images. The analysis of cryo-ET images is of interest as the technique
allows imaging of individual proteins, something which is not possible with other
imaging systems. By this it is possible to study protein functional dynamics. For
more information on cryo-ET experiments of the IgG antibody and the structural
information possible to extract from this type of images, we refer to [17].



316 S. Svensson and I.-M. Sintorn

Fig. 4. Top rows: leaf A. Bottom rows: leaf B. Edge images created using two different
thresholds (400 and 1000), the DTs, and the position giving the lowest match measure
using HCMA.

The images resulting from cryo-ET have low contrast as the micrographs
used to reconstruct the tomographic images need to be acquired using a low
electron dose to prevent radiation damages. The images contain not only the
proteins of interest but also other structures, such as ice crystals, artifacts from
the reconstruction, and other molecules, which complicate the matching. To the
left in Fig. 5, a cross section of a cryo-ET image is shown. The “Y” shaped
object almost centred in the cross section is an IgG antibody. This IgG antibody
is shown volume rendered in Fig. 5 (middle). The cryo-ET image is of size 150×
150× 150 voxels with voxel size 5.24Å and a resolution of approximately 2nm.

In [11], a template created from the protein databank, [18], (PDB identifica-
tion 1igt) was used in the search for IgG antibodies. This template is shown in
Fig. 5 (right). The experiments in [11] showed promising results. However, as
the gradient magnitude information is low in cryo-ET images and, hence, the
edge detection step required for HCMA is non trivial, GM-HCMA is of interest
to achieve a more robust protein identification process.

We have used the same settings for the experiments as in [11], but applied
GM-HCMA instead of HCMA. The size of the template was 1220 voxels, which
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Fig. 5. Left: A cross section of a cryo-ET image with an IgG antibody shown almost
in the middle. Middle: A volume rendering of the IgG antibody in the cross section.
Right: The template used in GM-HCMA.

Fig. 6. The positions found by GM-HCMA (found object in yellow/light, template in
blue/dark). All positions correspond to IgG antibodies except for the rightmost.

corresponds to the surface of an 1igt antibody object of size 3600 voxels. Only two
resolution levels were allowed as the objects almost disappear at lower resolution
than that. Moreover, we follow the suggestion in Section 3 and use the logarithm
of the gradient magnitudes. The IgG antibody consists of three roundish parts,
which are approximately equal in size. We have chosen the weights in such a
way that the gradient magnitudes decrease to 0 over a distance corresponding
to size of one of these parts, at the top level of the pyramid. GM-HCMA was
applied to four cryo-ET images, of which three are the same as the three used
in [11], each containing one IgG antibody. The weights were 〈2.20, 2.94, 3.67〉,
〈2.42, 3.23, 4.04〉, 〈2.42, 3.23, 4.03〉, and 〈2.41, 3.21, 4.02〉, respectively.

For three of the images, the positions found by GM-HCMA, giving the highest
match measure, corresponded to an IgG antibody, with match measures 2.34,
2.24, and 2.26, respectively, and variance 0.02, 0.03, and 0.03, respectively. For
the fourth image, another structure was found, with match measure 2.17 and
variance 0.04. The IgG antibody was listed as the second best match, with match
measure 2.16 and variance 0.04. In Fig. 6, matches are shown with the template
(yellow/light) translated to the positions found by GM-HCMA and superim-
posed on the corresponding IgG antibody (blue/dark). The rightmost subfigure
shows the structure found which does not correspond to an IgG antibody. The
positions are not perfect mainly due to the fact that the template does not
perfectly correspond to the searched antibody.

The initial experiments shown here indicate that GM-HCMA is a robust
method for finding IgG antibody candidates in cryo-ET images. The IgG an-
tibodies are found at the position producing the highest match measure in three
of the four available volumes, and at the second highest position in the fourth.
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This is similar to the results in [11], with the advantage that the edge detec-
tion step can be avoided. To ensure that no IgG antibodies are missed good
candidates can be presented for the molecular biologists involved in the project
for visual inspection. This way of prescreening the images is of interest since
the amount of data is too large to make manual search feasible. A more thor-
ough study of GM-HCMA on cryo-ET images will be the issue for a forthcoming
manuscript.

Possible application specific extensions of this work include incorporating flex-
ibility in the template to account for the natural flexibility of the IgG antibody.
However, this implies a (much) larger search space and would thereby increase
the complexity of the algorithm. Another possibility is to follow the suggestion
in [9] and embed hierarchical grouping of multiple templates corresponding to
different molecular configurations in the matching process.

6 Conclusion

We have described a modification of the hierarchical chamfer matching algorithm
(HCMA) [3], with the advantage that no binarisation of the gradient magni-
tude image is necessary. Instead, distance weighted propagation of the gradient
magnitude information is used to create a cost image, resulting in a gradient
magnitude based HCMA (GM-HCMA). GM-HCMA needs to be tuned for the
application at hand with respect to the weights used for propagating the gradient
magnitudes and the evaluation of positions found by the matching process. We
have shown that GM-HCMA gives comparable or improved results to HCMA,
without increasing the complexity of the algorithm or its computational cost.
In Section 5, we used GM-HCMA in a real application. We could achieve the
same results as in [11], but without the need of a sophisticated edge binarisation
method as in [11], where HCMA was used.
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17. Sandin, S., Öfverstedt, L.G., Wikström, A.C., Wrange, O., Skoglund, U.: Structure
and flexibility of individual immunoglobulin G molecules in solution. Structure 12
(2004) 409–415

18. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research
28(1) (2000) 235–242



Elliptical Distance Transforms and Applications

Hugues Talbot

A2SI-ESIEE / IGM
2 boulevard Blaise-Pascal

93192 Noisy-le-Grand, France
h.talbot@esiee.fr

Abstract. Discrete Euclidean distance transforms, both exact and ap-
proximate, have been studied for some time, in particular by the Discrete
Geometry community.

In this paper we extend the notion of Euclidean distance transform
(EDT) to elliptical distance transform (LDT). The LDT takes an addi-
tional two fixed parameters (eccentricity and orientation) in 2-D and an
additional four in 3-D (two ratios and two angles) in 3-D, instead of 1
for the EDT in all cases . We study first how the LDT can be computed
efficiently with good approximation in the case where all parameters are
constant.

We provide an application to binary object segmentation as motiva-
tion for this work.

1 Introduction

The discrete, non-Euclidean distance transform (DT) (e.g. underlying the 4-, 6-
or 8-connected grid) has been under study for quite some time, see for exam-
ple [1], and more recently in arbitrary dimensions [2]. Various efficient algorithms
for computing the DT, linear in the number of pixels N , have been known since
about the same time [3]. This efficiency has led the DT to be used in a number
of situations, for example to compute the skeleton [4], among others [5].

1.1 Euclidean Distance Transform

If one defines the DT of a discrete binary set as the function which associate
each pixel to its shortest distance to the exterior of the set, one can also de-
fine a discrete Euclidean Distance Transform (EDT), simply substituting the
Euclidean distance for the grid-based one. The EDT has several advantages,
mainly isotropy, but is more costly to compute. There exists an obvious but
unusable (quadratic in N) algorithm for computing this transform. Therefore
practitioners have sought various reasonable and efficient approximation to the
EDT [6]. In particular Danielsson [7] proposed a linear algorithm with excellent
approximation.

Exact, linear algorithms for the EDT have recently been proposed in the liter-
ature, for example in 6-connectivity via chain propagation [8], by ordered prop-
agation [9], using Voronöıdiagrams [10], and using dilation by paraboloid [11],
among others.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 320–330, 2006.
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1.2 Elliptical Distance Transform

The Elliptical Distance Transform (LDT1) was defined in [12] can be understood
as an extension of the Euclidean Distance Transform (EDT). We substitute the
Euclidean distance ED between two points p and q (in 2-D)

ED(p, q) =
√

(xp − xq)2 + (yp − yq)2 , (1)

by a new function LD, with ρ = ED(p, q), ρ cos(θ) = xp − xq, ρ sin(θ) = yp− yq,
α an arbitrary angle and σ = a/b with a and b pair of arbitrary real numbers:

LD(p, q) = ρ

√
(b cos(θ − α))2 + (a sin(θ − α))2

σ
. (2)

We have two extra parameters, it is easy to see that σ = a/b, is the axis ratio
of an ellipse and α its orientation. The function LD has all the attributes of a
distance (positivity, symmetry, LD(a, b) = 0 ⇔ a = b, triangular inequality),
and its level lines are all ellipses of orientation α and axis ratio σ. By convention
σ > 0, as the converse is equivalent to the convention with an additional rotation
of π/2 in α. In the remainder of the paper, we assume that parameters α and σ
are arbitrary, but fixed for a given computation.

1.3 Grey-Weighted and Geodesic Distance Transform

In the usual DT, whether Euclidean or not, space is considered of constant
metric, i.e. the transform is invariant by translation. An extension to usual DT
is to consider the grey-weighted distance transform (GWTD) [13], for which the
cost of going through a pixel is equal to the grey-level value of this pixel. This
concept is clear in the discrete case as it reduces to computing min-cost paths on
graphs [14]. However, this idea also extends to the Euclidean DT, by considering
a discrete image as as sampled continuous space with scalar metric [15]. In this
case one is then numerically solving the Eikonal equation |∇u| = g, where g is
the sampled metric.

The classical way to solve this equation, and thus obtain a grey-weighted
Euclidean distance transform is a discrete algorithm called the Fast Marching
Method (FMM) [16]. We note that by setting g ≡ 1 everywhere, with proper
initial conditions, we compute the EDT – with two caveat. First the FMM is
not linear in complexity, but only O(N logN) in the worst case (in practice
very close to linear), with N the number of pixels. However with arbitrary real
values for g, and not simply limited discrete integer values this is in fact optimal,
as a sorting pass is inevitable. Second the FMM is not exact but only first or
second-order accurate.

Recently this work was extended to Riemannian metrics – i.e metrics that
are positive definite on arbitrary manifolds, with the Ordered Upwind Method
1 Given that ’L’ is pronounced as ”ell” this acronym sounds adequate even if

unorthodox.
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(OUM) [17]. In other words, this allowed to compute the equivalent of a discrete
positive definite tensor-weighted LDT. Perhaps more clearly, in DG terms this is
a WDT for which at each point the weight is defined by a ratio and an orientation
just like the LDT, and this weighting can vary from pixel to pixel. For a constant
tensor, this obviously reduces to the LDT, with the same caveat as for the EDT
vs. the FMM.

In the literature one finds mentions of the geodesic DT, which is a DT com-
puted inside a binary set [18], for which a Euclidean version exists [19], however
this reduces to the GWDT or FMM with infinite cost outside the set and con-
stant positive cost within.

1.4 Rest of the Paper

In the following we propose an efficient algorithm for computing the LDT. This
algorithm is accurate to within a fraction of a pixel.

2 Computing the LDT

The computation of the LDT following [20] is relatively simple as it is a straight-
forward adaptation of a known ordered propagation algorithm [21]. This algo-
rithm carries all the approximations of the Danielsson approach, but this is not
usually a problem in most applications. More importantly, this adaptation is
only valid for σ ratios close to 1, which limits its usefulness.

2.1 Motivating Example

An important problem in image analysis is the separation of touching binary
particles for counting purposes. A series of methods have been proposed in vari-
ous cases, but a recurring theme is when the shapes of the touching particles are
close to disks. This is useful when counting blood cells or fibres in cross sections,
for example.

The classical approach to this problem with mathematical morphology is to
compute the watershed line on the complement of the distance transform [22].
To deal with border noise, one can use suitable h-maxima on the distance trans-
form as markers [23]. Other approaches involving the analysis of the DT along
the skeleton [24], using the conditional bisector [25] and later the bisector func-
tion [26,27]. The latter approach is able to separate even the most deeply fused
particles [28].

However when the particles are no longer disks but ellipses this approach
breaks down, yet separating elliptical fused particles is also a common problem.
For example eukariot cell nuclei are often elliptical in shape. Cylindric fibres in
cross-section are not necessarily perpendicular to the cutting plane, and therefore
their shape can be elliptical as well. In [20] the authors proposed to use a grid
search of LDTs to find the centre of fused ellipses accurately. This is illustrated
on Fig. 1.
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(a) (b)

(c) (d)

Fig. 1. Separation of fused ellipses: (a) binary input image ; (b) Fitted ellipses from the
LDT search ; (c) segmentation result – each ellipse is drawn with a distinctive colour
with their found centre. For comparison, (d) is the watershed segmentation based on
the EDT

2.2 Algorithm for Computing the LDT

We only provide an explanation for the implementation in 2-D in the square
grid, however the principle remains the same for higher dimensions and different
grids. The basic idea is along the same vein as Dijkstra’s algorithm and Fast
Marching Methods in that each point is visited only once, and the neighbours
of the point with the smallest distance are visited first.

Here the elliptical distance is defined as√
u2 + (σ ∗ v)2 , (3)

where u and v are the distances along the principal axes of the ellipse and σ is
fixed.

Previous Algorithm. The specific algorithm is based on the algorithm de-
scribed in [20]. In that algorithm, when each point is processed, one looks at its
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8-connected neighbours for which labelled point they are closest to. The algo-
rithm uses this as the set of possible closest image points.

The distance to each of the possible labelled points is then calculated, and
whichever is the closest of those is stored as the closest labelled point to the
point being considered. The unlabelled points are put in a priority queue when
one of their neighbours is processed, where the priority is the distance calculated
for the point that added them.

The crucial assumption this algorithm makes however is that when a point
is processed, its nearest labelled point is also the nearest labelled point of one
of its already processed neighbours. For a discrete distance function such as the
city-block and chessboard metrics it can be proven, with considerable work, that
processing the points whose neighbours have the lowest distance first guarantees
this to be the case. In the Euclidean case, most approximation methods make
this assumption, which is false. However the error is in fact bounded and small.

However for an elliptical distance function this is not neccesarily the case. For
high values of σ, the nearest labelled point will be one directly along the major
axis (the u axis) of the level lines of the distance, because even a small step along
the minor axis (the v axis) causes a large increase in the distance.

If the angle of the major axis is reasonably close to the angle of the edge
of the object in the labelled image, the nearest point will therefore be quite a
way along this edge, and therefore not one of the neighbours of the point being
processed.

Neighborhoods. To solve this problem, each point no longer looks at just its
8-connected neighbours for possible nearest labelled points. Instead it considers
its “neighbours” to be all points within a certain distance from itself (“distance”
again being elliptical). Note that the points added to the queue for processing
are still the 8-connected neighbours of the newly processed point, it is only when
processing the points that the definition of ’neighbours’ changes.

Clearly if this distance was big enough to include the entire image, then one of
these “neighbours” always would have the same (or more specifically would be)
the closest labelled point, however the algorithm would then become quadratic
in complexity, and this is clearly not desirable. The question of what distance
is the minimum to guarantee the accuracy of the algorithm (as the smaller the
distance the faster it runs) has not yet been conclusively solved.

The value used in this function is just a little bit more than σ, designed to
be approximately the smallest distance that still makes sure the 8 connected
neighbours are a subset of the neighbour set. Also it should be noted that while
the choice of defining the neighbours by the elliptical distance function being
used has not been mathematically proven to be the best, it does intuitively seem
a reasonable choice and, more importantly, gives good results.

Elliptical Distance. Another problem which had to be overcome was the fact
that the distance between grid points could become significant for high values
of σ. This is because a half pixel error in the distance along the minor axis is
magnified by a factor of σ and for pixels close to the labelled pixels can easily
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become bigger than the distance itself. To fix this, the distance between two grid
points is re-defined as being the minimum distance between the first grid point
and a 1 pixel wide square (i.e. half a pixel to each side).

To find the elliptical distance in terms of the known x and y co-ordinates, u
and v are found in terms of x and y and substituted into the elliptical distance
equation 3. As the u and v axes are just a rotation by the angle α in Eq. 2:

u = x cos(α) + y sin(α) , (4)
v = y cos(α)− x sin(α) . (5)

We actually compute the square of the LDT, as this allows all calculations
and bookkeeping to be done in integer arithmetic. The square of the elliptical
distance is then

u2 + (σv)2 = ax2 + bxy + cy2 ,

where a, b and c depend only on σ and α.
To find the re-defined distance between two grid points, the distance to the

closest point on the surrounding square of the second grid point needs to be
found. The closest point must lie on either the horizontal side of the square
visible to the the grid point or the vertical side visible (if neither horizontal side
is visible the left is arbitrarily chosen to be looked at and similarly the bottom
if neither vertical side is visible). If the closest point is not one of the corners
it must be a local minimum of the distance function along that line, and more
importantly, because there is only one local minimum along any line it must be
the global minimum. For a horizontal line y is fixed, and the (squared) distance
function is just a quadratic in x : ax2 + (by)x + cy2. Elementary theory on
quadratics gives the global minimum at x = −by/(2a), and the minimum value
as y2(c− (b2)/(4a))

Similarly for vertical lines the minimum is at y = −bx/(2c) and has value
x2(a− (b2)/(4a)) The values −b/2a and −b/2c are precalculated and compared
with x/y or y/x when needed. The distance is found by working out which two
lines are visible, checking if the minimum of the distance function along those
lines lies inside the square (if it does it is easy to show it will be the closest point
on the square), and if it is not then calculating the distances to the three corners
and taking the minimum.

2.3 Pseudo-code

In the pseudo code in Fig. 2, P is identical to the LD function defined in Eq. 2.

2.4 Results

Accuracy. Fig 3 shows two level lines of the LDT of a set where the background
constitutes a single point in the centre of the image. The dotted lines shows the
LDT computed by the algorithm from [20], the solid line shows the proposed
algorithm. The parameters were σ = 5 and α = 45◦.
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1 - Input binary image
2 Fill X image with 0
3 Fill Y image with 0
4 Fill output image O with 1
5 Empty priority queue
~
6 - Scan the binary image in raster order, enqueue the points belonging to the sets
7 which are 8-connected to the background with priority 1.
8 For each enqueued location, set the X and Y image to the respective
9 components of the direction to the nearest pixel in the background.
~

10 - While the priority queue is not empty; do
11 - Dequeue lowest priority pixel C
12 - if O(C) (the output image value at this pixel) is 1, then
13 - Compute P(C), the priority of this pixel, from X(C) and Y(C),
14 i.e P(C) = P(X(C), Y(C))
15 - Set O(C) (the output image value at this position) to P(C).
16 - For each point dC in the extended elliptical neighbourhood of this pixel; do
17 - If O(C+dC) is 1 ; then
18 - if X(C+dC) or Y(C+dC) is not 0, compute P1 = P(X(C+dC),Y(C+dC))
19 else set P1 to +infinity
20 - compute P2 = P(C+dC) where ‘+’ denotes the 2-D vector addition.
21 - If P2 < P1 then
22 - enqueue dC with priority P2
23 - set X(C+dC) to X(C) + x(dC), where x(A) is the X-component of A
24 - set Y(C+dC) to Y(C) + y(dC), where y(A) is the Y-component of A
25 - set O(C+dC) to 1
26 + end if
27 + end if
28 + end for
29 + end if
30 + end while

Fig. 2. Pseudo-code for the LDT. See text for the formulation of the priority function P.

The maximum distance between the largest level lines for both algorithms is
approximately one pixel. The average distance is about 0.6 pixel. However, a
comparison with the current algorithm and a parametric (drawn) ellipse with
the same parameters shows no difference. On the negative side, the newer version
of the algorithm takes approximately twice as long to compute, with these pa-
rameters, as it needs to inspect a larger neighbourhood during the propagation.

We did not include the result of a comparison with the OUM as it is quite
inaccurate for this purpose. Being first-order accurate meaning that the error
increase linearly with the distance. The OUM is also quite slow (approximately
an order of magnitude) compared to these special-purpose LDT.

Application. Figure 5 shows a sample of an image of overlapping cell nuclei,
together with the segmentation achieved using an ellipse fitting method using
the current LDF algorithm described in [20] and reproduced in algorithm in
Fig. 4 :

Here, the space of possible α and σ parameters is sampled in a grid search.
More sophisticated optimisation methods can be envisaged, but this is not the
purpose of this article.

For display purposes it is convenient to compute a measure which is high for
a good fit. The measure that we use is s = 100/m. We make sure that s is
never 0 even for a perfect fit. We call s the score of a ellipse fit. To display the
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Fig. 3. Two level lines of the LDT computed by previous (dotted line) and current
algorithm (solid line)

1. The EDM from the contour of the binary image is computed into image C.
2. A number of LDMs of the binary image are computed, with different values of α and σ.
3. For each LDM, special points are considered as candidate centres of ellipses. These need

not include all the points of the LDM skeleton. In our application we only considered
discrete regional maxima of the LDM.

4. For each special point, a candidate ellipse is generated with the same parameters
(position, axis lengths and orientation) as the underlying LDM. Each pixel of the
circumference of the generated ellipse is associated with its distance from the boundary
of the binary image. This is provided by a simple interpolated lookup in image C.
The pixel distances are sorted and a given percentile is taken as the measure m of
goodness-of-fit (for example 50% yields the median distance).

Fig. 4. Algorithm for ellipse fitting

result of the fit, we draw each candidate ellipse from lowest score to highest in
the grey-level of their score. As an illustration, Fig 1(b) shows the score of the
fitted ellipse on the motivating example. We see that well-fitted ellipses tend to
overwrite poorly-fitted ones.

On the real cell example, we sample the space with 31 different LDTs with
δα = 30◦ and δσ = 0.5, 1 ≤ σ ≤ 3. The result of the ellipse fit appears reasonable,
and table 1 confirms this impression. In this table we have in the first column
the result of a careful manual count, in the second the result of the segmentation
achieved by the proposed algorithm, the result of the segmentation achieved by
the previous algorithm of [20], the result of the segmentation by watershed on
an EDT, both unfiltered and filtered by h-maxima.

We see that on this sample the error rate with the new method is slightly
improved compared with the older method, and much improved compared to
the watershed method – it is 3 times lower.
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(a) (b)

Fig. 5. Result of the algorithm on real data. (a) original image ; (b) segmentation using
the overlapping ellipses method.

Table 1. Comparison of counting methods for image in Fig. 5(a)

Count method Manual Ellipse Ellipse Unfilt. Filt
high acc. Low acc. wshed wshed

Nb of cells 104 100 98 93 86
Total errors 0 6 8 15 18
Over-segmentation errors 0 1 2 2 0
Under-segmentation errors 0 5 6 13 18

On the given image low-resolution image, computing all the 30 LDTs and
doing the fits takes 5 seconds on a P-IV 3GHz PC. On the full data – a 1280×1024
12-bit image, the complete computation took about one minute.

3 Conclusion and Future Work

In this paper we have presented an algorithm for computing the LDT, the ellip-
tical distance transform and we have provided an illustration of its usefulness.
While not exact, it is more accurate than a previously published version, at the
cost of increased computational cost. This extra accuracy can be helpful in some
applications making use of LDTs.

This algorithm is still open to improvement. In particular an exact version
would certainly be desirable. The author is also interested in improving both the
precision and the speed of the OUM.
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22. Lantuéjoul, C.: Skeletonization in quantitative metallography. In Haralick, R.M.,
Simon, J.C., eds.: Issues of Digital Image Procesing, NATO, Sijthoff and Noordhoff
(1980)

23. Beucher, S., Vincent, L.: Introduction aux outils morphologiques de segmentation.
In: Traitement d’image en microscopie à balayage et en microanalyse par sonde
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Abstract. This paper introduces a new method for the naive digital
plane recognition problem. As efficient as existing alternatives, it is the
only method known to the author that also guarantees a quasi linear
time complexity in the worst case. The approach presented can be used
to determine if a set of n points is a naive digital hyperplane in Zd in
O(n log2 D) worst case time where D represents the size of a bounding
box that encloses the points. In addition, the approach succeeds in re-
ducing the naive digital plane recognition problem to a two-dimensional
convex optimization program. Thus, the solution space is planar and
only simple two-dimensional geometrical methods need to be applied
during the recognition process. The algorithm is a composite of simple
techniques based on one-dimensional optimization: Megiddo Oracle for
linear programming and two-dimensional discrete geometry.

1 Introduction

1.1 History

Naive digital plane recognition is a deeply studied problem in digital geometry
(see a review in [1]). It consists of determining wether or not a given set of points
is a piece of a naive digital plane. This paper presents a new technique with quasi
linear worst case complexity that is very efficient in practice. The result can be
extended without difficulty to the recognition of digital planes of fixed thickness
relative to the infinite norm.

Currently, the approaches used in recognition are based on linear program-
ming [2,3,4], convex hull and geometrical methodologies [5,6,7,8], combinatorial
optimization [5, 6, 9, 10, 11, 8] or the evenness property [12]. The methods that
exploit linear programming techniques can be separated into two groups. The
first group [2, 4] relies on the optimal result obtained by Megiddo [3]. However,
even if the approaches in this group achieve optimal linear time complexity, the
resulting algorithms are too complex to be used in practice. The second group is
based on efficient linear programming techniques like the simplex algorithm but
their worst case complexity is often too high in practice. Methods that partially
traverse the convex hull or the chords’ space of the given set of points suffer from
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c© Springer-Verlag Berlin Heidelberg 2006



332 L. Buzer

the same problem. For example, the chord’s algorithm [10] processes 106 voxels
in about ten traversals of the point set. Nevertheless, this technique exhibits an
O(n7) time complexity. Other algorithms that partially traverse the vertices and
the edges of the convex hull obtain an O(n log n) time complexity, but they are
less efficient. All of the previous methods always balance between efficiency in
practice and a low worst case complexity. Thus, this paper presents a simple
algorithm that has a quasi linear time complexity in the worst case and that is
efficient in practice. Moreover, it does not require the piece of the digital plane
to be rectangular as in [12, 6, 11].

In addition, the approach is different from previous approaches because it re-
quires only d−1 rational parameters to recognize a valid naive digital hyperplane
in Zd, unlike the previous algorithms that require the determination of d rational
variables. Thus, for the three-dimensional recognition problem, we need only to
apply planar geometrical techniques to know wether or not the two-dimensional
set of solutions is empty.

In the next section, we present how our recognition problem can be trans-
formed into a two-dimensional convex optimization program. In the next section,
we present the method core of our approach. Then, we sketch the algorithm and
compute its complexity in section 4. Finally, in the last section we describe
how to implement some enhancements in order to improve the efficiency of our
method in practice.

1.2 Definition

Arithmetic geometry provides a uniform approach to study digital hyperplanes
in any dimension. In this paper, we only consider the case where the digital
hyperplanes in Zd are a function from (x1, . . . , xd−1) into Zd. Other cases can be
simply deduced by symmetry. An arithmetic plane is defined by PN,μ,ω = {x ∈
Zd|μ ≤ N ·x < μ+ω} with N the normal vector and ω the arithmetic thickness.
Recall that when ω = ||N ||∞ = max1≤i≤d{|Ni|} we obtain a naive plane (see
Fig. 3 for an example). When ω =

∑d
i=1 |Ni|, we obtain a standard plane.

2 Convex Optimization

2.1 Introduction

Property 1. Let S = (pj)1≤j≤n = (xj
1, . . . , x

j
d) denote a set of points in Zd. If all

the points (pj)1≤j≤n satisfy γ ≤ N · pj < γ + 1 with γ ∈ R and with N in Qd

then S is a subset of a naive digital plane.

Proof. Let Di

Ni
denote the i-th component of the normal vectorN . By multiplying

by Πd
i=1Ni, we obtain for any point pj : β ≤

∑d
i=1(DiΠk �=iNk)xj

i < β +Πd
i=1Ni

with β ∈ Z. We can simplify this expression by g, the gcd of (DiΠk �=iNk)1≤i≤d.
Let δ denote the ceiling of β

g . As [
∑d

i=1(DiΠk �=iNk)xj
i ]/g is an integer value, we

finally obtain : δ ≤
∑d

i=1N
′
ix

j
i < δ+ ||N ′||∞. As δ and the components of N ′ are

integer values, this double inequality corresponds to a naive digital hyperplane.
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Definition 1. Consider a set S = (pi)1≤i≤n of n points in an Euclidean space
Rd. We define a function hS(x1, . . . , xd−1) : Rd−1 → R+ as the distance rel-
ative to the d-th axis between the two supporting hyperplanes of normal vector
(x1, . . . , xd−1, 1) that enclose all the points (see [1]).

Property 2. hS(x) is a convex function.

Proof. Let Nx = (x1, . . . , xd−1, 1) denote the current normal vector associated
with the current value x ∈ Rd−1 that is being processed. By definition of the
function hS(x), we have: hS(x) = Maxp∈S(Nx · p) −Minp∈S(Nx · p). Consider
the function gi(x) = Nx · pi. This function is an affine function and it is also
convex. Thus, the maximum defined by all the functions (gi)1≤i≤n is convex too.
The function hS(x) can be rewritten as Maxp∈S(Nx · p) + Maxp∈S(−Nx · p).
By the same logic, the right side of this expression is also a convex function.
Since the sum of two convex functions is convex, we conclude that hS(x) is
convex.

−→x3

O

−→x2

N(x1, x2, 1)

pi

pj

−→x1

Fig. 1. Definition of hS(x1, x2)

x2

proj
R2 (pi − pj)

a

b hS(x1, x2) ≥ hS(a, b)

hS(a, b)

x1

Fig. 2. A subgradient of hS

2.2 Subgradient Computation

For a given value x ∈ Rd−1, we only have to traverse the list of the points S
in order to compute the value of hS(x). This implies that the computation of
hS(x) has linear time complexity. Relative to the definition of hS(x), we know
that:

hS(x) = Maxp∈S(Nx · p)−Minp∈S(Nx · p)

For a given value x, there exists two points pi and pj associated with the max
and the min expressions (see Fig. 1). Therefore, hS(x) = Nx · pi − Nx · pj =
Nx · (pi − pj). As T = {pi, pj} is included in S and we have:

∀y ∈ Rd−1, hT (y) ≤ hS(y)

By definition, hT (y) is equal to:

hT (y) = |Ny · pi −Ny · pj | = |Ny · (pi − pj)|
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and it follows:

hT (y) = |Ny−x+x · (pi − pj)|
= |Nx · (pi − pj) + (y − x) · projRd−1(pi − pj)|
= |hT (x) + (y − x) · projRd−1(pi − pj)|

Since hT (x) is positive, we have:

∀y ∈ Rd−1, hS(y) ≥ hT (y)
≥ hT (x) + (y − x) · projRd−1(pi − pj)

We recall that hS(x) = hT (x)and it follows:

∀y ∈ Rd−1, hS(y) ≥ hS(x) + (y − x) · projRd−1(pi − pj) (1)

We can now conclude that the expression projRd−1(pi − pj) is a subgradient
of hS(x) (see Fig. 2). This value corresponds to the projection of the vector pipj

in the Rd−1 space. This means that the first d−1 components of the vector pipj

are sufficient to locally determine the variation of the function hS . When we
evaluate this function in linear time, we indirectly derive the two points pi and
pj . Thus, in constant time, we determine one of its subgradients. For example in
the three-dimensional case, for a set S of grid points represented as voxels (Fig.
3), hS is a continuous piecewise affine function. We need to determine whether
or not the domain defined by hS(x1, x2) < 1 is empty or not (see Fig. 4).

x2
x1

x1

Fig. 3. A set of voxels

x1

x2

Fig. 4. Domain where hS(x1, x2) < 1

3 The Basic Principles of Our Method

3.1 Studying the Solution Space

In the following, we focus our attention on the three-dimensional recognition
problem. The core of our approach is based on the existence of the strict in-
equality in the double diophantine inequality. Analyzing μ ≤ ax + by + cz <
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μ+ ||(a, b, c)||∞, which always produces integer values, the following inequality
holds:

μ ≤ ax+ by + cz ≤ μ+ ||(a, b, c)||∞ − 1

Most of the time, the voxels of an image are connected and so the diameter
of the set of voxels is not very large. Suppose that the voxels we study all lie
in a bounding box of size D. Let ||.||∞ denote ||(x, y, z)||∞ = max{|w|, |y|, |z|}.
Thus, any point p in this image satisfies ||p||∞ ≤ D. In the same way, any vector
k whose endpoints are supported by some voxels satisfies:

||k||∞ ≤ 2D

We can restrict our attention to the case where the naive digital planes are a
mapping from (x, y) into z. This means that c is nonzero and that ||(a, b, c)||∞ =
|c|. Wlog, we can force c to be positive. This produces μ′ ≤ a′xi + b′yi + zi ≤
μ′ + 1− 1

c , where a′ = a
c and b′ = b

c represent the rational slopes of the digital
plane. Relative to our previous assumption, we know that |a′| ≤ 1 and that
|b′| ≤ 1. We can now determine the influence of a small variation on the normal
vector N(a′, b′, 1). Let NΔ(α = r

t , β = s
t , 1) denote another normal vector in the

neighborhood of N such that |α− a′| ≤ Δ and |β − b′| ≤ Δ. Thus, we have:

μ′ − 2DΔ ≤ αxi + βyi + zi ≤ μ′ + 1− 1
c

+ 2DΔ (2)

Considering the convex hull of the set of points, we know that there exists two
parallel planes that enclose all of the points and that have a minimal distance
relative to the z-axis. These two planes are supported by four vertices of the
convex hull [5]. The minimum of hS is reached at a value associated with a normal
vector whose coefficients are the vector product of two segments supported by
the given voxels [7]. Therefore, there exists k and k′ in Z3 such that the solution
(a, b, c) = k ∧ k′. As ||k||∞ ≤ 2D and ||k′||∞ ≤ 2D, we obtain:

1 ≤ c ≤ 8D2 (3)

Combining property 1 and inequality (2), we know that when S is a subset of
a naive digital plane, any normal vector NΔ in the neighborhood of N is valid
iff: 4DΔ < 1

c . It follows that when the set of solutions hS() < 1 is not empty, it
contains a critical square whose side length Δ is less than:

Δ <
1

4Dc
(4)

For example, from (3), we know that Δ < 1/(32 · D3). In this paper, we
denote by Γ the value 1

64D3 . In conclusion, we only have to study the function
hS relative to a uniform grid in the domain [−1, 1] × [−1, 1] whose resolution
is given by Γ . If none of the sampled values represent a valid normal vector
then the space of solutions is empty. Thus the solution space of our optimization
problem reduces to a two-dimensional grid.
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4 Algorithm Design

To attack our optimization problem, we could use standard algorithms from
mathematical programming, including subgradient descent methods. However,
we can not easily apply such algorithms. For instance, if we want to retain our
philosophy of exact numerical computation with rationals, these methods will
increase the size of the numerator and denominator of the normal vector at each
iteration and slow down the calculation significantly. That is why the approach
we present mixes methods developed in one-dimensional binary minimization,
Megiddo Oracle technique and subgradient optimization. As we only pick simple
techniques, we obtain a very simple approach.

4.1 Megiddo Cut

When Megiddo in [3] describes his optimization method, he cuts the current
search domain by a hyperplane. If the optimum solution belongs to the cut,
the problem is solved. If not, we create an Oracle (presented in section 4.3)
that determines on which side of the cut the optimal solution lies. The search
domain is then reduced to the solution space on the side of the cut in which the
optimal solution lies. For example, suppose that the current search domain is
{(a, b)|{a, b} ∈ [−1, 1]×[−1, 1]}. We can choose to cut by the line a = 0. Next, we
compute the minimum of hS relative to this one-dimensional domain. After that
step, if the optimum is less than 1, the problem is solved. Elsewhere, we call the
Oracle and reduce the search domain to [−1, 0]×[−1, 1] or [0, 1]×[−1, 1]. The next
cut will be the line b = 0 and thus the resulting domains will be a square again.
We perform the same operations at each iteration. When the search domain is
smaller than the size of the critical square, we know that the set of solutions
is empty. Using one iteration, we divide by two the side length of our search
domain. Thus, in at most log2(2/Γ ) iterations the program terminates.

4.2 One-Dimensional Binary Optimization

We know that hS is a convex function. So, when we reduce its domain to a
one-dimensional space x1 = e, the resulting function he

S is always convex. Thus,
we can apply usual optimization methods from one-dimensional convex opti-
mization. We choose binary optimization, one of the simplest and most practical
methods. For example, suppose that our two-dimensional search domain is cut
by a segment [(e, f), (e, g)]. We choose the middle point: (e,m) with m = f+g

2
and compute a two-dimensional subgradient of hS in O(n) time. By projecting
this subgradient into the one-dimensional domain, we obtain a subgradient for
he

S at the point f+g
2 (see Fig. 5). So, we can determine which interval between

[(e, f), (e,m)] and [(e,m), (e, g)] will be kept for the next iteration. As we work
on a uniform grid, the optimization stops when the interval is bounded by two
adjacent points of the grid. Thus, in log2(|f − g|/Γ ) iterations, we solve this
subproblem.



A Composite and Quasi Linear Time Method for Digital Plane Recognition 337

g

∂he
S(m)

he
S

f
m

x1e

x2

∂hS(e, m)

Fig. 5. Subgradient of he
S : ∂he

S

withdrawn
solutions

rejected triangle
critical square gA

B

gB

Δ

Γ

x1

x2 he
S

e

A

Fig. 6. Generalization of the Oracle

4.3 Subgradient and the Oracle Function

We want to determine on which side of the cut, the space of solutions lies.
Megiddo Oracle computes the steepest descent from the minimum reached by
he

S . This direction indicates on which side of the cut some solutions can lie.
Nevertheless, as we work on a uniform grid, we can not determine the minimum of
he

S . After the one-dimensional optimization step, we only know the two minimum
values among the samples of the grid. Suppose that we cut by a vertical segment
and that these two values are associated to two points A and B such that A lies
over B (see Fig. 6). Let gA and gb denote the two subgradients of hS computed
at these points. When the angle (gA, gB) is equal to π the two subgradients are
parallel and the search domain is restricted to a strip of vertical thickness equal
to Γ . Thus, it can not contain a critical square and the problem has no solution.
In the case where gA ∧ gB < 0, we keep the left side. However, even if the values
of he

S at the points A and B are greater than 1, there may exist smaller values
and, thus, valid solutions in the interval ]A,B[. Selecting one of the two sides,
we may withdraw some solutions that lie on the cut and on the rejected side.
Nevertheless, if they exist, they lie in a triangle not large enough to contain a
square of side length Δ. Thus, only the solutions lying in a critical square are
of interest. Others can be withdrawn without perturbing the final result of the
algorithm.

4.4 Program and Complexity

The code for the main function, Naive Digital Plane Recognition(), and for
the one-dimensional support function, 1D-Optimization(), used to solve the
one-dimensional optimization problem follows. Each comparison processes all of
the different cases.

The search domain is initialized to a square of side length 2. The program
stops when the side length of the square currently being processed is less than Γ .
At the ith iteration, the side length is equal to 2/2i−1. Let ni denote the number
of loops performed by the main function. Thus, ni is equal to 2− log2Γ .
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Naive Digital Plane Recognition(Set,n,D)
{P,Q,R, S} = {(−1,−1), (−1, 1), (1, 1), (1,−1)} // the search domain
δ = 2 Γ = 1

64D3

do
{ // vertical cut

MQR = (Q+R)/2 MPS = (P + S)/2
(status, answer) = 1D-V-Optimization(MQR,MPS, Set, n, Γ )
if (status = finished) return answer
if (anwser = OnTheLeft) {R = MQR;S = MPS; }
else {Q = MQR;P = MPS; }
// horizontal cut
MPQ = (P +Q)/2 MRS = (R + S)/2
(status, answer) = 1D-H-Optimization(MPQ,MRS, Set, n, Γ )
if (status = finished) return answer
if (anwser = Above) {Q = MPQ;R = MRS; }
else {P = MPQ;S = MPS; }
δ = δ/2 //length of the search domain at the next iteration

} while δ ≥ Γ
return NotAPlane

1D-V-Optimization (A,B, Set, n, Γ )
(valueA, gA) = Evaluation(A,Set, n)
if (valueA < 1) return (finished,A)
(valueB, gB) = Evaluation(B,Set, n)
if (valueB < 1) return (finished,B)
do
{

M = (A+B)/2
(valueM , gM ) = Evaluation(M,Set, n)
if (valueM < 1) return (finished,M)
if (gM .Y = 0)

when (gM .X < 0) return (continue,OnTheRight)
(gM .X > 0) return (continue,OnTheLeft)
(gM .X = 0) return (finished,NotAP lane)

else
if (gM .Y < 0) (B, gB)← (M, gM )
else (A, gA) ← (M, gM )

} while ( A.Y −B.Y ≥ Γ )
when (gA ∧ gB < 0) return (continue,OnTheLeft)

(gA ∧ gB > 0) return (continue,OnTheRight)
(gA ∧ gB = 0) return (finished,NotAP lane)

Each iteration processes two instances of the one-dimensional subproblem. We
can show that this subfunction performs 3− log2Γ − i evaluations of hS during
the vertical cut and 2 − log2Γ − i evaluations during the horizontal cut of the
ith iteration. Thus, the overall number of evaluations is equal to:
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ni∑
i=1

(5− 2 log2 Γ − 2i) = (2− log2 Γ )2 = (8 + 3 log2D)2 ∼ 9 log2
2D (5)

4.5 Calculation

The main idea is based on the following observation. Assume that we have just
completed iteration i where we processed the two normal vectors N1(a, b, 1) and
N2(a, b, 1). In the successive iteration, i+ 1, of our program, we need to process
the vector defined by N = (N1 +N2)/2. Instead of computing all scalar products
of N with all of the points, we can build on the calculations of the previous step.
Let P denote a point and PN , PN1 and PN2 denote the scalar products between
this point and the different normal vectors. Then we have 2PN = PN1 + PN2 .
This allows us to write a complete version of our program without using a single
multiplication. This property may be interesting in some models of computation.

5 Improving Performance

ForD = 512 andΔ = 1
64D3 , the algorithm presented in section 4, processes about

one thousand evaluations of hS . One of the fastest known algorithm in practice
[10] performs about ten traversals of the point set. The method presented in
section 4.4 was a concise presentation of our main algorithm. In this section, we
explore some modifications that will improve its performance in practice.

5.1 Initial Step

Starting with a search space equal to [−1, 1] × [−1, 1] is often awkward. If we
assume that the set of points is contained in a bounding box of size D, then
there exists some points that lie on the borders. Suppose we determine two
points P1(−D, y, z1) and P2(D, y, z2). They provide one constraint on the space
of solutions. As they belong to a naive digital plane of normal N(α, β, 1), we
have: γ′ ≤ N(−D, y1, z1) < γ′ + 1 and γ′ ≤ N(D, y2, z2) < γ′ + 1. From this, it
follows: |N · (2D, 0, z2 − z1)| < 1. Thus, we can conclude:

z1 − z2
2D

− 1
2D

< α <
z1 − z2

2D
+

1
2D

So, the side length of the search domain reduces by a factor 1
D . This stage only

requires a simple traversal of the points in order to find the extreme coordinates.
The number of evaluations required for hS reduces to 4 log2

2D.

5.2 Subgradient Extension

We previously demonstrated that the knowledge of the gradient allows us to
reject one part of the search domain relative to the point P . Nevertheless, we
were not using all of the available information. In fact, when we know the value
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of hS(P ), either it is less than one and the problem is finished or it reaches a
value greater than one. Recall that ∂hS(P ) denotes the subgradient of hS at the
point P . From (1), we keep the points P ′ in the search domain that verify:

(P ′ − P ) · ∂hS(P ) < 0 (6)

Any point P ′ is associated with a value of hS less than hS(P ). As we are only
interested in the values less than 1, we can reformulate (1) as follows:

(P ′ − P ) · ∂hS(P ) < 1− hS(P )

In the search domain, this shifts the line defined by 6 towards the solution
space. The new delineations are closer to it (see Fig. 7).

Fig. 7. Enhanced subgradient

useless point

m1

N1 N2

M1

M2

m2

Fig. 8. The reduction criterion

5.3 History Memory

In lieu of using the information from the last subgradient computation and
throwing it away after its first use, we prefer to retain the results of all of
the previous subgradient computations in memory. Each time a subgradient is
computed, we store the result in a list. When we want to test a point of the
search domain, we do not immediately call an evaluation of hS . Instead, we ask
a more specific function if the tested point is compatible with all the results from
the previous tests. This query is easy to solve because we only have to check the
location of a planar point relative to a set of lines. When a previous subgradient
g allows for the determination that the value of hS is greater than 1, we do
not need to perform the evaluation. The returned subgradient is equal to g.
Suppose we create this function named IsCompatible. It could easily manage
this processing and the conditions originating from the initial step. Moreover,
the quantity of information we store is insignificant relative the number of voxels
we process. Thus, this slight improvement will greatly increase the program
efficiency in practice.
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5.4 Enhancing Γ

In the previous section, we used an overestimated value for Γ in order to simplify
our presentation. Nevertheless, we are not always forced to choose this extremely
small value of 1

64D3 . For example, we know that if there exists a valid normal
vector (a, b, c) then the size Δ of the critical square is equal to 1

4Dc , see (4).
When we cut the search domain by a vertical line x = r

s , the one-dimensional
problem would reach its exact minimum at a vector N( r

s ,
u
v , 1). We determine

the two points pi and pj that define the two supporting parallel planes. As the
point N is a local minimum, there must exist a third point pk that supports the
two planes. Suppose that pk is lying on the same plane as pi. Then N is equal
to (pi − pk) ∧ (s, 0, r) and we have ||N ||∞ ≤ s · 2D. So, when we perform a cut
at the position r

s , it is sufficient to choose Γ equal to:

Γ r
s

=
1

16Ds

In the worst case, where s = 4D2, we find the previous definition of Γ . This
improvement reduces the number of iterations. We must only modify the expres-
sion of Γ in the program, which is a simple operation.

5.5 Reduction

Consider a set of normal vectors that are linked to a segment in the search
domain. LetN1 andN2 denote its two endpoints. When we determine hS(N1), we
obtain two points of S: P1 andM1 that define this value: hS(N1) = N1·(P1−M1).
Symmetrically, we use the same notation for N2. Studying the other possible
vectors lying on the segment, we notice that some points of S are useless (see
Fig. 8). In fact when a point F of S satisfies this condition:

N1m2 ≤ N1F ≤ N1M2 and N2m1 ≤ N2F ≤ N2M1

It can be rejected by the following precessing because it can not define the
value of hS . This condition generalizes to our search domain defined by four
vertices. Although this criterion for reduction is not optimal, it is very simple to
estimate, so we prefer to use it over other options. This approach allows for the
suppression of a fraction of the input points and for a reduction in the cost of
the subsequent evaluation of hS . However, it must be used carefully because we
do not know the ratio of the points we reject.

6 Conclusion

We describe a different approach for the naive digital plane recognition problem.
We show how to transform the recognition process into a two-dimensional convex
optimization program. The convex function we use corresponds to the minimal
distance between two parallel planes that enclose the points and whose slopes
relative to the axis are the parameters of the function. We show how to evaluate
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this function and how to obtain one of its subgradients in linear time. As the
search domain is planar, we apply simple and well known geometric techniques
in order to reduce its size until we find a solution. We exhibit a stopping criterion
that only depends on the size D of a bounding box that encloses all the points.
This version of our algorithm achieves an O(n log2 n) time complexity in the
worst case. We present different modifications used to speed up the optimization
stage. Development of this enhanced method is in progress. The more difficult
part is to use the same integer size (like 32 bits integer for example) for this
algorithm and the other methods in order to equitably compare them. Moreover,
it remains to estimate the yield of the reduction criterion in order to properly
use it. This algorithm has been designed to be efficient in practice and especially
when the set of points is dense in the bounding box.

The author thanks the reviewers for their helpful comments.
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Abstract. Region merging methods consist of improving an initial seg-
mentation by merging some pairs of neighboring regions. We consider a
segmentation as a set of connected regions, separated by a frontier. If the
frontier set cannot be reduced without merging some regions then we call
it a watershed. In a general graph framework, merging two regions is not
straightforward. We define four classes of graphs for which we prove that
some of the difficulties for defining merging procedures are avoided. Our
main result is that one of these classes is the class of graphs in which any
watershed is thin. None of the usual adjacency relations on Z2 and Z3

allows a satisfying definition of merging. We introduce the perfect fusion
grid on Zn, a regular graph in which merging two neighboring regions
can always be performed by removing from the frontier set all the points
adjacent to both regions.

Introduction

Region merging methods [1, 2] consist of improving an initial segmentation by
progressively merging pairs of neighboring regions until a certain criterion is sat-
isfied. From a grayscale image, the watershed transform [3,4,5,6,7,8,9] produces
a set of connected regions separated by a divide. Therefore it has long been used
as an entry point for region merging methods [10]. In a general graph frame-
work, a watershed may be thought of as a “separating set” of vertices which
cannot be reduced without merging some connected components of its comple-
mentary set.

A first question arises when dealing with watersheds on a graph. Given a sub-
set of Z2 equipped with the 4-adjacency relation, we observe that a watershed
may contain some “interior points”, i.e., points which are not adjacent to any
point outside the watershed (see for example the points w and z on Fig. 1c).
On the other hand, such interior points do not seem to appear in any water-
shed on 8-connected graphs. Are the watersheds on these graphs always thin?
We will prove that it is indeed true. More interestingly, we provide in this pa-
per a framework to study the property of thinness of watersheds in any kind of
graph, and we identify the class of graphs in which any watershed is necessarily
thin.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 343–354, 2006.
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Fig. 1. (a): Original image (cross-section of a brain, after applying a gradient operator).
(b): Watershed of (a) with the 4-adjacency (in black). (c): A zoom on a part of (b).
The points z and w are interior points.

Let us now turn back to the region merging problem. What happens if we want
to merge a couple of neighboring regions A and B, and if each pixel adjacent
to these two regions is also adjacent to a third one, which is not wanted in
the merging? Fig. 1c illustrates such a situation, where x is adjacent to regions
A,B,C and y to A,B,D. This problem has been identified in particular by
T. Pavlidis (see [2], section 5.6: “When three regions meet”), and has been dealt
with in some practical ways, but until now a systematic study of properties
related to merging in graphs has not been done. A major contribution of this
article is the definition and the study of four classes of graphs, with respect to the
possibility of “getting stuck” in a merging process (Sec. 2, Sec. 3). In particular,
we say that a graph is a fusion graph if any region A in this graph can always be
merged with another region B, without problems with other regions. The most
striking outcome of this study is that the class of fusion graphs is precisely the
class of graphs in which any watershed is thin (Th. 3). We also provide some
local characterizations for two of these four classes of graphs, and prove that the
two other ones cannot be locally characterized (Sec. 4).

In one of the classes of graphs introduced in Sec. 3, that we call the class
of perfect fusion graphs, any pair of neighboring regions can always be merged,
without problems with other regions, by removing all pixels adjacent to both
regions. Using our framework, we analyze the status of the graphs which are the
most widely used for image analysis, namely the graphs corresponding to the 4-
and the 8-adjacency in Z2 and to the 6- and the 26-adjacency in Z3 (Sec. 5). We
show that none of these classical graphs is a perfect fusion graph. Last, but not
least, in Sec. 6 we introduce a graph on Zn (for any n) that we call the perfect
fusion grid, which is indeed a perfect fusion graph, and which is “between”
the direct adjacency graph (which generalizes the 4-adjacency to Zn) and the
indirect adjacency graph (which generalizes the 8-adjacency). Furthermore, in a
forthcoming paper, we intend to prove that this n-dimensional grid is the unique
grid (up to a translation) that possesses those two properties.

The proofs of the properties presented in this paper are given in an extended
version [11].
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1 Graphs and Watershed

Let E be a set, we write X ⊆ E if X is a subset of E, we write X ⊂ E if X
is a proper subset of E, i.e., if X is a subset of E and X �= E. We denote by
X the complementary set of X in E, i.e., X = E \ X . If E is a finite set, we
denote by |E| the number of elements of E and by 2E the set composed of all
the subsets of E.

We define a graph as a pair (E,Γ ) where E is a finite set and Γ is a binary
relation on E (i.e., Γ ⊆ E × E), which is reflexive (for all x in E, (x, x) ∈ Γ )
and symmetric (for all x, y in E, (y, x) ∈ Γ whenever (x, y) ∈ Γ ). Each element
of E is called a vertex or a point . We will also denote by Γ the map from E
to 2E such that, for all x ∈ E, Γ (x) = {y ∈ E | (x, y) ∈ Γ}. If y ∈ Γ (x),
we say that y is adjacent to x. We define also the map Γ ∗ such that for all
x ∈ E, Γ ∗(x) = Γ (x) \ {x}. Let X ⊆ E, we define Γ (X) = ∪x∈XΓ (x), and
Γ ∗(X) = Γ (X) \X . If y ∈ Γ (X), we say that y is adjacent to X . If X,Y ⊆ E
and Γ (X) ∩ Y �= ∅, we say that Y is adjacent to X .

Let G = (E,Γ ) be a graph and let X ⊆ E, we define the subgraph of G
induced by X as the graph GX = (X,Γ ∩ [X×X ]). In this case, we also say that
GX is a subgraph of G. Let G′ = (E′, Γ ′) be a graph, we say that G and G′ are
isomorphic if there exists a bijection f from E to E′ such that, for all x, y ∈ E,
y belongs to Γ (x) if and only if f(y) belongs to Γ ′(f(x)).

Let (E,Γ ) be a graph, let X ⊆ E, a path in X is a sequence π = 〈x0, ..., xl〉
such that xi ∈ X , i ∈ [0, l], and xi ∈ Γ (xi−1), i ∈ [1, . . . , l]. We also say that π
is a path from x0 to xl in X and that x0 and yl are linked for X . We say that
X is connected if any x and y in X are linked for X .

Let Y ⊆ X . We say that Y is a connected component of X , or simply a
component of X , if Y is connected and if Y is maximal for this property, i.e., if
Z = Y whenever Y ⊆ Z ⊆ X and Z connected.

We denote by C(X) the set of all the connected components of X .
In this paper, we study some thinness properties of watersheds in graphs.

Definition 1. Let (E,Γ ) be a graph. Let X ⊆ E, the interior of X is the set
int(X) = {x ∈ X | Γ (x) ⊆ X}. We say that the set X is thin if int(X) = ∅.

Let us recall the definition of line graphs ( [12]). This class of graphs allows to
link the framework developed in this paper and the approaches of watershed
and region merging based on edges rather than vertices, i.e. when regions are
separated by a set of edges.

Definition 2. Let (E,Γ ) be a graph. The line graph of (E,Γ ) is the graph
(E′, Γ ′) such that E′ = Γ  and (u, v) belongs to Γ ′ whenever u ∈ Γ , v ∈ Γ ,
and u, v share a vertex of E.

We say that a graph (E′, Γ ′) is a line graph if there exists a graph (E,Γ ) such
that (E′, Γ ′) is isomorphic to the line graph of (E,Γ ).

In Fig. 2, we show a graph and its line graph. All graphs are not line graphs, in
other words, there exist some graphs which are not the line graphs of any graph.
The following theorem allows to characterize line graphs.
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Fig. 2. (a): A graph (i) and its line graph (ii); (b): graphs for characterization of line
graphs

Theorem 1 ( [12]). A graph G is a line graph if and only if none of the graphs
of Fig. 2b is a subgraph of G.

Important Remark. From now, when speaking about a graph (E,Γ ), we will
assume for simplicity that E is non-empty and connected.

Notice that, nevertheless, the subsequent definitions and properties may be easily
extended to non-connected graphs.

We now introduce notions for watersheds in graphs.

Definition 3. Let (E,Γ ) be a graph. Let X ⊆ E, and let p ∈ X. We say that:

- p is an inner point (for X) if p ∈ int(X).
- p is W-simple (for X) if p is adjacent to exactly one component of X.

In this definition and the following ones, the prefix “W-” stands for watershed.
In Fig. 3a, x is a W-simple point for the set X constituted by the black vertices,
and y is an inner point.

Definition 4. Let G = (E,Γ ) be a graph. A set X ⊆ E is a watershed (in G)
if there is no point W-simple for X.

A watershed X is non-trivial if X �= ∅ and X �= E.

Figs. 3b,c,d,e illustrate the notion of watershed. It can be seen that a water-
shed X is non-trivial if and only if |C(X)| ≥ 2. A watershed is a set which
contains no W-simple point, but some of the examples given below show that
such a set is not always thin (in the sense of Def. 1). Fig. 3b is an example of
watersheds which is thin: the set of black points has no W-simple point and no
inner point. The sets of black and gray points in Figs. 3c,d,e are three examples
of non-thin watersheds.

2 Merging

Consider the graph (E,Γ ) depicted in Fig. 4a, where a subset X of E (black
vertices) separates its complementary set X into four connected components. If
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x y

(a) (b) (c) (d) (e)

Fig. 3. Illustration of watershed. (a) A graph (E,Γ ) and a subset X of E (in black).
(b) A thin watershed (black points). (c − e): The subset X represented by black and
gray points is a watershed which is not thin: int(X) is depicted by the gray points.
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(a) (b) (c)

Fig. 4. Illustration of merging. (a): A graph (E,Γ ) and a subset X of E (black points).
(b): The black points represent X \S with S = {x, y, z}. (c): The black points represent
X \ S′ with S′ = {w}.

we replace the set X by, for instance, the set X \ S where S = {x, y, z}, we
obtain a set which separates its complementary set into three components, see
Fig. 4b: we can also say that we “merged two components of X through S”. This
operation may be seen as an “elementary merging” in the sense that only two
components of X were merged. On the opposite, replacing the set X by the set
X \S′ where S′ = {w}, see Fig. 4c, would merge three components of X. We also
see that the component of X which is below w (in light gray) cannot be merged
by an “elementary merging” since any attempt to merge it must involve the
point w, and thus also the three components of X adjacent to this point. In this
section, we introduce definitions and basic properties related to such merging
operations in graphs.

Definition 5. Let (E,Γ ) be a graph , X ⊂ E and S ⊆ X. We say that S is
F-simple (for X) if S is adjacent to exactly two components A,B ∈ C(X) such
that A ∪B ∪ S is connected.

Let p ∈ X. We say that p is F-simple (for X) if {p} is F-simple for X.

In this definition, the prefix “F-” stands for fusion. For example, in Fig. 4a, the
point z is F-simple while x, y, w are not. Also, the sets {z}, {x, y}, {x, z}, {y, z},
{x, y, z} are F-simple, but the sets {x}, {y} and {w} are not.

Definition 6. Let (E,Γ ) be a graph and X ⊂ E. Let A and B ∈ C(X), with
A �= B. We say that A and B can be merged (for X) if there exists S ⊆ X such
that S is F-simple for X, and A and B are precisely the two components of X
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adjacent to S. In this case, we also say that A and B can be merged through S
(for X).

We say that A can be merged (for X) if there exists B ∈ C(X) such that A
and B can be merged for X.

For example, in Fig. 4a, the component of X in light gray cannot be merged,
but each of the three white components can be merged for X .

3 Fusion Graphs

The preceding section and the present one constitute a theoretical basis for the
study of region merging methods. The problems pointed out in the introduction
can be avoided by using exclusively the notion of merging introduced in the
previous section. In the sequel, we investigate several classes of graphs with
respect to the possibility of “getting stuck” in a merging process.

Let X ⊂ E, and let A, B ∈ C(X). We set Γ ∗(A,B) = Γ ∗(A)∩Γ ∗(B). We say
that A and B are neighbors if A �= B and Γ ∗(A,B) �= ∅.

We begin with the definition of four classes of graphs.

Definition 7. We say that a graph (E,Γ ) is a weak fusion graph if, for any
X ⊂ E such that |C(X)| ≥ 2, there exist A, B ∈ C(X) which can be merged.

We say that a graph (E,Γ ) is a fusion graph if, for any X ⊂ E such that
|C(X)| ≥ 2, each A ∈ C(X) can be merged for X.

We say that the graph (E,Γ ) is a strong fusion graph if, for any X ⊂ E, any
A and B ∈ C(X) which are neighbors can be merged.

We say that the graph (E,Γ ) is a perfect fusion graph if, for any X ⊂ E, any
A and B ∈ C(X) which are neighbors can be merged through Γ ∗(A,B).

Basic examples and counter-examples of weak fusion, fusion, strong fusion, per-
fect fusion graphs and line graphs are given in Fig. 5.

(g) (w) (f) (s) (p) (l)

Fig. 5. Examples and counter-examples for different classes of graphs. (g): A graph
which is not a weak fusion graph, (w): a weak fusion graph which is not a fusion graph,
(f): a fusion graph which is not a strong fusion graph, (s): a strong fusion graph which
is not a perfect fusion graph, (p): a perfect fusion graph which is not a line graph, and
(l): a line graph. In the graphs (g,w, f, s), the black vertices constitute a set X which
serves to prove that the graph does not belong to the pre-cited class.

We denote by G (resp. GL, GP , GS , GF , and GW ) the set of all graphs (resp.
line graphs, perfect fusion graphs, strong fusion graphs, fusion graphs, and weak
fusion graphs).
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Property 2. We have the following strict inclusion relations:
G ⊃ GW ⊃ GF ⊃ GS ⊃ GP ⊃ GL.

Now, we present the main theorem of this section, which establishes that the
class of graphs for which any watershed is thin is precisely the class of fusion
graphs. As an immediate consequence of this theorem and Prop. 2, we see that
all watersheds in strong fusion graphs, perfect fusion graphs and line graphs are
also thin.

Theorem 3. A graph G is a fusion graph if and only if any non-trivial water-
shed in G is thin.

Observe that the graphs of Figs. 3c,d,e are not fusion graphs; we see that they
may indeed contain a non-thin watershed.

We conclude this section with a nice property of perfect fusion graphs, which
can be useful to design hierarchical segmentation methods based on regions
splitting. Consider the example of Fig. 6a, where a watershed X (black points)
in the graph G separates X into two components. Consider now the set Y (gray
points) which is a watershed in the subgraph of G induced by one of these
components. We can see that the union of the watersheds, X ∪ Y , is not a
watershed, since the point x is W-simple for X ∪ Y . Prop. 4 shows that this
problem cannot occur in any perfect fusion graph.

x x

(a) (b)

Fig. 6. Illustrations for Prop. 4. (a): The graph is not a perfect fusion graph (see Sec. 5,
Prop. 8), and the union of the watersheds is not a watershed. (b): The graph is a perfect
fusion graph (see Sec. 6, Prop. 10), the property holds.

Property 4. Let G = (E,Γ ) be a graph. If G is a perfect fusion graph, then for
any watershed X ⊂ E in G and for any watershed Y ⊂ A in GA, where A ∈ C(X)
and GA is the subgraph of G induced by A, the set X ∪ Y is a watershed in G.

4 Local Characterizations

Weak fusion, fusion, strong fusion and perfect fusion graphs are defined by con-
ditions that must be verified for all the subsets of the vertex set. Thus, using
the straightforward method based on the definition to check whether a graph
belongs to one of these classes costs an exponential time with respect to the
number of vertices. On the other hand, line graphs may be recognized thanks
to a condition which can be checked independently in a limited neighborhood
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(informally speaking) of each vertex. Do such characterizations exist for the four
classes of fusion graphs?

Let (E,Γ ) be a graph, let x ∈ E and k ∈ N, we denote by Γ k(x) the kth order
neighborhood of x, that is, Γ k(x) = Γ (Γ k−1(x)), with Γ 0(x) = {x}. We say that
there is a local characterization of a class of graphs if there exists k an arbitrary
positive integer and P a property on graphs such that a graph G = (E,Γ ) is
in this class if and only if for all x ∈ E, P [G(x, k)] is true, G(x, k) being the
subgraph of G induced by Γ k(x).

Property 5. i) There is no local characterization of weak fusion graphs.
ii) There is no local characterization of fusion graphs.

Let x and y be two points, we say that x and y are 2-adjacent if y /∈ Γ (x) and
Γ ∗(x) ∩ Γ ∗(y) �= ∅.
Theorem 6. Let G = (E,Γ ) be a graph. The graph G is a strong fusion graph
if and only if, for any two points x, y ∈ E which are 2-adjacent, there exists
a ∈ Γ ∗(x) and b ∈ Γ ∗(y) such that b ∈ Γ (a) and Γ ({a, b}) ⊆ [Γ (x) ∪ Γ (y)].

Remind that in perfect fusion graphs, any two components A, B of C(X) which
are neighbors can be merged through Γ ∗(A)∩Γ ∗(B). Thus, perfect fusion graphs
constitute an ideal framework for region merging methods. In the sequel, we will
use the symbol G� to denote the graph (i) in Fig. 2b.

Theorem 7. Let (E,Γ ) be a graph.
The eight following statements are equivalent:
i) (E,Γ ) is a perfect fusion graph;
ii) for any x ∈ E, any X ⊆ Γ (x) contains at most two connected components;
iii) for any non-trivial watershed Y in E, each point x in Y is F-simple;
iv) for any connected subset A of E, the subgraph of (E,Γ ) induced by A is a
fusion graph;
v) for any subset X of E, there is no multiple point for X;
vi) the graph G� is not a subgraph of G;
vii) any vertices x, y, z which are mutually non-adjacent are such that Γ (x) ∩
Γ (y) ∩ Γ (z) = ∅;
viii) for any x, y ∈ E which are 2-adjacent, for any z ∈ Γ ∗(x) ∩ Γ ∗(y), we have
Γ (z) ⊆ [Γ (x) ∪ Γ (y)].

Notice that statement viii bears a resemblance with the local characterization
of strong fusion graphs (Th. 6). Remind that any line graph is a perfect fusion
graph (Prop. 2). We can see that, thanks to Th. 7 (condition vi), perfect fusion
graphs can be characterized in a way similar to Th. 1 which characterizes line
graphs, but with a much simpler condition. Remark, for example, that all the
graphs of Fig. 2b except G� are perfect fusion graphs, since none of these graphs
contains G� as a subgraph.

5 Usual Grids

The aim of this section is to classify (with respect to the classes of fusion graphs)
the grids which are the most commonly used in image processing. We prove
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that none of the grids commonly used in 2-dimensional and 3-dimensional image
processing is a perfect fusion graph; several are not even fusion graphs. Thus, the
most natural merging operation, which consists in merging two regions through
their common boundary, is not a safe operation in these grids.

In this section, we will assume that n is a strictly positive integer.
Let E be a set and let En be the Cartesian product of n copies of E. An

element x of En may be seen as a map from {1, ..., n} to E, for each i ∈ {1, ..., n},
xi is the i-th coordinate of x.

Let Z be the set of integers. We consider the families of sets H1
0 , H1

1 such that
H1

0 = {{a} | a ∈ Z}, H1
1 = {{a, a+ 1} | a ∈ Z}. A subset S of Zn which is the

Cartesian product of exactly m ≤ n elements of H1
1 and (n−m) elements of H1

0

is called an m-cube.
In order to recover a graph structure for digital images, adjacency relations

are defined on Zn. The following definition allows to retrieve the most frequently
used adjacency relations.

Let m ≤ n, we say that x and y in Zn are m-adjacent if there exists an m-cube
that contains both x and y. We define Γn

m as the binary relation on Zn such that
for any pair x, y in Zn, (x, y) ∈ Γn

m if and only if x and y are m-adjacent.
In order to deal with graphs that can be arbitrarily large we define a grid

as a pair (E,Γ ) where E is an infinite set and Γ is a binary relation on E.
Let X ⊆ E we define the restriction of (E,Γ ) to X as the pair (X,ΓX) where
ΓX = Γ ∩ (X ×X). If X is a finite set then (X,ΓX) is a graph. In the sequel, to
simplify the notations, we will write Γ as a shortcut for ΓX . We first examine
the case of 2-dimensional usual grids.

Property 8. Let w, h be two integers such that w > 2 and h > 2. Let E = {x ∈
Z2 | 0 ≤ x1 < w and 0 ≤ x2 < h}.
i) If {w, h} �= {3, 4}, (E,Γ 2

1 ) is not a weak fusion graph. If {w, h} = {3, 4} then
(E,Γ 2

1 ) is a weak fusion graph but not a fusion graph.
ii) The graph (E,Γ 2

2 ) is a fusion graph but is not a strong fusion graph.

Notice that in the literature, the graph (E,Γ 2
1 ) (resp. (E,Γ 2

2 )) corresponds to
the 4 (resp. 8)-adjacency.

Now we examine the case of 3-dimensional usual grids.

Property 9. Let w, h and d be three integers strictly greater than 1. Let E =
{x ∈ Z3 | 0 ≤ x1 < w, 0 ≤ x2 < h and 0 ≤ x3 < d}.
i) The graph (E,Γ 3

1 ) is not a weak fusion graph.
ii) If w ≥ 5, h ≥ 5, d ≥ 5, the graph (E,Γ 3

3 ) is not a fusion graph.

Notice that in the literature, the graph (E,Γ 3
1 ) (resp. (E,Γ 3

3 )) corresponds to
the 6 (resp. 26)-adjacency.

6 Perfect Fusion Grids

We now introduce a grid for structuring n-dimensional digital images and prove
that it is a perfect fusion graph, whatever the dimension n.
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D
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(a) (b) (c)

Fig. 7. (a): A watershed of Fig. 1a obtained on the perfect fusion grid; (b): a crop
of (a) where the regions A, B, C and D correspond to the regions shown in Fig. 1c;
in gray, the corresponding perfect fusion grid is superimposed; (c): same as (b) after
having merged B and C to form a new region, called E.

It does thus constitute a structure on which neighboring regions can always
be merged through their common neighborhood without problem with other
regions. Fig. 8b gives an intuitive idea of this grid. Fig. 7a shows a watershed
of Fig. 1a obtained on this grid. Remark that the problems pointed out in the
introduction do not exist in this case. The watershed does not contain any in-
ner point. Any pair of neighboring regions can be merged by simply removing
from the watershed the points which are adjacent to both regions (Figs. 7b,c).
Furthermore, the resulting set is still a watershed. Observe that this grid is “be-
tween” the usual grids. In a forthcoming paper, we intend to prove that this is
the unique such graph.

Let Cn be the set of all n-cubes of Zn, we define the map B from Cn to Zn,
such that for any c ∈ Cn, B(c)i = min{xi | x ∈ c}, where B(c)i is the i-th
coordinate of B(c). It may be seen that c is equal to the Cartesian product:
{B(c)1, B(c)1 + 1} × ...× {B(c)n, B(c)n + 1}. Thus clearly B is a bijection.

We set B = {0, 1}. We set 0 = 1 and 1 = 0. A binary word of length n is an
element of Bn. If u is in Bn, we define the complement of u as the binary word
u such that for any i ∈ {1, ..., n}, (u)i = (ui).

Definition 8. Let f be the map from Cn to Bn such that for any c ∈ Cn, f(c)i is
equal to B(c)i mod 2, that is the remainder in the integer division of B(c)i by 2.

Let u be an element of Bn, we set Cn
u = {c ∈ Cn | f(c) = u} and Cn

u/u =
Cn

u ∪ Cn
u .

We define the binary relation Γn
u/u ⊆ Zn × Zn as the set of pairs (x, y) ∈

Zn × Zn such that there exists c ∈ Cn
u/u that contains both x and y.

We define Pn, the family of perfect fusion grids over Zn, as the set Pn =
{(Zn, Γn

u/u) | u ∈ Bn}.
Fig. 8 illustrates the above definitions for the two-dimensional case. Fig. 9 shows
a watershed on a 3-dimensional perfect fusion grid. To clarify the figure, we use
the following convention: any two points belonging to a same cube marked by a
gray stripe are adjacent to each other.
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Fig. 8. Illustration of the two perfect fusions grids over Z2 (restricted to subsets of
Z2). (a): The map f ; (b): (Z2, Γ 2

11/00); (c): (Z2, Γ 2
10/01).

=

Fig. 9. A 3-dimensional perfect fusion grid. Black points constitute a set which is a
watershed.

Theorem 10. Let u ∈ Bn and let X be a finite subset of Zn such that (X,Γn
u/u)

is connected. Then (X,Γn
u/u) is a perfect fusion graph such that Γn

1 ⊆ Γn
u/u ⊆ Γn

n .
Furthermore it is a line graph.

It may be seen that the family Pn contains 2n−1 distinct perfect fusion grids.
Let X ⊆ Zn and let t ∈ Bn. We define X + t = {x+ t | x ∈ X}, we say that

X + t is a binary translation of X . Let m be a positive integer such that m ≤ n.
Remark that if X is an m-cube then X + t is also an m-cube.

Let u and v in Bn. Let t ∈ Bn such that for any i ∈ {1, ..., n}, if ui = vi then
ti = 1, otherwise ti = 0. Then for any (x, y) ∈ Zn×Zn, (x, y) ∈ Γn

u/u if and only
if (x+ t, y + t) ∈ Γn

v/v.
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In words, any two n-dimensional perfect fusion grids are equivalent up to a
binary translation.

7 Conclusion and Perspectives

This article sets up a theoretical framework for the study of merging properties
in graphs. Forthcoming articles ( [13] for example) extend this study to the case
of weighted graphs, which constitute a model for grayscale images. The notion of
topological watershed [7,6] extends the notion of watershed to weighted graphs,
and possesses interesting properties which are not guaranteed by most watershed
algorithms [9]. The major outcomes of [13] are:
i) a proof that any topological watershed on any perfect fusion graph is thin;
ii) a new, simple and linear-time algorithm to compute topological watersheds
on perfect fusion graphs.
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Abstract. This paper presents new results about digital straight seg-
ments, their recognition and related properties. They come from the
study of the arithmetically based recognition algorithm proposed by I.
Debled-Rennesson and J.-P. Reveillès in 1995 [1]. We indeed exhibit the
relations describing the possible changes in the parameters of the digital
straight segment under investigation. This description is achieved by con-
sidering new parameters on digital segments: instead of their arithmetic
description, we examine the parameters related to their combinatoric de-
scription. As a result we have a better understanding of their evolution
during recognition and analytical formulas to compute them. We also
show how this evolution can be projected onto the Stern-Brocot tree.
These new relations have interesting consequences on the geometry of
digital curves. We show how they can for instance be used to bound the
slope difference between consecutive maximal segments.

1 Introduction

The study of digital straight lines is a fundamental topic in discrete geometry and
several approaches have been proposed. Following the taxonomy of [2], we can
divide them into three groups. The first one characterizes digital lines through
the study of the pre-image: this aims at determining in a dual space the possible
real lines whose digitization corresponds to a given set of pixels [3]. That kind of
approaches has recently been used to define and recognize straight lines drawn
on irregular isothetic grids [4].

A second group is related to combinatorics and relies on the link between
continued fractions and recursive characterization of digital lines. It can cope
with lines with rational or irrational slopes, as their digitization can be seen as a
word over a finite alphabet. The tools developed to characterize and study those
objects [5, 6] have for instance been used to study the asymptotic behavior of
some digital segments over digitizations of C3 convex curves [7, 8].

The third group gathers arithmetic approaches, which are based on a formu-
lation very similar to the one of real lines (Diophantine inequalities, slope and
vertical shift). They have led to simple, incremental and optimal algorithms to
recognize digital segments [1, 9]. For this approach the best known recognition
algorithm is the above mentioned algorithm of Debled and Reveillès [1], refer-
enced as DR95 algorithm in the recent book of Klette and Rosenfeld [10]. This
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algorithm extracts progressively the most simple digital line parameters of a
finite connected sequence of pixels, updating the parameters at each pixel.

In this algorithm, the parameters refer to an arithmetic representation of
digital straight lines: slope as a fraction, integer shift to origin, position of some
specific limit points (upper and lower leaning points). Their evolution during the
progressive steps of the recognition is governed by algorithmic computations: for
instance, the new slope is computed from the last added point and some former
leaning point. Although sufficient for recognizing digital lines, these parameters
lack of descriptive content to fully understand what is digital straightness. For
instance, they cannot answer a question like if two straight lines share a common
part, how are related their slopes. Along the same lines, although it is known
since Debled’s thesis [11] that slope evolutions during recognition correspond
to displacements in the Stern-Brocot tree, these parameters are nevertheless
incomplete to fully describe it.

We propose here to use the combinatoric approach to give better insights
about the DR95 algorithm. A digital line is then characterized by the contin-
ued fraction of its slope and the number of patterns it contains. The evolution
of these new parameters is then precisely stated with analytic formulas. We
also give another interpretation of their evolution, as definite displacements on
the Stern-Brocot tree. Afterwards we focus on a particular class of digital seg-
ments subset of digital curves, which are called maximal segments and which
have interesting properties [12, 13, 14]. Informally, they form the inextensible
digital straight segments on the curve. The preceding properties allow us to give
an analytic writing of the minimal and maximal slope variation between two
consecutive maximal segments. These bounds are fully described with our new
parameters. Surprisingly, they show that consecutive maximal segments may not
vary too much nor too little since both bounds are of the same order wrt para-
meters. On a long term, these quantitative relations will be crucial for designing
digital curvature estimators based on slope variations.

This paper is organized as follows. First, basic arithmetic and combinatoric
definitions and properties of digital lines are recalled (Section 2). Then we give
a comprehensive explanation of the DR95 algorithm, describing each possible
evolution in terms of the new parameters (Section 3). Afterwards the connection
between the DR95 and the Stern-Brocot tree is explicited (Section 4). Eventu-
ally those properties have consequences on the geometry of maximal segments,
namely bounds on their slope variations (Section 5). We conclude the paper by
some perspectives to this work (Section 6).

2 Digital Straight Segments: Arithmetic and
Combinatoric Approach

Given a compact set with rectifiable boundary we consider its Gauss digitization.
The digital border of this digitization is chosen as the inter-pixel 4-connected
path laying between its inner and outer digitization. This digital curve is referred
as C. We consider that the points on the boundary are indexed increasingly,
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for instance with a counterclockwise order. Moreover, given two points on the
boundary (say A and B), CA,B is the digital path from A to B. For convenience
reasons we identify the index of a point on the boundary to the point itself. For
example A < B means that the point A is before the point B on the curve.

Let us recall the arithmetic definition of digital straight lines and explain the
notations that will be used in the following of the paper. Following definitions
hold in the first octant.

Definition 1. The set of points (x, y) of the digital plane verifying μ ≤ ax−by <
μ + |a| + |b|, with a, b and μ integer numbers, is called the standard line with
slope a/b and shift μ [15] (e.g. see Fig. 1).

The standard lines are the 4-connected discrete lines. The quantity r(a,b)(P ) =
ax−by is the remainder of the point P = (x, y) in the digital line of characteristics
(a, b, μ). The points whose remainder is μ (resp. μ+ |a|+ |b|−1) are called upper
(resp. lower) leaning points.

Definition 2. A set of successive points Ci,j of the digital curve C is a digital
straight segment (DSS) iff there exists a standard line (a, b, μ) containing them.
The predicate “Ci,j is a DSS” is denoted by S(i, j). When S(i, j) the character-
istics associated with the DSS Ci,j (extracted with the DR95 algorithm) [1] are
the characteristics (a, b, μ) which minimize a+ b.

The original DR95 algorithm recognizes naive digital straight line but it is easily
adapted to standard lines. It extracts the characteristics (a, b, μ), with minimal
a+b. The evolution of the characteristics is based on a simple test: each time we
try to add a new point 4-connected to the current digital straight segment, we
compute its remainder with respect to the DSS parameters. According to this
value the point can be added or not. If it is greater than or equal to μ+a+ b+1
or less than or equal to μ − 2 the point is said to be exterior to the digital
straight segment and cannot be added. Otherwise the point can be added to the
segment to form a longer DSS and falls into two categories:

– interior points, with a remainder between μ and μ+a+ b−1 both included;
– weakly exterior points, with a remainder of μ − 1 for upper weakly exterior

points and μ + a + b for lower weakly exterior points. Only in this case are
the characteristics updated.

Even if the arithmetic approach is a powerful tool for digital straight segment
recognition, other approaches may reveal useful to get analytic properties. We
here recall one of those approaches which is connected to continued fractions.

Definition 3. Given a standard line of characteristics (a, b, μ), we call pattern
of characteristics (a, b) the word formed by the Freeman codes between any two
consecutive upper leaning points. The Freeman codes defined between any two
consecutive lower leaning points is the previous word read from back to front and
is called the reversed pattern of characteristics (a, b).

Since a DSS has at least either two upper or two lower leaning points, a DSS
(a, b, μ) contains at least one pattern or one reversed pattern of characteristics
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L′ L

L

L

U ′

U ′

U ′
U

U

L′

L′U

Fig. 1. Positions of weakly exterior points on a digital straight line of characteristics
(3, 10, 12). Weakly exterior points are boxed and leaning points are circled.

(a, b). It is important to note that a DSS (a, b, μ) contains δ pattern (a, b) (resp.
δ′ reversed-pattern (a, b)) iff it has δ+ 1 upper leaning points (resp. δ′ + 1 lower
leaning points). Moreover for any DSS(a, b, μ), the number of pattern (a, b) and
reversed-pattern (a, b) differ from one.

There exists recursive transformations for computing the pattern of a stan-
dard line from the simple continued fraction of its slope ( [5], [10] Chap. 9 or [6]
Chap. 4). We chose to focus on Berstel’s approach, which better suits our pur-
pose. A continued fraction z will be conveniently denoted by [0, u1 . . . , un, . . .].
The ui are called elements or partial coefficients and the continued fraction
formed with the k+1 first partial coefficients of z is said to be a k-th convergent
of z and is denoted zk. The depth of a k-th convergent equals k. We conveniently
denote by pk the numerator and by qk the denominator of a k-th convergent.

We recall a few more relations regarding the way convergents can be formed:

∀k ≥ 1 pkqk−1 − pk−1qk = (−1)k+1, (1)
p0 = 0 p−1 = 1 ∀k ≥ 1 pk = ukpk−1 + pk−2, (2)
q0 = 1 q−1 = 0 ∀k ≥ 1 qk = ukqk−1 + qk−2. (3)

Continued fractions can be finite or infinite, we focus on the case of rational
slopes of lines in the first octant, that is finite continued fractions between 0 and
1. For each i, ui is assumed to be a strictly positive integer. In order to have a
unique writing we consider that the last partial coefficient is greater or equal to
two; except for slope 1 = [0, 1].

Let us now explain how to compute the pattern associated with a rational
slope z in the first octant (i.e. z = a

b with 0 ≤ a < b). Horizontal steps are
denoted by 0 and vertical steps are denoted by 1. Let us define E a mapping
from the set of positive rational number smaller than one onto the Freeman-
code’s words, more precisely E(z0) = 0, E(z1) = 0u11 and others values are
expressed recursively:

E(z2i+1) = E(z2i)u2i+1E(z2i−1), (4)
E(z2i) = E(z2i−2)E(z2i−1)u2i . (5)
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Y

X

L1

L2

U2

E(z2) E(z2) E(z2) E(z1)

p2

p1

q2

U1

O

q1

E(z3) = E([0, 2, 3, 3]) = E( 10
23

)

Fig. 2. A digital straight segment of characteristics (10, 23, 0) with an odd slope, taken
between origin and its second lower leaning point

It has been shown that this mapping constructs the pattern (a, b) for any rational
slope z = a

b . Fig. 2 exemplifies the construction.
There exists other equivalent relations for computing numerators and denom-

inators (see [10] Chap. 9 and [6] Chap. 4) and the splitting formula can be used
to obtain patterns. However the splitting formula uses two k-th convergent with
the same depth, whereas we here use two k-th convergent of consecutive depth.
The parity of a slope is defined as the parity of the depth of its development in
continued fractions.

3 Combinatoric View of DR95 Algorithm

Changes in the slope with the DR95 algorithm occur when weakly exterior
points are added to the segment. We propose here to explain the different classes
of parameters that rule the evolution process, that is, the characteristics of the
straight segment (a, b, μ), the numbers of patterns and reversed-pattern (a, b)
that constitute it, the depth of the rational fraction a

b , the type of weakly exterior
point that is added (upper or lower) and if it is added to the front or to the back.

If a digital straight segment with characteristics (a, b, μ) does not contain any
pattern (a, b) then it only contains a reversed-pattern (a, b), that is, two lower
leaning points and one upper leaning point.

Lemma 1. If a digital straight segment does not contain any pattern, then there
is necessarily one upper leaning point laying on the digital path before an upper
weakly exterior point. Similarly, if a digital straight segment does not contain
any reversed-pattern, then there is necessarily one lower leaning point laying on
the digital path before a lower weakly exterior point.

Proof. Due to the values of the remainder, one can see that weakly exterior
points and leaning points are connected (Fig. 1). Consider a digital straight
line of characteristics (a, b, μ), and let U (resp. L) be an upper (resp. lower)
leaning point of that line. The point U + (1,−1) has a remainder of μ + a + b
which means it is a lower weakly exterior point. A similar reasoning shows us
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that L + (−1, 1) is always an upper weakly exterior point. As a result, leaning
points and weakly exterior points are ordered in a particular way. We can there-
fore state that before a weakly exterior point lays a leaning point of the same
type. �

Thus we consider that before adding an upper weakly exterior point to a digital
straight segment, δ is always greater than or equal to one. Similarly before adding
a lower weakly exterior point to a digital segment, δ′ is always greater than or
equal to one. Let us state precisely the evolution of the slope of a segment when
adding an upper weakly exterior point to its back or its front.

Proposition 1. The evolution of the slope of a DSS recognized with the DR95
algorithm depends of the parity of its depth, the type of weakly exterior point
added and the side where it is added. This process can be summed up as follows:

– slope with even depth [0, u1, . . . , u2i], δ pattern(s) and δ′ reversed-pattern(s):
Back side Front side

Upper weakly exterior [0, u1, . . . , u2i − 1, 1, δ] [0, u1, . . . , u2i, δ]
Lower weakly exterior [0, u1, . . . , u2i, δ

′] [0, u1, . . . , u2i − 1, 1, δ′]

– slope with odd depth [0, u1, . . . , u2i+1], δ pattern(s) and δ′ reversed-pattern(s):
Back side Front side

Upper weakly exterior [0, u1, . . . , u2i+1, δ] [0, u1, . . . , u2i+1 − 1, 1, δ]
Lower weakly exterior [0, u1, . . . , u2i+1 − 1, 1, δ′] [0, u1, . . . , u2i+1, δ

′]

Proof. We give the proof in the case of an even slope when an upper weakly
exterior point is added to the right side. Other cases are deduced with a similar
reasoning or considering the segment upside-down.

Consider we have δ ≥ 1. Let UL and UR be the leftmost and rightmost upper
leaning point of the DSS. We choose UL as the origin. Let p2i

q2i
= [0;u1, . . . , u2i].

The added point U ′ has a remainder equal to −1. Eq. (1) indicates that q2i−1

and p2i−1 are the smallest positive Bezout coefficient verifying p2ix− q2iy = −1.
As a result: URU′ = (q2i−1, p2i−1).

From the recognition algorithm DR95 the slope of the segmentCUL,U ′ is given
by the vector ULU′. Since ULU′ = ULUR + URU′, ULU′ equals δ(q2i, p2i) +
(q2i−1, p2i−1). From Eq. (2) and (3) this slope equal p2i+1

q2i+1
=

[0, u1, . . . , u2i, δ]. If δ equals one then [0, u1, . . . , u2i, 1] = [0, u1, . . . , u2i + 1]. �

The slope depth of a DSS when adding a weakly exterior point remains the same
or is increased by one or two.

4 Connection with the Stern-Brocot Tree

We now show that the evolution of the DSS parameters during the recognition
process, analytically given in Proposition 1, can be traced on the Stern-Brocot
tree and has then a more intuitive interpretation. The Stern-Brocot tree rep-
resents all positive rational fractions. It was already observed that the DR95
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recognition algorithm has some connection with it [11]. More precisely the suc-
cessive values of the slope taken by a segment are deeper and deeper nodes of
this tree. Note that this tree has other connections with discrete geometry, like
determining the minimal characteristics of the intersection of two digital straight
lines [16, 17].

The Stern-Brocot tree is a binary tree constructed by starting with the frac-
tions 0

1 and 1
0 and iteratively inserting m+m′

n+n′ between each two adjacent fractions
m
n and m′

n′ (Fig. 3). Any node with a value between 0 (excluded) and 1 (included)
is obtained by finite successive moves from the 1

1 node. Those moves can be of
two types: L is a move toward the left child, R is a move toward the right
child. Those moves determine the type of node when they end paths: even (resp.
odd) nodes end with a R (resp. L) move. It is known that those nodes have a
development in continued fraction, and is such that:

– even nodes:
[0, u1, . . . , u2k, u2k+1, . . . , u2i−1, u2i]≡R0Lu1 . . . Ru2kLu2k+1 . . . Lu2i−1Ru2i−1

– odd nodes:
[0, u1, . . . , u2k, u2k+1, . . . , u2i, u2i+1]≡R0Lu1 . . . Ru2kLu2k+1 . . . Ru2iLu2i+1−1

Of course odd nodes have an odd depth in their development in continued frac-
tions, similarly even nodes have an even depth. When descending the tree the
depth of a child changes if the move used to reach it differs from the last move
used to reach its father. Consider the node 1

2 whose depth equals one, the last
move used to reach it is a L move, its left child 1

3 has the same depth. The right
child of 1

2 is obtained by the successive moves R0L1R1 and has a depth that
equals two. We can classify the nodes of the Stern-Brocot tree according to the
depth of their development in continued fraction (Fig. 3).

Nodes of this tree may also be viewed as slopes of a digital straight segment
being recognized. As we consider rational slopes between zero and one, we only
consider nodes whose value is between zero and one. All those nodes are derived
(except for the zero node) from the 1

1 node with a L move first. This implies
that u0 equals zero. It is possible to trace the slope evolution of a digital straight
segment during recognition on the Stern-Brocot tree, as exemplified in Fig. 3.

Since each node has a particular development in continued fraction, the results
shown in Proposition 1 can be reinterpreted in terms of descending moves on
the Stern-Brocot tree. Thus the slope evolution of a DSS during recognition can
be fully described with L and R moves as shown on Fig. 4. We then see that the
number of successive moves of the same type directly depends on the number of
patterns or reversed-patterns.

From Fig. 4 we can see that the left child nodes are always reached when we
add to the right a lower weakly exterior point or to the left an upper weakly
exterior point whatever the parity of the node depth. Same reasoning applies for
right child nodes. We can now see how the slope evolution is translated as moves
on the Stern-Brocot tree when adding a point. Fig. 5 pictures the possible slope
evolutions from the 1

2 node.
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.

5 Application to Maximal Segments

We now apply previous properties to get a better understanding of the geom-
etry of maximal segments. Maximal segments form a particular class of digital
straight segments on the digital curve. Their study is related to many discrete
geometry problems such as digital convexity [14], polygonalization [12] or tangent
computation [13]. The main result of this section is Theorem 1 which bounds the
slope difference between two consecutive maximal segments. Let us first explain
how to characterize them.

Given a point Ci on a digital curve C, the first index j greater than i such
that S(i, j) and ¬S(i, j+1) is called the front of i. The map associating any i to
its front is denoted by F . Symmetrically, the first index i such that S(i, j) and
¬S(i− 1, j) is called the back of j and the associated mapping is denoted by B.

Definition 4. Any set of points Ci,j is called a maximal segment iff any of
the following equivalent characterizations holds: (1) S(i, j) and ¬S(i, j + 1) and
¬S(i− 1, j), (2) B(j) = i and F (i) = j.

Maximal segments form the set of DSS on the digital curve that cannot be ex-
tended on any side. They can be ordered along the curve. Consecutive maximal
segments overlap and often on more than two points. The digital path that
belongs to two consecutive maximal segments is called a common part, its as-
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Fig. 4. Evolution from a digital straight segment with even slope (top) and odd slope
(bottom) using the DR95 algorithm, represented in terms of move on the Stern-Brocot
tree. The point U ′ (resp. L′) is an upper (resp. lower) weakly exterior point added to
the back (left column) or to the front (right column) of the DSS.
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sociated maximal segments are CB(j),j and Ci,F (i) if Ci,j is the common part.
Note that Ci−1,j+1 is not a DSS. A common part is never empty (though it may
be reduced to two points). In fact we know the type of the limiting points for
all common parts, as shown below:

Lemma 2. If Ci,j is the common part of two consecutive maximal segments,
then the points i− 1 and j + 1 are both upper or both lower weakly exterior.

Proof. Ci,F (i) is one of the two consecutive maximal segments, thus F (i) > j
and S(i, j+1) holds. The point j+1 is thus an interior point or a weakly exterior
point for Ci,j . Assuming that j+1 is an interior point for Ci,j , any extensions to
the back of Ci,j is compatible with Ci,j+1. The maximal segment CB(j),j is one
of these extensions, thus S(B(j), j + 1) would hold which raises a contradiction.
As a consequence j + 1 is a weakly exterior point for the DSS Ci,j and a similar
reasoning can be applied to i− 1.

We prove by contradiction that i− 1 and j + 1 are either both lower or both
upper weakly exterior. Assume i− 1 is upper weakly exterior and j + 1 is lower
weakly exterior. Let the DSS Ci,j be constituted of δ patterns and δ′ reversed-
patterns. By definition, δ and δ′ differ at most of one but here, given the type
of i − 1 and j + 1, the equality δ = δ′ holds. From Proposition 1, DSS Ci−1,j

and Ci,j+1 have the same slope (whichever the parity). Furthermore the DR95
algorithm for updating slopes indicates they share the same leaning points LL

and UR. These two assertions, combined together, entail Ci−1,j+1 is a DSS too,
which contradicts the hypothesis that it is a common part. �

We give now analytic bounds on slopes of two consecutive maximal segments.

Theorem 1. If Ci,j is the common part of two consecutive maximal segments
(namely CB(j),j and Ci,F (i)), their slopes are such that:

i− 1 and j + 1 are both (Lemma 2)
lower weakly exterior upper weakly exterior

minimal slope maximal slope minimal slope maximal slope
Ci,j has an
even slope

Ci,F (i)
δ′p2i−p2i−1

δ′q2i−q2i−1

(δ′+2)p2i−p2i−1

(δ′+2)q2i−q2i−1

(δ+1)p2i+p2i−1

(δ+1)q2i+q2i−1

(δ−1)p2i+p2i−1

(δ−1)q2i+q2i−1

CB(j),j
(δ′+1)p2i+p2i−1

(δ′+1)q2i+q2i−1

(δ′−1)p2i+p2i−1

(δ′−1)q2i+q2i−1

δp2i−p2i−1

δq2i−q2i−1

(δ+2)p2i−p2i−1

(δ+2)q2i−q2i−1

Ci,j has an
odd slope

Ci,F (i)
(δ′+1)p2i+1+p2i

(δ′+1)q2i+1+q2i

(δ′−1)p2i+1+p2i

(δ′−1)q2i+1+q2i

δp2i+1−p2i

δq2i+1−q2i

(δ+2)p2i+1−p2i

(δ+2)q2i+1−q2i

CB(j),j
δ′p2i+1−p2i

δ′q2i+1−q2i

(δ′+2)p2i+1−p2i

(δ′+2)q2i+1−q2i

(δ+1)p2i+1+p2i

(δ+1)q2i+1+q2i

(δ−1)p2i+1+p2i

(δ−1)q2i+1+q2i

Proof. The following proof holds if Ci,j has an even slope and both i−1 and j+1
are lower weakly exterior points. Other cases are deduced from Proposition 1.

We bound the slopes obtained by extending Ci,j to the front then extending
Ci,j to the back. Since j + 1 is a lower weakly exterior point, Ci,j+1 has slope
zR
2i+2 = [0, u1, . . . , u2i − 1, 1, δ′] (Proposition 1). Assuming that Ci,F (i) has a

slope that equals [0, u1, . . . , u2i − 1, 1, δ′ + ε, u2i+3, . . . , up] with ε being −1 or
zero (from Proposition 1). Simple calculation brings:
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1

u2i+3 +
1

. . .+
1
up

= ε′ with ε′ ∈]0, 1]

As a result, the slope of Ci,F (i) equals zR(εR) = [0, u1, . . . , u2i − 1, 1, δ′ + εR]
with εR ∈]− 1, 1]. Eq. (2) and Eq. (3) still hold when partial coefficient are real
values, we thus get

zR(εR) = (δ′+εR+1)p2i−p2i−1

(δ′+εR+1)q2i−q2i−1

We bound this slope for extremal values of εR, giving

δ′p2i−p2i−1

δ′q2i−q2i−1
≤ zR(εR) ≤ (δ′+2)p2i−p2i−1

(δ′+2)q2i−q2i−1

Same reasoning applied to the back of the common part brings: zL
2i+2 =

[0, u1, . . . , u2i, δ
′] and zL(εL) = [0, u1, . . . , u2i, δ

′ + εL] with εL ∈]− 1, 1]. Bounds
are:

(δ′+1)p2i+p2i−1

(δ′+1)q2i+q2i−1
≤ zL(εL) ≤ (δ′−1)p2i+p2i−1

(δ′−1)q2i+q2i−1
. �

Furthermore, Theorem 1 give bounds on the slope difference Δz of two consec-
utive maximal segments as a function of the parameters of their common part.
For instance the case of an even slope with lower weakly exterior points give the
tight bound

2δ′ + 3
(δ′2 + 3δ′ + 2)q22i + q2iq2i−1 − q22i−1

< |Δz| < 2δ′ − 1
(δ′2 − δ′)q22i + q2iq2i−1 − q22i−1

.

We give below a coarser bound for Δz, but which is expressed only in terms of
the slope denominator and the number of reversed-patterns:

2δ′ + 3
(δ′2 + 3δ′ + 3)q22i

< |Δz| < 2δ′ − 1
(δ′2 − δ′)q22i + 1

2q2i + 1
2

. (6)

In the other cases, similar formula are obtained. These formulas induce that
the average slope difference between consecutive maximal segments could be
determined, provided the average behaviour of δ, δ′ and qn is known.

6 Conclusion

We have revisited a classical arithmetically-based DSS recognition algorithm
with new parameters related to a combinatoric representation of DSS. New ana-
lytic relations have been established and the relation with the Stern-Brocot tree
has been made explicit. At last, we have shown new geometric relations on max-
imal segments. The new parameters introduced in this paper seem to be good
candidates to describe DSS and obtain new properties. It would be interesting
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to investigate the average asymptotic behavior of these parameters, that is δ,
δ′ and qn, as functional of the grid step. This would lead us to estimate the
asymptotic angle difference between consecutive maximal segments, a quantity
related to curvature, and therefore to address the problem of finding a multigrid
convergent curvature estimator. This study is thus a first step in this direction.
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Abstract. Moment-based procedures are commonly used in computer
vision, image analysis, or pattern recognition. Basic shape features such
as size, position, orientation, or elongation are estimated by moments
of order ≤ 2. Shape invariants are defined by higher order moments.
In contrast to a theory of moments in continuous mathematics, shape
moments in imaging have to be estimated from digitized data. Infinitely
many different shapes in Euclidean space are represented by an identical
digital shape. There is an inherent loss of information, impacting moment
estimation.

This paper discusses accuracy limitations in moment reconstruction
in dependency of order of reconstructed moments and applied resolution
of digital pictures. We consider moments of arbitrary order, which is not
assumed to be bounded by a constant.
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1 Introduction

Moments are widely used in computer vision, image analysis, or pattern recog-
nition (since Hu [1]). A variety of types of moments and moment-based methods
has been developed and studied, for example, for object recognition [2], recon-
struction of geometric properties of regions [3], or determination of invariants [4].
The (p, q)-moment mp,q(S) of a planar set S is defined by the following:

mp,q(S) =
∫
S

∫
xpyq dx dy

It has the order p+ q.
Basic shape features (e.g., size, position, orientation, elongation) are computed

from moments of order less or equal to two. Higher order moments are needed
for computing, for example, the orientation of 3D rotationally symmetric shapes
(see [5]) or moment invariants (see [1]). In imaging applications we have to
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deal with digitized shapes (objects); consequently, exact moment computation
is impossible. The accuracy of moment estimation is limited by many factors,
dominated by shape complexity, applied resolution of digital pictures, and the
order of reconstructed moments.

Obviously, higher picture resolution enables a higher precision in moment
reconstruction. Also, if picture resolution is fixed, then accuracy would decrease
if the moment’s order increases. Thus, if high-order moments are needed for a
particular application, reconstruction accuracy can be improved by an increase
in applied picture resolution. This is formally studied as multigrid convergence
in digital geometry (see [6]).

Situations, where the order of moments is bounded while picture resolution
is allowed to increase (to infinity), have been discussed in [7]. The case of un-
boundedly increases of orders of moments remained an open problem in that
publication.

This paper also covers the case where the order of moments is allowed to tend
to infinity. Furthermore, for this situation we consider the special case where the
order of computed moments is at most logarithmic in applied picture resolution.
We prove an upper bound for the resulting error in estimation which improves the
best known upper bound to date (that follows from general tools provided in [8]).

We give definitions and notations as used in this paper. Center points of grid
squares are assumed to have integer coordinates (i.e., to be grid points in Z2).
In the diversity of different models for digitizing shapes in Euclidean spaces, we
decide for the set of grid points contained in the given shape (analogous to Gauss
digitization in [6]). That means, for a set S ⊂ R2, its digitization G(S) is defined
to be the set of all grid points which are contained in S.

Let h > 0 be the picture resolution (i.e., the number of grid points per unit).
Instead of considering a digitization of S in a picture of resolution h, we pre-
fer here (as standard in number theory) to use a digitization of the dilated set
h·S = {(h·x, h·y) | (x, y) ∈ S} in the grid of resolution h = 1. We considerG(h·S)
to be (under number-theoretical aspects) the shape S digitized in a binary pic-
ture of resolution h. Gauss digitization is defined analogously in 3D. If S ⊂ R3,
the Gauss digitization G(S) is the set of all 3D grid points contained in S.

The exact value of mp,q(S) remains unknown in digital imaging (because the
exact Euclidean shape of S remains unknown). The following estimation is used:

mp,q(S) =
1

hp+q+2
·
∫

h·S

∫
xpyq dx dy ≈ 1

hp+q+2
·

∑
(i,j)∈G(h·S)

ip · jq (1)

For a given digital planar shape A (i.e., a finite subset of Z2) and non-negative
integers p and q, define the discrete moment μp,q(A) as follows:

μp,q(A) =
∑

(i,j)∈A∩Z2

ip · jq

3D discrete moments are defined analogously. For a finite set B ⊂ Z3 and non-
negative integers p, q and t, we have
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μp,q,t(B) =
∑

(i,j,k)∈B∩Z3

ip · jq · kt

Let C(S) denote the content of set S, which is the area A(S) for 2D, or the
volume V(S) for 3D. We have μ0,0(A) = A(S) and μ0,0,0(B) = V(S), and both
values are simply defined by cardinalities #A and #B, respectively. The orders
of μp,q(A) or μp,q,t(B) are p + q and p + q + t, respectively. Throughout the
paper we assume that all pixels (i.e., grid points) have nonnegative coordinates
(i.e., the origin of the assumed coordinate system is at the lower left corner of a
considered picture).

Under these assumptions, for a real shape S, μp,q(G(S)) equals the number
of integer points inside of the 3D-body Bp,q(G) defined as

Bp,q(S) = {(x, y, z) : (x, y) ∈ S ∧ 0 < z ≤ xp · yq} (2)

In other words,
μp,q(G(S)) = #

(
Bp,q(S) ∩ Z3

)
(3)

This paper is about an analysis of the maximum error in the approximation
mp,q(S) ≈ h−(p+q+2) ·μp,q(G(h ·S)), when real moments are estimated by cor-
responding discrete moments. Obviously, this problem is equivalent [see Equa-
tion (2)] to the study of the order of magnitude of

|mp,q(h · S)− μp,q(G(h · S))| (4)

This paper deals with planar convex shapes, but due to the given moment
definition the result can easily be extended to sets which are unions, intersections
or set differences of a finite number of convex sets. Also, since the estimate of (4)
becomes trivial if there are any straight sections on the frontier of S, we focus
on shapes that have a strictly positive curvature at all points of their frontier.
Precise (formal) conditions are given below.

2 Related Results

The number of grid points, contained in convex bodies, is intensively studied in
number theory. Regarding (4), a direct application of Davenport’s result in [8]
(to our case) says that |mp,q(h · S)− μp,q(h · S)| is upper bounded by the total
sum of projections of Bp,q(h · S) onto xy-, xz-, and yz-plane, onton x-, y-, and
z-axis, and finally increased by 1. In other words, we have

|mp,q(h · S)− μp,q(h · S)| =
∣∣mp,q(h · S)−#

(
Bp,q(h · S) ∩ Z3

)∣∣
≤
(
xp+1

max · yq
max

p+ 1
+
xp

max · yq+1
max

q + 1

)
· hp+q+1 + h2 · xmax · ymax

+xp
max · yq

max · hp+q + (xmax + ymax) · h+ 1 (5)

A better estimate than (5) is derived in [7] for bounded orders p+ q. This paper
shows that exploiting Huxley’s result in [9] allows to obtain an estimate for (4)
which improves estimate (5) even for orders of unbounded values of p and q.
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We assume that frontiers γ of convex shapes S are composed of finitely many
smooth arcs γi, either given by an equation y = φ(x), or by x = θ(y), functions
φ(x) and θ(y) have at least continuous derivatives up to the third order, also
satisfying the following (for ψ = φ or ψ = θ):

(i) The radius ρ of curvature and its derivative
dρ

dψ
exist on each arc γi, and

both are continuous functions of ψ on γi.
(ii) On each arc γi, the radius of curvature ρ has a maximum value and a

non-zero minimum value.
(iii) On each arc γi, the radius of curvature has a bounded number of local

maxima and minima.

The following theorem is of major importance for this paper.

Theorem 1. (Huxley 2003). Suppose that γ consists of finitely many smooth
arcs, each of which satisfies conditions (i), (ii), and (iii). Then there is a constant
c, calculated from the arcs γi of γ (where c is independent of the chosen length
unit), such that, if the minimum radius of curvature of each γj is at last c, then
the number of grid points in S is upper bounded by

A(S) +O
(
R

131
208 · (logR)

18627
8320

)
where R is the maximum radius of curvature of γ. The constant implied in the
order of magnitude notation is also calculated from the arcs of γ, and it is inde-
pendent of the chosen length unit.

A planar convex set S, satisfying the preconditions of Theorem 1, is said to
have a sufficiently smooth frontier. A direct consequence of Theorem 1 is the
following:

Corollary 1. Let S be a planar convex set with a sufficiently smooth frontier.
Then it follows that

#G(h · S) = h2 · A(S) +O
(
h

131
208 +ε

)
(6)

for any ε > 0.

This is a very strong result. It even improves the previously best known upper
bound for the circle problem (i.e., if S is assumed to be a circle).

The following studies are divided into two different cases. The case where
either p or q is zero, is studied in the next section. The case where both p and
q are strictly positive, is studied in Section 4.

3 Error Estimate if Either p = 0 or q = 0

Obviously (due to symmetry), estimates for μp,0(h · S) and μ0,q(h · S) can be
derived in identical ways. We consider μp,0(h · S).

For a compact set S, let xmin = min{x : (x, y) ∈ S}, xmax = max{x : (x, y) ∈
S}, ymin = min{y : (x, y) ∈ S}, and ymax = max{y : (x, y) ∈ S}.
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Without loss of generality we can assume that the studied convex set S is a
subset of [0, 1]× [0, 1]. Consequently, we have {xmin, xmax, ymin, ymax} ⊂ [0, 1]
in what follows.

Definition 1. For a planar set S, integer k, and real h > 0, let

(h · S)(k) = {(x, y) : (x, y) ∈ (h · S) ∧ x ≥ k}

Consequently, G((h · S)(k)) is the set of grid points in the digitization of h · S
lying in the closed half plane determined by x ≥ k.

Definition 2. For a planar set S, integer k, and real h > 0, let

L(h · S, k) = {(k, j) : (k, j) ∈ G(h · S)}.

In other words, L(h ·S, k) is the set of those grid points in the Gauss digitization
of h · S that belong to the line x = k. We have the following lemma [7].

Lemma 1. Let S be a planar convex set and k an integer. We have

#G((h · S)(k)) = A((h · S)(k)) +
1
2
·#L(h · S, k) + O(h

131
208 +ε)

We use the following definitions of 3D-sets Wi and W ′
i :

(k+1)

k p

k+1

h xmax

minh x

B’

Wk

B’’

W’k

x

y

z

k
L(hS,k)

hS(k)

p

|−h xmin |−p

Fig. 1. Used notations in this section
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Definition 3. For planar convex set S and integer i ∈ {.h ·xmin/, .h ·xmin/+
1, . . . , �h · xmax� − 1}, we define 3D sets (see Figure 1)

Wi = {(x, y, z) : (x, y) ∈ h · S ∧ x ≥ i ∧ ip < z ≤ (i+ 1)p}
and

W ′
i = {(x, y, z) : (x, y) ∈ h · S ∧ x ≥ i ∧ xp < z ≤ (i+ 1)p}

Now we calculate μp,0(h ·S). As a reminder, V(B) is the volume of a 3D set B,
and A(S) is the area of a 2D set S.

Lemma 2. Let S be a convex set. Then
�h·xmax�−1∑
i=�h·xmin�

V(W ′
i )

=
�h·xmax�−1∑
i=�h·xmin�

#L(h · S, i) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+O

(
hp

p+ 1
·
(
p+ 1
.p+1

2 /

))
Proof. The frontier of h · S can be divided into two arcs of the form y = y1(x)
and y = y2(x), such that y1(x) ≤ y2(x). Then we have that

�h·xmax�−1∑
i=�h·xmin�

V(W ′
i ) =

�h·xmax�−1∑
i=�h·xmin�

∫ i+1

i

dx

∫ (i+1)p

xp

dz

∫ y2(x)

y1(x)

dy

=
�h·xmax�−1∑
i=�h·xmin�

∫ i+1

i

dx

∫ (i+1)p

xp

dz

(∫ y1(i)

y1(x)

dy +
∫ �y1(i)�

y1(i)

dy +
∫ �y2(i)�

�y1(i)�
dy

+
∫ y2(i)

�y2(i)�
dy +

∫ y2(x)

y2(i)

dy

)

=
�h·xmax�−1∑
i=�h·xmin�

∫ i+1

i

dx

∫ (i+1)p

xp

(∫ �y2(i)�

�y1(i)�
dy + O(1)

)
dz + O(hp)

=
�h·xmax�−1∑
i=�h·xmin�

∫ i+1

i

(�y2(i)� − .y1(i)/) · ((i+ 1)p − xp)dx + O(hp)

=
�h·xmax�−1∑
i=�h·xmin�

(�y2(i)� − .y1(i)/) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+

+
�h·xmax�−1∑
i=�h·xmin�

(�y2(i)� − .y1(i)/)
(
ip +

p

2
· ip−1 − (i+ 1)p+1 − ip+1

p+ 1

)
+O(hp)

=
�h·xmax�−1∑
i=�h·xmin�

#L(h · S, i) ·
(
(i+ 1)p − ip − p

2
· ip−1

)
+O

(
hp

p+ 1
·
(
p+ 1
.p+1

2 /

))
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The following estimate was used:

(i+ 1)p+1 − ip+1

p+ 1
− ip − p

2
· ip−1

=
1

p+ 1
·
((

p+ 1
3

)
· ip−2 +

(
p+ 1

4

)
· ip−3 + . . .+

(
p+ 1
p+ 1

)
· i0
)

≤ p− 1
p+ 1

·
(
p+ 1
.p+1

2 /

)
· ip−2 �

Finally, Lemma 3 evaluates the discrete moments μp,0(h · S) and μ0,q(h · S).

Lemma 3. The following asymptotic expressions are satisfied:

μp,0(h · S) =
∑

(i,j)∈G(h·S)

ip =
∫

h·S

∫
xpdxdy + O

(
hp ·

((
p

.p
2/

)
+ h

131
208 +ε

))

μ0,q(h · S) =
∑

(i,j)∈G(h·S)

jq =
∫

h·S

∫
yqdxdy + O

(
hq ·

((
q

. q
2/

)
+ h

131
208 +ε

))

Proof. According to (3), μp,0(G(h·S)) equals the number of grid points belonging
to the 3D set B given by

B = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ xp} = B′ ∪ B′′

where B′ and B′′ are defined as follows:

B′ = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ .h · xmin/p}
B′′ = {(x, y, z) : (x, y) ∈ h · S ∧ .h · xmin/p < z ≤ xp}

First, consider the number of grid points which belong to B′. It follows that

#G(B′) = .h · xmin/p ·
(
A(h · S) +O

(
h

131
208 +ε

))
= V(B′) +O

(
hp+ 131

208 +ε
)

Now we calculate the number of grid points which belong to B′′. By Definition 3
and also using the (obvious) estimate

V ({ (x, y, z) : (x, y) ∈ h · S ∧ x ≥ �h · xmax� ∧ z ≤ xp }) = O(hp)

we derive

V(B′′) =
�h·xmax�−1∑
i=�h·xmin�

(V(Wi)− V(W ′
i )) +O(hp)

=
�h·xmax�−1∑
i=�h·xmin�

V(Wi)−
�h·xmax�−1∑
i=�h·xmin�

V(W ′
i ) +O(hp)
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=
�h·xmax�−1∑
i=�h·xmin�

((i+ 1)p − ip) · A((h · S)(i))−
�h·xmax�−1∑
i=�h·xmin�

V(W ′
i ) +O(hp)

(by using Lemata 1 and 2, it follows)

=
�h·xmax�−1∑
i=�h·xmin�

((i+ 1)p − ip) ·
(

#G((h · S)(i))− 1
2
·#L(h · S, i) +O(h

131
208 +ε)

)

−
�h·xmax�−1∑
i=�h·xmin�

#L(h · S, i)
(
(i+ 1)p − ip − p

2
· ip−1

)
+ O

(
hp

p+ 1
·
(
p+ 1
.p+1

2 /

))

=
�h·xmax�−1∑
i=�h·xmin�

((i+ 1)p − ip) ·
(
#G((h · S)(i))−#L(h · S, i) +O

(
h

131
208+ε

))

−
�h·xmax�−1∑
i=�h·xmin�

#L(h · S, i)
2

·
(
(i+ 1)p − ip − p · ip−1

)
+O

(
hp

p+ 1
·
(
p+ 1
.p+1

2 /

))

=
�h·xmax�−1∑
i=�h·xmin�

((i+ 1)p − ip) · (#G((h · S)(i))−#L(h · S, i))

+O
(
h

131
208 +ε · ((�h · xmax�)p − (.h · xmin/)p)

)
−

�h·xmax�−1∑
i=�h·xmin�

1
2
·#L(h · S, i) ·

((
p

2

)
· ip−2 +

(
p

3

)
· ip−3 + . . .+

(
p

p

)
· i0
)

+O
(

1
p+ 1

·
(
p+ 1
.p+1

2 /

)
· hp

)
= #G(B′′) +O

(
hp ·

((
p

.p
2/

)
+ h

131
208 +ε

))
The following inequalities are used:

a)
�h·xmax�−1∑
i=�h·xmin�

((
p

2

)
· ip−2 +

(
p

3

)
· ip−3 + . . .+

(
p

p

)
· i0
)

≤

≤
�h·xmax�−1∑
i=�h·xmin�

(p− 1) ·
(
p

.p
2/

)
· ip−2 = O

((
p

.p
2/

)
· hp−1

)

b) for a large p :
(
p

.p
2/

)
· hp−1 ≤ 1

p+ 1
·
(
p+ 1
.p+1

2 /

)
· hp−1

Note that, if an integer i with h · xmin ≤ i ≤ h · xmax is fixed, then

((i+ 1)p − ip) · (#G((h · S)(i))−#L(h · S, i))
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equals the number of grid points contained in Wi, and, consequently,

�h·xmax�−1∑
i=�h·xmin�

((i+ 1)p − ip) · (#G((h · S)(i))−#L(h · S, i)))

equals the number of grid points contained in B′′.
Finally, the sum of #G(B′) and #G(B′′) is the number of grid points in B.

Together with the already derived expression for #G(B′) , we have

μp,0(G(h · S)) = #G(B) = #G(B′) + #G(B′′) = V(B′) +O
(
hp · h 131

208+ε
)

+V(B′′) +O
(
hp ·

((
p

.p
2/

)
+ h

131
208+ε

))
= V(B) +

O
(
hp ·

((
p

.p
2/

)
+ h

131
208+ε

))
= mp,0(h · S) +O

(
hp ·

((
p

.p
2/

)
+ h

131
208+ε

))
�

4 Error Estimate if p > 0 and q > 0

It remains to estimate μp,q(h · S), if p > 0 and q > 0. (The next definition and
lemma are analogous to Definition 1 and Lemma 1.)

Definition 4. For a convex set S, integers k, p, q, and a real r > 0, let

(h · S)(k, p, q) = {(x, y) : (x, y) ∈ (h · S) ∧ xp · yq ≥ k}

G((h · S)(k, p, q)) is the set of grid points in the digitization of h · S lying in the
closed part of the plane determined by xp ·yq ≥ k. Since both S and (h·S)(k, p, q)
satisfy the preconditions of Theorem 1, we have the following lemma:

Lemma 4. For a convex set S with a sufficiently smooth frontier, and integers
r, p, q, we have

#G((h · S)(p, q, k)) = A((h · S)(k)) + O
(
h

131
208+ε

)
(7)

Lemma 5. Let S be a convex set with a sufficiently smooth frontier, and p,
q > 0. Then we have the following:

μp,q(h · S) =
∫

h·S

∫
xp · yqdxdy +O

(
hp+q · h 131

208 +ε
)

(8)

Proof. Note that μp,q(h · S) is equal to the number of grid points belonging to
the 3D set E given by

E = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z ≤ xp · yq} = E′ ∪ E′′
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x

y x  y   = k

S.h

hS

p q

Fig. 2. The shaded area is (h · S)(k, p, q)

where E′ and E′′ are defined as follows:

E′ = {(x, y, z) : (x, y) ∈ h · S ∧ 0 < z < hp+q · zmin}
E′′ = {(x, y, z) : (x, y) ∈ h · S ∧ hp+q · zmin ≤ z ≤ xp · yq}

where zmin = min{z : z = xp · yq ∧ (x, y) ∈ S} and zmax = max{z : z =
xp · yq ∧ (x, y) ∈ S}.

Furthermore, from (9) we have

#G(E′) = (.hp+q · zmin/ − 1) ·
(
A(h · S) +O

(
h

131
208+ε

))
= V(E′)

− hp+q · zmin · A(h · S) + (.hp+q · zmin/ − 1) ·
(
A(h · S) +O

(
h

131
208 +ε

))
= V(E′) +A(h · S) ·

(
.hp+q · zmin/ − hp+q · zmin

)
+O

(
hp+q · h 131

208+ε
)

(Note that A(h ·S) = O(h2) and p+ q ≥ 2 have been used in this derivation.)
Now, let us calculate the number of grid points belonging to the set E′′. What

follows is a definition of 3D-sets ωi and ω′
i , for i ∈ {.hp+q · xmin/, .hp+q ·

xmin/+ 1, . . . , �hp+q · xmax�}:

ωi = {(x, y, z)|(x, y) ∈ h · S ∧ xp · yq ≥ i ∧ i < z < min{xp · yq, i+ 1}}
ω′

i = {(x, y, z)|(x, y) ∈ h · S ∧ i < xp · yq ≤ i+ 1 ∧ xp · yq < z < i+ 1}

Now, we can estimate the volume of E′′. By using O(h2) as a trivial upper
bound for the volume of

{(x, y, z) : (x, y) ∈ h ·S ∧ xp ·yq ≤ .hp+q · zmin/ ∧ xp ·yq ≤ z ≤ .hp+q · zmin/}

it follows that
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V(E′′)

=
�hp+q·zmax�∑

i=�hp+q·zmin�
V(ωi) +

(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) +O(h2)

=
�hp+q·zmax�∑

i=�hp+q·zmin�
(A((h · S)(i, p, q))− V(ω′

i))

+
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) + O(h2)

=
�hp+q·zmax�∑

i=�hp+q·zmin�
A((h · S)(i, p, q)) −

�hp+q·zmax�∑
i=�hp+q·zmin�

V(ω′
i)

+
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) + O(h2)⎛⎝note that

�hp+q·zmax�∑
i=�hp+q·zmin�

V(ω′
i) ≤ h2 · A(S) because the projections of

ω′
i onto the xy-plane belong to h · S)

=
�hp+q·zmax�∑

i=�hp+q·zmin�

(
#G((h · S)(i, p, q)) + O

(
h

131
208 +ε

))
+
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) +O(h2)

= #G(E′′) +
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) +O

(
hp+q+ 131

208 +ε
)
.

Thus,

#G(E′′) = V(E′′)−
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) +O

(
hp+q+ 131

208 +ε
)
.

The proof of the lemma is finished by summing up #G(E′) and #G(E′′) :

μp,q(h · S) = #G(E′) + #G(E′′)

= V(E′) +A(h · S) ·
(
.hp+q · zmin/ − hp+q · zmin

)
+O

(
hp+q+ 131

208 +ε
)

+V(E′′)−
(
.hp+q · zmin/ − hp+q · zmin

)
· A(h · S) +O

(
hp+q+ 131

208+ε
)

= V(E) + O
(
hp+q+ 131

208+ε
)

= mp,q(h · S) +O
(
hp+q+ 131

208 +ε
)
. �

Our theorem summarizes the accuracy in estimating real moments of an arbitrary
order based on digitized sets.
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Theorem 2. Let S be a convex set that satisfies the preconditions of Theorem
1. Then we have the following:∣∣∣∣mp,q(S)− μp,q(h · S)

hp+q+2

∣∣∣∣ =

⎧⎨⎩O
(
h−

285
208 +ε + 1

h2 ·
( p

. p
2 /
))

for p = 0 or q = 0

O
(
h−

285
208 +ε

)
for p > 0 and q > 0.

Stirling’s formula gives
( p

. p
2 /
)

= O (2n) and implies the following:

Corollary 2. Let S be a convex set with sufficiently smooth frontier, and let
p+ q = o(log h). Then we have the following:∣∣∣∣mp,q(S)− μp,q(h · S)

hp+q+2

∣∣∣∣ = O
(
h−

285
208+ε

)
for any ε > 0.

Corollary 2 shows that the error in approximating mp,q(S) ≈ μp,q(h·S)
hp+q+2 can be

reduced to any fraction of the pixel size (what is 1/h) if a moment’s order p+ q
is not to large compared to the applied picture resolution. The assumed relation
p+ q = o(log h) is reasonable for practical applications. In such a case, Corollary
2 gives a better estimate than the estimate 1

co(log h)·o(h·log h)
(c > 0 is computable

from xmax and ymax) that follows from (5) (i.e., from Davenport’s result).
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Abstract. A defuzzification method based on feature distance mini-
mization is further improved by incorporating into the distance function
feature values measured on object representations at different scales. It
is noticed that such an approach can improve defuzzification results by
better preserving the properties of a fuzzy set; area preservation at scales
in-between local (pixel-size) and global (the whole object) provides that
characteristics of the fuzzy object are more appropriately exhibited in
the defuzzification. For the purpose of comparing sets of different reso-
lution, we propose a feature vector representation of a (fuzzy and crisp)
set, utilizing a resolution pyramid. The distance measure is accordingly
adjusted. The defuzzification method is extended to the 3D case. Illus-
trative examples are given.

1 Introduction

The advantages of representing objects in images as fuzzy spatial sets are numer-
ous and have lead to increased interest for fuzzy approaches in image analysis [1].
Preservation of fuzziness by utilizing fuzzy segmented images implies preserva-
tion of important information about objects. However, a crisp representation of
objects in the images may still be needed. Reasons for that are, e.g., to facilitate
easier visualization and interpretation. Even though it contains less information,
a crisp representation is often easier to interpret and understand, especially if
the spatial dimensionality of the image is higher than two. Moreover, analogues
for many tools available for the analysis of binary images are still not developed
for fuzzy images. This may force us to perform at least some steps in the analysis
process by using a crisp representation of the objects.

In our previous work related to defuzzification, i.e., the process of generat-
ing a crisp representation of a fuzzy digital object, we introduced a distance
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measure between fuzzy sets incorporating a number of quantitative global and
local features of the sets [2]. We have suggested to perform defuzzification by
choosing the crisp representation that is closest to the given fuzzy set in terms
of the proposed distance measure. The resulting crisp set can be generated at
higher spatial resolution, compared to the spatial resolution of the fuzzy object,
as shown in [3]. In that way, a (crisp) segmentation technique that provides crisp
objects represented at a higher spatial resolution than the given image resolution
has been proposed.

In this paper, we consider matching additional features in the defuzzifica-
tion. We have noticed that the lack of requirement for feature preservation at
meso-scale, i.e., scales in-between the local (pixel-size) and the global (the whole
object) scale, may lead to rather inappropriate defuzzification solutions in spite
of successful matching of both local and global features in the optimization
algorithm. Therefore, we introduce meso-scale area components in the feature
representation of a set to be a subject of optimization, in addition to already
existing membership values of pixels, seen as local area components, and the
global area of a set. Global features, perimeter and centroid, are considered in
defuzzification, as it is suggested in [2]. Global features are important for suc-
cessful defuzzification at increased spatial resolution, [3]. To facilitate the use
of meso-scale area components (their calculation and updating during the op-
timization process), we utilize representations of the sets at a range of spatial
resolution, i.e., we generate a resolution pyramid representations. We implement
the defuzzification method in both the 2D and the 3D case.

The paper is organized as follows: Section 2 gives an overview of existing
results related to the proposed method and lists the main definitions used in
the paper. In Section 3, the main contribution of the paper, defuzzification by
minimizing feature distance using a scale space approach, is presented. Exam-
ples of defuzzification of both synthetic and real 2D and 3D images are given
in Section 4, and the positive effect of the suggested scale space approach to
defuzzification is illustrated. Concluding remarks are given in Section 5.

2 Background

We give a list of definitions and notions used in the paper and present existing
results related to defuzzification. In this paper, we extend our own work on
defuzzification based on feature distance minimization, proposed originally in
[2]; therefore, most of related work is referenced to our own results. Moreover,
Section 2.3 particularly recalls the necessary framework derived in [2] and [3].

2.1 Definitions

A fuzzy set S on a reference set X is a set of ordered pairs S = {(x, μS(x)) | x ∈
X}, where μS : X → [0, 1] is the membership function of S in X . We denote
by F(X) the set of fuzzy sets on a reference set X and by P(X) the set of crisp
subsets of a set (the power set).
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Being interested in applications in digital image analysis, we consider digital
fuzzy sets, where X ⊂ Zn. In addition, when using digital approaches (com-
puters) to represent, store, and analyse images, the (finite) number, � + 1, of
grey-levels available is a natural limitation to the number of membership values
that can be assigned to a digital point.

An α-cut of a fuzzy set S, for α ∈ (0, 1], is the set Sα = {x ∈ X | μS(x) ≥ α}.
The support of a fuzzy set S is the set Supp(S) = {x ∈ X | μS(x) > 0}. The
core of a fuzzy set S is the set Core(S) = {x ∈ X | μS(x) = 1}. The fuzzification
principle, based on the following equation:

f(S) =
∫ 1

0

f̂(Sα) dα, (1)

can be used to generalize properties f̂ defined for crisp sets (here, α-cuts) to
fuzzy sets. In order to generalize a function f̂ , defined on discrete crisp sets, the
equation

f(S) =
1
�

�∑
α=1

f̂(Sα) , (2)

can be used. In this paper, we use Equation (2) to define perimeter P (S), and
surface area Surf (S), of a (2D and 3D) fuzzy set S, respectively (more detailed
definition and properties are given in [4]). Equation (2) is also used to define
moments of zero and first order of a discrete spatial fuzzy set S, denoted by
mp,q(S), where for integers p, q it holds p + q ≤ 1 (in 2D case), and mp,q,r(S),
where for integers p, q, r it holds p + q + r ≤ 1 (in 3D case) (more detailed
definitions and properties are described in [5]).

The zero-order moment of a set S is equal to its area A(S) (if S ∈ F(Z2)), or
its volume V (S) (if S ∈ F(Z3)). The centroid of a set S is also defined by the
moments of a set S, [6].

2.2 Related Work

Defuzzification is the process of replacing a fuzzy set with an appropriately cho-
sen crisp set. In image analysis, fuzzification of an image is a consequence of the
combination of properties of the continuous original, discretization effects, and
imaging conditions. Defuzzification should be performed by utilizing the fuzzy
representation as a source of valuable information about geometric properties of
the object of interest (fuzzy, or crisp), and by defining and following some criteria
related to properties which characterize a satisfactory defuzzification result.

In our previous work [2], we present a defuzzification method based on mini-
mizing the feature distance between a fuzzy set and its defuzzification. Feature
distance is defined so that the distance between two sets is expressed in terms
of the distance between their feature-based vector representations in some de-
fined feature space. A selection of local and global numerical features can be
included in the distance measure and considered in defuzzification. By using
some optimization procedure, the crisp object fulfilling the minimization crite-
rion is generated.



382 J. Lindblad, N. Sladoje, and T. Lukić

The results presented in [5,4] show that the precision of estimates for perime-
ter, area, and higher order moments of a continuous shape, is significantly higher
if a fuzzy discrete shape representation, where the membership of a pixel is pro-
portional to the part of its area covered by the observed object, is used instead of
a crisp discrete representation. By including these estimates in the feature based
representation of the fuzzy set, we generate a crisp digital object which is a good
crisp representation of a fuzzy set and, at the same time, highly resembles the
original continuous object. Furthermore, it is shown in [5,4], either theoretically
or through statistical studies, that a fuzzy approach can provide an alternative
to increasing the spatial resolution of the image. This observation motivated the
study presented in [3], where we suggested to generate a crisp shape represen-
tation of a given fuzzy object at an r times increased spatial resolution. The
features, estimated with a high precision from the fuzzy representation, are pre-
served in the defuzzification by minimizing the corresponding feature distance
between the sets. We let each pixel in the fuzzy low resolution representation
correspond to a block of r × r pixels in the crisp high resolution representation.
Local (point-size) features of a fuzzy set are compared to the features derived
from a block in the defuzzified set. This correspondence is used as a basis for
the high-resolution object reconstruction.

2.3 Defuzzification by Feature Distance Minimization

The feature distance measure and the defuzzification method based on its min-
imization, proposed in [2], are further explored in this paper. The following
notation and definitions, introduced in [2], are used in the sequel:

Defuzzification. An optimal defuzzification D(A) of a fuzzy set A ∈ F(X),
with respect to the distance d, is

D(A) ∈ {C ∈ P(X) | d(A,C) = min
B∈P(X)

[d(A,B)]} . (3)

Distance Measure. Given an injective function Φ from F(X) to a metric space
H , we define a metric on F(X) by requiring that Φ is an isometry. That is, the
feature distance between fuzzy sets A and B is

dΦ(A,B) = d(Φ(A), Φ(B)) . (4)

The vector Φ(A) ∈ H is understood as a feature representation of the set A.
We use H ⊂ Rn, with the Minkowski distance of order p = 1 as our main

choice of distance functions used inH , providing a corresponding feature distance
dΦ in F(X).

By suitably designing the mapping Φ, the distance measure can be tuned
to provide defuzzifications where both shape characteristics and membership
values are taken into account. This enables defuzzification that fits the individual
problem well, and provides a powerful family of defuzzification methods. In this
paper, we further explore the appropriate choices of features incorporated in Φ,
in order to improve the preservation of relevant characteristics of the fuzzy set.
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Optimization. In general, Equation (3) cannot be solved analytically. In addi-
tion, the search space P(X) is too big to be exhaustively traversed. As a conse-
quence, we are forced to rely on heuristic search methods. In [2], two methods,
floating search and simulated annealing, are used to find an approximate solu-
tion for Equation (3). Simulated annealing, starting from the α-cut closest to the
given fuzzy set in terms of the considered distance, showed the most satisfactory
behaviour, and is in this paper used as the optimization method of choice. Since
the optimization task is a well separated problem, many other search methods
can be used to approximatively solve Equation (3).

3 Feature Based Defuzzification Using a Scale Space
Approach

In this section, we present our main contribution, a scale space approach to high-
resolution defuzzification based on feature distance minimization using meso-
scale features. We give a motivation for using such an approach, and we describe
the suggested method, both in the 2D and the 3D case.

3.1 Motivation

Characteristics of a given fuzzy set often have different importance at different
scales. When the feature distance is optimized so that point-wise and global
features are preserved as well as possible in the defuzzification, it is still possi-
ble that meso-scale features are not matched sufficiently well, even though the
achieved distance is satisfactory low. The resulting crisp set may, e.g., have area
(number of points) perfectly well matched with the area of the fuzzy set, while
the pixels are not distributed in an intuitive way over the crisp set. A synthetic
example illustrating this is presented in Figure 1. An object, Figure 1(a), is com-
posed of four discrete fuzzy disks, where all non-zero membership values of points
are equal to 0.5. Such a (homogeneous) distribution of local features does not
provide any information about preferable local distribution of pixels in a defuzzi-
fication. A globally optimal solution, Figure 1(b), appears rather non-intuitive,
in spite of its well matched features; it is more appealing that defuzzification of
individual parts of an image resembles (as much as possible) the individual parts
of an image defuzzified as a whole. We conclude that a main problem is that the
method may “transport” area from one part of the image to another part.

This observation leads us to investigate the incorporation of features calcu-
lated over a range of scales into the distance measure and the defuzzification.
Use of a scale space approach provides an appropriate treatment of details in
images, where the details are usually relevant only in some range of scales.

An alternative approach would be to include additional higher order moments,
to provide a more complete description from a global level. We consider the scale
space approach to be more appealing in terms of generality, and also probably
in terms of robustness, since higher order moments are in general sensitive to
noise.
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(a) (b)

Fig. 1. (a) Synthetic image. (b) Defuzzification of (a) based on (local and global)
feature distance minimization, as proposed in [2].

A good way to introduce scale dependent defuzzification is to use a resolution
pyramid. Representations at different levels in the resolution pyramid correspond
to objects made by mapping blocks of pixels (voxels) of an image at a given res-
olution into one pixel (voxel) in the image at some other (lower) resolution. By
comparing the features of interest at corresponding resolution levels, blocks in
the fuzzy and the defuzzified image are compared and the features are thereby
considered, not only at the local and the global scale, but also at in between
meso-scales. In this paper, our choice of feature to observe at meso-scale is area
(volume), corresponding to membership values of pixels (voxels) in the represen-
tations in the resolution pyramid.

3.2 Scale Space Defuzzification of 2D Fuzzy Sets

For a given fuzzy set F ∈ F(X) of size 2m × 2m pixels, we generate m + 1
partitions of the set into square blocks of 2m−i × 2m−i neighbouring pixels, for
i = 0, . . . ,m. Each partition i consists of 22i blocks. (If the original image is not
of size 2m × 2m pixels, we pad it with zeros.) We use a feature representation
Φ(F ) consisting of the areas of all the blocks of all the partitions. Obviously,
the membership values of all the pixels are included in such a representation,
being local areas of one-pixel-size blocks (i = m), while the global area of the
set is included as the area of the single block of the size 2m × 2m (for i = 0). In
addition, the perimeter of the set F , as well as the coordinates of its centroid,
are included in the feature representation.

Weighting of Features. In order to provide that the effect of the total contri-
bution of all measures of one (type of) feature, observed at one particular scale,
is approximately the same size as the effect of one global feature, features of
multiplicity h are scaled with 1

p√
h
, where p is the exponent of the Minkowski

distance in Equation (4) (we use p = 1 throughout this paper).
To compare features calculated at different scales, measures also have to be

rescaled with respect to the spatial resolution of the image and the dimensionality
of the particular feature. It is taken into account that P (S) = O(rS), A(S) =
O(r2S), m1,0(S) = O(r3S), m0,1(S) = O(r3S) for a set S inscribed into a grid with
spatial resolution rS . To get resolution invariant global features, we use
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P̃ (S) =
P (S)
P (X)

, Ã(S) =
A(S)
A(X)

, C̃x(S) =
Cx(S)
Cx(X)

, C̃y(S) =
Cy(S)
Cy(X)

,

for a fuzzy set S ∈ F(X). In this way, it is provided that P̃ (S) = O(1), Ã(S) =
O(1), C̃x(S) = O(1), C̃y(S) = O(1) for any grid resolution.

Feature Vector Representation. For a given fuzzy (or crisp) set S of size
2n × 2n pixels, let Bi

j represent the jth block of 2n−i × 2n−i pixels, where j =
1, . . . , 22i, i = 0, . . . , n. Block B0

1 is equal to the set S and, correspondingly,
Ã(S) = Ã(B0

1). The feature representation Φm(S) of S, for m ≤ n, is then

Φm(S) =
(

1
p
√

22m
Ã(Bm

1 ), . . . ,
1

p
√

22m
Ã(Bm

22m), (5)

1
p
√

22(m−1)
Ã(Bm−1

1 ), . . . ,
1

p
√

22(m−1)
Ã(Bm−1

22(m−1)),
. . .

1
p
√

20
Ã(B0

1),

P̃ (S), C̃x(S), C̃y(S)
)
.

Resolution Pyramids. We use two resolution pyramids for storing the areas
of the blocks Bi

j of the fuzzy original set, and of the crisp defuzzification. Pyra-
mids are built by grouping 2 × 2 neighbouring (children) pixels in the image
at the current resolution level, and create one (parent) pixel at the next, lower,
resolution level, where the value of the parent pixel is assigned to be the sum of
the values of the children pixels. The process is repeated at every newly created
resolution level, until the lowest possible resolution. The value assigned to the
single element at the lowest level in the pyramid is the area of the starting image.
To obtain rescaled areas of blocks, used in the feature representation Φ(S), each
value (area of a block) is divided by the number of elements in the block.

Defuzzification. For a given fuzzy set F , containing 2m×2m pixels, a resolution
pyramid representation with m+ 1 resolution levels is build. The α-cut of F at
minimal distance dΦ to F is used as the starting configuration for defuzzification.
In order to obtain the initial configuration K at 2r times increased resolution,
each pixel in the α-cut is subdivided into 22r sub-pixels. A resolution pyramid
for the crisp set K, with m+r+1 resolution levels, is created and defuzzification
is performed by minimizing the feature distance

dΦ(F,K) = d(Φm(F ), Φm(K)) , (6)

where d is the Minkowski distance with p = 1.
During the search process, when changing one pixel in the crisp set K, all

levels of the pyramid representations of K are locally updated.
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Simulated Annealing. The simulated annealing search ( [2]) was refined by
applying a re-annealing scheme where the search was restarted 20 times. An au-
tomatic tuning of the temperature was achieved by restarting each annealing at
twice the temperature where the current best solution of the previous annealing
was accepted; did the previous annealing not provide any improvement, the new
temperature was set to be twice the staring temperature of the previous one.
Within one annealing, 5 000 random perturbations where tried at each temper-
ature level, before the temperature was lowered so that Tnew = 0.995Told. The
temperature was successively reduced until 50 000 successive perturbations did
not manage to provide any step that gave a reduction in distance, after which a
new re-annealing was restarted from the currently best found solution.

3.3 Scale Space Defuzzification of 3D Fuzzy Sets

The defuzzification method, suggested for 2D discrete spatial fuzzy sets is
straightforwardly generalized to the 3D case. The features selected to be included
in the feature distance are local, meso-scale, and global volumes, obtained by
iterative grouping of blocks of 2 × 2 × 2 voxels, and surface area and centroid,
as additional global features.

Once when the feature representation is generated, the defuzzification process
is exactly the same as in the 2D case.

4 Examples

We show three examples of defuzzification using the suggested method. We test
its behaviour on the synthetic image, Figure 1(a) and we show two examples of
defuzzification of parts of real 3D (medical) images.

4.1 Four Disks

The example presented in Figure 1 is repeated in Figure 2. The result of defuzzi-
fication of the object in Figure 2(a), using the proposed scale space approach,
is shown in Figure 2(c). Even though the global features are perfectly matched
in the solution presented in Figure 2(b) (obtained without meso-scale features),
we consider the solution in Figure 2(c) to better preserve the properties of the
original set. The contributions of the different features to the overall distance
are given in Table 1.

4.2 Bone

An example of defuzzification of a 3D object is presented in Figure 3. The data
volume here is a CT image of a bone implant (inserted in a leg of a rabbit). We
applied the method to a part of the image (51 × 44 × 59 voxels) (Figure 3(a)
shows a slice through the volume) containing a connected piece of bone area
(dark grey), surrounded by a non-bone area (light grey). Figure 3(b) shows a
slice through a 3D fuzzy set representing the bone region.
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(a) (b) (c)

Fig. 2. (a) Four discrete disks of radius 4 and membership 0.5. (b) Optimal defuzzifi-
cation using feature distance without meso-scale area components. (c) Defuzzification
using feature distance including meso-scale area components.

Table 1. The contribution of the different features to the feature distance, and the
total distance, without (Dist 1), and with (Dist 2), the meso-scale area features

Figure Perimeter Area Centroid Membership Meso-scale Dist 1 Dist 2
2(b) 0.0000 0.0000 0.0000 0.0957 0.3828 0.0957 0.4785
2(c) 0.0015 0.0381 0.0000 0.0957 0.1758 0.1353 0.3111

All features are matched well in this example; there are no large regions of high
fuzziness, and the global features do not provide any reason for “transportation”
of volume as in the example in Section 4.1. Defuzzifications with or without
meso-scale features are therefore practically identical.

4.3 Vessels

Fuzzy representations of image objects are especially useful when the spatial res-
olution is too low to provide a good crisp representation. One such situation can
be seen in Figure 4(b), which displays a maximum intensity projection of a part
of a rotational b-plane x-ray scan of the arteries of the right half of a human head
(provided by Philips Research, Hamburg, Germany), shown in Figure 4(a). A
contrast agent is injected into the blood and an aneurism is shown to be present.
The intensity values of the image voxels correspond fairly well with partial vol-
ume coverage, and are therefore used directly as fuzzy membership values.

This example image violates the sampling theorem; the vessels imaged are not
resolved since they are smaller than one voxel thick. This fact causes a number of
problems related to information extraction.Using a priori knowledge about the im-
age, it is still possible to obtain a reasonable defuzzification. One such a priori piece
of information is the knowledge that the vessel tree is simply connected. Starting
from one simply connected component, and preserving topology ( [7]) throughout
the search, it is provided that the defuzzification is also simply connected.

Centroid position is not an intuitive feature to use for defuzzification of a vessel
tree. It may interfere in undesirable ways with the topology preservation during
the search procedure, so we exclude centroid from the feature representation in
this example.
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(a) (b) (c)

(d) dΦ = 0.02749 (e) dΦ = 0.01377

Fig. 3. Defuzzification of a part of a 3D image of a bone implant. (a) Slice through
the image volume. The dark grey area is bone, the light parts are non-bone areas.
(b) Slice through a fuzzy segmentation of the bone region in the image volume. (c) Slice
through a defuzzification, using meso-scale volume features, of the fuzzy segmented
image volume. (d) 3D rendering of the α-cut at smallest feature distance to the fuzzy
object. (e) 3D rendering of a high resolution defuzzification of the fuzzy segmented
object. A four times scaled up version of the best α-cut (d) was used as starting set
for the simulated annealing search.

It is clear that high resolution reconstruction is really needed here; any crisp
representative at the same resolution as the original image would be a rather
bad representation; to preserve the volume of the fuzzy image, many parts of
the vessel would not be included in the crisp set.

Performing defuzzification at two times the original resolution, we get the
result presented in Figure 4(c). The result is not visually appealing, due to
severe under-estimation of the surface area of a crisp thin (less than one voxel
thick) structure by the surface area of the fuzzy set. This problem is not present
for a crisp object whose fuzzy representation is obtained at sufficiently high
resolution and contains points with memberships equal to one in the interior of
the object. In the case presented in Figure 4, however, the defuzzification using
the inaccurate surface area estimate fails to preserve the vessel structure.

It would be of high interest to have a better surface area estimate for the
defuzzification. In the absence of such, we attempt defuzzification without
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(a) (b) (c)

(d) (e)

Fig. 4. Defuzzification of a selected part of an angiography 3D image, showing an
X-ray scan of the arteries of the right half of a human head. (a) Maximum intensity
projection through the image volume; the white square in the upper part of the image
indicates the location of the selected part of the volume that is defuzzified in this
example. (b) Maximum intensity projection through the selected part the volume.
(c) 3D rendering of a defuzzification at twice the resolution using volumes of all scales
and surface area. (d) 3D rendering of a defuzzification at twice the resolution using
only volumes of all scale. (e) 3D rendering of a defuzzification at twice the resolution
using only global and local volumes.

surface area feature. Using only volume based information (at a range of scales)
the high resolution reconstruction is fairly unconstrained, which leads to the
rather jagged result of Figure 4(d). Dropping the meso-scale feature from the
feature representation, we get the result presented in Figure 4(e).

We note that, although not visible in Figure 4, the topology is in deed pre-
served; all the resulting objects are simply connected. However, the vessels are
not always connected in a correct way, so some additional information on how
vessels branch and bend may be required in this case.

5 Summary

We have presented an improvement to previously presented work on defuzzifi-
cation by feature distance minimization. On a synthetic example we show that
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the combination of global and local features is not always enough to provide
an appealing defuzzification. To overcome the described problem, we suggest
to use a scale space approach, incorporating into the distance function feature
values measured at different scales. The method is extended to work on 3D im-
age volumes and two applications of the method on medical image volumes are
provided.

The examples we show indicate possible future work on defuzzification by
minimizing feature distance. Better feature estimates, and optionally more ap-
propriate choice of features for thin elongated (tree-like) structures are needed.
Using other features but area (volume) at a range of scales is of interest to
explore. Thorough evaluation of the results is needed. The simulated annealing
search algorithm, already improved by using re-annealing and more careful choice
of parameters (temperatures and cooling scheme), could be further explored and
better adjusted to particular application needs.
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Abstract. Differential operators are required to compute several characteristics
for continuous surfaces, as e.g. tangents, curvature, flatness, shape descriptors.
We propose to replace differential operators by the combined action of sets of
feature detectors and locally adapted difference operators. A set of simple local
feature detectors is used to find the fitting function which locally yields the best
approximation for the digitized image surface. For each class of fitting functions,
we determine which difference operator locally yields the best result in compar-
ison to the differential operator. Both the set of feature detectors and the differ-
ence operator for a function class have a rigid mathematical structure, which can
be described by Groebner bases. In this paper we describe how to obtain discrete
approximates for the Laplacian differential operator and how these difference op-
erators improve the performance of the Laplacian of Gaussian edge detector.

1 Introduction

A delicate and often reoccurring problem in digital image processing is the application
of operators from differential geometry to digital representations of curves and surfaces.
For continuous surfaces well defined differential operators can be used to compute stan-
dard functions as e.g. curvatures, tangent planes, normals, shape operators. These dif-
ferentials cannot be applied directly to digitized surfaces or digitized curves. Consider
as a simple example how to compute the tangent in the point x0 for the digitized curve f
shown in Figure 1. For a continuous curve we would simply calculate the first derivative
dy/dx. But for the digitized function, the solution is less obvious.

Fig. 1. Finding a tangent to a digitized curve

One could use a continuous fitting function g̃ to approximate the digitized function
f in some neighborhood D of x0, and then apply the differential operator to that con-
tinuous curve. We propose to digitize the differential operator, i.e. to replace it by a
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difference operator that can be applied without problem to digitized as well as contin-
uous functions. This approach also involves the choice of a class of fitting functions,
since the selection of the difference operator involves the implicit assumption that there
are some continuous functions for which the difference operator yields the correct re-
sult. Haralick [1], Langridge [2], Fleck [3], Karabassis and Spetsakis [4] all discuss
possible methods to find the best possible fitting functions and difference operators to
compute derivatives for a given application.

Digitizing differential operators requires two important choices. The first choice con-
siders which class of fitting functions to use. This choice is not unique, e.g. if we choose
linear fitting functions, then all second and higher order differences will vanish. Sec-
ond, we must choose an appropriate difference operator for each particular class of
fitting functions and also this choice is not unique. If we choose a linear fitting function
g̃(x) = ax+ b, and if we let σ denote the shift operator defined by σj g̃(x) = g̃(x+ j),
then we can replace the differential d/dx by one of the three difference operators
Δ = (σ1 − 1), (σ2 − 1)/2, or (σ3 − 1)/3. These operators will all yield the same
result when applied to g̃(x): dg̃/dx = &g̃ = a. Hence there is no straightforward
choice for the fitting functions and the difference operator.

In this paper, we show how to choose the appropriate difference operator for each
class of fitting functions. We actually avoid the problem of computing the fitting func-
tions by verifying whether the digitized function has the right features to be categorized
in one of the function classes. Moreover, feature detection arises in a natural way if we
want to compute differentials for digitized functions. The computation of the difference
operator and the feature detectors for the function classes both fit in a rigid mathemati-
cal framework [5].

We propose a method to choose the most appropriate difference operator with a
decision tree, considering the local features of the image. The framework of the method
is illustrated by the computation of a digitized difference operator for the Laplacian.
Lachaud et al [6] discuss how to estimate the tangent of a digital curve. Lindeberg
[7] discusses how to define discrete derivative approximations for the computations of
multi-scale low-level feature extraction, and their use in edge detection. Gunn [8] and
Demigny et al [9] consider discrete versions of edge detection algorithms. Lowe [10]
uses an approximation for the Laplacian of Gaussian to detect stable keypoints. In this
paper we show how the Laplacian of Gaussian edge detector can benefit from locally
applying the appropriate version of the Laplacian difference operator.

In section 2, we show how to digitize the differential operator for different classes
of fitting functions. Next, a decision tree for the practical computation of difference
operators is introduced in Section 3, where the computation of the feature detection
templates and the difference operators for the Laplacian is given as an example. Section
4 presents the Laplacian of Gaussian edge detector as a practical application to illustrate
the improvements by our method. Finally, we conclude this paper in Section 5.

2 Digitizing Differential Operators

When choosing a class of fitting functions for a digitized function, we choose in fact a
class of features. We use features to examine how the digitized function behaves locally,
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that is to verify how smooth the function is. Next, we choose one particular difference
operator, depending on the detected features. In the remainder of this section we show
how to make the appropriate choice of fitting function and its corresponding difference
operator. We start by introducing the notations and the conventions used in this paper.

Fitting Functions and Difference Operators. We will use a continuous real function
g̃ : Rm → R to approximate a digitized function f : Zm → Z. To approximate the
value of a differential at a point x0, it is sufficient to approximate f in a finite subset
D ⊂ Zm containing x0. We write |f − g̃| < ε as a shorthand for |f(x)− g̃(x)| < ε for
all x ∈ D.

The shift operator σj is defined by σjf(x) = f(x+j), for x, j ∈ Zm. The functional
composition of shift operators can be expressed as a multiplication of polynomials, i.e.
σjσkf = σj+kf . A difference operator P can be represented as a polynomial in σ, that
is P =

∑l
j=0 pjσ

j . If we write that P g̃ = 0,
∑
pjσ

j g̃(x) = 0 for all x, j ∈ Zm. If
we write that |Pf − P g̃| < ε, this means that |Pf(x)− P g̃(x)| < ε for all x for which
Pf(x) is well defined, that is (x+ j) ∈ D for every non-vanishing coefficient pj of the
difference operator P .

We will use the ideal I generated by a set of difference operators Pi. We write I =<
P1, P2, . . . >, and we say that the polynomialsPi form a basis for the ideal I . I consists
of all operators P =

∑
i SiPi, where the Si are arbitrary polynomials in σ.

Difference operators can also be represented by their templates. A two-dimensional
difference operator P =

∑
pjσ

j =
∑

jx,jy
pjxjyσ

jx
x σ

jy
y , j ∈ Z2 is represented by a

two-dimensional template:

p00 p10 p20 . . .

p01 p11 p21

p02 . . .

(1)

We use the convention that the box at the upper left corner corresponds to p00. Boxes
with vanishing coefficients are either not drawn, or drawn as empty boxes.

Approximation of Differentials. Let L be the differential operator that we want to ap-
proximate by a difference operator, which can be applied to some digitized function f .
We find such an approximation by selecting a class G of fitting functions g̃, and a dif-
ference operator Q that works well for this class. We must choose in some way a class
G of continuous functions and a difference operator Q =

∑
qjσ

j , such that Qg̃ = Lg̃
for every g̃ ∈ G.

If g̃ is an approximation for f such that |f − g̃| < ε, then we have |Qf − Lg̃| <
ε
∑
|qj | [5]. Hence, the difference operator Q will be a good approximation for the

differential operator L provided G contains at least one function g̃ that is a good ap-
proximation for f .

Additional Constraints on Fitting Functions. It remains uncertain whether the class
G of fitting functions contains a good approximation g̃ for the digitized function f .
The uncertainty is removed by imposing additional constraints on G. We demand that
fitting functions g̃ satisfy a (possibly infinite) set of difference equations Pig̃ = 0, for
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i = 1, 2, . . .. The operators Pi will be used to eliminate the fitting function g̃ from the
inequality |f − g̃| < ε. However, the set of operators that can be used to eliminate g̃
is much larger. For any operator P in the ideal I =< P1, P2, . . . >, P g̃ = 0. So also
P1P2g̃ = 0, (P1 + P2)g̃ = 0, and (

∑
SiPi)g̃ = 0 for arbitrary difference operators

Si ∈ R[σ].
We will assume from now on that we have chosen a class of fitting functions G, by

specifying a set of difference operators Pi, i.e. G = {g̃|Pig̃ = 0, for i = 1, 2, . . .}. We
can then prove that there is a fitting function g̃ ∈ G such that |f − g̃| < ε if and only if

|Pf | < ε
∑

|pj| (2)

for every operator P in the ideal I generated by all Pi, i.e. I =< P1, P2, . . . > [5].
The ideal I of difference operators is generated by a possibly infinite set of operators

Pi. Hilbert’s Basis Theorem for polynomial ideals states that any ideal of polynomials
in the ring R[σx, σy] can always be generated by a finite basis of polynomials. Even if a
system has infinitely many difference equations, these can all be obtained by multiply-
ing, adding and translating a finite set of basis equations. We can compute a Groebner
basis for any ideal if we impose an ordering on the shift operators σx, σy [12]. For
each different class of fitting functions, a Groebner basis completely characterizes all
different templates that will recognize a function of that class. The Groebner basis is
used in efficient algorithms for determining whether a given polynomial belongs to an
ideal. The functional decomposition and combination of feature detectors can also be
investigated using these bases [5].

How to Compute Feature Detectors for a Function Class? The introduction of the dif-
ference equations Pig̃ = 0 has an important consequence: by eliminating the explicit
occurrence of g̃, the use of fitting functions will be replaced by the use of feature de-
tectors Pi. Instead of actually fitting a good continuous approximation g̃ to f , we must
verify whether Eq. 2 holds for every difference operator in I , i.e. whether f has the right
features. So we do not bother which fitting function would actually yield the closest fit.

Features can be detected without error by verifying only a finite number of inequal-
ities, when the solution space of the difference equations is a finite linear vector space.
Assume that the solution set of the partial difference equations P1g = 0, . . . , Png = 0
can be written as a linear vector space with g1, . . . , gl as a basis:

α1g1 + · · ·+ αlgl. (3)

Let KD be the set of all difference operators Pi of the form∣∣∣∣∣∣
g1(x1) . . . gl(x1) σx1

. . .
g1(xl+1) . . . gl(xl+1) σxl+1

∣∣∣∣∣∣ (4)

with the points xj ∈ D. The operators of KD are written as determinantal expressions
of the coefficients gj(xj) and the shift operators σxj . Let ID denote the set of all the
difference operators in I for which Pif(x) is well defined for at least one x in D,
i.e. (x + j) ∈ D for every non-vanishing coefficient pj of the difference operator Pi.
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Thus the neighborhood D must be large enough such that ID is equal to I , i.e. ID
must contain a basis for I . Then the polynomials of KD form a finite basis for the ideal
generated by ID . Furthermore, if the function f satisfies the inequality |Pif | < ε

∑
|pj |

for every polynomial Pi in KD, then f will satisfy this inequality for all polynomials
of ID [11]. In general, a small sample of KD suffices to calculate a Groebner basis for
the ideal I .

How to Choose a Difference Operator for a Function Class? For any difference oper-
ator Q chosen such that Qg̃ = Lg̃, and f satisfying |Pf | < ε

∑
|pj | for all P ∈ I =<

P1, . . . , Pn >, there exists a function g̃ satisfying P g̃ = 0 such that

|Qf − Lg̃| < ε
∑

|qj |. (5)

This result states exactly what we propose: the combined use of feature detectors P and
a difference operator Q, linked to each other by the fitting functions g̃. It is sufficient
to verify whether f has the right features so that we can apply this particular difference
operatorQ. However, as mentioned before, the choice of Q is not unique.

How to Choose the Best Difference Operator Q? Once the class of fitting functions
has been chosen by verifying Eq. 2, we must choose a difference operator Q, which
satisfies Qg̃ = Lg̃. Since (Q + P )g̃ = Qg̃, there seem to be many possible ways to
choose Q. There are however no other possibilities than those provided by the ideal I .
Every operatorR satisfying Rg̃ = Qg̃ can be written as R = Q+ P .

Among all operators R, we can in fact look for the best candidate. For any operator
P ∈ I we have

|(Q+ P )f − Lg̃| < ε
∑

|pj + qj |. (6)

The difference operator P for which the right side of the above inequality becomes
minimal, gives the lowest error in P +Q when used to approximate the differential L.

As Pig̃ = 0 for every Pi ∈ I , we can look for an operator of the form

O = Q+
∑

(SiPi) (7)

where S(σx) is an arbitrary difference operator. Then the following inequality

|Of − Lg̃| < ε
∑

|oj |. (8)

must be satisfied and the best difference operator is the one for which ε
∑
|oj | is mini-

mized. This gives a systematic method for computing the difference operator to use for
a particular fitting function class.

3 A Decision Tree for the Laplacian Operator

In this section we apply the above theory in the design of difference operators for the
computation of the Laplacian ∂2/∂x2 + ∂2/∂y2. We want to adapt the widely used
classical Laplacian kernel to yield better results once the local image characteristics
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are known. To determine the correct fitting function class in each point on the image
surface, we use a decision tree as shown in Figure 2. Each node of the decision tree
shows a Groebner basis for the feature detectors for a particular function class. Once
the correct fitting function is chosen, the appropriate difference operator will be selected
in the underlying leaf of the tree.

Fig. 2. A decision tree for the Laplacian

3.1 Template Bases for Feature Detectors

The first goal is to determine which fitting function is locally the best approximate for
the digitized image surface. The decision tree uses three fitting function classes:

α1x+ α2y + α3

α1(x + y)2 + α2x+ α3y + α4

α1x
2 + α2y

2 + α3xy + α4x+ α5y + α6

(9)

A set of feature detection templates is computed for each fitting functions as the
polynomials ofKD in Eq. 4. This is illustrated for the function class used in the second
node of the decision tree: α1(x2 + y2)+α2x+α3y+α4. In this case, the polynomials
of the set KD have the form ∣∣∣∣∣∣

1 x1 y1 x
2
1 + y2

1 σ
x1
x σy1

y

. . .
1 x5 y5 x

2
5 + y2

5 σ
x5
x σy5

y

∣∣∣∣∣∣ (10)

For example, for {(x1, y1), . . . , (x5, y5)} = {(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)}, the
above determinant is equal to 1 − 2σxσy + 2σ3

xσy − σ4
x which corresponds to the

template

1 -1

-2 2
(11)
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Thus a basis for the ideal ID for each function class can be generated systemat-
ically by computing all polynomials of KD. Based on a limited set of polynomials
we can compute < (σx − 1)2 − (σy − 1)2, (σx − 1)(σy − 1), (σy − 1)3 >, i.e.
< &2

x − &2
y,&x&y,&3

y > as a Groebner basis for this function class. The corre-
sponding templates are

-2 1

2

-1

,
1 -1

-1 1
,

-1

3

-3

1

. (12)

For each of the fitting function classes, the Groebner basis completely characterizes
the templates that will recognize the function. Table 1 lists a selection of functions and
their corresponding Groebner bases. Figure 3 shows the decision tree of Figure 2 with
templates for the Groebner basis for the ideal of each function class. The nodes of the
decision tree are practically implemented as a finite set of inequalities to be verified
for the function of the required form. Or, equivalently, templates are generated that can
detect features for each of the fitting functions. Now that we have an implementation
for the nodes, the leaves of the tree remain to be filled in with the appropriate difference
operators.

Table 1. Functions and corresponding Groebner bases with lexicographic ordering Δx > Δy

α1 < Δx, Δy >
α1x + α2 < Δ2

x, Δy >
α1(x + y) + α2 < Δx −Δy , Δ2

y >
α1x + α2y + α3 < Δ2

x, ΔxΔy , Δ2
y >

α1xy + α2x + α3y + α4 < Δ2
x, Δ2

y >
α1(x + y)2 + α2(x + y) + α3 < Δx −Δy , Δ3

y >
α1(x

2 + y2) + α2x + α3y + α4 < Δ2
x −Δ2

y , ΔxΔy, Δ3
y >

α1(x + y)2 + α2x + α3y + α4 < Δ2
x −Δ2

y , Δy(Δx −Δy), Δ3
y >

α1x
2 + α2y

2 + α3x + α4y + α5 < Δ3
x, ΔxΔy , Δ3

y >
α1x

2 + α2y
2 + α3xy + α4x + α5y + α6 < Δ3

x, Δ2
xΔy , ΔxΔ2

y, Δ3
y >

3.2 Difference Operators

Now that the template bases for the polynomial ideals are known, the next step is to
determine the best difference operator for each class of fitting functions. As an example
we describe the computation of the difference operator for quadratic functions of the
form α1x

2+α2y
2+α3xy+α4x+α5y+α6. We must chooseQ so that the requirement

Lg̃ = Qg̃ is satisfied, that is(
∂2

∂x2
+

∂2

∂y2

)
g̃ = (&2

x +&2
y)g̃ = 2α1 + 2α2. (13)

For this function class, any differential operator of the form

O(σx, σy) = &2
x +&2

y +&3
xS1 +&3

yS2 +&2
x&yS3 +&x&2

yS4 (14)
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in which Si are arbitrary polynomials in the shift operators, yields the exact value for the
Laplacian. For optimal results, one must choose the operator of the form (14) for which∑
|oj | is as small as possible. For this function class, the best choice is the symmetric

operator
σ2

xσ
2
y + σ2

x + σ2
y + 1− 4σxσy

2
. (15)

The difference operators for the other function classes are obtained in a similar way,
and their templates are shown in Figure 3.

Fig. 3. A decision tree for the Laplacian

The obtained difference operators lead to some interesting conclusions. Without fea-
ture detection, we would always choose the classical discrete equivalent of the Lapla-
cian as shown in the lower left leaf of the decision tree. When the digitized function is
locally linear or close to linear, the best possible difference operator is the zero operator,
yielding an error equal to zero. In fact, it is known without uncertainty that the Lapla-
cian of a linear function vanishes. Since difference operators for linear functions do not
have to compensate for quadratic terms, they perform better than the difference opera-
tors derived for quadratic functions. For both quadratic functions, we found a difference
operator which yields a maximal error of 4ε on the computed value of the Laplacian.
For quadratic functions with circular symmetry (the second level in the decision tree),
it is sufficient to compute the second order difference in a diagonal direction. Finally,
for quadratic functions the best difference operator has a template equal to the classical
discrete Laplacian operator rotated over 45 degrees and divided by 2. If none of the fea-
ture detection tests succeed, we use the classical discrete Laplacian operator. In fact, the
differences between the operators appear to be quite small, but the examples in section
4 show that considerable improvements are obtained by using the decision tree.
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4 Laplacian of Gaussian Edge Detection

We illustrate the practical use of the decision tree for the computation of the Laplacian
of Gaussian (LoG) for edge detection. The LoG is computed by first convolving the im-
age with a Gaussian of a certain width and then passing a Laplacian filter kernel over the
Gaussian smoothed image. The edges are computed as the zero-crossings of the Lapla-
cian. We compare the results for the computation of the Laplacian by our method to the
computation with the classical version of the kernel. Our method uses the decision tree
designed above to select the most appropriate Laplacian operator in each image point.
First, the local characteristics of the digitized image surface are determined by subse-
quently verifying a set of inequalities for each class of fitting functions. Once the correct
fitting function is determined, the corresponding difference operator can be applied. For
each image in the experiment, we constructed a scale space for different widths, i.e. dif-
ferent values for the standard deviation, of the Gaussian, so that we can compare both
methods on increasing levels of smoothing. The results for the edge detection by both
methods are shown in Figure 4.

Are the Fitting Function Classes Useful? For each function class, a set of inequalities
is created to detect the local features of the digitized image. When the image surface

(1a) (1b) (1c)

(2a) (2b) (2c)

Fig. 4. LoG edge detection: In column a we see the Gaussian smoothed images on different
scales, respectively for standard deviation

√
2 and 2

√
2. Column b shows the result of edge de-

tection after application of the decision tree to compute the Laplacian. Column c shows the result
of edge detection after application of the classical Laplacian kernel.
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Fig. 5. The fitting function class in each image point is indicated: the higher (whiter) the point’s
intensity, the lower the node of the fitting function in the decision tree of Figure 3. When no
correct approximation is found, points are colored white. The image was convolved first with a
Gaussian of standard deviation

√
2.

locally fulfills the conditions posed by a limited subset of inequalities of the form Eq. 2,
with ε = 1/2 to account for digitization errors, we consider the fitting function a good
approximation for the surface. Figure 5 shows that the three classes are well chosen
as nodes for the decision tree. For each pixel, the function class is indicated by one of
three gray values: the higher the intensity, the lower the class occurs in the decision
tree. It is clear that the image surface is approximated by the expected function class
in each image point. When none of the continuous fitting functions approximated the
image surface well, e.g. at sharp or discontinuous edges, the classical version of the
Laplacian kernel is applied. We cannot define or predict the error on the computation
of the Laplacian in such points. These points are indicated by white pixels in Figure 5.
Since all gray values appear in Figure 5, all nodes of the decision tree are useful.

What Is the Size of the Set of Feature Detection Templates to be Verified in Each Node
of the Decision Tree? The local image features are detected in a neighborhood D by
verifying a set of inequalities of the form Eq. 2. For each node of the decision tree, we
generate a set KD of operators P as in Eq. 4. The number of inequalities, i.e. the size
of the set KD, is then given by the binomial

(
n
l

)
, with n the number of points in the

neighborhoodD and l the number of basis vectors in the solution set of Pig̃ = 0 (Eq. 3).
Verifying a set of that size at each node yields a rather large computational complexity
for the decision tree. The complexity can be reduced by verifying subsets with a lower
number of inequalities at each node. Simulations show that the classification in function
classes does not significantly vary with the subset’s size. The edge detection results
do not noticeably differ, and satisfying results are obtained for rather small subsets of
inequalities. The results shown in Figure 4 are obtained with a subset of seven feature
templates per node. However, selecting only a limited subset cannot be done without
introducing a small error. More on this subject can be found in [5, 13].

The computational complexity of the decision tree is further reduced by using fea-
ture templates in more than one neighborhood D. The computation of the templates is
dependent on the size of D, but most of the polynomial’s coefficients are zero, as can
be seen in Eq. 11. So the majority of the results for the verification of inequalities can



Improving Difference Operators by Local Feature Detection 401

be reused in adjoining neighborhoods. To avoid systematic errors, introduced by using
the same subset of templates over and over for all points, we randomly choose a new
subset for every neighborhood to complement the reused results.

Comparison of Methods. The Laplacian computed with the proposed decision tree is
compared to the result of applying the classical Laplacian kernel. The experiments are
repeated in a scale space of Gaussians with increasing standard deviation. Figure 4
shows the results for Gaussians with standard deviation

√
2 and 2

√
2. The results for

the LoG edge detection are considerably better when the Laplacian is computed with
the decision tree. The most significant edges are detected and the edges of important
details are preserved, as the images in column (b) show. If we compare this to the result
in column (c), we notice an abundance of edges in image regions considered homoge-
neous. Even on a higher scale, i.e. for even smoother images, the computation of the
Laplacian with the classical kernel does not yield better results. First, the error on the
localization of edges increases for higher levels of smoothing. Second, the edges of
finer (and even coarser) details disappear on higher scales while edges are still detected
in (noisy) homogeneous regions. Both problems are avoided in our method. Edges of
details are already distinguished on finer scales. If linear fitting functions can locally
approximate the image surface in homogeneous regions, the zero operator is used for
the Laplacian so that zero crossings do not occur in these regions. Note that some draw-
backs of LoG edge detection are apparent in the results of both methods, edges tend to
form closed loops, and sharp corners are smoothed too much.

5 Conclusion

We present a mathematical framework from which both feature detection and differ-
ence operators arise in a natural way. By detecting local image features, we avoid the
necessity of actually approximating the digitized image surface by fitting functions. For
each function class, we define the appropriate difference operator which yields a mini-
mal computational error when approximating the value we would have obtained by the
differential operator.

(a) (b) (c)

Fig. 6. LoG edge detection: Image (a) shows an Gaussian smoothed image with standard de-
viation 2

√
2. Image (b) shows the result of edge detection after application of the decision tree

to compute the Laplacian. Image (c) shows the result of edge detection after application of the
classical Laplacian kernel
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We conclude that the quality of the edge pixels detected by the LoG improves when
the Laplacian difference operator is adapted to the knowledge about the local image fea-
tures. Clearly, a practical application like the computation of straight lines and corners
of a building as in Figure 6(a), is considerably easier when given the LoG edge pix-
els of Figure 6(b) (decision tree) as opposed to the information obtained by the default
kernel, shown in Figure 6(c).
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Abstract. We consider the problem of determining if a given word,
which encodes the boundary of a discrete figure, tiles the plane by trans-
lation. These words have been characterized by the Beauquier-Nivat
condition, for which we provide a linear time algorithm in the case of
pseudo-square polyominoes, improving the previous quadratic algorithm
of Gambini and Vuillon.

1 Introduction

In discrete geometry many results are based on an arithmetic approach for char-
acterizing and recognizing patterns having a certain shape. Here we take a com-
binatorics on words point of view that enable us with new tools for analyzing a
shape in discrete planes.

The problem of deciding if a given polyomino tiles the plane by translation
goes back to Wisjhoff and Van Leeuven [12] who coined the term exact polyomino
for these, and also provided a polynomial O(n4) algorithm for solving the prob-
lem. Polyominoes may be coded by words on a 4-letter alphabet Σ = {a, a, b, b},
also known as the Freeman chain codes [5,6] coding their boundaries (see [1] for
further reading). For instance, the boundary b(P ) of the polyomino in Figure 1
(a), in a counterclockwise manner, is coded by the word

(b):(a): 

Fig. 1. (a) a polyomino; (b) an exact polyomino

w = a b a a b a b b a b a b a b a b. Observe that we may consider the words as circular
which avoids to fix an origin. The perimeter of a polyomino P is the length of
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its boundary word b(P ) and is of even length 2n. Beauquier and Nivat [2] gave
a characterization stating that the boundary of such a polyomino P may be
factorized (not necessarily in a unique way) as

b(P ) = A ·B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is possibly empty, and where (̂ ) is defined

by Û = Ũ , (̃ ) being the usual reversing operation and ( ) the transformation
on Σ = {a, a, b, b} sending each letter α ∈ Σ on its complement α. For instance,
the exact polyomino in Figure 1 (b) is coded by the circular word

w = a a b a b aa b a b a b a b,

its semi-perimeter is 7, and its boundary may be factorized as

b(P ) = A · B · Â · B̂ = a b a a · b a b · aa b a · b a b.

Determining if a given word w ∈ Σn is the boundary of a polyomino is computed
in O(n). Therefore the problem reduces to find a factorization satisfying the
Beauquier and Nivat condition. Recently, Gambini and Vuillon [7] improved the
Wisjhoof-van Leeuven bound by designing an O(n2) algorithm that checks the
Beauquier-Nivat condition 1.

Our algorithms borrow from Lothaire [11] that the Longest-Common-Factor,
the Longest-Common-Prefix and the Longest-Common-Suffix in two words may
be computed in linear time. The approach is also inspired by the linear algorithm
of Gusfield and Stoye [8] for detecting tandem repeats in a word, and by the linear
algorithm used to detect repetitions with gaps, as shown in Lothaire [11]. More
precisely, the computation of the Longest-Common-Left-Extension (LCLE) and
Longest-Common-Right-Extension (LCRE) is achieved in constant time, pro-
vided a linear preprocessing is performed on u and v, by a clever utilization
of suffix trees (see Gusfield [9]). Taking advantage of these algorithms we pro-
vide a linear algorithm, with respect to the length of words, for pseudo-square
polyominoes.

2 Preliminaries

Let Σ be a finite alphabet whose elements are called letters. Finite words are
sequences of letters, that is, functions w : [0..n− 1] −→ Σ , and the set of words
of length n is denoted Σn. The free monoid Σ∗ = ∪∞

n=0Σ
n is the set of all finite

words and the empty word is denoted ε.
A morphism is a function σ : Σ∗ −→ Σ∗ such that σ(uv) = σ(u)σ(v). Clearly

a morphism is defined by the image of the letters. A factor f of w is a word
f ∈ Σ∗ satisfying

∃x ∈ Σ∗, y ∈ Σ∗, w = xfy.

If x = ε (resp. y = ε ) then f is called prefix (resp. suffix). The set of all factors
of w is denoted by F (w), and those of length n is Fn(w) = F (w) ∩ Σn. Finally
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Pref(w) denotes the set of all prefixes of w. The length of a word w is |w|, and
the number of occurrences of a factor f ∈ Σ∗ is |w|f . A word is said to be
primitive if it is not a power of another word. If w = pu, and |w| = n, |p| = k,
then p−1w = w[k + 1]..w[n − 1] = u is the word obtained by erasing p. As
a special case when |p| = 1 we have the shift operator σ defined by σ(w) =
w[1..(n − 1)]. Another useful operator is the circular permutation ρ defined by
ρ(w) = w[1..(n− 1)] · w[0].

Two words u and v are conjugate when there are words x, y such that u = xy
and v = yx. Equivalently, u and v are conjugate if and only if there exists an
index k such that u = ρk(v). Conjugaison is an equivalence relation written u ≡
v. The mirror image ũ of u = u1u2 · · ·un ∈ Σn is the word ũ = unun−1 · · ·u1.
A palindrome is a word p such that p = p̃ , and for a language L ⊆ Σ∞, we
denote by Pal(L) the set of its palindromic factors.

Paths on the square lattice Z×Z are encoded on the alphabet Σ = {a, a, b, b}
identified with the unit steps {→,←, ↑, ↓}. Parallel paths always define a trans-
lation and we say that two words are homologue when the corresponding paths
define a translation. More precisely, two words u and v are said homologue when
either
(i) u = v, or
(ii) u = v̂.

An exact polyomino P whose boundary is b(P ) = A · B · C · Â · B̂ · Ĉ is
called a pseudo-hexagon if none of the variables is empty and a pseudo-square
otherwise. In this factorization A (resp. B,C) and Â (resp. B̂, Ĉ) are homologue
and define the respective translations. For instance, the translations defined by
the homologue sides of the pseudo-square polyomino

b(P ) = A ·B · Â · B̂ = a b a a · b a b · a a b a · b a b
are shown in Figure 2 (a). In the case of a pseudo-hexagon, as in Figure 2(b),

(a): (b):

Fig. 2. Translations defined by homologue sides of a polyomino tile

the translations are related by the relation t3 = t1 + t2. Moreover, the relative
positions of the starting and ending point of any path is completely determined
by the sum of the unit vectors corresponding to each letter. By abuse of notation
we write for a path w : [0..n− 1]→ Σ

−→w =
n−1∑
k=0

−→wk.

Note that −→w = 0 if and only if w is a closed path, and that −→u = −
−→
û .
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3 Searching the Homologue Factors

Since polyominoes are coded by circular words w, in order to find the homologue
factors it is convenient to work with w ·w since a pair of homologue factors might
be split, depending on the starting point.

Therefore, finding the homologue factors amounts to look for the longest com-
mon factor of ww and ŵw denoted LCF(ww, ŵw).

For instance the longest common factors of the polyomino-tile P in Figure 1
(b) are

LCF(ww, ŵw) = {a ba a, a a b a}
and they are necessarily homologue sides(!). Indeed, since we know the positions
i and j of a b a a and aa ba in w, this is easy to check in linear time. Clearly the
boundary of P may be written as

b(P ) = w = a b a a · u · a a b a · v

and then one easily checks that v = û. Unfortunately the situation is not al-
ways that good. Indeed, let w = a a b b b a a b aa b a b b b a a b a b. Then the longest
homologue factors of w are (see Figure 3)

LCF(ww, ŵw) = {a a b b b a, a b b b a a},

but w = a a b b b a · a b a a b · a b b b a a · b a b does not satisfy the Beauquier-Nivat
condition. A good factorization is w ≡ b b · b a a b · a a b a · b b · b a a b · a b a a.

(c):(a): (b):

Fig. 3. (b) longest homologue factors; (c) a good factorization

This means that not all the homologue factors provide a factorization, and good
candidates are those separated by factors of same length.

Definition 1. Let w ≡ b(P ) be the boundary word of a polyomino P . A factor
A of w is admissible if

(i) w ≡ AxÂy, for some x, y such that |x| = |y|;
(ii) A is saturated, that is, x0 �= xk−1 and y0 �= yk−1 where k = |x| = |y|.

Nevertheless, admissibility is ensured for words that code the boundary of poly-
ominoes. Indeed, Gambini and Vuillon established the following property ( [7],
section 3.1) by using a geometric result of Daurat and Nivat [4].
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Lemma 1. Let w ≡ ABCÂB̂Ĉ be a Beauquier-Nivat factorization of the bound-
ary b(P ) of an exact polyomino P . Then A,B and C are admissible.

Conversely, not all admissible factors lead to a Beauquier-Nivat factorization.
For instance, in the polyomino w ≡ a a a b a b a b a a a b a b a b shown below, the

(a): (b):

factor aaa is admissible but does not provide a correct factorization of w. Indeed,
A = aa is the admissible factor (w = AxÂy with x = ababab, y = ababab)
yielding a correct factorization with B = aba and C = bab:

w ≡ a a · a b a · b a b · a a · a b a · b a b.

The following proposition establishes a useful property.

Proposition 1. Let w = b(P ) ∈ Σ2n be the contour of a polyomino P and let p
be any fixed position in w. Let X be the set of all admissible factors overlapping
the position p and X̂ be the set of their respective homologue factors. Then, there
exist at least one position in w that is not covered by any element of X ∪ X̂.

Proof. By contradiction, assume that there is no such point. Let A ∈ X be the
factor that starts at the leftmost position and B ∈ X be the one that ends at
the righmost position as shown below. The homologue factors A, Â and B, B̂

p1 S1

S2S2

A
w

B B

A

x y

S

always define two symmetries denoted respectively by S1 and S2. Let x be the
overlap between A and B̂, and y be the overlap between A and B. Without loss
of generality we may consider that |y| ≥ |x|. If |x| = |y| the symmetry implies
that x = ŷ and the factorization is

w ≡ xU x̂ V x Û x̂ V̂ . (2)

We use a property proved in Brlek et all. ( [3], DLT2005) that simplifies a result
of Daurat and Nivat [4] on the number of salient and reentrant points of discrete
sets: indeed, the number of right turns minus the number of left turns in a closed
and non-intersecting path on a square lattice is 4. In equation 2, notice that all
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turns in a factor are cancelled by those of its homologue. Therefore we only
have to consider the turns between consecutive factors. Reading, the word w
from left to right, we see that each pair of consecutive factors is cancelled by
its homologue: xU is cancelled by Û x̂, U x̂ by x Û , x̂ V by V̂ x (the word w is
circular), and V x by x̂ V̂ . Hence the difference between right and left turns is
0, and w is self intersecting. Contradiction.

If |x| �= |y| we have the following situation where the factor y (thick line)

y

A
S1 S1

V

BS2

y

y

S2

A

w
x V αβ

B

propagates as shown by using the symmetries S1 and S2. In this case ŷ does not
overlap Â in B̂, so let V be the factor between Â and ŷ. We have the following
factorization

w ≡ A V̂ β Â V α .

Passing to vectors, and using commutativity of addition, we have

−→w =
−→
A +

−→
Â +

−→
V +

−→
V̂ +

−→
β +−→α =

−→
β +−→α =

−→
0 .

But ŷ = αx, so that β is followed by α in w. Therefore βα is a nonempty closed
path on the boundary of P . Contradiction.

In the case where ŷ does overlap Â in B̂ we have the following situation

where −→γ +
−→
β = 0 (by closure property −→w = 0 =

−→
A +−→γ +

−→
Â +

−→
β ). Moreover,

w

A

B

y y

S1 S1

S2
S2

A

B

γ

y α
β

x

ŷ = αβx, so that y γ ŷ contains the nonempty factor α̂ γ α β corresponding to a
closed path. Contradiction.

Proposition 1 specializes for pseudo-squares as follows. Assume that a pseudo-
square P has two factorizations

w = b(P ) ≡ ABÂB̂ ≡ XY X̂Ŷ

where A = sXt. Then, by using the same argument as in the proof above, the
boundary of P contains a loop yielding a contradiction.
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Corollary 1. If w = b(P ) ≡ ABÂB̂ ≡ XY X̂Ŷ are two distinct factorizations
of the boundary of a pseudo-square P , then there exist α, β, γ such that A = αβ
and X = βγ.

As an exemple we have the following pseudo-square

aba · bab · aba · bab ≡ bab · aba · bab · aba,

showing two distinct factorizations. The problem of enumerating all the factor-
izations of a given pseudo-square will be addressed in a forthcoming paper.

3.1 A Linear Time Algorithm for Detecting Pseudo-squares

The main idea used to achieve linear time factorization, is to choose a position p
in w and then list all the admissible factors A that overlap this fixed position. The
following auxiliary functions are useful. The Longest-Common-Right-Extension
(LCRE) and Longest-Common-Left-Extension (LCLE) of two words u and v at
positions respectively m and n are partial functions

LCRE,LCLE : Σ∗ ×Σ∗ × N× N −→ N

defined as follows. For u, v ∈ Σ∗, let m and n be such that 0 ≤ m ≤ |u| and
0 ≤ n ≤ |v|, then

LCRE(u, v,m, n) = LCP(ρm(u), ρn(v))
LCLE(u, v,m, n) = LCS(ρ|u|−m(u), ρ|v|−n(v))

Remark 1. It is clear from the definition above that LCRE and LCLE may be
computed in linear time. Their computation may also be performed directly by
the following formulas. Since we use circular words w, denote m = m mod |w|.
If u[m] = v[n] then

(i) LCRE(u, v,m, n) = max{k ∈ N | u[m..(m+ k)] = v[n..(n+ k)]} + 1,
(ii) LCLE(u, v,m, n) = max{k ∈ N | u[(m− k)..m] = v[(n− k)..n]}+ 1,

and, otherwise, LCRE(u, v,m, n) = LCLE(u, v,m, n) = 0.

For example, if u = aabbbaabaababababa, v = babaabbbaabbabababb, i = 4 and
j = 7 then (note that the words all starts at position 0) we have

u = a a b bb a a b a a b a b a b a b a,
v = b a b a a b bb a a b b a b a b a b b,

and LCRE(u, v, 4, 7) = 4,LCLE(u, v, 4, 7)=5. On the other hand LCRE(u,v,4,1)
= LCLE(u,v,4,1)=0.

Later we will need to perform these computations O(n) times. Fortunately,
the computation of LCLE and LCRE is achieved in constant time, provided a
linear preprocessing is performed on u and v, by a clever utilization of suffix trees.
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Indeed, for computing LCRE(u, v, i, j), one proceeds by building a common suffix
tree for both u and v, and a second pass consists in labeling each node in such a
way that the least common ancestor of two nodes is computed in constant time.
Both building the suffix tree and its preprocessing is performed in O(n). For a
more detailed description see Gusfield [9], section 9.1, or Gusfield and Stoye [8],
page 531.

For computing LCLE(u, v, i, j), it suffices to process the mirror images and
compute LCRE(ũ, ṽ, |u| − i− 1, |v| − j − 1).

Lemma 2. Let w = b(P ) be the boundary of P . For each occurrence of A in w
and each occurrence of A in ŵ, whether A is admissible or not is decidable in
constant time.

Proof. Given an occurrence of A in ŵ, one computes in constant time the corre-
sponding position of Â in w. If Â overlaps A in w is decidable in constant time.
If Â and A do not overlap then, u ≡ AxÂy and A is an admissible factor, by
definition, if and only if the three following conditions are verified : |x| = |y|,
x0 �= xk−1 and y0 �= yk−1 where k = |x| = |y|.

Lemma 3. Let w = b(P ) ∈ Σ2n be the boundary of P . For any position p in
w, listing all the admissible factors overlapping p is computed in linear time.

Proof. The following algorithm list all admissible factors containing the p-th
letter w. Since the longest common right and left extension problem can be
solved in constant time after linear time preprocessing.

Algorithm 1
Input : w = b(P ) ∈ Σ2n

1 : For i := 0 to 2n− 1 do
2 : l := LCLE(w, ŵ, p, i)− 1
3 : r := LCRE(w, ŵ, p, i)− 1
4 : A := w[p− l, . . . , p+ r]
5 : If w ≡ AxÂy with |x| = |y| then
6 : Add A to the list of admissible factors.
7 : end if
8 : end for

Using the modulo in managing the positions is superfluous because we may
assume, without loss of generality (since w is a circular word) that p = n.
Note that, by definition of LCRE and LCLE, the factor A in this algorithm
is necessarily saturated. As shown in Lemma 2, the condition can be tested
in constant time by direct computation of positions in w. Finally, the loop is
performed exactly 2n times.

Remark 2. This lemma implies that the number of admissible factors in a word
is linear. To determine a precise upper bound remains an open problem which
is similar to the problem of determining a tight upper bound for the number of
distinct squares in a word (see for instance Lothaire [11] or Ilie [10]).
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Theorem 1. Let w = b(P ) ∈ Σ2n be the boundary of P . Determining if w
codes a pseudo-square is decidable in linear time.

Proof. If w encodes an exact polyomino, any position belongs to some admis-
sible factor of the Beauquier-Nivat factorization. Therefore, it suffices to apply
Lemma 3 to an arbitrary position p. Then, Algorithm 1 provides the list of all
admissible factors overlapping the position p, and it only remains to check, for
each admissible factor, if x = ŷ. Lemma 1 ensures that if w ≡ ABÂB̂ then B is
saturated, as shown below.

1

w

w

l r

AA

A

y x

A

i

ll r

x y

p

p+r+

i+r+n+1

It suffices now to replace step 6 in Algorithm 1 by:

6a : If LCRE(w, ŵ, p+ r + 1, i+ r + n+ 1) = |x| then
6b : P is a pseudo-square.
6c : End if

Since LCRE is computed in constant time, the overall algorithm is linear.

4 Concluding Remarks

Using combinatorics on words as a tool for analyzing shapes proved powerful
as shown in a recent paper by Brlek et al. [3], where an elementary proof of a
result of Daurat and Nivat [4] establishing a relation between convex and concave
points in discrete figures. In addition, this approach is algorithmic and brings
some new insight for addressing geometrical problems.

The results presented here can be extended to more general tilings. Indeed,
since the Beauquier-Nivat factorization involves path properties, there is no need
for a tile to by a polyomino. For instance, the tile T below might be also called
pseudo-square and its Beauquier-Nivat factorization (starting from S) is

b(T ) = a a a a b a b a a ba b a b a · b a b b a b · a b a b a b aa b a b a a a a · b a b b a b .

In another direction, it is quite natural to extend the method for pseudo-
hexagons. The situation reveals more complicated, and we designed an optimal
algorithm for detecting pseudo-hexagons for a restricted class of closed paths,
namely those not having too large squares. This will be described in an extended
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S

version of the present paper, hoping to lift the condition in order to provide an
optimal algorithm without restrictions.

Acknowledgements. The authors are grateful to the anonymous referees for
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Abstract. The aim of this article is to present a reversible and topo-
logically correct construction of a polyhedron from a binary object. The
proposed algorithm is based on a Marching Cubes (MC) surface, a digi-
tal plane segmentation of the binary object surface and an optimization
step to simplify the MC surface using the segmentation information.

1 Introduction

3D discrete volumes are more and more used especially in the medical area
since they result from MRI and CT scanners for example. As 2D images are
composed of pixels, these 3D images are composed of voxels. This structure
induces many difficulties in the exploitation and study of these objects: for each
voxel a value is stored, thus the volume of data for an image is huge which is
a problem to get a fluent interactive visualization ; the facet structure (voxels’
faces) of the discrete object induces many problems to get a nice visualization
that is necessary for medicines, as no rendering nor texture algorithm can be
applied. The general idea to solve these problems is to transform discrete volumes
into polyhedra with vertices in R3. An important property that must fulfill the
Euclidean polyhedron is its reversibility up to a given digitization process (e.g.
the result of the digitization must be the original discrete volume itself). In other
words, no information are neither created nor lost during the transformation.

Many research activities have already been achieved to find solutions to com-
pute this reversible transformation, using Euclidean geometry or discrete geom-
etry [1,2,3,4,5,6]. To get a good visualization of discrete volumes, classical meth-
ods use the Marching Cubes algorithm [7,8], which considers local voxel con-
figurations to replace them by small triangles. Even if these methods offer a
good visualization, it does not provide a good data compression (huge number
of facets) but we have a first reversible solution. Digital geometry solutions
deal with a first step that segments the object boundary into pieces of digital
plane [9,2,10,1,11,3]. The digital plane is a fundamental object for this prob-
lem because reversibility properties exist. The next step consists in associating
a polygon to each piece of digital plane and finally to construct the Euclidean
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polyhedron while sewing the polygons. The major problem of these methods is
to ensure both the reversibility and the correct topology of the polyhedron.

In [4], we have proposed a polyhedrization algorithm with the following prop-
erties: it computes a reverse polyhedrization of the input digital object with the
warranty that the obtained polyhedron is topologically correct. More precisely,
the final polyhedron is a combinatorial 2-manifold. This algorithm is based on a
simplification of the Marching-Cubes surface with digital plane segmentation in-
formation. In the following, we extend this algorithm using linear programming
techniques to reduce the number of facets of the final object while preserving
both the reversibility of the surface and its topology.

In section 2, we describe the preliminaries with a review of existing algorithms.
In section 3, we detail the Marching-Cubes based simplification algorithm and
its optimizations to obtain a polyhedron from a discrete object with a reduced
number of facets.

2 Preliminaries

2.1 The Marching-Cubes Algorithm

Let us assume a discrete 3D image that maps a value V (x, y, z) ∈ R to each grid
point (x, y, z) ∈ Z3. The image V can also be considered as a density function
on a subset of Z3. The Marching-Cubes (MC) algorithm was first introduced by
Lorensen and Cline [7] to extract a triangulated surface from V corresponding
to an iso-density value. The first application of this work was the visualization of
iso-density surfaces in medical imaging. We first consider cubic cells of coordinate
(x, y, z) whose vertices are placed on the 8 input samples (x+ i, y + j, z + k) of
the volume data, with i, j, k ∈ {0, 1}. The triangulated iso-surface given by the
Marching-Cubes algorithm is locally computed according to the way the surface
intersects each cell of V using a look-up table with 14 possible configurations
(see Figure 1). The coordinates of the MC vertices along an edge of a cell is given
by an interpolation process between the values of V and the chosen iso-level.

x

z

y

1 2 3 5 6

7 8 9 10 11 12 13

40

Fig. 1. The 14 different standard triangulations of the Marching-Cubes algorithm

Note that some of original Lorensen and Cline’s configurations may lead to
ambiguities in the reconstruction and thus construct surfaces with holes. To have
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properties on the topology of the reconstruction, we need a process that disam-
biguates the configurations according to the topology of the input discrete sur-
face. The configurations presented in the Figure 1 correspond to a (18, 6)−surface
[8,12]. Hence, if the binary object is 6-connected, the triangulated surface is a
combinatorial 2-manifold, i.e. closed, oriented and without self crossing [8,12].
In the following, we consider the Object Boundary Quantization (OBQ) scheme,
also called Gauss digitization [13]: given an region P ⊂ R3 in R3, the OBQ
digitization of P is the set of voxels P ∩Z3. If a binary object is considered, i.e.
if V (x, y, z) ∈ {0, 1}, for all x, y and z, from [4], we have the following lemma
(see Figure 2):

Lemma 1 ([4]). The Marching-Cubes surface of a digital object, obtained with a
an iso-level in ]0, 1[, is a reversible polyhedrization of the binary object according
to the Object Boundary Quantization model.

Fig. 2. A binary 3D object and the obtained Marching-Cubes surface

Given a discrete object, the surfels are cellular elements of the unit cube and are
defined as the square shared by a voxel p in the binary object and a voxel q in
its complementary, denoted {p, q}. Hence, according to the MC configurations,
we have a one-to-one and onto mapping between MC vertices and surfels of the
binary object. Indeed, vertices of the MC surface belongs to the ]pq[ straight
line segment (the vertex cannot be neither p nor q). Furthermore, it is easy to
see that moving a MC vertex along its ]pq[ intervals do not change the result of
Lemma 1.

In the following, we propose a reversible polyhedrization based on a simplifi-
cation of the Marching-Cubes surface.

2.2 Digital Plane Segmentation of a Discrete Surface

In order to simplify the Marching-Cubes surface, we compute a decomposition
of the digital surface into coplanar set of surface elements. Consider a set of
voxels V , this set is a piece of digital plane with x ≥ z, y ≥ z and z > 0 if
and only if there exists a Euclidean plane containing V in its digitization. In
other words, there exists (α, β, γ) in [0, 1]2 × [0, 1[ such that V is included in
P = {(x, y, z) ∈ Z3 | 0 ≤ αx+ βy+ γ + z < 1} [2,14,13]. Thus we can define the
preimage of V as the set of (α, β, γ) parameters fulfilling this condition [10,3,14].
In the following, we call digital plane segments (DPS) coplanar sets of voxels.
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This preimage is an efficient tool for the recognition process: given a set of voxels
V , decide if V is a DPS and if so, compute its parameters [10,3,15].

The definition given previously assumes that a direction is chosen before the
recognition process. Generalizing the directional constraint, each direction of
the set D = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)} defines a
preimage associated to a given set of voxels. In most cases, only one of those
preimages is not empty for a given set of voxels. Considering a direction d ∈ D
and according to the preimage definition, the preimage is the set of Euclidean
planes crossing all the segments [pq[ where p is a voxel of V and q is the voxel
of coordinates p + d. Note that in practice, p is a voxel of the object while q
belongs to the background.

The decomposition algorithm we use is the one presented in [4], which consists
in labeling every surfel of the object’s surface such that the following property
is fulfilled:

Lemma 2 ([4]). Consider a surface surfel s defined by the two voxels p and
q = p + d, d ∈ D. If s is labeled with P , then all the Euclidean planes of the
preimage of P in direction d cross the segment [pq[.

This property is of major importance for our problem. Indeed, let (α, β, γ) be an
Euclidean plane of the preimage associated to s. According to this property, it
crosses the segment [pq[ at a point r. If we move v to r, i.e., if we project v onto
(α, β, γ) in the pq direction, we do not change the digitization of v. Note that it
is straightforward to consider intervals ]pq[ instead of intervals [pq[, we just have
to handle strict inequalities in the digital plane definition without changing the
algorithms.

3 Marching-Cubes Simplification and Optimization

Since there is a one-to-one and onto mapping between the MC vertices and the
surfels of the input discrete object, we introduce a label on MC triangles as
follows:

Definition 1 (Homogeneous and non-homogeneous triangle). Let T be
a triangle of the MC surface, T is homogeneous (H) if its three vertices are
associated to surfels belonging to the same digital plane. Otherwise, T is called
non-homogeneous (NH). If T is homogeneous, T is labeled with the digital plane
segment label of its vertices.

Furthermore, we can define the 2-NH triangle (resp. 3-NH triangle) if the num-
ber of distinct discrete plane segments associated to its vertices is exactly 2
(resp. 3).

In the following, we introduce a projection process of a MC vertex onto an
Euclidean plane: let v be a MC vertex and p, q be the two voxels (p belongs
to the object and q to the background) such that v is associated to the surfel
{p, q}. Thus, only the projection of v onto an Euclidean plane P according to
the pq direction is considered.
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3.1 Homogeneous Triangles Case

Using [4], we have the following result on H-triangles:

Lemma 3 ([4]). Let v be a vertex of an H-triangle, let P be an Euclidean plane
from the preimage of the discrete plane associated to the triangle. The projection
of v onto P does not change neither the reversibility nor its topological properties
of the global surface.

This lemma can easily be proven by definition and properties of the discrete
plane segmentation process and using Lemma 2.

In [4], the authors design a simplification algorithm based on the previous
lemma to remove the homogeneous triangles: let S be a connected set of H-
triangle with the same label, they extract from the DPS preimage associated to
S an Euclidean plane P . Then, if we project all vertices of S onto P , triangles in
S become coplanar. Finally, a post-processing step converts all connected sets of
H-triangles with the same label into a single facet. At each step of this algorithm,
we ensure the reversibility property and the final surface is still a combinatorial
2-manifold. Note that no assumption is needed during the choice of the plane P .

As presented in Figure 8, for each connected set of H-triangle with the same
label, we have obtained a facet. NH-triangles allow to sue together all the facets
maintaining the topological property of the polyhedron.

In the next section, we present a linear programming framework to extract,
from the preimage, an appropriate Euclidean plane P in order to remove NH-
triangles.

3.2 Non-homogeneous Triangles Case

The basic idea to remove the NH-triangles consists in adding linear constraints
in the DPS preimages. Then, the choice of the Euclidean plane P is made by a
linear inequality system solver.

However, to have an efficient algorithm, we restrict the problem using the
following two heuristics:

Local analysis: let us examine the 2D reconstruction presented in the Figure
3. If we consider the OBQ scheme, both polygons are correct regarding to
the reversibility property. However, the visual aspect of the dashed polygon
compared to the initial binary object is worse than the bold one. Hence, our
reconstruction is restricted to a polyhedron defined in the cells defined by
the MC surface. More precisely, when a modification of an NH triangle is
performed, the result must belong to the MC cell associated to the triangle.
This heuristic is a restriction on the possible reconstruction but it allows
to design efficient algorithms since the surface properties (reversibility and
topology) can be ensure using local analysis. Other arguments justifying this
approach are based on the fact that the OBQ digitization scheme associated
to MC surfaces is not a complete digitization model [16].

Linear programming problem in dimension 3: during the DPS recogni-
tion process, we have used linear programming algorithms in dimension 3 to
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compute the preimages[10,3,15]. In this optimization process, the dimension
of the linear constraint system that conducts the NH triangle simplification
must be bounded by 3. Even if this choice influences and reduces the scope
of the algorithm, we limit the computational cost of the linear programming
solver this way. Furthermore this process is still consistent with the DPS
preimage parameter space.

Fig. 3. (left): Two possible polygonalizations of a binary object (dark grey dots). The
grey segment represent the ]pq[ intervals in the OBQ scheme. (right): The light grey
area define the allowed location of the polygon vertices we use (hence only the bold
polygon in the left figure would be considered in our algorithm).

Using these heuristics, the process can be summarized as follows: when a NH
triangle T is considered, two different cases may occur during the simplification
process (see Figure 4):

– remove an edge from T : in this case, the edge is collapsed into a point.
Furthermore, such a point belongs to a face of the MC cell containing T .
Hence, a 2D processing is used to constraint the new point to be in the MC
cell (see Figure 5).

– Remove a triangle : the triangle is collapsed into a single point and we have
to ensure that the point belongs to the MC cell.

D

A

B

D

(a)

 D D

(b)

Fig. 4. Illustration of the removal of an edge (a) and a triangle (b) of the MC surface

Let T be a NH-triangle, to check if an edge of T can be removed, we consider
the three MC cell faces on which T edges are defined (see Figure 5). From the
three edges of T , at least one out of the three edges of T is such that its vertices
do not belong to the same discrete plane segment. Let P1 and P2 be the two
preimages associated to such edge e. The edge e can be removed if for all P1 ∈ P1
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and P2 ∈ P2, the intersection of P1 and P2 belongs to the MC cell face associated
to e. It is not possible to linearly express those conditions without changing the
dimension of the linear programming problem. To solve that point, we consider
two approaches to obtain sufficient conditions on the intersection of P1 and P2.

Fig. 5. Illustration of the 2-D decomposition of a MC cell into its faces in order to
decide if an edge of a cell triangle can be removed

Global Simplification. First of all, we have a global simplification process to
remove NH elements. In this step, we only consider the simple MC configurations,
i.e. the configurations with a single surface patch (1, 2, 5, 8, 9, 11 in the Figure
1). In the other configurations, we have to check the intersection of the two
surface patches and we cannot add linear constraints to ensure the topology
during the global simplification. The analysis of these configurations is done
during the greedy simplification.

To obtain sufficient conditions on the intersection of P1 and P2, we can list
three cases (see Figure 6), depending of how many voxels belong to the object
on the considered face of the MC cell. If only one voxel A belongs to the object
on a face ABCD, then the plane P1 associated to the surfel {A,B} crosses the
segment CD and P2 associated to the surfel {A,D} crosses the segment BC.
Thus we ensure that the intersection of P1 and P2 is inside the square. If we
consider the case where two voxels belongs to the object on a face, then there is
no interesting linear constraints. If we consider the case where only one voxel C
does not belong to the object on a face ABCD, then we will have the plane P1

associated to surfel {D,C} cross the segment AB and the plane P2 associated
to surfel {B,C} cross the segment AD. As in the first case, those conditions
ensure that the intersection of the two planes is inside the square (see Figure 6).
Finally, these constraints lead to simple linear constraints in dimension 3 that
reduce both the preimages P1 and P2 to preimages P ′

1 and P ′
2. Hence, if P ′

1 and
P ′

2 are not empty, whatever P1 ∈ P ′
1 and P2 ∈ P ′

2, the intersection of P1 and
P2 belongs to the face ABCD of the MC cell, ensuring the reversibility of the
modified surface. If one of the two preimages is empty, the edge is not removed.

Greedy Simplification. This step consists in fixing planes one by one, to have
more flexible constraints on the preimage of the remaining planes, and to be able
to handle more cases. So the scheme is to fix one Euclidean plane P1 (arbitrarily
chosen in its associated preimage P1). Then, if T is a NH triangle associated to
the DPS represented by the Euclidean plane P1 and another DPS with preimage
P2, we insert linear constraints on P2 to control the intersection between P1 and
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Fig. 6. The three possible cases to define sufficient conditions to remove an edge of a
NH triangle

P2. Since P1 is fixed, the intersection point being inside the MC cell face is given
by linear constraints in the P2 parameter space.

Indeed let us consider a plane P1 and a mobile plane P2 on a face ABCD
(see Figure 7), if I is the intersection of P1 and P2, to ensure that I is inside the
square ABCD, we have the constraints:{

xA < xI < xA + 1
yA < yI < yA + 1

As xA and yA are constants and xI , yI only depend on the P2 parameters, these
inequalities result in linear constraints.

y

x

  A

C

B

D

P1

P2 I

y

x

  A

C

B

D

P1
P2

I

Fig. 7. Illustration of the greedy simplification approach

Finally, if we fix a plane P1 for a DPS, we propagate this piece of information
to each neighboring DPS preimages. This process is greedy since we do not
backtrack on the choice of P1. Once all neighboring DPS have been considered,
the greedy step can choose another Euclidean plane in another preimage and
the process starts over.

Concerning 3-NH triangles, we need to ensure that the intersection of the 3
planes is inside the MC cell associated to the triangle. To do so, we need 2 of the
3 associated planes to be fixed to get linear constraints from the inequalities:⎧⎨⎩

xA < xI < xA + 1
yA < yI < yA + 1
zA < zI < zA + 1

Furthermore, we need to constrain the planes such that their intersection two
by two with the associated face of the MC cell is inside that face. This leads to
the same constraints as in the 2-NH case.
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3.3 Overall Algorithm

In this section, we sketch the overall simplification algorithm based on the two
approaches presented above.

The first step is to convert the discrete object into a triangular polyhedron,
this is done with the Marching Cubes algorithm previously presented. The next
step is to segment the discrete object surface into DPS, each of these segments
being associated with their preimage. Note that we only consider the NH trian-
gles such that their associated MC configuration is in (1, 2, 5, 8, 9, 11) (see Figure
1). Indeed, other configurations lead to two or three components of the MC sur-
face and defining sufficient conditions to avoid self-crossings of the surface using
constraints in dimension 3 would have led to too restrictive conditions. Hence
these triangles are not optimized.

In the first place, we perform a global optimization. We have an unsorted list
of all NH triangles processed one by one. If we have a 2-NH triangle, we can
arbitrarily remove any of the two edges since it does not change anything on the
final number of facets. The removal consists in adding constraints over the two
planes. If a constraint makes one of the preimage empty, then the constraints are
removed, and the removal is handled in the next optimization. In this step, we
do not handle the 3-NH because we cannot write linear constraints for a triangle
removal.

When all triangles have been processed, we start with the second step of the
NH removal. We arbitrarily choose a 2-NH triangle and fix one of its planes with
the barycenter of its preimage. When this is done, we add constraints over the
second plane to remove that triangle, if possible. Then we move to an adjacent
triangle and repeat the process. If it is a 3-NH, we skip it until two out of its
planes are fixed. When a triangle cannot be removed and the list of adjacent
triangles is empty, we choose a new 2-NH triangle and apply the same process
on that one. At the end of the process, all planes have been fixed and we can
displace all vertices on the intersection of their euclidean plane and their ]pq[
segment. Finally, we group coplanar triangles into polygons.

This algorithm can be sketched as follows:

1. Computation of the MC surface
2. Decomposition of the discrete object surface into DPS
3. Optimization on NH triangles, i.e. find an Euclidean plane in each DP preim-

age:
(a) Step 1: global optimization, processing of all 2-NH triangles
(b) Step 2: greedy optimization, fixing planes one by one to try to remove

remaining NH triangles
4. Vertices displacements and simplification of coplanar triangles.

Lemma 4. The algorithm presented above constructs a reversible polyhedron
which is a combinatorial 2-manifold.

Proof. The proof is straightforward according to Property 2. To prove the topol-
ogy, since the MC surface is a combinatorial 2-manifold [8,12] and we can locally



422 D. Coeurjolly et al.

prove that treatments on both H triangle and NH triangle do not change the
topology: no holes are created, no self-crossings are introduced since we remain
on the MC cell, and both the orientation and the combinatorial aspects of the
surface are maintained. Hence, the final overall surface is still a combinatorial
2-manifold (see [4] for details on the H triangle treatment). Furthermore, since
each new element (facets and vertices) belongs to the MC cells in which the
surface is defined, the OBQ digitization of the final polyhedron exactly corre-
sponds to the input set of voxels. Note that since the topology is preserved, the
polyhedral surface is still oriented and the OBQ digitization scheme is still well
defined. �

The computational cost of the algorithm is highly dependent on the size of
the DPS preimages [15,17]. Indeed, a bound on these objects allow us to have
computational costs for the DPS decomposition step and for the efficiency of the
linear programming solver used to reduce the preimages.

4 Experiments and Results

In the experimentation, the digital plane segmentation has been performed using
an implementation of the algorithm proposed in [3]. The output of this algorithm
is a labeling of each surfel with a digital plane segment label, associated to a

Fig. 8. Comparison between the normal simplification, and the simplification including
NH triangles removal. From left to right : facetized voxel representation, MC surface,
normal simplfication, and simplification using NH triangles removal.
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Table 1. Some results of the presented work

MC Removal rate
object # MC triangles # H triangles # NH triangles NH triangles global

pyramid 4 512 342 170 62% 87%
rd cube 7 2024 1720 304 89% 98%
sphere 10 3656 2200 1456 37% 75%

preimage. The modification of the preimages during the NH-triangle simplifica-
tion have been performed using a linear programming library in dimension 31.

Figure 8 and Table 1 show some experiments. We can notice that in all pre-
sented cases, the global removal rate is always greater than 75% which also holds
for most experimented objects. The NH triangle removal shows an improvement
of at least 30% and up to 60% compared to the initial algorithm. On the rounded
cube, the algorithm could remove almost all triangles keeping only one polygon
for each face, one for some edges, and some triangles for corners where the al-
gorithm was not really efficient. On the sphere we see one of the worst result of
the algorithm which is still decent, the digital plane recognition showed pretty
good result considering we were processing a sphere and the NH simplification
could remove a good part of the remaining triangles.

5 Conclusion

In this article, we have presented an algorithm to construct a reversible polyhe-
dron from a digital plane segmentation of a binary object. Once the digital plane
segmentation is computed, the proposed algorithm is based on a simplification
and an optimization of the Marching-Cubes surface. The next step for this work
would be to perform exhaustive comparisons between this algorithm and classi-
cal simplification schemes of MC surfaces in the Modeling community according
to the number of remaining facets. Note that compared to these algorithms, the
reversible property ensured by our technique is an important advantage. Note
that to extend this work to handle large volumes, we only have the bottleneck
implied by the digital plane decomposition step: to have exact computations,
a rational arithmetic must be used to recognize the DPS. When large digital
plane segments are considered, the arithmetical size of internal rational num-
bers quickly increases. Hence, further preliminary analysis on the computational
aspects of the DPS recognition are required.
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161 rue Ada - 34392 Montpellier Cedex 5, France

{fiorio, toutant}@lirmm.fr

Abstract. In the framework of the arithmetic discrete geometry, a dis-
crete object is provided with its own analytical definition corresponding
to a discretization scheme. It can thus be considered as the equivalent,
in a discrete space, of a Euclidean object. Linear objects, namely lines
and hyperplanes, have been widely studied under this assumption and
are now deeply understood. This is not the case for discrete circles and
hyperspheres for which no satisfactory definition exists. In the present
paper, we try to fill this gap. Our main results are a general definition
of discrete hyperspheres and the characterization of the k-minimal ones
thanks to an arithmetic definition based on a non-constant thickness
function. To reach such topological properties, we link adjacency and
separatingness with norms.

1 Introduction

Discrete lines, namely the analogue of Euclidean lines in the discrete space
Z2, have been widely studied. At first, J. Bresenham [1], H. Freeman [2] and
A. Rosenfeld [3] have followed an algorithmic approach and have defined them
as digitizations of Euclidean lines. They have provided tools for drawing and
recognition [1, 2, 3]. Later, J.-P. Reveillès has initiated the arithmetic discrete
geometry [4] and has introduced the notion of arithmetic discrete line as so-
lutions of a system of Diophantine inequalities, that is, as the subset of Z2

contained in a band. Such an approach enhances the knowledge of discrete lines.
In addition to give new drawing [4] and recognition [5] algorithms, it directly
links topological and geometrical properties of an arithmetic discrete line with
its definition. For instance, its connectedness is entirely characterized by the
width of the band, that is, its arithmetic thickness. In d-dimensional discrete
spaces, the arithmetic discrete hyperplane [6] is a natural generalization of the
arithmetic discrete line [4].

Similarly, first investigations into discrete circles have been algorithmic
ones [7, 8, 9]. Discrete circles were only considered as digitizations of Euclid-
ean circles. It is thus natural to ask whether or not J.-P. Reveillès’ arithmetic
approach is extendable to discrete circles and can supply them with an arith-
metic definition. Such an extension has been proposed by É. Andres [10]. He
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has defined the discrete analytical hypersphere as solutions of a system of Dio-
phantine inequalities, or in other words, as the subsets of Zd contained in a ring
of width its arithmetic thickness. Concentric discrete analytical hyperspheres
tile the discrete space, but one does not retrieve topological properties as strict
k-connectedness or k-minimality. Recently, an arithmetic definition implying a
non-constant thickness function was proposed in [11]. It provides discrete circles
of integer parameters with 0-minimality or 1-minimality and gives an arithmetic
characterization of the well-known Bresenham’s circle [7].

In the present paper, we focus on discrete hyperspheres and on the arithmetic
approach to generalize results of [11]. We deeper study the notion of thickness.
In particular, we characterize the k-minimal arithmetic discrete hypersphere by
relating the thickness function to a particular norm, the k-minimality one, and
to the local behaviour of the hypersphere.

The paper is organized as follows. First, we begin with some recalls on discrete
geometry useful to fully understand the matter. Second, works already done on
the discrete analytical hypersphere [10] and the arithmetic discrete circle [11] are
presented. A general definition is then proposed to unify the both approaches.
Next, we focus on the topological properties of d-dimensional discrete sets to
characterize the k-minimal arithmetic discrete hypersphere.

2 Basic Notions

The aim of this section is to introduce the basic notions of discrete geome-
try used throughout the present paper. Let d be an integer greater than 1
and let {e1, . . . , ed} denote the canonical basis of the Euclidean vector space
Rd. Let us call discrete set any subset of the discrete space Zd. The point
x =

∑d
i=1 xiei ∈ Rd, with xi ∈ R for each i ∈ {1, . . . , d}, is represented by

(x1, . . . , xd). A point v ∈ Zd is a voxel in a d-dimensional space.

Definition 1 (k-adjacency or k-neighborhood). Let d be the dimension of
the discrete space and k ∈ N such that k < d. Two voxels v = (v1, . . . , vd) and
w = (w1, . . . , wd) are k-neighbors or k-adjacent if and only if:

‖v−w‖∞=max{|v1−w1|, . . . , |vd−wd|} = 1 and ‖v−w‖1 =
d∑

i=1

|vi−wi| ≤ d−k .

Let k ∈ {0, . . . , d− 1}. A discrete set E is said to be k-connected if for each pair
of voxels (v,w) ∈ E2, there exists a finite sequence of voxels (s1, . . . , sp) ∈ Ep

such that v = s1, w = sp and the voxels sj and sj+1 are k-neighbors, for each
j ∈ {1, . . . , p− 1}.

Let E be a discrete set, v ∈ E and k ∈ {0, . . . , d − 1}. The k-connected
component of v in E is the maximal k-connected subset of E (with respect to
set inclusion) containing v.

Definition 2 (k-separating set). A discrete set E is k-separating in a discrete
set F if its complement in F, E = F\E, has two distinct k-connected components.
E is called a separator of F.
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Definition 3 (k-simple point, k-minimality). Let d be the dimension of the
space and k ∈ N such that k < d. Let also F and E be two discrete sets such that
E is k-separating in F . A voxel v ∈ E is said to be k-simple if E \ {v} remains
k-separating in F. Moreover, a k-separating discrete set in F without k-simple
points is said to be k-minimal in F.

3 Arithmetic Discrete Hyperspheres

Initiated by J.-P. Reveillès with the arithmetic definition of the discrete line [4],
the arithmetic discrete geometry has led to a wide literature, mainly about linear
objects. Discrete lines [4], planes and hyperplanes [6] are now well characterized
and only one parameter, the arithmetic thickness ω, controls their topological
properties. As far as we know, no satisfactory generalization to non-linear objects
exists. É. Andres has defined the discrete analytical hypersphere [10] so as to
obtain concentric hyperspheres tiling the space.

Definition 4 (Discrete analytical hypersphere [10]). Let d be the dimen-
sion of the space. Let r ∈ R

+, o = (o1, . . . , od) ∈ Rd and ω ∈ R
+. The discrete

analytical hypersphere S(o, r, ω) of center o, radius r and arithmetic thickness
ω, is the subset of Zd defined by:

S(o, r, ω) =

{
v ∈ Zd |

(
r − ω

2

)2

≤
d∑

i=1

(vi − oi)2 <
(
r +

ω

2

)2
}

. (1)

However, since no topological characterization is possible with this definition,
the notion of arithmetic discrete circle was proposed in [11]. Its analytical de-
scription is not based on the usual constant arithmetic thickness ω, but on a
thickness function ω : R2 −→ R

+. The importance of keeping apart the analyt-
ical expression of the considered curve and the approximation induced by the
discrete space, that is, the thickness, was also highlighted. Finally, those con-
siderations lead to partial topological results on discrete circles. The naive and
standard circles with integer parameters were characterized and Bresenham’s
circle [7] was provided with an arithmetic definition. For that, the thickness
function is regarded as a measurement, by the usual discrete norms ‖ · ‖1 and
‖ · ‖∞, of the local behaviour of the circle.

Definition 5 (Arithmetic discrete circle [11]). Let o = (o1, o2) ∈ R2, r ∈
R+. Let ω : R2 −→ R be a map. The arithmetic discrete circle C(o, r, ω) of
center o, radius r and thickness function ω is the following set:

C(o, r, ω) =
{
v ∈ Z2 | −ω(v)

2
≤ (v1 − o1)2 + (v2 − o2)2 − r2 <

ω(v)
2

}
. (2)

In the present paper, we improve this last definition and generalize it to discrete
hyperspheres, namely the d-dimensional case.
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Definition 6 (Arithmetic discrete hypersphere). Let d be the dimension
of the space, r ∈ R∗

+ and o = (o1, . . . , od) ∈ Rd. Let ω1 : Rd −→ R− and
ω2 : Rd −→ R+ be maps. The arithmetic discrete hypersphere S(o, r, ω1, ω2)
with center o, radius r and thickness functions ω1 and ω2 is:

S(o, r, ω1, ω2) =

{
v ∈ Zd | ω1(v) ≤

d∑
i=1

(vi − oi)2 − r2 < ω2(v)

}
. (3)

Contrary to Definition 5, Definition 6 includes two distinct thickness functions
ω1 and ω2. That way, the global thickness can be distributed more or less inside
or outside the hypersphere. This feature is interesting when one consider non-
linear analytical expression and when thickness should not be the same inside
or outside the curvature.

Such a definition includes all previous attempts to define arithmetically dis-
crete hyperspheres. In particular, the set of discrete analytical hyperspheres (see
Definition 4) introduced by É. Andres [10] is included in the set of arithmetic
discrete hyperspheres. They are defined using two thickness functions ω1 and ω2

such that ω1 �= −ω2.

Remark 1 (Discrete Analytical Hypersphere [10] and Arithmetic Discrete Hyper-
sphere). The discrete analytical hypersphere S(o, r, ω) is the arithmetic discrete
hypersphere S(o, r, ω1, ω2) such that:

ω1 : Rd −→ R− ω2 : Rd −→ R+

x �−→ −rω +
ω2

4
x �−→ rω +

ω2

4
.

In the same way, the arithmetic discrete circle introduced in [11] is an arithmetic
discrete hypersphere.

Remark 2 (Arithmetic Discrete circles [11] and Arithmetic Discrete Hyper-
spheres). An arithmetic discrete circle C(o, r, ω) is an arithmetic discrete hy-
persphere S (o, r, ω1, ω2) such that:

ω1 : Rd −→ R− ω2 : Rd −→ R+

x �−→ −
ω(x)

2
x �−→

ω(x)
2

.

Definition 6 allows to build a considerable amount of discrete objects and some
do not look like what is expected from an hypersphere. Consequently, as in the
case of the arithmetic discrete circle [11], suitable thickness functions are needed
to characterize discrete hyperspheres with basic topological properties.

4 Topology of d-Dimensional Discrete Sets

Before defining suitable thickness functions, we have to determine which topo-
logical properties are meaningful for hyperspheres. For that, we focus on the
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more general case of d-dimensional discrete sets. The most studied one is the
arithmetic discrete hyperplane [6] and the minimality (or the separatingness) is
its best characterized topological property [6]. It seems anyway to be the most
evident property for all d-dimensional discrete objects since it intuitively refers
to the notion of objects without holes.

4.1 k-Adjacency Norm

The k-separatingness, and so the k-minimality, are reached when none of the
voxels on one side of the separator is k-adjacent with a voxel on the other side.
The definition of k-adjacency given in Section 2 is not easy to handle. Hence,
we propose an equivalent and more formal expression. Indeed, two voxels are k-
adjacent if they share at least k coordinates and among the others, the greatest
difference is equal to 1.

Theorem 1. Let d be the dimension of the space. Let k ∈ N such that k < d.
Two voxels v = (v1, . . . , vd) and w = (w1, . . . , wd) are k-neighbor or k-adjacent
if and only if:

|vσ(d) − wσ(d)|+
k∑

i=1

|vσ(i) − wσ(i)| = 1 , (4)

with σ the permutation of the set {1, . . . , d} such that, for all i ∈ {1, . . . , d− 1},
|vσ(i) − wσ(i)| ≤ |vσ(i+1) − wσ(i+1)|.

Proof
v and w are k-adjacent.⇔ max

1≤i≤d
{|vi − wi|} = 1 and

d∑
i=1

|vi − wi| ≤ d− k.

⇔ |vσ(d) − wσ(d)| = 1 and
k∑

i=1

|vσ(i) − wσ(i)| = 0.

⇔ |vσ(d) − wσ(d)|+
k∑

i=1

|vσ(i) − wσ(i)| = 1.

In fact, the k-adjacency can be characterized by a norm that we call k-adjacency
norm.

Proposition 1. Let d be the dimension of the space and k ∈ N such that k < d.
The map [·]k defined by:

[·]k : Rd −→ R

x �−→ |xσ(d)|+
k∑

i=1

|xσ(i)| ,
(5)

with σ the permutation of the set {1, . . . , d} such that, for all i ∈ {1, . . . , d− 1},
|xσ(i)| ≤ |xσ(i+1)|, is a norm.

Proof. Here, positivity, scalability and triangle inequality are evident properties.
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Definition 7 (k-adjacency norm). Let d be the dimension of the space and
k ∈ N such that k < d. We call k-adjacency norm, [·]k.

Notice that the k-adjacency norm is related to usual discrete norms ‖ · ‖1 and
‖ · ‖∞. Let d be the dimension of the space and v ∈ Rd, then [v]0 = ‖v‖∞ and
[v](d−1) = ‖v‖1.

4.2 (λ, k)-Adjacency, (λ, k)-Separating Set and (λ, k)-Hull of a
Voxel Set

In Definition 6, we propose to distribute the thickness inside and outside the hy-
persphere. From a practical point of view, we can then consider the arithmetic
discrete hypersphere as the union of two discrete hyperspheres, an outer one and
an inner one. Since we are interesting in k-minimal discrete hyperspheres, inner
and outer constituting hyperspheres can be thinner than k-minimal ones. So we
need a notion more general than k-separatingness to define them. Since we char-
acterize k-adjacency with a norm, we can extend it from the discrete space to the
continuous one and define the (λ, k)-adjacency where distance between adjacent
points can be a real number. It follows a generalization of the k-separating sets,
the (λ, k)-separating sets. We thus control precisely the thickness of the set of
voxels and can distribute the thickness as mentioned above.

Definition 8 ((λ, k)-adjacency). Let d be the dimension of the space and k ∈
N such that k < d. Let x ∈ Rd and y ∈ Rd. The d-dimensional points x and y
are (λ, k)-adjacent if and only if [x− y]k ≤ λ.

From (λ, k)-adjacency, the notion of (λ, k)-connected sets follows. It is thus nat-
ural to define (λ, k)-separating sets from (λ, k)-adjacency.

Definition 9 ((λ, k)-separating set). A set E is (λ, k)-separating in a set F
if its complements in F, E = F\E, has two distinct (λ, k)-connected components.

With Definition 9, we can distinguish two parts in a set of voxels E ⊂ U, its
discrete (λ, k)-hull, which contains its voxels (λ, k)-adjacent with the exterior,
and its (λ, k)-interior, (λ, k)-separated from the exterior.

Definition 10 ((λ, k)-hull and (λ, k)-interior). Let d be the dimension of the
space, k ∈ N such that k < d and λ ∈ R. Let also O be a set of voxels. The
(λ, k)-hull, H(λ,k)(O), of O based on the normal thickness λ relatively to the
k-adjacency norm [·]k is defined as follows:

H(λ,k)(O) =
{
v ∈ O | ∃w ∈ Zd\O, [v−w]k ≤ λ

}
. (6)

The (λ, k)-interior of O is then I(λ,k)(O) = O\H(λ,k)(O).

We focus on particular sets of voxels, the ones described by an analytical expres-
sion. So we now take care of the discrete hull of a discrete set defined in such a
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way. Let f : Rd −→ R be a map. Then we define the discrete set O(f,+) such
that:

O(f,+) =
{
v ∈ Zd | f(v) ≥ 0

}
.

Taking into account the map f , the (λ, k)-hull of the discrete set O(f,+) can be
rewritten as follows:

H(λ,k)(O(f,+)) =
{
v ∈ Zd | ∃x ∈ Rd, f(x) = 0 ∧ f(v) ≥ 0 ∧ [v −w]k < λ

}
.
(7)

According to Equation (7), a (λ, k)-hull can be seen as a discrete object, based on
a map f , (λ, k)-separating the discrete space. Unfortunately the set of voxels it
contains is difficult to determine since the definition brings into play two different
measurements, namely the norm [·]k and the function f .

5 (λ, k)-Separating Discrete Hyperspheres

The notion of (λ, k)-hull allows to define discrete d-dimensional hyperspheres
of center o = (o1, . . . , od) ∈ Zd and radius r ∈ R∗

+ with the particular map s
defined by:

s : Rd −→ R
x = (x1, . . . , xd) �−→

∑d
i=1(xi − oi)2 − r2 .

To go further, we consider the restriction of s, sE : E −→ R, to the subspace
E ⊂ Rd such that:

E =
{
x = (x1, . . . , xd) ∈ Rd | ∀i ∈ {1, . . . , d} , xi − oi ≥ 0

}
.

The (λ, k)-hull H(λ,k)(O(sE ,+)) of the discrete set O(sE ,+) in E is then:

H(λ,k)(O(sE ,+)) =
{
v ∈ (Zd ∩ E) | ∃x ∈ E, sE(x) = 0 ∧ sE(v) ≥ 0

∧ [v −w]k < λ} .

Since sE(x) = 0 and sE(v) ≥ 0, we have the following equalities:

sE(v) = |sE(v)− sE(x)| ,

=

∣∣∣∣∣
d∑

i=1

2(vi − oi)(vi − xi)− (vi − xi)2
∣∣∣∣∣ .

Since ∀i ∈ {1, . . . , d}, vi − oi ≥ 0, the absolute values are not required:

sE(v) =
d∑

i=1

2(vi − oi)(vi − xi)− (vi − xi)2 .

With the last condition on H(λ,k)(O(sE ,+)), [v − x]k < λ, we give an upper
bound on sE(v) and:

H(λ,k)(O(sE ,+))=

{
v ∈ (Zd ∩ E) | 0 ≤ sE(v) <

d∑
i=d−k

2λ(vσ(i) − oσ(i))− λ2

}
,
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with σ the permutation of the set {1, . . . , d} such that, for all i ∈ {1, . . . , d− 1},
|vσ(i) − oσ(i))| ≤ |vσ(i+1) − oσ(i+1))|. Finally, thanks to the symmetries of s, we
extend this last result to H(λ,k)(O(s,+)):

H(λ,k)(O(s,+)) =

{
v ∈ Zd | 0 ≤ s(v) <

d∑
i=d−k

∣∣2λ|vσ(i) − oσ(i)| − λ2
∣∣} . (8)

According to Definition 6 and intrinsic separating properties, the discrete set
H(λ,k)(O(s,+)) is a good candidate for being an arithmetic discrete hypersphere.
Before introducing such a definition, we propose notations to express the upper
bound of the inequality in expression (8). Indeed, one can see it as a norm,
depending on k, applied on a vector, depending on the local behaviour of s.

Proposition 2. Let d be the dimension of the space and k ∈ N such that k < d.
The map ] · [k defined by:

] · [k : Rd −→ R

x �−→
d∑

i=d−k

|xσ(i)| ,
(9)

with σ the permutation of the set {1, . . . , d} such that, for all i ∈ {1, . . . , d− 1},
|xσ(i)| ≤ |xσ(i+1)|, is a norm.

Proof. Here, positivity, scalability and triangle inequality are evident properties.

Definition 11 (k-minimality norm). Let d be the dimension of the space and
k ∈ N such that k < d. We call k-minimality norm, the norm ] · [k.

Similarly to the k-adjacency norm, the k-minimality norm is related to usual
discrete norms ‖ · ‖∞ and ‖ · ‖1. One has ]v[(d−1) = ‖v‖1 and ]v[0 = ‖v‖∞.

The upper bound in Equation (8) can be considered as the k-minimality norm
of a particular vector. To achieve our goal to obtain a thickness depending on
the local behaviour of s, and more generally of a function, we propose to define
the Discrete Variation Map of a function, according to a thickness parameter:

Definition 12 (Discrete variation map). Let d be the dimension of the space.
Let λ ∈ R and f : Rd −→ R be a function. The discrete variation map Δλf of
normal thickness λ related to the function f is:

Δλf : Zd −→ Rd

v �−→
(
f

(
v +

∂1f(v)
|∂1f(v)|λe1

)
− f(v), . . . , f

(
v +

∂df(v)
|∂df(v)|λed

)
− f(v)

)
.

(10)

Now, we can define the (λ, k)-separating discrete hypersphere according to the
Definition 6 of an arithmetic discrete hypersphere.
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Definition 13 ( (λ, k)-separating discrete hypersphere). Let d be the di-
mension of the space and k ∈ N such that k < d. Let o = (o1, . . . , od) and
r ∈ R

+. Let λ1 ∈ R− and λ2 ∈ R+. The (λ, k)-separating discrete hypersphere
S(o, r, ω(λ1,k), ω(λ2,k)) with center o, radius r, normal thickness λ = λ2−λ1 and
related to the k-minimality norm is defined by:

S(o, r, ω(λ1,k), ω(λ2,k)) =
{
v ∈ Zd | ω(λ1,k)(v) ≤ s(v) < ω(λ2,k)(v)

}
, (11)

with ω(λ1,k)(v) = −]Δλ1s(v)[k and ω(λ2,k)(v) = ]Δλ2s(v)[k.

Remark 3. In Definition 13, we arbitrarily decide to consider a large inequality
outside the hypersphere and a strict one inside it. We also can do the opposite
choice without changing the properties stated below.

Due to the underlying notion of (λ, k)-hull, the (λ, k)-separating discrete hyper-
sphere has separating properties.

Fig. 1. Eighth of a 1-minimal discrete sphere with radius 9

Theorem 2 (k-separating discrete hypersphere). The (λ, k)-separating
discrete hypersphere S(o, r, ω(λ1,k), ω(λ2,k)) with normal thickness λ = λ2 − λ1,
such that λ ∈ [1,+∞[, is k-separating in Zd.

Proof (Sketch). The (λ, k)-hull of a discrete object (λ, k)-separates its interior
and the remaining discrete space. So the union of the (λ1, k)-hull of an object
and of the (λ2, k)-hull of its complement is (λ2 − λ1, k)-separating.

In particular, we characterize k-minimal arithmetic discrete hyperspheres. For
instance, a part of a 1-minimal sphere is drawn in Figure 1. We notice that voxels
in one of the 2-connected components of the exterior are 0-adjacent with voxels
of the other 2-connected component as expected.

Theorem 3 (k-minimal discrete hypersphere). The (λ, k)-separating dis-
crete hypersphere S(o, r, 0, ω(1,k)) is k-minimal in Zd for k ∈ {0, . . . , d − 1}.
(λ, k)-separating discrete hyperspheres S(o, r, ω(ε−1,k), ω(ε,k)) are also k-minimal
for ε ∈ [0, 1[ and k ∈ {1, . . . , d− 1}.
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Proof (Sketch). In a discrete hypersphere S(o, r, ω(ε−1,k), ω(ε,k)), a k-simple point
is a voxel which is just (k − 1)-connected with one of both k-connected com-
ponents of the exterior. Due to the symmetry of the hypersphere, if such a
configuration does not appear in the neighborhood of the voxels v such that
|v1 − o1| ) · · · ) |vd − od| ) (r/

√
d), it then appears nowhere and the dis-

crete hypersphere is k-minimal. Finally, we verify that (1, k)-separating discrete
hyperspheres S(o, r, 0, ω(1,k)) with k ∈ {0, . . . , d − 1} and S(o, r, ω(ε−1,k), ω(ε,k))
with k ∈ {1, . . . , d− 1} are k-minimal in Zd.

Now, we define naive and standard arithmetic discrete hyperspheres as already
done for arithmetic discrete hyperplanes. In Figure 2(a), we notice, as expected,
that some voxels in one side of the naive discrete hypersphere are 1-adjacent
with voxels on the other side. On the contrary, the standard discrete sphere in
Figure 2(b) does not have any hole.

(a) Eighth of a naive discrete sphere (b) Eighth of a standard discrete sphere

Fig. 2. Naive and standard discrete spheres with radius 9

Definition 14 (Naive and standard discrete hyperspheres). Let d be the
dimension of the space. A naive (respectively standard) discrete hypersphere is
a (d− 1)-minimal (respectively 0-minimal) one.

In the d-dimensional discrete space, the most studied object is the discrete hyper-
plane [6]. It is a generalization of the arithmetic discrete line [4]. Provided with
a particular arithmetic thickness, the arithmetic discrete hyperplane presents
basic topological properties, that is, the k-minimality [6]. Such a thickness can
be defined by combining the k-minimality norm and the discrete variation map
associated to the hyperplane. In Figure 3, k-minimal discrete planes are drawn
to be compared with k-minimal discrete spheres previously presented.

Proposition 3. Let μ ∈ R, n ∈ Rd. Let also p : Rd −→ R be a map such
that: ∀x ∈ Rd, p(x) = n · x + μ. The k-minimal arithmetic discrete hyperplane
P(n, μ, ωk) of normal vector n and translation parameter μ is defined as:

P(n, μ, ωk) = P(n, μ, 0, ω(1,k)) =
{
v ∈ Zd | 0 ≤ p(v) < ]Δ1p(v)[k

}
. (12)



Arithmetic Discrete Hyperspheres and Separatingness 435

(a) 0-minimal discrete plane (b) 1-minimal discrete plane (c) 2-minimal discrete plane

Fig. 3. k-minimal discrete planes with normal vector n = (1, 2, 3)

Consequently, our characterization is not specific to hypersphere but rather a
generalization of what we already known about the discrete hyperplane.

6 Conclusion and Further Research

In the present paper, we investigated the discrete hypersphere in order to provide
it with a definition related to thickness and verifying basic topological properties.
The first result is a general arithmetic definition of the discrete hypersphere. In
this definition, usual constant arithmetic thickness is replaced by two thickness
functions in order to take into account the non-linearity of hyperspheres and to
distribute global thickness more or less inside or outside the hypersphere. By
relating the k-adjacency and the k-minimality to norms we control precisely the
thickness for discrete sets with non linear analytical description. We thus based
thickness functions on the measurement by the k-minimality norm of a vector
related to the local behavior of the hypersphere and characterized the k-minimal
arithmetic discrete hypersphere.

This characterization could be helpful to infer drawing and recognition algo-
rithms. In the case of the discrete line, the arithmetic definition has improved
the understanding of such algorithms. Why the same situation does not apply
to the hypersphere or at least to the circle?

Moreover, beyond the particular case of the hypersphere, we go further in the
understanding of the arithmetic discrete geometry. Focusing on simple objects,
namely lines or circles, reduces the number of parameters in play and allows to
better study each of them. Two points seem to be essential and common to all
objects arithmetically studied: the use of norms and the study of the local dis-
crete behaviour of the object. As far as we know, remarkable arithmetic discrete
objects have always been characterized by measuring, with norms, their local
variations. Lines or hyperplanes are linear objects and their normal vector is
constant in magnitude and direction. For circles and hyperspheres, the normal
vector is only constant in magnitude. The next natural step would be the arith-
metic study of hypersurfaces for which the normal vector would have neither a
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constant magnitude nor a constant direction, in other words, the general case of
hypersurfaces based on polynomials.
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Abstract. Eccentricity measures the shortest length of the paths from
a given vertex v to reach any other vertex w of a connected graph.
Computed for every vertex v it transforms the connectivity structure of
the graph into a set of values. For a connected region of a digital im-
age it is defined through its neighbourhood graph and the given metric.
This transform assigns to each element of a region a value that depends
on it’s location inside the region and the region’s shape. The definition
and several properties are given. Presented experimental results verify
its robustness against noise, and its increased stability compared to the
distance transform. Future work will include using it for shape decom-
position, representation, and matching.

1 Introduction

Recognition, manipulation and representation of visual objects can be simpli-
fied significantly by “abstraction”. Abstraction extracts essential features and
properties while it neglects unnecessary details. Shape is one such form of visual
abstraction, which describes distinctive features of the object’s appearance i.e.
its projection on the surface of a 2D sensor (in our case the retina). If shape
matching is done invariant with respect to certain deformation classes (e.g. ar-
ticulated motion), shape based object recognition can be used for generic object
recognition, a much desired ability of humans.

Different approaches that use shape for recognition exist [1,2,3,4], with many
of them using the distance transform [5] derived skeletons [6, 7] as a basis for
shape description. Skeletons have proved themselves to be the basis of powerful
shape descriptors [2] with the main advantages including their ‘cue’ for a natural
decomposition of shapes into parts (e.g. usually the parts of the skeleton of a
human decompose its shape into body, limbs, and head) and their invariance to
certain types of movement including the very important articulated motion. On
the other hand, one of their weak points come from their apparent locality and
the fact that they are derived from the distance transform which is known to be
unstable with respect to small perturbation of the shape (e.g. spurious branches
can appear in the skeleton if a few pixels are added at the border of the region).

� Supported by the Austrian Science Fund under grants S9103-N04 and P18716-N13.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 437–448, 2006.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Isoheight lines for distance (a-c) and eccentricity (d-f) transform of 2 images,
using the euclidean (a,d), 4− (b,e), and 8− (c,f) neighbourhood (where continuous,
lighter means higher value)

The distance transform associates to each point of the shape, the minimum
distance from it to the border of the shape (see Fig. 1a: gray values are indepen-
dent between the two images, and where continuously changing: lighter means
higher value), which makes it very unstable with respect to Salt and Pepper
noise and certain kind of segmentation errors. Approaches like removing regions
below a certain size or pruning spurious branches of the obtained skeleton have
been used to cope with these kinds of problems, but this has been shown not to
be the optimal way and should be avoided mainly because the size of a region
does not tell anything about its importance [8].

Instead of minimum distance, other measures have also been used, e.g. the
mean time for a randomly moving particle to hit the border [9].

Inspired from graph theory, we present a new transform which associates to
each point the longest distance (geodesic) from it to the points on the border
of the shape (see Fig. 1d). We show that it is robust against the types of noise
mentioned above, and comment about it’s applicability to shape description and
matching.

We recall the distance transform in Sec. 2, including a formulation for the
distance transform of a graph (Sec. 2.2). The eccentricity transform is presented
in Sec. 3, beginning with a recall of the graph theory based definition for ec-
centricity (Sec. 3.1). The properties of the transform are discussed in Sec. 4,



The Eccentricity Transform (of a Digital Shape) 439

1

����

1

1

1
1

2

2

2

2

2

3

1

1

1

�
�

��

				����





���

			......
......
.....
......
.....
......
.....
......
......
......
..

�
�
��

����




���


���




�
�

�
�

�
��
����

�
�

�
�

��
��

................................................................................

����

					
�

�

�

�
�

�

�

� �

�

�

�

�

� 4

4

3

3

3

2

3

3

b

c

a

4

4

e

d

�
�

��

				����





���

			......
......
.....
......
.....
......
.....
......
......
......
..

�
�
��

����




���


���




�
�

�
�

�
��
����

�
�

�
�

��

����
��

................................................................................

����

					

3

3

3

3

�

�

�

�

�
�

�

�

� �

�

�

�

�

(a) (b)

Fig. 2. Distance transform (a) and eccentricity transform (b) of a graph

followed by computation strategies in Sec. 5. Experimental results in Sec. 6 will
complete the presentation, summed up in Sec. 7 with conclusions and outlook.

2 Distance Transform

The distance transform assigns to each point in the binary image a value of
a distance to the closest point on its border (obstacles). Let I = B ∪ B be a
binary image and let a point p ∈ B. We adapt the definition of the general
distance function [10] for the rest of the section. A neighbourhood Ni is a pair
of (Pi, di), where Pi is a finite subset of ZK and di is a function di : P → R+, for
i = 0, ..., T−1 and T,K ∈ Z+. We say that pi is adjacent to pi+1 iff pi+1 = pi +r
for some r ∈ Pi. Let α be a finite sequence of neighbourhoods N0N1... NT−1,
where T is called the period of the sequence. The distance transform dtα of I
associates to every point p ∈ B the minimal distance from p to B, formally we
write:

dtα(p) = min{λ(πα(p, q)) | q ∈ B ∧ q ∈ Nα(q), q ∈ B}, (1)

where Nα is an α-adjacency, πα(p, q) is the set of all α-paths from point p to
q, and λ(πα(p, q)) is the length of one of the paths πα(p, q). The α-path is a
sequence of points (p0, p1, ..., pn), such that end points are p0 = p, pn = q, and
pi+1 is α-adjacent to pi (0 ≤ i ≤ n− 1), then the length of this path is the sum
of di(pi+1 − pi) for all i = 1, ..., n. If di(r) = 1 then the length of the path is
n, the number of points. To define the chessboard distance (dt8) or the square
distance (dt4) one takes the sequence of neighbourhood with T = 1 (α = N0) and
defines the neighbourhood P0 as in [10, page 239]. Note that there may be many
shortest paths. If there is no other shorter α-path between the same end points,
then this path is called α-geodesic [11]. The border point q ∈ B is α-neighbour
of a point not being in B. In the Euclidean space there is always a unique path
between two points, which is the straight line between the points. This straight
line does not exist in digital images and thus the distance transform computed
is dependent on the way the neighbourhood is defined, i.e. how the Euclidean
distance is approximated. In the section below we use the definitions above as
the basis of defining the distance transform of digital images and graphs.
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2.1 Distance Transform of a Digital Image

The transformation of the continuous space Rn into a discrete space Zn is done
by sampling Rn. A particular sampling scheme can be used to digitise the con-
tinuous space. If there is no a priori knowledge about the local variation, the
usual scheme is the square or hexagonal grid. For the sake of the presentation we
will constrain the discussion only on digital images on 2D square grids with the
4−neighbourhood (city block metric), and the 8−neighbourhood (chessboard
metric). Using Eq. 1 one can define the distance transform dt4 and dt8, respec-
tively. These distance transforms are easy to compute by scanning the image
twice [12,11], although they are not a good approximation of the Euclidean dis-
tance. In Fig. 1b,c) distance transforms dt4 and dt8 of a binary image are shown.
Better approximations can be found by chamfer distances [13].

2.2 Distance Transform of a Graph

If the sampling grid is not regular, one could use graph representation for the
sampling points. Let G = (V,E, a, w) be the undirected weighted graph with
vertices v ∈ V representing sampling points, edge set e = (v, w) ∈ E representing
the connection between vertices; and a : V → Z+ and w : E → Z+ are attributes
on vertices and edges respectively. Let the weights on edges represent the cost of
going from one vertex to the other. In order to define the distance transform one
should define the boundary vertices [14]. Any bounded region has a boundary
that separates it from the background. The background can be considered as the
complement of the region with respect to the embedding space. Border faces are
faces of the dual graph that are surrounded by both vertices of G ⊂ G′ and G′.
The boundary of a subgraph G = (V,E) ⊂ G′ = (V ′, E′) collects all the vertices
C ⊂ V which bound border faces.

A path πG(v, w) is a sequence of vertices (v0, v1, ..., vn) in G such that the
end vertices are v = v0, w = vn, all vertices are distinct and ∃e = (vi, vi+1) ∈
E, i = 0, 1, ..., n− 1. The length λ(πG) of path λG is the sum of the edge weight
in the sequence:

dtG(v) = min{λ(πG(v, w)), v ∈ G \ C ∧ w ∈ C}. (2)

Usually, the border vertices are set to 1. If vertices v and w are not connected,
we say that the λ(πG(v, w)) is infinite. If the graph G is connected then this
distance is a graph metric [11]. A simple example of the distance transform on a
graph is given in Fig. 2a, where the edge cost is set to 1. Note that square grid
can be easily represented by graphs. In this case the weight on edges could be
set to 1 (but not necessarily). Similar to the square grid, we can define the 4-,
8-neighbourhood of vertices.

3 Eccentricity Transform

The eccentricity transform assigns to each point in the binary image the shortest
distance to the point farthest away from it. Analogously, to the notation pre-
sented in Sec. 2 we define the eccentricity transform eccα(p) of I = B ∪B such
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that it associates to every point p ∈ B the longest of the distances to any other
point q ∈ B, formally we write:

eccα(p) = max{λ(πα(p, q)) | ∀q ∈ B}, (3)

where πα(p, q) is the shortest α-path from point p to q, and λ(πα(p, q)) is the
length of the path πα(p, q). In the section below we use the Eq. 3 as the basis in
defining the eccentricity transform of graphs and digital images.

3.1 Eccentricity Transform of a Graph

Let G = (V,E,w) be an attributed undirected and connected graph with vertex
set V , edge set E and with edge weights w : E → Z+ as the cost of going from
one vertex to the other. Let v be a vertex in V . The eccentricity eccG(v) of v is
the distance to a vertex farthest from v and it is defined as [15, Page 31]:

eccG(v) = max{λ(πG(v, w)) | ∀w ∈ V }, (4)

where λ(πG(v, w)) is the length of the shortest path between the two vertices v
and w. One could say that eccentricity of a vertex is the longest shortest path
to any other vertex in the graph. A simple example of the eccentricity transform
is given in Fig. 2b), where we set the edge’s cost to 1.

Some definitions concerning the eccentricity transform are of importance [15]:

– the eccentric vertices of v are all the vertices w at a distance eccG(v);
– the radius r(G) of G is the minimum eccentricity;
– the diameter d(G) of G is the maximum eccentricity;
– v is a central vertex of G if eccG(v) = r(G);
– the center C(G) is the set of all central vertices;
– v is a peripheral vertex of G if eccG(v) = d(G);
– the periphery P (G) is the set of all peripheral vertices;

For the graph in Fig. 2b) the radius r(G) = 2, the diameter d(G) = 4, central ver-
tex c, the center C(G) = {c}, peripheral vertices a, b, d and e, and the periphery
P (G) = {a, b, d, e}. Sec. 4 presents a detailed discussion of the properties.

3.2 Eccentricity Transform of a Digital Image

Similarly to distance transform, a particular sampling scheme can be used to dis-
cretize an image. We constrain our discussion only on a 2D square grid, and two
classical pixel adjacencies; the 4− and 8−neighbourhood. Let I be a binary image
I = B ∪ B, and let a pixel p be in B. Now we can use Eq. 3 to define the eccen-
tricity transform eccα on a square grid digital image for the connected set B. One
can say that eccentricity of a pixel is the longest shortest path to any other pixel in
the same connected region. Similarly to the distance transform also the eccentric-
ity transform is affected by how well the Euclidean distance can be approximated.
The same concerns made in Sec. 2 with respect to the Euclidean plane apply for
eccentricity transform as well. Thus eccentricity transform is also dependent on
the way one defines the pixel neighbourhood. In Fig. 1e,f eccentricity transforms
ecc4 and ecc8 are shown on the same hand image as in Fig. 1b,c.
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4 Properties of the Eccentricity Transform

We shortly discuss some of the properties of the eccentricity transform, some of
them known from graph theory and extended to the discrete domain, some are
interesting and useful in the context of describing the shape of a region.
Center: The vertices with the minimum value of the eccentricity transform
are called the center of the graph. They lie in a block of the graph, i.e. the
corresponding subset of vertices containing the center is connected and does not
contain a cut vertex. We notice that the center of a discrete region is always
a part of the region in contrast to the center of gravity which can be located
outside the region in case of a concavity or a hole in the middle of the region.
This may be useful in several applications, e.g. in tracking where the center of
a tracked region may be used as the start for searching the region in the next
frame of the sequence.
Robustness: The eccentricity transform is robust with respect to (salt and
pepper) noise. This is due to the fact that a noise vertex on the path between two
distant points ’just goes around’ the obstacle without prolongating the length by
much. In the case of discrete metrics (like 4− or 8−connectivity) the likelihood
of finding many paths with the same (shortest) length is very high. In such a
case the eccentricity is affected only if all shortest paths between the vertex and
its farthest vertex are interrupted by noise or a noisy pixel (vertex) p is added
to B such that p is at maximum distance from the vertex.
4-connectivity: In the Euclidean space two points are connected by a unique
straight line. In the discrete space with 4-connectivity this is only the case if the
two points are along the two coordinate axes, in all other cases there are more
than one shortest paths. In fact any permutation of the two primitive steps to
connect the two end points is also a shortest path.

This fact increases the robustness of the eccentricity transform but has also
two other consequences:

1. There is not a single midpoint between the two endpoints making the center
of an elongated region a diagonal line. In fact the length of this line is as
long as the smaller coordinate differences of the two end points.

2. Since the number of midpoints depends on the angle of the discrete line the
resulting centers are no more rotationally invariant (which they are in the
Euclidean case).

Maxima are all on the boundary if the graph has no inner pending
vertex: (See Sec. 2.2 for the boundary of a graph) If G′ is connected there are
paths between any pairs of vertices v, w ∈ V ′. Any non-border vertex has a
degree greater than 1. If none of the neighbours of a vertex of degree greater
than 1 belongs to a border face it cannot be extremal since any path leading to
it can be continued.
Complementarity between distance transform and eccentricity
transform: In the distance transform the smallest values are on the bound-
ary and the highest values can be found where a circle with maximum radius
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Algorithm 1 – Eccentricity Transform-naive implementation
Input: Attributed graph G = (V, E).

1: for all v ∈ V do
2: ecc(v) ← 0
3: for all u ∈ V − {v} do
4: ecc(v) ← max{ecc(v), shortestPathLength(v, u)}
5: end for
6: end for

Output: Eccentricity ecc(v) for all vertices v ∈ V of G.

touches the boundary in at least two opposite points. These local maxima form
the skeleton/medial axis/symmetry transform. Local maxima of the eccentricity
transform are on the boundary while the minimum defines the center. However
there are local minima along the boundary and discontinuities inside the region
which give rise to interesting partitionings of the region.
Invariance: The eccentricity transform computes the lengths of paths inside a
given region. It is therefore invariant to any translation and invariant to rotation
for the Euclidean metric. There is some dependency on the orientation for dis-
crete metrics but not for all shapes. Furthermore in the case of thin regions, it is
robust with respect to articulated motion, it may differ by the thickness of the
shape at the articulation point which in many natural cases is thin in relation
to the length (arms, legs, fingers).

5 Computation

Two algorithms for computing the eccentricity transform are given here. They
are both defined for graphs, but the adaptation to digital images is straight
forward. One has just to decide for a neighbourhood (α = {4, 8}) and choose the
pixels that make up the connected region for which the transform will be applied.
Note that Floyds [16] algorithm, that produces the minimum path length from
all vertices to all other vertices can also be used to obtain the eccentricity (for
each vertex, one has just to take the maximum of the values obtained for it).

Naive Alg. 1 iterates through all the vertices of G and for each, it calculates
the maximum of the length of the shortest paths to all other vertices in the graph.
Lines 3 - 5 can be implemented by taking the maximum of the lengths calculated
using Dijkstra’s single-source shortest path algorithm [16]. The complexity of the
naive implementation is between O(|V |3) andO(|V ||E|+|V |2 log |V |)) depending
on the implementation of the shortest path problem.

Alg. 2 uses the fact that the set of eccentric vertices is a subset of V and that
calculating the shortest path for each of these vertices to all the other vertices in
V and combining the results (i.e. taking the maximum) is enough to obtain the
eccentricity transform for the whole graph. The eccentric vertices can be found
by calculating the shortest path from the center of the graph to all the other
vertices and looking at the local maximum. To find the center of a graph we find
it’s diameter, which is connecting the vertices with the highest eccentricity.
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Algorithm 2 – Eccentricity Transform-optimised implementation
Input: Attributed graph G = (V, E).

1: ∀v ∈ V, ecc(v)← 0 /* initialise eccentricity cumulation table with 0 */
2: vp ← random vertex of V
3: repeat
4: mark vp as visited
5: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vp)}
6: vp ← vertex with maximum ecc
7: until (ecc not changed) or (vp allready visited) /* iterate until the endpoints of a

diameter found */
8: repeat
9: m ← one (random) or all unvisited vertices with minimum ecc

10: for all vm ∈ m do
11: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vm)}
12: mark vm as visited
13: end for
14: M ← all unvisited vertices with local maximum ecc

/* M includes non monotonic maxima */
15: for all vM ∈ M do
16: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vM )}
17: mark vM as visited
18: end for
19: until ecc not changed /* repeat until converged */

Output: Eccentricity ecc(v) for all vertices v ∈ V of G.

Lines 3 - 7 start with a random point and iterate to find the vertices with the
highest eccentricity (diameter endpoints). The calculated shortest path lengths
are added to the cumulation table ecc and the vertex is marked as visited.
Lines 8 - 19 iterate finding the center vertices and the local maximum until the
ecc cumulation table converges. On line 9 (approximate the center), two options
have been tried, taking one or all the existing minima. On shapes without holes,
both have produced the correct solution, while on shapes with holes neither of
them did. In our experiments, the first loop (lines 3 - 7) converged after 3 cycles
(random point, first diameter end, second diameter end). The second loop is
bounded by the number of vertices on the border of the graph.

Alg. 2 is much faster than Alg. 1 but gives correct results only on simply
connected shapes (no holes). On shapes with holes, complex forms of the center
appear e.g. for a disc with a circular hole in the middle, the center consists of a
circle for euclidean distance, and a set of disconnected points for 4 connectivity,
all concentrated around the hole. In such cases, Alg. 2 produces results close to
the correct one, but we cannot give any upper bound for the error.

6 Experiments

We have conducted experiments to test the properties of the eccentricity trans-
form and find the important differences compared to the distance transform.
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Fig. 3. Transforms on a triangle. Capital letters denote triangle elements (A,B,C
points; X, Y, Z segments) and lower case letters denote their respective influence area.

6.1 Eccentricity Transform of a Triangle

First we have looked at a simple shape, the triangle, for which both transforms,
when using the euclidean distance, can be solved analytically. In the case of the
distance transform (see Fig. 1a and 3a), the 3 angle bisectors divide the triangle
into 3 parts (x, y, z in Fig. 3a), with all the points inside the same part having
the distance transform equal to the distance to the same side of the triangle.
The point with the highest distance transform is the intersection of the 3 angle
bisectors i.e the incenter. The isoheight lines are all polygonal lines (triangles).

In the case of the eccentricity transform, the 3 perpendicular bisectors divide
the triangle into 2 or 3 parts (see Fig. 1d and 3b) depending on whether the
triangle is an optuse one or not (i.e the circumcenter lies outside or within the
triangle). All points inside the same part have the eccentricity transform equal
with the distance to the same point. The isoheight lines are made out of arcs.

6.2 Properties Depending on Connectivity/Metric

Fig. 1 shows the isoheight lines of the eccentricity transform for the 4 and 8
connectivities. One can see that the place of the center (global minima) and the
form of the isoheight lines changed. Depending on the shape, the positions of
the diameter ends/global maxima also change.

6.3 Robustness Against Salt and Pepper Noise

To test the robustness against Salt and Pepper noise, we have calculated the
eccentricity and distance transforms (using both 4− and 8− neighbourhood) for
89 randomly selected shapes from [2] (for some example shapes see the top row
from Tab. 1). We applied 5% Salt and Pepper noise to the images and calculated
the two transforms again.

To measure the robustness, for each image, each neighbourhood, and each
transform, we have calculated the root mean square error (RMSE) between the
values obtained for the original and noisy images (calculation was done using
the values, of the pixels part of the shape, in both images i.e. noisy pixels are
excluded). We have calculated for each image and each neighbourhood, the ratio
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(a) dt4 distance transform (b) ecc4 eccentricity transform

RMSE 8.48 0.048
Max. diff. 30.00 2.00

Fig. 4. Distance and eccentricity transform histograms, RMSE and Max. Diff. (solid -
original image, dotted - noisy image)

between the RMSE for the eccentricity and distance transforms. Then, for each
neighbourhood, we have calculated the mean of these ratios and inverted the
result (1/x) i.e. we obtain dt error divided by ecc error. The error of the distance
transform is 8.07 times higher in the case of the 4−neighbourhood and 22.63
times higher for the 8−neighbourhood, then the one of the eccentricity transform.

Fig. 4 shows the histogram of the eccentricity and distance transforms for
one of the images, the hand (original and noisy) using the 4 neighbourhood.
Also shown is the RMSE between the values of the transforms for the original
and noisy images, and the maximum difference value for each transform. One
can see that the error and maximum deviation of the eccentricity transform is
much smaller than that of the distance transform. Note that in the case of the
noisy image, a valid transform value has been calculated for less pixels. This
makes the histogram of the eccentricity transform of the noisy image lie below
the histogram of the original one.

6.4 Minor Segmentation Errors

For this experiment, we have selected a few shapes and simulated segmentation
errors and partial occlusion by removing some parts of the shapes i.e. simulated
noise on the border of the shape. We have calculated the correlation between the
local maxima of the eccentricity transforms of the original and the images with
partial occlusion (for each image, original and partially occluded, we have created
a matrix where the positions of the eccentricity transfrom regional maxima were
marked with 1, and the rest with 0, and calculated the correlation between the
2 matrices - only maxima that where located inside the partially occluded shape
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Table 1. Correlation results for local maxima in eccentricity transform of original (top
row) and partially occluded shapes (middle and bottom rows)

Original Shapes

Partially occluded set 1

4−nb. 0.73 1.00 1.00 0.96 0.96 1.00 0.77 1.00 1.00 0.95
8−nb. 0.93 1.00 0.72 0.97 1.00 0.82 1.00 1.00 1.00 0.98

Partially occluded set 2

4−nb. 0.71 0.79 0.97 0.96 0.89 0.97 0.71 0.98 0.87 0.92
8−nb. 0.48 0.45 0.90 0.96 0.72 0.65 0.98 0.97 0.73 0.98

were taken into consideration). The correlation Tab. 1 shows these shapes and
the obtained correlation values.

6.5 Articulated Motion

To simulate articulated motion, two elongated parts have been overlapped at
one of their ends in a way in which they approximate a joint (the angle between
the two parts is a parameter, see Fig. 5a for some examples).

For each angle (in our experiment we have used 90◦, 105◦, 120◦, 135◦, 150◦,
165◦, and 180◦) we have applied the eccentricity transform and calculated the
minimum, maximum, and average eccentricity. Fig. 5b shows the mean and stan-
dard deviation of the 3 values over the whole spectrum of joint angles tested.
Note that the values are stable under these conditions.

(a)

Min Max Average
neighbourhood mean std mean std mean std

4 66.00 4.63 131.88 9.11 97.86 7.06
8 54.33 3.39 108.11 6.60 80.33 5.37

(b)

Fig. 5. Example of images used for testing the variation under articulated motion (a),
and mean and standard deviation of eccentricity value for the simulated joint (b)
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7 Conclusion and Outlook

We propose a new transform for a digital image called the eccentricity transform.
This transform associates to every pixel the maximum length of the shortest
paths connecting it with all the other vertices. The definition, several proper-
ties, and algorithms have been given. Presented experimental results verify its
robustness against noise, and its increased stability compared to the distance
transform, e.g. in the case of 5% Salt and Pepper noise, we obtained changes
about 10 times higher of the distance transform compared to the eccentricity
transform (a distance change of 30 in the case of the distance transform is 3
in the case of the eccentricity transform). Behaviour under minor segmentation
errors and articulated motion has also been tested and shows promising results.
Future work will include using it for shape decomposition, representation, and
matching.
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Abstract. Because the appearance of 3D objects changes according to
viewing directions, it is not easy to evaluate similarity between two ob-
jects in a few appearances. In this paper we propose similarity measure
between two shapes of 3D objects. The feature of a shape is represented
by a distribution of a projected area on a unit sphere, and the distribution
is expanded in spherical harmonics. The degree of similarity between sev-
eral kinds of shape is calculated and is compared with human sense. The
results of computer simulation demonstrate the validity of our method.

1 Introduction

We recognize a 3D shape of an object and can evaluate similarity between two
objects without much difficulty. For example, we say on occasion that this cup
is similar to that. But if we are asked which body a cylinder or a pyramid is
similar to a prism, what answer shall we return? Generally speaking, because
the appearance of an object changes according to viewing directions, it is not
easy to evaluate similarity between two objects in a few appearances. Even if
two objects are exactly same, it is hard to draw the right conclusion at a glance.

Many methods are proposed in the published papers that have addressed
shape similarity evaluation for shape searching [1]. Recently similarity search
between a query object and a target in a database is actively studied in data
retrieval of 3D objects. On the other hand, it is well known that expansion into
a set of orthonormal basis is strong means in analyzing a given function, and
spherical harmonics has performed the same role in some of these studies. Our
proposed method also uses a set of spherical harmonics, but it is some different
in defining a function that expresses the feature of a shape of an object.

In order to retrieve a target object with high reliability, a shape-based search
method must be presented. There are various kinds of 3D structural model in-
cluding CAD models, voxel data and polygonal meshes in the previous works
that applied orthogonal expansion to similarity evaluation. Princeton Shape Re-
trieval and Analysis Group have got successful results using several structural
models [2, 3, 4]. Saupe et al. developed a method that was applied to a polyg-
onal mesh model [5]. Proriol tried shape recognition using one or more than

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 449–459, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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one silhouettes of simple bodies [6]. The body with a certain solid structure was
needed in calculating expansion coefficients. Tanaka et al. represented polyhedral
objects using extended Gaussian images [7].

The aim of our study is not to retrieve an object that is most similar to the
given object, but to define a similarity measure that simulate a human sense of
the similarity evaluation. If we can realize it, we can clarify what kind of feature
of appearance a human perceives in evaluating shape similarity. It is not difficult
in a sense to judge whether or not a query shape is equal to or similar to a target
using detailed geometrical description. However, in practice, we usually have no
structural information about an object’s shape except its appearances. Therefore
we define the feature function of an object’s shape based on a projected area, a
silhouette of an object, which must be one of the simplest feature of an object.

In this paper, we first define similarity measure for evaluating the 3D shape
of an object. The measure is determined based on the spherical harmonics. Next
we evaluate the similarity of several kinds of shape and finally we compare the
measure with human sense. The results of computer simulation demonstrate the
validity of our method.

2 Principle of Similarity Evaluation

It is necessary to solve the following problems so as to perform similarity evalu-
ation.

– What feature of an object in appearance is observed.
– How viewing directions are determined.
– How the observed features are transformed to a numerical value.
– How the numerical values are analyzed.

We discuss each problem in the following sections.

2.1 Observation of the Object

The object is assumed to be placed at the center of a sphere. We observe the
object from a point on the surface of a unit sphere, which position is expressed
by (θ, φ). Figure 1 shows the object and the viewpoint on the surface. Since
the appearance of an object changes according to the viewpoint, we can not
determine its 3D shape based only on one appearance. Therefore we need to
observe it from not a few number of viewpoints.

It is preferable to observe the object in the directions uniformly distributed in
space, but it is known that such directions can not be realized. Though the ver-
tices of regular polyhedra can be applied, the maximum number is at most 20. In
this paper we determine the direction where the object is observed using a geo-
desic dome. The geodesic dome is one solution for generating almost uniformly
distributed directions [8]. Initially the dome has a shape of a regular icosahedron.
Each facet of the polyhedron, whose shape is a triangle, is iteratively divided as
shown in Fig. 2. After the facet is divided two times, 162 vertices are generated
on the spherical surface.
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Object

θ

φ

View point

Fig. 1. The object is observed from (θ, φ)

Regular icosahedron.
Geodetic dome.

  (162 vertices) 

Fig. 2. Geodesic dome is generated based on a regular icosahedron

2.2 Feature of the Object

Several kinds of feature including colors, textures, a number of vertices and
outline shapes are observed in the projected image of the object. Because of
their change in appearance according to the viewing direction, it is not easy to
compare two objects and judge whether they are similar or not.

For doing that, we propose to use a projected area of the image as a clue
of the similarity measure. Suppose that we can only observe a silhouette of an
unknown object. In spite of the particular condition, we conclude that the shape
of the object must be a sphere if the image projected to any direction is a circle,
for example. Therefore it is considered that the shape similarity can be evaluated
using the distributed function of the projected area on a spherical surface.

2.3 Similarity Measure

Spherical harmonics are strong means for analyzing a function f(θ, φ) defined
on a unit sphere. It is to the function what a trigonometric function is to a
single-valued function with respect to time.

Spherical harmonics denoted Yl,m is defined as

Yl,m(θ, φ) =

√
2l+ 1

4π
(l −m)!
(l +m)!

P m
l (cos θ)eimφ . (1)
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Pm
l (x) is the associated Legendre functions expressed by

P m
l (x) = (1− x2)m/2

[(l−m)/2]∑
k=0

(−1)k

2k k!
(2l− 2k − 1)!!
(l −m− 2k)!

xl−m−2k ,

where l and m are integer numbers with 0 ≤ |m| ≤ l. In this paper, we define
similarity measure based on real spherical harmonics, defined as

Ỹl,0(θ, φ) =

√
2l + 1

4π
P 0

l (cos θ) ,

Ỹl,m(θ, φ) =

√
2l + 1

2π
(l −m)!
(l +m)!

P m
l (cos θ) cosmφ , (2)

Ỹl,−m(θ, φ) =

√
2l + 1

2π
(l −m)!
(l +m)!

P m
l (cos θ) sinmφ .

The square integrable function f(θ, φ) on a unit spherical surface is expanded to

f(θ, φ) ∼
∞∑
l=0

l∑
m=−l

al,m Ỹl,m(θ, φ) , (3)

in terms of completeness of the spherical harmonics, where al,m is a coefficient
of the expansion expressed by

al,m =
∫ 2π

0

dφ

∫ π

0

Ỹl,m(θ, φ) f(θ, φ) sin θ dθ . (4)

When calculating (4), the equation is discretized to

al,m =
N∑

i=1

Ỹl,m(θ, φ) f(θ, φ)ΔA , (5)

where N is the number of view points and ΔA is an infinitesimal area at each
view point (θ, φ). The value is equal to a surface area of a unit sphere divided by
N , then ΔA = 4π/N . Since these coefficients are unique to the function f(θ, φ),
the difference of the coefficients can be used for the similarity measure.

We should note, however, that distribution of f(θ, φ) changes according to the
pose of an object and as a matter of course the coefficients change. Therefore
we consider all coefficients together that have a same number of degree l so as
to get rid of the effect of the pose. Letting

v(l) =
[
al,l al,l−1 · · · al,−l

]
(6)

define a coefficient vector v(l), the norm of v(l) is represented by

||v(l)|| =

√√√√ l∑
k=−l

al,k
2 . (7)



Projected Area Based 3D Shape Similarity Evaluation 453

Though the vector changes according to the pose, its norm does not [7].
Finally we construct a feature vector s such that

s =
[
c(0)c(1) · · · c(l) · · ·

]
, (8)

where each component c(l) is expressed by

c(l) =
‖ v(l) ‖√∑∞
k=0 ‖ v(k) ‖2

. (9)

Because each value of ||v(l)|| depends on the size of the image, normalization is
then necessary. By normalization, all geometrically similar shapes can have the
same feature vector s in (8). It is thought that s represents the feature of the
shape.

The degree of similarity, denoted SA,B, between the object A and B is calcu-
lated by

SA,B = sA · sB =
∞∑

k=0

c
(k)
A c

(k)
B , (10)

where c(k)
X represents the k-th component of the feature vector sX . Since (10)

means a natural inner product, it is obvious that 0.0 < SA,B ≤ 1.0. The value
of c(0) is based on the normalized value of a0,0, which is the integral of f(θ, φ)
over the surface. Therefore 0.0 < c

(0)
A and 0.0 < c

(0)
B , and it always holds that

0.0 < SA,B. If and only if the two objects are exactly the same from the view
point of its silhouette, except the mirror symmetry, SA,B is equal to 1.

3 Numerical Simulation of Similarity Evaluation

Numerical simulation of similarity evaluation is conducted using virtual objects
defined in a computer. Firstly it is demonstrated that the proposed similarity
measure is pose invariant. Secondary the degree of similarity is evaluated between
two objects with various kinds of shape.

3.1 Generation of Distribution Function

We use polyhedra and quadric surfaces as objects in the similarity evaluation.
These shape models are convenient for mathematical treatment in the computer
and can represent complicated shapes and curved surfaces. The polyhedral object
is defined by boundary representation.

The object is placed at the center of the geodesic dome such that the center
of gravity of it coincides with the center. If the center of gravity is outside of the
object such as a torus, no problem occurs in the evaluation. One of the vertices
of the dome is chosen as a viewpoint and the projected image of the object is
generated on a virtual image plane. The projection is assumed to be parallel to
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the line from the center to the viewpoint and the image plane is assumed to be
perpendicular to the line. Then the projected area of the image is calculated.
By calculating the areas at all viewpoints in the half region of the dome, the
distributed function of the projected area on a unit sphere is generated.

3.2 Pose Invariance

The similarity measure must satisfy pose invariance. It means that if the object
A is exactly the same as B but its pose is different from B as shown in Fig. 3,
the degree of similarity SA,B must become 1.0.

Fig. 3. The same two objects in the different pose

We evaluated the similarity between the same two objects in the different pose
using three polyhedra, one convex and two concave. These bodies are shown in
Fig. 4. A cube that belongs among a convex polyhedron has no occlusion by itself,
but a concave polyhedron has. The projected area of the thin body changes much
according to the viewing direction.

(a) A cube. (b) A cube-like body. (c) A thin body.

Fig. 4. Three polyhedra; (a) is convex and (b) and (c) are concave

A body to be compared was turned on the vertical and the horizontal axis,
and was compared to the original one. The results of similarity evaluation for
the thin body are shown in Fig. 5. Here the maximum degree of expansion in
spherical harmonics is limited to 10. It can be seen that the degree of similarity
SA,A is always 1.0 irrespective of its pose. Because almost the same results were
obtained using the other bodies, it is concluded that the proposed similarity
evaluation satisfies pose invariance.
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(a) Turned on the vertical axis. (b) Turned on the horizontal axis.

Fig. 5. The results of similarity evaluation according to the pose change

3.3 Similarity Evaluation

We evaluate the degree of similarity between two objects among twelve bodies
shown in Fig. 6. These bodies are divided into three types of shape according to
its appearance; a convex shape, a concave shape and a concave and thin shape.
The shape of all bodies is defined by the boundary between inside and outside.

(a) Cube (c) Cube-like

body 1
(b) Quadrangular

 pyramid

(d) Cube-like

body 2

(e) Regular quad-

rangular prism

(g) High circu-

lar cylinder

(f) Low circu-

lar cylinder

(h) Sphere (i) Ellipsoid of

revolution

(k) Thin body 1(j) Star (l) Thin body 2

Fig. 6. Twelve bodies used in the similarity evaluation

Figure 7 shows the result of similarity evaluation. Each gray patch represents
the degree of similarity between the two objects in the row and column position.
Lighter gray means that the degree is higher.

It can be seen from the light and dark gray distribution that the bodies are
divided into thick and thin ones. The degree of similarity of almost all bodies
against a star is lowest. Since the star has almost a 2D shape compared with the
other bodies, it is considered that the distribution pattern of the projected area
of the star is much different.

Figure 8 shows the bodies similar to a cube and similar to a star in order of
the degree of similarity from highest to lowest. The degree of similarity of a thick
body to a thin body is low and the reverse is also true. It can be said that the
similarity measure represents the feature of the shape well. It is a little strange
from the point of view of human sense that the ellipsoid of revolution has lower
degree than the thin body 2 in Fig. 8(a). On the other hand, the order shown in
fig. 8(b) is fully understandable.
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Fig. 7. The result of similarity evaluation

(a) Between a cube and other bodies.

(b) Between a star and other bodies.

Fig. 8. The order according to the degree of similarity

It may seem curious that though a star indicates the lowest degree of similarity
to a cube, a sphere to a star. But because the feature vector defined by (8) is
a 11-dimensional vector, the result is possible. Calculating an inner product of
the two 11-dimensional feature vectors for the similarity evaluation means that
the degree of similarity is measured by the angle between two vectors, which has
one dimension.

Figure 9 shows the shape similarity in two dimensions. The vertical axis in-
dicates the degree of similarity to a sphere, and the horizontal axis to a circle.
The figure shows that an ellipsoid of revolution is similar both to a sphere and
to a circle, which expresses the characteristic of its shape properly.
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Fig. 9. 2D representation of the degree of similarity

4 Comparison with Human Sense

Human sense in shape similarity evaluation was investigated through a ques-
tionnaire survey. The survey was conducted on the internet web site and 127
visitors answered the question whether a cube is similar to a pyramid, a cylinder
and so on. Figure 10(a) shows the percentage of the number of who answered
”yes”, and Fig. 10(b) shows the results of our method. The eight bodies arranged
in descending order of the percentage and the similarity measure are shown in
Figure 11(a) and (b), respectively.

The proposed similarity measure agrees well with human sense except for a
regular quadrangular prism. Since a cube and a regular prism have only straight
line edges and they resemble each other from the point of view of topological
geometry, it is natural for a human to feel that a prism is similar to a cube, even
if the height and width ratio is different. Information about whether the body
is convex or concave, or whether it has plain surfaces or curved ones gives us
intuitive impression, and affects our sense of similarity evaluation.

We need to consider topology as well as geometry, but topology itself is hard to
be perceived. A human stores much knowledge about appearances of an object,
and it is thought to be the reason why a human can describe its topological fea-
tures. Object recognition may have to be done first before similarity evaluation

(b) Result of the proposed method.(a) Result of the questionnaire survey.
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Fig. 10. A cube is compared to the other shapes
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(a) Result of the questionnaire survey.

(b) Result of the proposed method.

Fig. 11. Eight bodies arranged in descending order of similarity to a cube

by the computer. Therefore we need to collect as much visible information as
possible in order to simulate a human brain. The number of vertices, the length
of inner edges or an outline and various kinds of 2D shape descriptors are valid
features which can be defined in the same spherical function as the projected
area.

5 Conclusion

We proposed 3D shape similarity evaluation using the projected area in multiple
directions. A spherical function defined by the distribution of the projected area
on a unit sphere is expanded in spherical harmonics, and the similarity measure
is determined by coefficients of the expansion. The numerical simulation has
demonstrated that the similarity measure well expresses the features of the shape
of an object. After that the proposed measure has been compared with human
sense through the questionnaire survey.

Finally the proposed measure almost agrees with human sense but some dif-
ference became clear. Though only the projected area was used as the feature of
the object, the simulation has shown satisfactory results. It is considered that
more information can reduce the present gap between the simulation and the
human sense. The future study will include the distribution of the length of
edges, which supply some topological information.

References

1. Iyer N., Jayanti S., Low K., Kalyanaraman Y., Ramani K.: Three-dimensional shape
searching: state-of-the-art review and future trends. Computer Aided Design, 37
(2005) 509–530

2. Funkhouser T., Min P., Kazhdan M., Chen J., Halderman A., Dobkin D., Jacobs
D.: A search engine for 3D models. ACM Trans. on Graphics, 22 (2003) 83–105

3. Kazhdan M., Funkhouser T., Rusinkiewicz S.; Rotation Invariant Spherical Har-
monic Representation of 3D Shape Descriptors. Eurographics Symposium on Geom-
etry Processing 1 (2003) 156–165

4. Princeton Shape Retrieval and Analysis Group: 3D Model Search Engine
http://shape.cs.princeton.edu/search.html



Projected Area Based 3D Shape Similarity Evaluation 459
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Abstract. Recent advances in graphics hardware provide new possibili-
ties to successfully integrate and improve multiresolution models. In this
paper, we present a new continuous multiresolution model that maintains
its geometry, based on triangle strips, in high-performance memory in the
GPU. This model manages the level of detail by performing fast strip
updating operations. We show how this approach takes advantage of the
new capabilities of GPUs in an efficient manner.

1 Introduction

One of the main problems of interactive graphic applications, such as computer
games or virtual reality, is the geometric complexity of the scenes they represent.
In order to solve this problem, different techniques for modeling by level of detail
have been developed that attempt to adapt the number of polygons of the objects
to their importance within the scene.

The application of these techniques is common in standards such as X3D,
graphic libraries such as OpenInventor, OSG, and even in game engines such as
Torque, CryEngine, and so forth, where models with continuous levels of detail,
based mainly on Progressive Meshes [1], are introduced.

The tendency in recent years has been to improve the features of continuous
models by using the possibilities offered by the graphics hardware to the maxi-
mum, with the intention of competing with the discrete models that, although
more limited, are perfectly adapted to current graphics hardware. Specifically,
they have worked on the representation of multiresolution models which use tri-
angle strips to accelerate visualization by means of vertex arrays located in the
GPU. The fundamental problem of these techniques is the fact that a continu-
ous model needs to make changes in the list of indexes of the primitives it draws
and carrying out this kind of operations causes graphics hardware to lower its
performance.

1.1 Related Work

In recent years, multiresolution models have progressed substantially. At the
beginning, discrete models were employed in graphics applications, due mainly
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to the low degree of complexity involved in implementing them, which is the
reason why nowadays they are still used in applications without high graph-
ics requirements. Nevertheless, the increase in realism in graphics applications
make it necessary to use multiresolution models which are more exact in their
approximations, which do not call for high storage costs and which are faster in
visualization. This has given way to continuous models, where two consecutive
levels of detail only differ by a few polygons and where, additionally, the dupli-
cation of information is avoided to a considerable extent, thus improving on the
spatial cost offered by the discrete models.

Fig. 1. Boat model in triangle strips

The best known continuous multiresolution model is Progressive Meshes [1],
included in Microsoft Corporation’s graphic library DirectX. This model offers
excellent results in visualization in real time, although it is based on triangle
primitives.

Advances have been made in the use of new graphics primitives which min-
imize the data transfer between the CPU and the GPU, apart from trying to
make use of the connectivity information given by a polygonal mesh. For this
purpose, graphics primitives with implicit connectivity, such as triangle strips
(see Figure 1) and triangle fans, have been developed. Many continuous models
based on this type of primitives have been recently developed [2, 3, 4, 5, 6, 7].

In these last few years, graphics hardware performance has evolved outstand-
ingly, giving rise to new techniques which allow the continuous models to ac-
celerate even more. The use of stripification algorithms, which try to take the
maximum advantage of the GPU cache, and the new extensions of graphics li-
braries that allow visualization of a whole mesh with only a few instructions are
examples of these new techniques.

Nowadays GPUs offer new capabilities that, when exploited to the maximum,
can offer very good results in several aspects. One of them involves storing in-
formation directly in the high speed memory located in the GPU. This char-
acteristic allows information to be managed in the GPU while avoiding data
transfer between the CPU and the GPU, and taking the maximum advantage
of the proximity of the memory and the graphics processor. There are a number
of related works which make use of the new capabilities of the current GPUs,
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such as [8], which implements a discrete model manager that puts geomorphing
into practice by using vertex shaders; another work is [9], which creates different
shaders depending on the level of detail.

1.2 Motivation

In general, the main problem with continuous models lies in the high cost of
extracting the level of detail, which usually takes about 20% of the total visu-
alization cost. Apart from extraction, the use of AGP buses poses the problem
of their being much better optimized to upload data than to download it, thus
favoring the use of the memory of the graphics card to store static objects that
do not change their geometry. But the appearance of the PCI-Express bus makes
it possible to use a symmetric bus, which allows data to be uploaded and down-
loaded to the GPU at the same speed, so that it is possible to work with the
GPU memory in a reliable way and without penalizations in data download.

1.3 Contributions

In this article we present a new multiresolution model that is integrated into the
graphics hardware. This model makes use of the present capabilities of GPUs to
store its data structures inside them. The fundamental idea on which the model
is based is the creation of efficient data structures that can be integrated into the
GPU and which, at the same time, offer an optimum performance with respect
to both visualization and spatial cost. The model works directly with the GPU
memory, appreciable improvements being obtained, as can be seen in the results
section.

Hence, what this model offers is complete integration into the graphics hard-
ware, a low cost of extraction of the level of detail, by exploiting the coherence
between levels of detail, and a low spatial cost.

The implemented model features different characteristics:

– Wholly based on triangle strips.
– Simplification based on progressive edge collapses.
– Static stripification. Triangle strips are only generated once, at the highest

level of detail, using a method that takes advantage of the GPU cache.
– Geometric information of the model is maintained and stored in the GPU.
– Level of detail management is performed by a data structure, LOD-Manager,

which allows fast updating of strips and removal of degenerated triangles.

2 Fundamentals

2.1 Multiresolution Models

To construct a continuous multiresolution model based on primitives with im-
plicit connectivity, such as triangle strips, certain requirements must be fulfilled.
On the one hand, a mesh made up of this kind of primitives must be available
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Fig. 2. Three levels of detail from the AL model (LOD=1,0.5 and 0, respectively)

and, on the other hand, the simplification method that should be employed in
order to generate the different levels of detail must be selected, an example is
shown in Figure 2.

There are several mesh simplification methods [10, 11], but one of the most
important in progressive mesh simplification is [1]. This method is based on iter-
ative edge contractions, and it is the one employed in well-known multiresolution
models such as [2, 3, 4, 5, 6, 7].

Many works can be found in the literature where the problem of converting
a polygonal mesh made up of triangles into triangle strips is solved [12, 13].
This process is commonly called stripification, and it can be carried out in a
dynamic or static way. Dynamic stripification involves generating the triangle
strips in real time, that is, for each level of detail new strips are generated. On
the other hand, static stripification entails first creating triangle strips and then
working with versions of the original strips. There are several models that use
dynamic stripification [3,4], especially variable resolution models. Other models
such as [2, 5, 6, 7], however, use static stripification techniques.

The main problem of static stripification models can be observed in Figure 3.
As the model reaches lower levels of detail, it presents vertex repetitions that do
not add any information to the final scene but nevertheless involve higher data
traffic between the CPU and the GPU. Models like [2, 7] solve this problem by
applying filters to eliminate degenerated triangles. The first employs filters in
visualization, thus avoiding sending those vertices at the moment of rendering,
and the second runs a preprocess that detects them early on, and then stores
that information and eliminates them from the strips before visualizing them.

Given the architecture of present-day GPUs, it is better to employ static strip-
ification techniques since we thereby avoid strip creation and destruction in the
GPU, which would imply an additional cost that would make the model much
less competitive. Furthermore, there is an additional cost stemming from the cal-
culation of the new triangle strips at each level of detail, which also penalizes the



Fig. 3. Multirresolution triangle strips

use of these techniques. Moreover, it is preferable to eliminate degenerated tri-
angles before visualization, which allows a considerable degree of acceleration to
be accomplished by resizing strips, apart from also enabling a better implemen-
tation of the model in the GPU by avoiding the need to create a specific code for
the filters. Nowadays, a variety of acceleration techniques have appeared, which,
if integrated into a multiresolution model, would also become essential to improv-
ing its performance. Basically, we can observe stripification techniques oriented
toward exploiting vertex caches [12] and hardware acceleration techniques based
on graphics library extensions [14].

2.2 High-Performance Memory in GPUs

A vertex buffer object is a feature that enables us to store data in high-
performance memory in the GPU. The basic idea is to provide some buffers,
which will be available through identifiers. There are different ways to interact
with buffers:

– Bind a buffer: this activates the buffer in order to be used by the application.
– Put and get data: this allows us to copy data between a client’s area and a

buffer object in the GPU.
– Map a buffer: you can get a pointer to a buffer object in the client’s area,

but this can lead to the driver’s waiting for the GPU to finish its operations.

There are two kinds of vertex buffer objects: array buffers and element array
buffers. On the one hand, array buffers contain vertex attributes, such as vertex
coordinates, texture coordinates data, per-vertex color data and normals. On
the other hand, element array buffers contain only indexes to elements in array
buffers. The ability to switch between various element buffers while keeping the
same vertex array allows us to implement level of detail schemes by changing
the elements buffer while working on the same array of vertices.

In order to implement the model on graphics hardware, we used different
functions which interact with buffer objects. Among them, we can highlight:

– glBindBufferARB: this function sets up internal parameters so that the next
operations work on this current buffer object.

– glBufferDataARB: this function is an abstraction layer between the mem-
ory and the application. Basically, this function copies data from the client
memory to the buffer object bound.

464 F. Ramos et al.



Continuous Level of Detail on Graphics Hardware 465

– glBufferSubDataARB and glGetBufferSubDataARB: its purpose consists in
replacing or obtaining, respectively, data from an existing buffer.

3 Implementation Details

3.1 General Framework

A brief outline of the model is shown in Figure 4. At the beginning, information
about vertices and strips, at the highest level of detail, is uploaded into the
GPU. Later, by means of the LOD-Manager data structure, strips are updated
in accordance with the current level of detail.

In our approach we first perform two essential tasks: generation of triangle
strips at the highest level of detail and calculation of vertex-collapse simplifica-
tion.

At runtime, we upload information about vertices and strips into the GPU.
Then, depending on application demands, we perform vertex-split or edge-
collapse operations directly on the strips. This task is executed by the LOD-
Manager. More specifically, when a level of detail transition is required, it down-
loads the strips affected by these changes from the GPU. Later, it modifies and
uploads the updated strips to the graphics system. Lastly, strip information in
the GPU is then used for display.

Fig. 4. Model architecture

3.2 LOD-Manager Data Structures

The main function of LOD-Manager consists in serving the level of detail de-
mands required by applications. It is able to quickly change the geometric infor-
mation located in the GPU by applying a series of pre-calculated records. These
records store mainly two kinds of information: simplifications and filters.
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Simplification information contains data about which strips change for each
level of detail, and where the vertices to be split or collapsed are located. It allows
us to quickly locate information to be modified when we move from one level of
detail to another. However, as the model moves to coarse LODs, an accumulation
of identical vertices is produced. Sending these vertex repetitions to the graphics
hardware does not contribute at all to the final scene because it is equivalent to
send degenerated triangles, as is shown in Figure 3. We have proved that most
vertex repetitions can be removed, following patterns like aa(a)+ or ab(ab)+.
Patterns aa(a)+ are replaced by aa, and ab(ab)+ by ab. Figure 5 shows an
example for each kind of pattern, and it can be observed that the final geometry
of strips does not change after removing these patterns.

3.3 GPU Data Structures

Two essential data structures for the performance of the model are stored in
the GPU: vertices and strips, which constitute the polygonal mesh. On the one
hand, vertices are stored in a vertex array buffer. On the other hand, we might
allocate each strip in an element buffer. However, we have observed that creating
as many buffers as strips leads to noticeable decreases in performance due to bind
operations. A solution to this problem, with optimum results, consists in creating
a single element buffer, where every strip to be rendered is located. In this way,
we avoid the need for continuous bind operations to assign an element buffer for
each strip.

Fig. 5. Removed patterns

3.4 Controlling Level of Detail

In continuous multiresolution models, level of detail management entails two
fundamental tasks: level of detail extraction required by applications and visu-
alization of resulting geometry.

Level of Detail Extraction. At a high level, the pseudo algorithm for moving
from LOD n to LOD n+1 would consist in downloading, from the GPU, the
chunks of memory corresponding to the strips affected by the change in the
level of detail. After that, we replace vertex n by the vertex it collapses to, in
every strip where it appears. Later, derived vertex repetitions must be removed.
Finally, the strip is uploaded to the GPU for visualization. Figure 6 shows the
algorithm.
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for LOD = currentLOD to demandedLOD

for Strip = StripsAffected(LOD).Begin() to StripsAffected(LOD).End()

auxStrip=DownloadFromGPU(Strip);

CollapseOrSplit(auxStrip,LOD);

UploadToGPU(auxStrip);

end for
end for

Fig. 6. Level of detail extraction from a LOD to a coarse one

Visualization. Figure 7 shows the visualization algorithm. This algorithm takes
advantage of the capabilities of the latest GPUscapabilities. It stores and man-
ages strips to be visualized directly from the graphics hardware memory.

for IndexStrip = 0 to NumberOfStrips - 1

glDrawRangeElements (

GL TRIANGLE STRIP,

currentLOD,

NumberOfVertices - 1,

StripBufferManager(IndexStrip).size(),

GL UNSIGNED INT,

(const void*)(StripBufferManager(IndexStrip).Offset()*sizeof(EnteroUn)),

end for

Fig. 7. Visualization algorithm

4 Results

Figure 8 shows a comparison of spatial costs. On average, the model presented
in this paper fits in 1.5 times the original mesh in triangles and 2.3 times in
triangle strips.

Two well-known utilities to generate strips were tested in this multiresolution
model: Stripe Utility [13] and NVTriStrip Library [12]. Triangle strips for differ-
ent objects were generated using both utilities. The model generated from the

Fig. 8. Spatial cost comparison



468 F. Ramos et al.

Fig. 9. Results obtained from the bunny object. On the left, multiresolution models
comparison of PM [1], MTS [5], MOM [6] and our model. On the right, stripification
techniques perfomance in our approach.

NVTriStrip Library shows better frame-per-second rates than the Stripe object
when the level of detail is higher; this behavior is shown in Figure 9(right).

Results of visualization are shown in Figure 9(left), where our approach is
compared to other models. It can be seen that our model offers the best visual-
ization times due to its being integrated into the hardware.

5 Conclusions

We have presented a uniform resolution model that noticeably improves existing
models in terms of both storage and visualization cost. This model features: total
graphics hardware integration with implementation in high-performance mem-
ory, optimized hardware primitives, vertex cache exploitation and low spatial
cost.
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Abstract. In this paper, we address the problem of vectorization of
binary images on irregular isothetic grids. The representation of graphical
elements by lines is common in document analysis, where images are
digitized on (sometimes very-large scale) regular grids. Regardless of final
application, we propose to first describe the topology of an irregular two-
dimensional object with its associated Reeb graph, and we recode it with
simple irregular discrete arcs. The second phase of our algorithm consists
of a polygonal reconstruction of this object, with discrete lines through
the elementary arcs computed in the previous stage. We also illustrate the
robustness of our method, and discuss applications and improvements.

1 Introduction

The character and symbol representation, description and classification are nec-
essary tasks in many current applications, and concern both research and in-
dustrial challenges. Those tasks are applied on images generally designed within
a regular grid, i.e. all the pixels have the same size, and their position can be
easily indexed. However, it is now common to successively divide an image into
subimages, as in quadtree decomposition [1, 2], to represent a part of an image
in a more compact and adapted structure. These techniques describe interesting
parts of an image, from different points of view, through a set of irregular pixels.
In this paper, we introduce the concept of shape representation within an irreg-
ular isothetic grid (I-grid for short) [3]. The pixels are defined by variable sizes
and positions, and may be determined by subdivision rules. We propose to rep-
resent the topology of the elements contained in the irregular two-dimensional
(2-D) image by constructing their associated Reeb graph [4], then we represent
them by a simple polygonal structure that respects the extended supercover dig-
itization model defined in [3]. This structure also preserves the topology that we
reveal in the previous stage. We clearly address the problem of vectorization (or

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 470–481, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Topological and Geometrical Reconstruction of Complex Objects 471

raster-to-vector) on irregular isothetic grids, and not only in the scope of docu-
ment analysis. In our framework, we are interested in binary images containing
irregular objects, i.e. k−objects in respect to the definition given in [3], where
k represents the considered relation of adjacency (see Section 2 for further de-
tails). Those complex objects may contain holes, and could represent characters,
symbols, lines, etc. An application of such binary image processing is clearly doc-
ument and line drawings analysis, but we can also consider a discrete subdivision
of a part of R2 representing the solutions of a given function f : R2 → R. The
algorithms designed in interval arithmetic are interesting approaches to address
those problems [5, 6, 7].

The techniques of vectorization developed until now on the discrete regu-
lar domain can be divided into several classes, up to the final application of
the method [8, 9, 10, 11]. We will only focus on a few kinds of raster-to-vector
methodologies, largely developped for document analysis applications. To our
knowledge, there exists no generic extension of those approaches on irregular
isothetic grids. The run length encoding (RLE) based methods first build a de-
composition into elongated cells along an axis of the image where we can build a
line adjacency graph (LAG) [12,13]. Those methods aim to describe the topology
of the encountered objects in the image, but the geometrical structure deduced
from it has to be improved by many post-treatment processings. The skeletoniza-
tion and thinning methods are surely the most widely employed methods in vec-
torization. We can notice that tools designed in mathematical morphology [14]
are a frequent choice to prepare the images before processing the skeletonization.
A survey of vectorization methods based on skeleton can be found in [15], and
another one about such techniques not using it in [16]. The aim is to compute
a medial axis of the object that minimally represents its shape [17]. However,
those techniques modify the original geometry of the object to obtain a mini-
mal representation of it. Besides, they need filtering or smoothing pre-treatment
processings to reduce the noise that could pertubate the final medial axis. The
k−object can contain holes, and so may be composed by thick arcs. In the work
of Debled et al. [18,19,20], the definitions of discrete lines and blurred segments
join the concept of thick regular arcs. But, beyond this geometrical representa-
tion of arcs, the global structure is not aborded, and thus there are no description
of the topology of the recognized objects.

In this article, we first introduce the concepts of k−arcs and k−objects by
recalling some definitions, then we present the extended supercover model on an
I−grid. We also recall the invertible reconstruction of k−arcs described in [21].
In the third part, we give details about the two main phases of our system: the
description of the topology of a complex object based on the Reeb graph [4],
and its polygonal reconstruction. Then, we present some experiments and re-
vealing results to illustrate the two phases of our algorithm. We also proove the
robustness of the polygonal reconstruction by a test on a large image of tech-
nical drawing. We finally discuss the applications of our contribution, and the
improvement on its global performance.
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2 Preliminaries

We first define an irregular isothetic grid, denoted I, as a tiling of the plane with
isothetic rectangles. We shortly recall that each rectangle P (also called cell) of
I is defined by its center (xP , yP ) ∈ R2 and a size (lxP , l

y
P ) ∈ R2. The position

and the size of P may be controlled by different level of constraints; e.g. in the
case of quadtree decomposition [1, 2], for a cell of level k, (xP , yP ) = ( m

2k ,
n
2k )

and lxP = lyP = 1
2k−1 for some m,n ∈ Z [3, 21].

In our framework, adjacency relation is an important feature that we depict
through the following definitions.

Definition 1 (ve−adjacency and e−adjacency). Let P and Q be two cells.
P and Q are ve−adjacent (vertex and edge adjacent) if :

or

⎧⎨⎩ |xP − xQ| =
lxP +lxQ

2 and |yP − yQ| ≤
lyP +lyQ

2

|yP − yQ| =
lyP +lyQ

2 and |xP − xQ| ≤
lxP +lxQ

2

P and Q are e−adjacent (edge adjacent) if we consider an exclusive “or” and
strict inequalities in the above ve−adjacency definition. k may be interpreted as
e or ve in the following definitions.

Definition 2 (k−arc). Let E be a set of cells, E is a k−arc if and only if for
each element of E = {Pi, i ∈ {1, ..., n}}), Pi has exactly two k−adjacent cells,
except P1 and Pn which are called extremities of the k−arc.

Definition 3 (k−object). Let E be a set of cells, E is a k−object if and only if
for each couple of cells (P,Q) belonging to E × E, there exists a k−path between
P and Q in E.

We now consider the extension of the supercover model from [22] on irregular
isothetic grids [3] to digitize Euclidean objects on I.

Definition 4 (Supercover on irregular isothetic grids). Let F be an
Euclidean object in R2. The supercover S(F ) is defined on an irregular isothetic
grid I by:

S(F ) =
{
P ∈ I | B∞(P ) ∩ F �= ∅

}
=
{
P ∈ I | ∃(x, y) ∈ F, |xP − x| ≤

lxP
2
and |yP − y| ≤

lyP
2
}

where B∞(P ) is the rectangle centered in (xP , yP ) of size (lxP , l
y
P ) (if lxP = lyP ,

B∞(P ) is the ball centered in (xP , yP ) of size lxP for the L∞ norm).

This model has several interesting properties, e.g. for F , G two Euclidean objects
in R2, we have S(F∪G) = S(F )∪S(G) or S(F∩G) ⊆ S(F )∩S(G) (see proposition
2 in [3] for more details).

We now present the k−arc reconstruction algorithm we use in our complex
object geometrical representation phase (Section 3.2). Moreover, this approach
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respects the supercover model we have just presented. The algorithm proposed
in [21] to decompose a curve into segments is first based on the following defin-
ition of an irregular digital line.

Definition 5 (Irregular isothetic digital straight line). Let S be a set of
cells in I, S is called a piece of irregular digital straight line (IDSL for short) iff
there exists an Euclidean straight line l such that:

S ⊆ S(l)

In other words, S is a piece of IDSL iff there exists l such that for all P ∈ S,
B∞(P ) ∩ l �= ∅.

The algorithm inspired from [23] principally uses the construction and update
procedures of a visibility cone, and can be sketched as follows. We first fix the
extremity p0 of the first segment such that p0 ∈ P0. We note e0 the Euclidean
segment shared by P0 and P1, and we consider the first cone C0(p0, s, t) such
that s and t coincide with the extremities of e0 and {p0, s, t} is sorted counter-
clockwise. Then, for each cell Pi, we consider the shared segment ei between Pi−1

and Pi, and the current cone Cj(pj , s, t) is updated. When the update procedure
fails, a new cone Cj+1(pj+1, s, t) is set up, and we add the point pj+1 to the
reconstruction: to compute the new cone, authors of [21] consider the bisector of
the cone and define pj+1 as the midpoint of the intersection between the bisector
and the pixel Pi−1. The Figure 1 illustrates the progressive construction of cones
in a k−arc, and the resulting segmentation into lines.

Fig. 1. An example of the progressive construction of cones in a k−arc (left), and the
reconstruction into segments we obtain (right)

3 Complex Objects Definition and Representation on
Irregular Isothetic Grids

In this section, we present the two main phases of our system for object repre-
sentation on irregular isothetic grids.

3.1 Representation of a Complex Topology

To represent the shape of a k−object E , we have chosen an incremental direc-
tional approach to build its associated Reeb graph G, as in continuous space
(see Figure 2). It is an interesting structure introduced by G. Reeb [4] based
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on the Morse theory [24, 25]. This graph is also used in many applications for
surface and curve description [26, 27, 28]. The Reeb graph G is associated to a
height function f defined on E , and nodes of G represent the critical points of
f . Moreover, to have a minimal representation of the topological information of
E , each edge of the Reeb graph corresponds to a k−arc. Those k−arcs will be
segmented in the stage of polygonal description of E (Section 3.2).

Fig. 2. (a): an example of the Reeb graph G of a continuous object E . The nodes of G
represent the critical points of f (maxima, minima, inflection points), and an edge is a
connected component of E between two critical points. (b): an example of an irregular
object E (left), the final recoded structure with k−arcs (right) and the Reeb graph
associated to the height function f defined on E (bottom). The notations b, e, m and s
are given at the end of this section.

We denote the left, right, top and bottom borders of a cell P respectively PL,
PR, PT and PB. We have, for example, the abscissa of PL equal to xP − (lXP /2)
(that we denote PL = xP − (lXP /2)). We also abusively say that a k−arc A and
a cell P are k−adjacent if there exists a cell Q in A such that P and Q are
k−adjacent. Let E = {Pi}i=1,...,n be a given 2-D set of cells. We first choose a
direction to treat the cells of E . Without loss of generality, we can suppose that
we choose the left-to-right orientation above X axis, i.e. the height function f is
defined along X axis. At time t = 0, we merge together all the k−adjacent cells
P of E with the smallest left border xt=0 = x0, e.g. PL = x0 = 0. This merging
task is processed by the update procedure described below. Those m collections
of cells define the begin cells of the initial recognized k−arcs A1, A2, ..., Am.

Update Procedure. Let A be a k−arc, and P1 and P2 two adjacent cells of E
such that P1 ∈ A, PL

1 < PL
2 , and P2 should be added to A. If PL

2 = PR
1 , we just

add P2 to A, else the procedure updates the k−arc A with P2, and may recode
A. For that, we first build the greatest common rectangle F2 of P1 and P2.
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Definition 6 (Greatest common rectangle). Let P1 and P2 be two adjacent
rectangles. F2 is the greatest common rectangle (or GCR) of P1 and P2 iff

i) F2 ⊆ P1 ∪ P2 ,
ii) F2 ∩ P1 �= ∅ ,
iii) F2 ∩ P2 �= ∅ ,
iv) there is no rectangle greater than F2 by inclusion respecting i), ii) and iii).

(a) (b) (c) (d) (e)

Fig. 3. Description of rectangles F1, F2 and F3 in the update procedure (top), and
the associated cells as result (bottom). When P R

1 < P R
2 (a and b), P1 − F2 = F1 and

P2−F2 = F3, else P1−F2 = {F1, F3} (d and e). If P R
1 = P L

2 , F2 = ∅, when P R
1 = P R

2 ,
F3 = ∅ and finally F1 = ∅ in the case P L

1 = P L
2 .

Then, we consider the rectangles P1 − F2 and P2 − F2. If PR
1 < PR

2 , we denote
P1−F2 = F1 and P2−F2 = F3, else we prefer P1−F2 = {F1, F3}. We can notice
that those rectangles may be empty, e.g. F3 = ∅ if PR

1 = PR
2 , since in that case

FL
3 = FR

3 . Figure 3 presents the five general configurations of update procedure
(there are also five other configurations, obtained by symetry when PT

2 > PT
1 ),

and the k−arc recoding that we have to consider. Besides, we propose to reduce
the number of cells in A by joining the two rectangles F1 and F3 if FT

1 = FT
3 ,

FB
1 = FB

3 and F2 = ∅. This junction is processed by replacing F1 and F3 by
the rectangle F1 ∪ F3. Finally, the procedure ends by removing P1 from A, and
by adding the cells corresponding to the rectangles F1 and F2 to A. F3 is also
pushed in E , and will be treated later; more exactely at time t such that xt = FL

3 .
At time t + 1, our algorithm consists first in merging the adjacent cells with

the same left border xt+1 in k cells C1, C2, ..., Ck (see update procedure for
details). Those candidate cells may be added to one or more k−arcs among
Ai, i ∈ {1, ...,m} if they are adjacent to Ai. It is clear that only a cell Q built
at time t and having its right border QR equal to xt+1 may be adjacent with a
cell Cj , j ∈ {1, ..., k}. A cell Cj can be treated by several manners:
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– Cj is not adjacent with any k−arc Ai. We initialize a new k−arc Am+1 with
the cell Cj . Cj represents the begin cell of Am+1.

– If Cj is adjacent with one k−arc Ai, then we just update Ai with Cj .
– When Cj is k−adjacent with p k−arcs Ai, Ai+1, ..., Ai+ p, it is a merge

phase. First, we update each k−arc with Cj . The cell Cj is marked as a merge
cell and indicates that each k−arc Ai, ..., Ai+p has a k−arc Am+1 = {Cj}
linked as a next arc.

– The case where p cells Cj , Cj+1, ..., Cj+p are k−adjacent with an k−arc Ai

is called a split phase. We first update Ai with Cj by the update procedure.
Then we denote Q the cell in Ai such that QR = xt+1. We also define p new
next k−arcs Am+1, ..., Am+p of Ai such that Am+1 = {Q,Cj}, ..., Am+p =
{Q,Cj+p}. In those p k−arcs and in Ai, Q is marked as a split cell.

When the algorithm ends, at time t such that xt is the greatest left border in E ,
we define the last added cell in every k−arc Ai as an end cell. In this stage of
our algorithm, there may also appear a split phase and a merge phase for a cell
Cj . We do not detail this specific case but it can be easily handled.

We depict in Figure 4 the progressive construction of the graph and the re-
coding of the k−object presented in Figure 2 (b) in five stages of the algorithm.

Fig. 4. The recognized k−arcs and the associated Reeb graph for some iterations of our
algorithm on the object presented in Figure 2 (b). First, we initialize a k−arc with the
cell with the smallest left border. Then, we progressively update and recode k−arcs.
The third and fourth images present merge and split phases. We can notice that in one
hand the recoding stage is not detailed in this figure, and in the other hand the edges
m− s represent a k−arc with one cell in this example.

Our algorithm finally builds a complete topological representation of E with
the Reeb graph G by recognizing and linking begin (b), merge (m), split (s) and
end (e) cells in it. There are nine possible configurations of edges in G: b − s,
b − m, b − e, s − s, s − m, s − e, m − s, m − m and m − e. The number of
critical points in f can be linked to the Euler number χ of E [4]. We consider
the following equation, where G is denoted as the couple of sets of vertices and
edges (V,E):
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χ =
∑

n∈V,(n=b)∨(n=e)

(deg(n))−
∑

n∈V,(n=s)∨(n=m)

(deg(n)− 2)

where deg(n) is the degree of the node n in G, so deg(n) = 1 if n is a begin or
end node. The Euler number permits to describe the topology of an object by an
unique value. For example, for a torus, χ = 0, for a disc, χ = 2, and the object
described in Figure 2 (b) has a Euler number χ = −4; we can also say that this
shape is homeomorpheous to a torus with 3 holes where χ = 2− 2×#(holes) =
−4. Beside the topological invariants obtained by critical points, the structure
of the graph clearly depends on the direction we choose for the height function
f . A part of the nodes and the edges may change, but the information on the
topology of E , i.e. internal nodes of G, is not modified. The Euler number is
an example of the use of the Reeb graph for shape description. Let us consider
now E ′ as the object drawn in the fourth image of Figure 4. The three cells
added during the last iteration could be noise modifying the contour of E ′. The
Reeb graph is modified by a split phase, three nodes are created, whereas these
cells are maybe noise. Actually, the problem of the perturbation of the contour
of E ′ could be certainly reduced if the object was first filtered or smoothed.
This kind of pre-treatment processings is often adopted, whatever the approach
we may choose for shape representation, e.g. skeletonization. Finally, with the
update procedure, we recode the cells in E so that a k−arc is always represented
between two nodes of G. This geometrical rearrangement clearly depends on
the direction of f , but does not change neither the topology nor the contour
of the recognized k−arcs. The topological structure so described is simple, and
prepares the next phase of our complex objects reconstruction system.

3.2 Polygonal Reconstruction of Thick Objects

Since the reconstruction into polylines always affects the first point p0 as the
center of the first treated cell, we propose to start the reconstruction of every
k−arcs computed in the previous stage by the merge and split nodes detected
in the Reeb graph G. This insures that each of those particular nodes of G will
be represented by an unique point in the final polygonalization. The segments
are recognized from intersections between several parts of the object E to its
extremities, i.e. we consider the edges m − e, s − e, m − b and s − b of G.
Moreover, since the recognition algorithm is greedy, the possible error induced
by the visibility cone approach is propagated to the extremities of E , instead
of those intersections that represent the shape of the object. For the m − s,
m −m, s − s and s −m configurations of edges in G we propose to process a
bidirectional reconstruction that begins from each node of the edge, and ends in
its center. Thus, the error may be concentrated in the midpoint of those edges.
This approach confirms that the nodes m and s of G represent the places of an
object where the description of its geometry must be precise. Finally, we choose
to treat edges b − e by the same bidirectional reconstruction, that seems to be
the more efficient way to insure a robust reconstruction. We do not deal about the
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problem of linking the two reconstructions on the k−arc (reconstruction with
patch), because an efficient and general joint technique between two discrete
lines implies that our algorithm would not be linear anymore [29]. Hence we just
add a segment between the two polylines. This phase of our system can not be
handled without patch, since we use the internal points of the shape of E to
guide the geometrical reconstruction.

In Figure 5 b, we illustrate the behaviour of our algorithm in the case of the
object E presented in the previous section. We also show the interest of our
approach for a symetrical complex object.

(a) (b)

Fig. 5. If we consider the original orientation of the k−arcs, the shape of the k−object
presented in the next section (a left) is not well defined since the symetry is not
preserved. So, we propose to start the reconstruction by the nodes s and m (a right).
This structure respects the supercover model, and the symetrical shape of this object.
We also show the result of our algorithm on the k−object presented in the previous
section (b).

Contrary to conventional vectorization methods, we propose a technique that
respects the supercover model on an I−grid. We do not address the quality of
the global polygonal structure deduced from this second phase of our system.
To introduce the concept of quality in the framework of document analysis, we
may refer to [30].

4 Experimentation and Results

In Figure 6, we present the polygonal structure obtained on an image first re-
arranged by a quadtree-based approach. The reconstruction of k−arcs stands
inside the object, and the split and merge nodes are represented with one point
in the reconstruction. The polygonal representation also permits to measure geo-
metrical features (e.g. length) of a complex function f : R2 → R (Figure 7). f is
first discretized by an interval computing algorithm through a set of cells E , then
we use our system to minimally describe the curves of E . Finally, to show the
robustness of our system, we present in Figure 8 the polygonal and topological
reconstructions of a large image of technical drawing.



Topological and Geometrical Reconstruction of Complex Objects 479

Fig. 6. An image of a chinese character (left), compressed by a quadtree-based approach
(center). We show the final k−arcs recoding and the polygonalization (right).

Fig. 7. The function x2 + y2 + cos(2πx) + sin(2πy) + sin(2πx2) cos(2πy2) = 1 on
[−1.1; 1.1] × [−1.1; 1.1] (left) discretized by an algorithm described in [7] with two
different resolutions, then recoded and polygonalized (center and right)

Fig. 8. An image of technical drawing of size 1765 x 1437 pixels we submit to our
system, and a zoomed part of it, indicated by the arrow (up). The polygonalization
we obtain and the associated zoom are presented (bottom). The complete Reeb graph
(about 300 nodes) is also illustrated in a circular format (right).
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5 Conclusion and Future Work

The representation by lines of an object described on a binary image is a classical
problem often considered in the framework of document analysis. We have pro-
posed to enlarge the scope of vectorization methodologies to irregular isothetic
representation of binary data. Depending on the final application of our system,
we can treat the initial image with pre-treatment processings, reorganize the
Reeb graph (edge contraction, etc.), or rearrange the segments finally processed
in the second phase. The geometrical reconstruction stands inside the object,
i.e. it respects the irregular digitization supercover model. Moreover, this recon-
struction preserves the topology described by the Reeb graph. Thus, our system
is robust, and topologically and geometrically correct. The Reeb graph can be
extended to three-dimensional (3-D) object description, with a similar incremen-
tal approach. However, visibity cone reconstruction is hardly adaptable to such
irregular objects. Our system should be modified to provide a 3-D polygonaliza-
tion based on the Reeb graph. Such technique would be convenient especially for
medical imaging, e.g. organ representation in an irregular 3-D CT-scan image.
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Abstract. We propose a linear-time algorithm for curve segmentation which is
based on constructive polynomial fitting. This work extends previous work on
constructive fitting by taking the topological properties of a digitized curve into
account. The algorithm uses uniform (or L∞) fitting and it works for segments of
arbitrary thickness. We illustrate the algorithm with the segmentation of contours
into straight and parabolic segments.

1 Introduction

In this work we consider the segmentation of digitized curves into linear or parabolic
segments. Curve segmentation is used for curve coding and representation, length and
tangent estimation [1, 2], and shape matching. In discrete geometry one popular ap-
proach to curve segmentation is to segment a curve into digital straight segments (DSS).
A rather complicated linear time-algorithm for DSS segmentation was found by Smeul-
ders and Dorst [3]. Debled-Renesson and Réveillès gave a simple, easy to implement al-
gorithm [4]. More recently, Buzer developed an algorithm for the recognition of straight
lines of arbitrary thickness, based on convex hulls. Buzer’s incremental algorithm can
also be used for curve segmentation [5].

Since curve segmentation has many diverse applications in image processing it is
worthwhile to look at some other approaches and their points of attention. Leclerc and
Zucker [6] discuss how to segment a one-dimensional image through curve fitting, and
they discuss how to avoid the misclassification of points near a discontinuity. Like-
wise, Dunham gives an algorithm that finds a piecewise linear approximation of a curve
within uniform error and with a minimal number of vertices [7]. Some methods borrow
techniques from Robust Analysis. Rosin and West propose a method that recursively
subdivides a curve to form a binary tree, which is then traversed to select the best repre-
sentation of the curve [8]. They use a least median of squares method to fit ellipses to the
data, which is more robust than ordinary least squares. Boyer et al use a robust sequen-
tial estimator to parametrize and organize range images [9]. Also variable order fitting
has shown its value in curve and image segmentation. An example is Besl and Jain’s
image segmentation algorithm which is based on variable-order surface fitting [10].
As for curve segmentation an important application of variable order fitting is feature
point detection for shape matching. When a large circular arc is segmented into digital
straight segments, the endpoints are unsuited as feature points, since their location is
more or less arbitrary. The examples in this paper show that quadratic segmentation is
more meaningful, and indicate that tangent and length estimation could also profit from
variable order fitting. Also the thickness of the segments should be adjustable so that
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the feature points necessary for matching are all present. One of the reasons variable
order and variable thickness segmentation is not generally applied is its computational
burden [11,10,12]. To summarize, the desirable properties for a segmentation algorithm
are:

– low or even linear-time complexity;
– arbitrary segment thickness;
– more robust than least squares fitting;
– suited for variable-order fitting;
– take into account and/or benefit from the topological properties of a digitized curve;
– simple, and with predictable control and data flow for implementations on dedi-

cated hardware.

In this paper we propose a simple, linear-time algorithm for segmentation with poly-
nomials of arbitrary order, which we illustrate for linear and parabolic segments. Linear-
time complexity, simplicity and generality do not come for free, however. The method is
based on the estimation of the fitting error, not the exact computation, and therefore also
the segmentation will not always be exact. The amount of errors can be reduced, how-
ever, by increasing the number of computations, and for most applications the errors are
completely acceptable. Section 2 describes the mathematical basis of the segmentation
algorithm. Section 3 examines the performance of the fitting cost estimators that are
used in the algorithm en Section 4 shows segmentation results.

2 Constructive Fitting

In this paper we focus on one particular aspect of segmentation. Given an initial seed
region, how can we find a region of maximal size where a curve or surface can be
approximated sufficiently well by a polynomial of given order? And how can we find
this region with minimal computational effort? In fact, although region growing and
curve segmentation based on polynomial fitting is often a computationally expensive
process [10, 11, 12], we propose a linear-time algorithm that solves some simple but
basic segmentation problems, such as the segmentation of a curve in piecewise linear
segments. This efficiency is based on a simple principle. The purpose of region grow-
ing and segmentation is to partition a curve or image into segments that satisfy a certain
criterion, such as: being straight or smooth. To find such segments, a typical region
growing algorithm starts from a small seed segment, and then repeatedly tries to add
new points to this segment, while verifying whether the segmentation criterion is still
satisfied for the enlarged segment. If not, a new segment is started, or another point
is chosen. In general, the verification of the segmentation criterion requires increas-
ingly more computation time when the segment gets larger. It is the purpose of this
paper to show that this computation time can be reduced considerably by comparing
the extension point with a small, but well-chosen set of reference points within the seg-
ment. Since the number of reference points is constant during the entire region growing
process, the resulting algorithms have linear time complexity. This process has also
been called constructive fitting.

We briefly review the basics of the particular method of fitting geometric primitives
to data sets, on which the region growing processes proposed in this paper are based.
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This method is called constructive fitting because it allows us to construct global fits
to an entire data set from so-called elemental fits to small parts of the data [13, 14, 15].
We consider constructive fitting problems for one variable. The generalization to other
dimensions is straightforward. Let C = {(x0, y0), . . . , } ⊂ Z2 be the points of a finite
curve. Let G be a vector space of fitting functions, for instance, the vector space of
polynomial functions of the form

g(x) = α0 + α1x+ · · ·+ αlx
l.

To simplify the exposition we impose the mild constraint that the curve C contains at
least n + 1 points with distinct x-coordinates, where n is the dimension of the space
of fitting functions. The uniform (or L∞) fitting cost of fitting g(x) to the curve C is
defined as

rg(C) = max
(xi,yi)∈C

|g(xi)− yi|.

The best fit is the function g(x) in G for which rg(C) is minimal. We denote this
minimal cost as r(C), and we call it the fitting cost. To be precise,

r(C) = min
g∈G

rg(C).

We call τ = 2r(C) also the thickness of C, because the points of C are contained in
a strip of thickness τ parallel to the graph of g(x). This is also related to the notion of
α-thickness in [5].

The best fit and its fitting cost can be computed from elemental fits to the so-called
elemental subsets of C. These are subsets of the curve C that contain precisely n + 1
points, where n denotes the dimension of the vector space of the fitting functions G.
The fitting cost over an elemental subset itself can be computed in a straightforward
manner. To be precise, let D = {(xi1 , yi1), . . . , (xin+1 , yin+1)} be an elemental subset
of R. Let Ej denote the cofactor of the element at the intersection of the last column
and the jth row of the following matrix:

(AD|BD) =

⎛⎝1 xi1 . . . xl
i1

yi1

. . .
1 xin+1 . . . x

l
in+1

yin+1

⎞⎠
Then one can show that the fitting cost for the elemental subset D is equal to

r(D) = det(AD|BD)/(|E1|+ · · ·+ |En+1|)
= |E1yi1 + · · ·+ En+1yin+1 |/(|E1|+ · · ·+ |En+1|),

(1)

provided the denominator at the right side is non-vanishing [14, 16]. Furthermore, one
can prove that the fitting cost over C is the maximal value of the elemental fitting costs
(1) over all elemental subsets of the curve C [14]:

Proposition 1. Let M be the collection of all elemental subsets D of C for which
|E1|+ · · ·+ |En+1| > 0. IfM is non-empty, then we have r(C) = maxD∈M r(D).

Although Prop. 1 yields a simple method to compute r(C), the computational cost of
evaluating r(D) for all elemental subsets can be high. We can obtain a reliable estimate
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of the fitting cost, with far less computations if, instead of calculating maxD∈M r(D),
we compute maxD∈M r(D) where M̃ is some small subcollection ofM.

One can prove that the estimate is reliable provided M̃ forms a so-called rigid
subcollection of elemental subsets [14]. The rigidity of M̃ depends on its elemen-
tal subsets, and can be verified as follows. Assume that the points of the curve C
have been ordered in a fixed but arbitrary manner, i.e., C = {(x1, y1), . . . , (xk, yk)}.
Let D = {(xi1 , yi1), (xi2 , yi2), . . . , (xin+1 , yin+1)} be an elemental subset of C, with
1 ≤ ij ≤ k, and let Ej , 1 ≤ j ≤ n+1, be the cofactors corresponding to the elemental
subcountourD. In the vector space Rk let

vD =
(. . . , E1, . . . , E2, . . . , En+1, . . .)
|E1|+ |E2|+ · · ·+ |En+1|

= (d1, . . . , dk),

denote a vector associated withD, where the jth cofactorEj occurs as the ij th element.
The remaining k − (n + 1) entries are zero. The vectors vD , where D ∈ M, span a
linear subspace L of Rk. If we only consider vectors vD that correspond to elemental
subsets in the subcollection M̃, then these vectors span a linear subspace L̃ ⊂ L, where
L̃ can be smaller than L. Whether the elemental subsets M̃ can be used to accurately
estimate the fitting cost depends on the question whether these two linear subspaces are
equal or not, a notion formalized as follows.

Definition 1. We say that M̃ forms a rigid subcollection of elemental subsets if the
linear space L̃ spanned by the vectors vD , where D ∈ M̃, is the same as the linear
space L spanned by the vectors vD , where D ∈M.

Apart from obeying the condition r(C) ≤ τ , a digitized curve is also an ordered set of
points with topological properties, the most common being that the curve must be either
4- or 8-connected. We incorporate this property by requiring that two subsequent points
(xi, yi), (xi+1, yi+1) on the curve satisfy |yi−yi+1| ≤ ε. To obtain 4- or 8-connectivity
we choose ε = 1. With the above concept of rigid subcollections we have the following
proposition which extends previous results [13, 14].

Proposition 2. Let M̃ be a rigid subcollection of elemental subsets chosen from the
collection of all elemental subsets M for a curve length k. Let τ denote the maxi-
mum thickness of a curve segment, and ε the maximum absolute difference between
y-coordinates of subsequent points on the curve. For the vectors (z1, . . . , zk) ∈ Rk, let
S be the k-dimensional polytope defined by the inequalities

|zi − zi+1| ≤ ε, for i = 1, . . . , k − 1, (2)

and
|d1z1 + · · ·+ dkzk|
|d1|+ · · ·+ |dk|

≤ τ

2
, for all D ∈ M̃. (3)

Then for each elemental subset P ∈M, with associated vector (p1, . . . , pk), the values

γP (M̃, τ, ε) = max
(z1,...,zk)∈S

2
τ

|p1z1 + · · ·+ pkzk|
|p1|+ · · ·+ |pk|

, (4)

and
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γ(M̃, τ, ε) = max
P

γP (M̃, τ, ε) (5)

are well defined.

Proof. It is sufficient to show that γP () is well-defined for all elemental subsets P . By
the rigidity assumption there is a finite set of weight vectors vA = (. . . , a1, . . . , al, . . .),
vB = (. . . , b1, . . . , bl, . . .), . . ., vD = (. . . , d1, . . . , dl, . . .) with A,B, . . . , D ∈ M̃,
such that vP = (. . . , p1, . . . , pl, . . .) can be written as a linear combination vP =
αvA + βvB + · · ·+ ωvD. It follows that

|p1z1 + · · · plzl| ≤ |α||a1z1 + · · ·+ alzl|+
|β||b1z1 + · · ·+ blzl|+ · · ·+
|ω||d1z1 + · · ·+ dlzl|.

As a consequence of the constraints (3), every term at the right side of this inequality
has an upper bound. Hence |p1z1 + · · · plzl|/(|p1| + · · · |pl|) will also have an upper
bound, and it follows that γP () is well-defined, and therefore γ() is well defined.

The primary use of Prop. 2 is to determine the relative estimation error. Suppose we
find the estimated cost r̃(C) of a curve from the elemental subsets in M̃, and that we
have r̃(C) ≤ τ/2. Then from Prop. 2 it follows that the outcome of any other elemental
subset D ∈ M \ M̃ satisfies r(D) ≤ γ(M̃, τ, ε)τ/2. Thus, although the thickness of
the curve is not known exactly, it must be less than τγ(M̃, τ, ε).

Prop. 2 yields an upper bound γ() for the estimation error, which is found by solv-
ing linear programming problems for different cost functions (4), but over the same
polytope S, defined by the inequalities (2) and (3). Each vector in S corresponds to
a possible configuration of points satisfying the connectivity constraints (3) and with
estimated fitting cost less than τ/2. Although the fitting costs r(C) and r̃(C) depend
on the real point positions of the curve C, the upper bound γ() only depends on the
x-coordinates of the elemental subsets in M̃, the thickness τ and the connectivity pa-
rameter ε, since these parameters completely determine the polytope S and the linear
cost functions (4). Thus the upper bound γ(M̃, τ, ε) can be computed once and for all,
since it does not depend on the curve itself. The rigidity of M̃ is easy to verify [13].

As a special case, γ(M̃, τ,∞) denotes the value when no topological constraint is
imposed. To compute γ(M̃, τ,∞) we can apply Prop. 2 with ε a large positive number.
The common case where we fit digital straight segments to connected curves corre-
sponds to γ(M̃, 1, 1). By observing the expressions (4), (2), and (3) in Prop. 2 one can
see that γ(M̃, τ, ε) only depends on the ratio μ = τ/ε. In Section 3 we will see that
when ε is small compared to the thickness τ , then the connectivity of the curve cannot
be neglected when estimating fitting costs. Previous results in [13, 14] did not take into
account connectivity and only considered the case γ(M̃, τ,∞).

According to Prop. 2, given M̃, we can compute γ(M̃, τ, ε) which gives us a pre-
cise measure for the maximal error of the estimated fitting cost r̃(R). Moreover, γ(M̃)
depends only on the x-coordinates of the points on the subsets D in M̃ and not on the
curve itself. In principle, Prop. 2 enables us to evaluate the maximal error for a par-
ticular estimator M̃, by performing an exhaustive search for the estimator that has the
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lowest maximal error. This has been explored in previous work, but without topological
constraints [13]. With topological constraints the performance depends strongly on the
ratio between the allowed thickness of a curve and the connectivity.

3 Performance of Fitting Cost Estimators

When M̃ satisfies the conditions of Definition 1, we refer to it as a fitting cost estimator
M̃. Using Prop. 2 we can search, in a systematic way, for the estimator M̃ that yields
the lowest possible estimation error.

3.1 Linear Fitting Cost Estimators

We will illustrate our search with a simple fitting problem in one variable. Fig. 1
shows a curve C. Let G be a two-dimensional vector space of fitting functions of
the form g(x) = α0 + α1x. Then the best fit to C is the function g(x) for which
max(xi,yi)∈C(|g(xi)− yi|) is minimal. When C is a digital arc the fitting cost r(C) is
a measure for the straightness of the digital arc [14]. First we compute the fitting cost
exactly. According to Prop. 1, the fitting cost r(C) is equal to maxD r(D), where the
maximum is taken over all 3-point subsets of C. The fitting cost r(D) of a subset is
equal to |E1yi + E2yj + E3yk|/(|E1| + |E2| + |E3|), where the Ej are the cofactors
of the last column of the matrix ⎛⎝1 xi1 yi

1 xi2 yj

1 xi3 yk

⎞⎠
Thus, for the function shown in Fig. 1, we find r(C) = 8/9 ≈ 0.89. Note that the
exact computation of r(C) involves the evaluation of 120 elemental fitting costs r(D)
(a 10-point curve has 120 distinct 3-point subsets).

Estimating r(C) instead of computing it exactly, considerably reduces the number of
elemental fitting costs that must be evaluated. The challenge is how to choose these ele-
mental subsets so that the estimate is as good as possible. Table 1 shows the theoretical
performance of different estimators when they are applied to a curve segment consist-
ing of 10 subsequent points (x1, y1), (x1 + 1, y2), . . . , (x1 + 9, y10). The first column
describes the estimator, where the index i varies in each as i = 2, . . . , 9. For example,
(p1, pi, pi+1) denotes the estimator M̃= {(p1, p2, p3), (p1, p3, p4), . . ., (p1, p9, p10))}.
The estimator called iterative subdivision is constructed by iteratively subdividing the
curve into shorter curves as follows: M̃ = {(p1, p5, p10), (p1, p3, p5), (p5, p7, p10),
(p1, p2, p3), . . ., (p7, p9, p10))}. For M̃7, the index varies from i = 3 to i = 9, and also
(1, 2, 3) is included.

The first two estimators are general in the sense that they assume all points are known
from the start. The estimatorsM̃3, . . .,M̃7 can be used in incremental algorithms, where
only one point at a time is added to a segment, while each time the fitting cost is eval-
uated. For curve segmentation the incremental algorithms are the most interesting. The
estimator M̃4∪M̃5 use the conditions of both M̃4 and M̃5 to estimate the fitting cost.
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Columns 2 to 5 show the worst case behavior γ(M̃, τ, ε) for each estimator as com-
puted by Prop. 2. Note that these values for γ() do not depend on any particular curve,
but that they are valid for any curve of length 10, with thickness not larger than τ and
satisfying the connectivity constraint determined by ε. Column 6 on the other hand
shows the estimated cost for one particular curve which is shown in Fig. 1. In all cases
the real fitting cost of 0.89 is always less than product of the estimated cost and maxi-
mum relative error γ(). Columns 7 and 8 are discussed in Section 4.

Table 1. Performance of different estimators for varying values of the thickness and connectivity
constraint, for the curve length k = 10

Estimators γ(M, 1,∞) γ(M, 1, 2) γ(M, 1, 1) γ(M, 2, 1) estim. max aver.
cost cost cost

General estimators:
M1: (p1, pi, p10) 2. 2. 2 1.5 0.89
M2: iterative subdivision 3.1 2.94 2.65 1.71 0.72
Incremental algorithms:
M3: (pi−1, pi, pi+1) 20. 7.11 4 2 0.5
M4: (p1, pi, pi+1) 4.13 3.92 3.47 2 0.5 36. 11.
M5: (p1, p�i/2�+1, pi+1) 21.58 5.4 3.09 1.84 0.72 2. 1.03
M6: (p1, p� i+4

3
�, pi+1) 19.83 6.56 3.56 2. 0.66 3.96 1.41

M7: (p1, pi−1, pi+1) 16.74 3.27 2.37 1.83 0.89 2.6 0.97
Combined incremental:
M4 ∪M5 3. 2.94 2.76 1.84 0.72 2. 1.02
M4 ∪M5 ∪M6 2.94 2.94 2.68 1.84 0.72 2. 1.02
M4 ∪M5 ∪M6 ∪M7 2.17 2.14 1.95 1.71 0.89 2.08 0.84

Table 1 clearly shows that the performance γ(M̃, τ, ε) of an estimator depends
strongly on the ratio between the thickness τ and the connectivity constraint ε. In fact,
although according to the first column M̃4 performs much better (γ = 4.13) than M̃5

(γ = 21.58) for arbitrary points sets, columns 4 and 5 show that when we impose the
topological constraint ε = 1, M̃5 (γ = 1.84) is better than M̃4 (γ = 2). The rea-
son can be understood as follows. The estimator M̃4 compares the y-coordinate of the
new point pi+1 with the y-coordinates of the points p1 and pi. However, if we impose
the topological condition that the difference between the y-coordinates of subsequent
points is never larger than one, then for M̃4 the topological condition (2) coincides
almost completely with the condition (3). For M̃5, however, the topological constraint
makes sense, and γ(M̃5, τ, ε) drops when ε gets smaller. Also note that for all estima-
tors in Table 1 we have γ(M̃, τ = 1, ε = 1) ≥ γ(M̃, τ = 2, ε = 1). That is, for a 4-
or 8-connected curve, the relative error on the estimated thickness is smaller for τ = 2
than for τ = 1. The reason is that for a curve with thickness τ = 2, connectivity is a
more important additional constraint than for a curve with thickness τ = 1.
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The best estimator is M̃1, which performs well for curves and for disconnected
point sets. However, M̃1 is not suited for curve segmentation. The best estimator for
curve segmentation is M̃7, if we assume that the curves are either 4- or 8-connected.
It makes sense to combine several estimators. The overall performance of estimator
M̃4∪M̃5∪M̃6∪M̃7 is better than the performance of its parts. The drawback is that
the combined estimator evaluates four times more conditions than for example M̃5.
Nonetheless, the time complexity of this combined estimator is still O(N), where N
denotes the number of points on the segment, as we use 4 elemental subsets to examine
the fitting cost for each new point.

Table 1 only shows the results for curves of length 10. For lengths other than 10 we
get similar results. An estimator that performs well for length 10, such as M̃4 ∪ M̃5 ∪
M̃6 ∪ M̃7, also performs well for curves of arbitrary length.

1 2 3 4 5 6 7 8 910
x

1
2
3

y

Fig. 1. Simple curve used to examine the performance of the estimators in Table 1

3.2 Quadratic Fitting Cost Estimators

Table 2 shows the results for fitting cost estimators that estimate the cost of fitting
a quadratic polynomial to a curve of length 10 with points that have consecutive x-
coordinates. As for line fitting, the ratio of the thickness τ and the topological constraint
ε plays an important role. The first column describes the kind of estimator, where the
index i varies in each as i = 3, . . . , 9. Note that the topological constraints play an even
larger role for quadratic fitting than for straight fitting. The requirement that a parabolic
segment is connected already imposes strong restrictions.

4 Curve Segmentation

To illustrate the fitting cost estimators we discuss the decomposition of a digitized curve
into digital straight or parabolic segments. For Table 1 and 2 we made the assumption
that the curve consists of subsequent points with x-coordinates that increase regularly.
In the general case, a curve can be quite different and subsequent points may have the
same x-coordinate, e.g., (x1, y1), (x1 + 1, y2), (x1 + 1, y3), (x1 + 2, y4), . . .. Without
restriction, Prop. 2 can also be used to find good estimators for this case, by using an
appropriate form for the curve C and its elemental subsets. The number of possibilities
is unlimited, however, and for each possible configuration of x-coordinates we will find
other values for γ(M̃, τ, ε). The examples show that the best estimators of Table 1 and
2 also perform well for more general curve segments.
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Table 2. Performance of different quadratic estimators for varying values of the thickness τ and
connectivity constraint ε

Estimators γ(M, 1,∞) γ(M, 1, 2) γ(M, 1, 1) γ(M, 2, 1)

Region growers:
M1: (p1, p� i+1

2
�, pi, pi+1) 3.72 3.26 2.15 1.26

M2: (p1, p� i+3
3

�, p� 2i+3
3

�, pi+1) 140. 4.34 2.31 1.26

M3: (p1, p� i+1
2

�, p� 3i+3
4

�, pi+1) 154. 3.8 2.23 1.26

M4: (p1, p� i+5
4

�, p� i+3
2

�, pi+1) 124. 4.58 2.51 1.26

M5: (p� i+5
5

�, p� i+2
2

�, p� 4i+5
5

�, pi+1) 54. 3.21 1.93 1.25

Combined growers:
M1 ∪M5 3.01 2.72 1.91 1.25
M1 ∪M2 ∪M3 ∪M4 ∪M5 2.37 2.32 1.85 1.24

c d

a b

Fig. 2. (a) Original contour, (b) perfect segmentation, (c) segmentation by region growerM5, (d)
segmentation by the combined region grower M4 ∪M5 ∪M6 ∪M7

To find digital straight curve segments of S of maximal length, we use a simple
linear-time algorithm. Each time a new point is added, we perform elemental fits to
verify whether the enlarged segment is still straight. Since we estimate the fitting cost
(instead of computing it exactly), the algorithm that we propose is not error-free. How-
ever, since an upper bound for the fitting cost is known instead of obtaining segments of
thickness≤ τ , in the worst case we have segments of thickness≤ γ()τ . In fact, average
case behavior will be much better than worst case behavior.
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c d

a b

Fig. 3. Segmentation of Kelloggii plant leaf: (a) Original contour, (b) piecewise linear segmenta-
tion with segment growerM4 ∪ . . .∪M7 of Table 1 with allowed thickness τ = 1, (c) segmen-
tation by quadratic segment growerM1 ∪ . . .∪M5 also with allowed thickness τ = 1, of Table
2, (d) the same segments as in (c), but now also the parabolas are shown and the endpoints of the
segments

Fig. 2 shows the results for a more complex 8-connected curve. Fig. 2(a) shows
the original contour, (b) the result of perfect segmentation (in which all elemental
subsets are used to compute the fitting cost), (c) the result of segmentation by re-
gion grower M̃5, and (d) the result of segmentation by the combined region grower
M̃4 ∪M̃5 ∪M̃6 ∪M̃7, with τ = 1 for all cases. For most applications, when extract-
ing feature points from contours, the results in (d) are satisfactory and come with large
computational gain.

Column 7 in Table 1 shows the maximal thickness of the segments when the curve
in Fig. 2(a) is segmented using the corresponding estimator for τ = 1. For perfect esti-
mates the values in column 7 should not exceed 1. For curves where all x-coordinates
are distinct and do not differ by more than one, the values should be less than
γ(M̃, 1, 1). This is not always the case since the topology of the curve can be dif-
ferent, as mentioned previously, and because the length of the curve is most of the time
not equal to ten. Column 8 gives the average thickness of the segments, which shows
that the average estimates are better than the worst case estimates. Again, M̃4 ∪ M̃5 ∪
M̃6 ∪M̃7 is clearly the best estimator. The average perfect fitting cost of the segments
that it accepted is 0.84.

Fig. 3 shows the result of quadratic segment growers for plant leafs. One possible
goal of splitting the 8-connected contour of a plant into segments is to locate the feature
points that can be used for matching, i.e. the sharp corners of the leaf. Fig. 3 (a) shows
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d e f

a b c

Fig. 4. Segmentation for different thicknesses τ . (a),(b),(c) segmentation by quadratic segment
growerM1 ∪ . . . ∪M5 of Table 2 with thicknesses τ = 2, 4, 8, respectively; a),(b),(c) segmen-
tation with linear segment growerM4∪. . .∪M7 of Table 1 with allowed thicknesses τ = 2, 4, 8,
respectively.

the original contour of a plant leaf, (b) the result of linear segment growing and (c) and
(d) the result of quadratic segment growing, with allowed thickness τ = 1. Clearly, for
this kind of curves it makes sense to use quadratic segments. The number of segments
in (b) is almost twice the number of segments in (d) and there are more endpoints in (b)
that cannot be used as feature points. Fig. 4 shows the results of fitting with different
values for the thickness τ . For this kind of curve quadratic fitting remains more accurate
for all thicknesses.

5 Concluding Remarks

We have applied constructive fitting techniques to develop segment growing algorithms
for curve segmentation based on the following idea. When extending a curve Ck with a
new point pk it is not necessary to compare the point with the entire curve Ck. Instead
it suffices to compare the point with one or more elemental subsets. Thus the time
complexity of the contour growing process is greatly reduced, and the algorithm is
simple enough to be implementable on dedicated hardware. The major challenge is
how to choose the subsets so that the estimation of the fitting is as reliable as possible.
Theoretical results allow us to select the elemental subsets in an optimal fashion. To
be specific, there is a performance parameter γ() that allows us to quantify the quality
of the subsets. In this work we have shown that the choice of the subsets depends on
the allowed thickness of the contour and the connectivity constraints. The emphasis in
this paper was on how to develop computationally efficient segmentation algorithms
through variable order fitting algorithms. However, also the robust estimation of curve
or surface parameters may benefit from fast variable order fitting [1, 17].
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Abstract. Fuzzy segmentation is a region growing technique that assigns a grade
of membership to an object to each element in an image. In this paper we present
a method for segmenting video shots by using a fast implementation of the fuzzy
segmentation technique. The video shot is treated as a three-dimensional vol-
ume with different z slices being occupied by different frames of the video shot.
The volume is interactively segmented based on selected seed elements, that will
determine the affinity functions based on their intensity and color properties. Ex-
periments with a synthetic video under different noise conditions are performed,
as well as examples of two real video shot segmentations are presented, showing
the applicability of our method.

1 Introduction

Digital image segmentation is the process of assigning labels to different objects in a
digital image, where the level of detail indicated by the labeling is related to the appli-
cation at hand. To perform object identification in digital or continuous, moving or still
images, humans make use of different visual cues and high-level reasoning and knowl-
edge. The difficulty of incorporating such type of reasoning into a computer program
makes the task of segmenting out an object from its background a hard one. This task is
even more challenging for a computer program when, instead of intensity values, what
distinguishes the object from the background is some textural property, or when the
image is corrupted by inhomogeneous illumination and/or noise.

Video digital segmentation consists of segmenting objects on sequences (shots) of
images (frames). Conceptually, digital video segmentation is different from individually
segmenting a sequence of digital images in the sense that there needs to be a consistency
between the segmentations of a frame and of the frames that come before and after it
on the segmented sequence. For example, the level of detail of the labels has to be
consistent through out the segmented sequence.

Region growing algorithms segment an image by appending pixels to regions de-
fined by seed pixels until all pixels in the image have been assigned to a set defined by
one of the seed pixels, where the decision of to which object a pixel will be assigned
is based on some predefined criteria. The selection of the seed pixels can be performed
automatically, based on the nature of the problem. However, when no a priori infor-
mation is available, these algorithms are semi-automatic, requiring the selection of the
seed pixels by an user.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 494–505, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fuzzy segmentation [1,2] is a region growing method that has been successfully used
for segmenting images corrupted by inhomogeneous illumination and/or noise [2]. In
this paper we propose a method for segmenting color video shots based on the fuzzy
segmentation method of [2,3], that calculates simultaneously the fuzzy segmentation of
multiple objects. The proposed method considers the frames of the video sequence as z
slices of a 3D volume and uses the fast implementation of the algorithm presented in [3].
The speed of the segmentation allows an user to add and/or delete seed pixels, rerun the
algorithm a few times, and still get the final segmentation in a reasonable amount of time.

The reason why we consider the video sequence as a 3D volume is that we want to
stylize objects in pre-acquired video shots using Non-Photorealistic Rendering (NPR)
techniques. This work was performed as a part of a project for providing computa-
tional tools to non-experienced users for generating animations using NPR techniques.
NPR techniques aim to reproduce artistic techniques renderings, trying to express feel-
ings and moods on the rendered scenes. Another way of defining NPR is that it is the
processing of images or videos into artwork, generating images or videos that can have
the visual appeal of pieces of art, expressing the visual and emotional characteristics of
artistic styles such as impressionism and watercolor painting.

NPR techniques can be applied to still images, to 3D models or to video sequences,
a task also called video stylization. If the input for the NPR video is a normal video, not
maintaining temporal coherence of elements of the stylization, such as brush strokes,
incurs in severe flickering on the output video [4]. This flickering comes not only from
changed objects being rendered with elements that follow the object movement but also
from static areas being rendered differently each time. Because of this problem, some
authors have used optical flow techniques for enforcing temporal coherence [4,5]. How-
ever, the local characteristic of the optical flow techniques and their sensitivity to noisy
images somehow limit their applicability. To overcome those problems, segmentation
algorithms have been applied to video shot segmentation to produce end-to-end seg-
mentations that are later used to enforce temporal coherence [6,7]. Here we propose the
use of a fast implementation of fuzzy segmentation for segmenting color video shots as
3D volumes interactively.

2 Fuzzy Segmentation

Fuzzy segmentation is segmentation technique that computes the fuzzy connectedness,
a concept introduced in [8], for every pixel in an image. The original fuzzy segmentation
algorithm, introduced in [1], was generalized in [2], where the technique deals with an
arbitrary finite set V , composed of spels (short for spatial elements). These spels can
represent many different things, such as pixels of an image (as in [1, 9]), voxels placed
on a simple cubic grid (as in [3]) or on a face-centered cubic grid (as in [10]), dots
in the plane (as in [11]) or feature vectors (as in [12]). The theory and the algorithms
discussed in [2, 3] are independent of the specifics of the application area, and so, can
be applied to data clustering [13] in general.

The objective of the fuzzy segmentation algorithms of [2,3] is to produce a partition
of the set V into a specified number of objects, but in a fuzzy way; i.e., in addition to
assigning an object label for every spel, the algorithm also assigns a grade of
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membership for that object. A grade of membership is a number between 0 and 1,
where 0 indicates that the spel definitely does not belong to the object, and 1 indicates
that it definitely does). The formalization of such fuzzy partitioning is achieved by the
concept of an M-semisegmentation (where M is the number of objects), defined below.

An M-semisegmentation of V is a function σ that maps each c ∈ V into an (M + 1)-
dimensional vector σc = (σc

0,σ
c
1, · · · ,σc

M), such that

1. σc
0 ∈ [0,1] (i.e., σ0 is nonnegative but not greater than 1),

2. for each m (1≤ m≤M), the value of σc
m is either 0 or σc

0, and
3. for at least one m (1≤ m≤M), σc

m = σc
0.

In the definitions above, σc
m represents the grade of membership of the spel c in the

mth object, and σc
0 is always max1≤m≤M σc

m. It is easy to see that this definition of M-
semisegmentation allows the case where a spel belongs to more than one object, as long
as it has the same grade of membership in all of them. An M-segmentation of V is an
M-semisegmentation where σc

0 > 0 for all spels c ∈V .
In this context, a chain is defined as a sequence 〈c(0), · · · , c(K)〉 of distinct spels, and

its links are the ordered pairs (c(k−1), c(k)) of consecutive spels in the sequence. The
strength of a link (c,d), or ψ-strength of a link, is also a fuzzy concept, with a real
value between 0 and 1 being assigned to it by an appropriate fuzzy spel affinity function
ψ : V 2 → [0,1]. The ψ-strength of a chain is defined as the ψ-strength of its weakest
link if the chain has two or more spels on it, and 1 if the chain has only one spel in it.
A set U(⊆V ) is said to be ψ-connected if, for every pair of spels in U , there is a chain
in U of positive ψ-strength from the first spel of the pair to the second. If one wants
to segment multiple objects, it is reasonable to define different fuzzy spel affinities for
each one of them.

A M-semisegmentation in our theory is determined by an M-fuzzy graph, that is a pair
(V,Ψ), where V is a nonempty finite set and Ψ = (ψ1, · · · ,ψM) with ψm (for 1≤m≤M)
being a fuzzy spel affinity. A seeded M-fuzzy graph is a triple (V,Ψ,V ) such that (V,Ψ)
is an M-fuzzy graph and V = (V1, · · · ,VM), where Vm ⊆V for 1≤ m≤M. We say that
a seeded M-fuzzy graph (V,(ψ1, · · · ,ψM),(V1, · · · ,VM)) is connectable if

1. the set V is φΨ-connected, where φΨ(c, d) = min1≤m≤M ψm(c, d) for all c, d ∈ V,
and

2. Vm �= /0, for at least one m, 1≤ m≤M.

For an M-semisegmentation σ of V and for 1 ≤ m ≤ M, we define the chain 〈c(0),

· · · , c(K)〉 to be a σm-chain if σc(k)
m > 0, for 0 ≤ k ≤ K. Furthermore, for W ⊆ V and

c ∈ V , we use μσ,m,W (c) to denote the maximal ψm-strength of a σm-chain from a spel
in W to c. (This is 0 if there is no such chain.)

Theorem 1. If (V,Ψ,V ) is a seeded M-fuzzy graph (where Ψ = (ψ1, · · · ,ψM) and V =
(V1, · · · ,VM)), then

(i) there exists an M-semisegmentation σ of V with the following property: for every
c ∈V, if for 1≤ n≤M

sc
n =

{
1, if c ∈Vn,
maxd∈V (min(μσ,n,Vn(d),ψn(d,c))), otherwise,

(1)

then for 1≤ m≤M



Fuzzy Segmentation of Color Video Shots 497

σc
m =

{
sc

m, if sc
m ≥ sc

n, for 1≤ n≤M,
0, otherwise;

(2)

(ii) this M-semisegmentation is unique; and
(iii) it is an M-segmentation, provided that (V,Ψ,V ) is connectable.

What Theorem 1 says in general terms, is that the mth object of an M-semisegmentation
can “claim” a spel c as part of it if, and only if, sc

m is maximal. We can see from the
definition of an M-semisegmentation in shown previously that σc

m has a positive value
only for such objects. The calculation of σ for a spel c (determined by a local condition)
is performed by computing the values of the sc

n using (1) and satisfying the conditions
of (2) at c. Theorem 1 says that there is a unique M-semisegmentation which satisfies
this reasonable property simultaneously everywhere, and that this M-semisegmentation
is in fact an M-segmentation provided that the seeded M-fuzzy graph is connectable.

The original algorithm for computing the fuzzy segmentation according to the spec-
ifications above, called MOFS (multi object fuzzy segmentation) can be found in [2,3],
as well as the proofs for Theorem 1.(ii) and 1.(iii). The proof of Theorem 1.(i) can be
found on [3].

The affinities ψm can be specified in several ways. In [2], as well as in here, the affini-
ties and the Vm, 1≤m≤M are specified by using the information on the neighborhood
of seed spels clicked by an user. When the user clicks on a spel and associates it with an
object m, he/she is saying that it is certain that the spel belongs to the object m. Then,
we collect information on a 3×3 neighborhood, defining gm to be the mean and hm to
be the standard deviation of the average brightness for all edge-adjacent pairs of spels
in Vm and am to be the mean and bm to be the standard deviation of the absolute differ-
ences of brightness for all edge-adjacent pairs of spels in Vm. We then define ψm(c,d)
to be 0 if c and d are not edge-adjacent and to be

[
ρgm,hm(g)+ ρam,bm(a)

]
/2 if they are,

where g,h,a,b are as defined above and the function ρr,s(x) is the probability density
function of the Gaussian distribution with mean r and standard deviation s multiplied
by a constant so that the peak value becomes 1.

After the initialization steps, the central part of the MOFS algorithm updates the best
guesses for the final values of the σc

m for all c ∈ V . A current value is replaced by a
larger one if it is found that there is a σm-chain from a seed spel in Vm to c of ψm-
strength greater than the old value (the previously maximal ψm-strength of the known
σm-chains of this kind) and it is replaced by 0 if it is found that (for an n �= m) there is
a σn-chain from a seed spel in Vn to c of ψn-strength greater than the old value of σc

m.
The total computational complexity of the algorithm is O(N(logN +ML)), where N

denotes the number of elements of V , M is the number of objects, and L denotes the
number of neighbor spels, usually a small number in the application of image segmen-
tation (4 or 8 in 2D square grid images and 6, 18 or 26 in 3D cubic grid volumes).

2.1 Fast Fuzzy Segmentation

Even though we were able to segment a 3D image with more than 7,000,000 spels in
approximately 4 minutes, as shown on [3], this response time may not be sufficiently
fast for some applications. A fast implementation of the original MOFS algorithm for
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computing the simultaneous fuzzy segmentation of multiple objects, introduced in [2],
was presented in [3]. (The segmentation of the same 3D image mentioned above using
the fast implementation was achieved in 35 seconds.) This fast implementation is briefly
described below.

The original MOFS algorithm belongs to the class of greedy algorithms [14], and
was implemented using a binary heap to keep a partial ordering according to the spels’
current σ0 values. The values of the chains stored in the heap are updated as new chains
with values greater than the ones currently stored are found. Since a heap is used to keep
the partial ordering needed by the algorithm, the operations of spel insertion, deletion
and σ0 update take O(logN), where N is the number of spels in V . (A heap has to be
used because the values of σ0 can assume any real value between 0 and 1.)

However, suppose that the set of nonzero fuzzy spel affinities for a particular class
of problems is always a subset of a fixed set A. Let K be the cardinality of the set
A∪ {1}, and let 1 = a1 > a2 > · · · > aK > 0 be the elements of A. For example, in
many applications the quality of the fuzzy segmentation is not significantly affected if
we round each fuzzy spel affinity to three decimal places. If we use such rounded spel
affinities, then we can take A = {0.001, 0.002, · · · , 0.999, 1.000}, so that K = 1000 and
ak = 1.001− k/1000.

By restricting the affinity values to a fixed set of values, as above, we can use an M×
K array U [m][k] of sets of nodes that represent spels, where M is (as before) the number
of objects. This array stores the spels according to their σ0 values, thus, maintaining the
partial ordering of the σ0 values. Now, the cost of the operations of spel insertion and
removal and the update of the σ0 values becomes proportional to a constant, i.e., O(1).
(Similar ideas were used in [15] to speed up the algorithm of [1].) This implementation
(shown below in pseudo-code first published in [3]) is most effective if all of its data
structures (with space complexity O(M(K +V))) can be held in the main memory.

Fast implementation of the MOFS algorithm

1. for c ∈V do
2. for m← 0 to M do
3. σc

m ← 0
4. for m← 1 to M do
5. for c ∈Vm do
6. σc

0 ← σc
m ← 1

7. U [m][1]←Vm

8. for k← 2 to K do
9. U [m][k]← /0

10. for k← 1 to K do
11. for m← 1 to M do
12. while U [m][k] �= /0 do
13. remove a spel d from the set U [m][k]
14. C←{c ∈V |σc

m <min(ak,ψm(d,c)) and σc
0 ≤min(ak,ψm(d,c))}

15. while C �= /0 do
16. remove a spel c from C
17. t ←min(ak,ψm(d,c))
18. if σc

0 < t then do
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19. remove c from each set in U that contains it
20. for n← 1 to M do
21. σc

n ← 0
22. σc

0 ← σc
m ← t

23. insert c into the set U [m][l] where l is the integer such that al = t

This fast version of the MOFS algorithm was chosen to be used in the color video
segmentation because the small running times achieved allows an user to include or
delete seed spels and rerun the algorithm a few times in a reasonable amount of time.

3 Color Video Segmentation

The fuzzy affinity function is now defined as an average of six components, two for each
YUV channel, the color model chosen to code the input images. The two components of
each channel used in the fuzzy affinity function are defined in the same way as before,
i.e., using the mean and the standard deviation of the average value for all edge-adjacent
pairs of spels in Vm and the mean and the standard deviation of the absolute differences
of values for all edge-adjacent pairs of spels in Vm. Once more, ψm(c,d) was defined to
be 0 if c and d are not edge-adjacent and to be[
ρgYm,hYm(g)+ ρaYm,bYm(a)+ ρgUm,hUm(g)+ ρaUm,bUm(a)+ ρgVm,hVm(g)+ ρaVm,bVm(a)

]
/6
(3)

if they were, where g is the mean and a is the absolute difference of the Y, U or V
channel values of c and d and the function ρr,s(x) is the probability density function of
the Gaussian distribution with mean r and standard deviation s multiplied by a constant
so that the peak value becomes 1.

The affinity function defined above can be used for segmenting both 2D or 3D im-
ages. The volume composed by the video sequence frames is treated as a volume on a
cubic grid with face adjacency, and the user can select seed spels on any slice (frame)
of the volume. By doing this, the user can successfully segment objects that do not ap-
pear on the first frame. Moreover, the user can identify disconnected objects in the time
direction as being the same one, as in the case of an object that is visible, occluded for
some frames and visible again in the video sequence.

The idea of using the fast implementation of the fuzzy segmentation algorithm de-
scribed here is that besides the ability of the fuzzy segmentation algorithm for segment-
ing images corrupted by noise and/or varying illumination, the small total segmentation
time of the algorithm (not including the user interaction) allows the user to inspect the
results and add or remove seed spels to achieve a better segmentation. This adjustment
process of the segmentation can be repeated a few times and still be finished in a short
period of time (in the order of seconds or a few minutes). The interactivity and the
speed of the method makes it possible for the user to include high level knowledge in
the segmentation process.

4 Experiments

First, we used the fast MOFS algorithm to segment a synthetic video shot (obtained
from [16]) with and without added noise. The noisy sequence was corrupted by a



500 B.M. Carvalho, L.M. Oliveira, and G.S. Andrade

Fig. 1. Original frame images (left) and the corresponding fuzzy segmentation connectedness
maps (right) for the 1st, 10th and 20th frames of the noiseless video sequence
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Fig. 2. Original frame images (left) and the corresponding fuzzy segmentation connectedness
maps (right) for the 1st, 10th and 20th frames of the video sequence corrupted by noise with
σ = 10 units in all three channels
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Fig. 3. Original frame images (left) and the corresponding fuzzy segmentation connectedness
maps (right). The rows correspond to the 1st, 6th, 11th, 16th and 21st frames (slices) of the video
sequence (volume).
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Fig. 4. Original frame images (left) and the corresponding fuzzy segmentation connectedness
maps (right). The rows correspond to the 1st, 16th, 31st, 46th and 61st frames (slices) of the
video sequence (volume).

Gaussian noise with mean 0 and standard deviation of 10 units (in the range [0,255])
for all three channels, and pseudo-random values of this distribution were added to all
three channels of the video sequence. The 20 frame long video sequences of 200×200
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pixels were then segmented interactively on a single try, and the accuracy of the seg-
mentations were measured by counting the number of misclassified pixels for all frames
of the sequenced when compared to the ground truth. Figures 1 and 2 show the 1st, 10th
and 20th frames of the noiseless and noisy synthetic video sequences, respectively.

The segmentations shown in Figures 1 and 2 were obtained by running the algorithm
after the user selected seed spels for seven objects. The segmentation times for these
sequences were the same, 2 seconds. As mentioned before, if the user wants to refine a
segmentation, he/she can add or remove seed spels, thus, providing temporal and spatial
high-level information about the relationships of the objects in the video sequence.

We then determined the accuracy of the segmentations as the percentage of pixels
correctly segmented when compared to hand segmented frames of the noiseless syn-
thetic sequence. The accuracy of the noiseless and noisy segmentations are 94.3% and
92.0%, respectively.

To show the usefulness of the algorithm to the segmentation of real color video
sequences, we performed the segmentation of two real videos. The real images of the
21 frame car sequence with 352×240 pixels shown in the left column of Figure 3 are
the 1st, 6th, 11th, 16th and 21st frames of the video sequence, while on the right are the
corresponding fuzzy connectedness maps. These maps were obtained by running the
algorithm after the user selected seed spels for five objects. The segmentation time for
this sequence was 3 seconds.

Figure 4 shows 5 360× 288 frames of the 71 frame long Pooh sequence (left) and
the corresponding segmentations (right). These maps were obtained by running the al-
gorithm after the user selected seed spels for six objects. The segmentation time for this
sequence was 23 seconds. Notice the faulty segmentation right below the arm on the
right of the image on the 3rd, 4th and 5th rows. After visualizing this result, the user
can add seeds for a new object for that area and rerun the algorithm. (The interaction
time needed for selecting the seeds in these examples range from 30 to 60 seconds.) The
high level information that this new object actually belongs to the same object as the
rest of the wall can be used afterwards, for example, when rendering the background
wall of the video sequence using NPR techniques.

5 Conclusion

In this paper we propose to use the fast implementation of the simultaneous fuzzy seg-
mentation of multiple objects for segmenting pre-acquired color video sequences. We
consider the frames of the sequences as slices of a 3D volume, since our objective is to
segment end-to-end pre-acquired video sequences, for rendering them later using NPR
techniques. The end-to-end segmentation has to be performed, so its result can be used
for enforcing temporal coherence in the scene generated by the rendering technique.

The results show a good accuracy rate of the segmented pixels for the synthetic
sequences, with and without noise, and high quality segmentations of real video se-
quences, all with very small running times. This allows the user to rerun the algorithm
after adding/removing seed spels, if the result of the segmentation was not satisfactory.

Future work will concentrate on incorporating motion cues (such as the algorithms
presented in [17, 18]) in the fuzzy affinity functions for more accurate segmentation of
different objects that have similar colors.
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Abstract. An original and efficient method to segment and label hor-
izontal structures in 3D seismic images is presented. It is based on a
morphological hierarchical segmentation. The initial extracted surfaces
are post-processed using the topological segmentation method proposed
by Malandain et al [1]. A last post-processing step allows to separate
remaining multi-layered surfaces.

1 Introduction

Seismic imaging has become an essential technique in seismic exploration and
exploitation. Thanks to it, industrialists have a better understanding of the
subsoil structure and save time in seismic data processing. It also brings them
a large panel of tools to improve their exploration and exploitation process.
However, information is hidden in 3D seismic images and one of the prerequisites
to benefit from the interesting information contained in the 3D data is to carry
out several processings to adequately modify original data. One of these consists
in extracting quasi horizontal structures also called horizons. They correspond
to the sediment layers and are useful for geophysicists to locate oil and gas
reservoirs. Horizon extraction might seem relatively easy. In fact, it is difficult
due to the presence of geological faults, noise and acquisition artifacts. Moreover,
it must be accurate since many applications depend on it. One of the other
constraints in horizon extraction is that it is really time consuming and often
requires a geoscientist expertise to be done.

The extraction method described here is an original way of picking and la-
belling horizons from seismic data. After briefly presenting seismic imaging in
section 2, we proceed with the description of the picking method: in section 3 we
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describe briefly the horizon extraction part, which was presented in [2]. In sec-
tion 4 we present the application of the surface segmentation method proposed
by Malandain et al. [1] to our data. The result is not completly satisfactory
in our framework due to surfaces composed of multiple layers. In section 5 a
new method to solve this problem is introduced. Then before concluding on this
work, we give some computation times to evaluate the efficiency of the processing
chain.

2 Seismic Imaging

The first seismic data were acquired on tapes in a rudimentary way. Then, in
the 60s, transistors and digital technologies appeared and allowed to sample
the subsoil in 2D. The oil industry started to be interested in those methods
of subsoil imaging to find and monitor oil fields. In the early 70s the first 3D
seismic survey was achieved on a field near Houston. 3D seismic acquisition has
been since then considered as a reliable and cost-effective method of optimizing
oil field exploration, development and management.

2.1 Acquisition Mode

Like echography in the medical field, seismic images are acquired through an
indirect technique using acoustic waves. The acquisition process can be imple-
mented offshore as well as onshore. In both cases it requires a sonar source
(air-gun for marine acquisition and vibrators for ground one) which sends waves
across the subsoil and receptors that register the signal reflected by the interfaces
of sediment layers. This limit between two layers with different acoustic proper-
ties is called a seismic horizon. A large number of preprocessings are necessary to
make the acquired data ready for analyses and interpretations by geoscientists.
Those preprocessings provide the interpreters with many images. Each image is
the representation of a seismic attribute which is defined by everything that can
be computed from the original data or from other attributes [3]. Up to now, we
have only worked on images of wave amplitudes. As shown in Fig. 1 amplitude
images are a bright and dark layers stacking. These layers correspond to the
sediment deposits. We call inline the direction of the acquisition system (given
by the alignment of source and receptors) and cross-line the perpendicular direc-
tion to the inline one. These two directions correspond to the horizontal planes.
The third dimension is called time (which can be converted into depth) and
corresponds to the vertical direction perpendicular to the two others.

2.2 Why Segmenting 3D Seismic Images?

Segmenting 3D seismic images, i.e. extracting coherent seismic events (horizons),
addresses several issues. A first family of these issues may be related to seismic
processing. A set of coherent horizons is sometimes used as a guide within partic-
ular seismic processing steps. It allows to introduce geological information into
classical seismic oriented processing. A second family is related to the time to
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Fig. 1. Two views of the same 3D seismic cube used to illustrate this paper. Dimen-
sions: 201× 201× 150.

depth conversion process. Seismic images in time are converted in depth. Major
identified horizons are useful to achieve this conversion. They result from a struc-
tural interpretation. A third family can be identified when dealing with reservoir
modelling. Horizons at a small vertical scale result from a stratigraphic interpre-
tation. Other operational applications may be found as segmenting 3D seismic
images is a really new approach. Some techniques already exist to segment seis-
mic images. Among those, we can find the ones which take into account the
image structure [4] or use wavelets [5] to realize the segmentation. Some other
techniques are based on the division of space into a set of meshes and on a
pairing of similar meshes [6]. We also find seismic images segmentation using
fuzzy techniques [7]. A little number of papers deal with seismic data processed
by mathematical morphology techniques ( [8], [9]). Thus segmenting 3D seismic
images with mathematical morphology appears to be an innovative method.

3 Seismic Horizon Extraction Using Morphological
Segmentation

Segmenting an image can be achieved in several ways. The watershed invented
in 1979 by S. Beucher and Ch. Lantuéjoul [10] is a morphological solution and
is based on an imaginary flooding of a topography usually given by the gradient
of the original image. The flooding starts from sources determined by the user
or another algorithm and produces a fine partition of the gradient image.

Because of the seismic image structure and of the horizon picking extraction
application, we do not use the gradient but the original amplitude image as an
entry to the watershed algorithm. The horizons we are looking for are the image
brighter surfaces. With the watershed, we directly obtain the principal horizons
that correspond to the maximal amplitudes.
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3.1 Hierarchical Segmentation

The fine segmentation of a seismic image gives however too many regions to be
easily interpreted. To restrict the number of areas, we could have made a selec-
tion of the flooding sources but nothing can ensure that the brighter surfaces are
situated between two selected minima. Another solution to reduce the final num-
ber of horizons, while preserving the more representative geological structures,
is to select the best ones according to a certain criterion among the whole set of
horizons. To reach this goal, we used the hierarchical segmentation introduced
by F. Meyer in 1994 [11]. This algorithm creates a graph associated to the image.
Each graph node represents one of the image regions i.e. the influence zone of
a minimum with respect to the topography. During the flooding process, each
time two basins merge, the corresponding nodes are linked by an edge valuated
with the smallest value of a criterion computed from the basins characteristics.
This criterion can be the depth, the area or the volume of the basin. We finally
obtain a minimum spanning tree. By cutting the k − 1 bigger edges, we obtain
from this tree k regions, which are typically separated by the brightest horizons.

3.2 Segmentation with Cylinders

Some horizons that seem to be among the brightest ones do no appear in the
results even if we ask for a large amount of horizons. This is due to some voxels of
these horizons which have a lower gray level than the rest of the structure. These
voxels lead to a ”leak” during the flooding step and as the two bordering basins
merge earlier than they should, the final surface appears lower in the hierarchy.
To restrict this problem to the leak location and pick the rest of the horizon we
used a method described in [2], [12]. This method consists in dividing the origi-
nal image into many subimages called cylinders and in computing a hierarchical
segmentation inside each of them. The leak problem is thus restricted to a small
number of cylinders and the major part of each brightest horizon appears in
the resulting image. To preserve the picked structures continuity, we make the
cylinders overlap.

Each time a pixel within a given cylinder is considered as belonging to a hori-
zon (i.e. belongs to the watershed line), an accumulator image is incremented
at the corresponding position. Once all cylinders have been segmented, the ac-
cumulator contains a grey level image. After thresholding, the resulting binary
image corresponds to the extracted horizons. Figure 2 shows the result of the
application of the horizon extraction method to our test cube, after labelling
(26-connexity). It contains only three connected components.

In practice, most structures appearing in the accumulator are thin, but, for
several reasons, this is not always the case. Therefore, a simple threshold is not
enough to binarise the accumulator if we want to obtain thin surfaces.

3.3 Thinning

To implement our labelling algorithm and avoid the errors due to the thickness
of surfaces, we need thin surfaces. That means that surfaces are expected to
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3D view 2D section

Fig. 2. Labelled horizons extracted from the test cube, without post-processing

have a thickness of one voxel. We have used an a priori knowledge about the
application for which we are trying to segment the image and we work with a
binarisation of the accumulation image obtained from the morphological seg-
mentation.

As we are trying to extract the brightest voxels, which characterise the struc-
tures we are looking for (Fig. 3a), we identify the connected voxels in a vertical
neighborhood (1 × 1 × 3) see Fig. 3b. Then we eliminate those which have the
lowest amplitude (Fig. 3c). In the particular case of slopes higher than forty five
degrees, this technique can introduce horizontal holes into the surface but since
we are working in 3D the surface connectivity is preserved. Given the nature of
the images, such high slopes are very uncommon, however, further developments
of this thinning process are envisaged and will lead to the correction of these
drawbacks.

(a) Grey level image and
accumulator values

(b) Grey level values (c) Thinning result

Fig. 3. Thinning process
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4 Topological Segmentation

Superimposed horizons which are connected (i.e. surfaces in which some voxels
have the same geographical coordinates) are a real problem for the interpretation
and the other applications depending on geological structure picking. To address
this problem, we took as a starting point the approach of Malandain et al.
[1]. This method creates a voxel classification using the topology of object and
background voxel neighborhood.

4.1 Voxel Classification

Malandain et al. have implemented a voxel classification in order to segment
surfaces in 3D images. Thus they have established two relevant numbers C∗

and C̄ that respectively describe the object connectivity and the background
connectivity in a given neighborhood. Considering an object X , its background
X̄ and a neighborhood V of an object point x, the two numbers are:

– C∗: number of 26-connected components of X ∩ V ∗ 26-adjacent to x, and
– C̄: number of 6-connected components of X̄ ∩ V 6-adjacent to x,

where V ∗ is V \{x}.

Connectivity and Neighborhoods. According to [13], object and back-
ground adjacency have to be different. Usually, adjacency used for the object is
the 26- or 18- adjacency and the one used for the background is the 6-adjacency.
Like Malandain et al., we have followed this convention.

According to the definition of C∗, the connected components of the object
have to be 26-adjacent to the central point x. Thus, using a 26-connected neigh-
borhood to compute C∗ allows to avoid the calculation of the 26-adjacency. We
differ from Malandain et al. in the neighborhood choice for the computation of
C̄. Indeed, we have chosen to compute it rather in a 26-neighborhood than in a
18-neighborhood. This choice is motivated by an algorithmic reason. Computing
C∗ and C̄ in the same neighborhood simplifies and accelerates the computation.

The resulting values of C∗ and C̄ according to their neighborhood are sum-
marized in Table 1.

Table 1. Class of point according to the value of C∗ and C̄

Type A interior point C̄ = 0
Type B isolated point C∗ = 0
Type C border point C̄ = 1, C∗ = 1
Type D curve point C̄ = 1, C∗ = 2
Type E curve junction C̄ = 1, C∗ > 2
Type F surface point C̄ = 2, C∗ = 1
Type G surface-curve junction C̄ = 2, C∗ ≥ 2
Type H surface junction C̄ > 2, C∗ = 1
Type I surface-curve junction C̄ > 2, C∗ ≥ 2
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4.2 Misclassification

Problem of Misclassification. After this topological classification, we select
the voxels we are interested in. These voxels are C Type (border points) and
F Type (surface points) ones. As we eliminate the other points, specially the
junction points, we should have well disconnected and easy to label surfaces with
a simple labelling algorithm. In fact, that does not occur like that, as shown in
Fig. 4. Some horizons are correctly separated from the others but some surface
junctions are not correctly detected. This phenomenon comes from some troubles
in the detection of junction points. Some junctions, because of their thickness,
are wrongly labelled. The two examples shown in Fig. 5 present two cases where
the junction points are labelled as surface points (the two grids represent a slice
ot the 3D object). In case a, C̄ = 0 for the center point. Thus, this point is
considered as an interior point. In case b, C̄ = 0 and C∗ = 1 thus the four center
points are misclassified as surface points.

Processing of Misclassified Points. To tackle this problem, we refer again
to [1] where a characterisation of simple surfaces is explained. Considering a
surface point x, Bx and Cx are the two connected components of X̄ ∩ N∗

26 6-
adjacent to x included in X . Two surface points x and y are said to be in relation
if there is a 26-path (x0, x1, ..., xi, ..., xn) included in X with x0 = x and xn = y
such that for i ∈ [0, ...n− 1]:

– Bxi ∩Bxi+1 �= 0 and Cxi ∩Cxi+1 �= 0, or
– Bxi ∩Cxi+1 �= 0 and Cxi ∩Bxi+1 �= 0.

Image corrected from misclassified points

Fig. 4. Topological segmentation
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⇓ ⇓

(a) C̄ = 0: the point
is classified an interior

point (Type A)

(b) C̄ = 2 and
C∗ = 1: the point is
classified as a surface

point (Type F)

Fig. 5. Misclassification of junction points. Each image represents a slice of two differ-
ent binary images constituted of a succession of these images.

(a) Configuration
example. All points are
considered as surface

points. The junction is
not detected

(b) Equivalence classes

Fig. 6. Solution for misclassification of junction points

This relation is an equivalence relation (it is reflexive, symmetric and tran-
sitive) and its equivalence classes compose therefore a partition of the surface
points of X . Each region of the partition is a simple surface. In short, two surface
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(a) Multi-layered surface (b) Layers separation

Fig. 7. Layers separation example

points belong to the same surface if there is a succession of connected surface
points linking these two points and having their two neighborhood connected
components sharing at least one point pair by pair. This is illustrated in Fig. 6.

This post-processing is applied only to surface points which are the only ones
to be misclassified. We can thus restrict the number of processed points. However,
during the processing, border points are considered and labelled too in order to
be integrated to the surface but they are not processed as the surface points.
The results are shown in Fig. 4b). At the end of the processing, all points are
correctly classified but some connected horizons still remain. The reasons are
no more local problems but global and structural reasons: configurations such
as the one shown in Fig. 7 are possible causes. We have first implemented this
classification technique. Some other exist ( [14]) but since the results of the
presented method are satisfactory, they have not been implemented.

5 Multiple Layers Separation

5.1 Why Separating Linked Surfaces?

From a geological point of view, differenciating sediments layers is interesting
especially if they are correctly separated even if a natural phenomenon (erosion,
faults, etc...) occured and disturbed the geological deposition structure. At this
step of our processing chain, some surfaces are still connected whereas they
should not. We say that a surface is made of several layers if two points of this
surface have the same geographical coordinates (inline and crossline). The way
of separating the different structure layers is described below.

In the example of Fig. 7a all the voxels are considered as border or surface
voxels and they belong to the same connected component. They will thus receive
the same label. This kind of configuration can be due to a fuzzy part of the image
which implies a bad segmentation area. The resulting segmentation leads to this
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link between two surfaces which are not connected anywhere else. To solve this
problem, we realize a last processing.

5.2 Structure Separation

To separate the linked surfaces, we have to give to each component of the
multiple-layer surface a different label. Our new labelling process consists in
maintaining a map of the current processed horizon (made of multiple layers)
and to make a selection among the voxels candidates for stacking into the queue.
Those for which there is already a voxel with the same geographical coordinates
in the queue are not stacked in the same queue because they belong to another
surface. Once the current queue is empty, we process the other ones. A point
can be queued several times but it will never be labelled twice because a tag
checking is done as it is pushed back from queue.

This leads to the results shown in Fig. 7b where the two different surfaces are
separated.

(a) Horizons correctly labelled (The
multiple layer structure on the bottom

right of the image is due to the
visualisation software colormap
capabilities (only 256 levels).)

(b) With area filtering (elimination of
small surfaces)

Fig. 8. Final labellisation

According to specialists, final result is very interesting. The surfaces extracted
from the original data follow the maxima values of the geological structures and
the surfaces are correctly separated. These results are shown in Fig. 8.

6 Computation Times

The algorithms have been tested on a computer equipped with an Intel Pentium
IV 3 GHz and 1 Gb of RAM. The test image is an 8 bits grey level image with
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8 million points (501× 400× 400). With these elements, the computation times
are the following:

– The segmentation with cylinders takes about 3.5 hours with 501× 10 × 10
cylinders (i.e. 44100 cylinders) and with a step of one pixel in both directions.
We have asked for forty regions in each cylinder (this parameter does not
change the final computation time). Since each cylinder can be processed
independently, this algorithm is strongly parallelizable.

– Topological surface labelling takes about forty minutes. This duration is not
really representative because it depends directly on the number of required
regions at the segmentation step i.e. the number of points contained in the
object.

– Multi layer structure elimination. This section depends completely on the
number of object points and the complexity of the structures. In our example
its computation takes about 20 minutes.

Most of these times could be considerably improved through code optimization.
However, the industrial partner of this study did not consider it a priority.

7 Conclusion

Segmenting and labelling 3D seismic images is a challenge. Both the 3D nature
and the very large data volume represent major constraints for segmentation
techniques to overcome. Our approach based on watershed segmentation applied
to local volumes allows to derive fast segmentation results corresponding to a
set of coherent seismic surfaces called horizons. Our labelling algorithms enable
to individualize efficiently theses horizons in reasonable delays. As a conclusion,
our segmentation/labelling solution is operational when applied to large seismic
data volumes from a computation time point of view. Additional work, consisting
in analysing the quality of the provided results, is planned in order to definitely
validate the approach. Afterwards, several operational applications like geology
guided seismic processing, structural interpretation, stratigraphic interpretation,
etc. should benefit from it.
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Abstract. Watershed transformation is introduced as a computation in
image graph of a path forest with minimal modified topographic distance
in (R+)2. Two algorithms are presented for image segmentation that
use a metric defined by a unit neighborhood as well as a chamfer (a, b)-
metric. The algorithms use ordered queues to propagate over image pixels
simulating the process of flooding. Presented algorithms can be applied
to gray-scale images where objects have noticeable boundaries.

1 Introduction

Watershed transformation of gray-scale images often results in better segmenta-
tion and contour detection outcomes in comparison with other methods. Image
segmentation by watershed transformation belongs to the region growing meth-
ods that combine pixels according to similarity of their properties relative to
the properties of their local neighbors. This method works good for images with
objects characterized by brightness or color characteristics rather than texture
features.

Watershed transformation of gray-scale images was firstly described by
S. Beucher and C. Lantuéjoul [1] in their paper devoted to contour detection
of objects on metallographic pictures. The authors adopted geographic termi-
nology for describing the contour detection process, based on the disclosure of
the areas with the greatest absolute gradient values. The image was presented
as a topographic surface the drops of water fall on, stream down and come into
local minima. Each local minimum has its own set of points of the surface named
catchment basin. If a drop falls on a point belonging to a catchment basin, it
will come down into a corresponding local minimum. Several catchment basins
may intersect - their common points form watersheds. Formal construction of
watershed points was based on the detection of points equidistant from different
catchment basins lying on a given level λ.

In a later work S. Beucher [2] considered two groups of watershed trans-
formation algorithms. The first group contained algorithms which simulate the
flooding process (or immersion into water). An algorithm based on morphological
operations was taken as an example. The second group was made of procedures
detecting watershed points directly.
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L. Vincent and P. Soille in their work [3] presented an algorithm of watershed
transformation based on immersion process described in terms of morphological
operations and graph theory. The immersion process used FIFO queues to prop-
agate over the pixels. Their algorithm was faster and more exact than any other
algorithm presented at the moment of their publication.

In addition to morphological approach to calculation of watershed transfor-
mation of discrete images there is another way based on presentation of image in
the form of a graph and calculation a shortest path forest for given local minima.
S. Beucher and F. Meyer have developed an algorithm using a queue for finding
the shortest path between arbitrary nodes of the graph in the process of building
a tree of shortest paths [4]. However, if the image has ”flat” regions (plateau),
such an algorithm will result in errors at the regions. To use the algorithm in the
presence of plateaus, the image should be corrected to remove them. A. Lotufo
and R. Falcão proposed an algorithm using the ordered queue which allows to
solve the problems with plateaus [5]. However, their algorithm has drawbacks:
one pixel might be pushed into the queue more than once.

There is a number of other approaches to calculation of watershed transfor-
mation. J. Roerdink and A. Meijster in their review article [6] have discussed
two groups of watershed transformation algorithms: based on immersion, and
on topographical distance calculation. They also discussed problems of paral-
lelization of watershed transform calculation and concluded that it is hard to
parallelize because of its inherently sequential nature.

Another approach to watershed transform calculation is the topological
one [7]. Topological watershed transform uses a graph representation of the im-
age and is based on a notion of ”simple” topology. Such a transformation of
gray-scale image results in another gray-scale image preserving topological in-
formation. Topological transform calculation is based on detection of ”simple”
points on each cross section of gray-scale image.

In this paper an algorithm of watershed transform calculation is based on
detection of minimal cost paths. The path cost consists of two components. The
first characterizes maximal intensity of pixels along the path. The second compo-
nent of the cost gives the length of the ”flat” path part and is determined using
a chosen metric. This allowed to extend the algorithm to the case of chamfer
metric.

2 Basic Notions and Definitions

Given a set of pixels X ⊆ Zn, where n is image dimension, let Y be a set of
intensity values of the image. Digital n-dimension gray-scale image is a
function f : X → Y where the value f(p) ∈ Y defines intensity of pixel p ∈ X .
We will consider a case when function f is discrete. Watershed transformation
is interpreted as a result of immersion of surface f into water. It is assumed that
at selected local minima mi ∈ M of function f the holes are pierced such that
water will be gradually filling up ”cavities” starting from the minima.
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Graph of gray-scale image f is a weighted graph G = (X, Γ, f, d), with
function f defined on the set of graph nodes. Arc (p, q) with weight d(p, q)
between nodes p, q ∈ X exists iff q belongs to the neighborhood Γ (p) of p. Hence,
image graph contains information about intensity of pixels and their adjacency.
For each node p of graph G the value η = |Γ (p)| is called the connectivity of
node p. For our task the connectivities of all graph G nodes are the same: for 2D
images given on rectangular lattice η = 4 or η = 8, for 3D images η = 6, η = 14,
or η = 26.

Path π = (p0, p1, . . . , pk) from node p0 to node pk of graph G is an ordered
sequence of pixels (p0, p1, . . . , pk), such that pi+1 ∈ Γ (pi) and pi �= pj for j �=
i, 0 ≤ i ≤ k − 1. Path (p0, p1, . . . , pk) is denoted by πk or simply π and its part
(pi, pi+1, . . . , pj), 0 ≤ i ≤ j ≤ k from node pi to node pj in graph G is denoted
by πi,j . If i = 0, then the first index in the designation of path is omitted.

Let Π be a set of all paths in graph G. Function ρ : Π →
(
R+
)2 is called

path function of graph G if for any πi, πj such that πi is a part of πj (denoted
as πi ⊂ πj), the following inequality is always true:

ρ(πi) < ρ(πj),

with ρ(π0) = (0, 0). In other words, appending at least one pixel to any path
results in increasing its path function. Increasing path function is treated in the
sense of lexicographic ordering in (R+)2.

The value C(pi) = ρ(πi), i � k, πi ⊆ πk is called the cost of pixel pi on the
path πk. The value C(pi) is a vector in (R+)2. The first and second coordinates
of vector C(pi) are denoted by Cx(pi) and Cy(pi) respectively.

The distance δ(p, q) between any pixels p, q ∈ X is defined as follows:

δ(p, q) = min
π∈Πp,q

{
ρ(π)

}
,

where Πp,q is a set of all paths between pixels p and q in graph G.
Let M be a set of selected pixels (markers) of graph G, |M | > 1, and IM is a

set of marker indices. Catchment basin CB(mi) of marker mi ∈M, i ∈ IM is
defined as a set of points x ∈ X which satisfy the following condition:

CB(mi) =
{
p ∈ X |δ(mi, p) < δ(mj , p), i �= j

}
.

Watershed W (G) of graph G is a set of points not belonging to any catchment
basin:

W (F ) = X\
( ∑

mi∈M

CB(mi)

)
.

Catchment basins and watershed points define a segmentation of image. For
simplicity it is possible to include watershed pixels into the relevant catchment
basins in order to get segmentation just by catchment basins. Usually markers
mi ∈ M are chosen as representative pixels of image objects as well as the
background (i.e. not belonging to any object).
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It is clear that catchment basins are Voronoi cells of the selected local minima.
Therefore standard algorithms developed for Voronoi cells construction can be
used for building catchment basins.

Let G be a graph of image f with selected markers mi ∈ M, i ∈ IM and ω
is an arbitrary label, ω /∈ IM . Watershed transformation of image f is a
mapping λ : X → IM ∪ {ω} such that λ(p) = i if p ∈ CB(mi), and λ(p) = ω if
p ∈W (f).

3 Path Function

Choosing a path function having maxima at edges between different source image
objects is an important task. It is based on the assumption that all objects of
source gray-scale image f differ in intensity level, and there is a noticeable leap
of intensity at edges between different objects.

As a simplest example of path function one can take a function l(π) defined
as follows:

l(π) =

(
0,

k−1∑
i=0

d(pi, pi+1)

)
,

where pi+1 ∈ Γ (pi). The function l(π) is called the length of flat path π.
A drawback of the function l(π) is that it does not depend on intensity values

of pixels pi lying at the path π and considers image f as being flat. Therefore,
function l(π) can not be used as a criterion to join pixels into one region based
on their intensities.

Topographical distance takes care of relief of image [8]. Since path func-
tion should have maxima for pixels lying on edges between objects, a gradient
image |∇f | is often used instead of original one. Every pixel of the gradient
image has intensity value equal to the absolute gradient value of the source im-
age in this pixel. The value of absolute gradient of each pixel can be calculated
based on discrete approximation. Later on the gradient image obtained from the
source image f will be denoted by ψ.

The absolute gradient value can be approximated as follows:

ψ(p) = max
γp∈Γ (p)

{∣∣f(p)− f(γp)
∣∣}.

Watershed transformation of source image f can be computed in one of the
following ways:

1. Transform source image f into gradient image ψ, and then make the water-
shed transform on gradient image ψ.

2. Make watershed transform directly on the source image f . The approxima-
tion of absolute gradient value ψ(p) is calculated for each pixel p in the
process of watershed transformation.

Regardless of the selected way the value ψ(p) can be treated as an intensity
of pixel p of the gradient image. Therefore one can build graph G of the image
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ψ. All definitions that use image f are correct for gradient image ψ too. Taking
this into account, we assume that graph G is built for image ψ unless otherwise
specified.

Topographical length lψ(πk) of path π in G is defined as follows:

lψ(πk) =

{
(0, 0), if k = 0,(
maxi=0,...,k

{
ψ(pi)

}
,
∑k−1

i=0 d(pi, pi+1)
)

, if k > 0. (1)

For k > 0 the expression (1) can be formulated as follows:

lψ(πk) =
(

max
i=0,...,k

{
ψ(πi)

}
, 0
)

+ l(πk).

Gradient image usually has local maxima on object edges. At areas where maxi-
mal pixel intensity is constant, topographical length increases due to the second
coordinate.

Topographical distance Tψ(p, q) between pixels p, q ∈ X is equal to to-
pographical length of the shortest path π from p to q in X . The lengths are
compared in lexicographic sense.

The definition of topographical distance as a vector value allows to calculate
correctly the distance between points in images with arbitrary intensities. The
original definition of the topographical distance as a scalar value introduced in [8]
was restricted to a class of images with non-marked pixels having at least one
neighbor with lower intensity value. Such images do not contain non-minimal
flat regions (plateaus).

As it was stated above, the watershed points are located on the same topo-
graphical distance from markers of at least two different objects. If topographical
length lψ is used as path function, the watershed points are not always located
on the place with maximal absolute gradient value indicating the edge of objects.
Therefore we introduce a notion of a modified topographical distance which al-
lows to create a set of watershed points located on the areas with maximal
absolute gradient value.

Modified topographical length l′ψ(πk) of path πk is a path function defined
as follows:

l′ψ(π0) = (0, 0);

l′ψ(π1) =
{(

ψ(p1), 0
)
, if ψ(p1) > ψ(p0);(

ψ(p0), d(p0, p1

)
, if ψ(p1) � ψ(p0).

And for 1 < i � k:

l′ψ(πi) =
{(

ψ(pi), 0
)
, if ψ(pi) > maxj=0,...,i−1

{
ψ(pj)

}
;

l′ψ(πi−1) +
(
0, d(pi−1, pi)

)
, if ψ(pi) � maxj=0,...,i−1

{
ψ(pj)

}
.

The expression for l′ψ(πi), 0 < i � k can be rewritten in the following form:

l′ψ(πi) =
(

max
j=0,...,i

{
ψ(pj)

}
, 0
)

+ l(pi, pi−1, . . . , pi−n).
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Here n is calculated as follows:

n = max
{

t | 0 � t � i, ψ(pi−t) = max
s=0,...,i

{
ψ(ps)

}}
.

Hence, pi−t is the first pixel of the path πk which has maximal intensity value
along the whole path.

For 0 < i � k the following relation is true:

C(pi) = l′ψ(πi) =
{(

ψ(pi), 0
)
, if ψ(pi) > Cx(pi−1),

C(pi−1) +
(
0, d(pi−1, pi)

)
, if ψ(pi) � Cx(pi−1).

Modified topographical distance T ′
ψ(p, q) between arbitrary pixels p and

q of graph G is equal to the modified topographical length of the shortest path π
from p to q in G. Here like above the shortest path is treated in the lexicographic
sense.

4 Algorithms Implementing Watershed Transformation

The algorithms implementing watershed transformation (see algorithms 1 and 2)
define the shortest paths between arbitrary nodes of image graph using ordered
queues [9, 10]. Now let us define operations with ordered queues. The operation
Enqueue

(
p, C(p)

)
pushes pixel p into the tail of queue with priority C(p). The

operation DequeueMin() pops one pixel from the head of the first non-empty
queue with minimal priority.

Let us discuss the algorithm of gray-scale image segmentation using a simple
metric (the distances to adjacent pixels equal to 1). Priorities of the queues in
this algorithm are scalars because ordered queues automatically sort pixels lying
along every path by the second coordinate of their costs: the closer (in the sense
of flat path) a pixel is from the object marker, the sooner it will be pushed into a
queue with priority equal to the first coordinate of its cost, and the earlier it will
be popped from the queue as compared to other pixels with the same priority.

The algorithm starts from the initialization step. At this step each marked
pixel p ∈M gets a unique label λ(p) > 0 of the object it belongs to, and the cost
Cx(p) = 0. After that the pixel is pushed into a queue with priority Cx(p) (see
lines 9-13 of algorithm 1). Each not marked pixel p /∈ M gets cost Cx(p) = ∞ and
label λ(p) = 0. Not marked pixels are not pushed into queue (see lines 5-8). At
the initialization step all pixels of graph G are considered to be non-examined,
so they have flag TEMP (see lines 2-4).

At the second step (propagation) one pixel p is popped from the head of the
first non-empty queue with minimal priority by DequeueMin() operation (see
line 16). If it has flag TEMP (not examined before), then it already has the
minimal cost at the path from the marker, so it is now considered to be examined
and gets flag DONE (see lines 17-18). One distinction of the proposed algorithm
from the Lotufo-Falcão algorithm [5] is that in the algorithm 1 each pixel being
popped from the queue is checked to have flag TEMP . Therefore a not examined
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Algorithm 1. Gray-scale image segmentation by watreshed transformation (using a
metric defined by a unit neighborhood)

Require: Graph G of gradient image ψ; a set of markers M with indices in IM . The
priorities are scalars.

1: {Initialization}
2: for all p ∈ X do
3: flag(p)⇐ TEMP ;
4: end for
5: for all p /∈ M do
6: Cx(p)⇐∞;
7: λ(p)⇐ 0;
8: end for
9: for all p ∈ M do

10: Cx(p)⇐ 0;
11: Enqueue(p, Cx(p));
12: λ(pi)⇐ i, i ∈ IM , i > 0;
13: end for
14: {Propagation}
15: while Queue not empty do
16: p ⇐ DequeueMin();
17: if flag(p) == TEMP then
18: flag(p)⇐ DONE;
19: if λ(p) = w then
20: for all neighbor q of p and flag(q) == TEMP do
21: C′

x(q)⇐ max{Cx(p), ψ(q)}
22: if C′

x(q) < Cx(q) then
23: Cx(q)⇐ C′

x(q);
24: λ(q)⇐ λ(p);
25: Enqueue(q,Cx(q));
26: else
27: if C′

x(q) == Cx(q) andλ(q) = λ(p) then
28: λ(q)⇐ w, w /∈ IM ;
29: end if
30: end if
31: end for
32: end if
33: end if
34: end while

pixel may have several ”copies” in the queue. A pixel popped in that way will
always have the minimal cost and, consequently, there is no necessity to check
the queue for the presence of its ”copy” each time it is pushed into the queue,
as it is done in Lotufo-Falcão algorithm. If pixel p does not belong to a set of
watershed points, then each its neighbor q ∈ X having flag TEMP is determined
(see lines 19,20). Then the cost of each pixel q is calculated relative to the path
passing through pixel p: C′

x(q) = max
{
Cx(p), ψ(q)

}
and if pixel q had cost

C′
x(q) < Cx(q), it gets a new cost Cx(q) = C′

x(q) and label λ(p) ∈ IM showing
that pixel q now belongs to the same object as pixel p. Besides, pixel q is pushed
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Fig. 1. Catchment basins for two selected markers using modified topographical dis-
tance T ′

ψ. Gradient image ψ is shown by bold line. Modified topographical distance
from marker m1 to other pixels (top row) and from marker m2 to other pixels (lower
row) is shown in the brackets.

into the tail of queue with priority C′
x(q) (see lines 21-25). If pixel q has been

already pushed, the first ”copy” of this pixel being popped from the queue has
the least priority (and therefore the least cost). All other ”copies” of this pixel
having greater priority when popped from the queue will already have the flag
DONE and will not be examined (see line 17).

If pixel q is located on the same distance from markers of different catchment
basins and has cost C′

x(q) = Cx(q) and label λ(p) �= λ(q), then this means that
the pixel belongs to a set of watershed points and gets new label w /∈ IM (see
lines 26-29). The algorithm finishes when the queue is empty. Each pixel p having
label λ(p) ∈ IM belongs to the object corresponding to this label. If graph G
is connected, all pixels not belonging to the watershed should have the label
λ(p) ∈ IM . If pixel p has label λ(p) = w /∈ IM , it belongs to the set of watershed
points.

The set of watershed points, that is built by the proposed algorithm, not
necessarily forms a closed contour lying at object edges (see fig. 1). If width of
the segment of pixels with maximal cost (emphasized by gray color at the fig.1)
is even, then there is no watershed point, since no pixels of the path lie on the
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Algorithm 2. Gray-scale image segmentation by watreshed transformation (using
chamfer (a, b)-metric)

Require: Graph G of gradient image ψ; a set of markers M with indices in IM . The
priorities are 2D vectors.

1: {Initialization}
2: for all p ∈ X do
3: flag(p)⇐ TEMP ;
4: end for
5: for all p /∈ M do
6: C(p)⇐ (∞,∞);
7: λ(p)⇐ 0;
8: end for
9: for all p ∈ M do

10: C(p)⇐ (0, 0);
11: Enqueue(p, C(p));
12: λ(pi)⇐ i, i ∈ IM , i > 0;
13: end for
14: {Propagation}
15: while Queue not empty do
16: p ⇐ DequeueMin();
17: if flag(p) == TEMP then
18: flag(p)⇐ DONE;
19: if λ(p) = w then
20: for all neighbor q of p and flag(q) == TEMP do
21: if ψ(q) > C(p) then
22: C′(q)⇐ (ψ(q), 0);
23: else
24: C′(q)⇐ C(p) +

(
0, d(p, q)

)
;

25: end if
26: if C′(q) < C(q) then
27: C(q)⇐ C′(q);
28: λ(q)⇐ λ(p);
29: Enqueue(q,C(q));
30: else
31: if C′(q) == C(q) andλ(q) = λ(p) then
32: λ(q)⇐ w, w /∈ IM ;
33: end if
34: end if
35: end for
36: end if
37: end if
38: end while

same distance from both markers m1 and m2 (see fig.1a). The path illustrated in
the fig. 1b includes the watershed point lying on the same distance from the both
markers. This feature of the algorithm makes information about watershed points
almost useless for extraction of object contours. Watershed points are extracted
merely to show that they may belong to any adjacent object. Therefore, user can
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put them to any object at his discretion using some extra information contained
in the image. If watershed points are unnecessary, the algorithm can be modified
not to extract them, but put them to any adjacent catchment basin. It can be
done by just removing the lines 19, 26-29, 32 of the algorithm 1 and substituting
”<” by ”�” in the line 22.

Let us consider the algorithm of gray-scale image segmentation using chamfer
(a, b)-metric (see fig. 2). In this case the priorities are vectors, because the dis-
tances to adjacent pixels are different and, therefore, different pixels get different
second coordinate of the cost value. The segmentation algorithm (see algorithm
2) is similar to the algorithm 1. The only distinction is in using vector costs
of pixels and increasing the second coordinate of the cost in accordance with
chamfer (a, b)-metric.

Fig. 2. The illustration of chamfer (a, b)-metric for two-dimensional rectangular lattice.
Central pixel is emphasized with gray color. There are two groups of neighbor pixels:
the distance to one group is a, and that to another group is b.

If watershed points are unnecessary, the algorithm 2 can be modified not to
extract them, but put them to any adjacent catchment basin. It can be done by
removing the lines 19, 30-33, 36 of the algorithm 2 and substituting ”<” by ”�”
in the line 26.

5 Algorithm Discussion

Fig. 3 shows the results of a synthetic image segmentation containing an ellip-
sis against a homohenious background. This figure illustrates ”the reaction” of
algorithms to ”the noise”. One can see that chamfer metric gives better results
as compared with the metrics defined by a singular vicinity. Ideally the image
should have been divided into halves.

Fig. 4 shows the result of segmentation of a 3D tomographic image of pelvis
given by algorithm 1. Markers are selected automatically where intensities exceed
some threshold value. The time of segmentation of the image with 512*512*136
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(a) (b) (c) (d)

Fig. 3. The result of segmentation by the proposed algorithms
(a) Gradient image to be segmented. Markers are noted with numbers at image corners.
(b) Result of segmentation by algorithm 1 using ”city block” metric.
(c) Result of segmentation by algorithm 1 using ”chessboard” metric.
(d) Result of segmentation by algorithm 2 using chamfer (a, b)-metric with a = 3,
b = 4.

Fig. 4. CT image segmentation by a watershed algorithm

voxels, 16 bits per voxel by algorithm 1 without extracting watershed points is
about 800ms. Not optimized algorithm 2 does it in about 4.5 seconds.

6 Conclusion

The paper formulates the notion of watershed transformation in terms of graph
theory. Presented graph approach abstracts from specific metric and topology
of the image, allowing to be applied to various data sets. The chamfer met-
ric allows approximate more precisely Euclidean metric when calculating path
lengths. Two algorithms of segmentation are presented: using a metric defined
by singular neighborhood, and using chamfer (a, b)-metric. These algorithms use
ordered queues permitting effective implementation. Unlike the similar algorithm
proposed by Lotufo and Falcão, the presented in this paper algorithm gives more
accurate result and allows extending for the Euclidean metric.

The work was partially carried out in the framework of INTAS N 04-77-7003
project.
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Abstract. Graph pyramids are often used to represent an image with
various levels of details. Generalized pyramids have been recently defined
in order to deal with images in any dimension. In this work, we show
how to use generalized pyramids to represent 3D multi-level segmented
images. We show how to construct such a pyramid, by alternating seg-
mentation and simplification steps. We present how cells to be removed
are marked: by using an homogeneous criterion to mark faces and the
cell degree to mark other cells. When the pyramid is constructed, the
main problem consists in retrieving information on regions. In this work,
we show how to retrieve two types of information. The first one is the
low level cells that are merged into a unique high level cell. The second
one is the inter-voxel cells that compose a given region.

Keywords: Irregular image pyramid, Inter-voxel elements, Generalized
map, Hierarchical segmentation.

1 Introduction

To segment an image consists in partitioning this image into homogeneous con-
nected regions given a criterion. A classical approach to region segmentation is
the split-and-merge method and all its variants: a bottom-up approach [1,2] con-
sists in taking small regions and merging them into bigger and bigger regions;
a top-down approach [3, 4] is the opposite one, starting from big regions and
cutting them into smaller and smaller regions; a mixed approach [5, 6] consists
in combining the two previous ones.

For bottom-up approaches, it is important to be able to extract information
on regions (for example mean, variance, . . . ), and to be able to retrieve adja-
cent regions of a given region. Graph based structures allow to retrieve such
information, and this is why they are often used in image processing. However
such structures have several drawbacks: they do not represent all the topological
information and all the cells (the volumes representing the regions of the image
and the faces, edges and vertices composing the region boundaries).

To solve these problems, structures based on combinatorial maps have been
defined [7, 8]. These structures have several advantages over graphs:

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 530–541, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– they represent topological information, such as multi-adjacency or inclusion
relations;

– they represent all the cells of the represented objects, and not only the regions
as in the region adjacency graph;

– they allow to retrieve inter-voxel elements that composed the regions of the
image and thus allow to compute geometrical features;

– they allow to compute topological characteristics of image regions.

Moreover, it is often necessary to represent a same image with different
segmentation levels. For that, classical structures are extended in hierarchical
structures [9, 10] in order to be able to represent a same object with different
resolutions. In this work, we use a 3-G-map pyramid in order to deal with a
3D multi-level segmented image. Considered images are in grey level, and the
segmentation method is a bottom-up approach based on a very simple criterion
that uses the squared error.

The 3-G-map pyramid used in this work is similar to the one presented in [11].
With this structure, we represent various partitions of a same image as well
as links between the levels in order to be able to run through the pyramid.
Moreover, each cell and each adjacency and incidence relation are represented
for each different level. This information allows multi-level operations, such as
for example a local modification of a region at a given level, with propagations
on neighbor levels in order to keep the coherence of the structure.

In order to compute topological or geometrical features on regions of the
image, it is often necessary to retrieve:

– which regions of a fine segmentation (a segmentation composed of many
small regions) were merged in a unique region at a higher level in the pyra-
mid;

– inter-voxel elements in the initial image that composed a given cell of a given
region in the pyramid (e.g. the voxels of a region or the surfels of a face).

In this work, we show that this information can be retrieved in the 3-G-map
pyramid by using the notion of generalized cells (particular cases of generalized
orbits defined in [12]). The main result of this work is the definition of the
algorithms which allow to retrieve all the information concerning a given region.

This paper is organized as follows. Section 2 provides some recalls about pyra-
mids of n-dimensional generalized maps and about the notion of generalized cells.
In section 3 we examine the construction of the n-G-map pyramid representing
different segmentation levels of a same image in grey level. In section 4 we show
how to retrieve voxels and inter-voxel elements which compose a region at a
higher level. Conclusion and further issues are discussed in section 5.

2 Recall: Pyramid of n-Dimensional Generalized Maps
and Generalized Cells

An n-dimensional generalized map (n-G-map) allows to represent the topology
of n-dimensional objects. For example a 3-G-map can represent the topology of
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a 3D image. An n-G-map is a set of abstract elements, called darts, together
with n + 1 involutions defined on this set of darts (an involution f on a finite
set S is a one to one mapping from S onto S such as f = f−1). Each involution
αi represents an adjacency relation between i-dimensional cells (c.f. Fig. 1 and
definition in [13]).

The different cells of an image such as pointel, linel, surfel and voxel (or in
general vertex, edge, face and volume corresponding to 0, 1, 2, and 3-dimensional
cells) are implicitly represented as subset of darts by using the orbit notion.
Intuitively, an orbit < f1, . . . fk > (d) is the set of darts that we can reach by a
breath first search algorithm starting from d and using any application fi or f−1

i .
Each i-cell is defined by a particular orbit in n-G-maps, using all the involutions
except αi (see [13] for definition of i-cells).

The degree of an i-cell c is the number of distinct (i + 1)-cells incident to c.
For example, the degree of a vertex v is the number of edges incident to v. The
local degree of an i-cell c is similar to the degree but computed locally without to
run through the (i+1)-cells incident to c. So if an incident (i+1)-cell is incident
to c twice, it is considered as two (i+ 1)-cells when we compute the local degree
of c.

The operation of cell removal (defined in [14]) removes simultaneously various
cells in an n-G-map. These cells can be removed if they respect two preconditions:
they have to be disjoint, and the local degree of each cell is two. For removing an
i-cell c, we delete the darts which form this cell and for each surviving neighbor
dart of c, we redefine the value of involution αi applied to c (see Fig. 1) in order
to jump over the removed cells.

A pyramid of n-G-maps is a hierarchical data structure composed of several
n-G-maps, where each map is a reduction deduced from the previous map (cf. de-

d

d
1

d
2

3
e

2
e

4
e

1
e

1
d

2
d

d
4v

3v
1v

2v

d

d
1

d
2

d

level 0 level 1 level 2 level 3

Fig. 1. Example of a 3-G-map pyramid composed of four levels. At each level darts
are represented by black segments. Two darts linked by αi are in the same j-cell (with
j = i) but in two adjacent i-cells. In this pyramid, level 0 is composed of 2 volumes,
level 1 is obtained by removing the face between the two volumes, level 2 is obtained
by removing edges e1, e2, e3 and e4, and level 3 is obtained by removing degree two
vertices v1, v2, v3 and v4. In level 2, the edges incident to d1 and d2 are adjacent and so
linked by α1. This link is deduced from those of level 1 which allow to go from d1 to d2

by jumping removed edge e3. This principle is recursive. Generalized face CG(2,0,3)(d)
(resp. CG(2,1,3)(d) and CG(2,2,3)(d)) corresponding to the grey face incident to dart d
at level 3 corresponds to the set of grey faces at levels 0 (resp.1 and 2).
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finition in [11]). In the particular case of a region growing segmentation method,
each n-G-map is deduced from the previous level by applying the general opera-
tion of cell removal. The choice of cells to remove depends on the application and
is the result of an external process. Fig. 1 illustrates an example of a 3-G-map
pyramid composed of four levels. An important property of this pyramid is that
a one to one mapping exists between the surviving darts of a level (the darts
which are not marked to remove) and the darts of the following level.

With an n-G-map pyramid it is possible to represent geometrical information
by adding attributes on cells such as vertex coordinates, or region colors. . . Then,
it is necessary to be able to retrieve this information which is generally kept in
the initial level.

The notion of generalized cell (particular case of generalized orbit defined in
[12]) allows to retrieve the set of the i-cells of a level which are concerned in the
formation of an i-cell c given at a higher level. This set of i-cells is composed of:

– i-cells which have been merged into c by removing incident (i− 1)-cells;
– i-cells incident to these (i− 1)-cells, which have been removed.

We note CG(i,l′,l)(d) the generalized i-cell at level l′ that corresponds to the i-
cell incident to dart d at level l. This generalized cell is a union of i-cells at level
l′ (see Fig. 1). The generalized cells of dimension 0, 1, 2 or 3 are respectively
named generalized vertices, edges, faces or volumes.

3 Presentation of the Pyramid

3.1 Choice of the Structure

In this work, we use a pyramid of 3-G-maps in order to realize a multi-level
segmentation of a 3D image. Indeed this structure have several advantages.

First, n-G-maps are defined for any dimension of the space, their definition
is homogeneous for all dimensions and so the operations defined above them
are generic (in particular cell removals). They allow to represent all the cells of
an image (not only the regions and their boundaries) as well as the incidence,
adjacency and inclusion relations.

Second, a pyramidal structure allows to keep in memory various segmentation
levels of the same image and so to work at the best level according to each
operation. Since the levels of such a structure are linked between them, it allows
to work simultaneously at various levels or to retrieve the set of regions of a fine
segmentation which have been merged into a region of a coarse segmentation.

To facilitate the retrieval of information in the pyramid, it is important to
simplify each segmentation level. This type of simplification is often used in 2D
with dual graph pyramids [15] and combinatorial pyramids [16]. To add a new
segmentation level, we propose to use three different steps:

– first, the merge of similar adjacent regions of the previous level;
– second, a first simplification of the boundary of each region by merging the

adjacent faces incident to two same regions;
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– third, the second simplification of the boundary of each region by merging
the adjacent edges incident to two same faces.

In the pyramid, these three steps are achieved by removing respectively the
faces, edges or vertices between the elements to merge. They are successively
applied and as many times as necessary. To represent a new segmentation level,
three pyramid levels are constructed and noted level 0, 1 and 2 (mod 3).

3.2 Construction of the Pyramid

The construction of a new 3-G-map is achieved by applying a removal kernel (see
[17] for all algorithms constructing a pyramid) based on the following principle:

– first, the cells to remove are marked. The choice of these cells depends on the
level we want to add. For example, to construct a level 0 (mod 3), the faces
separating two homogeneous regions according to a segmentation criterion
are marked;

– second, the new G-map is constructed by copying each surviving dart of the
previous level and by linking them by taking into account disappeared darts.

For all the levels, the method used to add a new level is the same. The unique
difference existing between the levels is the criterion used to mark the cells.

Marking Faces to Remove. Two adjacent regions have to be merged if their
union is homogeneous according to a criterion. In our application, the homo-
geneity of a region R is measured with the squared error which corresponds to
the sum of the square distance of each grey level to the mean grey level ν of R.
This criterion can be formulated with the moments of order zero, one and two
of a region:

EQ(R) = M2(R)−M0(R)ν(R)2

where M0(R) is the number of voxels contained in R, M1(R) is the sum of voxel
grey levels of R, M2(R) is the sum of squared voxel grey levels of R, and ν(R) =
M1(R)
M0(R) . Since the moments of the union of two regions can be incrementally
computed from the moments of both regions, the squared error can be efficiently
updated.

Two regions have to be merged if their union is homogeneous i.e. the squared
error of their union is inferior to a threshold T . Otherwise, their union is non-
homogeneous and both regions should not be merged.

To obtain coarser segmentations when we go up in the pyramid, the threshold
have to be increased with the levels (T l > T l−1 with l the level we want to add).
It is possible to compute a new threshold by multiplying the previous threshold
by a constant k (T l = T l−1 × k), or to use a different formula like T l = (T l−1)2

(if T l−1 > 1) depending on how we want the segmentation to evolve.
To merge all homogeneous regions, the algorithm scans twice the 3-G-map:

– it considers each face of the G-map and marks it to remove if it separates
two similar regions according to the homogeneity criterion;
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– it considers each not marked face and marks it if it separates two regions
which will be merged in the next level. This step is necessary to avoid inner
faces (i.e. faces inside a region).

Since face removal can lead to volume disconnection, a region inclusion tree is
added to each level (see [18, 19] for more details on disconnection problems and
possible solutions).

Marking Edges to Remove. In the first step of the boundary simplification,
the edges separating two faces between the same two regions (i.e. local degree
two edges) are removed. Edge removal can lead to face disconnection and object
disappearance (for example in Fig. 2-b the removal of edge e3 leads to a face
disconnection, and in Fig. 2-d the removal of edge e5 removes the representation
of the cube). A way to solve this problem is not to mark an edge if its removal
leads to a disconnection or a disappearance. Algo. 1 considers successively each
edge and marks it if:

– its local degree is two;
– its removing does not lead to disappearance;
– its removing does not lead to disconnection.

The two first points are realized by a direct test (achieved in O(1)), and the third
point is realized by running through an orbit (cost O(f) with f the number of
darts of the face). Note that this last test can be optimized by using a union-find
tree.

When an edge is marked to remove, the algorithm reconsiders possibly in-
cident edges. For example, in Fig. 2 we want to simplify the boundary of the
region represented by the cube. If we consider edge e3 before e4, we cannot mark
it since its removal leads to a face disconnection. Then, when we consider e4,
it is marked to remove, and we can see that edge e3 can now be marked to
remove without face disconnection. This is the reason why e3 needs now to be
reconsidered. Note that this case occurs only when the marked edge is adjacent
to a unique not marked edge. To solve this case, we just test both extremities of
the current edge after it was marked to remove. If a single not marked edge is
incident to an extremity, this edge is added to a list of edges to reconsider. Note
that an edge can be treated at most twice since an already treated edge can be
reconsidered only when it becomes the unique edge incident to a vertex.

Marking Vertices to Remove. In the second step of the boundary simplifi-
cation, the vertices separating two edges between the same two faces (i.e. degree
two vertices) are removed. In this step, it is important to test the degree and not
the local degree as for edges since the removal of a degree two vertex does not
lead to topological modification while the removal of a local degree two vertex
can lead to the disappearance of the object (in the case where the vertex is only
incident to a loop). Note that the vertex removal cannot lead to a disconnection,
and so this step is achieved directly without problem. Each vertex is successively
considered and marked to remove if its degree is two.
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Algorithm 1. Edge marking.
Data: G: a 3-G-map,
Result: G in which edges to remove are marked.
e ← an edge of G ;
while e = null do

// processing of edge e
if the local degree of e is 2 then

if the removing of e leads neither to disconnection nor disappearance
then

mark e to remove ;
foreach vertex v incident to e do

if it exists a single not marked edge e′ incident to v then
add e′ in list edge to treat ;

// choice of the next edge to treat
if list edge to treat is not empty then

e ← the first of list edge to treat ;

else e ← an edge of G not yet treated;
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Fig. 2. Example of boundary simplification for a cube. (a) The initial 3-G-map rep-
resenting a cube with a boundary composed of six faces. (b) The 3-G-map obtained
by removing local degree two edges e1, e6, e7, e8 and e9 from (a). (c) The 3-G-map
obtained by removing edge e4 from (b). (d) The 3-G-map composed of two vertices,
one edge and one face, which is obtained after simplification of the boundary.

3.3 The First Level

The whole pyramid is built starting from a first level, and thus the question
concerning the definition of this first level is important. Indeed, this level can
either represent each voxel of the image or represent a fine segmentation of
this image. Note that, in the first case, the best adapted structure in order to
represent a regular subdivision seems to be a matrix. For our application, we
have chosen the second possibility since the initial image is not the reality but
a discretization of it, and so it can contain noise. Moreover, in image analysis it
is usual to make a pre-segmentation before other steps.

To compute the first segmentation starting from the image, we have used here
a semi-supervised classification based on a histogram analysis, but any method
can be used. This first level is built in two scans of the image:
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– a first scan, in order to construct the histogram, and then the classes;
– a second scan, in order to construct incrementally the 3-G-map of the first

pyramid level. In this step, the voxels are added one by one to the G-map
and merged with these neighbor voxels if they are similar and already con-
structed.

After this first pyramid level, the construction of the next levels follows the
principle explained before: add both simplification levels and possibly other seg-
mentation levels until the desired result (or an image composed of a unique
region).

4 Retrieving Regions and Inter-region Elements

When we keep in memory various segmentation levels of a same image, we often
want to work simultaneously at various levels, or we want to run through the
same object at various levels. For a given cell c at a level, it is necessary to be
able to retrieve information: the cells of a lower level which have been merged
into c, and the inter-voxel elements which represent c in the image. With this
information, we are for example able to:

– modify the segmentation of a part of the image (at a given level) without
reconstruct all the levels. For that we modify a given region and propagate
the modifications in all the pyramid but only for concerned regions;

– compute geometric criteria, for example characteristics of face curvature by
using the surfels which compose it.

The notions of cells and generalized cells defined in an n-G-map pyramid allow
to retrieve this information.

4.1 Retrieving the Cells

Given a cell c at a particular level l, we want to retrieve all the cells at a lower
level that are merged into c at level l.

Volumes. For a given volume V , we want to retrieve the volumes at a lower level
which have been merged into V . The idea is to use generalized volumes. When
there is no disconnection, the result is directly given by the generalized volume
computed between the two considered levels. Otherwise, we need to make the
union of generalized volumes for each boundary of each volume obtained by the
initial generalized volume (each volume is represented by an external boundary
and possibly several internal boundaries, one for each cavity).

Algo. 2 gives the set of volumes at a given level which have been merged
into a volume V at a higher level. First, it computes the generalized volume
representing V at the lower level. The obtained set corresponds to the external
boundary of V . Second, the generalized volumes are computed for all the internal
boundaries.
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Algorithm 2. Retrieve volumes(d, l, l′).
Input: d: a dart of a volume V ;
l: the level containing V ;
l′: the level where we want to retrieve the volumes merged into V ;
Output: the set of volumes of level l′ which have been merged into V ;
Res← the volumes incident to CG(3,l′ ,l)(d) ;
foreach volume V ′ ∈ Res do

foreach internal boundary B of V ′ do
d′ ← a dart of B ;
Res← Res ∪ CG(3,l′,l)(d

′) ;

return Res ;

Faces. For a given face F , we want to retrieve the faces at a lower level which
have been merged into F . By using generalized faces, we obtain, by definition,
the faces which were concerned in the formation of F . As we can see in Fig. 3,
this does not give immediately the expected result since we obtain too many
faces. To solve this problem, we need to progressively go down in the pyramid

d d d

(a) (b) (c)

Fig. 3. Comparison between a generalized face and faces merged into a face. (a) Level
3 of the pyramid of Fig. 1. Face F is in grey. (b) and (c) Level 0 of the pyramid where
grey faces respectively correspond to CG(2,0,3)(d) and the ones merged into face F .

and add different cells depending on the current level. Algo. 3 computes the set
of faces of a given level l′ which have been merged into face F incident to dart
d at level l. Its principle is the following:

– if l ≡ 1 or 2 (mod 3), the set of faces which have been merged at the previous
level in order to form F is the set of faces given by CG(2,b−1,b)(d). Indeed,
the unique operations used to construct levels 1 or 2 (mod 3) are the edge
and vertex removal but not face removal. So by definition, the generalized
face gives us directly the set of faces which have been merged into face F ;

– otherwise, l ≡ 0 (mod 3). In this case, we cannot use the generalized face
since this level is obtained from the previous one by removing faces. Since
between both levels, only faces have disappeared, the surviving faces have not
been modified. Thus, to obtain the face corresponding to F at the previous
level, we only use the existing links between the darts of F and the darts of
the previous level.
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The algorithm stops when the current level is l′ and in this case there is only
one face incident to dart d.

Algorithm 3. Retrieve faces(d, l, l′).
Input: d: a dart of a face F ;
l: the level containing F ;
l′: the level where we retrieve the faces merged into F ;
Output: the set of faces of level l′ which have been merged into F ;
if l = l′ then return the face incident to d ;
if l ≡ 1 or 2 (mod 3) then

F ′ ← the faces incident to CG(2,l−1,l)(d) ;

else F ′ ← the face at level (l − 1) which corresponds to face F ;
foreach face f ∈ F ′ do

d′ ← a dart of f ;
Res← Res ∪ Retrieve faces(d′, l − 1, l′) ;

return Res ;

Edges. For a given edge E, we want to retrieve the edges at a lower level which
have been merged into E. We use exactly the same principle than for faces.
We use the generalized edge when the current level is 0 or 2 (mod 3) since the
unique operation used is the face removal or vertex removal, and we use the
links existing in the pyramid for level 1 (mod 3) in order to directly retrieve the
corresponding edge in the previous level.

Vertices. Since vertices cannot be merged in G-map pyramids, to retrieve the
set of vertices of a given level l′ which have been merged into a vertex V of a
higher level l, amounts to take the unique vertex V ′ at level l′ which corresponds
to V . In order to do that, we only use the bijective links allowing to go down
directly to level l′, and then use the classical orbit notion in this level.

4.2 Retrieving the Inter-voxel Elements

To retrieve the voxels of the image which have been merged into a given region,
or to retrieve the inter-voxel elements of an image which represent the boundary
of a given region, we use the previous algorithms.

To retrieve the surfels, linels and pointels which respectively represent the
faces, edges and vertices of the boundary of a region, it is enough to directly
apply corresponding algorithms of the previous section between level l of the
region and level 0. Indeed surfels, linels and pointels are directly represented in
our level 0 G-map.

To retrieve the voxels which have been merged into a given region R, we need
to:

– retrieve the regions of level 0 which have been merged into R by using Algo. 2;
– retrieve the surfels of these regions by running through their boundaries;
– use a classical flood-fill algorithm in order to reconstruct the voxels.
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Retrieving voxels is more complex than for inter-voxel elements since voxels are
not represented explicitly in the first pyramid level.

5 Conclusion and Perspectives

In this paper, we have presented the construction of a 3-G-map pyramid in
the framework of multi-level segmentation of a 3D grey level image. Each new
segmentation level is deduced from the previous level in the pyramid by applying
a particular removal kernel which can use any homogeneous criterion. In order
to facilitate the information retrieval, this level is simplified, and thus each new
segmentation is represented by three successive levels in the pyramid. The first
level is the new segmentation. The second level is obtained by removing all the
degree two edges, and the third level is obtained by removing all the degree two
vertices. Additional constraints are added in order to guaranty that no adjacency
or incidence relation is lost during the simplifications.

We have shown how information can be retrieved in such a pyramid. We have
given algorithms that allow to retrieve, given a region of a particular level, any
cells that composed this region in a lower level. The methods used in these
algorithms are based on the generalized orbit notion, and on the links between
successive levels of the pyramid. When we are able to retrieve any cells between
any levels, it is then easy to retrieve inter-voxels elements since it is just a
particular case where the considered level is the first level of the pyramid.

Now, we want to study if it is possible to optimize the construction of the pyra-
mid in order to keep only one level for each new segmentation. This construction
is theoretically possible since the operation which removes simultaneously cells
of various dimensions is defined in [14]. But we need to study how the gener-
alized orbits can be used in such a case. Moreover, we are working to conceive
operations for handling this pyramid. A first interesting operation consists in
locally modifying a region at a given level and propagating the modifications
without re-computing all the levels. After that, many other operations can be
considered in order to propose a whole framework image processing.
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Abstract. Existing theories on shape digitization impose strong con-
straints on feasible shapes and require error-free measurements. We use
Delaunay triangulation and α-shapes to prove that topologically correct
segmentations can be obtained under much more realistic conditions. Our
key assumption is that sampling points represent object boundaries with
a certain maximum error. Experiments on real and generated images
demonstrate the good performance and correctness of the new method.

1 Introduction

A fundamental question of image analysis is how closely a computed image
segmentation corresponds to the underlying real-world partitioning. Existing
geometric sampling theorems are limited to binary partitionings, where the plane
is split into (not necessarily connected) fore- and background components. In
this case, the topology of the partition is preserved under various discretization
schemes when the original regions are r-regular and the sampling grid has a
maximum pixel radius of r′ ≤ r [1,2]. By making slighlty stronger assumptions,
this property is preserved when the shapes are blurred by a disc or square of
radius p prior to discretization [3, 4] or when regions may have corners [5].

However, these theorems have two important limitations: they are not ap-
plicable when there are more regions than just fore- and background, and they
do not make any predictions about the consequences of measurement errors. One
reason for these limitations is the assumption of a fixed sampling grid. We are
dropping this assumption in favour of adaptive sampling where sampling points
are placed roughly along the contour of the regions to be segmented.

Our treatment of adaptively placed sampling points is inspired by research on
laser range scanning. Here, a number of isolated sampling points is scattered over
the surface of the object of interest, and the task is to reconstruct the surface
from the set of points. A successful solution of this problem is the concept of
α-shapes [6, 7]. Under certain conditions, an α-shape is homeomorphic or at
least homotopy equivalent to the desired object surface. By applying this idea
to the problem of image segmentation, we are able to derive a new condition
on object shape that ensures homotopy equivalence of the digital segmentation
with the original analog plane partitioning. This means in particular that there
is a 1-to-1 mapping between the computed and the ground-truth regions. By
imposing slightly stronger requirements on region shape, these properties can
even be guaranteed when the segmentation is subject to measurement errors.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 542–554, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminaries

We consider the task of reconstructing a partition of the Euclidean plane from a
sampled representation. The plane partition to be recovered is defined as follows:

Definition 1. A partition of the plane R2 is defined by a finite set of points
P = {pi ∈ R2} and a set of pairwise disjoint arcs A = {ai ⊂ R2} such that
every arc is a mapping of the open interval (0, 1) into the plane, the start and
end points ai(0) and ai(1) are in P (but not in ai). The union of the points and
arcs is the boundary of the partition B = P ∪ A, and the regions R = {ri} are
the connected components (maximal connected sets) of the complement of B.

The partition is called binary when we can assign two labels (foreground and
background) to the regions such that every arc is in the closure of exactly one
foreground and one background region. A binary partition is called r-regular,
when at every boundary point there exist two osculating discs of radius r which
are entirely in the foreground and background respectively [2, 4]. This implies
that regions cannot have corners, and junctions of three or more regions are im-
possible. These restrictions are somewhat relaxed by the notion of r-halfregular
partitions, where an osculating r-disc must exist at least in the foreground or the
background, and the number of regions must not change under either morpholog-
ical opening or closing with a disc of radius ≤ r [5]. Corners are now possible, but
the partition is still binary and has no junctions. The two notions of r-regularity
and r-halfregularity have been central to all existing geometric sampling theo-
rems. In this paper, the class of feasible plane partitions is extended as follows:

Definition 2. A plane partition is r-stable when its boundary can be dilated
with a closed disc of radius s without changing its homotopy type for any s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of width
2r such that the number and enclosure hierarchy of the resulting regions is pre-
served. In particular, “waists” are forbidden, whereas junctions are allowed, see
Fig. 1. This includes r-regular and r-halfregular partitions, but also allows non-
binary partitions and junctions and models real images much better. In particu-
lar, polygonal partitions (all arcs are straight lines) are always r-stable for some
sufficiently small r. Unfortunately, the traditional way of proving a geometric
sampling theorem (using a fixed grid at arbitrary position and angle, in connec-
tion with subset or supercover digitization) does not work for these partitions
because topological equivalence cannot be guaranteed in general. Therefore, we
consider another approach to digitization: we approximate the boundary of the
partition with a finite set of adaptively placed sampling points. The sampling
points are selected somehow “near” the boundary. We formalize this as follows:

Definition 3. A finite set of sampling points S = {si ∈ R2} is called a (p, q)-
sampling of the boundaryB when the distance of every point b ∈ B to the nearest
point in S is at most p, and the distance of every point s ∈ S to the nearest point
in B is at most q. The elements of S are called edgels. The sampling is said to
be strict when all edgels are exactly on the boundary, i.e. q = 0.
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Fig. 1. The homotopy type of an r-stable plane partition
does not change when dilated with a disc of radius of at
most r (light gray), while dilations with bigger radius (dark
gray) may connect different arcs as marked by the circle

The Hausdorff distance between the boundary and its sampling is dH(S,B) =
max(p, q). Obviously, q < p is required because S is finite. Non-zero edgel shifts
q > 0 can be caused by systematic or statistical measurement errors. Edgels
may be determined in various ways (section 4), but this only matters in so far
as it determines the accuracy of the sampling, i.e. the values of p and q. Once
computed, we consider edgels as isolated points that somehow define the digital
boundary and connect them by means of the Delaunay triangulation:

Definition 4. The Delaunay triangulation D of a set of points S is the set of
all triangles formed by triples t ⊂ S such that the open circumcircle of every
triangle does not contain any point of S. If the points are in general position,
the Delaunay triangles, their edges and corners (also denoted as 2-, 1- and 0-
cells in this context) form a uniquely defined, connected simplicial complex. The
union of all cells |D| =

⋃
c∈D c is called the polytope of D.

In order to approximate the boundary of the partition, we want to remove those
edges and triangles from the Delaunay triangulation that are not related to the
boundary. A useful subset is defined by the α-complex introduced in [6]:

Definition 5. The α-complex Dα of a set of points S is the subcomplex of the
Delaunay triangulation D of S which contains all cells c such that (a) the radius
of the smallest open circumcircle of c is smaller than α, and this circle contains
no point of S, or (b) an incident cell c′ with higher dimension is in Dα.

The polytope |Dα| is called α-shape. Since cells are removed from the Delaunay
triangulation, the α-complex has holes which hopefully correspond to the re-
gions we are trying to segment. In order to determine when this is the case, the
following theorem is of fundamental importance (the proof can be found in [7]):

Theorem 1 (Edelsbrunner). The union of closed α-discs with centers at the
points si ∈ S covers |Dα|, and the two sets are homotopy equivalent.

Consequently, the α-shape |Dα| is homotopy equivalent to the original plane
partition if and only if the dilation of the edgels with α-discs is homotopy equiv-
alent to the boundary of the partition. This requirement is indeed fulfilled in
certain situations: In [8] it is proved that |Dα| is even homeomorphic to B if B
is the boundary of an r-regular set with p < α < r and q = 0. Unfortunately,
this no longer applies when the original partition is not r-regular and/or the
edgels are not exactly on the original boundary. Fig. 2 shows an example where
the r-dilation of the boundary is homotopy equivalent to the boundary (i.e. the
partition is r-stable), but the dilation of the edgels is not. The rest of the paper
is devoted to the question what can be said under these more general conditions.
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(a) (b) (c)

Fig. 2. The α-dilation (a) of the boundary of an α-stable plane partition may not be
homotopy equivalent to the union (b) of the α-discs centered at the edgels. Thus the
α-shape (c), which is always homotopy equivalent to the union of discs (b), may contain
unwanted holes consisting of Delaunay triangles of radius greater than α. Thus there
exists an α-disc centered in the hole which does not cover any edgel, as shown in (c).

3 Segmentation with Alpha-Shapes

Since holes of the α-complex do not necessarily correspond to regions of the
original plane partition, we must characterize these holes in more detail:

Definition 6. Consider the Delaunay triangulation D of a point set S and the
complement DC

α = R2 \ |Dα| of the corresponding α-polytope with α > 0. A
connected component of DC

α is called an α-hole of |Dα|. When the radius of the
circumcircle of the largest Delaunay triangle in an α-hole’s closure is at least
β ≥ α, we speak of an (α, β)-hole.

For simplicity, we also use the term “hole” for the component which contains the
infinite region. It is an (α, β)-hole for arbitrary large β. It follows from theorem
1 that there is a 1-to-1 relation between α-holes and the holes in the union of
α-discs around the edgels. A similar relationship exists for (α, β)-holes:

Lemma 1. An α-hole h is an (α, β)-hole if and only if it contains a point v
whose distance from the nearest edgel is at least β.

Proof. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infinite re-
gion, the claim follows immediately. Otherwise, v is contained in some Delaunay
triangle. By assumption, the corners of this triangle must have distance ≥ β from
v. Hence, the triangle’s circumradius must be at least β and the claim follows.

II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β):

p1

p2

p4

v

p5

p3

by assumption, the closure of h contains a Delaunay
triangle t with circumradius of at least β. Consider the
center v of its circumcircle. If it is within the triangle
t, it is also in h and the claim follows. Otherwise, it is
at least in some (α, β)-hole, and we must prove that
t is in the same hole. Suppose to the contrary that v
and t are in different α-holes. Then there exists a De-
launay triangle t′ or a single edge e between t and v whose smallest circumcircle
is smaller than α. The corners of t′ or e cannot be inside t’s circumcircle since it
is a Delaunay triangle. Neither t′ nor e can contain v because their circumcircle
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radius would then be at least β. Now consider the illustrated triangle p1, p2, p3

and its circumcircle (gray) with center v. The points p4 and p5 are the end points
of e or of one side of t′. Their distance |p4p5| must be greater than |p1p3|. Con-
sequently, any circumcircle with radius ≤ α (dashed) around p4 and p5 contains
t, contrary to the condition (imposed by the definition of an α-complex) that it
must not contain any other edgel. The claim follows from the contradiction. ��

Even for optimally chosen α, the α-complex does not necessarily reconstruct the
homotopy type of the original boundary, since it may contain too many holes
(see Fig. 2). This can be “repaired” by identifying (α, β)-holes:

Definition 7. An (α, β)-boundary reconstruction from an edgel set S is defined
as the union of the polytope |Dα| with all α-holes of Dα that are not (α, β)-holes.

In other words, surplus holes are simply “painted over”, and (α, β)-boundary
reconstruction essentially amounts to hystheresis thresholding on the triangle
size of a Delaunay triangulation. The following theorem shows that exactly the
desired holes survive when α and β are properly chosen.

Theorem 2 (Boundary Sampling Theorem). Let P be an r-stable plane
partition, and S a (p, q)-sampling of P’s boundary B. Then the (α, β)-boundary
reconstruction R defined by S is homotopy equivalent to B, and the (α, β)-holes
of R are topologically equivalent to the regions ri of P, if

1. p < α ≤ r − q
2. β = α+ p+ q
3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p+ q).

Proof. Let U be the union of open α-discs centered at the points of S. Further-
more, let B⊕ = B ⊕ Bo

α+q be the dilation of B with an open α + q-disc, and
r�i = ri ! Bα+q the erosion of region ri ∈ P with a closed (α+ q)-disc.

– According to the definition of a (p, q)-sampling, the dilation of B with a
closed q-disc covers S. Consequently, B⊕ covers U . Therefore, U cannot
have fewer connected components than B⊕. B⊕ has as many components as
B due to r-stability of P . Conversely, since α > p, every open α-disc around
a point of S intersects B, and the union U of these discs covers B. It follows
that U cannot have more components than B. The number of components of
B and U is thus equal. Due to homotopy equivalence of U and |Dα| (theorem
1), this also holds for the components of |Dα|.

– Since P is r-stable with r ≥ α+ q, each r�i is a connected set with the same
topology as ri. The intersection r�i ∩B⊕ is empty, and r�i cannot intersect
|Dα|⊂U⊂B⊕. Hence, r�i is completely contained in a single α-hole of |Dα|.

– Due to condition 3, ri contains a point whose distance from B is at least
γ = β + q. Its distance from S is therefore at least γ− q = β. Due to lemma
1, the α-hole which contains r�i is therefore also an (α, β)-hole.

– Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r�i
and r�j (i �= j). It follows from this and the previous observation, that every
region ri can be mapped to exactly one (α, β)-hole which will be denoted hi.
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– An α-hole that does not intersect any region r�i must be completely con-
tained within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the
nearest point of B. In turn, every point in B has a distance of at most p to
the nearest point in S. Hence, the distance from v to the nearest point of
S is d′ < α + p + q = β. According to lemma 1, this means that an α-hole
contained in B⊕ cannot contain a triangle with circumradius β and cannot
be an (α, β)-hole.

– The previous observation has two consequences: (i) All holes remaining in
R intersect a region r�i . Therefore, the correspondence between ri and hi

is 1-to-1, and B and |R| enclose the same number of regions. (ii) All dif-
ferences between R and Dα (i.e. all Delaunay cells re-inserted into R) are
confined within B⊕. This implies that |R| cannot have fewer components
than B⊕ and B. Since all re-inserted cells are incident to Dα, |R| cannot
have more components than |Dα|, which has as many components as B (see
first observation). Hence, B and |R| have the same number of components.

– Consider the components of the complement (r�i )C and recall that r�i is a
subset of both ri and hi for any i. Since B and |R| have the same number
of components, it is impossible for hC

i to contain a cell that connects two
components of (r�i )C . This means that the sets rC

i and hC
i have the same

number of components. This finally proves the topological equivalence of ri
and hi, and implies homotopy equivalence of B and |R|. ��

If there exists no r fulfilling all conditions of theorem 2 for a given plane partition
(or if the chosen α is too big), topology preservation is no longer guaranteed. Very
small regions may get lost in the reconstruction. A region that is split into two or
more parts by an s-erosion (i.e. has an s-waist) with s < αmay also be split in the
reconstruction. In case of very small waists, i.e. when s+2p+2q ≤ α, this is even
guaranteed to happen. Thus, we can still apply our sampling theorem: we modify
the original plane partition by connecting the different sides of small waists
by a new arc. When the new partition fulfills our requirements, the modified
topology is preserved, and the difference between the modified reconstruction
and the original plane partition is well defined, see the second column of Fig. 3.
When a thick boundary representation is undesirable, we apply topology-preserv-
ing thinning. An edge in the (α, β)-boundary reconstruction is called simple if
its removal does not change the topology of the reconstructed regions. Simple
edges always bound an (α, β)-hole on one side and a triangle in the boundary
reconstruction on the other. Thinning removes simple edges until none are left:

1. Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting is discussed below).

2. As long as the queue is not empty: Remove the topmost edge in the queue
from the boundary reconstruction when it is still simple (it may have lost
this property after removal of other edges). Put the edges in the triangle of
the removed edge in the queue if they have now become simple.
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α = 4.5

β = 6.67

α = 1.56

β = 3.73

Fig. 3. Reconstructions before (red and black) and after (black only) thinning (note
edgels in lower left image). Connectivity errors can occur when α is too big (center).

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradient)
and remove weak edges first. Ordering by edge length is particularly interesting:

Definition 8. A (not necessarily unique) minimal boundary reconstruction is
obtained from an (α, β)-boundary reconstruction by means of topology-preserving
thinning where the longest edges are removed first.

The resulting boundaries are illustrated in Fig. 3. Since region topology is pre-
served, a minimal boundary reconstruction is homotopy equivalent to B. The two
boundaries do not in general have the same topology, because the reconstruction
may contain short edges, which end in the interior of a region.

Since a minimal boundary reconstruction can be shown to be a shortest pos-
sible one with correct topology, surviving edges connect edgels closest to each
other. Neighboring edgels optimally align on the thinned boundary. The length
dmax of the longest surviving edge is a measure of the density of the boundary
sampling. The maximum distance p from the true boundary to the nearest edgel
may be much larger than dmax/2 if the displacements of neighboring edgels are
highly correlated. This often occurs in practice: for example, Canny edgels along
a circular arc are consistently biased toward the concave side of the curve. An
(α′, β) reconstruction of the edgel set with α′ = dmax/2 + ε < p and arbitrarily
small ε is still correct in the sense of theorem 2: since a minimal reconstruction
is a subset of the (α′, β) reconstruction, no true regions can get merged. Since
α′ < α, no region can get lost, and since β remains unchanged, no additional
holes can be created. In fact, β′ = α′ +p+ q < 2p+ q would have been sufficient.

We found experimentally that undesirable holes (α-holes that are not (α, β)-
holes) are actually quite rare, and their largest triangles are hardly ever as
large as the maximal possible circumradius β allows. Therefore, an (α′, β′)-
boundary reconstruction with β′ even smaller than α′ +p+ q often produces the
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(a) (b) (c)

Fig. 4. (a) Where the boundary intersects the dual grid, the nearest sampling points
form the grid intersection digitization. (b) The supercover digitization contains all
sampling points whose pixel facets intersect the arc. (c) Canny’s algorithm produces
subpixel-accurate edgels from gray scale images.

correct region topology. We are currently investigating the conditions which
permit weaker bounds. This is important, because a smaller β leads to a cor-
respondingly reduced γ, i.e. the required size of the original regions is reduced,
and more difficult segmentation problems can be solved correctly.

4 Application to Sampling and Segmentation Schemes

In theorem 2, p and q are assumed given. We now make their meaning and conse-
quences more intuitive, by computing or estimating them for common sampling
and segmentation schemes. Let’s first look at grid intersection digitization:

Definition 9. Consider a plane partition P with boundary B and a square grid.
Compute all intersection points of B with the grid lines (i.e. with the lines con-
necting 4-adjacent sampling points) and round their coordinates to the nearest
sampling point. The set of edgels thus defined is called grid intersection digitiza-
tion of B, see Fig. 4a.

For simplicity, let the grid size (i.e. the smallest distance from one sampling point
to another) be unity. When each component of B crosses at least one grid line,
the distance p of any point of B to the nearest selected grid point is less than√

2, and the distance q of any grid intersection to its rounded coordinate cannot
exceed 1/2. Inserting this into the conditions of theorem 2, we get α ≥

√
2,

r ≥
√

2+ 1
2 , β ≥ 2

√
2+ 1

2 ≈ 3.3, and γ ≥ 2
√

2+1 ≈ 3.8. However, the worst case
configurations giving rise to the values of β and γ in the theorem cannot actually
occur in a square grid because Delaunay edges between grid points cannot have
arbitrary length. It can be shown that the largest circumradius in an undesirable
α-hole is below

√
34 ≈ 2.9, so that γ ≈ 3.4 (circle area 37 pixels) is sufficient.

Generally the grid intersection digitization of a connected curve is an 8-
connected digital curve. It is identical to Bresenham’s digital straight line in
case of a straight arc. Moreover the grid intersection digitization is a subset
of the supercover digitization on a square grid, which produces a 4-connected
digital curve for any connected curve:

Definition 10. Let P be a plane partition with boundary B and G a finite set
of sampling points such that the Voronoi cells of G have a radius of at most g.
The supercover digitization of B is the set of all sampling points whose Voronoi
cell intersects B, see Fig. 4b.
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(a) (b) (c)

Fig. 5. The interpixel boundary (dashed) can be extracted from the subset digitization
(a). It includes both the midcrack digitization (b) and the endcrack digitization (c).

The constraint on the size of the Voronoi cells implies that p = g and q < g.
Hence, α > g, r > 2g, β > 3g and γ > 4g are required. For example, in a unit
square grid we have q < p =

√
2/2 and γ > 2

√
2 ≈ 2.8. Thus, the supercover

digitization imposes weaker constraints on the original plane partition P than
the grid-intersection digitization. This is mainly due to the denser sampling of
the boundary (smaller spacing of the edgels) in the former. As stated in [9], the
supercover digitization is a Hausdorff discretization, i.e. a set of sampling points
which minimizes the Hausdorff distance max(p, q) to the boundary B. Thus
the given bounds for α, β and γ are sufficient for all Hausdorff discretizations.
Another interesting question is what can be said about region based digitization:

Definition 11. Let P be a plane partition with regions R = {ri} and G a fi-
nite set of sampling points such that the Voronoi cells (i.e. the pixels) of G have
a radius of at most g. The subset digitization r̂i of region ri is the union of
all Voronoi cells whose sampling point is in ri, see Fig. 5a. The union of the
boundaries of all r̂i is called the interpixel boundary. A boundary digitization
scheme where all edgels are on the interpixel boundary B is an interpixel dig-
itization. Two examples are the the midcrack digitization (Fig. 5b) where the
center points of all pixel edges inside B are chosen as edgels, and the endcrack
digitization (Fig. 5c) where all pixel corner points inside B are used.

Thus, boundary-based digitizations like endcrack and midcrack digitization can
be derived from the region-based subset digitization. While the maximal distance
q of any edgel to the nearest boundary point cannot exceed g, the distance p
from any boundary point to the nearest edgel can be arbitrary large: An r-stable,
but non-binary plane partition is never r-regular. Consequently, r̂i is generally
not topologically equivalent to the closure of ri and may even be disconnected.
The distance of the components of r̂i may approach the diameter of ri when ri
has a long narrow spike. Obviously, this is not a useful practical bound for the
value of p. We need a restriction that is stronger than r-stability, but weaker
than r-regularity and which prevents these undesirable spikes:

Definition 12. Let P be a plane partition with boundary B. We say two points
x1, x2 ∈ B delimit a (θ, d)-spike, if the distance from x1 to x2 is at most d and
if every path on B from x1 to x2 contains at least one point with ∠x1yx2 < θ.
We say that P has no (θ, d)-spikes if for any pair of boundary points x1, x2 ∈ B
with distance of at most d, there exists a path Y ⊂ B between x1 and x2 such
that ∠x1yx2 ≥ θ for all points y ∈ Y .
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yd θ

x1

x2 d
2 sin θ

2

Fig. 6. Any point which encloses an angle of at most
θ with x1 and x2 must lie inside the shaded region.
The shown y is the one with the maximal distance
to the nearer one of x1 and x2. Thus there is a path
from x1 to x2 inside the shaded region and each of
its points has a distance of at most d/(2 sin θ

2
).

Intuitively, two points delimit a (θ, d)-spike, if the shortest boundary path be-
tween them does not differ too much from a straight line, i.e. it lies inside the
shaded region in Fig. 6.

Note that r-regular partitions have no (θ, d)-spikes for d ≤ r and θ = 2 arctan(
d/(2r −

√
4r2 − d2)

)
(e.g. for θ = 90◦, 60◦ we get d = r and d =

√
3r respec-

tively). By sampling dense enough one can enforce the angles to be arbitrarily
flat. But in general, absence of (θ, d)-spikes does not imply r-stability, so we
will require both. The fact that the boundary cannot be too far away from the
edgels can be used for estimating p and q, e.g. in the midcrack and endcrack
digitization case:

Theorem 3. Let G be a square grid with sample distance h (pixel radius g =
h/
√

2), and let P be a plane partition such that every region ri ∈ P contains a
closed g-disc and the boundary B has no (θ, d)-spikes. Then the endcrack digiti-
zation is a (p, q)-boundary sampling with q = h/

√
2 and p = q +

(
h
2 + q

)
/ sin θ

2 ,
provided that h ≤ d/(1 +

√
2), and the midcrack digitization is a (p, q)-boundary

sampling with q = h
2 and p = q +

(
h
2 + q

)
/ sin θ

2 , provided that h ≤ d
2 .

Proof. First, we prove the bounds on q. Let x, y be two 4-adjacent square grid
points. Their common pixel edge is in the interpixel boundary if and only if x
and y lie in different regions ri and rj , i.e. the grid line between x and y intersects
the boundary B in at least one point v. The endcrack edgels are exactly the end
points of these pixel edges, and their distance to v is at most h/

√
2. It follows

that q = h/
√

2 for the endcrack digitization. The midcrack edgels are the center
points between x and y, so their maximum distance to v is h

2 . Hence, q = h
2 for

the midcrack digitization. The maximum distance between neighboring edgels is
h in both cases.

Now, we prove the bound on p given q. By definition B =
⋃
∂ri, where ∂ri

is the boundary of region ri. Since every region contains a closed disc of radius
g = h/

√
2, and every such disc contains at least one grid point, every region ri

contains a grid point, i.e. r̂i is not empty, and there exist at least four edgels
near ∂ri. Due to the nonexistence of (θ, d)-spikes, any two components (∂ri)j

and (∂ri)l of the boundary ∂ri must have a distance of more than d ≥ 4q. So,
for every component there exists a set of edgels which are closer to (∂ri)j than
to any other component. Obviously every component (∂ri)j is a closed curve.
Thus by mapping every edgel to the nearest point of B, one gets a cyclic list
of points [bk](ij) for every component (∂ri)j , and each point bk has a distance
of at most h+ 2q to its successor bk+1 in the list. For endcrack edgels, we have
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(a) (b) (c)

Fig. 7. (a) Koch Snowflake; (b) subset digitization (note the topology violations);
(c) (α, β)-boundary reconstruction from marked midcrack edgels. Areas where the
edgels do not unambigously determine the boundary shape pop out by remaining thick.

Fig. 8. Real images, (α, β)-boundary reconstruction (center) and minimal reconstruc-
tion after thinning (right). Edgels have been computed by Canny’s algorithm on a color
(top) and intensity (bottom) gradient.

h + 2q = (1 +
√

2)h ≤ d, and for midcrack edgels h + 2q = 2h ≤ d. Thus, the
boundary part between bk and bk+1 includes no point with an angle smaller
than θ. As shown in Fig. 6, this implies that the distance from any boundary
point between bk and bk+1 to the nearer one of these two points is at most(

h
2 + q

)
/ sin θ

2 . Thus, the maximum distance to the nearest of the two edgels
which are mapped onto bk and bk+1 is p = q +

(
h
2 + q

)
/ sin θ

2 . ��

E.g. if a plane partition has no (60◦, d)-spikes for sufficiently big d, we get q =
h/
√

2 and p = (1 + 3
√

2)h
4 ≈ 1.31h for endcrack digitization and q = h

2 and
p = h for midcrack digitization. It follows that midcrack digitization should be
favoured over endcrack digitization.

The nonexistence of shape spikes allows us to topologically correctly digitize
even objects having a fractal boundary like the Koch Snowflake (see Fig. 7):
let K be the object bounded by the Koch Snowflake based on a triangle of
sidelength 1. Then it can be shown that K is r-stable for all r < 1/

√
3 and it has
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no (60◦, d)-spikes for d < 1/
√

3 and it contains a γ-disc for any γ ≤ 1/
√

3. Thus
the (α, β)-boundary reconstruction based on the midcrack digitization with a
square grid of grid size h is correct for all h < 1/

√
27 ≈ 0.192.

Our sampling theorem can also be applied to commonly used edge detectors
on real images (see Fig. 8), like Canny’s algorithm [10]. In [11] we derive the
following bounds: suppose the original partition is r-stable and free of (60◦, 2r)-
spikes, and the combined PSF and edge detector scale is at most σ = 0.8r, with
pixel distance h ≤ r. Then q does not exceed 0.9σ + 0.3 ≈ 1.1 pixels when the
boundary contains corners or junctions and SNR = 10 (noise at this level is
already quite visible), and q ≈ 0.2 pixels when the partition is (4-pixel)-regular
and SNR = 30. Note that the average error is much lower and approaches zero
along straight edges. When the edgels are not represented with subpixel accuracy,
a maximal round-off error of h√

2
must be added, and the average error cannot

fall below h√
6
≈ 0.4h pixels even in case of straight edges.

5 Conclusions

To our knowledge, this paper proposes the first geometric sampling theorem
that explicitly considers measurement errors. Moreover, the theorem applies to
a much wider class of shapes (r-stable partitions) than existing ones (r-regular
partitions). The situation in real images is thus modeled much more faithfully
because shapes may now have corners and junctions, and standard segmentation
algorithms can be used. The resulting segmentations are similar to what one
gets from traditional heuristic edgel linking, but their properties can now be
formally proven due to their theoretical basis in Delaunay triangulation. We
showed that many known digitization and segmentation methods can be analysed
and applied in the new framework by simply determining their error bounds. Our
approach (including boundary thinning) provides a novel way for computing a
combinatorial map representation [12] of the boundaries in real images.
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Abstract. New 3×3×3 operators are introduced to compute the surface skeleton 
of a 3D object by either sequential or parallel voxel removal. We show that the 
operators can be employed without creating disconnections, cavities, tunnels 
and vanishing of object components. A final thinning process, aimed at obtain-
ing a unit-thick surface skeleton, is also described. 

1   Introduction 

Topology preserving removal operations have received much attention in the litera-
ture dealing with discrete objects, since their use is crucial for processes such as 
shrinking, thinning and skeletonization. In this respect, the interest is towards opera-
tions based on a small neighborhood of an object element p (the 3×3 neighborhood in 
2D, and the 3×3×3 neighborhood in 3D). In fact, it has been proved that if removal of 
p does not alter the topology in the neighborhood of p, then p can be safely removed 
since topology is also globally maintained [1, 2].  

To preserve topology in 2D, removal of p from an 8-connected object should not 
create holes or disconnections. In other words, p should be a simple point. Removal of 
p does not create holes, if p has at least a 4-adjacent neighbor in the background. Dis-
connections do not occur if p has exactly one 8-connected component of object 
neighbors. In 3D, topology preserving removal operations can still be based on the 
notion of simple point [3,4], but besides cavities and disconnections, also tunnels have 
to be taken into account in the definition of point simplicity. Similarly to the 2D case, 
cavities are not created by removing p from a 26-connected object if p has at least a 6-
adjacent neighbor (face-neighbor) in the background. To this purpose, the number of 
26-connected components of object voxels and the number of 6-connected compo-
nents of background voxels have to be computed by processing the 3×3×3 neighbor-
hood of p. These numbers can be used to determine whether removal of p causes dis-
connections. Moreover, removal of p should prevent creation of tunnels. In other 
words, removal of p from a tunnel-free solid object should not change the object into 
one that cannot be deformed to a single voxel [5]. To this aim, the number of 6-
connected components of background voxels, having p as face-neighbor and com-
puted in the 3×3×3 neighborhood of p deprived of the eight vertex-neighbors, has to 
be computed.  

In this paper, we introduce a set of 3×3×3 topology preserving removal operations, 
based on the configurations of the voxels in the neighborhood of p. We show that 
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these operations can be used in the framework of 3D surface skeletonization. In par-
ticular, we introduce two surface skeletonization algorithms using respectively se-
quential and parallel voxel removal. 

2   Notions and Definitions 

We work with a binary finite voxel image in a cubic grid, where the object is the set 
of 1’s and the background is the set of 0’s. As implicitly stated in the previous sec-
tion, we choose the 26-connectedness for the object and the 6-connectedness for the 
background. The object consists of border voxels, i.e., those having a face-neighbor in 
the background, and inside voxels, i.e., those having no face-neighbors in the back-
ground. Any voxel p has 6 face-, 12 edge- and 8 vertex-neighbors. We call N(p) the 
3×3×3 set including p and its 26 neighbors, and N(p)* the set N(p) deprived of the 
vertex-neighbors.  

A 6-connected path of voxels is termed face-aligned if no change of direction is al-
lowed along the path. Three directions, each with two orientations, are possible. 

We say that a transition exists for a border voxel p, if a face-aligned path consist-
ing of three voxels can be found, where p is the intermediate voxel and the two ex-
tremes of the path are respectively an inside voxel and a background voxel.  

A protrusion is a maximal connected set of border voxels, none of which has an in-
side voxel as face-neighbor. By this definition it follows that a protrusion is the at 
most 2-voxel thick union of surface-like and curve-like sets. 

A cavity is a 6-connected component of the background fully surrounded by the 
object [6].  

A tunnel exists if a path can be found in the object that cannot be deformed to a 
single voxel [5]. 

 An object voxel p is simple if the object including p is homotopic to the object de-
prived of p. Simplicity of p means that the numbers of cavities, object components, 
and tunnels are the same, independently of whether p is in the object or in the back-
ground. Four main conditions are satisfied in N(p) by a simple voxel p: 1) p is not an 
inside voxel (cavity prevention condition); 2) the number of 26-connected object 
components in N(p) is equal to 1 (object connectedness condition); 3) the number of 
6-connected components of background voxels in N(p) is equal to 1 (background 
connectedness condition); and 4) the number of 6-connected components of back-
ground voxels, having p as a face-neighbor and computed in N(p)* is equal to 1 (tun-
nel prevention condition).  

We point out that voxel configurations, in correspondence of which tunnels risk to 
be created in the object by removal of p, may exist when in N(p)* two background 
face-neighbors of p belonging to distinct 6-connected components either form a face-
aligned path with p (type 1), or are edge-neighbors of each other (type 2).  

For completeness, we note that a voxel p whose 26 neighbors are all background 
voxels, i.e., an isolated voxel, is not simple.  

The distance transform of an image is a labeled version of the image where the la-
bel of any voxel is the distance of that voxel from the background. In this paper we 
compute the distance transform DT by using the distance D6, which is the 3D version 
of the well-known city-block distance in 2D. For the computation of DT, as well as of 
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distance transforms based on other metrics, see [7]. Voxels in DT can be interpreted 
as centers of balls with radius equal to the distance label. 

A center of a maximal ball, CMB, is an object voxel whose associated ball is not 
included by any other single ball in the object. In DT, a CMB is any voxel whose dis-
tance label is not smaller than the labels of its 6 face-neighbors. The union of all the 
maximal balls coincides with the object. 

The surface skeleton of a 3D object is a set of surfaces and curves, symmetrically 
placed within the object, which has the same topology and reflects the shape of the 
object. See [8] and the references listed therein for more details on 3D surface skele-
tonization. If the surface skeleton includes all the CMBs, then the object can be fully 
reconstructed starting from its surface skeleton. Unit thickness and inclusion of all 
CMBs are not possible at the same time in presence of object regions whose thickness 
is given by an even number of voxels. Since the set of the CMBs is at most 2-voxel 
thick, a nearly-thin skeleton, at most 2-voxel thick, is obtained if full recoverability is 
desired. A process, generally referred to as final thinning, has to be performed if a 
unit-thick surface skeleton is requested. 

3   New 3×3×3 Topology Preserving Removal Operations  

As already pointed out, a voxel p should have a face-neighbor in the background, i.e., 
p should be a border voxel, to avoid creation of cavities in N(p) when p is removed. 
Moreover, since we are interested in removal operations to be used in the framework 
of skeletonization, protrusion voxels cannot be removed. In fact, their presence in the 
skeleton is necessary to reflect the geometrical properties of the object, e.g., to ac-
count for its elongated parts. Thus, to be removable, p should have an inside face-
neighbor.  

         

Fig. 1. Voxels denoted by p form a protrusion, voxels denoted by m are necessary to maintain 
connectedness between the protrusion and the inside voxels, left, and between two components 
of inside voxels, right  

To consider p as a candidate to removal, we request that the above mentioned 
background and inside face-neighbors of p form with p a face-aligned path, i.e. we re-
quest that a transition exists for p. It is immediate to see that the existence of a transi-
tion for p guarantees that when p is removed: 1) it is not an isolated voxel, thus no 
vanishing of object components occurs, 2) cavities are not created, 3) protrusion vox-
els are preserved, 4) type 1 tunnels and background fusions are not created in the  
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direction of the transition since the two face-neighbors of p forming a face-aligned 
path are not both background voxels, and 5) voxels connecting a protrusion and the 
set of inside voxels, or two components of inside voxels, are preserved, if they are the 
only voxels ensuring connection, since no transition exists for them. Thus, the remain-
ing conditions to pose for safe removal of p should guarantee only object connected-
ness preservation in the remaining directions, and avoid the creation of type 2 tunnels 
as well as fusion of background components.  

For the 3D objects shown in Fig.1, no transition exists for voxels (denoted by p) 
forming a protrusion and for voxels (denoted by m) necessary to maintain connected-
ness along the face direction between the protrusion and the inside voxels, Fig.1 left, 
and between two components of inside voxels, Fig.1 right.  

Once the two face-neighbors of p necessary for the existence of a transition have 
been identified, we describe N(p) as consisting of three 3×3 windows. The 3×3 sets, 
respectively centered on p, on its background face-neighbor pT, and on its inside face-
neighbor pB, are called central, top and bottom windows. The remaining elements in 
the windows are denoted by their cardinal directions with respect to p, pT and pB, as 
shown in Fig.2. In this interpretation, independently of the orientation of the actual 
neighborhood of p, the transition is always seen as occurring from top to bottom. 

            

Fig. 2. The 3×3×3 neighborhood of p and the top, central and bottom windows constituting it 

Since a voxel p for which a transition exists necessarily has a number k=1,2,..,5 of 
object face-neighbors, we suggest five basic operations for safe removal of p, depend-
ing on the value of k. Naturally, rotated and mirrored operations have also to be taken 
into account. The basic removal operations are discussed below with reference to the 
interpretation of N(p) into the top, central and bottom windows. 

As far as object connectedness preservation is concerned, we note that the object 
neighbors of p in the central and bottom windows are all directly 26-connected to the 
inside voxel pB. Thus, we should only consider the object neighbors of p in the top 
window (of course, we don’t consider pT, which is a background voxel).  While ver-
tex-neighbors of p in the top window play a role only in the object connectedness 
condition, edge-neighbors of p in the top window are also important to design a con-
dition preventing background fusion and type 2 tunnel creation, whenever appropriate 
face-neighbors of p in the central window are in the background. 
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Case k=1  
The only object face-neighbor of p is pB and p can be removed if 
NT=0∧ET=0∧ST=0∧WT=0∧(NET=0∨NE=1)∧(SET=0∨SE=1)∧(SWT=0∨SW=1)∧ 
(NWT=0∨NW=1) 
Note that (NET=0∨NE=1), (SET=0∨SE=1), (SWT=0∨SW=1) and (NWT=0∨NW=1) 
respectively prevent that object disconnections occur in any of the four possible ver-
tex-directions. Moreover, no background fusion or tunnels are created and no object 
disconnections occur in the four possible edge-directions, if the edge-neighbors of p 
in the top window are in the background, i.e., if NT=0∧ET=0∧ST=0∧WT=0. In Fig.3, 
an example of removable voxel is shown for case k=1. 

 

Fig. 3. Case k=1. The voxel p with one object face-neighbor, the inside voxel pB, is removable. 
It would not be removable if, still being NET an object voxel, NE is a background voxel, or if 
any among NT, ET, ST and WT is an object voxel. 

Case k=2 
The two object face-neighbors of p, one of which is pB, cannot form a face-aligned 
path with p, due to existence of a transition for p. Thus, they are edge-neighbors of 
each other. Since there exist four possible pairs of edge-connected face-neighbors of 
p, one of which is pB, the removal condition is one of the following four conditions, 
depending on which is the second object face-neighbor of p. 

If N =1, the condition is: WT=0∧ST=0∧ET=0∧ (SW=1∨SWT=0)∧(SE=1∨SET=0)  
If W =1, the condition is: NT=0∧ST=0∧ET=0∧ (SE=1∨SET=0)∧(NE=1∨NET=0) 
If S =1, the condition is: WT=0∧NT=0∧ET=0∧ (NW=1∨NWT=0)∧(NE=1∨NET=0) 
If E =1, the condition is: WT=0∧ST=0∧NT=0∧ (NW=1∨NWT=0)∧(SW=1∨SWT=0) 
 

Case k=3  
Due to the transition from pT to pB, the remaining two object face-neighbors of p are 
necessarily placed in the central window and either are edge-neighbors of each other 
(four possible configurations), or form a face-aligned path with p (two possible con-
figurations). Thus, the removal condition is one of the following six conditions, de-
pending on which are the two object face-neighbors of p in the central window. 

If W =1 and S=1, the condition is: NT=0∧ET=0∧ (NET=0∨NE=1) 
If W=1 and N=1, the condition is: ST=0∧ET=0∧ (SET=0∨SE=1) 
If N=1 and E=1, the condition is: ST=0∧WT=0∧ (SWT=0∨SW=1) 
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If E=1 and S=1, the condition is: NT=0∧WT=0∧ (NWT=0∨NW=1) 
If W=1 and E=1, the condition is: NT=0∧ST=0 
If N=1 and S=1, the condition is: ET=0∧WT=0 
 

Case k=4 
Except for pB, which is in the bottom window, the remaining three object face-
neighbors of p are all in the central window (four possible configurations). Thus, the 
removal condition is one of the following four conditions, depending on the positions 
of the three object face-neighbors of p in the central window. 

If W=1, E =1, and S=1, the condition is: NT=0 
If N=1, E=1, and S=1, the condition is: WT=0 
If W=1, E =1, and N=1, the condition is: ST=0 
If W=1, N =1, and S=1, the condition is: ET=0 
 

Case k=5 
Except for pB, which is in the bottom window, the remaining four object face-
neighbors of p are all in the central window and p is always removable. 

 

In Cases k=2, k=3 and k=4, more than one transition is possible. In these cases, the 
relative above condition should be checked in correspondence with any existing tran-
sition. It is straightforward to see that if the proper condition is satisfied in correspon-
dence with one transition, p can be safely removed. 

In the following we will denote by f the removal operator that includes detection of 
transitions and involves the five cases k=1-5. A voxel p is removed if the operator 
finds out that at least a transition exists for p and the proper removal condition, based 
on the number of object face-neighbors of p, is satisfied. We remind that voxels con-
stituting object protrusions are not removed by f since no transition exist for them. 
This is an important feature to use f in skeletonization, since it guarantees that no ad 
hoc criterion is necessary to prevent unwanted shortening of peripheral sur-
faces/branches of the skeleton. 

For simplicity, we will refer to (NET=0∨NE=1), (SET=0∨SE=1), (SWT=0∨SW=1) 
and (NWT=0∨NW=1) as to vertex conditions and to the conditions NT=0, ET=0, ST=0, 
and WT=0 as to edge conditions. Note that the argument involved in an edge condi-
tion is the only one relative to the edge-neighbor in the top window of p such that the 
corresponding voxel vertically aligned with it, i.e., the face-neighbor of p in the cen-
tral window, is a background voxel. 

4   Surface Skeletonization by Sequential Voxel Removal 

In surface skeletonization by sequential voxel removal, each currently inspected bor-
der voxel is removed, i.e., is set to 0, if the proper condition is satisfied. Of course, to 
guarantee that the surface skeleton is centrally placed within the object, an iterative 
process is necessary to candidate to removal at each iteration only voxels belonging to 
the current border of the object. To save computation time and have all borders di-
rectly available, the distance transform DT is used. The border of the object at the l-th 
iteration includes all voxels with distance label l in DT, as well as voxels with  
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distance label smaller than l, if these latter voxels were not removed during previous 
iterations. Voxels with label greater than l are inside voxels at the l-th iteration. The 
background is, at all iterations, the current set of 0’s. A transition exists for a voxel p 
at the l-th iteration, if p has two face-neighbors forming with p a face-aligned path 
such that one of these neighbors is 0 and the other has label l+1. 

The algorithm can be sketched as follows.  
 
Compute DT. Let m be the maximal distance label in DT 

for l = 1 to m do 
apply f to any voxel p with distance label l, and set p to 0, if removable. 

 
It is easy to see that CMBs are voxels for which no transition occurs. In fact, none 

of the face-neighbors of a CMB can be an inside voxel. Thus, the obtained surface 
skeleton SK includes all the CMBs and complete recovery of the object is possible. 
SK is likely to be 2-voxel thick in some parts and final thinning is necessary if unit 
thickness is a desired feature.  

An example of the performance of the algorithm is given in Fig.4. 

                  

Fig. 4. Object, left, and its surface skeleton, right 

We point out that small asymmetries could exist in the resulting SK. These asym-
metries occur only in presence of pairs of face-connected border voxels such that only 
one of them is removable, depending on the order in which voxels are inspected. See 
Fig.5. There, the central section of a small 3D object is shown; gray voxels are inside 
voxels, all other voxels belong to the border. The two sections before and after the 
central section include only two voxels each; these voxels are the face-neighbors of 
the voxels shown in gray in the central section. Depending on the order in which vox-
els are examined, removal of the voxel k (h) will allow a transition for the voxel p (q). 
The voxel p (q) is thus removed since the proper removal condition is satisfied.  

 

   
 

Fig. 5. Section of a 3D object, where inside voxels are gray. Voxels k, p and h (q, h and k) are 
removed if the section is examined in forward (backward) fashion. 
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To avoid creation of asymmetries, one could detect parallelwise, at each iteration, 
the voxels for which a transition exists. For the example in Fig.5, both p and q would 
remain in the skeleton. In fact, p and q belong to the same current border including k 
and h, and no transition would exist for them. We point out that a parallel detection of 
voxels for which a transition exists implies doubling the number of iterations neces-
sary to obtain SK. Moreover, other asymmetries are likely to be created by final thin-
ning when a unit-thick skeleton is desired. Thus, especially in this latter case, resort-
ing to parallel detection of transitions is not convenient. 

For the sake of completeness we point out that, due to the implicit selection of all 
CMBs as skeletal voxels, the surface skeleton may include unwanted peripheral 
branches/surfaces. These are originated in the presence of noisy border configurations 
in correspondence of which some CMBs, generally characterized by small distance 
values, are found. Thus, as it is always the case for skeletonization, some pruning 
should be applied to remove noisy peripheral branches/surfaces (see e.g., [9]). 

5   Surface Skeletonization by Parallel Voxel Removal 

In Section 3, we have introduced the removal operator f that does not alter topology 
when sequentially applied. We discuss here the behavior of f, when applied in parallel 
in the framework of iterative skeletonization.  

An immediate remark is that a fully parallel skeletonization algorithm, i.e., an algo-
rithm based on the use of just one completely parallel operator with 3×3×3 support 
[10], cannot be designed. In fact, the application of the operator f requires that object 
voxels be distinguished in border voxels and inside voxels, since the existence of a 
transition must be checked. Thus, each iteration of the skeletonization algorithm must 
include a sub-iteration devoted to the identification of the border voxels. 

It is straightforward to observe that object vanishing and creation of cavities cannot 
occur, since no transition exists for voxels of object parts entirely consisting of border 
voxels and for inside voxels. A formal proof that f does not alter object connectedness 
and does not create fusion of background components, when two neighboring border 
voxels p and q are simultaneously removed, can be found in [11].  In fact, proving 
that f does not alter object and background connectedness in the set N(p)∪N(q) is 
enough to guarantee that object and background connectedness are also globally pre-
served. Here we just point out that, although our removal operations apparently have 
only a 3×3×3 support, the existence of the transition for a voxel p candidate to re-
moval implies that at least a face-neighbor of p is an inside voxel and, hence, the op-
erations implicitly use a support larger than 3×3×3. In [11], the worst case, occurring 
when a candidate voxel has only one inside face-neighbor, is discussed.  

As regards the possibility to create tunnels by simultaneous removal of two 
neighboring object voxels p and q, we note that p and q must obviously be face-
neighbors of each other. Indeed, it can be seen by examining Fig.6 that tunnels, not 
corresponding to real tunnels in the original object, can be created under some cir-
cumstances by simultaneous removal of two face-adjacent voxels p and q.  

A suitable operator g, to detect the configurations that could create tunnels has  
to be designed. Such an operator can be employed only after the operator f has parti-
tioned the set of border voxels into removable and non-removable voxels, since  
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spurious tunnels can be eliminated only after the configurations that would cause 
them have been created. Thus, the identification on the current border of which voxels 
to remove should be done in two sub-iterations. During the first sub-iteration f is ap-
plied to mark non-removable border voxels as belonging to the skeleton. Obviously, 
border voxels that have already been assigned to the skeleton at some previous itera-
tion do not need to be newly checked by f. During the second sub-iteration, the opera-
tor g is applied to the non-marked border voxels to mark as non-removable (and, 
hence, as belonging to the skeleton) all the voxels whose removal would create  
tunnels.  

                       

Fig. 6. The 3D configuration, where black dots are object voxels and m and n are inside voxels, 
before (left) and after (right) simultaneous removal of p and q 

We have examined the various configurations embedding a pair of face-adjacent 
voxels p and q to identify the cases in which the operator f fails to preserve topology 
when applied in parallel, so as to find the adequate operator g. Actually, in [11] we 
show that only one basic configuration exists, where the operator f fails.  

 

Fig. 7. Basic configuration where parallel removal of p and q causes spurious tunnel creation. 
Gray voxels are voxels already assigned to the skeleton 

The basic configuration is shown in Fig.7, where the two voxels v and w are back-
ground voxels (by the way, they are necessary for the transitions relative to p and q), 
the two voxels which are face-neighbors of both p and w, and of both q and v, respec-
tively (shown in gray) have already been assigned to the skeleton (during any previ-
ous iteration, or during the sub-iteration of the current iteration in which f has been 
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applied) and the remaining two voxels (denoted for simplicity by white dots like v 
and w) are don’t care. Since it is enough that one of the two voxels p and q is marked 
as non-removable to avoid creation of a spurious tunnel, the number of mirrored and 
rotated configurations figures up at 24. The 3×3×3 operator g is designed by taking 
into account the basic configuration shown in Fig.7, as well as the configurations de-
rived from it. 

For example, with reference to Fig.2, if p has q as its face-neighbor E in the central 
window, the neighbors of p that are actually checked by the operator g in N(p) are q, 
pT, ET, S, and SE. The voxel p is marked as non-removable if q is a non-marked bor-
der voxel, pT and SE are background voxels, and ET and S are marked voxels. 

In summary, each iteration of the skeletonization algorithm can be outlined as fol-
lows. 

 
Distinguish the object voxels into border, skeletal and inside voxels. 
Apply f to the border voxels and, for any voxel identified as non-removable, 

change its status from border voxel to skeletal voxel. 
Apply g to the border voxels and, for any voxel identified as non-removable, 

change its status from border voxel to skeletal voxel. 
Remove all border voxels. 
 
Skeletonization terminates when no voxels are removed, i.e., all voxels in the cur-

rent border have been changed into skeletal voxels. 
An example of the performance of the parallel algorithm is given in Fig.8. 

      

Fig. 8. Object, left, and its surface skeleton, right 

In particular, when implementing the parallel algorithm on a standard sequential 
computer by scanning the 3D array in the top-bottom, left-right and front-back direc-
tions, as soon as the operator g identifies a voxel p, whose neighborhood satisfies any 
of the 24 configurations, p can be marked together with the relative face-neighbor q. 
In this way, both voxels in the pair matching the configurations derived from Fig.7 
are marked, and a perfectly symmetrical surface skeleton is obtained. Moreover, DT 
can be conveniently used to reduce the computational effort. In fact, instead of includ-
ing at each iteration the sub-iteration necessary to distinguish border voxels and inside 
voxels (which would require one scan of the image), distinction between border and 
inside voxels is available at all iterations once DT is computed (in two scans of the 
image). At the l-th iteration, the border includes all voxels with distance label l in DT 
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as well as all voxels with distance label smaller than l and assigned to the skeleton 
during some previous iteration. The surface skeleton SK results to be centered within 
the object, includes all CMBs, is at most 2-voxel thick and is completely symmetrical. 

6   Final Thinning 

The surface skeleton obtained by using sequential or parallel voxel removal is ex-
pected to consist only of border voxels. However, inside voxels can still be present in 
SK. For example, this is the case for the object (coinciding with its surface skeleton) 
shown in Fig.9, which consists of three bricks, each with section 2×2 voxels and mu-
tually crossing each other, where the kernel of the crossing region includes eight in-
side voxels. Another example is given by complex objects including irreducible sets, 
i.e., objects such that the only way to obtain a unit-thick SK would be that of forcing 
topology changes. We do not consider the case of irreducible sets here (for a discus-
sion of this case in 2D see [12]) and refer to the standard case, where a few inside 
voxels exist only in the presence of crossings. 

Both the algorithm based on sequential removal and the one based on parallel re-
moval require final thinning if unit thickness is desired for SK. We describe below a 
final thinning algorithm based on sequential removal. 

 

Fig. 9. A nearly-thin surface skeleton including eight inside voxels 

Since the only voxels that should be removed by this process are those located 
where the object is 2-voxel thick in face-direction, we should detect the existence of 
such subsets of SK. To this purpose, we use six 4×1 masks, each consisting of four 
voxels forming a face-aligned path along one of the three principal directions (top-
bottom or bottom-top, left-right or right-left, and front-back or back-front). In each 
mask, the two external voxels are background voxels and the two internal ones, say v1 
and v2, are object voxels.   

A simplified version f’ of the operator f is used to perform final thinning along the 
direction where 2-voxel thickness is identified by one of the above masks. Of course, 
no transition exists in the direction of the mask, since SK is nearly-thin in that direc-
tion, but the voxel v2 (v1) plays the role of inside voxel in N(v1) (N(v2)). The operator 
f’ removes v1 (v2), depending on the number of object face-neighbors in N(v1) 
(N(v2)). 

Final thinning is done in two scans. During the first scan, the three masks detecting 
2-voxel thickness along the top-bottom, left-right and front-back directions are used. 
During the second scan, the remaining three masks are used.  

If, during the first scan, for the current voxel v1 the mask is matched, but v1 is not 
removed by the operator f’, the coordinates of v2 are recorded to directly access that 
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voxel during the second scan. In this way, the mask does not need to be newly 
checked and the second scan is avoided.  

Final thinning should be applied twice since, as said above, the nearly-thin skeleton 
might include some inside voxels, which could become removable border voxel, after 
removal of some of their neighbors.  

7   Conclusion  

We have introduced two 3×3×3 operators f and g. Only f is necessary if skeletoniza-
tion is accomplished by sequential voxel removal. Both operators are used to design 
an iterative parallel algorithm for surface skeletonization. The obtained surface skele-
ton has all the expected properties except for unit thickness, as it is 2-voxel thick 
wherever the thickness of the object is expressed by an even number of voxels. In this 
respect, we have also introduced a sequential final thinning algorithm, which origi-
nates the unit-thick surface skeleton. 

References 

1. Rosenfeld, A.: A characterization of parallel thinning algorithms. Information and Control 
29 (1975) 286-291 

2. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Computer Graphics 
and Image Processing 17 (1981) 315-331 

3. Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving trans-
formations with application to thinning. IEEE Trans. PAMI 16 (1994) 1028-1032 

4. Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. 
Pattern Recognition Letters 15 (1994) 169-175 

5. Kong, T.Y.: A digital fundamental group. Computers and Graphics. 13 (1989) 159-166 
6. Kong, T.Y., Rosenfeld, A.: Appendix: Digital Topology – A brief introduction and bibli-

ography. In: Kong, T.Y., Rosenfeld, A (eds.): Topological Algorithms for digital image 
processing. Elsevier, Amsterdam (1996) 263-292 

7. Borgefors, G.: On digital distance transform in three dimensions. Computer Vision and 
Image Understanding. 64(3) (1996) 368-376 

8. Sanniti di Baja, G., Nystrom, I.: Skeletonization in 3D discrete binary images. In Chen, 
C.H., Wang, P.S.P. (eds.): Handbook of Pattern Recognition and Computer Vision. World 
Scientific, Singapore (2005) 137-156 

9. Borgefors, G., Nyström, I., Svensson, S., Sanniti di Baja, G.: Simplification of 3D skele-
tons using distance information. In Latecki, L.J. et al. (eds.): Vision Geometry IX, Proc. 
SPIE 4117 (2000) 300-309 

10. Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., 
Rosenfeld, A (eds.): Topological Algorithms for digital image processing. Elsevier, Am-
sterdam (1996) 145-179 

11. Arcelli, C., Sanniti di Baja, G., Serino, L.: Topology preservation in 3D” Internal Report 
R.I.161/05, Istituto di Cibernetica, December 2005 

12. Eckhardt, U., Latecki, L., Maderlechner, G.: Irreducible and thin binary sets. In Arcelli, C. 
et al. (eds.): Aspects of Visual Form Processing. World Scientific, Singapore (1994) 
199-208 



A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 567 – 579, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Skeleton Pruning by Contour Partitioning  

Xiang Bai1,2, Longin Jan Latecki1, and Wen-Yu Liu2 

1 CIS Dept., Temple University, Philadelphia, PA 19094, USA 
{baixiang, latecki}@temple.edu 

2 Dept of Electronics & Information Engineering, Huazhong University of Sci. & 
Tech. Wuhan, Hubei. 430074 P.R. China 

liuwy@hust.edu.cn 

Abstract. In this paper, we establish a unique correspondence between skeleton 
branches and subarcs of object contours. Based on this correspondence, a 
skeleton is pruned by removing skeleton branches whose generating points are 
on the same contour subarc. This has an effect of removing redundant skeleton 
branches and retaining all the necessary visual branches. We show that this 
approach preserves skeleton topology, does not shift the skeleton, and it does 
not shrink the remaining branches.  

Keywords: Skeleton, skeleton pruning, discrete curve evolution. 

1   Introduction 

The skeleton is important for object representation and recognition in different areas, 
such as image retrieval and computer graphics, character recognition, image 
processing, and analysis of biomedical images [1]. Skeleton-based representations are 
the abstraction of objects, which contain both shape features and topological 
structures of original objects. Due to the importance of the skeleton, many 
skeletonization algorithms have been developed to represent and measure different 
shapes. The important factor that constraint the matching of skeletons is the skeleton’s 
sensitivity to object’s boundary deformation: little noise or variation of boundary 
often generates redundant skeleton branches that may disturb the topology of 
skeleton’s graph seriously. For example, the skeleton in Fig. 1(a) has many redundant 
skeleton branches generated by boundary noise.  

The most common approaches to overcome skeleton’s instability are based on 
skeleton pruning, i.e., eliminating redundant skeleton branches. Pruning can be either 
performed implicitly as a post processing step or implicitly integrated in the skeleton 
computation. However, none of the existing skeleton pruning methods yields 
satisfactory results without user interaction. Before we describe the existing skeleton 
pruning approaches, we characterize desirable properties of skeletons. The skeleton of 
a single connected shape that is useful for skeleton-based recognition should have the 
following properties: (1) it should preserve the topological information of the original 
object; (2) the position of the skeleton should be accurate; (3) it should be stable 
under small deformations; (4) it should contain the centers of maximal disks, which 
can be used for reconstruction of original object; (5) it should be invariant under 
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Euclidean transformations, such as rotations and translations, and (6) it should 
represent significant visual parts of objects. 

The main goal of this paper is to present a novel skeleton-pruning method that 
achieves all the above properties. We stress that no existing method can provide a 
skeleton with all these properties. In addition the proposed method is easy to 
implement, and can be computed efficiently. 

 

 
                            (a)                                          (b)                                          (c) 

Fig. 1. The skeleton in (a) has many redundant branches. To remove them, usually skeleton 
pruning is applied. (b) illustrates the problems of actual pruning approaches (it is generated by a 
method in [7]). In particular, observe that pruning may change the topology of the original 
skeleton. (c) illustrates the pruning result of the proposed method that is guaranteed to preserve 
topology. 
 

Now we present a brief overview of skeletonization and skeleton-pruning 
approaches. The skeletonization algorithms can broadly be classified into four types: 
thinning algorithms, e.g., [5, 6]; algorithms based on the Voronoi diagrams, e.g., [2, 8, 
22]; algorithms based on distance maps, e.g., [4, 6, 7, 9, 15, 24, 25, 29]; algorithms 
based on mathematical morphology, e.g., [19-21]. All these algorithms require 
skeleton pruning, either as a postprocessing step or directly incorporated in the course 
of computation. There are mainly two ways of pruning methods: (1) based on 
significance measures assigned to skeleton points [2-4, 16, 22], and (2) based on 
boundary smoothing before extracting the skeletons [16, 28]. In particular, curvature 
flow smoothing still have some significant problems that make the position of 
skeletons shift and have difficulty in distinguishing noise from low frequency shape 
information on the boundary [16]. A different kind of smoothing is proposed in [10]. 
A great progress have been made in the type (1) of pruning approaches that define a 
significance measure for skeleton points and remove points whose significance is low. 
Shaked and Bruckstein [16] give a complete analysis and compare such pruning 
methods. To the common significance measures of skeleton point belong propagation 
velocity, maximal thickness, radius function, axis arc length, the length of the 
boundary unfolded. Ogniewicz and Kübler [2] present a few significance measures 
for pruning hairy Voronoi skeletons without disconnecting the skeletons. Siddiqi et al 
combine a flux measurement with the thinning process to extract a robust and 
accurate connected skeleton [20].  

All presented methods have several drawbacks. First, many of them are not 
guaranteed to preserve topology. This is illustrated in Fig. 2, where the skeleton in (d) 
violates the topology of the input skeleton in (c). This skeleton was obtained by the 
method in [4]. However, any other method described above would lead to topology 
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violation. In particular, all methods presented in [16] (including the method in [2]). 
Methods described in [16] are guaranteed to preserve topology for simply connected 
objects (objects with a single contour), but not for objects with more than one contour 
like the can in Fig. 2. There exist several methods that preserve topology [24, 30] and 
thinning algorithms (that are usually guaranteed to preserve topology). The topology 
preserving skeleton obtained by the proposed pruning method is illustrated in Fig. 
2(e). Even if the input shape is simply connected many of methods described above 
are not guaranteed to preserve the original topology (e.g., the skeleton in Fig. 1(b), 
generated by pruning method in [7]).  

 

 
    (a)                (b)             (c)           (d)         (e) 

Fig. 2. (a) The input object. (b) Binary object mask. (c) The initial skeleton. (d) A pruned 
skeleton obtained by the method in [4]. (e) A pruned skeleton obtained by the proposed 
method. While skeleton in (d) violates the topology, the proposed method guaranteed to 
preserve the topology. 

 

The second drawback of all methods described above is that main skeleton 
branches are shorten to some extent and short skeleton branches are not removed 
completely, which seriously complicates the structure of the skeletons. These effects 
are illustrated in Figs. 1(b) and 2(d).  

To summarize, although the existing skeleton pruning methods have many 
drawbacks, they are definitely needed to remove spurious or redundant skeleton 
branches. The skeleton generating approaches suffer from the fact that a small 
protrusion on the boundary may result in a large skeleton branch, which is an intrinsic 
problem of the definition of the skeleton, since the mapping of boundary points to the 
skeleton points is not continuous. An obvious solution to this problem is to first 
remove the protrusions on the boundary and then compute the skeleton. As stated 
above, various smoothing approaches are either applied to the contour or to the 
distance map before the skeleton is computed. The problem is that isotropic (e.g., 
Gaussian) as well as anisotropic smoothing only reduces but does not remove the 
protrusions. A common characteristic of the above approaches is that they displace 
the boundary points, and consequently displace the location of skeleton points.  

2   Main Ideas of the Proposed Approach 

We propose an approach that completely removes protrusions without displacing the 
boundary points, and consequently, without displacing the remaining skeleton points. 
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Spurious or redundant branches are completely removed while the main branches are 
not shorten. The main observation of our approach is that it is possible to perform a 
topology preserving skeleton pruning based on a contour partition into curve 
segments. Returning to Blum’s definition of the skeleton, every skeleton point is 
linked to boundary points that are tangential to its maximal circle, so called 
generating points. The main idea is to remove all skeleton points whose generating 
points all lie on the same contour segment. This works for any contour partition into 
segments, by some partitions yield better results than other. Fig. 3 illustrated two 
different pruned skeletons (b) and (c) obtained for the same input skeleton in (a). The 
pruned skeletons are based on two different partitions into contour segments whose 
endpoints are marked with dots. For example, removing all skeleton points whose all 
generating points lie on the contour segment CD in (b) leads to the removal of the 
whole lower part of the skeleton. Clearly, the contour partition in (c) leads to a 
significantly better pruning result than the partition in (b). Thus, in our framework, 
the question of skeleton pruning is reduced to finding a good partition of the contour 
into segments. We obtain such partitions with the process of Discrete Curve Evolution 
(DCE) [11-13]. 
 

 
                        (a)                                             (b)                                                (c) 

Fig. 3. Pruning the input skeleton (a) with respect to contour partition induced by five random 
points on the boundary in (b). The five points in (c) are selected with DCE. 

 
First, observe that every object boundary in a digital image can be represented 

without loss of information as a finite polygon, due to finite image resolution. The 
process of DCE is proven experimentally and theoretically to eliminate the noisy 
points [11-13]. This process eliminates such points by recursively removing polygon 
vertices with the smallest shape contribution (which are the most likely to result from 
noise). As the result of DCE, we obtain a subset of vertices that best represent the 
shape of a given contour. This subset can also be viewed as a partition of the original 
contour polygon into contour segments defined by consecutive vertices of the 
simplified polygon. A hierarchical skeleton structure obtained by the proposed 
approach is illustrated in Fig. 4, where the (red) bounding polygon represents the 
contour simplified by DCE. 

Because DCE can reduce the boundary noise without displacing the remaining 
boundary points, the accuracy of the skeleton position is guaranteed. The continuity, 
which implies stability in the presence of noise, of the proposed pruning methods 
follows from the continuity of the DCE. This means if a given contour and its noisy 
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versions are close (measured by Hausdorff distance), the obtained pruned skeletons 
will be close too. A formal proof of DCE continuity with respect to Hausdorff 
distance of polygonal curves is given in [18]. Thus, our approach provides a solution 
to the instability of the classical skeleton pruning algorithms. 

The proposed pruning method can be applied to any input skeleton. We only 
require that each skeleton point is the center of a maximal disk and that the boundary 
points tangent to the disk (generating points) are given. It is also possible to perform a 
skeleton growing that includes the proposed pruning method. The main idea is that 
the pruning is not done in postprocessing (after the skeleton is computed) but is 
integrated into the skeleton growing process. To implement this idea, we extended the 
skeleton growing algorithm in [4] based on the Euclidean distance map. First, we 
select a skeleton seed point as a global maximum of the Euclidean distance map. 
Then, the remainder of the skeleton points is decided by a growing scheme. In this 
scheme, the new skeleton points are added using a simple test that examines their 
eight connected points. During this process, the redundant skeleton branches are 
eliminated with respect to a given contour partition computed by DCE.  

 

 
Fig. 4. Hierarchical skeleton of leaf obtained by pruning the input skeleton (top left) with 
respect to contour segments obtained by the Discrete Curve Evolution (DCE). The outer (red) 
polylines show the corresponding DCE simplified contours. 
 

Before we formally define the proposed skeleton pruning, we need to characterize 
planar sets for which we can determine the skeleton. Following [23] we assume that a 
planer set D is the closure of a connected bounded open subset of R2 whose boundary 
D is composed of a finite number of mutually disjoint simple closed curves. Each 

simple closed curve in D consists of finite number of pieces of real analytic curves. 
We further assume in this paper that each simple closed curve is a polygonal curve, 
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i.e., the pieces they consist of are line segments. We make this assumption only to 
simplify some definitions, and we stress that all our results also hold for simple closed 
curves that consist of finite number of real analytic curves. Observe also that this 
assumption does not introduce any restriction on object contours in digital images, 
since each boundary curve in a digital image can be regarded as polygonal curve with 
vertices being the boundary pixels. 

According to Blum’s definition of the medial axis [1], the skeleton S(D) of a set D 
is the locus of the centers of maximal disks. A maximal disk of D is a closed disk 
contained in D that is interiorly tangent to the boundary D and that is not contained 
in any other disk in D. Observe that each maximal disc must be tangent to the 
boundary in at least two different points. We denote as Tan(s) the set of the boundary 
points tangent to the maximal disk B(s) centered at s∈S(D). The points in Tan(s) are 
called generating points of the skeleton point s. Due to our assumption that each 
boundary curve is a simple closed polygonal curve, Tan(s) is composed of a final 
number of isolated boundary points, since B(s) can intersect each boundary line 
segment in at most one point. (Without this assumption, Tan(s) would be composed of 
a finite number of isolated contour subarcs.) The degree deg(s) of s∈S(D) is defined 
as the cardinality of Tan(s), i.e., as the number of boundary points tangent to the 
maximal circle centered at s.  

3   Skeleton Pruning with Contour Partition 

In this section, we formally define the contour partition into contour segments and 
skeleton pruning based on it. Let the boundary D of a set D be composed of k simple 
closed curves C1, …, Ck. Let x and y be two contour points lying on the same simple 
closed curve Ci. With [x,y] we denote the shortest closed contour segment (subarc) of 
Ci that connects x and y. For simplicity, we assume that x and y are positioned on Ci 
so that [x,y] is uniquely determined. With (x,y) we denote the segment [x,y] without 
the endpoints x and y (i.e., the open subarc). (A distinction between open and closed 
contour segments is unimportant in the digital images, but we need to establish some 
formal properties in the continuous plane.) A sequence of points x0, …,xn-1 on a simple 
closed curve Ci forms a partition of Ci if two consecutive segments [xi, xi+1], [xi+1, 
xi+2] that intersect in {xi+1} (the indices are modulo n), nonconsecutive segments have 
empty intersection, and Ci is the union of these segments. The partition  of the 
boundary D is a sequence of sequences that are partitions of the simple closed curves 
C1, …, Ck. 

Given a partition  of the boundary D of a simply connected set D (i.e., D 
consist of one simple closed curve), the skeleton pruning is defined as removal of all 
skeleton points s∈S(D) whose all generating points lie in the same open segment (x,y) 
of partition . More precisely, the pruned skeleton is composed of all points s∈S(D) 
such that Tan(s) is not contained in the same open segment of the partition . This is a 
very simple definition of skeleton pruning, and it works with any contour partition. 
The key issue is to get reasonable partitions. As we will show, DCE provides a very 
good partition for the pruning. When D is not simply connected (i.e., D consist of 
more than one simple closed curve), we additionally need to check whether all 
skeleton points removed with respect to the same partition segment have their 
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generating points on the same simple closed curve Ci for some i=1, …,k. It can be 
proven that the topology of pruned skeleton is preserved for pruned skeleton 
generated by any partition of the contour. The proof is omitted due to the limited 
space. It will appear in a forthcoming paper. For simplicity of the presentation, we 
assume in the following definitions that D is simply connected (i.e., D consist of one 
simple closed curve). 

Now we introduce a contour partition based on Discrete Curve Evolution (DCE). A 
hierarchical decomposition of the boundary of the set D obtained by DCE is the key 
component of the proposed skeleton pruning method. Given a skeleton S(D) of a 
planar shape D and given a DCE simplified contour D given as polygon Pk with 
convex vertices x0, …,xn-1, we perform skeleton pruning with respect to the open 
segments of the partition [xi, xi+1] (modulo n). Thus, we remove all points s∈S(D) 
such that the generating points of s, Tan(s), are contained in a single open side of the 
DCE polygon. Observe that we ignore concave vertices of the DCE simplified 
polygon. 

The simplification of the boundary contour with DCE corresponds to pruning 
complete branches of the skeleton. In particular, a removal of a single convex vertex v 
from Pn-k to obtain Pn-(k+1) by DCE implies a complete removal of the skeleton branch 
that ends at v. We give an example illustrating this fact in Fig. 5. It shows a polygon 
with seven vertices obtained from the leaf contour by DCE and the skeleton obtained 
by pruning based on this polygon. Observe that there are only five skeleton branches 
ending in the five convex vertices of the simplified polygon. The pruned skeleton is 
computed with respect to the DCE segments (A,C), (C,D), (D,E), (E,F), (F, A). The 
pruning was applied to the leaf skeleton shown in the first image in Fig. 4. (The 
skeleton in Fig. 5 is the same as in the last image in Fig. 4.) We can illustrate the main 
idea of our approach by explaining why the green skeleton branch in Fig. 5 that ends 
at point C remained. It remained, since each of its points has maximal disks tangent to 
points on two different DCE segments, which are contour arcs (A,C) and (C,D).  

 
Fig. 5. A simplified polygon with 7 vertexes (in red) and the skeleton obtained based on this 
polygon. The green skeleton branch remained, since each of its points has generating points on 
two different arcs BC and CD of the original contour.  

 
A very important property of DCE induced contour partition, and every partition 

that is restricted to vertices of the boundary polygon, is that fact that there is a 
skeleton branch ending at every partition point. If a partition point that is also a 
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polygon vertex ui is deleted in a DCE evolution step, i.e., ui ∈ Pn-k – Pn-(k+1), then 
the arc [ui-1,ui+1] replaces arcs [ui-1,ui], [ui,ui+1] in the contour partition. 
Consequently, the whole skeleton branch that ends at vertex ui is eliminated by the 
skeleton pruning.  

4   Experimental Results and Comparison  

4.1   Stability of Pruning with DCE 

Some results on shapes from MPEG-7 Core Experiment CE-Shape-1 database [27] 
are showed in Fig. 6. For each shape class, we show pruned skeletons for several 
objects from the same class. Although the objects differ significantly from each 
other, the obtained pruned skeletons have the same structures. The final DCE 
simplified polygons are also showed overlaid on the shapes with red segments. The 
skeleton pruning is performed with respect to contour partition induced by the 
vertices of these polygons. In the first row in Fig. 6, the skeletons of the thin and 
long tails of rats remained complete, which cannot be achieved by other pruning 
methods, since they may shorten or disconnect the skeleton. Although the camels 
differ significantly in their shape, all obtained skeletons have similar global 
structure. The last row of Fig. 6 shows the DCE’s stability to the same shapes in 
different scales.  

 

 

 

Fig. 6. Our results on Mpeg 7 shape database illustrate extraordinary stability of pruned 
skeletons in the presence of significant shape variations and deformations  
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4.2   Analysis and Comparison 

In this part, we describe our test results with the proposed approach on several binary 
shape images with the size 500×500. All the images tested have significant boundary 
distortions.  

A hierarchy of pruned skeletons is shown for the walking human in Fig. 7. The 
pruning is preformed with respect to DCE simplified contours with N = 200, 100, 50, 
30, and 12 vertices. We have also shown a hierarchy of pruned skeletons in Fig. 4 
above. We can see that the results of our algorithm are in accord with human visual 
perception. Besides hierarchical and visual property, our skeleton has a unique 
property: the pruned branches are eliminated completely, i.e., the obtained skeletons 
are without the presence of remaining half-shortened small, short branches. For 
example in Fig. 7, each skeleton branch is removed, and no remaining fractions are 
left.  

 

Fig. 7. Hierarchical skeleton of a walking human. The input image is similar to a walking 
human in [7]. 

 
The problem of spurious, half-shortened braches is clearly seen in Fig. 8(a), below, 

Figs. 1(b) and. 2(d), above, where we see several spurious branches that are not 
related to any obvious boundary features. Figs. 1 and 2 show a comparison of our 
method and the method in [4]. As can be clearly seen our method does not suffer from 
shortening main skeleton branches, and preserves topology of the skeleton. Moreover, 
the obtained skeletons seem to be in accord with human perception. The result 
obtained by the method in [4] exhibits clear problems with the skeleton topology and 
it shortens main skeleton branches in Figs. 1(b) and 2(d). 

Our pruning method can also be used in pruning Voronoi skeleton branches. As 
Voronoi skeleton points are symmetrical to the boundary sample points, the 
generating boundary points of each skeleton point are known. Fig. 8 shows a 
comparison of our method to the method by Ogniewicz and Kübler [2]. Fig. 8(b) 
shows that the proposed approach is able to eliminate all the unimportant branches 
and still preserve all main structure. Fig. 8(c) shows an application of our method to 
generate a fixed topology skeleton introduced in Golland and Grimson [7]. It shows 
that the proposed pruning is not limited to the DCE induced contour partitioning. 
Once the positions of skeleton’s endpoints is estimated along the boundary as in the 
method in [7], the endpoints induce a partition of the boundary curve, and the fixed  
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                                 (a)                                          (b)                                      (c) 

Fig. 8. Comparison between pruning result in [2] in (a) and our results in (b), and (c) is the 
result of fixed topology skeleton 

topology skeleton can be generated by pruning any skeleton with our method with 
respect to this partition. 

A comparison between a result in [7] and our result is shown in Fig. 9. Fig. 9(a) 
shows a skeleton obtained by the method in [7], and Fig. 9(b) shows our result 
induced by the contour partition (A,B), (B,C), (C,D), (D,E), (E,F) marked with the red 
points, which represent the estimated skeleton endpoints. We can see that the position 
of our skeleton is more accurate than in (a), since all of our skeleton points are the 
centers of maximal disks, which are exactly symmetrical to the shape boundary. This 
is not the case for the fix topology method proposed in [7]. Moreover, compared with 
[7], only the endpoints need to be estimated; we do not need to estimate the junction 
points of the skeleton. Another example of a fixed topology skeleton produced with 
our method is shown in Fig. 8(c).  

 

 
                                                   (a)                                              (b) 

Fig. 9. Comparison between the fixed topology skeleton in [7] in (a) and our skeleton in (b) 
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We omitted here a formal prove that our method is guaranteed to preserve 
topology. We illustrated this fact in Fig. 2(e) above. Fig. 10 shows another example 
for a shape with three holes that has total of four contour curves. For comparison, the 
result of the method in [4] is shown in Fig. 10(b). Fig. 10(c) shows that the proposed 
approach preserves the original topology. In Fig. 10 (d), the contour partition is only 
composed of the four boundary curves, i.e., there are no segments on any of the four 
curves, so that the skeleton points must have their tangent points on the different 
boundary curves in order to remain.  

 

 
                    (a)                                 (b)                               (c)                                (d) 
Fig. 10. (a) The input skeleton. (b) A pruned skeleton obtained by the method in [4] violates the 
topology. (c,d) Pruned skeletons obtained by the proposed method, which is guaranteed to 
preserve the topology. 

5   Conclusions and Future Work 

In this paper, we introduce a new skeleton pruning method based on contour 
partitioning. Any contour partition can be used, but the partitions obtained by 
Discrete Curve Evolution (DCE) yield very good results. The theoretical properties 
and the presented experiments demonstrate that the obtained skeletons are in accord 
with human visual perception and stable, even in the presence of significant noise, 
and have the same topology as the original skeletons. Thus, we provide a solution to 
the instability of the classical skeleton algorithms. The stability of skeletons is the 
key property required to measure shape similarity of objects using their skeletons. 
Moreover, we have shown that the proposed approach never produces spurious 
branches, so common to the known skeleton pruning methods, and that the 
proposed pruning method does not displace the skeleton points. Consequently, all 
skeleton points are centers of maximal disks. We have proven that our pruning 
method is guaranteed to preserve topology. The proof will appear in a forthcoming 
paper. 
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Abstract. Critical kernels constitute a general framework settled in the
category of abstract complexes for the study of parallel thinning in any
dimension. We take advantage of the properties of this framework, and
we derive a general methodology for designing parallel algorithms for
skeletons of objects in 3D grids. In fact, this methodology does not need
to handle the structure of abstract complexes, we show that only 3 masks
defined in the classical cubic grid are sufficient to implement it. We il-
lustrate our methodology by giving two new types of skeletons.

Introduction

Precisely forty years ago, in 1966, D. Rutovitz proposed an algorithm which is
certainly the first parallel thinning algorithm [1]. Since then, many 2D parallel
thinning algorithms have been proposed, and several 3D ones may be found
in the literature, see for example [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. A fundamental
property required for such algorithms is that, they do preserve the topology of
the original objects. In fact, such a guarantee is not obvious to obtain [13, 14].
In [15], see also [16], one of the authors introduces a general framework for the
study of parallel thinning in any dimension in the context of abstract complexes.
A new definition of a simple point has been proposed, this definition is based
on the collapse operation which is a classical tool in algebraic topology and
which guarantees topology preservation. The most fundamental result is that, if
a subset Y of X contains the so-called critical kernel of X , then Y has the same
topology as X .

In this paper, we focus on 3D objects. We introduce the notion of crucial vox-
els , which permits to make a link with the framework of digital topology [17].
This leads to a general methodology for designing 3D parallel thinning algo-
rithms. We illustrate our methodology by giving two new types of skeletons.
The first one corresponds to a “minimal” skeleton of an object, the second one
to a skeleton which contains a part of the medial axis of an object. All these skele-
tons are obtained by a sequence of symmetric operators. To our best knowledge,
they have no equivalent. All previously proposed symmetric thinning conditions
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are not sufficiently “powerful” for removing enough points in order to obtain a
skeleton such as the “minimal” skeleton of Fig. 7.

For the sake of space, proofs are not given in this paper, most of them will be
available in an extended version of the paper.

1 Cubical Complexes

In this section, we give some basic definitions for cubical complexes, see also [18].
We consider here the three-dimensional case. Note that many of the notions
introduced in the first sections make sense in arbitrary n-dimensional cubical
spaces.

If T is a subset of S, we write T ⊆ S, we also write T ⊂ S if T ⊆ S and
T �= S.

Let Z be the set of integers. We consider the families of sets F1
0, F1

1, such that
F1

0 = {{a} | a ∈ Z}, F1
1 = {{a, a+ 1} | a ∈ Z}. A subset f of Zn, n ≥ 2, which is

the Cartesian product of exactly m elements of F1
1 and (n−m) elements of F1

0 is
called a face or an m-face of Zn, m is the dimension of f , we write dim(f) = m.

We denote by F 3 the set composed of all m-faces of Z3, m = 0, 1, 2, 3. An
m-face of Z3 is called a point if m = 0, a (unit) interval if m = 1, a (unit) square
if m = 2, a (unit) cube if m = 3.

Let f be a face in F 3. We set f̂ = {g ∈ F 3 | g ⊆ f} and f̂∗ = f̂ \ {f}.
Any g ∈ f̂ is a face of f , and any g ∈ f̂∗ is a proper face of f .
If X is a finite set of faces in F 3, we write X− = ∪{f̂ | f ∈ X}, X− is the

closure of X .
A set X of faces in F 3 is a cell or an m-cell if there exists an m-face f ∈ X ,

such that X = f̂ . The boundary of a cell f̂ is the set f̂∗.
A finite set X of faces in F 3 is a complex (in F 3) if X = X−. Any subset Y of

a complex X which is also a complex is a subcomplex of X . If Y is a subcomplex
of X , we write Y 3 X . If X is a complex in F 3, we also write X 3 F 3.

Let X 3 F 3. A face f ∈ X is principal for X if there is no g ∈ X such that
f ∈ ĝ∗. We denote by X+ the set composed of all principal faces of X .

Observe that, in general, X+ is not a complex, and that [X+]− = X . See
illustrations Fig. 1.

x y

z t

(a) (b) (c) (d) (e)

Fig. 1. (a): Four points x, y, z, t. (b): A graphical representation of the set of faces
{{x, y, z, t}, {x, y}, {z}}. (c): A set of faces X, which is not a complex. (d): The set
X+, composed by the principal faces of X. (e): The set X−, i.e. the closure of X,
which is a complex.
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(a)

f

(b) (c) (d)

(e) (f)

f

i
g

h (g)

Fig. 2. (a) A complex X, (b), (c), and (d) three steps of elementary collapse of X,
(e) the detachment of f̂ from X, (f) the attachment of the 3-face f is highlighted in
dark, the face f is not simple, whereas g, h, and i are simple, (g) the essential faces of
X which are not principal are highlighted in dark

Let X 3 F 3, dim(X) = max{dim(f) | f ∈ X+} is the dimension of X . We
say that X is an m-complex if dim(X) = m.

We say that X is pure if, for each f ∈ X+, we have dim(f) = dim(X).
Let X 3 F 3 and Y 3 X . If Y + ⊆ X+, we say that Y is a principal subcomplex

of X and we write Y 4 X . Observe that, for any X 3 F 3, ∅ 4 X .
If X 3 F 3 and if X is a pure 3-complex, we also write X 4 F 3.
Let X 3 F 3 and let Y 3 X . We set X 5 Y = [X+ \ Y +]−. The set X 5 Y is

a complex which is the detachment of Y from X .

2 Simple Cells

Intuitively a cell f̂ of a complex X is simple if its removal from X “does not
change the topology of X”. In this section we propose a definition of a sim-
ple cell based on the operation of collapse [19], which is a discrete analogue of
a continuous deformation (a homotopy). Note that this definition is a rather
general one, in particular, it may be directly extended to n-dimensional cubical
complexes [15].

Let X be a complex in F 3 and let f ∈ X+. The face f is a border face for X
if there exists one face g ∈ f̂∗ such that f is the only face of X which contains g.
Such a face g is said to be free for X and the pair (f, g) is said to be a free pair
for X . We say that f ∈ X+ is an interior face for X if f is not a border face.

Let X be a complex, and let (f, g) be a free pair for X . The complex X \{f, g}
is an elementary collapse of X .
Let X , Y be two complexes. We say that X collapses onto Y if there exists a
collapse sequence from X to Y , i.e., a sequence of complexes 〈X0, ..., Xl〉 such
that X0 = X , Xl = Y , and Xi is an elementary collapse of Xi−1, i = 1, ..., l. If
X collapses onto Y , we also say that Y is a retraction of X . See illustration Fig.
2 (a), (b), (c), (d).
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We give now a definition of a simple point, it may be seen as a discrete ana-
logue of the one given by T.Y. Kong in [20] which lies on continuous deformations
in the n-dimensional Euclidean space.

Definition 1. Let X 3 F 3. Let f ∈ X+.
We say that f̂ and f are simple for X if X collapses onto X 5 f̂ .

The notion of attachment, as introduced by T.Y. Kong [13, 20], leads to a local
characterization of simple cells.

Definition 2. Let X 3 F 3 and let f ∈ X+. The attachment of f̂ for X is the
complex Attach(f̂ , X) = f̂∗ ∩ [X 5 f̂ ].

In other words, a face g is in Attach(f̂ , X) if g is in f̂∗ and if g is a (proper) face
of a principal face h distinct from f .

The following proposition is an easy consequence of the above definitions.

Proposition 3. Let X 3 F 3, and let f ∈ X+.
The cell f̂ is simple for X if and only if f̂ collapses onto Attach(f̂ , X).

The attachment of a 3-face f of a complex X is highlighted Fig. 2 (f) and X 5 f̂
is depicted in (e). It may be seen that f is not simple: there is no collapse
sequence from X (a) to X 5 f̂ (e). On the other hand the faces g, h, and i are
simple.

3 Critical Kernels

Let X be a complex in F 3. We observe that, if we remove simultaneously simple
cells from X , we may obtain a set Y such that X does not collapse onto Y . In
other words, if we remove simple cells in parallel, we may “change the topology”
of the original object X . Thus, it is not possible to use directly the notion of
simple cell for thinning discrete objects in a symmetrical manner.

In this section, we introduce a framework for thinning in parallel discrete
objects with the warranty that we do not alter the topology of these objects.
This method may be extended for complexes of arbitrary dimension [15]. As far
as we know, this is the first method which allows to thin arbitrary complexes in
a symmetric way.

This method is based solely on three notions, the notion of an essential face
which allows to define the core of a face, and the notion of a critical face.

Definition 4. Let X 3 F 3 and let f ∈ X . We say that f is an essential face
for X if f is precisely the intersection of all principal faces of X which contain
f , i.e., if f = ∩{g ∈ X+ | f ⊆ g}. We denote by Ess(X) the set composed of all
essential faces of X . If f is an essential face for X , we say that f̂ is an essential
cell for X .

Observe that a principal face for X is necessarily an essential face for X , i.e.,
X+ ⊆ Ess(X). The essential and non-principal faces of the complex X of Fig.
2 (a) are highlighted Fig. 2 (g).
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(a) (b)

(c) (d) (e)

Fig. 3. (a): A complex X0 in F 3. (b): The critical faces of X0 are highlighted. (c)
The complex X1 = Critic(X0). (d): The critical faces of X1 are highlighted. (e) The
complex X2 = Critic(X1): X2 is such that Critic(X2) = X2.

Definition 5. Let X 3 F 3 and let f ∈ Ess(X). The core of f̂ for X is the
complex, denoted by Core(f̂ , X), which is the union of all essential cells for X
which are in f̂∗, i.e., Core(f̂ , X) = ∪{ĝ |g ∈ Ess(X) ∩ f̂∗}.

The preceding definition may be seen as a generalization of the notion of attach-
ment for arbitrary essential cells (not necessarily principal).

Proposition 6. Let X 3 F 3 and let f ∈ X+. The attachment of f̂ for X is
precisely the core of f̂ for X, i.e, we have Attach(f̂ , X) = Core(f̂ , X).

Definition 7. Let X 3 F 3 and let f ∈ X . We say that f and f̂ are regular for
X if f ∈ Ess(X) and if f̂ collapses onto Core(f̂ , X). We say that f and f̂ are
critical for X if f ∈ Ess(X) and if f is not regular for X .

We set Critic(X) = ∪{f̂ | f is critical for X}, Critic(X) is the critical kernel
of X . A face f in X is a maximal critical face, or an M-critical face for X , if f
is a principal face of Critic(X).

Again, the preceding definition of a regular cell is a generalization of the notion
of a simple cell. As a corollary of Prop. 6, a principal face of a complex X 3 F 3

is regular for X if and only if is simple for X .
The following theorem holds for complexes of arbitrary dimensions (see [15]).

This is our basic result in this framework. See Fig. 3 where the successive critical
kernels of a complex are depicted.

Theorem 8. Let X 3 F 3. The critical kernel of X is a retraction of X. Fur-
thermore, if Y 4 X is such that Y contains the critical kernel of X, then Y is
a retraction of X.
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4 Crucial Kernels

If X is a complex in F 3, the subcomplex Critic(X) is not necessarily a principal
subcomplex of X as illustrated Fig. 3. In this paper, we investigate thinning
algorithms which take as input a pure 3-complex and which return a principal
subcomplex of the input (thus also a pure 3-complex). For that purpose, we
propose some notions which allow to recover a principal subcomplex Y of a pure
complex X , with the constraint that Y is a retraction of X .

Definition 9. Let X 4 F 3, and let f ∈ X+ be a 3-face for X .
We say that f and f̂ are 3-crucial for X if f is critical for X . We say that f

and f̂ are k-crucial for X , k = 2, 1, 0, if f̂∗ contains a k-face which is M-critical
for X and which is not a proper face of an l-crucial face, l > k. We say that f
and f̂ are crucial for X if f is k-crucial for some k ∈ [0, 1, 2, 3].

Thus, a 3-face f is 2-crucial iff it contains a 2-face which is M-critical. A 3-face f
is 1-crucial iff it contains a 1-face which is M-critical and which is not contained
in a 2-crucial face. A 3-face f is 0-crucial iff it contains a 0-face which is M-
critical and which is not contained in a 2- or 1-crucial face. Observe that a face
f which is k-crucial cannot be l-crucial, with l �= k.

In Fig. 4 (a), the M-critical faces of a complex are highlighted (see also Fig. 3
(b) where the critical faces of the same complex are given). The 3-face h is not
crucial: it contains a 0-face which is critical but not M-critical. The 3-face f is
3-crucial, the 3-face g is 2-crucial. The 3-face i is not crucial: it contains a 1-face
which is M-critical but which is a face of the 2-crucial face g.

Let X 4 F 3. We define the crucial kernel of X as the set Cruc(X) which is
the union of all cells of X which are crucial for X . By the very definition of a
crucial face, Cruc(X) contains the critical kernel of X . Thus, by Prop. 8, the
crucial kernel of X is a retraction of X .

In Fig. 4 (a), a complex X0 and its M-critical faces are depicted (5 faces). The
complex X1 = Cruc(X0) is given in (b) also with its M-critical faces (only one
2-face). Finally, in (c), the complex X2 = Cruc(X1) contains also one M-critical
face, and it may be seen that X2 = Cruc(X2).

For thinning objects, we often want to keep other faces than the ones which
are crucial. That is why we introduce the following definition in order to gen-
eralize the previous notions. Intuitively, the set K corresponds to a set which
is preserved by a thinning algorithm (like extremities of curves, if we want to
obtain a curvilinear skeleton).

Definition 10. Let X 4 F 3, let K ⊆ X+ be a set composed of 3-faces of X ,
and let f ∈ X+ be a 3-face of X .

We say that f and f̂ are 3-crucial for 〈X,K〉 if f is critical for X or if f is
in K. We say that f and f̂ are k-crucial for 〈X,K〉, k = 2, 1, 0, if f̂∗ contains a
k-face g which is M-critical for X and which is not a proper face of an l-crucial
face for 〈X,K〉, with l > k. The set of 3-faces of X which contain such a face g
is a k-crucial clique for 〈X,K〉.
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Fig. 4. (a): A complex X0 and its M-critical faces (highlighted). (b): X1 = Cruc(X0)
and its M-critical faces. (c): The complex X2 = Cruc(X1) contains only one M-critical
face (highlighted), and X2 = Cruc(X2).

We say that f and f̂ are crucial for 〈X,K〉 if, for some k ∈ [0, 1, 2, 3], f is
k-crucial for 〈X,K〉. We say that a set of 3-faces is a crucial clique for 〈X,K〉
if, for some k ∈ [0, 1, 2], this set is a a k-crucial clique for 〈X,K〉.

Definition 11. Let X 4 F 3, and let K ⊆ X+ be a set composed of 3-faces of
X . The crucial kernel of X constrained by K is the set which is the union of all
crucial cells for 〈X,K〉.

From the previous definitions and from Th. 8, we immediately deduce the follow-
ing proposition which ensures that any constrained crucial kernel of an object
preserves the topology of this object.

Proposition 12. Let X 4 Fn
2 , and let K ⊆ X+ be a set composed of 3-faces of

X. The crucial kernel of X constrained by K is a retraction of X.

5 Crucial Voxels in the Cubic Grid

We introduce the following definitions in order to establish a link between pure
complexes in F 3 and objects in the cubic grid as often considered in image
processing.

We define the cubic grid as the set G3 composed of all 3-faces of F 3. A 3-face
of G3 is also called a voxel. In the sequel, we consider only finite subsets of G3.

For any pure complex in F 3, i.e., for any X 4 F 3, we associate the subset
X+ of G3. In return, to each finite subset S of G3, we associate the complex
S− of F 3. This will be our basic methodology to “interpret” a set of voxels. In
particular, all definitions given for a principal face in X+ have their counterparts
for a voxel in G3. For example if S ⊆ G3 and p ∈ S, we will say that the voxel
p is simple for S if p is simple for S−. Border, interior, (k-) critical, and (k-)
crucial voxels are defined in the same manner.

Some local characterizations of simple voxels in the cubic grid have been
proposed [21,22,23], these characterizations may be used for detecting 3-crucial
voxels (i.e., non-simple voxels). We give now some simple local conditions, also
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Fig. 5. Masks for 2-crucial (M2), 1-crucial (M1), and 0-crucial (M0) voxels, M ′
2 is a

configuration derived from M2. Here, a voxel is represented by a point.

in the cubic grid, for k-crucial voxels, with k = 2, 1, 0. We express these local
conditions by a set of masks, as in most papers related to parallel thinning in the
digital topology framework. These masks M2, M1, M0 are given Fig. 5. For each
of these masks, we also consider all the masks obtained from them by applying
π/2 rotations. We get 7 masks (3 for M2, 3 for M1, and 1 for M0). The 2D
configuration M ′

2, which appears also in Fig. 5, is derived from M2 as explained
in the following. Different characterizations for 2D simple configurations may be
found in [17], they may be used for checking condition iii) for M ′

2. See also Fig.
6 for an illustration of the use of mask M2.

Definition 13. Let S ⊆ G3, and let M be a set of voxels of S.
1) The set M matches the mask M2 if:

i) the voxels in M are simple for S; and
ii) M = {A,B}; and
iii) the 2D configuration M ′

2 obtained by setting R ∈M ′
2 and setting Qi ∈M ′

2 if
{Ci, Di}∩S �= ∅, with i ∈ [0, ..., 7], is such that R is non-simple in the 2D sense.

2) The set M matches the mask M1 if:
i) the voxels in M are simple and not 2-crucial for S; and
ii) M = {E,F,G,H} ∩ S; and
iii) the set {E,G} or the set {F,H} (or both) is included in M ; and
iv) we have either [ U ∩ S �= ∅ and V ∩ S �= ∅ ] or [ U ∩ S = ∅ and V ∩ S = ∅ ],
with U = {A,B,C,D} and V = {I, J,K,L}.

3) The set M matches the mask M0 if:
i) the voxels in M are simple and neither 2-crucial nor 1-crucial for S; and
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Fig. 6. (a): The subset S of G3 which corresponds to the complex X0 of Fig. 4 (a).
Each voxel of S is represented by a black disk. (b): The mask M2, with A, B matching
voxels g, j of S. (c): The corresponding configuration of mask M ′

2. The element R is
not simple in the 2D sense, thus the voxels g, j of S constitute a 2-crucial clique.

ii) M = {A,B,C,D,E, F,G,H} ∩ S; and
iii) at least one of the sets {A,G}, {B,H}, {C,E}, {D,F} is a subset of M .

Proposition 14. Let S ⊆ G3, K ⊆ S, and let M be a set of voxels in S \K.
i) M is a 2-crucial clique for 〈X,K〉 if and only if M matches the mask M2;
ii) M is a 1-crucial clique for 〈X,K〉 if and only if M matches the mask M1;
iii) M is a 0-crucial clique for 〈X,K〉 if and only if M matches the mask M0.

Observe that a voxel is k-crucial iff it belongs to a k-crucial clique, with k ∈
[0, 1, 2]. Thus, Prop. 14 also provides a method for detecting 0-, 1-, and 2-crucial
voxels.

6 A Generic Thinning Scheme

We define the following notion of skeleton which is constrained to include a given
set K. We then give an algorithm for computing this skeleton, this algorithm
may be viewed as a generic thinning scheme where different kinds of skeletons
may be obtained by considering different sets K. At last, we give two examples
of skeletons derived from this scheme: one is a minimal skeleton, the other is
constrained to contain some of the centers of the maximal balls included in the
object. All these skeletons are obtained by a sequence of symmetric operators,
thus they are invariant by π/2 rotations.

Definition 15. Let S ⊆ G3 and let K ⊆ S. We denote by Cruc(S,K) the set
composed of all voxels which are crucial for 〈S,K〉.
Let 〈S0, S1, ..., Sk〉 be the unique sequence such that S0 = S, Sk = Cruc(Sk,K)
and Si = Cruc(Si−1,K), i = 1, ..., k. The set Sk is the K-skeleton of S con-
strained by K.

By Prop. 12, the K-skeleton of a set S constrained by a set K is a retraction
of S. By construction, the following algorithm computes the K-skeleton of S
constrained by K. It consists in the repetition of 5 steps, each step may be done
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(a) (b)

Fig. 7. Two objects in G3 and their minimal K-skeleton (in red)

in parallel, with the local characterization of critical (non-simple) voxels (step
02), and with the characterizations given Prop. 14 (steps 03, 04, 05).

SK3 (Input: S ⊆ G3, K ⊆ S; Output: S)
01. Repeat Until Stability
02. R3 := set of voxels which are critical for S or which are in K
03. R2 := set of voxels which belong to a 2-crucial clique included in S \R3

04. R1 := set of voxels which belong to a 1-crucial clique included in S \ (R3 ∪R2)
05. R0 := set of voxels which belong to a 0-crucial clique included in S\(R3∪R2∪R1)
06. S := R3 ∪ R2 ∪R1 ∪R0

A minimal skeleton of an object may be obtained by imposing no constraining
set. Let S ⊆ G3. The minimal K-skeleton of S is defined as the K-skeleton of S
constrained by K, with K = ∅.

Two examples of minimal K-skeletons are given Fig. 7. As far as we know,
SK3 is the first thinning scheme which allows to compute such skeletons which
are invariant by π/2 rotations. Furthermore, the result of SK3 is an object which
is well-defined. To our best knowledge, this is also the first attempt to give a
precise definition of such a notion.

The quality of a skeleton is often assessed by the fact that it contains, ap-
proximately or completely, the medial axis of the shape.
Let S ⊆ G3. We consider the balls induced by the city-block distance. A ball is
maximal for S if it is included in S and if it is not a proper subset of another ball
included in S. We denote by Kr the set composed of the centers of all maximal
balls which have a radius greater than or equal to r. The medial axis of S is
precisely the set K0. In [24], A. Rosenfeld and J.L. Pfaltz have proved that, for
the city-block and the chessboard distance, the medial axis of a shape can be ob-
tained by detecting the local maxima of its distance transform. This provides an
algorithm for computing any set Kr. In Fig. 8, different K-skeletons constrained



590 G. Bertrand and M. Couprie

(a) (b)

(c) (d)

Fig. 8. (a): A subset S of G3 and its K-skeleton constrained by K3. (b): A subset T of
G3 and its K-skeleton constrained by K5. (c): The K-skeleton of T constrained by K7.
(d): The K-skeleton of T constrained by K9.

by Kr are given. As far as we know, this is the first thinning method which
allows to obtain such skeletons constrained by a set and which are invariant by
π/2 rotations.

References

1. Rutovitz, D.: Pattern recognition. Journal of the Royal Statistical Society 129
(1966) 504–530

2. Tsao, Y., Fu, K.: A parallel thinning algorithm for 3d pictures. CGIP 17(4) (1981)
315–331



A New 3D Parallel Thinning Scheme Based on Critical Kernels 591

3. Saha, P., Chaudhuri, B., Dutta, D., Majumder, D.: A new shape-preserving parallel
thinning algorithm for 3d digital images. PR 30(12) (1997) 1939–1955

4. Bertrand, G.: A parallel thinning algorithm for medial surfaces. PRL 16 (1995)
979–986

5. Gong, W., Bertrand, G.: A simple parallel 3d thinning algorithm. In: ICPR90.
(1990) 188–190

6. Ma, C.M.: A 3d fully parallel thinning algorithm for generating medial faces.
Pattern Recogn. Lett. 16(1) (1995) 83–87 FILE=ma1995.pdf.

7. Manzanera, A., Bernard, T., Prêteux, F., Longuet, B.: N-dimensional skeletoniza-
tion: a unified mathematical framework. Journal of Electronic Imaging 11(1)
(2002) 25–37

8. Ma, C.M., Sonka, M.: A 3d fully parallel thinning algorithm and its applications.
Computer Vision and Image Understanding 64(3) (1996) 420–433
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Abstract. This paper investigates binary homotopic 2D thinning in
view of its independence of the order of processing image pixels. Pixel
removal conditions are provided leading to an order independent thin-
ning. They are introduced for various types of connectivity. Two kinds
of pixels to be removed are considered: simple and b-simple. Use of each
of those pixels yields to different types of order independent thinnings:
homotopic marking and local-SKIZ.

1 Introduction

A widely used approach for computing discrete skeletons consists in iteratively
thinning the input pattern with a series of homotopic structuring elements until
no more pixels can be removed. Homotopic marking is obtained when removable
pixels are those which can be removed without modifying the homotopy of the
input image. These removable pixels are called simple pixels. Another type of
thinning result is obtained when the notion of homotopy that is the basis of the
definition of simple pixels, is replaced by the notion of background homotopy,
i.e., homotopy of connected components of the background. This notion leads
to a different kind of simple pixels which we call the b-simple pixels. Thinning
with b-simple pixels leads to kind of a skeleton which resembles the skeleton of
influence zones of the complement of the input image, but is based on local pixel
characterisation. It will be called in this paper local-SKIZ. The main develop-
ments of the paper refer to the order independence of the thinning. When this
property is satisfied, the computed skeleton is the same no matter the order in
which the image pixels are processed. Unfortunately, most algorithms produce
different results for forward and backward scans of the image pixels. This also
occurs when computing the skeleton of an object and its mirrored version or
rotation by a multiple of 90 degrees. Recently [1, 2], the concept of order in-
dependent homotopic thinning was introduced. It was also shown that it leads
to order independent skeletonisation when iterated until the algorithm reaches
stability. In this paper, we introduce a general framework for order indepen-
dent thinning leading to various types of result. Order independence is achieved
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by introducing a supplementary condition that a removable pixel must meet,
and thus guarantees its removal whatever the scanning order. These conditions
refer to a neighborhood of removable pixels. All the developments described
in this paper are presented for both the 8-foreground with 4-background and
4-foreground with 8-background connectivities. A case when removable pixels
must be simultaneously simple (resp. b-simple) for both connectivities is also
described.

The paper is organised as follows. In section 2, background notions are pre-
sented. Section 3 looks at the order independence. Section 4 illustrates the re-
sults. Finally, the conclusions are given in section 5.

2 Preliminaries

2.1 Adjacency, Connectivity, and Homotopy

A binary image f is represented as the foreground (set) F = {p : f(p) = 1}
consisting of foreground pixels. The complement of F , referred to as background
(set), is defined as F = D \ F = {p : f(p) = 0} and consists of background
pixels1. D is referred to as the definition domain of the image f .

Two pixels p, q ∈ D can be either 4- or 8-adjacent. If, moreover, they have
the same value, we say that they are 4- or 8-connected respectively. The k-
neighborhood of a pixel p, denoted by Nk(p), is the set of all pixels q such that
q and p are k-adjacent. Let N 0

k (p) = Nk(p) ∩ F and N 1
k (p) = Nk(p) ∩ F =

Nk(p) \ N 0
k (p). Let also CCk(X) be the set of all k-connected components of a

set X and |CCk(X)| be the number of its elements (also called the cardinal num-
ber). In order to avoid the well-known connectivity paradoxes (see e.g. [3]) two
combinations of connectivity are possible for the square grid: G = 8 (and G′ = 4)
or G = 4 (and G′ = 8). Homotopy describes the adjacency relations between the
elements of CCG(F ) and CCG′(F ). Two sets are said to be homotopic when they
have the same homotopy tree. In this paper, we are interested in characterising
homotopy between a set and an arbitrary thinning of this set so that we can
restrict our attention to the notion of homotopy between ordered sets or func-
tions due to the anti-extensivity of the thinning transformation. In this context,
it was shown in [4] that two ordered sets F and G (in the sense of set inclusion)
are homotopic if and only if there exists a one to one correspondence between
the connected components of these sets as well as those of their background.
We propose therefore to split the notion of homotopy between ordered sets into
background and foreground homotopy:

Definition 1. Background and foreground homotopy. Let F and G be
two ordered sets for the inclusion relationship, then F is background homotopic
(resp. foreground homotopic) to G if and only if there exists a one to one cor-
respondence (i.e., bijective mapping) between the elements of CCG(F ) and those
of CCG(G) (resp. between CCG′(F ) and CCG′(G)).
1 Both kinds of notation are used in this paper to refer to binary images. An ’image

F ’ refers to the set of foreground pixels, while an ’image f ’ refers to the mapping
that generates F and F .
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Definition 2. Homotopy. Two ordered sets are homotopic if and only if they
are both background and foreground homotopic.

2.2 Pixel Configurations

Topological numbers were introduced in [5] to characterise simple pixels. They
are defined as: Tk(p) is the number of k-connected components of the 8-adjacent
foreground neighbours of p that are k-adjacent to p. Tk(p) is obtained by replac-
ing foreground with background in the previous definition. We can define them
also as: T4(p) = |{S ∈ CC4(N 1

8 (p)) : S ∩ N 1
4 (p) �= ∅}|, T8(p) = |CC8(N 1

8 (p))|,
T4(p) = |{S ∈ CC4(N 0

8 (p)) : S ∩ N 0
4 (p) �= ∅}|, T8(p) = |CC8(N 0

8 (p))|. Using the
topological numbers we can define the basic configurations of foreground pixels
as follows: TG′(p) = 0 for interior (inner) pixels, (TG′(p) > 0 ∧ TG(p) > 0) for
boundary pixels, and TG(p) = 0 for isolated pixels. A pixel p ∈ F is simple [6,3]
if and only if its removal from the image does not change the homotopy of F
(according to Definition 2). If p is simple, F and F \ {p} are homotopic, as well
as F and F ∪ {p}. It was proved in [6, 3] that the simpleness of a pixel can
be determined by analysing its 3×3 neighborhood. A definition of simple pixels
based on topological numbers is as follows:

Definition 3. Simple pixel [5]. A pixel p is simple ⇔ TG(p) = TG′(p) = 1.

If p ∈ F the above definition is equivalent to:

Definition 4. Simple pixel [6]. A pixel p ∈ F is simple if and only if it
satisfies the following three conditions:

1. N 1
G (p) �= ∅, 2. N 0

G′(p) �= ∅, 3. ∃S ∈ CCG(N 1
8 (p)) such that N 1

G (p) ⊆ S.

The simpleness property depends on the connectivity used for foreground and
background. In [7], another type of simple pixels was considered: {4,8}-simple,
which are simple according to both G = 4,G′ = 8 and G = 8,G′ = 4. This case
will be referred to later in the text as G = {4, 8} and can be checked according
to the following proposition2.

Proposition 1. A pixel p is {4,8}-simple if and only if T4(p) = T4(p) = 1.

When substituting homotopy with background homotopy in the definition of a
simple pixel we get the b-simple (’b’ refers to the background homotopy) pixels:
Definition 5. b-simple pixel. A pixel p is b-simple if and only if TG′(p) = 1.

The relationship between b-simple3 and simple pixels is expressed by the follow-
ing proposition:
Proposition 2. b-simple pixel. A pixel p is b-simple if and only if one of
the following is true: 1. p is simple or 2. p is isolated.

Finally, we define a {4,8}-b-simple pixel as a pixel which is b-simple for both
G = 4 and G = 8.
2 Proofs of all propositions are presented in the appendix.
3 By analogy, a f-simple pixels can be defined as those p for which TG(p) = 1. Simple

pixel can be thus defined as a pixel which is both b-simple and f-simple. The f-
simpleness is however out of scope of this paper.



Order Independence in Binary 2D Homotopic Thinning 595

2.3 Thinning

In the simplest case, during the thinning process, all simple pixels are iteratively
removed. This is usually done in two-stage iterative process. During the first
stage the simple pixels are detected while during the second one they are re-
moved. The removal of a simple pixel, by definition, preserves the homotopy of
the input image F . This type of thinning is called a homotopic marking [8,2]. It
reduces binary objects to single pixels or to loops surrounding the holes inside the
figures (preserving the homotopy). Homotopic marking can be thus considered
as a skeleton satisfying the topological constraints (preserving the homotopy)
but not the geometrical ones [7]4.

The replacement of the simple pixels by the b-simple pixels in the thinning
procedure leads to a (non-homotopic) skeleton preserving only those connected
components of the homotopic marking which are not simply connected. Contrary
to the previous method, in this one connected components without holes disap-
pear. That is this type of a skeleton resembles the skeleton of influence zones
(SKIZ) of the complement of the input image. Comparing to the distance-based
SKIZ the result of thinning with b-simple pixels contains some lines which does
not separate different influence zones, but are located inside the same one. This
is due to the fact that the actual SKIZ cannot be obtained using local char-
acterisation of pixel neighborhood [9]. To stress this difference the thinning by
removal of b-simple pixels will be called local-SKIZ (SKIZ based on local pixel
characterisation)5.

3 Order Independence

When the property of order independence is satisfied, the result of thinning is
the same no matter the order in which the image pixels were processed. Let us
assume a generic two stage iterative thinning scheme. In the first (detection)
phase, the image is scanned to find all simple pixels. In the second (removal)
phase the values of the simple pixels should be removed. However, all cannot be
removed at once because modification of one pixel can result in the neighbour
becoming non-simple. A solution to this problem consists in finding a supple-
mentary characterisation of the simple pixels. It is able to detect in the detection
phase, only those pixels which can be removed no matter what scanning order
is considered. These pixels are called order independent simple pixels. The order
4 In order to get a skeleton that better characterises the input shape, an anchored

skeletonisation can be performed [1,2]. It allows to pre-define a set of pixels which,
by definition, cannot be removed during the thinning process.

5 In order to get the actual SKIZ (which - contrary to local-SKIZ - is not b-homotopic
to the input image) one needs to label the connected components of the background
in advance and add one additional test when testing the b-simpleness. According
to this test, if a non-b-simple pixel has among its background neighbours all pixels
with the same label it can be removed during the thinning process. This approach
requires also that when a pixel is removed, the closest background label must be
propagated.
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independence should be then incorporated into this generic scheme of thinning.
In view of this scheme, order independence refers to the removal phase.

A separate subject of research available in the literature is parallel thin-
ning [10]. Most of these studies aim at defining for binary images a minimal
set of pixels which can be removed at once (in parallel) without modifying the
homotopy of the original image [4,7,11]. The parallel approach itself is not suffi-
cient to get a fully order independent algorithm, which requires also a two-stage
scheme which guarantees that pixels are removed iteratively ’layer’ by ’layer’. In
an order independent algorithm, when processing in a given iteration, all pixels
that are flagged as removable can be removed in parallel. In [1, 2] the concept
of order independent homotopic thinning was introduced, which leads to order
independent skeletonisation when iterated until the algorithm reaches stability.

3.1 Parallel Removal of Pixels

Useful analysis of the set of simple binary pixels that can be removed in parallel
has been proposed by Ronse [7]. This approach aims at finding the condition
which a set of pixels has to meet to be deletable, i.e., to be able to be removed
without changing the homotopy of the image. According to the results presented
in [7] such a set cannot contain a minimal non deletable set. This set is defined
as a minimal set of simple pixels which cannot be modified in parallel:

Proposition 3. Minimal non deletable set [7] (for proof see [7])
A set U ∈ F is a minimal non deletable set if and only if one of the following
conditions holds:

1. U consists of an isolated pixel, 2. U is a pair of 8-adjacent simple pixels which
is not deletable, 3. for G = 8, U is a triple or quadruple of pairwise 8-adjacent
simple pixels, and U is an 8-connected component of F .

Proposition 3 allows us to define a set of conditions that a pixel must meet to
be modified without influencing the simpleness of its neighbours. It is based on
the assumption that such a pixel cannot belong to a minimal non deletable set.
We can thus define an order independent simple pixel:

Definition 6. Order independent simple pixel. A pixel p is order inde-
pendent simple if and only if the three following conditions are met:

1. p is simple, 2. p does not belong to any non deletable pair of 8-adjacent simple
pixels, 3. for G = 8, p belongs neither to an isolated (i.e., surrounded by back-
ground pixels) triple nor to an isolated quadruple of pairwise 8-adjacent simple
pixels.

Comparing Definition 6 with the simpleness test (according to Definitions 4
or 3), two more conditions must be checked when analysing the given pixel: the
deletability of a pair of simple pixels as well as whether they are part of the
triple and quadruple configurations. Rules for finding these configurations are
described further in this paper.
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G = 8 G = 4 G = {4, 8} G = 8 G = 4 G = {4, 8}
(a) (b)

Fig. 1. An example of binary order independent and order dependent simple (a) and
b-simple pixels (b) in different types of connectivity. Dots represent background, digits
stand for: ’1’ - a non-simple (resp. non-b-simple) foreground pixel, ’2’ - an independent
simple (resp. b-simple) pixel, ’3’ - a dependent (resp. b-simple) simple pixel. Underlined
pixels belong to the final thinning result.

In case of b-simpleness, a similar reasoning to the one described above leads
to the formulation of the conditions a pixel must meet to be order independent
b-simple. The difference between simpleness and b-simpleness relates to the fact
that in the latter case we should also consider the configurations of isolated
pixels. In the local-SKIZ transformation case, isolated pixels are removable and
therefore removal of all configurations leading to an isolated pixel are allowed.
Such configurations are possible based on the third item of Proposition 3: isolated
triple and quadruple of simple pixels. Since they are isolated and have no ’holes’
they do not belong to the local-SKIZ. For the same reason, an isolated pair
of simple pixels can be removed. Consequently, the following definition can be
formulated:

Definition 7. Order independent b-simple pixel. A pixel p is order inde-
pendent b-simple if and only if the following conditions are met:
1. p is b-simple, 2. p does not belong to any deletable pair of b-simple pixels,
which is not an isolated connected component.

The foreground image pixels can be classified into the following three classes:
non-simple (resp. non-b-simple) pixels, dependent simple (resp. b-simple) pixels,
and order independent simple (resp. b-simple) pixels. Only the pixels belonging
to the third group can be removed by an order independent thinning algorithm.
In order to determine whether a pixel is independent some additional tests must
be performed in addition to the simpleness (resp. b-simpleness) tests. All the
necessary tests are described below. Figure 3.1 shows a binary test image and
the classification of its pixels.

3.2 A Pair of Simple and b-Simple Neighbours

First, let us consider the case when a simple pixel (resp. b-simple pixel) is ad-
jacent to only one other simple (resp. b-simple) pixel. These pixels are pairwise
independent if removal of one of them will not influence the removability of the
second. The following proposition holds for two adjacent simple pixels.

Proposition 4. Order independent pair of simple pixels. Let p and q
be two 8-adjacent simple pixels. Let G be the foreground connectivity. p is order
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independent of q if and only if: |CC8(S ∩N8(q))| = 1, where S = N 0
8 (p) if G = 4

and S = N 1
8 (p) if G = 8.

Contrary to the simple pixel case, in the case of b-simple pixels, an isolated pixel
can be removed. Thus we have the following proposition:

Proposition 5. Order independent pair of b-simple pixels. Let p and q
be two 8-adjacent b-simple pixels. Let G be the foreground connectivity. Pixel p
is order independent of q if and only if |CC8(S ∩ N8(q))| = 1 or |CC8(N 1

8 (p) ∩
N8(q))| = 0, where S = N 0

8 (p) if G = 4 and S = N 1
8 (p) if G = 8.

When simple pixels for G = {4, 8} are investigated, p should be independent
from q for G = 4 and for G = 8 simultaneously.

∗0q ∗0q ∗1q ∗00∗ ∗01∗ ∗10∗ ∗11∗ ∗01∗ ∗01∗ ∗10∗ ∗01∗ ∗10∗ ∗11∗
∗p0 ∗p1 ∗p1 ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗ ∗pq∗
∗∗∗ ∗∗∗ ∗∗∗ ∗00∗ ∗00∗ ∗00∗ ∗00∗ ∗10∗ ∗01∗ ∗10∗ ∗11∗ ∗11∗ ∗11∗
a b c d e f g h i j k l m

Fig. 2. Configurations of common 8-neighbours of two 8-adjacent pixels p and q, ’∗’
stands for any pixel value

Figure 2 shows generic configurations of intersecting neighbourhood of two
pixels. To get all possible configurations, one should add configurations that
are symmetrical to b,e,f,g,h,k, and l with respect to the pq axis, as well as ro-
tations through 90◦,180◦, and 270◦. Configurations of independent pixels from
Fig. 2 according to propositions 4 and 5 are given in table 1. Note that some
configurations do not exist for G = 4 and consequently for G = {4, 8}.

Table 1. Independent configurations from Fig. 2

G = 8 G = 4 G = {4, 8}
independent simple b,c,e,f,g a,b,g,k,l b,g
independent b-simple a,b,c,d,e,f,g a,b,d,g,k,l a,b,d,g

In order to check whether a pixel p is independent simple, we must test its
pairwise independence from all its simple neighbours. If it is independent from
all of its simple neighbours, the second condition of Definition 6 is met and only
the third condition has to be verified. However, according to Definition 7, this
condition does not have to be tested for b-simple pixels.

One of the configurations (marked as c in Fig. 2) requires more attention
when G = 4 and G′ = 8. This is due to the fact that for some configurations of
’∗’-neighbours of p this pixel can be removed, even if it is not independent. This
case is described in detail in the next section.
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3.3 Multiple Simple Neighbours

There are two cases where multiple configurations of simple or b-simple pixels
have to be analysed. The first one refers to the third condition of Definition 6
and concerns the isolated set of pixels for G = 8. The second one refers to the
configuration c from Fig. 2 for G = 4.

0000 000 0000 0000 1000 0000 ∗∗∗∗
0010 010 0110 0110 0110 0p11 ∗rq∗
0100 010 0100 0110 0110 01q1 0ps∗
0000 000 0000 0000 0001 0000 ∗0∗∗
(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Multiple simple neighbours. (a,b) isolated pair. (c) isolated triple. (d) isolated
quadruple (for G = 4 and G = 8). (e) isolated quadruple (for G = 4 only). (f ) example
of configuration where p is dependent of q, but can be removed (G = 4). (g) generic
’edge’ configuration of neighbourhood (G = 4, ’∗’ stands for any pixel values, but such
that r,q,s remain simple).

As far as the first case is concerned, for skeletonisation with G = 8, isolated
triple and quadruple configurations of simple pixels cannot be removed even if
they are independent. This situation is similar to the case of an isolated pair of
pixels as shown in Figs. 3a and 3b, where depending on the order of processing
we can get different thinning results. Fortunately, a pair of simple pixels does not
have to be considered, because such a pair is not pairwise independent and thus it
cannot be removed. However, using pairwise tests, there is no obstacle to remove
triple and quadruple configurations shown in Figs. 3c and 3d because every pixel
belonging to these isolated connected components is independent. But such a re-
moval would be order dependent because different pixel processing orders of the
triple/quadruple result in different isolated pairs of pixels. Consequently, an addi-
tional test is required to protect pixels belonging to isolated triple or quadruple of
simple pixels from being removed. The test can either follow the external bound-
ary of the investigated triples or quadruples of simple pixels and check whether
there are only background pixels or it can check the number of neighbours of
every pixel belonging to it. If every pixel has exactly three (resp. four) foreground
8-neighbours then it means that the triple (resp. quadruple) is isolated.

For the configuration c of Fig. 2, for G = 4, a supplementary analysis must be
performed. This is due to the fact that for some combinations of the neighbour-
hood of the quadruple of pixels (consisting of p,q and two other pixels of value

(a) (b) (c) (d)

Fig. 4. (a–c) Order dependent thinning with scanning orders: (a) from top-left (TL)
to bottom-right (BR), (b) from BL to TR, (c) from BR to TL. (d) shows the order
independent thinning result.
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1 in their common neighbourhood), pixel p is independent from q. An example
of such a case is shown in Fig. 3f. Due to the dependence of p on q, p cannot
be set to 0, based on the previously described conditions, whereas it should be,
because the whole quadruple of simple (resp. b-simple) pixels can be removed
without changing the homotopy of the image. The same result can be obtained
for any other similar configuration when p is an ’edge’ pixel. Therefore such
an ’edge’ configuration must be treated separately. The ’edge’ pixel is charac-
terised by a pixel having three adjacent simple (resp. b-simple) neighbours with
a dependent diagonal neighbour and two independent non-diagonal ones. This
produces the configuration shown in Fig. 3g. Since p is independent of r and
s, the rest of its 4-adjacent neighbours must be background neighbours. Other-
wise p would not be simple. In addition, in case of simple pixels (not b-simple),
the quadruple being considered must be checked whether it is isolated. If so, p
cannot be removed. Owing to that, a similar (to the first case described in this
section) check of the third condition of Definition 6 must be executed. It this case
however, to test whether a quadruple p, q, r, s is isolated must to check whether
only 4-adjacent external neighbours belong to the background. The difference
between non-deletable quadruples for G = 8 and G = 4 is illustrated with the
two examples shown in Fig. 3d and 3e.

4 Results

The fast implementation of the algorithm according to the proposed method is
queue-based. It consists of three phases. In the first one, all order independent
simple (resp. b-simple) pixels are put into the queue. In the second phase, pixels
are removed from the queue and set to 0. In the third phase, all the order-
independent neighbours of the pixels processed in the second phase are put into
the queue. Second and third phases are performed iteratively until there are new
order independent simple pixels to process.

(a) (d)

(b) (e)

(c) (f)

Fig. 5. Results of order independent thinning without anchor pixels. Left column:
homotopic marking (skeleton): (a) G = 8, (b) G = 4, (c) G = {4, 8}. Right column -
local-SKIZ: (d) G = 8, (e) G = 4, (f ) G = {4, 8}.
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The impact of the order of processing image pixels on the result of order-
dependent thinning is shown in Fig. 4 and compared to the order independent re-
sult. Three scanning orders were applied: from top-left to bottom-right (Fig. 4a),
from bottom-left to top-right (Fig. 4b) and finally from bottom-right to top-left
(Fig. 4c). One can observe that every skeleton is different, although everyone
of them was obtained using the successive (’layer’ by ’layer’) removal of simple
pixels. The result of the order independent approach is shown in Fig. 4d. The
same result was obtained for all tested scanning orders. All results have been
obtained for G = 8. The influence of the chosen connectivity on the thinning
result is shown in Fig. 5. The test image was thinned in all three combinations
of connectivity and produced two types of result: homotopic marking and local-
SKIZ. Comparing homotopic marking for G = 8 (Fig. 5a) and G = 4 (Fig. 5b)
we can observe that thin closed objects were not preserved in the latter case.
This is due to the fact that closed paths on the original image are often one-pixel
thick and sometimes two adjacent pixels are diagonal neighbours. In this case
these pixels are not 4-connected; for G = 4 they belong to different connected
components. This is also a reason why local-SKIZ in case of G = 4 (Fig. 5d) is
an empty image - contrary to skeletonisation, the local-SKIZ preserves only the
closed paths, which are not present in this image for G = 4.

5 Conclusions

In this paper, the issue of order independence in thinning was discussed. The
skeletonisation by thinning is based on the successive removal of simple pixels,
which are defined as pixels which can be removed from the image without mod-
ifying its homotopy. We have introduced the notion of the b-simple pixel, which
is defined as a pixel whose removal does not change the background homotopy
of the image. Based on these types of simpleness, different skeletons can be ob-
tained: homotopic marking (for simple pixels) and the skeleton by influence zones
of the complement of an input image (local-SKIZ, for b-simple pixels). The order
independence was also investigated in the paper. When this property is satisfied
by an iterative thinning algorithm, the result does not depend on the order of
processing image pixels. The conditions which are necessary to remove a pixel
whatever is the scanning order was formulated. All kinds of thinning methods
were analysed in the paper for three types of connectivity. Two of them were the
classical 8-foreground with 4-background and 4-foreground with 8-background.
The third type is the one where the removed pixel must be simultaneously simple
(resp. b-simple) for both above mentioned connectivity combinations.
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Appendix - Proofs

The following lemmas will be used to prove the first two propositions.

Lemmas
1. TG(p) = 1⇒ TG′(p) ≤ 1, 2. TG′ (p) = 1⇒ TG(p) ≤ 1,
3. TG(p) = 0⇒ TG′(p) = 1, 4. T4(p) = 1 ⇒ T8(p) ≥ 1 ; T4(p) = 1⇒ T8(p) ≥ 1.

Proof of Lemma1. Let consider first the particular case where G = 4 and
therefore G′ = 8: T4(p) = 1 ⇒ T8(p) ≤ 1. Left side indicates that there can be one
or more 4-conn. components of the foreground, but only one is 4-adjacent to p, so
that all the other ones must be single diagonal neighbours of p. If N 0

8 (p) �= ∅ then
all its pixels must be 8-conn., so T8(p) = 1. Otherwise (if N 0

8 (p) = ∅) T8(p) = 0.
Combining both we get T8(p) ≤ 1. In case of T8(p) = 1 ⇒ T4(p) ≤ 1 and
N 0

4 (p) = ∅ , we get an isolated pixel and T4(p) = 0. In case when N 0
4 (p) �= ∅, it

must contain only one 4-conn. component 4-adjacent to p (i.e., T4 = 1) otherwise
there would be more than one 8-conn. component of p which are 8-adjacent to
p.

Proof of Lemma 2. The proof is similar to that developed for Lemma 1.

Proof of Lemma 3. Left-hand side means that there are no foreground pixels
inNG(p), i.e., p is G-isolated pixel. Consequently there exists exactly one G′-conn.
component of the background.

Proof of Lemma 4. Any 4-conn. component consists of one or more 8-conn.
ones.

Proof of Proposition 1. A {4,8}-simple pixel must be both 4-simple and
8-simple. According to Definition 3 for both combinations of connectivity we
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have four conditions which should be met, and therefore Proposition 1 can be
re-written as follows:
T4(p) = T4(p) = 1⇔ T4(p) = T8(p) = T4(p) = T8(p) = 1.
The implication’⇐’ is obvious. For ’⇒’ we have: T4(p) = 1 ∧ T4(p) = 1 ⇔
⇔ [Lemmas 1, 2] T4(p) = 1 ∧ T8(p) ≤ 1 ∧ T4(p) = 1 ∧ T8(p) ≤ 1 ⇒
⇒ [Lemma 4] T4(p) = 1 ∧ T8(p) = 1 ∧ T4(p) = 1 ∧ T8(p) = 1.

Proof of Proposition 2. Proposition 2 can rewritten using topological num-
bers as follows: T G′(p) = 1 ⇔ (T G′(p) = 1 ∧ TG(p) = 1) ∨ TG(p) = 0. Let
then perform the following transformations: T G′(p) = 1 ⇔ [Lemma 2] T G′(p) =
1∧ TG(p) ≤ 1 ⇔ T G′(p) = 1∧ (TG(p) = 1∨ TG(p) = 0)⇔ (T G′(p) = 1∧ TG(p) =
1)∨(T G′(p) = 1∧TG(p) = 0)⇔ [Lemma 3] (T G′(p) = 1∧TG(p) = 1)∨TG(p) = 0.

Proof of Proposition 4. To analyse precisely dependencies in the neighbour-
hood of such a pair of pixels, we must consider all possible cases. In order to
guarantee that p is order independent of q, we must show, that when q is set
to 0, p remains simple. Let us first consider the case where G = 8 and G′ = 4
(this case was described in [2]). According to Proposition 4, the following config-
urations of pixels from Fig. 2 are order-independent: b,c and e,f,g. All the other
are dependent, which means that once q is modified, p will not be simple any
more. In the proof we will check if the conditions from Definition 4 (referred
to as the 1st, the 2nd and the 3rd conditions) are met for pixel p when q is
modified. Let us consider now all particular cases from Fig. 2. Conf.a,d : Since
p is simple, then according to the 3rd cond. N 1

8 (p) = {q} (otherwise it would
not be conn.). If so, when q is modified, then due to the 1st cond., p will become
non simple and p is dependent on q. Conf.b,e,f and g : When q is removed,
there will still be pixels belonging to N 0

4 (p) and N 1
8 (p). The 1st and the 2nd

cond. will then be met. The 3rd cond. as well since N 1
8 (p) will still be connected

when q is removed. Consequently p is independent of q. Conf.c: According to
the 3rd cond., N 0

4 (p) must consists of at least one pixel. In this configuration,
there must exist a 4-adjacent neighbour of p marked by ’∗’. When q is modified,
there will still be some pixels in N 0

4 (p) and N 1
8 (p) and consequently the 1st and

2nd conditions will be met. Also, N 1
8 (p) will not become disconnected when q is

modified, so that the 3rd cond. is met as well. Pixel p is therefore independent
of q. Conf.h,i,k : When q is modified, N 1

8 (p) will become non-connected and the
3rd cond. will not be met so that p is dependent on q. Conf.j,l,m: According to
the 3rd cond., N 0

4 (p) must consists of at least one pixel. In these configurations
it must be a 4-adjacent neighbour of p marked as ’∗’. The only path connecting
between ’upper-∗’ and ’lower-∗’ pixels in N 1

8 (p) goes through q. If q is modified
then N 1

8 (p) will become non-connected and the 3rd cond. will not be met any
more so that p is dependent on q.

A similar analysis is performed for the second case when G = 4 and G′ = 8.
According to Proposition 4, configurations of pixels a,b,g,k,l from Fig. 2 are
order-independent. In the remaining configurations, when q is modified, p be-
come non-simple. Considering particular cases from Fig. 2 and referring to the
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conditions of Definition 4 we get: Conf.a: Since p is simple, N1
4 (p) consists of

at least one pixel, which must be one (or both) of 4–adjacent ’∗’-pixels. N1
4 (p)

is then located within ∗-pixels, and q anyway does not belong to it. When q
is modified, the 3rd cond. will still be met, as well as the 1st and 2nd condi-
tions. Thus, p is independent of q. Conf.b: Pixel q is a 8–, but not 4–adjacent
neighbour of p, so when q is removed the N1

4 (p) does not change. Also, q does
not belong to 4–path connecting pixels from N1

4 (p). Consequently, when q is
removed the 3rd cond. will still be met. Since the 1st and 2nd cond. are met
as well, p is independent from q. Conf.c,m: Since p is simple there must exist
at least one pixel in N 0

8 (p) and it has to be one of those from N8(p) which are
marked as ’∗’. The only 4–path connecting pixels from N 1

4 (p) goes then through
q. If q is modified, the 3rd cond. will not be met and therefore p is dependent
on q. Conf.d : Since p is simple, then according to the 3rd cond. N 1

8 (p) = {q}
(otherwise 3rd cond. would not be met). If so, when q is removed, then due to
the 1st cond., p is becoming non simple, so p is dependent on q. Conf.e,f,h–j :
these configuration cannot appear on an actual image, since either p (in f,j ) or q
(in e,i) or both (in h) cannot be simple according to the 3rd cond. Conf.g,k,l :
The 1st and 2nd cond. are met no matter the value of q. When q is removed,
also the 3rd cond. will be met, since it does not split the 4-conn. component of
N1

8 (p) due to the fact that q is the last pixel 4-adjacent to p in the 4-path in
N1

8 (p).

Proof of Proposition 5. Comparing the current case with the case of simple
independent pixels, the difference in pixels’ configuration which are independent
is in configurations a and d (from Fig. 2). Contrary to the case of simple pixels,
in the current one both configurations are independent. This is due to the fact
that when q is modified, p becomes isolated. In case of b-simpleness, this is
allowed (thanks to Proposition 2). In all other configurations, the isolated pixel
cannot appear when q is modified, so for those configurations the proof is the
same as the former one.
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Abstract. The notion of skeleton plays a major role in shape analysis.
Some usually desirable characteristics of a skeleton are: sufficient for the
reconstruction of the original object, centered, thin and homotopic. The
Euclidean Medial Axis presents all these characteristics in a continuous
framework. In the discrete case, the Exact Euclidean Medial Axis (MA)
is also sufficient for reconstruction and centered. It no longer preserves
homotopy but it can be combined with a homotopic thinning to generate
homotopic skeletons. The thinness of the MA, however, may be discussed.
In this paper we present the definition of the Exact Euclidean Medial
Axis on Higher Resolution which has the same properties as the MA but
with a better thinness characteristic, against the price of rising resolution.
We provide an efficient algorithm to compute it.

1 Introduction

In 1961, Blum [1] introduced the notion of medial axis or skeleton, which has
since been the subject of numerous theoretical studies and has also proved its
usefulness in practical applications. Consider a subset X (called object) of a
metric space. The medial axis of X is the set composed by the centers of the
maximal balls for X, that is, the balls which are included in X but which are not
included in any other ball included in X.

Although originally defined in the continuous plane, the medial axis can be
defined using the same terms in the n-dimensional discrete grid Zn. The discrete
medial axis is a set of points which is, by nature, centered in the object with
respect to the distance which is used to define the notion of ball. To achieve
a certain degree of rotation invariance, the Euclidean distance between points
of Zn may be used. Nevertheless even in this case, the medial axis has not, in
general, the same nice properties as its continuous counterpart. In particular,
the properties of thinness and homotopy are lost (see for example Figure 1(a),
where the medial axis is “two-pixels thick” in some places, and has not the same
number of connected components as the original object).
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Topological aspects are out of the scope of this paper. Nevertheless, let us
mention that in order to obtain an homotopic skeleton which contains the medial
axis, the use of guided and constrained discrete homotopic transformations has
been proposed by several authors (see e.g. [2, 3, 4]).

On the other hand, the problem of thickness of the skeleton has been
tackled in different ways. Some authors use an asymmetric thinning step
in order to reduce two-pixel thick configurations. But in this case, the re-
sult cannot be considered anymore as centered with respect to the origi-
nal object. Furthermore the property of reconstruction is lost. In order to
get a thin medial axis while preserving centeredness (in the sense of the
so-called 8-distance), G. Bertrand introduced the notion of derived grid [5].
Also, in the study of discrete topology-preserving transformations, several re-
cent works promote the use of the Khalimsky grid or its variations [6, 7,
8, 9, 10]. From a geometrical point of view, the Khalimsky grid Hn asso-
ciated to Zn can be embedded in [12Z]n, that is, by doubling the resolu-
tion of the grid for each dimension. Starting from an initial object in Zn,
a “model” of this object in Hn can be computed and then thinned by a
symmetrical algorithm [9], producing a result which is both centered and
thin.

The drawback of the above approaches lies in their sensitivity to rotations.
Since they implicitly or explicitly rely on the 4- or 8-distance, the skeletons can
be quite different for an object and its rotation by, say, π/4. Our aim in this
paper is to provide a notion of medial axis in a doubled resolution grid, based
on the Euclidean distance, and an efficient algorithm to compute it. In addition
to the Euclidean balls centered on points of Zn, we will also consider the balls
centered on points of [12Z]n (see Figure 1(b)).

(a) (b)

Fig. 1. (a)The object X ⊂ Z2 is depicted in black. The squares mark the points of the
medial axis, based on the Euclidean distance; (b)The medial axis of X in the doubled
resolution grid (squares).

Dealing with the Euclidean distance in Zn is far from easy. Many algorithms
found in the literature only compute approximations of the Euclidean distance
transform (e.g. [11]) or medial axis (e.g. [12]). A simple to implement, opti-
mal algorithm for building exact Euclidean distance maps was proposed only
in 1994 [13, 14, 15], and efficient algorithms to compute exact Euclidean medial
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axes were not known before 2003 [16, 17, 18]. The proofs for our algorithm will
be provided in an extended version of this paper; meanwhile they are available
online in [19].

Let us briefly and informally sketch the proposed method. First, rather than
using the grid [12Z]n, we transform the original object X by doubling the co-
ordinates of all its points and consider the grid Zn as the doubled resolution
grid. This choice leads to simpler notations and proofs. Then, we consider the
set Xh composed of all the points of Zn which are in the neighborhood of a
point of X (scaled). We compute the exact squared Euclidean distance map of
Xh using a linear-time algorithm [13, 14]. Finally, we propose an efficient algo-
rithm to extract the higher resolution medial axis of X from this distance map
in 2D and 3D. This algorithm is based on the same idea as the one proposed
by Rémy and Thiel [16, 18] and is also based on pre-computed lookup tables,
following the approach originally proposed in [20]. The biggest of these tables is
indeed shared by Rémy and Thiel’s method and ours. Obtaining a medial axis
for an object X from a distance map relative to a different object Xh is not
obvious, and we present several intermediate properties to establish this fact. It
should be noted that the naive solution, which consists of doubling the resolu-
tion and using the classical Euclidean medial axis, does not provide a satisfactory
result.

2 Basic Notions

We denote by Z the set of integers, and by N the set of nonnegative integers.
Let X ⊂ Zn, we denote by X the complementary of X. We denote by (y − x)2

the squared Euclidean distance between two points x ∈ Zn and y ∈ Zn.
Let X ⊂ Zn, the squared Euclidean distance transform of X, denoted by D2

X,
associates to each point x ∈ X its squared Euclidean distance to the nearest
point in X: D2

X(x) = min{(y − x)2, y ∈ X}.
Let x be a point in Zn and let R be a positive integer. The set of points y of Zn

such that (y − x)2 = R will be of particular interest in what follows. Each such
point y corresponds to a decomposition of R into a sum of n square integers. We
introduce some notations to deal with square decompositions of integers.

Definition 1 (Square Decomposition). Let n ∈ N, R ∈ N, the n-uple
(r1, r2, ..., rn) ∈ Nn is a square n-decomposition of R if r1 ≥ r2 ≥ . . . ≥ rn ≥ 0
and (r21 + r22 + ... + r2n) = R. We denote by SQDn(R) the set of all square
n-decompositions of R.

There are other decompositions of R into the sum of n squares, satisfying only
the second condition. They may be obtained from the above decompositions by
permutations and sign changes.

We set Dn = {R ∈ N | SQDn(R) �= ∅}, the set of n-decomposable integers.
It is known that for any n ≥ 4, Dn = N (Lagrange’s theorem, see [21], Section
20.5).
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Let R ∈ N, we define:

R = min{δ ∈ Dn |δ ≥ R}; R+ = R+ 1
R = max{δ ∈ Dn |δ ≤ R}; R− = R− 1

Let R ∈ N. Observe that, if R ∈ Dn then R = R = R and (R−)+ = (R+)− =
R. In addition, if R /∈ Dn then R = R+ and R = R−.

Definition 2 (Euclidean Ball). Let x ∈ Zn, R ∈ N, we denote by B≤(x,R)
the Euclidean ball centered in x with (squared) radius R and we denote by
B<(x,R) the Euclidean ball centered in x with (squared) strict radius R, where
B≤(x,R) = {y ∈ Zn, (x− y)2 ≤ R} and B<(x,R) = {y ∈ Zn, (x− y)2 < R}.

Note that B≤(x,R) = B<(x,R+) and B<(x,R) = B≤(x,R−).

Definition 3 (Maximal Ball). Let X ⊂ Zn, x ∈ X, R ∈ N,
a) A ball B<(x,R) ⊆ X is a maximal ball for x in X if it is the largest ball
centered in x and included in X, i.e., ∀R′ ∈ N, B<(x,R) ⊆ B<(x,R′) ⊆ X ⇒
B<(x,R) = B<(x,R′);
b) A ball B<(x,R) ⊆ X is a maximal ball for X if it is not strictly included in
any other ball included in X, i.e., ∀R′ ∈ N, ∀y ∈ X, B<(x,R) ⊆ B<(y,R′) ⊆
X⇒ B<(x,R) = B<(y,R′).

Proposition 1. Let X ⊂ Zn, x ∈ X and R ∈ Dn. The ball B<(x,R) is maximal
for x in X if and only if R = D2

X(x).

Observe that, if B<(x,R), with R ∈ N, is maximal for X, then it is maximal for
x in X. Now let us recall the definition of the medial axis [1].

Definition 4 (Medial Axis). Let X ⊂ Zn, the medial axis of X, denoted by
MA(X), is the set of the centers of all the maximal balls for X.

3 Euclidean Medial Axis in Higher Resolution

The goal of changing resolution is to extract a medial axis of the object X by
considering a new family of Euclidean balls which are not necessarily centered on
points of X. More precisely, we also take into account Euclidean balls centered
on the vertices of a doubled resolution grid. For simplicity, instead of considering
half integers for the coordinates in the higher resolution grid, we begin by dou-
bling coordinates of the original object. Thus Zn is used as the higher resolution
grid, and the points with only even coordinates constitute the support of the
scaled original image.

Definition 5. Let i ∈ {0 . . n}. We define the set Ei ⊂ Zn as the set of elements
in Zn with exactly i even coordinates, more precisely Ei = {(z1, z2, . . . , zn) ∈
Zn,

∑n
j=1((zj + 1) mod 2) = i}.

Let X ⊂ Zn, we write Ei(X) = Ei ∩ X. The family {Ei}i=0..n forms a partition
of Zn, i.e.,

⋃
i=0..nEi = Zn and ∀i, j ∈ {0 . . n}, i �= j ⇒ Ei ∩ Ej = ∅.
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Definition 6 (Neighborhood). Let x ∈ Zn, we define the neighborhood of x
as the set Nn(x) = {y ∈ Zn | maxi=1 .. n |yi − xi| ≤ 1}. Let X ⊂ Zn, we define
the set Nn(X) =

⋃
z∈XNn(z).

Definition 7. Let X ⊂ Zn, we define φ(X) and φ−1(X) by φ(X) = {2z, z ∈ X}
and φ−1(X) = {z, 2z ∈ X}.

Definition 8 (H-transform). Let X ⊂ Zn, the H-transform of X, denoted by
H(X), is defined by H(X) = Nn(φ(X)).

Figure 2 illustrates the H-transform of a set in Z2. Let X ⊂ Zn, observe
that φ(X) ⊆ En, that φ−1(φ(X)) = X and that En(H(X)) = φ(X), hence
φ−1(En(H(X))) = X. The following proposition is elementary.

Proposition 2. The H-transform is increasing, i.e., for each A,B ⊂ Zn, A ⊂
B ⇒ H(A) ⊂ H(B).

Fig. 2. H-transform of a set in Z2. On the left, the set X (in black), and on the right,
the set H(X). Elements of H(X) are marked based on the sets of the partition: E0

(with a dot), E1 (with a vertical or horizontal line) and E2 (with a square).

Definition 9 (En-tight). Let X ⊂ Zn, x ∈ X, R ∈ Dn. The ball B≤(x,R)
is said to be En-tight if there is no n-decomposable integer R′ < R such that
En(B≤(x,R′)) = En(B≤(x,R)).

It can easily be seen that B≤(x,R) is En-tight if and only if there exists y ∈
En(B≤(x,R)) such that (x − y)2 = R. The following proposition will play an
important role to prove the algorithms that we are going to propose. Put briefly,
it says that any En-tight ball B is included in Nn(En(B)).

Proposition 3. Let n ∈ N, n ≤ 3. Let B = B≤(x,R), where x ∈ Zn, R ∈ Dn,
be an En-tight ball. For any z ∈ B, there exists a point w ∈ Nn(z) such that
w ∈ En(B), i.e., B ⊆ Nn(En(B)).

Although this proposition may seem simple, it is in fact false in general but true
at least in dimensions 2 and 3. Furthermore, the counter-example of Figure 3
shows that the condition “En-tight” is indeed necessary for the proposition.
With this proposition, we will be able to justify our algorithms, and the practical
applications are mostly in dimensions 2 and 3.
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Fig. 3. Consider the ball B = B≤(x, 4), surrounded by a square. The points of En are
marked by black squares. We see that B is not En-tight, and that B is not included
in Nn(En(B)) (surrounded by a dashed rectangle). On the other hand, the ball B′ =
B≤(x, 1) (surrounded by a circle) is En-tight and included in Nn(En(B′)).

En-Balls and Higher Resolution Medial Axis
For any x ∈ Zn, R ∈ Dn, the set En(B<(x,R)) is called an En-ball, it can be seen
as an Euclidean ball in En which is centered in any point of Zn (not necessarily in
En). En-balls may have different symmetry characteristics depending on where
they are centered. Some En-balls are illustrated in Figure 4 for Z2.

(a) (b) (c) (d)

Fig. 4. En-balls in Z2. Only points of E2 are represented. (a) En-ball centered in E2,
(b) and (c) En-balls centered in E1, (d) En-ball centered in E0.

Definition 10 (En-maximal balls). Let X ⊂ Zn, x ∈ X, R ∈ N,
a) An En-ball En(B<(x,R)) ⊆ X is an En-maximal ball for x in X if it is the
largest En-ball centered in x and included in X, i.e., ∀R′ ∈ N, En(B<(x,R)) ⊆
En(B<(x,R′)) ⊆ X⇒ En(B<(x,R)) = En(B<(x,R′));
b) An En-ball En(B<(x,R)) ⊆ X is an En-maximal ball for the set X if it is
not strictly included in any other En-ball included in X, i.e., ∀R′ ∈ N, ∀y ∈
Zn, En(B<(x,R)) ⊆ En(B<(y,R′)) ⊆ X⇒ En(B<(x,R)) = En(B<(y,R′)).

Definition 11 (HMA). Let X ⊂ Zn. The higher resolution medial axis
HMA(X) is the set of centers of all En-maximal balls of H(X).

The problem of extracting the HMA is to find the set of En-maximal balls for
the object. Knowing the radii of the En-maximal balls for each point is necessary
to test maximality for the object. Let X ⊂ Zn, Xh = H(X), x ∈ Xh, in nD the
radius of the En-maximal ball for x can be obtained from D2

Xh
(x) by looking

for the first integer R ≥ D2
Xh

(x) such that x + v ∈ En(Xh), with v being any
vector satisfying v2 = R. However, in 2D and 3D, we can avoid such iterations,
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based on the following proposition, which ensures that D2
Xh

(x) is precisely the
radius of the En-maximal ball for x in Xh. It can be proved with the help of
Proposition 3.

Proposition 4. Let n ∈ N, n ≤ 3. Let X ⊂ Zn, Xh = H(X), x ∈ Xh, R ∈ Dn.
If B<(x,R) is maximal for x in Xh, then En(B<(x,R)) is En-maximal for x
in Xh.

4 Algorithm to Compute the HMA

In this section we present an algorithm to compute the higher resolution medial
axis (HMA). Testing if an En-ball is maximal for the object is not trivial. One
way of doing this is to test if it is not included in another En-ball. This can be
done by an adaptation of the algorithm presented by Rémy and Thiel [18] for
the extraction of the exact Euclidean medial axis (MA).

Euclidean balls have a number of symmetries that simplify the problem. An
Euclidean ball can be reconstructed from only one of its cones (octant in 2D) by
retrieving symmetries of each point (or vector) of that cone. We chose the gen-
erator cone to be the set of vectors vg ∈ Zn such that vg = (v1, v2, . . . , vn), v1 ≥
v2 ≥ · · · ≥ vn ≥ 0. We distinguish two types of symmetries of vg:

Type 1. A symmetry obtained by setting signs to the coordinates of vg. It can
be obtained by S1v

g, where S1 is a matrix in which every element in
the diagonal equals 1 or −1, with 0s everywhere else. A vector in Zn

has therefore 2n Type 1 symmetries, which gives 4, 8 and 16 for n = 2,3
and 4 respectively. We denote by Sn

1 the set of all Type 1 matrices in
nD.

Type 2. A symmetry obtained by a permutation of the coordinates of vg. It
can be obtained by S2v

g, where S2 is a matrix obtained by permuting
the rows of an identity matrix according to some permutation of the
numbers 1 to n. Every row and column therefore contains precisely a
single 1 with 0s everywhere else. A vector in Zn has therefore n! Type 2
symmetries, which gives 2, 6 and 24 for n = 2,3 and 4 respectively. We
denote by Sn

2 the set of all Type 2 matrices in nD.

For the algorithm we are going to present in this section, we need all the
combinations of symmetries of Types 1 and 2. Any symmetry of vg in Zn can
be obtained by S1S2v

g, S1 ∈ Sn
1 , S2 ∈ Sn

2 . There are therefore 2nn! symmetries
in Zn, which gives 8, 48 and 384 for n = 2,3 and 4 respectively. We denote by
Sn the set of all products S1S2, with S1 ∈ Sn

1 , and S2 ∈ Sn
2 .

4.1 Algorithm for the Medial Axis (Rémy and Thiel)

Given a set X ∈ Zn and its square Euclidean distance transform D2
X, the al-

gorithm proposed by Rémy and Thiel [18] tests, for each point x ∈ X, if the
maximal ball for x in X, B<(x,D2

X(x)), is a maximal ball for X. This is done
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by testing if B<(x,D2
X(x)) is not included in another ball in X. If the maximal

radius of all maximal balls for X is not greater than a previously known radius
Rmax ∈ N, the inclusion test can be performed efficiently with the help of previ-
ously computed lookup tables. These lookup tables are described below and the
algorithms to compute them shall be found in references [18, 19].

– Let X ∈ Zn, x ∈ X, if the maximal radius of all maximal balls for the set
X is not greater than a previously known radius Rmax ∈ N, it is possible to
precompute a limited set of generator vectors Mg

Rmax
which is sufficient to

ensure that, if ∀vg ∈ Mg
Rmax

, ∀S ∈ Sn, B<(x,D2
X(x)) �⊂ B<(x+Svg, D2

X(x+
Svg)), then x ∈MA(X). Mg

Rmax
is the set of sufficient vectors for the radius

Rmax.
– Let x ∈ Zn, vg ∈ Mg

Rmax
, for any value of Rmax, let R ∈ Dn. The table

Lut[vg, R] gives the minimal radius R′ ∈ Dn necessary for having ∀S ∈
Sn, B<(x,R) ⊆ B<(x + Svg, R′). Note that Lut[0, R] = R.

To compute the MA
of a set X ∈ Zn, it
is sufficient to apply
the IsMA function for
every point x ∈ X.
The correctness of
Function IsMA lies
on Proposition 5 and
Proposition 6, proved
in [18].

Function IsMA(x,Rmax, D
2
X)

// tests if x ∈ MA(X)
foreach vg ∈Mg

Rmax
do1

foreach S ∈ Sn do2

v ← Svg;3

Rv ← Lut[vg, D2
X(x)];4

if D2
X(x+ v) ≥ Rv then return5

false

return true6

Proposition 5. Let x ∈ Zn, vg ∈ Mg, S ∈ Sn, v = Svg, R ∈ Dn, R
′ ∈ Dn, we

have B<(x,R) ⊆ B<(x + v,R′)⇔ R′ ≥ Lut[vg, R].

Proposition 6. Let X ⊂ Zn, x ∈ X, Rmax = max{D2
X(z) | z ∈ X}. The

ball B<(x,D2
X(x)) is maximal for X if and only if ∀vg ∈ Mg

Rmax
, ∀S ∈

Sn, B<(x,D2
X(x)) �⊂ B<(x+ v,D2

X(x+ v)) where v = Svg.

4.2 Algorithm to Extract the HMA

The MA algorithm presented above takes profit of the minimal radii given by
the lookup table Lut. We need a notion of minimal radius for the En-balls.

Definition 12 (En-minimal radius). Let x ∈ Zn, R ∈ Dn, v ∈ Zn, the En-
minimal radius relative to x,R and v, denoted by R∨(x,R, v), is the strict ra-
dius of the smallest ball centered in x + v which includes En(B<(x,R)), i.e.,
R∨(x,R, v) = min{R′ ∈ Dn, En(B<(x,R)) ⊆ En(B<(x+ v,R′))}.
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The following proposition is elementary.

Proposition 7. Let x ∈ Zn, R ∈ Dn, R
′ ∈ Dn, v ∈ Zn, R′ < R∨(x,R, v) ⇔

En(B<(x,R)) � En(B<(x + v,R′)).

Unlike Euclidean balls
in Zn, En-balls may not
be invariant by symme-
tries of Type 2. Thus
the value of R∨(x,R, v)
depends on to which
subset Ei of Zn belong
the points x and x + v.
The construction of a
lookup table with En-
minimal radii may be
prohibitive. We propose
to calculate R∨(x,R, v)
on runtime with the
Function EnRmin.

Function EnRmin(x,R, v)

// we consider S1 ∈ Sn
1 , S2 ∈ Sn

2 ,
v = S1S2v

g, where vg is the
generator of v

Rv ← Lut[vg, R];1

while Rv > 0 do2

foreach rg ∈ SQDn(R−
v ) do3

foreach S′
2 ∈ Sn

2 do4

r← S1S
′
2r

g;5

if (((x + v − r) ∈ En) and6

((v − r)2 < R) then return Rv

Rv ← R−
v ;7

return 08

Proposition 8. The value Rv returned by the EnRmin function is equal to
R∨(x,R, v).

An example with Function EnRmin is given in [19] and may be useful for its
comprehension.

Now we need to construct a table Mh, which gives the set of vectors suf-
ficient to compute the HMA. The construction of this table is done by the
BuildMhLut procedure presented in [19]. This procedure, similar to the one of [18]
to compute Mg, is based on the observation that if Mh

Rmax
is sufficient to ex-

tract, from any ball with a radius less or equal to Rmax, a medial axis which
is reduced to a single point, then Mh

Rmax
enables to extract correctly the HMA

from any squared distance map which values do not exceed Rmax.
By construction of Mh and as a consequence of Proposition 4, Proposition 7

and Proposition 8, we have the two following propositions.

Proposition 9. Let n ∈ N, x ∈ Zn, vg ∈ Mh, S ∈ Sn, v = Svg, R ∈ N, R′ ∈ N.
We have En(B<(x,R)) ⊆ En(B<(x+ v,R′)) ⇔ R′ ≥ EnRmin(x,R, v).

Proposition 10. Let n ∈ N, n ≤ 3. Let X ⊂ Zn,Xh = H(X), x ∈ Xh, Rmax =
max{D2

Xh
(x′), x′ ∈ Xh}. The En-ball En(B<(x,D2

Xh
(x))) is En-maximal for

Xh if and only if ∀vg ∈ Mh
Rmax

, ∀S ∈ Sn, En(B<(x,D2
Xh

(x))) �⊂ En(B<(x +
v,D2

Xh
(x + v))), where v = Svg.



614 A.V. Saúde, M. Couprie, and R. Lotufo

We conclude from Proposi-
tion 9 and Proposition 10
that, given a set X ⊂
Zn, the computation of
HMA(X) may be done by
the computation of the
IsHMA function for every
point x ∈ H(X). Note the
direct use of D2

Xh
, valid only

in 2D and 3D, thanks to
Proposition 4.

Function IsHMA(x,Rmax, D
2
Xh

)

// tests if x ∈ HMA(X) in Zn,
Xh = H(X)

foreach vg ∈Mh
Rmax

do1

foreach S ∈ Sn do2

v ← Svg;3

Rv ← EnRmin(x,D2
Xh

(x), v);4

if D2
Xh

(x+ v) ≥ Rv then5

return false

return true6

To efficiently calculateR+, R− for any integerR, another precomputed lookup
table is used: the square decompositions table SQDn defined in Section 2. The
computation of such table is very simple in any dimension, but the algorithm is
available in [19, 4].

Let R ∈ N, x ∈ Zn, calculations are expressed as follows:

R: (while (SQDn(R) = ∅) do R← R+ 1); R+: (R← R+ 1; R← R)
R: (while (SQDn(R) = ∅) do R← R− 1); R−: (R← R− 1; R← R)

5 Results

Besides the didactic example given in Figure 1(a), in Figure 5 we present a
practical 2D example of the HMA, comparing it to the MA.

Fig. 5. 2D HMA example. From left to right: the original object, its MA, the object in
doubled resolution, its HMA and, for comparison, the MA scaled to a double resolution.

As a practical evaluation of the HMA computation time, we have executed MA
and HMA on several images similar to those presented in Figure 5 and also on
3D segmentations of a cerebral structure called hippocampus. The estimations
were performed on an AMD Athlon XP 2400+, 2.0 GHz, running Linux, without
compiler optimizations.

Let X be the object. We measured the times t(X) and th(X) for computing
MA(X) and HMA(X), respectively.
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For the 2D images, we have zoomed the images by factors of 0.5, 1 and
2 in order to have different ball sizes in similar shapes. The object sizes are
12445, 50157 and 112842 pixels. We obtained for t(X): 0.187, 0.426, 0.662 and for
th(X): 0.487, 1.281, 2.906 (in seconds). The ratios between th(X) and t(X) are re-
spectively 2.6, 3.0 and 4.4. The fact that we obtained ratios below four, whereas
doubling the resolution multiplies the data volume by four in 2D, is mainly due
to the relative cost of loading the lookup tables: this cost is significant for small
images but is better amortized for large images. Notice, however, that only the
parts of the lookup tables which are really needed are loaded.

For the 3D images, we used zooming factors of 1, 1.5 and 2, and the object
sizes are 3530, 11799 and 24771 voxels. We obtained for t(X): 0.077, 0.148, 0.330,
and for th(X): 0.422, 2.01, 5.36; hence the ratios: 5.45, 13.5, 16.2. Notice that in
3D, doubling the resolution multiplies the data volume by eight.

We also evaluated and compared the “thinness” of the HMA and the one of
the MA. Let us denote by T (X) the ratio: size(MA(X))/size(X), and by Th(X)
the ratio: size(HMA(X))/size(H(X)). In 2D, we obtained for the three zoomed
images: T (X) = 0.091, 0.054, 0.042, and Th(X) = 0.035, 0.022, 0.017 respectively.
In 3D, we obtained for the three zoomed images: T (X) = 0.33, 0.26, 0.24, and
Th(X) = 0.067, 0.072, 0.077 respectively.

It was interesting to note in the 2D case that the bigger is X, the thinner is
MA(X), and that the HMA offers better improvements for small objects. In 3D,
the same observation may be done, and the improvements brought by the HMA
are more sensible than in 2D.

6 Conclusion and Perspectives

We have defined the HMA - the exact Euclidean medial axis in higher resolution
in a completely discrete framework. We showed that the HMA presents better
thinness characteristics than the classical discrete Euclidean MA. We explained
how to compute such axis in n-dimensions and we provided an efficient algo-
rithm to compute it in 2D and 3D. Although the proofs could not be presented
here, the algorithm has been systematically proved. We presented a practical
evaluation of the algorithm’s behaviour in terms of speed. A more precise com-
plexity analysis will be given in the extended version of this paper. The HMA
is based on a transformation to higher resolution which permits the application
of further homotopic thinning for the computation of homotopic skeletons. In a
forthcoming paper [22], we define the notion of a symmetric homotopic skeleton
which contains the Euclidean HMA, and provide a parallel algorithm to compute
it, based on the framework of critical kernels (see [10]). We also intend to exploit
a different approach (see [17]) in a future work, in order to obtain an even more
efficient algorithm, generalized to n dimensions.
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22. Couprie, M., Saúde, A.V., Bertrand, G.: Euclidean homotopic skeleton based on
critical kernels. In: Procs. SIBGRAPI. (2006) to appear.



Skeletonization and Distance Transforms of 3D

Volumes Using Graphics Hardware

M.A.M.M. van Dortmont, H.M.M. van de Wetering, and A.C. Telea

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

m.a.m.m.van.dortmont@student.tue.nl, wstahw@win.tue.nl, alext@win.tue.nl

Abstract. We propose a fast method for computing distance transforms
and skeletons of 3D objects using programmable Graphics Processing
Units (GPUs). We use an efficient method, called distance splatting,
to compute the distance transform, a one-point feature transform, and
3D skeletons. We efficiently implement 3D splatting on GPUs using 2D
textures and a hierarchical bi-level acceleration scheme. We show how
to choose near-optimal parameter values to achieve high performance.
We show 3D skeletonization and object reconstruction examples and
compare our performance with similar state-of-the-art methods.

1 Introduction

The skeleton of a three-dimensional object is the set of interior points that have
at least two closest points on the object surface. Alternative definitions use the
set of centers of maximal contained balls [1] or first order singularities of the ob-
ject surface’s distance transform (DT). The skeleton points, together with their
distance to the 3D surface, define the Medial Surface Transform (MST), which
can be used for volumetric animation [2], surface smoothing [3], or topological
analysis used in shape recognition, registration, or feature tracking.

While 2D skeletonization of raster images is a well-studied problem, skele-
tonization of 3D volumes still has some open issues. First, 3D skeletons tend to
be far more complex than their 2D counterparts. Second, there exist several 2D
criteria used to detect and/or simplify the skeleton in a noise-resistant way, e.g.
the collapsed boundary length criterion [4, 5, 6]. However, there are hardly any
similar 3D criteria that comply with the same requirements, e.g. prune and/or
detect the skeleton starting from its less important points inwards, prevent skele-
ton disconnection during pruning, and are robust to noise. Last but not least,
computing skeletons for large 3D volumes like nowadays medical scans can be a
time-consuming process.

In this paper, we show how to compute 3D skeletons and distance transforms
by extending to the 3D case a recent 2D skeletonization method that uses a new
idea of computing skeletons by splatting distance textures [7]. We show how to
efficiently implement the non-trivial 3D distance splatting on GPUs. Next, we
show how to integrate a well-known 3D skeletonization criterion [8] in our splat-
ting approach in order to compute 3D skeletons fully on the graphics card. We

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 617–629, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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keep the attractive features of the original 2D method (speed, implementation
simplicity, arbitrary distance metrics). We demonstrate our approach with ex-
amples of skeletonizing and surface smoothing of real-world complex 3D objects.

The structure of this paper is as follows. Section 2 briefly overviews related
work. Section 3 outlines the 2D splatting proposed by [7]. Section 4 details how
we extended splatting to compute 3D skeletons. Section 5 presents our results,
discusses the method, and compares it with its main competitor [8]. Finally,
Section 6 concludes this paper.

2 Background

The methods for computing medial axes and skeletons can be algorithmically
classified into three groups: thinning [9], Voronoi-based methods [4], and dis-
tance field methods [3, 7, 6]. In 3D, many such methods still have limitations.
First, there is no generally accepted skeleton detection and/or pruning criterion
that yields noise-resistant and connected 3D skeletons. For example, the θ-SMA
method [10] detects skeleton points by thresholding the angle between the so-
called feature points, or anchor points. This can yield skeletons with holes or
even disconnections and is sensitive to noise. Euclidean Skeletons [11] improves
upon θ-SMA by using a combined angle and feature point distance criterion.
Other local criteria, e.g. divergence-based (Siddiqi et al. [12]) and moment-based
(Rumpf and Telea [3]) have the same problem, i.e. can yield disconnected skele-
tons, unless homotopy is explicitly enforced, e.g. as in [13]. In this paper, we do
not consider homotopy preservation as this is not efficiently implementable on
GPUs. A second problem of 3D skeletonization is its relatively low speed. Recent
GPU-based methods are one up to two magnitude orders faster than CPU-based
skeletonization methods. Sud et al. [8] extract 3D skeletons on the GPU using
the θ-SMA detector and Voronoi-based clamping techniques to limit overdraw.
A related method [14] computes 3D signed distance transforms on the GPU, but
not 3D skeletons. Strzodka and Telea [7] use the GPU to compute 2D skeletons
using the collapsed boundary length, or anchor point distance, detector [4,5,6].
The skeleton and the boundary’s distance transform (DT) are computed by a
simple idea, called distance splatting, which is efficiently implemented on GPUs.
Besides being simple, this method allows using any Lp metric, like Manhattan
or (an)isotropically weighted Euclidean. Finally, we mention the important class
of 3D thinning methods that compute skeletons by iteratively removing voxels
from the object boundary in a given order [9]. Although simple to implement,
and yielding connected skeletons, such methods can generate ill-centered and/or
noisy skeletons, unless voxel removal is done in a true distance-to-boundary or-
der, e.g. as proposed by [15].

3 Distance Splatting in 2D

Our aim is to generalize the 2D method described in [7] to perform 3D DT
computation and skeletonization on the GPU, preserving its attractive points:
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simplicity, accomodation of several distance metrics, and efficiency. The exten-
sion is not trivial, as the 3D case introduces specific difficulties, not present
in 2D. We detail these (and our solution) in the following, starting with some
definitions. Given an object Ω ∈ R3 with surface ∂Ω, the distance transform
DT : Ω → R of ∂Ω can be defined as

DT (p) = min
q∈∂Ω

(dist(p, q)) (1)

where dist(p, q) is a distance metric (e.g. Euclidean or Manhattan). For a p ∈
Ω, the feature transform FP (p) yields the boundary points at distance DT (p)
from p

FP (p) = {q ∈ ∂Ω|dist(p, q) = DT (p)} (2)

The skeleton of Ω can be defined as

S(Ω) = {p ∈ Ω|∃q, r ∈ ∂Ω, q �= r : dist(p, q) = dist(p, r) = DT (p)} (3)

The tuples (p,DT (p)) with p ∈ S(Ω) form the medial surface transform (MST).
Using the MST, one can reconstruct the surface ∂Ω. To allow us to easily measure
distances at any point q ∈ Ω from a given point p ∈ ∂Ω, we introduce the Point
Distance Function (PDF)

PDFp(q) = dist(p, q) (4)

For typical distances, we also have that

PDFp(q) = PDF0(q − p), (5)

i.e. we can compute PDFp by translating the PDF centered at the origin, PDF0.
The 2D splatting method [7] we shall extend to 3D works on a discrete (im-

age) sampling (V, VS) of (Ω, ∂Ω). Splatting computes 2D skeletons on the GPU
in two steps. First, DT (VS) is computed by drawing PDF0, sampled in a 2D
texture, centered on all pixels p ∈ VS . The actual distance minimization (Eqn. 1)
is done during the drawing, by assigning the luminance-encoded distance values
to the depth channels of the drawn pixels, and using the depth (Z buffer) test
to mask pixels with greater distance values. The implementation takes a single
texture draw with the pixel shaders functions of modern GPUs. Besides distance,
splatting also propagates a second signal U , which encodes an arc-length bound-
ary parameterization, so the method effectively computes a one-point feature
transform of VS . Next, the (pruned) skeleton S(V, τ) is computed as

S(V, τ) = {(i, j) ∈ Ω|max(Ui+1,j − Ui,j, Ui,j+1 − Ui,j) > τ} (6)

The above gives the so-called collapsed boundary length at every pixel [4, 5,
6], i.e. all skeleton points where more than τ boundary units have collapsed.
Increasing τ values prune the skeleton inward from its outer branches, yielding
a connected, noise-free skeleton.
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4 Distance Splatting in 3D

4.1 New Algorithm

A first problem of extending the above 2D algorithm to 3D is finding a suitable
3D replacement for the collapsed boundary length. A ’collapsed surface area’ cri-
terion would be a good candidate. However, we do not know how to (easily) com-
pute such a measure. Hence, we use some simpler, though arguably less robust,
local skeletonization criteria. Unlike global criteria, like the collapsed boundary
length, local criteria, e.g. the θ-SMA angle [10], the divergence-based [12] or the
moment-based criterion [3] use only information in a small neighbourhood of the
considered point. These are more vulnerable to noise and can yield gaps or even
disconnections in the skeleton. However, local criteria are simple and very effi-
cient to implement on GPUs. After several experiments, we found the combined
measure of angle between feature points and distance between feature points [11]
the most robust in 3D and chose it as basis for our GPU skeletonization. A sec-
ond problem is how to efficiently extend the 2D distance splatting [7] to 3D.
In 2D, splatting could directly implement Eqn. 1, as explained in Sec. 3. How-
ever, though modern GPUs have 3D (volumetric) textures, they cannot render
3D primitives. To perform 3D splatting, we must find efficient ways to render
volumetric primitives as a set of 2D (polygonal) primitives.

In our algorithm, we first generate the DT similarly to the 2D algorithm [7].
For all points p in the discretely sampled (voxelized) volume V counterpart of
Ω, we compute the distance DT (p) to the voxelized surface VS counterpart of
∂Ω, as well as one of its feature points FP (p)

1 I n i t i a l i z e DT to ∞
2 f o ra l l p in VS

3 f o ra l l q in V
4 i f (PDFp ( q ) < DT(q ) )
5 DT(q ) = PDFp ( q )
6 FP(q ) = p

Listing 1.1. Splatting-based DT computation

This yields a one-point feature transform of VS [16]. Next, we compute a
skeleton detector f(p) similar to [11]. In detail, we use

f(p) = angle(q)a ∗DT (q)b (7)

where a=1, b=3/2, angle(q) is the maximum angle between feature vectors r−p
at p, where r ∈ FP (p) and dist(q) is the maximum distance between feature
points FP (p) at p. Since we compute a single feature point FP (p) instead of
all potentially many feature points, we actually compute angle(q) and dist(q)
using the neighbours n(p) of p. Indeed, if p is near or on the skeleton, it will have
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a neighbour n(p) that has a feature point FP (n(p)) in a significantly different
location than FP (p), yet with a similar DT as p (see Eqn. 3). Another property
to check for skeleton points is whether they are centers of maximal balls. If q
is such a point, no ball centered at a neighbor p of q, of radius DT (p), can
completely contain a ball centered at q with radius DT (q), i.e. ∀p, q ∈ Ω : p ∈
n(q) : DT (q)+‖q−p‖ > DT (p). This property holds, among others, for the city
block, chessboard, D6 and D26 distance metrics. If a neighbour p of q fails this
test, q is not the center of a maximal ball, so is not part of the skeleton. The
complete detector computation is shown in Listing 1.2.

1 f o ra l l q in V
2 de t e c t o r (q ) = d i s t (q ) = angle ( q ) = 0
3 f o ra l l q in V
4 f o ra l l p in n(q )∩V
5 i f (DT(p) ≤ DT(q) + ‖q − p‖)
6 angle ( q ) = max(∠ (FP(p)−p ,FP(q)−q ) , angle ( q ) )
7 d i s t (q ) = max(‖FP(q)−FP(p)‖ , d i s t (q ) )
8 else
9 angle ( q ) = d i s t (q ) = 0

10 break out o f loop
11 de t e c t o r (q ) = f ( angle (q ) , d i s t ( q ) )

Listing 1.2. Pseudocode for angle and distance-based skeleton detector

For n(p), we use the 6-neighbour set. [11] states that this suffices for accurately
computing the detector in Eqn. 7. The skeleton S(p, τ, α, β) = {p ∈ Ω|f(p) >
τ ∧ angle(q) > α ∧ DT (q) > β} is obtained by thresholding the detector f as
well as the maximal feature angle angle and maximal inter-feature distance dist.
Similar to [11], typical thresholds values are τ ≈ 180, α ∈ [45, 100] degrees, and
β ∈ [0.05D, 0.15D] where D = 2max(DT ) is the object diameter.

4.2 Implementation

We implemented our method in C++ using OpenGL and Cg (C for graphics) [17]
as our shader language. We splat the 3D PDF texture (Listing 1.1, Sec. 4.1)
using only 2D rendering primitives. We splat several 2D textures on an xy-axis-
aligned, slice-by-slice basis, as described next (see also Fig. 1; line numbers refer
to Listing 1.1). For every xy slice, the initialization (line 1) is done by clearing
the depth and color buffers. We implement the loops in lines 2 and 3 by drawing
quadrilaterals on the current slice (the thick vertical line in Fig. 1), textured
with a 2D slice from the 3D PDF function (Eqn. 5). The distance minimization
(line 4) is done by assigning the PDF value from the texture to the depth value
of the drawn pixels, using a pixel shader. We use the depth test, so this implicitly
does the minimization and yields the minimal DT value in the depth (Z) buffer.
We save the DT (line 5) by copying it to the alpha channel of the drawn pixel.
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Finally, we store the feature point (line 6) by writing the splatted point p’s
coordinates to the RGB color channels of the drawn pixel. The drawn image
thus holds the DT in the alpha channel and the one-point feature transform FP
in the RGB channels. The efficiency of our implementation depends critically on
the PDF texture size. We store the 3D PDF as 2δ 2D texture slices of size (2δ)2,
where δ is the PDF radius. Such a slice is shown in Fig. 1 with gray values. We
do not use 3D textures as these lack the high numerical precision needed and
also do not allow non-power-of-two sizes, which would increase δ unnecessarily.
When splatting, we do not iterate over the entire set VS , but over the smaller
’band’ V ′

S (thick line in Fig. 1), which includes the points on slices at most δ
pixels from the current slice, since these are the only ones that can influence the
DT result on the current slice.

Fig. 1. 3D distance splatting principle

A (naive) upper bound for δ is |V |/2, i.e. half of the shortest axis of V ’s
bounding box. However, this leads to many draw operations that do not affect the
final DT. We reduce the overdraw by two techniques: a hierarchical optimization
and a tighter upper bound estimation for δ, as follows. We implement a 3D
version of the adaptive hierarchical optimization proposed by [7], as follows. We
divide V in equally sized blocks B of c3 voxels. We construct a coarse-scale
version Vc of V , where Vc contains one sample of every block in V . We compute
(also by GPU splatting) the coarse-scale distance transform DTc of Vc, where
the distance between two samples in Vc is is the maximal distance between any
two voxels from their blocks B ⊂ V . For every block B, we splat only those
boundary voxels that can affect its DT. These are all p ∈ VS that are closer to B
than DTc(B). This bi-level hierarchical scheme has three advantages. First, we
can quickly skip splatting the blocks B which are outside V . Second, we check if
the minimal distance from B to the surface point p undergoing splatting (|p− q|
in Fig. 1) exceeds DTc(B) (shown by the radius of the circle centered at B).
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If so, p cannot affect the DT of any voxel in B, so we skip splatting p over B.
Finally, DTc upper-bounds the radius at which a surface point p can influence
the DT , so we use it as a tighter upper bound for the PDF size d than |V |/2.
Our improved PDF size δ′ is

δ′ = min
(
|V |
2
, max
B⊂Vc

(DTc(B)) + 1
)
. (8)

This is a globally optimized PDF size (GPDF). We also tried a locally op-
timized PDF size (LPDF) that changes for every block B. However, this was
slower than the GPDF, as detailed further in Sec. 5.

The second stage of the algorithm (Listing 1.2) is also implemented by render-
ing xy-aligned slices. The initializations (lines 1,2) are done by clearing the color
buffer before drawing a slice. Next, we draw a rectangle for every volume slice
(loop at line 3). The inner loop (line 4) is done using a vertex shader to generate
the texture coordinates of the neighbours n(q) so that the pixel shader can use
these to access the relevant textures. If the fragment fails the ball containment
test (line 5), it is discarded, since not part of the skeleton (lines 9,10). If the
fragment passes the test, the maximum distance and angle are calculated (lines
6,7). We then use these to evaluate the detector f (Eqn. 7) and store it in a tex-
ture (line 11). Finally, we threshold this texture on-the-fly with the user-chosen
values τ, α, β (Sec. 4.2), yielding the desired pruned 3D skeleton.

5 Discussion

We tested our method on both synthetic volumes and volumes segmented from
real 3D scans (see Fig. 3). We used an Athlon 3.4GHz PC with 1 GB RAM
and tested on two different GPUs, i.e. a GeForce 6800 with 128 MB and a
GeForce 6600 with 256 MB graphics memory. We first compared our results
with a software-only implementation based on the Euclidean Feature Transform
method [16], which efficiently computes a feature transform (Table 1,column SW)
and uses the same skeleton detector (Eqn. 7). Both methods yielded identical
skeletons. We also used the pruned skeletons to reconstruct smoothed objects,
by splatting the skeleton voxels with PDF functions equal to their correspond-
ing MST values. It is well known that this replaces small-scale boundary details,
corresponding to pruned skeleton points, with spherical surface segments. Fig-
ure 4 shows reconstructions for several objects. Our skeletons are indeed exact,
as shown by the cube reconstructed from a non-pruned skeleton (Fig. 4 b), which
is identical to the original cube (Fig. 3 f). We can easily handle noisy objects
with highly complex 3D skeletons, e.g. the CT-scanned frog intestin (Fig. 3 a)
or the MRI-scanned colon (Fig. 3 h). Reconstructing the colon from a highly
pruned skeleton yields the smooth shape shown in Fig. 4 d.

We stress that our 3D distance splatting is exact by construction. Splatting
propagates the distance from a boundary point directly, thus exactly, to the in-
terior points. The depth test guarantees that the minimal distance is always cor-
rectly kept. This is not the case for incremental methods, e.g. level-set based [3,6],
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Table 1. Benchmarks of splatting-based skeletonization

model volume PDF object surface SW 6600 6800 skel. recon. voxels/
size size voxels voxels time time time voxels time sec.

cube 128x128x128 45 91125 11618 18 3.8 2.5 4961 0.8 4647

box 151x101x101 37 67392 9592 11.1 2.3 1.7 4032 0.5 5642

sphere 1 128x128x128 85 324157 18642 145.2 23.2 10.0 1 0.5 1864

sphere 2 256x256x256 171 2627271 75942 N/A 452.7 199.3 1 2.0 381

cylinder 1 51x51x51 31 61590 8138 5.9 1.7 1.2 4303 0.7 6781

cylinder 2 129x129x213 61 1674880 72043 781 188.1 19.2 37461 42.7 3752

cow 165x107x64 53 190041 21152 30 13.3 6.7 6402 2.6 3157

ellipse 100x100x100 25 23094 4164 3.2 0.9 0.7 288 0.1 6940

spring 100x100x100 15 38978 14013 2.2 1.7 1.5 2289 1.2 9342

ice 2 80x80x80 23 29880 5948 3.6 1.2 1.0 1255 0.6 5948

ice 3 80x80x80 29 41964 8104 4.7 2.3 1.7 1551 1.3 4767

rings 100x100x100 33 264784 28272 28.4 9.1 6.1 3222 1.6 4634

duo 72x69x90 23 36931 8636 3.1 1.7 1.4 2261 1.2 6168

intestin 60x71x94 17 13599 5724 3 0.9 0.8 1611 0.6 7155

colon 256x256x311 43 653170 81308 350.7 42.4 26.1 65120 35.7 3115

bent 150x150x150 49 429307 34211 92.9 21.8 11.6 10706 7.9 2949

that propagate information (e.g. distance, feature points) from point to point.
Unless special measures are taken, such methods accumulate errors yielding vis-
ibly incorrect DTs and skeletons [16].

We would like to compare the performance of our GPU-based skeletonization
with other methods, e.g. [3], [10], [11], [13], [8], and [12]. Unfortunately, this is
far from trivial. These methods use different input and/or skeleton data models
and skeleton detectors; have non-trivial, non-available implementations and/or
test datasets; and performance is reported for different platforms. For example,
we use a voxel-based model for both the input object and the computed skeleton,
just as [11] and [12]. In contrast, [13], [10] and [3] use polygonal surface models
for either or both.

The most interesting method to compare against is probably DiFi [8]. DiFi
also uses GPUs to compute a DT and skeletons, and has a very similar skeleton
detector (θ-SMA). DiFi handles both polygonal and volumetric objects. Since
we do not have a DiFi implementation, nor its test objects, we shall compare
our method with DiFi using the number of input object surface points processed
per second. Comparing Table 1 (rightmost column) with Table 2), we see a large
performance overlap between our method and DiFi. Our method skeletonizes
objects at a rate of [3157..9342] surface voxels/second, with an average of 5356
(we left out the two spheres from this benchmark, since they are special absolute
worst-case situations for any skeletonization method, also not present in DiFi’s
benchmarks). For DiFi, these figures are [1500..10500] voxels/second, with an
average of 5516. As our method, DiFi can also handle many distance metrics,
e.g. all Lp norms, if the Voronoi regions of the surface elements are connected.
However, it is much easier to change the distance metric with our method than
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with DiFi. We can use a specific distance metric by providing its sampled version
as a 3D PDF texture. We can do this globally, but also locally. Every surface
point can use another PDF function just by using another texture. For example,
we can easily compute the so-called Johnson-Mehl or Apollonius diagrams [18],
also called generalized skeletons, using additively, respectively multiplicatively,
weighted Euclidean PDF functions, by scaling or multiplying the PDF texture at
every point [7]. Doing this with DiFi appears to be significantly more complex [8].

Table 2. Skeletonization performance, DiFi method (from [8])

model surface (voxels) time (sec.) voxels/sec.

octahedron 4862 0.85 5720

brain 1 18944 1.82 10408

brain 2 4988 0.64 7793

sinus 1 34507 22.1 1561

sinus 2 104154 49.7 2095

As Table 3 c shows, using our globally optimized PDF size (GPDF) calcula-
tion (Sec. 4.2) has a major performance impact for relatively elongated objects
(e.g. ’bent’, ’colon’, ’intestin’) where it massively reduces the amount of GPU
overdraw during splatting. For objects tightly fitting their bounding-box, e.g.
’sphere’ or ’cube’, the optimization has no impact. Since the optimization itself
does not cost extra time, it is always an efficient, valuable mechanism. Finally,
we see that reconstruction is clearly faster than skeletonization (Table 1, column
’recon’). This is as expected, since a (pruned) skeleton has less points than the
surface it comes from, and its MST values are exactly equal to the distance-
to-boudary at every point, i.e. they match the absolute optimal PDF size value
(Sec. 4.2).

Fig. 2. Performance of local versus global PDF size choices
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(a) Intestin (b) Rings (c) Bent (d) Cylinder

(e) Spring (f) Cube (g) Cow (h) Colon

Fig. 3. Examples of 3D splatting-based skeletonization

Table 3 (a,b) shows the effect of using different coarse grid block sizes c in our
bi-level hierarchical acceleration (Sec. 4.2). Increasing c means less CPU over-
head, but more GPU overdraw. Decreasing c has the opposite effect. Varying c
also implicitly affects the PDF size (Table 3). An optimal PDF size estimation
would be obtained for the minimal block size c = 1. However, decreasing c in-
creases the time needed to compute DTc as well as the GPDF (Eqn. 8). For c ≤ 9
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(a) Spring (b) Cube (c) Cow (d) Colon

Fig. 4. Reconstruction of smoothed objects by splatting pruned skeletons

Table 3. Benchmarks for variable coarse grid size (a,b); Naive versus globally-
optimized PDF size performance (c)

(a)

model grid time PDF
size (sec) size

rings 6 10.0 49
7 9.9 53
8 10.9 55
9 12.8 63
10 12.7 61
11 14.6 67
100 23.3 97

cow 6 7.4 53
7 6.3 53
8 6.5 53
9 6.7 53
10 6.7 53
11 6.8 53
100 6.8 53

bent 6 19.7 65
7 16.1 65
8 17.1 73
9 17.4 74
10 18.2 75
11 21.0 83
100 49.4 131

(b)

model grid time PDF
size (sec) size

spring 6 3.4 37
7 4.0 43
8 4.6 49
9 5.2 55
10 5.9 61
11 6.6 67
100 8.7 83

duo 6 2.0 37
7 2.4 43
8 2.6 49
9 2.9 55
10 3.3 61
11 3.3 61
100 3.5 61

colon 6 76.0 55
7 57.7 57
8 47.9 61
9 45.9 67
10 44.4 69
11 51.9 77
100 112 119

(c)

naive globally
optimized

model PDF time PDF time
size size

cube 45 2.5 45 2.5

box 37 1.7 37 1.7

sphere 1 85 10.0 85 10.0

sphere 2 171 199.3 171 199.3

cylinder 1 31 1.2 31 1.2

cylinder 2 129 72.3 61 19.2

cow 53 6.7 53 6.7

ellipse 25 0.7 25 0.7

spring 83 7.4 15 1.5

ice 2 43 1.6 23 1.0

ice 3 79 4.5 29 1.7

rings 97 19.7 33 6.1

duo 61 3.3 23 1.4

intestin 43 1.5 17 0.8

colon 119 179.9 43 26.1

bent 131 50.1 49 11.6

voxels, this cost is no longer negligible. After extensive testing on several models,
we found the optimal coarse block size c to lie between 7 and 10, so we chose
10 as a default value. Finally, we compared the efficiency of local (per-block)
and global PDF size optimizations (see Sec. 4.2). We timed our method using
the locally optimized PDF size (LPDF), globally optimized PDF size (GPDF),
and also, for comparison purposes, a fixed-size PDF (FPDF) manually set to
values ranging from 25 to 201. As the graph in Fig. 2 shows, GPDF picks a
PDF size δ′ for which the FPDF (ascending graph) and LPDF (leveled graph)
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have the same, roughly linear, performance. For PDF sizes slightly larger than
δ′ (around 60 voxels in our graph), LPDF clearly beats FPDF. However, GPDF
picked a size below this range for any configuration (3D shape) we availed of, so
we settled with GPDF, which is simpler to compute than LPDF.

6 Conclusion

We have presented a flexible and efficient, yet very simple to program, algorithm
to compute 3D skeletons on the GPU. We generalize the 2D distance splatting
idea presented in [7] to the 3D case, and combine it with a different skeleton
detector. Similar to [7], we use a bi-level hierarchical scheme to speed up our
method by reducing the overdraw amount. Additionally, we use the coarse-scale
distance transform (DT) to estimate an optimal size for our splat radius (PDF
size), and thus reduce the overdraw even further. Since the optimal PDF size is
highly object-dependent, and the GPU drawing performance is at least linearly
dependent on the PDF size, this optimization can drastically improve the overall
performance, as shown by our experiments. We performed extensive testing to
evaluate our method on a range of volumetric objects, deduce optimal parameter
values, and validated our results by performing (smoothed) object reconstruc-
tions from the skeleton. Overall, our simple splatting-based DT computation
and skeletonization is as efficient as more complex methods, such as DiFi [8],
and also lets one quite easily customize the distance metric used just by defining
a 3D texture.

A more challenging subject, however, is finding efficient global criteria for
noise-resistant detection and hole-free pruning of 3D skeletons. What such cri-
teria might be, and whether they can efficiently be implemented on GPUs, is a
subject for further research.
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How to Tile by Dominoes the Boundary of a

Polycube
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Abstract. We prove that the boundary of a polycube (finite union of
integer unit cubes) has always a tiling by foldable dominoes (two edge-
adjacent unit squares on the boundary). Moreover, the adjacency graph
of the unit squares in the boundary of a spherical polycube has a Hamil-
tonian cycle.

1 Introduction

Polyominoes (finite and simply-connected union of unit squares in the plane)
have been introduced in the sixties by S. Golomb [1]. Some natural questions
arise for polyominoes:

– How many different polyominoes can be build with n squares? [17, 18, 20, 2]
– Is it possible to tile the plane (or a rectangle) with a given set of polyominoes?

[14, 15, 16, 19, 21, 7, 23, 24, 25, 26, 3]
– Is it possible to tile a given polyomino with a given set of polyominoes? [4]
– How many different ways to do that? [22, 2]

All these questions have been studied by several authors as mentioned. To solve
the third question below, J.H. Conway and J.C Lagarias [5] introduced a new
point of view. They encoded the boundary of a polyomino by a word and ob-
tained some important properties by using algebraic considerations of this word.
In his paper, W. Thurston using this idea has shown that we can tile in linear
time a polyomino by dominoes (two edge-adjacent unit squares). Successively,
many authors have extended this tools: T. Chaboud [6], R. Kenyon [7], J.C.
Fournier [8], K. Ito [9], N. Thiant [10], E. Remila [11] and myself with M. Lat-
apy [12]. We introduce here 3-dimensional extension of the notion of polyominoes
and another way to deal with, considering a set of “squares” drawn on a surface
of R3. In particular, we study the boundary of a spherical polycube (finite union
of unit cubes which is a topological ball). In a first section, we prove that the
boundary of a polycube can always be tiled by foldable dominoes (i.e. a couple of
edge-adjacent and not necessarily coplanar unit squares). In the second section,
we show a new criterion of graphtheoretical h-connectivity and prove that the
adjacency graph of external unit squares of a spherical polycube admits a Hamil-
tonian cycle. We deduce this result from a famous theorem of W. Tutte [13]. Let
us now introduce our definitions.

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 630–638, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Definitions

All objects that we consider in the sequel are built from the nodes of the lattice
Z3. A 3-cell (unit cube) in position (i, j, k) is the set:{

(x, y, z) ∈ R3; i ≤ x ≤ i+ 1, j ≤ y ≤ j + 1, k ≤ z ≤ k + 1
}
.

With this definition, a polycube is a finite union of 3-cells. Two other classical
objects are 1-cells (unit edges) and 2-cells (unit squares). A 1-cell (resp. 2-cell)
is a face of dimension 1 (resp. of dimension 2) of a 3-cell. For instance the set{
(1, 0, z) ∈ R3; 2 ≤ z ≤ 3

}
is a 1-cell and the set{

(3, y, z) ∈ R3;−1 ≤ y ≤ 0, 2 ≤ z ≤ 3
}

is a 2-cell. Naturally, we generalize the notion of domino in the following way:
A domino is the union of two 2-cells sharing a 1-cell which is called inner edge.
We say that the boundary of a polycube can be tiled by dominoes if and only
if it is possible to cover without overflow nor overlap (i.e. the intersection of
two dominoes is of dimension 1) this boundary with dominoes. In other words, a
polycube can be tiled by dominoes if there exists a complete tiling of its boundary
with non overlapping dominoes.

We denote by GZ3 the non directed graph such that the vertex set is V (GZ3) =
Z3 and the edge set E(GZ3) is:

{{v, v′} ; v ∈ V, v′ ∈ V and d (v, v′) = 1)}

where d denotes the Euclidian distance in R3.
We notice that the 1-cells are in one-to-one correspondence with the edges of

the graph GZ3 .
Let P be a polycube and f be a 2-cell, f is an external 2-cell of P if and only

if f belongs to exactly one 3-cell of P . The union of the external 2-cells of P is
the topological boundary of P . We denote it by ∂P .

Now, the graphtheoretical boundary of P , denoted by ∂PG , is the graph whose
vertices are the external 2-cells and such that {e1, e2} is an edge of ∂PG if and
only if:

– the 2-cells e1 and e2 share a 1-cell a.
– the 3-cells c1, c2 of P which contain respectively e1 and e2 do not verify
c1 ∩ c2 = a .

This second condition asserts that a 1-cell is the inner edge of at most one
domino.

3 Tiling on the Boundary

Let H be the convex hull of all the permutations of the vector (−1,−1/2, 0,
1/2, 1) and P be the image of H under the canonical projection π : (x1, x2, x3,
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x4) �−→ (x1, x2, x3). P is a permutohedron (see fig.1). It is known that P tiles
the space. Let T be the tiling of the space by translated copies of permutohedra
which has a permutohedron centered on the origin (see fig. 2). Let E be the 1-
skeleton (the union of its 1-cells) of this tiling. The set E allows us to bijectively
associate each 3-cell c to a hexagon (c ∩ E ) in such a way that two hexagons
share a 1-cell if and only if their associated 3-cells share a 2-cell. In a sense, we
build a derived cellular complex.

Fig. 1. A centered permutohedron

More explicitly, we can define E from the following 16 points (on the top of
the figure):

p1 = (−1/2, 0, 1), p2 = (1, 1/2, 0), p3 = (1/2, 1, 0),
p4 = (−1, 0, 1/2), p5 = (1, 0, 1/2), p6 = (−1, 1/2, 0),
p7 = (0, 1, 1/2), p8 = (−1/2, 1, 0), p9 = (1/2, 0, 1),
p10 = (−1,−1/2, 0), p11 = (−1/2,−1, 0), p12 = (0, 1/2, 1),
p13 = (1/2,−1, 0), p14 = (1,−1/2, 0), p15 = (0,−1/2, 1),
p16 = (0,−1, 1/2).

First of all, we build the following four hexagons:

h1 = [p5, p9] ∪ [p9, p12] ∪ [p12, p7] ∪ [p7, p3] ∪ [p3, p2] ∪ [p2, p5]

h2 = [p12, p7] ∪ [p7, p8] ∪ [p8, p6] ∪ [p6, p4] ∪ [p4, p1] ∪ [p1, p12]

h3 = [p5, p9] ∪ [p9, p15] ∪ [p15, p16] ∪ [p16, p13] ∪ [p13, p14] ∪ [p14, p5]

h4 = [p1, p4] ∪ [p4, p10] ∪ [p10, p11] ∪ [p11, p16] ∪ [p16, p15] ∪ [p15, p1] .

Then, using the following map t from Z3 to {1, 2, 3, 4}:

t ((a1, a2, a3)) =

⎧⎪⎪⎨⎪⎪⎩
1 if a1 + a3 and a2 + a3 even
2 if a1 + a3 odd and a2 + a3 even
3 if a1 + a3 even and a2 + a3 odd
4 if a1 + a3 and a2 + a3 odd
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We can write: E =
⋃

(a1,a2,a3)∈Z3

τ(a1,a2,a3)h
t((a1,a2,a3)) where τ(a1,a2,a3) denotes

the translation of vector (a1, a2, a3) (see fig. 2). As we have done for the bound-
ary, we can put a structure of graph on E . The vertices of EG are the vertices of
all the hexagons. Let v and v′ be two vertices of EG , the set {v, v′} is an edge of
EG if and only if the segment [v, v′] belongs to a hexagon.

Fig. 2. Space tiling by permutohedra

In the following theorem, we deal with the natural bicoloration of the 3-cells.
In order to do that, we recall that the adjacency graph of the 3-cells is bipartite
and so, we can partition its vertices (3-cells) into two classes: the white 3-cells
which are those in position (i, j, k) where i + j + k = 0 mod 2 and the black
3-cells which are the others. Moreover, we color each edge e of EG in blue if e
belongs to a cycle of length 4, otherwise we color the edge in yellow (see fig 3.).
This is the cycle edge-coloration.

We notice that all the permutohedra of the tiling are colored identically.
The set E ∩ ∂P is composed by the edges of the hexagons of E “visible” on

the boundary of P . Let G be the graph whose edges are the edges of EG . We
denote by (E ∩ ∂P )G the graph where we have split each vertex of degree 4, in
two new vertices of degree 2 in the following way: if a vertex v has degree 4, it
is the middle of a 1-cell which is the intersection of two 3-cells c1 and c2. In the
new graph, the 1-cells of c1 linked to v are now linked to v1 and the 1-cell of c2
are now linked to v2 (see fig. 4).

We have the following theorem:

Theorem 1. For every polycube P , the graph (E ∩ ∂P )G is a union of disjoint
elementary cycles of even length (fig. 5).

Proof. By definition, each edge a of (E ∩ ∂P )G belongs to exactly one 3-cell c of
P . We are going to define from the bicoloration of the 3-cells and the coloration
of EG , a new coloration in green and red for the edges of EG ∩ ∂PG as follows:



634 O. Bodini and S. Lefranc

Fig. 3. Coloration of the edges (in bold, the blue edges)

V V1

V2

Fig. 4. Split of the vertex v

– if the 3-cell c is black and a is yellow (resp. blue) then a is red (resp. green)
for the new coloration.

– if the 3-cell c is white and a is yellow (resp. blue) then a is green (resp. red).

Then, Two adjacent edges e1 and e2 have always different colors. Indeed, if they
belongs to a same 3-cell, it is clear. Otherwise, they belongs to different 3-cells
sharing a 1-face f . We denote by e the edge belonging to f . Clearly, e1 (resp.
e2) has not the same color than e for the cycle edge-coloration. So, e1 and e2
have the same color for the cycle edge-coloration. As they belongs to adjacent
3-cells, it follows that they have different colors for the new coloration. Finally,
this graph is 2-regular, the theorem is proved.

Corollary 1. The boundary of a polycube P is tilable by dominoes.

Proof. As (E ∩ ∂P )G admits a perfect matching, by duality edge-vertex, ∂P
admits a tiling by dominoes. Actually, there are at least 2c different tilings
where c is the number of even cycles on the boundary. Indeed, there is at least
two different ways to tile the squares covered by each even cycle.
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Fig. 5. Even cycles on the boundary of a polycube

4 Graphtheoretical h-Connectivity Conditions and Main
Theorem

Let us recall that a graph G is h-connected if the deletion of every set of h− 1
vertices does not disconnect G. Let X be a subset of vertices of G. We denote by
Γ (X) the set of adjacent vertices of X . We give in this section a new criterion
of graphtheoretical h-connectivity which uses only connected subgraphs of G.

Theorem 2. (Sufficient condition of graphtheoretical h-connectivity). Let G be
a connected graph such that for every 1 ≤ i ≤ h−1 and every connected subgraph
induced by a set X of i vertices, the graph induced by Γ (X)\X is connected, then
G is h-connected.

Proof. Let G be a graph verifying the previous hypotheses and let us suppose
that there exists a set D = {v1, ..., vh−1} which disconnects this graph. Let p, q
be two vertices which do not belong to the same connected component of G\D.
There exists in G a path:

C = ({p = s1, s2}, ..., {sk−1, q = sk})

linking p and q such that:

I = min
1≤i≤k−1

{i such that si /∈ D and si+1 ∈ D}

is maximal. Let

J = min
I+1≤i≤k

{i such that si−1 ∈ D and si /∈ D} ,

then sI+1 and sJ−1 belong to the same connected component D′ of the subgraph
induced by D. From the hypotheses, the graph induced by Γ (D′) \D′ contains a
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path C′ = ({sI , s
′
2}, ..., {s′m−1, sJ}) linking sI and sJ . This path has no vertex

belonging to D. So, the path

({p, s2}, ..., {sI−1, sI}, {sI , s
′
2}, ..., {s′m−1, sJ}, {sJ , sJ+1}..., {sk−1, q})

links p and q. This is in contradiction with the maximality of I.

A separating set of a graph G is a set of vertices of G whose deletion disconnects
G. We have the following variant of the theorem 2:

Theorem 3. (graphtheoretical h-connectivity criterion for the graphs having a
minimum separating set which is connected). Let G be a graph having a minimum
separating set which is connected. Suppose that for every 1 ≤ i ≤ h−1 and every
connected subgraph induced by a set X of i vertices, the graph induced by G\X
is connected, then G is h-connected.

Proof. Let us suppose that there exists a minimum connected separating set
D = {v1, ..., vh−1} for G. Let p, q be two vertices which do not belong to
the same connected component of G\D. There exists in G a path C = ({p =
s1, s2}, ..., {sk−1, q = sk}) linking p with q and this path uses at least one vertex
of D. Let sI be the first vertex of C such that sI+1 ∈ D and sT the last vertex
of C such that sT−1 ∈ D . As sI and sT belong to G\D, there exists a path C′

linking sI and sT . This path has no vertex belonging to D. So, we obtain a path
linking p and q. This is a contradiction.

Now, let us come back to the boundary of a polycube. In fact, to solve our
problem, we deal with a variant of this criterion.

Let F be a set of external 2-cells of a polycube P , we denote by NT (F ) the
set of all external 2-cells which touch F .

Lemma 1. Let G be the adjacency graph of the external 2-cells of a polycube,
then for every i, 1 ≤ i ≤ 3, and every topologically connected subgraph F with i
2-cells, the graph induced by NT (F ) \F is connected.

Proof. To disconnect the boundary, a connected subset S has to contain a closed
curve which is non contractible on S (It separates the components). Clearly, this
is not possible with less than four 2-cells.

Corollary 2. The graph ∂PG is 4-connected.

Proof. Let P be a polycube verifying the previous hypotheses and let us suppose
that there exists a setD = {v1, v2, v3} which disconnects it. Let p, q be two exter-
nal 2-cells which do not belong to the same topological connected component of
∂P/D. There exists in ∂PG a path C = ({p = s1, s2}, ..., {sk−1, q = sk}) linking
p and q such that I = min

1≤i≤k−1
{i such that si /∈ D and si+1 ∈ D} is maximal.

Let
J = min

I+1≤i≤k
{i such that si−1 ∈ D and si /∈ D} ,
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then sI and sJ belong to the same topological connected componentD′ of the set
D. From the Lemma 1, NT (D′) \D′ contains a path C′ = ({sI , s

′
2}, ..., {s′m, sJ})

linking sI and sJ . This path does not have any vertex belonging to D. Then,
the path

({p, s2}, ..., {sI−1, sI}, {sI , s
′
2}, ..., {s′m, sJ}, {sJ , sJ+1}..., {sk−1, q})

links p and q. This is in contradiction with the maximality of I.

Lemma 2. Let P be a spherical polycube, then the graph ∂PG is planar.

Proof. By definition, we can represent this graph on a sphere. It suffices to do a
stereographic projection from the center of a 2-cell of the polycube.

Theorem 4. The adjacency graph of the external 2-cells of a spherical polycube
has a Hamiltonian cycle.

Proof. This graph is 4-connected and planar. So, the Theorem of Tutte [13]
asserts that there exists a Hamiltonian cycle.

Let us notice that the theorem 3.2 is an easy consequence of this result. Indeed,
we have a even number of external 2-cells. So, we can split the Hamiltonian
cycle into couples of adjacent external 2-cells. This clearly involves a tiling of
the boundary by dominoes.

Now, let us generalize this statement. We consider a sphere S subdivided into
simply connected subsets called cells such that:

– each cell has four neighbors.
– two non-disjointed cells share a simple arc of curve.

We call this cellular complex a 4-regular subdivision of the sphere. So, the adja-
cency graph of a 4-regular subdivision of the sphere is without loop nor multiple
edge. Moreover, it is 4-regular.

Lemma 3. Less than 4 cells can not disconnect the sphere.

Proof. It is clear that one or two cells can not disjointed the sphere. Let C be the
union of 3 connected cells which disconnects the sphere. Let T be the adjacency
graph of one of the connected components of S \C. The sum of the degree of T
is 4n − 3 (n the number of vertices of T ) which obviously can not be equal to
2m (m the number of edges). By contradiction, we have the lemma.

Theorem 5. The adjacency graph of the cells of a 4-regular subdivision of the
sphere has a Hamiltonian cycle.

Proof. This graph is 4-connected and planar. So, the Theorem of Tutte [13]
asserts that there exists a Hamiltonian cycle.

Remark 1. The proofs of Theorem 4.6 and 4.8 do not provide any hint to algo-
rithmically build the Hamiltonian cycle. This problem seems to be NP-complete
as in the general case.

Conjecture 1. The adjacency graph of the external 2-cells of a connected poly-
cube has a Hamiltonian cycle.
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Abstract. A new digital hyperplane recognition method is presented.
This algorithm allows the recognition of Standard and Supercover hy-
perplanes by incrementally computing in a dual space the generalized
preimage of a given hypervoxel set. Each point in this preimage corre-
sponds to a Euclidean hyperplane which intersects all given hypervoxels.
An advantage of the generalized preimage is that it does not depend on
the hypervoxel locations. Moreover, the proposed recognition algorithm
does not require the hypervoxels to be connected or ordered in any way.

1 Introduction

In digital geometry, objects are usually considered as digital point or hypervoxel
(pixels in 2D and voxels in 3D) sets. Indeed, this is the structural decomposition
mostly used to store digital information. A drawback of this kind of represen-
tation is that it does not provide any information on the shape or topology of
digital objects. Another way of obtaining the description of digital objects is the
hyperplane decomposition. This process, called digital hyperplane recognition,
consists of determining if a digital point set forms a hyperplane segment, that is
a hyperplane bounded region.

The recognition problem has so far mainly been studied in dimensions 2 and 3
(see [1] for an overview on 2D recognition algorithms), with various approaches
such as linear programming techniques [2, 3], computational geometry meth-
ods [4,5,6] or preimage computation based algorithms [7]. Very few papers handle
the problem in arbitrary dimensions [8,9]. Computational and efficiency aspects
of digital hyperplane recognition problems are investigated in [10].

In this paper, we are interested in preimage based approaches for the recogni-
tion of Standard and Supercover analytical hyperplanes. Informally, the preim-
age [11] of a hypervoxel set consists of all Euclidean hyperplanes the digitization
of which contains the given hypervoxels. More precisely, the preimage of a hy-
pervoxel set is computed in a dual space where each point is mapped onto a
Euclidean hyperplane. Preimage computation algorithms depending on the hy-
pervoxel locations have been proposed in dimensions 2 and 3 [7, 12].

In this work, we perform the recognition of Standard and Supercover digital
hyperplanes by computing the set of Euclidean hyperplanes which intersect a
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given hypervoxel set. In order to do that, we incrementally compute the general-
ized preimage of the hypervoxels, which is a preimage defined in any dimension
and independent of the hypervoxel connectivity and location. This preimage is
computed from the dual of each hypervoxel. Indeed, each point in this dual ob-
ject corresponds to a Euclidean hyperplane which cuts the hypervoxel. Hence, a
major part of this paper is devoted to determining the formulas describing the
dual of a hypervoxel. First, a positive and a negative extrusion are defined. Then,
we show that the dual of a hypervoxel can be computed from the extrusions of
the dual of its vertices. Finally, the intersection of all hypervoxel duals forms
the generalized preimage. The recognition process consists therefore simply in
computing the generalized preimage of a hypervoxel set (i.e. computing the dual
of a hypervoxel set). More precisely, we start with a hypervoxel dual and add
hypervoxel duals as long as the generalized preimage is not empty.

In Section 2, we introduce our notations and definitions as well as the Stan-
dard and Supercover analytical hyperplane descriptions. In Section 3, we deter-
mine the dual of a hypervoxel. The generalized preimage of a hypervoxel set
is introduced in Section 4. Then, we explain how the Standard and Supercover
hyperplane recognition algorithm works. We also provide some hints on how the
computational efficiency can be increased thanks to a particular hypervoxel dual
description. Conclusion and future works are proposed in Section 5.

2 Preliminaries

In this section, we first propose some notations and give the definition of a
hypercube. Then, we present the two digitization models considered in this work
that are the Standard model and the Supercover model.

2.1 Notations and Definitions

Let n ∈ Z, n > 0. In the following, we will denote by En the classi-
cal n-dimensional Euclidean space, and by �1, k� the subset of integer values
{1, . . . , k} ⊂ Z. We define an α-hypercube, α ∈ R, as follows:

Definition 1 (α-Hypercube). The hypercube (or n-dimensional cube) cen-
tered on (c1, . . . , cn) ∈ Rn, with size α ∈ R, is the set of points (x1, . . . , xn) ∈ Rn

verifying
∀i ∈ �1, n�, ci −

α

2
≤ xi ≤ ci +

α

2

Let p ∈ Zn be a point with integer-valued coordinates, also called digital point.
We call hypervoxel a unit-size hypercube centered on a digital point. Hypervoxels
in dimensions 2 and 3 are respectively called pixels and voxels.

2.2 The Standard and Supercover Analytical Models

The Standard model [13] and Supercover model [14,15] are both digital analyti-
cal models, defined in any dimension, which provide a digitization of Euclidean
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objects. Moreover, the Standard model is the only one that allows, in dimen-
sion n, the (n− 1)-connected digitization of any linear object of Rn.

Standard and Supercover hyperplanes (or n-dimensional planes) are defined
analytically as follows (see Figure 1):

Definition 2 (Standard Hyperplane [13]). The Standard hyperplane with
parameters (c0, . . . , cn) ∈ Rn+1 is the set of points (x1, . . . , xn) ∈ Zn verifying

−
∑n

i=1 |ci|
2

≤ c0 +
n∑

i=1

cixi <

∑n
i=1 |ci|
2

where c1 ≥ 0, or c1 = 0 and c2 ≥ 0, or . . . , or c1 = c2 = . . . = cn−1 = 0
and cn ≥ 0.

Definition 3 (Supercover Hyperplane [15]). The Supercover hyperplane
with parameters (c0, . . . , cn)∈Rn+1 is the set of points (x1, . . . , xn)∈Zn verifying

−
∑n

i=1 |ci|
2

≤ c0 +
n∑

i=1

cixi ≤
∑n

i=1 |ci|
2

X2

X1

3 X1 − 7 X   2  = 0 

(a) (b)

Fig. 1. Standard and Supercover hyperplane examples in dimensions 2 and 3: (a) The
Supercover and Standard lines with parameters (0, 3,−7). The pixel colored in white
does not belong to the Standard line (pixels colored in grey) but belongs to the Super-
cover one, (b) The Standard plane with parameters (0, 3,−1, 2)

Remark 1. The Supercover digitization of a Euclidean hyperplane also consists
of all hypervoxels which are intersected by the hyperplane, whereas the Standard
one consists of all hypervoxels cut by the hyperplane except when a hypervoxel
vertex is intersected (see Figure 1a). In this case, several hypervoxels adjacent
to this vertex do not belong to the Standard digitization. This is due to the fact
that one inequality in Definition 2 is strict.

3 Dual of a Hypervoxel

We use a dual transformation similar to the well known Hough transform which is
an efficient tool usually used in image processing to recognize parametric shapes
in an image. A review on existing variations of this method is presented in [16].
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In the two following sections, we first define the parameter space in which our
dual transformation is performed. Then, we describe the dual of a hypervoxel,
which is the basis of the recognition algorithm presented in Section 4.

3.1 Parameter Space: Definition and Properties

In this work, we use the n-dimensional parameter space Pn ⊂ Rn, and define
the two functions DE : En → Pn and DP : Pn → En by:

DE(x1, . . . , xn) =

{
(y1, . . . , yn) ∈ Pn|yn = −

n−1∑
i=1

xiyi + xn

}

DP(y1, . . . , yn) =

{
(x1, . . . , xn) ∈ En|xn =

n−1∑
i=1

yixi + yn

}
Informally, each point in En (resp. Pn) is transformed by DE (resp. DP) into

a hyperplane in Pn (resp. En). In the rest of this paper, we will generically write
Dual for DE or DP .

Let O be a subset of Rn. Then, Dual(O) =
⋃

p∈O Dual(p) is called the dual
of O. Let O1 and O2 be two subsets of Rn such that O1 ⊆ O2. It is clear that
Dual(O1) ⊆ Dual(O2). Moreover, the following properties can be deduced from
our definition of the duality.

Proposition 1. Let O1 and O2 be two subsets of Rn. Then,

Dual(O1 ∪O2) = Dual(O1) ∪Dual(O2) (1)

Dual(O1 ∩O2) ⊆ Dual(O1) ∩Dual(O2) (2)

Proof. (1): Dual(O1 ∪ O2) =
⋃

p∈O1∪O2
Dual(p) =[⋃

p∈O1
Dual(p)

]
∪
[⋃

p∈O2
Dual(p)

]
= Dual(O1) ∪Dual(O2).

(2): Since O1 ∩ O2 ⊆ O1 and O1 ∩ O2 ⊆ O2, we deduce
that Dual(O1 ∩O2) ⊆ Dual(O1) and Dual(O1 ∩ O2) ⊆ Dual(O2). Thus,
Dual(O1 ∩O2) ⊆ Dual(O1) ∩Dual(O2). ��

Property 1. Let p ∈ Rn be a point. The dual of each point which lies in Dual(p)
is a hyperplane which passes through p.

3.2 Hypervoxel Dual Representation

In this work, we need to define the dual of a hypervoxel. We first define the
positive and negative extrusions of a point.

Definition 4 (Positive and Negative Extrusions). Let p = (x1, . . . , xn) ∈
Rn be a point. The positive extrusion of p is defined by:
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p+ = {p′ = (x′1, . . . , x
′
n) ∈ Rn|∀i ∈ �1, n− 1�, xi = x′i and xn ≤ x′n}

In the same way, the negative extrusion of p is defined by:

p− = {p′ = (x′1, . . . , x
′
n) ∈ Rn|∀i ∈ �1, n− 1�, xi = x′i and xn ≥ x′n}

Let O1 and O2 be two subsets of Rn such that O1 ⊆ O2. Then, O+
1 ⊆ O+

2 and
O−

1 ⊆ O−
2 . Moreover, the following properties can be deduced from Definition 4.

Proposition 2. Let O1 and O2 be two subsets of Rn. Then,

(O1 ∪O2)+ = O+
1 ∪O+

2

In the same way, (O1 ∪O2)− = O−
1 ∪O−

2 .

Proof. (O1∪O2)+ =
⋃

p∈O1∪O2
p+ =

[⋃
p∈O1

p+
]
∪
[⋃

p∈O2
p+
]

= O+
1 ∪O+

2 . The

proof of (O1 ∪O2)− = O−
1 ∪O−

2 is obtained in the same way. ��

Proposition 3. Let p ∈ Rn be a point. Then,

Dual(p)+ = Dual(p+)

In the same way, Dual(p)− = Dual(p−).

Proof. Let us consider p = (x1, . . . , xn) ∈ En. Then, Dual(p+) = DE(p+) =

⋃
p′∈p+

Dual(p′) =
⋃

p′=(x′
1,...,x′

n)∈p+

{(y1, . . . , yn) ∈ Pn|yn = −
n−1∑
i=1

x′iyi + x′n} =

{(y1, . . . , yn) ∈ Pn|yn ≥ −
n−1∑
i=1

xiyi + xn} =
⋃

p′∈DE(p)

p′+ = DE(p)+ = Dual(p)+.

The proof of Dual(p)− = Dual(p−) can be obtained in the same way. ��

Proposition 3 is illustrated in Figure 2.

pp
Dual(p)

Dual(p)

(a) (b)

Fig. 2. Positive and negative extrusions of a point p (half-lines) and their dual object:
a half-space, (a) Positive extrusion of p, (b) Negative extrusion
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Proposition 4. Let H be a hypervoxel. Then,

Dual(H) = Dual(H)+ ∩Dual(H)−

Proof. In the following, we assume that H ∈ En. Since Dual(H) ⊆ Dual(H)+

and Dual(H) ⊆ Dual(H)−, we deduce that Dual(H) ⊆ Dual(H)+∩Dual(H)−.
We now prove that Dual(H)+ ∩ Dual(H)− ⊆ Dual(H). Consider a point

p = (x1, . . . , xn) ∈ Dual(H)+∩Dual(H)−. Then, there exists p′ = (x′1, . . . , x
′
n) ∈

Dual(H) such that p ∈ p′+ and there exists p′′ = (x′′1 , . . . , x′′n) ∈ Dual(H) such
that p ∈ p′′−. We deduce that ∀i ∈ �1, n− 1�, x′i = xi = x′′i and x′n ≤ xn ≤ x′′n.

Next we prove that Dual(p)∩H �= ∅, which would imply p ∈ Dual(H). Since
p′ ∈ Dual(H) and p′′ ∈ Dual(H), we haveDual(p′)∩H �= ∅ and Dual(p′′)∩H �=
∅. Let q′ = (q′1, . . . , q

′
n) ∈ Dual(p′) ∩H and q′′ = (q′′1 , . . . , q

′′
n) ∈ Dual(p′′) ∩H .

Then, we have

q′n =
n−1∑
i=1

xiq
′
i + x′n and q′′n =

n−1∑
i=1

xiq
′′
i + x′′n

Since x′n ≤ xn ≤ x′′n, we deduce that

q′n ≤
n−1∑
i=1

xiq
′
i + xn and q′′n ≥

n−1∑
i=1

xiq
′′
i + xn

Thus, Dual(p)∩[q′, q′′] �= ∅. Finally, since H is convex we know that [q′, q′′] ⊂ H .
We then deduce that Dual(p) ∩H �= ∅. ��

Let us now describe the dual of a hypervoxel from its vertices. Let H be a
hypervoxel centered on (c1, . . . , cn) ∈ Zn and let V be the set of its 2n vertices.
We define two subsets of V with cardinality 2n−1 as follows:

V+ =
{
v = (x1, . . . , xn) ∈ V|xn = cn +

1
2

}

V− =
{
v = (x1, . . . , xn) ∈ V|xn = cn −

1
2

}
The dual of a hypervoxel can then be defined by:

Theorem 1 (Dual of a Hypervoxel). Let H be a hypervoxel, V+ and V− the
two vertex sets defined previously. Then:

Dual(H) =

⎡⎣ ⋃
v∈V−

Dual(v)+

⎤⎦ ∩
⎡⎣ ⋃

v∈V+

Dual(v)−

⎤⎦
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Proof. We assume that H is centered on (c1, . . . , cn) ∈ Zn. Let us first prove that
Dual(H+) = Dual(V+

−), and then that Dual(H)+ = Dual(V−)+. The proof of
Dual(H−) = Dual(V−

+ ) can be obtained in the same way.
The convex hull of the vertices in V− is defined by

C = {(x1, . . . , xn)|∀i ∈ �1, n− 1�, ci − 1
2 ≤ xi ≤ ci + 1

2 and xn = ci − 1
2}.

We can deduce from Definition 4 that H+ = C+. Then, let us prove that
Dual(C+) = Dual(V+

−). Specifically, we know that V− ⊂ C. Then, V+
− ⊂ C+

and thus Dual(V+
−) ⊆ Dual(C+). Next we show that Dual(C+) ⊆ Dual(V+

−).
Let p ∈ Dual(C+). Then, Dual(p) ∩ C+ �= ∅. We need to prove that there

exists v ∈ V− such that Dual(p) ∩ v+ �= ∅. We proceed by contradiction and
assume that ∀v ∈ V−, Dual(p)∩v+ = ∅. Since C is the convex hull of the vertices
in V−, we can deduce that C+ is the convex hull of the points in V+

− . Hence, since
Dual(p) is a hyperplane, we deduce that Dual(p) ∩ C+ = ∅. ��
An illustration of Proposition 1 and Theorem 1 is given in Figure 3.

(a) (b) (c) (d)

Fig. 3. (a) A pixel H , (b) Illustration of Dual(H)− (= Dual(H−)), (c) Illustration of
Dual(H)+ (= Dual(H+)), (d) Dual of H

Theorem 1 allows us to compute the dual of a hypervoxel from its vertices.
The dual of a hypervoxel can also be described as the union of several open
polytopes.

Let S = {−1, 1} and let R : S → {R−,R+} be the function defined by:
R(−1) = R− and R(1) = R+. Moreover, let s = (s1, . . . , sn−1) ∈ Sn−1. We
denote by Rs the Cartesian product R(s1) × . . . × R(sn−1). A partition of Rn

can thus be defined by:
Rn =

⋃
s∈Sn−1

(Rs × R)

Let H be a hypervoxel centered on (c1, . . . , cn) ∈ Zn. We denote by vs
− the

vertex of H with coordinates (c1 + 1
2s1, . . . , c1 + 1

2sn−1, cn − 1
2 ) and by v−s

+ the
vertex with coordinates (c1 − 1

2s1, . . . , c1 −
1
2sn−1, cn + 1

2 ). Then, we have the
following property:

Corollary 1 (Hypervoxel Dual Decomposition). Let H be a hypervoxel.
Then,

Dual(H) =
⋃

s∈Sn−1

[
(Rs × R) ∩Dual(vs

−)+ ∩Dual(v−s
+ )−

]
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Proof. Let us assume that H ⊂ En. We know that
∀s ∈ Sn−1,

[
(Rs × R) ∩Dual(vs

−)+ ∩Dual(vs
+)−

]
⊂ Dual(vs

−)+ ∩Dual(vs
+)−.

Hence, since Dual(vs−)+ ∩ Dual(vs
+)− ⊂ Dual(V−)+ ∩ Dual(V+)−, we deduce

from Theorem 1 that
∀s ∈ Sn−1,

[
(Rs × R) ∩Dual(vs

−)+ ∩Dual(vs
+)−

]
⊂ Dual(H). Let us prove the

reverse inclusion.
Let p = (x1, . . . , xn) ∈ Dual(H). Then, there exists s = (s1, . . . , sn−1) ∈ Sn−1

such that p ∈ Rs. Moreover, by Theorem 1 it follows that ∀v = (v1, . . . , vn) ∈
V−, xn ≥

∑n−1
i=1 −vixi + vn, and ∀v = (v1, . . . , vn) ∈ V−, xn ≤

∑n−1
i=1 −vixi + vn.

However, since p ∈ Rs, and thus xi ∈ R(si), we deduce that −(ci + 1
2si)xi ≤

−(ci − 1
2si)xi. Hence, p verifies the following inequalities: xn ≤

∑n−1
i=1 −(ci −

1
2si)xi + cn + 1

2 and xn ≥
∑n−1

i=1 −(ci + 1
2si)xi + cn − 1

2 . We get that p ∈
Dual(vs

−)+ ∩Dual(v−s
+ )−. ��

Corollary 1 allows the decomposition of the dual of a hypervoxel into 2n−1 open
polytopes bounded by the hyperplanes which are the duals of the hypervoxel
vertices (see Figure 4).

7
5

8
6

2

4

1
3

12

3 4

21

3 4

4
2

3

1

5

7 8

6

(a) (b)

Fig. 4. Hypervoxel dual examples. Numbering shows the correspondence between the
vertices of a pixel (resp. voxel) and the lines (resp. planes) forming the border of its
dual: (a) Dual of the pixel centered on (0, 0), (b) Dual of the voxel centered on (0, 0, 0).

4 Standard and Supercover Hyperplane Recognition

In this section, we present our Standard and Supercover hyperplane recognition
algorithm. The aim is to determine if a hypervoxel set belongs to a Standard or
Supercover digital hyperplane. The idea of our algorithm is to compute the set
of Euclidean hyperplanes (if it exists) which cross the given hypervoxels. Each
hyperplane in this set is the dual of a point in the parameter space which belongs
to a particular polytope. We call this polytope the generalized preimage of the
hypervoxels. Then, based on the shape (empty or not) of this preimage, we can
deduce if the hypervoxel set belongs or not to a Standard or Supercover hyper-
plane. In the following, we first give the definition of the generalized preimage.
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Then, we detail our recognition algorithm, and give some simplifications we can
apply on it in order to improve its complexity.

4.1 The Notion of Generalized Preimage

As said previously, each point in the generalized preimage of a hypervoxel set H
is the dual of a Euclidean hyperplane which cuts all hypervoxels of H. We define
the generalized preimage of a hypervoxel set as follows:

Definition 5 (Generalized Preimage). Let H = (H1, . . . , Hk) be a set of
k hypervoxels, and let Dual(Hi), i ∈ �1, k�, be the dual of Hi in the parameter
space. The generalized preimage GP of H is defined by:

GP (H) =
k⋂

i=1

Dual(Hi)

Note that the Standard digitization of many hyperplanes in the dual of the gener-
alized preimage does not contain the given hypervoxels (see Remark 1). However,
we know that incorrect hyperplanes are located on the border of the generalized
preimage (because these hyperplanes cross hypervoxel vertices). Thus, in order
to obtain a correct hyperplane, it is sufficient to choose a point which is not on
the generalized preimage border.

In the following, we will assume that a generalized preimage which is not
empty is not either reduced to m-dimensional subspace segments, m < n.

4.2 Recognition Algorithm

Let H = {H1, . . . , Hk} be a set of k hypervoxels. The Standard and Supercover
hyperplane recognition (see Algorithm 1) is simply performed by computing
the generalized preimage GP of H. First, GP (H1), i.e. the dual of H1, is com-
puted according to the hypervoxel dual definition given by Theorem 1. Then,
GP ({H1, H2}) is computed from the intersection of GP (H1) and Dual(H2). And
so on until GP ({H1, . . . , Hk}) is computed or GP becomes empty. Note that the
hypervoxels can be considered in any order, and do not need to be connected.
Figure 5 illustrates the recognition process in dimension 2. A 3D generalized
preimage example is shown in Figure 6.

To perform the intersection operations, a first naive approach is to intersect
directly the generalized preimage and each hypervoxel dual. It is not an efficient
method since the dual of a hypervoxel is an open concave polytope. However,
Corollary 1 allows us to compute the generalized preimage of a hypervoxel set
by simply computing intersections of convex polytopes and hyperplanes.

Let k be the number of given hypervoxels. These improvements lead to a
complexity for our algorithm ofO(k) in dimension 2 when applied on 4-connected
curves [17]. Indeed, the generalized preimage of a pixel set is a polygone with
at most four edges [11,18]. In dimension 3 [19,20] and higher, the complexity is
O(k2) in the worst case.
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Algorithm 1. Standard and Supercover hyperplane recognition algorithm
Data: A set H of k hypervoxels H1, . . . , Hk.
begin

GP ←− Dual(H1);
i ←− 2;
while GP = ∅ and i ≤ n do

GP ←− GP ∩Dual(Hi);
i ←− i + 1;

if GP = ∅ then
H belongs to a Standard and Supercover hyperplane.

else
H does not belong to a Standard or Supercover hyperplane.

end

3 4

21

3

4

2

1

Fig. 5. Example of 2D generalized preimage computation

(a) (b) (c) (d)

Fig. 6. Example of 3D generalized preimage: (a) A voxel set V , (b) Corresponding
generalized preimage GP (V ) and its barycenter B (back point), (c) and (d) Result of
the intersection operation between V and Dual(B). Remark that Dual(B) does not
cross any voxel vertex of V since B does not lie on the border of GP (V )
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5 Conclusion and Future Works

In this article, a new Standard and Supercover hyperplane recognition algorithm
in arbitrary dimension has been presented. This algorithm determines if a given
hypervoxel set belongs to a Standard or Supercover hyperplane by providing the
set of Euclidean hyperplanes which cut all hypervoxels. This set is deduced from
the computation in a dual space of the generalized preimage of the hypervoxels.
This preimage is defined as the intersection of the duals of the hypervoxels. A
description of the dual of a hypervoxel is given in order to increase the preimage
computation efficiency. The recognition algorithm does not require given hyper-
voxels to be connected. Moreover, during the recognition process, hypervoxels
can be considered in any order.

The results proposed in this paper are very general. They allow many exten-
sions. For instance, the hypercubes in the recognition process are not required to
have the same size. This can easily lead to recognition algorithms in multi-scale
grids or heterogeneous grids. We focused in this paper on the dual of a hyper-
voxel but as long as the cell is convex we can compute its dual object. We can
therefore also propose recognition algorithms in grids which are not based on
hypercubes. The recognition algorithm can also be adapted to recognize other
types of hyperplanes than Standard or Supercover analytical hyperplanes. In-
deed, for each digital analytical model, there is a distance and/or a unit ball
associated to the definition. For instance, for the Naive model [21] in 3D, it is
the distance d1 and the ball is an octahedron. This makes the general definition
of the dual in dimension n a bit more difficult but nonetheless feasible.
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Abstract. The Distance Transform on Curved Space (DTOCS) calcu-
lates distances along a gray-level height map surface. In this article, the
DTOCS is generalized for surfaces represented as real altitude data in an
anisotropic grid. The distance transform combined with a nearest neigh-
bor transform produces a roughness map showing the average roughness
of image regions in addition to one roughness value for the whole surface.
The method has been tested on profilometer data measured on samples
of different paper grades. The correlation between the new method and
the arithmetic mean deviation of the roughness surface, Sa, for small
wavelengths was strong for all tested paper sample sets, indicating that
the DTOCS measures small scale surface roughness.

1 Introduction

The roughness of a surface is a property that needs to be measured in many ap-
plications, and the application motivating our research is in quality assessment of
paper. Paper roughness has a significant effect on printability, which eventually
defines the quality of the printed product. The roughness of paper is measured
using profilometers, which acquire the real topography of a surface. The ba-
sic idea of profilometers is that they have a stylus, which travels on a surface
measuring its height [1]. The Distance Transform on Curved Space (DTOCS)
measures distances along surfaces represented as gray-level height maps, or range
images, and can be used directly on the profilometer data. Here, the DTOCS
and its locally Euclidean modification, the Weighted DTOCS (WDTOCS) [2]
are generalized to anisotropic profilometer data, and used for estimating sur-
face roughness based on the fact that distance values calculated along a highly
varying surface are larger than distances calculated along a smoother surface.
The presented method combines the DTOCS with the nearest neighbor trans-
form (NNT), and produces a roughness map, which can be used to compare the
roughness of different regions in the same image. In addition, an average rough-
ness value can be calculated to characterize the whole surface. Other approaches
to roughness inspection utilize statistical features, like kurtosis [3], roughness
parameters, Fourier analysis [4], wavelets [5], and fractal dimension [6, 7].

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 651–662, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 DTOCS for Anisotropic Grids

The DTOCS calculates distances along gray-level surfaces, when gray-levels are
understood as height values. Local distances, which are summed along digital
paths to calculate the distance transform, are defined as d(pi, pi−1) = |G(pi) −
G(pi−1)| + 1, where G(p) denotes the gray-value of pixel p, and pi−1 and pi are
subsequent pixels on a path. The WDTOCS produces more accurate distance
values by using the locally Euclidean distance between pixels, and the Optimal
DTOCS [8] improves the distance approximation even further. The DTOCS and
the WDTOCS can be used for profilometer data consisting of real height values
without any changes in the distance definitions. The integer gray-values defining
the height differences are replaced with the floating point altitude data. Alter-
natively, the height data could be represented using units, which can be scaled
to integers, for example, data represented in micrometers could be scaled by 10
and then rounded. However, the accuracy of the measuring device can be fully
exploited by using the floating point data directly. Converting the data to a vol-
ume image and using well known distance transforms in 3D [9] would also require
rounding of the height measurements, and result in an increased problem size.

The scaling of the surface must be carefully considered, when using the
DTOCS. The values of the pixels represent the height, or the z-coordinate, of
the surface represented as a range image. If the resolution in the xy-plane differs
from the resolution in the z-direction, the height differences must be scaled in
order to obtain approximations of true distances along the surface. Scaling in the
horizontal image plane is needed, if the grid of the range image is anisotropic or
rectangular, that is, if the resolution in the x-direction differs from the resolution
in the y-direction. Interpolating additional values in the direction with the lower
resolution would inevitably introduce some error compared to measured data,
and lead to a multifold increase in the image size. Instead, the DTOCS local
distances are generalized as follows:

d(pi, pi−1) =

⎧⎨⎩ rz |G(pi)− G(pi−1)|+ rx , pi−1 neighbor of pi in x-dir.
rz |G(pi)− G(pi−1)|+ ry , pi−1 neighbor of pi in y-dir.
rz |G(pi)− G(pi−1)|+ max(rx, ry) , pi−1 diag. neighbor of pi

(1)

where rz is the scaling factor for the height differences, and rx and ry are the dis-
tances between neighbor pixels in the x- and y-direction, as visualized in Fig. 1.
The factors rx, ry and rz may have any non-negative values, not necessarily inte-
gers. Similarly, the WDTOCS, in which the local distance is calculated using the
Pythagoras’ theorem from the height difference and the horizontal displacement
between the neighbor pixels, can be generalized to rectangular grids as follows:

d(pi, pi−1) =

⎧⎪⎪⎨⎪⎪⎩
√
r2z |G(pi)− G(pi−1)|2 + r2x , pi−1 neighbor of pi in x-dir.√
r2z |G(pi)− G(pi−1)|2 + r2y , pi−1 neighbor of pi in y-dir.√
r2z |G(pi)− G(pi−1)|2 + r2x + r2y , pi−1 diag. neighbor of pi

(2)
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Fig. 1. Local distance definitions for the DTOCS (solid lines) and the WDTOCS
(dashed lines) in an anisotropic grid visualized on a surface of 2 × 2 pixels

0 0 0 0 0

0 0 1 0 0

0 2 2 2 0

0 0 0 0 0

0 0 0 0 0

(a) Original image

3 1 3 6 9

3 0 4 6 9

3 3 5 8 9

4 6 8 10 10

5 7 9 11 11

(b) DTOCS

3.16 1.00 3.16 6.16 9.16

3.00 0.00 3.16 6.32 9.32

3.16 2.24 3.74 6.48 9.49

4.16 4.47 5.98 7.48 10.22

5.16 5.47 6.98 8.48 10.65

(c) WDTOCS

3 1 3 6 9

3 0 3 6 9

3 1 3 6 9

4 2 4 6 10

5 7 5 7 11

(d) Proj. dist. (DTOCS)

3.16 1.00 3.16 6.16 9.16

3.00 0.00 3.00 6.32 9.32

3.16 1.00 3.16 6.16 9.49

4.16 2.00 4.16 6.32 9.32

5.16 3.00 5.16 7.32 9.49

(e) Proj. dist. (WDTOCS)

Fig. 2. Example of the DTOCS, the WDTOCS and the corresponding projection dis-
tances in a rectangular grid, where rx = 3 and ry = 1

12.30 1.32 3.37 1.32
7.91 −0.44 4.25 1.61
1.32 1.61 4.83 6.01
−1.61 7.76 6.15 8.79
2.78 9.08 5.86 10.99

(a) Original image

17.74 2.76 8.81 15.86
13.35 0.00 9.69 15.57
6.76 3.05 10.27 16.45
10.69 10.20 12.59 19.23
16.08 12.52 13.88 22.43

(b) DTOCS

13.73 2.02 6.36 11.77
9.73 0.00 6.85 11.76
5.39 2.28 7.34 12.25
8.31 8.51 8.99 13.79
12.82 10.17 10.03 16.02

(c) WDTOCS

5 1 5 10
5 0 5 10
5 1 5 10
6 2 6 10
7 3 7 11

(d) Proj. dist (DTOCS)

5.10 1.00 5.10 10.10
5.00 0.00 5.00 10.20
5.10 1.00 5.10 10.10
6.10 2.00 6.10 10.20
7.10 3.00 7.10 11.20

(e) Proj. dist (WDTOCS)

Fig. 3. Example of the DTOCS, the WDTOCS, and the corresponding projection
distances on anisotropic profilometer data, where rx = 5 and ry = 1
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A small example, where the step lengths are rx = 3 and ry = 1, and the height
scaling is rz = 1, is shown in Fig. 2. The DTOCS and the WDTOCS calculated
from one reference pixel in the rectangular grid are shown in Fig. 2 (b) and (c).
Fig. 3 demonstrates that the DTOCS and the WDTOCS can be applied also
to images with elongated pixels with floating point values. It can be seen that
the DTOCS produces significantly larger values than the WDTOCS. Adding
the horizontal and vertical displacement in the local distance definition clearly
overestimates the locally Euclidean distance, when the values of neighbor pixels
differ by several units.

The DTOCS and its generalization to anisotropic grids are metrics, that is,
the distances are symmetric, positive definite and fulfill the triangle inequality, as
long as only integer gray-levels and scaling factors are involved [10]. Calculating
floating point distance values, either by using the WDTOCS definition or by
having floating point input data, may result in violations of the metrics criteria,
due to the limited precision available. For example, the least significant bits of
the distance values calculated from pixel p to pixel q and from q to p may differ,
as they are the result of several floating point operations.

The roughness measurement method utilizes normalized distance values. Dis-
tances are divided by the so called projection distance [11]. The projection dis-
tance value of pixel p is the length of the shortest path from p to the nearest
reference pixel projected into the image plane. The local distances are obtained
by removing the effect of the height differences from the DTOCS or WDTOCS
local distances, that is, by setting rz = 0 in Eq. (1) and (2). Fig. 2 (d) and
(e), and Fig. 3 (d) and (e) show the projection distances of the corresponding
DTOCS and WDTOCS images. Dividing the DTOCS or WDTOCS distance val-
ues with the corresponding projection distances result in values indicating the
average height variation along the shortest path to the nearest reference pixel.

3 Distance and Nearest Neighbor Transformation

An efficient priority pixel queue transformation algorithm for calculating the
DTOCS is presented in [14]. It is very similar to the Fast Marching algorithm
for calculating forward propagating level sets [15], but the calculations are sim-
pler, as the DTOCS algorithm is developed directly for the discrete geometry
inherent for digital image processing. The reference pixels, from which distances
are calculated, are enqueued into a minimum heap, from which they are de-
queued in priority order. New distance values are calculated for neighbors of
the dequeued pixel, and subsequently enqueued. The best first approach ensures
that distance values are final when they are dequeued, and propagated further.
The projection distance values are calculated simultaneously with the DTOCS
or the WDTOCS values. The propagation order also enables easy implementa-
tion of the nearest neighbor transformation, which assigns the identity of the
nearest feature pixel to each pixel in the image. The distances and the nearest
site are determined according to the DTOCS, as described in [16]. Unique seed
values assigned to each reference pixel are propagated simultaneously with the
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distance values, so that each pixel gets the seed value of the pixel from which
the distance propagated to it. A similar region growing algorithm for tessellation
of 3D volumes is presented in [17]. The complexity of the pixel queue algorithm
is in O(n lognq), where nq is the length of the queue, which varies throughout
the transformation. As nq 7 n, the algorithm is near-linear, with running times
increasing only slightly with increasing surface complexity [14].

4 Roughness Measurement Using the DTOCS

In the new roughness evaluation method, a distance map is calculated using an
evenly spaced set of reference pixels, or seeds, on the original image. A near-
est neighbor transform is calculated simultaneously to attach each pixel to the
nearest reference pixel. The curved distances within each region are divided by
the corresponding projection distances. The more variation there is around the
seed pixel, the larger are the distances. The averages of the normalized distance
values within each region produce a roughness map of local roughness values.

Fig. 4 illustrates how the roughness measurement method proceeds on a topog-
raphy image. The original surface image, Fig. 4 (a), is 250 pixels wide and 50 pix-
els high, but represents a square surface, a piece of paper of size 2.5mm×2.5mm.

(a) Original image, seeds (b) DTOCS image (c) Proj. distance image

(d) NNT image

DTOCS avg. roughness 1.79

1.69

1.75

1.85
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1.78

1.85

(e) roughness map

WDTOCS avg. roughness 1.40

1.34

1.38

1.44

1.50

1.43

1.37

1.35

1.39

1.46

(f) roughness map

Fig. 4. The phases in the roughness measurement method (a)–(e). Image (f) shows that
WDTOCS roughness values are consistently smaller than DTOCS roughness values.
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This means that one pixel represents a surface area of size 10 μm× 50 μm. The
height values are measured in micrometers, but as the height variation is very
small compared to the horizontal displacements, a factor 10 is added to the height
component to emphasize the variation. The resulting scaling factors for the local
distances are rx =10, ry =50, and rz =10, or in practise, rx =1, ry =5, and rz =1.

As local distances based on gray-values can vary significantly, the nearest
neighbor transformation can result in any shapes of regions around each site.
The region sizes also vary, as the distance propagation covers more pixels in a
smoother area. Seed pixels in areas with higher variation are typically surrounded
by smaller nearest neighbor regions. On a highly varying surface, some seed
values may not propagate at all, if each neighbor of the seed pixel is closer,
or equally close, to one of the surrounding reference pixels. In such cases, the
roughness value is approximated using the average of the distance values in the
8-neighborhood of the seed pixel, plus one. The idea is that distances from the
reference pixel to its neighbors must be greater or equal to the distance between
each neighbor and some other reference pixel. This approximation can make
the method more robust against noise, as a reference pixel differing significantly
from its neighborhood can “borrow” its roughness value from its neighborhood
rather than cause a peak in the roughness map.

5 Roughness Properties

Surface roughness can consist of different scales of variations, as demonstrated
by the example surfaces in Fig. 5. Synthetic surfaces 2, 3 and 4 are very similar
when examined at close range, as they are created by adding the same noise
component to a flat surface, and to surfaces with larger scale Gaussian variations,
or bumps. It is obvious that surface 2 is smoother than surfaces 3 and 4, and
surface 1 with less local variation even smoother. Surface 5 is locally very smooth,
but the larger scale variation is similar as in surface 4. Surfaces 3-5 demonstrate
so called waviness [4], whereas the term roughness refers to the local variation
present in surfaces 1-4. The third roughness property defined in [4] is called
form, and refers to non-frequency components of the surface topography, which
for paper surfaces should be a flat plane. The first four surfaces in Fig. 5 are
clearly in order of increasing roughness. Surface 5 is smoother than surface 4,
but comparison with surface 3 depends on whether waviness or local roughness is
more significant. Alternatively, roughness properties can be classified into three
different roughness classes: 1) Optical roughness at length scales < 1 μm, 2)
Micro roughness at 1 μm - 100 μm and 3) Macro roughness at 0.1 mm - 1
mm. All these three roughness classes affect paper gloss, and micro and macro
roughness also paper uniformity [18].

Roughness is usually defined as a deviation from an ideal, flat reference plane,
where all the surface elements are in the same level. Our distance transform ap-
proach is designed for measuring local or smaller scale roughness, and additional
measures will be needed to extract waviness properties. In the experiments, the
DTOCS roughness measure is compared to the arithmetic mean deviation, Sa,
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Fig. 5. Profiles of example surfaces with different roughness properties

calculated from the so called roughness surface, from which the effect of the
waviness has been removed by filtering. The measured topographies are filtered
using a Gaussian filter in order to extract roughness and waviness surfaces from
the inspected surface. The result of low-pass Gaussian filtering is the waviness
surface, and the roughness surface is extracted from the original surface by sub-
tracting the waviness surface from the original surface, see Fig. 6. The filter is
calculated by a direct convolution of the surface topography with a Gaussian
weighting function S(x, y), which is given by

S(x, y) =
1

βλxcλyc
exp

{
− π

β

[(
x

λxc

)2

+
(

y

λyc

)2]}
, (3)

where x and y are the positions from the center of the weighting function,
(λxc,λyc) are the cutoff wavelengths at 50% attenuation ratio and β = ln2/π [4].
ISO standards recommend cutoff wavelengths 0.08, 0.25, 0.8, 2.5, and 8mm [19].

The roughness surface can be characterized by statistical analysis, 2-D spec-
tral analysis and time series analysis. A statistical roughness parameter, the
arithmetic mean deviation of the surface, Sa, is defined as

 

A profile from the original surface G
A profile from the waviness surface W
A profile from the roughness surface Z

Fig. 6. Profiles from the original, the waviness and the roughness surface
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Sa =
1

NxNy

Ny∑
i=1

Nx∑
j=1

|Z(xj , yi)|, (4)

where Nx and Ny are the number of data points in the x- and y-direction and
Z(x, y) is the height value of the roughness surface in point (x, y). The Sa pa-
rameter is very commonly used in practical applications [4], so obtaining high
correlations between the DTOCS roughness measure and Sa indicates that the
new roughness evaluation method can be useful in practice.

6 Experiments

The roughness of synthetic images, some of which were used as examples in
Fig. 5, were evaluated using the DTOCS and the WDTOCS. The nine original
surfaces in Fig. 7 a) are arranged so that the waviness increases from top to bot-
tom. The first surface is flat, the second one contains Gaussian bumps, and in the
third surface the Gaussian bumps are twice as high or deep. The local roughness
increases from left to right, so surfaces to the left are locally smooth, surfaces
in the middle contain a noise component, and to the right, the noise component
is doubled. The standard deviation of surface height values is indicated above
each image. Fig. 7 (b) shows the DTOCS roughness maps of the corresponding
test surfaces. The WDTOCS roughness maps, not shown due to lack of space,
are visually similar, but with consistently lower roughness values. The intensity
of each region indicates the local roughness value, that is, darker regions lie in
smoother areas of the image. Areas with only local roughness without waviness
can have equally high DTOCS roughness values as areas containing Gaussian

fsurf  std 0.00 fsurfn  std 0.68 fsurfn2  std 1.36 fsurf: roughness 1.00 fsurfn: roughness 1.21 fsurfn2: roughness 1.37

gsurf  std 1.40 gsurfn  std 1.55 gsurfn2  std 1.95 gsurf: roughness 1.06 gsurfn: roughness 1.25 gsurfn2: roughness 1.41

gsurf2  std 2.79 gsurf2n  std 2.87 gsurf2n2  std 3.10 gsurf2: roughness 1.11 gsurf2n: roughness 1.30 gsurf2n2: roughness 1.46

(a) Original surface images (b) DTOCS roughness maps

Fig. 7. Synthetic images and their roughness maps based on a 10 × 10 grid of seeds
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Fig. 8. A sample from test set C, and its DTOCS roughness map

−0.2

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n 

be
tw

ee
n 

D
T

O
C

S
 a

nd
 S

a

Wavelength (mm)

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

Set A    Set B    Set C    Set A−B  Set A−B−C

−0.2

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n 

be
tw

ee
n 

W
D

T
O

C
S

 a
nd

 S
a

Wavelength (mm)

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

2.
50

0.
80

0.
25

0.
08

Set A    Set B    Set C    Set A−B  Set A−B−C

Fig. 9. Correlation values for comparison between Sa and DTOCS or WDTOCS

bumps, as a smooth slope produces only slightly larger distance values than a flat
surface. The average roughness values shown above each surface image increase
only slightly with increasing waviness.

Experiments on real profilometer data were performed using sample sets,
which include a variety of paper samples and cardboard samples. Sample set
A consists of 8 light weight coated paper samples, sample set B of 11 super-
calendered paper samples and sample set C of 8 base cardboard samples. The
first two sample sets, A and B are similar in roughness compared to set C, which
is significantly rougher. Each sample was marked with a 15mm × 15mm mea-
surement area, on which the profilometer measurements were performed. The
resolution in the x-direction is 10μm and the resolution in the y-direction 50μm.
The height value is given in micrometers, that is, rx = 10, ry = 50 and rz = 1.
One sample from the roughest test set C is shown in Fig. 8, visualizing also
the 6 × 6 grid of seed pixels used in the experiments. It can be seen that the
roughness variation is very small within the image, resulting in almost square
regions in the roughness map. The variation in the corresponding WDTOCS
roughness map is even smaller. This is due to the fact that the height variation
in the profilometer data is small compared to the resolution in the x-direction,
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Fig. 10. Scatter plots of Sa and DTOCS or WDTOCS roughness values for a combined
test set including set A and set B, and for a test including sets A, B and C

and especially compared to the resolution in the y-direction. The normalization
with the corresponding projection distance makes the effect of the variation in
the y-direction almost negligible. A scaling factor for the height variation, as in
the example shown in Fig. 4, may be introduced in future works to emphasize
the height variation.

The results in Fig. 9 show high correlations between the DTOCS or the
WDTOCS roughness measure, and the arithmetic mean deviation Sa. The re-
sults are good for the micro roughness wavelength 0.08 mm, and relatively good
for the macro roughness wavelengths 0.25 mm and 0.8 mm. The filtering wave-
length 2.5 mm approaches the size of the measurement area, so the resulting Sa

value does not characterize the surface accurately. The correlations calculated
using the micro roughness wavelength are strong for all tests sets A, B and C
separately, and also for a combined set containing the samples from A and B,
and a set containing all samples from A, B and C. Since the samples in set C
are clearly rougher than the samples in A and B, the correlation is very strong,
but it can been seen from Fig. 10 (b) that there is a clear linear dependency
between the DTOCS or WDTOCS roughness values, and the Sa roughness pa-
rameter calculated using the micro roughness wavelength 0.08 mm. Fig. 10 also
illustrates, that the DTOCS roughness values are consistently higher than the
WDTOCS roughness values, as the DTOCS local distance overestimates the
locally Euclidean distance between neighbor pixels.

7 Discussion

A new distance transform method has been developed for measuring surface
roughness. The distance transforms, the DTOCS and the WDTOCS, which
measure distances along a surface, have been generalized to anisotropic grids.
Previously, the distance transforms have been applied to gray-level images, but
the new modifications are applicable to floating point altitude data. In the new
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roughness measurement method, the distance transforms are combined with a
nearest neighbor transform to produce a roughness map characterizing local
roughness within regions of the image. Experiments were performed on synthetic
surfaces, and on real topographies of paper surfaces obtained using a profilome-
ter. The correlations between the arithmetic mean deviation of the surface, Sa,
for the micro roughness wavelength, and the new methods were strong for all
test sets. The results suggest that the roughness can be calculated directly from
the topography using the DTOCS or the WDTOCS, without first extracting the
roughness surface using Gaussian filtering. Further experiments and comparisons
to other methods will be performed in future work.

In future work, the distance transform method will be tested using different
numbers of seed pixels for the nearest neighbor transform. Alternative configu-
rations, like a hexagonal grid of seeds, may also be beneficial compared to the
square grid used here. Also, more tests are needed to determine whether the
WDTOCS method provides more accurate results compared to the DTOCS,
which is slightly simpler and faster to calculate. Furthermore, as it is well known
that the piecewise Euclidean distance overestimates true distances (see e.g. [20]),
the more accurate Optimal DTOCS [8] will be generalized to images of unequal
resolution, for example, by using weights derived by Sintorn and Borgefors [12]
for distance transforms of binary images in rectangular grids. Alternatively, ideas
behind weighted 3D distance transforms for elongated voxel grids [13] could be
utilized in order to obtain more accurate approximations of true distances along
anisotropic gray-level surfaces. However, in measuring surface roughness, using
the most accurate approximations of true distances may not be necessary, as
long as the distance values increase in proportion with the surface variation. As
shown by the experiments, the effect of the height variation may need to be em-
phasized by using a scaling factor for the height component of the local distance.
In this work, the distance values approximate the true distance measured along
the representation of the surface. However, the representation is not entirely ac-
curate, as the sparse 50 μm resolution data misses some small scale variation in
the surface. In future work, data measured at the more dense resolution, 10 μm,
in both directions will be available for comparison.

This work is part of a research project aiming to develop a machine vision
system for measuring the roughness of paper, which could be used in paper indus-
try during processing. The new method was shown to be a simple and efficient
approach to characterize the micro roughness of paper surfaces. Particularly,
the roughness maps, which provide interesting information about the roughness
properties of different areas of the surface, will be investigated further. If the
DTOCS roughness values and the Sa values calculated from the same nearest
neighbor regions are found to correlate, the DTOCS provides an easy way to
divide the surface to areas with different roughness properties. The distance
transform measurements could be part of a larger pattern recognition system,
providing features to be used together with, for example, fractal dimension or
statistical features in classifying any surfaces, not just paper, by their roughness.
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Abstract. Designing interactive segmentation methods for digital vol-
ume images is difficult, mainly because efficient 3D interaction is much
harder to achieve than interaction with 2D images. To overcome this
issue, we use a system that combines stereo graphics and haptics to fa-
cilitate efficient 3D interaction. We propose a new method, based on the
2D live-wire method, for segmenting volume images. Our method con-
sists of two parts: an interface for drawing 3D live-wire curves onto the
boundary of an object in a volume image, and an algorithm for connect-
ing two such curves to create a discrete surface.

1 Introduction

Fully automatic segmentation of non-trivial images is a difficult problem, and
despite decades of research there are still no robust methods for automatically
segmenting arbitrary images. This is mainly due to the fact that it is hard to
identify objects from the image data only. Often, we also need some high-level
knowledge about the type of objects we are interested in. This is recognized
in [1], where the segmentation process is divided into two steps: recognition and
delineation. Recognition is the task of roughly determining where in the image
the objects are located, while delineation consists of determining the exact ex-
tent of the object. Human users outperform computers in most recognition tasks,
while computers are often better at delineation. Semi-automatic segmentation
methods take advantage of this fact by letting a human user guide the recogni-
tion, while the computer performs the delineation. A successful semi-automatic
method minimizes the user interaction time, while maintaining tight user control
to guarantee the quality of the result.

Many semi-automatic segmentation methods exist for two-dimensional (2D)
images, but in most cases it is not obvious how to extend these methods to
work efficiently for three-dimensional (3D) images. One problem is that efficient
interaction with a 3D image is much harder to achieve than interaction with a
2D image. In this project, we have used a system that simplifies 3D interaction.
The system supports 3D input, stereo graphics, and haptic feedback through a
sensing probe. The haptic feedback allows the user to feel where surfaces and
structures in the volume are located, making it easier to navigate within the
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volume. Haptic feedback has previously been used in the context of interactive
image segmentation in, e.g. [2] and [3]. Our system gives us new possibilities
to create efficient user interfaces for interacting with volume images. The aim
is to investigate how these new possibilities can be used to extend an existing
semi-automatic segmentation method to also handle volume images efficiently.

Live-wire [1, 4] is a popular semi-automatic segmentation method that has
been used successfully for many 2D problems. Various ways of extending this
method to segment volume images have been proposed in the literature. Most
of these methods are based on using the 2D live-wire method on a subset of
2D slices in the volume, and then reconstructing the entire object using this
information. Examples of such approaches can be found in [5, 6, 7, 8]. While the
reconstruction algorithms might take 3D information into account, all user in-
teraction is performed in 2D. This restriction gives rise to problems, e.g., how
to handle cases where a single object has different numbers of connected compo-
nents in consecutive slices. The method presented in this paper is a step towards
a more direct 3D approach that may overcome these problems.

In our method, the user still draws live-wire curves, but these curves are not
restricted to planes. Pairs of such curves are then connected by a surface in the
following way: using the image foresting transform (IFT) [9], a large number of
live-wire curves are computed between the original curves. The areas between
these curves are covered by polygons which are then rasterized to produce a
tunnel-free discrete surface between the two curves that well approximates the
boundary of the underlying object.

2 Environment

Our setup consists of a Reachin desktop display [10] which combines a PHAN-
ToM desktop haptic device [11] with a stereo-capable monitor mounted over a

Fig. 1. The Reachin desktop display [10]. The PHANToM device [11] is positioned
beneath a semi-transparent mirror. The graphics are projected through the mirror to
obtain co-location of graphics and haptics.
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semi-transparent mirror. See Figure 1. The PHANToM is a 3D input device that
also provides the user with haptic feedback. It is designed as a stylus, and the
haptic feedback is given at one point, the tip. It provides six degrees of freedom
(DOF) for input and three DOF for output, i.e., the input is the position and
orientation of the stylus, and the output is a force vector.

We have implemented our software using the Reachin API 3.2 [10], which is
a C++ API that combines graphics and haptics in a scene-graph environment.
The workstation we use is equipped with dual 2.4 GHz Pentium IV processors
and 1GB of RAM.

3 The 2D Live-Wire Method

The basic idea of the live-wire method is that the user places a seed-point on
the boundary of an object. As the user moves the cursor in the image, a path
(live-wire) is displayed in real-time from the current position of the cursor back
to the seed-point. The wire is attracted to edges in the image and it will snap
onto the boundary of the object. If the user moves too far from the original seed-
point, the wire might snap onto an edge that does not correspond to the desired
object. When this happens the user can move the cursor back a little and place
a new seed-point. The wire from the old seed-point to the new then freezes, and
the tracking continues from the new seed-point. In this way, the entire object
boundary can be traced with a rather small number of live-wire segments. See
Figure 2.

The live-wire algorithm is based on graph-searching techniques. Therefore, we
consider the image to be a graph where the nodes correspond to pixels and the

Fig. 2. In the live-wire method, the user segments an image by interactively placing
seed-points along the boundary of an object. As the user moves the cursor through
the image, a path from the last seedpoint to the current cursor position is displayed in
real-time. The path attempts to follow edges in the image, and will thus snap onto the
boundary of the object. Here, the liver in a slice of a magnetic resonance (MR) image
is being segmented.
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graph edges correspond to paths between pixels. For every edge, a cost is assigned
to represent the “likelihood” that the edge belongs to a desired boundary in the
image. How this cost function should be chosen is discussed in, e.g., [1]. When
the user places a seed-point, Dijkstra’s algorithm [12] is used to compute the
optimal path to the seed-point from all other points in the image. Once these
paths have been computed, it is possible to display the live-wire in real-time
with virtually no computational cost as the user moves the cursor through the
image.

4 Our 3D Live-Wire Method

In the 2D live-wire method, the user interacts with the program by placing seed-
points which are then connected by curves in a 2D plane. Our 3D analogy of
this is to let the user create curves, which are then automatically connected
by discrete surfaces in 3D space, a process we call bridging. An entire object
in a volume image can be segmented by drawing a relatively small number of
live-wire curves on the boundary of the object.

After a tunnel-free surface representing the boundary of the desired object has
been created, the entire region occupied by the object can be found by taking the
complement of all connected background components that touch the border of
the volume. To create this segmentation method, we need to solve two problems:
(1) how to draw live-wire curves in 3D, and (2) how to connect two closed curves
to form a tunnel-free discrete surface.

4.1 Drawing Live-Wire Curves in 3D

To extend the live-wire algorithm to draw closed curves in 3D, there are again
two issues that we need to consider. First, we need to transform the volume
image to a graph so that we can apply the shortest path calculation. This can be
achieved in a number of ways, and we will see that the choice of graph structure
will affect the performance of the shortest-path calculation. The second issue is
how to design the user interface so that seed-points can easily be placed on the
boundary of an object.

Defining a 3D Graph. In the literature on 2D live-wire, various ways of con-
structing a graph from the image have been used by different authors. Mortensen
and Barrett [13] construct the graph by placing a node at the center of each pixel,
with edges passing from each node to the nodes of all neighboring pixels. Another
way of constructing the graph is proposed by Falcão et al. [1] where the nodes
are instead placed at the pixel vertices, and the pixel edges are used as directed
graph edges. The latter graph formulation has the advantage that thin (even
one pixel wide) structures can be traced as a closed boundary, and the directed
nature of the graph allows us to use cost functions that depend on the direction
in which the edge is traversed. Both these 2D graph models are illustrated in
Figure 3.



A 3D Live-Wire Segmentation Method for Volume Images 667

(a) (b)

Fig. 3. Two different ways of transforming a 2D image to a graph. (a) The graph
definition used in [13]. (b) The graph definition used in [1].

For our 3D graph, we have chosen to place a node at the center of each voxel
and create edges to all its 26 neighbors. Although this definition does not use
oriented edges, it has the advantage that the resulting graph has relatively few
nodes. The bottleneck of Dijkstra’s algorithm is the maintenance of a sorted heap
containing all nodes that are currently examined, which means that fewer nodes
lead to faster computations. Using a smaller neighborhood to define the edges
of the graph would also result in faster computations, but the penalty in com-
putational cost of increasing the number of edges is not as large as the penalty
for increasing the number of nodes. Our experiments have shown that good re-
altime performance is achieved even if we use the full 26-neighborhood, which is
advantageous since we then obtain thin and less “jagged” live-wire curves.

User Interface. We have implemented a user interface with two options for
drawing live-wire curves onto the boundary of an object.

The first option is to place seed-points freely in the volume. In this case, the
volume is displayed by maximum intensity projection (MIP). See Figure 4a. To
help the user locate the boundary of the object, we have used a volume haptics
technique described in [2]. The gradient of the volume is used as a surface normal
that defines a virtual surface that can be felt with the haptic device.

The second option is to “slice” the volume with a plane that can be moved
and rotated freely relative to the volume, and draw the curve onto this arbitrary
plane. See Figure 4b. The plane is a haptic surface so that the user can feel
where it is located and easily place seed-points onto it. Drawing a live-wire
curve onto the plane feels similar to drawing on a real surface. The shortest-
path computations are still performed in 3D, but since we want the curve to
stay in the vicinity of the plane we also add a term to our cost function that
grows quickly as we move away from the chosen plane.

The two methods have different advantages. To draw a curve around an object
using the first method, the user might have to rotate the volume while draw-
ing the curve in order to avoid twisting the wrist too much. Using the second
method, however, it is easy to do this by placing the guiding plane at the desired
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(a) (b)

Fig. 4. (a) Placing seed-points freely in the volume using volume rendering and volume
haptics to locate the boundary of the object. (b) Drawing a live-wire curve onto a
guiding plane.

cross-section of the object. When testing the application we have mainly used
the second method for drawing curves, while the first method has been used for
placing single points (which are also considered to be closed curves).

4.2 Bridging Algorithm

We have based our bridging algorithm on the image foresting transform (IFT)
[9]. The IFT is essentially Dijkstra’s algorithm, modified to allow an arbitrary
number of seed-points as input for the computations. The result of using more
than one seed-point is that we find the shortest path from all pixels in the image
to any of the seed-points.

Using the IFT, it is quite straightforward to create a rough “wire-frame” of
the surface we are looking for. To do this, we compute the optimal curves from
each voxel in one of the curves, using all voxels of the other curve as seed-points.
An illustration of the result is shown in Figure 5c.

Since the curves we compute are independent of each other, the result is
generally not a tunnel-free surface. To fill the gaps between the curves we define a
polygonal surface between adjacent curves, as shown in Figure 6. These polygons
are then rasterized using the method described in [14] to obtain a discrete surface.
The result is exemplified in Figure 5d. Algorithm 1. shows the pseudo-code for
our bridging algorithm.

Since all points on the second curve are not necessarily the “closest” point to
a point on the first curve, a surface generated using our method is unfortunately
not guaranteed to fit the “goal” curve exactly. In the worst case, all points on
the first curve have the same closest point on the second curve, in which case
the second curve will be approximated by this point only. Our current solution
to this is to apply the algorithm from both directions and return the union of
the results, i.e., run the algorithm starting from one of the curves and then run
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Algorithm 1. Bridging Algorithm
Input: Two sets of voxels, curve1 and curve2, that represent the initial curves.
Output: A set of voxels, output, that represents the generated surface.
Additional variables: Two sets of voxels, current curve and next curve that will be
used to store intermediate curves. A voxel next voxel.

• current curve ← curve1
while next curve contains voxels that are not in curve2 do
• next curve ← empty
for every voxel v in current curve do
• next voxel ← v
if v is not in curve2 then
• calculate the optimal path from v to curve2
• set next voxel to be the next voxel along this path

end if
if next curve is not empty then
• rasterize the polygon between the last voxel of next curve and the two

last voxels of current curve
• add the resulting voxels to output
• rasterize the polygon between next voxel and the last voxels of next curve
and current curve
• add the resulting voxels to output

end if
• add next voxel to next curve

end for
• rasterize the polygon between next voxel, the first voxel of next curve and the
last voxel of current curve
• add the resulting voxels to output
• rasterize the polygon between the first voxels of current curve and next curve
and the last voxel of current curve
• add the resulting voxels to output
• current curve ← next curve

end while

it again starting from the other curve. The result then always contains the two
original curves. However, if the shapes of the two curves differ to much “pockets”
may be produced on the surface, as illustrated in Figure 7. In most cases when
this happens, it is possible to reduce the error by drawing additional curves
inbetween the two original curves.

4.3 Performance

For a moderately sized volume (128x128x100) our algorithm runs in approxi-
mately 1–20 seconds. The exact times depend on the length of the curves we
are bridging and the distance between them. A number of things can be done
to improve the performance. For example, our current implementation uses a
heap data structure to manage the sorted queue when computing the IFT, but
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(a) (b) (c) (d)

Fig. 5. (a) A synthetic object. (b) Two closed curves on the boundary of the object.
(c) Result of connecting the two curves by live-wires. (d) Result of using our proposed
algorithm.

Fig. 6. To obtain a tunnel-free surface, all live-wire curves generated between the two
user-defined curves are connected to their adjacent curves by triangular polygons

Fig. 7. If the shapes of the two curves differ too much, the surface produced by our
bridging algorithm may contain pockets
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(a)

(b)

Fig. 8. (a) Segmentation of the liver in a 153x153x161 CT image of a human, obtained
with our method by drawing 7 live-wire curves onto the boundary of the liver. (b)
Surface rendering of the segmentation result.
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according to [4] better performance can be achieved by using a circular queue
structure instead.

Tests on large volumes have not been possible due to the current memory-
inefficient implementation where big amounts of data are stored redundantly
during the shortest-path calculations. In future work, this will be made more
efficient.

5 Discussion and Future Work

Despite the issues mentioned in Section 4.2, preliminary tests of our appli-
cation show promising results. We have segmented objects of varying com-
plexity using a varying number of live-wire curves. In most cases, the closed
discrete surfaces obtained are satisfactory representations of the underlying ob-
ject. Figure 8 shows an example of a segmentation result obtained with our
method. The total segmentation time for this example, including user interac-
tion, was approximately 3 minutes.

As stated in [1], a semi-automatic method should ultimately be measured by
how much it reduces the time it takes for the user to achieve a correct segmen-
tation result. To verify the efficiency of our method, it would be therefore be of
interest to make a user study to compare it with other segmentation methods.
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Abstract. This paper deals with the complexity of the decomposition of
a digital surface into digital plane segments (DPS for short). We prove
that the decision problem (does there exist a decomposition with less
than k DPS?) is NP-complete, and thus that the optimisation problem
(finding the minimal number of DPS) is NP-hard. The proof is based on
a polynomial reduction of any instance of the well-known 3-SAT problem
to an instance of the digital surface decomposition problem. A geometric
model for the 3-SAT problem is proposed.

1 Introduction

Digital objects are defined as sets of grid points in Zn. Those objects carry
redundant geometrical information due to their discrete structure: an object
is represented as a set of elementary cells (called pixels in 2D, voxels in 3D).
The definition of digital linear structures like digital lines [1] and digital planes
[2, 3] originated a lot of works dealing with the decomposition of the contour
of a digital object into digital linear primitives. Such a decomposition actually
apprehends global geometrical properties of those objects. Many decomposition
strategies may be designed and the number of parts computed by the algorithms
may be a first criterion to compare the results. In this work, we focus on the
complexity of the optimal (minimal number of parts) decomposition problem.
In the 2D case, it has been shown that the minimal decomposition of a digital
curve into digital line segments can be computed in linear time [4]. In the 3D
case of surfaces, many decomposition algorithms have been proposed [5, 6, 7, 8],
offering comparisons on the number of faces recognised by different algorithms.
Nevertheless, no optimality results exist, and no complexity study has been
carried out. Related results have been recently proposed in [9] concerning the
NP-completeness of the construction of an integer lattice polyhedron P with
minimal number of convex facets such that P ∩Z3 corresponds to the input 3D
digital object.

In computational geometry, the decomposition of a shape (e.g. a polygon)
into a minimal number of elements (e.g. convex polygons) usually leads to NP-
complete problems [10]. A problem is in the NP class of algorithms if it can

A. Kuba, L.G. Nyúl, and K. Palágyi (Eds.): DGCI 2006, LNCS 4245, pp. 674–685, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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only be solved in polynomial time by a non-deterministic machine [11]. As a
corollary, the problem is in NP if a solution to the decision problem can be
verified in polynomial time on a deterministic machine. A problem is said to be
NP-complete if it is at least as difficult as any NP problem. In other words, if
a problem is NP-complete, an old conjecture is that no time efficient solution
exists to solve it. The remaining option is to consider approximation algorithms
with or without heuristics.

Prior to a complexity study, the problem has to be formalised. In the sequel,
we consider 6-connected sets of voxels which surface S is defined as the set of
object voxels sharing a face with the background. The surface is a set of 18-
connected voxels, and maximal digital naive planes [12, 13, 2, 3] are used for the
decomposition. A digital plane segment (DPS for short) is maximal if no surface
voxel may be added to it. In the following, we consider a sequential decomposition
algorithm: given a voxel on the surface (called a seed), we construct the maximal
digital naive plane segment adding iteratively voxels that are 18-connected to
the DPS initialised with the seed. Then, a new seed is considered from the set
of remaining voxels in S. In this algorithm, both the propagation process during
the DPS growing and the initialisation of seeds must be taken into account.

The optimisation problem we consider is defined as follows:

Min-DSD (Digital Surface Decomposition): Given a digital object surface S,
find the minimal decomposition of S into maximal digital naive plane segments
using a sequential algorithm.

In order to study the complexity of an optimisation problem, the related
decision problem has to be considered:

k-DSD: Given a digital object surface S and a number k ∈ N∗, does there
exist a decomposition of S into k maximal digital naive plane segments using a
sequential algorithm?

In this article, we prove that k−DSD is NP-complete whatever the propaga-
tion heuristic. Furthermore, the only requirement on the digital plane segments
topology is connectivity.

To prove that a problem P is NP-complete, a classical scheme is to exhibit
a polynomial reduction of any instance of a classical NP-complete problem, de-
noted PNP into an instance of P . Then, we have to prove that a solution of P
also leads to a solution of PNP . Since PNP is known to be NP-complete, we
could conclude that P is also NP-complete [11]. In the literature, the Boolean
Satisfiability Problem (SAT) is a decision problem classically used in complexity
theory since it was the first known NP-complete problem. An instance of SAT is
a boolean expression written using only and, or, not, variables and parenthe-
ses. The decision problem is: given an expression, is there an assignment of the
variables such that the expression is true? The problem remains NP-complete
even if the expression is written in conjunctive normal form with three variables
per clause, yielding the 3-SAT problem. An expression φ has the form:

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ (¬x6¬ ∨ x3 ∨ ¬x5) ∧ . . . , (1)
where each xi is a binary variable (and ¬xi its negation) that can appear several
times in the expression.
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In the following we define a polynomial reduction of any instance of the 3-SAT
problem to an instance of the k-DSD problem. The construction process, defining
geometrical objects for variables, variable instances and clauses, is presented in
Section 2, while the NP-completeness proof derived from this construction is
given in Section 3.

2 A Geometric Model for 3-SAT

Given a 3-SAT expression φ, we show how to construct a geometric discrete
object. This construction is a two steps process: after defining geometric ele-
ments for variables, instances of variables and clauses, we see how these basic
components are organised and linked together in the 3D space.

2.1 General Considerations

All the basic elements we define further are composed of two parts:

– idle part: the surface of this part will be made of planes parallel to axis
planes and only aims at defining a 6-connected object. The minimal number
of DPS needed to cover the idle part will be fixed for each basic element, and
any decomposition of this part into maximal DPS will exactly cover the same
voxels, with no possible extension. This part is not used in the encoding of
a 3-SAT expression;

– active part: this part consists of the remaining voxels after the decom-
position of the idle part. It takes advantage of digital planes properties to
geometrically encode the 3-SAT elements.

For each basic element, we provide an illustration1 of an example set of seeds
(black voxels) which may be used in a decomposition algorithm. Moreover, those
sets have the remarkable property that any two seeds cannot be covered by a
single DPS.

The underlying basic idea for this construction is the following: the optimal
decomposition chosen for a variable object generates a “signal” sent to clause
objects through “wires” representing instances of variables. This kind of geomet-
ric construction of 3-SAT is a classic way to prove NP-completeness of geometric
problems (see [14,15] for instance). The construction of basic elements relies on
several properties of digital planes structure that we set forth here (Figure 1):

Property 1. For the four configurations (a), (b), (b’) and (c) represented in
Figure 1, one DPS cannot simultaneously cover the two light-coloured voxels
and all the other ones. In the configuration represented in Figure 1(d), the three
voxels cannot be covered by one DPS, but any two voxels can.

1 Most illustrations of this paper are originally colour artworks. To make the under-
standing of the paper easier from B&W printings, colour images are available on
http://liris.cnrs.fr/isabelle.sivignon/SatDSD.html
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Proof. The proofs of these properties are straight forward using either digital
naive plane structural basic properties or their arithmetical definition [12, 6, 2].

In the following, we refer to these configurations as Property 1(a), (b), (b’), (c)
and (d).

(a)

k

k+2

(b) (b’) (c) (d)

Fig. 1. Five configurations used for the reduction process

2.2 Variable and Clause Objects

An illustration of a variable element is given in Figure 2. Optimal decompositions
are represented in Figure 2 (b) and (c): five DPS are used to cover the idle part
of the object, and two more DPS are required to cover the remaining active part
(upper part on the figure). Indeed, regardless of the idle part decomposition, the
only two optimal decompositions for the active part (composed of the “bump”
and the five voxels on each side of this bump) consists of two DPS, with two
possible configurations (Figure 2 (b) and (c)): the “bump” voxels are either
covered by the left or the right DPS (see Property 1(b)). Actually, any other
decomposition is either not optimal or not composed of maximal DPS. We set
that these two possibilities respectively encode true and false assignments of the
variable. From these decomposition schemes and Property 1(b), seven seeds can
be defined on each variable object.

Variable elements are linked to clauses thanks to wires that are connected on
the area circled in red on Figure 2(a). The first part of these wires, described in
details in Section 2.3, aims at generating a “signal” encoding the assignment of
the variable. This signal is then “sent” to clause objects (see Section 2.3 for the
transmission process). Figure 3 illustrates the signal generation: the number of
voxels covered by the two active DPS differ by one according to the truth value
of the variable - in the case of a true value, one more voxel is covered.

For a positive instance of variable, the wire is connected to the variable on the
right-hand side of the variable, as depicted on Figure 3: the signal corresponding
to the value of the variable is generated. For a negative instance of variable, the
wire is connected on the left-hand side of the variable: in this case, the signal
corresponding to the negated value of the variable is generated.

Finally, and to handle multiple instances of the same variable in a boolean
expression, the length (along y axis) of the variable v depends on the maximum
number of positive or negative instances of v in an expression, so that all the
connections can be made. Note that the length of the variable does not change
the optimal number of DPS required for the decomposition.
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yz

x

(a) (b) (c)

Fig. 2. Geometric discrete object encoding a variable: (a) general view with wire plug-
ging area, (b) truth assignment, (c) false assignment

(a) (b)

Fig. 3. Generation of a “signal” according to the variable assignment: when the variable
is set to true (a), the voxel circled in red is covered by a DPS of the variable, otherwise
(b), this voxel cannot be covered by one of the two DPS of the variable (Property 1 (a))

A clause element is depicted in Figure 4. It is composed of a transversal rec-
tangular parallelepiped on which three terminals are plugged. Since each clause
has three literals (recall that 3-SAT is considered), each clause element has three
incoming wires. The active part consists of the upper part of the object as de-
picted in Figure 4. Five idle DPS are required in order to decompose five out of
the six faces of the rectangular parallelepiped. Idle planes related to the three
terminals will be taken into account in the wire definition.

The active part of a clause can be entirely covered by a single DPS, except
one out of the three terminal extremities (see Figure 4(b)): indeed, following
Property 1(d), the three terminal extremities cannot be covered by a single DPS
whereas any couple of terminals can be entirely covered by a single DPS. To
sum up, if one terminal extremity can be covered by a DPS of the wires active
part, then only one DPS is required to cover the clause active part. Otherwise,
two DPS are necessary. The link between a boolean clause and the geometric
object we propose can be drawn up as follows: a boolean clause is true if and
only if at least one literal is true; one DPS is enough to cover the whole active
part of a clause if and only if one terminal extremity is covered by another DPS.
From the optimal decomposition, six seeds can be defined on the surface of each
clause object. The wires linking variable elements to a clause are plugged on the
areas circled in red on Figure 4(a), one on each terminal extremity.

To end with the variable and clause geometric objects, Figure 5 illustrates how
these objects are put together in the 3D space when many objects are involved
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(a) (b)

Fig. 4. Geometric discrete object encoding a clause: (a) general view, (b) optimal
decomposition

Fig. 5. Positions of (four) variables and (two) clauses objects in the 3D space

in a boolean expression: variables and clauses are lined up on two axis parallel
to the y axis. The definition of wires connecting variables and clauses relies on
this spatial construction.

2.3 Linking Variables and Clauses

Variable elements are connected to clause elements through wires, that represent
variable instances: if a variable v appears in a clause c, a wire links the geometric
elements of v and c. Those wires aim at “transmitting” the truth value of a
variable to the clause it belongs to. Before defining the geometric construction
of wires, we describe the transmission process.

Figure 6 illustrates how the truth value of a variable is transmitted to a
clause through a wire. This Figure represents a vertical cut of the active part of
a variable, a wire and a clause terminal. Figure 6(a) illustrates the propagation
of a true value while Figure 6(b) shows how a false value is transmitted to a
clause. From the construction we propose, the vertical cut of a variable-wire-
clause connection can be thought of as a 2D digital curve that we decompose in
digital straight segments, using their properties.

We call “transmission voxels” the two voxels circled in red in Figure 6 (in-
termediate transmission voxels are circled in black). We consider an optimal
decomposition of the surface into DPS. The left transmission voxel actually
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corresponds to the generation of the signal encoding the truth value of the vari-
able (see Figure 3 for a 3D representation of a variable and a “plateau”). Using
Property 1(a) and (b’), if the left transmission voxel is covered by a variable
DPS, then the right transmission voxel (which is at the same time an extrem-
ity of a clause terminal) is covered by a wire DPS. On the contrary, if the left
transmission voxel is not covered by a variable DPS, then the right transmission
voxel is not covered by a wire DPS. Note that for the plateau, descent and as-
cent parts, the relative length of the steps are the key point of this transmission
process: for instance, a single DPS cannot cover both the first and last voxel of
the descent.

Since the left transmission voxel is covered by a variable DPS if and only if the
variable instance is set to the value “true” (Property 1(a)), the clause terminal
extremity is covered by a wire DPS if and only if the variable instance is set to
the value ”true”.

Plateau

D
es

ce
nt

Shift

C
lause

A
scent

Variable

(a)

Plateau

D
es

ce
nt

Shift

C
lause

A
scent

Variable

(b)

Fig. 6. Vertical cut illustration of the transmission of a truth assignment through a
wire: (a) the value “true” is transmitted; (b) the value “false” is transmitted

Following the spatial arrangement of variable and clause elements (see
Figure 5), and the rules defined for the connections of negative and positive
instances of variables (Section 2.2), wires standing for positive instances are
plugged on the variable side closest to clauses, while wires corresponding to neg-
ative instances are plugged on the opposite side. We see that in the case of a
negative wire, a U-turn towards clause objects is required. As depicted in 2D in
Figure 6, wires are basically composed of four parts, that are depicted in 3D in
Figure 7(a) for a positive wire:

– a plateau (blue) generates the “signal” corresponding to the truth value of
the variable;

– a descent (green) to a given level L: two distinct variable instances descend
on two different levels to ensure an intersection free construction;

– a shift movement (red) on the level L to reach the clause position;
– an ascent (yellow) from the level L to the clause terminal extremity.

The optimal decomposition of the plateau is made of one DPS only, for the
idle part (bottom of the plateau). Indeed, the sides are covered with descent idle
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(a) (b) (c)

(d) (e)

Fig. 7. Wire between a variable and a clause: (a) case of a positive variable instance,
with zooms on (b) the descent and (c) ascent parts; (d) case of a negative variable
instance

DPS, and the upper part (active) is covered by a DPS coming from the variable
decomposition. Figure 7(e) illustrates how a wire is connected to a variable.

Concerning the descent and ascent parts, optimal decompositions are depicted
in Figure 7(b) and (c). Seven idle and one active DPS are required for both
positive and negative wires. Moreover, the active part is a three steps surface
such that the first step is k voxels long (k ≥ 3), the second one is k − 2 voxels
long and the third one is made of one voxel. In addition to the function of this
construction in the transmission process (see previous paragraph), the parameter
k is used to ensure that every wire descend on a different level so that wires do
not intersect.

The shift parts of positive and negative wires are different. In the case of a
positive wire, only one DPS covers the active part (upper part). Five more idle
planes are necessary for a negative wire, and two DPS are needed to cover the
active part (see Figure 7(d)). The transmission of the truth value through the
U-turn part of a negative wire is ensured thanks to the small “bump” on the
shift part and Property 1(c).

All in all, optimal decomposition of wires leads to the definition of 11 seeds
(eight for the idle part, three for the active part) for each positive wire and 17
(13 for the idle part, four for the active part) for each negative wire (see Figure
7(b), (c) and (d)).

To summarise the construction, we have proposed a polynomial reduction of
any instance of the 3-SAT problem into an instance of the k-DSD problem. This
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reduction is based on the definition of variable and clause objects linked together
through wires which pass the truth value of a variable on to clauses. Section 3
is dedicated to the proof of the relation between the two problems.

3 NP-Completeness Proof

Let us consider a boolean 3-SAT expression φ and the corresponding discrete
object surface S. We denote c, v, vp and vn the number of clauses, variables,
positive instances and negatives instances of variables in φ respectively.

Proposition 1. k-DSD is in NP.

Proof. Given a digital surface S and solution D, verifying that |D| ≤ k and that
it actually covers all the voxels of S can easily be done in linear time in the
number of voxels S. �

Proposition 2. The size of S is linear in the size of φ.

Proof. The proof is straight forward considering the construction.

We shall now prove that the construction is a reduction of 3-SAT to k-DSD, i.e.
that the expression φ is satisfiable if and only if S admits a decomposition with
k maximal DPS. We prove the two implications one after the other.

Lemma 1. If the expression φ is satisfiable, then S admits a decomposition with
k maximal DPS.

Proof. Assume that φ is satisfiable under some truth assignment T . The follow-
ing algorithm builds a decomposition of the surface of S into k maximal DPS:

1. label all the voxels belonging to a construction DPS regardless of T : 5v +
5c+ 8vp + 13vn DPS are used to cover the entire idle part of S;

2. decompose each variable according to its truth assignment in T : this decom-
positions requires 2v DPS;

3. use 3vp and 4vn DPS to decompose the wires active parts, which may leave
the tips of some wires (which are also the clause terminal extremities) un-
covered;

4. since T satisfies φ, every clause has at least one incoming wire with a cov-
ered tip. Thus, every clause has at least one covered terminal extremity.
Consequently, each clause active part can be covered with one single DPS.

All in all, (5v+5c+8vp +13vn)+2v+3vp +4vn + c = 7v+6c+11vp +17vn = k
DPS are used in this decomposition. �

In order to prove the reverse implication, we need to show that there is only one
way of decomposing S into k DPS. Next, we show that this unique solution leads
to a satisfactory assignment of φ’s variables.
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Lemma 2. Consider a decomposition of S with k DPS. Then the decompositions
of variable, positive wire, negative wire and clause objects are respectively covered
by 7, 11, 17, 6 DPS.

Proof. Consider a decomposition D of S with |D| = k. Suppose that there exist
a variable object with a decomposition Dv such that |Dv| > 7. Extra DPS
are either idle or active. Using more than five idle DPS has no effect on the
number of DPS required to cover other variables, wires and clauses. Thus, |D| =
7(v − 1) + |Dv|+ 6c+ 11vp + 17vn > k, which is a contradiction.

Now suppose that extra DPS are used for the active part. With these DPS, one
can at best ensure that the “true” value is transmitted to every clause objects
linked to this variable. Nevertheless, the number of DPS required to cover wires
and clauses does not change, and we still have |D| = 7(v−1)+ |Dv|+6c+11vp+
17vn > k, which is a contradiction.

On the contrary, if less than seven DPS are used to cover a variable object,
it is easy to check that some voxels will remain uncovered even if more DPS are
used for wires or clause objects. Similar arguments can be used to show that
positive and negative wires, and clause decompositions have to be composed of
11, 17 and 6 DPS. �

Lemma 3. If S admits a decomposition into k maximal DPS, then φ is
satisfiable.

Proof. Suppose that S admits a decomposition D with k DPS. Since |D| = k,
from Lemma 2 the decomposition of every variable object is made of seven DPS.
Variable objects can only be decomposed two ways into seven DPS, each of
which encodes a truth assignment. This decomposition is made of 5 DPS for
the idle part and 2 DPS for the active part (regardless of the algorithm used).
Thus, covering all variables requires 7v DPS. In the same way, using Lemma
2 covering wires uses 11vp + 17vn DPS. All in all, k − 7v − 11vp − 17vn = 6c
DPS remain for covering clause objects. The idle part of clause objects requires
5 DPS regardless of the rest of the decomposition. Thus c DPS remain to cover
the clauses active parts. Since there are c clause objects, and c DPS remain, we
know that the clause active parts are covered by one DPS only in D. This is
possible if and only if every clause is satisfied, and thus φ is satisfied too. �

Theorem 1. k-DSD is a NP-complete problem.

Proof. The result is derived from Lemma 1 and 3.

This theorem proves that the decision problem associated to Min-DSD is NP-
complete. Thus, according to the theory of complexity, Min-DSD is said to be
NP-hard.

4 Example

A software that generates a 3D object from a 3-SAT boolean expression
is available on http://liris.cnrs.fr/isabelle.sivignon/code.html. This
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program also generates the seeds of the object, and a simple surface decomposi-
tion algorithm into maximal DPS is also provided to compute the decomposition
derived from those seeds.

Figure 8 is an illustration of the digital surface encoding the expression φ =
(a ∨ ¬b ∨ c). The optimal decomposition into maximal DPS is composed of
49 idle DPS and 17 active DPS. In Figure 8(a), the variable objects encode
the assignment (a = true, b = true, c = false), and the optimal decompo-
sition is represented. In Figure 8(b), the variable objects encode the assign-
ment (a = false, b = true, c = false): in this case, since φ is not satisfied,
the optimal decomposition cannot be achieved, and an extra DPS (in red) is
added.

(a) (b)

Fig. 8. Discrete object encoding the expression φ = (a∨¬b∨ c): (a) optimal decompo-
sition corresponding to the satisfaction of φ; (b) φ is not satisfied and one more DPS
is required to achieve a complete decomposition

5 Conclusion and Future Works

In this article, we have proved that the decomposition of a digital object sur-
face into a minimal number of maximal DPS using a sequential algorithm is
NP-complete. This theoretical result concludes an important open problem in
the discrete geometry community: no efficient algorithms exist to solve the Min-
DSD problem. A logical consequence of this answer is that only heuristics can
be used.

Among possible heuristics, important theoretical future works exist: does
there exist a polynomial-time approximation scheme for the Min-DSD prob-
lem? More precisely, is there a polynomial in time approximation of Min-DSD
that produces a solution that is within ε factor of the optimal solution?

By construction of variables, clauses and links, the genus of the obtained
binary object depends on the number of cycle in the 3-SAT instance. Is k−DSD
still NP-complete, and thus Min-DSD still NP-hard for hole-free objects?



Minimal Decomposition of a Digital Surface into Digital Plane Segments 685

References

1. Rosenfeld, A., Klette, R.: Digital straightness. In: Int. Workshop on Combinatorial
Image Analysis. Volume 46 of Electronic Notes in Theoretical Computer Science.,
Elsevier Science Publishers (2001)

2. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Series in Comp. Graph. and Geom. Modeling. Morgan Kaufmann (2004)

3. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity - a review. Technical
Report CITR-TR-142, CITR - Univerity of Auckland (2004)

4. Feschet, F., Tougne, L.: On the min dss problem of closed discrete curves. Discrete
Applied Mathematics 151(1-3) (2005) 138–153
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Köthe, U. 542
Kropatsch, W.G. 437
Kuba, A. 98, 146
Kuparinen, T. 651

Lachaud, J.-O. 355
Largeteau-Skapin, G. 41
Latecki, L.J. 567
Lefranc, S. 630
Lienhardt, P. 235
Lindblad, J. 379
Liu, W.-Y. 567
Lotufo, R. 605
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An error has been found in the above article. 
In the original version of this paper, Fig. 2 was wrong. The correct version of figure is 
given below. 

Fig. 2. (a): an example of the Reeb graph G of a continuous object E. The nodes of G represent 
the critical points of f (maxima, minima, inflection points), and an edge is a connected 
component of E between two critical points. (b): an example of an irregular object E (left), the 
final recoded structure with k−arcs (right) and the Reeb graph associated to the height function 
f defined on E (bottom). The notations b, e, m and s are given at the end of this section.  
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