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Preface

DGCI 2006, the 13th in a series of international conferences on Discrete Geom-
etry for Computer Imagery, was held in Szeged, Hungary, October 25-27, 2006.
DGCI 2006 attracted a large number of research contributions from academic
and research institutions in this field. In fact, 99 papers were submitted from
all around the world. After review, 55 contributions were accepted from which
28 were selected for oral and 27 for poster presentation. All accepted contri-
butions were scheduled in single-track sessions. The program was enriched by
three invited lectures, presented by internationally well-known speakers: Jean-
Marc Chassery (Domaine Universitaire Grenoble, France), T. Yung Kong (City
University of New York, USA), and Ldszl6 Lovdsz (E6tvos Lordnd University,
Budapest, Hungary).

We were pleased that DGCI got the sponsorship of the International Associ-
ation of Pattern Recognition (IAPR). DGCI 2006 is also a conference associated
with the JAPR Technical Committee on Discrete Geometry (TC18). Hereby, we
would like to thank all contributors, the invited speakers, all reviewers and mem-
bers of the Steering and Program Committees, and all supporting personnel who
made the conference happen. We are also grateful to the Institute of Informat-
ics, University of Szeged, for the financial and infrastructural help, which was
essential to the organization of a successful conference. Finally, we thank all the
participants and hope that they found interest in the scientific program and also
that they had a pleasant stay in Szeged.

October 2006 Attila Kuba
Laszlé G. Nyl
Kélman Palagyi
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Duality and Geometry
Straightness, Characterization and Envelope

Jean-Marc Chassery!, David Coeurjolly?, and Isabelle Sivignon?

! Laboratoire LIS
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38402 St Martin d’Heres Cedex, France
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2 Laboratoire LIRIS - Université Claude Bernard Lyon 1
Batiment Nautibus - 8, boulevard Niels Bohr
69622 Villeurbanne cedex, France
{david.coeurjolly, isabelle.sivignon}@liris.cnrs.fr

Abstract. Duality applied to geometrical problems is widely used in
many applications in computer vision or computational geometry. A clas-
sical example is the Hough Transform to detect linear structures in im-
ages. In this paper, we focus on two kinds of duality/polarity applied to
geometrical problems: digital straightness detection and envelope com-
putation.

Introduction

In domain of geometry, notion of duality is often used to represent the same
structure in different domains like spatial domain or parametric one. The objec-
tive is to facilitate transformations like characterization, detection, recognition
or classical ones such as intersection or union. A first example is illustrated with
Voronoi partition in which polygonal regions are not homogeneous in terms of
number of vertices. Nevertheless, the corresponding dual mesh, called Delaunay
mesh, is composed of triangles. According to applications the choice of the alter-
native representations can be used on optimality criteria (computational cost,
database structure, ...).

Following this first example, we focus in this paper on dual transformations
illustrated by problems of digital straightness and envelope.

1 Example of the Hough Transform

The Hough transform (HT for short) is a very classical tool in image analysis
to detect geometric features in images. These features may be line segments,
circles, ellipses or any other parameterized curve. The HT, introduced in 1962 by
Hough [1], is a dual transformation that enables to find a set of global structures,

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 1-16, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 J.-M. Chassery, D. Coeurjolly, and I. Sivignon

without any a priori knowledge on the number of structures to be found. Note
also that this method is robust to noise and disconnected features.

1.1 Definition of Hough Transform

The general idea of this transform is that every point of the image contributes to
the definition of the solution set for a given parameterized structure. Consider
for instance a point py of coordinates (g, o) and the parameterization of lines
y = ax + (. Then the set of lines going through py are the ones of parameters
(a, B) fulfilling the equality yo = axo + 8. This equality may be rewritten as
08 = —axy + Yo, and if a new geometrical space (af), called dual space, or
parameter space, is defined, this equation defines a line : in this dual space, each
point of this line represents a line of the (zy) space going through the point
po- An illustration of three points and the three corresponding lines in the dual
space (af3) are represented in Figure 1 (a)-(b): note that the three lines in (o)
space are concurrent in one point, the coordinates of which defines a line going
through the three points in (zy) space.

However, as noticed by Duda in [2], the linear parameterization of lines defined
by y = ax + (8 is not the handiest one since the two parameters a and 3 are
unbounded. Thus, another transform consists in using the polar parameterization
of straight lines p = xcos@ + ysinf. Any point in the (zy) space defines a
sinusoidal curve in the (6p) space, where only the parameter p has unbounded
values (see Figure 1(c) for an illustration).

General properties fulfilled by these two representations, and suitable for
straight line detection in images were expressed by Duda [2]:

Property 1

e A point in the (zy) space matches up with one curve in the dual space;

e A point in the dual space matches up with a straight line in the (zy) space;

e Points lying on a same line in the (xy) space match up with concurrent curves
in the dual space;

e Points on a same curve in the dual space match up with concurrent straight
lines in the (zy) space.

(zi,y3) B=—-za+y; p = w;cos0 + y;sind
10 15
8 12 2
sl J b
9
Yy 4 . I6] p 2
6 0
2
. -2
0 3 4
-2 0 . -6 - - 3
-2 0 2 4 6 8 4 -3 -2 -1 0 1 2 0 4 2 4 ™
x o 0
(a) (b) (c)

Fig. 1. (a) Three points in the (zy) space; (b) Dual representation in the (a/3) space;
(c) Dual representation in the (6p) space
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1.2 Recognition of Parameterized Structures

Line segment detection in images does not consist in finding the pixels lined
up according to the Euclidean straight line definition, but a relaxation of this
definition has to be used. To do so, the method generally used consists of, first,
decomposing, or quantifying the dual space along the two axis, and second, defin-
ing a counter for each cell of the dual space. Algorithm 1 describes the general
algorithm for finding parameterized curves in an image using HT. The quantiza-
tion step is a trade-off between precision on one part, and memory/computation
cost on the other hand. Moreover, a good quantization should provide constant
densities for equally probable line parameters. An illustration of Algorithm 1 is
proposed in Figure 2.

Algorithm 1. Hough transform for parameterized curve detection
Input: Set of pixels P
Quantify the dual space of the parameterized curve;
Set all the cell counters to zero;
for every pizel p of P do
Compute HT (p) and digitize it according to the quantization grid;
Add one to the counters of HT (p) digitization;
end
Look for local maxima among the cells counters: each maximum matches with
the parameters of a curve found in P.

2 Duality in Discrete Geometry

During a HT, the discrete nature of the data processed is taken into account
with a quantization of the dual space. On the contrary, we see in this section
that the classical notion of dual space used in discrete geometry introduces the
discrete nature of the data in the definition of the dual representation of a point.

2.1 Definition of the Dual Space

In digital geometry, pixels are said to be lined up if they belong to a digital
straight line, which is the digitization of a straight line. In a general way, a digital
straight line of parameters (a, b, 1) and bounds p(a,b) and w(a,b) is the set of
pixels (z,y) such that p(a,b) < axz —by+ p < w(a,b). Without loss of generality,
we suppose that |b| > |a|, and b > 0 in the following. With these conditions, the
previous definition may be rewritten as p’'(«, §) < ax—y+ 0 < W'(«, ). Given a
point pg of coordinates (xo, yo), the digital lines containing are the ones for which
(0, yo) fulfills the inequalities. Thus, we can once again define a dual space (af3)
to represent the space of line parameters, but contrary to HT, a given point pg
of coordinates (g, yo) matches up with the intersection of two linear constraints
defined by ET : 8> —axg +yo + p'(a, 8) and E~ : B < —axo + yo + ' (a, §).
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p = xicosl + y;sinb

8
6
y 4
64 . P 2
. 0
4 -2
1 -4
27 -6
0 A 5 s ™
0 2 4 6 X
(a) (b)
y
6.
4/
2]
0 2 4 6 X

Fig. 2. Detection of a line segment with HT: (a) the four pixels of the set P; (b)
dual representation in the quantified dual space; (c) result of the digitization of the
sinusoidal curves; (d) straight line computed from the local maximum found

Definition 1. Let P be a set of pizels. The preimage of P denoted by P(P) is
defined as follows: P(P) = {(«, B), |a| <1 |V(z,y) € P, p'(o, ) < ax—y+0 <
W'(a, B)}. (See Figure 3).

As we can see, in digital geometry, the linear parameterization of lines is used in
order to define the dual space. Nevertheless, we pointed out that for the Hough
transform, using a polar parameterization is more convenient in order to handle
bounded parameters. Actually, the polar parameterization is not appropriate
for preimage definition since intersection of sinusoidal curves would be involved.
Thus, the handling of unbounded domains has to be tackled. First, the parameter
0B takes its values in an unbounded domain since it represents all the possible
translation of a line. This problem is easy to solve, operating a translation of the
set of pixels studied such that one particular pixel of the set is set to the origin.
Next, the slope « of the lines also have unbounded values. The idea here is to
use two dual spaces instead of one :
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(0,0}. P -
(a) (b)

Fig. 3. Illustration of the preimage of a set of pixels (digitization process fixed): each
point matches up with two linear constraints, and the preimage is the intersection of
these constraints

Definition 2. The dual space Py is defined as the space where one point (o, 3),
|a] < 1 stands for the line ax —y + [ = 0. In the same way, a point (a, ),
|a] < 1 of the dual space denoted P, stands for the line ay —x + 3 = 0.

2.2 Preimages of Digital Lines and Line Segments

The definition of preimage depends on the values of p'(a, 8) and w’(a, 8)}, and in
most applications, these values are defined according to the digitization process
considered during the definition of the digital straight line. In this section, firstly
we give some examples of preimages of digital straight lines in respect to the dig-
itization process considered, and secondly, we emphasize on particular properties
of the preimage of digital straight line segments (DSS for short) for one digiti-
zation process.

Digitization and Preimage. Let us first consider the OB@ (object boundary
quantization) digitization scheme: given a straight line of equation ax — by + pu =
0, its OBQ digitization is the set of pixels such that 0 < ax —by +p < b
(see conditions over a and b previously defined). Since the OBQ digitization is
based on the definition of the inside and this outside of an object, this definition
assumes that the line ax — by + p = 0 is part of the boundary of an object the
inside of which is given by the direction of the normal vector (a, —b).

From this definition, we derive a characterization of the preimage of an infinite
digital line according to the OBQ digitization process [3]:

Property 2. Let L be a digital straight line defined by 0 < ax — by + p < b, with
0 < a < b. Then the preimage of L according to the OBQ digitization process
is the vertical segment [(4, %), (7, ”;:1 )].



6 J.-M. Chassery, D. Coeurjolly, and I. Sivignon

Following a previous remark, this property assumes that the interior of object
is “under” the line (see Figure 4, left). Otherwise the preimage of L is the segment

(%, ”;:1 —1),(3,% —1)[ (see Figure 4, right).

D _

7 . . D
y\ ] ﬁ D y\ Inside of the object =3

: il ; NEE

1l \ W—J;%
Inside of the object 5 " ?
o) T2 o
D:2z—5y+1=0 h - D:—-2x+5y+4=0

D:2z -5y =0 D':—2zx+5y+5=0

Fig. 4. Preimage of the digital straight line 0 < 2x — 5y < 5: two solutions according
to the direction of the solutions normal vector

Let us now consider the standard digitization process: given a straight line of
equation ax — by + p = 0 such that 0 < a < b, its standard digitization is the
set of pixels such that —|a|J2r|b| <ar—-by+pu< Ialglbl. Contrary to the OBQ
digitization process, the standard digitization of a line does not depend on the
direction of the normal vector of the line. However, we have the same kind of
results on the characterization of the preimage (see Figure 5 for an illustration):

Property 3. Let L be a digital straight line defined by — |a|;'|b| <ar—by+pu<

|“|J2r|b|, with 0 < a < b. Then the preimage of L according to the standard

digitization process is the vertical segment defined by:
1Ny - .
- [(Zv Z)a ((1;17 M:a)[ﬂlf ‘a’|1+ ‘b| 1S even;.
- [(bv b 2b)7(b7 b + 21;)[ if ‘a| + |b‘ is odd.

T

D:xz—-3y+1=0
D:z—3y=0 10

D:2z—5y+3=0

D:2175y7é:0

Fig. 5. Preimages of digital straight lines according to the standard digitization process:
on the left, the sum |a| + |b| is even, on the right, it is odd
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DSS Preimage. Using a dual space is a common technique for digital straight
line recognition, and thus many works have been carried out about the geo-
metrical and arithmetical structure of the preimage of a digital straight seg-
ment. We simply recall here some of the main and classical properties on this
structure [4, 5):

Property 4. Let S be a set of N +1 8-connected pixels, and zy be the minimum
abscissa of this set of pixels. Then the preimage P(S) of S has the following
properties:

1. P(S) is a convex polygon with at most four vertices;

2. two consecutive abscissa of the vertices are consecutive terms in the Farey
series [6] of order max(zo, N — x¢). Moreover, for a given abscissa equal to
P the corresponding ordinate is a multiple of (11 :

3. if this polygon has four vertices, then two out of the four vertices have the
same abscissa.

This property shows that there is a strong connection between DSS preimages
and Farey series. Actually, given a Farey series of order d, a Farey diagram may
be defined ( [5], see Figure 6, on the left for an example). An important property
of this diagram is that their is a bijection between the cells of the Farey diagram
of order ¢ and the preimages of the DSS of length ¢ 4+ 1 [7]. This property is
illustrated in Figure 6 in the case of ¢ = 2: there are only four DSS of length 3,
and their preimages are the cells of the diagram. These strong arithmetical and
geometrical features of DSS preimages are used to design efficient recognition
algorithms [8,9].

y cr
N B
Cell ® FEE T A*
ﬁlB(O,l) D(3.1) ’ -=
. “\\\\ @
@
@
A(0,0)  C(3,0)
0 >

Fig. 6. Bijection between the cells of a Farey diagram of order 2 and the preimages of
DSS of length 3
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3 Generalizations and Applications

These definitions of dual space and preimage easily extend to higher dimensions
for digital hyperplanes. Nevertheless, even if the characterization of the preim-
ages of infinite hyperplanes is easy to handle, few works have been carried out
concerning the structure of the preimage in 3D or more. In [10], the authors
propose a first structural and arithmetical characterization of the preimage of a
digital plane segment for particular cases. In [11], a theoretical and experimental
study on the number of faces of the preimage in higher dimensions is proposed.
Concerning the definition of dual space and preimage, recent work [12] proposes
a generalization of the preimage which enables to define the dual of a polygon as
the set of lines crossing this polygon. Together with the use of standard digital
planes, this new dual structure enables to define nice algorithms for digital curve
reconstruction.

Concerning the interest of using a dual space for applications, we already
mentioned the digital line recognition problem, for which using a dual space offers
a nice solution. This algorithm can also be extended for digital plane segments
recognition [13]. This notion may also be used to study the properties of the
intersection of two digital lines or two digital planes, as in [14]. In this case, the
preimage of infinite digital lines and planes are involved in the characterization of
the minimal parameters of the set of intersection grid points. Finally, let us also
mention the work carried out by Veelaert in [15,16,17] concerning the detection
of collinear, parallel or concurrent segments in an image. In these works, the
dual representation of the studied properties enables to extract a graph in which
particular structures (e.g. cliques) are sought. Then these structures represent
sets of segments fulfilling the desired property.

4 Duality/Polarity and Convexity

4.1 Definitions

Another way to consider the geometrical duality is to consider the projective
group on (d + 1) homogeneous coordinates. The homogeneous representation

of a point p = (x1,...,x4) in the d—dimensional Euclidean space is the point
(1,...,24,1) in the projective space [18]. Furthermore, for any non-zero scalar
A, the homogeneous points (Az1,..., x4, A) represent the same point in the

Euclidean space.

This representation framework is convenient to obtain a matrix representa-
tion of both affine transformations and duality mappings. Indeed, with (d + 1)
homogeneous coordinates, we can represent Fuclidean points and all linear va-
rieties of dimension k < d 4+ 1. To define the polarity, we consider the following
transformation:

a=03B

where a and @ are vectors in (d + 1) homogeneous coordinates and B is a
(d+1) x (d + 1) matrix.
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In the following, we focus on matrices B such that |B| # 0 (defining the pro-
jective group) and B = BT In dimension 2, this transformation maps points to
lines and lines to points using the homogeneous coordinate system. Furthermore,
this class of transformation preserves the incidence: o € 3, then 8B € aB. We
thus obtain a geometric duality.

Note that the matrix B is such that aBa”’ = 0 which corresponds to the
equation of a conic in homogeneous coordinates [18]. In computational geometry,
the mapping induced by such a conic is called polarity.

4.2 Polarity with Respect to Unit Circle
In the following, we focus on the polarity defined by the matrix:

100
B=1010
00-1

The conic defined by this mapping in homogeneous coordinates is a unit circle
in dimension 2. This transformation maps a point (x1,x2,1) to the line z1x +
22y — z = 0 in homogeneous coordinates.

A final property of this special duality is that we have a kind of metric preser-
vation. Given a point (or a line) o, we have:

distance(a, 0) - distance(dual(a),0) =1

In the Cartesian space, we can thus consider the dual by polarity of a polygon.
Note that the center of the unit circle (called the pole) needs to be specified.
Figure 7 illustrates the dual transformation of each straight line defined by the
polygon edges. Connecting the polar elements using the incidence property, we
thus obtain a polygon (not necessarily simple) called the dual polygon.

Using the classical property of polarity that maps union to intersection and
conversely we mention the property that in the general case, the convex hull

b a
! 3 ! ;5 [L2—a
2,3] =0
2 2 3,4 — ¢
4,11 —d
d a,b] — 2
¢ b,c] — 3
c,d] — 4
d,a] — 1
4 4

Fig. 7. A polygon and its dual by polarity
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d
C d C
[a,b] — 2
la,c] = 5=1[1,2]N[3,4]
4 [c,d] — 4 4
[d,b] —6=1[4,1]N[2,3]
dual[l,2,3,4] = [a,b,c,d] dualla,b,d, c] = [2,6,4,5] = Kern[1,2,3,4]

Fig. 8. A polygon, its kernel as the dual of the convex hull of the dual

of the dual polygon corresponds to the dual of a geometrical object called the
kernel. This object corresponds to the set of all the points inside the polygon
which are visible from any point of polygon contour (see below for a formal
definition of the kernel). The class of polygons the kernel of which is not empty
is called the star-shaped class of polygons. Figure 8 illustrates this construction
(remind that the position of the pole is very important).

5 Application to Convex Optimization by Interior

This section addresses the problem of the access of the shape by its interior.
Polygon inclusion problems are defined as follows: given a non-convex polygon,
how to extract the maximum area subset included in that polygon 7 The search
of the maximum horizontal-vertical convex polygon included into a simple or-
thogonal polygon has been solved in the continuous case by Wood and Yap with
complexity in O(n?) [19]. For more details about a lot of proposed solutions to
inclusion problems, refer to [20].

For the rest of the presentation, we consider a polygon P = (v, v1,...,Vn—1)
with n vertices. We denote by R = (rg,r1,...,7k—1) the k reflex vertices (or
concave vertices) of P (maybe empty). We note by C; a chord supported by two
successive vertices v; and v; 1. The potato-peeling problem can be expressed as
follows: Find the maximum area convex subset (MACS for short) @ contained
in P.

In [21], Goodman proves that @ is a convex polygon. He presents explicit
solutions for n < 5 and leaves the problem unsolved in the general case.

In [22], Chang and Yap prove that the potato-peeling problem can be solved in
polynomial time in the general case. More precisely, they detail an O(n”) time
algorithm to extract @ from P. Since this algorithm uses complex geometric
concepts and dynamic programming in several key steps, it is not tractable in
practical applications.
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In the following we propose an approximation based algorithm to approach
the MACS of a star-shaped polygon P. The proposed algorithm is an iterative
process based on a kernel dilatation framework.

5.1 Fast Approximation Algorithm

In this section, we assume that P is a star-shaped polygon. P is a star-shaped
polygon if there exist a point ¢ in P such that qv; lies inside P for all vertices v;
of P. The set of points g satisfying this property is called the kernel of P.

An extremal chord is a chord which contains two or more vertices of P. We
note that an edge of P is always included in an extremal chord.

To end with definitions a chord is called single-pivot chord if it contains only
one reflex vertex (chord Cy in Figure 9) and double-pivot chord if it contains
two distinct reflex points (chord Cs in Figure 9).

The kernel of P can be seen as the intersection between P and the half-
planes C;" defined by all extremal chords C; associated to all reflex vertices, as
illustrated in Figure 10.

Figure 10 is an illustration of such proposition. We have the property:

Property 5. Let P be a star-shaped polygon, then its kernel is a subset of the
maximum area convex subset of P.

Fig. 10. Illustration of the kernel computation based on intersection of extremal chords
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Proof. Details of the proof are given in [20].

In other words, there exists a continuous deformation that transforms the kernel
to the MACS. In the following, the strategy we choose to approximate the MACS
is to consider the deformation as an Euclidean dilatation of the kernel. Based on
this heuristic, several observations can be made: the reflex vertices must be taken
into account in the order in which they are reached by the dilatation wavefront.
More formally, we consider the list O of reflex vertices such that the points are
sorted according to their minimum distance to the kernel polygon. When a reflex
vertex is analyzed, we fix the possible chords as follows:

— the chord may be an extremal one;

— the chord may be a single-pivot chord such that its slope is tangent to the
wavefront (this point will be detailed in the next section);

— the chord may be a double-pivot chord. In that case, the second reflex vertex
that belongs to the chord is necessary. It must correspond to the next reflex
point in the order O.

Furthermore, when a reflex vertex is analyzed, we choose the chord from this list
that maximizes the area of the resulting polygon. If we denote by P’ the polygon
given by the intersection between P and the half-plane associated to the chosen
chord, the chord must maximize the area of P’. In the algorithm, it is equivalent
to minimize the area of the removed parts P/P’. Using these heuristics, the ap-
proximated MACS algorithm can be easily designed in a greedy process.

Algorithm 2
Compute the kernel of P;
Compute the ordered list O of reflex vertices;
Extract the first point r1 in O;

tant que O is not empty faire
Extract the first point r2 in O;

Choose the best chord that maximizes the resulting polygon area with the
chords (r1,72);

Modify the polygon P accordingly;

Update the list O removing reflex points excluded by the chord;

1 < T2;

fin

5.2 Single-Pivot Chords Computation

Given a reflex point r; of P, we have listed three possible classes of chord: ex-
tremal, single-pivot and double-pivot chords. The Figure 11 reminds the possibles
chords. The extremal and double-pivot chord computation is direct. However, we
have to detail the single-pivot chord extraction. According to our heuristic, the
single-pivot chord associated to r; must be tangent to the wavefront propagation
of the kernel dilatation.
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Fig.11. All possible chords that can be associated to the reflex point r1 (the two
extremal chords, a single-pivot balanced chord and the double-pivot chord)

T2

Using the exterior angular bisector structure issued from the computation of
the generalized Voronoi diagram of Kern(P), we can efficiently compute the
slopes of such chords. In Figure 12, let e; and ey be two adjacent edges of
Kern(P) (e; and ey are incident to the vertex v). Let p (resp. ¢) be a point in
the plane that belongs to the cell generated by e; (resp. es). We can distinguish
two cases: p is closer to e; than to one of its extremities and ¢ is closer to v
than to ey (without the extremities). Hence the straight line going through p
and tangent to the wave-front propagation is parallel to e;. In the second case,
the tangent to wavefront straight line going through ¢ is tangent to the circle of
center v and radius ||vq|| (see Figure 12).

(a)

Fig. 12. Computing a chord parallel to the kernel dilatation wavefront: (a) illustration
of the kernel dilatation, (b) single-pivot slope computation

Finally, if each reflex point r; of P is labelled according to the closest edge
e; of Kern(P) (extremities included), we can directly compute the single-pivot
chord: if r; is closer to e; than one of its extremities, the chord is parallel to e;,
otherwise, the chord is tangent to a given circle. Computational cost analysis is
developed in details in [20].

5.3 Experiments

In this section, we present some results of the proposed algorithm. First of all,
Figure 13 compares the results between the optimal Chang and Yap’s algo-
rithm [22] and the approximated MACS extraction process on 3 examples. In
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Fig. 13. Comparisons between the optimal MACS and the fast approximation proposed
algorithm. Each line corresponds to a new example. The first column presents the input
polygons, their kernels and the distance labelling, the second column shows the results
of the Chang and Yap’s algorithm. The last column presents the result of the proposed
algorithm. For the third example, optimal MACS and the fast approximation proposed
algorithm offer the same result.

practical experiments, the optimal O(n") algorithm do not lead to a direct imple-
mentation. Indeed, many complex geometrical concepts are used and the overall
algorithm is not really tractable. In Figure 13, the first column presents the
polygon, its kernel and the distance labelling of all vertices, the second row con-
tains the optimal MACS and the third one the fast approximation of the MACS
presented in Section 5.1. Note that the results of the last row are identical. If
we compute the area error between the optimal and the approximated MACS
on these examples, the error is less than one percent.

6 Conclusion

Duality can be seen in two ways : a geometric or a parametric transform. Geo-
metrical duality and graphs have been widely investigated with Voronoi diagrams
and Delaunay triangulations. In this paper, we focused on transformation based
duality. Two different processes have been investigated. The first one is based on
characterization of digital straight lines using duality and preimage. The second



Duality and Geometry Straightness, Characterization and Envelope 15

one is based on polarity for kernel construction used as an initialization step
for the problem of convex envelope of polygon by interior. The analysis of the
geometry of the dual polygon seems to be very promising to have a direct com-
putation of the MACS. Furthermore, a unification of both duality and polarity
frameworks is a challenging future work. Many other examples or approaches
could be studied and elaborated using this concept of duality. All these meth-
ods share the choice of alternative representations in order to offer optimality
criteria.
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Abstract. This paper explores proofs of the isoperimetric inequality for
4-connected shapes on the integer grid Z2, and its geometric meaning.
Pictorially, we discuss ways to place a maximal number unit square tiles
on a chess board so that the shape they form has a minimal number of
unit square neighbors. Previous works have shown that “digital spheres”
have a minimum of neighbors for their area. We here characterize all
shapes that are optimal and show that they are all close to being digital
spheres. In addition, we show a similar result when the 8-connectivity
metric is assumed (i.e. connectivity through vertices or edges, instead of
edge connectivity as in 4-connectivity).

1 Introduction

The isoperimetric inequality for R? states that the area enclosed by a closed
simple curve is at most that enclosed by a circle of the same length, with equality
occurring only for curves that are circles. This implies two conclusions about
circles that are equivalent in the continuous case, but distinct in discrete spaces.
It is clear that among closed simple curves of a certain length, a circle encloses
a maximal area, and on the other hand, that among curves enclosing a certain
area, a circle has minimal length. For discrete spaces there are special shapes
that have been proved to have minimal “perimeter”, for various definitions of the
perimeter, corresponding to the first conclusion. In the context of the Z™ grid,
Wang and Wang [1] presented an ordering of grid points, such that every finite
prefix of the sequence forms a set with minimal boundary size for that cardinality.
Similar arguments have been applied to B™ (the hypercube of dimension n) and
other classes of spaces, and are reviewed by Bezrukov [2]. More results appear
in [3,4,5].

This paper is concerned with shapes that are optimal in both having minimal
boundaries and having maximal areas given their boundary size. In this way,
they are similar to disks. We limit our treatment to the 2 dimensional grid, and
provide a characterization of shapes that are optimal in this “double” sense.

* This research was supported in part by the Israeli Ministry of Science Infrastructural
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We will start with a useful result that illustrates the differences between the
double optimality we require and the weak optimality that was imposed before.
We seek a tight lower bound on the size of the neighborhood of a general subset
of the Z? grid for which we know the cardinality i.e. the area. This is clearly a
form of isoperimetric inequality. Bounds of this sort were used to prove lower
bounds on the efficiency of a multi-agent algorithm for sweeping dynamically
growing shapes [6].

Let A be a finite subset of the Z? grid. We define its neighborhood as N (A) =
{p € Z*|d (p, A) = 1}, where d is the Manhattan metric d ((a,b), (z,y)) = |a — z|
+|b — y|. Then the lower bound we seek can be written in the form of an integer
sequence n (k) : N — N, defined via n (k) = minj ;> {|N (4)[}.

Let us first look at the 2 dimensional case of the sequence described by Wang
and Wang in [1]. Every prefix of this sequence is a set of tiles (a shape) that
can be described as the union of a discrete sphere (all tiles whose coordinates
sum to at most k) and part of the shell needed for the next largest sphere (some
of the tiles whose coordinates sum to k + 1). The first elements of the Wang?
sequence are (0,0), (0,1), (1,0), (-1,0), (0,-1), (1,1), (-1,1). The corresponding
shapes can be seen in Figure 1. Because Wang? show that the shape formed
by every such prefix has a minimal boundary size for its area, a formula to
calculate the neighborhood size of every such shape would provide us with a
way to calculate n (k). Geometrically we can say that the boundary size changes
whenever the expansion of the outer shell enters a new quadrant.

o oo 5 B ofb o off offp et B B b b

Fig. 1. The first few shapes in the 2D Wang sequence

In our approach, we first note that the function n (k) is not affected by a
shape that has a non minimal neighborhood size for its area (because it will
not be chosen in the min), nor by a shape that has non maximal neighborhood
area (since then the shape of maximal area can be used instead). Then at the
beginning of the next section we provide an explicit expression for n (k), which we
later justify by characterizing the set of shapes that are simultaneously optimal
in both having largest area for the given neighborhood size and having smallest
neighborhood size given their area.

The rest of the paper is organized as follows — section 2 contains a detailed
analysis of the above while section 3 presents an alternative method of producing
similar results. This alternative approach is later used with slight modifications
to derive similar results under the 8-connectivity metric.

2 The Isoperimetric Inequality Theorem

We shall next provide the promised explicit expression for n (k), whose first few
values are 0, 4, 6, 7, 8, 8, 9. This sequence already highlights the fact that the
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fourth shape in the Wang? sequence (Figure 1) obviously does not have maximal
area for its boundary size, because n (4) = n (5) = 8.

Theorem 1. If k = 0, then n(k) = 0. For k > 0 n(k) =4 (m+ 1) + ¢ where
(m,i) € N X Zy is the first pair for which one of the following holds:

1.i=0Ak<2m?+2m+1
2. i=1Ak<2m?+3m+1
3. i=2Ak<2m?+4m+2
4. i=3ANE<2m?>+5m+3

where N x Zy is ordered lexicographically (with priority to N).

While the formula for n (k) in the above theorem is explicit, one might find this
expression somewhat difficult to grasp. However it is easy to understand as a
way to fill a simple look up table, the first few columns of which are shown
below and which is scanned column first for the first value above or equal to k.
Then the column and row of that value provide 7 and m needed to calculate the
perimeter.

i\m012345 6 7 8
0 15 13254161 85 113 145
1 16 15284566 91 120153 ...
2 28 18325072 98 128 162
3 31021365578 105 136 171

Note that the increasing sequence of values that appear in the successive rows
of the table, i.e. 12 356 8 10 13 15 ... etc. are the areas of the double optimal
shapes.

To gain some geometrical understanding of n (k) in terms of m and 4, we
reconsider the Wang? sequence. This sequence includes among others, some op-
timal shapes, which are those whose area appears in the table above. As we
mentioned, such a shape can be seen as a digital sphere enclosed by a shell of
zero to three quadrants. It is easy to see by continuing the sequence that the
radius of the digital sphere is m+1 and the number of quadrants is i. A complete
correspondence of these areas to all optimal shapes, including small ones, will
be proved in the next sections.

Our exploration of optimal shapes that yields theorem 1 consists of two phases.
First we show that the optimal shapes belong to a class of simple shapes (sec-
tion 2.1) and explore the structure common to all the shapes of this class (sec-
tions 2.2 and 2.3). Then we use this structure to find which shapes in that class
are indeed optimal (section 2.4).

2.1 Simple Shapes

In this section we present an algorithm that allows us to cover every shape with
a simple shape of the same neighborhood size and at least as much area. This
will show that only simple shapes may be optimal. We will show how to calculate
the neighborhood size of a simple shape, and later on its area.



20 Y. Altshuler et al.

Definition 1. (z,y) is called a 4 neighbor of A if :

(x,y) ¢ A and {($7y+1)7($+17y)7($— 1vy)7($1y_ 1)}014 7é (Z)
The set of 4 neighbors of A is written N (A).
Definition 2. A shape A is called optimal if for every shape B :
(IN(B)| <IN (A)| = |B| < |A]) and (|B| = |[A[ = [N (B)| = [N (4)])
Definition 3. A shape is called simple if it can be written as :
B ={(z,y)ly —x € [j1,j2] and x +y € [k1, ko]}

We often refer to the sizes of a simple shape as j = js — j1;k = ko — ky.
Sometimes the specific directions do not matter, in which cases we denote w.l.o.g
a = min {j, k} ;b = max {j, k}. Note that there may be different shapes that have
the same dimensions.

Theorem 2. If A is optimal, then A is simple.

Proof. Let A = {(z,y)} be a set of tiles, k; = min{k|3 (z,y) € BAx —y =k},
ke = max{k|3(z,y) € BAz —y=Fk}, i = min{j[3(z,y) € BAz+y=j},
and jo = max {j|3(z,y) € BAz+y=j}.

9 8 9 8
76 6 7 76 6 7
5 4 4 5 4 4
3

j2
a=3;b=5 it
j=

[N
[Ng)

Fig. 2. A general shape A and the corresponding simple shape B

We look at the shape B = {(x,y)| z —y € [j1,j42] ANz + y € [k1, k2]}, then
clearly B O A. We will show that if A is optimal, B = A. Since B is sim-
ple, this is sufficient. On each boundary line there is at least one point that is
in A. Let {(z1,91), (x2,¥2), (23,93), (z4,y4)} be on such a boundary, where
(zi,9i), (Tit1,yi+1) are on non-opposite sides. Note that it is possible that
(ziy¥:) = (®it1,Yit1), for example for A" = {(x0,y0)} all the points are the
same, and that we consider the indexes ¢ modulo 4, so that i =4 =i+ 1 =1.

W.lo.g, we assume that y; — z; = ke A 2441 + yix1 = Jo2, then z; < x44.
Since there are no vacant columns between x;, x;41, A has at least z;41 —x; +1
neighbors from above (in each column, the neighbor above the highest tile of
A in that column — see Figure 3). Doing the same for the other 3 adjacent
pairs of points, we find a lower bound on neighbors from the left, from below,
and from the right. Note that this bound is tight for shape B, which has no
other neighbors, and has all the possible tiles. Then if A # B, A is not optimal,
because it has at least as many neighbors, and not as many tiles. a
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Definition 4. A simple shape A with a = 0 is denoted as degenerate shape.

Note that degenerate shapes behave differently from other simple shapes (for ex-
ample, in the degenerate case b cannot have odd values, because the Manhattan
distance between two tiles on a diagonal is always even).

Lemma 1. The only optimal degenerate shapes have an area of 0, 1 or 2.

Proof. If A is degenerate, then a = 0. We assume by contradiction that b > 4
(see Figure 3) and A is optimal. But the shape B, created by placing all the tiles
in the same column has exactly as many neighbors (two horizontal neighbors
per tile, and two additional vertical neighbors), and the same area, but is not
simple, therefore is not optimal. Then A cannot be optimal. The shapes with
b < 3 have areas as described, as can be seen in Figure 7. O

Since we have seen that only a small and finite set of degenerate shapes is of
interest to our discussion we shall assume that all simple shapes have a > 1.

7S¢ XK

Fig. 3. A degenerate shape A, and a variation A" which clarifies that A is non optimal

Lemma 2. FEvery simple shape has j + k + 4 4-Neighbors

Proof. By induction on j and k. This is true for the shape of two neighboring
tiles (i.e j = k = 1), and 6 neighbors. In the induction step, we assume validity
for j, k and prove it for j+ 1 (same reasoning applies to expansion in k). Adding
1 to j causes one diagonal side (having r tiles) to expand to some direction
(an expansion up is illustrated in Figure 4). As a result, r neighbors in that
direction become new tiles, and r vacant beyond those in the same direction
become neighbors, not modifying the neighborhood size yet. However, the new
tile that is last in the direction of advancement is exposed to a new neighbor
from the side. Having been diagonal to an extreme tile in the shape, it was not
a neighbor before (i.e. increasing j or k adds one neighbor), thus a shape of
dimensions (j + 1), k has j + 1+ k+4 neighbors, completing the induction step.

O

2.2 Expansion

In this section we demonstrate how each simple shape can be described as a
“spine” expanded by an iterative expansion process. This process and its effects
on the area and neighborhood size of a simple shape is described.

Definition 5. Let A be a simple shape of dimensions j, k. We call increasing
each of j, k by two an expansion step.
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Fig. 4. Expanding a simple shape to one side

Note that each expansion step performed on a simple shape adds exactly all of
its 4-neighbors. Thus, the number of tiles of the shape increases by j + k + 4,
and the number of neighbors grows by 4. See Figure 5 for an example.

Lemma 3. Let A be a simple shape with dimensions j, k. After s expan-
sion steps, its neighborhood grows by 4s and its area grows by E (j,k,s) =
5(24+75+k+2s).

Proof. The neighborhood grows linearly, being equal to j + k + 4. E (j,k, s) is
defined as the number of tiles added to a simple shape by s expansions, therefore :
E (G k,s) =300 ((5+20) + (k+20) +4) =5(2+7 + &+ 25). 0

2.3 Spines
Definition 6. A simple shape such that a € {1,2} is called a spine.

Theorem 3. A simple shape A can be described as a spine, expanded some finite
number (possibly zero) of times. This description is unique.

We shall next show that there are only 4 kinds of spines. Thus, since we know
the area added by each expansion step, we can calculate the areas of all simple
shapes.

Proof. Of the theorem. If a of A is even, we say that As has dimensions 2, b—a+2,
otherwise 1,b — a 4+ 1. Either way, As is a spine and expanding it s = (;] -1
times yields exactly A. Then the area of every simple shape is the sum of the
area of its spine A, and the area added in the expansions. We note that starting
from any other spine will result in the wrong shape - a different initial width (or
different number of expansions) results in wrong parity of the final width, and
the same spine width but different different length results in a wrong difference
between length and width. Therefore this description is unique. a

Lemma 4. Let A, be a spine of dimensions a < b, then its area is given by (See
Figure 5):

1. Ifa=1, the area is b+ 1
2. If a =2, then we have the following options:
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(a) If b is odd, then |Ag| = 3'(17;1)'
(5) b is cvem, of type 1, then |4 = % +1.

. 3-b
(c) b is even, of type 2, then |A| = °) + 2.

Proof. For a = 1, there are b tiles at distances 0 to b — 1 from one line, and one
more. For a = 2, there are V’glj triplets of tiles. Note that there are two ways of
getting from an odd b to an even one, depending on which boundary is moved,
resulting in different area increases. ad

a=1 a=2,b is odd a=2,b is even, type | a=2,b is even, type Il

9% 9%
&

Fig. 5. Spine types and their areas

/1

2.4 Spines of Optimal Shapes

Theorem 4. Let A be a spine with dimension a,b of an optimal shape A, then
a+4>b.

Later we show that this result, while necessary in our construction, is not tight.

Proof. We assume by contradiction that A is an optimal shape with spine a+4 <
b, extended s times. Then we take the same skeleton with b shortened by 4, and
expanding it s + 1 times we get B, such that |N (A)| = |N (B)].

We will now show that |B| > |A|, contradicting the optimality of A. |A] is the
sum of spine size and E (a, b, ).

First we note that F (a,b—4,s+ 1) — (E (a,b,s)) = a + b, then if a = 1, the
area of the skeletonsisb—4+1and b+ 1, thenb—4+a>a+4—4+a>0=
b—44+1)+(a+b)>b+1.

If @ = 2, in all the variations, subtracting 4 from b reduces the skeleton area
by precisely 2, but the expansions more than offset that because a + b > 2a +
4> 2. O

Corollary 1. The dimensions of spines of optimal shapes are a subset of:
{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3) (2,4), (2,5)}

Recalling Lemma 4, we note that spines of dimensions {(2,2), (2,4)} mentioned
above come in two types. As we saw then type 2 spines have strictly more area
than those of type 1, with the same neighborhood. Therefore only type 2 spines
can result in optimal shapes. In this context, each set of spine dimensions results
in a certain spine area and neighborhood size.
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Theorem 5. Let A be a non degenerate optimal shape with dimensions j, k, so
that |N (A)| =4 (m+1) 4+, with i € {0,1,2,3}. Then:

|A| = 2m? 4 (1 +4) m + max {1,i}

Proof. Let a, b be the dimensions of A’s spine, then remembering each expansion
increases the neighborhood size by 4, we see that 4(m+1)+i=j+k+4 =
a+b+4(s+1). One conclusion is that a + b = 7 mod 4, and another is that
s = 47"“;;“4’. Hence, denoting |A;| the area of the skeleton of dimensions a, b,
the total area for such a shape is exactly |A| = [A | + E (a, b, *™ T 727).

Below we have a table describing for each ¢ the possible spines for optimal
shapes with |V (A)| = 4m + i, the shape’s area for each spine, and the spines
resulting in shapes that are sub-optimal for that neighborhood size.

i Spine  Spine Type Spine Area # of Expansions Total Area Sub-opt.

0 (1,3) a=1 3+1 m—1 2m? + 2m yes
0(2,2) a=2biseven 32 +2 m—1 2m? +2m + 1
1(1,4) a=1 4+1 m—1 2m? + 3m yes
1(2,3) a=2bisodd *& m—1 2m2 4 3m + 1
2 (1,1) a=1 1+1 m 2m? + 4m + 2
2(2,4) a=2biseven 342 m—1 2m? + 4m + 2
3(1,2) a=1 2+1 m 2m? + 5m + 3
3(2,5) a=2bisodd *E m—1 2m2+5m+2  yes

O

Theorem 5 provided a necessary condition for an optimal non degenerate simple
shape A. However, although we have shown the optimal area for every specific
neighborhood size, we are not done yet. We must show that no shape exists
having larger area and smaller neighborhood. This should hold because n (k) is
defined so that it is a non-decreasing sequence.

First we note that for any specific m, |A| is strictly monotonous in i. Further-
more, we see that 2(m+1)>+2(m+1)+1=2m2 +4m+2+2m+2+1=
2m? 4+ 6m +5 > 2m? + 5m + 3, then |A| is strictly monotonous in N (A). Thus,
all size values in the above result are indeed areas of optimal shapes. Therefore:

Theorem 6. The non-degenerate optimal shapes are those simple shapes that
when decomposed into spine and expansion have a spine of one of the fol-
lowing forms: (a,b) € {(1,1),(1,2),(2,2),(2,3)(2,4)} (these spines appear in
Figure 6).

Corollary 2. Let As be a spine with dimension a,b of an optimal shape A, then
a+3>b.

Corollary 2 is a tighter version of theorem 4, and can now be verified by inspec-
tion of the list of optimal spines.

Corollary 3. The degenerate simple shapes with areas 0,1,2 are all optimal.

All these appear in Figure 7.
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(1,1) (1,2) (2,2) (2,3) (2,4)

Fig. 6. The optimal spines

Proof. There are no other optimal shapes with neighborhoods sizes 0 or 4, and
the other optimal shapes of neighborhood size 6 also have area equal to 2. 0O

KX

Fig. 7. The optimal degenerate shapes: two with dimensions (0,0) and one with (0,2)

We have now identified all the optimal shapes, degenerate and simple, with
explicit expressions for their neighborhood sizes and areas. This allows us to
state that every shape of area k has a neighborhood at least as large as that
of (every) optimal shape with area < k. From this characterization, Theorem 1
immediately follows.

3 Alternative Analysis

This section describes an alternative approach to the grid isoperimetric inequal-
ity. Some results similar to those presented in section 2 are rederived, as well as
a new result, concerning the 8-connectivity grid metric.

3.1 Four Connectivity in Z>2

Let A be a finite subset of the Z? grid, having the neighborhood N (A) =
{p € Z*|d (p, A) = 1}, where d is the Manhattan metric d ((a,b), (c,d)) = |d — b|
+ |c — a|. Let us denote n(A) = |[N(A)]|.

For some area k € N let Ayrn (k) be defined as the shape of area k whose
neighborhood is the smallest, namely :

Anrin (k) C Z2 N |Apin (k)| =k
VACZ® (JAl=k)— (n(A) >

Theorem 7. For every positive k, the neighborhood of Anrn (k) is at least as
large as this of the largest digital sphere (assuming 4 Connectivity) of size at
most k, minus two, namely :

Vk €N n(Aymin(k)) > max {n(Aspupre) | |Aspaprs| <k} —2
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We provide only the outline of this proof due to space considerations, but the
steps described here are followed in the proof for 8 Connectivity. As we proved
before, any shape A is covered by a simple shape R that has no more neighbours
than A. This simple shape R is enclosed by another simple shape denoted C'R,
that has all of its neighbours on tiles such that the parity of the sum of their
coordinates is constant (if the plane is colored as a chess board, the neighbours
are all of the same color) and such that C'R has at most two more neighbours
than C and A. We call such a shape a Canonical Rectangle. We derive formulae
for the area and boundary size of C'R based on the sizes of its sides a, b, then
find a lower bound on the minimal boundary for a canonical rectangle of the
same area by differentiating by b. This minimum is found when a = b, that is
when the canonical rectangle is a Manhattan sphere.

Fig. 8. For a shape A, the left chart demonstrates R while the right chart demonstrates
the canonical rectangle CR

3.2 Eight Connectivity in Z2

Let B be a finite subset of the Z? grid, having the neighborhood Ng(B) =
{p € Z*|ds (p, B) = 1}, where ds((a,b), (c,d)) = max{(d — b),(c — a)}. Let us
denote ng(B) = |Ns(B)].

For some area k € N let Byrn(k) be defined as the shape of area k whose
neighborhood is the smallest, namely :

BMIN(k) CZ?A |BMIN(k)| =kA
VB CZ® (|B|=k)— (ns(B)>ns(Burn(k)))

Theorem 8. For every positive k, the size of the neighborhood of Byrn (k) is
at least as large as this of the largest digital sphere (assuming 8 Connectivity) of
size at most k, namely :

Vk € N ng(Buin (k) > max {ns(Bspugre) | |Bspupre| < k}
Note that a digital sphere of radius 3, for example, is a 5 by 5 square.

Proof. Let us denote the bounding rectangle of B by bounding-rectangle(B).
For each of the four sides of bounding-rectangle(B) (i.e. top, right, down, left)
let us denote the last tiles of B that are 4 neighbors of the four sides (assuming
clockwise movement) by 1, 2, 3 and 4 respectively. See an example in Figure 9.

Let us project all the tiles of bounding-rectangle(B) between points 1 and 2
in 45° down-left, the points between 2 and 3 in 45° up-left, the points between
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1

sne e : :
3 > \2

Fig.9. An example of the bounding-rectangle and its projection

3 and 4 in 45° up-right and the points between 4 and 1 in 45° down-right. An
example appears in Figure 9.

Clearly, after such projection each tile of bounding-rectangle(B) a 4 neighbor
of at least a single tile of B. In addition, it is impossible that two tiles of bounding-
rectangle(B) will merge in the same spot. Thus, ng(B) is at least the number of
tiles in bounding-rectangle(B), namely :

VB ng(B) > |bounding-rectangle(B)| (1)

Let R(k) be the smallest rectangle which contains at least k tiles. Let a and
b denote the sides of R(k) and let ¢ denote the number of tiles R(k) comprises.
Then :

c=2(a+b)—4 (2)
Let f(a,b) denote the area of a rectangle of sides a and b :
fla,b) = (a—=2)(b-2) 3)

We would like to find a solution for the following optimization problem :
min ¢ st f(a,b) >k A c=2(a+b)—4
After some arithmetics equation 3 can be written as :

_ [f(a,b)
a= b2 +2 (4)

Combining this with 2 we get ¢ = 2{;(_“51’) +2b. Since we require that f(a,b) > k

we can write the following :
a 2k

y g2 (5)

czp

Note that while the minimizing b may not be an integer, it still gives a bound
valid over the integer b. In order to minimize p we require that gg’ =2- (bzg)Z =0
and after some arithmetics we get that :

b=Vk+2 (6)

By examining the behavior of 325’ we can see that for b = vk + 2 since k > 1

2
then ‘gbg’ > 0, meaning that p is indeed minimized at this point. By assigning the
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value of by, to equations 4 and 5 we can see that for by, a = b (meaning that
R(k) is a square — the equivalent of a digital sphere, assuming 8 Connectivity)
and that :

c>4(Wk+1) (7)

It is easy to see that for some sphere B such that |B| = k, ng(B) = 4(vVk+1)
and therefore it is the shape that minimizes the neighborhood for shapes of given
area k. The rest of the Theorem is implied. a
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Abstract. In this paper, we provide an unified view of two definitions
of digital lines in 3D via the use of lattice theory and specific projections
of the lattice Z*. We use this unified vision to explain the extension of
the definition of Voss [1] to an arbitrary dimension and we show how
to extend the definition of Figueiredo and Reveilles [2] to an arbitrary
dimension.

1 Introduction

Digital lines are among the simplest primitives in Digital Geometry. Many defi-
nitions have been proposed by many authors [3], which are almost all equivalent
in 2D. Several drawing algorithms are known as well as several recognition al-
gorithms. All of this explains why digital lines are extremely central for a lot of
digital algorithms. Thus, it is natural to look for an extension of the definition
of 2D digital lines to 3D digital lines. Moreover, as the applications nowadays
manipulate 3D, 4D and sometimes higher dimensional data, extensions of digital
lines to n-D becomes also very important and critical.

Several extensions have been proposed to define 3D digital lines. First, Voss
[1] recalled some previous works by Kim [4] and proposed a definition of n-D
digital lines based on the integer part function |.]. Second, the work of Debled-
Rennesson et al. [5,6] proposed to define 3D digital lines through their projections
(two or three in the general case) on the planes defined by the axes of the
standard basis of Z3, and used the arithmetical approach of Reveilles [7]. It must
be noticed that [4] also used projections onto the coordinates planes. The work of
Debled et al [6] also leads to a recognition algorithm. A third approach was also
done by Figueiredo and Reveilles in [8, 2] using lattice theory and projections
onto the orthogonal plane of a direction v in Z3. As it can be seen, only the
definition given by Voss [1] extends to an arbitrary dimension. Beside this, we
can note that there exist drawing algorithms of digital lines in n-D [9] based on
displacement vectors. Moreover, the definition of n-D digital lines is related to
the notion of digitization. Some models are presented by Klette [10] (with the
important correction given in [11]).

The goal of this paper is to present a unified and generic view of the defini-
tion of Voss [1] and the definition of Figueiredo and Reveilles [2]. Moreover, due

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 29-40, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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to this unified viewpoint, we also extend the last definition to an arbitrary di-
mension. The main mathematical tools used in this paper are lattice theory and
projections of lattices. We prove in the paper that both definition are obtained
via projection of the lattice Z3 onto specific planes which are the zOy plane for
the definition of Voss and the orthogonal plane - as it was already the case - in
the definition of Figueiredo and Reveilles.

The structure of the paper is as follows. We first recall how to manage sym-
metries in 3D via the octaedral group in section 2. This is followed in section 3
by the construction of the definition of Voss in dimension 3, as well as a recall of
the construction of Figueiredo and Reveilles. We end this section by the presen-
tation of a drawing algorithm. Then in section 4, those approaches are extended
to an arbitrary dimension. We also present some results concerning the basis of
the lattice we manipulate. The paper ends in section 5 with some conclusions
and perspectives.

2 Preliminaries

In 2D, it is usual to restrict the study of digital lines to the first octant where
for each point (z,y), we have 0 < y < z. In higher dimension, we can do the
same following the approach of Reveilles [12]. Hence, we will use the group of
the symmetries of the unit cube in 3D. We denote this octaedral group by Op,.
This group can be identified to the product of the group (2ZZ)3 of order 8, and
the group S3 of the permutations of the three letters a, b, c, whose order is 6.
The order of Oy, is thus 48. Its geometrical interpretation is easy using rotations
and symmetries and is given on Fig. 1.

Fig.1. The octaedral group Op associated to the decomposition of a cube into 48
tetraedra, each being a transformation of the fundamental domain 0 < a < b < ¢ by
an element of the group Oy,

Using the octaedral group, we could study only the fundamental domain which
is the subset F' of Z3 composed of the integer points (a,b, c) such that 0 < a <
b < c. To generate all possible cases, we simply study the action of Oy, on a triple
of signed symbols (+a, £b, +¢). Each of the eight elements of the subgroup (QZZ )3
of Oy, modify the signs of the symbols and the other six, coming from S3, permute
them. Consequently, Oy, can be identified to the group of 3 x 3 matrices where
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each row and column contains only one value being either +1 or —1. We can
effectively find 48 of such matrices.

Let n = (n1,n2,n3) € Z3 be a vector and let us denote by Dom,, the domain
of n. The element g, of O, which maps Dom,, onto F can be constructed as
follows. We sort the matrix whose columns are the n; such that the order of
the first row is increasing. The resulting matrix is the element M,,. Let us now
denote by perm,, : Z3 — Z* and by sgn,, : Z> — Z> the applications

x x x sign(ni)x
permy: |y | — M, |y sgnp: |y | — | sign(n2)y
z z z sign(ns)z

where sign(w) is the sign of w. We have g, = sgn,, o perm,,.

3 3D Digital Lines

We present in this section our construction of 3D digital lines using lattices of
R"™ and arithmetics. Recall that if v, v9, ..., v, is a collection of p vectors of R",
then the lattice generated by the collection is the set of all integral combinations

> aiv, Vi=12...,p, a; €L

Our approach is based on the study of the repartition of integer points of Z3
in the neighborhood of the integral direction given by the vector (a, b, ¢). We will
define 3D digital lines based on the notion of 1D dotted lines as it is the case for
the two dimensional lines [13]. Using the octaedral group Oy, we suppose that
(a,b, ¢) belongs to the fundamental domain F. Moreover, a, b and ¢ are supposed
to be relatively prime.

Let us denote by £ the set of all Euclidean lines whose direction vector is
v and which contain integer points. We will call 1D dotted lines with direction
v = (a,b,c), the intersection of the Euclidean lines - with direction v - with Z?3.
The plane (P) given by az + by + cz = 0 is a subgroup of R3. The orthogonal
projection of Z3 onto (P) is the intersection of £ and (P) and is a lattice of (P)
denoted by Ep. This lattice is clearly a rational lattice (see Fig. 4).

It is easy to verify that the intersection of the planes —cx 4+ az = 0 and
—cy + bz = 0 is the line directed by v and passing through the origin. The
intersections of the planes —cx 4+ az = k and —cy + bz = [ where k,l € 7Z also
give a family of lines of direction v. We denote by D this family. It is clear that
&€ C D, but the converse is false as the following system shows it,

132 -3z =2 (1)
13y — 5z =3 (2)

corresponds to the line whose direction is (3, 5, 13) but this line does not intersect
Z3. Indeed, the solution of (1) are given by (2 + 3u,0,8 + 13u), u € Z, whereas
the solutions of (2) are (0,6 + 5v,15 + 13v), v € Z. To have an integer solution
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of the system, one must have: 3u,v € Z, 8 + 13p = 15 + 13v ; this is clearly
impossible.

Let us denote by Dp the lattice given by the intersection of D and the plane
(P). It is clear that Ep C Dp. The lattice Ep belonging to (P) is the projection
of all 1D dotted lines, but its use is not very easy. However, we can see it as a
sublattice of Dp. Since Dp is a Cartesian lattice, it is much easier to work with.
These lattices were introduced in [2] to propose a new definition of 3D digital
lines. Beside this definition, we can refer to definition 4.2.3 of Voss [1] of nD
digital lines. In the sequel, we explain how to obtain Voss definition using two
specific lattices whose construction is similar to the one of Ep and Dp of [2].

nalf
.
s 1

Fig. 2. The lattices Dqyy, Exy, the line [ with direction (a,b,c) = (3,5, 13)

3.1 The Lattices £,y and Dy,

Let us denote by &, and D, the lattices which are respectively the intersections
of the collection of lines D and £ with the 2Oy plane (see Fig. 2).

Proposition 1. The lattice D,y is the set of integer points of the xOy plane,

given by ('z, é) where k and | are arbitrary integers.

Let £ be the line with direction v containing the origin and let [ be its projection
onto the plane z = 0. We then have the following.

Proposition 2. The lattice £, is the set of rationnal points (x — %7,y — bcz) of
the plane z = 0 where x,y, z are arbitrary integers.

To efficiently manipulate 3D digital lines, we must clearly understand the lattice
Ezy- To do this, we now give a modular generation of this last lattice.
When z varies in Z, the points (z + %,y + Zcb) are located into unit squares
given by [k, k+1[x[l,14+1[C R? where k and [ are well chosen. We can consider the
ka mod ¢ kb mod ¢

reduction of this series modulo (1,1), that is ("¢ % ¢, > med <) We simplify
the notation by denoting by {Z} the value of v mod v, such that the previous

couple is | ({ka/c},{kb/c}).
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The ¢ points | ({ka/c},{kb/c}),k = 0,1,2,...,c — 1 of the lattice &, all
belong to the unit square [0, 1[x[0,1[. We denote by I this set. The whole
lattice &, is obtained by periodic translations of Il4;.. The only consideration
of the lattices D,, and &, will lead to the notion of 3D digital lines.

First, the points i(za, zb) of &y, belonging to [, are the projections of the
intersections of £ with the planes z = cste. But [ also intersects the unit squares
of R? given by [z, + 1[x[y,y + 1]. These squares are the projection over the
plane z = 0 of the voxels [z,z + 1[x[y,y + 1[x[z, 2 + 1] of R3. Consequently,
the study of the intersections of £ with the unit cube of R? is equivalent to the
study of the intersections of [ with the squares [z, z+ 1[X [y, y+ 1] and the study
of the lattices D,y and &Egy.

If we consider the parallel lines to £ containing a point of I1,p., thus the 1D
dotted lines with direction v, we can verify that they intersect the same voxels or
neighboor voxels than £. Hence, the set of intersected voxels is a 26-connected
structure we can call a 3D digital lines.

Among the points of &£, belonging to [/, which are generally rational points,
the one given by k(a,b) = kcc (a,b) with k € Z are integer points. These are the
projections of the integer points k(a,b,c), k € Z belonging to the line L.

Theorem 1. The projection of k(a,b,c), k € Z of the line L is the series of
integer points of the plane z = 0 given by k(a,b), k € Z. If i(m,n) is a point
different from (0,0) in e, either i = —ma~' mod ¢ or i = —mb~! mod ¢
where a=' (resp. b=1) is the inverse of a (resp. b) in the group 5, then (% (m+
ia), } (n+1b)) is an integer point and is the projection of the point (1+ [**] 1+

[Zcb] ,1) of the dotted line parallel to L and containing the point (m,n).

Proof. The first relation on £ has already been given. For the second on an
arbitray dotted lines, as the three integers a, b, ¢ are relatively prime ((a,b,c) =1
where (a, b, ¢) is the ged of the three numbers), then a or b is invertible mod ¢
(as (m,n) € &y, ma™ = nb~! mod c if both are invertible). Consequently,
m—+ia and n+ b are multiples of c¢. Using the Euclidean division between m+ia
and n + ib, we obtain the last relation of the theorem. a

We now describe the construction of the 3D digital lines A, directed by v and
containing the origin. This line is an union of ¢ 1D dotted lines and L is one of
them. We then apply theorem 1 to add one by one 1D dotted lines to Agpe.

We consider the point | (m,n) = ! ((c —1)a, (c — 1)b) of I, and the line &
directed by (a,b) and containing !(m,n). The sum !(m,n)+ !(a,b)) is equal
to (a,b), hence the point following ! (m,n) on § is an integer point which is the
projection of the point (1,1,1) (here ¢ = 1). We obtain thus that the 3D line
directed by v and containing the point (1,1, 1) is parallel to L. It is also a 1D
dotted line whose integer points are (1,1,1)+k(a, b, ¢), k € Z. We add it to Agpe.

By adding the vector !(2a,2b) to the point ! (m,n) = !((c - 2)a, (c — 2)b)
of I, we also obtain an integer point (z,y) of &, (equal to (1,1) or (1,2)
depending on the relative values of a, b, c). This point (z,y) is the projection of
the point (x,y,2) of Z3 defining the 1D dotted line made by the points (x,y,2)+
k(a,b,c), k € Z. We also add it to Agpe.
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We pursue this construction by adding all the dotted lines defined by the
points | ((c—i)a, (¢ —i)b) of ITapc. At the end, when i = ¢, we obtain an integer
point of £. Hence, Ay, is periodic with period (a, b, ¢). Its period is composed
of the ¢ first voxels described previously. As (¢ — i)a = —ia mod ¢, it is easy to
compute the z and y coordinates of the voxels.

Fig. 3. The first 13 voxels of the first period followed by the first voxel of the second
one. The direction vector is (a, b, ¢) = (3,5,13).

We thus obtain Voss definition of a 3D digital lines (see Fig. 3).

Definition 1. The 8D digital line with direction (a,b,c) and initial conditions
m,n at the origin, where 0 <m < c and 0 < n < ¢, is given by

az—é—m]

[
[b=+n]  with z€Z.
z

IS IS
Il

Contrarily to the 2D case, choosing m = n = J does not produce the approx-
imation with rounding of the Euclidean line. In fact, we will recall that this
Bresenham-like 3D digital line is generated via the lattices £p and Dp.

From the previous study, it becomes easy to find an algorithm to draw the
3D digital lines. Indeed, if we translate the point i(m, n) € I, by the vector
(a,b), 4 cases happen

0<m<c—a and0<n<c—b step (0,0,1)
c—a<m and 0<n<c—5b step (1,0,1)
0<m<c—a andc—b<n step (0,1,1)
c—a<m andc—b<n step (1,1,1)

The 3D digital lines, previously defined, with direction vector n = (a,b,c)
such that 0 < a < b < ¢ and a, b, ¢ relatively prime, are given by the intersection

of two particular digital planes.

Definition 2. A 3D digital lines with direction vector (a,b,c) such that 0 < a <
b < ¢ and a,b, c relatively prime is the set of solutions of the linear systems of
iequalities given by
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y<cr—az<vy+c
v <ey—bz<y +ec

The lower bounds can be used to translate the digital line so that it can contain
any given integer point of Z3. Their arithmetical thickness is the integer c. This
number can be replaced by any couple €, € of integers in orderto define 3D digital
lines with prescribed thickness.

One on the fundamental properties of 3d digital lines is that they cover Z3.
Moreover, the action of the octahedral group Oy, can be used to define 3D digital
lines with any direction vector.

3.2 The Lattices Dp and Ep

Recall that for a direction vector n = (a,b,c), the canonical lattices attached
to the famillies D and £ are the intersections of these famillies with the plane
(P): az + by + cz = 0. The lattices are respectively Dp and Ep.

The lattice Ep is very interesting since it permits to measure Euclidean dis-
tances between the 1D dotted lines so to locate the integer points which are
closest to an FEuclidean lines with direction vector n. As it was the case for D,
Dp is a cartesian lattice which contains £p and with which it is easier to work.

The coordinates of the points of Dp and £p are more complex that for D,
and &, but their dependances are algegraically similar. We refer to [2] for the
computation. The coordinates of the points of Dp are given by:

(b2 4c?)u—abv

g2+§2+02
_ (a*+c*)v—adbu
Y =iy u,v € Z
_ —c(au+bv)
2T 24 p24c2?

Hence, Dp is generated by the vectors a = b + ¢, —ab, —ac) and
B= seqpeyea(—ab,a®+ 2 —be).

The lattice £p is generated by the reductions modulo o and (3 of the vectors
writiyea(ac,be,—(a® + %)),k € Z. Fig. 4 shows a partial view of a lattice £p
as well as several 1D dotted lines of £.

Both Dp and Ep are planar lattice with rank 2. Then, using a convenient

isometry we can map them onto xOy. After some tedious calculus, the isometric

oo (
a?+b2+c?

lattice of Dp is generated by the vectors U = J ;-s-b?)(l’ S ;‘_1:2+ 2)) and
a’+c* (0,1). The image of the lattice £p is the reduction

V= c\/(a2+b2)\/(a2+b2+02)
modulo U and V of the vectors k(aU,bV) k € Z. As it can be easily seen, this
situation is the analoguous of the link between D,y and &,,.

Given a point in Ep, the closest points in £p to the given points enables us
to define the notion of closest 3D digital lines (see Fig. 5). This corresponds to
a Bresenham-like 3D digital lines. To define it, one must sort the points in Ep
around a given point in Ep.

Let 7 : Z3 + Ep be the application which maps a 1D dotted line to its
intersection with the plane (P), let w be a point of £p and let A, , be the set
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Fig. 4. A part of the lattice Ep where (a,b,c) = (3,5,13) as well as some 1D dotted
lines

Fig.5. The isometric images of Dp and Ep, where (a,b,c) = (3,5,13), in the plane
xOy and a circle of radius 1.17 containing some closest points of one element of Ep

of points in £p belonging to a disk (in plane (P)) with center w and radius p,
then we have the following,

Definition 3. The 3D digital line with best integer approximation of order p
of the 1D dotted line containing the point w of Ep is the reciprocical image
-1

T (Aup)-

Obviously, these 3D digital lines does not cover Z3, which could be a bad be-
haviour. Nevertheless, it guarantees that the digital lines is as closest as possible
of the Euclidean corresponding line.

3.3 3D Segment Drawing

If any segment AB is given let us denote by OV the vector B — A and by
n = (n1,n2,n3) the components of OV divided by their greatest common divider,
so that ni,ne,ng are relatively prime. Construction given in section 3 about the
symmetry group Oy, can be used to give an operator g, mapping the domain of
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n (or OC) to the fundamental domain F of Oy. Let n’ = g,.n = (a,b,c) and
0C’" = g,.0C = (uy, uh,uf) in F.

Operator g, ! followed by the translation of OC to AB leads to a procedure
g(x,y, z) which maps the 3D discrete segment associated with OC’ to the one
associated to AB, (g, being orthogonal g, ! is equal to the transposed of g, ).
Drawing the 3D discrete segment associated to AB is thus reduced to the follow-
ing algorithm giving the discrete approximation of OC” directed by n’ = (a, b, ¢).

Drawing of 3D segment 0C’=(u’1l,u’2,u’3) directed by n’=(a,b,c).
//(a,b,c) satisfy 0<=a<=b<=c and gcd(a,b,c)=1
x=y=0;

// integer division so that line 0C’ is in the
// middle of generated voxels
rx=c/2;
ry=rx
for z = 0 to u’3
draw g(x,y,2);
if rx>=c-a then
rx=rx+a-c;
x=x+1;
else
rx=rx+a;
end if;
if ry>=c-b then
ry=ry+b-c;
y=y+1;
else
ry=ry+b
end if;
end for

4 nD Digital Lines

Let v = (a1,a2,...,a,) € F an integer point in the fondamental domain of
the hyperoctaedral group B,,. This group of order 2".n! can be identified with
integer matrices of order n where each row and column contains one and only
one non-zero term equals to +1.

Let P be the hyperplane whose equation is a1x1 +asz2+...anz, = 0, and Ep
be the lattice obtained by projection of Z™ on P along direction v. We denote
by {u;} 1 <4 < n the canonical basis of Z"™ and X; the projection of u; onto P
along v. Vectors X; belong to Ep and from equation of hyperplane P we have:

X X X
Xo=ar(" ) +aa(C )+ ana (T
n Qp, (07%%
We consider the lattice Dp generated in P by the n — 1 vectors Z(; , ff? ceey

Xn-1,

an

of course Ep is a sublattice of Dp. Moreover, Ep is n — 1 periodic, one
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period being given by Ep N ¢, d denoting the fondamental domain of Dp. Any
point of Ep is obtained by reduction modulo ¢ of integer multiples of X,,.

Let 02 =a? 4+ a2+ - +a2 and 0? = a? + a3+ - -+ (a?) + - - - + a2 where,
in the sum % means omission (so that o? = 0% — a?), then components z;; of

2
—aia; .p - . o’
X; = (x4j) can be computed and we have z;; = 5" if i # j and xy; = 5 for

i=7.

From these expressions of vectors X; the determinant of the Gram matrix of
Dp can be evaluated giving det((X;.X;)) = a,, showing that domain ¢ contains
a, elements of Ep.

The hypothesis v € F leads to a very natural observation which will be
helpful to define nD digital lines. Computation of the norm of X; — X; gives

2403 +(aitay)?

| Xi; — X, [|?= 2 from which inequalities || X; [|<|| X; — X || and
| X; I<|| X5 — Xj || can be deduced showing that the set {X1, Xo,... X, 1} is
almost orthogonal in Dp.

Let II; be the hyperplane generated by ui,...,u;,...,u,_1,v where, again,
- means_omission. Intersection II; N P is the subspace of P generated by
X1,...,X;,...,X,_1 so that these hyperplanes too are almost orthogonal. Def-
inition of digital hyperplanes in Z™ being obvious we can define nD digital line
through 0 and directed by v as the intersection of digital hyperplanes associated
to I]s.

Definition 4. Digital line through 0 directed by v = (a1, as, ..., a,) where 0 <
a1 < ag < --- < ay is the set of integer points solution of the n — 1 diophantine
mequations

—

i Larxr 4+ (i) + o Gn—1Tp—1 F ATy < Vit 1<i<n-—1
- meaning omission.

Vector (7;) is the lower bound and vector (¢;) the arithmetical thickness.

Algorithms can be given to draw digital nD lines defined in this way. They
use a vector of errors p = (r1,72...7,—1 and the simplest one draws 2™ — 1-
connected lines when ¢, = a,, Vi =1,2,...n — 1; again we suppose v € F, the
general case being solved with the help of operators of the Hyperoctaedral group
H\ in a similar way as what has been donne in 3D.

Suppose M = (mq,ma,...,my) is a point in Z" and v = (a1, a2,...,a,) € F
and ged(a;) = 1, then to obtain the first nbPoints of the n.D and 2" —1-connected
digital line through M and directed by v we have the following algorithm.

nD digital line drawing

M=(m1,m2,...,mn); // starting point

x=(x1,x2,...,xn)=M; // initialization of x variable
v=(al,a2,...,an); // line direction in F and gcd(ai)=1
rho=(an/2,an/2,...,an/2);//n-i components of rho are equal to an/2
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for i=1 to NbPoints
draw x;
for j=1 to n-1
if rj>=an-aj {
rj=rj+aj-an;
xj=xj+1;
}
else
rj=rj+aj;
end if;
end for
end for

Initializing error vector p with half of thickness, that is setting % for all
p’s component we are assured that integer points generated are well distributed
around the euclidean line going through M and directed by v.

Following array shows an application of this algorithm for the drawing of the
first 13 points of the 4D digital line going through origin and directed by vector
v = (3,5,7,13). First 3 lines show evolution of p = (r1,72,r3) error vector and
the last ones are coordinates of approximating points. One period of this line
is thus obtained; following ones are obtained by translating this one by integer
multiples of vector v.

o
w
(=)

rr 69122581114 7 10
ro 611 3 8051027124 9 16
r3 60 718293104 11 5 126

rz27 000111122 2 2 3 3
z2 00 1122233 3 4 45
z3 01 12233445 56 6
z4 01 2345678 9101112

5 Conclusion

We have presented in this paper a unified view of the definitions of Voss [1]
and Figueiredo and Reveilles [2]. This permits us, for instance, to give a short
drawing algorithm in 3D. Moreover, the presentation is extended to an arbitrary
dimension via the use of lattice theory and specific projections. We also give a
13-lines long drawing algorithm for nD digital lines. It should be very interesting
to study the link between this approach and multi-dimensonal continued fraction
given by Arnold [14] and this is a future work.
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Abstract. In this paper we study the relationship between the Euclid-
ean and the discrete world thru two operations based on the Euclidean
scaling function: the discrete smooth scaling and the discrete based geo-
metrical simplification.
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1 Introduction

The Euclidean and the discrete world are generally considered as antagonists.
Both worlds have different properties and it is reflected in the operations. Oper-
ations might be trivial in one world and difficult to transpose in the other one.
For instance, there isn’t a satisfying discrete rotation that is at the same time
one-to-one and commutative. Two primary properties of the Euclidean rotation.
Boolean operations (intersection, union, difference) that are trivial in the discrete
world become tedious to perform in the Euclidean world because of numerical
errors. The goal of this paper is to show how the specificities of both worlds
can be used to define operations with new interesting properties. To illustrate
this we propose two operations: one in the discrete (discrete smooth scaling)
and one in the Euclidean world (discrete based geometrical simplification). Each
operation is partly performed in the other world with a digitization and/or an
analytical reconstruction step. The digitization process allows us to move from
the Euclidean world to the discrete world. The analytical reconstruction process
allows us to move from the discrete to the Euclidean world.

The first operation that we are proposing is called ”discrete smooth scaling”.
The idea behind this operation is to describe a discrete object in a smaller (finer)
grid. We want to perform this operation without filtering or smoothing. The in-
formation in a discrete cell (pixel, voxel) can be a complex information that can’t
simply be smoothed. So far, discrete scaling didn’t respect geometrical proper-
ties of the object (discrete edge slopes for instance) [1]. To solve this problem, we
perform the dilation in the space best adapted: the Euclidean space. We perform
an analytical reconstruction on the original image followed by a Euclidean scal-
ing. The discretization provides us with the final ”refined” image. This discrete

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 41-52, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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smooth scaling operation possesses a remarkable property: the almost stability
by inverse scale. If we make a discrete smooth scale of factor aw > 1 followed by
a discrete smooth scale of factor g = i we obtain the original discrete object
with an error bounded by a factor proportional to i

The second operation is a discrete based geometrical simplification operation.
The operation consists, this time, starting with a Euclidean object, to digitize
with a given grid size and then to reconstruct it. When we reconstruct a discrete
object, the ”shape complexity” (resulting vertice and edge number) depends
on the size of the object. The smaller the object, the less complex the recon-
structed object. It is however difficult to assure a topological consistence between
the initial object and the reconstructed object. An interesting property of this
operation is that the Hausdorff distance between the original object and the
simplified object is bounded by a factor proportional to the grid size.

The interest of these two operations is that they each make use of the prop-
erties of the other world. The discrete operation uses the properties of the
Euclidean world and the Euclidean operation those of the discrete world. These
operations show how the duality between the discrete and the Euclidean world
can be used at our advantage.

In section two, we introduce the basic notions used in this paper such as dis-
crete analytical models, the principle of the analytical reconstruction method
and the notations used through out the paper. In the third section we intro-
duce the discrete discrete smooth scaling operation. In section four we present
the discrete geometrical simplification operation. We conclude and propose some
extensions in section five.

2 Preliminaries

2.1 Basic Notations in Discrete Geometry

The following notations correspond to those given by Cohen and Kaufman in [2]
and those given by Andres in [3]. We provide only a short recall of these notions.

A discrete (resp. Euclidean) point is an element of Z™ (resp. R™ ). A
discrete (resp. Euclidean) object is a set of discrete (resp. Euclidean) points.
We denote p; the ith coordinate of a point p of Z™. The voxel V(p) C R™ of a
discrete nD point p is defined by V(p) = [p1 — §,p1 4 5] X .. X [Pn — 5,00 + 5]
For a discrete object D, V(D) = ,cp V(p)

In this paper, we use the Hausdorff distance defined by:

Definition 1. Leth be the direct Hausdorff distance: A C R™, B C R", h(A, B) =
mazqe a (minpep (dz2(a,b))), where ds is the Fuclidean distance. The Hausdorff
distance H between A and B is H(A, B) = max (h(A, B), h(B, A)).

This paper is based on the relations between the Euclidean and the discrete world
and the way operations can benefit from this duality. We present two operations
that are based on the Euclidean scale function noted Sc. We consider, without
loss of generality, that the center of the scale function Sc is the origin.
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2.2 Digitization and Reconstruction

The basic idea behind this paper is to profit from the possibility to travel between
the discrete world Z™ and the Euclidean world R™. The transformation from
the discrete to the Euclidean world is called digitization. The transformation
from the Euclidean world to the discrete world is called reconstruction. The
experiments presented in this paper have been conducted with the standard
analytical model [3] (see also Fig. 1). The theoretical results are however not
restricted to the standard analytical model and are also verified for a larger class
of digitization schemes. Most of the digitization schemes commonly used seem
actually to fit the definition that follows including the Bresenham algorithms,
the supercover model, the naive digitization, the standard model, etc. Let us try
to propose a characterisation of the digitization schemes that suit the purpose
of this paper.

We consider digitization transforms defined by narrow offset areas. A narrow
offset area O is defined for classes of Euclidean objects. It simply has to verify two
fundamental conditions: A narrow offset area O (E) C R" of a Euclidean object
E must be narrow meaning that if x € O (E)NZ" = V (x) N E # @. It simply
requires that the digitization of an Euclidean object E to be composed of pixels
that are intersected by E. The second condition is a constructive condition. A
narrow offset area must verify a stability property for the union: O (EU F) =
O(E)UO (F).

Definition 2. The digitization based on a narrow offset area is defined by:

D: P(R") — P(Z")
D(E)={peZ'|pcO(E)} =0 (E)NZ"

A good way to define a wide class of digitization tranforms is to define the offset
area with a distance d.

O(F)= {xeR"

d(x,E)g;}.

The best known discrete analytical model is called the supercover model [4,5,6]
with an offset defined by the Chebyshev distance d,. The distance d; defines the
closed naive model and the distance dy defines the closed pythagorean model. All
distances, of course, don’t verify the narrowness property but many do. There
exist also narrow offset areas that aren’t defined with distances. This is the
case for the Bresenham algorithms, the standard analytical model, the naive
digitization, etc.

Digitization based on narrow offset areas verify, by construction, properties
suchas D(EUF)=D(E)UD(F); D(ENF)CD(E)ND(F)and F C G =
D(E) C D(F). These properties ensure that we can build complex discrete
objects out of a set of basic elements. We can, for instance, build all linear
objects out of simplices.

Defining a reconstruction transform is much more difficult. If we want the
reconstruction transform to make any sense we must define some properties that
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Fig. 1. Supercover and standard model examples

Fig. 2. Coherence between discrete and Euclidean world

have to be verified. For any given analytical digitization, we have an infinity of
reconstruction operations [7, 8,9, 10]. For instance, it’s natural to associate a
reconstruction transform to a digitization. Indeed, we can define a equivalence
relation ~ between two Euclidean objects E and F by E = F iff D (E) = D (F).
There is a one-to-one mapping between the discrete objects and the equivalence
classes defined by . One of the properties of any reconstruction R is to stay in
the equivalence class if we digitize and then reconstruct. Of course, in general,
R (D (E)) # E (see Fig. 2).

Definition 3. Reconstruction
A reconstruction operation R : P(Z"™) — P(R™) associated to an analytical
digitization D is an operation verifying, for any Euclidean object E:

R (D (E)) ~ E.

A property that we won’t have systematically but that will be verified in many
practical situations is: D (R (A)) = A for a given discrete object A. This property
will be verified if there isn’t any missing information in A. For instance, if we
reconstruct a Bresenham line segment, that isn’t missing any pixels, the property
will be verified.

3 Discrete-Euclidean Operations

In this part, we will study two operations linking the discrete and Euclidean
world. The first is an operation from Z" to Z™ that use the Euclidean scale
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properties to define a discrete smooth scale. The second, from R™ to R", uses
the digitization properties to erase details in Euclidean objects.

3.1 Discrete Smooth Scaling

The first operation that we are proposing is called discrete smooth scaling. The
idea behind this operation is to describe a discrete object on a smaller grid. We
want to perform this operation without filtering or smoothing (see Fig. 3). We
therefore perform the dilation in the space best adapted: the Euclidean space.

a) b) - d)

Fig. 3. a) original discrete object. b)reduced grid size. ¢) classical smoothing. d) discrete
smooth scaling.

Definition 4. We call discrete smooth scaling of a discrete object A of Z™ by a
scale o, a € RT* | the following operation denoted DSS, (A):

DSSy (A) =D o Scq 0 R(A).

We can see in section 4 some examples of this operation on discrete objects.
The operation is meant to work for a > 1. We can consider scales smaller
than 1 especially in order to define the inverse operation. However the intuitive
DSS1 is actually not an exact inverse operation (see Fig. 4). We don’t know
for the moment how to define the exact inverse transform but we can estimate
the error commited with DSS1. This error is due to the reconstruction part
of the operation. We don’t measure the error between two discrete objects A
and DSS1 (DSS, (A)) but between R (A) and Sc1 (R (DSS, (A))). This error
measure is translation independant. :

Note that the error bound we are proposing makes sense for objects veri-
fying D (R (A)) = A. In case of missing information and partial information
reconstruction the result of the theorem that follows stands but it’s not very
meaningful. Measuring an error between an incomplete discrete object and its
scaled and descaled reconstruction isn’t, in our case, very interesting. So, let us
suppose, for what follows, that D (R (A)) = A.

Let us introduce several notations: for a discrete object A, we note Ayjre =
R(A) the reconstruction of the original discrete object and we note
Aot = Sci (R (DSS, (A))) the Euclidean object which discretization is Ajqs:N
Z™ = DSS1 (DSS, (A)). The error measure is a bound on the Hausdorff dis-
tance between both objects.
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Fig. 4. Discrete smooth scaling: inversibility problem

discrete smooth scaling

A —AM = R(A) — A® = Sca(AD) A®) = D(A@)
0 0AY) O 0°(AY) O OA®)
1

I - A = R(:‘l(g])

@(‘4(5]) i @%(‘4(41) @(‘4(4])

reverse discrete smooth scaling

Fig. 5. Discrete smooth scaling inversibility

Theorem 1
H (Afiyats A) = H (R (), Se3 (R (D (Sea (R(A)))) < - V.

Proof (see Fig. 5): Let A be a discrete object and let: Ay = A = R(A) C
R™, A® = Sc,(AV) c R, AG) = D(A?) c 7", AW = R(A®)) c R™,
Apgst = A®) = Scé(A(‘L)) C R™ and A®) = D(A®)) C Z".According to our
notations, we have Ayi.q = AW and Aj, = AG®).

Digitization and reconstruction definitions and properties provide the follow-
ing result: A® ~ A® and thus A®) = (0O(A®)) NZ" = (OAW)) N z".
The narrowness property of the digitization tells us that A®) and A® intersect
each voxel of A®) and therefore, each voxel of A®) contains at least one point
of A® and one of A®. The Euclidean distance between these two points is
bounded by the voxel diagonal length: \/n. We can generalize: Vo € A®?) 3y €
DW|dy(x,y) < y/n. This implies the following result on the direct Hausdorff dis-
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tance: Vo € A® min,c ) (da(z,y)) < /n and therefore h(A®), AW) < /n.
The same reasoning stands for h(A®), A®)) and leads to h(A®, A®)) < \/n. The
result is : H(A®), A(4)) < /n. We then apply the scale operation Sc1.We have

H (S (A),Ser (A9)) = H (4D, 40)) < Lyn since Se; (A®) = A
by construction and Sci (A(4)) = A®) by definition.
Finally: H (Afirst, Alast) < i\/n |

Here are some comments on these results. The first obvious comment is that
the bigger the scaling factor, the smaller the possible difference between A and
DSS1 (DSSq (A)) is (in case of D (R (4)) = A as already stated). Since R(A)—
Sc1 (R(DSSq (A))) is smaller, there is a lesser chance that it contains a discrete
poicht. The result of our theorem is a quite general bounding value. It doesn’t
take into account the fact that the reconstruction algorithms are deterministic
and that it’s often the case that if A and B are very similar then R(A) is similar
to R(B). This occurs especially for small scale factors. We can thus suppose, and
experimentation supports it, that in many cases the actual Hausdorff distance is
much smaller than the theoretical bounding value we propose. For the case a = 1
we have no difference between Af;rgr = Ajost and thus H (Afirer, Ajast) = 0.

Corollary 1. limg oo H (Afirst, Aiast) = 0.

The corollary tells us that the discrete smooth scaling is invertible when « tends
to infinite. In fact, the discrete smooth scaling operation can be seen as a multi-
scale digitization of the Euclidean scaling function with an approximation factor
«. We can say that when « tends to infinite then DS'S tends to Sc. Some more
theoretical work needs to be done here. Non standard analysis is one way of
looking at this problem [11].

3.2 Discrete Based Geometrical Simplification

The second operation we have studied and implemented is a discrete based geo-
metrical simplification operation. This operation acts on a Euclidean object that
is first digitized on a given grid size and then reconstructed. According to the
grid size, details are gathered in the same voxel and thus do not appear in the
reconstructed object. The bigger the voxel, the lesser details from the Euclidean
object will remain after the reconstruction. The object is simplified and can be
represented at different levels of details (see Fig. 6). In practice, it’s not the voxel
size that changes but the object size. The object is scaled with the Euclidean
scaling function to fit the grid size. For a scaling factor x the voxel size is i

Definition 5. We call discrete based geometrical simplification of a Fuclidean
object E of R"™ by a factor o, « € R™™ the following operation denoted Spo(F):

Spa(E) = Sc1 oRoDo Sey (F).
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Fig. 6. Discrete based geometrical simplification principle : « =1, ) and }

We remark that the discrete based simplification has a similar property as the
discrete smooth scaling operation: the Hausdorff distance between the original
object and its simplification is bounded by a factor proportional to the grid size.

Theorem 2 1
VE C R", H(E,Spo(E)) < a\/n.

Proof
Theorem 2 is similar to theorem 1. We proved that

H (R (4),Se1 (R(D(Sca (R(A)))))) < 1/n for A a discrete object. Now,
R (A) is a Euclidean object so, if we call E = R (A4), we have

H (E Sei (R(D(Sca (E))))) < 1/n. By definition Sci1 (R (D (Sca (E)))) =
Spa(E) which leads to H(E, Spa(E)) < Ly/n. O

The theorem tells us that the geometrical simplification process respects the
general shape of an object. The error we commit by replacing the Euclidean
object by its simplified version is bounded.

Corollary 2. lim, e Spa (F) = E.

4 Results: Implementation and Illustrations

Let us comment our implementation choices and present some images to illus-
trate the operations. The theoretical results we presented in this paper are valid
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in dimension n for a very large class of digitization and related reconstructions
transforms. We implemented both operations in 2D. We present also an image
of our first results in 3D.

4.1 Implementation

For several years our discrete geometry team develops a multi-representation
modelling software intended to represent objects under four different embeddings
(see Fig. 7): a Euclidean version, its analytical equivalent, the region represen-
tation and finally a discrete 2D pixel or 3D voxel representation. This allows us
to choose the best adapted representation form depending on the type operation
we want to realise.

27,40

Level 1: region Level 2: a.na.ly

i
Level 0: discrete tical Level 3: continuous

Fig. 7. Multi-representation modeller

In this modeller discrete object are defined using the standard analytic model
[3] (see Fig. 1). The reconstruction implemented in the modeller was defined
in [7,8] and is based on the preimage notion [12]. This algorithm computes the
set of Euclidean hyperplane segments which digitization contains the original
discrete object: R (A) C V (A) (the standard model is a cover). This approach
is based on discrete analytic geometry and is composed of two steps: the regog-
nition of discrete analytical hyperplane segments (see [10] for an overview on
recognition algorithms) and the analytical polygonalisation of the curve [9, §].

4.2 Illustrations

Here we present illustrations of the discrete smooth scaling transform with scal-
ing factor « = 5 and o = 10.

The reconstruction operation we implemented [7,8] reconstruct objects with
line segments, plane segments. The discrete smooth scaling is thus quite good
on discrete objects with linear borders. The arrows in Fig. 8 show that on more
circular parts the reconstruction creates less natural reconstruction shapes. This
comes of course from the fact that a circle in low resolution will be reconstructed
as a polygon.

The discrete based geometrical simplification operation decreases object de-
tail level and therefore decreases its complexity. This operation can be used to
simplify object when details are not perceptible by a human observer and when
only the global pattern of the object is meaningful. Our simplification operation
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allows to decrease significantly the number of object element to be rendered (see
Fig. 9).

However, as we can see on Fig. 9, for some coefficients (see dot lines), the
number of object element increases. This is due to the instability of the dig-
itization grid resulting from a simplification with coefficients in R and to the
non determinism of the number of reconstructed edges. Figure 9 shows several
resulting pictures. We can notice that the object topology is modified: a hole can
appear and then disappear. In [13], authors provide a theorem linking topology
modifications and grid size. This gives only a general bound because the recon-
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Fig.11. 3D object simplification

struction process in not translation invariant. With a same grid size we can get
different topologies. Object topology not only depends on the grid size but on
its position. The center of the scaling function modifies the end result.

Figure 10 presents a discrete based simplification example and Fig. 11 shows
its extention in 3D.

5 Conclusion

In this paper, we have presented two operations that both use Euclidean and
discrete world properties. Both operations are based on the Euclidean scaling
transform. In the first case it scales the object, in the second one, it scales the
grid. Both operations, while they seem quite different have a strong link and we
obtained similar error bounds for them. The first operation is called the ” discrete
smooth scaling”. We bounded the error done while trying to reverse this opera-
tion. The bigger the scale, the closer the discrete operation is to the Euclidean
scaling transform. The discrete smooth scaling can be seen as a digitization of
the Euclidean scale transform.

The second operation is a Euclidean operation that uses the discrete world
properties. We define an operation that digitizes and recontructs Euclidean ob-
jects according to a given grid size. Depending on the grid size, a certain number
of details are gathered in the same pixel and do therefore disappear during the
reconstruction process. The result is a simplified Euclidean object that can be
used in a multi-level representation form. The quality measure of a simplified ob-
ject is a bound of the Hausdorff distance between the simplified and the original
object proportional to the grid size.

In the future we are going to consider discrete-Euclidean transforms based
on Euclidean operations such as rotations, translations and general affine trans-
forms. We are also considering discrete-Euclidean transforms based on discrete
operations such as boolean operations, mathematical morphology operations,
etc. The long term theoretical goal of this study is to better understand the
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relations between the Euclidean and the discrete world. In practice, we hope
to apply this new insight in multi-level topological structure operations or on
multi-scale described objects.
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Abstract. In this paper the nodes of the hexagonal grid are used as
points. Three types of neighbors are used on this grid, therefore neigh-
borhood sequences contain values 1, 2 and 3. The grid is coordinatized
by three coordinates in a symmetric way. Digital circles are classified
based on digital distances using neighborhood sequences. They can be
triangle, hexagon, enneagon and dodecagon. The corners of the convex
hulls of these polygons are computed.

1 Introduction

The classical digital geometry started by [1], where the authors defined the two
basic neighborhood relations on the square grid. The topic is well developed
due to people of image processing and computer graphics communities. We refer
to [2] as a recent textbook on the topic. In [3] the authors used the so-called
neighborhood sequences to vary the neighborhood criterion in a path. They
used only periodic neighborhood sequences in their analysis. Some properties
of distances based on neighborhood sequences are detailed in [4]. Nowadays,
in many applications it is worth to consider other grids than the square one.
The hexagonal grid has some nice properties and it is regular, therefore it is
not too hard to handle it. The geometry of the hexagonal grid with a symmetric
coordinate system is described in [5]. In [6] the neighborhood sequences were also
defined for the hexagonal grid. In this paper we will analyse some properties of
the distances based on neighborhood sequences on this grid.

The structure of the paper is as follows. In the second section we give our
notation, and provide some properties of the concepts introduced. In the other
sections we detail some former results of Das and Chatterji [4] on the hexagonal
grid. We use only initial parts of the neighborhood sequences in our analysis,
therefore we do not care about the periodic property of the whole neighborhood
sequences. In the third section we describe the smallest digital circles of the
hexagonal grid using only a step from the origin. In the fourth section changing
and developments of wave-fronts and digital circles are analysed. We compute
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the coordinate values of the corners of these polygons. In the fifth section we
give a description of all the digital circles with neighborhood sequences in the
hexagonal grid. We show a characterization of them. We present some proper-
ties, in which the hexagonal grid differs from the square grid. In the last section
we summarize our results.

2 Basic Notation and Concepts

In this section we recall some definitions and notation from the literature men-
tioned earlier concerning neighborhood relations and sequences.

There are usually three types of neighbors defined, as Fig. 1 shows, among
the nodes of the hexagonal grid.

In Figure 1 a node and its 12 neighbors are shown. Only the 1-neighbors are
directly connected by an edge, the other 2- and 3-neighbors are at the positions
of shorter and longer diagonals, respectively. These relations are reflexive (i.e.,
a node is a 1-, 2-, and a 3-neighbor of itself by definition) and symmetric. In

Fig. 1. Types of neighbors in the hexagonal grid

Fig. 2. Coordinate values of nodes
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addition, all 1-neighbors of a point are its 2-neighbors and all 2-neighbors are
3-neighbors, as well (i.e., they have increasing and inclusion properties).

The coordinate values of the grid were introduced as it is shown in Fig. 2. The
coordinate axes meet at a grid-point called Origin having triplet (0,0,0). They are
the direction of grid-edges starting at the Origin. The coordinate values of each
point can be computed as the sum of steps on the grid-edges taken into direction
of the edges. A step by direction of axis = increases the first coordinate value by
1, while a step to inverse direction decreases the first coordinate. Similarly steps
on the edges parallel to axis y and z modify the second and third coordinate
values, respectively. Three coordinate values are used to address a point taking
advantage of the symmetry of the grid.

With the help of the assigned coordinate values we are able to describe the
grid in a mathematical way. By the presented coordinate system every node
has a unique triplet which exactly shows the place of the node. The hexagonal
grid contains exactly those triplets which have sum of coordinate values 0 or 1.
We call the points with 0-sum value even (their connections have shape Y in
the figure); the points with 1-sum are odd (opposite shape). We can write the
neighborhood relations in the following formal form.

The points P(p(1),p(2),p(3)) and Q(q(1),q(2), ¢(3)) of the hexagonal grid are
m-neighbors (m = 1,2, 3), if the following two conditions hold:

2. [p(1) =g + [p(2) = ¢(2)] + [p(3) — ¢3)] < m.

It is easy to check that the formal definition above with the presented coor-
dinate values (Fig. 2) gives the neighborhood relations shown in Fig. 1.

Now, we are recalling some concepts about the theory of neighborhood se-
quences. In this paper, we are dealing only with neighborhood sequences in this
grid. The sequence B = (b(4))$2,, where 1 < b(i) < 3 for all i € N, is called a
neighborhood sequence (on the hexagonal grid). When we need only the initial
part up to the [-th element, then we briefly write B; = (b(1),b(2),...,b(1)).

A movement is called a b(7)-step when we move from a point P to a point @
and they are b(i)-neighbors. Let P, @ be two points and B be a neighborhood
sequence. The point-sequence P = Py, Py, ..., Py = @, in which we move from
P,_1 to P; by a b(i)-step (1 < i < k), is called a B-path from P to @ of length k.
The B-distance d(P,Q; B) from P to @ is defined as the length of the shortest
B-path(s). In a B-path an initial sequence of B is used.

The sequence of 1-neighbor points, for which a coordinate value remains con-
stant, forms a so-called lane. In Fig. 3 there are some examples; the black line
shows the lane for which the third coordinate is 0 and the gray lane represents
the lane for which the second value is 0.

Every lane is ‘orthogonal’ to one of the coordinate axes, especially that one
of {z,y, 2}, for which the coordinate value is fixed.

If a point is on an axis, then two of its coordinate-values coincide. For instance
on axis x they are the second and third ones (meaning that the point is on the
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lanes for which the same value is fixed on axes y and z). See Fig. 4, where the
lanes x = 1 and y = 1 are shown with black and dark-gray, respectively. They
are orthogonal to the axes x and y, respectively. The two points where they meet
are on the axis z. It is a nice property of the assignment of coordinates to the
grid, that a point and its symmetric pair mirroring it to an axis have the same
coordinate values, but — if they are not on the symmetry axis, — in a different
order. So a point and its mirror images are identical up to a permutation of their
coordinates.

To use the line between the lanes z = 0 and = 1 as a symmetry axis such that
these two lanes are mirror images of each others we have the following formula.
The mirror image of the point P(z,y, 2) is given as P'(—(x — 1), —z, —y).

In this paper we investigate the way of a neighborhood sequence spreads in
the digital space starting from a point of the hexagonal grid. This spreading is
translation-invariant among the points of the same parity and it is symmetric
concerning points with different parities. So, for simplicity we may choose the
Origin O(0,0,0) as the starting point.
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Let
Cp, ={P: d(O,P;B) < k}.

Tt is the region (digital circle) occupied by B after the first &k steps.

In [4] Das and Chatterji showed that for every initial part of a neighborhood
sequence in the square grid (using Cartesian coordinates and two types of neigh-
bors), the obtained digital circle is always an octagon. These octagons can be
degenerated, so the digital circles are squares in the following cases: Using only
1-steps in the initial part of the neighborhood sequence we get only four edges
(the corners will be (0, k), (k,0), (0, —k), (—k,0)), while using only 2-steps we get
a square with corners (k, k), (k, —k), (—k, —k), (—k, k). In the case when we use
both 1-step(s) and 2-step(s) our result is a non-degenerated octagon.

The following observations hold in the square grid, and they are true in the
hexagonal case as well:

Remark 1. The convex hull of every Cp, is digitally convez in the usual sense
(see e.g. p. 171, Definition 4.3.4. in [7])

On figures we will use the convex hull as the occupied polygon of the digital
circle. These polygons has sides and corners in the usual sense. Since they are
convex, the sets of the coordinate triplets of corners describe them. (We use the
term corner only for angles less than 7.)

Remark 2. For any neighborhood sequence B, the sequence of regions (Cp,, )72,
is a strictly monotone increasing sequence. That is, k > | implies Cp, 2 Chp, .

=

In the following sections we will underline some properties which are different
for the digital circles in square grid and in hexagonal grid. Now, we are moving
to describe all digital circles of the hexagonal grid in details.

3 Description of Small Circles

Table 1 shows the three possible circles obtained by a step.

The three circles have four kinds of corners. Corner-type « signs corners with
angle 7. Corner-types (3 and v refer for angles 2; (where the sides connected
at a corner type 7y are parallel to some edges and so to coordinate axes of the
hexagonal grid, and the sides at a corner type 3 are orthogonal to some edges
and so to coordinate axes of the grid.) At corners type ¢ the angles are 56” . Note
that the circle obtained by a 2-step from O is the same as the circle obtained by
two 1-steps. This property (a circle can have more radii, depending on the used
neighborhood sequences) is not present in the square grid.

Proposition 1. Contrary to the square grid in the hexagonal grid it is possible
for two neighborhood sequences B', B" that Cp; = Cpyr with k # 1.

Let B’ be given such a way that B} = (1,1) and let it hold for B” that By = (2)
then C(l,l) = C(Q)
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Table 1. Digital circles with radius 1 by various steps

Initial part of the The shape of the circle (figure) | Corner-tvpes and coordinates
neighbourhood sequence
1 trigngle with number 3 a-lyvpe:
a (1.0,0)

@ (0,1,0)
@ (0.0.1)

1 hexagon with number 6 Sy pe:
2 A(1-L0)
A(10-1)
B0.1,-1)
o H(0-1,1)
C@=Cay B(-1.1.0)
F(-1.0.1)

3 enneagon with
7(1-1.0)
#(1.0,-1}
¥ (0.1 ,-1)
#(0.-1,1)
o 7 (-1.1.0)

2 #(-1.0.1)
S(1,1.-1)
5(1,-1,1)
§(-1.1,-1)

4 Development of Corners

In [3] the authors analysed the wavefront sets of neighborhood sequences in
the square grid. In this part we are detailing how the wave-fronts are occupying
the hexagonal grid. Because of symmetry it is sufficient to deal with a sixth of
the plane. For our convenience we will use the region between the axes z and
y, especially between the positive part of z and the negative part of y (we refer
here to Fig. 2). One can check that the points P(z,y,z) with 2 > z > y are
exactly those ones which are in this sixth of the plane. We will call this region
as the analysed section.

It is sufficient to deal with this analysed section since we have the following
statements. For any point P the points obtained by permutating the coordinate-
values of P are exactly the same points as the mirror images of P obtained by
mirroring it to some of the coordinate axes. Every point has the same parity as
its symmetric pairs. Let P be given as (p(1),p(2),p(3)). It is easy to check that,
for instance, the mirror image of P with axis = is P'(p(1),p(3),p(2)). Similar
facts hold for the other mirror points. A point with its mirror images represent
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at most six points. In this case there are not equal coordinate values, i.e. the
point is not on an axis. Every point has a mirror image in the analysed section of
the grid (using only axial mirroring to the coordinate axes). It can be obtained
by permutation of coordinate-values.

Let us check which corners of the small circles are in the analysed section.
C(1) has only one corner in this section, namely «(0, 0, 1). C(2) has also only one
corner in this area of the grid, namely 3(0, —1,1), while C(3) has two corners
in the analysed section; they are v(1,—1,1) on axis y and 6(0,—1,1) with an
orthogonal edge to axis z.

Now we analyze how the possible vertices change in the growing steps. Table 2
lists all kinds of corners occur in different digital circles. (We detail only the
changing way of the coordinate values of those corners which are in the analysed
sixth of the hexagonal plane.) The table shows all possibilities of the evolution
of the corners by a step in the analysed section of the grid. It is due to the facts
that all corners of Table 1 (which are in the analysed section) are also in Table 2,
and all possible evolving corners are in Table 2, as well.

Based on Table 2 we summarize the evolution of corners via the growing
procedure.

Proposition 2

— (a) The new corner(s) are b-neighbors of the previous one when we obtain
them by a b-step.

— (b) A corner type o occurs only at digital circle Cy).

— (¢) A corner type v occurs only when two coordinate values have the same
value, i.e. the corner is on an axis.

— (d) In some steps a corner type 3 or a corner type 7y is divided to two corners
type 6.

— (e) If a corner type v remains the same type after a step then it stays on the
same axis as before (by changing the parity).

— (f) The corners type § never change their type, moreover their position is
fixed, i.e. when a side of the corner was orthogonal to an axis then this is
also the case after any kind of step.

— (g) The corners type 6 coming from a corner type v have a side orthogonal
to that axis on which the corner v was.

— (h) In some cases the resulted digital object by a 3-step is the same as the
one obtained by a 2-step.

Proof. Most of the statements above are easy to check. We analyse only the
statements (e) and (f). Let us start with (e).

If a corner y(z,y, z) on the axis y, then = z. If it is even then with a 3-step
we get y(x+ 1,y — 1,2+ 1) which is also on the axis y. Similarly if v is odd then
with a 1-step the first and the third coordinate values do not change, therefore
the new corner is on the axis y as well. The same analysis works when ~ is on
the axis z. It is evident that the parity of the corner is changing by these steps.

To prove (f) assume that §(z,y,z) has an edge which is orthogonal to the
axis y. Then the mirror images of § are also corners. Let §'(z,y,z) be its
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Table 2. Development table of corners by taking a step

original corner: type corner after a corner after a 2- corner after a 3-step

and coordinates 1-step step

«(0,0,1) B8(0,—1,1) 5(0,—-1,2) v(—1,-1,2) on axis z,
0(0,—1,2) with edge or-
thogonal to axis y

B(z,y,z) even B(z,y,z+1) Blz,y—1,2+1) d(z,y — 1,2 + 1) with edge
orthogonal to axis z,
8z + Ly — 1,z + 1) with
edge orthogonal to axis z

B(z,y,2) odd B(z,y—1,2) Blz,y—1,2+1) d(z,y — 1,2z + 1) with edge
orthogonal to axis vy,
0(x — 1,y — 1,z + 1) with
edge orthogonal to axis z

v(z,y,%2) even omnd(z,y,z + 1), (z,y—1 z—l—l),’y(m—l—l,y—l,z—l—l)
axis y ozx+1,y,2) dxz+1 1,2)

y(z,y,z) odd on~y(z,y—1,2) o(z,y— 1 z + 1), 6(z,y— 1,2+ 1),
axis y o(z+1, ,2) d(x+1,y—1,2)
v(z,y,z) even on~y(z,y,z+1) oz —1 y,z + 1),0(x—1,y,2+ 1),
axis z o(z,y—1,241) §(z,y—1,2+1)
y(z,y,2z) odd ond(zx — 1,y,z ),5(m—1 y,z+1),v(z—1,y—1,24+1)
axis z oz,y—1,2) d(z,y—1,2+1)

o(x,y,z) even with é(z,y,z+1) d(z,y—1,2+1) d(z+1,y—1,z2+1)

edge orthogonal to

axis y

0(x,y,2z) odd with §(z,y —1,2) d(z,y—1,2+1) §(z,y—1,2+1)
edge orthogonal to

axis y

o(x,y,z) even with é(z,y,z+1) d(z,y—1,2+1) §(z,y—1,2+1)
edge orthogonal to

axis z

o0(x,y,2z) odd with é(z,y —1,2) d(z,y—1,2+1) d(z—1,y—1,z+1)
edge orthogonal to

axis z

symmetric pair to axis y. Then the side of the polygon connecting § and ¢’
is orthogonal to the axis y. After any kind of step the new corners obtained
from 0 and ¢’ have the same property. The proof is similar if one of the edges
connected at corner ¢ is orthogonal to axis z. O

As we can see the corner-types are in a closed set, i.e. we cannot step out from
the above used set by the growing steps.

Now, we present a method which calculates the corners of any digital circle.
We are using Table 1 and the transition table given in Table 2.

Let us calculate the corner of the digital circle with origin (xg, Yo, 2z0) using
the initial part By of a neighborhood sequence B. First we compute the corners
of Cp, using O as origin, and after this we will translate the circle.
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Algorithm

1.

Initially start with corners of the circle C'y(1)y from Table 1 which are in the
analysed section of the grid, where b(1) is the first element of B. Let ¢ = 1.
While ¢ < k let ¢ := i+ 1 and the analysed corners of the new polygon are

from Table 2 by a b(i)-step. (Keep only those ones which are in the analysed
part of the grid.)

Get every point which coordinate values form a permutation of a computed
point. Those are the corners of Cp, .

. If (x0,yo0,20) is even then add the vector (zg,yo, 20) to each corner of Cp,

in order to get the result.

If (x0, Y0, 20) is odd then then, first, let the new values of coordinates of the
corners be given by the formula (x,y, 2) — (—(x—1), —z, —y) (they represent
the digital circle with origin (1,0,0) generated by B with radius k);
secondly, add the vector (xg — 1,yo,20) to each corner to obtain the final
result.

Now we present an example. Let us determine the corners of the digital circle

starting from point (—5,3,3) with B4 = (1, 3,1, 2).

1.
2.

b(1) = 1, therefore we start with C(;, so we have «(0,0,1) and i = 1.

1 < 4 thereforei := 2, b(i) = b(2) = 3, the result: y(—1, —1,2) and §(0, —1, 2).
1 < 4 therefore i := 3, b(i) = b(3) = 1, y(—1,—1,2) is even and it is on axis
z (the first two coordinates have the same value): v(—1,—1, 3) and
0(0,—1,2) is odd and it has edge orthogonal to the axis y so the new corner:
5(0,-2,2).

1 < 4 therefore i := 4, b(i) = b(4) = 2, v(—1,—1,3) is odd and it is on axis
z, so we get 0(—2,—1,4) and §(—1,—2,4), but the first one is outside of the
analysed section of the plane

5(0,—2,2) is even and it has edge orthogonal to the axis y so the new corner:
5(0,-3,3).

i = 4, the loop of Step 2 is finished.

The corners with permutations: all of them are type-d: (—1,—2,4),
(—2,—1,4), (-1,4,-2), (=2,4,-1), (4,—1,-2), (4, -2, 1) and (0, —3,3),
(0,3,-3), (—3,0,3), (-3,3,0), (3,0,-3), (3,-3,0).

The given origin is odd, so

first we get: (2,—4,2), (3, —4,1), (2,2, —4), (3,1,-4), (=3,2,1), (=3,1,2),
(1,-3,3), (1,3,-3), (4,-3,0), (4,0,-3), (-2,3,0), (—2,0, )

Secondly, adding (—6, 3, 3) the final result: (—4, 1 ,9), (—3,-1,4),

(_4757 _]-)7 (_3747_1)7 (_97574)7 (_97475)7 ( 6) ( 5767 ) ( 27073)7
(-2,3,0), (—8,6,3), (—8,3,6) and all of them are typ e-0.

Using the three digital circles with radius 1 and our growing table we get all

possible digital circles of the hexagonal grid. In the next section we will list their
types.
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5 The Shapes of the Digital Circles

In this section - continuing our previous results - we characterize the digital
circles by neighborhood sequences in the hexagonal grid.

Theorem 1. The shape of the digital circle generated by the neighborhood se-
quence B in k steps is a triangle if and only if it is C(yy. The shape is a hexagon
if and only if there is no element 3 in the initial part of B up to the k-th element.
(Except the previous case, in which C(yy is especially a triangle.) The shape is
an enneagon if and only if there is not any element 2 and nor any consecutive
1,1 or 3,8 occur in the initial part By. (Except C(1y.) In every other case the
digital circle is a dodecagon.

Proof. In the first case the triangle has three « corners. According to point (b)
of Proposition 2 only other types of corners can occur at the other digital circles.
With other types of corners it is impossible to get a triangle.

Now let us consider the other digital circles. It is easy to check in Table 1 that
starting with an element 2 we get a hexagon with six § corners. Moreover by
Table 2 we know that using 1-step and/or 2-step from corners type « and from
corners type 3 the new corners will be type 3 as well. With only corners type
( there must be six of them to make a polygon. Therefore without a 3-step the
result is a hexagon with corners type (.

It is shown in Table 1 that C(3) is an enneagon with three v and six § corners.
The corner y(1,—1,1) is odd and it is on the axis y. Therefore with a 1-step
it grows to a v2 which is even and is on the same axis. (With a 2-step or a
3-step the corner would be divided to two 0 vertices.) From ~2 with a 3-step
s is resulted; it is odd on axis y. (From ~2 with a 1-step or a 2-step we would
obtain two § corners.) Since 3 is in the same ’class’ (i.e. in the same row of
Table 2) as (1, —1,1) the computing cycle is starting again, and it is going on
while the steps are 1-step and 3-step turn by turn. Observe in Table 2 that type
~ corner can be obtained from «, but cannot from (3. Therefore there is no way
to get 7y vertices from C(2) and so from any hexagons. From C(;) one can obtain
an enneagon in one way, namely to get C(; 3y. The obtained corner (-1, —1,2)
is even and it is on the axis z. One can check that there is a similar computing
cycle for this v to keep it with only 1-steps and 3-steps by turns. (Leaving this
computing cycle two corners type § are obtained instead of the type v.)

Finally, in all other cases the polygons only have § vertices. When twelve
corners type d are in a digital circle, then it never happens that they change
to another type (see Table 2) and twelve of them are needed for a polygon.
Therefore the last statement is proved. a

Analysing the digital circles on the square and on the hexagonal grid we have
found the following important difference.

In the square grid the region occupied by k steps of a neighborhood sequence
A is independent of the ordering of the first & element of A. (see [4])
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(a) Digital circle by (1,3)  (b) Digital circle by (3,1)

Fig.5. The elements of the neighborhood sequence on the hexagonal grid are not
permutable, in general

Proposition 3. Contrary to the case of the square grid, it is possible for a
neighborhood sequence B and for a k € N, that the region Cp, depends on the
order of the first k elements of B.

Assume that Bj = (1,3) and By = (3, 1) then our regions Cp, and Cpy differ
as Fig. 5 shows.

6 Conclusions

In this paper we presented some results about neighborhood sequences on the
hexagonal grid. We made a classification of the digital circles. We gave the
possible types of corners of these digital polygons and studied their development
in the growing procedure. Moreover an algorithm is presented to compute the
coordinate-values of the corners of any digital circle (arbitrary origin, arbitrary
neighborhood sequence and arbitrary radius) on the hexagonal grid. We listed
the types of the digital circles occupied by neighborhood sequences, as well.
Since the convex hulls of the digital circles are convex polygons, the lists of their
corners determine them.

Our results can be used in digital image processing and in the field of networks
as well. It is useful in region growing procedures. In grid-structured networks the
non-common properties are useful. Some digital circles have several radii or the
non permutability of the elements of the neighborhood sequence are exotic prop-
erties. In practice, it would also be interesting to analyse the development of the
wave-front sets in the case of “barrels”, or starting not from a point, but from
other digital object, for instance from a lane. Another possible direction of future
research is the further analysis of meeting waves, etc. It would be interesting if one
mixed our method of region growing with the methods used in practice ( [8,9,2]).
Extensions to non-regular grids can be topics of further research, as well.
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Abstract. We introduce a new discrete primitive, the blurred piece of a
discrete plane, which relies on the arithmetic definition of discrete planes.
It generalizes such planes, admitting that some points are missing and
then permits to adapt to noisy discrete data. Two recognition algorithms
of such primitives are proposed: the first one is a geometrical algorithm
and minimizes the Euclidean distance and the second one relies on linear
programming and minimizes the vertical distance.

1 Introduction

The recognition of discrete primitives as digital straight lines and digital planes
is a deeply studied problem in digital geometry (see a review in the book [1]).
This problem consists in determining if a set of discrete points corresponds to
a known discrete primitive and, in such case, in identifying its characteristics.
Three main classes of algorithms can be defined:

— Structural algorithms: based on geometric (convex hull, chords) or com-
binatorial (size of the steps) properties of discrete primitives. Indeed, the
structural regularity of these primitives can lead to efficient algorithms.

— Arithmetic algorithms: based on the definition of discrete primitives as Dio-
phantine inequalities, these algorithms make profit of the well defined arith-
metical structure of discrete primitives.

— Dual space algorithms: the recognition problem is translated in a dual space
where each grid point is represented by a double linear constraint. The recog-
nition problem is then defined as a linear programming problem, optimized
using particular knowledge on the constraints geometry.

Recently, a new discrete primitive, the blurred segment [2, 3], was introduced
to deal with the noise or artefacts due to the acquisition tools or methods. Re-
lying on an arithmetic definition of discrete lines [4], it generalizes such lines,
admitting that some points are missing. Efficient blurred segments recognition

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 65-76, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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algorithms were proposed [2,3,5] and they were used in applications in image
analysis [6]. In the same framework, we introduce in the paper the new notion of
blurred pieces of discrete planes, relying on the definition of arithmetic discrete
plane [7] by considering a variable thickness.

Two recognition algorithms of blurred pieces of discrete planes are proposed.
The first one is based on a structural approach: the computation of the con-
vex hull of the given voxels is done while we search for the two parallel planes
that mark out this convex hull and that minimize the Euclidean distance be-
tween themselves. An incremental algorithm is given. The second one is based
on a dual space approach in the context of linear programming: the recog-
nition problem is modelled by a system of linear constraints defined by the
initial set of points. The simplex algorithm is then used to solve the prob-
lem by minimizing the vertical distance between two parallel planes containing
all the points of the initial set. A geometrical interpretation of this method
is also given. The codes of these algorithms and examples are available on
http://www.loria.fr/~debled/BlurredPlane.

In section 2, after recalling definitions and basic properties of arithmetic dis-
crete planes, we define the related notion of blurred pieces of discrete planes and
optimal bounding planes. Then, in section 3, a geometrical method is proposed
to solve the recognition problem by minimizing the Euclidean distance. The sec-
ond method, based on linear programming, is presented in section 4 as well as
a geometrical interpretation of the dual problem. The paper ends up with some
conclusions and perspectives in section 5.

2 Blurred Pieces of Discrete Planes

An arithmetic discrete plane [7], named P(a,b,c, u,w), is a set of integer
points (z,y,2) verifying u < ax + by + cz < u + w where (a,b,c) € Z3 is
the normal vector. ;4 € Z is named the translation constant and w € Z the
arithmetical thickness.

The two real planes, defined by the following equations: ax + by + ¢z = pu and
ar + by + cz = p+w — 1, are called the leaning planes of P(a,b,c, u,w). All
the points of P are located between the leaning planes of P.

We hereafter propose a generalization of the notion of discrete plane relying on
the arithmetical definition and admitting that some points are missing. Consider
a norm N on R3. We define the notion of bounding plane, relative to N, as
follows:

Definition 1. Let £ be a set of points in Z3. We say that the discrete plane
P(a,b,c, u,w) is a bounding plane of £ if all the points of € belong to P. We
call width of P(a,b,c, p,w), the value N?Ja_blc)'

Interpretation of the Width:

1. if N = |- |l2, the width NL(Ua_bl.c) represents the Euclidean distance between
the two leaning planes of the bounding plane P(a, b, ¢, i, w). Indeed, let P :



Recognition of Blurred Pieces of Discrete Planes 67

ax+by+cz=pand P; : ax+by+cz = p+w —1 be the two leaning planes
of P. As P, and P, are parallel, the distance between P; and P, is equal to

lptw—=1—p| . -1 :
Va2 gprge2r 1€ |\(au,Jb,c)\|2 since w > 0.
2. if N = | - ||, the width N‘("G’I}C) represents the distance according to the

main direction of the vector (a,b,c). Indeed and without loss of generality
we can assume that max(|al, ||, |¢|) = |¢|, which means the main direction
is the Oz axis. Let My(z1,y1,21) € P1 and Ms(z2,y2,22) € P> such that
x1 = 22 and y; = ya. The distance between Py and P is equal to |21 — 23| =
IC(21|C*|Z2)I _ Ia(mfyz)+b(y|1;|yz)+0(Z1722)| _ Iu*(uﬁcr'w*l)l because M, € P, and

. w—1 .
My € Py, ie. (@)l SDCE W > 0.

Fig. 1. A width-3 blurred piece of discrete plane (a and b), its optimal bounding planes
(c) for Euclidean norm: P2(4, 8,19, —80,49) and the width of P> = 2.28 (d) for infinity
norm: Po (31, 65,157, —680,397) and the width of Pos = 2.52. The leaning planes and
corresponding leaning points of P2 and Pos are respectively drawn on (a,c) and (b,d).

Definition 2. Let £ be a point set in Z3. A bounding plane of £ is said optimal
if its width is minimal.

This leads us to the definition of a blurred piece of discrete plane (Fig. 1).

Definition 3. A point set £ in Z3 is a width-v blurred piece of discrete
plane if and only if the width of its optimal bounding plane is less or equal to v.



68 L. Provot, L. Buzer, and I. Debled-Rennesson

In the following sections we propose two algorithms which solve the recognition
problem of blurred pieces of discrete planes. For a given set of points € in Z3
and a width v these algorithms decide whether £ is a width-v blurred piece of
discrete plane. In addition, they give the characteristics of an optimal bounding
plane of £ for which the width is minimal. We also show how these algorithms
can be made incremental.

3 Geometrical Method for the Recognition of Blurred
Pieces of Discrete Planes

The first approach allows to solve the problem in terms of the norm || - ||2. It
relies on the computation of the width of a point set in 3-space [8,9].

Definition 4. Let E be a set of points in R3 and P a real plane. We say that
P is a plane of support of E if all the points of E are located in one of the
two half-spaces delimited by P and such that PN E # ().

Definition 5. The width of E is the smallest (Euclidean) distance between two
parallel planes of support of E called width planes.

The link with our problem is the following: if E is a set of points in Z3 then
the width planes coincide with the leaning planes of an optimal bounding plane
of E and the width of F is equal to the width of this optimal bounding plane.
For that reason, computing the width and deducing the width planes allow to
recognize blurred pieces of discrete planes.

3.1 Width Computation

We are looking for two parallel planes P, : ax + Sy + vz + 6 = 0 and Ps :

ax + By + vz + d2 = 0 which minimize the distance J Iiiﬁ&i , between P and
o ¥

P, and such that, for all points p(p, py, p-) € E, we have p, + Bpy +vp-+61 <0
and p + Opy + vp. + 62 > 0. For this purpose we can see that the width of £
is the same as the width of its convex hull CH(E) [8]. It is due to the fact that
CH(E) is the intersection of all the half-spaces containing all the points of E.
We can then simplify the problem by introducing antipodal pairs. Consider the
convex hull of a set of points E in 3-space. Two of its edges form an antipodal
edge-edge (E-E) pair when two parallel planes of support of E contain these
edges. Similarly, we define vertex-vertex (V-V), face-face (F-F), vertex-
face (V-F), verter-edge (V-E) and edge-face (E-F) pairs.

In [8], M.E. Houle and G.T. Toussaint show that, to compute the width of
E, it is sufficient to focus only on parallel planes which contain an E-E pair or
a V-F pair. Therefore, we will enumerate all the E-E and V-F pairs of CH(E)
and keep the ones whose distance is minimal.

In [9], B. Gértner and T. Herrmann propose a direct approach relying on the
geometry and combinatorial properties of the convex hull. The method is inspired
from the rotating calipers [10] but generalized to the three-dimensional space.
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They start with an arbitrary face f of CH(E) and determine its antipodal
vertices V. = {v1,...,v;} by exploring all the vertices of CH(E). Thus, they
obtain an initial V-F pair and the two parallel planes P; and P, supporting V'
and f respectively. Next, they rotate the two planes about an incident edge e
of f until P, supports the other facet f’ incident to e. During this rotation the
parallelism and the supporting property of the two planes are preserved and all
E-E pairs belonging to e as well as the antipodal vertices of f are reported.

The important part is as follows: given a V-E pair (w,e) and two parallel
planes P; and P, supporting w and e respectively, two events of interest might
happen during the rotation of P, about e:

1. P supports a new face f’ incident to e, a new V-F pair (w, f) is found.
2. Py supports an additional vertex v, a new E-E pair ((wv),a) is found.

Thus, a rotation about an edge e of CH(E) allows to get all E-E pairs be-
longing to e and all V-F belonging to the two incident faces of e. Hence, by
rotating about all the edges of CH(E) we get all the possible E-E and V-F pairs
of CH(E). At least one of them belongs to the width planes and the distance
between these planes is the width W of E.

As W represents the width of an optimal bounding plane of E, if W < v then
E is a width-v blurred piece of discrete plane.

Furthermore, we can obtain the characteristics of this optimal bounding plane.
As the width planes coincide with the leaning planes of the bounding plane
P(a,b,c, p,w) of E, we have a = o, b = [ and ¢ = 7. Relying on the width
interpretation in Section 2, we get w = |62 — §1| + 1. Lastly, owing to the leaning
planes equations, ¢ = min(—dy, —d2).

3.2 Incremental Algorithm

Here we propose an incremental version, in order to get an algorithm which gives
the characteristics of an optimal bounding plane of E each time we add a new
point. A naive method consists in recomputing the width of E each time we add
a point. Nevertheless some observations allow to improve this process.

On the one hand, only one point differs from one step to another. Thus, we
can advantageously replace the computation of the convex hull of all the points
of E by an incremental computation ( [11] pp 235-246). Let us briefly recall

"a\
s
= e
c,
C i+l
(b)

Fig. 2. (a) The horizon from M; (b) Adding a point to the convex hull
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the procedure. At a general step i of the algorithm, a convex hull C; is given
and we add a new point M. If it lies inside C; or on its boundary, then there is
nothing to be done. Otherwise we look for all the visible!' faces of C;, standing
from M. This set of faces is enclosed by a curve called horizon (Fig. 2(a)).
All the visible faces are removed from C; and replaced by new ones created by
joining each vertex of the horizon to the point M (Fig. 2(b)). Some of them
could be coplanar with non-visible faces so they have to be merged together.
The resulting polytope is the new convex hull Cj .

On the other hand, we can observe that, at each step of the algorithm, we
know the characteristics of an optimal bounding plane P(a,b,c, u,w) of E. So,
if we add a point M (xp,yam, 2m), we can compute the remainder value of M
relative to P: rp (M) = axp +byas + ¢z — - According to a property of discrete
planes, if rps € [0,w — 1] then M € P, so it is useless to recompute the width of
& since it does not change.

Algorithm 1. Incremental Recognition

Data: £ € Z3, the convex hull C of £, the characteristics a, b, ¢, n and w of the
optimal bounding plane of £

Input: A point M € Z*

Result: The updated data after the addition of M

1 begin
2 E—EEUM
3 Update C' using the incremental process
4 M — axn + bynm + ez — p
5 if rar ¢ [0,w — 1] then
6 (a, B,7,01,02) «— ComputeWidthPlanes(C)
7 a+—
8 b—p
9 c—
10 4 «— min(—4d1, —d2)
11 w<—|52—51|—|—1
12 end

This leads to the incremental procedure described in Algorithm 1. The func-
tion ComputeWidthtPlanes(C') at line 6 computes the width planes of C' ac-
cording to the method described in Section 3.1. The returned tuple contains the
coeflicients of these planes.

Complexity: In [9], Gartner and Herrmann showed that the complexity of com-
puting the function ComputeWidthPlanes(C) is O(n?), where n is the number
of points in £. As the other instructions of Algorithm 1 run in constant time,

! Consider a plane Py containing a face f of the convex hull. By convexity, this convex
hull is completely contained in one of the closed half-spaces defined by Py. The face
f is wvisible from a point if that point is located in the open half-space on the other
side of Py.
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we obtain a complexity of O(n?) for our incremental procedure. We need to use
this incremental procedure each time we add a point to £. Thus, we obtain an
O(n3) worst case complexity for a set £ of n points. Nevertheless, in practice,
the recognition process seems rather linear.

4 Linear Programming Method

The second method relies on linear programming and permits to solve the prob-
lem by considering the norm || - ||o.. We recall in the following section the general
formulation of a linear programming problem and the simplex algorithm. The
problem of recognition of blurred pieces of discrete planes is then modelled in
that way in Section 4.2.

4.1 The Simplex Algorithm

Formulation. We try to identify a minimum point z* € R¢ of a function
f(z) : R — R where z = (z1,...,24). Moreover, * must satisfy a set of n
constraints G = (g;(x) < bi)i<i<n. LP is the specialization of mathematical
programming to the case where both, the objective function f and the problem
constraints G are linear. Let A(n x d) denote a matrix of n rows and d columns.
Let ¢(d), b(n) and z(d) denote three column vectors of size d and n. Thus, we
can write our LP problem in such a way: Min c¢f.z subject to A -z < b and
x > 0. We call the standard form the equivalent rewriting: Min ¢’t.z’ subject to
A2 =band 2/ > 0 where A’ = [A|Identity(n x n)], ¢ = [c|Zero(n)]. The n
inserted variables in the standard form are called the slack variables.

The simplex algorithm. This method, developed by George Dantzig 1947,
provides a powerful computational tool (see [12] for details). It operates on the
formulation of the standard form. We have n 4 d variables and n equalities in
the system Az = b, we can extract a nonsingular matrix B of rank n relative to
this system of equations.

The basis corresponds to the indices of the columns extracted from A to create

B. In the simplex method, the nonbasic variables, denoted by xn = (x;)1<i<n+a
i¢basis

are forced to be zero. The basic variables xp = (x;)icpasis are thus equal to
B~1b. A solution z associated with a basis B is called feasible when it verifies
xzp > 0.

The simplex algorithm starts from a feasible solution. At each iteration, the
program computes a new basis in such a way that the new basic solution is
feasible and that the objective function has decreased or remains unchanged. To
build the new basis, one nonbasic variable is reclassified as basic and vice versa.
Which variable can we choose ? Let N denote the columns of A whose indices
are not in the basis. From Az = b, we have: [B|N].[zp,zn] = b. As B is a non-
singular matrix, we obtain: xg = B~'.(b— N.xx). The objective function can be
rewritten as: f(z) = c!.x = cgl.ap +entiay = (ent —cp'B7IN)zy + 5B~ 1b.
This rewriting is not depending on the variables xp. Thus, as the variables



72 L. Provot, L. Buzer, and I. Debled-Rennesson

are positive, if there exists no negative value in the reduced cost vector rct =
ent — eg*B~IN, we have found the minimum z*.

If there exists a negative value, then we can decrease the current value of the
objective function by increasing the corresponding variable x; of xy. As x; is
no more zero, at the next iteration, it will be reclassified as a basic variable.
By increasing x;, the values of the basic variables change. If they all increase,
the problem is unbounded, it means that the minimum value for the objective
function is —oo. In the other case, where some basic variables decrease when x;
increases, the first basic variable x; that reaches zero will stop the increase of
x;. Thus, x; leaves the basis.

To determine the index k, let consider the equalities x5 = B~1.(b — N.zy).
Only z; is now nonzero among zy, so we have rg = B~'.b — B ' Ajz;. Let b
and P denote B~'b and B~'A;. Values in b are positive, so only the indices
associated with a positive value in P are of interest. The previous condition
b — P.x; > 0 implies that for all 7 in the basis with P; > 0, we have: ; < b;/P;.
It follows that k = index of min; p,>o{bi/P;}.

function Min-Simplex(A b,c,basis)

Repeat
1- Extract B,cp from A // relative to the current basis
2- b=B""b
3- v/ =ct — (cg!B71).A // equivalent version of rc
4- If (rc’ > 0) returnd // optimum found (< for a Max)
5- Choose ! such that r¢j <0 // x; enters the basis (> 0 for a Max)
6- P = BilAl
7- If P < 0return unbounded
8- k= min; p,>o{bi/P;} // (same thing for a Max)

9- basis — basis\{k} U {l}

Duality theorem. Associated with each Primal LP problem is a companion
problem called the Dual. The main theorem of LP proves that the Primal prob-
lem is infeasible iff the Dual problem is unbounded and vice versa. Moreover,
one problem has an optimum iff the other problem has an optimum. The two op-
timum values are equal. Moreover, if cg and B are the matrices associated with
the optimum in the Dual, then the optimum in the Primal is equal to ci; B~1.

Primal: (i) Min ¢!.x ~ +— Dual: Max bf.\

Subject to: (ii) Az > b «—— Subject to: A >0
(i) Az =b AER
(iv)x >0 — At x<e¢
(v)z eR — At =c

4.2 Modelling the Recognition Problem

In this way, we compute the minimum vertical distance between two parallel
planes whose slopes relative to the z-axis and the y-axis are between +m/2.
Indeed, let us recall the given problem, we are looking for the characteristics
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a,b,c, p,w of an optimal discrete plane bounding P for a set of n points by
minimizing the vertical distance between its two leaning planes. By considering
a=-9 0= —l;, h =" and e = “Zl, the problem may be reformulated
as follows: for a given set of n points (z;,y;,2;), we want to find two planes
P: z(z,y) = ax+ By+hand P : 2 (x,y) = ax+ B.y+ h+ e such that
all the points are located between P and P’ and such that e is minimal. We
obtain one couple of inequalities for each entered point: a.x; + B.y; + h < z; and

Primal Dual standard form
Min e Max [-z1...-2n | 21...2n | -1-1-1-10].A
-T{ ... Ty T1...Tn-11000 A\

1

~a.x; — By —h > -z
Y1 oo Yn Y1 . Yo 00-110
° i ‘Y1 > 3 ... =
Smrfvithteza 1 100000,
S 0..0 1..100001 2n+5

_— o o o

laf <1, [B] <1
a,B,heR, e>0 A>0

We gather the two different types of inequalities on each side of the matrix.
Working in the Primal problem with the standard form forces to manage a large
sparse matrix of size (2n+4) x (2n+8). The Dual allows to bypass this problem
with a 4 X (2n 4 5) matrix ((i), (ii) and (v) in 4.1). We can easily check that the
basis {1, A2nt1, A2nt3, A2nss} where B~1b=1[00 0 1]* > 0 is always a feasible
basis for the Dual problem.

Geometrical Interpretation of the Dual Problem

The basis of the Dual problem is associated with four inequalities in the Primal
problem. So when ); is in the basis, the i*" inequality in the Primal problem
corresponds to an equality. For example, when \;,; 1 < i < n is in the basis, the
it" inequality implies a.z; + B.y; + h = z;, this means that the point p; belongs
to the lower plane P. When n < ¢ < 2n, the point p;,_,, belongs to the upper
plane P’. In the same way, the variables Aoj41, ..., A2pt5 are associated with
the cases: a=1,a=-1,0=1,0=—1ore=0.

The vector c¢i;B~! in the Dual transforms the current basis into the primal
variables. This follows from the previous remark. Let K denote the matrix cor-
responding to the equalities retained in the Primal problem. The current system
verifies: K-[a B he]t = b5 Thus, we have: [a B he] = (Kt pErimal)t —
(bgrimal)t : (Kt)_l = CtB Dual * BB'LIJ,al

Reduced cost optimality condition. The simplex algorithm maximizes a
function in the Dual. So, it stops when it finds an rc vector with negative values
(line 4). We easily verify that: rct = ¢! — (cg!B™1).A = [ (-z; + [ + Boyi +
h)i<i<n | (zi — [a.zi + By +h+e])i<i<n | -14+a | -1-a | -14+5 | -1-0 | -e]. As all
these values are negative, this implies that the inequalities of the Primal are all
verified. The Dual program stops when it finds two parallel planes that include
all the points and that have valid slopes.
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The objective function in the Dual is quite obscure. Nevertheless relative
to the theorem of Duality, the dual objective function must represent the same
thing than the Primal function. In fact, we have f(A\) = c5p,0 (B opual) =
(C%DualBil)bDual = [ « 5 he ] X CPrimal = €.

The core of the algorithm. Each iteration is associated with a feasible basis.
We only consider in the following the two most important cases with all the ba-
sic variables \; such that 1 < i < 2n. Other subcases can be processed without
difficulty. The configuration 1 < 4, j, k,I < n for the indices of the basic variables
is not possible because the corresponding matrix B would be singular.

Configuration 1: 1 < 4,5,k < n < [ < 2n. In this case, the three points
Di(%i, ¥i), 0 (x5, Y;5), Pe(Tk, yx) define the lower plane P and the parallel plane
P’ is supported by p;—,. The matrix B is equal to [ -z; -y; -1 0 | -z -y; -1 0 | -
Tk -yk-10 | Tj_p y1—n 1 1 ]. Wlog, we can assume that the point p;_,, corresponds
to the origin, this allows to simplify the writing of the matrix B to [-z; -y; -1 0 | -
zj-y; -1 0| -z, -y -1 0] 00 11]. Let N; denote the two-dimensional vector
(xi,9:). The vector B~1b is equal to: [gjt?g;, ggﬁggﬁ i;[(th(g) ;1]. As the matrix
B is nonsingular and det(B) = —det([ z; y; 1 | ©j y; 1 | 1 yr 1]) the three
points p;, pj, pr, must not be colinear. Suppose that the three points IV; N; Ny, lie
in clockwise order, so det(B) > 0. As B~1b > 0, Ny A N, N; A Ni, and N;j A N;
are positive. Such a situation can appear only when the point p;_,, lies inside
the triangle N;N; N}, relative to the projection into the O, plane.

Configuration 2: 1 < 4,5 < n < k,l < 2n. The planes P (resp. P’) is sup-
ported by the segment p;p; (resp. px—nPi—n). As they are parallel, this couple
of planes is unique. Consider that the point p;_,, is centered on the origin, we
have B~1b = [Ny A N;/A;Ni A Np/A;..;...] with A = (N; — Nj) ANg. Ais
nonzero iff the segment p;p; and the segment py_n,pi—, are not colinear in the
Ozy plane. It follows that Ny A N; and Nj A N; have not the same sign. Thus,
the segment p;p; crosses the line (py—npi—n). When we center the origin on p;,
we symmetrically obtain the same result. Thus, this case is associated with two
segments p;p; and pr_,p;—rn that intersect each other relative to a projection
into the Oxy plane.

Configuration 3: It is equivalent to the first configuration.

Variables interchanging. We traverse all the set of points. For each point,
we consider its vertical distance from P when it lies under P or from P’ when it
lies above P’. If no points are found, our problem is solved. Otherwise, we select
the point that is the vertically farthest point from P and P’. The associated
variable A\, enters the basis. In the Configuration 1, we have three equalities
of the type: a.x+ B.y + h = z. When we select a variable A, of the same type, it
means with 1 < u < n, we can not withdraw p;_,,, otherwise we would obtain a
basis with four equalities of the same type and this configuration is not possible.
Thus the new basis will remain in configuration 1. So, the new point p, replaces
the sole point among p;,p; and py that will preserve the constraint: p,_, lies
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Fig. 3. Different configurations relative to the basis and the entering variable

inside the new triangle relative to the Oxy plane. As p,_, is under the plane
P defined by p;p;pi, the current thickness e has also increased (see Fig. 3.1a).
In the other case where n < u < 2n, two possibilities can appear. When p,_,,
lies inside the triangle, it simply replaces its equivalent point p; and e increases.
When p,_, lies outside, we cannot achieve a configuration of type 1, thus we
move to a configuration of type 2. For this, the segment that supports P’ is also
Pu—nPi—n- The other segment corresponds to the sole edge of the triangle that
crosses this segment relative to the Ozy plane. p,_, lies at a vertical distance
greater than the one defined by the triangle and p;_,,. Moreover, this distance
is equal to the distance between the two retained segments, so the new config-
uration increases the value of e (see Fig. 3.1b). In the Configuration 2, when
a variable A\, 1 < u < n is selected, we have two possibilities. To remain in
the same configuration, p, must replace a point in such a way that the two new
segments cross each other relative to the Oxy plane (see Fig. 3.2a). When this
is not attainable, one of the two points px_, or p;—, inevitably belongs to the
triangle p;p;jp, and we then shift to a configuration of type 1 (see Fig. 3.2b).
Other interchangings can be deduced from the ones exposed in this section.

Convergence and complexity. As the Primal is feasible (choose a large value
for e), the Dual is never unbounded and we can suppress the processing of this
particular case. As we select a point outside of two parallel planes, we know that
the vertical distance (the objective function) strictly increases at each iteration.
Thus, unlike in the general case, the simplex algorithm applied to this recogni-
tion problem can not cycle. Moreover, we have at most C3,,, 5 = O(n*) possible
feasible basis. Thus, we obtain an O(k?) time complexity where k represents the
number of the vertices of the convex hull of the given points. In practice, this
quantity is relatively small compared to the number of points.

The incremental version. When a new point is inserted, it may lie between
the two planes P and P’. In this case, the previous solution remains optimal
and nothing has to be done. Otherwise, two columns are added to the matrix
A in the Dual. Next, using the last processed feasible basis, we launch a new
sequence of iterations until the new optimum solution is found.
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5 Conclusion

We proposed in this paper a new definition of discrete primitives: the blurred
pieces of discrete planes. These discrete primitives allow to deal with the noise
present in discrete data by varying a parameter. Two recognition algorithms are
given. The first one is a geometric algorithm, based on the convex hull of the
considered set of points and its result is the optimal bounding plane for which the
Euclidean distance is minimal. The second one is based on the simplex algorithm
and its output corresponds to the optimal bounding plane for which the vertical
distance is minimal. The codes of these two algorithms and examples of use
are available on http://www.loria.fr/~debled/BlurredPlane. A work about
the comparison between these two methods is in progress. Moreover we intend
to use these algorithms in the framework of the boundary segmentation of 3D
noisy discrete objects. Our aim is to obtain an algorithm of polyhedrization of
3D noisy discrete objects by controlling the approximations done.
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Abstract. The number of line-convex directed polyominoes with given
horizontal and vertical projections is studied. It is proven that diagonally
convex directed polyominoes are uniquely determined by their orthogonal
projections. The proof of this result is algorithmical. As a counterpart,
we show that ambiguity can be exponential if antidiagonal convexity is
assumed about the polyomino. Then, the results are generalised to poly-
ominoes having convexity property along arbitrary lines.

Keywords: Discrete tomography; line-convex directed polyomino; re-
construction from projections.

1 Introduction

The reconstruction of two-dimensional discrete sets (the finite subsets of Z?)
from their projections is a frequently studied area of discrete tomography [1]
and it has its applications in pattern recognition, image processing, electron
microscopy, and radiology [2,3,4,5,6]. For practical reasons the number of pro-
jections used in the reconstruction is small (usually two or four). Thus, in certain
cases the number of discrete sets having the same projections can be extremely
large leading to a reconstructed set which is possibly quite dissimilar to the
original one. A commonly used technique to reduce the number of solutions is
to suppose having some a priori information of the set to be reconstructed such
as convexity, connectedness and directedness. Some properties imposed on the
set to be reconstructed completely eliminate ambiguity and make it possible to
develope efficient reconstruction algorithms [7,8,9]. However, there are classes of
discrete sets where ambiguity is only partially eliminated making the reconstruc-
tion of the set very difficult [10,11]. In this paper we investigate the problem of
ambiguity when the set to be reconstructed must be line-convex, connected, and
directed.

This contribution is structured as follows. First, the necessary definitions are
introduced in Section 2. In Section 3 we study diagonally convex directed poly-
ominoes. We give a uniqueness result for this class and derive an algorithm for
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© Springer-Verlag Berlin Heidelberg 2006
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reconstructing the uniquely determined polyomino from its horizontal and verti-
cal projections. In Section 4 we show that ambiguity can remain very high when
the polyominoes to be reconstructed are antidiagonally convex. In Section 5 we
consider the possibility to adapt the results of Sections 3 and 4 to polyominoes
that are convex along an arbitrary set of directions. Finally, in Section 6 we
conclude our results.

2 Preliminaries

The finite subsets of Z? defined up to translation are called discrete sets. A
discrete set F' can be represented by a set of unitary cells or by a binary matrix
F = (fij)mxn where fij = 1 if and only if (¢,j) € F. To stay consistent we
assume that the vertical axis of the two-dimensional integer lattice is directed
top down (see Fig. 1). The horizontal and vertical projections of F' are the vectors
H(F)=H = (h1,...,hm), and V(F) =V = (v1,...,vy,), respectively, where

hi:ZAij (t=1,...,m) and 'l)j:Zfij (j=1,....n). (1)
i=1

Not any pair of vectors are the projections of some discrete set. In the following
we suppose that H € Ni* and V € Nj are compatible which means that they
satisfy the following conditions

(i) hy <n,for 1 <i<m, and v; <m, for 1 <j < m;
(i) Doty hi =27 v, Le., the two vectors have the same total sums.

Two points P = (p1,p2) and Q = (q1,¢2) in Z? are said to be 4-adjacent if
|p1 — q1] 4 |p2 — g2| = 1. The sequence of distinct points Py, ..., P is a 4-path
from point Py to point P in a discrete set F' if each point of the sequence is
in F' and P, is 4-adjacent to P,_; for each [ = 1,..., k. A discrete set F' is 4-
connected if for any two points in F there is a 4-path between them. Such a set
is also called as polyomino. A 4-path in a discrete set F' is a northeast path (or
shortly, NE-path) from point Py to point Py if each point P, of the path is in
north or east to P,_1 for each [ = 1,..., k. The discrete set F' is directed if there
is a NE-path in F' from point (m, 1) to any other point of F.

Given two integers a and b such that they are coprimes and (a, b) # (0,0) we
define the kth line of the discrete rectangle R = {1,...,m} x {1,...,n} parallel
to the vector (a,b) by

S ={(i,j) € R | bi —aj =k} . (2)

Throughout this paper, without loss of generality, we will assume that b > 0
and b = 0 if and only if @ = 1. The discrete set F' is line-convex along the
direction (a,b) if for every k € Z and (i1, j1), (i2, j2) € S,ga’b) N F the discrete
line segment with the endpoints (i1,71) and (ie, j2) is in F, i.e., if (i,j) € S,ga’b)
such that (¢,7) = (¢1 + t(i2 — 41), j1 + t(j2 — j1)) where ¢t € [0,1] then (i,7) € F.
In particular, the discrete set is
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Fig. 1. A diagonally convex directed polyomino F', and the correspondig binary matrix
F'. The projections of the polyomino are the vectors H and V.

— horizontally convez if it is line-convex along the direction (0, 1),
vertically convex if it is line-convex along the direction (1,0),
diagonally convez if it is line-convex along the direction (1,1),
antidiagonally convez if it is line-convex along the direction (—1,1).

For example, Fig. 1 shows a diagonally convex directed polyomino, which is
vertically, horizontally, and antidiagonally non-convex.

3 Diagonally Convex Directed Polyominoes

Polyominoes are widely used in physics and chemistry for modelling and they
have long been studied by mathematicians and computer scientists (see [11,12,
13] and the references given there). Concerning polyominoes with some line-
convexity properties some important results are already known. In [11] the
authors studied the number of (horizontally and vertically) convex polyomi-
noes reconstructible from their orthogonal projections and showed that in this
class ambiguity can be very high. Moreover, in [12] a method is given to enu-
merate diagonally convex directed polyominoes according to several parameters
(sources, diagonals, horizontal and vertical edges, etc.). Recently, in [14] the
author stressed the importance of finding classes of polyominoes where the re-
construction from two projections can be solved uniquely in polynomial time.
The only class known so far satisfying this condition was investigated in [8,9].
The results given there can be summarized in the following.

Theorem 1. Fvery horizontally or vertically convex directed polyomino can be
reconstructed from its horizontal and vertical projections uniquely in O(mn)
time.

In this section we show that the class of diagonally convex directed polyominoes
(let us denote this class by DCDy) also satisfies this condition. As an inmediate
consequence of the directedness and 4-connectedness we can say
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Lemma 1. Let D € DCD4 with H(D) = (h1,...,hp) and V(D) = (v1,...,0,).
Then, (m,j) € D if and only if 1 < j < hy,, and (i,1) € D if and only if
m-—uv <t<m.

With the aid of Lemma 1 a subset F' of the polyomino D to be reconstructed
can easily be found. On the basis of the following lemma the remaining elements
of D are determined by the set F.

Lemma 2. Let D € DCDy, F C D and (i,j) € {1,....m—1}x{2,...,n} be a
position such that for every (i',j') # (i,7) if i' > i and j" < j then (i',j') € D <
(¢,j') € F. Then, (i,7) € D if and only if 3}, .| fi; < vj and Zi;ll fir < hy.

Proof. Let (i,7) be a position satisfying the conditions of the lemma. The nec-
essary part is trivial since ¢’ >4, j' < j and (¢/, ') # (4, ) 1mphes (#',j') e D«
(¢',5') € F and so the inequalities Y )", ft] <vj and Zt 1 ! fir < h; must hold.
To prove the sufficient part assume that 3, .., fi; < v; and S0 fie < hi and
contrary (i,j) € D, i.e., (fij = 0. If i = 1 then the contradiction follows from
D it ftj < v; and the fact that (¢/,j) € F < (i/,j) € D holds for every
posmon (#,7) if i’ > 1. Similarly, if j = n then the contradiction follows from
PO fzt < h; and the fact that (i,5") € F < (i,5") € D holds for every position
(4, ) if 7/ < n. In any other cases, since the conditions of the lemma hold, there
exist " < i and j” > j for which dj» j = d; j» = 1. Since D is directed there is
a NE-path from (m,1) to (i”,j) such that for every point (c1,c2) of this path
c2 < j holds. Therefore the diagonal Si(i’jl) contains at least one point of D,
say (i1,71) for which j; < j. Similarily, we get that there is a NE-path from
(m, 1) to (i,5"”) and therefore the diagonal Sz(i; ) contains at least one point of
D, say (i2, j2) for which js > j. We get dil,jl =1, Jij =0 and Jiz,jz = 1 with
J1 < j < j2 which contradicts the diagonal convexity (see Fig. 2). O

< Gy ()]
N

Fig. 2. Proof of Lemma 2
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The following theorem states that if we assume that the directed polyomino to be
reconstructed is diagonally convex then ambiguity can be completely eliminated.

Theorem 2. Let H € N™ and V € N". In the class DCD, there is at most one
polyomino P such that H(P) = H and V(P) =V.

Proof. On the basis of Lemma 1 the first column and the last row of P are
uniquely determined by v, and h,,, repsectively, i.e., a subset F' of the polyomino
P (consisting of all the positions of the last row and first column of P) can be
found. Then, for the position (m—1, 2) the conditions of Lemma 2 hold. Therefore
on the basis of Lemma 2 it can be decided whether the position (m — 1,2)
belongs to P and if so then we set F' = F U {(m — 1,2)}. Taking each position
bottom up left to right F' always satisfies the conditions of Lemma 2 and so the
above method can be repeated. If H and V are the projections of a diagonally
convex polyomino then in the end we get F' = P. Uniqueness follows from the
construction. a

The proof of Theorem 2 is constructive, i.e., an algorithm similar to the one
in [9] can also be described to reconstruct the possibly existing polyomino of the
class DCD,4 with given horizontal and vertical projections.

Algorithm DCD4

Input: Two compatible vectors, H € N™ and V € N".
Output: The binary matrix F' representing the uniquely determined polyomino
of DC' D4 having projections H and V' (if there is such a solution).

Step 1 F := (0)mxn; H :=H; V' :=V;
Step 2 fori:=m—uv; +1,...,m {fii :==1; b\, — =}

for j:=1,...,hp {fmj =100 — =3}
Step 3fori:=m-—1,...,1

for j:=2....,n
if (h; > 0 and v} > 0) then {fij == 1; bl — —; Vi — =3}

Step 4 if (H(F) # H or V(F) # V or F is not a diagonally convex polyomino)

then exit(no solution) else return F:

This algorithm works as follows. Step 1 is for the initialization of the matrix F
and the auxiliary vectors H' and V'. In Step 2 a subset F' of the polyomino to be
reconstructed is defined on the basis of Lemma 1. Then, in each iteration of Step
3 we check whether the conditions of Lemma 2 hold and if so then we update
the matrix F' and the vectors H' and V’. Due to the vectors H' and V' Step 3
runs in O(mn) time. Finally, in Step 4 we check whether the reconstructed set
is a diagonally convex polyomino and has the given projections H and V which
can also be done in O(mn) time. Summarizing this we can say

Corollary 1. Let H € N™ and V € N™. If there is a polyomino P € DCDy such
that H(P) = H and V(P) =V then Algorithm DCD/ reconstructs it in O(mn)
time.
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4 Antidiagonally Convex Directed Polyominoes

In this section we show that there is a drastic change in the number of directed
polyominoes if instead of diagonal convexity it is assumed that the polyomi-
noes to be reconstructed are antidiagonally convex. We will use the concept of
switching component of a binary matrix £ which is a submatrix of F of the form

B3 ().

Interchanging 0s and 1s in a switching component the horizontal and vertical
projections of F' do not change [15]. Let us denote the class of antidiagonally con-
vex directed polyominoes by ACD,. The following theorem shows that assuming
antidiagonal convexity on the directed polyomino having given horizontal and
vertical projections does not eliminate ambiguity.

Theorem 3. In the class ACDy there can be exponentially large number of poly-
ominoes with the same horizontal and vertical projections.

Proof. We show that for any k € N there are at least 2% number of discrete sets
of size (6k — 1) x 3 in the class ACD4 with the same horizontal and vertical
projections. Let

110
111 Fy
B=(110), =11 0|, and F,=| B for k>1
1 01 Fi_q
111

For a given k € N and for any [ € N (1 <[ < k) we will refer to the submatrix
of F}, consisting of the rows 6(I — 1) +1i (i = 1,...,5) as the Ith level of B,
and to the submatrix B in the row 6l as the ith brzdge of B, (omitting the case
k =1). For any [ the positions (6(1 — 1) +4,2), (6(1—1)+4,3), (6(l—1)+1,2),
and (6(1 —1) +1,3) form a switching component in Fj and we will refer to it as
the Ith switching component of F,. Let Fl’ be the binary matrix that we get by
interchanging the Os and 1s in the first switching component of Fl, ie.,

0

F = ()

— = = =
— =
o O = =

Clearly, Fy, F] € ACD4 and so the theorem holds for the case k = 1. For the
case k > 1 let ¥ where S = {s1,...,5,} C {1,...,k} (n < k) denote the
binary matrix that we get from F, by switching the sith, ..., s,th switching
components. Note, that from the viewpoint of directedness, 4-connectedness and
antidiagonal convexity the [th bridge effects only on the (I + 1)-th and lth levels
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and vice versa (if they exist). Then, in order to prove that F}’ € ACD, for
any k € Nand S C {1,...,k} it is sufficient to study the submatrices of F}°
consisting of the /th level and the /th bridge and the Ith bridge and the I+ 1A)—th
/
level. These matrices can only be of the form <1§1 ) , (g ) , (}]1?1, ) , Oor <PB;1 ) .
It can be shown directly that the four sets represented by these matrices are
antidiagonally convex. For a given k S can be any subset of {1,...,k} therefore
the number of solutions with the same projections is at least 2* and so the
theorem is proven (see Fig. 3 for the case k = 2). O

(@) (b) (© (d) (©

Fig. 3. Exponentially large number of discrete sets of ACD4 with the same horizontal
and vertical projections. (a)-(d) Proof of Theorem 3 for the case k = 2. The sets left
to right are FZ{}, F2{1}, FQ{Z}, and FQ{I’Q}, respectively. (¢) One more set with the same
projections.

Remark 1. The bound 2 in the proof of Theorem 3 is not tight. See, for example,
the discrete set in Fig. 3e.

As a consequence of this theorem we get

Corollary 2. If there is an algorithm that reconstructs all the discrete sets of
ACDy with the horizontal and vertical projections H and V', respectively, then
there are some pair of vectors H and V' for which the time complexity of the
algorithm is not polynominal.

5 Generalisation to Arbitrary Line-Convexity

From Sections 3 and 4 it is clear that the direction of convexity has an important
role in whether or not ambiguity can be eliminated. In this section we study in
more detail how the direction of convexity effects on the number of directed
polyominoes. First, note that without further modification Theorem 2 can be
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stated in a more general way to polyominoes that are line-convex along the
direction (a,b) if @ > 0 holds. Moreover, the construction given in the proof
of Theorem 3 can be adapted to polyominoes that are line-convex along any
direction (a,b) for which a < 0 in the following way.

Theorem 4. Let C(q ) be the class of polyominoes that are line-conver along the
direction (a,b) such that a < 0. Then, there can be exponentially large number
of polyominoes of C(, 1) with the same horizontal and vertical projections.

Proof. (Sketch.) Assume that a direction (a,b) is given with a < 0. We will give
a construction similar to the one used in the proof of Theorem 3. First, note that
for each k > 1 the martices of (4) have only 3 columns therefore they are also
line-convex along the direction (a,b) if b > 2. Moreover, a # 1 implies b # 0.
Thus, the theorem holds for b # 1. Consider b = 1 and construct the bridge B(®)
of size (—a) x 3 and the matrix Fl(“) of size (4 — a) x 3 from the matrices given
in (4) in the following way

1 1 0
1 1 0 1 1 1
Bo=| |, Y= 3@ : (6)
1 1 0 1 0 1
1 1 1

Notice that BY = B and so F’l(fl) = F. Then, for each a < 0 the proof can
be finished similarly as the proof of Theorem 3. O

Now, we can state the main result of our paper.

Theorem 5. Let D = {(a;,b;) | i = 1,...,1} be a finite set of directions and
P be a polyomino line-convex along every directions of D. Then, P is uniquely
determined by its horizontal and vertical projections and it can be reconstructed
in O(mn) time if there exist a direction (a,b) € D with a > 0. If a; < 0 for all
directions (a;,b;) € D (i = 1,...,1) then there can be exponentially large number
of polyominoes that are line-convex along the directions of D and have the same
horizontal and vertical projections as P.

Proof. Tt follows from Theorem 1 and the discussion of the above paragraph.
The only non-trivial statement is the case if a; < 0 for all directions (a;, b;) € D
(i = 1,...,1). In this situation we can have two cases. If there is at least one
direction (aj,b;) such that b; = 1 then we have to to apply the construction of
(6) with the argument a = min{a; | b; = 1, (a;,b;) € D}. Otherwise, (that is, if
bi #1foralli=1,...,1) we can simply use the construction of (4). O

Remark 2. Theorem 5 can be extended to any infinte set D of directions except
the case if b; # 1 for all (a;,b;) € D. In this latter case the integer min{a; | b; =
1, (as,b;) € D} does not exist.
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6 Conclusions

We have studied the problem of ambiguity in classes of directed discrete sets.
We have shown that in the class of diagonally convex directed polyominoes the
horizontal and vertical projections uniquely determine the polyomino and this
polyomino can be reconstructed in O(mn) time. However, assuming antidiagonal
convexity about the polyomino the number of solutions with the same horizontal
and vertical projections can be extremely large. Then, the results were gener-
alised to polyominoes having arbitrary line-convexity. It is an open question
whether in the classes where non-uniqueness holds a reconstruction algorithm
can be given to find a solution in polynomial time. Another interesting question
is if it is possible to generalise Theorem 5 to arbitrary infinite set of directions,
too.
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A Network Flow Algorithm for Binary Image
Reconstruction from Few Projections
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Abstract. Tomography deals with the reconstruction of images from
their projections. In this paper we focus on tomographic reconstruction
of binary images (i.e., black-and-white) that do not have an intrinsic lat-
tice structure from a small number of projections. We describe how the
reconstruction problem from only two projections can be formulated as
a network flow problem in a graph, which can be solved efficiently. When
only two projections are used, the reconstruction problem is severely un-
derdetermined and many solutions may exist. To find a reconstruction
that resembles the original image, more projections must be used. We
propose an iterative algorithm to solve the reconstruction problem from
more than two projections. In every iteration a network flow problem is
solved, corresponding to two of the available projections. Different pairs
of projection angles are used for consecutive iterations. Our algorithm
is capable of computing high quality reconstructions from very few pro-
jections. We evaluate its performance on simulated projection data and
compare it to other reconstruction algorithms.

1 Introduction

Tomography deals with the reconstruction of images from a number of their
projections [1,2]. In many applications, such as the reconstruction of medical
CT images, a large number of different pixel values may occur in the reconstruc-
tion. Typically, the number of projections that is required to obtain sufficiently
accurate reconstructions is large in such cases (more than a hundred).

For certain applications, however, it is known in advance that only a few possi-
ble gray values may occur. Many objects scanned in industry for nondestructive
testing or reverse engineering purposes are made of one homogeneous mater-
ial, resulting in two possible gray values: the material and the surrounding air.
Another example is medical digital subtraction angiography, where one obtains
projections of the distribution of a contrast in the vascular system.

The field of discrete tomography deals with the reconstruction of images from
a small number of projections, when the set of pixel values is known to have only
a few discrete values [3]. By using this prior information about the set of possible
values, it may be possible to dramatically reduce the amount of projection data
that is required to obtain accurate reconstructions.

A. Kuba, L.G. Nyul, and K. Paldgyi (Eds.): DGCI 2006, LNCS 4245, pp. 86-97, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In [4] the author proposed an algorithm for reconstructing binary images that
are defined on a lattice, using smoothness assumptions. This algorithm exploits
the fact that the reconstruction problem for only two projections can be solved
in polynomial time. The proposed reconstruction procedure is iterative: in each
iteration a new reconstruction is computed using only two projections and the
reconstruction from the previous iteration. The new reconstruction simultane-
ously resembles the image from the previous iteration and adheres to the two
selected projections.

In this paper we describe a new iterative algorithm for reconstructing bi-
nary images that do not have an intrinsic lattice structure (i.e., subsets of the
plane), which is based on ideas similar to those used in [4]. To solve the two-
projection subproblems efficiently, a different pixel grid has to be used in each
iteration, corresponding to the selected pair of projections. The reconstruction
problem can then be solved as a special case of the minimum cost network
flow problem in graphs, for which efficient polynomial time algorithms are avail-
able [5].

In [6] a more general version of our algorithm is described and more details
are provided on the algorithmic steps. We refer the reader to that paper for
further details.

We restrict ourselves to parallel beam tomography. Let D = {6;,...,64} be
a set of disjoint real numbers in the interval [0, 7), the projection angles. Let n
be a positive integer. For ¢ = 0,...,n, put t; = —n/2 4+ 4. Let 6 € [0, 7). For
t,t' e R, t < t', define the strip Sy(t,t') as

N o xcosf+ysind >t and
Se(t7t)—{(x,y)€R " wcosf +ysing <t

Fig. 1. (a) Left: Schematic view of the parallel beam geometry which contains the lines
Ly :zcosO+ysind = 0and Lo : zcos@+ysinf = ¢t. (b) Right: A two-projection image.
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Figure 1a shows the geometric meaning of the last definition. Define the imaging
area I as

d
I= (") So,(to,tn)-

k=1

We will now define the basic reconstruction problem of reconstructing a binary
image (i.e., black-and-white) from few projections. We consider the unknown
image as a mapping f : I — {0,1}.

Problem 1. Let p1 = (p11...p10)", ..., pa = (Pa1 - .pan)* € R™ be vectors of
nonnegative real numbers (the measured strip projections for projection angles
61,...,04 € D respectively). Construct a function f : I — {0,1} such that

// flz,y) dyde = pi fori=1,...,n, k=1,...,d.
Soy, (ti—1,t:)

We call an integral of the form ffse (ti1,ts) f(z,y) dy da a strip projection.
k 1— 1yt

In the next section we deal with the reconstruction problem from only two
projections, which is severely underdetermined. In Section 3 we describe our iter-
ative algorithm for reconstruction from more than two projections. Experimental
results of the algorithm from Section 3 are presented in Section 4.

2 Reconstruction from Two Projections

This section deals with the reconstruction problem from only two projections,
for angles 0; and 6. To represent a mapping f : [ — {0,1} in a computer we
have to resort to an approximate representation. An image f is represented as
a 2D array of pixels. Every measured strip projection then gives rise to a linear
equation on the pixel values of f. The resulting system of linear equations can
be solved by methods from linear algebra, but in this way one cannot guarantee
that a binary solution is found. We now introduce a particular grid, the two-
projection grid, for which a binary solution of the reconstruction problem can be
found efficiently. The rows and columns of this grid correspond to the strips for
the two projections angles 6; and 6. Define grid cell Cij (1<4,j<n)as

Cij = Sgl (ti_l,ti) n S§2 (tj_l,tj).

A two-projection image is a mapping {1,...,n} x {1,...,n} — {0,1} which
assigns a binary value to each grid cell of a two-projection grid. Figure 1b shows
an example of a two-projection image.

It is often convenient to consider a two-projection image X as a matriz (x;;),
where x;; denotes X ((¢,7)) (the pixel value of cell C;;). The strip projections of
X for the projection angles #; and 6, can be computed directly by summation of
all entries in each row of X, or column respectively, and multiplying the result by
the cell area a. For k = 1,2, define Py (X) € R"™ as the vector of strip projections
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of X for angle 6. Define the one-count of X by S(X) = > 1<i j<n Tij- We denote
the area of a single grid cell by a. Note that all grid cells have the same shape
and size.

We will now define a reconstruction problem for two-projection images. As
the projection data may contain noise or other errors, we don’t require that the
image adheres perfectly to the measured projection data. In the next section,
where we consider reconstruction from more than two projections, we require a
generalization of the reconstruction problem which incorporates prior knowledge.
We state this general reconstruction problem here.

Problem 2. Let 0,0, € [0,7) be two disjoint projection angles. Let py,ps € R”
be two vectors of nonnegative real numbers (the measured projection data). Let
W = (w;;) € R™" T € N5 and o € R. Construct a matrix X € {0,1}"*"
such that S(X) =T and

a|Pr(X) = pili + [Po(X) = p2|1) — Z aw;; T

1<i,j<n
is minimal.

In any instance of Problem 2, the one-count S(X) is considered to be fixed at
T. A good value for T can be computed from the measured projection data by
taking T = (|p1]1 + |p2]1)/2a. Putting « = 1 and w;; = 0 for 1 < 4,5 < n,
yields the basic reconstruction problem (without the use of prior knowledge).
The matrix W is called the weight map. The weight map is used extensively in
the algorithm for reconstructing a binary image from more than two projections
that we describe in the next section. It is used to express a preference for each
pixel to obtain a value of either 0 or 1 in the reconstruction.

Problem 2 can be solved efficiently by formulating it as a minimum cost flow
problem in a particular graph. Efficient algorithms are available for solving the
resulting network flow problem. The basic idea of using network flow methods
for the reconstruction of binary images from two projections was first described
by Gale in 1957 [7], in the context of reconstructing binary matrices from their
row and column sums.

For the sake of brevity, we make one simplifying assumption: we assume that
all measured strip projections are integral multiples of the pixel area a. If the
strip projections do not satisfy this assumption they can simply be rounded
to the nearest multiple of a. If n is large, the effect of this rounding step is
neglegible. Details on how to compute an exact solution of Problem 2, without
the assumption on the strip projections, are given in [6].

In the remainder of this section we assume that the reader is familiar with the
basic concepts of network flows. The book [5] provides an excellent introduction
to this subject.

With a pair of projection angles (61, 62) and their respective measured pro-
jections (p1,p2), we associate a directed graph G = (V, E), where V' is the set of
nodes and F is the set of edges. We call G the associated graph, see Figure 2.
The set V' contains a node s (the source), a node t (the sink), one node for each
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Source node

Line edges

Line nodes

Pixel edges

@ @ Line nodes
. / edges
° Sink node

Fig. 2. Basic structure of the associated graph

strip of projection angle #; and one node for each strip of projection angle 6.
The node that corresponds to Sp, (t;—1,t;) has label ny, ;. We call the nodes ny ;
line nodes.

Each edge e of G has an associated capacity u. and cost c.. Every pair
(n1,4, na,;) of nodes is connected by a directed edge. We call these edges pizel
edges. Each pixel edge (n1,;, ne ;) has capacity 1 and cost —aw;;. For each pair
(s,n1,4) the graph G contains two parallel edges. The first edge has capacity
p1i/a and cost 0, the second edge has capacity n — p1;/a and cost 2aa. Similarly,
G contains two parallel edges for every pair (ng ;,t) with capacities ps;/a and
n — p2;j/a and costs 0 and 2aa respectively.

An integral flow in G is a mapping Y : E — N>( such that Y (e) < u, for all
e € E and such that for all v € V\{s,t}:

Yo Y(ww)= Y Y(wuw)
w: (w,w)EE w: (v,w)EE

Every integral flow Y corresponds to a two-projection image X = z;;, defined
by z;; = Y((n1,i,n2,;)). Define the total cost of an integral flow Y by

CY) =) cY(e).
ecE

In [6] it is proved that any integral flow of minimal cost in G corresponds to a
solution of Problem 2. Note that all edge capacities of G are integers. The integral
minimum cost flow problem can be solved in polynomial time for graphs that
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have integral arc capacities and costs. To obtain integral costs in our case, we
multiply the edge costs by a sufficiently large number and round the results.
Note that scaling all costs by the same factor does not change which flow has
minimal cost.

3 More Than Two Projections

Unfortunately, there is no straightforward generalization of the network flow
approach to the case of more than two projections. We propose an iterative
algorithm, which uses the fact that the two-projection problem can be solved
efficiently. The algorithm computes a reconstruction from more than two projec-
tions by solving a series of two-projection subproblems, each using two projection
angles. The algorithm uses the concept of a weight map, as introduced in Prob-
lem 2. Our algorithm aims to find an approzimate solution of the reconstruction
problem. In each iteration a new pair of projection angles is selected. An in-
stance of Problem 2 is then solved on the two-projection grid that corresponds
to those two angles. The weight map is computed using the reconstruction from
the previous iteration, in such a way that solutions are preferred which resemble
the reconstruction from the previous iteration. Additionaly, a preference for lo-
cally smooth regions is incorporated in the weight map. The reconstruction from
the previous iteration was computed using a different pair of projections, which
are thus incorporated into the new reconstruction. Repeating this argument,
projections from earlier iterations are also incorporated.

Compute a start solution X° on the standard square pixel grid;
d

A= (= Ipeh)/d;

T7:=0;

while (stop criterion is not met) do
begin

Ti=7+1;
Select a new pair of projection angles 67,605 € D;

Compute the weight map W7 = (w7;) for the two-projection grid
corresponding to (07,03), using the previous reconstruction X7

Compute T := A/a;

Compute a solution X” with S(X7) =T of Problem 2
on the two-projection grid for angles (67, 63), using the
weight map WT;

end

Return the final reconstruction X*;

Fig. 3. Basic steps of the algorithm
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Figure 3 shows the basic steps of the algorithm. First, a start solution is
computed, using all projections simultaneously. The start solution should provide
a good first approximation of the unknown image, while being easy to compute.
The start solution can be computed on the standard nxn square pixel grid.
For the experiments in Section 4 we used the SIRT (Simultaneous Iterative
Reconstruction Technique, see Chapter 7 of [1]) to compute the start solution,
which yields a gray value reconstruction.

Subsequently, the “total area A of the white region” (i.e., the region where
the function value of the unknown image f is 1) is computed as (ZZ:1 |pk]1)/d.

Next, the algorithm enters the main loop. In each iteration 7 of the main loop
a new pair (A7,07) of projection angles is first selected, which determines the
two-projection grid for iteration 7. We refer to the cell (i, j) of this grid as C7;.
To choose the projection angles, the projections of the current image for each of
the angles 61, ...,60,; are computed first. The new pair of angles is chosen such
that the angle between 0] and 03 is at least 7/3 and the total deviation of the
computed projections from the prescribed projections is largest, according to the
sum-norm.

Next, the number of white pixels 7" = round(A/a,) is computed, where a,
denotes the area of a grid cell in the current two-projection grid. Note that the
grid cell area is different for each two-projection grid.

Subsequently the weight map W™ = (w];) is computed from the previous

1,
reconstruction. We denote the grid cells of tﬁe new two-projection grid by C7.
Define m;; € R? as the center of mass of cell C7;. The pixel weight w]; of pixel
(i,4) depends directly on the average gray value of X,_1 in a small neighbour-
hood of m;;. Most common pixel neighbourhood definitions that are used in
image processing, such as the 4-neighbourhood and 8-neighbourhood, are very
suitable for square pixel grids. However, as our algorithm deals with many dif-
ferent pixel grids for which the pixel sizes and shapes may vary, we have to use
a more general neighbourhood concept. Let r be a positive real number, the
neighbourhood radius. We used r = 1.5 for all experiments in Section 4. Let I5;
be the average gray value inside a circle of radius r, centered in m;;, in the
two-projection image X,_;. This value can be computed by intersecting each
of the overlapping pixels of X,_; with the circular neighbourhood of m;; and
weighting the pixel values by the intersection area. Note that we always have
I € [0, 1}
Define g : [-1,1] — R by

(v) = v if v #£1
T =V20 if o] =1L

We call g the local weight function. Together with the neighbourhood radius
r, the local weight function determines the preference for locally smooth regions.

The pixel weight wj; is computed as
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The basic idea of the local weight function is that, as the neighbourhood of
a pixel becomes more white, the preference to make this pixel white in the next
iteration increases. The same holds for black neighbourhoods. There is an addi-
tional increase in the (absolute value of) the pixel weight if the neighbourhood
is completely homogeneous. If a pixel neighbourhood consists of 50% black and
50% white pixels, no preference is expressed as the pixel weight is zero.

The weight map W7, the value T and the projections for angles (67, 65) define
an instance of Problem 2. Solving this problem by the network flow approach
yields the new reconstruction X7.

To determine when the algorithm should terminate, the strip projections of
X are c